
Volume 1, No.2.

5th August, 1968.

UNIVERSITY OF QUEENSLAND

COMPUTER CENTRE

COMPUTER

CENTRE

BULLETIN

Editor:

J. s. Williams.

COMMENTS ON THE BULLETIN

THE FIRST EDITION

The response to the first edition of this Bulletin was very

encouraging. When this edition went to press, applications for inclusion

on the mailing list were still arriving. Anyone who missed the first

edition and wishes to be included on the mailing list, can obtain an

application form from the Secretary, Computer Centre.

THIS EDITION

This month's edition introduces some of the Computer Centre staff.

It contains sections on programming advice, system modifications, and

seminars, and some contributions by various members of staff. In particular

the program library is described, a useful programming technique is

presented, and a discussion of the role of the Computer Centre in computer

education appears.

STAFF OF THE COMPUTER CENTRE

In order to acquaint clients with the staff of the Computer Centre,

the Bulletin will contain a series of articles detailing their position,

duties, and responsibilities. The first in this series deals with the

Administrative Officer and the Computer Operators.

ADMINISTRATIVE OFFICER

The Administrative Officer, Mr. John Jauncey, is responsible for

computer services, and all functions related thereto. His office is

situated in the lobby of the Computer Centre. Mr . Jauncey receives

requisitions from University departments and maintains detailed accounts of

expenditure by all clients. Blocks of computer time longer than 15

minutes may be booked with him. As well as supervising all computer input

and output, Mr. Jauncey is responsible for data preparation and the program

library.

Any enquiries relating to Computer Centre operations or services

should be directed to the Administrative Officer, (extension 84(1) in the

first instance.

11

COMPUTER OPERATORS

The Computer Centre is open to clients from 7 a.m. to 12 midnight,

but the equipment is actually in operation from 9 a.m. till 7 a.m. the

following morning. Preventive maintenance is carried out between 7 a.m.

and 9 a.m.

Six female computer operators are currently employed on the day and

afternoon shifts to operate the GE 225 (and eventually the PDP 10). They

are Ann McArthur, Pat Loder, Pat Matthews, Helen Otte, Noela Sparke, and

Diann Wilkins. A seventh operator, Mr. Pat Cusack. who is a part-time

student, works permanent night shift from 11.30 p.m. to 7.30 a.m.

The operators are responsible for operating the computer in

accordance with the instructions contained on the user's Run Request Card,

or the appropriate library writeup. Efficient operation requires manual

dexterity, attention to detail, and a considerable amount of concentration

on the task in hand. For this reason, distractions in the nature of changes

to card decks or answering client's queries are not encouraged. Therefore,

all queries relating to operation of the computer must be addressed to the

Administrative Officer, extension 8471.

SEMINARS AND PROGRAMMING COURSES

SEMINAR: A CompiZer for Continuous Systems SimuZation

The speaker will be Mr. L. Mor, a postgraduate student in the

Department of Electrical Engineering. The seminar will be between 12 and

1 p.m. on Wednesday. 28th August, 1968, in Room B18 of the Engineering

School.

The solution of time-varying linear differential equations is often

carried out on an analogue computer. As part of a M.Eng.Sc. Thesis, the

speaker is writing a problem-oriented language for the simulation of

analogue computer techniques using a digital computer. The language combines

the advantages of both analogue and digital computation techniques.

For further particulars concerning this, or future seminars, please

contact the Secretary. Computer Centre, extension 688.

FORTRAN IV COURSE

A FORTRAN IV course i.s .to be. held from Mopday19th to Friday 23rd

12

() , /

August, inclusive, between the hours of 9 a.m. and 1 p.m., in Room 214

of the Engineering School, Circular Dirve, St. Lucia.

A large number of applications hadbeenrecei:ye.d when applications

closed. Unfortunately enrolment is limited to 25 for the course and some

applications will not be accepted. Details of subsequent courses will be

promulgated at a later date.

PROGRAMMING ADVICE

FORTRAN PROGRAMMING ERROR UNMASKED!

