APRIL/MAY, 1980. ISSUE 1. $2.00

computell.

The Single-Board™ COMPUTE™
d e ?TT 45
st e
The
LT N 6502/ 1 C
' * 1802 JIf
Resource |||

mINNONDNITID By higpie
K] oo

M

APRIL/MAY, 1980. ISSUE 1

compute Il. 3.

The
Single-Board
6 50 2Eric Rehnke

You asked for it-you got it-your own magazine. How
’bout that?

Let’s give Robert Lock a resounding ‘Well Done’
for giving KIM, AIM, SYM and OSI users our own
magazine to expand into. Let’s also understand that
since we now have a greater vehicle for expressing
ourselves in, we have an even greater responsibility
for expressing ourselves. And since compute II pays
for your time as well as putting your name up in lights,
you have no excuse but to turn that writer on that
lives and breathes inside every computer freaque.
compute II NEEDS YOU!!!

EPROM SIMULATOR

Ever since I first saw an ad for the Pragmatic Design’s
‘Debug Memory’ (DBM-1) board I became fascinated
by the design concept of this rather unique RAM
board.

Basically, the DBM-1 is a 2Kx8 RAM board
for the S-100 bus which can simulate a 2K ROM or
EPROM (or 2-1K ROMS) to a target system.

In other words, the same 2K block of RAM that
appears to the development system as normal random-
access memory, appears to the target system as a 2K
ROM/EPROM through a cable plugged into that
ROM socket.

It can achieve this nature by viture of its dual-
port RAM design. This means that the same memory
can be accessed from two separate systems each with
its own address and data bus.

The benefit of this type of arrangement becomes
obvious when you consider that everything that is
written to the 2K block of RAM in the development
system also appears in the ROM/EPROM address
space of the target system.

Now, instead of developing a program inside your
large development system, then burning an EPROM,
and installing it in the target system to see if it
works, you simply write the program into the RAM
on the ‘‘Debug Memory’’ board.

It will then appear in the target system and can be
tested immediately. If there’s a problem, no EPROM
to erase and reprogram, simply write the corrected
software to the DBM-1. The updated software auto-
matically appears in the target system.

Saves lots of time!!!

The biggest benefit of the EPROM simulator will

be gained when developing software for small, dedi-
cated controllers which have no built-in monitor
software of their own. But, using the simulator will
also save lots of time when writing programs for
semi-smart single-board computers like AIM or SYM,
for example.

Another, not so obvious, use of the simulator
is for developing a character generator for a video
board. The video board can even be plugged into the
development system itself.

(Most memory-mapped video boards also use this
dual-port RAM concept in their design).

Of course, for the simulator to function most
efficiently, the assembler in the development system
must be able to assemble an object program to a
location in memory other than specified by the
program counter equate in the source code of that
program. This is called ‘assembling with offset’.

Say the EPROM socket in the target system re-
sides at $F800-$FFFF in that system while the
EPROM Simulator is addressed at $C000 in the
development system. To be able to have a program
assembled to run at $F800 while actually residing
at $C000, it needs to be assembled with an offset.
Get it?

My assembler (from HDE) has this capability sc
I decided to design my own EPROM Simulator.

(I couldn’t use the DBM-1 since it was designed
for the S-100 bus).

EPROM SIMULATOR shown plugged into a SYM
for easy software development.

compute Il

APRIL/MAY, 1980. ISSUE 1

Also, my version is rather more simplified than
the DBM-1 since there were some features I didn’t
feel I needed - like trap address comparators, daisy
chaining, etc.

I built it on an HDE prototyping card and
designed it to simulate the 2708, the TI 2716 or
the Intel 2716. This should satisfy most of the require-
ments. Later, when 4K EPROMS get cheaper, I‘ll
build a version to simulate them.

So far, I've used the simulator to speed up
software development for my SYM system, look
forward to using it with my AIM system, and will
use it to develop a PET character generator for an
upcoming video board design.

As I have found, the EPROM Simulator is a
development tool which can really save time and im-
prove the efficiency of the system designer.

MORE FROM HDE

I have a difficult time keeping up with this company
at times. They’re surely not resting on their past
accomplishments.

The first thing they’ve done is add conditional
assembly directives to their already formidable 2-pass,
disk-based assembler.

Besides the conditional assembly directives. IFZ
(IFZERO), .IFN (IFNOTZERO), and .EIF (END
IF), there are other special directives like .SOR
(SORT SYMBOL TABLE), and .COV (INSTRUC-
TION COUNT) which enable the HDE Assembler
to offer capability approaching that of the 6502
Cross Assembler available on time-sharing systems.
HDE’s Assembler actually comes out on top in the
area of conditional assembly (that capability is not
available in the Cross Assembler). The only noticeable
features of the Cross Assembler which aren’t available
in the HDE counterpart are the symbol table cross
referencing facility and the macro pre-processor.

As soon as HDE adds these capabilities to their
system (and they’re in the works, according to
Hudson Digital Electronics), they will have even more
features than the Cross Assembler.

Besides that, HDE added the CHAINING
function to their already much enhanced version of
MICROSOFT Basic. This lets you run Basic pro-
grams which are actually too large to fit into your
memory. According to HDE, a disk file system is next
on the list for their not-so-basic BASIC.

I’ve been playing with the new conditional assem-
bler for several days, their enhanced Basic for about
a month, and continue to be impressed with the soft-
ware (and hardware) this company produces.

As you may know, I have a KIM system with
a couple of full-size HDE floppies and can whole-
heartedly recommend this company’s stuff to anyone
who wants a darn good 6502 development system.
(HDE, POB 120, Allamuchy, NJ 07820

PHONE 201-362-6574)

TIPS FROM READERS

From Christopher J. Flynn (2601 Claxton Dr.,
Herndon, VA 22070)...

KIMSI fans, if they don’t already know, should
get a copy of Forethought’s application note A15. It
describes the use of the popular EXPANDORAM
dynamic memory board in the KIMSI. A two chip
refresh controller is added to the KIMSI bread-
board area. The refresh controller causes the 6502
to wait when refresh is needed thus slowing things
down a little. I have had the EXPANDORAM run-
ning for two or three months now with no problems.
It’s a very good way to get a lot of RAM for a moderate
price without requiring a huge power supply.

From Sam Sturgis, (86 Fisher St., Medway, MA
02053)...

Micro-Ade Assembler users can fix a bug in
version 1.0 by changing location $2AF9 from $49 to
$48. This will allow use of the symbolic argument
modifiers /, +, and - with the define byte (=)
psuedo instruction. Without this change, the modifiers
are ignored by the assembler, making it extremely
difficult (if not impossible) to construct symbolic tables.

From an anonymous reader. . .

AIM users who would like to have darker print
from the printer can parallel R21 with an additional
4.7K resistor. I'm not sure how this affects the life
of the printhead, but I'm sure Rockwell wouldn’t
approve of this mod.

HARDWARE REVIEW

SPEAK & SPELL INTERFACE (available from East
Coast Micro Products, 1307 Beltram CT, Odenton,
MD. 21113).

The thought of having your computer actually
speak to you has probably crossed about every
hobbyists mind at one time or another. The fact
that very few of us ever hear a word uttered from
our computers is probably due more to the cost of
such speech output devices and not to their availability
as most of them are in the $400-$600 range.

When Texas Instruments introduced the SPEAK
& SPELL for about $50, I had a feeling that a truly
‘‘cheap’’ speech output device was just around the
corner.

I forget just how long that ‘‘corner’’ turned
out to be, but it must have been about a year before
Dave Kemp of East Coast Micro Products intro-
duced his SP-1 interface for for the SPEAK & SPELL.

Dave initially sent me his information package
which acquianted me with the SP-1 interface and
discussed some of the basics of the SPEAK &
SPELL’s method of speech synthesis.

The most important thing that I learned was that

compute Il

APRIL/MAY, 1980. ISSUE 1

““,..SP-1 does not turn SPEAK & SPELL into a
black box speech synthesizer which can be used to
add voice output to a users’ chess, bridge, or Star
Trek program. It is a tool which will allow the serious
experimenter to investigate speech synthesis at a cost
far below other commercially available synthesizer
boards.”’

Later, I got the chance to review the SP-1 inter-
face package.

The documentation for the SP-1 turned out to be
quite a bit more than I expected. Only 2 of the 28
pages were devoted to assembling the interface
board which indicated that this package was intended
for the advanced experimenter. The software drivers
were presented in well commented source listings as
well as detailed explanations of how the SP-1 operates
and a special section on SPEAK & SPELL
theory of application. Software flow charts and a
bibliography were also included.

I rate the documentation as excellent. Plenty of
information here.

I hooked the interface to my SYM, loaded the
hex dump software and shortly thereafter, SYM was
giving me a vocal hex dump of its memory contents.

Shades of DEMON SEED. SYM was actually
talking to me!!!

Other software was included to enable one to
pull word data out of SPEAK & SPELL for analysis,
but I never got around to using it. It would have
been almost anti-climactic after hearing SYM
actually talk.

The vocal hex dump software is the only piece
of ‘‘black-box’’ software you get with the SP-1
that you can plug in and use. It’s a great demo of
the possibilities. The other software included is meant
to aid the experimenter in working with the SPEAK
& SPELL and developing things further.

By the way, no modifications were necessary
to the SPEAK & SPELL as the SP-1 plugged into
an internal edge connector.

The SP-1 interface package sells for $49.00
and is available directly from East Coast Micro
Products.

If you want to tinker around with speech
synthesis at a low price, check out the SP-1.

SOFTWARE REVIEW

Assembler/text Editor (sold by M.S.S. Inc., POB
2034, Marshall, TX 75670).

What can you get for $25.00 these days? Well,
if you like to tinker with software, you could get
the beginnings of an interesting little assembler/
editor. Or, you could get an education in what makes
an assembler tick.

Actually, you do get more than just the beginnings
of an assembler. It’s almost complete.

What’s all this nonsense you ask? OK, I'll
try to describe it.

For $25.00 you get a standard, no frills line
editor and 2-pass assembler that resides in slightly
over 2K of memory. The assembler mnemonics are
close to MOS Technology’s standard. How close?
The actual mnemonics correspond perfectly. It’s
the operand formats that differ. I'm sure you could
get used to it, though.

The best thing about the package is that you get
a source listing for it included for no extra money.
It’s not very well commented, but it’s better than
nothing. A serious student of the 6502 dialect should
have little problem figuring out what’s going on.

The reason I said that the package is ALMOST
complete is because there’s no built-in means of
saving or loading assembler source code to/from
cassette (or other mass storage device). If you want
to do that, you’ll have to add it yourself. They do,
however present an example of a routine to add a new
command to the system so, if you know what you’re
doing, you could probably add the necessary cassette
support routines.

The fact that the source listing is included opens
a rather exciting possibility. It’s possible to make the
assembler into a cross-assembler for some other
CPU-like the 1802, for example. Then you could get
that 1802 Simulator program by Dann McCreary and
have a complete 1802 development system on your
6502!!!

Does that turn you on?

This assembler and its associated documentation
is NOT for beginners! But, could be a good value
if you know what you’re getting into.

BLUE SKY CORNER

If you also have an amateur radio operator’s

license, you have the opportunity to connect your
computer to some radio gear and communicate with
fellow amateurs through a rather sophisticated satellite-
born radio repeater system.

Since the FCC has approved the use of ASCII
for some satellite communications, the use of
computers is a natural. And once you have a computer
hooked up, all kinds of things are possible.

How ’bout a fully automatic, cross country
communications network?

Is there anyone out there working along these
lines? Or, do you know of any groups or publica-
tions dedicated to such an end? I'd sure like to
hear from you.

Remember the Adventure Game
for KIM? (Issue 3, COMPUTE)

It’s $24.95 and is available from ARESCO, Box 1142,
Columbia, MD 21044 ©

APRIL/MAY, 1980. ISSUE 1

compute Il. Q

Here, in full, is Gene’s Column 1. A portion of this column was printed in
Issue 3 of COMPUTE. We thought we’d start at the beginning for Issue
#1 of compute II. RCL

Nuts and Volts

Gene Zunchak

Niagara Micro Design, Inc.
1700 Niogara Stree
Buffalo, N.Y. 14207

With this article, I hope to begin a series of
dissertations on the art and joy of doing it yourself.
But first let me introduce myself. I'm Gene Zumchak.
I graduated with an M.E.E. from Cornell in 1968.

I paddled across Cayuga Lake and got my first job
with a likable maverick named Robert Moog of Moog
Synthesizer fame. I left my first, and one of the only
legitimate jobs I’ve had in 1970. I moved to Buffalo
and since that time have worked for a series of

little flake outfits trying to find a winner, but at the
same time, avoid having to work for a living. So far
I’ve managed neither, but sure have had a lot of fun.
But alas I think I’m getting closer. I now call myself
Niagara Micro Design, Inc., and although the pay
isn’t that hot, the boss let’s me play golf whenever
the whim takes me (between thaws in July).

Anyway, I started drooling over micros in the
early seventies when they first appeared in the
electronic design magazines. Then in ’75 an unknown
semi company called MOS Technology made a big two
month splash in the magazines (never to be heard from
again) prior to a Western show. I clipped a coupon,
sent in $25 and became the proud owner of a 40-
legged centipede called a 6502. Now to give you some
idea of just how fantastic that was, the 8080 chip
set (8080, 8224, 8228) was selling for over $200.

A few days after the chip arrived, I got a flyer
advertising a single-board computer for just a few
bucks more than the naked 8080 chip set. I ran to the
bank, withdrew my life savings and sent in coupon
number two becoming an even prouder owner of
KIM-1 serial no. 00005. Soon afterwards, three
friends and myself contracted to design and build
five smart printer systems for Honeywell, without a
TTY or assembler, let alone a development system.
With little more than that KIM and a Simpson VOM
we delivered five microprocessor controlled printers.
Today, the same job would be a lot easier, but my
‘‘development system’’ is still just an expanded KIM.
Anyone, in fact, can put together a development sys-
tem for only a couple hundred dollars over the price
of a KIM, SYM, AIM or other system. Putting
together that development system is one of the topics
I hope to get to in the future.

Presently I am working on a book entitled
““Microcomputer Design and Maintenance’’ with the
guidance of Jon Titus of the ‘‘Blacksburg Group”’
who hopefully will get it published. The topics
presented in this series of articles in Compute will
touch on some of the material in that book, as
well as different material.

A dedicated micro system can be put together
for under a $100. Why tie up your Apple or Pet
to turn the furnace on, run your electric train,
or program your wife’s loom? Why not use your sys-
tem as a tool to crank out dedicated controllers?

I hope to show you how. Enough B.S. Let’s

start talking about hardware.

Read/Write Timing

The most important consideration in hardware design
is read/write timing. It is not a complicated topic,
but many ‘‘designers’’ avoid confronting it by sur-
rounding a CPU with family chips (usually expensive)
using circuits right out of the manuals. There’s
nothing wrong with the fancy family chips if you
really need them. Oftentimes the most attractive

chip may belong to another family. If you under-
stand read/write timing, however, you may indeed be
able to use a foreign chip.

Write Timing

The terms ‘‘reading’’ and ‘‘writing’’ always reflect
the direction of data flow from the perspective of the
processor. Thus in a ‘‘write’’ operation, data is pre-
sented by the processor to some external device,
memory or output, and locked into that device. A bit
of memory or output is a flip-flop. In memory, the
output of the flip-flop can be read back into the
processor. In ‘“‘output’’, the output of the flip-flop is
connected to the world. (In some programmable
devices, an output can often be read back into the
processor.)

The usual type of flip-flop used with a processor
is the ‘D type’’ flip-flop. A D flip-flop has a ““‘D”’
or data input, and a clock (strobe) input which is an
edge-sensitive function. That is, data is presented
to the D input and is transferred to the output
when the active edge occurs (usually positive going).
An edge triggered flip-flop’s output can change only
on a clock edge. An example is the TTL 7474 dual
D flip-flop. A variation of this is the transparent
latch. It too has a D or data input, but a Gate
input, instead of a strobe. When the gate is true, the
output follows the data and is transparent to the
data. Data is locked into the flip-flop on a false
going gate edge. The 7475 is a quad transparent
latch. In both types of flip-flops, data is locked in
with a clock or gate edge.

In any latching operation, the following sequence
occurs: Data is presented to an input, a locking edge
occurs, and finally the data is removed. In general,
the data to be written exists before and after the

)

compute Il.

APRIL/MAY, 1980. ISSUE 1

locking edge. We are now ready to define the impor-
tant parameters of a write operation. The ‘‘set-

up’’ time is the minimum time the data must be pre-
sent before the locking clock edge occurs. The ‘‘hold”’
time is how long the data must remain after the
locking edge has gone away. The set-up and hold
times for a 7474 flip-flop are only 20 and 5 ns.
respectively. Since these times are so short, TTL
latches can always be assured of working with MOS
processors.

6502 Write Timing

A 6502 clock cycle is read cycle when the R/W

line is high, and a write cycle when the R/W line is
low. A cycle is divided into two (more or less)
symmetrical halves. In the first half, the é1 clock

is high. The R/W line and the address lines change
d1. In @82, data transfers occur. According to the
spec sheet, the delay from the fall of é2 to the
beginning of the rise of d1 can be zero (no max

spec given). For zero delay, the ¢1 clock is approxi-
mately é2. However for external use, ¢2 and @2 are
generally used. d1 should not be used as a substitute
for d2. Figure 1. shows write timing for the 6502.

] r=——==---- A r=-
! \ !
i \ /

%, | AW

R/IW
— Trws [~
ADDR) x
= Taos [— = Tmos —
DATA o
—ﬁ = Thw

Figure 1. 6502 Write Timing

The R/W and address lines have a setup time
(TRWS and TADS) as 300 ns. maximum after the
beginning of d1. Data is available in a maximum of
200 ns. after the rise of 2 (TMDS). @2 has a
minimum width of 430 ns with a one micro second
clock (IMHz). Thus data is available a minimum of
230 ns. before the fall (locking edge) of the d2
clock. The data is held beyond the fall of d2 for a
minimum of 30 ns. (THW). Thus the 6502 is
guaranteed to write successfully to any device with a
set-up time requirement of 230 ns. or less, and a hold
time requirement of 30ns. or less. Implicit in the
timing is that the falling edge of @2 is the locking edge.
The 6502 generates no write strobe. A write strobe
must be fabricated by NANDing d2 with the inverted
R/W signal, R/W. This gives a strobe that goes low
during 42 only for a write cycle. In family
devices, 2 and R/W are applied separately and the
gating is performed internally.

6502 Read Timing

In a read operation, an external device puts its data
on the data lines and it is locked internally

into the 6502 at the end of d2. This timing is
shown in figure 2.

g2 et 3 ==
1 \ II
gy ———— v o o e !
= Thws -] THRW
RN ———
— Taps [~ — Tha
)F
ADOR
Tosu [—
DATA
Figure 2. 6502 Read Timing T [The

As in a write cycle, the address and R/W set-up
time is a maximum of 300 ns. into d1. The data
set-up time is 2 minimum 100 ns. before d2
(TDSU). In addition, the data must be held a
minimum of 10 ns. past ¢2. Both the set-up
and hold times for the 6502 in a read operation are
quite short making it easy to read I/O devices
from any MOS family.

