
CPPTRAJ

Daniel R. Roe

February 22, 2019

https://github.com/Amber-MD/cpptraj

Contents

1 Introduction 6
1.1 Manual Syntax Format . 8

2 Running Cpptraj 8
2.1 Command Line Syntax . 8
2.2 Commands . 9
2.3 Getting Help . 10
2.4 Batch mode . 10
2.5 Interactive mode . 11
2.6 Trajectory Processing �Run� . 11

2.6.1 Actions and multiple topologies 11
2.7 Parallelization . 12

2.7.1 MPI Trajectory Parallelization 12
2.7.2 OpenMP Parallelization 12
2.7.3 CUDA Parallelization . 13

3 General Concepts 13
3.1 Units . 13
3.2 Atom Mask Selection Syntax . 14
3.3 Ranges . 16
3.4 Parameter/Reference Tagging . 16

4 Variables and Control Structures 17
4.1 for . 17
4.2 set . 18
4.3 show . 19

5 Data Sets and Data Files 19
5.1 Data Set Selection Syntax . 20
5.2 Data Set Math . 21

1

https://github.com/Amber-MD/cpptraj

6 Data File Options 23
6.1 Standard Data File Options . 24
6.2 Grace Data File Options . 25
6.3 Gnuplot Data File Options . 26
6.4 Amber REM Log Options . 26
6.5 Amber MDOUT Options . 27
6.6 Evecs File Options . 27
6.7 Vector psuedo-traj Options . 27
6.8 OpenDX �le options . 27
6.9 CCP4 �le options . 28
6.10 Charmm REPD log options . 28
6.11 Amber Constant pH Out options 28

7 Coordinates (COORDS) Data Set Commands 28
7.1 combinecrd . 29
7.2 crdaction . 30
7.3 createcrd . 30
7.4 crdout . 30
7.5 loadcrd . 30
7.6 loadtraj . 31
7.7 permutedihedrals . 31
7.8 reference . 33
7.9 rotatedihedral . 33

8 General Commands 33
8.1 activeref . 34
8.2 calc . 34
8.3 clear . 35
8.4 create . 35
8.5 createset . 35
8.6 data�le . 35
8.7 data�lter . 36
8.8 dataset . 36
8.9 debug | prnlev . 39
8.10 ensextension . 39
8.11 exit | quit . 39
8.12 go | run . 39
8.13 help . 39
8.14 list . 39
8.15 noexitonerror . 39
8.16 noprogress . 40
8.17 precision . 40
8.18 readdata . 40
8.19 readensembledata . 41
8.20 readinput . 41
8.21 removedata . 41

2

8.22 rst . 41
8.23 runanalysis . 42
8.24 select . 43
8.25 selectds . 43
8.26 sortensembledata . 43
8.27 write | writedata . 43
8.28 System Commands . 44

9 Topology File Commands 44
9.1 angleinfo | angles | printangles . 45
9.2 atominfo | atoms | printatoms . 45
9.3 bondinfo | bonds | printbonds . 46
9.4 change . 46
9.5 charge . 46
9.6 comparetop . 47
9.7 dihedralinfo | dihedrals | printdihedrals 47
9.8 mass . 47
9.9 molinfo . 48
9.10 parm . 48

9.10.1 PDB format: . 49
9.11 parmbox . 49
9.12 parminfo . 50
9.13 parmstrip . 50
9.14 parmwrite . 50
9.15 resinfo . 51
9.16 scaledihedralk . 51
9.17 solvent . 52

10 Trajectory File Commands 52
10.1 ensemble . 53
10.2 ensemblesize . 54
10.3 reference . 54
10.4 trajin . 55

10.4.1 Options for Amber NetCDF, Amber NC Restart, Amber
Restart: . 57

10.4.2 Options for CHARMM DCD: 57
10.5 trajout . 58

10.5.1 Options for pdb format: 59
10.5.2 Options for Amber ASCII format: 60
10.5.3 Options for Amber NetCDF format: 60
10.5.4 Options for Amber Restart/NetCDF Restart format: . . . 60
10.5.5 Options for CHARMM DCD: 61
10.5.6 Options for GROMACS TRX/XTC format: 61
10.5.7 Options for mol2 format: 61
10.5.8 Options for SQM input format: 61

3

11 Action Commands 62
11.1 angle . 65
11.2 areapermol . 65
11.3 atomiccorr . 66
11.4 atomic�uct | rmsf . 66
11.5 atommap . 68
11.6 autoimage . 69
11.7 average . 69
11.8 avgcoord . 70
11.9 bounds . 71
11.10box . 71
11.11center . 72
11.12check | checkoverlap | checkstructure 72
11.13checkchirality . 73
11.14closest | closestwaters . 74
11.15cluster . 75
11.16clusterdihedral . 75
11.17contacts . 76
11.18createcrd . 77
11.19createreservoir . 77
11.20density . 78
11.21di�usion . 79
11.22dihedral . 81
11.23dihedralscan . 81
11.24dipole . 81
11.25distance . 81
11.26drms | drmsd (distance RMSD) 82
11.27dssp . 84
11.28energy . 84
11.29esander . 86
11.30�lter . 87
11.31�xatomorder . 87
11.32�ximagedbonds . 88
11.33gist (Grid Inhomogeneous Solvation Theory) 88
11.34grid . 97
11.35hbond . 99
11.36image . 103
11.37jcoupling . 104
11.38lessplit . 105
11.39lie . 106
11.40lipidorder . 106
11.41lipidscd . 108
11.42makestructure . 108
11.43mask . 111
11.44matrix . 111
11.45mindist . 113

4

11.46minimage . 113
11.47molsurf . 113
11.48multidihedral . 114
11.49multivector . 115
11.50nastruct . 116
11.51nativecontacts . 120
11.52outtraj . 124
11.53pairdist . 125
11.54pairwise . 125
11.55principal . 126
11.56projection . 127
11.57pucker . 128
11.58radgyr | rog . 129
11.59radial | rdf . 130
11.60randomizeions . 131
11.61replicatecell . 132
11.62rms | rmsd . 132
11.63rms2d | 2drms . 135
11.64rmsavgcorr . 135
11.65rmsf | atomic�uct . 135
11.66rotate . 136
11.67rotdif . 137
11.68runavg | runningaverage . 137
11.69scale . 137
11.70secstruct . 137
11.71spam . 140
11.72setvelocity . 141
11.73stfcdi�usion . 142
11.74strip . 142
11.75surf . 143
11.76symmrmsd . 144
11.77temperature . 145
11.78trans | translate . 146
11.79unstrip . 146
11.80unwrap . 146
11.81vector . 147
11.82velocityautocorr . 149
11.83volmap . 150
11.84volume . 151
11.85watershell . 151

12 Analysis Commands 152
12.1 autocorr . 154
12.2 avg . 154
12.3 calcstate . 155
12.4 cluster . 157

5

12.5 cphstats . 166
12.6 corr | correlationcoe . 167
12.7 crank | crankshaft . 168
12.8 crd�uct . 168
12.9 crosscorr . 168
12.10curve�t . 169
12.11diagmatrix . 170
12.12divergence . 172
12.13�t . 172
12.14hist | histogram . 173
12.15integrate . 174
12.16ired . 175
12.17kde . 176
12.18lifetime . 177
12.19lowestcurve . 180
12.20meltcurve . 180
12.21modes . 180
12.22multicurve . 184
12.23multihist . 185
12.24phipsi . 185
12.25regress . 186
12.26remlog . 187
12.27rms2d | 2drms . 188
12.28rmsavgcorr . 189
12.29rotdif . 190
12.30runningavg . 194
12.31spline . 194
12.32statistics | stat . 195

12.32.1Torsion Analysis . 196
12.32.2Distance Analysis . 196
12.32.3Pucker Analysis . 197

12.33ti . 197
12.34timecorr . 198
12.35vectormath . 199
12.36wavelet . 200

13 Analysis Examples 203
13.1 Cartesian covariance matrix calculation and projection (PCA) . . 203
13.2 Dihedral covariance matrix calculation and projection for back-

bone phi/psi (PCA) . 204

1 Introduction

Cpptraj [1] (the successor to ptraj) is the main program in Amber for processing
coordinate trajectories and data �les. Cpptraj has a wide range of functionality,

6

and makes use of OpenMP/MPI to speed up many calculations, including pro-
cessing ensembles of trajectories and/or conducting multiple analyses in parallel
with MPI.[2]

Here are several notable features of cpptraj :

1. Trajectories with di�erent topologies can be processed in the same run.

2. Several actions/analyses in cpptraj are OpenMP parallelized; see section
2.7.2 for more details.

3. Trajectory and ensemble reads can be MPI parallelized.

4. Almost any �le read or written by cpptraj can be compressed (with the ex-
ception of the NetCDF trajectory format). So for example gzipped/bzipped
topology �les can be read, and data �les can be written out as gzip/bzip2
�les. Compression is detected automatically when reading, and is deter-
mined by the �lename extension (.gz and .bz2 respectively) on writing.

5. The format of output data �les can be speci�ed by extension. For example,
data �les can be written in xmgrace format if the �lename given has a
'.agr' extension. A trajectory can be written in DCD format if the '.dcd'
extension is used.

6. Multiple output trajectories can be speci�ed, and can be written during
action processing (as opposed to only after) via the outtraj command.
In addition, output �les can be directed to write only speci�c frames from
the input trajectories.

7. Multiple reference structures can be speci�ed. Speci�c frames from tra-
jectories may be used as a reference structure.

8. The rmsd action allows speci�cation of a separate mask for the reference
structure. In addition, per-residue RMSD can be calculated easily.

9. Actions that modify coordinates and topology such as the strip/closest
actions can often write an accompanying fully-functional stripped topology
�le.

10. Users usually are able to �ne-tune the output format of data �les declared
in actions using the �out� keyword (for example, the precision of the
numbers can be changed). In addition, users can control which data sets
are written to which �les (e.g. if two actions specify the same data �le
with the 'out' keyword, data from both actions will be written to that
data �le).

11. Users can manipulate data sets using mathematical expressions (with some
limitations), see 5.2 on page 21 for details.

12. There is some support for creating internal loops over e.g. mask expres-
sions and setting internal variables (see for , set , and show commands).

7

1.1 Manual Syntax Format

The syntax presented in this manual uses the following conventions:

<> Denotes a variable.

[] Denotes something is optional.

{|} Denotes several choices separated by the '|' character; one of the choices
must be speci�ed.

... Denotes the preceding option can be repeated.

Everything else is as printed.

2 Running Cpptraj

Cpptraj can be run in either �interactive mode� or in �batch mode�.

2.1 Command Line Syntax

cpptraj [-p <Top0>] [-i <Input0>] [-y <trajin>] [-x <trajout>]
[-ya <args>] [-xa <args>] [<file>]
[-c <reference>] [-d <datain>] [-w <dataout>] [-o <output>]
[-h | --help] [-V | --version] [--defines] [-debug <#>]
[--interactive] [--log <logfile>] [-tl]
[-ms <mask>] [-mr <mask>] [--mask <mask>] [--resmask <mask>]

* denotes a flag may be specified multiple times.

-p <Top0>* Load <Top0> as a topology file.

-i <Input0>* Read input from <Input0>.

-y <trajin>* Read from trajectory file <trajin>; same
as input 'trajin <trajin>'.

-x <trajout>* Write trajectory file <trajout>; same as
input 'trajout <trajout>'.

-ya <args>* Input trajectory file arguments.

-xa <args>* Output trajectory file arguments.

<�le>* A topology, input trajectory, or file
containing cpptraj input.

-c <reference>* Read <reference> as reference
coordinates; same as input 'reference <reference>'.

-d <datain>* Read data in from file <datain> ('readdata
<datain>').

-w <dataout> Write data from <datain> as file
<dataout> ('writedata <dataout>).

8

-o <output> Write CPPTRAJ STDOUT output to file
<output>.

-h | �help Print command line help and exit.

-V | �version Print version and exit.

�de�nes Print compiler defines and exit.

-debug <#> Set global debug level to <#>; same as
input 'debug <#>'.

�interactive Force interactive mode.

�log <log�le> Record commands to <logfile> (interactive
mode only). Default is 'cpptraj.log'.

-tl Print length of trajectories specified with '-y' to
STDOUT. The total number of frames is written out as
'Frames: <X>'

-ms <mask> Print selected atom numbers to STDOUT.
Selected atoms are written out as 'Selected= 1 2 3
...'

-mr <mask> : Print selected residue numbers to STDOUT.
Selected residues are written out as 'Selected= 1 2
3 ...'

�mask <mask> Print detailed atom selection to STDOUT.

�resmask <mask> : Print detailed residue selection to
STDOUT.

Note that unlike ptraj, in cpptraj it is not required that a topology �le be
speci�ed on the command line as long as one is speci�ed in the input �le with
the 'parm' keyword. Multiple topology/input �les can be speci�ed by use of
multiple '-p' and '-i' �ags. All topology and coordinate �ags will be processed
before any input �ags.

2.2 Commands

Input to cpptraj is in the form of commands, which can be categorized in to 2
types: immediate and queued. Immediate commands are executed as soon as
they are encountered. Queued commands are initialized when they are encoun-
tered, but are not executed until a Run is executed via a run or go command.
Actions, Analyses, and Trajectory commands (except reference) are queued
commands; however, they can also be run immediately via commands such as
crdaction , runanalysis, loadcrd , etc. See 7 on page 28 for more details.

Commands fall into seven categories:

General (Immediate) These commands are executed immediately when en-
tered.

System (Immediate) These are unix system commands (e.g. 'ls', 'pwd', etc).

9

Coords (Immediate) These commands are used to manipulate COORDS data
sets; see 7 on page 28 for more details.

Trajectory (Queued) These commands prepare cpptraj for reading or writing
trajectories during a Run.

Topology (Immediate) These commands are used to read, write, and modify
topology information.

Action (Queued) These commands specify actions that will be performed on
coordinate frames read in from trajectories during a Run.

Analysis (Queued) These commands specify analyses that will be performed
on data that has been either generated from a Run or read in from an
external source.

Control (Immediate) These commands set up control blocks that can be used
to e.g. loop over a set of commands.

In addition to normal commands, cpptraj now has the ability to perform certain
basic math operations, even on data sets. See 5.2 on page 21 for more details.

Commands in cpptraj can be read in from an input �le or from the interactive
command prompt. A '#' anywhere on a line denotes a comment; anything after
'#' will be ignored no matter where it occurs. A '\' allows the continuation of
one line to another. For example, the input:

Sample input
trajin mdcrd # This is a trajectory
rms first out rmsd.dat \

:1-10

Translates to:

trajin mdcrd
rms first out rmsd.dat :1-10

2.3 Getting Help

If in interactive mode, 'help <command>' can be used to get the associated
keywords as well as an abbreviated description of the command. Most com-
mands have a corresponding test which also serves as an example of how to use
the command. See $AMBERHOME/AmberTools/test/cpptraj/README for
more details.

2.4 Batch mode

In �batch� mode, cpptraj is executed from the command line with one or more
input �les containing commands to be processed or STDIN. The syntax of <in-
put �le> is similar to that of ptraj. Keywords specifying di�erent commands

10

are given one per line. Lines beginning with '#' are ignored as comments. Lines
can also be continued through use of the '\' character. This is the only allowed
mode for cpptraj.MPI.

2.5 Interactive mode

In �interactive mode� users can enter commands in a UNIX-like shell. Interactive
mode is useful for running short and simple analyses or for trying out new kinds
of analyses. If cpptraj is run with '�interactive', no arguments, or no speci�ed
input �le:

cpptraj
cpptraj --interactive
cpptraj <parm file>
cpptraj -p <parm file>

this brings up the interactive interface. This interface supports command his-
tory (via the up and down arrows) and tab completion for commands and �le
names. If no log �le name has been given (with '�log <log�le>'), all commands
used in interactive mode will be logged to a �le named 'cpptraj.log', which can
subsequently be used as input if desired. When starting cpptraj, command
histories will be read from any existing logs.

2.6 Trajectory Processing �Run�

Like ptraj, a trajectory processing �Run� is one of the main ways to run cpp-
traj. First the Run is set up via commands read in from an input �le or the
interactive prompt. Trajectories are then read in one frame at a time (or in
the case of ensemble processing all frames from a given step are read). Actions
are performed on the coordinates stored in the frame, after which any output
coordinates are written. At the end of the run, any data sets generated are
written, and any queued Analyses are performed.

2.6.1 Actions and multiple topologies

Since cpptraj supports multiple topology �les, during a Run actions are set up
every time the topology changes in order to recalculate things like what atoms
are in a mask etc. Actions that are not valid for the current topology are skipped
for that topology. So for example given two topology �les with 100 residues, if
the �rst topology �le processed includes a ligand named MOL and the second
one does not, the action:

distance :80 :MOL out D_80-to-MOL.dat

will be valid for the �rst topology but not for the second, so it will be skipped
as long as the second topology is active.

11

2.7 Parallelization

Cpptraj has many levels of parallelization that can be enabled via the '-mpi',
'-openmp', and/or '-cuda' con�gure �ags for MPI, OpenMP, and CUDA paral-
lelization respectively. At the highest level, trajectory and ensemble reads are
parallelized with MPI. In addition, certain time consuming actions have been
parallelized with OpenMP and/or CUDA.

Note that any combination of the '-openmp', '-cuda', and '-mpi' �ags may
be used to generate a hybrid MPI/OpenMP/CUDA binary; however this may
require additional runtime setup (e.g. setting OMP_NUM_THREADS for
OpenMP) to work properly and not oversubscribe cores.

2.7.1 MPI Trajectory Parallelization

Cpptraj has two levels of MPI parallelization for reading input trajectories.
The �rst is for 'trajin ' trajectory input, where the trajectory read is divided as
evenly as possible among all input frames. For example, if given two trajectories
of 1000 frames each and 4 MPI threads, thread 0 reads frames 1-500 of trajectory
1, thread 1 reads frames 501-1000 of trajectory 1, thread 2 reads frames 1-500
of trajectory 2, and thread 3 reads frames 501-1000 of trajectory 2.

The second is for 'ensemble' trajectory input, where the reading/processing/writing
of each member of the ensemble is divided up among MPI threads. The num-
ber of MPI threads must be a multiple of the ensemble size. If the number of
threads is greater than the ensemble size then the processing of each ensemble
member will be divided among MPI threads. For example, given an ensemble
of 4 trajectories and 8 threads, threads 0 and 1 are assigned to the �rst ensem-
ble trajectory, threads 2 and 3 are assigned to the second ensemble trajectory,
and so on. When using ensemble mode in parallel it is recommended that the
ensemblesize command be used prior to any ensemble command as this will
make set up far more e�cient.

In order to use the MPI version, Amber/cpptraj should be con�gured with
the '-mpi' �ag. You can tell if cpptraj has been compiled with MPI as it will
print 'MPI' in the title, and/or by calling 'cpptraj �de�nes' and looking for
'-DMPI'.

2.7.2 OpenMP Parallelization

Some of the more time-consuming actions/analyses in cpptraj have been paral-
lelized with OpenMP to take advantage of machines with multiple cores. In or-
der to use OpenMP parallelization Amber/cpptraj should be con�gured with the
'-openmp' �ag. You can easily tell if cpptraj has been compiled with OpenMP
as it will print 'OpenMP' in the title, and/or by calling 'cpptraj �de�nes' and
looking for '-D_OPENMP'. The following actions/analyses have been OpenMP
parallelized:

2drms/rms2d
atomiccorr

12

checkstructure
closest
cluster (pair-wise distance calculation and sieved frame restore only)
dssp/secstruct
energy
gist (non-bonded calculation)
hbond
kde
lipidscd
mask (distance-based masks only)
matrix (coordinate covariance matrices only)
minimage
radial
replicatecell
rmsavgcorr
spam
surf
velocityautocorr
volmap
watershell
wavelet

By default OpenMP cpptraj will use all available cores. The number of OpenMP
threads can be controlled by setting the OMP_NUM_THREADS environment
variable.

2.7.3 CUDA Parallelization

Some time-consuming actions in cpptraj have been parallelized with CUDA
to take advantage of machines with NVIDIA GPUs. In order to use CUDA
parallelization Amber/cpptraj should be con�gured with the '-cuda' �ag. You
can easily tell if cpptraj has been compiled with CUDA as it will print 'CUDA'
and details on the current graphics device in the title, and/or by calling 'cpptraj
�de�nes' and looking for '-DCUDA'. The following actions have been CUDA
parallelized:

closest
watershell

3 General Concepts

3.1 Units

Cpptraj uses the AKMA system of units. The execption is time, which is
typically expressed in ps (except where noted).

13

Variable Unit

Length Angstrom
Energy kcal/mol
Mass AMU
Charge electron
Time ps (typically)
Force kcal/mol*Angstrom

3.2 Atom Mask Selection Syntax

The mask syntax is similar to ptraj. Note that the characters ':', '@', and '*'
are reserved for masks and should not be used in output �le or data set names.
All masks are case-sensitive. Either names or numbers can be used. Masks
can contain ranges (denoted with '-') and comma separated lists. The logical
operands '&' (and), '|' (or), and '!' (not) are also supported.

The syntax for elementary selections is the following:

@{atom numlist} e.g. '@12,17', '@54-85', '@12,54-85,90'

@{atom namelist} e.g. '@CA', '@CA,C,O,N,H'

@%{atom type name} e.g. '@%CT'

@/{atom_element_name} e.g. '@/N'

:{residue numlist} e.g. ':1-10', ':1,3,5', ':1-3,5,7-9'

:{residue namelist} e.g. ':LYS', ':ARG,ALA,GLY'

:/{chain id} e.g. ':/B', ':/A,D'. Requires chain ID information be present in
the topology.

:;{pdb residue number} e.g. ':;2-4,8'. Requires a PDB loaded as topology,
or Amber topology with embedded PDB information (see ?? on page ??).

^{molecule numlist} e.g. '^1-10', ':23,84,111'

<mask><distance op><distance> Selection by distance, see below.

Several wildcard characters are supported:

'*' Zero or more characters.

'=' Same as '*'

'?' One character.

The wildcards can also be used with numbers or other mask characters, e.g.
':?0' means �:10,20,30,40,50,60,70,80,90�, ':*' means all residues and '@*' means
all atoms.

Compound expressions of the following type are allowed:

14

:{residue numlist | namelist}@{atom namelist | numlist}

and are processed as:

:{residue numlist | namelist} & @{atom namelist | numlist}

e.g. ':1-10@CA' is equivalent to �:1-10 & @CA�.
More examples:

:ALA,TRP All alanine and tryptophan residues.

:5,10@CA CA carbon in residues 5 and 10.

:*&!@H= All non-hydrogen atoms (equivalent to "!@H=").

@CA,C,O,N,H All backbone atoms.

!@CA,C,O,N,H All non-backbone atoms (=sidechains for proteins only).

:1-500@O&!(:WAT|:LYS,ARG) All backbone oxygens in residues 1-500 but
not in water, lysine or arginine residues.

^1-2:ASP All residues named 'ASP' in the �rst two molecules.

:/A,D@CA All atoms named 'CA' in chains A and D.

Distance-based Masks

There are two very important things to keep in mind when using distance based
masks:

1. Distance-based masks that update each frame are currently only supported
by the mask action.

2. Selection by distance for everything but themask action requires de�ning
a reference frame with reference ; distances are then calculated using the
speci�ed reference frame only. This reference frame can be changed using
the activeref command.

The syntax for selection by distance is a <mask> expression followed by a
<distance operator> followed by a <distance> (which is in Angstroms).
The <distance operator> consists of 2 characters: '<' (within) or '>' (with-
out) followed by either '^' (molecules), ':' (residues), or '@' (atoms). For
example, '<:3.0' means �residues within 3.0 Angstroms� etc. For residue- and
molecule-based distance selection, if any atom in that residue/molecule matches
the given distance criterion, the entire residue/molecule is selected.

In plain language, the entire distance mask can be read as �Select<distance
operator> <distance> of <mask>�. So for example, the mask expression:

:11-17<@2.4

15

Means �Select atoms within 2.4 Å distance of atoms selected by ':11-17' (residues
numbered 11 through 17)�.

To strip everything outside 3.0 Å (i.e. without 3.0 Å) from residue 4 using
speci�ed reference coordinates:

reference mol.rst7
trajin mol.rst7
strip !(:4<:3.0)

3.3 Ranges

For several commands some arguments are ranges (e.g. 'trajout onlyframes
<range>', 'nastruct resrange <range>', 'rmsd perres range <range>'); THESE
ARE NOT ATOMMASKS. They are simple number ranges using '-' to spec-
ify a range and ',' to separate di�erent ranges. For example 1-2,4-6,9 speci�es
1 to 2, 4 to 6, and 9, i.e. '1 2 4 5 6 9'.

3.4 Parameter/Reference Tagging

Parameter and reference �les may be 'tagged' (i.e. given a nickname); these tags
can then be used in place of the �le name itself. A tag in cpptraj is recognized
by being bounded by brackets ('[' and ']'). This can be particularly useful when
reading in many parameter or reference �les. For example, when reading in
multiple reference structures:

trajin Test1.crd
reference 1LE1.NoWater.Xray.rst7 [xray]
reference Test1.crd lastframe [last]
reference Test2.crd 225 [open]
rms Xray ref [xray] :2-12@CA out rmsd.dat
rms Last ref [last] :2-12@CA out rmsd.dat
rms Open ref [open] :2-12@CA out rmsd.dat

This de�nes three reference structures and gives them tags [xray], [last], and
[open]. These reference structures can then be referred to by their tags instead
of their �lenames by any action that uses reference structures (in this case the
RMSD action).

Similarly, this can be useful when reading in multiple parameter �les:

parm tz2.ff99sb.tip3p.truncoct.parm7 [tz2-water]
parm tz2.ff99sb.mbondi2.parm7 [tz2-nowater]
trajin tz2.run1.explicit.nc parm [tz2-water]
reference tz2.dry.rst7 parm [tz2-nowater] [tz2]
rms ref [tz2] !(:WAT) out rmsd.dat

This de�nes two parm �les and gives them tags [tz2-water] and [tz2-nowater],
then reads in a trajectory associated with one, and a reference structure associ-
ated with the other. Note that in the 'reference' command there are two tags;

16

the �rst goes along with the 'parm' keyword and speci�es what parameter �le
the reference should use, the second is the tag given to the reference itself (as
in the previous example) and is referred to in the subsequent RMSD action.

4 Variables and Control Structures

As of version 18, CPPTRAJ has limited support for �script� variables and 'for'
loops. Script variables are referred to by a dollar sign ('$') pre�x and are replaced
when they are processed. Note that to use script variables in CPPTRAJ input
that is also inside e.g. a BASH script, they can be escaped with the '\' character,
e.g.

#!/bin/bash
TOP=MyTop.parm7
cpptraj <�<EOF
set topname=$TOP
parm \$topname
EOF

Note that regular CPPTRAJ 1D Data Sets that contain a single value can be
used as script variables (if the Data Set contains more than 1 value only the
�rst value will be used).

Command Description

for Create a 'for' loop.
set Set or update a script variable.
show Show all current script variables and their values.

4.1 for

for { {atoms|residues|molecules|molfirstres|mollastres}
<var> inmask <mask> [parm <name> | parmindex <#> | <#>] ... |

<var>=<start>;[<var><end OP><end>;]<var><increment OP>[<value>] ... }
END KEYWORD: 'done'

Available 'end OP' : '<' '>'
Available 'increment OP' : '++', '--', '+=', '-='

atoms|residues|molecules|mol�rstres|mollastres <var> inmask <mask>
Loop over atoms/residues/molecules/first residue in
molecules/last residue in molecules selected by the
given mask expression, set as script variable <var>.

parm <name> | parmindex <#> <#> Select
topology that <mask> should be based on (default
first topology).

<var>=<start>;[<var><end OP><end>;]<var><increment OP>[<value>]
Loop over integer script variable <var> starting

17

from <start>, optionally ending at <end>, increment
by <value>.

Create a for loop using one or more mask expressions or integers. Loops can be
nested, but currently inner loops cannot refer to output loop variables. Integer
loops may be used without an end condition, but in that case at least one
descriptor in the loop should have an end condition or refer to a mask. Loops
are ended by the done keyword. Note that unlike C-style for loops the variable
is not incremented on the �nal execution, so the �nal value of <var> will be
<end> (or the last selection in the mask).

For example:

for atoms A0 inmask :1-3@CA i=1;i++
distance d$i :TCS $A0 out $i.dat

done

This loops over all atoms in the mask expression ':1-3@CA' (all atoms named
CA in residues 1 to 3) and creates a variable named 'i' that starts from 1 and is
incremented by 1 each iteration. Inside the loop, the mask selection is referred to
by $A0 and the integer by $i. This is equivalent to doing 3 distance commands
like so:

distance d1 :TCS :1@CA out 1.dat
distance d2 :TCS :2@CA out 2.dat
distance d3 :TCS :3@CA out 3.dat

4.2 set

set { <variable> <OP> <value> |
<variable> <OP> {atoms|residues|molecules} inmask <mask>

[parm <name> | parmindex <#> | <#>]
<variable> <OP> trajinframes }
Available <OP> : '=', '+='

<variable> <OP> <value> Set or append a script
variable.

<variable> <OP> {atoms|residues|molecules} inmask <mask>
Set/append a script variable to/by the total number
of atoms/residues/molecules selected by given mask
expression.

parm <name> | parmindex <#> | <#> Topology to
which mask should correspond (default first).

<variable> <OP> trajinframes Set/append a script
variable to/by the total number of frames in
trajectories currently loaded by trajin commands.

18

Set (<OP> = '=') or append (<OP> = '+=') a script variable. Script variables
are referred to in CPPTRAJ input by using a dollar sign '$' pre�x.

For example, the following input will print info for the last 10 atoms in a
topology to 'last10.dat':

set Natom = atoms inmask *
last10 = $Natom - 10
show
atoms "@$last10 - $Natom" out last10.dat

4.3 show

show

Show all current script variables and their values.

5 Data Sets and Data Files

In cpptraj, Actions and Analyses can generate one or more data sets which are
available for further processing. For example, the distance command creates
a data set containing distances vs time. The data set can be named by the
user simply by specifying a non-keyword string as an additional argument. If
no name is given, a default one will be generated based on the action name and
data set number. For example:

distance d1-2 :1 :2 out d1-2.dat

will create a data set named �d1-2�. If a name is not speci�ed, e.g.:

distance :1 :2 out d1-2.dat

the data set will be named �Dis_00000�.
Data �les are created automatically by most commands, usually via the

�out� keyword. Data �les can also be explicitly created with thewrite/writedata
and create commands. Data can also be read in from �les via the readdata
command. Cpptraj currently recognizes the formats listed in 1, although it can-
not write in all formats. In addition, a data set must be valid for the data �le
format. For example, 3D data (such as a grid) can be written to an OpenDX
format �le but not a Grace format �le.

The default �le format is called 'Standard', which simply has data in columns,
like ptraj, although multiple data sets can be directed to the same output �le.
The format of a �le can be changed either by specifying a recognized keyword
(either on the command line itself or later via a 'data�le' command) or by giving
the �le an extension corresponding to te format, so '�lename.agr' will output
in Grace format, and '�lename.gnu' will output in Gnuplot contour, and so on.
The xmgrace/gnuplot output is particularly nice for the secstruct sumout and

19

Format Filename Extensions Keyword Valid Dimensions Notes

Standard .dat dat 1D, 2D, 3D
Grace .agr, .xmgr grace 1D
Gnuplot .gnu gnu 1D, 2D
Xplor .xplor, .grid xplor 3D

OpenDX .dx opendx 3D
Amber REM log .log remlog - Read Only
Amber MDOUT .mdout mdout - Energy information, Read Only
Amber Evecs .evecs evecs Modes data set only

Amber Constant pH output .cpout cpout pH data only
Vector pseudo-traj .vectraj vectraj Vector data set only. Write Only
Gromacs XVG .xvg xvg - Read Only

CCP4 .ccp4 ccp4 3D
Charmm REPD log .exch charmmrepd - Read Only
Charmm Output .charmmout charmmout - Energy information, Read Only

Table 1: DataFile formats recognized by cpptraj. 'Valid Dimensions' shows what
dimensions the format is valid for (e.g. you cannot write a 1D data set with
OpenDX format).

rmsd perresout �les. Additional options for data �les can be found in 6 on
page 23.

Any action using the �out� keyword will allow data sets from separate com-
mands to be written into the same �le. For example, the commands:

dihedral phi :1@C :2@N :2@CA :2@C out phipsi.dat
dihedral psi :2@N :2@CA :2@C :3@N out phipsi.dat

will assign the �phi� and �psi� data sets generated from each action to the stan-
dard data output �le �phipsi.dat�:

#Frame phi psi

5.1 Data Set Selection Syntax

Many analysis commands can be used to analyze multiple data sets. The general
format for selecting data sets is:

<name>[<aspect>]:<index>

The '*' character can be used as a wild-card for entire names (no partial
matches).

� <name>: The data set name, usually speci�ed in the action (e.g. in
'distance d0 @1 @2' the data set name is �d0�).

20

� <aspect>: Optional; this is set for certain data sets internally in or-
der to easily select subsets of data. The brackets are required. For
example, when using 'hbond series', both solute-solute and solute-solvent
hydrogen bond time series may be generated. To select all solute-solute
hydrogen bonds one would use the aspect �[solutehb]�; to select solute-
solvent hydrogen bonds the aspect �[solventhb]� would be used. Aspects
are hard-coded and are listed in the commands that use them.

� <index>: Optional; for actions that generate many data sets (such as
'rmsd perres') an index is used. Depending on the action, the index may
correspond to atom #s, residue #s, etc. A number range (comma and/or
dash separated) may be used.

For example: to select all data sets with aspect �[shear]� named NA_00000:

NA_00000[shear]

To select all data sets with aspect �[stagger]� with any name, indices 1 and 3:

*[stagger]:1,3

In ensemble mode, data set selection has additional syntax:

<name>[<aspect>]:<index>%<member>

Where <member> is the ensemble member number starting from 0.

5.2 Data Set Math

As of version 15, cpptraj can perform basic math operations, even on data sets
(with some limitations). Currently recognized operations are:

Operation Symbol

Minus -
Plus +
Divide /
Multiply *
Power ^
Negate -
Assign =

Several functions are also supported:

21

Function Form

Square Root sqrt()
Exponential exp()

Natural Logarithm ln()
Absolute Value abs()

Sine sin()
Cosine cos()
Tangent tan()

Summation sum()
Average avg()

Standard Deviation stdev()
Minimum min()
Maximum max()

Numbers can be expressed in scienti�c notation using �E� notation, e.g. 1E-5
= 0.00001. The parser also recognizes PI as the number pi. Expressions can also
be enclosed in parentheses. So for example, the following expression is valid:

> 1 - ln(sin(PI/4) * 2)^2
Result: 0.879887

Results of numerical calculations like the above can be assigned to a variable
(essentially a data set of size 1) for use in subsequent calculations, e.g.

> R = 1 - ln(sin(PI/4) * 2)^2
Result stored in 'R'
> R + 1 Result: 1.879887

Data sets can be speci�ed in expressions as well. Currently data sets in an
expression must be of the same type and only 1D, 2D, and 3D data sets are
supported. Functions are applied to each member of the data set. So for exam-
ple, given two 1D data sets of the same size named D0 and D1, the following
expression:

> D2 = sqrt(D0) + D1

would take the square root of each member of D0, add it to the corresponding
member of D1, and assign the result to D2. The following table lists which
operations are valid for data set types. If a type is not listed it is not supported:

Data Set Type Supported Ops Supported Funcs Notes

1D (integer, double, �oat) All All
1D (vector) +, -, *, /, = None '*' is dot product
2D (matrices) +, -, /, *, = sum, avg, stdev, min, max
3D (grids) +, -, /, *, = sum, avg, stdev, min, max

22

6 Data File Options

Data �le output can be handled multiple ways in cpptraj. Output data �les can
be created by Actions/Analyses/Commands, or can be explicitly created with
writedata (8.27 on page 43) or create (8.4 on page 35) commands. Reading
data from �les is only done via the readdata command (8.18 on page 40).

In general, data �les which have been declared with an 'out' keyword will
recognize data �le write keywords on the same command line. For example,
the 'time' argument can be passed directly to the output from a distance
command:

distance d0 :1 :2 out d0.agr time 0.001

The data �le format can be changed from standard implicitly by using speci�c
�lename extensions or keywords. If the extension is not recognized or no keyword
is give the default format is 'Standard'. Keywords and extensions for data �le
formats recognized by cpptraj are shown in 1. Note that the use of certain
options may be restricted for certain data �le formats. These options can also
be passed to data �les via the data�le command (8.6 on page 35).

[<format keyword>]
[{xlabel|ylabel|zlabel} <label>] [{xmin|ymin|zmin} <min>] [sort]
[{xstep|ystep|zstep} <step>] [time <dt>] [prec <width>[.<precision>]]
[xprec <width>[.<precision>]] [xfmt {double|scientific|general}]
[noensextension]

{xlabel | ylabel | zlabel} <label> Set the x-axis label
for the specified datafile to <label>. For regular
data files this is the header for the first column
of data. If the data is at least 2-dimensional
'datafile ylabel <label>' will likewise set the
y-axis label.

{xmin | ymin | zmin} <min> Set the starting X
coordinate value to <min>. If the data is at least
2-dimensional 'datafile ymin <min>' will likewise
set the starting Y coordinate value.

sort Sort data sets prior to write. Ordering is by
name, aspect, then index (all descending).

{xstep | ystep | zstep} <step> Multiply each frame
number by <step> (x coordinates). If the data is at
least 2-dimensional 'datafile ystep <step>' will
likewise multiply y coordinates by <step>.

time <dt> Equivalent to the ptraj argument 'time' that
could be specified with many actions. Multiplies
frame numbers (x-axis) by <dt>.

23

prec <width>[.<precision>] Change the output format
width (and optionally precision) of all sets
subsequently added to the data file (i.e. does not
change the precision of any data sets currently in
the file). For example,

prec 12.4
prec 10

xprec <width>[.<precision>] Change output ordinate
width and precision.

xfmt {double|scienti�c|general} Change output ordinate
format.

[noensextension] Omit ensemble extension in ensemble
processing mode. NOTE: THIS OPTION HAS NOT BEEN
FULLY TESTED IN PARALLEL.

6.1 Standard Data File Options

Write

[invert] [noxcol] [noheader] [square2d] [nosquare2d]

invert Normally, data is written out with X-values
pertaining to frames (i.e. data over all
trajectories is printed in columns). This command
flips that behavior so that X-values pertain to data
sets (i.e. data over all trajectories is printed in
rows).

noxcol Prevent printing of indices (i.e. the #Frame
column in most datafiles) for the specified
datafile. Useful e.g. if one would like a 2D plot
such as phi vs psi. For example, given the input:

dihedral phi :1@C :2@N :2@CA :2@C out phipsi.dat
dihedral psi :2@N :2@CA :2@C :3@N out phipsi.dat
datafile phipsi.dat noxcol

Cpptraj will write a 2 column datafile containing
only phi and psi, no frame numbers will be written.

noheader Prevent printing of header line (e.g.
'#Frame D1') at the beginning of data file.

square2d Write 2D data as a square matrix, e.g.:

<1,1> <2,1> <3,1>
<1,2> <2,2> <3,2>

nosquare2d Write 2D data in 3 columns as:

<X> <Y> <Value>

24

Read

[index <col>] [read2d] [vector] [mat3x3]

index <col> Use column <col> (starting from 1) as index
column (1D data only).

read1d Read data as 1D data sets (default).

read2d Read data as 2D square matrix.

vector Read data as vector. If indices are present they
will be skipped. Assume first 3 columns after the
index volumn are vector X, Y, and Z, and (if
present) the next 3 columns contain vector origin X,
Y, and Z.

mat3x3 Read data as 3x3 matrix. If indices are present
they will be skipped. Assume matrices are in row
major order on each line, i.e. M(1,1) M(1,2) ...
M(3,2) M(3,3).

By default, standard data �les are assumed to contain 1D data in columns. Data
set legends will be read in if the �le has a header line (denoted by '#'). Columns
labeled '#Frame' are automatically considered the 'index' column and skipped.
Data sets are stored as <name>:<idx> where <name> is the given data set
name (the �le name if not speci�ed) and <idx> corresponds to the column
the data was read from starting from 1. Cpptraj assumes the data increases
monotonically and will automatically attempt to determine the dimensions of
the data set(s); a warning will be printed if this is not successful.

6.2 Grace Data File Options

For more information on Grace see http://plasma-gate.weizmann.ac.il/Grace/.

Write

[invert] [xydy]

invert Normally, data is written out with X-values
pertaining to frames (i.e. data over all
trajectories is printed in columns). This command
flips that behavior so that X-values pertain to data
sets.

xydy Combine consecutive pairs of sets into XYDY sets.

Read

Cpptraj will read set legends from grace �les, and data sets are stored as
<name>:<idx> where <name> is the given data set name (the �le name if
not speci�ed) and <idx> corresponds to the set number the data was read from
starting from 0.

25

http://plasma-gate.weizmann.ac.il/Grace/

6.3 Gnuplot Data File Options

For more information on these options it helps to look at the PM3D options in
the Gnuplot manual (see http://www.gnuplot.info/).

