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Introduction

If things don’t go your way in predictive modeling, use XGboost.

 XGBoost algorithm has become the ultimate weapon of many data

scientist. It’s a highly sophisticated algorithm, powerful enough to

deal with all sorts of irregularities of data.

Building a model using XGBoost is easy. But, improving the model

using XGBoost is difficult (at least I struggled a lot). This algorithm

uses multiple parameters. To improve the model, parameter tuning

is must. It is very difficult to get answers to practical questions like –

Which set of parameters you should tune ? What is the ideal value

of these parameters to obtain optimal output ?

This article is best suited to people who are new to XGBoost. In this

article, we’ll learn the art of parameter tuning along with some useful

information about XGBoost. Also, we’ll practice this algorithm using

a  data set in Python.



What should you know ?

XGBoost (eXtreme Gradient Boosting) is an advanced

implementation of gradient boosting algorithm. Since I covered

Gradient Boosting Machine in detail in my previous article

– Complete Guide to Parameter Tuning in Gradient Boosting (GBM)

in Python, I highly recommend going through that before reading

further. It will help you bolster your understanding of boosting in

general and parameter tuning for GBM.

Special Thanks: Personally, I would like to acknowledge the

timeless support provided by Mr. Sudalai Rajkumar (aka SRK),

currently AV Rank 2. This article wouldn’t be possible without his

help. He is helping us guide thousands of data scientists. A big

thanks to SRK!
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1. The XGBoost Advantage

I’ve always admired the boosting capabilities that this algorithm

infuses in a predictive model. When I explored more about its

performance and science behind its high accuracy, I discovered

many advantages:

Regularization:

Standard GBM implementation has no regularization

like XGBoost, therefore it also helps to reduce overfitting.

In fact, XGBoost is also known as ‘regularized boosting‘ technique.

1. 

Parallel Processing:

XGBoost implements parallel processing and is blazingly faster as

2. 



compared to GBM.

But hang on, we know that boosting is sequential process so how

can it be parallelized? We know that each tree can be built only after

the previous one, so what stops us from making a tree using all

cores? I hope you get where I’m coming from. Check this link out to

explore further.

XGBoost also supports implementation on Hadoop.

High Flexibility

XGBoost allow users to define custom optimization objectives

and evaluation criteria.

This adds a whole new dimension to the model and there is no limit

to what we can do.

3. 

Handling Missing Values

XGBoost has an in-built routine to handle missing values.

User is required to supply a different value than other observations

and pass that as a parameter. XGBoost tries different things as it

encounters a missing value on each node and learns which path to

take for missing values in future.

4. 

Tree Pruning:

A GBM would stop splitting a node when it encounters a negative

loss in the split. Thus it is more of a greedy algorithm.

XGBoost on the other hand make splits upto the max_depth

specified and then start pruning the tree backwards and remove

splits beyond which there is no positive gain.

Another advantage is that sometimes a split of negative loss say -2

may be followed by a split of positive loss +10. GBM would stop as it

encounters -2. But XGBoost will go deeper and it will see a

combined effect of +8 of the split and keep both.

5. 

Built-in Cross-Validation

XGBoost allows user to run a cross-validation at each iteration of

the boosting process and thus it is easy to get the exact optimum

number of boosting iterations in a single run.

This is unlike GBM where we have to run a grid-search and only a

6. 



limited values can be tested.

Continue on Existing Model

User can start training an XGBoost model from its last iteration of

previous run. This can be of significant advantage in certain specific

applications.

GBM implementation of sklearn also has this feature so they are

even on this point.

7. 

I hope now you understand the sheer power XGBoost algorithm.

Note that these are the points which I could muster. You know a few

more? Feel free to drop a comment below and I will update the list.

Did I whet your appetite ? Good. You can refer to following web-

pages for a deeper understanding:

XGBoost Guide – Introduction to Boosted Trees

Words from the Author of XGBoost [Video]

2. XGBoost Parameters

The overall parameters have been divided into 3 categories by

XGBoost authors:

General Parameters: Guide the overall functioning1. 