An error fairly frequently made in CARD FORTRAN and FORTRAN IV

programming is illustrated by the statement

CALL SQUARE (PEGS, 5)

where PEGS is an array of length 20 and the subroutine SQUARE is as follows:

SUBRQUTINE SQUARE (RQUND, N)

DIMENSIQN RQUND(20)

10 RQUND(N) = RQUND(N) **2

N = N + 1

IF (N - 20) 10, 10

RETURN

END

In the subroutine, N is only a dummy argument. This means that the

actual argument in the main program, in this case the constant 5, is

referenced by the subroutine at every appearance of N. The replacement

statement N = N + 1 therefore causes the value of the constant 5 to be

incremented by one. On exit from the subroutine the main program will use

the value 21, the final value generated by the subroutine, wherever the

constant 5 appears.

In general, the rule is that if a dummy argument in a subprogram is

changed within the subprogram, then the corresponding argument in any

reference to the subprogram must not be a literal constant (such as 1, 2.5,

etc.)

To avoid this problem the subroutine may bemodii'ied as ;f'o'llows:

13

SUBRQUTINE SQUARE (RQUND, N)

DIMENSIQN RQUND(20)

K = N

10 RQUND(K) = RQUND(K)**2

K = K + 1

IF (K - 20) 10, 10

RETURN

END

DOUBLE PRECISION AND COMPLEX LIBRARY FUNCTIONS IN FORTRAN IV

It is not universally known that in GE 225 FORTRAN IV the name of

Zibrary (as well as user-defined) functions which return complex or

double-precision values have to be mentioned in appropriate type declaration

statements, thus -

SUBRQUTINE FIGURE (A, B, C, D)

DQUBLE PRECISIQN A, B, DABS, DSIN

CQMPLEX D, CCQS

A = DABS (DSIN (B))

C = CABS (CCQS (D))

RETURN

END

In this example, the library functions DABS (double-precision

absolute value) and DSIN (double-precision sine) both return double

precision values, and so must be named in the DQUBLE PRECISIQN declaration.

Similarly, the library fUnction CCQS (complex cosine) is named in the

CQMPLEX declaration because it returns a complex value. However, the

library function CABS returns a real-valued result, nota complex one.

(The absolute value of a complex number is real.)

MCMJ, II LOADER

Care must be taken in the use of octal corrections with the MCMLII

loader. Octal corrections may not be stored in locations having addresses

greater than the highest address of the routine, because octal corrections

do not update the loader 's current address c0Unt.ef'~ A patch '8:l'e-a lll,~st be

provided for this purpose.

14

(
'-.- PATCH BSS 19

DEC 0

END 0

Note that in a relocatable routine which is loaded by MCML II, a

BSS instruction should never be the last instruction requiring storage to

be allocated. Using the combination BSS, DEC in the above manner· sets

aside 20 locations for use with octal corrections.

SYSTEM MODIFlCATIONS

CHANGES TO CARD FORTRAN EXECUTION ERROR tqJSSAGES

If the argument X of the library function ACQSF (inverse cosine)

is not in the range -1 ~ X ~ 1, the result is set to the largest number

(10 76), the error message "ACS" is typed, and the execution continues. The

procedure is the same for the inverse sine function ASINF, the error

message in this case being "ASN".

NEW FORTRAN IV EXECUTION ERROR MESSAGE

An additional message has been added to the FORTRAN IV execution

routines to detect an attempt to read an end-of-file card.

"EFC" Attempted READ encounters an end-of~file card. Execution

stops.

NEW FORTRAN IV TEST FUNCTION

The function IEQFX tests the card next to be read for the en~of-file

card image. If it is, the function returns the value 'true' and the card

is skipped. If not, the function returns the value 'false'.

The standard FORTRAN IV function calling sequence is used -

N = IEQFX(M)

where M is a dummy parameter, used only to identify the function to the

compiler as an external function. Any variable name or constant may be

used, since it is not changed by execution of the function.

This function is similar to the IEQF function incl~ded as part of

15

the tape routines but, since it only tests the card reader for the end-of-file

condition, it occupies considerably less storage space.