When a device is read, the data is gated onto
the bus by a read gate generated from the R/W
line and a decoded address. The strobing is done
internally by the processor. A gating signal allows
the data to overlap the strobe. It will be seen in
many 6502 systems that read gates often incorporate
@2. It would appear that this would cut off the
data at strobe time, and violate the hold time
requirement. First of all, the tri-state gate buf-
fering the data probably has a delay of at least
15 ns. Secondly, if d2 has gone through one or two
gates of buffering, it will occur 15 to 30 ns. after
the @2 seen at the 6502. Thus the data will remain
on the data bus 30 to 45 ns after d2, even though
@2 appears to be used to cut data off.

Interfacing Non-family Devices

Meeting the read requirements of the 6502 is easy for
almost any I/O device in any family. The problem
occurs when the 6502 tries to write to the relatively
sluggish devices of other families. Some of these
chips have relatively long set-up and hold time
requirements for a write operation. The set-up

times are not often a problem, however. In order to
be on the safe side, the chip manufacturer often
quotes a rather conservative minimum hold time spec
(like 100ns.) while quoting a typical spec of 30 or
even 0 ns. To insure reliable performance, you must
meet the minimum spec. The 6502 will guarantee only
a 30 ns write hold time. What do you do when you
want to write to a Western Digital 1771 floppy

compute II.

APRIL/MAY, 1980. ISSUE 1

controller chip with a longer hold time requirement?
There are a number of ways to overcome this problem.
First, however, we should consider an additional
complication.

Earlier we saw that a little delay in the 42
clock when used in a read gate was not a bad
thing. However, delay in ¢2 when used to generate a
write strobe could be bad news. The 6502 provides
for only 30 ns beyond the 42 that it sees. A
strobe generated from a delayed ¢2 may in fact
occur after the data has actually gone away. In this
case, delay in the data path is beneficial. Any delay
in @2 greater than the delay in the data path takes
away from the effective write hold time. Since few
designers understand, let alone consider read/write
timing, it is a wonder that most microcomputer
systems work at all. In a typical single-board com-
puter system, @2 is generated on the board, buffered
on some motherboard, and further buffered on the
individual boards which plug into the motherboard.
It is really questionable whether this buffering is
really helpful. The fortunate thing for us all is that
the hold time of the 6502 chips and the hold time
requirement for I/O chips is almost always very
conservatively speced.

Let us consider some approaches for getting a little
extra hold time. Figure 3. shows perhaps the safest
way. The data bus write buffer consists of a trans-
parent latch followed by a tri-state gate. The latch
is gated with d2 so that the data to be written is
locked into the latch at the end of 2. The R/W line

. 2
N

6502

BDO

02 ——G

D>

Figure 3. Write Hold Time Extender

ordinarily extends well into d1 before changing. In
fact the R/W line is not guaranteed to change for at
least 300 ns. (TRWS). To be on the safe side, we
can always insert several gate delays in R/W so that
the latched data will extend well beyond the end of 42.
This approach costs the addition of a pair of quad
transparent latch chips, which may be very cheap
insurance for reliable operation.

Another approach to getting a longer write hold time
is to generate a write strobe which finishes earlier

than d2. This can be accomplished by hitting a one-
shot with the regular write strobe. In this method,
however, the longer hold time is at the expense of
set-up time. If you have lots of set-up time to

waste there’s no problem. The width of the pulse

will have to be adjusted carefully. Figure 4. shows
the shortened write strobe, W* and set-up time trade-
off.

-

—

—

Bl
I

/

Figure 4. Shortened Write Strobe

Access Time

When considering RAM or ROM, we need to consider
access time, which is the time it takes the data

to reach the output after the address is stable. For
the 6502 at IMHz, the addresses are good 300 ns.
into d1. The data must be ready 100 ns. before the
end of d2. This gives us about 600 ns. of available
access time. (The spec sheet guarantees 575.) If we
could only steal another 75 ns., we could use

much cheaper 650ns. RAM and EPROM. If we pay a
$5 premium for a 2MHz 6502, and run it at IMHz,
we can get an extra 150 ns. from a shortened

address set-up time. The few extra dollars for the
faster processor could save a lot more bucks ion a
system with lots of memory.

In summary, no serious, or at least no creative
design can be undertaken without an understanding
of read/write timing. It requires accommodating the
set-up and hold time requirements of the I/O
devices with the corresponding times of the pro-
cessor. Tricks like latching the write data can
be used to overcome any discrepancies. The informa-
tion is available from the device spec sheet-. (@)

APRIL/MAY, 1980. ISSUE 1

compute il.

15

DISK DRIVE WOES? PRINTER INTERACTION?
MEMORY LOSS? ERRATIC OPERATION?
DON‘T BLAME THE SOFTWARE!

. N,
1SO-1 r‘i 1S0-2

Power Line Spikes, Surges & Hash could be the culprit!
Floppies, printers, memory & processor often interact!

Our unique ISOLATORS eliminate equipment interaction
AND curb damaging Power Line Spikes, Surges and Hash.
*ISOLATOR (ISO-1A) 3 filter isolated 3-prong sockets;
integral Surge/Spike Suppression; 1875 W Maximum load,
1KWloadanysocket $56.95
*ISOLATOR (ISO-2) 2 filter isolated 3-prong socket banks;
(6 sockets total); integral Spike/Surge Suppression;

1875 W Max load, 1 KW eitherbank '$56.95
*SUPER ISOLATOR (1SO-3), similar to ISO-1A

except double filtering & Suppression . . . $85.95
*ISOLATOR (1SO-4), similar to ISO-1A except

unit has 6 individually filtered sockets . $96.95
*ISOLATOR (1SO-5), similar to ISO-2 except

unit has 3 socket banks, 9 sockets total $79.95

*CIRCUIT BREAKER, any model (add-CB) Add $ 7.00
*CKT BRKR/SWITCH/PILOT any model
(CBS) i Add $14.00

P RS 1-617-655-1532
“ HONE ORDERS —

L= Electronic Specialists, Inc.
171 South Main Street, Natick, Mass. 01760

Dept. C2

KIM/SYM/AIM-65—32K EXPANDABLE RAM

Model EP-2A-79
EPROM Programmer

PET * APPLE * AIM-65 ¢+ KIM-1 - SYM-1 - OHIO SCIENTIFIC

Software available for F-8, 6800, 8085 8080, 280 6502, 1802,
2650,6809, 8086 based systems
EPROM type is selected by a personality module which plugs into
the front of the programmer. Power requirements are 115 VAC
50/60 Hz. at 15 watts. It is supplied with a 36-inch ribbon cable for
connecting to microcomputer. Requires 1% 1/O ports. Priced at
$155 with one set of software. (Additional software on disk and
cassette for various systems.) Personality modules are shown below.

Part No. Programs Price
PM-0 TMS 2708 ... $15.00
PM-1 2704,2708 15.00
PM-2 2732 30.00
PM-3 TMS 2716 ..o 15.00
PM-4 TMS 2532 ... o 30.00
PM-5 TMS 2516,2716,2758cooviiiiiiiiaai e 15.00
PM-8 MCMB8764 33.00

Ogtimal Technology, Inc.
lue Wood 127, Earlysville, Virginia 22936
Phone (804) 973-5482

* PLUG COMPATIBLE WITH KIM/SYM/AIM-85.
MAY BE CONNECTED TOPET USING ADAPTOR
CABLE. S544-E BUS EDGE CONNECTOR.

« USES +5V ONLY (SUPPLIED FROM HOST

DYNAMIC RAMWITHONBOARD TRANSPARANT REFRESH . e

THAT IS COMPATIBLE WITH KIM/ SYM/AIM-65
AND OTHER 6502 BASED MICROCOMPUTERS.

WITH 32K RAM
ASSEMBLED/ { WITH 16K RAM

HARD TO GET PARTS ONLY (NO RAM CHIPS)..
BARE BOARD AND MANUAL

PET INTERFACE KIT $49.00

TESTED

WHICH CAN BE INDEPENDENTLY PLACED ON
4K BYTE BOUNDARIES ANYWHERE IN A 64K
BYTE ADDRESS SPACE.

« ASSEMBLED AND TESTED BOARDS ARE
GUARANTEED FOR ONE YEAR, AND
PURCHASE PRICE IS FULLY REFUNDABLE IF
BOARD IS RETURNED UNDAMAGED WITHIN
14 DAYS.

* BUS BUFFERED WITH1LS TTL LOAD.

* 200NSEC 4116 RAMS.

* FULL DOCUMENTATION

CONNECTS THE ABOVE 32K EXPANDABLE RAM TO A 4K OR BK PET.

6502, 64K BYTE RAM AND CONTROLLER SET
MAKE 64K BYTE MEMORY FOR YOUR 6800 OR
6502. THIS CHIP SET INCLUDES:

* 32 M5K 4116-3
* \MCMBO

MULTIPLEXER AND COUN E
« DATA AND APPLICATION SHEETS. PARTS
TESTED AND GUARANTEED.

CONTAINS EXPANSION INTERFACE CABLE. BOARD STANDOFFS,
POWER SUPPLY MODIFICATION KIT AND COMPLETE INSTRUCTIONS.

16K X 1 DYNAMIC RAM

16KX1, 200 NSEC RAMS.
MEMORY CONTROLLER.
1 MC3242A MEMORY ADD

MOTOROLA 4116-3
* %00 NSEC ACCESS TIME, 375 NSEC CYCLE

+ 16 PIN TTL COMPATIBLE.
* BURNED IN AND FULLY TESTED.

$295.00 PER SET ONE YEAR.
$8.50 EACH IN QUANTITIES OF 8

THE MK4116-3 IS A 16,384 BIT HIGH SPEED
NMOS, DYNAMIC RAM. THEY ARE EQUIVALENT
T0 THE MOSTEK TEXAS INSTRUMENTS, OR

* PARTS REPLACEMENT GUARANTEED FOR

1230 W.COLLINS AVE.

ORANGE,

COMPUTER DEVICES

(714)633-7280 i i

CR 92668
REPLACEMENT WARANTY.

ALL ASSEMBLED BOARDS AND MEM.
ORY CHIPS CARRY A FULL ONE YEAR

APRIL/MAY, 1980. ISSUE 1

compute II.

An Upgrade for KIM

MICROCHESS 1.

If you have Peter Jennings’ MICROCHESS program
for the KIM-1 microcomputer you can teach it to play
a significantly better game of chess without adding a
single byte of expansion memory. This article describes
a ‘‘patch’’ I have written for MICROCHESS

which gives the computer a more flexible opening
game and two new strategies for the middle and end
game. Just load your copy of MICROCHESS, enter
my code from the accompanying program listing
along with the chess opening sample from table one,
and play chess. There are no changes in the way you
run the program. (For a description of the MICRO-
CHESS program see KB, August 1978, page 74). For
clarity I will use the term MICROCHESS only to
refer to the original program as written by Peter
Jennings. I will say ‘‘patch’’ to refer to the changes

I am describing here.

Off the Shelf

The MICROCHESS I bought from Micro-ware Ltd.
opens the game by playing from a pre-selected list of
moves for a user chosen chess opening (Roy Lopez,
French Defence, etc.). That opening list also contains
one anticipated opponent move for each computer
move. Things go well as long as the opponent makes
the anticipated replies. But a human opponent seldom
does that -- at least I don’t. As soon as I make a novel
move MICROCHESS permanently abandons the
opening list. Whenever MICROCHESS is forced to
quit the opening list too early, coherent development
of pieces stops, the queen usually comes out too
early, an ill-prepared attack is launched, and the
computer loses its ability to castle (because castling

is only possible from the opening list).

Compromises in 1.1K
Mr. Jennings points to these problems in his excellent
documentation manual:
‘A major problem in the analysis is that there is
only one strategy which is used for the opening,
the middle game and the end game. This involves
a considerable compromise of three different
types of play.”’
The single strategy used by MICROCHESS is best
suited for the middle game, where the capture of
pieces dominates. In order to add a dynamic opening
strategy which would emphasize the development and
positioning of pieces, I had to settle for my own
set of compromises, as you’ll see. I should point out
that Mr. Jennings seems to have surmounted this

Garold R, Stone
PO. Box 183
Annapolis Junction, MD. 20/0]

problem in the other versions of MICROCHESS he
has written for microcomputers with more memory,
such as the PET, TRS-80, and the APPLE.

The Opening

Table 1 shows my data format for eight opening
development moves. Unlike in MICROCHESS,
anticipated opponent replies are not listed. On

each turn the patched program evaluates all of the
computer’s available moves. The available move which
comes out with the highest evaluation is compared
with the evaluation for the next legal move in my
opening list and the higher of the two is selected as
the computer’s move for that turn. The development
move is usually selected because its evaluation is
always boosted by a threshold factor. I set the
threshold factor high enough so that only moves with
a significantly higher evaluation can override the
development move. The higher the threshold, the more
likely it is that the development move will be selected
for that turn. Thus, the computer follows an opening
game plan, responds to significant attack threats or
capture opportunities, and then continues to carry
out the opening game plan on the next turn by
consulting the opening list again.

Books on chess openings and opening game
strategy can serve as guides in writing new lists of
development moves. Choose openings which are
general in nature and do not depend on specific
moves by the opponent. Specify each development
move by giving the piece (variable DEVP), the square
of origin (FROM), and the destination (TO), using
the same notation as in MICROCHESS (see tables 2
and 3). Openings for white and black will require
separate notation. Fill all unused locations in the
opening list with the magic number 1F (hexadeci-
mal), which causes those locations to be skipped
because they are off the board.

Castling

As in MICROCHESS the computer’s castling move
must be completed for it by moving its rook after the
computer signals castling by moving its King the
necessary two squares. My added programming will
prevent castling if the computer’s King is off its
starting square or if it would end up in check. The
other rules for castling are not checked, however. If the
computer castles illegally, then the move must be
refereed. The simplest way is to use the ‘‘touch-
move’’ rule -- once a player touches a piece it

20 compute ll.

APRIL/MAY, 1980. ISSUE 1

Table 1
Opening Move Data

ADDR VARIABLE MOVE WHITE BLACK COMMENT

Table 2
Microchess Piece Notation and Storage

MEMORY LOCATION

00C3 _FACTOR 05 05 THRESHOLD CODE PIECE COMPUTER OPPONENT
FACTOR 00 KING 0050 0060
00C4 .DEVP-1 N-KB3 06 06 PIECE 01 QUEEN 0051 0061
00C5 .FROM 01 06 ORIGIN 02 KING ROOK 0052 0062
00C6 .TO 22 25 DESTINATION 03 QUEEN ROOK 0053 0063
00C7 .DEVP-2 P-KN3 0A 0A PIECE 04 KING BISHOP 0054 0064
00C8 .FROM 11 16 ORIGIN 05 QUEEN BISHOP 0055 0065
00C9 .TO 21 26 DESTINATION 06 KING KNIGHT 0056 0066
00CA .DEVP-3 B-KN2 04 04 PIECE 07 QUEEN KNIGHT 0057 0067
00CB FROM 02 05 ORIGIN 08 KR PAWN 0058 0068
00CC .TO 11 16 DESTINATION 09 QR PAWN 0059 0069
00CD .DEVP-4 P-K3 OF OF PIECE 0A KN PAWN 005A 006A
00CE .FROM 13 14 ORIGIN 0B QN PAWN 005B 006B
00CF .TO 23 24 DESTINATION oC KB PAWN 005C 006C
00D0 .DEVP-5 0-0 00 00 PIECE (KING 0D QB PAWN 005D 006D
SIDE CASTLE) OE Q PAWN 005E 006E
00D1 .FROM 03 04 ORIGIN OF K PAWN 005F 006F
00D2 .TO 01 06 DESTINATION
00D3 .DEVP-6 K-QB3 07 07 PIECE Table 3
00D4 .FROM 06 01 ORIGIN Board Notation
00D5 .TO 25 22 DESTINATION
00D6 .DEVP-7 P-Q4 OE OE PIECE Computer
00D7 .FROM 14 13 ORIGIN 00 01 02 03 04 05 06 07
00D8 .TO 34 33 DESTINATION 10 11 12 13 14 15 16 17
00D9 .DEVP-8 (NO 1F 1F
00DA .FROM (MOVE)IF 1IF 20 20 223 2225 26 27
00DB TO iF iF 30 31 32 33 34 35 36 37

See Tables 2 and 3 for coding of Pieces and Squares

must be moved. Thus, the computer would have to
move its King somewhere else, and you would enter
that move for it. If there are no legal moves

left for the King, then the computer must resign.
This situation seldom comes up because I write
openings which castle early enough to avoid the risk
and annoyance of an illegal attempt.

Program Flow

What follows is a description of how the patched
program works. MICROCHESS subroutines which
are not defined in my accompanying program listing
are in bold letters.

Whenever it is the computer’s turn to move,
MICROCHESS command loop CHESS calls my ver-
sion of subroutine GO (see 03A2 in the program
listing). MICROCHESS uses the value of a variable
called STATE to keep track of what it’s doing. State
4 guides the generation and evaluation of the
computer’s available moves. There are other states
for generating potential opponent replies, etc.
MICROCHESS subroutine GNMX (see 03AA)
initializes some variables called ‘‘counts’’ for
evaluating moves and then generates all moves
available to the computer on that turn. GNMX
calls MICROCHESS subroutine JANUS to calculate
and evaluate the counts for each trial move. Based
on the value in STATE, JANUS decides what to do
next -- generate potential opponent replies for
evaluation, calculate exchanges of pieces, etc.
JANUS changes the value in STATE as it goes.

40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77
OPPONENT

Note: Whether playing White or Black, the Computer’s
starting squares are always 00 through 17. Be sure to orient
the playing board so that the lower left corner is black. The
White Queen should be on a white square and the Black
Queen should be on a black square.

Table 4
New Variables Used

COMMENT

Threshold factor for opening moves
MICROCHESS opening move flag

Base for opening move array

Number of legal moves for Opponent King
Receives threshold factor for legal list move

ADDR VARIABLE
00C3 .FACTOR
00DC .OMOVE
00DC .OMOVE
00OEF .BKMOB
00F0 .BIAS

JANUS and portions of GNMX call each other
recursively, again and again, until all of the compu-
ter’s available moves have been evaluated in the
light of all possible opponent replies. By the time
program control returns from that very first call to
subroutine GNMX, one move has emerged with an
evaluation higher than all the others.

Then my patch searches the opening move list
from the beginning to find the first piece (variable
DEVP) which is still where it is supposed to be
(FROM) (see 03B1). The move by this piece to its
destination (TO) is checked for legality by a call
into the middle of MICROCHESS subroutine
CMOVE.

APRIL/MAY, 1980. ISSUE 1

compute Il. 2

If the list move is legal, then the threshold
factor (FACTOR) is stored in the variable BIAS for
later use (see 03D8). MICROCHESS subroutine
JANUS is called to do the counts for this list
move and for the opponent’s potential replies.

