

CouchDB: The Definitive Guide

CouchDB: The Definitive Guide

J. Chris Anderson, Jan Lehnardt, and Noah Slater

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

CouchDB: The Definitive Guide
by J. Chris Anderson, Jan Lehnardt, and Noah Slater

Copyright © 2010 J. Chris Anderson, Jan Lehnardt, and Noah Slater. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sarah Schneider
Production Services: Appingo, Inc.

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
January 2010: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. CouchDB: The Definitive
Guide, the image of a Pomeranian dog, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein. This work has been released under the Creative Commons Attribution License. To view
a copy of this license, visit http://creativecommons.org/licenses/by/2.0/legalcode or send a letter to Creative
Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15589-6

[M]

1263584573

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://creativecommons.org/licenses/by/2.0/legalcode

For the Web, and all the people who helped me
along the way. Thank you.

—J. Chris

Für Marita und Kalle.

—Jan

For my parents, God and Damien Katz.

—Noah

Table of Contents

Foreword . xv

Preface . xvii

Part I. Introduction

1. Why CouchDB? . 3
Relax 3
A Different Way to Model Your Data 4
A Better Fit for Common Applications 5

Self-Contained Data 5
Syntax and Semantics 6

Building Blocks for Larger Systems 6
CouchDB Replication 8

Local Data Is King 8
Wrapping Up 9

2. Eventual Consistency . 11
Working with the Grain 11
The CAP Theorem 12
Local Consistency 13

The Key to Your Data 13
No Locking 14
Validation 15

Distributed Consistency 16
Incremental Replication 16
Case Study 17

Wrapping Up 20

vii

3. Getting Started . 21
All Systems Are Go! 21
Welcome to Futon 23
Your First Database and Document 24
Running a Query Using MapReduce 27
Triggering Replication 31
Wrapping Up 32

4. The Core API . 33
Server 33
Databases 34
Documents 38

Revisions 39
Documents in Detail 40

Replication 42
Wrapping Up 44

Part II. Developing with CouchDB

5. Design Documents . 47
Document Modeling 47
The Query Server 48
Applications Are Documents 48
A Basic Design Document 51
Looking to the Future 52

6. Finding Your Data with Views . 53
What Is a View? 53
Efficient Lookups 56

Find One 56
Find Many 57
Reversed Results 58

The View to Get Comments for Posts 59
Reduce/Rereduce 61

Lessons Learned 64
Wrapping Up 64

7. Validation Functions . 67
Document Validation Functions 67
Validation’s Context 69
Writing One 69

Type 69

viii | Table of Contents

Required Fields 71
Timestamps 72
Authorship 73

Wrapping Up 73

8. Show Functions . 75
The Show Function API 76
Side Effect–Free 77
Design Documents 78
Querying Show Functions 78

Design Document Resources 79
Query Parameters 79
Accept Headers 80

Etags 81
Functions and Templates 81

The !json Macro 82
The !code Macro 82

Learning Shows 83
Using Templates 83
Writing Templates 85

9. Transforming Views with List Functions . 87
Arguments to the List Function 87
An Example List Function 89
List Theory 91
Querying Lists 92
Lists, Etags, and Caching 93

Part III. Example Application

10. Standalone Applications . 97
Use the Correct Version 97
Portable JavaScript 98
Applications Are Documents 99
Standalone 100
In the Wild 101
Wrapping Up 108

11. Managing Design Documents . 109
Working with the Example Application 109
Installing CouchApp 110
Using CouchApp 110

Table of Contents | ix

Download the Sofa Source Code 111
CouchApp Clone 111
ZIP and TAR Files 111
Join the Sofa Development Community on GitHub 112
The Sofa Source Tree 112