LI BRARY PROGRAMS

NEW

HDIAG - Eigenvalues, Eigenvectors (D4.22l)

This FORTRAN IV subroutine has been converted from CARD FORTRAN,

and is used in the same manner as in CARD FORTRAN. It calculates the

eigenvalues, or eigenvectors and eigenvalues, of a real symmetric matrix.

REPLACEMENT

QSIMEQ - Linear Simultaneous Equations (D4.202)

This is a complete program which will obtain the solution of a set

of up to 54 simultaneous linear equations. SLIP is used for input, thus

quotes must enclose the identification information on the IDENT card.

RECENT PUBLICATIONS

The following publication is available at the Computer Centre:

Technical Memorandum No.3: Macro FaciZities in GAP. W.N. Fulton.

The memorandum describes the new macro facilities implemented by

Mr. Raife Eldershaw, that are now available in the GE 225 assembly

language, GAP. Macro instructions can be quite useful when blocks of

coding of similar structure are needed at several points in a single

program.

PROGRAM LIBRARY - J. Jauncey

The program library at the Computer Centre is maintained for the use

of clients as well as to ensure the smooth functioning of the Centre

itself. Contained in the library are master copies of all programs,

manuals, listings, etc., and full details of the holdings are listed in

the Program Library Status Report, the latest edition of which is 1st May,

1968. These reports are available upon request and copies of most of the

material may be obtained. A copy of all material is available in the clients

room for reference purposes. In some ihstances, writeups on frequently

used programs are readily available.

16

CLASSIFICATION

Each program inco:t:porated in the program library if;; classified

according to the program function and then with respect to its origin.

The program function categories and sub-categories are as follows:

A - Administrative Programs

B - Utility Programs

1 Memory Loaders
2 Memory Dumps
3 Tape Dumps
5 Traces and Debugging Routines
6 Miscellaneous Card and Tape Programs
7 Symbol Converters and Relativisers
8 Analysers

C - Internal Data Manipulation

1 BCD to Binary
2 Binary to BCD
3 Octal Routines
4 Number Conversion
5 Internal Sort, Search
6 Internal Data Movement
7 Character Conversion
8 Miscellaneous

D - Mathematical Routines

1 Programmed Arithmetic
2 Elementary Functions
3 Statistical Analysis and Probability
4 Operations on Matrices, Vectors, and Simultaneous

Linear Equations
5 Polynomial and Special Functions
6 Curve Fittings, Interpolation, and other

approximations
7 Operations Research
8- Numerical Integration, Differentiation, and

Solutions of Differential Equations

E - Input/Output

1 Card
2 Magnetic Tape
4 Paper Tape
5 Console Typewriter
6 High Speed Printer
8 Mass Random Access File
9 Special Devices

F - Assembly Systems

G - Generators

17

H - Compilers/Translators'

1 GECOM
2 WIZ
4 Special Purpose Languages (including MAC, WIZOR,

WISP)
5 COBOL
6 Algorithmic Languages (including CARD FORTRAN,

FORTRAN IV)

I - Simulators

J - Service Systems

K - Special Systems

M - Electric Utility Programs

o - Machinery Control Systems

P - Railroad and Road Systems

Q - Accounting Programs

Programs contained in the library originate from the following three

sources:

CD - Computer Department, General Electric (origin code 0)

GET - General Electric 225 Users Association (origin code 1)

UQ - University of Queensland (origin code 2)

A library number is therefore constructed in the following format:

[

Origin

fj Program function code
~Origin code
II Program number

UQ D3.2Ob

Since many programs perform similar functions, they have similar names,

therefore references to programs in the library (with the exception of

loaders) should be by program number.

USE OF LIBRARY PROGRAMS

It is unnecessary for a user to obtain a copy of a program card deck

in order to use the program. He need only submit his data, set up in

accordance with the specifications contained in the writeup, and insert the

program number on a Run Request Card in the section labelled "Std. Programs

Required, Other". The remainder of the run request card should be

completed in the normal manner.