Booster Parameters: Guide the individual booster (tree/regression)

at each step

2. 

Learning Task Parameters: Guide the optimization performed3. 

I will give analogies to GBM here and highly recommend to read this

article to learn from the very basics.

General Parameters

These define the overall functionality of XGBoost.

booster [default=gbtree]

Select the type of model to run at each iteration. It has 2 options:

gbtree: tree-based models

gblinear: linear models

1. 

silent [default=0]:2. 



Silent mode is activated is set to 1, i.e. no running messages will be

printed.

It’s generally good to keep it 0 as the messages might help in

understanding the model.

nthread [default to maximum number of threads available if not

set]

This is used for parallel processing and number of cores in the

system should be entered

If you wish to run on all cores, value should not be entered and

algorithm will detect automatically

3. 

There are 2 more parameters which are set automatically by

XGBoost and you need not worry about them. Lets move on to

Booster parameters.

Booster Parameters

Though there are 2 types of boosters, I’ll consider only tree

booster here because it always outperforms the linear booster and

thus the later is rarely used.

eta [default=0.3]

Analogous to learning rate in GBM

Makes the model more robust by shrinking the weights on each step

Typical final values to be used: 0.01-0.2

1. 

min_child_weight [default=1]

Defines the minimum sum of weights of all observations required in

a child.

This is similar to min_child_leaf in GBM but not exactly. This refers

to min “sum of weights” of observations while GBM has min “number

of observations”.

Used to control over-fitting. Higher values prevent a model from

learning relations which might be highly specific to the particular

sample selected for a tree.

Too high values can lead to under-fitting hence, it should be tuned

using CV.

2. 



max_depth [default=6]

The maximum depth of a tree, same as GBM.

Used to control over-fitting as higher depth will allow model to learn

relations very specific to a particular sample.

Should be tuned using CV.

Typical values: 3-10

3. 

max_leaf_nodes

The maximum number of terminal nodes or leaves in a tree.

Can be defined in place of max_depth. Since binary trees are

created, a depth of ‘n’ would produce a maximum of 2^n leaves.

If this is defined, GBM will ignore max_depth.

4. 

gamma [default=0]

A node is split only when the resulting split gives a positive

reduction in the loss function. Gamma specifies the minimum loss

reduction required to make a split.

Makes the algorithm conservative. The values can vary depending

on the loss function and should be tuned.

5. 

max_delta_step [default=0]

In maximum delta step we allow each tree’s weight estimation to be.

If the value is set to 0, it means there is no constraint. If it is set to a

positive value, it can help making the update step more

conservative.

Usually this parameter is not needed, but it might help in logistic

regression when class is extremely imbalanced.

This is generally not used but you can explore further if you wish.

6. 

subsample [default=1]

Same as the subsample of GBM. Denotes the fraction of

observations to be randomly samples for each tree.

Lower values make the algorithm more conservative and prevents

overfitting but too small values might lead to under-fitting.

Typical values: 0.5-1

7. 

colsample_bytree [default=1]8. 



Similar to max_features in GBM. Denotes the fraction of columns to

be randomly samples for each tree.

Typical values: 0.5-1

colsample_bylevel [default=1]

Denotes the subsample ratio of columns for each split, in each level.

I don’t use this often because subsample and colsample_bytree will

do the job for you. but you can explore further if you feel so.

9. 

lambda [default=1]

L2 regularization term on weights (analogous to Ridge regression)

This used to handle the regularization part of XGBoost. Though

many data scientists don’t use it often, it should be explored to

reduce overfitting.

10. 

alpha [default=0]

L1 regularization term on weight (analogous to Lasso regression)

Can be used in case of very high dimensionality so that the

algorithm runs faster when implemented

11. 

scale_pos_weight [default=1]

A value greater than 0 should be used in case of high class

imbalance as it helps in faster convergence.

12. 