Deploying Sofa 115
Pushing Sofa to Your CouchDB 115
Visit the Application 115

Set Up Your Admin Account 116
Deploying to a Secure CouchDB 117

Configuring CouchApp with .couchapprc 117

12. Storing Documents . 119
JSON Document Format 120
Beyond _id and _rev: Your Document Data 122
The Edit Page 123

The HTML Scaffold 124
Saving a Document 125

Validation 128
Save Your First Post 130

Wrapping Up 130

13. Showing Documents in Custom Formats . 131
Rendering Documents with Show Functions 132

The Post Page Template 133
Dynamic Dates 134

14. Viewing Lists of Blog Posts . 135
Map of Recent Blog Posts 135
Rendering the View as HTML Using a List Function 137

Sofa’s List Function 137
The Final Result 141

Part IV. Deploying CouchDB

15. Scaling Basics . 145
Scaling Read Requests 146
Scaling Write Requests 146
Scaling Data 147
Basics First 147

x | Table of Contents

16. Replication . 149
The Magic 150
Simple Replication with the Admin Interface 150
Replication in Detail 151
Continuous Replication 152
That’s It? 152

17. Conflict Management . 153
The Split Brain 154
Conflict Resolution by Example 155
Working with Conflicts 158
Deterministic Revision IDs 161
Wrapping Up 161

18. Load Balancing . 163
Having a Backup 163

19. Clustering . 165
Introducing CouchDB Lounge 165
Consistent Hashing 166

Redundant Storage 167
Redundant Proxies 167
View Merging 167

Growing the Cluster 168
Moving Partitions 169
Splitting Partitions 170

Part V. Reference

20. Change Notifications . 173
Polling for Changes 174
Long Polling 175
Continuous Changes 176
Filters 177
Wrapping Up 178

21. View Cookbook for SQL Jockeys . 179
Using Views 179

Defining a View 179
Querying a View 180
MapReduce Functions 180

Look Up by Key 181

Table of Contents | xi

Look Up by Prefix 182
Aggregate Functions 183
Get Unique Values 185
Enforcing Uniqueness 187

22. Security . 189
The Admin Party 189

Creating New Admin Users 190
Hashing Passwords 191

Basic Authentication 191
Update Validations Again 192

Cookie Authentication 193
Network Server Security 194

23. High Performance . 195
Good Benchmarks Are Non-Trivial 195
High Performance CouchDB 197

Hardware 197
An Implementation Note 197

Bulk Inserts and Mostly Monotonic DocIDs 198
Optimized Examples: Views and Replication 198

Bulk Document Inserts 198
Batch Mode 199
Single Document Inserts 200
Hovercraft 201
Trade-Offs 201

But…My Boss Wants Numbers! 202
A Call to Arms 202

24. Recipes . 205
Banking 205

Accountants Don’t Use Erasers 205
Wrapping Up 208

Ordering Lists 208
A List of Integers 208
A List of Floats 210

Pagination 211
Example Data 211
A View 212
Setup 213
Slow Paging (Do Not Use) 213
Fast Paging (Do Use) 215
Jump to Page 216

xii | Table of Contents

Part VI. Appendixes

A. Installing on Unix-like Systems . 219

B. Installing on Mac OS X . 221

C. Installing on Windows . 223

D. Installing from Source . 225

E. JSON Primer . 231

F. The Power of B-trees . 233

Index . 237

Table of Contents | xiii

Foreword

As the creator of CouchDB, it gives me great pleasure to write this Foreword. This book
has been a long time coming. I’ve worked on CouchDB since 2005, when it was only
a vision in my head and only my wife Laura believed I could make it happen.

Now the project has taken on a life of its own, and code is literally running on millions
of machines. I couldn’t stop it now if I tried.

A great analogy J. Chris uses is that CouchDB has felt like a boulder we’ve been pushing
up a hill. Over time, it’s been moving faster and getting easier to push, and now it’s
moving so fast it’s starting to feel like it could get loose and crush some unlucky vil-
lagers. Or something. Hey, remember “Tales of the Runaway Boulder” with Robert
Wagner on Saturday Night Live? Good times.

Well, now we are trying to safely guide that boulder. Because of the villagers. You know
what? This boulder analogy just isn’t working. Let’s move on.

The reason for this book is that CouchDB is a very different way of approaching data
storage. A way that isn’t inherently better or worse than the ways before—it’s just
another tool, another way of thinking about things. It’s missing some features you
might be used to, but it’s gained some abilities you’ve maybe never seen. Sometimes
it’s an excellent fit for your problems; sometimes it’s terrible.