To evaluate these counts JANUS calls up my
version of subroutine STRATEGY (see 1780-17C1).
This is where the evaluation of the list move is
boosted by adding the threshold factor which was
stored earlier in the variable BIAS. Actually, this
same subroutine STRATEGY is used by JANUS
to evaluate any trial move but BIAS is always zero
except for legal list moves. If the selected list
move is not legal, then JANUS is not called to
evaluate it, and no more list moves will be tried for
that turn. This ensures that moves from the opening
list are made in the order you wrote them. After
the last list move has actually been moved, the
variable OMOVE is set to zero and the opening
list is ignored for the rest of the game (see 03AF).

As you exit subroutine STRATEGY you enter
that portion of MICROCHESS which compares the
evaluation of the current trial move with that of the
best move so far, saving the better of the two as the
new best move so far. This is also where MICRO-
CHESS tests for check or checkmate before returning
to JANUS. Control then passes.to the MICRO-
CHESS subroutine which takes the best trial move
and actually moves it (see 03E3). The computer’s
move is flashed on the KIM display and the program
returns to the MICROCHESS command loop, ready
for the opponent to enter his move.

Middle and End Game

MICROCHESS sees only one and a half moves
ahead. With this limited horizon it has trouble
finding and closing in on the opposing King. To
compensate for this I give a bonus of two points

for moves inside a zone which surrounds the opposing
King and moves along with it. The computer’s
Pawns and King do not get the bonus (see 179D).

Another strategy encourages moves which hem in
the opposing King, in preparation for checkmate.
The value of any trial move is decreased by the
number of safe moves it leaves for the opposing
King. This is the same as adding a point for each
square denied to the opposing King. Since MICRO-
CHESS calls subroutine JANUS to evaluate only
legal moves, it was easy enough to put a subroutine
call inside JANUS which would increment a mobility
count (BKMOB) for each legal move found for the
opponent King when the computer is checking for
opponent reply moves during state zero (see 0112,
17D9,179A).

Both strategies come into play only after the
opening list has been emptied, so as not to interfere
with the development of pieces during the opening
game (see 1796).

Evaluation

I approached move evaluation in ‘much the same way
as in MICROCHESS -- adding and subtracting
weighted counts representing captures, position, and
mobility for both sides. I did not use some of the
counts generated by MICROCHESS and I created
the new ones I described above. Given the severe
memory restrictions, my goal was an evaluation
formula which emphasizes immediate and tangible fac-
tors, such as position and the values of pieces
captureable during the current turn. Less immediate
factors, such as overall attack strengths, are given
fractional weighting. These become influential only
after more significant factors have cancelled each
other out.

For now I've had to be satisfied with just
breaking MICROCHESS of its habit of throwing away
its pieces by occasionally making bad decisions about
captures where pieces are exchanged. In my patch any
piece the computer wants to capture must be greater
than or equal to the most valuable piece the computer
would lose by making that move (variable BMAXC).
Only trial moves which pass this admittedly simplis-
tic test are given an extra 20 hex points (see 17B1).
There is more that could be done, like making
better use of the MICROCHESS counts for exchanges
involving up to three captures per side.

I hope I've made my point. All you need is
a shoe horn and you can slip just about any changes
you want into the 1.1K KIM MICROCHESS.

You may pinch a few toes in the process, but the
result is a KIM that plays better chess. By trying
to ‘‘upgrade’’” MICROCHESS I really learned to
appreciate what an excellent piece of work it is.
MICROCHESS is available on KIM cassette with documentation

manual _from Micro-Ware Ltd., 496 Albert St., Suite 7, Waterloo,
Ontario, Canada, N2L 3V4

Abbreviated Instructions for Loading
and Running MICROCHESS 1.0 UPGRADE

Load:

Enter (RS) to reset KIM

Enter (AD) 00F1 (DA) 00 to reset decimal flag

Enter (AD) 17F9 (DA) C1 to enter tape ID for
program segment

Enter (AD) 1873 (GO) to start read routine of KIM

Press ‘‘Play’’ on cassette player

STOP recorder when display shows: 0000

Enter (RS) (AD) 1873 (GO) to read second program
segment (same label ‘‘C1°’)

STOP recorder when display shows: 0000

Enter (RS) (GO) to start program execution

Playing:

Enter (C) on KIM hexpad keyboard to reset program
for new game

Enter (PC) (for ‘‘play chess’’) because KIM plays first

After KIM gives its move, enter your move as
FROM-TO according to the board notations in
table 3 of the article. Keep typing until your move
shows correctly, then enter (F) (PC).

22 compute Il APRIL/MAY, 1980. ISSUE 1

110 .BA $3A2
g3A2- A2 04 #1280 GO LDX #S04 ; RESET BEST EVALUATION
@3A4- 86 FA 9130 STX *BESTV H SO FAR
@3A6- 86 B5S 0140 STX *STATE ; STATE = 4; TRAIL MOVES
@g3A8- A2 12 p150 LDX #$12 ; ZERO COUNTERS & BIAS
@3AA- 20 02 62 0160 JSR GNMX ; GENERATE TRAIL MOVES
@3AD- A4 DC 6170 LDY *OMOVE ; OPENING LIST DONE?
@3AF- 10 32 3180 BPL NODEVP : - YES, MID-GAME
@3Bl1- AQ E6 3190 LDY #SE6 : - NO, NEXT DEVP
@3B3- C8 . 0200 NEXT INY
#3B4- C8 0210 INY ; INDEX OF DEVP
g3B5- 84 DC 0220 STY *OMOVE ; OPENING LIST EMPTY?
g3B7- 10 2A 3230 BPL NODEVP ; - YES, MID-GAME
@#3B9- B6 DC 0240 LDX *DEVP,Y ; -NO, NEXT DEVP
@3BB- 86 B# 3250 STX *PIECE
@3BD- B5 50 9260 LDA *BOARD,X ; DEVP LOCATION
@3BF- C8 9270 INY ; INDEX OF FROM
@3Co- 48 3280 PHA (SAVE DEVP LOCATION)
p3Cl- 98 4290 TYA ; TRANSFER INDEX OF
@3C2- AA 3300 TAX ; FROM INTO X
#3C3- 68 9310 PLA ; DEVP LOCATION IN ACCUM
@3C4- D5 DC 9320 CMP *FROM,X ; DEVP AT ORIGIN?
@3C6- D@ EB #330 BNE NEXT ; - NO, GET NEW DEVP
@3C8- E8 @340 INX ; INDEX OF TO
#3C9- B5 DC G350 LDA *TO,X ; CHECK LEGALLITY OF DEVP
@3CB- 20 D1 02 0360 JSR CMOVE ; FROM .FROM TO .TO
§3CE- 30 13 @370 BMI NODEVP ; NEQ = ILLEGAL MOVE
g3D0- A6 BO 3380 LDX *PIECE ; - LEGAL MOVE
@3D2- EO 08 8390 CPX #$08 ; IS PIECE A PAWN
@3D4- 30 02 0400 BMI LEGAL H NEG = NOT PAWN
@3D6- 70 OB 2410 BVS NODEVP ;: SET = ILLEGAL PAWN CAPTURE
@3D8- A6 C3 9420 LEGAL LDX *FACTOR ; LEGAL OPENING MOVE!!
@3DA- 86 FO 0430 STX *BIAS ; SET BIAS TO FACTOR
@3DC- A2 04 0440 LDX #S$04 ; EVALUATE OPENING MOVE
#3DE- 86 B5 9450 STX *STATE : AND PUT IT IN BESTV
03EQ- 20 00 01 0460 JSR JANUS H IF ITS THE BEST MOVE
@3E3- A6 FA @478 NODEVP LDX *BESTV H SO FAR
@3E5- EO OF 9480 CPX #SOF ; RESIGN OR STALEMATE IF
P3E7- 4C C2 17 0490 JMP CONT ; BESTV TOO LOW

8500 ;

9510 .BA $17C2
17C2- 90 12 @520 CONT BCC MATE ; (ORIGINAL MICROCHESS
17C4- A6 FB #5308 MV2 LDX *BESTP H CODING)
17C6- B5 50 #0540 LDA *BOARD,X ; MOVE AND DISPLAY THE
17C8- 85 FA @550 STA *BESTV ; BEST MOVE
17CA- 86 BO 0560 STX *PIECE
17CC- A5 F9 0570 LDA *BESTM
17CE- 85 Bl g580 STA *SQUARE
17D0- 20 4B 03 §590 JSR MOVE
17D3- AC 00 00 0600 JMP CHESS ; END COMPUTER'S TURN
17D6- A9 FF #6109 MATE LDA #SFF ; RESIGN OR
17D8- 60 0620 RTS

#9630 ;

p640 .BA S1780
1786- A9 80 #6500 STRATEGY LDA #5$80 ;: EVALUATION = 80 + OR - SCORE
1782- 18 7660 CLC
1783- 65 EB 9670 ADC *WMOB : COMPUTERS'S MOBILITY
1785~ 4A 0680 LSR A
1786~ 18 9690 CLC .
1787- 69 490 0700 ADC #S$40 RESET EVAL TO 80 +OR- SCORE

1789- 65 ED 0710 ADC *WCC ; COMPUTER'S ATTACK STRENGTH

APRIL/MAY, 1980. ISSUE 1

compute Il.

23

178B-
178C-
178E-
178F-
1790~
1791-
1792~
1794-
1796~
1798~
179A-
179B-
179D~
179F-
17Aa0-
17A2-
17a4-
17A5-
17A7-
17A8-
17AA-
17AC-
17AD-
17AF-
17B1-
17B3-

17B5-
17B7-
17B8-
17BA-
17BC-
17BD-
17BF-

17D9-
17DB-
17DD-
17DF-
17E1-

pll2-
9114~
0117~

0200-

D@
C9
D@
E6
60

E@
20
EA

A2

E5

70
F@

EF
BO

B7
@D

60

38
Bl

g2
g2
DD
E4

g3

20
DD

E4
77
06

02
EF

00
D9

11

DC

g3

17

0720
D730
0740
750
0760
8770
p780
0790
0800
0810
0820
9830
0840
850
p860
0870
0880
P890
0900
9910
0920
8930
0940
@950
0960
0970

0980
6990
1000
1010
1020
1030
1040
1050
1060
10670
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

CAPTEST

MOVEOK

QUIT

.
’

BKMOVE

OUTBK

~e

SEC
SBC
LSR
LSR
LSR
CLC
ADC
ADC
LDY
BMI
SEC
SBC
LDX
DEX
CPX
BCS
PHA
LDA
SEC
SBC
CMP
PLA
BCS
ADC
LDX
CPX

BCC
CLC
ADC
ADC
SEC
SBC
JMP

.BA
BNE
CMP
BNE
INC
RTS

.BA
CPX
JSR
NOP

.BA
LDX
.EN

*BCC
A
A
A

#570
*BIAS
*OMOVE
CAPTEST

*BKMOB
*PIECE

$$07
CAPTEST

*BK

#$38
*SQUARE

’
CAPTEST
#$02
*WCAPO
*BMAXC

QUIT

520
*WCAPO

*BMAXC
CKMATE

$17D9
OUTBK
$#s00
OUTBK
*BKMOB

’

$0112
#500
BKMOVE

$200
#511

we we s we

~e

~e

~e “o wa we ~e wo

~e

~e weo

~e we

~e we wo we

OPPONENT'S ATTACK STRENGTH

MOBILITY X 1/16
ATTACK STRENGTH X 1/8

RESET EVAL TO 80 +OR- SCORE
ZERO UNLESS DEVP MOVE
NEGATIVE IF STILL DEVP
MID-GAME IF POSITIVE
DEDUCT MOBILITY OF THE
OPPONENT'S KING
BONUS FOR MOVE INTO
OPPONENT'S KING ZONE
NOT FOR COMPUTER'S KING
OR PAWNS
(SAVE EVALUATION)
LOCATION OF OPPONENT'S KING

CALCULATE KING ZONE
MOVE INTO ZONE?
(RESTORE EVALUATION)
CARRY CLEAR IS IN ZONE
ADD BONUS, NEAR KING
IF COMPUTER'S CAPTURE
IS NOT GREATER THAN

OR EQUAL OPP, QUIT
PASSES CAPTURE TEST
POINTS FOR GOOD MOVE
POINTS FOR CAPTURE
POINTS FOR OPPONENT'S

MAX CAPTURE IN REPLY
TEST FOR CHECKMATE

RTS IF STATE NOT ZERO

RTS IF NOT OPP KING'S
MOVE

COUNT LEGAL OPP KING
MOVES

;COUNT LEGAL REPLY MOVES

.
’

7

FOR OPPONENT'S KING

CLEAR COUNTERS, NOT BIAS ©

COMPUTE. and computell.
The Resources!

APRIL/MAY, 1980. ISSUE 1

compute II. 25

PROGRAM
TRANSFERS

(PET TO KIM)

Joseph A Dilts
Assoc. Prof. of Chemistry
Univ. of North Carolina

Harvey B. Herman
Prof. of Chemistry
Univ. of North Carolina

In a recent 6502 User Notes editorial (Issue #14,

P. 27) you propose a method to transfer BASIC
programs from PET to KIM. Your editorial prompted
us to document our method for your readers, as we
have been doing this for almost a year now.

There are several possible methods to communi-
cate between computers. One way, memory to mem-
ory transfer using parallel ports, has already been
published (‘‘KIM-1 Talks to PET’’, PET User
Notes, Vol. 1 #5, p 6). However, as you point out,
tokens for various Micros of BASICs. differ. Conse-
quently, a simple transfer will not work for BASIC
programs.

Another way, the way we picked, is to send an
ASCII version of the program from the IEEE port
of the PET to the serial interface of the KIM. This
method requires both an IEEE/RS232 serial adapter
and a RS232/KIM adapter. We used an IEEE adapter
manufactured by Connecticut Microcomputer
(PET ADA 1200 $170 assembled) which one of us
(J.A.D.) uses with a word processing program
(CMC). We constructed a modified version of the
RS232/KIM adapter published in your journal
(Issue #4, p 6) to complete the connection from
PET to KIM.

It is very important to set the slide switches on
the PET ADA 1200 properly. One combination that
works for more than one application is:

1 parity bit
2 stop bits (10010 in switches 1-5)
7 characters even parity

The baud rate of the KIM serial line can be set with a
serial terminal and the reset/rubout sequence or with
the KIM keyboard (change locations $17F2/$17F3,
see 6502 User Notes. Issue #6, p 11 for typical
values.) We worked with a 300 baud terminal and the
IEE/RS232 interface set at 300 baud.

The first method we tried was similar to the
suggestion in your editorial. KIM BASIC was brought
up as always using the terminal. A NEW command

was given, the terminal was carefully disconnected
from KIM and the PET/adapter substituted (pin 2
on the KIM to pin 3 on the PET/adapter). A PET
program which we wished to transfer to KIM was
loaded and listed to the IEEE bus using the following
sequence (on the PET).

OPEN 6, 6
CMD 6
LIST
PRINT #6
CLOSE 6
The terminal was reconnected and the program listed

on KIM. To our horror we found this method
generally only transferred the first program line as
apparently a delay or hand shaking is necessary after
the first carriage return. One of us (HBH) uses an
X-off/X-on sequence to properly load paper tapes on
KIM thereby circumventing the same problem. We
could not use this method here and we did not see an
easy way to modify the PET ADA 1200 adapter for
handshaking.

We tried another approach; one that eventually
worked well. Since we saw the problem as necessitating
a delay after carriage return, perhaps software, rather
than hardware, could accomplish this. A BASIC
program was written which could read an ASCII

file from tape and send each character to the IEEE

bus individually. The program adds a proper delay
after the carriage return character is sent and gives
KIM BASIC enough time to digest each line.
It is easy to make any PET BASIC program into

a file on cassette tape after it is loaded.

OPEN 1, 1,1

CMD 1

LIST

PRINT #1

CLOSE 1

The PET program, GET, (shown in the figure) which
reads the file is loaded next. (Line 45 is incomplete,
see below for reason, and needs GOSUB 60 after
the colon). The KIM terminal is disconnected and
PET connected to KIM. GET is executed on the
PET and causes the program file, made previously,
to be sent character for character over the IEEE
bus to KIM, inserting delays when necessary. KIM’s
terminal is reconnected and if the PET program
happens to be directly compatable with KIM’s
BASIC, it can be run immediately without modifi-
cation.

Some minor problems may arise:

1. KIM’s BASIC has a line buffer limitation of
72 characters. Lines longer than 71 characters
are truncated by our program to fit this line
length (c.f. line 45 above) and have to be
reformulated after transfer.

2. KIM uses *“ " and ‘““@’’ as special charac-
ters for character and line delete. If the PET

26

compute Il.

APRIL/MAY, 1980Q. ISSUE 1

program uses these characters it may be advan-
tageous to temporarily change locations $2440
and $243C (in our version of 9 digit KIM
BASIC) to other ASCII characters to avoid
trouble.

3. KIM and PET do not have exactly the same
BASIC language. Neither do they have the
same hardware. Some commands in PET
BASIC will have to be translated to properly
operate on KIM. Locations specific to PET
will have to be relocated to be compatable
with KIM. It may not be practical to transfer
all programs. Users will have to use their
judgement.

Even though we recognized that problems exist
we have successively moved very long PET programs
(close to 8K) and made them operate on KIM. As
a short, possibly bad, example we transferred the
GET program itself to KIM and listed it on a
KIM operated teletype (110 baud). This program
cannot execute on KIM because of software and hard-
ware differences. It also illustrates the line length
buffer limitation (line 45). As long as users are
aware of the potential trouble spots they should
have no difficulty.

We have also used the PET ADA 1200 adapter
in other applications. The adapter was originally
designed to directly drive a printer off the IEEE

bus. When the terminal is not in proximity to the

PET but is near a telephone and modem it is possible

to make listings over phone lines. We have used

the Pennywhistle 103 Modem to transmit PET pro-

grams and output on a high channel frequency, to

terminals whose modem is receiving on the same fre-

quency. A simple list to the IEEE bus (with CMD)

or data output of the bus is all that’s required. If

the terminal also requires an extra delay after

carriage return more bits per character (9) could

suffice or the GET program used. The remote de-

vice could also be a computer. However, we have not

tried this. The best part of the remote printing opera-

tion is to watch the faces of the folks in the computer

room when they spy a strange (to them) dialect of

BASIC printing on their terminal.

GET PROGRAM

10 OPEN1,1,0

15 OPEN6,6

17 FORI=1to500:NEXTI

18 PRINT#6,CHR$(15)

20 GET #1,C$

30 IF (ST) AND 64 THEN 500

40 IFASC(C$)=13THEN PRINT L§$:PRINT#6,L$:L$="":FOR
I=1T0500:NEXTI:GOT020

45 L$=L$+C$: IFLEN(LS)=71THENPRINTLS : PRINT#6,L$:L$=
"":FORI=1T0500:NEXT:

50 GOT020

60 GET#1,C$:IF(ST)AND64THENS500
70 IFASC(C$)=13THENRETURN

80 GOT060
500 CLOSEL
oK (@)

IDEAL FOR DEDICATED INDUSTRIAL OR PERSONAL APPLICATION

FEATURES
[]

® PLUGS DIRECTLY INTO AND

EPROM-SOCKETS PROVIDED FOR

COVERS UPPER HALF OF KIM-1.
EXPANSION FINGERS CARRIED
THROUGH FOR FURTHER
EXPANSION.