Write

[nolabels] [usemap] [pm3d] [nopm3d] [jpeg] [noheader]
[{xlabels|ylabels|zlabels} <labellist>]

nolabels Do not print axis labels.

usemap pm3d output with 1 extra empty row/col (may
improve look).

pm3d Normal pm3d map output.

nopm3d Turn off pm3d

jpeg Plot will write to a JPEG file when used with
gnuplot.

binary Plot will be written in binary format.

noheader Do not format plot; data output only.

palette <arg> Change gnuplot pm3d palette to <arg>:

'rgb' Red, yellow, green, cyan, blue, magenta, red.

'kbvyw' Black, blue, violet, yellow, white.

'bgyr' Blue, green, yellow, red.

'gray' Grayscale.

xlabels|ylabels|zlabels <labellist> Set x, y, or z axis
labels with comma-separated list, e.g. 'xlabels
X1,X2,X3'.

6.4 Amber REM Log Options

Note that multiple REM logs can be speci�ed in a single readdata command.
See 12.26 on page 187 for more on replica log analysis.

Read

[nosearch] [dimfile <file>] [crdidx <crd indices>]

[nosearch] If specified do not automatically search for
MREMD dimension logs.

[dim�le <�le>] remd.dim file for processing MREMD logs.

[crdidx <crd indices>] Use comma-separated list of
indices as the initial coordinate indices (H-REMD
only). For example (4 replicas):

crdidx 4,2,3,1

26

http://www.gnuplot.info/

6.5 Amber MDOUT Options

Note that multiple MDOUT �les can be speci�ed in a single readdata com-
mand.

6.6 Evecs File Options

Read

[ibeg <firstmode>] [iend <lastmode>]

ibeg <�rstmode> Number of the first mode (or principal
component) to read from evecs file. Default 1.

iend <lastmode> Number of the last mode (or principal
component) to read from evecs file. Default is to
read all for newer evecs files (generated by cpptraj

version > 12), 50 for older evecs files.

6.7 Vector psuedo-traj Options

This can be used to write out a representation of a vector data set which can
then be visualized. See 11.81 on page 147 for more on generating vector data
sets.

Write

[trajfmt <format>] [parmout <file>] [noorigin]

trajfmt <format> Output pseudo-trajectory format.
See 10 on page 52 for trajectory format keywords.

parmout <�le> File to write pseudo-trajectory topology
to.

[noorigin] Do not write vector origin coordinates.

6.8 OpenDX �le options

Write

[bincenter] [gridwrap] [gridext]

bincenter Center grid points on bin centers instead of
corners.

gridwrap Like 'bincenter', but also wrap grid density.
Useful when grid encompasses unit cell.

gridext Like 'bincenter', but also print extra layer of
empty bins.

27

6.9 CCP4 �le options

Write

[title <title>]

[title <title>] Set CCP4 output title.

6.10 Charmm REPD log options

Read

[nrep <#>] [crdidx <crd indices>]

nrep <#> Total number of replicas.

crdidx <crd indices> Comma-separated list of indices to
use as initial coordinate indices.

6.11 Amber Constant pH Out options

Read

cpin <file>

cpin <�le> Constant pH input (CPIN) file name.

Note that when reading in constant pH data the data set aspect will be set to
the residue name and the index will be set to the residue number. When reading
in constant pH REMD data the data is unsorted, and sortensembledata should
be used to create sorted constant pH data sets (see 8.26 on page 43).

7 Coordinates (COORDS) Data Set Commands

Coordinate I/O tends to be the most time-consuming part of trajectory anal-
ysis. In addition, many types of analyses (for example two-dimensional RMSD
and cluster analysis) require using coordinate frames multiple times. To sim-
plify this, trajectory coordinates may be saved as a separate data set via the
loadcrd command or createcrd action. Any action can then be performed on
the COORDS data set with the crdaction command. The crdout command
can be used to write coordinates to an output trajectory (similar to trajout).

Although COORDS data sets store everything internally with single-precision,
they can still use a large amount of memory. Because of this there is a specialized
type of COORDS data set called a TRAJ data set (trajectory), which functions
exactly like a COORDS data set except all data is stored on disk. TRAJ data
sets can be created with the loadtraj command. TRAJ data sets cannot be
modi�ed.

There are several analyses that can be performed using COORDS data sets,
either as part of the normal analysis list or via the runanalysis command.
Note that while these analyses can be run on speci�ed COORDS data sets, if

28

one is not speci�ed a default COORDS data set will be created, made up of
frames from trajin commands.

As an example of where this might be useful is in the calculation of atomic
positional �uctuations. Previously this required two steps: one to generate an
average structure, then a second to rms-�t to that average structure prior to
calculating the �uctuations. This can now be done in one pass with the following
input:

parm topology.parm7
loadcrd mdcrd.nc
Generate average structure PDB, @CA only
crdaction mdcrd.nc average avg.pdb @CA
Load average structure PDB as reference
parm avg.pdb
reference avg.pdb parm avg.pdb
RMS-fit to average structure PDB
crdaction mdcrd.nc rms reference @CA
Calculate atomic fluctuations for @CA only
crdaction mdcrd.nc atomicfluct out fluct.dat bfactor @CA

The following COORDS data set commands are available:

Command Description

combinecrd Combine two or more COORDS sets.
crdaction Run a single Action on a COORDS set.
crdout Write a COORDS set to a �le.

createcrd (Action) Create a COORDS set during a Run.
loadcrd Create or append to a COORDS set from a �le.
loadtraj Create special COORDS set where frames remain on disk.

permutedihedrals Rotate speci�ed dihedral(s) in given COORDS set by speci�c interval or to random values.
reference Load a single trajectory frame as a reference.

rotatedihedral Rotate speci�ed dihedral to speci�ed value or by given increment.

7.1 combinecrd

combinecrd <crd1> <crd2> ... [parmname <topname>] [crdname <crdname>]

<crdX> COORDS data set to combine, specify 2 or more.

[parmname <topname>] Name of combined Topology.

[crdname <crdname>] Name of combined COORDS data set.

Combined two or more COORDS data sets into a single COORDS data set.
Note that the resulting topology will most likely not be usable for MD simu-
lations. Box information will be retained - the largest box dimensions will be
used.

29

For example, to load two MOL2 �les as COORDS data sets, combine them,
and write them out as a single MOL2:

loadcrd Tyr.mol2 CRD1
loadcrd Pry.mol2 CRD2
combinedcrd CRD1 CRD2 parmname Parm-1-2 crdname CRD-1-2
crdout CRD-1-2 Tyr.Pry.mol2

7.2 crdaction

crdaction <crd set> <actioncmd> [<action args>] [crdframes <start>,<stop>,<offset>]

Perform action <actioncmd> on COORDS data set <crd set>. A subset of
frames in the COORDS data set can be speci�ed with 'crdframes'.

For example, to calculate RMSD for a previously created COORDS data set
named crd1 using frames 1 to the last, skipping every 10:

crdaction crd1 rmsd first @CA out rmsd-ca.agr crdframes 1,last,10

7.3 createcrd

This command is actually an Action that can be used to create COORDS data
sets during trajectory processing, see 11.18 on page 77.

7.4 crdout

crdout <crd set> <filename> [<trajout args>] [crdframes <start>,<stop>,<offset>]

Write COORDS data set <crd set> to trajectory named <�lename>. A subset
of frames in the COORDS data set can be speci�ed with 'crdframes'.

For example, to write frames 1 to 10 from a previously created COORDS
data set named �crd1� to separate PDB �les:

crdout crd1 crd1.pdb multi crdframes 1,10

7.5 loadcrd

loadcrd <filename> [parm <parm> | parmindex<#>] [<trajin args>] [name <name>]

Immediately load trajectory <�lename> as a COORDS data set named <name>
(default base name of <�lename>). If <name> is already present the coordi-
nates will be appended to the existing data set.

For example, to load frames from trajectories named 'traj1.nc' and 'traj2.nc'
into a COORDS data set named Crd1:

30

loadcrd traj1.nc name Crd1
loadcrd traj2.nc name Crd2

7.6 loadtraj

loadtraj name <setname> [<filename>]

This command functions in two ways. If <�lename> is not provided, all cur-
rently loaded input trajectories (from trajin commands) are added to TRAJ
data set named <setname>. Note that if the input trajectory list is
cleared (via 'clear trajin') this will invalidate the TRAJ data set. In
addition, currently all trajectories must have the same number of atoms. Oth-
erwise add trajectory <�lename> to TRAJ data set <setname>.

TRAJ data sets cannot be modi�ed.

7.7 permutedihedrals

permutedihedrals crdset <COORDS set> resrange <range> [{interval | random}]
[outtraj <filename> [<outfmt>]] [crdout <output COORDS>] [<dihedral types>]

Options for 'random':
[rseed <rseed>] [out <# problems file> [<set name>]]
[check [cutoff <cutoff>] [rescutoff <rescutoff>] [checkallresidues]

[backtrack <backtrack>] [increment <increment>] [maxfactor <max_factor>]]
Options for 'interval':

<interval deg>
<dihedral types> = alpha beta gamma delta epsilon zeta nu1 nu2 h1p c2p chin phi psi chip omega

crdset <COORDS set> COORDS data set to operate on.

resrange <range> Residue range to search for
dihedrals.

interval Rotate found dihedrals by <interval>. This is
done in an ordered fashion so that every combination
of dihedral rotations is sampled at least once.

random Rotate each found dihedral randomly.

[outtraj <�lename>] Trajectory file to write
coordinates to.

[<outfmt>] Trajectory file format.

[crdout <output COORDS>] COORDS data set to write
coordinates to.

<dihedral type> One or more dihedral types to search
for.

Options for 'interval:

<interval deg> Amount to rotate dihedral by each step.

31

Options for 'random':

[rseed <rseed>] Random number seed.

[out <# problems �le>] File to write number of
problems (clashes) each frame to.

[<set name>] Number of problems data set name.

[check] Check randomly rotated structure for clashes.

[cuto� <cuto�>] Atom cutoff for checking for
clashes (default 0.8 Å).

[rescuto� <cuto�>] Residue cutoff for checking for
clashes (defualt 10.0 Å).

[checkallresidues] If specified all residues checked
for clashes, otherwise only residues up to the
currently rotated dihedral check.

[backtrack <backtrack>] If a clash is encountered
at dihedral N and cannot be resolved, go to
dihedral N-<backtrack> to try and resolve the
clash (default 4).

[increment <increment>] If a clash is encountered,
first attempt to rotate dihedral by increment to
resolve it; if it cannot be resolved by a full
rotation the calculation will backtrack (default
1).

[maxfactor <max_factor>] The maximum number of
total attempted rotations will be <max_factor> *
<total # of dihedrals> (default 2).

Create a trajectory by rotating speci�ed dihedrals in a structure by regular in-
tervals (interval), or create 1 structure by randomly rotating speci�ed dihedrals
(random). When randomly rotating dihedrals steric clashes will be checked if
check is speci�ed; in such cases the algorithm will attempt to resolve the clash
as best it can. If clashes are not being resolved you can increase the number of
rotation attempts cpptraj will make by increasing maxfactor.

For example, to rotate all backbone dihedrals in a protein with coordinates
in a �le named tz2.rst7 in -120 degree intervals and write the resulting trajectory
in Amber format to rotations.mdcrd:

reference tz2.rst7 [TZ2]
permutedihedrals crdset [TZ2] interval -120 outtraj rotations.mdcrd phi psi

To randomly rotate backbone dihedrals for the same structure and write to �le
random.mol2 in MOL2 format:

reference tz2.rst7 [TZ2]
permutedihedrals crdset [TZ2] random rseed 1 check maxfactor 10 phi psi \

outtraj random.mol2 multi

32

7.8 reference

Reference coordinates can now be used and manipulated like COORDS data
sets. See 10.3 on page 54 for command syntax.

7.9 rotatedihedral

rotatedihedral crdset <COORDS set> [frame <#>] [name <output set name>]
{value <value> | increment <increment>}
{ <mask1> <mask2> <mask3> <mask4> |

res <#> type <dih type> }
<dih type> = alpha beta gamma delta epsilon zeta nu1 nu2 h1p c2p chin phi psi chip omega

crdset <COORDS set> Coordinates data set to work on.
If a TRAJ data set is specified, name must also be
specified.

[frame <#>] Frame of the COORDS set to work on.

[name <output set name>] Output COORDS set. If not
specified the input COORDS set will be modified.

value <value> Set specified dihedral to given value in
degrees.

increment <increment> Increment specified dihedral by
increment in degrees.

<mask1> <mask2> <mask3> <mask4> Define dihedral
by atom masks. Each mask should only select one
atom.

res <#> Rotate dihedral specified by type in residue
number <#>.

type <dih type> Dihedral type to rotate in specified
residue.

Rotate the speci�ed dihedral in given COORDS set to a target value or by given
increment. For example, to set the protein chi dihedral in residue 8 to 35 degrees
and write out to a mol2 �le:

parm ../tz2.parm7
loadcrd ../tz2.nc 1 1 name TZ2
rotatedihedral crdset TZ2 value 35 res 8 type chip
crdout TZ2 tz2.rotate.1.mol2

8 General Commands

The following general commands are available:

33

Command Description

activeref Select the reference for distance-based masks.
calc Evaluate the given mathematical expression.
clear Clear various objects from the cpptraj state.
create Create (but do not yet write) a data �le.

createset Create a dataset from a simple mathematical expression.
data�le Used to manipulate data �les.
data�lter Filter data sets based on given criteria.
dataset Use to manipulate data sets.

debug | prnlev Set debug level. Higher levels give more info.
ensextension Enable/disable ensemble number extension for �les in ensemble mode.
exit | quit Quit cpptraj.
go | run Start a trajectory processing Run.
help Provide help for commands.
list List various objects in the cpptraj state.

noexitonerror Attempt to continue even if errors are encountered.
noprogress Do not print a progress bar during a Run.
precision Change the output precision of data sets.
printdata Print data set to screen.
readdata Read data sets from �les.

readensembledata Read data �les in ensemble mode.
readinput Read cpptraj input from a �le.
removedata Remove speci�ed data set(s).

rst Generate Amber-style distance/angle/torsion restraints.
runanalysis Run an analysis immediately or run all queued analyses.

select Print the results of an atom mask expression.
selectds Print the results of a data set selection expression.

silenceactions Prevent Actions from writing information to STDOUT.
sortensembledata Sort data sets using replica information (currently constant pH only).
write | writedata Immediately write data to a �le or write to all current data �les.

8.1 activeref

activeref <#>

Set which reference structure should be used when setting up distance-based
masks for everything but the 'mask' action. Numbering starts from 0, so 'ac-
tiveref 0' selects the �rst reference structure read in, 'activeref 1' selects the
second, and so on.

8.2 calc

calc <expression>
[prec <width>.<precision>] [format {double|general|scientific}]

34

<expression> Mathematical expression to evaluate.
See 5.2 on page 21 for details.

prec <width>.<precision> Set the width and precision
of the result.

format {double|general|scienti�c} Set the format of the
result.

Evaluate the given mathematical expression. This version gives more control
over the format of the output.

8.3 clear

clear [{all | <type>}]
(<type> = actions,trajin,trajout,ref,parm,analysis,datafile,dataset)

Clear list of indicated type, or all lists if 'all' speci�ed. Note that when clearing
actions or analyses, associated data sets and data �les are not cleared and vice
versa.

8.4 create

create <filename> <datasetname0> [<datasetname1> ...] [<DataFile Options>]

Add speci�ed data sets to the data �le named <�lename>; if the �le does not
exist, it will be added to the DataFileList. Data �les created in this way are only
written at the end of coordinate processing, analyses, or via the 'writedata'
command. See 6 on page 23 for more data �le format options.

8.5 createset

createset <expression> [xmin <min>] xstep <step> nx <nxvals>

expression Simple mathematical expression, must contain
equals sign, can contain X (e.g. Y=2*X). If not
enclosed in quotes must not contain whitespace.

xmin <min> Minimum X value.

xstep <step> X step.

nx <nxvals> Number of X values.

Generate a data set from a simple mathematical expression.

8.6 data�le

datafile <filename> <datafile arg>

Pass <data�le arg> to data �le <�lename>. See 6 on page 23 for more details.

35

8.7 data�lter

datafilter <dataset arg> min <min> max <max> [out <file> [name <setname>]]

<dataset arg> min <min> max <max> Data set and
min/max cutoffs to use; can specify more than once.

[out <�le>] Write out to file named <file>.

[name <setname>] Name of filter data set.

Create a data set (optionally named <setname>) containing 1 for data within
given <min> and <max> criteria for each speci�ed data set. There must be
at least one <min> and <max> argument, and can be as many as there are
speci�ed data sets. For example, to read in data from two separate �les (d1.dat
and a1.dat) and generate a �lter data set named FILTER having 1 when d1 is
between 0.0 and 3.0 and a1 is between 135.0 and 180.0:

readdata a1.dat name a1
readdata d1.dat name d1
datafilter d1 min 0.0 max 3.0 a1 min 135.0 max 180.0 out filter.dat name FILTER

Note that a similar command that can be used with data generated by Actions
during trajectory processing is �lter (see page 87).

8.8 dataset

dataset { legend <legend> <set> |
makexy <Xset> <Yset> [name <name>] |
vectorcoord {X|Y|Z} <set> [name <name>] |

cat <set0> <set1> ... [name <name>] [nooffset] |
make2d <1D set> cols <ncols> rows <nrows> [name <name>] |
{drop|keep}points {range <range arg> | [start <#>] [stop <#>] [offset <#>]}

[name <output set>] <set arg1> ... |
remove <criterion> <select> <value> [and <value2>] [<set selection>] |
dim {xdim|ydim|zdim|ndim <#>} [label <label>] [min <min>] [step <step>] |
outformat {double|scientific|general} <set arg1> [<set arg 2> ...] |

[mode <mode>] [type <type>] <set arg1> [<set arg 2> ...] }
<mode>: distance angle torsion pucker rms
<type>: alpha beta gamma delta epsilon zeta pucker chi h1p c2p

phi psi pchi omega noe
Options for 'type noe':

[bound <lower> bound <upper>] [rexp <expected>] [noe_strong] [noe_medium] [noe_weak]

[name <name>] New data set name for
makexy/vectorcoord/cat/make2d/droppoints/keeppoints.

legend <legend> <set> Set the legend for data set
<set> to <legend>.

36

makexy <Xset> <Yset> Create a new data set
(optionally named <name>) with X values from <Xset>
and Y values from <Yset>.

vectorcoord {X|Y|Z} <set> Extract X/Y/Z coordinates
from vector data set into a new 1D data set.

cat <set0> <set1> ... Concatenate two or more data sets
into a new data set (optionally named <name>).

make2d <1D set> cols <ncols> rows <nrows> Convert
1D data set into row-major 2D data set with
specified number of rows and columns.

{drop|keep}points <set arg1> ... Drop or keep specified
points from data set(s), optionally creating a new
data set.

range <range arg> Range of points to drop/keep.

[start <#>] [stop <#>] [o�set <#>]
Start/stop/offset values of points to drop/keep.

remove <criterion> <select> <value> [and <value2>] [<set selection>]
Remove data sets from <set selection> according to
specified criterion and selection.

<criterion>: 'ifaverage' 'ifsize' 'ifmode' 'iftype'
<select> : 'equal' '==' 'notequal' '!=' 'lessthan' '<' 'greaterthan' '>' 'between' 'outside'

dim {xdim|ydim|zdim|ndim <#>} Change specified
dimension in set(s).

label <label> Change dimension label to <label>

min <min> Change dimension minimum to <min>.

step <step> Change dimension step to <step>.

[mode <mode>] Set data set(s) mode to <mode>.

[type <type>] Set data set(s) type to 'type', useful
for e.g. analysis with statistics . Note this can
also be done with 'type <type>' for certain commands
(distance , dihedral , pucker etc). Note that not
every <type> is compatible with a given <mode>.

Options for type noe only:

[bound <lower> bound <upper>] Lower and upper bounds
for NOE (in Angstroms); must specify both.

[rexp <expected>] Expected value for NOE (in
Angstroms); if not given '(<lower> + <upper>)' / 2.0
is used.

[noe_strong] Set lower and upper bounds to 1.8 and 2.9
Å respectively.

37

[noe_medium] Set lower and upper bounds to 2.9 and 3.5
Å respectively.

[noe_weak] Set lower and upper bounds to 3.5 and 5.0 Å
respectively.

Either set the legend for a single data set, create a new set with X values from
one set and Y values from another, concatenate 2 or more sets, make a 2D
set from 1D set, remove sets according to a certain criterion, or change the
mode/type for one or more data sets.

Setting the mode/type can be useful for cases where the data set is being
read in from a �le; for example when reading in a dihedral data set the type
can be set to 'dihedral' so that various Analysis routines like statistics know
to treat it as periodic. A brief description of possible modes and types follows:

Mode Type Description

distance noe NOE distance.
angle Angle.
torsion alpha Nucleic acid alpha.

beta Nucleic acid beta.
gamma Nucleic acid gamma.
delta Nucleic acid delta.
epsilon Nucleic acid epsilon.
zeta Nucleic acid zeta.
nu1 Nucleic pucker (O4').
nu2 Nucleic pucker (C4').
h1p Nucleic acid H1'.
c2p Nucleic acid C2'.
chin Nucleic acid chi.
phi Protein Phi.
psi Protein psi.
chip Protein chi.
omega Protein omega.

pucker pucker Sugar pucker.
rms RMSD.

matrix distance Distance matrix.
covariance Cartesian covariance matrix.

'mass-weighted covariance' Mass weighted Cartesian covariance matrix.
correlation Dynamic cross correlation matrix.

'distance covariance' Distance covariance matrix.
IDEA IDEA matrix.
IRED IRED matrix.

'dihedral covariance' Dihedral covariance matrix.
vector IRED IRED vector.

38

8.9 debug | prnlev

debug [<type>] <#>
(<type> = actions,trajin,trajout,ref,parm,analysis,datafile,dataset)

Set the level of debug information to print. In general the higher the <#> the
more information that is printed. If <type> is speci�ed only set the debug level
for a speci�c area of cpptraj.

8.10 ensextension

ensextension {on|off}

Turn printing of ensemble member number �lename extensions on or o�. By
default ensemble extensions are printed in parallel and not in serial.

NOTE: THE 'ensextension o�' OPTIONHAS NOT BEEN FULLY
TESTED IN PARALLEL AND IS NOT CURRENTLY RECOM-
MENDED.

8.11 exit | quit

Exit normally.

8.12 go | run

Begin trajectory processing, followed by analysis and data�le write.

8.13 help

help {[<command>] | General | Action | Analysis | Topology | Trajectory}

By itself, list all commands known to cpptraj. If given with a command, print
help for that command. Otherwise, list all commands of a certain category
(General, Action, Analysis, Topology, or Trajectory).

8.14 list

list <type>
(<type> = actions,trajin,trajout,ref,parm,analysis,datafile,dataset)

List the currently loaded objects of <type>.

8.15 noexitonerror

noexitonerror

Normally cpptraj will exit if actions fail to initialize properly. If noexitonerror
is speci�ed, cpptraj will attempt to continue past such errors. This is the default
if in interactive mode.

39

8.16 noprogress

noprogress

Do not display read progress during trajectory processing.

8.17 precision

precision {<filename> | <dataset arg>} [<width>] [<precision>]

Set the precision for all data sets in data �le <�lename> or data set(s) speci�ed
by <dataset arg> to width.precision, where width is the column width and pre-
cision is the number of digits after the decimal point. Note that the <precision>
argument only applies to �oating-point data sets.

For example, if one wanted to set the precision of the output of an Rmsd
calculation to 8.3, the input could be:

trajin ../run0.nc
rms first :10-260 out prec.dat
precision prec.dat 8 3

and the output would look like:

#Frame RMSD_00000
1 0.000
2 0.630

8.18 readdata

readdata <filename> [name <dsname>] [as <fmt>] [separate] [<format options>]

name <dsname> Name for read-in data set(s). Default
is <filename>.

as <fmt> Force <filename> to be read as a specific
format using given format keyword.

separate Read each file specified into separate data
sets indexed from 0.

Read data from �le <�lename> and store as data sets. For more information
on formats currently recognized by cpptraj see 1 on page 20. For format-speci�c
options see 6. For example, given the �le calc.dat:

#Frame R0 D1
1 1.7 2.22

The command 'readdata calc.dat' would read data into two data sets, calc.dat:2
(legend set to �R0�) and calc.dat:3 (legend set to �D1�).

40

8.19 readensembledata

readensembledata <filename> [filenames <additional files>] [<readdata args>]

<�lename> Lowest replica file name.

�lenames <additional �les> Specified additional members
of the ensemble. If not specified ensemble members
will be search for using numerical extensions.

<readdata args> Additional data file arguments.

Read data sets as an ensemble, i.e. each �le is a di�erent member of an ensemble.
This command is MPI-aware.

If one �lename is given, it is assumed it is the "lowest" member of an en-
semble with a numerical extension, e.g. '�le.001' and the remaining �les are
searched for automatically. Otherwise all other members of the ensemble can
be speci�ed with '�lenames' and a comma-separated list e.g. '�le.001 �lenames
�le.002,�le.003,�le.004. For additional 'readdata' arguments that can be passed
in see 6 on page 23.

For example, to read in data �les named cpout.001 to cpout.006 automati-
cally:

readensembledata cpout.001 cpin cpin name PH

Or speci�ed:

readensembledata cpout.001 \
filenames cpout.002,cpout.003,cpout.004,cpout.005,cpout.006 \
cpin cpin name PH

8.20 readinput

readinput <filename>

Read cpptraj commands from �le <�lename>.

8.21 removedata

removedata <arg>

Remove data set corresponding to <arg>.

8.22 rst

rst <mask1> <mask2> [<mask3>] [<mask4>]
r1 <r1> r2 <r2> r3 <r3> r4 <r4> rk2 <rk2> rk3 <rk3>
{[parm <parmfile / tag> | parmindex <#>]}
[{ref <refname> | refindex <#> | reference} [offset <off>] [width <width>]]
[out <outfile>]

41

<mask1> (Required) First atom mask.

<mask2> (Required) Second atom mask. If only two
masks assume distance restraint.

[<mask3>] (Optional) Third atom mask. If 3 atom masks
assume angle restraint.

[<mask4>] (Optional) Fourth atom mask. If 4 atom
masks assume dihedral restraint.

rX <rX> Value of RX (X=1-4, default 0.0)

rk2 <rk2> Value of RK2 (force constant to be applied
when R is R1 <= R < R2)

rk3 <rk3> Value of RK3 (force constant to be applied
when R is R3 <= R < R4)

[parm <parm�le / tag> | parmindex <#>] Topology to
be used for atom masks.

{ref <refname> | re�ndex <#> | reference} Use
distance/angle/dihedral in reference structure to
determine values for r1, r2, r3, and r4. The value
of r2 is set to <r2> + <off>, r3 = r2, r1 = r2 -
<width>, r4 = r3 + <width>.

[o�set <o�>] (Reference only) Value to offset
distance/angle/torsion in reference by (default
0.0).

[width <width>] (Reference only) Width between r1 and
r2, r3 and r4 (default 0.5).

[out <out�le>] Write restraints to outfile. If not
specified, write to STDOUT.

Generate Amber-style distance restraints for use with nmropt=1. This is partic-
ularly useful for generating distance restraints based o� of reference coordinates.
For example to generate a distance restraint between two C5' atoms using the
current distance between them in a reference structure, o�setting the distance
by 1.0 Ang.:

parm 30bp-longbox-tip3p-na.parm7
reference 30bp-longbox.rst7
rst :1@C5' :31@C5' reference offset 1.0 rk2 10.0 rk3 10.0 out output

8.23 runanalysis

runanalysis [<analysiscmd> [<analysis args>]]

Run given analysis command immediately and write any data generated. If no
command is given run any analysis currently set up. NOTE: When 'runanalysis'
is speci�ed alone, data is not automatically written; to write data generated with
'runanalysis' use the 'writedata' command (this allows multiple analysis runs
between output if desired).

42

8.24 select

select <mask>

Prints the number of selected atoms corresponding to the given mask, as well
as the atom numbers with format:

Selected= <#atom1> <#atom2> ...

This does not a�ect the state in any way, but is intended for use in scripts etc.
for testing the results of a mask expression.

8.25 selectds

selectds <dataset arg>

Show the results of a data set selection. Data set selection has the format:

<name>[<aspect>]:<index>

Either the [<aspect>] or the <index> arguments may be omitted. A '*' can be
used in place of <name> or [<aspect>] as a wildcard. The <index> argument
can be a single number or a range separated by '-' and ','.

This command does not a�ect the state in any way, but is particularly useful
in interactive mode for determining the results of a dataset argument.

8.26 sortensembledata

sortensembledata <dset arg0> [<dset arg1> ...]

<dset arg0> [<dset arg1> ...] Data set(s) to sort.

Sort unsorted data sets. Currently only works for constant pH REMD data.

8.27 write | writedata

write [<filename> <datasetname0> [<datasetname1> ...]] [<DataFile Options>]

With no arguments, write all �les currently in the data �le list. Otherwise, write
speci�ed data set(s) to <�lename>. This is like the 'create' command except a
data �le is not added to the data �le list; it is written immediately. See 6 on
page 23 for more data �le format options.

43

8.28 System Commands

These commands call the equivalent external system commands.

gnuplot <args> Call gnuplot (if it is installed on your system) with the
given arguments.

head <args> Call head, which lists the �rst few lines of a �le.

less <args> Call less, which can be used to view the contents of a �le.

ls <args> List the contents of a directory.

pwd <args> Print the current working directory.

xmgrace <args> Call xmgrace (if it is installed on your system) with the
given arguments.

9 Topology File Commands

These commands control the reading and writing of topology �les. Cpptraj
supports the following topology �le formats:

Format Keyword Extension Notes

Amber Topology amber .parm7 Only fully-supported format.
PDB pdb .pdb Read Only
Mol2 mol2 .mol2 Read Only
CIF cif .cif Read Only

Charmm PSF psf .psf Limited Write
Gromacs Topology gromacs .top Limited Write

SDF sdf .sdf Read Only
Tinker ARC arc .arc Read Only

For most commands that require a topology one can be speci�ed via two
keywords:

parm [<name>] Select topology corresponding to given �le name, tag, or
name.

parmindex [<#>] Select topology by order in which it was loaded, starting
from 0.

The following topology related commands are available:

44

Command Description

angleinfo, angles, printangles Print angle info for selected atoms.
atominfo, atoms, printatoms Print details for selected atoms.
bondinfo, bonds, printbonds Print bond info for selected atoms.

change Change speci�ed parts of a topology.
charge Print total charge for selected atoms.

comparetop Compare two topologies and report di�erences.
dihedralinfo, dihedrals, printdihedrals Print dihedral info for selected atoms.

mass Print total mass for selected atoms.
molinfo Print molecule info for selected atoms.
parm Load a topology �le.

parmbox Modify box info for a loaded topology.
parminfo Print details for selected topology.
parmstrip Remove selected atoms from topology.
parmwrite Write selected topology to �le.
resinfo Print residue info for selected atoms.

scaledihedralk Scale selected dihedral force constants.
solvent Change which molecules are considered solvent.

9.1 angleinfo | angles | printangles

angleinfo [parm <name> | parmindex <#> | <#>] [<mask>]

Print angle information of atoms in <mask> for selected topology (�rst loaded
topology by default) with format:

Angle Kthet degrees atom names (numbers)

Where Angle is the internal angle index, Kthet is the angle force constant,
degrees is the angle equilibrium value, atom names shows the atoms involved
in the angle with format :<residue num>@<atom name>, and (numbers) shows
the atom indices involved in a comma-separated list. Atom types will be shown
in the last column.

9.2 atominfo | atoms | printatoms

atominfo [parm <name> | parmindex <#> | <#>] [<mask>]

Print information on atoms in <mask> for selected topology (�rst loaded topol-
ogy by default) with format:

#Atom Name #Res Name #Mol Type Charge Mass GBradius El [rVDW] [eVDW]

where #Atom is the internal atom index, the �rst Name column is the atom name,
#Res is the atom's residue number, the second Name column is residue name,

45

#Mol is the atom's molecule number, Type is the atom's type (certain topologies
only), Charge is the atom charge (in units of electron charge), Mass is the
atom's mass (in amu), GBradius is the generalized Born radius of the atom
(Amber topologies only), and El is the 2 character element string. The �nal
two columns are only shown if the topology contains non-bonded parameters:
rVDW is the atom's Lennard-Jones radius and eVDW is the atom's Lennard-Jones
epsilon.

9.3 bondinfo | bonds | printbonds

bondinfo [parm <name> | parmindex <#> | <#>] [<mask>]

Print bond information for atoms in <mask> for selected topology (�rst loaded
topology by default) with format:

Bond Kb Req atom names (numbers)

where Bond is the internal bond index, Kb is the bond force constant, Req is the
bond equilibrium value (in Angstroms), atom names shows both atom names
with format :<residue num>@<atom name>, and (numbers) shows both atom
numbers in a comma-separated list. Atom types will be shown in the last
column.

9.4 change

change [parm <name> | parmindex <#> | <#>]
{ resname from <mask> to <value> |

atomname from <mask> to <value> }

parm <name> | parmindex <#> | <#> Topology to
change.

resname from <mask> to <value> Change residue names
for residues in <mask> to the given <value>.

atomname from <mask> to <value> Change atom names
for atoms in <mask> to the given <value>.

Change speci�ed parts of the speci�ed topology. For example, to change atoms
named 'HN' to 'H' in topology 0:

change parmindex 0 atomname from @HN to H

9.5 charge

charge [parm <name> | parmindex <#> | <#>] <mask>

Print the total charge of atoms in <mask> (in units of electron charge) for
selected topology (�rst loaded topology by default).

46

9.6 comparetop

comparetop {parm <name> | parmindex <#>} {parm <name> | parmindex <#>} [out <file>]
[atype] [lj] [bnd] [ang] [dih] [atoms]

parm <name> | parmindex <#> Topologies to compare.

out <�le> Print results to file instead of screen.

[atype] Only report atom type differences.

[lj] Only report differences in Lennard-Jones parameters.

[bnd] Only report differences in bond parameters.

[ang] Only report differences in angle parameters.

[dih] Only report differences in dihedral parmeters.

[atoms] Only report differences in atom properties.

Compare and report di�erences in atoms/parameters between two topologies.
Di�erences are reported in standard 'di�' format, with '<' pre�x indicating the
parameter is from the �rst topology and '>' pre�x indicating the parameter is
from the second topology.

9.7 dihedralinfo | dihedrals | printdihedrals

dihedralinfo [parm <name> | parmindex <#> | <#>] [<mask>] [and]

Print dihedral information of atoms in <mask> for selected topology (�rst
loaded topology by default) with format:

#Dihedral pk phase pn atoms

where #Dihedral is the internal dihedral index, pk is the dihedral force constant,
phase is the dihedral phase, pn is the dihedral periodicity, and atoms shows the
names of the atoms involved in the angle with format :<residue num>@<atom
name>, followed by the atom indices involved in a comma-separated list. In
addition if the dihedral is an end dihedral, improper dihedral, or both it will be
prefaced with an E, I, or B respectively. Atom types will be shown in the last
column.

If the and keyword is speci�ed then printed dihedrals must contain all atoms
speci�ed in the <mask>. For example, to only get dihedrals containing the atom
types N3, CT, and OH:

dihedrals @%N3,CT,OH and

9.8 mass

[<parmindex>] [parm <name> | parmindex <#> | <#>] <mask>

Print the total mass of atoms in <mask> (in amu) for selected topology (�rst
loaded topology by default).

47

9.9 molinfo

molinfo [parm <name> | parmindex <#> | <#>] [<mask>]

Print molecule information for atoms in <mask> for selected topology (�rst
loaded topology by default) with format:

#Mol Natom #Res Name [SOLVENT]

where #Mol is the molecule number, Natom is the number of atoms in the
molecule, and #Res and Name are the residue number and residue name of the
�rst residue in the molecule respectively. SOLVENT will be printed if the molecule
is currently considered a solvent molecule.

9.10 parm

parm <filename> [{[TAG] | name <setname>}] [nobondsearch | bondsearch [<offset>]]

<�lename> Parameter file to read in; format is
auto-detected.

'[TAG]' Optional tag (bounded in brackets) which can be
referred to in place of the topology file name in
order to simplify references to it (see 3.4 on
page 16 for examples of how to use tags).

[name <setname>] Optional name that can be used to
refer to the topology in place of the file name.

[bondsearch <offset>] Optional; when searching for
bonds via geometry search (default for Topologies
without bond information) add <offset> to distances
(default 0.2 Å). Increase this if your system
includes unusually long bonds.

[nobondsearch] Optional; if specified do not search for
bonds via geometry if Topology does not include bond
information. May cause some actions to fail.

Read in parameter �le. The �le format will be auto-detected. Current formats
recognized by cpptraj are listed on page 44. If the �le does not contain bond
information, cpptraj will attempt to assign bonds based on a simple distance
search of atoms within and between residues. The distance cuto� for determin-
ing bonds between atoms depends on the elements of the two atoms in question,
augmented by <o�set>. Molecule information is then determined from bond
information.

48

9.10.1 PDB format:

[pqr] [readbox] [noconect]

[pqr]: Read charge and radius information from the
occupancy and B-factor columns.

[readbox]: Read unit cell information from CRYST1 record
if present.

[noconect] Do not read in CONECT records from PDB file.

IMPORTANT NOTES FOR PDB FILES

In some older format PDB �les (before version 3), certain atoms may contain
the asterisk ('*') character in their name (e.g. 'C1*' in a nucleic acid backbone).
Since in cpptraj the asterisk is a reserved character for atom masks all asterisks
in PDB atom names are replaced with single quote (') to avoid issues with the
mask parser. So in a structure with an atom named C1*, to select it use the
mask �@C1'�.

Sometimes PDB �les can contain alternate coordinates for the same atom
in a residue, e.g.:

ATOM 806 CA ACYS A 105 6.460 -34.012 -21.801 0.49 32.23
ATOM 807 CB ACYS A 105 6.054 -33.502 -20.415 0.49 35.28
ATOM 808 CA BCYS A 105 6.468 -34.015 -21.815 0.51 32.42
ATOM 809 CB BCYS A 105 6.025 -33.499 -20.452 0.51 35.38

If this is the case cpptraj will print a warning about duplicate atom names but
will take no other action. Both residues are considered 'CYS' and the mask
':CYS@CA' would select both atom 806 and 809. Residue insertion codes are
read in but also not used by the mask parser.

9.11 parmbox

parmbox [parm <name> | parmindex <#> | <#>] [nobox] [truncoct]
[x <xval>] [y <yval>] [z <zval>] [alpha <a>] [beta] [gamma <g>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology to modify. Default is first
loaded topology.

[nobox] Remove box information.

[truncoct] Set truncated octahedon angles with lengths
equal to <xval>.

[x <xval>] Box X length.

[y <yval>] Box Y length.

49

[z <zval>] Box Z length.

[alpha <a>] Box alpha angle.

[beta] Box beta angle.

[gamma <g>] Box gamma angle.

Modify the box information for speci�ed topology. Overwrites any box infor-
mation if present with speci�ed values; any that are not speci�ed will remain
unchanged. Note that unlike the box action this command a�ect box informa-
tion immediately. This can be useful for e.g. removing box information from a
parm when stripping solvent:

parm mol.water.parm7
parmstrip :WAT
parmbox nobox
parmwrite out strip.mol.nobox.parm7

9.12 parminfo

parminfo [parm <name> | parmindex <#> | <#>] [<mask>]

Print a summary of information contained in the speci�ed topology (�rst loaded
topology by default) .

9.13 parmstrip

parmstrip <mask> [parm <name> | parmindex <#> | <#>]

Strip atoms in <mask> from speci�ed topology (by default the �rst topology
loaded). Note that unlike the strip Action, this permanently modi�es the
topology for as long as cpptraj is running, so this should not be used if the
topology is being used to read or write a trajectory via trajin/trajout . This
command can be used to quickly created stripped Amber topology �les. For
example, to strip all residues name WAT from a topology and write a new
topology:

parm mol.water.parm7
parmstrip :WAT
parmwrite out strip.mol.parm7

9.14 parmwrite

parmwrite out <filename> [{parm <name> | parmindex <#> | <#> | crdset <setname>}]
[<fmt>] [nochamber]

<�lename> File to write to.

50

[parm <name> | parmindex <#> | <#>] Topology to
write out.

[crdset <setname>] Write topology from specified COORDS
data set.

[<fmt>] Format keyword. If not specified the file name
extension will be used. Default is Amber Topology.

[nochamber] (Amber topology only) Remove any CHAMBER
information from the topology.

Write out speci�ed topology (�rst topology loaded by default) to <�lename>
with format <fmt> (Amber topology if not speci�ed). Note that the Amber
topology format is the only fully supported format for topology writes.

9.15 resinfo

resinfo [parm <name> | parmindex <#> | <#>] [<mask>] [short]

Print residue information for atoms in <mask> for selected topology (�rst
loaded topology by default) with format:

#Res Name First Last Natom #Orig #Mol

where #Res is the residue number, Name is the residue name, First and Last
are the �rst and last atom numbers of the residue, Natom is the total number of
atoms in the residue, #Orig is the original residue number (in PDB �les), and
#Mol is the molecule number.

If short is speci�ed then residues will be printed out in a condensed format.
Each residue name will be shortened to 1 character, and residues are printed
out in groups of 10, 5 groups to a line, with each line beginning with a residue
number, e.g.