And sometimes you may be thinking about your problems all wrong. You just need to
approach them from a different angle.

Hopefully this book will help you understand CouchDB and the approach that it takes,
and also understand how and when it can be used for the problems you face.

Otherwise, someday it could become a runaway boulder, being misused and causing
disasters that could have been avoided.

And I’ll be doing my best Charlton Heston imitation, on the ground, pounding the dirt,
yelling, “You maniacs! You blew it up! Ah, damn you! God damn you all to hell!” Or
something like that.

—Damien Katz
Creator of CouchDB

xv

Preface

Thanks for purchasing this book! If it was a gift, then congratulations. If, on the other
hand, you downloaded it without paying, well, actually, we’re pretty happy about that
too! This book is available under a free license, and that’s important because we want
it to serve the community as documentation—and documentation should be free.

So, why pay for a free book? Well, you might like the warm fuzzy feeling you get from
holding a book in your hands, as you cosy up on the couch with a cup of coffee. On
the couch...get it? Bad jokes aside, whatever your reasons, buying the book helps sup-
port us, so we have more time to work on improvements for both the book and
CouchDB. So thank you!

We set out to compile the best and most comprehensive collection of CouchDB infor-
mation there is, and yet we know we failed. CouchDB is a fast-moving target and grew
significantly during the time we were writing the book. We were able to adapt quickly
and keep things up-to-date, but we also had to draw the line somewhere if we ever
hoped to publish it.

At the time of this writing, CouchDB 0.10.1 is the latest release, but you might already
be seeing 0.10.2 or even 0.11.0 released or being prepared—maybe even 1.0. Although
we have some ideas about how future releases will look, we don’t know for certain and
didn’t want to make any wild guesses. CouchDB is a community project, so ultimately
it’s up to you, our readers, to help shape the project.

On the plus side, many people successfully run CouchDB 0.10 in production, and you
will have more than enough on your hands to run a solid project. Future releases of
CouchDB will make things easier in places, but the core features should remain the
same. Besides, learning the core features helps you understand and appreciate the
shortcuts and allows you to roll your own hand-tailored solutions.

Writing an open book was great fun. We’re happy O’Reilly supported our decision in
every way possible. The best part—besides giving the CouchDB community early ac-
cess to the material—was the commenting functionality we implemented on the book’s
website. It allows anybody to comment on any paragraph in the book with a simple
click. We used some simple JavaScript and Google Groups to allow painless com-
menting. The result was astounding. As of today, 866 people have sent more than 1,100

xvii

http://books.couchdb.org/relax
http://books.couchdb.org/relax

messages to our little group. Submissions have ranged from pointing out small typos
to deep technical discussions. Feedback on our original first chapter led us to a complete
rewrite in order to make sure the points we wanted to get across did, indeed, get across.
This system allowed us to clearly formulate what we wanted to say in a way that worked
for you, our readers.

Overall, the book has become so much better because of the help of hundreds of vol-
unteers who took the time to send in their suggestions. We understand the immense
value this model has, and we want to keep it up. New features in CouchDB should
make it into the book without us necessarily having to do a reprint every thee months.
The publishing industry is not ready for that yet, but we want to continue to release
new and revised content and listen closely to the feedback. The specifics of how we’ll
do this are still in flux, but we’ll be posting the information to the book’s website the
first moment we know it. That’s a promise! So make sure to visit the book’s website at
http://books.couchdb.org/relax to keep up-to-date.

Before we let you dive into the book, we want to make sure you’re well prepared.
CouchDB is written in Erlang, but you don’t need to know anything about Erlang to
use CouchDB. CouchDB also heavily relies on web technologies like HTTP and Java-
Script, and some experience with those does help when following the examples
throughout the book. If you have built a website before—simple or complex—you
should be ready to go.

If you are an experienced developer or systems architect, the introduction to CouchDB
should be comforting, as you already know everything involved—all you need to learn
are the ways CouchDB puts them together. Toward the end of the book, we ramp up
the experience level to help you get as comfortable building large-scale CouchDB sys-
tems as you are with personal projects.