1/0-POWERFUL 6522 VIA
PROVIDED.

(VERSATILE INTERFACE
ADAPTER)

16 BI-DIRECTIONAL I/0 LINES

8K EPROM.
(INTEL 2716 2KX8’s)

BLOCK SELECT SWITCHES FOR
EPROM.

EPROM USABLE IN ANY ONE OF
FOUR 8K BLOCKS FROM 8000H.

AUTOMATIC RESET ON POWER-
UP AND SWITCH SELECTABLE

4 INTERRUPT/HANDSHAKE INTERRUPT VECTORS
LINES .

® PERMITS UNATTENDED
2 INTERVAL TIMERS OPERATION.

SHIFT REGISTER FOR SERIAL-
PARALLEL/PARALLEL-SERIAL
OPERATIONS.

RAM-SOCKETS PROVIDED FOR
4K RAM CONTIGUOUS WITH KIM
RAM.

(LOW POWER MOSTEK 4118
1KX8's)

LOW POWER CONSUMPTION-
5V AT 300 Ma. FULLY LOADED

BUFFERED ADDRESS LINES

HIGH QUALITY PC BOARD,
SOLDER MASK

® COMPLETE DOCUMENTATION ® ASSEMBLED AND TESTED

APPLICATIONS

PROM, RAM AND I/0 EXPANSION ON ONE BOARD HAVING MANY INDUS-

TRIAL/HOME APPLICATIONS FORDATA ACQUISITION, PROCESS CONTROL,

:g‘(l:olsllA;Ir% CONTROL OF FURNACE, SOLAR HEAT, LIGHTING, APPLI-
ES, ETC.....

PA RESIDENTS INCLUDE 8% STATE SALES TAX

Y1) o2 \

E-X3IWIN 313T7dWOD IHL SI SIHL

DIGITAL ENGINEERING ASSOCIATES

P.0.BOX207 @ BETHLEHEM, PA 18016

LIMITED TIME 1K RAM FREE ! ! !

* KIM IS A REGISTERED TRADEMARK OF MOS TECHNOLOGY, INC.

APRIL/MAY, 1980. ISSUE 1

compute Ii. 27

Part 1: Implementing the IEEE-488 Bus on a SYM-1

DESIGNING AN IEEE-488
RECEIVER WITH THE SYM

Larry Isaacs, COMPUTE. Staff

This article is the first in a series on the use of a single board compu-
ter as a dedicated interface. In this section I will describe the
design of an interface connecting a Spinwriter to the PET
IEEE-488 Port using a SYM-1. If you have a need for an
interface or controller, but not much experience using single
board computers, this series should provide some pointers on
how to go about implementing one.

In this article, the discussion of the IEEE-488
Bus will be limited to that which is relevant to the
PET, and to how the PET sends data to a printer.
Also, when the software to be presented is too general
to give the actual assembly language, it will be given in
PASCAL. The listings should be readable, even if
you haven’t had much exposure to PASCAL. The
names used in the PASCAL listings will correspond
to the names used in the assembly language listings.
The following notes should help if you haven’t seen
PASCAL before.

1. PASCAL uses ‘‘: ="’ for the assignment
operator; ‘‘ ="’ is used only for comparisons.

2. The “‘;”’ is used to separate statements.

3. When statements are enclosed between a
‘““begin’’ and an ‘‘end;’’, it means that that block
of statements may be treated as if they were one
statement. The programs are indented to help

1)

show which ‘‘end;’’’s go with which ‘‘begin’’’s.
DIVIDE AND CONQUER: A STARTING POINT

One of the most effective ways to handle design
problems is to successively divide the required func-
tions into small sets of sub-functions. Once the
complexity of a sub-function has been reduced to a
manageable level, then it is implemented.

The first division of the PET-to-Spinwriter inter-
face is shown in Listing 1.

Listing 1.

program PETTOSPINWRITERINTERFACE;

procedure INIT; begin...end; {initialization}
procedure PRINT; begin...end; {send chr. to Spinwriter}
procedure CYCLE; begin...end; {get byte from IEEE}
procedure INTERFACE; begin...end; {main interface software}
begin {PET to Spinwriter Interface}

INIT;

INTERFACE
end.

Here, the interface task has been divided into four
sub-functions. The task of the INIT procedure will
become apparent as the other parts of the software
are written. The INTERFACE procedure will contain
the intelligence of the interface. The exact function
of INTERFACE can’t be determined yet, so this
sub-function will be dealt with later.

The PRINT and CYCLE sub-functions will be
used by INTERFACE to communicate with the PET
and the Spinwriter. Unlike the others, the functions
of PRINT and CYCLE are sufficiently narrow in scope
to be implimented at this point. Both will involve
dealing with hardware as well as software. But once
done, most of the hardware details will be taken care
of.

PRINT

The purpose of this routine is to handle all of the
requirements for communicating with the Spinwriter.
To do this, one must first consult the Spinwriter

and SYM-1 documentation:

Our Spinwriter has a serial interface. This means
we can use the serial interface software provided
in the SYM-1 Monitor to send characters to the
Spinwriter. The Spinwriter Product Description
manual reveals that CARRIER DETECT (pin 8 on
the RS232 connector), DATA SET READY (pin 6),
and CLEAR TO SEND (pin 5) must be high
(between +3 and + 12 volts) for the Spinwriter to
operate. This was simple to take care of since the
SYM-1 provides this voltage at the corresponding
locations of the T connector.

The Product Description manual also reveals a—
way of increasing throughput by using the ETX/
ACK protocol. This makes use of the 256 character
receive buffer found in the Spinwriter. You use this
protocol by sending data blocks of up to 254
characters followed by an ETX character (control C).
When the Spinwriter withdraws the ETX character
from the receive buffer, it transmits an ACK
character (control F) to indicate the buffer is empty
and ready for another block of characters. This will
allow the SYM to transmit at 1200 baud, and let
the Spinwriter print at its maximum speed. All of this
leads to Figure 1 which shows how to attach the
required RS232 connector to the SYM.

After the proper initialization, the OUTCHR
subroutine in the SYM Monitor can be used to send
characters to the Spinwriter, and the INCHR

30

compute ll.

APRIL/MAY, 1980. ISSUE 1

subroutine to receive the ACK character involved
with the protocol.

Figure 1. SYM to Spinwriter Hardware
SYM T CONNECTOR RS232 CONNECTOR

— —
1 11 GND
2 2 | TRANSMIT
3 3 | RECEIVE

CLEAR TO SEND

5 5

6 6 | DATA SET READY
7 7 | GND
8 8

CARRIER DETECT

The assembly language for PRINT is shown in
Listing 2.

transfer. Since the NRFD signal line is Wire-ORed,
any active device can hold the NRFD line low.
This means the cycle doesn’t proceed until all
active devices indicate they are ready.

Once NRFD goes high, the PET responds by
placing the byte to be transferred on the DIO lines
and then setting DAV low to indicate valid data.
When CYCLE sees DAV go low, it should read the
data lines and then sample the signal lines. Now
CYCLE sets NDAC high to indicate that the data
has been accepted. The NDAC line is also Wire-
ORed, so the other active devices must indicate
they have accepted the data before the cycle can
finish.

When the PET sees the NDAC line go high, it
sets DAV low. Once CYCLE sees the DAV line go
high, it resets NDAC to the low state completing
the cycle. Now CYCLE returns to the calling soft-
ware. Refer to Listing 3 for the assembly language
for this routine.

Listing 2

@111- 26 47 8A 1570 PRINT JSR OUTCHR ;PRINT AND INC..COUNT
0114- E6 80 1580 INC *COUNT

0116- D@ 6C 1590 BNE RETURN

6118- A9 03 1688 ACK LDA #$83 ;ASCII ETX
G11A- 20 47 8A 1618 JSR OUTCHR

611D- 20 58 8A 1629 JSR INCHR ;WAIT FOR ACK
0120- A9 02 1630 LDA $5$02

0122~ 85 00 1640 STA *COUNT

#124- 60 1656 RETURN RTS

CYCLE

The function of CYCLE is to read the byte on the
data lines during a byte transfer cycle on the IEEE
bus. In some cases, the INTERFACE sub-function
will need to know the state of some of the other
signals during the transfer. CYCLE should there-
fore sample the signal lines as well.

All the information needed for the IEEE part of
the interface can be found in the Commodore CBM
manual. The information in this section will deal only
with the byte transfer cycle. The remaining informa-
tion-will be presented in the next part of this
article. In the discussion below, reference is made to
active and inactive devices. An active device is
simply one which is participating in the current
transfer cycle. Before continuing, you may want to
refer to Table 1 which lists the IEEFE signals and a
brief description of their function. In this table,
Listener refers to the receiving device, and Talker
refers to the sending device.

The IEEE bus make use of three handshake
signals. These are the NRFD, NDAC, and DAV
lines. When the CYCLE routine is entered, both the
PET, the SYM, and any other active devices are
expecting a byte transfer to take place. This means
that NRFD and NDAC are low, and NDAYV is
high. At this point CYCLE sets NRFD high, indi-
cating the SYM is ready to proceed with the byte

Listing 3
0OE7- A9 03 1390 CYCLE LDA #$03
@OE9- 8D 00 A8 1409 STA @2IORB ;NRFD=1 NDAC=0
BOEC- 2C 90 A8 1410 @1 BIT @2IORB ;TEST DAV
@OEF- 78 FB 1420 BVS €1 ;BRANCH 'IF DAV=1
BAFl- 6A 1430 ROR A
@OF2- 8D 00 A8 1440 STA @2IORB ;NRFD=8 NDAC=0
POF5- AD @1 A8 1450 LDA @2IORA
0OF8- 49 FF 1469 EOR #$FF
BOFA- 85 02 1470 STA *DATA
@OFC- AD 00 A8 1480 LDA @2IORB
BOFF- 85 01 1490 STA *SIGNALS
0181~ A9 00 1500 LDA #5600
0183- 8D 00 A8 1510 STA @2IORB ;NRFD=@ NDAC=1
0106~ 2C 90 A8 1520 e2 BIT @2IORB
2189- 58 FB 1530 BVC @2 :BRANCH IF DAV=0
@10B- A9 61 1540 LDA #$01
21¢D- 8D B0 A8 1550 STA @2IORB ;NRFD=@ NDAC=#
p110- 60 1560 RTS

TABLE 1

NAME SET BY DESCRIPTION

DIO1- Talker Data Input/Output. These lines- carry the

DIO08 commands and data.

Not Ready for Data. When low, it means
the device is not ready to receive data. It
is set high when the device is ready.

Data Valid. When high, it means the data
on the data lines is not valid. It is set low
once all NRFD goes high and valid data
has been placed on the data lines.

Not Data Accepted. When low, it means
that the data has not been accepted. It

is set low once DAV goes low and the
data has been latched.

NRFD Listener

DAV Talker

NDAC Listener

ATN Talker Attention. Signals that the byte on the
DIO lines is a command.

EOI Talker End Or Identify. Signals that the last
data byte is being transferred.

IFC Interface Clear. Resets all devices. ©

36

compute Il.

APRIL/MAY, 1980. ISSUE 1

Improved Pulse Counting
Sofiware For The 6522 VIA

Marvin L. De Jong

Dept. of Mathematics-Physics
The School of the Ozarks

Pt. Lookout, MO 65726

Ever since I began playing with the 6522 I have been
trying to find a program that would use the 6522 to
count pulses for an exact one second interval. By exact
I mean one million clock cycles, not one million
plus or minus several instruction intervals. Of course,
it should be noted that if the system clock frequency
is not exactly one Megahertz then an error of
several instruction intervals may not be particularly
important. In this connection, the measurements I
have made of clock frequencies on a few KIM-1s
and one AIM 65 show that errors of several
hundred parts per million are not unusual, so if
your twenty-four hour clock runs slow or fast, do
not be surprised.

In any case, assuming that the system clock
frequency is precise to say one part per million,
the program supplied in this note will count pulses
for an interval that is as precise as the system
clock frequency. The assembly language program to
count pulses for exactly one second (one million
clock cycles) is given in Table 1, and the simple
interface circuit it requires is given in Figure 1.
A BASIC program to convert the pulse count to
decimal and display it is given in Table 2. This
program works on my AIM 65, and it will probably
have to be modified for other machines.

The assembly language program in Table 1
makes use of the T1 timer in its one-shot mode
with PB7 enabled. That is, the T1 timer is pro-
grammed to produce a time interval of 50,000
clock cycles, and during that interval of 0.05 s
PB7 is held at logic zero. Refer to Figure 1
and note that when PB7 is at logic zero the pulses
from some external device will be gated to PB6, the
pulse-counting pin for the T2 counter/timer. In order
to produce pulse-counting intervals that are
longer than 0.05 s, the T1 timer is reloaded and
started N times, where N is an eight-bit number
stored in a memory location labeled CNTR in Table
1. Thus, if N = 2 the counting interval is 0.1 s,
if N = 20 the counting interval is 1.0 s, and
if N = 200 the counting interval is 10 s. These
numbers must be converted to hexadecimal numbers
before using them in the program.

While T1 is timeing-out it is read continuously
so that it may be reloaded and started after exactly
50,000 clock cycles. This prevents PB7 from reaching

logic one any time during the N timing intervals.

If we were to allow T1 to time-out and then

reload and start it, PB7 would toggle from logic

zero to logic one and back to logic zero, with the
possibility of producing an extraneous count on PB6.
Thus, the program loop starting from REPEAT in
Table 1 and ending with DUMMY in the same
listing is tuned to take exactly 50,000 clock

cycles. Each time through the loop N is decremented,
until it reaches zero at which time T1 is finally
allowed to time-out for the last time.

When T1 times out for the last time, no more
pulses will reach PB6. At this time the interrupt
flag register (IFR) on the 6522 is read first. If the
T2 flag is set, then the pulse count was greater
than $010000 (6553610) because the T2 counter was
initially loaded with $FFFF. If the T2 interrupt
flag (IFR5) is set, then the most-significant byte,
PLUSHI, of the pulse-count storage locations is
incremented. Otherwise it is cleared. After this
operation, the T2 counter is read and the resulting
pulse counts are loaded into PLSMI, the middle byte
of the three-byte pulse-count storage locations, and
PLSLO, the least-significant byte of the pulse-
count storage locations. The program then uses a
JMP instruction to return to the BASIC calling
program given in Table 2. Other BASICs may use a
different return technique.

The most obvious application of pulse counting
is a simple frequency meter. The programs and
interface described here will count at a maximum pulse
count of 131,071 counts during whatever counting
interval (0.1 s, 1.0 s, or 10 s) you choose. Note
that 131,071 = $01FFFF. Other applications include
voltage-to-frequency converters and temperature-to-
frequency converters. Commercial tachometer pickups
produce a pulse rate that is proportional to the
angular velocity (RPM) of a rotating shaft. The
6522 can be used to measure this pulse rate and
the microcomputer can convert it to rotations per
minute. The 6522 can also be interfaced to Geiger
counters (GM tubes) or scintillation detectors to count
nuclear events. There are a variety of new trans-
ducers appearing (temperature, light intensity, pres-
sure) that can be used with a V/F converter to
produce a pulse rate that is directly proportional to
the physical quantity being measured. Although direct
analog-to-digital (A/D) conversion is faster than
pulse counting, it usually requires a much more
sophisticated interface. In applications where speed is
not a problem, investigate the possibility of using
this simple program and interface.

APRIL/MAY, 1980. ISSUE 1 compute Il.

coOMPAs— ..

224 S.E. 16th Street
Ames, lowa 50010

microsystems St

DAIM

DAIM is a complete disk operating system for the ROCKWELL INTERNATIONAL

AIM 65. The DAIM system includes a controller board (with 4K operating system in
EPROM) which plugs into the ROCKWELL expansion motherboard, packaged power
supply capable of driving two 5 1/4 inch floppy drives and one or two disk drives mounted
in a unique, smoked plastic enclosure. DAIM is completely compatible in both disk format
and operating system functions with the SYSTEM 65. Commands are provided to
load/save source and object files, initialize a disk, list a file, list a disk directory, rename
files, delete and recover files and compress a disk to recover unused space. Everything is
complete — plug it in and you're ready to go! DAIM provides the ideal way to turn your
AIM 65 into a complete 6500 development system. Also available are CSB 20
{EPROM/RAM) and CSB 10 (EPROM programmer) which may be used in conjunction
with the DAIM to provide enhanced functional capability. Base price of $850 includes
controller board with all software in EPROM, power supply and one disk drive. Now you
know why we say —

There is nothing like a

Dﬂ lm Phone 515-232-8187

compute Il

APRIL/MAY, 1980. ISSUE 1

Table 1.

$0F00 A9 01
$0F02 8D 02 A0
$0F05 A9 A0
$0F07 8D 0B A0
$OFOA A9 14
$0FOC 85 30
$0FOE A9 FF
$0F10 8D 08 A0

- $0F13 8D 09 A0

$0F16 A9 4F
$0F18 8D 04 A0
$0F1B A9 C3
$0F1D 8D 05 A0
$0F20 AD 05 A0
$0F23 DO FB
$0F25 AD 04 A0
$0F28 C9 19
$0F2A BO F9
$0F2C C6 30
$0F2E EA
$O0F2F 90 00
$0F31 DO E8
$0F33 A9 00
$0F35 85 33
$0F37 AD 0D A0
$OF3A 29 20
$0F3C FO 02
$0F3E E6 33
$0F40 38

$0F41 A9 FF
$0F43 ED 09 A0
$0F46 85 32
$0F48 A9 FF
$0F4A ED 08 A0
$0F4D 85 31
$0F4F 4C D1 CO

START

HERE

REPEAT
WAIT

LOOP

DUMMY

OVER

LDA $80
STA PBDD
LDA $A0
STA ACR
LDA $14
STA CNTR
LDA FF
STA T2LL
STA T2CH
LDA $4F
STA TI1LL
LDA $C3
STA T1LH
LDA T1CH
BNE WAIT
LDA T1CL
CMP $19
BCS LOOP
DEC CNTR
NOP

BCC DUMMY
BNE REPEAT

LDA $00
STA PLSHI
LDA IFR
AND $20
BEQ OVER
INC PLSHI
SEC

LDA $FF
SBC T2CH
STA PLSMI
LDA $FF
SBC T2CL
STA PLSLO
JMP BASIC

Simple pulse counting program for the 6522.

Make PB7 an output pin by loading
one into the data direction register.
Set up the ACR so T1 runs once, PB7
enabled, and T2 counts pulses.

Set up counter to do 20 ($14) intervals
of 0.05s, totaling one second.
Initialize T2 to start with

$FFFF and count down.

T2 is now ready to count when PB7
goes to logic zero.

Set up T1 to count 5000 clock
pulses. $C34F + 1 = 50000.

Start T1, PB7 to logic zero.

Read the T1 counter, high-order byte.
Wait until it is zero. These
instructions are part of a tuned

loop designed to wait exactly 50000
cycles before starting T1 again.

The loop is repeated until the
contents of CNTR = 0.

These two dummy instructions tune
the loop.

Clear the most-significant byte of
the pulses counted.