> resinfo short 4
1 MGFLAGKKIL ITGLLSNKSI AYGIAKAMHR EGAELAFTYV GQFKDRVEKL
51 CAEFNPAAVL PCDVISDQEI KDLFVELGKV WDGLDAIVHS IAFAPRDQLE

If the 1 character name for a residue is unknown it will be shown as the �rst
letter of the residue name in lower-case.

9.16 scaledihedralk

scaledihedralk [parm <name> | parmindex <#>] <scale factor> [<mask> [useall]]

Scale dihedral force constants for dihderals selected by <mask> for speci�ed
topology. If useall is speci�ed all atoms in <mask> must be present to select
a dihedral, otherwise any atom in <mask> will selected a dihedral.

51

9.17 solvent

solvent [parm <name> | parmindex <#> | <#>] { <mask> | none }

Set solvent for selected topology (�rst loaded topology by default) based on
<mask>, or set nothing as solvent if none is speci�ed.

10 Trajectory File Commands

These commands control the reading and writing of trajectory �les. There are
three trajectory types in cpptraj : input, output, and reference. In cpptraj,
trajectories are always associated with a topology �le. If a topology �le is not
speci�ed, a trajectory �le will be associated with the �rst topology �le loaded
by default (this is true for both input and output trajectories.

Cpptraj currently understands the following trajectory �le formats:

Format Keyword(s) Extension Notes

Amber Trajectory crd .crd Default format if keywords/extensions not recognized.
Amber NetCDF cdf, netcdf .nc No compression.
Amber Restart restart .rst7

Amber NetCDF Restart ncrestart, restartnc .ncrst
Charmm DCD dcd, charmm .dcd
Charmm COR cor .cor Read Only

PDB pdb .pdb
Mol2 mol2 .mol2

Scripps Binpos binpos .binpos
Gromacs TRR trr .trr
Gromacs GRO gro .gro Read Only
Gromacs XTC xtc .xtc

CIF cif .cif Read Only
Tinker ARC arc .arc Read Only
SQM Input sqm .sqm Write Only

SDF sdf .sdf Read Only
LMOD Con�ib con�ib .con�ib Read Only, Detection by extension

The following trajectory-related commands are available:

Command Description

ensemble Set up a trajectory ensemble for reading during a run.
ensemblesize (MPI only) specify number of members expected in subsequent ensemble commands.
reference Read in a reference structure.
trajin Set up a trajectory for reading during a Run.
trajout Set up an output trajectory or ensemble for writing during a Run.

52

10.1 ensemble

ensemble <file0> {[<start>] [<stop> | last] [offset]} | lastframe
[parm <parmfile / tag> | parmindex <#>]
[trajnames <file1>,<file2>,...,<fileN>
[remlog <remlogfile> [nstlim <nstlim> ntwx <ntwx>]]

<�le0> Lowest replica filename.

[<start>] Frame to begin reading ensemble at (default
1).

[<stop> | last] Frame to stop reading ensemble at; if not
specified or 'last' specified, end of trajectories.

[<o�set>] Offset for reading in trajectory frames
(default 1).

[lastframe] Select only the final frame of the
trajectories.

[parm <parm�le>] Topology filename/tag to associate
with trajectories (default first topology).

[parmindex <#>] Index of Topology to associate with
trajectories (default 0, first topology).

[trajnames <�le1>,...,<�leN>] Do not automatically
search for additional replica trajectories; use
comma-separated list of trajectory names.

[remlog <remlog�le>] For H-REMD trajectories only, use
specified REMD log file to sort trajectories by
coordinate index (instead of by Hamiltonian).

[nstlim <nstlim> ntwx <ntwx>] If trajectory and
REMD log were not written at the same rate,
these are the values for nstlim (steps between
each exchange) and ntwx (steps between
trajectory write) used in the REMD simulation.

Read in and process trajectories as an ensemble. Similar to 'trajin remdtraj',
except instead of processing one frame at a target temperature, process all
frames. This means that action and trajout commands apply to the entire
ensemble; note however that not all actions currently function in 'ensemble'
mode. For example, to read in a replica ensemble, convert it to temperature
trajectories, and calculate a distance at each temperature:

parm ala2.99sb.mbondi2.parm7
ensemble rem.crd.000 trajnames rem.crd.001,rem.crd.002,rem.crd.003
trajout temp.crd
distance d1 out d1.ensemble.dat @1 @21

53

This will output 4 temperature trajectories named 'temp.crd.X', where X ranges
from 0 to 3 with 0 corresponding to the lowest temperature, and 'd1.ensemble.dat'
containing 4 columns, each corresponding to a temperature. If run with MPI,
data will be written to separate �les named 'd1.ensemble.dat.X', similar to the
output trajectories.

Note that in parallel (i.e. MPI) users should specify the ensemblesize
command prior to ensemble in order to improve set up e�ciency.

10.2 ensemblesize

ensemblesize <#>

This command is MPI only. It is used to set the expected number of members
in any subsequent ensemble command, which dramatically improves set up
e�ciency.

10.3 reference

reference <name> [<frame#>] [<mask>] ([tag]) [lastframe] [crdset]
[parm <parmfile / tag> | parmindex <#>]

<name> File name (or COORDS set name if 'crdset'
specified) to read in as reference; any trajectory
recognized by 'trajin' can be used.

[<frame#>] Frame number to use (default 1).

[<mask>] Only load atoms corresponding to <mask> from
reference.

([tag]) Tag to give this reference file, e.g. �[MyRef]�;
BRACKETS MUST BE INCLUDED.

[lastframe] Use last frame of reference.

[crdset] Use for COORDS data set named <name> instead of
file.

[parm <parm�le/tag>] Topology filename/tag to
associate with reference (default first topology).

[parmindex <#>] Index of Topology to associate with
reference (default 0, first topology).

Use speci�ed trajectory as reference coordinates. For trajectories with multiple
frames, the �rst frame is used if a speci�c frame is not speci�ed. An optional
tag can be given (bounded in brackets) which can then be used in place of the
name (see 3.4 on page 16 for examples of how to use tags). If desired, an atom
mask can be used to read in only speci�ed atoms from a reference.

Reference coordinates are now considered COORDS data sets and can be
used anywhere a COORDS data set could, which allows reference structures to

54

be manipulated once they are loaded. For example, a reference structure could
be centered on the origin like so:

reference tz2.rst7 [MyRef]
crdaction [MyRef] center origin

Note that the 'average' keyword has been deprecated for reference. If desired,
an averaged reference COORDS data set can be created from a trajectory using
the 'average' command like so:

parm myparm.parm7
trajin mytraj.nc
rms first :1-12
average crdset RefAvg
run
rms ToAvg reference :1-12 out ToAvg.dat

10.4 trajin

trajin <filename> {[<start> [<stop> | last] [<offset>]]} | lastframe
[parm <parmfile / tag> | parmindex <#>]
[mdvel <velocities>] [mdfrc <forces>]
[<Format Options>]
[remdtraj {remdtrajtemp <Temperature> | remdtrajidx <idx1,idx2,...>

| remdtrajvalues <value1,value2,...>}
[trajnames <file1>,<file2>,...,<fileN>]]

<�lename> Trajectory file to read in.

[<start>] Frame to begin reading at (default 1).

[<stop> | last] Frame to stop reading at; if not
specified or 'last' specified, end of trajectory.

[<o�set>] Offset for reading in trajectory frames
(default 1).

[lastframe] Select only the final frame of the
trajectory.

[parm <parm�le/tag>] Topology filename/tag to
associate with trajectory (default first topology).

[parmindex <#>] Index of Topology to associate with
trajectory (default 0, first topology).

[mdvel <velocities>] Use velocities from specified file.

[mdfrc <forces>] Use forces from specified file.

[<Format Options>] See below.

55

[remdtraj] Read <filename> as the first replica in a
group of replica trajectories.

remdtrajtemp <Temperature> | remdtrajidx <idx1,idx2,...>
Use frames at <Temperature> (for temperature
replica trajectories) or index <idx1,idx2,...>
(for Hamiltonian replica trajectories); For
Multidimensional REMD simulations, multiple
values are comma-separated.

remdtrajvalues <value1,value2,...> Use frames at
<value1,value2,...> (for Multidimensional REMD
trajectories). Each value may correspond to
either temperature, pH, Redox Potential or
Hamiltonian index. The values need to be
entered in the same order as the dimensions in
the Multidimensional REMD simulation. For
example, for T,pH-REMD value1 would correspond
to a temperature and value2 to a pH. In the
command, the values are comma-separated.

[trajnames <�le1>,...,<�leN>] Do not automatically
search for additional replica trajectories; use
comma-separated list of trajectory names.

Read in trajectory speci�ed by �lename. See page 52 for currently recognized
trajectory �le formats. If just the <start> argument is given, all frames from
<start> to the last frame of the trajectory will be read. To read in a trajectory
with o�sets where the last frame # is not known, specify the last keyword
instead of a <stop> argument, e.g.

trajin Test1.crd 10 last 2

This will process Test1.crd from frame 10 to the last frame, skipping by 2 frames.
To explicitly select only the last frame, specify the lastframe keyword:

trajin Test1.crd lastframe

Here is an example of loading in multiple trajectories which have di�erence
topology �les:

parm top0.parm7
parm top1.parm7
parm top2.parm7 [top2]
parm top3.parm7
trajin Test0.crd
trajin Test1.crd parm top1.parm7
trajin Test2.crd parm [top2]
trajin Test3.crd parmindex 3

56

Test0.crd is associated with top0.parm7; since no parm was speci�ed it defaulted
to the �rst parm read in. Test1.crd was associated with top1.parm7 by �lename,
Test2.crd was associated with top2.parm7 by its tag, and �nally Test3.crd was
associated with top3.parm7 by its index (based on the order it was read in).

Replica Trajectory Processing

If the remdtraj keyword is speci�ed the trajectory is treated as belonging to
the lowest # replica of a group of REMD trajectories. The remaining repli-
cas can be either automatically detected by following a naming convention of
<REMDFILENAME>.X, where X is the replica number, or explicitly speci�ed
in a comma-separated list following the trajnames keyword. All trajectories
will be processed at the same time, but only frames with a temperature match-
ing the one speci�ed by remdtrajtemp or remdtrajidx will be processed.
For example, to process replica trajectories rem.001, rem.002, rem.003, and
rem.004, grabbing only the frames at temperature 300.0 (assuming that this is
a temperature in the ensemble):

trajin rem.001 remdtraj remdtrajtemp 300

or

trajin rem.001 remdtraj remdtrajtemp 300 trajnames rem.002,rem.003,rem.004

Note that the remdout keyword is deprecated. For this functionality see the
ensemble keyword.

10.4.1 Options for Amber NetCDF, Amber NC Restart, Amber Restart:

[usevelascoords] [usefrcascoords]

usevelascoords Read in velocities in place of
coordinates if present.

usefrcascoords Read in forces in place of coordinates if
present.

10.4.2 Options for CHARMM DCD:

[{ucell | shape}]

ucell Force reading of box information as unit cell (for
e.g. NAMD DCD trajectories).

shape Force reading of box information as shape matrix.

57

10.5 trajout

trajout <filename> [<format>] [append] [nobox] [novelocity]
[notemperature] [notime] [noforce] [noreplicadim]
[parm <parmfile> | parmindex <#>] [onlyframes <range>] [title <title>]
[onlymembers <memberlist>]
[start <start>] [stop <stop>] [offset <offset>]
[<Format Options>]

<�lename> Trajectory file to write to.

[<format>] Keyword specifying output format (see Table
on page 52). If not specified format will be
determined from extension, otherwise default to
Amber trajectory.

[append] If <filename> exists, frames will be appended
to <filename>.

[nobox] Do not write box coordinates to trajectory.

[novelocity] Do not write velocities to trajectory.

[notemperature] Do not write temperature to trajectory.

[notime] Do not write time to trajectory.

[noreplicadim] Do not write replica dimensions to
trajectory.

[parm <parm�le>] Topology filename/tag to associate
with trajectory (default first topology).

[parmindex <#>] Index of Topology to associate with
trajectory (default 0, first topology).

[onlyframes <range>] Write only the specified input
frames to <filename>.

[title <title>] Output trajectory title.

[onlymembers <memberlist>] Ensemble processing only;
only write from specified members (starting from 0).

[start <start>] Begin output at frame <start> (1 by
default).

[stop <stop>] End output at frame <stop> (last frame by
default).

[o�set <o�set>] Skip <offset> frames between each
output (1 by default).

During a run, write frames to trajectory speci�ed by �lename in speci�ed �le
format (Amber trajectory if none speci�ed) after all Action processing has oc-
curred. To write out trajectories within the Action queue see the outtraj Action

58

(11.52 on page 124). See page 52 for currently recognized output trajectory
formats and their associated keyword(s). Note that now the �le type can be
determined from the output extension if not speci�ed by a keyword. Multiple
output trajectories of any format can be speci�ed.

Frames will be written to the output trajectory when the param-
eter �le being processed matches the parameter �le the output tra-
jectory was set up with. So given the input:

parm top0.parm7
parm top1.parm7 [top1]
trajin input0.crd
trajin input1.crd parm [top1]
trajout output.crd parm [top1]

only frames read in from input1.crd (which is associated with top1.parm7)
will be written to output.crd. The trajectory input0.crd is associated with
top0.parm7; since no output trajectory is associated with top0.parm7 no frames
will be written when processing top0.parm7/input0.crd.

If onlyframes is speci�ed, only input frames matching the speci�ed range
will be written out. For example, given the input:

trajin input.crd 1 10
trajout output.crd onlyframes 2,5-7

only frames 2, 5, 6, and 7 from input.crd will be written to output.crd.

10.5.1 Options for pdb format:

[model | multi] [dumpq | parse | vdw] [chainid <ID>]
[pdbres] [pdbatom] [pdbv3] [teradvance]

model (Default) Frames will be written to a single PDB
file separated by MODEL/ENDMDL keywords.

multi Each frame will be written to a separate file with
the frame # appended to <filename>.

dumpq PQR format; write charges (in units of e-) and
GB radii to occupancy and B-factor columns
respectively.

parse PQR format; write charges and PARSE radii to
occupancy/B-factor columns.

vdw PQR format; write charges and vdW radii to
occupancy/B-factor columns.

pdbres: Use PDB V3 residue names.

pdbatom: Use PDB V3 atom names.

pdbv3: Use PDB V3 residue/atom names.

59

teradvance: Increment record (atom) number for TER
records (not done by default).

terbyres: Print TER cards based on residue sequence
instead of molecules.

pdbter: Print TER cards according to original PDB TER
(if available).

noter: Do not write TER cards.

chainid <ID> Write PDB file with chain ID <ID>.

sg <group> Space group for CRYST1 record; only used if
box coordinates written.

include_ep Include extra points.

conect Write CONECT records for all bonds.

keepext Keep filename extension; write
'<name>.<num>.<ext>' instead (implies 'multi').

10.5.2 Options for Amber ASCII format:

[remdtraj] [highprecision]

remdtraj Write REMD header to trajectory that includes
temperature: 'REMD <Replica> <Step> <Total_Steps>
<Temperature>'. Since cpptraj has no concept of
replica number, 0 is printed for <Replica>. <Step>
and <Total_Steps> are set to the current frame #.

highprecision: (EXPERT USE ONLY) Write with 8.6 precision
instead of 8.3. Note that since the width does not
change, the precision of large coords may be lower
than 6.

10.5.3 Options for Amber NetCDF format:

[remdtraj] [velocity] [force]

remdtraj Write replica temperature to trajectory.

velocity Write only velocity information in trajectory.

force Write only force information in trajectory.

mdcrd Write coordinates to trajectory (only required
with mdvel/mdfrc).

10.5.4 Options for Amber Restart/NetCDF Restart format:

[remdtraj] [novelocity] [notime] [time0 <initial time>] [dt <timestep>]

60

remdtraj Write replica temperature to restart. Note
that this will automatically include time in the
restart file (see the time0 keyword).

time0 <initial time> Time for first frame (default 1.0).

dt <timestep> Time step between frames (default 1.0).
Time is calculated as t=(time0+frame)*dt.

keepext Keep filename extension; write
'<name>.<num>.<ext>' instead.

10.5.5 Options for CHARMM DCD:

[x64] [ucell]

x64 Use 8 byte block size (default 4 bytes).

ucell Write older (v21) format trajectory that stores
unit cell params instead of shape matrix.

10.5.6 Options for GROMACS TRX/XTC format:

[dt <time step>]

dt Time step tp multiply set numbers by (default 1.0).
Ignored if time already present.

10.5.7 Options for mol2 format:

[single | multi] [sybyltype] [keepext]

single (Default) Frames will be written to a single Mol2
file separated by MOLECULE keywords.

multi Each frame will be written to a separate file with
the frame # appended to <filename>.

sybyltype Convert Amber atom types (if present) to SYBYL
types. Requires $AMBERHOME is set.

sybylatom File containing Amber to SYBYL atom type
correspondance (optional).

sybylbond File containing Amber to SYBYL bond type
correspondance (optional).

keepext Keep filename extension; write
'<name>.<num>.<ext>' instead (implies 'multi').

10.5.8 Options for SQM input format:

[charge <c>]

charge <c> Set total integer charge. If not specified
it will be calculated from atomic charges.

61

11 Action Commands

Actions in cpptraj operate on frames read in by the trajin or ensemble com-
mands one at a time and extract derived data, modify the coordinates/topology
in some way, or both. Most Actions in cpptraj function exactly the way they do
in ptraj and are backwards-compatible. Some Action commands in cpptraj have
extra functionality compared to ptraj (such as the per-residue RMSD function
of the rmsd Action, or the ability to write out stripped topologies for visualiza-
tion in the strip Action), while other Actions produce slightly di�erent output
(like the hbond/secstruct Actions).

Unlike some other command types, when an Action command is issued it
is by default added to the Action queue and is not executed until trajectory
processing is started (e.g. by a run or go command). However, Actions can
be executed immediately on COORDS data sets via the crdaction command
(7.2 on page 30).

When a frame is modi�ed by an Action, it is modi�ed for every Action that
follows them during trajectory processing. For example, given a solvated system
with water residues named WAT and the following Action commands:

rmsd R1 first :WAT out water-rmsd.dat
strip :WAT
rmsd R2 first :WAT out water-rmsd-2.dat

the �rst rms command will be valid, but the second rms command will not
since all residues named WAT are removed from the state by the strip com-
mand.

The following Actions are available. If an Action may modify coordinate/topology
information for subsequent Actions it is denoted with an X in the Mod column.

Command Description Mod

angle Calculate the angle between three points.
areapermol Calculate area per molecule for molecules in a speci�ed plane.
atomiccorr Calculate average correlation between motions of speci�ed atoms.

atomic�uct, rmsf Calculate root mean square �uctuation of speci�ed atoms/residues.
atommap Attempt to create a map between atoms in molecules with di�erent atom

ordering.
X

autoimage Automatically re-image coordinates. X
average Calculate average structure.
bounds Calculate the min/max coordinates for speci�ed atoms. Can be used to

create grid data sets.
box Set or overwrite box information for frames.
center Center speci�ed coordinates to box center or onto reference structure. X

check, checkoverlap, Check for bad atomic overlaps or bond lengths.
checkstructure Can be used to skip corrupted frames.
checkchirality Report chirality around alpha carbons in amino acids (L, D).

62

closest, closestwaters Retain only the speci�ed number of solvent molecules closest to speci�ed
solute.

X

clusterdihedral Assign frames into clusters based on binning of backbone dihedral angles
in amino acids.

contacts Older version of nativecontacts, retained for backwards compatibility.
createcrd Create a COORDS data set from input frames.

createreservoir Create a structure reservoir for use with reservoir REMD simulations.
density Calculate density along a coordinate.
di�usion Calculate translational di�usion of molecules.
dihedral Calculate the dihedral angle using four points.
dipole Bin dipoles of solvent molecules in 3D grid. Not well tested, may be

obsolete.
distance Calculate the distance between two points.

drms, drmsd Calculate the RMSD of distance pairs within selected atoms.
dssp, secstruct Calculate secondary structure content using the DSSP algorithm

energy Calculate simple bond, angle, dihedral, and non-bonded energy terms (no
PME).

esander Calculate energies using via SANDER; requires compilation with the
SANDER API.

�lter Filter frames for subsequent Actions using data sets and user de�ned
criteria.

�xatomorder Fix atom ordering so that all atoms in molecules are sequential. X
�ximagedbonds Fix bonds which have been split across periodic boundaries by imaging.

gist Perform grid inhomogenous solvation theory.
grid Bin selected atoms on a 3D grid.
hbond Calculate hydrogen bonds using geometric criteria.
image Re-image coordinates. The autoimage command typically provides

better results.
X

jcoupling Calculate J-coupling values from speci�ed dihedral angles.
lessplit Split/average frames from LES trajectories.
lie Calculate linear interaction energy between user-speci�ed ligand and

surroundings.
lipidorder Calculate order parameters for lipids in planar membranes.
lipidscd Calculate lipid order parameters SCD (|<P2>|) for lipid chains.

Automatically identi�es lipids.
makestructure Modify structure by applying dihedral values to speci�ed residues. X

mask Print the results of selection by speci�ed atom mask. Good for
distnace-based masks.

matrix Calculate a matrix of the speci�ed type from input coordinates.
minimage Calculate minimum non-self imaged distance between atoms in speci�ed

masks.
molsurf Calculate Connolly surface area of speci�ed atoms. Cannot do partial

surface areas.

63

multidihedral Calculate multiple dihedral angles of speci�ed/given types.
multivector Calculate multiple vectors between speci�ed atoms.
nastruct Perform nucelic acid structure analysis.

nativecontacts Calculate native contacts within a region or between two regions using a
given reference.

Can also be used to get min/max distances between groups of atoms.
outtraj Write frames to a trajectory �le within a list of Actions.
pairdist Calculate pair distribution function.
pairwise Calculate pair-wise non-bonded energies.
principal Calculate and optionally align system along principal axes. X
projection Project coordinates along given eigenvectors.
pucker Calculate ring pucker using �ve or six points.

radgyr, rog Calculate radius of gyration (and optionally tensor) for speci�ed atoms.
radial, rdf Calculate radial distribution function.

randomizeions Swap speci�ed ions with randomly selected solvent molecules. X
replicatecell Replicate unit cell in speci�ed (or all) directions for spec�ed atoms and

write to trajectory.
rms, rmsd Perform best �t of coordinates to reference and calculate coordinate

RMSD.
X

Fitting can be disabled.
rotate Rotate the system around X/Y/Z axes, a speci�ed axis, or via given

rotation matrices.
X

runavg, Calculate the running average of coordinates over speci�ed window size. X
runningaverage

scale Scale coordinates in X/Y/Z directions by speci�ed factors. X
setvelocity Set velocities for speci�ed atoms using Maxwellian distribution based on

given temperature.
spam SPAM method for estimating relative free energies of waters in hydration

shell around proteins.
X

stfcdi�usion Alternative translational di�usion calculation which can calculate
di�usion in speci�ed regions.

strip Remove speci�ed atoms from the system.
surf Calculate the LCPO surface area of speci�ed atoms. Can do partial

surface areas.
symmrmsd Calculate symmetry-corrected RMSD. X
temperature Calculate system temperature using velocities of speci�ed atoms.

trans, translate Translate speci�ed atoms by speci�ed amounts in X/Y/Z directions. X
unstrip Undo all previous strip Action commands.
unwrap Reverse of image ; unwrap selected atoms so they have continuous

trajectories.
X

vector Calculate various types of vector quantities.
velocityautocorr Calculate velocity autocorrelation function.

volmap Create volumetric map for speci�ed coordinates; similar to grid but takes

64

into account atomic radii. Similar to VMD volmap.
volume Calculate unit cell volume.

watershell Calculate the number of waters in the �rst and second solvation shells
based on distance critera.

11.1 angle

angle [<dataset name>] <mask1> <mask2> <mask3> [out <filename>] [mass]

[<dataset name>] Output data set name.

<maskX> Three atom masks selecting atom(s) to
calculate angle for.

[out <�lename>] Output file name.

[mass] Use center of mass of atoms in <maskX> instead of
geometric center.

Calculate angle (in degrees) between atoms in <mask1>, <mask2>, and <mask3>.
For example, to calculate the angle between the �rst three atoms in the system:

angle A123 @1 @2 @3 out A123.agr

11.2 areapermol

areapermol [<name>] {[<mask1>] [nlayers <#>] | nmols <#>} [out <filename>] [{xy | xz | yz}]

[<name>] Data set name.

[<mask1>] Atom mask for selecting molecules. If any
atom in a molecule is selected the whole molecule is
selected.

[nlayers <#>] Number of layers of molecules. Total
number of molecules used will be # molecules divided
by # layers.

[nmols <#>] If <mask1> is not specified, the number of
molecules to use when calculating area per molecule.

[out <�lename>] Output file name.

[{xy|xz|yz}] Cross-section of box to calculate area of.
Default is X-Y.

Calculate area per molecule as Area / # molecules. The area is determined
from the speci�ed cross-section of the box (X-Y by default). Currently the
calculation is only guaranteed to work properly with orthorhombic unit cells.
For example, to get the area per molecule of residues named �OL� which are
arranged in 2 layers:

65

areapermol OL_area :OL nlayers 2 out apm.dat

11.3 atomiccorr

atomiccorr [<mask>] out <filename> [cut <cutoff>] [min <min spacing>]
[byatom | byres]

<mask> Atoms to calculate motion vectors for.

out <�lename> File to write results to.

cut <cuto�> Only print correlations with absolute
value greater than <cutoff>.

min <min spacing> Only calculate correlations for
motion vectors spaced <min spacing> apart.

byatom Default; calculate atomic motion vectors.

byres Calculate motion vectors for entire residues
(selected atoms in residues only).

Calculate average correlations between the motion of atoms in <mask>. For
each frame, a motion vector is calculated for each selected atom from its previous
position to its current position. For each pair of motion vectors Va and Vb, the
average correlation between those vectors is calculated as the average of the dot
product of those vectors over all N frames.

AvgCorr(a, b) =

∑
Va(i)·Vb(i)

N

The value of AvgCorr can range from 1.0 (correlated) to 0.0 (no correlation)
to -1.0 (anti-correlated). For example, to calculate the correlation of motion
vectors between residues 1 to 13, writing to a Gnuplot-readable formatted �le:

atomiccorr :1-13 out acorr.gnu byres

11.4 atomic�uct | rmsf

atomicfluct [out <filename>] [<mask>] [byres | byatom | bymask] [bfactor]
[calcadp [adpout <file>]]
[start <start>] [stop <stop>] [offset <offset>]

out <�lename> Write data to file named <filename>

[<mask>] Calculate fluctuations for atoms in <mask>
(all if not specified).

byres Output the average (mass-weighted) fluctuation by
residue.

bymask Output the average (mass-weighted) fluctuation
for all atoms in <mask>.

66

byatom (default) Output the fluctuation by atom.

[bfactor] Calculate atomic positional fluctuations
squared and weight by 8

3π
2; this is similar but not

necessarily equivalent to the calculation of
crystallographic B-factors.

[calcadp [adpout <�le>]] Calculate anisotropic
displacement parameters and optionally output them
to <file>.

[<start>] Frame to begin calculation at (default 1).

[<stop>] Frame to end calculation at (default last).

[<o�set>] Frames to skip between calculations (default
1).

Compute the atomic positional �uctuations (also referred to as root-mean-
square �uctuations, RMSF) for atoms speci�ed in the <mask>. Note that
RMS �tting is not done implicitly. If you want �uctuations without rotations
or translations (for example to the average structure), perform an RMS �t to
the average structure (best) or the �rst structure (see rmsd) prior to this cal-
culation. The units are (Å) for RMSF or Å2 Ö 8

3π
2 if bfactor is speci�ed.

If byres or bymask are speci�ed, the mass-weighted average of atomic
�uctuations of each atom for either each residue or the entire mask will be
calculated respectively:

〈Fluct〉 =
∑

AtomFlucti∗Massi∑
Massi

If calcadp is speci�ed, anisotropic displacement factors for atoms will be
calculated and written to the �le speci�ed by adpout (or STDOUT if not
speci�ed) using PDB ANISOU record format. Note that calcadp automatically
implies bfactor.

With cpptraj it is possible to perform coordinate averaging, the �t to average
coordinates, and the atomic �uctuation calculation in a single execution like so:

parm myparm.parm7
trajin mytrajectory.crd
rms first
average crdset MyAvg
run
rms ref MyAvg
atomicfluct out fluct.agr

To write the mass-weighted B-factors for the protein backbone atoms C, CA,
and N, averaged by residue use the command:

atomicfluct out back.agr @C,CA,N byres bfactor

To write the RMSF or atomic positional �uctuations of the same atoms, use the
command:

atomicfluct out backbone-atoms.agr @C,CA,N

67

11.5 atommap

atommap <target> <reference> [mapout <filename>] [maponly]
[rmsfit [rmsout <rmsout>]]

<target> Reference structure whose atoms will be
remapped.

<reference> Reference structure that <target> should be
mapped to.

mapout <�lename> Write atom map to <filename> with
format:
TargetAtomNumber TargetAtomName ReferenceAtomNumber
ReferenceAtomName
Target atoms that cannot be mapped to a reference
atom are denoted ��-�.

maponly Write atom map but do not reorder atoms.

rms�t Any input frames using the same topology as
<target> will be RMS fit to <reference> using
whatever atoms could be mapped.

rmsout <rmsout> If rmsfit specified, write
resulting RMSDs to <rmsout>.

Attempt to map the atoms of <target> to those of <reference> based on struc-
tural similarity. This is useful e.g. when there are two �les containing the same
structure but with di�erent atom names or atom ordering. Both <target> and
<reference> need to have been read in with a previous reference command.
The state will then be modi�ed so that any trajectory read in with the same
parameter �le as <target> will have its atoms mapped (i.e. reordered) to match
those of <reference>. If the number of atoms that can be mapped in <target>
are less than those in <reference>, the reference structure speci�ed by <ref-
erence> will be modi�ed to include only mapped atoms; this is useful if for
example the reference structure is protonated with respect to the target. The
rms�t keyword is useful in cases where the atom mapping will not be complete
(e.g. two ligands with the same sca�old but di�erent substituents).

For example, say you have the same ligand structure in two �les, Ref.mol2
and Lig.mol2, but the atom ordering in each �le is di�erent. To map the atoms
in Lig.mol2 onto those of Ref.mol2 so that Lig.mol2 has the same ordering as
Ref.mol2:

parm Lig.mol2
reference Lig.mol2
parm Ref.mol2
reference Ref.mol2 parmindex 1
atommap Lig.mol2 Ref.mol2 mapout atommap.dat
trajin Lig.mol2
trajout Lig.reordered.mol2 mol2

68

11.6 autoimage

autoimage [<mask> | anchor <mask> [fixed <mask>] [mobile <mask>]]
[origin] [firstatom] [familiar | triclinic]

[<mask> | anchor <mask>] Atoms to image around; this
is the region that will be centered. Default is the
entire first molecule.

[�xed <mask>] Molecules that should remain 'fixed' to
the anchor region; default is all
non-ion/non-solvent molecules.

[mobile <mask>] Molecules that can be freely imaged;
default is all ion/solvent molecules.

[origin] Center anchor region at the origin; if not
specified, center at box center.

[�rstatom] Image based on molecule first atom; default
is to image by molecule center of mass.

[familiar] Image to familiar truncated-octahedral shape;
this is on by default if the original cell is
truncated octahedron.

[triclinic] Force general triclinic imaging.

Automatically center and image (by molecule) a trajectory with periodic bound-
aries. For most cases just specifying 'autoimage' alone is su�cient. The
atoms of the 'anchor' region (default the entire �rst molecule) will be cen-
tered; all '�xed' molecules will be imaged only if imaging brings them closer to
the 'anchor' molecule (default for '�xed' molecules is all non-solvent non-ion
molecules). All other molecules (referred to as 'mobile') will be imaged freely.

The autoimage command works for the majority of systems; however, for
very densely packed systems the default anchor (entire �rst molecule) may not
be appropriate. In these cases, it is recommended to choose as the anchor a
small region which should lie near the center of your system. For example, in a
protein dimer system one could choose a single residue that is near the center
of the interface between the two monomers.

11.7 average

average {crdset <set name> | <filename>} [<mask>]
[start <start>] [stop <stop>] [offset <offset>]
[Trajout Args]

<�lename> If specified, write averaged coordinates to
<filename> (not compatible with crdset).

69

crdset <set name> If specified, save averaged
coordinates to COORDS set <set name> (not compatible
with <filename>).

[<mask>] Average coordinates in <mask> (all atoms if
not specified).

[<start>] Frame to begin calculation at (default 1).

[<stop>] Frame to end calculation at (default last).

[<o�set>] Frames to skip between calculations (default
1).

[Trajout args] Output trajectory format argument(s)
(default Amber Trajectory).

Calculate the average of input coordinates and write out to �le named <�le-
name> or save to COORDS set named <set name> in any trajectory format
cpptraj recognizes (Amber Trajectory if not speci�ed). If the number of atoms
in <mask> are less than the total number of atoms, the topology will be
stripped to match <mask>.

Note that since coordinates are being averaged over many frames, resulting
structures may appear distorted. For example, if one averages the coordinates
of a freely rotating methyl group the average position of the hydrogen atoms
will be close to the center of rotation. Also note that typically one will want to
remove global rotational and translation movement prior to this command by
using e.g. the rms (11.62 on page 132) command.

Any arguments that are valid for the trajout command (10.5 on page 58)
can be passed to this command in order to control the format of the output
coordinates. For example, to write out a PDB �le containing the averaged
coordinates over all frames:

average test.pdb pdb

To write out a mol2 �le containing only the averaged coordinates of residues 1
to 10 for frames 1 to 100:

average test.mol2 mol2 start 1 stop 100 :1-10

To create an average structure of atoms named CA and then use it as a reference
for an rms command in a subsequent run:

trajin Input.nc
average crdset MyAvg @CA
run
rms ref MyAvg @CA out RmsToAvg.dat
run

11.8 avgcoord

This command is deprecated. Use 'vector center' (optionally with keyword
'magnitude') instead.

70

11.9 bounds

bounds [<mask>] [out <filename>]
[dx <dx> [dy <dy>] [dz <dz>] name <gridname> [offset <bin offset>]]

[<mask>] Mask of atoms to determine bounds of.

[out <�lename>] File to write bounds to (default
STDOUT if not specified).

[dx <dx> [dy <dy>] [dz <dz>]] Triggers creation of a
grid data set from bounds. Spacings of generated
grid in the X, Y and Z directions. If only dx is
specified <dx> will be used for <dy> and <dz> as
well.

[name <gridname>] Name of generated data sets.

[o�set <bin o�set>] Number of bins to add/subtract in
each direction to generated grid.

DataSets Generated

<gridname> The 3D grid (only if 'dx' etc specified).

<gridname>[xmin] The minimum x coordinate
encountered.

<gridname>[xmax] The maximum x coordinate
encountered.

<gridname>[ymin] The minimum y coordinate
encountered.

<gridname>[ymax] The maximum y coordinate
encountered.

<gridname>[zmin] The minimum z coordinate encountered.

<gridname>[zmax] The maximum z coordinate
encountered.

Calculate the boundaries (i.e. the max/min X/Y/Z coordinates) of atoms in
<mask> and write to <�lename> (STDOUT if not speci�ed). Useful for
determining dimensions for the grid command, and can be used to generate a
grid data set that can be used by grid (see 11.34 on page 97).

11.10 box

box [x <xval>] [y <yval>] [z <zval>] [alpha <a>] [beta] [gamma <g>]
[nobox] [truncoct]

[x <xval>] [y <yval>] [z <zval>] Change box length(s) to
specified value(s).

71

[alpha <a>] [beta] [gamma <g>] Change box
angle(s) to specified value(s).

[nobox] Remove any existing box information.

[truncoct] Set box angles to truncated octahedron.

Modify box information during trajectory processing. Note that this will perma-
nently modify the box information for topology �les during trajectory processing
as well. It is possible to modify any number of the box parameters (e.g. only the
Z length can be modi�ed if desired while leaving all other parameters intact).

11.11 center

center [<mask>] [origin] [mass]
[reference | ref <name> | refindex <#> [<refmask>]]

[<mask>] Center based on atoms in mask; default is all
atoms.

[origin] Center to origin (0, 0, 0); default is center to
box center (X/2, Y/2, Z/2).

[mass] Use center of mass instead of geometric center.

[reference | ref <name> | re�ndex <#> [<refmask]]
Center using coordinates in specified reference
structure selected by <refmask> (<mask> if not
specified.

Move all atoms so that the center of the atoms in <mask> is centered at the
speci�ed location: box center (default), coordinate origin, or reference coordi-
nates.

For example, to move all coordinates so that the center of mass of residue 1
is at the center of the box:

center :1 mass

11.12 check | checkoverlap | checkstructure

check [<mask>] [around <mask2>] [reportfile <report>] [noimage] [skipbadframes]
[offset <offset>] [cut <cut>] [nobondcheck] [silent]

[<mask>] Check structure of atoms in <mask> (all if
not specified).

[around <mask2>] If specified, only check for problems
between atoms in <mask> and atoms in <mask2>.

[report�le <report>] Write any problems found to
<report> (STDOUT if not specified).

72

[noimage] Do not image distances.

[skipbadframes] If errors are encountered for a frame,
subsequent actions/trajectory output will be
skipped.

[o�set <o�set>] Report bond lengths greater than the
equilibrium value plus <offset> (default 1.0 Å)

[cut <cut>] Report atoms closer than <cut> (default 0.8
Å).

[nobondcheck] Check overlaps only.

[silent] Do not print information for bad frames - useful
in conjunction with the skipbadframes option.

Check the structure and report problems related to atomic overlap/unusual
bond length. Problems are reported when any two atoms in the mask are closer
than <cut>. If bonds are being checked then bond lengths greater than their
equilibrium value + <o�set> are reported as well. This command can also be
used to skip corrupted frames in a trajectory during processing. For example,
if this message is encountered:

Warning: Frame 10 coords 1 & 2 overlap at origin; may be corrupt.

One could use check so that e.g. a subsequent distance command is not
processed for bad frames:

check @1,2 skipbadframes silent
distance d1 :1 :10

Usually frame corruption can be detected using only a few atoms, but this
may not catch all types of corruption. The more atoms that are used the
better the corruption detection will be, but the slower it will be to process the
command. Typically a good procedure to follow when corruption is suspected
is to run check using all important atoms (e.g. all solute heavy atoms) with
the skipbadframes keyword followed by a trajout command to write all non-
corrupt frames, for example:

trajin corrupted.crd
check :1-13 skipbadframes silent
trajout fixed.corrupted.nc

11.13 checkchirality

checkchirality [<name>] [<mask>] [out <filename>]

[<name>] Data set name.

[<mask>] Atoms to check.

73

[out <�lename>] File to write results to.

DataSet Aspects:

[L] Number of frames 'L' for each residue.

[D] Number of frames 'D' for each residue.

Check the chirality around the alpha carbon in amino acid residues selected by
<mask>. Note that cpptraj expects atom names to correspond to the PDB V3
standard: N, CA, C, CB. For each residue, the number of frames in which the
amino acid is 'L' or 'D' will be recorded. For example, to check the chirality of
all amino acids in a system and write to a �le named chiral.dat with data set
name DPDP:

checkchirality DPDP out chiral.dat

Output will have format similar to:

#Res DPDP[L] DPDP[D]
2.000 100 0

So in this example residue 2 was 'L' for 100 frames and 'D' for 0 frames.

11.14 closest | closestwaters

closest <# to keep> <mask> [noimage] [first | oxygen] [center]
[closestout <filename>] [name <setname>] [outprefix <parmprefix>]
[parmout <file>]

<# to keep> Number of solvent molecules to keep around
<mask>

<mask> Mask of atoms to search for closest waters
around.

[noimage] Do not perform imaging; only recommended if
trajectory has previously been imaged.

[�rst | oxygen] Calculate distances between all atoms in
<mask> and the first atom of solvent only
(recommended for standard water models as it will
increase speed of calculation).

[center] Search for waters closest to center of <mask>
instead of each atom in <mask>.

[closestout <�lename>] Write information on the closest
solvent molecules to <filename>.

[outpre�x <pre�x>] Write corresponding topology to
file with name prefix <prefix>.

74

[parmout <�le>] Write corresponding topology to file
with name <file>.

DataSet Aspects:

[Frame] Frame number.

[Mol] Original solvent molecule number.

[Dist] Solvent molecule distance in Å.

[FirstAtm] First atom number of original solvent
molecule.

Similar to the strip command, but modify coordinate frame and topology by
keeping only the speci�ed number of closest solvent molecules to the region
speci�ed by the given mask. Solvent molecules can be determined automati-
cally by cpptraj (by default residues named WAT, HOH, or TIP3) or can be
speci�ed prior via the solvent command (9.17 on page 52). The format of the
closestout �le is:

Frame Molecule Distance FirstAtom#

For example, to obtain the 10 closest waters to residues 1-268 by distance to the
�rst atom of the waters, write out which waters were closest for each frame to
a �le called �closestmols.dat�, and write out the stripped topology with pre�x
�closest� containing only the solute and 10 waters:

closest 10 :1-268 first closestout closestmols.dat outprefix closest

As of version 17 this command is CUDA-enabled in CUDA versions of CPP-
TRAJ.

11.15 cluster

Although the 'cluster' command can still be speci�ed as an action, it is now
considered an analysis. See 12.4 on page 157.