Learning Task Parameters

These parameters are used to define the optimization objective the

metric to be calculated at each step.

objective [default=reg:linear]

This defines the loss function to be minimized. Mostly used values

are:

binary:logistic –logistic regression for binary classification,

returns predicted probability (not class)

multi:softmax –multiclass classification using the softmax

objective, returns predicted class (not probabilities)

you also need to set an additional num_class (number of classes)

parameter defining the number of unique classes

multi:softprob –same as softmax, but returns predicted probability

1. 



of each data point belonging to each class.

eval_metric [ default according to objective ]

The metric to be used for validation data.

The default values are rmse for regression and error for

classification.

Typical values are:

rmse – root mean square error

mae – mean absolute error

logloss – negative log-likelihood

error – Binary classification error rate (0.5 threshold)

merror – Multiclass classification error rate

mlogloss – Multiclass logloss

auc: Area under the curve

2. 

seed [default=0]

The random number seed.

Can be used for generating reproducible results and also for

parameter tuning.

3. 

If you’ve been using Scikit-Learn till now, these parameter names

might not look familiar. A good news is that xgboost module in

python has an sklearn wrapper called XGBClassifier. It uses sklearn

style naming convention. The parameters names which will change

are:

eta –> learning_rate1. 

lambda –> reg_lambda2. 

alpha –> reg_alpha3. 

You must be wondering that we have defined everything except

something similar to the “n_estimators” parameter in GBM. Well this

exists as a parameter in XGBClassifier. However, it has to be passed

as “num_boosting_rounds” while calling the fit function in the

standard xgboost implementation.

I recommend you to go through the following parts of xgboost guide



to better understand the parameters and codes:

XGBoost Parameters (official guide)1. 

XGBoost Demo Codes (xgboost GitHub repository)2. 

Python API Reference (official guide)3. 

3. Parameter Tuning with Example

We will take the data set from Data Hackathon 3.x AV hackathon,

same as that taken in the GBM article. The details of the problem

can be found on the competition page. You can download the data

set from here. I have performed the following steps:

City variable dropped because of too many categories1. 

DOB converted to Age | DOB dropped2. 

EMI_Loan_Submitted_Missing created which is 1 if

EMI_Loan_Submitted was missing else 0 | Original variable

EMI_Loan_Submitted dropped

3. 

EmployerName dropped because of too many categories4. 

Existing_EMI imputed with 0 (median) since only 111 values were

missing

5. 

Interest_Rate_Missing created which is 1 if Interest_Rate was

missing else 0 | Original variable Interest_Rate dropped

6. 

Lead_Creation_Date dropped because made little intuitive impact

on outcome

7. 

Loan_Amount_Applied, Loan_Tenure_Applied imputed with median

values

8. 

Loan_Amount_Submitted_Missing created which is 1 if

Loan_Amount_Submitted was missing else 0 | Original variable

Loan_Amount_Submitted dropped

9. 

Loan_Tenure_Submitted_Missing created which is 1 if

Loan_Tenure_Submitted was missing else 0 | Original variable

Loan_Tenure_Submitted dropped

10. 

LoggedIn, Salary_Account dropped11. 



Processing_Fee_Missing created which is 1 if Processing_Fee was

missing else 0 | Original variable Processing_Fee dropped

12. 

Source – top 2 kept as is and all others combined into different

category

13. 

Numerical and One-Hot-Coding performed14. 

For those who have the original data from competition, you can

check out these steps from the data_preparation iPython notebook

in the repository.

Lets start by importing the required libraries and loading the data:

#Import libraries:

import pandas as pd

import numpy as np

import xgboost as xgb

from xgboost.sklearn import XGBClassifier

from sklearn import cross_validation, metrics   

#Additional scklearn functions

from sklearn.grid_search import GridSearchCV   

#Perforing grid search

import matplotlib.pylab as plt

%matplotlib inline

from matplotlib.pylab import rcParams

rcParams['figure.figsize'] = 12, 4

train = pd.read_csv('train_modified.csv')

target = 'Disbursed'

IDcol = 'ID'

Note that I have imported 2 forms of XGBoost:

xgb – this is the direct xgboost library. I will use a specific function

“cv” from this library

1. 