If you are a beginning web developer, don’t worry—by the time you get to the later
parts of the book, you should be able to follow along with the harder stuff.

Now, sit back, relax, and enjoy the ride through the wonderful world of CouchDB.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

xviii | Preface

http://books.couchdb.org/relax

This work is licensed under the Creative Commons Attribution License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/2.0/legalcode or send a letter
to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105,
USA.

An attribution usually includes the title, author, publisher, and ISBN. For example:
“CouchDB: The Definitive Guide by J. Chris Anderson, Jan Lehnardt, and Noah Slater.
Copyright 2010 J. Chris Anderson, Jan Lehnardt, and Noah Slater,
978-0-596-15589-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

Preface | xix

http://creativecommons.org/licenses/by/2.0/legalcode
mailto:permissions@oreilly.com

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites,
download chapters, bookmark key sections, create notes, print out pages, and benefit
from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596155896

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments

J. Chris
I would like to acknowledge all the committers of CouchDB, the people sending
patches, and the rest of the community. I couldn’t have done it without my wife, Amy,
who helps me think about the big picture; without the patience and support of my
coauthors and O’Reilly; nor without the help of everyone who helped us hammer out
book content details on the mailing lists. And a shout-out to the copyeditor, who was
awesome!

xx | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9780596155896
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Jan
I would like to thank the CouchDB community. Special thanks go out to a number of
nice people all over the place who invited me to attend or talk at a conference, who let
me sleep on their couches (pun most definitely intended), and who made sure I had a
good time when I was abroad presenting CouchDB. There are too many to name, but
all of you in Dublin, Portland, Lisbon, London, Zurich, San Francisco, Mountain View,
Dortmund, Stockholm, Hamburg, Frankfurt, Salt Lake City, Blacksburg, San Diego,
and Amsterdam: you know who you are—thanks!

To my family, friends, and coworkers: thanks you for your support and your patience
with me over the last year. You won’t hear, “I’ve got to leave early, I have a book to
write” from me anytime soon, promise!

Anna, you believe in me; I couldn’t have done this without you.

Noah
I would like to thank O’Reilly for their enthusiasm in CouchDB and for realizing the
importance of free documentation. And of course, I’d like to thank Jan and J. Chris for
being so great to work with. But a special thanks goes out to the whole CouchDB
community, for making everything so fun and rewarding. Without you guys, none of
this would be possible. And if you’re reading this, that means you!

Preface | xxi

PART I

Introduction

CHAPTER 1

Why CouchDB?

Apache CouchDB is one of a new breed of database management systems. This chapter
explains why there’s a need for new systems as well as the motivations behind building
CouchDB.

As CouchDB developers, we’re naturally very excited to be using CouchDB. In this
chapter we’ll share with you the reasons for our enthusiasm. We’ll show you how
CouchDB’s schema-free document model is a better fit for common applications,
how the built-in query engine is a powerful way to use and process your data, and how
CouchDB’s design lends itself to modularization and scalability.

Relax
If there’s one word to describe CouchDB, it is relax. It is in the title of this book, it is
the byline to CouchDB’s official logo, and when you start CouchDB, you see:

Apache CouchDB has started. Time to relax.

Why is relaxation important? Developer productivity roughly doubled in the last five
years. The chief reason for the boost is more powerful tools that are easier to use. Take
Ruby on Rails as an example. It is an infinitely complex framework, but it’s easy to get
started with. Rails is a success story because of the core design focus on ease of use.
This is one reason why CouchDB is relaxing: learning CouchDB and understanding its
core concepts should feel natural to most everybody who has been doing any work on
the Web. And it is still pretty easy to explain to non-technical people.

Getting out of the way when creative people try to build specialized solutions is in itself
a core feature and one thing that CouchDB aims to get right. We found existing tools
too cumbersome to work with during development or in production, and decided to
focus on making CouchDB easy, even a pleasure, to use. Chapters 3 and 4 will dem-
onstrate the intuitive HTTP-based REST API.