Read the IFR to see if count went
through zero. Mask bits other than
T2 flag. If it was set, add $010000

to pulse counter.

Otherwise, set carry flag and
perform subtraction to see how many
pulses were counted.

Result into middle byte of pulse
counter.

Result into low-order byte of pulse.
Return to BASIC.

Table 2. Counting Pulses with a BASIC program.

10 REM THIS PROGRAM REQUIRES THE MACHINE LANGUAGE ROUTINE IN TABLE 1.

20 POKE 04,00: POKE 05,15

30 Y = USR(0)

40 X = PEEK(49) + 256*PEEK(50) + 65536*PEEK(51)
50 PRINT X; “PULSES PER SECOND"’

60 GO TO 30
70 END

Figure 1.
L—" puULSE INPUT C "
741502 | PB6
PB7 >

Interface circuit for the pulse-counting program of Table 1. The inverter can be implemented with one of the other gates on the

74LS02 chip. The incoming pulse train must be at TTL logic levels.

(@)

PERFECT AIM

.r‘li:‘ﬁil\il‘l!
group

B e A
AT s

ATTRACTIVE FUNCTIONAL PACKAGING
FOR YOUR AIM-65 MICROCOMPUTER
e Professional Appearance
e Striking Grey and Black
Color Combination
e Protects Vital Components

ENGINEERED SPECIFICALLY FOR MADE OF HIGH IMPACT STRENGTH
THE ROCKWELL AIM-65 THERMOFORMED PLASTIC
® All Switches Accessible e Kydex 100*
® Integral Reset Button e Durable
Actuator e Molded-In Color
® Easy Paper Tape Replacement e Non-Conductive
EASILY ASSEMBLED AVAILABLE FROM STOCK
e Absolutely No Alteration e Allow Three to Four Weeks
of AIM-65 Required for Processing and Delivery
e All Fasteners Provided ® No COD’s Please
e Goes Togetherin Minutes e Dealer Inquiries Invited

TO ORDER: 1. Fill in this Coupon (Print or Type Please)
2. Attach Check or Money Order and Mail to:

AME enclosures

STREET
group

771 bush street
STATE ZIP san francisco, california 94108
SAE 1-1 PLEASE SHIP PREPAID SAE 1-1(s)
@$43.50 each

California Residents Please Pay
$46.33 (Includes Sales Tax)

SAE 1-2 PLEASE SHIP PREPAID
@ $46.50 each

California Residents Please Pa
$49.52 (Includes Sales Tax) ¥ *TM Rohm & Hass Patent Applied For

__SAE1-2(s)

40

compute Ii.

APRIL/MAY, 1980. ISSUE 1

PRINTING A SYMBOL ... 0.

Biological Sciences, Smith College
Northampton, MA O1063

TABLE FOR THE
AIM-65 ASSEMBLER

The assembler for Rockwell’s AIM 65 makes
assembly-language programming very convenient,
particularly in conjunction with the excellent editor
that is part of AIM 65’s monitor. However, the
assembler does not include an option to print the sym-
bol table, although it does create such a table in
memory. The following program is one way of decod-
ing and printing the symbol table. In revising a pro-
gram, a print-out of the symbol table can be very
helpful.

On entering the AIM 65 assembler from the
monitor, you are asked for the addresses that
start and end the symbol table. The assembler places
your answers in zero-page addresses 3A, 3B
(“FROM”’) and 3E, 3F (*“TO’’). After assembly,
the total number of symbols is available in addresses
0B, OC (in high, low order). The symbol table itself
consists of sequential eight-byte entries. The first six
bytes of each entry are the symbol name, in ASCII
characters (the assembler enters spaces if the symbol
is less than six characters), and the last two
bytes are the symbol’s address, in hex notation.

The program to print the table reads through
the table using indirect addressing indexed by Y.

It establishes the variable ADDR (at locations 00 and
01), which provides the address of the first character
of the current symbol. ADDR is initially set equal to
the address in ““FROM (3A, 3B); it is incremented
by eight after each symbol is printed. For each symbol,
the Y register is incremented from zero to seven to
access the successive bytes of that symbol.

A second variable, COUNT (addresses 02 and
03), keeps track of the number of symbols that re-
mained to be printed. COUNT is initially set equal
to one less than the total number of symbols (from
addresses 0B and 0C), and it is decremented by one
after each symbol is printed. After COUNT reaches
zero (the last symbol is numbered zero, which is
why the initial count is one less than the total),
the program exits and prints the total number of
symbols in hex notation. The program uses AIM
monitor subroutines to print the ASCII and hex
characters. It also turns the AIM printer on and
off at the start and end of the table, which I find very
handy.

The listing given below places the program at
locations 0200-027D, which are available on every
AIM 65. The program could of course be placed in
other memory locations, and it would be very con-
venient in a PROM. At the end of the listing, the
program was run to list its own symbol table.

==@@08 ELANK=$ES3E
==@008@ CRLOW=$ERL3

EQUAL=$E7D8
PRIASC=$ESTA

==00088
==00060
PRIFLG=$f411
PRIHXZ=$ER45

ADDR=8
COUNT=RDDR+2

*=$0200

INITL RDDR. COUNT.Y

==@2080

i "FROM" = 3IR.3B
==@200 SYMTBL

AS3A LDA $2A

8568 STA ADDR

ASXE LDA $3B

8564 STA ADDR+1

i ADDR ACCESSES TABLE

RSB LDR $@B
g5@z2 STA COUNT
ASeC LDA seC
858X 5TA COUNT+1
==0210

i COUNT=5YMBOLS TO GO
€683 DEC COUNT+1
i FIRST 3YMB=8, NOT 1

fage LDY %@

: INDX & BYTES/SYMBOL
A938 LDA #¥00
a011A4 =TH PRIFLG

i TURN PRINTER ON
2613ER J5R CRLOW
2012ER ISR CRLOM
iSKIP 2 LINES AT TOP

MRIN LOCP

==@21F IYMLP

B166 LDA <ADDRO.Y
£e@é CPY #6
+BYTES @-5 =A5CII
Fe@? BEQ SPRCE
iPRINT & ASCII CHAR.
287REZ® ISR PRIASC
c8 INY

4CiF@e JMP S'YMLP

JPRINT 5SPACE & EQUAL
==@22C SPACE

i PRINT

FHA

JSR BLANK
28D8E7 J5R EQUAL
282EE8 JSR BLANK
i NEXT 2 BYTES = HEX
68 PLA

2046ER JSR PRIHXZ

C8 InNY

Bi68 LDAR (RDDR).,Y
==823D

2046ER J5R PRIHX2
2@13ER J5R CRLOW
iHAYE PRINTED 1 LINE

DECR COUNT & TEST

48
2BZEES8

€683 DEC COUNT+1
RSFF LDR #$FF
€562 CMP COUNT+1
: FF = BORROW

Dagé BNE NXTADR
Cé82 DEC COUNT
==024D

€582 CMP COUNT

i FF = DONE

Feiz2 BEQ DONE

UPDRTE ADDRESS
==9251 NXTADR

18 CLC

AS@e LDA ADDR
;LOW BYTE

6968 ADC #8
&56e 5TR ADDR
AS61 LDR ADDR+1
iHIGH BYTE

6986 ADC %@
8561 S5TA ADDR+1
RB@e LDY #@

4C1FB2 IMP SYHLP

PRINT TOTAL & EXIT

LONE

J5R CRLOW

LDR $6B

JSR PRIHX2Z
LDA soC

J5R PRIHKX2
TOTAL. SKIP LN
J5R CRLOMW

=={263
201ZER
ASEB
2B46ER
AS8C
2046ER

2012ER
==0273
201ZER
A566 LDA #@
8011A4 STR PRIFLG
; TURN PRINTER OFF
4C82E1 JMP $E182
s JUMP TO MONITOR

JSR CRLOW

. END
BLANK = E8Z2E
CRLOW = ER1Z
EQUAL = E7D8
PRIRSC = E37A
PRIFLG = A411
PRIHX2 = ER46
ADDR = 0808
COUNT = 8882
SYMTBL = 8206
SYMLP = @21F
SPACE = @22C
NXTADR = 8251
DONE = 8263
(o)

eeen

APRIL/MAY, 1980. ISSUE 1

compute Il

a1

PRS3
PRS4

ENC1

MCP1

MEB1

PTC1

VIB1

EXCERT, INCORPORATED

Power Supplies
(fully AIM-65 Compatible)

+5V at 3A, +24V at 1A w/mtg hardware,

cord,etC. ...ttt $65
+5V at 2A, +24V at .5A w/mtg hardware,
cord,etC. ... e $50

From The Enclosure Group

AIM-65 case w/space for PRS3/PRS4$45

ENCI1A AIM-65 case w/space for PRS3/PRS4 and one

expansionboard...................... $49

Cases with Power Supplies

ENC3 ENC1 w/PRS3 mountedinside $115
ENC3A ENCI1A w/PRS3 mounted inside. $119
ENC4 ENC1 w/PRS4 mounted inside. $100
ENC4A ENCI1A w/PRS4 mounted inside. $104

From The Computerist, Inc.

Mother Plustm - Dual 44 pin mother card takes
MEB1, VIB1, PTCI1, fully buffered, 5 expansion
slots underneath the AIM.............. $80
Memory Plustm - 8K RAM, 8K PROM sockets,
6522 1/O chip and programmer for 5V
EPROMS (w/cables $215).......... $200
Proto Plustm - Prototype card same size as
KIM-1 MEB1, VIB1.................. $40
Video Plustm - Video bd w/128 char, 128 user
char, up to 4K display RAM, light pen and
ASCII keyboard interfaces w/cables. . ..$245

*** AIM-65 ***
-
SPECIAL
A65-4AB AIM-65 w/4K RAM
Assembler & BASIC ROM $595
P/N QTY 1.9 SPARE PARTS (When Available)
A65-1 AIM-65 w/1K RAM $375 A65-P Printer $40
A65-4 AIM-65 w/4K RAM $450 A65-D Complete Display Bd. $65
A65-A Assembler ROM $85 w/Exchange of Old Bd. $40
A65-B BASIC ROM $100 A65K Keyboard $40
ACCESSORIES
P/NO. QTY 1-9 P/NO. QTY 1-9

From Seawell Marketing, Inc.

MCP2 Little Buffered Mother™-Single 44 pin (KIM-4
style) mother card takes MEB2, PGR2, PTC2
and PI02. Has on board 5V regulator for
AIM-65, 4 expansion slots. Routes A&E signals
to duplicates on sides w/4K RAM $199

MEB2 SEA 16™-16K static RAM bd takes 2114L
w/regulators and address switches
16K. ... e $325
PGR2 Prommer™-Programmer for 5V EPROMS
w/ROM firmware, regulators, 4 textool
sockets, up to 8 EPROMS simultanously, can
execute after programming $299
P102 Parallel /O Bd w/4-6522’s $260
PTC2 Proto/Blank™-Prototype card that fits MCP2
.................................. $49
PTC2A Proto/Pop™-w/regulator, decoders, switches
.................................. $99
From Optimal Technology
ADC1 A/D: 8 channels; D/A: 2 channels. Requires
+12v to £15 volts @ 100 ma and 2 1/0 ports
fromuser65220, $115.00
Miscellaneous
TPT2 Approved Thermal Paper Tape
5/165r0lls ... e $10
MEM6 6/2114 RAMChips $45
CLOSE-OUT!

From Beta Computer

MEB3 32K Dynamic Memory Card w/on bd DC to
DC converters (5V only .8A max)

.................................

SYSTEMS

Higher quantities quoted upon request.
COD’s accepted.

Add $5 for shipping, insurance, and handling.
Minnesota residents add 4% sales tax.

We specialize in assembled and tested systems made from the above items. Normally, the price
will be the total of the items, plus $5 for shipping, insurance and handling. Please call or write for
exact prices or if questions arise.

Mail Check or Money Order To:
EXCERT, INC.

Educational Computer Division
P.O. BOX 8600

WHITE BEAR LAKE, MN. 55110
612-426-4114

42

MORE"
EPROM PROGRAMMER

LA S AR SE RS EE XA R RS E N

KIMSI
FLOPPY
DISKS—

PERRY PERIPHERALS HAS
THE HDE MINIFLOPPY TO KIMSI

e 3K RAM EXPANSION SPACE
e OUTPUT PORT EXPANSION
e EPROM SOCKET FOR OFTEN

ADAPTER

MINIFLOPPY S-100 ADAPTER: $15
® FODS and TED Diskette

® FODS and TED User Manuals

® Complete Construction Information

OPTIONS:

® FODS Bootstrap in EPROM (1st Qtr'80)
® HDE Assembler (ASM) $75

® HDE Text Output Processor (TOPS) $135

(N.Y. State residents add 7% Sales Tax)
Place your order with:

PERRY PERIPHERALS
P.O. Box 924
Miller Place, N.Y. 11764
(516) 744-6462

Your ““Long Island’’ HDE Distributor
KIMSI, a product of Forethought Products
' 2R 2EEREEEEEREEESRE R RS S

AR AR ARKRRANANANARNRARERRR AR A AR ARk ko ok
HARNRRRRRRERR RN R RN R RN RN RS ERR RN RS

T.T.L

NEEDED SOFTWARE
* READY TO USE ON BARE

KIM, SYM, AIM

BOARD, SOFTWARE ON KIM
FORMAT TAPE, MANUAL,
LISTINGS, ALL PERSONALITY
KEYS FOR 2708, 2716 (+5
+12V) AND 2716, 2758, TMS
2516 (5V ONLY) -- $169.95

e 2708 EPROM WITH SOFT-

WARE IS $20.00

P.O. Box 2328 Cookeville, TN 38501
Phone: 615-526-7579

* 6502 FORTH 1s A COMPLETE PROGRAMMING SYSTEM WHICH CONTAINS
AN INTERPRETER/COMPILER AS WELL AS AN ASSEMBLER
AND EDITOR.
* 6502 FORTH RuNs oN A KIM-1 WITH A SERIAL TERMINAL.
(TERMINAL SHOULD BE AT LEAST 64 CHR. WIDE)
* ALL TERMINAL 1/0 1S FUNNELLED THROUGH A JUMP TABLE NEAR
THE BEGINNING OF THE SOFTWARE AND CAN EASILY BE
CHANGED TO JUMP TO USER WRITTEN 1/0 DRIVERS.
* 6502 FORTH uSES CASSETTE FOR THE SYSTEM MASS STORAGE DEVICE
* CASSETTE READ/WRITE ROUTINES ARE BUILT IN (INCLUDES HYPER-
TAPE),
* 92 OP-WORDS ARE BUILT INTO THE STANDARD VOCABULARY,
* EXCELLENT MACHINE LANGUAGE INTERFACE.
* 6502 FORTH 1S USER EXTENSIBLE.
* 6502 FORTH 1s A TRUE IMPLEMENTATION OF FORTH ACCORDING
TO THE CRITERIA SET DOWN BY THE FORTH INTEREST
GROUP,
SPECIALIZED VOCABULARIES CAN BE DEVELOPED FOR SPECIFIC
APPLICATIONS,
* 6502 FORTH Resipes IN 8K oF RAM sTARTING AT $2000 AnD
CAN OPERATE WITH AS LITTLE AS 4K OF ADDITIONAL
CONTIGUOUS RAM,

*

6502 FORTH

6502 FORTH PRICE LIST

KIM CASSETTE., USER MANUAL., AND

$90.00
4,00

COMPLETE ANNOTATED SOURCE LISTING
(#2000 veLsion) pLUS S&H

USER MANUAL (CREDITABLE TOWARDS SOF TWARE

$15.00
pLus S&H 1.50

SEND A S.A.S.E. FOR A FORTH
BIBLIOGRAPHY AND A COMPLETE
LIST OF 6502 SOFTWARE, EPROM
FIRMWARE (FOR KIM, SUPERKIM,
AIM, SYM, AND APPLE) AND
6502 DESIGN CONSULTING
SERVICES AVAILABLE......vv..

ERIC C. REHNKE
540-61 so. RANCH VIEW CR.
ANAHEIM HILLS., cA 92807

PURCHASE)

APRIL/MAY, 1980. ISSUE 1

compute Il. 43

Hard Copy Graphics

FOI’ 'he Kim Keith Sproul

1368 Noah Road
North Brunswick,New Jersey O8202

There are many different video boards out these days,
each with its own advantages and each designed for a
different system. Some video boards are ‘Byte
Mapped’, that is they display an ASCII character for
every byte in memory. The other type of video board is
a ‘Bit Mapped’ screen, this type displays one ‘pixel’, a
dot on the television screen, for each bit in memory.
Both of these types have advantages. The byte mapped
screens display a character at a time and are good for
high speed text applications and sometimes rough
graphics. The bit mapped screens by definition give
you higher resolution graphics. With a bit mapped
video board you can do professional quality graphics.
Characters are still possible on a bit mapped screen,
but they have to be ‘drawn’.

Micro Technology Unlimited of Manchester,
New Hampshire makes a ‘VISIBLE MEMORY’
video board that is of the second type. This video
board displays 200 rows of 40 bytes across. At 8 bits
to the byte, this produces a graphic display of 320 by
200 pixels. That is fairly high resolution, even higher
than ‘High Res’ on the APPLE. Besides being a good
graphics board, this ‘Visible Memory’ doubles as 8K
of memory when the graphics is not needed.

Hal Chamberlin, who is well known in the micro-
computer industry and also works for M.T.U., wrote
a ‘V.M. Support Package’ for this board. This package
does everything from plotting points to drawing
characters on the screen. This ‘software character
generator’ enables the user to display text in any
format, including sub-scripted and super-scripted
characters. The user can also redefine his own
characters or the entire character set. This enables the
use of languages other than English to be displayed on
the screen, a feature that is very rarely seen.

All of this is fine and pretty on the screen, but
what if hard copy is needed? Plotters can be used to
produce hard copy, but they are extremely expensive
and are dedicated to plotting. Plotters also require
extensive software to run properly. A different alter-
native is to use a DIABLO HyTerm II terminal. This
terminal produces about the best print quality available
and has built-in graphics capabilities. By using the
graphics mode, the image from a bit mapped screen
can be ‘plotted’ on the terminal, bit for bit, producing
the exact image that was on the screen. The program
at the end of this article is a 6502 assembler routine to
print the entire contents of the ‘Visible Memory’
screen onto a DIABLO HyTerm II. The ideas in-
volved can be adapted to other graphics boards as well,

Figure 1

but will only work with ‘bit mapped’ video boards
such as the M.T.U. ‘Visible Memory’. Figure 1 was
drawn on a M.T.U. ‘Visible Memory’ video board
and then ‘plotted’ on a DIABLO using this program.

This program has been somewhat optimized for
speed because of the length of time that is required
for printing the images. Further optimization is possi-
ble such as adding reverse printing, and using other
specialized features of the DIABLO. This was omitted
to keep the program small and simple.