XGBClassifier – this is an sklearn wrapper for XGBoost. This

allows us to use sklearn’s Grid Search with parallel processing

in the same way we did for GBM

2. 

Before proceeding further, lets define a function which will help us



create XGBoost models and perform cross-validation. The best part

is that you can take this function as it is and use it later for your own

models.

def modelfit(alg, dtrain, 

predictors,useTrainCV=True, cv_folds=5, 

early_stopping_rounds=50):

    

    if useTrainCV:

        xgb_param = alg.get_xgb_params()

        xgtrain = 

xgb.DMatrix(dtrain[predictors].values, 

label=dtrain[target].values)

        cvresult = xgb.cv(xgb_param, xgtrain, 

num_boost_round=alg.get_params()['n_estimators'], 

nfold=cv_folds,

            metrics='auc', 

early_stopping_rounds=early_stopping_rounds, 

show_progress=False)

alg.set_params(n_estimators=cvresult.shape[0])

    

    #Fit the algorithm on the data

    alg.fit(dtrain[predictors], 

dtrain['Disbursed'],eval_metric='auc')

        

    #Predict training set:

    dtrain_predictions = 

alg.predict(dtrain[predictors])

    dtrain_predprob = 

alg.predict_proba(dtrain[predictors])[:,1]

        

    #Print model report:

    print "\nModel Report"

    print "Accuracy : %.4g" % 

metrics.accuracy_score(dtrain['Disbursed'].values, 

dtrain_predictions)



    print "AUC Score (Train): %f" % 

metrics.roc_auc_score(dtrain['Disbursed'], 

dtrain_predprob)

                    

    feat_imp = 

pd.Series(alg.booster().get_fscore()).sort_values(ascending=False)

    feat_imp.plot(kind='bar', title='Feature 

Importances')

    plt.ylabel('Feature Importance Score')

This code is slightly different from what I used for GBM. The focus of

this article is to cover the concepts and not coding. Please feel free

to drop a note in the comments if you find any challenges in

understanding any part of it. Note that xgboost’s sklearn wrapper

doesn’t have a “feature_importances” metric but a get_fscore()

function which does the same job.

General Approach for Parameter Tuning

We will use an approach similar to that of GBM here. The various

steps to be performed are:

Choose a relatively high learning rate. Generally a learning rate of

0.1 works but somewhere between 0.05 to 0.3 should work for

different problems. Determine the optimum number of trees for

this learning rate. XGBoost has a very useful function called as

“cv” which performs cross-validation at each boosting iteration and

thus returns the optimum number of trees required.

1. 

Tune tree-specific parameters ( max_depth, min_child_weight,

gamma, subsample, colsample_bytree) for decided learning rate

and number of trees. Note that we can choose different parameters

to define a tree and I’ll take up an example here.

2. 

Tune regularization parameters (lambda, alpha) for xgboost which

can help reduce model complexity and enhance performance.

3. 

Lower the learning rate and decide the optimal parameters .4. 

Let us look at a more detailed step by step approach.

Step 1: Fix learning rate and number of estimators for tuning



tree-based parameters

In order to decide on boosting parameters, we need to set some

initial values of other parameters. Lets take the following values:

max_depth = 5 : This should be between 3-10. I’ve started with 5

but you can choose a different number as well. 4-6 can be good

starting points.

1. 

min_child_weight = 1 : A smaller value is chosen because it is a

highly imbalanced class problem and leaf nodes can have smaller

size groups.

2. 

gamma = 0 : A smaller value like 0.1-0.2 can also be chosen for

starting. This will anyways be tuned later.

3. 

subsample, colsample_bytree = 0.8 : This is a commonly used

used start value. Typical values range between 0.5-0.9.

4. 

scale_pos_weight = 1: Because of high class imbalance.5. 