Another area of relaxation for CouchDB users is the production setting. If you have a
live running application, CouchDB again goes out of its way to avoid troubling you.

3

v@v
Text Box
Download at WoweBook.com

Its internal architecture is fault-tolerant, and failures occur in a controlled environment
and are dealt with gracefully. Single problems do not cascade through an entire server
system but stay isolated in single requests.

CouchDB’s core concepts are simple (yet powerful) and well understood. Operations
teams (if you have a team; otherwise, that’s you) do not have to fear random behavior
and untraceable errors. If anything should go wrong, you can easily find out what the
problem is—but these situations are rare.

CouchDB is also designed to handle varying traffic gracefully. For instance, if a website
is experiencing a sudden spike in traffic, CouchDB will generally absorb a lot of con-
current requests without falling over. It may take a little more time for each request,
but they all get answered. When the spike is over, CouchDB will work with regular
speed again.

The third area of relaxation is growing and shrinking the underlying hardware of your
application. This is commonly referred to as scaling. CouchDB enforces a set of limits
on the programmer. On first look, CouchDB might seem inflexible, but some features
are left out by design for the simple reason that if CouchDB supported them, it would
allow a programmer to create applications that couldn’t deal with scaling up or down.
We’ll explore the whole matter of scaling CouchDB in Part IV, Deploying CouchDB.

In a nutshell: CouchDB doesn’t let you do things that would get you in trouble later
on. This sometimes means you’ll have to unlearn best practices you might have picked
up in your current or past work. Chapter 24 contains a list of common tasks and how
to solve them in CouchDB.

A Different Way to Model Your Data
We believe that CouchDB will drastically change the way you build document-based
applications. CouchDB combines an intuitive document storage model with a powerful
query engine in a way that’s so simple you’ll probably be tempted to ask, “Why has no
one built something like this before?”

Django may be built for the Web, but CouchDB is built of the Web. I’ve never seen
software that so completely embraces the philosophies behind HTTP. CouchDB makes
Django look old-school in the same way that Django makes ASP look outdated.

—Jacob Kaplan-Moss, Django developer

CouchDB’s design borrows heavily from web architecture and the concepts of resour-
ces, methods, and representations. It augments this with powerful ways to query, map,
combine, and filter your data. Add fault tolerance, extreme scalability, and incremental
replication, and CouchDB defines a sweet spot for document databases.

4 | Chapter 1: Why CouchDB?

A Better Fit for Common Applications
We write software to improve our lives and the lives of others. Usually this involves
taking some mundane information—such as contacts, invoices, or receipts—and ma-
nipulating it using a computer application. CouchDB is a great fit for common appli-
cations like this because it embraces the natural idea of evolving, self-contained docu-
ments as the very core of its data model.

Self-Contained Data
An invoice contains all the pertinent information about a single transaction—the seller,
the buyer, the date, and a list of the items or services sold. As shown in Figure 1-1,
there’s no abstract reference on this piece of paper that points to some other piece of
paper with the seller’s name and address. Accountants appreciate the simplicity of
having everything in one place. And given the choice, programmers appreciate that, too.

Figure 1-1. Self-contained documents

Yet using references is exactly how we model our data in a relational database! Each
invoice is stored in a table as a row that refers to other rows in other tables—one row
for seller information, one for the buyer, one row for each item billed, and more rows
still to describe the item details, manufacturer details, and so on and so forth.

This isn’t meant as a detraction of the relational model, which is widely applicable and
extremely useful for a number of reasons. Hopefully, though, it illustrates the point
that sometimes your model may not “fit” your data in the way it occurs in the real world.

Let’s take a look at the humble contact database to illustrate a different way of modeling
data, one that more closely “fits” its real-world counterpart—a pile of business cards.
Much like our invoice example, a business card contains all the important information,
right there on the cardstock. We call this “self-contained” data, and it’s an important
concept in understanding document databases like CouchDB.

A Better Fit for Common Applications | 5

Syntax and Semantics
Most business cards contain roughly the same information—someone’s identity, an
affiliation, and some contact information. While the exact form of this information can
vary between business cards, the general information being conveyed remains the same,
and we’re easily able to recognize it as a business card. In this sense, we can describe a
business card as a real-world document.