The screen is processed in four steps, the Page,
the Line, the Byte, and the Bit. The program prints
a Page by calling the Line subroutine 200 times. This
routine prints a Line by calling the Byte routine 40
times, which in turn prints a byte by calling the Bit or
Dot routine 8 times. The Line routine checks for the
end of the line, only printing up to the last non-zero
byte. It also skips any completely blank line, immedi-
ately going onto the next line to decrease printing time.
The Byte routine shifts the byte to the left to determine
if each bit is a ‘one’ or a ‘zero’. The program can take
up to an hour to print a complicated design. The
average picture takes approximately 25 minutes. The
reason for the big difference in time is that to print a
‘one’, a ‘period’ and a ‘space’ have to be printed, and
to print a ‘zero’, just a space has to be printed, so a
‘one’ takes twice as long as a ‘zero’.

This same set of ideas can be used to digitize
pictures using a light sensitive diode fastened to the
printing mechanism of the DIABLO. Instead of read-
ing from the Visible Memory and writing to the
plotter, the process is reversed, reading from the
DIABLO and writing to the Visible Memory. This
method was discussed in October 1979 issue of ‘Dr.
Dobb’s Journal’. I hope to experiment with this idea
in the future but have not had time to do it yet.

Of course this is not the cheapest way to go, but a
DIABLO can be used for a lot more than just plotting.
It can also be used as a normal hardcopy device for
text processing or just listings whereas a plotter can
only be used for one thing, plotting.

44 compute Ii. APRIL/MAY, 1980. 1SSUE 1

For reference only: {esc> 8 CLEAR INDIVIDUAL TAB

This is the list of escape sequences understood by the Diablo <esc> 9 SET LEFT MARGIN

HyTerm II printer. The one(s) with ‘*’ are used in this program. <fesc 0 SET RIGHT MARGIN

“<esc. i SET HORIZONTAL TAB <escr A PRINT IN RED

<escr 2 CLEAR ALL TABS Lesc> B PRINT IN BLACK

<escr 3 # SETS GRAPHICS MODE <escl> D NEGATIVE 1/2 L.INE FEED
<esc> 4 CLEARS GRAPHICS MODE {esc> U 1/2 LINE FEED

{esc) FORWARD PRINTING <esc> <ht>{n) ABSOLUTE HORIZONTAL TAB
“escxr) SETS REVERSE PRINTING Lescr <vt>(n) ABSOLUTE VERTICAL TAB
Lesc> 7 not used <esc> 1€ NEGATIVE LINE FEED

DIABLO Plot Routine

This program takes the image on an M.T.U. Visible Memory Board and plots that image on a DIABLO
HyTerm II printer. The routine has some intelligence in that it checks for the end of each line and only plots up to
the end of the line, going on with the next line when finished, If the entire line is blank, it skips that line and
advances to the next line.
The program waits for a character to be typed at the keyboard of the Diablo so that you can straighten the
paper before it starts printing, be sure to type a character that does not print on the terminal (i.e. a space).
NOTE: graphics mode (and some of the other modes) are cleared when the Diablo receives a (cr) (hex $0D),
so graphics mode is reset at the beginning of every line.

48 00EO LINADR = $00EO i ADDR OF CURRENT LINE

49 OOE2 BCOUNT = $OOE2 ;i BYTE POINTER

- CDEA4 ACC = $00E4

51

52 2000 VM. ORG = $2000 i Visible Memory Start Address

55 SBTTL Plot Program

5%

57 0200 = $0200

59

59 0200 4c 09 o2 START: JUMP P. PAGE i TAILORING VECTORS

60 0203 4C AO 1E OUTCHR: JMP $1EAO i KIM PRINT CHAR ROUTINE (OR YDUR OWN)
61 0206 4C 5A 1E GETCHR: JMP $1E5A 5 KIM GET CHAR ROUTINE (OR YOUR OWN)
62

&3 0209 P. PAGE: . i PLOT PAGE

64 0209 20 06 02 JSR GETCHR ; WAIT FOR CHAR TO ALLOW SETTING UP OF PAPER
65 020C 20 B8 02 JSR CRLF i Put Print Wheel at LEFT Column

&6 020F A2 (o]-] LDX #B8 i B Lines down the Page (CHANGE IF DESIRED)
&7 0211 A9 0A LINFD: LDA #$0A i <1¢>

68 0213 20 Ab 02 JSR PRTCHR

69 0216 CA DEX

70 0217 Do F8 BNE LINFD

71

72 0219 A9 00 LDA #VM. ORG\

73 021B 85 EO STA LINADR i INIT LINADR to VM, ORG

74 021D A9 20 LDA #VM. ORG~

75 O0O21F 85 El 8TA LINADR+1

76

77 o221 20 &F 02 JSR INIPLT i INIT Printer for PLOTTING

78 0224 A2 c8 LDX #200 ; 200 LINES/PAGE

79

80 0226 PLOT: i PLOT PAGE

81 0226 AO 27 L.DY #39 ; INIT INDEX Pointer

82 0228 Bt EO CHXBLK: LDA (LINADR), Y ; TEST FOR END OF LINE

83 022A jale] 05 BNE EOL

84 oO0z2C 88 DEY

85 022D Do F9 BNE CHKBLK i CHECK NEXT BYTE

86 022F FO 06 BEG NXTLIN ; Advance to next LINE

87 i 1IF ALL 40 BYTES = $00

88 0231 c8 EOCL: INY ; MAKE Y = NUMBER OF BYTES TO PRINT
89 0232 84 E2 STY BCOUNT ; SAVE # OF BYTES IN LINE (THAT AREN’T ZEROD)
%0 0234 20 7a o2 JSR P. LINE ; PLOT the LINE at (LINADR)

91

92 0237 18 NXTLIN: CLC

93 0238 AS EO LDA LINADR

94 023A 69 28 ADC #40 i “40 BYTES/LINE

95 023C 85 EO STA LINADR

96 O023E AS El LDA LINADR+1

27 0240 69 00 ADC #0

93 0242 85 Et STA LINADR+1

99 0244 CA DEX
100 0245 FO 1A BEQ EXIT
101 ;i End of Line

102 0247 A9 oD LDA #$0D i <er>
103 0249 20 Ab 02 JSR PRTCHR

APRIL/MAY, 1980. ISSUE 1

compute Il

138
139
140
141
142
143
144
145
146
147
148
149
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
173
174
175
176
177
178
179
180
i81
182
183
184
185
186
187
188
189
190
191
192
193

024C

24E
0251
0253
0256
0259
025B
025E

0261
0263
0266
0268
0263
026C

026F
0271
0274
0276
0279

027A

027A
027¢C
027D
027E
0280
0283
o284
0285
0286
0288
028A

0288
028B
028C
028E
028F
0290
0291
0294
0295
0297
0298

0299
0298
029D
0240
02A3

0244

02A6
02A8
0249
02AA
02A8B
02AC
02AD
O2AF
02B2
02B3
0284
02BS
02Bé
02B7

A9
20
A9

60

90

20
20
60

A9

1)
48
8A
48
98
48
AS
20
68
AB
68
AA

60

iB
Ab
33

00

EO

E2
F2

o8

99

F7

05
2E
Ab
A4

20

E4

E4
03

02

o2
02

02
02

o2
02

1C

o2
02

o2

02
o2

o2

EXIT:

.SBTTL

INIPLT:

P.LINE:

PLINE1:

P. BYTE:

PBYTE1:

P.BIT:

PBLANK:

SBTTL

OUTSPA:

PRTCHR:

LDA
JSR
LDA
JSR
JSR
LDA
JSR
JMP

LDA
JSR
LDA
JSR
RTS
JMP

#$00
PRTCHR
#$00
PRTCHR
INIPLT
#$0A
PRTCHR
PLOT

#$0D
PRTCHR
#$0C
PRTCHR

$1C4F

Plot Subroutines

LDA
JSR
LDA
JSR
RTS

LDY
TYA
PHA
LDA
JSR
PLA
TAY
INY
DEC
BNE
RTS

PHA
LDY
PLA
ASL
PHA
JSR
DEY
BNE
PLA
RTS

BCC
LDA
JSR
JSR
RTS

#¢1B
PRTCHR
#'3
PRTCHR

#0

(LINADR), Y
P.BYTE

BCOUNT
PLINE1

#8
A
P.BIT

PBYTE1

PBLANK
#'.

PRTCHR
OUTSPA

System Subroutines

LDA

STA
PHA
TXA
PHA
TYA
PHA
LDA
JSR
PLA
TAY
PLA
TAX
PLA
RTS

“I

ACC

ACC
OUTCHR

P

L oy

. .

B o

<nul>
<nul>

INITIALIZE TO GRAPHICS MODE
<1#>

Advance Paper 1/48 IN.

Go BACK & Do NEXT LINE

<crd>

Clear GRAPHICS Mode

<PED>

Advance to top of next page

IF USED AS A SUBROUTINE
DTHERWISE EXIT TO SYSTEM MONITOR
(KIM WARM START)

INIT the DIABLO to PLOT MODE
Cesc> 3
Escape Sequence for PLOT MODE

PLOT 1 LINE (320 BITS or 40 BYTES)
(or the # of BYTES in BCOUNT)

INIT Index Pointer

SAVE Y

PLOT the BYTE at (LINADR),Y
RESTORE Y

Advance Pointer to next BYTE

Return when finished

PLOT 1 BYTE

SAVE ACC

8 BITS/BYTE

RESTORE ACC

SHIFT BIT into CARRY
RE-SAVE ACC

PLOT THE BIT

KEEP TRACK OF BITS DONE
Do all 8 BITS

RESTORE STACK

IF BIT =0

IF BIT = 1
Advance Print wheel 1/60 IN.

PRINT A <{space>
FALL THROUGH TO PRTCHR

PRINT ASCII CHAR SAVING A, X, & Y
BAVE ACC

SAVE X
SAVE Y

KIM OUTPUT ROUTINE (OR SYSTEM QUTPUT)

RESTORE Y

RESTORE X
RESTORE ACC

46 compute Il. APRIL/MAY, 1980.1SSUE 1
195 02B8 48 CRLF: PHA 5 SAVE ACC

196 02B? 8A TXA ; SAVE X

197 O2BA 48 PHA

198 O02BB A9 OD LDA #$0D ; SUBROUTINE TO

199 02BD 20 03 O2 JSR DUTCHR 3 PRINT <crd>,<1¢>

200 02C0 A9 OA LDA #$0A

201 022 20 A6 02 JSR PRTCHR

202 02€C% A2 04 LDX #4 i OUTPUT 4

203 02c7 A9 00 NULL: LDA #$00 i <nuld> ($00)

204 02c9 20 03 02 JSR OUTCHR

205 02CC CA DEX

206 02CD DO F8 BNE NULL

207 O2CF 68 PLA 5 RESTORE X

208 02D0 AA TAX

209 02p1 &8 PLA ; RESTORE ACC

210 0202 &0 RTS s RTS X =X Y=Y A=A

213 0000 . END ©

24 Hour Clock for SYM-1 BASIC

A M. Mackay

600 Sixth Avenue West,

Owen Sound, Ontario, Canada
N4K 5E7

Load this program in your SYM-1 and enter

G OFB8. It will start a clock, display the memory you
should enter to protect the program, then automati-
cally transfer you to BASIC. Be sure to enter the
amount of memory shown on the CRT. If you don’t,
you will lose the program.

The clock sits at the very top of your memory,
and will not interfere with your BASIC - in fact,
you won’t even know it’s there unless you call it. But
it will be there when you want it for control operations,
time delays for games, or whatever. You can even
use your CRT as a time-of-day clock. It will keep
ticking away until you hit ‘‘reset’’ or turn your
SYM off.

As written, it is a 24 hour clock. If you want a
12 hour clock, change the contents of location
O0FAD to ““C0’’.

This clock uses timer 1 of U29 to interrupt the
program every 50 ms. ‘““COUNT"’ totals these
interrupts, and after each 20 interrupts one is added
to ““SECS’’. Timer 2 and the input ports of U29 are
not affected, and can be used for other purposes.

The program is written for a SYM-1 with 4K
memory. It can be relocated upwards by changing .
all the ““OF’’ bytes to ‘‘1F’’ or whatever. Also,
change the bytes in locations 0FF9 to OFFC. For
example, for 8K, change these bytes to 37 35 34 38.
The formula is 131 less than the number of free
bytes usually displayed after going to BASIC, with

a “‘3” before each digit.

The program as written keeps the time, starting
at Oh, Om, Os from the time-you enter G OFB8. If
you prefer time of day, enter the following (for
4K):

POKE &‘‘0F7D”’, hour (in 24 hour time), CR

POKE &‘‘OF7E’’, minute, CR

POKE &*‘‘OF7F’’, second, then hit CR on the

exact second.

To use the clock in a BASIC program, enter the
following BASIC command:

10 H = PEEK(&‘‘0F7D”’):M = PEEK(&‘‘0F7E"’)

:S = PEEK(&‘‘OF7F”’)

Then use the variables H, M and S as you require
them. To use your CRT as a clock, use the
following program:

10 - as in the paragraph above.

20 PRINT CHR#$(12)

30 PRINT H; ““:”’;M;‘“.”’;S

40 FOR X =1 TO 785: NEXT

50 GOTO 10

60 END
If you can turn cursor off, the clock will look
much better.

The actual clock program ends at OFDE. The
rest of the program puts out the memory require-
ments on the CRT. If you don’t want to transfer
to BASIC, or if you don’t have a CRT, put 4C
00 80 in locations OFDF - OFE1. You can then access
the time by going to M 0F7D (hour), OF7E (mins)
and OF7F (secs).

If anyone wants it, perhaps I’ll write a routine
for a future issue that will display the time on the
SYM-1 LED readouts.

Pg10 .BA $OF7C ;THIS PROGRAM STARTS A
P020 ACCESS .DE $8B86 ;24 HOUR CLOCK AND

0930 OUTVEC .DE $A663 ;DISPLAYS THE AMOUNT OF
0040 IRQVEC .DE SA67E ;REMAINING MEMORY TO BE
#0850 CLRINT .DE S$SAC04 ; ENTERED WHEN REQUESTED
PP60 TI1CH .DE SAC@5 ; THEN AUTOMATICALLY

8070 TI1LL .DE $ACO6

; TRANFERS TO BASIC.

APRIL/MAY, 1980. ISSUE 1

compute Il. a7

SYM-1, 6502-BASED MICROCOMPUTER
FULLY-ASSEMBLED AND COMPLETELY INTEGRATED SYSTEM that's
ready-to-use
e ALL LSI'IC'S ARE IN SOCKETS
® 28 DOUBLE-FUNCTION KEYPAD INCLUDING UP TO 24 “SPECIAL”

FUNCTIONS
® EASY-TO-VIEW 6-DIGIT HEX LED DISPLAY
® KIM-1* HARDWARE COMPATIBLLITY
The powerful 6502 8-Bit MICROPROCESSOR whose advanced
architectural features have made it one of the largest selling “"micros”
on the market today.
THREE ON-BOARD PROGRAMMARBLE INTERVAL TIMERS available to
the user, expandable to five on-board.
e 4K BYTE ROM RESIDENT MONITOR and Operating Programs.
® Single 5 Volt power supply is all that is required.
e 1K BYTES OF 2114 STATIC RAM onboard with sockets provided for
immediate expansion to 4K bytes onboard, with total memory expan-
sion to 65, 536 bytes.
USER PROM/ROM: The system is equipped with 3 PROM/ROM ex-
pansion sockets for 2316/2332 ROMs or 2716 EPROMs
e ENHANCED SOFTWARE with simplified user interface
e STANDARD INTERFACES INCLUDE:
—Audio Cassette Recorder Interface with Remote Control (Two
modes: 135 Baud KIM-1* compatible, Hi-Speed 1500 Baud)
—Full duplex 20mA Teletype Interface
—System Expansion Bus Interface
—TV Controller Board Interface
—CRT Compatible Interface (RS-232)
APPLICATION PORT: 15 Bi-directional TTL Lines for user applications
with expansion capability for added lines
EXPANSION PORT FOR ADD-ON MODULES (51 1/O Lines included in
the basic system)
SEPARATE POWER SUPPLY connector for easy disconnect of the d-c
power

Synertek has enhanced KIM-1* software as well as the hardware. The
software has simplified the user interface. The basic SYM-1 system is
programmed in machine language. Monitor status is easily accessible,
and the monitor gives the keypad user the same full functional capabili-
ty of the TTY user. The SYM-1 has everything the KIM-1* has to offer,
plus so much more that we cannot begin to tell you here. So, if you want
to know more, the SYM-1 User Manual is available, separately.

SYM-1 Complete w/manuals $229.00
SYM-1 User Manual Only 7.00
SYM-1 Expansion Kit 60.00

Expansion includes 3K of 2114 RAM chips and 1-6522 1/O chip.
SYM-1 Manuals: The well organized documentation package is com-
plete and easy-to-understand.

SYM-1 CAN GROW AS YOU GROW. It's the system to BUILD-ON.
Expansion features that are available:
BAS-1 8K Basic ROM (Microsoft) $ 89.00

AUDIBLE RESPONSE KEYPAD KTM-2 (Complete terminal less monitor) 319.00

QUALITY EXPANSION BOARDS DESIGNED SPECIFICALLY FOR KIM-1, SYM-1 & AIM 65

These boards are set up for use with a regulated power supply such as the one below, but, provisions have been made so that you can add
onboard regulators for use with an unregulated power supply. But, because of unreliability, we do not recommend the use of onboard
regulators. All 1.C.’s are socketed for ease of maintenance. All boards carry full 90-day warranty.

All products that we manufacture are designed to meet or exceed industrial standards. All components are first qualtiy and meet full
manufacturer’s specifications. All this and an extended burn-in is done to reduce the normal percentage of field failures by up to 75%. To you,
this means the chance of inconvenience and lost time due to a failure is very rare; but, if it should happen, we guarantee a turn-around time of
less than forty-eight hours for repair.

Our money back guarantee: If, for any reason you wish to return any board that you have purchased directly from us within ten (10) days after
receipt, complete, in original condition, and in original shipping carton; we will give you a complete credit or refund less a $10.00 restocking

charge per board.

multiplyer so there is no need for an additional power supply. All
software is resident in on-board ROM, and has a zero-insertion socket.

VAK-5 EPROM Programmer w/2708 adapter $249.00
VAK-5A Single voltage 2716 adapter 45.00

VAK-6 EPROM BOARD
This board will hold 8K of 2708 or 2758, or 16K of 2716 or 2516

EPROMs. EPROM:s not included.
VAK-6 EPROM Board $119.00

VAK-7 COMPLETE FLOPPY-DISK SYSTEM (Oct '79)

VAK-1 8-SLOT MOTHERBOARD
This motherboard uses the KIM-4* bus structure. It provides eight (8)
expansion board sockets with rigid card cage. Separate jacks for audio
cassette, TTY and power supply are provided. Fully buffered bus.
VAK-1 Motherboard $129.00

VAK-2/4 16K STATIC RAM BOARD
This board using 2114 RAMs is configured in two (2) separately
addressable 8K blocks with individual write-protect switches.