11.16 clusterdihedral

clusterdihedral [phibins <N>] [psibins <M>] [out <outfile>]
[dihedralfile <dfile> | <mask>]
[framefile <framefile>] [clusterinfo <infofile>]
[clustervtime <cvtfile>] [cut <CUT>]

Cluster frames in a trajectory using dihedral angles. To de�ne which dihedral
angles will be used for clustering either an atom mask or an input �le speci�ed
by the dihedral�le keyword should be used. If dihedral �le is used, each line
in the �le should contain a dihedral to be binned with format:

75

ATOM#1 ATOM#2 ATOM#3 ATOM#4 #BINS

where the ATOM arguments are the atom numbers (starting from 1) de�ning
the dihedral and #BINS is the number of bins to be used (so if #BINS=10
the width of each bin will be 36º). If an atom mask is speci�ed, only protein
backbone dihedrals (Phi and Psi de�ned using atom names C-N-CA-C and N-
CA-C-N) within the mask will be used, with the bin sizes speci�ed by the phibins
and psibins keywords (default for each is 10 bins).

Output will either be written to STDOUT or the �le speci�ed by the out key-
word. First, information about which dihedrals were clustered will be printed.
Then the number of clusters will be printed, followed by detailed information of
each cluster. The clusters are sorted from most populated to least populated.
Each cluster line has format

Cluster CLUSTERNUM CLUSTERPOP [dihedral1bin, dihedral2bin ... dihedralNbin]

followed by a list of frame numbers that belong to that cluster. If a cuto�
is speci�ed by cut, only clusters with population greater than CUT will be
printed.

If speci�ed by the clustervtime keyword, the number of clusters for each
frame will be printed to <cvt�le>. If speci�ed by the frame�le keyword, a �le
containing cluster information for each frame will be written with format

Frame CLUSTERNUM CLUSTERSIZE DIHEDRALBINID

where DIHEDRALBINID is a number that identi�es the unique combination of
dihedral bins this cluster belongs to (speci�cally it is a 3*number-of-dihedral-
characters long number composed of the individual dihedral bins).

If speci�ed by the clusterinfo keyword, a �le containing information on each
dihedral and each cluster will be printed. This �le can be read by SANDER
for use with REMD with a structure reservoir (-rremd=3). The �le, which is
essentially a simpli�ed version of the main output �le, has the following format:

#DIHEDRALS
dihedral1_atom1 dihedral1_atom2 dihedral1_atom3 dihedral1_atom4
...
#CLUSTERS
CLUSTERNUM1 CLUSTERSIZE1 DIHEDRALBINID1
...

11.17 contacts

contacts [first | reference | ref <ref> | refindex <#>] [byresidue]
[out <filename>] [time <interval>] [distance <cutoff>] [<mask>]

76

NOTE: Users are encouraged to try the nativecontacts command (on page 120),
an update version of this command.

For each atom given in mask, calculate the number of other atoms (contacts)
within the distance cuto�. The default cuto� is 7.0 A. Only atoms in mask are
potential interaction partners (e.g., a mask @CA will evaluate only contacts
between CA atoms). The results are dumped to �lename if the keyword �out�
is speci�ed. Thereby, the time between snapshots is taken to be interval. In
addition to the number of overall contacts, the number of native contacts is also
determined. Native contacts are those that have been found either in the �rst
snapshot of the trajectory (if the keyword �first� is speci�ed) or in a reference
structure (if the keyword �reference� is speci�ed). Finally, if the keyword
�byresidue� is provided, results are output on a per-residue basis for each
snapshot, whereby the number of native contacts is written to �lename.native.

11.18 createcrd

createcrd [<name>] [parm <name> | parmindex <#>]

This command creates a COORDS data set named <name> using trajectory
frames that are associated with the speci�ed topology.

For example, to save frames that have been previously RMS-�t to a reference
structure into a COORDS set named MyCrd you would use the input:

rms reference :1-12@CA
createcrd MyCrd
strip :6-8

Note that here the strip command will have no e�ect on the coordinates saved
in MyCrd since it occurs after the createcrd command.

11.19 createreservoir

createreservoir <filename> ene <energy data set> [bin <cluster bin data set>]
temp0 <temp0> iseed <iseed> [velocity]
[parm <parmfile> | parmindex <#>] [title <title>]

<�lename> File name of the reservoir to create.

ene <energy data set> Data set with energies
corresponding to frames.

[bin <cluster bin data set>] Data set with bin numbers
(for RREMD=3).

temp0 <temp0> Reservoir temperature.

iseed <iseed> Reservoir random number seed.

[velocity] Include velocities in the reservoir.

77

[parm <parm�le> | parmindex <#>] Associated
topology.

[title <title>] Reservoir title.

Create structure reservoir for use with reservoir REMD simulations using en-
ergies in <energy data set>, temperature <temp0> and random seed <iseed>
Include velocities if [velocity] is speci�ed. If <cluster bin data set> is speci�ed
from e.g. a previous 'clusterdihedral' command, the reservoir can be used for
non-Boltzmann reservoir REMD (rremd==3).

11.20 density

density [out <filename>] [name <set name>] [delta <resolution>] [x|y|z]
[number|mass|charge|electron] [efile <filename>]
[<mask1> ... <maskN>]

out Output file for histogram: relative distances vs.
densities for each mask.

delta Resolution, i.e. determines number of slices.
(0.25 Å)

x|y|z Coordinate for density calculation. (z)

number|mass|charge|electron Number, mass, partial
charge (q) or electron (Ne - q) density. To convert
the electron density to e-/Å3 divide by the
(average) area spanned by the other two dimensions.
(number)

mask1 ... maskN Arbitrary number of masks for atom
selection; a dataset is created and the output will
contain entries for each mask.

DataSet Aspects:

[avg] Average density over coordinate.

[sd] Standard deviation of density over coordinate.

If no arguments are speci�ed, calculate the total system density. Otherwise,
calculate speci�ed density for system. Defaults are shown in parentheses above.
The format of the �le is as follows. Comments are lines starting with '#' or
empty lines. All other lines must contain the atom type followed by an integer
number for the electron number. Entries must be separated by spaces or '='.
Example input:

density out number_density.dat number delta 0.25 ":POPC@P1" ":POPC@N" \
":POPC@C2" ":POPC"

78

density out mass_density.dat mass delta 0.25 ":POPC@P1" ":POPC@N" \
":POPC@C2" ":POPC"

density out charge_density.dat charge delta 0.25 ":POPC@P1" ":POPC@N" \
":POPC@C2" ":POPC"

density out electron_density.dat electron delta 0.25 efile Nelec.in \
":POPC@P1" ":POPC@N" ":POPC@C2" ":POPC" ":TIP3" \
":POPC | :TIP3" "*"

density out ion_density.dat number delta 0.25 ":SOD" ":CLA"

See also $AMBERHOME/AmberTools/test/cpptraj/Test_Density.

11.21 di�usion

Note that although the syntax for di�usion has changed as of version 16, the
old syntax is still supported.

diffusion [{out <filename> | separateout <suffix>}] [time <time per frame>] [noimage]
[<mask>] [<set name>] [individual] [diffout <filename>] [nocalc]

[out <�lename>] Write mean-square displacement (MSD)
data set output to file specified by <filename>.

[separateout <su�x>] Write each MSD data set type to
files with suffix <suffix>; see description below.

[time <time_per_frame>] Time in-between each
coordinate frame in ps; default is 1.0.

[noimage] If specified do not perform imaging. If this
is specified coordinates should be unwrapped prior
to this command.

[<mask>] Mask of atoms to calculate diffusion for;
default all atoms.

[<set name>] MSD data set name.

[individual] Write diffusion for each individual atom as
well as average diffusion for atoms in mask.

[di�out <�lename>] Write diffusion contants calculated
from fits of MSD data sets to <filename>.

[nocalc] Do not calculate diffusion constants.

DataSet Aspects:

[X] MSD(s) in the X direction.

[Y] MSD(s) in the Y direction.

[Z] MSD(s) in the Z direction.

[R] Overall MSD(s).

79

[A] Overall displacement(s).

[D] Diffusion constants.

[Label] Diffusion constant lablels.

[Slope] Linear regression slopes.

[Intercept] Linear refression Y-intercepts.

[Corr] Linear regression correlation coefficients.

Compute mean square displacement (MSD) plots (using distance traveled from
initial position) for the atoms in <mask>. By default only the di�usion aver-
aged over all atoms in<mask> is calculated; if individual is speci�ed di�usion
for individual atoms is calculated as well.

In order to correctly calculate di�usion molecules should take continuous
paths, so imaging of atoms is autoimatically performed. If the trajectory is
already unwrapped (or the unwrap command is used prior to this command)
the noimage keyword can be used.

The following types of displacements are calculated. If separateout is spec-
�ed the following �les will be created:

x_<su�x> Mean square displacement(s) in the X direction (in Å2/ps).

y_<su�x> Mean square displacement(s) in the Y direction (in Å2/ps).

z_<su�x> Mean square displacement(s) in the Z direction (in Å2/ps).

r_<su�x> Overall mean square displacement(s) (in Å2/ps).

a_<su�x> Total distance traveled (in Å/ps).

The di�usion coe�cient D can be calculated using the Einstein relation:

2nD = lim
t→∞

MSD

t

Where n is the number of dimensions; for overall MSD n = 3, for single
dimension MSD (e.g. X) n = 1, etc. Unless nocalc is speci�ed, the di�usion
constant is calculated automatically from MSD data sets (and written to the
�le speci�ed by di�out) in the following manner. The slope the plot of MSD
versus time is obtained via linear regression. To convert from units of Å2/ps to
1x10-5 cm2/s, the slope is multiplied by 10.0/(2n). Both the calculated di�usion
constants as well as the results of the �t are reported.

Due to the fact that di�usion is currently calculated from initial positions
only, di�usion calculated for small numbers of atoms will be inherently stochas-
tic, so the results are most sensible when averaged over many atoms; for example,
the di�usion of water should be calculated using all waters in the system.

For example, to calculate the di�usion of water in a system:

diffusion :WAT@O out WAT_O.agr WAT_O diffout DC.dat

80

11.22 dihedral

dihedral [<name>] <mask1> <mask2> <mask3> <mask4> [out <filename>] [mass]
[type {alpha|beta|gamma|delta|epsilon|zeta|chi|c2p|h1p|phi|psi|omega|pchi}]
[range360]

[<name>] Output data set name.

<maskX> Four atom masks selecting atom(s) to
calculate dihedral for.

[out <�lename>] Output file name.

[mass] Use center of mass of atoms in <maskX>; default
is geometric center.

[range360] Output dihedral angle values from 0 to 360
degrees instead of -180 to 180 degrees.

[type <type>] Label dihedral as <type> for use with
statistics analysis; note 'chi' is nucleic acid chi
and 'pchi' is protein chi.

Calculate dihedral angle (in degrees) between the planes de�ned by atoms in
<mask1>, <mask2>, <mask3> and <mask2>, <mask3>, <mask4>.

11.23 dihedralscan

This command has been replaced by permutedihedrals; see 7.7 on page 31.
To calculate multiple dihedral angles see the multidihedral command.

11.24 dipole

dipole <filename> {data <dsname> | <nx> <dx> <ny> <dy> <nz> <dz> [gridcenter <cx> <cy> <cz>]}
[box|origin|center <mask>] [negative] [name <gridname>]

<mask1> {origin | box} [max <max_percent>]

NOTE: This command is not well-tested and may be obsolete.
Same as grid (see 11.34 on page 97 below) except that dipoles of the solvent

molecules are binned. The output �le format is for Chris Bayly's discern delegate
program that comes with Midas/Plus. Consult the code in Action_Dipole.cpp
for more information.

11.25 distance

distance [<name>] <mask1> [<mask2>] [point <X> <Y> <Z>]
[reference | ref <name> | refindex <#>]

[out <filename>] [geom] [noimage] [type noe]
Options for 'type noe':

[bound <lower> bound <upper>] [rexp <expected>] [noe_strong] [noe_medium] [noe_weak]

81

[<name>] Output data set name

<mask1> Atom mask selecting atom(s) to calculate
distance between.

<mask2> If specified, second atom mask selection
atom(s) to calculate distance from <mask1>.

point <X> <Y> <Z> If specified instead of second
mask, calculate distance between <mask1> and
specified XYZ coordinates.

reference | ref <name> | re�ndex <#> If specified,
calculate distance between <mask1> and <mask2> in
specified reference.

[out <�lename>] Output filename.

[geom] Use geometric center of atoms in <mask1>/<mask2>;
default is to use center of mass.

[noimage] Do not image distances across periodic
boundaries.

[type noe] Mark distance as 'noe' for use with
statistics analysis.

[bound <lower> bound <upper>] Lower and upper
bounds for NOE (in Angstroms); must specify
both.

[rexp <expected>] Expected value for NOE (in
Angstroms); if not given '(<lower> + <upper>)' /
2.0 is used.

[noe_strong] Set lower and upper bounds to 1.8 and
2.9 Å respectively.

[noe_medium] Set lower and upper bounds to 2.9 and
3.5 Å respectively.

[noe_weak] Set lower and upper bounds to 3.5 and
5.0 Å respectively.

Calculate distance between the center of mass of atoms in <mask1> to atoms
in <mask2>, between atoms in <mask1> and atoms in <mask2> in speci�ed
reference, or atoms in <mask1> and the speci�ed point. If geom is speci�ed
use the geometric center instead. For periodic systems imaging is turned on by
default; the noimage keyword disables imaging.

A distance can be labeled using 'type noe' for further analysis as an NOE
using the 'statistics' analysis command (12.32 on page 195).

11.26 drms | drmsd (distance RMSD)

drmsd [<dataset name>] [<mask> [<refmask>]] [out <filename>]

82

[first | ref <refname> | refindex <#> |
reftraj <trajname> [parm <trajparm> | parmindex <parm#>]]

[<dataset name>] Output data set name.

[<mask>] Atoms to calculate DRMSD for.

[<refmask>] Mask corresponding to atoms in reference;
if not specified, <mask> is used.

[out <�lename>] Output file name.

[�rst] Use the first trajectory frame processed as
reference.

[reference] Use the first previously read in reference
structure.

[ref <refname>] Use previously read in reference
structure specified by <refname>.

[re�ndex <#>] Use previously read in reference
structure specified by <#> (based on order read in).

previous Use frame prior to current frame as reference.

reftraj <name> Use frames from COORDS set <name> or
read in from trajectory file <name> as references.
Each frame from <name> is used in turn, so that
frame 1 is compared to frame 1 from <name>, frame 2
is compared to frame 2 from <name> and so on. If
<trajname> runs out of frames before processing is
complete, the last frame of <trajname> continues to
be used as the reference.

parm <parmname> | parmindex <#> If reftraj
specifies a file associate trajectory <name>
with specified topology; if not specified the
first topology is used.

Calculate the distance RMSD (i.e. the RMSD of all pairs of internal distances)
between atoms in the frame de�ned by <mask> (all if no <mask> speci�ed)
to atoms in a reference de�ned by <refmask> (<mask> if <refmask> not
speci�ed). Both <mask> and <refmask> must specify the same number of
atoms, otherwise an error will occur.

Because this method compares pairs of internal distances and not absolute
coordinates, it is not sensitive to translations and rotations the way that a no-
�t RMSD calculation is. It can be more time consuming however, as (N2-N)/2
distances must be calculated and compared for both the target and reference
structures.

For example, to get the DRMSD of a residue named LIG to its structure in
the �rst frame read in:

drmsd :LIG first out drmsd.dat

83

11.27 dssp

See 11.70 on page 137.

11.28 energy

energy [<name>] [<mask1>] [out <filename>]
[bond] [angle] [dihedral] {[nb14] | [e14] | [v14]}
{[nonbond] | [elec] [vdw]} [kinetic [ketype {vel|vv}] [dt <dt>]]
[etype { simple |

directsum [npoints <N>] |
ewald [cut <cutoff>] [dsumtol <dtol>] [rsumtol <rtol>]

[ewcoeff <coeff>] [maxexp <max>] [skinnb <skinnb>]
[mlimits <X>,<Y>,<Z>] [erfcdx <dx>]

pme [cut <cutoff>] [dsumtol <dtol>] [order <order>]
[ewcoeff <coeff>] [skinnb <skinnb>]
[nfft <nfft1>,<nfft2>,<nfft3>] [erfcdx <dx>]

}]

[<name>] Data set name.

[<mask1>] Mask of atoms to calculate energy for.

[out <�lename>] File to write results to.

[bond] Calculate bond energy.

[angle] Calculate angle energy.

[dihedral] Calculate dihedral energy.

[nb14] Calculate nonbonded 1-4 energy.

[e14] Calculate 1-4 electrostatics.

[v14] Calculate 1-4 van der Waals.

[nonbond] Calculate nonbonded energy (electrostatics
and van der Waals).

[elec] Calculate electrostatic energy.

[vdw] Calculate van der Waals energy.

[etype <type>] Calculate electrostatics via specified
type.

[simple] Use simple Coulomb term for electrostatics, no
cutoff.

[directsum] Use direct summation method for
electrostatics.

[npoints <N>] Number of cells in each direction to
calculate the direct sum.

[ewald] Use Ewald summation for electrostatics. If van
der Waals energy will be calculated a long-range
correction for periodicity will be applied.

84

cut <cuto�> Direct space cutoff in Angstroms
(default 8.0).

dsumtol <dtol> Direct sum tolerance (default
0.00001). Used to determine Ewald coefficient.

rsumtol <rtol> Reciprocal sum tolerance (default
0.00005). Used to determine number of
reciprocal space vectors.

ewcoe� <coe�> Ewald coefficient in 1/Ang.

skinnb Used to determine pairlist atoms (added to
cut, so pairlist cutoff is cut + skinnb);
included in order to maintain consistency with
results from sander.

mlimits <X>,<Y>,<Z> Explicitly set the number
of reciprocal space vectors in each dimension.
Will be determined automatically if not
specified.

[pme] Use particle mesh Ewald for electrostatics. If
van der Waals energy will be calculated a long-range
correction for periodicity will be applied.

cut <cuto�> Direct space cutoff in Angstroms
(default 8.0).

dsumtol <dtol> Direct sum tolerance (default
0.00001). Used to determine Ewald coefficient.

order <order> Spline order for charges.

ewcoe� <coe�> Ewald coefficient in 1/Ang.

skinnb Used to determine pairlist atoms (added to
cut, so pairlist cutoff is cut + skinnb);
included in order to maintain consistency with
results from sander.

n�t <n�t1>,<n�t2>,<n�t3> Explicitly set the
number of FFT grid points in each dimension.
Will be determined automatically if not
specified.

DataSet Aspects:

[bond] Bond energy.

[angle] Angle energy.

[dih] Dihedral energy.

[vdw14] 1-4 van der Waals energy.

[elec14] 1-4 electrostatic energy.

[vdw] van der Waals energy.

[elec] Electrostatic energy.

85

[total] Total energy.

Calculate the energy for atoms in <mask>. If no terms are speci�ed, all terms
are calculated. Note that the non-bonded energy terms for 'simple' do not take
into account periodicity and there is no distance cut-o�. Electrostatics can also
be determined via the direct sum, Ewald, or particle-mesh Ewald summation
procedures. The particle mesh Ewald functionality requires that CPPTRAJ be
compiled with FFTW and a C++11 compliant compiler.

Calculation of energy terms requires that the associated topology �le have
parameters for any of the calculated terms, so for example angle calculations
are not possible when using a PDB �le as a topology, etc. All nonbonded
calculations methods other than simple require unit cell parameters.

For example, to calculate all energy terms and write to a Grace-format �le:

parm DPDP.parm7
trajin DPDP.nc
energy DPDP out ene.agr

11.29 esander

esander [<name>] [out <filename>] [saveforces] [parmname <file>] [keepfiles]
[<namelist vars> ...]

[<name>] Data set name.

[out <�lename>] File to write results to.

[saveforces] If specified, save forces to frames.
Requires writing frames in NetCDF format.

[parmname <�le>] Name of temporary topology file
(default: 'CpptrajEsander.parm7').

[keep�les] Keep temporary topology file after program
execution.

[<namelist vars>] Namelist variables supported by the
sander API in format 'var <value>'; see below.

Calculate energies for input frames using the sander API. It requires compila-
tion with the SANDER API (sanderlib). This can be considered as a faster
alternative to energy post-processing with sander (imin = 5). Currently the
following sander namelist variables are supported: extidel, intdiel, rgbmax,
saltcon, cut, dielc, igb, alpb, gbsa, lj1264, ipb, inp, vdwmeth, ew_type,
ntb, ntf, ntc. See ?? on page ?? for details.

If ntb/cut/igb are not speci�ed cpptraj will attempt to pick reasonable values
based on the input system. The defaults for a non-periodic system are ntb=0,
cut=9999.0, igb=1. The defaults for a periodic system are ntb=1, cut=8.0,
igb=0. This currently requires writing a temporary Amber topology, the name

86

of which can be set by parmname. If keep�les is speci�ed this temporary
topology will not be deleted after execution.

For example, to calculate energies for a non-periodic system using igb=1
(the default) with GB surface area turned on (gbsa=1):

parm DPDP.parm7
trajin DPDP.nc
esander DPDP out Edpdp.dat gbsa 1

11.30 �lter

filter <dataset1 arg> min <min1> max <max1>
[<dataset2 arg> min <min2> max <max2> ...]
[out <file> [name <setname>]]

<datasetX arg> Data set name(s) to use for filtering

min <minX> Allow values greater than <min> in dataset
X.

max <maxX> Allow values greater than <max> in
dataset X.

[out <�le>] File containing 1 for frames that were
allowed, 0 for frames that were filtered.

[name <setname>] Filtered data set name containing 1
for allowed frames, 0 for filtered frames.

For all following actions, only include frames that are between <min> and
<max> of data sets in <dataset arg>. There must be at least one <min>
and <max> argument, and there must be as many <min>/<max> ar-
guments as there are speci�ed data sets. For example, to write only frames
in-between an RMSD of 0.7-0.8 Angstroms for a given input trajectory:

trajin ../tz2.truncoct.nc
rms R1 first :2-11
filter R1 min 0.7 max 0.8 out filter.dat
outtraj maxmin.crd

The output trajectory will only contain frames that meet the RMSD require-
ment, and the �lter.dat �le can be used to see which frames those were that
were output.

A similar command that can be used with data that already exists (e.g. it
has been read in with readdata) is data�lter (see page 36).

11.31 �xatomorder

fixatomorder [outprefix <name>]

87

Cpptraj (and most of Amber) expects that atom indices in molecules to increase
monotonically. However, occasionally atom indices in molecules can become
disordered or non-sequential, in which case cpptraj will print an error message
such as the following:

Error: Atom 45 was assigned a lower molecule # (1) than previous atom (2).

and:

Error: Could not determine molecule information for <topology file>.

. This command �xes atom ordering so that all atoms in molecules are sequen-
tial. The outpre�x keyword will write out the re-ordered topology with name
<name>.<original name>.

For example, given an out of order topology named 'outoforder.parm7' and
a corresponding trajectory 'min1.crd', the following will produce a reordered
topology named 'reorder.outoforder.parm7' and a reordered trajectory named
'reorder.mdcrd':

parm outoforder.parm7
trajin min1.crd 1 10
fixatomorder outprefix reorder
trajout reorder.mdcrd

11.32 �ximagedbonds

fiximagedbonds [<mask>]

<mask> Mask expression of atoms to check.

Fix bonds that have been split across periodic boundary conditions by imaging.
It may be desirable to reimage the coordinates after this with autoimage .

11.33 gist (Grid Inhomogeneous Solvation Theory)

gist [doorder] [doeij] [skipE] [refdens <rdval>] [temp <tval>]
[noimage] [gridcntr <xval> <yval> <zval>]
[griddim <xval> <yval> <zval>] [gridspacn <spaceval>]
[prefix <filename prefix>] [ext <grid extension>] [out <output>]
[info <info>]

[doorder] Calculate the water order parameter [3] for
each voxel.

[doeij] Calculate the triangular matrix representing the
water-water interactions between pairs of voxels
(see below).

88

[skipE] Skip all energy calculations (cannot be
specified with 'doeij').

[refdens rdval>] Reference density of bulk water, used
in computing g_O, g_H, and the translational
entropy. Default is 0.0334 molecules/Å3.

[temp <tval>] Temperature of the input trajectory.

[noimage] Disable distance imaging in energy
calculation.

[gridcntr <xval> <yval> <zval>] Coordinates (Å) of the
center of the grid (default 0.0, 0.0, 0.0).

[griddim <xval> <yval> <zval>] Grid dimensions along
each coordinate axis (default 40, 40, 40).

[gridspacn <spaceval>] Grid spacing (linear dimension
of each voxel) in Angstroms. Values greater than
0.75 Å are not recommended (default 0.5 Å).

[pre�x <�lename pre�x>] Output file name prefix
(default �gist�).

[ext <grid extension>] Output grid file name extension
(default �.dx�).

[out <output>] Name of the main GIST output file. If
not specified set to '<prefix>-output.dat'.

[info <info>] Name of main GIST info file. If not
specified info is written to standard output.

DataSet Aspects:

[gO] Number density of oxygen centers found in the
voxel, in units of the bulk density.

[gH] Number density of hydrogen centers found in the
voxel in units of the reference bulk density.

[Esw] Mean solute-water interaction energy density.

[Eww] Mean water-water interaction energy density.

[dTStrans] First order translational entropy density.

[dTSorient] First order orientational entropy density .

[neighbor] Mean number of waters neighboring the water
molecules found in this voxel multiplied by the
voxel number density.

[dipole] Magnitude of mean dipole moment (polarization).

[order] Average Tetrahedral Order Parameter.

[dipolex] x-component of the mean water dipole moment
density

89

Figure 1: Diagram, in 2D, of GIST's gridded water properties in a binding site.

[dipoley] y-component of the mean water dipole moment
density

[dipolez] z-component of the mean water dipole moment
density

[Eij] Water-water interaction matrix.

Grid Inhomogeneous Solvation Theory [4, 5] (GIST) is a method for analyzing
the structure and thermodynamics of solvent in the vicinity of a solute molecule.
The current implementation works for only water, but the method can be gener-
alized to other solvents whose molecules are rigid like water, such as chloroform
or dimethylsulfoxide (DMSO). GIST post-processes explicit solvent simulation
data to create a three-dimensional mapping of water density and thermody-
namic properties within a region of interest, which is de�ned by a user-speci�ed
3D rectangular grid. The small grid boxes are referred to as voxels, and each
voxel is associated with solvent properties. (See Fig. 1.) The GIST implemen-
tation incorporated into AmberTools cpptraj also calculates a number of other
local water properties, as listed below. GIST works for the nonpolarizable water
models currently supported by AMBER.

In order to carry out a GIST calculation, you must have a trajectory �le
generated with explicit water, as well as the corresponding topology �le. To
generate the most readily interpretable results, it is recommended that the solute
(e.g., a protein) be restrained into essentially one conformation. GIST will then
provide information about the structure and thermodynamics of the solvent for
that conformation. For a room-temperature simulation of a solvent-exposed
binding site, and a grid-spacing of 0.5 Å, it is recommended that the simulation
be at least 10-20 ns in duration, and it is also a good idea to check for convergence
of the GIST properties you are interested in by loading and then processing
successively more frames of your trajectory �le. Because GIST assumes that
the solute of interest comprises all molecules in the simulation that are not
waters, it is a good idea to remove all counterions and cosolutes with cpptraj's
strip command before running GIST. A sample series of cpptraj commands for
running GIST is provided below.

Although it is not mandatory to supply values of gridcntr, griddim and
gridspcn, these parameters should be carefully chosen, because they determine

90

the region to be analyzed (gridcntr and griddim) and the spatial resolution
and convergence properties of the results (gridspcn). In particular, although
smaller grid spacings will give �ner spatial resolution, longer simulation times
will be needed to converge the properties in the smaller voxels that result. A
larger grid spacing will allow earlier convergence, but will smooth the spatial
distributions and hence can reduce accuracy.

The reference density of water (rdval) is taken by default to be the exper-
imental number density of pure water at 300 K and 1 atm. However, di�erent
water models may yield slightly di�erent bulk densities under these conditions,
and the density also depends on T and P. If you know that the bulk density
of the water model you are using, at the T and P of your simulation, deviates
signi�cantly from 0.0334 water molecules/Å3, it would be advisable to supply
the actual value with the refdens keyword, instead of allowing GIST to supply
the default value.

GIST Output

GIST generates a main output �le and a collection of grid data �les that
by default are in Data Explorer format (.dx); this can be changed via the ext
keyword. These grid �les enable visualization of the various gridded quantities,
such as with the program VMD [6]. If the doeij keyword is provided, GIST
also writes out a matrix of water-water interactions between pairs of voxels. In
addition, run details are written to stdout, which can be redirected into a log
�le.

Note that a number of quantities are written out as both densities and
normalized quantities. For example, the output �le includes both the solute-
water energy density and the normalized (per water) solute-water energy. In all
cases, the normalized quantity at voxel i, Xi,norm is related to the corresponding
density, Xi,dens, by the relationship Xi,norm = ρiXi,dens, where ρi is the number
density of water in the voxel. The normalized quantity provides information
regarding the nature of the water found in the voxel. The density has the
property that, if the grid extended over the entire simulation volume, the total
system quantity would be given by Xtot = Vvoxel

∑
iXi,dens, where Vvoxel is the

volume of one grid voxel.
The main output �le takes the form of a space-delimited-variable �le, where

each row corresponds to one voxel of the grid. This �le can easily be opened
with and manipulated with spreadsheet programs like Excel and LibreO�ce
Calc. The columns are as follows.

� index - A unique, sequential integer assigned to each voxel

� xcoord - x coordinate of the center of the voxel (Å)

� ycoord - y coordinate of the center of the voxel (Å)

91

� zcoord - z coordinate of the center of the voxel (Å)

� population - Number of water molecule, ni, found in the voxel over the
entire simulation. A water molecule is deemed to populate a voxel if its
oxygen coordinates are inside the voxel. The expectation value of this
quantity increases in proportion to the length of the simulation.

� g_O - Number density of oxygen centers found in the voxel, in units of
the bulk density (rdval). Thus, the expectation value of g_O for a neat
water system is unity.

� g_H - Number density of hydrogen centers found in the voxel in units
of the reference bulk density (2×rdval). Thus, the expectation value of
g_H for a neat water system would be unity.

� dTStrans-dens - First order translational entropy density (kcal/mole/Å3),
referenced to the translational entropy of bulk water, based on the value
rdval.

� dTStrans-norm - First order translational entropy per water molecule
(kcal/mole/molecule), referenced to the translational entropy of bulk wa-
ter, based on the value rdval. The quantity dTStrans-norm equals
dTStrans-dens divided by the number density of the voxel.

� dTSorient-dens - First order orientational entropy density (kcal/mole/Å3),
referenced to bulk solvent (see below).

� dTSorient-norm - First order orientational entropy per water molecule
(kcal/mole/water), referenced to bulk solvent (see below). This quantity
equals dTSorient-dens divided by the number density of the voxel.

� Esw-dens - Mean solute-water interaction energy density (kcal/mole/Å3).
This is the interaction of the solvent in a given voxel with the entire solute.
Both Lennard-Jones and electrostatic interactions are computed without
any cuto�, within the minimum image convention but without Ewald sum-
mation. This quantity is referenced to bulk, in the trivial sense that the
solute-solvent interaction energy is zero in bulk.

� Esw-norm - Mean solute-water interaction energy per water molecule.
This equals Esw-dens divided by the number density of the voxel (kcal/mole/molecule).

� Eww-dens - Mean water-water interaction energy density, scaled by ½
to prevent double-counting, and not referenced to the corresponding bulk
value of this quantity (see below). This quantity is one half of the mean
interaction energy of the water in a given voxel with all other waters in the
system, both on and o� the GIST grid, divided by the volume of the voxel
(kcal/mole/Å3). Again, both Lennard-Jones and electrostatic interactions
are computed without any cuto�, within the minimum image convention.

92

� Eww-norm - Mean water-water interaction energy, normalized to the
mean number of water molecules in the voxel (kcal/mole/water). See
prior column de�nition for details.

� Dipole_x-dens - x-component of the mean water dipole moment density
(Debye/Å3).

� Dipole_y-dens - y-component of the mean water dipole moment density
(Debye/Å3).

� Dipole_z-dens - z-component of the mean water dipole moment density
(Debye/Å3).

� Dipole-dens - Magnitude of mean dipole moment (polarization) (Debye/Å3).

� Neighbor-dens - Mean number of waters neighboring the water molecules
found in this voxel multiplied by the voxel number density. Two waters
are considered neighbors if their oxygens are within 3.5 angstroms of each
other. For any given frame, the contribution to the average is set to zero
if no water is found in the voxel (units of number/Å3).

� Neighbor-norm - Mean number of neighboring water molecules, per wa-
ter molecule found in the voxel (units of number per water).

� Order-norm - Average Tetrahedral Order Parameter [3], qtet, for water
molecules found in the voxel, normalized by the number of waters in the
voxel. The order parameter for water i in a given frame is given by:
qtet(i) = 1 − 3

8

∑3
j=1

∑4
k=j+1(cosφijk + 1

3)
2 where j and k index the 4

closest water neighbors to water i, and φijk is the angle formed by water
i, j, and k. If the doorder keyword is not provided or is set to FALSE,
then this calculation will not be done, and the entries in this column will
be set to zero.

Grid �les are provided for all computed quantities listed above, except that the
normalized quantities are not included. The �lenames are as follows: gist-gO.dx,
gist-gH.dx, gist-dTStrans-dens.dx, gist-dTSorient-dens.dx, gist-Esw-dens.dx, gist-
Eww-dens.dx, gist-dipolex-dens.dx, gist-dipoley-dens.dx, gist-dipolez-dens.dx,
gist-dipole-dens.dx, gist-neighbor-dens.dx, gist-neighbor-norm.dx, gist-order-norm.dx.
If the doorder keyword is not provided, then the data in gist-order-norm.dx
will all be zeroes. Note that the �le of voxel water densities, gist-gO.dx, can be
used as input to the program Placevent [7], in order to de�ne spherical hydration
sites based on the density distribution.

Similar grid �les with other computed quantities can be generated by reading
the gist.out �le into a spreadsheet program, processing the numbers to generate
a new column of voxel data of interest, and writing this column to an ascii text
�le. Then the Perl script write_dx_�le.pl, which should be available on the
GIST tutorial web-site, may be used to read in the column of data and create
the corresponding dx �le. The input format, and an example, are as follows:

93

./write_dx_file.pl [filename] [x-dimension y-dimension z-dimension]
[x-origin y-origin z-origin] [grid spacing]
./write_dx_file.pl file.dat 40 40 40 13.0 13.0 13.0 0.75

If the doeij keyword is provided, GIST also writes a large �le, Eww_ij.dat,
containing the mean water-water interaction energies between pairs of voxels,
scaled by ½. (See below.) This �le has three columns. The �rst two columns are
voxel indexes, i, j, where j > i, so that no pair appears more than once, and
the third column is the mean interaction energy (kcal/mole) of water in voxels
i andj, scaled by ½. If the occupancy of either voxel is 0, such as for voxels
covered by solute atoms, then the interaction energy is zero. In order to save
space, such interactions are omitted from the �le.

Sample cpptraj input �le to run GIST

The following input �le, gist.in, causes cpptraj to read a parameter �le named
topology.top; read in the �rst 5000 frames of the trajectory �le named trajecto-
ry�le.mdcrd; strip out all Na and Cl ions; and carry out a GIST run which com-
putes order parameters, uses a 41x41x45 grid centered at (25.0, 31.0, 30.0) with
a spacing of 0.5 Å, uses the default bulk water density of 0.0334 molecules/Å3,
and generates the main output �le gist.out.

parm topology.top
trajin trajectoryfile.mdcrd 1 5000
strip @Na
strip @Cl
gist doorder doeij gridcntr 25.0 31.0 30.0 griddim 41 41 45

gridspacn 0.50 out gist.out
go

To execute this run in the background, use

cpptraj<gist.in>gist.log& or cpptraj �i gist.in>gist.log&

Referencing GIST results to unperturbed (bulk) water

Inhomogeneous �uid solvation theory, which is the basis of GIST, is designed
to provide information on how water structure and thermodynamics around a
solute molecule, such as a protein, are changed relative to the structure and

94

Water Model Mean Energy (Eww-norm) (kcal/mol/water) Number Density (Å−3)

TIP3P -9.533 0.0329
TIP4PEW -11.036 0.0332
TIP4P -9.856 0.0332
TIP5P -9.596 0.0329

Tip3PFW -11.369 0.0334
SPCE -11.123 0.0333
SPCFW -11.873 0.0329

Table 3: Water model energy and density.

thermodynamics of unperturbed (bulk) water. Accordingly, the quantities re-
ported by GIST are most informative when the results are referenced to the
corresponding bulk water properties. For the orientational entropy, the refer-
ence value is the same regardless of water model or conditions, because the �rst
order orientational distribution of water in the bulk is always uniform. There-
fore, the GIST results for orientational entropies are already referenced to bulk.
However, cpptraj reports unreferenced values for those GIST quantities whose
reference values depend upon the water model and the simulation conditions;
i.e., the energies. The translational entropy as well as the number densities will
be referenced to bulk using the input referenced density or the default density
value of 0.0334. The table below provides useful reference values for these quan-
tities, computed for various water models at P=1atm, T=300K, using GIST in
order to ensure a consistent minimum image treatment of periodic boundary
conditions.

Users running calculations under signi�cantly di�erent conditions, or with
di�erent water models, should consider generating their own reference quanti-
ties by applying GIST to a simulation of pure water under their conditions of
interest. The quantities of interest can then be obtained in their most precise
available form by averaging over voxels, for the pure water simulation. If the

quantity of interest is Q, then its average reference value is Qreference =
∑

niQi∑
ni

,

where Qi and ni are, respectively, GIST's reported values of the quantity and
the population in voxel i. The densities, ρi, are referenced to the correspond-
ing bulk densities, ρo, as gi = ρi/ρ

o, while the energy and entropy terms are
referenced by subtracting their bulk values.

Interpreting GIST results

GIST provides access to the �rst order entropies and the �rst- and second-
order energies of inhomogeneous �uid solvation theory. Non-zero higher-order
entropies exist but are not yet computationally accessible. However, for a pair-
wise additive force-�eld, such as those listed in the Table above, the energy is

95

fully described at the second order provided by GIST.
GIST is a research tool, and its applications (to, for example, protein-ligand

binding and protein function) are still being explored. The following general
comments may be helpful to users studying GIST results.

1. The water in voxels near a solute (e.g., a protein) almost always has
unfavorable water-water interaction energies, relative to bulk, simply because
the solute displaces water, resulting in fewer proximal water-water interactions.

2. The unfavorable water-water energies mentioned in [4] may be balanced
by favorable water-solute interactions. If they are not, as may occur especially
for voxels in small, hydrophobic pockets, then the net energy of the water in
the voxel may be unfavorable relative to bulk, in which case a ligand which
displaces water from the voxel into bulk may get a boost in a�nity.

3. Because the �rst order orientational distribution of bulk water is uniform,
and a nonuniform distribution always has lower entropy than a uniform one, the
solute can only lower the orientational entropy of water, relative to bulk. Thus,
this term always opposes solvation, and displacing oriented water into the bulk
is always favorable from the standpoint of orientational entropy.

4. Localized water, which corresponds to voxels with high water density,
has a low �rst order translational entropy, and the translational entropy around
a solute is lower than that in bulk, as a nonuniform translational distribution
takes the place of the uniform translational distribution of bulk water.

5. The displacement of highly oriented (low orientational entropy) and lo-
calized (low translational entropy) water into bulk leads to a favorable increase
in these entropy terms.

6. However, highly oriented and localized water is often the consequence of
strongly favorable polar interactions, such as hydrogen-bonding, between water
and the solute. As a consequence, the net favorability of displacing such water is
frequently a balance between favorable entropic consequences and unfavorable
energetic consequences.

7. The water-water energy associated with a given voxel accounts for the
interactions of the waters in this voxel with all other waters in the system,
including waters in other voxels. This quantity is multiplied by ½, so that, in
a pure-water system where the GIST grid covers the entire simulation box, the
sum over all voxels equals the correct mean water-water interaction energy. Note
that Reference [5] does not include this factor of ½.

8. For a typical GIST application, in which the grid occupies only part of the
simulation box, the energy bookkeeping can become complicated, as discussed in
Section II.B.3 (page 044101-6) of Reference [5]. That section also explains how
one can compute the water-water energy associated with a region R de�ned by
a set of voxels, ERWW . The regional water-water energy, on a normalized (per
water) basis, is given by ERWW = 2(

∑
i∈REi,WW −

∑
i∈R

∑
j∈R,j>iEi,j,WW)

where i ∈ R means that voxel i is in region R, Ei,WW is the value of Eww-
norm for voxel i, and Ei,j,WW is the value of the water-water interaction energy
between voxels i and j, taken from the �le Eww_ij.dat. The extra factor of 2
in the present formula, relative to that in the paper, results from application of
an extra factor of ½ to the reported water-water interaction energies here.

96

11.34 grid

grid <filename>
{ data <dsname> | boxref <ref name/tag> <nx> <ny> <nz> |

<nx> <dx> <ny> <dy> <nz> <dz> [gridcenter <cx> <cy> <cz>] }
[box|origin|center <mask>] [negative] [name <gridname>]
<mask> [normframe | normdensity [density <density>]]

[pdb <pdbout> [max <fraction>]]
[[smoothdensity <value>] [invert]] [madura <madura>]

<�lename> File to write out grid to. Use �.grid� or
�.xplor� extension for XPLOR format, �.dx� for
OpenDX format.