18

However, if a copy of a program deck is required, a Run Request Card

should be submitted, with the section REPRODUCE/COPY marked, as well as

the library number of the program deck required.

Any queries concerning the program library should be directed to

the Administrative Officer.

COMPUTER EDUCATION

A computer system which is functioning normally is not newsworthy,

so the occasional error which is made often results in adverse publicity.

Understandably, the public image of computers leaves much to be desired.

This adverse publicity is the consequence of the mistakes ma~e by people

rather than by computers.

Unfortunately the computer field is expanding so rapidly that the

number of suitably qualified people is completely inadequate and many of

the mistakes are caused by inadequately trained personnel.

Training may consist of formal courses, in-service training, or

the obtaining of ad hoc experience. Unfortunately, the training of many

computer people has been composed of the latter. The State and Commonwealth

Governments and a few of the computer manufacturers have actively promoted

in-service training, while the universities, and more recently the colleges

of advanced education, have established formal courses. As with most

other professions, training, or the learning process, must extend beyond

the formal course which merely enables a person to enter his chosen field.

The computer field is advancing and expanding with such speed, that

there is an urgent need for the professional computer people to be exposed

to all three forms of education. A basic understanding of the fundamentals

must be acquired first, 60 that the student has a base on which to build.

This must then be supplemented by continuing in-service training as new

techniques are developed. the acquiring of on-the-job experience. and

reading of the professional journals.

The following sections outline some of the ways in which the University

of Queensland is contributing to computer education.

SOWING THE SEED - R.N. Buchanan

The continued development (»! into;rll+ationp;rGlce~sing and cemputer

19

science is dependent upon an increasing number of graduates in these fields

and, by implication, a sufficient number of secondary school students who

are interested in careers in these fields. The reader is probably closely

involved with computers and is very familiar with the challenge and

excitement of this type of work. However, it is quite likely that there are

hundreds of students in high schools who are potential programmers, systems

analysts, or computer scientists, but who have never given a thought to

these professions merely because they have no idea of the type of work

involved and are unaware of the avenues by which they may enter the field.

It appears that an effective method of interesting secondary school

students is per medium of the University's program of careers lectures in

high schools. A member of the Computer Centre staff has been visiting the

various metropolitan high schools and discussing the different courses

available and the associated career opportunities. To date, lectures have

been given at eight schools involving over 2,500 students. The interest

generated indicates that there should be a future supply of students for

courses offered by the University.

POSTGRADUATE DIPLOMA IN INFORMATION PROCESSING - J.D. Noad

Over the past few years several surveys of electronic data processing

installations in Australia have been made in an attempt to estimate the

number of qualified systems analysts and programmers required in future

years. While estimates from different sources vary considerably, all

estimates do show that there is a requirement for more trained people than

are presently available, and that with the present rate of training the

situation is likely to get worse rather than better in future years.

In an attempt to help meet this need the University this year

introduced a postgraduate Diploma in Information Processing. This one-year

full-time course is run within the Faculty of Commerce and Economics in

conjunction with the Computer Centre.

The course is oriented towards the design and application of

computer-based information processing systems and gives particular emphasis

to electronic data processing systems and decision-making in the business

and governmental fields. It covers the functions and use of data processing

equipment, computer programming and programming techniques, some basic

mathematics, the analysis and design of information processing systems, and

20

the application of computers to economic information processing and

managerial decision making.

In addition to the basic theory of systems and programming,

particular emphasis is placed upon the application of computers to problems ~

of business and industry. involving the student in a number of practical

exercises. During the course, computer programs, using several different

programming languages, have to be written, and other program packages are

utilized. The practical work in systems analysis and design is carried out

by the student in a realistic environment, including a number of semi

governmental and commercial organisations.

With the rapid expansion of EDP into nearly all major fields of

commerce, industry, and government, it is felt that this course is

fulfilling a need for all graduates planning careers in these areas.