VAK-2 16K RAM Board with only $239.00

8K of RAM (%2 populated)
VAK-3 Complete set of chips to 125.00 VAK-8 PROTYPING BOARD

expand above board to 16K This board allows you to create your own interfaces to plug into the
VAK-4 Fully populated 16K RAM 325.00 motherboard. Etched circuitry is provided for regulators, address and

data bus drivers; with a large area for either wire-wrapped or soldered

IC circuitry.
VAK-8 Protyping Board $39.00

VAK-5 2708 EPROM PROGRAMMER
This board requires a +5 VDC and +12 VDC, but has a DC to DC

POWER SUPPLIES

ALL POWER SUPPLIES are totally enclosed with grounded enclosures for safety, AC power cord, and carry a full 2-year warranty.

FULL SYSTEM POWER SUPPLIES

This power supply will handle a microcomputer and up to 65K of our
VAK-4 RAM. ADDITIONAL FEATURES ARE: Over voltage Protection on 5

KIM-1* Custom P.S. provides 5 VDC @ 1.2 Amps
and +12 VDC @ .1 Amps

volts, fused, AC on/oft switch. Equivalent to units selling for $225.00 or KCP-1 Power Supply $39.00
more.
Provides +5 VDC @ 10 Amps & +12VDC @ 1 Amp SYM-1 Custom P.S. provides 5 VDC @ 1.4 Amps
VAK-EPS Power Supply $119.00 VCP-1 Power Supply $39.00
VAK-EPS/AIM provides the same as VAK-EPS plus 24V
149.00

unreg.
*KIM is a product of MOS Technology

E N T E R P R l S E S 2867 W. Fairmount Avenue

Phoenix AZ 85017
I NCORPORATED

.
(602)265-7564

Add $2.50 for shipping and i\undling per order.

APRIL/MAY, 1980. ISSUE 1

48 compute Il
080 ACR .DE SACOB ;TIME IS NOT DISPLAYED UNTIL
@B90@ IFR .DE S$SACOD ;s REQUESTED BY BASIC PROGRAM.
@100 IER .DE $ACOE
#1106 BASIC .DE $C000
@F7C- 14 8120 COUNT .BY $14 ;s SET COUNT TO 20
@F7D- 00 #1309 HOUR .BY $00 ; START TIME AT 0@ HOURS
OF7E- 00 @140 MINS .BY $00 H @@ MINUTES
BF7F- 00 @150 SECS .BY $00 ; #0 SECONDS
0170 ;***INTERRUPT ROUTINE***
pF80- 48 . #1906 CLOCK PHA
@F8l- CE 7C OF 0200 DEC COUNT ;SEE IF 1 SEC HAS PASSED
@F84- DO 2D 0210 BNE EXIT ; IF NO, EXIT
PF86- A9 14 0220 LDA #20 ;s IF YES, -
@gFr88- 8D 7C OF 0230 STA COUNT ; RESTORE COUNT AND
OF8B- EE 7F OF 0240 INC SECS ; ADD 1 TO SECS.
PF8E- AD 7F OF 0250 LDA SECS ;SEE IF 60 SECS HAS PASSED
@F91- 38 0260 SEC
@gF92- E9 3C 8270 SBC #60
@gF94- DO 1D 0280 BNE EXIT ; IF NO, EXIT
@gF96- 8D 7F GF 0290 STA SECS ; IF YES RESET SECS TO @ AND
@F99- EE 7E OF 0300 INC MINS ;ADD 1 TO MINS
@F9C- AD 7E OGF 0310 LDA MINS ;SEE IF 60 MINS HAS PASSED
@F9F- E9 3C 9320 SBC #60
@gFAl- DO 18 9330 BNE EXIT ; IF NO, EXIT
@FA3- 8D 7E OF 0340 STA MINS ;IF YES RESET MINS TO @ AND
@FA6- EE 7D OF 0350 INC HOUR ;ADD 1 TO HOUR
@FA9- AD 7D OF 0360 LDA HOUR ;SEE IF 24 HOURS HAS PASSED
@FAC- E9 18 0370 SBC #24 ; IF NO,
@FAE- DO 03 0380 BNE EXIT H EXIT
@FBO- 8D 7D OF 0390 STA HOUR ; IF YES, RESET HOUR TO 0
QFB3- AD @04 AC 0400 EXIT LDA CLRINT ; ENABLE TIMER INTERRUPT
OFB6- 68 0410 PLA
OFB7- 40 0420 RTI
0440 ;***INITIATE TIMER***
@FB8- 20 86 8B 0460 START JSR ACCESS ;DISABLE WRITE PROTECT SYS. RAM
@FBB- A9 80 0470 LDA #S$80 ;s SET IRQ
@FBD- 8D 7E A6 0480 STA IRQVEC ; VECTOR
@FCO- A9 OF 0490 LDA #S0OF : TO
@FC2- 8D 7F A6 0500 STA IRQVEC+S1 ; "CLOCK"
@FC5- A9 CO 0510 LDA #SC0 ;SET BITS 6 AND 7
@FC7- 8D OB AC 0520 STA ACR ; FOR FREE-RUNNING MODE
@FCA- 8D OE AC 0530 STA IER ;AND T1 INTERRUPT ENABLE
@FCD- AD 0D AC 0540 LDA IFR ;CLEAR T1 FLAG BIT 6 BUT
@FD@- 29 BF #550 AND #SBF ;DON'T DISTURB OTHER
@FD2- 8D @D AC @560 STA IFR ; IFR BITS
@FD5- A9 50 9570 LDA #S50 ; SET
@FD7- 8D 06 AC 0580 STA TI1LL ; TIMER
AFDA- A9 C3 3590 LDA #SC3 ; FOR 1/20 SEC AND
@FDC- 8D 065 AC 0600 STA TI1CH H START TIMER
#6209 ;***BASIC MEMORY OUT***
@FDF- A2 00 640 DISPMEM LDX #S$00 ;: START OF
@FEl1- BD F2 OF @650 OUTMEM LDA TABLE,X ; ROUTINE
QFE4- 20 63 A6 0660 JSR OUTVEC ;
OFE7- E8 0670 INX ; TO
QFE8- C9 04 p680 CMP #$S04 ;
QFEA- FO 03 P690 BEQ GOBAS ; DISPLAY
@FEC- 4C E1 OF 0700 JMP OUTMEM ; REMAINING
PFEF- 4C 00 C@ 0710 GOBAS JMP BASIC ; MEMORY
QFF2- 0D OA 4D @720 TABLE .BY $OD S$OA 'MEM. 3965' $OD SOA $04

@FF5- 45 4D 2E
PFF8- 20 33 39
@FFB- 36 35 @D
QFFE- OA 04
0730

.EN

;END OF PROGRAM

54

compute Il

APRIL/MAY, 1980, ISSUE 1

Songs in the Key of KIM

Ceorge W. Howkins
200 Old Country Read
Melville, NY 11746

I was fascinated by Richard Martin’s Four part
Harmony (Cheap) program in issue 16 and decided
to try coding some other songs. I have made no
attempt to code to conserve memory so far. Note that
I have 2K of additional memory on my KIM-1 starting
at hex 0400. The tempo and note addresses for my four
songs are:

Song 0007-000F
Jingle Bells 15 FF 01 97 03 8F 04 87 05
Deck the Halls 13 FF 01 15 03 23 04 31 05

Shangri-La
(only 2 parts) 26 FF 01 FF 01 D5 02 D5 02

Love is Blue 26 FF 01 AD 03 BB 04 C9 05

Jingle Bells

200 5B OF 00 01 36 OF 00 01 3C OF 00 01 44 OF 00 01
210 5SB 2F 00 01 SE 07 00 01 SB 07 00 01 SE OF 00 01
220 36 OF 00 01 3C OF 00 01 44 OF 00 01 51 2F 00 01
230 S1 OF 00 01 51 OF 00 01 33 OF 00 01 36 OF 00 01
740 3C OF 00 O1 48 2F 00 01 2D OF 00 01 28 OF 00 01
250 2D OF 00 01 33 OF 00 O1 3C OF 00 01 36 2F 00 01
260 SB OF 00 01 SB OF 00 01 36 OF 00 01 3C OF 00 01
270 44 CF 00 01 SB 2F 00 01 5B OF 00 01 SB OF 00 01
280 36 OF 00 01 3C OF 00 O1 44 OF 00 01 51 2F 00 01
290 51 OF 00 01 51 OF 00 01 33 OF 00 01 36 OF 00 01
260 3C OF 00 01 2D OF 00 O1 2D OF 00 01 2D OF 00 01
g0 2D OF 00 01 28 OF 00 01 2B OF 00 01 33 OF 00 01
2C0 3C OF 00 01 44 3F 00 01 36 OF 00 01 36 OF 00 O1
B0 36 1F 00 01 3& OF 00 01 3& OF 00 01 36 iF 00 01
260 36 OF 00 01 2D OF 00 01 44 OF 00 01 3C OF 00 01
oF0 36 3F 00 01 33 OF 00 01 33 OF 00 01 33 17 00 01

300 33 07 00 01 33 OF 00 Q1 34 OF 00 01 36 OF 00 01
310 36 07 00 01 36 07 00 01 36 OF 00 01 3C OF 00 01
320 3C OF 00 01 36 OF 00 01 3C 20 20 1F 00 01 36 OF
330 00 01 36 OF 00 0i 36 1F 00 01 36 OF 00 01 36 OF
340 00 01 36 1F 00 01 36 OF 00 01 21 OF 00 01 44 OF
350 00 01 3C OF 00 01 34 3F 00 01 33 OF 00 01 33 OF
360 00 01 33 17 00 01 33 07 00 01 33 OF 00 01 36 OF
370 00 01 36 OF 00 01 36 07 00 01 36 07 00 01 20 OoF
380 00 01 2I OF 00 01 33 OF 00 01 3C OF 00 01 44 30
390 00 40 00 40 00 CO FF 01 00 10 36 10 00 10 36 10
3A0 00 10 36 10 00 10 36 10 00 10 36 10 00 10 36 10
3R0 00 10 33 10 00 10 33 10 00 10 33 10 00 10 33 10
3C0 00 10 33 10 00 10 33 10 00 10 33 10 00 10 33 10
300 00 10 36 10 00 30 36 10 00 10 36 10 00 10 36 10
3E0 00 10 36 10 00 10 36 10 00 10 36 10 00 10 33 10
3F0 00 10 33 10 00 10 33 10 00 10 33 10 00 10 33 10

400 00 10 33 OF 00 01 33 40 00 10 36 10 00 30 2D 10
410 00 10 28 10 00 10 24 10 00 10 28 10 00 10 20 10
420 00 10 28 10 00 10 24 10 00 10 28 10 00 10 28 10
430 00 10 2D 10 00 10 20 10 00 10 28 10 00 10 28 10
440 00 10 28 10 00 10 28 OF 00 01 33 10 00 2 20 10
450 00 10 28 10 00 10 24 10 00 10 28 10 00 10 20 10
460 00 10 28 10 00 10 24 10 00 10 28 10 00 10 28 10
470 00 10 2D 10 00 10 2D 10-00 10 30 OF 00 01 28 iF
480 00 01 2D IF 00 01 2D 30 00 40 0Q 40 00 CO 97 03
490 00 10 44 10 00 10 44 10 00 10 44 10 00 10 44 10
480 00 10 44 10 00 10 44 10 00 10 44 10 00 10 44 10
4E0 00 10 3C 10 00 10 3C 10 00 10 S1 10 00 10 51 10

4CO
4D0
4E0
4F0

300
S10
520
530
540
5350
560
570
980
590
SAQ
5BO
sSco
500
SEQ
SFO

600
610
620
630
640
650
660
670
680
690
6A0
6BO
6CO
600
6EOQ
&FO

700
710
720
730
740
750
760

00
00
00
00

00
00
00
00
00
00
00
00
00
5B
SB
44
46
79
SB
5B
44
SB
5B
58
51
51
5B
SB
44
44
44
44
5B
51
79
48

44
44
44
44
48
40
00

10
10
10
10

10
10
10
10
01
10
10
10
40
OF
OF
OF
OF

OF

OF
OF

10
OF
OF
oF
OF
OF
OF
OF
OF
OF
oF
OF
OF
OF
oF
10

OF
oF
OF
OF
OF
OF
40

Shangri-La

200
210
220
230
240
250
260
270
280
290
2A0
2RO
2C0
200
2E0Q
‘2F0

300
310
320
330
340
350
360
370
380
390

00
4C
SR
33
33
00
3C
00
00
4C
SB
33
39
33
72
66

40
00
00
B
66
00
00
SB
3C
9

10
10
iF
10
OF
01
2F
01
10
10
1F
10
10
40
3F
3F

iF
01
01
2F
2F
01
01
iF
2F

OF

51
44
44
3c

44
36
36
36
2D
36
36
36
00
00
00
00
00
00
00
00

00
00,
00

00 |

00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00

51
44
00
30
00
33
00
3c
51
44
00
30
44
00
00
00

00
3C
44
00
00
79
51
00
00
00

10
10
01
i8
01
10
01
10
10
10
01
18
10
co
01
01

01
oF
20
01
01
3F
1F
01
01
01

00
00
00
00

00
00
00
00
00
00
00
00
00
SR
SB
SB
o1
51
SB
1]

44
44
44
66
79
SB
51
44
44
44
44
44
48
44
40
44

44
44
44
79
44
44
87

4C
3c
4C
33
33
28
3c
33
4C
3c
4C
33
3C
FF
4C
5B

3c
00
4C
SB
79
00
00
4C
ac
48

10
10
10
10
30
10
10
10
20
10
10
01
co
oF
oF
OF
OF
OF
OF
OF

oF
OF
OF
OF
OF
OF
1F
10
OF
OF
OF
OF
OF
OF
OF
OF

OF
OF
OF
OF
OF
1F

05

10
40
10
08
OF
iF
oF
iF
10
40
10
08
OF
01
iF
iF

40
01
1F
oF
10
01
01
1F
07
OoF

St
44
44
51

36
36
33
36
36
36
33
33
8F
00
00
00
Q0
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

44
00
ac
33
00
00
00
00
44
00
ac
33
00
79
00
00

3C
39
00
00
72
66
40
00
00
00

10

10

10
10

10
10
10
10
10
10
10
1F
04
[}
01
01
ol
01
01
01

01
01
01
01
01
01
01
10
01
01
01
01
01
01
01
01

01
01
01
01
01
01

10
10
10
40
01
01

01
10
10
10
40
01
3F
01
01

oF
3F
01
01
3F
3F
iF
01
01
01

00
00
00
00

00
00
00
00
00
00
00
00
44
44
44
66
79
5B
SB

44

5B
5B
SB
51
51
5B
48
44
44
44
44
79
44
79
5B

44

44
44
44
44
44
48

91
51
39
33
33
33
3c
39
91
51
39
33
39
00
51

4C

00
00
4C
60

00.

00
00
51
33
44

10
10
10
10

10
10
10
10
10
10
10
01
OF
OF
OF
OF
oF
OF
OF
OF

OF
OF
OF
OF
OF
OF
1F
OF
OF
OF
OF
OF
OF
OF
OF
OF

OF
oF
oF
3
OF
iF

44
44
44

51

36
36
33
30
34
36
33
33
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

5B
4C
44
00

-
<

39
33
44
5B
4C
44
00
33
b6
00
00

ac
40
00
00
4C
SE
44
00
00
00

10
10
10
oF

10
10
10
10
10
10
10
iF
01
01
01
01
01
01
01
01

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

01
01
01
01
01
01

30
10
10
01
1F
10
iF
30
30
10
10
01
10
2F
01
01

oF
3F
01
01
1F
1F
40
01
01
31

00
00
00
00

00
00
00
00
00
00
00
00
SE
Sk
SEB
S1
91
SB
SE
SE

SE
SE
44
66
79
SE
44
44
44
44
44
44
44
44
44
44

44
44
44
SB
51
44

00
44
3C
33
00
30
00
SB
00
44
3c
SB
30
00
79

51

00
00
4C
79
00
00
51
40
20

i)