Please note that all the above are just initial estimates and will be

tuned later. Lets take the default learning rate of 0.1 here and check

the optimum number of trees using cv function of xgboost. The

function defined above will do it for us.

#Choose all predictors except target & IDcols

predictors = [x for x in train.columns if x not in 

[target, IDcol]]

xgb1 = XGBClassifier(

 learning_rate =0.1,

 n_estimators=1000,

 max_depth=5,

 min_child_weight=1,

 gamma=0,

 subsample=0.8,

 colsample_bytree=0.8,

 objective= 'binary:logistic',

 nthread=4,

 scale_pos_weight=1,

 seed=27)

modelfit(xgb1, train, predictors)



As you can see that here we got 140 as the optimal estimators for

0.1 learning rate. Note that this value might be too high for you

depending on the power of your system. In that case you can

increase the learning rate and re-run the command to get the

reduced number of estimators.

Note: You will see the test AUC as “AUC Score (Test)” in

the outputs here. But this would not appear if you try to run the

command on your system as the data is not made public. It’s

provided here just for reference. The part of the code which

generates this output has been removed here.

Step 2: Tune max_depth and min_child_weight

We tune these first as they will have the highest impact on model

outcome. To start with, let’s set wider ranges and then we will

perform another iteration for smaller ranges.

Important Note: I’ll be doing some heavy-duty grid searched in this

section which can take 15-30 mins or even more time to run

depending on your system. You can vary the number of values you

are testing based on what your system can handle.

param_test1 = {



 'max_depth':range(3,10,2),

 'min_child_weight':range(1,6,2)

}

gsearch1 = GridSearchCV(estimator = XGBClassifier( 

learning_rate =0.1, n_estimators=140, max_depth=5,

 min_child_weight=1, gamma=0, subsample=0.8, 

colsample_bytree=0.8,

 objective= 'binary:logistic', nthread=4, 

scale_pos_weight=1, seed=27), 

 param_grid = param_test1, 

scoring='roc_auc',n_jobs=4,iid=False, cv=5)

gsearch1.fit(train[predictors],train[target])

gsearch1.grid_scores_, gsearch1.best_params_, 

gsearch1.best_score_

Here, we have run 12 combinations with wider intervals between

values. The ideal values are 5 for max_depth and 5 for

min_child_weight. Lets go one step deeper and look for optimum

values. We’ll search for values 1 above and below the optimum

values because we took an interval of two.

param_test2 = {

 'max_depth':[4,5,6],

 'min_child_weight':[4,5,6]

}

gsearch2 = GridSearchCV(estimator = XGBClassifier( 

learning_rate=0.1, n_estimators=140, max_depth=5,

 min_child_weight=2, gamma=0, subsample=0.8, 

colsample_bytree=0.8,

 objective= 'binary:logistic', nthread=4, 

scale_pos_weight=1,seed=27), 



 param_grid = param_test2, 

scoring='roc_auc',n_jobs=4,iid=False, cv=5)

gsearch2.fit(train[predictors],train[target])

gsearch2.grid_scores_, gsearch2.best_params_, 

gsearch2.best_score_

Here, we get the optimum values as 4 for max_depth and 6 for

min_child_weight. Also, we can see the CV score increasing

slightly. Note that as the model performance increases, it becomes

exponentially difficult to achieve even marginal gains in

performance. You would have noticed that here we got 6 as

optimum value for min_child_weight but we haven’t tried values

more than 6. We can do that as follow:.

param_test2b = {

 'min_child_weight':[6,8,10,12]

}

gsearch2b = GridSearchCV(estimator = 

XGBClassifier( learning_rate=0.1, 

n_estimators=140, max_depth=4,

 min_child_weight=2, gamma=0, subsample=0.8, 

colsample_bytree=0.8,

 objective= 'binary:logistic', nthread=4, 

scale_pos_weight=1,seed=27), 

 param_grid = param_test2b, 

scoring='roc_auc',n_jobs=4,iid=False, cv=5)

gsearch2b.fit(train[predictors],train[target])

modelfit(gsearch3.best_estimator_, train, 

predictors)

gsearch2b.grid_scores_, gsearch2b.best_params_, 

gsearch2b.best_score_



We see 6 as the optimal value.