Jan’s business card might contain a phone number but no fax number, whereas J.
Chris’s business card contains both a phone and a fax number. Jan does not have to
make his lack of a fax machine explicit by writing something as ridiculous as “Fax:
None” on the business card. Instead, simply omitting a fax number implies that he
doesn’t have one.

We can see that real-world documents of the same type, such as business cards, tend
to be very similar in semantics—the sort of information they carry—but can vary hugely
in syntax, or how that information is structured. As human beings, we’re naturally
comfortable dealing with this kind of variation.

While a traditional relational database requires you to model your data up front,
CouchDB’s schema-free design unburdens you with a powerful way to aggregate your
data after the fact, just like we do with real-world documents. We’ll look in depth at
how to design applications with this underlying storage paradigm.

Building Blocks for Larger Systems
CouchDB is a storage system useful on its own. You can build many applications with
the tools CouchDB gives you. But CouchDB is designed with a bigger picture in mind.
Its components can be used as building blocks that solve storage problems in slightly
different ways for larger and more complex systems.

Whether you need a system that’s crazy fast but isn’t too concerned with reliability
(think logging), or one that guarantees storage in two or more physically separated
locations for reliability, but you’re willing to take a performance hit, CouchDB lets you
build these systems.

There are a multitude of knobs you could turn to make a system work better in one
area, but you’ll affect another area when doing so. One example would be the CAP
theorem discussed in the next chapter. To give you an idea of other things that affect
storage systems, see Figures 1-2 and 1-3.

By reducing latency for a given system (and that is true not only for storage systems),
you affect concurrency and throughput capabilities.

6 | Chapter 1: Why CouchDB?

	Table of Contents
	Foreword
	Preface
	Using Code Examples
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	J. Chris
	Jan
	Noah

	Part I. Introduction
	Chapter 1. Why CouchDB?
	Relax
	A Different Way to Model Your Data
	A Better Fit for Common Applications
	Self-Contained Data
	Syntax and Semantics

	Building Blocks for Larger Systems
	CouchDB Replication

	Local Data Is King
	Wrapping Up

	Chapter 2. Eventual Consistency
	Working with the Grain
	The CAP Theorem
	Local Consistency
	The Key to Your Data
	No Locking
	Validation

	Distributed Consistency
	Incremental Replication
	Case Study

	Wrapping Up

	Chapter 3. Getting Started
	All Systems Are Go!
	Welcome to Futon
	Your First Database and Document
	Running a Query Using MapReduce
	Triggering Replication
	Wrapping Up

	Chapter 4. The Core API
	Server
	Databases
	Documents
	Revisions
	Documents in Detail
	Attachments

	Replication
	Wrapping Up

	Part II. Developing with CouchDB
	Chapter 5. Design Documents
	Document Modeling
	The Query Server
	Applications Are Documents
	A Basic Design Document
	Looking to the Future

	Chapter 6. Finding Your Data with Views
	What Is a View?
	Efficient Lookups
	Find One
	Find Many
	Reversed Results

	The View to Get Comments for Posts
	Reduce/Rereduce
	Lessons Learned

	Wrapping Up

	Chapter 7. Validation Functions
	Document Validation Functions
	Validation’s Context
	Writing One
	Type
	Required Fields
	Timestamps
	Authorship

	Wrapping Up

	Chapter 8. Show Functions
	The Show Function API
	Side Effect–Free
	Design Documents
	Querying Show Functions
	Design Document Resources
	Query Parameters
	Accept Headers

	Etags
	Functions and Templates
	The !json Macro
	The !code Macro

	Learning Shows
	Using Templates
	Writing Templates

	Chapter 9. Transforming Views with List
 Functions
	Arguments to the List Function
	An Example List Function
	List Theory
	Querying Lists
	Lists, Etags, and Caching

	Part III. Example Application
	Chapter 10. Standalone Applications
	Use the Correct Version
	Portable JavaScript
	Applications Are Documents
	Standalone
	In the Wild
	Wrapping Up