Options for setting up grid:

data <dsname> Use previously calculated/loaded grid
data set named <dsname>. When using this option
there is no need to specify grid
bins/spacing/center.

boxref <ref name/tag> <nx> <ny> <nz> Set up grid
using box information from a previously loaded
reference structure. Currently the only way to set
up non-orthogonal grids.

<nx> <dx> <ny> <dy> <nz> <dz> Number of grid
bins and spacing in the X/Y/Z directions.

[gridcenter <cx> <cy> <cz>] Location of grid center,
default is origin (0.0, 0.0, 0.0).

Options for offset during grid binning (must center grid
at origin):

[box] Offset each point by location of box center prior
to gridding. Cannot be used with 'gridcenter'.

[origin] No offset (default)

[center <mask>] Offset each point by center of atoms in
<mask> prior to gridding. Cannot be used with
'gridcenter'.

Other options:

[negative] Grid negative density instead of positive
density.

[name <gridname>] Grid data set name.

<mask> Mask of atoms to grid.

[normframe] Normalize grid bins by the number of
frames.

97

[normdensity [density <density>]] Normalize grid bins by
density: GridBin = GridBin / (Nframes * BinVolume *
density). Default particle density
(molecules/Ang^3) for water based on 1.0 g/mL.

[pdb <pdbout> [max <fraction>]] Write a pseudo-PDB of
grid points that have density greater than
<fraction> (default 0.80) of the grid max value.

Less common options:

[smoothdensity <smooth>] Used to smooth density. The
smoothing takes the form of GridBin = 0 if GridBin <
smooth, otherwise GridBin = GridBin - (GridBin *
exp[-(GridBin - smooth)^2 / (0.2 * smooth^2)]).

[invert] (Only used if smoothdensity also used) Do
inverse smoothing (i.e. if GridBin > smooth).

[madura <madura>] Grid values lower than <madura>
become flipped in sign, exposes low density.

Data Sets Created:

<dsname> Grid data set.

Create a grid representing the histogram of atoms in mask1 on the 3D grid that
is "nx * x_spacing by ny * y_spacing by nz * z_spacing angstroms (cubed).
By default the grid is centered at the origin unless gridcenter is speci�ed.
Grid points can be o�set by either the box center (using box) or the center of
speci�ed atoms (using center <mask>); if either of these options are used
the grid must be centered at the origin. Note that the bounds command (on
page 71) can be very useful for determining grid dimensions.

Note that when calculating grid densities for things like solvent/ions, the
solute of interest (about which the atomic densities are binned) should be rms
�t, centered and imaged prior to the grid call in order to provide any meaningful
representation of the density. If the optional keyword negative is also speci�ed,
then these density will be stored as negative numbers. Output can be in the
XPLOR or OpenDX data formats.

Examples

Grid water density around a solute.

trajin tz2.truncoct.nc
autoimage origin
rms first :1-13
Create average of solute to view with grid.
average avg.mol2 :1-13
grid out.dx 20 0.5 20 0.5 20 0.5 :WAT@O

Generate grid from bounds command.

98

trajin tz2.ortho.nc
autoimage
rms first :1-13&!@H= mass
bounds :1-13 dx .5 name MyGrid out bounds.dat
average bounds.mol2 :1-13
Save coordinates for second pass.
createcrd MyCoords
run
Grid using grid data set from bounds command.
crdaction MyCoords grid bounds.xplor data MyGrid :WAT@O

Create non-orthogonal grid:

trajin tz2.truncoct.nc
reference ../tz2.truncoct.nc [REF]
autoimage triclinic
grid nonortho.dx boxref [REF] 50 50 50 :WAT@O pdb nonortho.pdb

11.35 hbond

hbond [<dsname>] [out <filename>] [<mask>] [angle <acut>] [dist <dcut>]
[donormask <dmask> [donorhmask <dhmask>]] [acceptormask <amask>]
[avgout <filename>] [printatomnum] [nointramol] [image]
[solventdonor <sdmask>] [solventacceptor <samask>]
[solvout <filename>] [bridgeout <filename>] [bridgebyatom]
[series [uuseries <filename>] [uvseries <filename>]]

[<dsname>] Data set name.

[out <�lename>] Write # of solute-solute hydrogen
bonds (aspect [UU]) vs time to this file. If
searching for solute-solvent hydrogen bonds, write #
of solute-solvent hydrogen bonds (aspect [UV]) and #
of bridging solvent molecules (aspect [Bridge]), as
well as the residue # of the bridging solvent and
the solute residues being bridged with format
'<solvent resnum>(<solute res1>+<solute
res2>+...+),...' (aspect [ID]).

[<mask>] Atoms to search for solute hydrogen bond
donors/acceptors.

[angle <acut>] Angle cutoff for hydrogen bonds (default
135°). Can be disabled by specifying -1.

[dist <dcut>] Distance cutoff for hydrogen bonds
(acceptor to donor heavy atom, default 3.0 Å).

99

[donormask <dmask>] Use atoms in <dmask> as solute
donor heavy atoms. If 'donorhmask' not specified
only atoms bonded to hydrogen will be considered
donors.

[donorhmask <dhmask>] Use atoms in <dmask> as solute
donor hydrogen atoms. Should only be specified if
'donormask' is. Should be a 1 to 1 correspondence
between donormask and donorhmask.

[acceptormask <amask>] Use atoms in <amask> as solute
acceptor atoms.

[avgout <�lename>] Write solute-solute hydrogen bond
averages to <filename>.

[printatomnum] Add atom numbers to the output, in
addtion to residue name, residue number and atom
name.

[nointramol] Ignore intramolecular hydrogen bonds.

[image] Turn on imaging of distances/angles.

[solventdonor <sdmask>] Use atoms in <sdmask> as
solvent donors. Can specify ions as well.

[solventacceptor <samask>] Use atoms in <samask> as
solvent acceptors. Can specify ions as well.

[solvout <�lename>] Write solute-solvent hydrogen bond
averages to <filename>. If not specified and
'avgout' is, solute-solvent hydrogen bonds averages
will be written to that file.

[bridgeout <�lename>] Write information on detected
solvent bridges to <filename>. If not specified,
will be written to same place as 'solvout'.

[bridgebyatom] Report bridging results by atom instead
of by residue.

[series] Save hydrogen bond formed (1.0) or not formed
(0.0) per frame for any detected hydrogen bond.
Solute-solute hydrogen bonds are saved with aspect
[solutehb], solute-solvent hydrogen bonds are saved
with aspect [solventhb].

[uuseries <�lename>] File to write solute-solute
hbond time series data to.

[uvseries <�lename>] File to write solute-solvent
hbond time series data to.

Data Sets Created:

<dsname>[UU] Number of solute-solute hydrogen bonds.

100

<dsname>[UV] (only for solventdonor/solventacceptor)
Number of solute-solvent hydrogen bonds.

<dsname>[Bridge] (only for
solventdonor/solventacceptor) Number of bridging
solvent molecules.

<dsname>[ID] (only for solventdonor/solventacceptor)
String identifying bridging solvent residues and the
solute residues they bridge.

<dsname>[solutehb] (series only) Time series for
solute-solute hydrogen bonds; 1 for present, 0 for
not present.

<dsname>[solventhb] (series only) Time series for
solute-solvent hydrogen bonds; 1 for present, 0 for
not present.

Note that series data sets are not generated until hydrogen bonds are actually
determined (i.e. run is called).

Determine hydrogen bonds in each coordinate frame using simple geometric
criteria. A hydrogen bond is de�ned as being between an acceptor heavy atom
A, a donor hydrogen atom H, and a donor heavy atom D. If the A to D distance
is less than the distance cuto� and the A-H-D angle is greater than the angle
cuto� a hydrogen bond is considered formed. Imaging of distances/angles is not
performed by default, but can be turned on using the image keyword.

Potential hydrogen bond donor/acceptor atoms are searched for as follows:

1. If just <mask> is speci�ed donors and acceptors will be automatically
determined from <mask>.

2. If donormask is speci�ed donors will be determined from <dmask>
(only atoms bonded to hydrogen will be considered valid). Optionally,
donorhmask can be used in conjunction with donormask to explicitly
specify the hydrogen atoms bonded to donor atoms. Acceptors will be
automatically determined from <mask>.

3. If acceptormask is speci�ed acceptors will be determined from<amask>.
Donors will be automatically determined from <mask>.

4. If both acceptormask and donormask are speci�ed only <amask>
and <dmask> will be used; no searching will occur in <mask>.

Automatic determination of hydrogen bond donors/acceptors uses the simplistic
criterion that �hydrogen bonds are FON�, i.e., hydrogens bonded to F, O, and N
atoms are considered donors, and F, O, and N atoms are considered acceptors.
Intra-molecular hydrogen bonds can be ignored using the nointramol keyword.

The number of hydrogen bonds present at each frame will be determined
and written to the �le speci�ed by out. If the series keyword is speci�ed the
time series for each hydrogen bond (1 for present, 0 for not present) will also be

101

saved for subsequent analysis (e.g. with lifetime , see on page 177); solute-solute
hydrogen bonds will be saved to '<dataset name>[solutehb]' and solute-solvent
hydrogen bonds will be saved to '<dataset name>[solventhb]'. The data set
legends are set with the residues and atoms involved in the hydrogen bonds. In
the case of solute to non-speci�c solvent hydrogen bonds, a V is used in place
of solvent.

If avgout is speci�ed the average of each solute-solute hydrogen bond (sorted
by population) formed over the course of the trajectory is printed with the for-
mat:

Acceptor DonorH Donor Frames Frac AvgDist AvgAng

where Acceptor, DonorH, and Donor are the residue and atom name of the
atoms involved in the hydrogen bond, Frames is the number of frames the bond
is present, Frac is the fraction of frames the bond is present, AvgDist is the
average distance of the bond when present, and AvgAng is the average angle
of the bond when present. The printatomnum keyword can be used to print
atom numbers as well.

Solute to non-speci�c solvent hydrogen bonds can be tracked by using the
solventdonor and/or solventacceptor keywords. The number of solute-
solvent hydrogen bonds and number of �bridging� solvent molecules (i.e. solvent
that is hydrogen bonded to two or more di�erent solute residues at the same
time) will also be written to the �le speci�ed by out. These keywords can also
be used to track non-speci�c interactions with ions. If avgout or solvavg is
speci�ed the average of each solute solvent hydrogen bond will be printed with
the format:

Acceptor DonorH Donor Count Frac AvgDist AvgAng

where Acceptor, DonorH, and Donor are either the residue and atom name of
the solute atoms or �SolventAcc�/�SolventH�/�SolventDnr� representing solvent,
Count is the total number of interactions between solute and solvent (note
this can be greater than the total number of frames since for any given frame
more than one solvent molecule can hydrogen bond to the same place on solute
and vice versa), AvgDist is the average distance of the bond when present, and
AvgAng is the average angle of the bond when present. If avgout or bridgeout
is speci�ed information on residues that were bridged by a solvent molecule over
the course of the trajectory will be written to <b�lename> with format:

Bridge Res <N0:RES0> <N1:RES1> ... , <X> frames.

where '<N0:RES0> ...' is a list of residues that were bridged (residue # followed
by residue name) and <X> is the number of frames the residues were bridged.

102

hbond Examples

To search for all hydrogen bonds within residues 1-22, writing the number of
hydrogen bonds per frame to �nhb.dat� and information on each hydrogen bond
found to �avghb.dat�:

hbond :1-22 out nhb.dat avgout avghb.dat

To search for all hydrogen bonds formed between donors in residue 1 and ac-
ceptors in residue 2:

hbond donormask :1 acceptormask :2 out nhb.dat avgout avghb.dat

To search for all intermolecular hydrogen bonds only and solute-solvent hydro-
gen bonds, saving time series data to HB:

hbond HB out nhb.dat avgout solute_avg.dat \
solventacceptor :WAT@O solventdonor :WAT \
solvout solvent_avg.dat bridgeout bridge.dat \
series uuseries uuhbonds.agr uvseries uvhbonds.agr

To search for non-speci�c hydrogen bonds between solute and ions named Na+:

hbond HB-Ion out nhb.agr avgout ion_avg.dat \
solventacceptor :Na+ solventdonor :Na+

11.36 image

image [origin] [center] [triclinic | familiar [com <commask>]] [<mask>]
[bymol | byres | byatom] [xoffset <x>] [yoffset <y>] [zoffset <z>]

[origin] Image to coordinate origin (0.0, 0.0, 0.0);
default is to image to box center.

[center] For bymol/byres, image by center of mass;
default is to image by first atom position.

[triclinic] Force imaging with triclinic code. This is
the default for non-orthorhombic cells.

[familiar [com <commask>]] Image to truncated
octahedron shape. If 'com <commask>' is given,
image with respect to the center of mass of atoms in
<commask>.

[<mask>] Image atoms/residues/molecules in mask.

[bymol] Image by molecule (default).

[byres] Image by residue.

103

[byatom] Image by atom.

[xo�set <x>] Shift atoms by a factor of <x> in the
X-direction.

[yo�set <y>] Shift atoms by a factor of <y> in the
Y-direction.

[zo�set <z>] Shift atoms by a factor of <z> in the
Z-direction.

Note this command is intended for advanced use; for most cases the autoimage
command should be su�cient.

For periodic systems only, image molecules/residues/atoms that are out-
side of the box back into the box. Currently both orthorhombic and non-
orthorhombic boxes are supported. A typical use of image is to move molecules
back into the box after performing center . For example, the following com-
mands move all atoms so that the center of residue 1 is at the center of the box,
then image so that all molecules that are outside the box after centering are
wrapped back inside:

center :1
image

The xo�set etc. keywords can be used to shift the entire unit cell in a certain
direction by the given factor, which can be useful for visualizing trajectories
with periodic boundary conditions. For example, to generate a trajectory that
is o�set by 1.0 box length in the X direction, one could use:

image xoffset 1.0
trajout traj.offsetx1.nc

11.37 jcoupling

jcoupling <mask> [outfile <filename>] [kfile <param file>] [out <filename>]
[name <dsname>]

<mask> Atom mask in which to search for dihedrals
within.

[out�le <�lename>] File to write j-coupling values to
with fixed format.

[k�le <param �le>] File containing Karplus parameters
(default is $AMBERHOME/dat/Karplus.txt).

[out <�lename>] File to write data set output to.

[name <dsname>] Data set name.

104

Note data sets are not generated until run is called.
Calculate J-coupling values for all dihedrals found within <mask> (all

atoms if no mask given). In order to use this function, Karplus parameters for
all dihedrals which will be calculated must be loaded. By default cpptraj will
use the data found in $AMBERHOME/dat/Karplus.txt; if this is not found
cpptraj will look for the �le speci�ed by the $KARPLUS environment variable.

In the Karplus parameter �le each parameter set consists of two lines for
each dihedral with the format:

[<Type>]<Name1><Name2><Name3><Name4><A><C>[<D>]
<Resname1>[<Resname2>...]

The �rst line de�nes the parameter set for a dihedral. <Type> is optional;
if not given the form for calculating the J-coupling will be as described by
Chou et al.[8]; if 'C' the form will be as described by Perez et al.[9]. The
<NameX> parameters de�ne the four atoms involved in the dihedral. Each
<NameX> parameter is 5 characters wide, starting with a plus '+', minus '-' or
space ' ' character indicating the atom belongs to the next, previous, or current
residue. The remaining 4 characters are the atom name. The parameters <A>,
, <C>, and <D> are �oating point values 6 characters wide describing
the Karplus parameters. For the 'C' form A, B, and C correspond to C0, C1,
and C2; D is unused and should not be speci�ed. The second line is a list of
residue names (4 characters each) to which the dihedral applies. For example:

C HA CA CB HB 5.40 -1.37 3.61
ILE VAL

Describes a dihedral between atoms HA-CA-CB-HB using the Perez et al. form
with constants C0=5.40, C1=-1.37, C2=3.61 applied to ILE and VAL residues.

Output can be in both a �xed format (out�le <�lename>) and using
cpptraj data set/data �le formatting (out <�lename>). The �xed format has
each dihedral that is de�ned from <mask1> printed along with its calculated
J-coupling value for each frame, e.g.:

#Frame 1
1 SER HA CA CB HB2 45.334742 4.024759
1 SER HA CA CB HB3 -69.437134 1.829510
...

First the frame number is printed, then for each dihedral: Residue number,
residue name, atom names 1-4 in the dihedral, the value of the dihedral, the
J-coupling value.

In cpptraj format, only the J-coupling value is written.

11.38 lessplit

lessplit [out <filename prefix>] [average <avg filename>] <trajout args>

105

[out <�lename pre�x>] Write split LES trajectories to
<filename prefix>.X, where X is an integer.

[average <avg �lename>] Write trajectory of averaged
LES regions to <avg filename>.

<trajout args> Arguments for output trajectories.

Split and/or average LES trajectory. At least one of 'out' or 'average' must
be speci�ed. If both are speci�ed they share <trajout args>.

11.39 lie

lie [<name>] <Ligand mask> [<Surroundings mask>] [out <filename>]
[noelec] [novdw] [cutvdw <cutoff>] [cutelec <cutoff>] [diel <dielc>]

DataSet Aspects:

[EELEC] Electrostatic energy (kcal/mol).

[EVDW] van der Waals energy (kcal/mol).

For each frame, calculate the non-bonded interactions between all atoms in
<Ligand mask> with all atoms in <Surroundings mask>. Electrostatic and
van der Waals interactions will be calculated for all atom pairs. A separate elec-
trostatic and van der Waals cuto� can be applied, the default is 12.0 Angstroms
for both. <dielc> is an optional dielectric constant. Either the electrostatic
or van der Waals calculations can be suppressed via the keywords noelec and
novdw, respectively.

The electrostatic interactions are calculated according to a simple shifting
function shown below. The data �le will contain two data sets�one for electro-
static interactions and one for van der Waals interactions. Periodic topologies
and trajectories are required (i.e., explicit solvent is necessary). The minimum
image convention is followed.

Eelec = k
qiqj
rij

(
1−

r2ij
r2cut

)2

11.40 lipidorder

order out <filename> [x|y|z] [scd] [unsat <mask>]
[taildist <filename> [delta <resolution>] tailstart <mask>
tailend <mask>] <mask0> ... <maskN>

out Output file for order parameters: Sx, Sy, Sz (each
succeeded by the standard deviation), and two
estimates for the deuterium-order parameter |SCD| =
0.5Sz and |SCD| = -(2Sx + Sy)/3. If scd is set then
the order parameter directly computed from the C-H
vectors is output.

106

x|y|z Reference axis. (z)

unsat Mask for unsaturated bonds. Sz is calculated for
vector Cn-Cn+1. This is only relevant if scd
(below) is not set, i.e. order parameters are
calculated from carbon position only.

scd Calculate the deuterium-order parameter |SCD|
directly from the C-H vectors (masks must contain
C-H-H triplets, see below). Otherwise the order
parameter is estimated from carbon positions only
(masks must contain only relevant carbons). (false)

taildist Optional output file for end-to-end distances.

delta Optional resolution for taildist. (0.1)

tailstart Mask for the start of the tail. Must be given
if taildist.

tailend Mask for the end of the tail. Must be given if
taildist.

mask0 ... maskN Masks for each group in the lipid
chain.

The order parameters Sx, Sy, Sz and |SCD| are calculated. Carbons must be
given in bonding order. If scd the masks must be made up of C-H-H triples,
hence hydrogens to double bonds must be enumerated twice while methyl groups
require an additional mask which will also create two entries in the output.

Szis the vector joining carbons Cn−1 and Cn+1, Sx the vector normal to
the Cn−1 − Cn and Cn − Cn+1 plane and Sy is the third axis in the molecular
coordinate system. The order parameter is then calculated from Sc = 0.5 <
3 cos(2θ) > −1, where θ is the angle to the chosen reference axis. See example
input �le.

Example input (all atom names according to CHARMM27 force �eld for
POPC).

sn1 chain: order parameters Sx, Sy, Sz and |SCD| = 0.5×Sz and |SCD| =
−(2Sx + Sy)/3

lipidorder out sn1.dat z taildist e2e_sn1.dat delta 0.1 \
tailstart ":POPC@C32" tailend ":POPC@C316" \
":POPC@C32" ":POPC@C33" ":POPC@C34" ":POPC@C35" \
":POPC@C36" ":POPC@C37" ":POPC@C38" ":POPC@C39" \
":POPC@C310" ":POPC@C311" ":POPC@C312" ":POPC@C313" \
":POPC@C314" ":POPC@C315" ":POPC@C316"

See also $AMBERHOME/AmberTools/test/cpptraj/Test_LipidOrder.

107

11.41 lipidscd

lipidscd [<name>] [<mask>] [{x|y|z}] [out <file>] [p2]

<name> Output data set name.

<mask> Atom mask specifying where to search for
lipids.

x|y|z Axis to calculate order parameters with respect to
(default z).

out <�le> File to write order parameters to.

p2 If specified, report raw <P2> values.

DataSets Generated:

<name>[H1]:<idx> Hold lipid order parameters for
each C-H1. Each lipid type will have a different
<idx> starting from 0.

<name>[H2]:<idx> Hold lipid order parameters for
each C-H2. If no H2, the C-H1 value will be used.

<name>[H3]:<idx> Hold lipid order parameters for
each C-H3. If no H3, the C-H2/C-H1 value will be
used.

<name>[SDHX]:<idx> Hold standard deviation of lipid
order parameters for each C-HX.

Calculate lipid order parameters SCD (|<P2>|) for lipid chains in mask <mask>.
Lipid chains are identi�ed by carboxyl groups, i.e. O-(C=O)-C1-...-CN, where
C1 is the �rst carbon in the acyl chain and CN is the last. Order parameters
will be determined for each hydrogen bonded to each carbon. If 'p2' is speci�ed
the raw <P2> values will be reported.

11.42 makestructure

makestructure <List of Args>

Apply dihedrals to speci�ed residues using arguments found in <List of Args>,
where an argument is 1 or more of the following arg types:

<sstype keyword>:<res range>

Apply secondary structure type (via phi/psi backbone angles) to residues in
given range. If the secondary structure type is a turn, the residue range must
correspond to a multiple of 2 residues.

108

Keyword phi, psi (deg.) # residues

alpha -57.8, -47.0 1
left -57.8, 47.0 1
pp2 -75.0, 145.0 1

hairpin -100.0, 130.0 1
extended -150.0, 155.0 1
typeI -60.0, -30.0 | -90.0, 0.0 2
typeII -60.0, 120.0 | 80.0, 0.0 2
typeVIII -60.0, -30.0 | -120.0, 120.0 2
typeI' 60.0, 30.0 | 90.0, 0.0 2
typeII 60.0, -120.0 | -80.0, 0.0 2

typeVIa1 -60.0, 120.0 | -90.0, 0.0 2
typeVIa2 -120.0, 120.0 | -60.0, 0.0 2
typeVIb -135.0, 135.0 | -75.0, 160.0 2

<custom ss>:<res range>[:<phi>:<psi>]

If <phi> and <psi> are given, de�ne a custom secondary structure conforma-
tion named <custom_ss> and apply to residues in range. If <custom_ss> has
been previously de�ned then apply it to residues in range.

<custom turn>:<res range>[:<phi1>:<psi1>:<phi2>:<psi2>]

If <phi1>, <psi1>, <phi2>, and <psi2> are given, de�ned a custom turn
conformation named <custom_turn> and apply to residues in range (range
must correspond to a multiple of 2 residues). If <custom_turn> has been
previously de�ned then apply it to residues in range.

<custom dih>:<res range>[:<dih type>:<angle>]

<dih type> = phi psi chip omega alpha beta gamma delta epsilon zeta nu1 nu2 chin

If <dih type> and <angle> are given, apply <angle> to selected dihedrals of
type in range. If <custom dih> has been previously de�ned then apply it to
residues in range.

<custom dih>:<res range>[:<at0>:<at1>:<at2>:<at3>:<angle>[:<o�set>]]

Apply <angle> to dihedral de�ned by atoms <at1>, <at2>, <at3>, and
<at4>, or use previously de�ned <custom_dih>.

<o�set> Description

-2 <at0> and <at1> in previous residue.
-1 <at0> in previous residue.
0 All atoms in single residue.
1 <at3> in next residue.
2 <at2> and <at3> in next residue.

109

ref:<range>:<refname>[:<ref range>]

Apply dihedrals from residues <ref_range> in previously loaded reference struc-
ture <refname> to dihedrals in <range>.

Examples

Assign polyproline II structure to residues 1 through 13:

makestructure pp2:1-13

Make residues 1 and 12 'extended', residues 6 and 7 a type I' turn, and two
custom assignments, one (custom1) for residues 2-5, the other (custom2) for
residues 8-11:

makestructure extended:1,12 \
custom1:2-5:-80.0:130.0:-130.0:140.0 \
typeI':6-7 \
custom2:8-11:-140.0:170.0:-100.0:140.0

Assign residue 5 phi 90 degrees, residues 6 and 7 phi=-70 and psi=60 degrees:

makestructure customdih:5:phi:90 custom:6,7:-70:60

Create a new dihedral named chi1 and assign it a value of 35 degrees in residue
8:

makestructure chi1:8:N:CA:CB:CG:35

Assign 'extended' structure to residues 1 and 12, a custom turn to residues 2-5
and 8-11, and a typeI' turn to residues 6-7:

makestructure extended:1,12 \
custom1:2-5:-80.0:130.0:-130.0:140.0 \
typeI':6-7 \
custom1:8-11

Assign secondary structure from reference structure:

parm ../tz2.parm7
reference ../tz2.rst7
trajin pp2.rst7.save
makestructure "ref:1-13:tz2.rst7" rmsd reference
trajout fromref.pdb multi

110

11.43 mask

mask <mask> [maskout <filename>] [maskpdb <pdbname>] [maskmol2 <mol2name>]

<mask> Atom mask to process.

[maskout <�lename>] Write information on atoms in
<mask> to <filename>.

[maskpdb <name>] Write PDB of atoms in <mask> to
<name>.X.

[maskmol2 <name>] Write Mol2 of atoms in <mask> to
<name>.X.

For each frame determine all atoms that correspond to <mask>. This is
most useful when using distance-based masks, since the atoms in the mask are
updated for every frame read in. If maskout is speci�ed information on all
atoms in <mask> will be written to <�lename> with format:

#Frame AtomNum Atom ResNum Res MolNum

where #Frame is the frame number, AtomNum is the number of the selected atom,
Atom is the name of the selected atom, ResNum is the residue number of the
selected atom, Res is the residue name, and MolNum is the molecule number of
the selected atom.

If maskpdb or maskmol2 are speci�ed a PDB/Mol2 �le corresponding to
<mask> will be written out every frame with name �<name>.frame#�.

For example, to write out all atoms within 3.0 Angstroms of residue 195
that are part of residues named WAT to �Res195WAT.dat�, as well as write out
corresponding PDB �les:

mask �(:195<:3.0)&:WAT� maskout Res195WAT.dat maskpdb Res195WAT.pdb

11.44 matrix

matrix [out <filename>] [start <#>] [stop|end <#>] [offset <#>]
[name <name>] [byatom | byres [mass] | bymask [mass]]
[ired [order <#>]]
[{distcovar | idea} <mask1>]
[{dist | correl | covar | mwcovar} <mask1> [<mask2>]]
[dihcovar dihedrals <dataset arg>]

[out <�lename>] If specified, write matrix to
<filename>.

[start <#>] [stop|end <#>] [o�set <#>] Start, stop,
and offset frames to use (as a subset of all frames
read in).

111

[name <name>] Name of the matrix dataset (for
referral in subsequent analysis).

byatom Write results by atom (default). This is the
sole option for covar, mwcovar, and ired.

byres Write results by calculating an average for each
residue (mass weighted if mass is specified).

bymask Write average over <mask1>, and if <mask2> is
specified <mask1> x <mask2> and <mask2> as well
(mass weighted if mass is specified).

Calculate matrix of the speci�ed type from input coordinate frames:

dist <mask1> [<mask2>] Distance matrix (default).

correl <mask1> [<mask2>] Correlation matrix (aka dynamic cross correlation[10]).

covar <mask1> [<mask2>] Coordinate covariance matrix.

mwcovar <mask1> [<mask2>] Mass-weighted coordinate covariance ma-
trix.

distcovar <mask1> Distance covariance matrix.

idea <mask1> Isotropically Distributed Ensemble Analysis matrix.[11]

ired [order <#>] Isotropic Reorientational Eigenmode Dynamics matrix[12]
with Legendre polynomials of speci�ed order (default 1). IRED vectors
must have been speci�ed previously with 'vector ired' (see 11.81 on
page 147).

dihcovar dihedrals <dataset arg> Dihedral covariance matrix. Dihedral
data sets must have been previously de�ned with e.g. dihedral or mul-
tidihedral commands or read in externally with readdata and marked
as dihedrals.

Matrix dimensions will be of the order of N x M for dist, correl, idea, and
ired, 2N x 2N for dihcovar, 3N x 3M for covar and mwcovar, and N(N-1) x
N(N-1) / 4 for distcovar (with N being the number of data sets in the case of
ired and dihcovar and the number of atoms in <mask1> otherwise, and M
being the number of atoms in <mask2> if speci�ed or <mask1> otherwise).
No mask is required for ired; the matrix will be made up of previously de�ned
IRED vectors (see the vector command on page 147). Similarly no mask is
required for dihcovar; dihedral data sets must have been previously de�ned.
Only one mask can be used with distcovar and idea matrices (i.e. they can
be symmetric only), otherwise one or two masks can be used (for symmetric
and full matrices respectively). If two masks are speci�ed the number of atoms
covered by mask1 must be greater than or equal to the number of atoms covered
by mask2, and on output <mask1> corresponds to columns while <mask2>
corresponds to rows.

112

As a simple example, a distance matrix of all CA atoms is generated and
output to distmat.dat.

matrix dist @CA out distmat.dat

11.45 mindist

This functionality is now part of the nativecontacts command; see 11.51 on
page 120.

11.46 minimage

minimage [<name>] <mask1> <mask2> [out <filename>] [geom] [maskcenter]

<name> Data set name.

<mask1> First atom mask.

<mask2> Second atom mask.

out <�lename> File to write to.

geom (maskcenter only) If specified, use geometric
center instead of center of mass.

maskcenter Calculate distance from center of masks
instead of between each atom.

Data Sets Created:

<name> Minimum distance to an image in Ang.

<name>[A1] Atom number in mask 1 involved in minimum
distance.

<name>[A2] Atom number in mask 2 involved in minimum
distance.

Calculate the shortest distance to an image, i.e. the distance to a neighboring
unit cell, as well as the numbers of the atoms involved in the distance. By default
the distance between each atom in <mask1> and <mask2> is considered; if
maskcenter is speci�ed the center of the masks is used.

11.47 molsurf

molsurf [<name>] [<mask>] [out filename] [probe <probe_rad>]
[radii {gb | parse | vdw}] [offset <rad_offset>]

[<name>] Name of surface area data set.

[<mask>] Atoms to calculate surface area of.

[out <�lename>] File to write values to.

113

[probe <probe_rad>] Probe radius (default 1.4
Angstrom).

[o�set <rad_o�set>] Add <rad_offset> to each atom
radius (default 0.0).

[radii {gb|parse|vdw}] Specify radii to use:

gb GB radii (default).

parse PARSE radii.

vdw van der Waals radii.

Calculate the Connolly surface area[13] of atoms in <mask> (default all atoms
if no mask speci�ed) using routines from molsurf (originally developed by Paul
Beroza) using the probe radius speci�ed by probe (1.4 Å if not speci�ed).
Note that if GB/VDW radii are not present in the topology �le (e.g. for PDB
�les), then PARSE radii can be used. Also note that this routine only calculate
absolute surface areas, i.e. it cannot be used to get the contribution of a subset
of atoms to overall surface area; if such functionality is needed try the surf
command (11.75 on page 143).

11.48 multidihedral

multidihedral [<name>] <dihedral types> [resrange <range>] [out <filename>] [range360]
[dihtype <name>:<a0>:<a1>:<a2>:<a3>[:<offset>] ...]

Offset -2=<at0><at1> in previous res, -1=<at0> in previous res,
0=All <atX> in single res,
1=<at3> in next res, 2=<at2><at3> in next res.

<dihedral types> = phi psi chip omega alpha beta gamma delta
epsilon zeta nu1 nu2 chin

[<name>] Output data set name.

<dihedral types> Dihedral types to look for. Note that
chip is 'protein chi', chin is 'nucleic chi'.

[resrange <range>] Residue range to look for dihedrals
in.

[out <�lename>] Output file name.

[range360] Wrap torsion values from 0.0 to 360.0
(default is -180.0 to 180.0).

[dihtype <name>:<a0>:<a1>:<a2>:<a3>[:<o�set>]
Search for a custom dihedral type called <name>
using atom names <a0>, <a1>, <a2>, and <a3>.

Offset: -2=<a0><a1> in previous res, -1=<a0> in
previous res, 0=All <aX> in single res, 1=<a3> in
next res, 2=<a2><a3> in next res.

114

DataSet Aspects:

[<dihedral type>] Aspect corresponds to the dihedral
type name (e.g. [phi], [psi], etc).

Note data sets are not generated until run is called.
Calculate speci�ed dihedral angle types for residues in given range. By

default, dihedral angles are identi�ed based on standard Amber atom names.
The resulting data sets will have aspect equal to [<dihedral type>] and index
equal to residue #. To di�erentiate the chi angle, chip is used for proteins and
chin for nucleic acids. For example, to calculate all phi/psi dihedrals for residues
6 to 9:

multidihedral phi psi resrange 6-9 out PhiPsi_6-9.dat

Dihedrals other than those de�ned in <dihedral types> can be searched for
using dihtype. For example to create a custom dihedral type called chi1 using
atoms N, CA, CB, and CG (all in the same residue), then search for and calculate
the dihedral in all residues:

multidihedral dihtype chi1:N:CA:CB:CG out custom.dat

11.49 multivector

multivector [<name>] [resrange <range>] name1 <name1> name2 <name2> [out <filename>]
[ired]

[<name>] Data set name.

[resrange <range>] Range of residues to look for
vectors in.

name1 <name1> Name of first atom in each residue.

name2 <name2> Name of second atom in each residue.

[out <�lename>] File to write results to.

Search for and calculate atomic vectors between atoms named <name1> and
<name2> in residues speci�ed by the given <range>; each one is equivalent to
the command 'vector <name1> <name2>'. For example, to calculate all vectors
between atoms named 'N' and atoms named 'H' in residues 5-20, storing the
results in data sets named NH and writing to NH.dat:

multivector NH name1 N name2 H ired out NH.dat resrange 5-20

115

11.50 nastruct

nastruct [<dataset name>] [resrange <range>] [naout <suffix>]
[noheader] [resmap <ResName>:{A,C,G,T,U} ...] [calcnohb]

[baseref <file>] ...
[hbcut <hbcut>] [origincut <origincut>] [altona | cremer]
[zcut <zcut>] [zanglecut <zanglecut>] [groovecalc {simple | 3dna}]
[{ first | reference | ref <name> | refindex <#> | allframes | guessbp}]

[bptype {anti | para} ...]

[<dataset name>] Output data set name.

[resrange <range>] Residue range to search for nucleic
acids in (default all).

[naout <su�x>] File name suffix for output files;
BP.<suffix> for base pair parameters,
BPstep.<suffix> for base pair step parameters, and
Helix.<suffix> for base pair step helical
parameters.

[noheader] Do not print header to naout file.

[resmap <ResName>:{A,C,G,T,U}] Attempt to treat
residues named <ResName> as if it were A, C, G, T,
or U; useful for residues with modifications or
non-standard residue names. This will only work if
enough reference atoms are present in <ResName>.

[calcnohb] Calculate parameters between bases in base
pairs even if no hydrogen bonds present between
them.

[baseref <�le>] Specify a custom nucleic acid base
reference. One file per custom residue; multiple
'baseref' keywords may be present. See below for
details.

[hbcut <hbcut>] Distance cutoff (in Angstroms) for
determining hydrogen bonds between bases (default
3.5).

[origincut <origincut>] Distance cutoff (in Angstroms)
between base pair axis origins for determining which
bases are eligible for base-pairing (default 2.5).

[altona] Use method of Altona & Sundaralingam to
calculate sugar pucker (default, see pucker

command).

[cremer] Use method of Cremer and Pople to calculate
sugar pucker (see pucker command).

116

[zcut] Distance cutoff (in Angstroms) between base
reference axes along the Z axis (i.e. stagger) for
determining base pairing (default 2).

[zanglecut] Angle cutoff (in degrees) between base
reference Z axes for determining base pairing
(default 65).

[groovecalc] Groove width calculation method:

simple Use P-P distance for major groove, O4-O4
distance for minor groove. Output to
'BP.<suffix>'.

3dna Use groove width calculation of El Hassan and
Calladine[14]. Output to 'BPstep.<suffix>'.

[�rst] Use first frame to determine base pairing
(default).

[reference | re�ndex <#> | ref <name>] Reference
structure to use to determine base pairing.

[allframes] If specified determine base pairing each
frame.

[guessbp [bptype{anti|para}]] If specified base pairing
will be determined based on selected NA strands. It
is assumed that consecutive strands will be
base-paired and that they are arranged 5' to 3'.
The specific type of base pairing between strands
can be specified with one or more 'bptype'
arguments.

DataSets Created:

<name>[pucker]:X Base X (residue number) sugar
pucker.

Base pairs:

<name>[shear]:X Base pair X (starting from 1) shear.

<name>[stretch]:X Base pair stretch.

<name>[stagger]:X Base pair stagger.

<name>[buckle]:X Base pair buckle.

<name>[prop]:X Base pair propeller.

<name>[open]:X Base pair opening.

<name>[hb]:X Number of WC hydrogen bonds between
bases in base pair.

<name>[bp]:X Contain 1 if bases are base paired, 0
otherwise.

117

<name>[major]:X (If groovecalc simple) Major groove
width calculated between P atoms of each base.

<name>[minor]:X (If groovecalc simple) Minor groove
width calculated between O4 atoms of each base.

Base pair steps:

<name>[shift]:X Base pair step X (starting from 1)
shift.

<name>[slide]:X Base pair step slide.

<name>[rise]:X Base pair step rise.

<name>[title]:X Base pair step tilt.

<name>[roll]:X Base pair step roll.

<name>[twist]:X Base pair step twist.

<name>[zp]:X Base pair step Zp value.

<name>[major]:X (If groovecalc 3dna) Major groove
width, El Hassan and Calladine.

<name>[minor]:X (If groovecalc 3dna) Minor groove
width, El Hassan and Calladine.

Helical steps:

<name>[xdisp]:X Helical step X (starting from 1) X
displacement.

<name>[ydisp]:X Helical Y displacement.

<name>[hrise]:X Helical rise.

<name>[incl]:X Helical inclination.

<name>[tip]:X Helical tip.

<name>[htwist]:X Helical twist.

Note that data sets are not created until base pairing is determined.
Calculate basic nucleic acid (NA) structure parameters for all residues in the

range speci�ed by resrange (or all NA residues if no range speci�ed). Residue
names are recognized with the following priority: standard Amber residue names
DA, DG, DC, DT, RA, RG, RC, and RU; 3 letter residue names ADE, GUA,
CYT, THY, and URA; and �nally 1 letter residue names A, G, C, T, and U. Non-
standard/modi�ed NA bases can be recognized by using the resmap keyword.
For example, to make cpptraj recognize all 8-oxoguanine residues named '8OG'
as a guanine-based residue:

nastruct naout nastruct.dat resrange 274-305 resmap 8OG:G

118

The resmap keyword can be speci�ed multiple times, but only one mapping
per unique residue name is allowed. Note that resmap may fail if the residue
is missing heavy atoms normally present in the speci�ed base type.

Base pairs are determined either once from the �rst frame or from a reference
structure, or can be determined each frame if allframes is speci�ed. Base
pairing is determined �rst by base reference axis origin distance, then by stagger,
then by angle between base Z axes, then �nally by hydrogen bonding (at least
one hydrogen bond must be present). Base pair parameters will only be written
for determined base pairs. Both Watson-Crick and other types of base pairing
can be detected. Note that although all possible hydrogen bonds are searched
for, only WC hydrogen bonds are reported in the BP.<su�x> �le.

The procedure used to calculate NA structural parameters is the same as
3DNA[15], with algorithms adapted from Babcok et al.[16] and reference frame
coordinates from Olson et al.[17]. Given the same base pairs are determined,
cpptraj nastruct gives the exact same numbers as 3DNA.

Calculated NA structure parameters are written to three separate �les, the
su�x of which is speci�ed by naout. Base pair parameters (shear, stretch,
stagger, buckle, propeller twist, opening, # WC hydrogen bonds, base pairing,
and simple groove widths) are written to BP.<su�x>, along with the number
of WC hydrogen bonds detected. Base pair step parameters (shift, slide, rise,
tilt, roll, twist, Zp, and El Hassan and Calladine groove widths) are written
to BPstep.<su�x>, and helical parameters (X-displacement, Y-displacement,
rise, inclination, tip, and twist) are written to Helix.<su�x>. If noheader is
speci�ed a header will not be written to the output �les. Note that although
base puckering is calculated, it is not written to an output �le by default. You
can output pucker to a �le via the create or write/writedata commands after
the data has been generated, e.g.:

nastruct NA naout nastruct.dat resrange 1-3,28-30
run
writedata NApucker.dat NA[pucker]

Custom Nucleic Acid Base References

Users can now specify baseref <�le> to load a custom nucleic acid base ref-
erence. The base reference �les are white-space delimited, begin with the line
NASTRUCT REFERENCE, and have the following format:

NASTRUCT REFERENCE
<base character> <res name 0> [<res name 1> ...]
<atom name> <X> <Y> <Z> <HB type> <RMS fit>
...