Step 3: Tune gamma

Now lets tune gamma value using the parameters already tuned

above. Gamma can take various values but I’ll check for 5 values

here. You can go into more precise values as.

param_test3 = {

 'gamma':[i/10.0 for i in range(0,5)]

}

gsearch3 = GridSearchCV(estimator = XGBClassifier( 

learning_rate =0.1, n_estimators=140, max_depth=4,

 min_child_weight=6, gamma=0, subsample=0.8, 

colsample_bytree=0.8,

 objective= 'binary:logistic', nthread=4, 

scale_pos_weight=1,seed=27), 

 param_grid = param_test3, 

scoring='roc_auc',n_jobs=4,iid=False, cv=5)

gsearch3.fit(train[predictors],train[target])

gsearch3.grid_scores_, gsearch3.best_params_, 

gsearch3.best_score_

This shows that our original value of gamma, i.e. 0 is the optimum

one. Before proceeding, a good idea would be to re-calibrate the

number of boosting rounds for the updated parameters.

xgb2 = XGBClassifier(

 learning_rate =0.1,

 n_estimators=1000,

 max_depth=4,



 min_child_weight=6,

 gamma=0,

 subsample=0.8,

 colsample_bytree=0.8,

 objective= 'binary:logistic',

 nthread=4,

 scale_pos_weight=1,

 seed=27)

modelfit(xgb2, train, predictors)

Here, we can see the improvement in score. So the final parameters

are:

max_depth: 4

min_child_weight: 6

gamma: 0

Step 4: Tune subsample and colsample_bytree

The next step would be try different subsample and

colsample_bytree values. Lets do this in 2 stages as well and take

values 0.6,0.7,0.8,0.9 for both to start with.

param_test4 = {



 'subsample':[i/10.0 for i in range(6,10)],

 'colsample_bytree':[i/10.0 for i in range(6,10)]

}

gsearch4 = GridSearchCV(estimator = XGBClassifier( 

learning_rate =0.1, n_estimators=177, max_depth=4,

 min_child_weight=6, gamma=0, subsample=0.8, 

colsample_bytree=0.8,

 objective= 'binary:logistic', nthread=4, 

scale_pos_weight=1,seed=27), 

 param_grid = param_test4, 

scoring='roc_auc',n_jobs=4,iid=False, cv=5)

gsearch4.fit(train[predictors],train[target])

gsearch4.grid_scores_, gsearch4.best_params_, 

gsearch4.best_score_

Here, we found 0.8 as the optimum value for both subsample and

colsample_bytree. Now we should try values in 0.05 interval around

these.

param_test5 = {

 'subsample':[i/100.0 for i in range(75,90,5)],

 'colsample_bytree':[i/100.0 for i in 

range(75,90,5)]

}

gsearch5 = GridSearchCV(estimator = XGBClassifier( 

learning_rate =0.1, n_estimators=177, max_depth=4,

 min_child_weight=6, gamma=0, subsample=0.8, 

colsample_bytree=0.8,

 objective= 'binary:logistic', nthread=4, 



scale_pos_weight=1,seed=27), 

 param_grid = param_test5, 

scoring='roc_auc',n_jobs=4,iid=False, cv=5)

gsearch5.fit(train[predictors],train[target])

Again we got the same values as before. Thus the optimum values

are:

subsample: 0.8

colsample_bytree: 0.8

Step 5: Tuning Regularization Parameters

Next step is to apply regularization to reduce overfitting. Though

many people don’t use this parameters much as gamma provides a

substantial way of controlling complexity. But we should always try it.