SEMINARS IN COMPUTER SCIENCE - I. Oliver

The Computer Centre is sponsoring a series of seminars in the

Computer Sciences which may be of interest to a broad cross-section of

the computing community. The purpose of these seminars will be to make

known some of the newer techni~ues in computer science both from a purely

computing and from an applications viewpoint.

Although the seminars will be fairly technical in nature and will

pre-suppose some general knowledge of computing, each speaker will presume

that the audience has no prior knowledge in the specific subject area.

Contributions to this series are being solicited. Any suggestions

concerning possible topics or speakers would be much appreciated and should

be directed to Mr. Ian Oliver, extension 575.

First Seminar: WISP - A New Programming Language

This seminar was held on 31st July, 1968, and was well

received by an audience of more than 50 people. Mr. Bill Fulton

or Mr. John Williams will conduct a WISP programming course early

next year if there is a sufficient demand. Applications should

be made by telephoning the Secretary, Computer Centre, extension 688.

21

USEFUL PROGRAMMING TECHNIQUES

VARIABLE DEPTH NESTING OF DO LOOPS - 10 Oliver

Have you ever had the problem of trying to program a nest of DQ

statements in which the depth of the nest is variable? The sort of thing

you might want to do is

DG 10 11 = 1, Nl

DG 10 12 = 1, N2

DG 101m = 1, Nm

Of course FORTRAN won't accept a series of dots as an indication that m

DG statements are required. A different way of programming this according

to the rules of FORTRAN is needed.

What we would like to do is to put the DG statement itself in a DG

loop, thus -

20

DG

DG

20 J = 1, M

10 I(J) = 1, N(J)

but this is illegal, since the range of the DG 20 overlaps the range of the

DG 10. In addition, we cannot use subscripted variables as indices in a DG

statement.

The following statements will do the job:

10

20

DG 10 J = 1, M

I(J) = 1

DG 30 J = 1, M

I(J) = I(J) + 1

IF(I(J).LE,N(J)) GG TG 20

I(J) = 1

30 CGNTINUE

(initialization)

(calculation)

(increment)

(test)

N is an array of elements containing the maximum values of the indices.

Note that this complex loop contains the same basic elements as a simple

loop - initialization, calculation, incrementing and testing. The DG 10

22

sets the elements of ~n array of indices, I~ to their initial value 1.

The statements which would appear at statement number 20 perform the

desired calculations, presumably making use of the index array. The DQ 30

loop increments index 1(1) first every time. Provided this is not greater

than N(l) control passes to statement 20. When 1(1) is greater than N(l)

it is reset to 1 and the second index 1(2) is incremented by 1. Not until

1(1) has been incremented up to N(l) again does 1(2) get incremented again.

Finally 1(2) will reach N(2) and then 1(3) will be incremented. In this way

all possible combinations of values of the indices in the array I will be

generated in turn.

This complex loop is actually similar to the DQ statements in the

first example in the reverse order. Index 1(1) is varied most rapidly and

I(M) least rapidly.

This technique was used in a problem in which an array with a

variable number of dimensions was required - another thing FORTRAN do~s not

allow. For example, in one run a three-dimensional array was required, and

elements like X(I, J, K) were needed. In another run the array had five

dimensions and access was required to elements such as X(Il, 12, 13, 14, 15).

The solution to this problem was to declare the array X as a one

dimensional array and to refer to locations such as X(J), where J is

calculated by a function subprogram in the following manner: J = INDEX

(I, N, M). In other words, the function INDEX is written so as to compute

a single subscript value from the array of M indices I. The array N

contains the corresponding upper limits of each index.

Let us suppose we want to put zero in every location of the M

dimensional array X. Then we use the complex loop described above with

the following statements inserted at statement 20 -

20 IND = INDEX(I, N, M)

X(IND) = o.

The function subprogram INDEX is written as follows -

FUNCTIQN INDEX (I, N, M)

DIMENSIQN I(M), N(M)

INDEX = 0

DQ 10 J = 1, M

23

10 INDEX = INDEX*N(J) + I(J) - 1

INDEX = INDEX + 1

RETURN

END

24