There is a line for each reference atom. Lines beginning with '#' are ignored as
comments.

119

<base character> Used to identify the underlying base type: A G C T or
U. If none of these, it will be considered an unknown residue (which just
means WC hydrogen bonding will not be identi�ed).

<res name X> Speci�es what residue names this reference corresponds to.
There must be at least one residue name. There can be any number of
these speci�ed.

<atom name> A reference atom name.

<X> <Y> <Z> The X Y and Z coordinates of the reference atom.

<HB type> Denotes if and how the atom participates in hydrogen bonding.
Can be 'd'onor, 'a'cceptor, or 'n'one (or the numbers 1, 2, 0 respectively).
Only the �rst character of the word actually matters.

<RMS �t> Denotes whether the atom is involved in RMS-�tting.

Here is an example for GUA:

NASTRUCT REFERENCE
G G G5 G3
Modified into format readable by cpptraj nastruct
C1' -2.477 5.399 0.000 0 0
N9 -1.289 4.551 0.000 0 1
C8 0.023 4.962 0.000 0 1
N7 0.870 3.969 0.000 accept 1
C5 0.071 2.833 0.000 0 1
C6 0.424 1.460 0.000 0 1
O6 1.554 0.955 0.000 accept 0
N1 -0.700 0.641 0.000 donor 1
C2 -1.999 1.087 0.000 0 1
N2 -2.949 0.139 -0.001 donor 0
N3 -2.342 2.364 0.001 accept 1
C4 -1.265 3.177 0.000 0 1

11.51 nativecontacts

nativecontacts [<mask1> [<mask2>]] [writecontacts <outfile>] [resout <resfile>]
[noimage] [distance <cut>] [out <filename>] [includesolvent]
[first | reference | ref <name> | refindex <#>]
[resoffset <n>] [contactpdb <file>] [pdbcut <cut>] [mindist] [maxdist]
[name <dsname>] [byresidue] [map [mapout <mapfile>]] [series [seriesout <file>]]
[savenonnative [seriesnnout <file>] [nncontactpdb <file>]]
[resseries { present | sum } [resseriesout <file>]]

<mask1> First mask to calculate contacts for.

120

[<mask2>] (Optional) Second mask to calculate contacts
for.

[writecontacts <out�le>] Write information on native
contacts to <outfile> (STDOUT if not specified).

[resout <res�le>] File to write contact residue pairs
to.

[noimage] Do not image distances.

[distance <cut>] Distance cutoff for determining native
contacts in Angstroms (default 7.0 Ang).

[out <�lename>] File to write number of native
contacts and non-native contacts.

[includesolvent] By default solvent molecules are
ignored; this will explicitly include solvent
molecules.

[�rst | reference | ref <name> | re�ndex <#>] Reference
structure to use for determining native contacts.

[reso�set <n>] (byresidue only) Ignore contacts between
residues spaced less than <n> residues apart in
sequence.

[contactpdb <�le>] Write PDB with B-factor column
containing relative contact strength for native
contacts (strongest is 100.0).

[pdbcut <cut>] If writing contactpdb, only write
contacts with relative contact strength greater than
<cut>.

[mindist] If specified, determine the minimum distance
between any atoms in the mask(s).

[maxdist] If specified, determine the maximum distance
between any atoms in the mask(s).

[name <dsname>] Data set name.

[byresidue] Write out the contact map by residue instead
of by atom.

[map] Calculate matrices of native contacts
([nativemap]) and non-native contacts ([nonnatmap]).
These matrices are normalized by the total number of
frames, so that a value of 1.0 means �contact always
present�. If byresidue specified, the values for
each individual atom pair are summed over the
residues they belong to (this means for byresidue
values greater than 1.0 are possible).

121

[mapout <map�le>] Write native/non-native matrices to
'native.<mapfile>' and 'nonnative.<mapfile>'
respectively.

[series] Calculate native contact time series data, 1 for
contact present and 0 otherwise.

[seriesout <�le>] Write native contact time series data
to file.

[savenonnative] Save non-native contacts; series must
also be specified.

[seriesnnout <�le>] Write non-native contact time
series data to file.

[nncontactpdb <�le>] Write PDB with B-factor
column containing relative contact strength for
non-native contacts (strongest is 100.0).

[resseries {present | sum} Create contacts time series by
residue; series must also be specified.

present Record a 1 if any contact is present and 0
if no contact is present for the residue pair.

sum The sum of all individual contacts is recorded
for the residue pair.

[resseriesout <�le>] Write residue time series data
to <file>.

Data Sets Created:

<dsname>[native] Number of native contacts.

<dsname>[nonnative] Number of non-native contacts.

<dsname>[mindist] (mindist only) Minimum observed
distance each frame.

<dsname>[maxdist] (maxdist only) Maximum observed
distance each frame.

<dsname>[nativemap] (map only) Native contacts matrix
(2D).

<dsname>[nonnatmap] Non-native contacts matrix (2D).

<dsname>[NC] Native contacts time series.

<dsname>[NN] Non-native contacts time series.

<dsname>[NCRES] Residue native contacts time
series.

<dsname>[NNRES] Residue non-native contacts time
series.

122

De�ne and track �native� contacts as determined by a simple distance cut-o�,
i.e. any atoms which are closer than <cut> in the speci�ed reference frame
(the �rst frame if no reference speci�ed) are considered a native contact. If one
mask is provided, contacts are looked for within <mask1>; if two masks are
provided, only contacts between atoms in <mask1> and atoms in <mask2>
are looked for (useful for determining intermolecular contacts). By default only
native contacts are tracked. This can be changed by specifying the savenon-
native keyword. The time series for contacts can be saved using the series
keyword; these can be further consolidated by residue using the resseries key-
word. When using <resseries> the data set index is calculated as (r2 * nres)
+ r1 so that indices can be matched between native/non-native contact pairs.
Non-native residue contact legends have an nn_ pre�x.

Native contacts that are found are written to the �le speci�ed by writecon-
tacts (or STDOUT) with format:

Contact Nframes Frac. Avg Stdev

Where Contact takes the form ':<residue1 num>@<atom name>_:<residue2
num>@<atom name>, Nframes is the number of frames the contact is present,
Frac. is the total fraction of frames the contact is present, Avg is the average
distance of the contact when present, and Stdev is the standard deviation of
the contact distance when present. If resout is speci�ed the total fraction of
contacts is printed for all residue pairs having native contacts with format:

#Res1 #Res2 TotalFrac Contacts

Where #Res1 is the �rst residue number, #Res2 is the second residue number,
TotalFrac is the total fraction of contacts for the residue pair, and Contacts
is the total number of native contacts involved with the residue pair. Since
TotalFrac is calculated for each pair as the sum of each contact involving that
pair divided by the total number of frames, it is possible to have TotalFrac
values greater than 1 if the residue pair includes more than 1 native contact.

During trajectory processing, non-native contacts (i.e. any pair satisfying
the distance cut-o� which is not already a native contact) are also searched
for. The time series for native contacts can be saved as well, with 1 for contact
present and 0 otherwise (similar to the hbond command). This data can be
subsequently analyzed using e.g. 12.18 on page 177.

Contact maps (matrices) are generated for native and non-native contacts.
If byresidue is speci�ed, contact maps are summed over residues, and contacts
between residues spaced <reso�set> residues apart in sequence are ignored.

If contactpdb is speci�ed a PDB is generated containing relative contact
strengths in the B-factor column. The relative contact strength is normalized
so that a value of 100 means that atom participated in the most contacts with
other atoms.

Example command looking for contacts between residues 210 to 260 and
residue named NDP, using reference structure 'FtuFabI.WT.pdb' to de�ne na-
tive contacts:

123

parm FtuFabI.parm7
trajin FtuFabI.nc
reference FtuFabI.WT.pdb
nativecontacts name NC1 :210-260&!@H= :NDP&!@H= \

byresidue out nc.all.res.dat mindist maxdist \
distance 3.0 reference map mapout resmap.gnu \
contactpdb Loop-NDP.pdb \
series seriesout native.dat

11.52 outtraj

outtraj <filename> [trajout args]
[maxmin <dataset> min <min> max <max>] ...

<�lename> Output trajectory file name.

[trajout args] Output trajectory arguments (see 10.5 on
page 58).

[maxmin <dataset> min <min> max <max>] Only write
frames to <filename> if values in <dataset> for
those frames are between <min> and <max>. Can be
specified for one or more data sets.

The outtraj command is similar in function to trajout , and takes all of the same
arguments. However, instead of writing a trajectory frame after all actions are
complete outtraj writes the trajectory frame at its position in the Action queue.
For example, given the input:

trajin mdcrd.crd
trajout output.crd
outtraj BeforeRmsd.crd
rms R1 first :1-20@CA out rmsd.dat
outtraj AfterRmsd.crd

three trajectories will be written: output.crd, BeforeRmsd.crd, and AfterRmsd.crd.
The output.crd and AfterRmsd.crd trajectories will be identical, but the Befor-
eRmsd.crd trajectory will contain the coordinates of mdcrd.crd before they are
RMS-�t.

The maxmin keyword can be used to restrict output using one more more
data sets. For example, to only write frames for which the RMSD value is
between 0.7 and 0.8:

trajin tz2.truncoct.nc
rms R1 first :2-11
outtraj maxmin.crd maxmin R1 min 0.7 max 0.8

124

11.53 pairdist

pairdist out <filename> mask <mask> [delta <resolution>]

Calculate pair distribution function. In the following, defaults are given in
parentheses. The out keyword speci�es output �le for histogram: distance,
P(r), s(P(r)). The mask option speci�es atoms for which distances should be
computed. The delta option speci�es resolution. (0.1 Å)

11.54 pairwise

pairwise [<name>] [<mask>] [out <filename>] [cuteelec <ecut>] [cutevdw <vcut>]
[reference | ref <name> | refindex <#>] [cutout <cut mol2 prefix>]

[vmapout <vdw map>] [emapout <elec map>] [avgout <avg file>]
[eout <eout file>] [pdbout <pdb file>] [scalepdbe] [printmode {only|or|and|}]

[<name>] Data set name; van der Waals energy will get
aspect [EVDW] and electrostatic energy will get
aspect [EELEC].

[<mask>] Atoms to calculate energy for.

[out <�lename>] File to write total EELEC and EVDW to.

[eout <eout �le>] File to write individual EELEC and
EVDW interactions to.

[reference | ref <name> | re�ndex <#>] Specify a
reference to compare frames to (i.e. calculate Eref
- Eframe).

[cuteelec <cut>] Only report interaction EELEC (or delta
EELEC) if absolute value is greater than <ecut>
(default 1.0 kcal/mol).

[cutevdw <cutv>] Only report interaction EVDW (or
delta EVDW) if absolute value is greater than <vcut>
(default 1.0 kcal/mol).

[cutout <cut mol2 pre�x>] Write out mol2 containing
only atom pairs which satisfy <ecut> and <vcut>.

[vmapout <vdw map>] Write out interaction EVDW (or
delta EVDW) matrix to file <vdw map>.

[emapout <elec map>] Write out interaction EELEC (or
delta EELEC) matrix to file <elec map>.

[avgout <avg �le>] Print average interaction EVDW|EELEC
(or average delta EVDW|EELC) to <avg file>.

[pdbout <pdb �le>] Write PDB with EVDW|EELEC in
occupancy|B-factor columns to <pdb file>.

125

[scalepdbe] Scale energies written to PDB from 0 to 100.

[printmode {only|or|and}] Control when/how average
energies are written

Data Sets Created:

<name>[EELEC] Electrostatic energy in (kcal/mol).

<name>[EVDW] van der Waals energy in (kcal/mol).

<name>[VMAP] van der Waals energy matrix.

<name>[EMAP] Electrostatic energy matrix.

This action has two related functions: 1) Calculate pairwise (i.e. non-bonded)
energy (in kcal/mol) for atoms in <mask>, or 2) Compare pairwise energy of
frames to a reference frame. This calculation does use an exclusion list but is
not periodic.

When comparing to a reference frame, the eout �le will contain the di�er-
ences for each individual interaction (i.e. Eref - Eframe), otherwise the eout �le
will contain the absolute value of each individual interaction. The cuteelc and
cutevdw keywords can be used to restrict printing of individual interactions
to those for which the absolute value is above a cuto�. The VMAP and EMAP
matrix elements will contain these values as well (di�erences for reference, abso-
lute value otherwise) averaged over all frames. The avgout �le will contain only
these values averaged over all frames that satisfy the cuto�s. The printmode
keyword controls when the average energies are written: only means only aver-
age energy components that satisfy cuto�s will be printed, or means that both
energy components will be printed if either satistfy a cuto�, and and means
that both energy components will be written only if both satisfy the cuto�s.

The cutout keyword can be used to write out MOL2 �les each frame named
'<cut mol2 pre�x>.evdw.mol2.X' and '<cut mol2 pre�x>.eelec.mol2.X' (where
X is the frame number) containing only atoms with energies that satisfy the
cuto�s. Similarly, the pdbout keyword can be used to write out a PDB �le
(with 1 MODEL per frame). The occupancy and B-factor columns will contain
the total van der Waals and electrostatic energy for each atom if cuto�s are
satis�ed, or 0.0 otherwise.

11.55 principal

principal [<mask>] [dorotation] [out <filename>] [name <dsname>]

[<mask>] Mask of atoms used to determine principal
axes (default all).

[dorotation] Align coordinates along principal axes.

[out <�lename>] Write resulting
eigenvalues/eigenvectors to <filename>.

[name <dsname>] Data set name (3x3 matrices).

126

Data Sets Created (name keyword only):

<dsname>[evec] Eigenvectors (3x3 matrix, row-major).

<dsname>[eval] Eigenvalues (vector).

Determine principal axes of each frame determined by diagonalization of the
inertial matrix from the coordinates of the speci�ed atoms. At least one of
dorotation, out, or name must be speci�ed. The resulting eigenvectors are
sorted from largest eigenvalue to smallest, and the corresponding axes labelled
using the cpptraj convention of X > Y > Z (similar to 'vector principal'). If
out is speci�ed the eigenvectors and eigenvalues will be written for each frame
N with format:

<N> EIGENVALUES: <EX> <EY> <EZ>
<N> EIGENVECTOR 0: <Xx> <Xy> <Xz>
<N> EIGENVECTOR 1: <Yx> <Yy> <Yz>
<N> EIGENVECTOR 2: <Zx> <Zy> <Zz>

NOTE: The eigenvector 3x3 matrix data set could subsequently be used e.g.
with the rotate action.

Example: Align system (residues 1-76) along principle axes:

parm myparm.parm7
trajin protein.nc
principal :1-76 dorotation out principal.dat

11.56 projection

projection [<name>] evecs <dataset name> [out <outfile>] [beg <beg>] [end <end>]
[<mask>] [dihedrals <dataset arg>]
[start <start>] [stop <stop>] [offset <offset>]

[<name>] Output data set name.

evecs <dataset name> Data set containing eigenvectors
(modes).

[out <out�le>] Write projections to <outfile>.

[beg <beg>] First eigenvector/mode to use (default 1).

[end <end>] Final eigenvector/mode to use (default 2).

[<mask>] (Not dihedral covariance) Mask of atoms to
use in projection; MUST CORRESPOND TO HOW
EIGENVECTORS WERE GENERATED.

[dihedrals <dataset arg>] (Dihedral covariance only)
Dihedral data sets to use in projection; MUST
CORRESPOND TO HOW EIGENVECTORS WERE GENERATED.

[start <start>] Frame to start calculating projection.

127

[stop <stop>] Frame to stop calculating projection.

[o�set <o�set>] Frames to skip between projection
calculations.

Data Sets Created:
DataSet indices correspond to mode #.

<name> (All execpt IDEA) Projection data set.

<name>[X] X component of mode (IDEA modes only).

<name>[Y] Y component of mode (IDEA modes only).

<name>[Z] Z component of mode (IDEA modes only).

<name>[R] Magnitude of mode (IDEA modes only).

Projects snapshots onto eigenvectors obtained by diagonalizing covariance or
mass-weighted covariance matrices. Eigenvectors are taken from previously
generated (e.g. with diagmatrix) or previously read-in (e.g. with readdata)
eigenvectors with name <dataset name>. The user has to make sure that the
atoms selected by <mask> agree with the ones used to calculate the modes
(i.e., if mask = '@CA' was used in the �matrix� command, mask = '@CA' needs
to be set here as well). See 13 on page 203 for examples using the projection
command.

11.57 pucker

pucker [<name>] <mask1> <mask2> <mask3> <mask4> <mask5> [<mask6>] [geom]
[out <filename>] [altona | cremer] [amplitude] [theta]
[range360] [offset <offset>]

<name> Output data set name.

<maskX> Five (optionally six) atom masks selecting
atom(s) to calculate pucker for.

[geom] Use geometric center of atoms in <maskX> (default
is center of mass).

[out <�lename>] Output file name.

[altona] Use method of Altona & Sundaralingam (5 masks
only).

[cremer] Use method of Cremer and Pople (5 or 6 masks).

[amplitude] Also calculate amplitude.

[theta] (6 masks only) Also calculate theta.

[range360] Wrap pucker values from 0.0 to 360.0 (default
is -180.0 to 180.0).

[o�set <o�set>] Add <offset> to pucker values.

128

Data Sets Created:

<name> Pucker in degrees.

<name>[Amp] Amplitude (if amplitude was specified).

<name>[Theta] Theta (if theta and 6 masks were
specified).

Calculate the pucker (in degrees) for atoms in <mask1>, <mask2>, <mask3>,
<mask4>, <mask5> using the method of Altona & Sundarlingam[18, 19] (de-
fault, or if altona speci�ed), or the method of Cremer & Pople[20] if cremer
is speci�ed. If <mask6> is speci�ed calculate the pucker (and optionally theta
if theta speci�ed) according to the method of Cremer & Pople. If the ampli-
tude keyword is given, amplitudes will be calculated in addition to pucker. The
results from pucker can be further analyzed with the statistics analysis.

By default, pucker values are wrapped to range from -180 to 180 degrees. If
the range360 keyword is speci�ed values will be wrapped to range from 0 to
360 degrees. Note that the Cremer & Pople convention is o�set from Altona
& Sundarlingam convention (with nucleic acids) by +90.0 degrees; the o�set
keyword will add an o�set to the �nal value and so can be used to convert
between the two. For example, to convert from Cremer to Altona specify �o�set
90�.

To calculate nucleic acid pucker specify C1' �rst, followed by C2', C3', C4'
and O4'. For example, to calculate the sugar pucker for nucleic acid residues 1
and 2 using the method of Altona & Sundarlingam, with �nal pseudorotation
values ranging from 0 to 360:

pucker p1 :1@C1' :1@C2' :1@C3' :1@C4' :1@O4' range360 out pucker.dat
pucker p2 :2@C1' :2@C2' :2@C3' :2@C4' :2@O4' range360 out pucker.dat

11.58 radgyr | rog

radgyr [name>] [<mask>] [out <filename>] [mass] [nomax] [tensor]

[<name>] Data set name.

[<mask>] Atoms to calculate radius of gyration for;
default all atoms.

[out <�lename>] Write data to <filename>.

[mass] Mass-weight radius of gyration.

[nomax] Do not calculate maximum radius of gyration.

[tensor] Calculate radius of gyration tensor, output
format 'XX YY ZZ XY XZ YZ'.

Data Sets Created:

<name> Radius of gyration in Ang.

129

<name>[Max] Max radius of gyration in Ang.

<name>[Tensor] Radius of gyration tensor; format 'XX
YY ZZ XY XZ YZ'.

Calculate the radius of gyration of speci�ed atoms. For example, to calcu-
late only the mass-weighted radius of gyration (not the maximum) of the non-
hydrogen atoms of residues 4 to 10 and print the results to �RoG.dat�:

radgyr :4-10&!(@H=) out RoG.dat mass nomax

11.59 radial | rdf

radial <outfilename> <spacing> <maximum> <solvent mask1>
[<solute mask2>] [noimage] [density <density> | volume]
[center1 | center2 | nointramol] [<name>]
[intrdf <file>] [rawrdf <file>]

<out�lename> File to write RDF to, required.

<spacing> Bin spacing, required.

<maximum> Max bin value, required.

<solvent mask1> Atoms to calculate RDF for, required.

[<solute mask2>] (Optional) If specified calculate RDF
of all atoms in <solvent mask1> to each atom in
<solute mask2>.

[noimage] Do not image distances.

[density <density>] Use density value of <density> for
normalization (default 0.033456 molecules Å−3).

[volume] Determine density for normalization from
average volume of input frames.

[center1] Calculate RDF from geometric center of atoms in
<solvent mask1> to all atoms in <solute mask2>.

[center2] Calculate RDF from geometric center of atoms in
<solute mask2> to all atoms in <solvent mask1>.

[nointramol] Ignore intra-molecular distances.

[<name>] Name radial dataset.

[intrdf <�le>] Calculate integral of RDF bin values
(averaged over # of frames but otherwise not
normalized) and write to <file> (can be same as
<output_filename>).

[rawrdf <�le>] Write raw (non-normalized) RDF values to
<file>.

DataSet Aspects:

130

[int] (intrdf only) Integral of RDF bin values.

[raw] (rawrdf only) Raw (non-normalized) RDF values.

Calculate the radial distribution function (RDF, aka pair correlation function)
of atoms in <solvent mask1> (note that this mask does not need to be
solvent, but this nomenclature is used for clarity). If an optional second mask
(<solute mask2>) is given, calculate the RDF of ALL atoms in <solvent
mask1> to EACH atom in <solute mask2>. If desired, the geometric center
of atoms in<solvent mask1> or<solute mask2> can be used by specifying
the center1 or center2 keywords respectively, or alternatively intra-molecular
distances can be ignored by specifying the nointramol keyword.

The RDF is calculated from the histogram of the number of particles found
as a function of distance R, normalized by the expected number of particles at
that distance. The normalization is calculated from:

Density ∗ 4π
3

(
(R+ dR)

3 −R3
)

where dR is equal to the bin spacing. Some care is required by the user in
order to normalize the RDF correctly. The default density value is 0.033456
molecules Å−3, which corresponds to a density of water approximately equal to
1.0 g mL−1. To convert a standard density in g mL−1, multiply the density by
0.6022
Mr

, whereMr is the mass of the molecule in atomic mass units. Alternatively,
if the volume keyword is speci�ed the density is determined from the average
volume of the system over all Frames.

Note that correct normalization of the RDF depends on the number of atoms
in each mask; if multiple topology �les are being processed that result in changes
in the number of atoms in each mask, the normalization will be o�.

11.60 randomizeions

randomizeions <mask> [around <mask> by <distance>] [overlap <value>]
[noimage] [seed <value>]

This can be used to randomly swap the positions of solvent and single atom ions.
The �overlap� speci�es the minimum distance between ions, and the �around�
keyword can be used to specify a solute (or set of atoms) around which the ions
can get no closer than the distance speci�ed. The optional keywords �noimage�
disable imaging and �seed� update the random number seed. An example usage
is

randomizeions @NA around :1-20 by 5.0 overlap 3.0

The above will swap Na+ ions with water getting no closer than 5.0 Å from
residues 1 � 20 and no closer than 3.0 Å from any other Na+ ion.

131

11.61 replicatecell

replicatecell [out <traj filename>] [parmout <parm filename>] [name <dsname>]
{ all | dir <XYZ> [dir <XYZ> ...] } [<mask>]

out <traj �lename> Write replicated cell to output
trajectory file.

parmout <parm �lename> Write replicated cell
topology to topology file. This file will not be
viable to use for simulations.

name <dsname> If specified save replicated cell to
COORDS data set.

all Replicate cell once in all possible directions.

dir <XYZ> Repicate cell once in specified directions.
<XYZ> should consist of 3 numbers with no spaces in
between them and are restricted to values of -1, 1,
and 0. May be specified more than once.

<mask> Mask of atoms to replicate.

Create a trajectory where the unit cell is replicated in 1 or more directions
(up to 27). The resulting coordinates and topology can be written to a trajec-
tory/topology �le. They can also be saved as a COORDS data set for subse-
quent processing. Currently replication is only allowed 1 axis length in either
direction. The all keyword will replicate the cell once in all directions. The
dir keyword can be used to restrict replication to speci�c directions, e.g. 'dir
10-1' would replicate the cell once in the +X, -Z directions.

For example, to replicate a cell in all directions, writing out to NetCDF
trajectory cell.nc:

parm ../tz2.truncoct.parm7
trajin ../tz2.truncoct.nc
replicatecell out cell.nc parmout cell.parm7 all

11.62 rms | rmsd

rmsd [<name>] <mask> [<refmask>] [out <filename>] [mass]
[nofit | norotate | nomod]
[savematrices [matricesout <file>]]
[savevectors {combined|separate} [vecsout <file>]]
[first | reference | ref <name> | refindex <#> | previous |

reftraj <name> [parm <name> | parmindex <#>]]
[perres perresout <filename> [perresavg <avgfile>]
[range <resRange>] [refrange <refRange>]
[perresmask <additional mask>] [perrescenter] [perresinvert]

132

[<name>] Output data set name.

[<mask>] Mask of atoms to calculate RMSD for; if not
specified, calculate for all atoms.

[<refmask>] Reference mask; if not specified, use
<mask>.

[out <�lename>] Output data file name.

[mass] Mass-weight the RMSD calculation.

[no�t] Do not perform best-fit RMSD.

[norotate] If calculating best-fit RMSD, translate but
do not rotate coordinates.

[nomod] If calculating best-fit RMSD, do not modify
coordinates.

[savematrices] If specified save rotation matrices to
data set with aspect [RM].

matricesout <�le> Write rotation matrices to
specified file.

[savevectors {combined|separate}] If specified save
translation vectors: combined means save
target-to-origin plus the origin-to-reference
translation vectors, separate means save
target-to-origin as Vx, Vy, Vz and save
origin-to-reference as Ox Oy Oz in the output vector
data set.

vecsout <�le> Output translation vector data set
to <file>.

Reference keywords:

�rst Use the first trajectory frame processed as
reference.

reference Use the first previously read in reference
structure (refindex 0).

ref <name> Use previously read in reference structure
specified by filename/tag.

re�ndex <#> Use previously read in reference
structure specified by <#> (based on order read in).

previous Use frame prior to current frame as reference.

reftraj <name> Use frames from COORDS set <name> or
read in from trajectory file <name> as references.
Each frame from <name> is used in turn, so that
frame 1 is compared to frame 1 from <name>, frame 2
is compared to frame 2 from <name> and so on. If

133

<trajname> runs out of frames before processing is
complete, the last frame of <trajname> continues to
be used as the reference.

parm <parmname> | parmindex <#> If reftraj
specifies a trajectory file, associate it with
specified topology; if not specified the first
topology is used.

Per-residue RMSD keywords:

perres Activate per-residue no-fit RMSD calculation.

perresout <perres�le> Write per-residue RMSD to
<perresfile>.

perresavg <avg�le> Write average per-residue RMSDs to
<avgfile>.

range <res range> Calculate per-residue RMSDs for
residues in <res range> (default all solute
residues).

refrange <ref range> Calculate per-residue RMSDs to
reference residues in <ref range> (use <res range>
if not specified).

perresmask <additional mask> By default residues are
selected using the mask ':X' where X is residue
number; this appends <additional mask> to the mask
expression.

perrescenter Translate residues to a common center of
mass prior to calculating RMSD.

perresinvert Make X-axis residue number instead of frame
number.

Data Sets Created:

<name> RMSD of atoms in mask to reference.

<name>[RM] (savematrices only) Rotation matrices of
target to reference.

<name>[TV] (savevectors only) Translation vector.

<name>[res] (perres only) Per-residue RMSDs; index is
residue number.

<name>[Avg] (perres only) Average per-residue RMSD
for each residue.

<name>[Stdev] (perres only) Standard deviation of RMSD
for each residue.

134

Note that perres data sets are not generated until run is called.
Calculate the coordinate RMSD of input frames to a reference frame (or

reference trajectory). Both <mask> and <refmask> must specify the same
number of atoms, otherwise an error will occur.

For example, say you have a trajectory and you want to calculate RMSD to
two separate reference structures. To calculate the best-�t RMSD of the C, CA,
and N atoms of residues 1 to 20 in each frame to the C, CA, and N atoms of
residues 3 to 23 in StructX.crd, and then calculate the no-�t RMSD of residue 7
to residue 7 in another structure named Struct-begin.rst7, writing both results
to Grace-format �le �rmsd1.agr�:

reference StructX.crd [structX]
reference md_begin.rst7 [struct0]
rmsd BB :1-20@C,CA,N ref [structX] :3-23@C,CA,N out rmsd1.agr
rmsd Res7 :7 ref [struct0] out rmsd1.agr nofit

Per-residue RMSD calculation

If the perres keyword is speci�ed, after the initial RMSD calculation the no-�t
RMSD of speci�ed residues is also calculated. So for example:

rmsd :10-260 reference perres perresout PRMS.dat range 190-211 perresmask &!(@H=)

will �rst perform a best-�t RMSD calculation to the �rst speci�ed reference
structure using residues 10 to 260, then calculate the no-�t RMSD of residues
190 to 211 (excluding any hydrogen atoms), writing the results to PRMS.dat.
Two additional recommendations for the 'perres' option: 1) try not including
backbone atoms by using the 'perresmask' keyword, e.g. "perresmask &!@H,N,CA,HA,C,O",
and 2) try using the 'perrescenter' keyword, which centers each residue prior to
the 'no�t' calculation; this is useful for isolating changes in residue conformation.

11.63 rms2d | 2drms

Although the 'rms2d' command can still be speci�ed as an action, it is now
considered an analysis. See 12.27 on page 188.

11.64 rmsavgcorr

Although the 'rmsavgcorr' command can still be speci�ed as an action, it is
now considered an analysis. See 12.28 on page 189.

11.65 rmsf | atomic�uct

See 11.4 on page 66.

135

11.66 rotate

rotate [<mask>] { [x <xdeg>] [y <ydeg>] [z <zdeg>] |
axis0 <mask0> axis1 <mask1> <deg> |
usedata <set name> [inverse] }

[<mask>] Rotate atoms in <mask> (default all).

[x <xdeg] Degrees to rotate around the X axis.

[y <xdeg] Degrees to rotate around the Y axis.

[z <xdeg] Degrees to rotate around the Z axis.

axis0 <mask0> Mask defining the beginning of a
user-defined axis.

axis1 <mask1> Mask defining the end of a user-defined
axis.

<deg> Value in degrees to rotate around user defined
axis.

usedata <set name> If specified, use 3x3 rotation
matrices in specified data set to rotate
coordinates.

[inverse] Perform inverse rotation from input rotation
matrices.

Rotate speci�ed atoms around the X, Y, and/or Z axes by the speci�ed amounts,
around a user-de�ned axis (speci�ed by <mask0> and <mask1>), or use a
previously read in or generated data set of 3x3 matrices to perform rotations.

For example, to rotate the entire system 90 degrees around the X axis:

rotate x 90

To rotate residue 270 90 degrees around the axis de�ned between atoms C1, C2,
C3, C4, C5, and C6 in residue 270 and atoms C7, C8, C9, C10, C11, and C12
in residue 270:

rotate :270 axis0 :270@C1,C2,C3,C4,C5,C6 axis1 :270@C7,C8,C9,C10,C11,C12 90.0

To rotate the system with rotation matrices read in from rmatrices.dat:

trajin tz2.norotate.crd
readdata rmatrices.dat name RM mat3x3
rotate usedata RM

136

11.67 rotdif

The 'rotdif' command is now an analysis (see 12.29 on page 190), and requires
that rotation matrices be generated via an rmsd action. For example:

reference avgstruct.pdb
trajin tz2.nc
rms R0 reference @CA,C,N,O savematrices
rotdif rmatrix R0[RM] rseed 1 nvecs 10 dt 0.002 tf 0.190 \

itmax 500 tol 0.000001 d0 0.03 order 2 rvecout rvecs.dat \
rmout matrices.dat deffout deffs.dat outfile rotdif.out

11.68 runavg | runningaverage

runavg [window <window_size>]

Note that for backwards compatibility with ptraj �runningaverage� is also ac-
cepted.

Replaces the current frame with a running average over a number of frames
speci�ed by window <window_size> (5 if not speci�ed). This means that in
order to build up the correct number of frames to calculate the average, the �rst
<window_size> minus one frames will not be processed by subsequent actions.
So for example given the input:

runavg window 3
rms first out rmsd.dat

the rms command will not take e�ect until frame 3 since that is the �rst time
3 frames are available for averaging (1, 2, and 3). The next frame processed
would be an average of frames 2, 3, and 4, etc.

11.69 scale

scale x <sx> y <sy> z <sz> <mask>

Scale the X|Y|Z coordinates of atoms in <mask> by <sx>|<sy>|<sz>.

11.70 secstruct

secstruct [<name>] [out <filename>] [<mask>] [sumout <filename>]
[assignout <filename>] [totalout <filename> [ptrajformat]
[namen <N name>] [nameh <H name>] [nameca <CA name>]
[namec <C name>] [nameo <O name>]

[<name>] Output data set name.

[out <�lename>] Output file name for secondary
structure vs time.

137

[<mask>] Atom mask in which residues should be looked
for.

[sumout <sum�lename>] Write average secondary
structure values for each residue to <sumfilename>;
if not specified <filename>.sum is used.

[assignout <�lename>] Write overall secondary structure
assignment (based on dominant secondary structure
type for each residue) to file.

[ptrajformat] Write secondary structure as a string of
characters for each frame, similar to ptraj output.

[namen <N name>] Backbone amide nitrogen atom name
(default 'N').

[nameh <H name>] Backbone amide hydrogen atom name
(default 'H').

[nameca <CA name>] Backbone alpha carbon atom name
(default 'CA').

[namec <C name>] Backbone carbonyl carbon atom name
(default 'C').

[nameo <O name>] Backbone carbonyl oxygen atom name
(default 'O').

Data Sets Created:

<name>[res] Residue secondary structure per frame;
index corresponds to residue number. If ptrajformat
specified these will be characters, otherwise
integers (see table below).

<name>[avgss] Average of each type of secondary
structure; index corresponds to secondary structure
type (see table below; no index for �None�).

<name>[None] Total fraction of residues with no
structure vs time.

<name>[Para] Total fraction of residues with parallel
beta structure vs time.

<name>[Anti] Total fraction of residues with
anti-parallel beta structure vs time.

<name>[3-10] Total fraction of 3-10 helical structure
vs time.

<name>[Alpha] Total fraction of alpha helical
structure vs time.

<name>[Pi] Total fraction of Pi helical structure vs
time.

138

<name>[Turn] Total fraction of turn structure vs
time.

<name>[Bend] Total fraction of bend structure vs
time.

Note that when not using ptrajformat , data sets are not generated until run
is called.

Calculate secondary structural propensities for residues in <mask> (or
all solute residues if no mask given) using the DSSP method of Kabsch and
Sander[21], which assigns secondary structure types for residues based on back-
bone amide (N-H) and carbonyl (C=O) atom positions. By default cpptraj
assumes these atoms are named �N�, �H�, �C�, and �O� respectively. If a di�er-
ent naming scheme is used (e.g. amide hydrogens are named �HN�) the backbone
atom names can be customized with the nameX keywords (e.g. 'nameH HN').
Note that it is expected that some residues will not have all of these atoms
(such as proline); in this case cpptraj will print an informational message but
the calculation will proceed normally.

Results will be written to �lename speci�ed by out with format:

<#Frame> <ResX SS> <ResX+1 SS> ... <ResN SS>

where <#Frame> is the frame number and <ResX SS> is an integer repre-
senting the calculated secondary structure type for residue X. If the keyword
ptrajformat is speci�ed, the output format will instead be:

<#Frame> STRING

where STRING is a string of characters (one for each residue) where each char-
acter represents a di�erent structural type (this format is similar to what ptraj
outputs). The various secondary structure types and their corresponding inte-
ger/character are listed below:

Character Integer DSSP Char SS type

0 0 ' ' None
b 1 'E' Parallel Beta-sheet
B 2 'B' Anti-parallel Beta-sheet
G 3 'G' 3-10 helix
H 4 'H' Alpha helix
I 5 'I' Pi (3-14) helix
T 6 'T' Turn
S 7 'S' Bend

Average structural propensities over all frames for each residue will be writ-
ten to the �le speci�ed by sumout (or �<�lename>.sum� if sumout is not
speci�ed). The total structural propensity over all residues for each secondary
structure type will be written to the �le speci�ed by totalout. If assignout

139

is speci�ed, the overall secondary structure assignment for each residue will be
printed in two line chunks of 50 residues, with the �rst line containing the residue
number the line starts with and one character residue names, and the second line
containing secondary structure assignment using DSSP-style characters, like so:

1 KCNTATCATQ RLANFLVHSS NNFGAILSST NVGSNTRn
SSS TH HHHTTSBBBB TTTBBBB SS S

The output of secstruct command is amenable to visualization with gnuplot. To
generate a 2D map-style plot of secondary structure vs time, with each residue
on the Y axis simply give the output �le a �.gnu� extension. For example,
to generate a 2D map of secondary structure vs time, with di�erent colors
representing di�erent secondary structure types for residues 1-22:

secstruct :1-22 out dssp.gnu

The resulting �le can be visualized with gnuplot:

gnuplot dssp.gnu

Similarly, the sumout �le can be nicely visualized using xmgrace (use �.agr�
extension).

secstruct :1-22 out dssp.gnu sumout dssp.agr
xmgrace dssp.agr

11.71 spam

spam <filename> [solv <solvname>] [reorder] [name <name>]
[purewater] [cut <cut>] [info <infofile>] [summary <summary>]
[site_size <size>] [sphere] [out <datafile>]
[dgbulk <dgbulk>] [dhbulk <dhbulk>] [temperature <T>]

<�lename> File with the peak locations present (XYZ-
format)

<solvname> Name of the solvent residues

<cut> Non-bonded cutoff for energy evaluation

<dgbulk> SPAM free energy of the bulk solvent in
kcal/mol; default is -30.3 kcal/mol (SPC/E water).

<dhbulk> SPAM enthalpy of the bulk solvent in
kcal/mol; default is -22.2 kcal/mol (SPC/E water).

<T> Temperature at which SPAM calculation was run.

<info�le> File with stats about which sites are
occupied when.

<size> Size of the water site around each density peak.

140

[sphere] Treat each site like a sphere.

[purewater] The system is pure water---used to
parametrize the bulk values.

[reorder] The solvent should be re-ordered so the same
solvent molecule is always in the same site.

<summary> File with the summary of all SPAM results.
If not specified, no SPAM energies will be
calculated.

<data�le> Data file with all SPAM energies for each
snapshot.

Perform pro�ling of bound water molecules via SPAM analysis[22]. Brie�y, this
method identi�es and estimates the free energy pro�les of bound waters via
calculation of the distribution of interaction energies between the water and
it's environment from explicit solvent MD trajectories. The interaction energies
are calculated using a force- and energy-shifted electrostatic term with a hard
cuto�.

Prior to this command, the volmap command should be run with the peak-
�le keyword (see 11.83 on page 150) to generate the peaks �le. If not using peaks
from the volmap command, the peaks �le should have one line per peak with
format:

C <X> <Y> <Z> <Density>

Values of dgbulk and dhbulk for di�erent water models can be calculated from
pure water simulations with the purewater keyword.

11.72 setvelocity

setvelocity [<mask>] [tempi <temperature> | modify] [ig <random seed>]
[[ntc <#>]] [[dt <time>] [epsilon <eps>]]

[zeromomentum]

<mask> Mask of atoms to assign velocities to.

tempi <temperature> Assign velocities at specified
temperature (default 300.0 K).

modify If specified, do not set, just modify any
existing velocities (via 'ntc' or 'zeromomentum').

ig <random seed> Random seed to use to generate
velocity distribution.

ntc <#> Correct set velocities for SHAKE constraints.
Numbers match sander/pmemd: 1 = no SHAKE, 2 = SHAKE
on hydrogens, 3 = SHAKE on all atoms.

dt <time> Time step for SHAKE correction.

141

epsilon <eps> Epsilon for SHAKE correction

zeromomentum If specified adjust velocities so the
total momentum of atoms in <mask> is zero.

Set velocities in frame for atoms in <mask> using Maxwellian distribution based
on given temperature.

11.73 stfcdi�usion

stfcdiffusion mask <mask> [out <file>] [time <time per frame>]
[mask2 <mask>] [lower <distance>] [upper <distance>]
[nwout <file>]) [avout <file>] [distances] [com]
[x|y|z|xy|xz|yz|xyz]

mask Atoms for which MSDs will be computed.

out Output file: time vs. MSD.

time Time step in the trajectory. (1.0 ps)

mask2 Compute MSDs only within the lower and upper
limit of mask2. IMPORTANT: may be very slow!!!

lower Smaller distance from reference point(s). (0.01
Å)

upper Larger distance from reference point(s). (3.5 Å)

nwout Output file containing number of water molecules
in the chosen region, see mask2. (off)

avout Output file containing average distances. (off)

x|y|z|xy|xz|yz|xyz Computation of the mean square
displacement in the chosen dimension. (xyz)

distances Dump un-imaged distances. By default only
averages are output. (off)

com Calculate MSD for centre of mass. (off)

Calculate di�usion for selected atoms using code based on the 'di�usion' routine
developed by Hannes Loe�er at STFC (http://www.stfc.ac.uk/CSE).