I’ll tune ‘reg_alpha’ value here and leave it upto you to try different

values of ‘reg_lambda’.

param_test6 = {

 'reg_alpha':[1e-5, 1e-2, 0.1, 1, 100]

}

gsearch6 = GridSearchCV(estimator = XGBClassifier( 

learning_rate =0.1, n_estimators=177, max_depth=4,

 min_child_weight=6, gamma=0.1, subsample=0.8, 

colsample_bytree=0.8,

 objective= 'binary:logistic', nthread=4, 

scale_pos_weight=1,seed=27), 

 param_grid = param_test6, 

scoring='roc_auc',n_jobs=4,iid=False, cv=5)

gsearch6.fit(train[predictors],train[target])

gsearch6.grid_scores_, gsearch6.best_params_, 

gsearch6.best_score_



We can see that the CV score is less than the previous case. But

the values tried are very widespread, we should try values closer to

the optimum here (0.01) to see if we get something better.

param_test7 = {

 'reg_alpha':[0, 0.001, 0.005, 0.01, 0.05]

}

gsearch7 = GridSearchCV(estimator = XGBClassifier( 

learning_rate =0.1, n_estimators=177, max_depth=4,

 min_child_weight=6, gamma=0.1, subsample=0.8, 

colsample_bytree=0.8,

 objective= 'binary:logistic', nthread=4, 

scale_pos_weight=1,seed=27), 

 param_grid = param_test7, 

scoring='roc_auc',n_jobs=4,iid=False, cv=5)

gsearch7.fit(train[predictors],train[target])

gsearch7.grid_scores_, gsearch7.best_params_, 

gsearch7.best_score_

You can see that we got a better CV. Now we can apply this

regularization in the model and look at the impact:

xgb3 = XGBClassifier(

 learning_rate =0.1,

 n_estimators=1000,

 max_depth=4,

 min_child_weight=6,

 gamma=0,

 subsample=0.8,

 colsample_bytree=0.8,



 reg_alpha=0.005,

 objective= 'binary:logistic',

 nthread=4,

 scale_pos_weight=1,

 seed=27)

modelfit(xgb3, train, predictors)

Again we can see slight improvement in the score.

Step 6: Reducing Learning Rate

Lastly, we should lower the learning rate and add more trees. Lets

use the cv function of XGBoost to do the job again.

xgb4 = XGBClassifier(

 learning_rate =0.01,

 n_estimators=5000,

 max_depth=4,

 min_child_weight=6,

 gamma=0,

 subsample=0.8,

 colsample_bytree=0.8,

 reg_alpha=0.005,



 objective= 'binary:logistic',

 nthread=4,

 scale_pos_weight=1,

 seed=27)

modelfit(xgb4, train, predictors)

Now we can see a significant boost in performance and the effect of

parameter tuning is clearer.

As we come to the end, I would like to share 2 key thoughts:

It is difficult to get a very big leap in performance by just using

parameter tuning or slightly better models. The max score for

GBM was 0.8487 while XGBoost gave 0.8494. This is a decent

improvement but not something very substantial.

1. 

A significant jump can be obtained by other methods like feature

engineering, creating ensemble of models, stacking, etc

2. 

You can also download the iPython notebook with all these model

codes from my GitHub account. For codes in R, you can refer to this

article.

End Notes



This article was based on developing a XGBoost model end-to-end.

We started with discussing why XGBoost has superior

performance over GBM which was followed by detailed discussion

on the various parameters involved. We also defined a generic

function which you can re-use for making models.

Finally, we discussed the general approach towards tackling a

problem with XGBoost and also worked out the AV Data Hackathon

3.x problem through that approach.

I hope you found this useful and now you feel more confident

to apply XGBoost in solving a data science problem. You can try this

out in out upcoming hackathons.

Did you like this article? Would you like to share some other hacks

which you implement while making XGBoost models? Please feel

free to drop a note in the comments below and I’ll be glad to discuss.

You want to apply your analytical skills and test your potential?

Then participate in our Hackathons and compete with Top Data

Scientists from all over the world.

You can also read this article on Analytics Vidhya's Android APP

This article is quite old and you might not get a prompt response

from the author. We request you to post this comment on Analytics

Vidhya's Discussion portal to get your queries resolved