	Chapter 11. Managing Design Documents
	Working with the Example Application
	Installing CouchApp
	Using CouchApp
	Download the Sofa Source Code
	CouchApp Clone
	ZIP and TAR Files
	Join the Sofa Development Community on GitHub
	The Sofa Source Tree

	Deploying Sofa
	Pushing Sofa to Your CouchDB
	Visit the Application

	Set Up Your Admin Account
	Deploying to a Secure CouchDB

	Configuring CouchApp with .couchapprc

	Chapter 12. Storing Documents
	JSON Document Format
	Beyond _id and _rev: Your Document Data
	The Edit Page
	The HTML Scaffold

	Saving a Document
	Validation
	Save Your First Post

	Wrapping Up

	Chapter 13. Showing Documents in Custom
 Formats
	Rendering Documents with Show Functions
	The Post Page Template

	Dynamic Dates

	Chapter 14. Viewing Lists of Blog Posts
	Map of Recent Blog Posts
	Rendering the View as HTML Using a List Function
	Sofa’s List Function
	The Final Result

	Part IV. Deploying CouchDB
	Chapter 15. Scaling Basics
	Scaling Read Requests
	Scaling Write Requests
	Scaling Data
	Basics First

	Chapter 16. Replication
	The Magic
	Simple Replication with the Admin Interface
	Replication in Detail
	Continuous Replication
	That’s It?

	Chapter 17. Conflict Management
	The Split Brain
	Conflict Resolution by Example
	Working with Conflicts
	Deterministic Revision IDs
	Wrapping Up

	Chapter 18. Load Balancing
	Having a Backup

	Chapter 19. Clustering
	Introducing CouchDB Lounge
	Consistent Hashing
	Redundant Storage
	Redundant Proxies
	View Merging

	Growing the Cluster
	Moving Partitions
	Splitting Partitions

	Part V. Reference
	Chapter 20. Change Notifications
	Polling for Changes
	Long Polling
	Continuous Changes
	Filters
	Wrapping Up

	Chapter 21. View Cookbook for SQL Jockeys
	Using Views
	Defining a View
	Querying a View
	MapReduce Functions
	Map functions
	Reduce functions

	Look Up by Key
	Look Up by Prefix
	Aggregate Functions
	Get Unique Values
	Enforcing Uniqueness

	Chapter 22. Security
	The Admin Party
	Creating New Admin Users
	Hashing Passwords

	Basic Authentication
	Update Validations Again

	Cookie Authentication
	Network Server Security

	Chapter 23. High Performance
	Good Benchmarks Are Non-Trivial
	High Performance CouchDB
	Hardware
	An Implementation Note

	Bulk Inserts and Mostly Monotonic DocIDs
	Optimized Examples: Views and Replication

	Bulk Document Inserts
	Batch Mode
	Single Document Inserts
	Hovercraft
	Trade-Offs
	But…My Boss Wants Numbers!
	A Call to Arms

	Chapter 24. Recipes
	Banking
	Accountants Don’t Use Erasers
	Wrapping Up

	Ordering Lists
	A List of Integers
	A List of Floats

	Pagination
	Example Data
	A View
	Setup
	Slow Paging (Do Not Use)
	The dealbreaker

	Fast Paging (Do Use)
	Jump to Page

	Part VI. Appendixes
	Appendix A. Installing on Unix-like Systems
	Debian GNU/Linux
	Ubuntu
	Gentoo Linux
	Problems

	Appendix B. Installing on Mac OS X
	CouchDBX
	Homebrew
	MacPorts

	Appendix C. Installing on Windows
	Appendix D. Installing from Source
	Dependencies
	Debian-Based (Including Ubuntu) Systems
	Mac OS X

	Installing
	Security Considerations
	Running Manually
	Running As a Daemon
	SysV/BSD-Style Systems
	Mac OS X

	Troubleshooting

	Appendix E. JSON Primer
	Data Types
	Numbers
	Strings
	Booleans
	Arrays
	Objects
	Nulls

	Appendix F. The Power of B-trees

	Index