11.74 strip

strip <mask> [outprefix <name>] [<parmout> file>] [nobox]

<mask> Remove atoms specified by mask from the
system.

[outpre�x <pre�x>] Write out stripped topology file
with name '<prefix>.<Original Topology Name>'.

142

[parmout <�le>] Write corresponding topology to file
with name <file>.

[nobox] Remove any box information from the stripped
topology.

Strip all atoms speci�ed by <mask> from the frame and modify the topology
to match for any subsequent Actions. The outpre�x keyword can be used to
write stripped topologies; stripped Amber topologies are fully-functional.

Note that stripping a system renumbers all atoms and residues, so for ex-
ample after this command:

strip :1

residue 1 will be gone, and the former second residue will now be the �rst, and
so on.

For example, to strip all residues namedWAT from each topology/coordinate
frame:

strip :WAT

The next example uses a distance-based mask to strip atoms in a single frame.
Note that with the exception of the mask command, distance-based masks do
not update on a per-frame basis. To strip all residues outside of 6.0 from any
atom in residues 1 to 14 and write out the stripped topology and coordinates,
both with no box information:

parm parm7
trajin frame_1000.rst.1
reference frame_1000.rst.1
strip !(:1-14<:6.0) outprefix f1.1 nobox
trajout f1.1.x restart nobox

11.75 surf

surf [<name>] [<mask1>] [out <filename>] [solutemask <mask>]
[offset <offset>] [nbrcut <cut>]

<name> Output data set name.

<mask1> Atoms to calculate surface area for.

out <�lename> File to write surface area to.

solutemask <mask> If specified, calculate the
contribution of <mask1> to <mask>.

o�set <o�set> Increment van der Waals radii by
<offset>; 1.4 Ang. is the default (as used by
Amber).

143

nbrcut <cut> Only atoms with van der Waals radii
greater than <cut> are considered to have neighbors
(2.5 Ang Amber default).

Calculate the surface area in Å2 of atoms in <mask> (if no mask speci�ed, all
atoms not marked as 'solvent' that are part of a molecule > 1 atom in size)
using the LCPO algorithm of Weiser et al.[23]. In order for this to work, the
topology needs to have bond information and atom type information.

Note that even if <mask> does not include all solute atoms, the neighbor
list is still calculated for all solute atoms so the surface area calculated re�ects
the contribution of atoms in <mask> to the overall surface area, not the surface
area of <mask> as an isolated system. As a result, it may be possible to obtain
a negative surface area if only a small fraction of the solute is selected.

For example, to calculate the overall surface area of all solute atoms, as well
as the contribution of residue 1 to the overall surface area, writing both results
to �surf.dat�:

surf out surf.dat
surf :1 out surf.dat

11.76 symmrmsd

symmrmsd [<name>] [<mask>] [<refmask>] [out <filename>] [nofit] [mass] [remap]
[first | reference | ref <name> | refindex <#> | previous |

reftraj <name> [parm <parmname> | parmindex <#>]]

[<name>] Output data set name.

[<mask>] Mask of atoms to calculate RMSD for; if not
specified, calculate for all atoms.

[<refmask>] Reference mask; if not specified, use
<mask>.

[out <�lename>] Output data file name.

[no�t] Do not perform best-fit RMSD (not recommended).

[mass] Mass-weight the RMSD calculation.

[remap] Re-arrange atoms according to symmetry. See
below for more details.

Reference keywords:

�rst Use the first trajectory frame processed as
reference.

reference Use the first previously read in reference
structure (refindex 0).

ref <name> Use previously read in reference structure
specified by filename/tag.

144

re�ndex <#> Use previously read in reference
structure specified by <#> (based on order read in).

previous Use frame prior to current frame as reference.

reftraj <name> Use frames from COORDS set <name> or
read in from trajectory file <name> as references.
Each frame from <name> is used in turn, so that
frame 1 is compared to frame 1 from <name>, frame 2
is compared to frame 2 from <name> and so on. If
<trajname> runs out of frames before processing is
complete, the last frame of <trajname> continues to
be used as the reference.

parm <parmname> | parmindex <#> If reftraj
specifies a file associate trajectory <name>
with specified topology; if not specified the
first topology is used.

Perform symmetry-corrected RMSD calculation. This is done by identifying
potential symmetric atoms in each residue, performing an initial best-�t, then
determining which con�guration of symmetric atoms will give the lowest RMSD
using atomic distance to reference atoms.

Note that when re-mapping, all atoms in the residues of interest
should be selected to prevent cases where selected symmetric atoms
are swapped but the atoms they are bonded to are not. Also, occasion-
ally larger symmetric structures (e.g. 6 membered rings) may become distorted
due to only part of the residue being corrected for symmetry. This appears
to happen about 4% of the time but does not overly in�ate the RMSD. The
'check' command can be used after symmrmsd to look for such distortions.

Warning: the symmetry correction is generally robust enough to account for
symmetries in the standard amino and nucleic acid residues, but has not been
extensively tested on residues with more extended types of symmetry.

11.77 temperature

temperature [<name>] {frame | [<mask>] [ntc <#>]} [out <filename>]

[<name>] Data set name.

frame Do not calculate temperature; use existing frame
temperature.

[<mask>] Atoms to calculate temperature for.

[ntc <#>] Value of SHAKE bond constraint: 1 - none, 2
- bonds to H, 3- all bonds (equivalent to
SANDER/PMEMD).

[out <�lename>] File to write values to.

145

Calculate temperature in frame based on velocity information. If 'frame' is
speci�ed just use frame temperature (read in from e.g. REMD trajectory).

11.78 trans | translate

translate [<mask>] [x <dx>] [y <dy>] [z <dz>]

Translate atoms in <mask> (all atoms if no mask speci�ed) <dx> Å in the
X direction, <dy> Å in the Y direction, and <dz> Å in the Z direction.

11.79 unstrip

unstrip

Requests that the original topology and frame be used for all following actions.
This has the e�ect of undoing any command that modi�es the state (such as
strip). For example, the following code takes a solvated complex and uses a
combination of strip, unstrip, and outtraj commands to write out separate dry
complex, receptor, and ligand �les:

parm Complex.WAT.pdb
trajin Complex.WAT.pdb
Remove water, write complex
strip :WAT
outtraj Complex.pdb pdb
Reset to solvated Complex
unstrip
Remove water and ligand, write receptor
strip :WAT,LIG
outtraj Receptor.pdb pdb
Reset to solvated Complex
unstrip
Remove water and receptor, write ligand
strip :WAT
strip !(:LIG)
outtraj Ligand.pdb pdb

11.80 unwrap

unwrap [center] [{bymol | byres | byatom}]
[reference | ref <name> | refindex <#>] [<mask>]

[center] Unwrap by center of mass; otherwise unwrap by
first atom position.

bymol Unwrap by molecule (default).

byres Unwrap by residue.

146

byatom Unwrap by atom.

[reference | ref <name> | re�ndex <#>] Reference
structure to use in unwrapping.

[<mask>] Selection to unwrap.

Under periodic boundary conditions, MD trajectories are not continuous if
molecules are wrapped(imaged) into the central unit cell. Especially, in sander,
with iwrap=1, molecular trajectories become discontinuous when a molecule
crosses the boundary of the unit cell. This command, unwrap processes the tra-
jectories to force the masked molecules continuous by translating the molecules
into the neighboring unit cells. It is the opposite function of image, but this
command can also be used to place molecules side by side, for example, two
strands of a DNA duplex. However, this command fails when the masked
molecules travel more than half of the box size within a single frame.

If the optional argument �reference� is speci�ed, then the �rst frame is
unwrapped according to the reference structure. Otherwise, the �rst frame is
not modi�ed.

As an example, assume that :1-10 is the �rst strand of a DNA duplex and
:11-20 is the other strand of the duplex. Then the following commands could
be used to create system where the two strands are not separated arti�cially:

unwrap :1-20
center :1-20 mass origin
image origin center familiar

11.81 vector

vector [<name>] <Type> [out <filename> [ptrajoutput]] [<mask1>] [<mask2>]
[magnitude] [ired]

<Type> = { mask | minimage | dipole | center | corrplane |
box | boxcenter | ucellx | ucelly | ucellz

principal [x|y|z] }

[<name>] Vector data set name.

<Type> Vector type; see below.

[out <�lename>] Write vector data to <filename> with
format 'Vx Vy Vz Ox Oy Oz' where V denotes vector
coordinates and 'O' denotes origin coordinates.

[ptrajoutput] Write vector data in ptraj style (Vx Vy Vz
Ox Oy Oz Vx+Ox Vy+Oy Vz+Oz). This prevents
additional formatting of <filename> and is not
compatible with 'magnitude'.

[<mask1>] Atom mask, required for all types except
'box'.

147

[<mask2>] Second atom mask, only required for type
'mask'.

[magnitude] Store the magnitude of the vector with
aspect [Mag].

[ired] Mark this vector for subsequent IRED analysis with
commands 'matrix ired' and 'ired'.

Data Sets Created:

<name> Vector data set.

<name>[Mag] (magnitude only) Vector magnitude.

This command will keep track of a vector value (and its origin) over the trajec-
tory; the data can be referenced for later use based on the name (which must
be unique). The types of vectors that can be calculated are:

mask (Default) Store vector from center of mass of atoms in <mask1> to
atoms in <mask2>.

minimage Store minimum-imaged vector from center of mass of atoms in
<mask1> to atoms in <mask2>.

dipole Store the dipole and center of mass of the atoms speci�ed in<mask1>.
The vector is not converted to appropriate units, nor is the value well-
de�ned if the atoms in the mask are not overall charge neutral.

center Store the center of mass of atoms in <mask1>. The reference point
is the origin (0.0, 0.0, 0.0).

corrplane This de�nes a vector perpendicular to the (least-squares best) plane
through the atoms in<mask1>. The reference point is the center of mass
of atoms in <mask1>.

box (No mask needed) Store the box lengths of the trajectory. The reference
point is the origin (0.0, 0.0, 0.0).

boxcenter (No mask needed) Store the center of the box as a vector.

ucell{x|y|z}: (No mask needed) Store speci�ed unit cell (i.e. box) vector.

principal [x|y|z] Store one of the principal axis vectors determined by diago-
nalization of the inertial matrix from the coordinates of the atoms speci�ed
by <mask1>. The eigenvector with the largest eigenvalue is considered
�x� (i.e., the hardest axis to rotate around) and the eigenvector with the
smallest eigenvalue is considered �z�. If none of x or y or z are speci�ed,
then the �x� principal axis is stored. The reference point is the center of
mass of atoms in <mask1>.

148

Cpptraj supports writing out vector data in a pseudo-trajectory format for easy
visualization. Once a vector data set has been generated the writedata command
can be used with the vectraj keyword (see 6 on page 23 for more details) to write
a pseudo trajectory consisting of two atoms, one for the vector origin and one
for the vector from the origin (i.e. V+O). For example, to create a MOL2
containing a pseudo-trajectory of the minimum-imaged vector from residue 4 to
residue 11:

trajin tz2.nc
vector v8 minimage out v8.dat :4 :11
run
writedata v8.mol2 vectraj v8 trajfmt mol2

Auto-correlation or cross-correlation functions can be calculated subsequently
for vectors using either the corr analysis command or the timecorr analysis
command (to calculate via spherical harmonic theory).

11.82 velocityautocorr

velocityautocorr [<set name>] [<mask>] [usevelocity] [out <filename>] [diffout <file>]
[maxlag <frames>] [tstep <timestep>] [direct] [norm]

[<set name>] Data set name.

[<mask>] Atoms(s) to calculate velocity
autocorrelation (VAC) function for.

[usevelocity] Use velocity information in frame if
present. This will only give sensible results if
the velocities are recorded close to the order of
the simulation time step.

[out <�lename>] Write VAC function to <filename>.

[di�out <�le>] File to write diffusion constants to.

[maxlag <frames>] Maximum lag in frames to calculate
VAC function for. Default is half the total number
of frames.

[tstep <timestep>] Time between frames in ps (default
1.0).

[direct] Calculate VAC function directly instead of via
FFT (will be much slower).

[norm] Normalize resulting VAC function to 1.0.

DataSet Aspects:

[D] Diffusion constant calculated from integral over VAC
function in 1x10-5 cm2/s.

149

Calculate the velocity autocorrelation (VAC) function averaged over the atoms
in <mask>. Pseudo-velocities are calculated using coordinates and the speci-
�ed time step. As with all time correlation functions the statistical noise will
increase if the maximum lag is greater than half the total number of frames. In
addition to calculating the velocity autocorrelation function, the self-di�usion
coe�cient will be reported in the output, calculated from the integral over the
VAC function.

11.83 volmap

volmap filename dx dy dz <mask> [radscale <factor>]
{ data <existing set> |

name <setname> { size <x,y,z> [center <x,y,z>] |
centermask <mask> [buffer <buffer>] } }

[peakcut <cutoff>] [peakfile <xyzfile>]

�lename The name of the output file with the grid
density.

dx, dy, dz The grid spacing (Angstroms) in the X-, Y-,
and Z-dimensions, respectively

<mask> The atom selection from which to calculate the
number density.

radscale <factor> Factor by which to scale radii (by
division). To match the atomic radius of Oxygen
used by the VMD volmap tool, a scaling factor of
1.36 should be used. Default 1.0.

data <setname> Name of existing grid data set to use.

name <setname> Name of grid set that will be created
(size/center or centermask/buffer keywords).

size <x,y,z> Specify the size of the grid in the X-, Y-,
and Z-dimensions. Must be used alongside the center
argument.

center <x,y,z> Specify the grid center explicitly.
Note, the size argument must be present in this
case. Default is the origin.

centermask <mask> The mask around which the grid
should be centered (via geometric center). If this
is omitted and the center and size are not
specified, the default <mask> entered (see above) is
used in its place.

bu�er <bu�er> A buffer distance, in Angstroms, by
which the edges of the grid should clear every atom
of the centermask (or default mask if centermask is
omitted) in every direction. The default value is

150

3. The buffer is ignored if the center and size are
specified (see below).

peakcut <cuto�> The minimum density required to
consider a local maximum a 'density peak' in the
outputted peak file (default 0.05).

peak�le <xyz�le> A file in XYZ-format that contains a
carbon atom centered at the grid point of every
local density maximum. This file is necessary input
to the spam action command.

Grid data as a volumetric map, similar to the 'volmap' command in VMD.
The density is calculated by treating each atom as a 3-dimensional Gaussian
function whose standard deviation is equal to the van der Waals radius. The
density calculated is the number density averaged over the entire simulation.
The grid can be speci�ed in one of three ways:

1. An existing grid data set (from e.g. bounds), speci�ed with the data
keyword.

2. Via the sizes and center speci�ed by the size and center keywords (comma-
separated strings, e.g. '20,20,20').

3. Centered on the atoms in the mask given by centermask with an addi-
tional bu�er in each direction speci�ed by bu�er.

11.84 volume

volume [<name>] [out <filename>]

<name> Data set name.

out <�lename> Output file name.

Calculate unit cell volume.

11.85 watershell

watershell <solutemask> [out <filename>] [lower <lower cut>] [upper <upper cut>]
[noimage] [<solventmask>]

<solutemask> Atom mask corresponding to solute of
interest (required).

[out <�lename>] Output file name.

[lower <lower cut>] Cutoff for the first water shell
(default 3.4 Angstroms).

[upper <upper cut>] Cutoff for the second water shell
(default 5.0 Angstroms).

151

[noimage] Do not image distances.

[<solventmask>] Optional atom mask corresponding to
solvent.

DataSet Aspects:

[lower] Number of solvent molecules in first solvent
shell.

[upper] Number of solvent molecules in second solvent
shell.

This option will count the number of waters within a certain distance of the
atoms in the <solutemask> in order to represent the �rst and second solvation
shells. The optional <solventmask> can be used to consider other atoms as the
solvent; the default is �:WAT�.

This action is often used prior to the closest command in order to determine
how many waters around a solute should be retained to maintain the �rst and/or
second water shells.

As of version 17 this command is CUDA-enabled in CUDA versions of CPP-
TRAJ.

12 Analysis Commands

Analyses in cpptraj operate on data sets which have been generated by Ac-
tions in a prior Run or read in with a readdata command (8.18 on page 40).
Unlike ptraj, Analysis commands in cpptraj do not need to be prefaced with
'analysis'. The exception to this is 'analyze matrix ' in order to di�erenti-
ate it from the matrix Action command; users are encouraged to use the new
command diagmatrix instead.

Like Actions, when an Analysis command is issued it is by default added
to the Analysis queue and is not executed until after trajectory processing is
completed; a complete list of data sets available for analysis is shown after
trajectory processing (prefaced by 'DATASETS') or can be shown with the
'list dataset ' command. Analyses can also be executed immediately via the
runanalysis command (8.23 on page 42).

Note that for Analysis commands that use COORDS data sets, if no CO-
ORDS data set is speci�ed then a default one will be automatically created from
frames read in by trajin commands.

Command Description Set Type(s)

autocorr Calculate autocorrelation function for multiple data sets. N 1D sclar
avg Calculate average, standard deviation, min, and max for (or over) data sets. N 1D scalar

calcstate Calculate states based on given data sets and criteria. N 1D scalar
cluster Perform cluster analysis. COORDS, N 1D scalar

152

corr, Calculate auto or cross correlation for 1 or 2 data sets. 1D scalar, vector
correlationcoe

cphstats Calculate statistics for constant pH data sets. pH data sets
crank, Calculate crankshaft motion between two data sets. 2 1D scalar

crankshaft
crd�uct Calculate atomic �uctuations (RMSF) for atoms over time blocks. COORDS
crosscorr Calculate a matrix of Pearson product-moment N 1D scalar

coe�cients between given data sets.
curve�t Perform non-linear curve �tting on given data set. 1D scalar

diagmatrix Calculate eigenvectors and eigenvalues from given symmetric matrix. symmetric matrix
divergence Calculate Kullback-Leibler divergence between two data sets. 2 1D scalar

FFT Perform a fast Fourier transform on data sets. N 1D scalar
hist, histogram Calculate N-dimensional histogram for N given data sets. N 1D scalar

integrate Perform integration on each of the given data sets. N 1D scalar
ired Perform isotropic reorientational eigenmode dynamics N IRED vectors

analysis using given IRED vectors.
kde Calculate 1D histogram from given data set using a kernel density estimator. 1 or 2 1D scalar

Also time-dependent Kullback-Leibler divergence analysis with another set.
lifetime Perform lifetime analysis on given data sets. N 1D scalar

lowestcurve For each given data set, calculate a curve that traces N 1D scalar
the lowest N points over speci�ed bins.

meltcurve Calculate a melting curve from given data sets assuming simple 2 state kinetics. N 1D scalar
modes Perform various analyses on eigenmodes (from e.g. diagmatrix). eigenmodes

multicurve Perform non-linear curve �tting for multiple input data sets. N 1D scalar
multihist Calculate 1D histograms (optionally with a kernel N 1D scalar

density estimator) from multiple input data sets.
phipsi Calculate and plot the average phi and psi values from input dihedral data sets. N phi/psi dihedrals
regress Perform linear regression on multiple input data sets. N 1D scalar
remlog Calculate various statistics from a replica log data set. replica log

rms2d, 2drms Calculate 2D RMSD between frames in 1 or 2 COORDS data sets. 1 or 2 COORDS
rmsavgcorr Calculate RMS average correlation curve for a COORDS data set. COORDS

rotdif Calculate rotational di�usion using given rotation matrices (from e.g. rms). rotation matrices
runningavg Calculate running average for given data sets using given window size. N 1D scalar

spline Calculate cubic splines for given data sets. N 1D scalar
stat, statistics Calculate various statistics for given data sets. N 1D scalar

ti Peform Gaussian quadrature integration for given DV/DL data sets. N 1D scalar
timecorr Calculate auto/cross-correlation functions for given 1 or 2 vector

vector(s) using spherical harmonics.
vectormath Perform math on given vector data sets. 2 vector
wavelet Perform wavelet analysis on coordinates from given COORDS set. COORDS

153

12.1 autocorr

autocorr [name <dsetname>] <dsetarg0> [<dsetarg1> ...] [out <filename>]
[lagmax <lag>] [nocovar] [direct]

<dsetarg0> [dsetarg1> ...] Argument(s) specifying
datasets to be used.

[name <dsetname>] Store results in dataset(s) named
<dsetname>:X.

[out <�lename>] Write results to file named
<filename>.

[lagmax] Maximum lag to calculate for. If not specified
all frames are used.

[nocovar] Do not calculate covariance.

[direct] Do not use FFTs to calculate correlation; this
will be much slower.

This is for integer/double/�oat datasets only; for vectors see the 'timecorr'
command.

Calculate auto-correlation (actually auto-covariance by default) function for
datasets speci�ed by one or more dataset arguments. The datasets must have
the same # of data points.

12.2 avg

avg <dset0> [<dset1> ...] [torsion] [out <file>] [oversets]
[name <name>] [nostdout]

<dsetX> Data set(s) to calculate the average for.

[torsion] If the data sets are not already marked
periodic (e.g. if read in via 'readdata'), treat
them as periodic torsion.

[out <�le>] File to write results to.

[oversets] If specified, calculate the average over all
inpout sets instead of each input set.

[name <name>] Output data set name.

[nostdout] If 'nostdout' specified do not write averages
to STDOUT when 'out' not specified.

DataSets Created (not oversets):

<name>[avg] Average of each set.

<name>[sd] Standard deviation of each set.

154

<name>[ymin] Y minimum of each set.

<name>[ymax] Y maximum of each set.

<name>[yminidx] Index of minimum Y value.

<name>[ymaxidx] Index of maximum Y value.

<name>[names] Name of each set.

DataSets Created (oversets)

<name> Average over all input sets for each frame.

<name>[SD] Standard deviation over all input sets for
each frame.

Calculate the average, standard deviation, min, and max of given 1D data sets.
Alternatively, if oversets is speci�ed the average over each set for each point
is calculated; this requires all input sets be the same size.

For example, to read in data from a �le named perres.peptide.dat and cal-
culate the averages etc for all the input sets:

readdata perres.peptide.dat
avg perres.peptide.dat out output.dat name V

12.3 calcstate

calcstate {state <ID>,<dataset>,<min>,<max>} [out <state v time file>] [name <setname>]
[curveout <curve file>] [stateout <states file>] [transout <transitions file>]

state <ID>,<dataset>,<min>,<max> Define a state
according to given data set and criteria. Multiple
states can be given.

<ID> ID to give each state index (e.g. 1, 2,
etc). State indices start at 0. -1 means
�undefined state�.

<dataset> Data set to use.

<min>,<max> Frames with data set value above
<min> and below <max> will be assigned <ID>.

[out <state v time �le>] File to write state index vs
frame to.

[name <setname>] Data set name.

[curveout <curve �le>] File to write state lifetime and
transition curves to.

[stateout <states �le>] File to write state lifetime data
to.

[transout <transitions �le>] File to write state
transition data to.

155

DataSets Created:

<setname> State index vs frame.

<setname>[sCurve]:X State curves; lifetime curve for
transitions from given state to any other state.

<setname>[tCurve]:X Transition curves; lifetime curve
for transitions from given state to other specific
state.

Data for the speci�ed data set(s) that matches the given criteria will be assigned
a state index. State indices start from 0 and match the order in which state
keywords were given. For example, the following input:

parm DPDP.parm7
trajin DPDP.nc
distance d1 :19@O :12@N
angle a1 :19@O :12@H :12@N
calcstate state D,d1,3.0,4.0 state A,a1,100,120 out state.dat curveout curve.agr \

stateout States.dat transout States.dat name d1_a1
run

De�nes two states. State index 0 is de�ned as a state named �D� based on the
distance from ':19@O' to ':12@N' being between 3 and 4 Angstroms. State index
1 is de�ned as a state named �A� based on the angle between ':19@O', ':12@H',
and ':12@N' being between 100 and 120 degrees. The output in state.dat might
look like:

#Frame d1_a1
1 -1
2 0
3 0
4 0
5 -1
6 1
7 -1
8 -1
9 0

10 -1

where the values in column d1_a1 refer to state index: -1 is unde�ned, 0 is
state �D�, and 1 is state �A�.

Lifetime curves (see 12.18 on page 177 for further explanation) are calculated
for transitions from each state to any other state (aspect [sCurve]) and each state
to each other state (aspect [tCurve]). In this case there will be 3 sCurves and 4
tCurves:

d1_a1[sCurve]:0 "Undefined" (double), size is 10

156

d1_a1[sCurve]:1 "D" (double), size is 3
d1_a1[sCurve]:2 "A" (double), size is 1
d1_a1[tCurve]:0 "Undefined->D" (double), size is 10
d1_a1[tCurve]:1 "D->Undefined" (double), size is 3
d1_a1[tCurve]:2 "Undefined->A" (double), size is 1
d1_a1[tCurve]:3 "A->Undefined" (double), size is 1

Lifetime analysis from each state to any other state is directed to the �le speci�ed
by stateout and has format:

#Index N Average Max State

Where #Index is the state index, N is the number of lifetimes in that state,
Average is the average lifetime while in that state (in frames), Max is the max-
imum lifetime while in that state (in frames) and State is the name of the
state.

Finally, lifetime analysis of transitions from each state to each other state is
directory to the �le speci�ed by transout and has format:

#N Average Max Transition

Where #N is the number of transitions, Average is the average lifetime (in
frames) in the �rst state before transitioning to the second state, Max is the max
lifetime (in frames) before transitioning to the second state, and Transition is
the name of the transition.

12.4 cluster

cluster [crdset <crd set> | nocoords]
Algorithms:

[hieragglo [epsilon <e>] [clusters <n>] [linkage|averagelinkage|complete]
[epsilonplot <file>] [includesieved_cdist]]

[dbscan minpoints <n> epsilon <e> [sievetoframe] [kdist <k> [kfile <prefix>]]]
[dpeaks epsilon <e> [noise] [dvdfile <density_vs_dist_file>]

[choosepoints {manual | auto}]
[distancecut <distcut>] [densitycut <densitycut>]
[runavg <runavg_file>] [deltafile <file>] [gauss]]

[kmeans clusters <n> [randompoint [kseed <seed>]] [maxit <iterations>]
[{readtxt|readinfo} infofile <file>]

Distance options:
{[[rms | srmsd] [<mask>] [mass] [nofit]] | [dme [<mask>]] |

[data <dset0>[,<dset1>,...]]}
[sieve <#> [random [sieveseed <#>]]] [loadpairdist] [savepairdist] [pairdist <file>]

[pairwisecache {mem | none}] [includesieveincalc]
Output options:

[out <cnumvtime>] [gracecolor] [summary <summaryfile>] [info <infofile>]
[summarysplit <splitfile>] [splitframe <comma-separated frame list>]

157

[clustersvtime <filename> cvtwindow <window size>]
[cpopvtime <file> [normpop | normframe] [lifetime]]

[sil <silhouette file prefix>] [assignrefs [refcut <rms>] [refmask <mask>]]
Coordinate output options:

[clusterout <trajfileprefix> [clusterfmt <trajformat>]]
[singlerepout <trajfilename> [singlerepfmt <trajformat>]]
[repout <repprefix> [repfmt <repfmt>] [repframe]]

[avgout <avgprefix> [avgfmt <avgfmt>]]

[crdset <crd set>] Name of previously generated COORDS
data set. If not specified the default COORDS set
will be used unless nocoords has been specified.

[nocoords] Do not use a COORDS data set; distance
metrics that require coordinates and coordiante
output will be disabled.

Algorithms:

hieragglo (Default) Use hierarchical agglomerative
(bottom-up) approach.

[epsilon <e>] Finish clustering when minimum
distance between clusters is greater than <e>.

[clusters <n>] Finish clustering when <n> clusters
remain.

[linkage] Single-linkage; use the shortest distance
between members of two clusters.

[averagelinkage] Average-linkage (default); use the
average distance between members of two
clusters.

[complete] Complete-linkage; use the maximum
distance between members of two clusters.

[epsilonplot <�le>] Write number of clusters vs
epsilon to <file>.

[includesieved_cdist] Include sieved frames in final
cluster distance calculation (may be very slow).

dbscan Use DBSCAN clustering algorithm of Ester et
al.[24]

minpoints <n> Minimum number of points required to
form a cluster.

epsilon <e> Distance cutoff between points for
forming a cluster.

[sievetoframe] When restoring sieved frames, compare
frame to every frame in a cluster instead of the
centroid; slower but more accurate.

158

[kdist <k>] Generate K-dist plot for help in
determining DBSCAN parameters (see below).

[k�le <pre�x>] Prefix for K-dist plot file.

dpeaks Use the density peaks algorithm of Rodriguez and
Laio[25]

epsilon <e> Cutoff for determining local density in
Angstroms.

[noise] If specified, treat all points within epsilon
of another cluster as noise.

[dvd�le <density_vs_dist_�le>] File to write
density versus minimum distance to point with
next highest density. This can be used to
determine appropriate cutoffs for distance and
density in a subsequent step with choosepoints
manual.

[choosepoints {manual | auto}] Specify whether
clusters will be chosen based on specified
distance/density cutoffs, or automatically. If
not specified only the density vs distance file
will be written and no clustering will be
performed. Currently manual is recommended.

[distancecut <distcut>] [densitycut <densitycut>] If
choosepoints manual, points with minimum
distance greather than or equal to <distcut> and
density greater than or equal to <densitycut>
will be chosen.

[runavg <runavg �le>] If choosepoints automatic,
the calculated running average of density versus
distance will be written to <runavg file>.

[delta�le <�le>] If choosepoints automatic, distance
minus the running average for each point will be
written to this file.

[gauss] Calculate density with Gaussian kernels
instead of using discrete density.

kmeans Use K-means clustering algorithm.

clusters <n> Finish clustering when number of
clusters is <n>.

[randompoint] Randomize initial set of points used
(recommended).

[kseed <seed>] Random number generator seed for
randompoint.

[maxit <iteration>] Algorithm will run until frames
no longer change clusters of <iteration>
iterations are reached (default 100).

159

readtxt|readinfo No clustering - read in previous
cluster results.

info�le <�le> Cluster info file to read.

Distance Metric Options:

[rms | srmsd[<mask>]] (Default rms) Distance between
frames calculated via best-fit coordinate RMSD using
atoms in <mask>. If srmsd specified use
symmetry-corrected RMSD (see 11.76 on page 144).

[mass] Mass-weight the RMSD.

[no�t] Do not fit structures onto each other prior
to calculating RMSD.

dme [<mask>] Distance between frames calculated using
distance-RMSD (aka DME, distrmsd) using atoms in
<mask>.

[data <dset0>[,<dset1>,...] Distance between frames
calculated using specified data set(s) (Euclidean
distance).

[sieve <#>] Perform clustering only for every <#>
frame. After clustering, all other frames will be
added to clusters.

[random] When sieve is specified, select initial frames
to cluster randomly.

[sieveseed <#>] Seed for random sieving; if not set the
wallclock time will be used.

[pairdist <�le>] File to use for loading/saving pairwise
distances.

[loadpairdist] Load pairwise distances from <file>
(CpptrajPairDist if pairdist not specified).

[savepairdist] Save pairwise distances from <file>
(CpptrajPairDist if pairdist not specified). NOTE:
If sieving was performed only the calculated
distances are saved.

[pairwisecache {mem | disk | none}] Cache pairwise
distance data in memory (default), to disk, or
disable pairwise caching. No caching will save
memory but be extremely slow. Caching to disk will
likely be slow unless writing to a fast storage
device (e.g. SSD) - data is saved to a file named
'CpptrajPairwiseCache'.

[includesieveincalc] Include sieved frames when
calculating within-cluster average (may be very
slow).

160

Output Options:

[out <cnumvtime>] Write cluster # vs frame to
<cnumvtime>. Algorithms that calculate noise (e.g.
DBSCAN) will assign noise points a value of -1.

[gracecolor] Instead of cluster # vs frame, write
cluster# + 1 (corresponding to colors used by
XMGRACE) vs frame. Cluster #s larger than 15 are
given the same color. Algorithms that calculate
noise (e.g. DBSCAN) will assign noise points a
color of 0 (blank).

[summary <summary�le>] Summarize each cluster with
format '#Cluster Frames Frac AvgDist Stdev Centroid
AvgCDist':

#Cluster Cluster number starting from 0 (0 is most
populated).

Frames # of frames in cluster.

Frac Size of cluster as fraction of total
trajectory.

AvgDist Average distance between points in the
cluster.

Stdev Standard deviation of points in the cluster.

Centroid Frame # of structure in cluster that has
the lowest cumulative distance to every other
point.

AvgCDist Average distance of this cluster to every
other cluster.

[info <info�le>] Write ptraj-like cluster information to
<infofile>. This file has format:
#Clustering: <X> clusters <N> frames
#Cluster <I> has average-distance-to-centroid <AVG>
...
#DBI: <DBI>
#pSF: <PSF>
#Algorithm: <algorithm-specific info>
<Line for cluster 0>
...
#Representative frames: <representative frame list>
Where <X> is the number of clusters, <N> is the
number of frames clustered, <I> ranges from 0 to
<X>-1, <AVG> is the average distance of all frames
in that cluster to the centroid, <DBI> is the
Davies-Bouldin Index, <pSF> is the pseudo-F
statistic, and <representative frame list> contains

161

the frame # of the representative frame (i.e.
closest to the centroid) for each cluster. Each
cluster has a line made up of characters (one for
each frame) where '.' means 'not in cluster' and
'X' means 'in cluster'.

[summarysplit <split�le>] Summarize each cluster based
on which of its frames fall in portions of the
trajectory specified by splitframe with format
'#Cluster Total Frac C# Color NumInX ... FracX ...
FirstX':

#Cluster Cluster number starting from 0 (0 is most
populated).

Total # of frames in cluster.

Frac Size of cluster as a fraction of the total
trajectory.

C# Grace color number.

Color Text description of the color (based on
standard XMGRACE coloring).

NumInX Number of frames in Xth portion of the
trajectory.

FracX Fraction of frames in Xth portion of the
trajectory.

FirstX Frame in the Xth portion of the trajectory
where the cluster is first observed.

[splitframe <frame>] For summarysplit, frame or
comma-separated list of frames to split the
trajectory at, e.g. '100,200,300'.

[bestrep {cumulative|centroid|cumulative_nosieve}]
Method for choosing cluster representative frames.

cumulative Choose by lowest cumulative distance to
all other frames in cluster. Default when not
sieving.

centroid Choose by lowest distance to cluster
centroid. Default when sieving.

cumulative_nosieve Choose by lowest cumulative
distance to all other frames, ignoring sieved
frames.

[clustersvtime <�lename>] Write number of unique
clusters observed in a given time window to
<filename>.

[cvtwindow <windowsize>] Window size for clustersvtime
output.

162

[cpopvtime <�le> [normpop | normframe]] Write cluster
population vs time to <file>; if normpop specified
normalize each cluster to 1.0; if normframe
specified normalize cluster populations by number of
frames.

[sil <pre�x>] Write average cluster silhouette value for
each cluster to '<prefix>.cluster.dat' and cluster
silhouette value for each individual frame to
'<prefix>.frame.dat'.

assignrefs In summary/summarysplit, assign clusters to
loaded representative structures if RMSD to that
reference is less than specified cutoff.

[refcut <rms>] RMSD cutoff in Angstroms.

[refmask <mask>] Mask to use for RMSD calculation.
If not specified the default mask is all heavy
atoms.

Coordinate Output Options:

clusterout <traj�lepre�x> Write frames in each cluster
to files named <trajfileprefix>.cX, where X is the
cluster number.

clusterfmt <trajformat> Format keyword for clusterout
(default Amber Trajectory).

singlerepout <traj�lename> Write all representative
frames to single trajectory named <trajfilename>.

singlerepfmt <trajformat> Format keyword for
singlerepout (default Amber Trajectory).

repout <reppre�x> Write representative frames to
separate files named <repprefix>.X.<ext>, where X is
the cluster number and <ext> is a format-specific
filename extension.

repfmt <trajformat> Format keyword for repout (default
Amber Trajectory).

repframe Include representative frame number in repout
filename.

avgout <avgpre�x> Write average structure for each
cluster to separate files named <avgprefix>.X.<ext>,
where X is the cluster number and <ext> is a
format-specific filename extension.

avgfmt <trajformat> Format keyword for avgout.

DataSet Aspects:

163

[Pop] Cluster population vs time; index corresponds to
cluster number.

Note cluster population vs time data sets are not generated until the analysis
has been run.

Cluster input frames using the speci�ed clustering algorithm and distance
metric. In order to speed up clustering of large trajectories, the sieve keyword
can be used. In addition, subsequent clustering calculations can be sped up
by writing/reading calculated pair distances between each frame to/from a �le
speci�ed by pairdist (or �CpptrajPairDist� if pairdist not speci�ed).

Example: cluster on a speci�c distance:

distance endToEnd :1 :255
cluster data endToEnd clusters 10 epsilon 3.0 summary summary.dat info info.dat

Example: cluster on the CA atoms of residues 2-10 using average-linkage, stop-
ping when either 3 clusters are reached or the minimum distance between clus-
ters is 4.0, writing the cluster number vs time to �cnumvtime.dat� and a sum-
mary of each cluster to �avg.summary.dat�:

cluster C1 :2-10 clusters 3 epsilon 4.0 out cnumvtime.dat summary avg.summary.dat

Clustering Metrics

The Davies-Bouldin Index (DBI) measures sum over all clusters of the within
cluster scatter to the between cluster separation; the smaller the DBI, the
better. The DBI is de�ned as the average, for all clusters X, of fred, where
fred(X) = max, across other clusters Y, of (Cx + Cy)/dXY. Here Cx is the
average distance from points in X to the centroid, similarly Cy, and dXY is the
distance between cluster centroids.

The pseudo-F statistic (pSF) is another measure of clustering goodness. It
is intended to capture the 'tightness' of clusters, and is in essence a ratio of the
mean sum of squares between groups to the mean sum of squares within group.
High values are good. Generally, one selects a cluster-count that gives a peak
in the pseudo-f statistic. Formula: A/B, where A = (T - P)/(G-1), and B = P
/ (n-G). Here n is the number of points, G is the number of clusters, T is the
total distance from the all-data centroid, and P is the sum (for all clusters) of
the distances from the cluster centroid.

The cluster silhouette is a measure of how well each point �ts within a cluster.
Values of 1 indicate the point is very similar to other points in the cluster, i.e. it
is well-clustered. Values of -1 indicate the point is dissimilar and may �t better
in a neighboring cluster. Values of 0 indicate the point is on a border between
two clusters.

164

Hints for setting DBSCAN parameters with 'kdist'

It is not always obvious what parameters to set for DBSCAN. You can get a
rough idea of what to set 'mindist' and 'epsilon' to by generating a so-called
"K-dist" plot with the 'kidst <k>' option. The K-dist plot shows for each point
(X axis) the Kth farthest distance (Y axis), sorted by decreasing distance. You
supply the same distance metric and sieve parameters you want to use for the
actual clustering, but nothing else. For example:

cluster C0 dbscan kdist 4 rms :1-4@CA sieve 10 loadpairdist pairdist CpptrajPairDist

The K-dist plot will be named <pre�x>.<k>.dat, with the default pre�x being
'Kdist' (in this case the �le name would be Kdist.4.dat). The K-dist plot usually
looks like a curve with an initially steep slope that gradually decreases. Around
where the initial part of the curve starts to �atten out (indicating an increas
in density) is around where epsilon should be set; minpoints is set to whatever
<k> was. It has been suggested that the shape of the K-dist curve doesn't
change too much after Kdist=4, but users are encouraged to experiment.

Using 'dpeaks' clustering

The 'dpeaks' (density peaks) algorithm attempts to �nd clusters by identifying
points in high density regions which are far from other points of high density[25].
There are two ways these points can be chosen. The �rst and recommended
way is manually. In this method, clustering if �rst run with choosepoints
not speci�ed to generate a plot containing density versus minimum distance
to point with next highest density (the decision graph). Appropriate cut o�s
for distance and density can then be chosen based on visual inspection; cuto�s
should be chosen so that they select points that have both a high density and
a high distance to point with next highest density. Clustering can then be run
again with distancecut and densitycut set.

The second way is automatically; cpptraj will attempt to identify outliers
in the density vs distance plot based on distance from the running average.
Although this only requires a single pass, this method of choosing points is not
well-tested and currently not recommended.

The CpptrajPairDist �le format

The CpptrajPairDist �le is binary; the exact format depends on what version of
cpptraj generated the �le (since earlier versions had no concept of 'sieve'). The
CpptrajPairDist �le starts with a 4 byte header containing the characters 'C'
'T' 'M' followed by the version number. A quick way to �gure out the version is
to use the linux 'od' command to output the �rst 4 bytes as hexadecimal, e.g.:

$ od -t x1 -N 4 CpptrajPairDist 0000000 43 54 4d 02

165

So the CpptrajPairDist �le version in the above example is 2.
The next few numbers describe the matrix size and depend on the version.

Version 0: Two 4-byte integers: # of rows and # of elements.

Version 1: Two 8-byte unsigned integers (equivalent to size_t on most sys-
tems): # of rows and # of elements.

Version 2: Three 8 byte unsigned integers: original # of rows, actual # of
rows, and sieve value.