30
10
10
01

10
10
10
10

10
10
01
OoF
oF
OF
OF
oF
OoF
oF
oF

oF
OF
oF
oF
OF
oF
OF
oF
OF
oF
OoF
oF
OF
OF
OF
OF

OF
OoF
oF
OoF
oF
30

44
44
3c
5B

36
36
36
33
36
36
36
36
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

51
51
39
00
33
39

3C
S1
51
39
3C
2K
79
00
00

3c
40
00
00
S1
4C
00
00
00

10
10
10
40

10
10
10
oF

10
10
30
01
01
01
01
01
01
01
01

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

01
01
01
01
01
40

10
10
10
01
oF
10
oF
40
10
10
10
10
10
10
01
01

OoF

01
01
iF
1F
10
01
01

55

APRIL/MAY, 1980. ISSUE 1 compute Ii.
Love is Blue 6BO 00 01 SB 1IF 00 01 44 1F 00 01 51 1F 00 01 7% 1F
6CO 00 01 SB 1F 00 01 44 1F 00 01 51 17 00 01 SB 07
200 36 1F 00 01 3C 17 00 01 44 07 00 01 48 OF 00 01 4po 00 01 66 1F 00 01 36 1F 00 01 51 1F 00 01 51 1F
210 S1 OF 00 01 5B 1F 00 01 51 OF 00 01 44 07 00 01 4EO0 00 OL 48 OF 00 O 3& OF 00 81 C% 05
220 48 07 00 O1 44 17 00 01 51 07 00 01 SE 07 00 01
230 51 07 00 01 SB OF 00 01 &C 1F 00 01 36 1F (0 Ol
240 3C 17 00 01 44 07 00 01 48 OF 00 01 S1 OF 00 01
250 5B 1F 00 01 51 OF 00 01 44 07 00 01 48 07 00 01 Deck the Halls
260 44 17 00 01 51 07 00 01 54 07 00 01 &0 07 00 01 200 33 17 00 01 39 07 00 01 3C OF 00 01 44 OF 00 01
270 S6 OF 00 01 51 2Q 00 40 34 1F 00 01 3C 17 00 01 210 4C OF 00 01 44 OF 00 01 3C OF 00 01 4C OF 00 01
280 44 07 00 01 48 OF 00 01 51 OF 00 01 5B 1F 00 Ol 220 44 07 00 01 3C 07 00 01 39 07 00 01 44 07 00 01
290 51 OF 00 01 44 07 00 01 48 07 00 01 44 17 00 01 230 3C 17 00 01 44 07 00 01 4C OF 00 01 51 OF 00 01
240 51 07 00 01 SB 07 00 01 51 07 00 01 SE OF 00 01 240 4C 1F 00 01 33 17 00 01 39 07 00 01 3C OF 00 01
2K0 4C 1F 00 01 36 1F 00 01 3C 17 00 01 44 07 00 01 250 44 OF 00 01 4C OF 00 01 44 OF 00 01 3C OF 00 01
2C0 48 OF 00 01 51 OF 00 01 5B 1iF 00 01 51 OF 00 01 260 4C OF 00 01 44 07 00 01 3C 07 00 01 39 07 00 O1
2B0 44 07 00 01 48 07 00 01 44 17 00 01 51 07 00 01 270 44 07 00 01 3C 17 00 01 44 07 00 01 4C OF 00 01
2E0 S6 07 00 01 60 07 00 01 S& OF 00 01 51 20 00 40 280 S1 OF 00 01 4C 1iF 00 01 44 17 00 01 3C 07 00 01
2F0 40 1F 00 01 3C 1F 00 01 3& 2F 00 01 40 07 00 01 290 3% OF 00 01 44 OF 00 01 3C 17 00 01 3% 07 00 01
2A0 33 OF 00 01 44 OF 00 01 3C 07 00 01 36 07 00 01
300 S1 07 00 01 S1 1F 00 01 30 1F 00 01 36 3F 00 01 2E0 33 OF 00 01 2D 07 00 01 28 07 00 01 26 OF 00 01
310 40 20 36 1F 00 01 48 2F 00 01 40 07 00 01 3C 07 2C0 28 OF 00 01 2D OF 00 01 33 1F 00 01 33 17 00 01
320 00 01 3C 2F 00 01 48 07 00 01 S6 07 00 01 51 30 200 39 07 00 01 3C OF 00 01 44 OF 00 01 4C OF 00 01
330 00 10 36 1F 00 01 3C 17 00 01 44 07 00 01 48 OF 2E0 44 OF 00 01 3C OF 00 01 4C OF 00 01 20 07 00 01
340 00 01 51 OF 00 01 SB 1F 00 01 S1 OF 00 01 44 07 2F0 2D 07 00 01 2I' 07 00 01 2D 07 00 01 33 17 00 01
350 00 01 48 07 00 01 44 17 00 01 S1 07 00 01 Sk 07
360 00 01 51 07 00 01 SB OF 00 01 6C 1F 00 01 36 1IF 300 39 07 00 01 3C OF 00 01 44 OF 00 01 4C 20 00 40
370 00 01 3C 17 00 01 44 07 00 01 48 OF 00 01 51 OF 310 00 40 00 CO FF 01 3C 17 00 01 44 07 00 01 4C OF
380 00 01 SB 1F 00 01 51 OF 00 01 44 07 00 01 48 07 320 00 01 51 OF 00 01 SR OF 00 01 51 OF 00 01 4C OF
390 00 01 44 17 00 01 51 07 00 01 56 07 00 01 60 07 330 00 01 &6 OF 00 01 51 07 00 01 4C 07 00 01 44 07
3A0 00 01 56 OF 00 01 S1 20 51 20 00 A0 FF 01 00 10 340 00 01 51 07 00 01 4C 17 00 01 5K 07 00 01 66 OF
3RO 36 OF 00 01 30 1F 00 01 2I 20 2D 1F 00 01 28 20 350 00 01 &6 OF 00 01 466 1F 00 01 3C 17 00 01 44 07
3C0 28 1F 00 01 2D 20 2D 1F 00 01 00 10 36 OF 00 01 360 00 01 4C OF 00 01 51 OF 00 01 SE OF 00 01 51 OF
3D0 30 1F 00 01 2D 20 2D 1F 00 01 28 20 28 1F 00 01 370 00 01 4C OF 00 01 46 OF 00 01 51 07 00 01 4C 07
3EO0 34 20 36 17 00 01 28 07 00 01 2K 07 00 01 30 07 380 00 01 44 07 00 01 S1 07 00 01 4C 17 00 01 S5E 07
3F0 00 01 2B OF 00 01 28 10 00 10 00 10 36 OF 00 01 390 00 01 46 OF 00 01 66 OF Q0 01 &6 1iF 00 O1 51 17
3A0 00 01 4C 07 00 01 44 OF 00 01 51 OF 00 01 4C 17
400 30 1F 00 01 2D 20 20 1F 00 01 28 20 28 1F 00 01 3B0 00 01 4C 07 00 01 4C OF 00 01 44 OF 00 01 4C OF
410 2D 20 2D 20 00 10 36 OF 00 01 30 1F 00 01 2D 20 3CO0 00 01 4C OF 00 01 3C OF 00 01 3C OF 00 01 44 OF
420 2D 1F 00 01 28 20 28 1F 00 01 36 20 36 17 00 01 300 00 01 4C OF 00 01 51 1F 00 01 3C 17 00 01 44 07
430 28 07 00 01 2B 07 00 01 30 07 00 01 2B OF 00 01 3EQ0 00 01 4C OF 00 01 51 OF 00 01 SE OF 00 01 51 OF
440 28 IF 00 01 S1 1F 00 01 48 1F 00 01 40 2F 00 01 3FO0 00 01 4C OF 00 01 64 OF 00 01 4C 07 00 01 4C 07
450 51 10 00 20 3C 1F 00 01 40 40 00 20 40 20 00 10 400 00 01 4C 07 00 01 4C 07 00 01 4C 17 00 01 44 07
4460 3C 10 30 10 24 10 00 10 28 OF 00 01 2B 20 00 10 410 00 01 4C OF 00 01 S1 OF 00 01 4C 20 00 40 00 40
470 40 10 34 10 28 10 00 10 34 OF 00 01 30 1F 00 01 420 00 CO 15 03 33 17 00 01 33 07 00 01 33 OF 00 01
480 2D 20 2D 1F 00 01 28 20 28 1F 00 01 20 20 2D IF 430 39 OF 00 01 3C OF 00 01 33 OF 00 01 33 OF 00 01
490 00 01 00 10 36 OF 00 01 30 1F 00 Ol 20 20 20 1F 440 3C OF 00 01 33 07 00 01 33 07 00 01 33 07 00 01
4A0 00 01 28 20 28 1F 00 01 36 20 36 1F 00 01 40 OF 450 33 07 00 01 33 17 00 01 39 07 00 01 3C OF 00 01
4BO 00 01 36 OF 00 01 36 1F 00 81 AD 03 00 10 44 OF 460 44 OF 00 01 3C 1F 00 01 33 17 00 01 33 07 00 01
4CO0 00 01 3C 20 3C 1F 00 01 36 iF 00 01 36 20 33 1F 470 33 OF 00 01 3% OF 00 01 3C OF 00 01 33 OF 00 01
400 00 01 3C 1IF 00 01 3& 20 00 10 44 OF 00 01 3C 20 480 33 OF 00 01 3C OF 00 01 33 07 00 01 33 07 00 01
4E0 3C 1F 00 01 36 1F 00 01 36 20 33 1F 00 01 3C 1F 490 33 07 00 01 33 07 00 01 33 17 00 01 39 07 00 01
4F0 00 01 44 17 00 01 00 08 3C 1F 00 01 44 10 00 10 440 3C OF 00 01 44 OF 00 01 3C 1F 00 01 33 17 00 01
4BO 33 07 00 01 33 OF 00 01 33 OF 00 01 33 17 00 01
S00 00 10 44 OF 00 01 3C 20 3C 1F 00 01 36 1F 00 01 4CO0 44 07 00 01 3C OF 00 01 33 OF 00 01 33 OF 00 01
510 36 20 33 1F 00 01 3C 20 34 1F 00 01 00 10 44 OF 4D0 33 OF 00 01 33 OF 00 01 33 OF 00 01 33 OF 00 01
520 00 01 3C 20 3C 1F 00 01 36 iF 00 01 36 20 33 1F 4E0 36 OF 00 01 33 1F 00 01 33 17 00 01 33 07 00 01
530 00 01 3C 20 44 17 00 01 00 08 3C 1F 00 01 44 OF 4F0 33 OF 00 01 39 OF 00 01 3C OF 00 01 33 OF 00 01
540 00 01 36 OF 00 01 00 10 28 10 00 10 28 10 00 10
550 40 10 36 10 36 10 00 10 3C 10 3C 10 30 10 00 10 500 33 OF 00 01 3C OF 00 01 39 07 00 01 39 07 00 01
560 40 10 40 10 36 10 00 10 40 10 40 10 36 10 00 10 510 39 07 00 01 3% 07 00 01 33 17 00 01 201 07 00 01
570 3C 10 3C 10 30 10 00 10 3C 10 3C 20 00 10 00 10 520 33 OF 00 01 39 OF 00 01 3C 20 00 40 00 40 00 CO
S80 40 10 36 10 00 10 44 OF 00 01 3C 20 3C 1F 00 01 530 23 04 4C 17 00 01 51 07 00 01 4C OF 00 01 &6 OF
590 36 1F 00 01 36 20 33 1F 00 01 3C iF 00 01 36 1IF 540 00 01 5B OF 00 01 &6 OF 00 01 4C OF 00 01 4C OF
540 00 01 00 10 44 OF 00 01 3C 20 3C 1F 00 01 36 1F 550 00 01 46 07 00 01 &6 07 00 01 &6 07 00 01 66 07
SBO 00 01 34 20 33 1F 00 01 3C 20 40 1F 00 01 51 IF 560 00 01 4C 17 00 01 72 07 00 01 466 OF 00 01 &6 OF
SCO0 00 01 48 1F 00 81 KR 04 FF FF 51 1F 00 01 79 1F 570 00 01 4C 1F 00 01 4C 17 00 01 51 07 00 01 4C OF
500 00 01 S5E 1F 00 01 44 1F 00 01 51 17 00 01 Sk 07 580 00 01 46 OF 00 01 SB OF 00 01 466 OF 00 01 4C OF
SEO0 00 01 46 1F 00 01 5B 1F 00 01 44 1F 00 01 51 1IF 590 00 01 4C OF 00 01 &6 07 00 01 46 07 00 01 66 07
S5FO0 00 01 79 1F 00 01 5B 1F 00 01 44 1F 00 01 51 17 5A0 00 01 66 07 00 01 4C 17 00 01 72 07 00 01 &6 OF
SEO 00 01 66 OF 00 01 4C 1F 00 01 &4 17 00 01 &6 07
600 00 01 5B 07 00 01 &6 1F 00 01 36 1F 00 01 351 iF 5C0 00 01 66 OF 00 01 66 OF 00 01 4C 17 00 Q1 4C 07
610 00 01 36 1F 00 01 S1 1F 00 01 51 1F 00 01 77 1F SO0 00 01 4C OF 00 01 S1 OF 00 01 4C OF 00 01 3C OF
620 00 01 SB 1F 00 01 44 1F 00 01 51 17 00 01 5E 07 SEQ 00 01 4C OF 00 01 5B OF 00 01 44 OF Q0 01 44 OF
630 00 01 46 1F 00 €1 SB 1F 00 01 44 1F 00 01 31 1F SFO 00 01 66 1F 00 01 4C 17 00 01 51 07 00 01 4C OF
640 00 01 79 1IF 00 01 SB iF 00 01 44 1F 00 01 51 17
650 00 01 5B 07 00 01 &6 1F 00 01 346 1F 00 01 31 1F 600 00 01 46 07 00 01 &0 07 00 01 SE OF 00 01 &6 OF
660 00 01 36 1F 00 01 51 1F 00 01 51 1F 00 01 48 1F 610 00 01 4C OF 00 01 4C OF 00 01 3% 07 00 01 3% 07
670 00 01 40 2F 00 01 51 OF 00 01 3C 3F 00 01 S1 3F 420 00 01 39 07 00 01 3% 07 00 01 3C 17 00 01 3% 07
680 00 01 40 3F 00 01 3C 3F 00 01 36 2F 00 01 36 OF 430 00 01 33 OF 00 01 39 OF 00 01 4C 20 00 40 00 40
6490 00 01 51 3F 00 01 S1 1F 00 01 79 1F 00 01 SE 1F 440 00 CO 31 05
6A0 00 01 44 1F 00 01 S1 17 00 01 SB 07 00 01 66 1IF (@)

APRIL/MAY, 1980. ISSUE 1

compute Il.

REVIEW KIMEX-1

PROM, RAM and I/0 Expansion
for the KIM Harvey B. Herman

Digital Engineering Associates $139.95
P. O. Box 207 Bethlehem, PA 18016

Those of us who have cut our computer baby

teeth on the KIM have longed to have some of the
capabilities of SYM (a newer, single-board computer)
without, heaven forbid, having to throw out our first
love. Digital Engineering Associates has come to our
rescue with their product KIMEX-1. They are market-
ing a single-board add-on module which plugs into
the KIM expansion interface and requires 6 wires to
be soldered to the KIM application connector. The
following features are standard:

1. Sockets for 4K of RAM (4118) contiguous
with KIM’s 1K RAM.

2. A 6522 VIA with I/O lines brought out to a

3. Sockets for four 2716 5VEPROMs which can
be selectively vectored to on power up.

The last item is really neat as this should greatly
simplify operation of applications programs in
EPROM by users unfamiliar with KIM.

The module appears to my eye very well de-
signed and professionally constructed. It was trivial to
connect to a basic KIM (15 minutes or less). For
review purposes only, the company provided a clock
program on EPROM which is described as an
example in their 19-page manual. I turned on power
(an extra 300 mamp from the 5V supply is necessary)
and I was into the clock program and counting.
Their program makes use of the 6522 VIA on
board (a data sheet on the 6522 is also included
with the manual). I am only just beginning to
appreciate the ‘‘versatility’’ of the VIA chip
and missed having one on the original KIM. Now’s
my chance.

The negative points are minor. I believe it may
be more difficult and/or expensive to obtain a
MOSTEK 4118 (1K x 8) than a 2114 (1K x 4), for
example. Furthermore, it might have been helpful
in some systems to address the 4K of RAM any-
where in memory. Other than that, I think the
module is a pretty good deal for KIM owners who
need its features, and I recommend it to them. (@)

Editor’s Note: If this review seems familiar to you, you may have read it in
Issue 3 of COMPUTE. The blank half page in that issue was supposed
to be the company’s ad. Hopefully it’s in this issue. We're reprinting the
review as a service to you and them. My apologies lo Edward H. Carlson,
author of Fast Tape Read/Write Programs for your OSI (Issue 3,
COMPUTE, p. 115). Here, in full, is Listing 3. Oh well... RCL

18: FAST KC TAPE READ
28;

38 LEADER =$9F
4@ SCREEN =$D10@

LEADER CHARACTER, $OF
LOCATION ON MONITOR SCREEN

58 ACIA =$FCBB 68508 ACIA TAPE PORT
68 START =$08 HOLDS ADDRESS OF 1ST BYTE OF TEXT
78 END =$082 HOLDS ADDRESS OF LAST BYTE OF TEXT

CONTAINS ADDRESS OF PROGRAM START
HOLDS ADDRESS OF CURRENT TEXT BYTE
CHECK SUM FROM TAPE STORED HERE

COMPUTED CHECK SUM AND OTHER STUFF

88 EXECUT =$84
98 CURENT =$86
188 CHKSUM =%88
118 COUNT =$@83S

12@ *=8$C700

138 LDA # N READING NOISE BEFORE LEADER
14@ STA SCREEN+2

158 MAIN LDY #8 READ LEARDER, $OF BF OF

160 STY COUNT

178 Ml JSR RT READ TAPE BYTE

180 STA SCREEN

188 CMP #LERDER IS IT A LEADER BYTE?

208 BNE MAIN NO, READ ANOTHER BYTE

218 INC COUNT YES, INCREMENT

228 LDA # L PRINT L FOR EVERY $@F READ
z3e STA SCREEN+4,Y

240 INY

250 LDA #3 READ 3 OF THEM?

260 CMP COUNT

278 BNE M1 NOT YET, READ ANOTHER

288 ADDR LDY #@ LEADER OVER. READ START,
298 STY COUNT END, EXECUTE ADDRESSES
388 LDA # A

318 STA SCREEN+8

328 Al JSR RT

338 STA START,Y

340 STA SCREEN

358 INY

368 CPY #6

378 BNE Al BRANCH TO CONTINUE READING A
388 LDA START SET INITIAL ADDRESS

356 STA CURENT+1

400 LDA START+1

418 STA CURENT

428 TEXT LDY #0

438 STY COUNT CLEAR FOR CALC. CHECK SUM
448 LDA # T

450 STA SCREEN+18

460 RBT JSR RT READ A BYTE OF TEXT

47@ STA (CURENT),Y

480 STA SCREEN

498 CLC

500 ADC COUNT COUNT ACCUMULATES CHECK SuUM
518 STA COUNT

s2e LDA CURENT TEST FOR END OF TEXT, LO
538 CMP END+1

548 BNE M3 NOT EQUAL, INC AND READ BYTE
550 LDA CURENT+1 LO EQUAL, TEST HI

568 CMP END

578 BEQ ME BRANCH IF TEXT IS ALL READ
588 M3 INC CURENT INCREMENT CURRENT ADDRESS
590 BNE M4 o

608 INC CURENT+1

618 M4 JMP RBT GO READ NEXT BYTE

528 M6 JSR RT READ CHECK SUM BYTE

538 STA CHKSUM

6449 CMP COUNT TEST CHECK SuM

€50 BEQ GO IF OK, BRANCH AND EXECUTE
660 LDA # E IF NOT., PRINT ERROR MESSAGE
678 STA SCREEN+12

6ee JSR $CB48 BELL

23=17] BRK

708 GO LDA EXECUT

718 STA CURENT+1

728 LDA EXECUT+1

730 STA CURENT

740 J5R $CB48 BELL

758 JMP (CURENT) EXECUTE

768

Yed:H TAPE READ SUBROUTINE

788 RT LDA ACIA READ A BYTE FROM 6850

798 LSR A

889 BCC RT

810 LDA ACIA+1 @
820 RTS

HIGH RESOLUTION GRAPHICS

LOOK TO MTU. WE SUPPORT HIGH RESOLUTION GRAPHICS ON:
PET — AIM — KIM — SYM

MTU HIGH RESOLUTION GRAPHICS

v

MO
¥ Micro Technology Unlimited
¥/ P.O. Box 4596, 841 Galaxy Way
Manchester, N.H. 03108
603-627-1464

Call Or Write For Our Full Line Catalog

AIM 65.The head startin
educational microcomputers.

AB500 Microproc
rogramming R.ph"

On-Board Printer, Advanced R6502 CPU, Versatile 1/0 —
It's the Honors Candidate for Microprocessor Learning

%

It’s tops in its class because it’s
expressly designed for micro-
processor learning. Rockwell’s
AIM 65 is a fully-assembled
microcomputer system with
special educational features at
a low price school budgets can
afford.

AIM 65’s on-board thermal
printer —unique in its price
range — produces hard copies
of exercises for easy checking
by student and instructor. On-
board I/Os provide dual cassette,
TTY and general purpose inter-
faces. Bus and system expansion

is built in. Same for PROM, ROM
and RAM expansion.

AIM 65's Interactive Monitor
prompts students each step of
the way in hands-on learning
of microprocessor fundamentals.
It includes a Text Editor, Inter-
active Mnemonic Assembler,
Debugger (Trace, Breakpoints),
and more!

An optional fully symbolic
Assembler program makes AIM
65 a powerful hands-on learning
system for microcomputer
development and prototyping.
Advanced students can explore
high level languages with an
optional ROM-resident BASIC
Interpreter. There's even a

o\

college textbook available.

And you'll find AIM 65 is
ideal for equipment control and
other laboratory computer
applications.

Discover how with one low
investment you can combine
several AIM 65s for hands-on,
high-productivity microprocessor
learning in classes where stu-
dents don't have to wait in line.
Check the high features and low
prices of Rockwell's AIM 65
printing microcomputer.

Contact your local distributor
or write or call AIM 65 Marketing,
Electronic Devices Division,
Rockwell International, P.O. Box
3669, D727, Anaheim, CA 92803,
(714) 632-3824.

Rockwell International

.where science gets down to business