This is followed by the actual matrix data, stored as a single array of �oats (4
bytes). For versions 1 and 2 the number of elements is explicitly stored. For
version 2, to calculate the number of matrix elements you need to read:

Elements = (actual_rows * (actual_rows - 1)) / 2

The cluster pair-distance matrix is an upper-right triangle matrix without the
diagonal (in row-major order), so the �rst element is the distance between ele-
ments 0 and 1, the second is between elements 0 and 2, etc.

In version 2 �les, if the sieve value is greater than 1 that means original_rows
> actual_rows and there is an additional array of characters original_nrows
long, with 'T' if the row is being ignored (i.e. it was sieved out) and 'F' if the
row is active (i.e. is active in the actual pairwise-distance matrix).

The code that cpptraj uses to read in CpptrajPairDist �les is in ClusterMa-
trix::LoadFile() (ClusterMatrix.cpp).

12.5 cphstats

cphstats <pH sets> [name <name>] [statsout <statsfile>] [deprot]
[fracplot [fracplotout <file>]]

<pH sets> Previously read in pH data sets.

name <name> Output set name.

statsout <stats�le> Write pH statistics to <statsfile>

deprot If specified, calculate fraction deprotonated
instead of protonated.

fracplot If specified, calculate fraction
protonated/deprotonated vs pH.

fracplotout <�le> File to write fraction plots to.

Data Sets Generated

<name>[Frac]:<idx> Fraction protonated/deprotonated
for residue <idx>.

Calculate statistics for constant pH simulation data previously read in with
readdata (see 6.11 on page 28). Statistics are calculated for each residue at
each input pH. Output format is as follows:

166

Solvent pH is <pH>
<residue name> <residue number> : Offset <offset from predicted> Pred <predicted pH> Frac Prot <fraction> Transitions <number of transitions>
...
Average total molecular protonation: <avg>

A line is printed for each residue. This functionality is similar to the cphstats
utility that comes with Amber (see ?? on page ??).

Note that data from constant pH REMD must be sorted prior to use with
cphstats. See the readensembledata (8.19 on page 41) and sortensemble-
data (8.26 on page 43) commands for more details.

For example, to read in constant pH data from constant pH REMD, sort
and analyze:

readensembledata ExplicitRemd/cpout.001 cpin ExplicitRemd/cpin name PH
sortensembledata PH
runanalysis cphstats PH[*] statsout stats.dat fracplot fracplotout frac.agr deprot

12.6 corr | correlationcoe

corr out <outfilename> <dataset1> [<dataset2>]
[lagmax <lag>] [nocovar] [direct]

out <out�lename> Write results to file named
<outfilename>. The datasets must have the same # of
data points.

<dataset1> [<dataset2>] Data set(s) to calculate
correlation for. If one dataset or the same dataset
is given twice, the auto-correlation will be
calculated, otherwise cross-correlation.

[lagmax] Maximum lag to calculate for. If not specified
all frames are used.

[nocovar] Do not calculate covariance.

[direct] Do not use FFTs to calculate correlation; this
will be much slower.

DataSet Aspects:

[<dataset1>] (Auto-correlation) The aspect will be the
name of each of the input data set.

[<dataset1>-<dataset2>] (Cross-correlation) The aspect
will be the names of each of the input data sets
joined by a dash ('-').

DataSet Aspects:

[coe�] Correlation coefficient.

167

Calculate the auto-correlation function for data set named <dataset1> or the
cross-correlation function for data sets named <dataset1> and <dataset2> up
to <lagmax> frames (all if lagmax not speci�ed), writing the result to �le
speci�ed by out. The two datasets must have the same # of datapoints.

12.7 crank | crankshaft

crank {angle | distance} <dsetname1> <dsetname2> info <string>
[out <filename>] [results <resultsfile>]

angle Analyze angle data sets.

distance Analyze distance data sets.

<dsetname1> Data set to analyze.

<dsetname2> Data set to analyze.

info <string> Title the analysis <string>.

[out <�lename>] Write frame-vs-bin to <filename>.

[results <results�le>] Write results to <resultsfile>.

Calculate crankshaft motion between two data sets.

12.8 crd�uct

[crdset <crd set>] [<mask>] [out <filename>] [window <size>] [bfactor]

Calculate atomic positional �uctuations for atoms in <mask> over windows of
size<size>. If bfactor is speci�ed, the �uctuations are weighted by 8

3π
2(similar

but not necessarily equivalent to crystallographic B-factor calculation). Units
are Å, or Å2x 8

3π
2 if bfactor speci�ed.

12.9 crosscorr

crosscorr [name <dsetname>] <dsetarg0> [<dsetarg1> ...] [out <filename>]

[name <dsetname>] The resulting upper-triangle matrix
is stored with name <dsetname>.

<dsetarg0> [<dsetarg1> ...] Argument(s) specifying
datasets to be used.

[out <�lename>] Write results to file named
<filename>.

Calculate the Pearson product-moment correlation coe�cients between all spec-
i�ed datasets.

168

12.10 curve�t

curvefit <dset> { <equation> |
name <dsname> { gauss | nexp <m> [form {mexp|mexpk|mexpk_penalty} } }

[AX=<value> ...] [out <outfile>] [resultsout <results>]
[maxit <max iterations>] [tol <tolerance>]
[outxbins <NX> outxmin <xmin> outxmax <xmax>]

<dset> Data set to fit.

<equation> Equation to fit of form <Variable> =
<Equation>. See 5.2 on page 21 for more details on
equations cpptraj understands.

name <dsname> Final data set name (required if using
nexp or gauss).

gauss Fit to Gaussian of form A0 * exp(-((X - A1)^2) /
(2 * A2^2))

nexp <m> Fit to specified number of exponentials.

form <type> Fit to specified exponential form:

mexp Multi-exponential, SUM(m)[An * exp(An+1 *
X)]

mexpk Multi-exponential plus constant, A0 +
SUM(m)[An * exp(An+1 * X)]

mexpk_penalty Same as mexpk except sum of
prefactors constrained to 1.0 and exponential
constants constrained to < 0.0.

AX=<value> Value of any constants in specified
equation with X starting from 0 (can specify more
than one).

out <out�le> Write resulting fit curve to <outfile>.

resultsout <results> Write details of the fit to
<results> (default STDOUT).

maxit <max iterations> Number of iterations to run
curve fitting algorithm (default 50).

tol <tolerance> Curve-fitting tolerance (default 1E-4).

outxbins <NX> Number of points to use when generating
final curve (default same number of points as input
data set).

outxmin <xmin> Minimum X value to use for final curve
(default same number of points as input data set).

outxmax <xmax> Maximum X value to use for final
curve (default same number of points as input data
set).

169

Perform non-linear curve �tting for the speci�ed data set using the Levenberg-
Marquardt algorithm. Any equation form that cpptraj understands (see 5.2
on page 21) can be used, or several preset forms can be used. Similar to Grace
(http://plasma-gate.weizmann.ac.il/Grace/), an equation can contain constants
for curve �tting termed AX (with X being a numerical digit, one for each con-
stant), and is assigned to a variable which then becomes a data set. For example,
to �t a curve to data from a �le named Data.dat to a data set named 'FitY':

readdata Data.dat
runanalysis curvefit Data.dat \

"FitY = (A0 * exp(X * A1)) + (A2 * exp(X * A3))" \
A0=1 A1=-1 A2=1 A3=-1 \
out curve.dat tol 0.0001 maxit 50

To perform the same �t but to a multi-exponential curve with two exponentials:

readdata Data.dat
runanalysis curvefit Data.dat nexp 2 name FitY \

A0=1 A1=-1 A2=1 A3=-1 \
out curve1.dat tol 0.0001 maxit 50

12.11 diagmatrix

diagmatrix <name> [out <filename>] [thermo [outthermo <filename>]]
[vecs <#>] [name <modesname>] [reduce]
[nmwiz [nmwizvecs <#>] [nmwizfile <filename>]]

<name> Name of symmetric matrix to diagonalize.

[out <�lename>] Write results to <filename>.

[thermo [outthermo <�lename>]] Mass-weighted
covariance (mwcovar) matrix only. Calculate
entropy, heat capacity, and internal energy from the
structure of a molecule (average coordinates, see
above) and its vibrational frequencies using
standard statistical mechanical formulas for an
ideal gas. Results are written to <filename> if
specified, otherwise results are written to STDOUT.
Note that this converts the units of the calculated
eigenvalues to frequencies (cm-1).

[vecs <#>] Number of eigenvectors to calculate.
Default is 0, which is only allowed when 'thermo' is
specified.

[name <modesname>] Store resulting modes data set
with name <modesname>.

170

[reduce] Covariance (covar/mwcovar/distcovar) matrices
only. For coordinate covariance (covar/mwcovar)
matrices, each eigenvector element is reduced via Ei
= Eix^2 + Eiy^2 + Eiz^2. For distance covariance
(distcovar) the eigenvectors are reduced by taking
the sum of the squares of each row. See Abseher &
Nilges, JMB 1998, 279, 911-920 for further details.
They may be used to compare results from PCA in
distance space with those from PCA in
cartesian-coordinate space.

[nmwiz] Generate output in .nmd format file for viewing
with NMWiz[26]. See
http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/
for further details.

[nmwizvecs <#>] Number of vectors to write out
for nmwiz output, starting with the lowest
frequency mode (default 20).

[nmwiz�le <�lename>] Name of nmwiz file to write
to (default 'out.nmd').

[nmwizmask <mask>] Mask of atoms corresponding
to eigenvectors - should be the same one used to
generate the matrix.

Calculate eigenvectors and eigenvalues for the speci�ed symmetric matrix. This
is followed by Principal Component Analysis (in cartesian coordinate space in
the case of a covariance matrix or in distance space in the case of a distance-
covariance matrix), or Quasiharmonic Analysis (in the case of a mass-weighted
covariance matrix). Diagonalization of distance, correlation, idea, and ired ma-
trices are also possible. Eigenvalues are given in cm−1 in the case of a mass-
weighted covariance matrix and in the units of the matrix elements in all other
cases. In the case of a mass-weighted covariance matrix, the eigenvectors are
mass-weighted.

For quasi-harmonic analysis the input must be a mass-weighted covariance
matrix. Thermodynamic quantities are calculated based on statistical mechan-
ical formulae that assume the input system is oscillating in a single energy well:
see Statistical Thermodynamics by D. A. McQuarrie, particularly chapters 4,
5, and 6 for more details.[27] For an in-depth discussion of the accuracy of
thermodynamic parameters obtained via quasi-harmonic analysis see Chang et
al..[28]

Note that the maximum number of non-zero eigenvalues obtainable depends
on the number of frames used to generate the input matrix; the number of
frames should be equal to or greater than the number of columns in the matrix
in order to obtain all eigenmodes.

Results may include average coordinates (in the case of covar, mwcovar,
correl), average distances (in the case of distcovar), main diagonal elements (in
the case of idea and ired), eigenvalues, and eigenvectors.

171

For example, in the following a mass-weighted covariance matrix of all atoms
is generated and stored internally with the name mwcvmat; the matrix itself is
written to mwcvmat.dat. Subsequently, the �rst 20 eigenmodes of the matrix
are calculated and written to evecs.dat, and quasiharmonic analysis is performed
at 300.0 K, with the results written to thermo.dat.

matrix mwcovar name mwcvmat out mwcvmat.dat
diagmatrix mwcvmat out evecs.dat vecs 20 \

thermo outthermo thermo.dat temp 300.0

Output Format

The �modes� or �evecs� output �le is a text �le with the following format:

[Reduced] Eigenvector file: <Type> nmodes <#> width <width>
<# Avg Coords> <Eigenvector Size>

<Average Coordinates>

Where <Type> is a string identifying what kind of matrix the eigenvectors/eigenvalues
were determined from, nmodes is how many eigenvectors are in the �le, and
<Average Coordinates> are in lines 7 columns wide, with each element having
width speci�ed by <width>. Then for each eigenvector:

<Eigenvector#> <Eigenvalue>
<Eigenvector Coordinates>
...

Where <Eigenvector Coordinates> are in lines 7 columns wide, with each ele-
ment having width speci�ed by <width>.

12.12 divergence

divergence ds1 <ds1> ds2 <ds2>

Calculate Kullback-Leibler divergence between speci�ed data sets.

12.13 �t

fft <dset0> [<dset1> ...] [out <outfile>] [name <outsetname>] [dt <samp_int>]

<dset0> [<dset1 ...] Argument(s) specifying datasets to
be used.

[out <out�le>] Write results to file named <outfile>.

[name <outsetname>] The resulting transform will be
stored with name <outsetname>.

172

[dt <samp_int>] Set the sampling interval (default is
1.0).

Perform fast Fourier transform (FFT) on speci�ed data set(s). If more than 1
data set, they must all have the same size.

12.14 hist | histogram

hist <dataset_name>[,<min>,<max>,<step>,<bins>] ...
[free <temperature>] [norm | normint] [gnu] [circular] out <filename>
[amd <amdboost_data>] [name <outputset name>]

[traj3d <file> [trajfmt <format>] [parmout <file>]]
[min <min>] [max <max>] [step <step>] [bins <bins>] [nativeout]

<dataset_name>[,<min>,<max>,<step>,<bins>]
Dataset(s) to be histogrammed. Optionally, the min,
max, step, and/or number of bins can be specified
for this dimension after the dataset name separated
by commas. It is only necessary to specify the step
or number of bins, an asterisk '*' indicates the
value should be calculated from available data.

[free <temperature>] If specified, estimate free energy

from bin populations using Gi = −kBT ln
(

Ni

NMax

)
,

where KB is Boltzmann's constant, T is the
temperature specified by <temperature>, Ni is the
population of bin i and NMax is the population of
the most populated bin. Bins with no population are
given an artificial barrier equivalent to a
population of 0.5.

[norm] If specified, normalize bin populations so the
sum over all bins equals 1.0.

[normint] Normalize bin populations so the integral over
them is 1.0.

[gnu] Internal output only; data will be
gnuplot-readable, i.e. a space will be printed
after the highest order coordinate cycles.

[circular] Internal output only; data will wrap, i.e. an
extra bin will be printed before min and after max
in each direction. Useful for e.g. dihedral
angles.

out <�lename> Write results to file named <filename>.

[amd <amdboost_data>] Reweight bins using AMD boost
energies in data set <amdboost_data> (in KT).

173

[name <outputset name>] Output histogram data set
name.

[traj3d <�le> [trajfmt <format>]] (3D histograms only)
Write a pseudo-trajectory of the 3 data sets (1
atom) to <file> with format <format>.

[parmout <�le>] (3D histograms only) Write a topology
corresponding to the pseudo-trajectory to <file>.

[min <min>] Default minimum to bin if not specified.

[max <max>] Default max to use if not specified.

[step <step>] Default step size to use if not specified.

[bins <bins>] Default bin size to use if not specified.

[nativeout] Do not use cpptraj data file framework; only
necessary for writing out histograms with > 3
dimensions.

Create an N-dimensional histrogram, where N is the number of datasets spec-
i�ed. For 1-dimensional histograms the xmgrace '.agr' �le format is recom-
mended; for 2-dimensional hisograms the gnuplot '.gnu' �le format is recom-
mended; for all other dimensions plot formatting is disabled and the routine
uses its own internal output format; this is also enabled if gnu or circular is
speci�ed.

For example, to create a two dimensional histogram of two datasets 'phi'
and 'psi':

dihedral phi :2@C :3@N :3@CA :3@C
dihedral psi :3@N :3@CA :3@C :4@N
hist phi,-180,180,*,72 psi,-180,180,*,72 out hist.gnu

In this case the number of bins (72) has been speci�ed for each dimension and
'*' has been given for the step size, indicating it should be calculated based on
min/max/bins. The following 'hist' command is equivalent:

hist phi psi min -180 max 180 bins 72 out hist.gnu

12.15 integrate

integrate <dset0> [<dset1> ...] [out <outfile>] [name <outsetname>]

Integrate speci�ed data set(s) using trapezoid integration.

174

12.16 ired

ired [relax freq <MHz> [NHdist <distnh>]] [order <order>]
tstep <tstep> tcorr <tcorr> out <filename> [norm] [drct]
modes <modesname> [name <output sets name>] [ds2matrix <file>]

[relax freq <MHz> [NHdist <distnh>]] Should only be
used when ired vectors represent N-H bonds;
calculate correlation times τm for each eigenmode
and relaxation rates and NOEs for each N-H vector.
'freq <MHz>' (required) is the Lamor frequency of
the measurement. 'NHdist <distnh>' specifies the
length of the NH bond in Angstroms (default is
1.02).

order <order> Order of the Legendre polynomials to use
when calculating spherical harmonics (default 2).

tstep <tstep> Time between snapshots in ps (default
1.0).

tcorr <tcorr> Maximum time to calculate correlation
functions for in ps (default 10000.0).

out <�lename> Name of file to write output to.

[norm] Normalize all correlation functions, i.e.,
Cl(t = 0) = Pl(t = 0) = 1.0.

[drct] Use the direct method to calculate correlations
instead of FFT; this will be much slower.

modes <modesname> Name of previously calculated
eigenmodes corresponding to IRED vectors.

[name <name>] Output data set name.

[ds2matrix <�le>] If specified, write full delta*S^2
matrix (# IRED vector rows by # eigenmodes columns)
to <file>.

DataSets Created:

<name>[S2] S2 order parameters for each vector.

<name>[Plateau] Plateau values for each vector.

<name>[TauM] TauM values for each vector.

<name>[dS2] Full delta*S^2 matrix.

<name>[T1] T1 relaxation values for each vector.

<name>[T2] T2 relaxation values for each vector.

<name>[NOE] NOEs for each vector.

<name>[Cm(t)]:X Cm(t) function for vector X.

175

<name>[Cj(t)]:X Cj(t) function for vector X.

Peform IRED[12] analysis on previously de�ned IRED vectors (see vector ired)
using eigenmodes calculated from those vectors with a previous 'diagmatrix'
command. The number of de�ned IRED vectors should match the number of
eigenmodes calculated. Autocorrelation functions for each mode and the corre-
sponding correlation time τm will be written to �lename.cmt. Autocorrelation
functions for each vector will be written to �lename.cjt. Relaxation rates and
NOEs for each N-H vector will be written to <�lename> or added to the the
end of the standard output. For the calculation of τm the normalized correlation
functions and only the �rst third of the analyzed time steps will be used. For
further information on the convergence of correlation functions see [Schneider,
Brünger, Nilges, J. Mol. Biol. 285, 727 (1999)].

Example of IRED in Cpptraj

In cpptraj, IRED analysis[12] can now be performed in one pass (as opposed to
the two passes previously required in ptraj). First, IRED vectors are de�ned
(in this case for N-H bonds) and an IRED matrix is calculated and analyzed.
The IRED vectors are then projected onto the calculated IRED eigenvectors in
the ired analysis command to calculate the time correlation functions. If the
parameter order is speci�ed, order parameters based on IRED are calculated.
By specifying the relax parameter, relaxation rates and NOEs can be obtained
for each N-H vector. Note that the order of the IRED matrix should be the
same as the one speci�ed for IRED analysis.

Define N-H IRED vectors
vector v0 @5 ired @6
vector v1 @7 ired @8
...
vector v5 @15 ired @16
vector v6 @17 ired @18`
Define IRED matrix using all previous IRED vectors
matrix ired name matired order 2
Diagonalize IRED matrix
diagmatrix matired vecs 6 out ired.vec name ired.vec
Perform IRED analysis
ired relax NHdist 1.02 freq 500.0 tstep 1.0 tcorr 100.0 out v0.out noefile noe order 2

12.17 kde

kde <dataset> [bandwidth <bw>] [out <file>] [name <dsname>]
[min <min>] [max <max] [step <step>] [bins <bins>] [free]
[kldiv <dsname2> [klout <outfile>]] [amd <amdboost_data>]

176

[bandwidth <bw>] Bandwidth to use for KDE; if not
specified bandwidth will be estimated using the
normal distribution approximation.

[out <�le>] Output file name.

[name <dsname>] Output data set name.

[min <min>] Minimum bin.

[max <max>] Maximum bin.

[step <step>] Bin step.

[bins <bins>] Number of bins.

[free] Calculate free energy from bin population.

[kldiv <dsname2> [klout <out�le>]] Calculate
Kullback-Leibler divergence over time of <dataset>
distribution to <dsname2> distribution. Output to
<outfile> if klout specified.

[amd <amdboost_data>] Reweight histogram using AMD
boost data from data set <amdboost_data> (in KT).

Histogram 1D data set using a Gaussian kernel density estimator.

12.18 lifetime

lifetime [out <filename>] <dsetarg0> [<dsetarg1> ...]
[window <windowsize> [name <setname>]] [averageonly]
[cumulative] [delta] [cut <cutoff>] [greater | less] [rawcurve]

[fuzz <fuzzcut>] [nosort]

[out <�lename>] Write results to file named
<filename>, and lifetime curves to 'crv.<filename>'.
If performing windowed lifetime analysis, <filename>
contains the fraction present over time windows, and
2 additional files are written: 'max.<filename>',
containing max lifetime over windows, and
'avg.<filename>', containing average lifetime over
windows.

<dsetarg0> [<dsetarg1> ...] Argument(s) specifying
datasets to be used.

[window <windowsize>] Size of window (in frames) over
which to calculate lifetimes/averages. If not
specified lifetime/average will be calculated over
all frames.

[name <setname>] Store results in data sets with name
<setname>.

177

[averageonly] Just calculate averages (no lifetime
analysis).

[cumulative] Calculate cumulative lifetimes/averages
over windows.

[delta] Calculate difference from previous window
average.

[cut <cuto�>] Cutoff to use when determining if data is
'present' (default 0.5).

[greater] Data is considered present when above the
cutoff (default).

[less] Data is considered present when below the cutoff.

[rawcurve] Do not normalize lifetime curves to 1.0.

[fuzz <fuzzcut>] Ignore changes in lifetime state that
are less than <fuzzcut> frames.

[nosort] Do not sort data sets by name.

Data Sets Created:

<setname> Number of lifetimes for each set, or if
window specified fraction present over time windows.

<setname>[max] Maximum lifetime for each set, or if
window specified maximum lifetime over time windows.

<setname>[avg] Average lifetime for each set, or if
window specified average lifetime over time windows.

<setname>[curve] Lifetime curves.

The following are created only if window not specified:

<setname>[frames] Total number of frames lifetime
present for each set.

<setname>[name] Name of each set.

Perform lifetime analysis for speci�ed data sets. Lifetime data can either be
determined for the entire set, or for time windows of speci�ed size within the
set if window speci�ed.

A �lifetime� is de�ned as the length of time something remains 'present';
data is considered present when above or below a certain cuto� (the default is
greater than 0.5, useful for analysis of hbond time series data). For example,
in the case of a hydrogen bond 'series' data set, if a hydrogen bond is present
during a frame the value is 1, otherwise it is 0. Given the hbond time series
data set {1 1 1 0 1 0 0 0 1 1}, the overall fraction present is 0.6. However, there
are 3 lifetimes of lengths 3, 1, and 2 ({1 1 1}, {1}, and {1 1}). The maximum
lifetime is 3 and the average lifetime is 2.0, i.e. (3 + 1 + 2) / 3 lifetimes = 2.0.
One can also construct a �lifetime curve�, which is constructed as the sum of all
individual lifetimes. By default these curves are normalized to 1.0, but the raw

178

curve can be obtained using the rawcurve keyword. For the example data set
here the raw lifetime curve would be 3 frames long:

1 1 1
1
1 1

Curve: 3 2 1

By default data sets are sorted by name unless nosort is speci�ed. The lifetime
command can calculate lifetimes over speci�c time windows by using the win-
dow keyword. This can be particularly useful if one wants to get a sense for
how lifetimes are changing over the course of very long time series data. In addi-
tion, averages can be calculated instead of lifetimes by specifying averageonly.
Cumulative averages over windows can be obtained using the cumulative key-
word, or the change from the average value in the previous window can be
obtained using the delta keyword.

The fuzz keyword can be used to try and smooth the input data by ignoring
changes in state that occur for fewer frames than <fuzzcut>. For example,
in the above example hbond time series data set there is a one frame change
in state between the �rst and second lifetimes which could be interpreted as a
transient breaking of the hydrogen bond. Using a <fuzzcut> value of 1, this
one frame change in state would be ignored, and the data set would e�ectively
appear to lifetime as {1 1 1 1 1 0 0 0 1 1}. The state change between the second
and third lifetimes is longer than <fuzzcut> (3 frames) and so it would remain.

If window is not speci�ed, two �les are output: <�lename> and crv.<�lename>.
The �le <�lename> contains overall lifetime stats for each set with format:

#Set <setname> <setname>[max] <setname>[avg] <setname>[frames] <setname>[name]

where <setname> denotes the total number of lifetimes, <setname>[max] de-
notes the maximum lifetime, <setname>[avg] denotes the average lifetime,
<setname>[frames] denotes the total number of frames present in all lifetimes,
and <setname>[name] is the data set name. The �le crv.<�lename> contains
the lifetime curves for each set.

If window is speci�ed, four �les are output: <�lename>, max.<�lename>,
avg.<�lename>, and crv.<�lename>. <�lename> contains the fraction �present�
over each time window for each set, max.<�lename> contains the maximum
lifetime in each time window for each set, avg.<�lename> contains the aver-
age lifetime over each window for each set, and crv.<�lename> contains the
overall lifetime curves for each set. For window output, Gnuplot format is rec-
ommended.

Example: hbond lifetime analysis

parm DPDP.parm7
trajin DPDP.nc

179

hbond HB out hbond.dat @N,H,C,O series uuseries solutehb.agr \
avgout hbavg.dat printatomnum

'run' is used here to process the trajectory and generate hbond data
run
Perform lifetime analysis
runanalysis lifetime HB[solutehb] out lifehb.dat

Calculate ion lifetimes from hbond over windows of size 100 frames:

hbond ION out ion.dat solventdonor :WAT solventacceptor :WAT@O series
run
lifetime HB[solventhb] out ion.lifetime.100.gnu window 100

12.19 lowestcurve

lowestcurve points <# lowest> [step <stepsize>] <dset0> [<dset1> ...]
[out <file>] [name <setname>]

<# lowest> Number of lowest points in each bin to
average over.

[step <stepsize>] Bin step size

<dset0> [<dset1> ...] Data set(s) to use.

[out <�le>] File to write lowest curve to.

[name <setname>] Output lowest curve set name.

Calculate a curve of the average of the # lowest points in bins of stepsize.
Essentially each input data set is binned over bins of stepsize, then the lowest
<#> points are averaged over for each bin.

12.20 meltcurve

meltcurve <dset0> [<dset1> ...] [out <outfile>] [name <outsetname>] cut <cut>

Calculate melting curve from input data sets (i.e. fraction 'folded' for each data
set) assuming a simple 2-state transition model, using data below <cut>as
'folded' and data above <cut> as 'unfolded'.

12.21 modes

modes {fluct|displ|corr|eigenval|trajout|rmsip} name <modesname> [name2 <modesname>]
[beg <beg>] [end <end>] [bose] [factor <factor>] [calcall]
[out <outfile>] [setname <name>]

180

Options for 'trajout': (Generate pseudo-trajectory)
[trajout <name> parm <name> | parmindex <#>

[trajoutfmt <format>] [trajoutmask <mask>]
[pcmin <pcmin>] [pcmax <pcmax>] [tmode <mode>]]
Options for 'corr': (Calculate dipole correlation)

{ maskp <mask1> <mask2> [...] | mask1 <mask> mask2 <mask> }
parm <name> | parmindex <#>

Types of Calculations:

�uct RMS fluctuations (X, Y, Z, and total) for each
atom across specified normal modes.

displ Displacement of cartesian coordinates in the X, Y
and Z directions for each atom across specified
normal modes.

corr Dipole-dipole correlation functions. Must also
specify maskp (see below).

eigenval Calculate eigenvalue fractions.

trajout Create a pseudo-trajectory along the given mode
from the average structure.

rmsip Calculate the root-mean-square inner product
between modes specified by name and name2.

Options:

name <modesname> Previously read-in or generated
Modes data set name.

[beg <beg>] [end <end>] If modes taken from datafile,
beginning and end modes to read. Default for beg

is 7 (which skips the first 6 zero-frequency modes
in the case of a normal mode analysis); for end it
is 50.

[bose] Use quantum (Bose) statistics in populating the
modes.

[factor <factor>] multiplicative constant on the
amplitude of displacement/pseudo-trajectory, default
1.0.

[calcall] If specified use all eigenvectors; otherwise
eigenvectors associated with zero or negative
eigenvalues will be skipped.

[out <out�le>] File to write data results to. If not
given results are written to STDOUT.

[setname <name>] Output data set name.

Options for 'trajout':

<name> Output trajectory file name.

181

[parm <parm�le/tag>|parmindex <#>] Topology file to
use (default first Topology loaded).

[trajoutfmt <format>] Output trajectory format.

[trajoutmask <mask>] Mask of atoms that correspond to
how modes were originally generated.

[pcmin <pcmin>] Lowest principal component projection
value to use for output trajectory.

[pcmax <pcmax>] Highest principal component
projection value to use for output trajectory.

[tmode <mode>] Mode to generate pseudo-trajectory
for.

Options for 'corr':

[maskp <mask1> <mask2> [...]] If corr, pairs of atom
masks (mask1, mask2 ; each pair preceded by �maskp�
and each mask defining only a single atom) have to
be given that specify the atoms for which the
correlation functions are desired.

mask1 <mask> mask2 <mask> Instead of maskp,
specify two masks; atoms from the first mask will be
paired up with atoms from the second mask.

DataSets Created (fluct)

<name>[rmsX] RMS fluctuations in the X direction.

<name>[rmsY] RMS fluctuations in the Y direction.

<name>[rmsZ] RMS fluctuations in the Z direction.

<name>[rms] Total RMS fluctuations.

DataSets Created (displ)

<name>[displX] Displacement in X direction.

<name>[displY] Displacement in Y direction.

<name>[displZ] Displacement in Z direction.

DataSets Created (eigenval)

<name>[Frac] Fraction eigenvalue contributes to
overall motion.

<name>[Cumulative] Cumulative fraction.

<name>[Eigenval] Value of eigenvlue.

DataSets Created (rmsip)

<name> Result of RMSIP calculation.

182

Analyze previously calculated eigenmodes obtained from principal component
analyses (of covariance matrices) or quasiharmonic analyses (diagmatrix analysis
command). Modes are taken from a previously generated data set (i.e. from
diagmatrix) or read in from a data �le with readdata . By default, classical
(Boltzmann) statistics are used in populating the modes. A possible series
of commands would be �matrix covar | mwcovar ...� to generate the matrix,
�diagmatrix ...� to calculate the modes, and, �nally, �modes ...�.

For example, to calculate the RMS �uctuations or displacements of the �rst
3 eigenmodes caluclated from a mass-weighted covariance matrix:

matrix mwcovar name mwcvmat out mwcvmat.dat
diagmatrix mwcvmat name evecs vecs 5
modes fluct out rmsfluct.dat name evecs beg 1 end 3
modes displ out resdispl.dat name evecs beg 1 end 3

Additionally, dipole-dipole correlation functions for modes obtained from prin-
ciple component analysis or quasiharmonic analysis can be computed.

modes corr out cffromvec.dat name evecs beg 1 end 3 \
maskp @1 @2 maskp @3 @4 maskp @5 @6

or

mode corr out cffromvec.dat name evecs beg 1 end 3 mask1 @1,3,5 mask2 @2,4,6

If eigenval is speci�ed, the fraction contribution of each eigenvector to the total
motion is calculated and output with format:

#Mode Frac. Cumulative Eigenval

where #Mode is the eigenvector number, Frac. is the eigenvalue over the sum of
all eigenvalues, Cumulative is the cumulative sum of Frac., and Eigenval is the
eigenvalue itself. Note that in order to get an idea for how much each eigenvector
contributes to all motion, this is best used when all possible eigenvectors have
been determined for a system.

In order to visualize eigenvectors, pseudo-trajectories along eigenvectors can
be created using average coordinates with the trajout keyword. For example,
to write a pseudo-trajectory of the �rst principal component from principal
component value of -100 to 100 for a previously calculated Modes data set
corresponding to heavy atoms (no hydrogens) for residues 1 to 36:

parm ../GAAC.nowat.parm7
readdata evecs.dat
runanalysis modes name evecs.dat trajout test.nc trajoutfmt netcdf \

trajoutmask :1-36&!@H= pcmin -100 pcmax 100 tmode 1

183

12.22 multicurve

multicurve set <dset> [set <dset> ...]
<dset> { <equation> |

name <dsname> nexp <m> [form {mexp|mexpk|mexpk_penalty} }
[AX=<value> ...] [out <outfile>] [resultsout <results>]
[maxit <max iterations>] [tol <tolerance>]
[outxbins <NX> outxmin <xmin> outxmax <xmax>]

set <dset> [set <dset> ...] Data set(s) to fit.

<equation> Equation to fit of form <Variable> =
<Equation>. See 5.2 on page 21 for more details on
equations cpptraj understands.

name <dsname> Name of output data sets (required if
using nexp).

nexp <m> Fit to specified number of exponentials.

form <type> Fit to specified exponential form:

mexp Multi-exponential, SUM(m)[An * exp(An+1 *
X)]

mexpk Multi-exponential plus constant, A0 +
SUM(m)[An * exp(An+1 * X)]

mexpk_penalty Same as mexpk except sum of
prefactors constrained to 1.0 and exponential
constants constrained to < 0.0.

AX=<value> Value of any constants in specified
equation with X starting from 0 (can specify more
than one).

out <out�le> Write resulting fit curve to <outfile>.

resultsout <results> Write details of the fit to
<results> (default STDOUT).

maxit <max iterations> Number of iterations to run
curve fitting algotrithm (default 50).

tol <tolerance> Curve-fitting tolerance (default 1E-4).

outxbins <NX> Number of points to use when generating
final curve (default same number of points as input
data set).

outxmin <xmin> Minimum X value to use for final curve
(default same number of points as input data set).

outxmax <xmax> Maximum X value to use for final
curve (default same number of points as input data
set).

Fit each input data set <dset> to <equation>. See the curve�t command on
page 169 for more details.

184

12.23 multihist

multihist [out <filename>] [name <dsname>] [norm | normint] [kde]
[min <min>] [max <max>] [step <step>] [bins <bins>] [free <T>]
<dsetarg0> [<dsetarg1> ...]

out <�lename> Output file.

name <dsname> Name for resulting histogram data
sets.

norm (Only used if not kde) Normalize so that max bin
is 1.0.

normint (Default for kde) Normalize integral over
histogram to 1.0.

kde Use kernel density estimator to construct
histogram.

min <min> Histogram minimum (default data set
minimum).

max <max> Histogram maximum (default data set
maximum).

step <step> Histogram step.

bins <bins> Number of histogram bins.

free <T> Calculate free energy from bin populations as
G = -R * <T> * ln(Ni / Nmax).

<dsetargX> Data set argument - may specify more than
one.

Histogram each data set separately in 1D. Must specify at least bins or step.

12.24 phipsi

phipsi <dsarg0> [<dsarg1> ...] resrange <range> [out <file>]

<dsargX> Argument selecting data sets. Can specify
more than 1.

resrange <range> Residue range to use (actually uses
data set index).

[out <�le>] Output file.

Calculate the average and standard deviation of [phi] and [psi] data set pairs,
write to <�le> with format:

#Phi Psi SD(Phi) SD(Psi) Legend

185

Where Phi is the average value of phi, Psi is the average value of psi, SD(Phi)
is the standard deviation of phi, SD(psi) is the standard deviation of psi, and
Legend contains text describing the phi and psi data sets used in the calculation.
Periodicity is taken into account during averaging. The data sets must have been
internally labeled as type 'phi'/'psi' and must have a data set index set (actions
like dihedral and multidihedral do this automatically). For example:

parm ../DPDP.parm7
trajin ../DPDP.nc
multidihedral DPDP phi psi
run
phipsi DPDP[phi] DPDP[psi] out phipsi.dat resrange 1-22

12.25 regress

regress <dset0> [<dset1> ...] [name <name>] [nx <nxvals>]
[out <filename>] [statsout <filename>]

dsetX Data set(s) to perform linear regression for.

name <name> Data set name for resulting linear fits.

nx <nxvals> Number of X values to use in output data
set(s) (ranging from input set min to max X). If not
specified, input X values used.

out <�lename> File to write fit lines to.

statsout <�lename> File to write fit statistics to.

DataSets Generated:

<name>:<idx> Output fit line(s) (indexed by input
set order if more than one input set).

<name>[slope]:<idx> Output fit line slope(s).

<name>[intercept]:<idx> Output fit line intercept(s).

Perform linear regression on the speci�ed data set(s). The �t line is calculated
using either the input X values or <nxvals> values ranging from the input set
minimum to maximum X. Statistics for the �t(s) are saved to the �le speci�ed
by statsout or reported to STDOUT.

For example, to �t data read in from a �le and then create a set using the
�t parameters:

readdata esurf_vs_rmsd.dat.txt index 1 name XY
runanalysis regress XY name FitXY statsout statsout.dat
createset "Y = FitXY[slope] * X + FitXY[intercept]" xstep .2 nx 100
writedata Y.dat Y

186

12.26 remlog

remlog {<remlog dataset> | <remlog filename>} [out <filename>] [crdidx | repidx]
[stats [statsout <file>] [printtrips] [reptime <file>]] [lifetime <file>]
[reptimeslope <n> reptimeslopeout <file>] [acceptout <file>] [name <setname>]

[edata [edataout <file>]]

<remlog dataset> Previously read-in REM log data.

<remlog �lename> REM log file name to read in.

[out <�lename>] Write replica/coordinate index versus
time to <filename>.

crdidx Print coordinate index vs exchange; output
sets contain replica indices.

repidx Print replica index vs exchange; output sets
contain coordinate indices.

stats [statsout <�le>] Calculate round-trip statistics
and optionally write to <file>.

printtrips Print details of each individual round trip.

[reptime <�le>] Write time spent at each replica to
<file>.

[lifetime <�le>] Print lifetime data at each replica to
<file>.

[reptimeslope <n>] Calculate the slope of time spent at
each replica every <n> exchanges.

[reptimeslopeout <�le>] File to write reptimeslope
output to.

[acceptout <�le>] Write overall exchange acceptances to
<file>.

[name <setname>] Output data set name.

[edata [edataout <�le>]] Extract energy data from
replica log, optionally write to file.

DataSets created:

<setname>:<idx> Replica/coordinate index vs exchange.

<setname>[E]:<idx> If 'edata' specified, energy data
from replica log.

Analyze previously read in (via readdata) M-REMD/T-REMD/H-REMD replica
log data. Statistics calculated include round-trip time, which is the time needed
for a coordinate set to travel from the lowest replica to the highest and back, and
the number of exchanges each coordinate spent at each replica. For example,
to read in REM log data from an Amber M-REMD run and analyze it:

187

readdata rem.log.1.save rem.log.2.save dimfile remd.dim as remlog nosearch
remlog rem.log.1.save stats reptime mremdreptime.dat

For an example of remlog analysis applied to actual REMD data, see Roe et
al.[29].

12.27 rms2d | 2drms

rms2d [crdset <crd set>] [<name>] [<mask>] [out <filename>]
[dme | nofit | srmsd] [mass]
[reftraj <traj> [parm <parmname> | parmindex <parm#>] [<refmask>]]
[corr <corrfilename>]

[crdset <crd set>] Name of previously generated COORDS
DataSet. If not specified the default COORDS set
will be used.

[<mask>] Mask of atoms to calculate 2D-RMSD for.
Default is all atoms.

[out <�lename>] Write results to <filename>.

[dme] Calculate distance RMSD instead of coordinate
RMSD; this is substantially slower.

[no�t] Calculate RMSD without fitting.

[srmsd] Calculate symmetry-corrected RMSD (see 11.76 on
page 144).

[mass] Mass-weight RMSD.

[reftraj <traj>] Calculate 2D RMSD to frames in
trajectory <traj> instead (can also be another
COORDS set).

[parm <parmname> | parmindex <#>] Topology to use
for <traj>; only useful in conjunction with reftraj.

[<refmask>] Mask of atoms in reference; only useful in
conjunction with reftraj.

[corr <corr�lename>] Calculate pseudo-auto-correlation

C for 2D-RMSD as C(i) =

∑j<N−i

j=0
exp(−RMSD(j,j+i))

N−i ,
where i is the lag, j is the frame #, and N is the
total number of frames. An exponential is used to
weight the RMSD since 0.0 RMSD is equivalent to
correlation of 1.0. This can only be done if
reftraj is not used.

DataSet Aspects:

188

[Corr] (corr only) Pseudo-auto-correlation.

Note: For backwards compatibility with ptraj the command '2drms' will also
work.

Calculate the best-�t RMSD of each frame in <crd set> (the default CO-
ORDS set if none speci�ed) to each other frame. This creates an upper-triangle
matrix named <name> (or a full matrix if reftraj speci�ed). The output of the
rms2d command can be best-viewed using gnuplot; a gnuplot-formatted �le can
be produced by giving <�lename> a '.gnu' extension. For example, to calculate
the RMSD of non-hydrogen atoms of each frame in trajectory �test.nc� to each
other frame, writing to a gnuplot-viewable �le �test.2drms.gnu�:

trajin test.nc
rms2d !(@H=) out test.2drms.gnu

To calculate the RMSD of atoms named CA of each frame in trajectory �test.nc�
to each frame in �ref.nc� (assuming test.nc and ref.nc are using the default
topology �le):

trajin test.nc
rms2d @CA out test.2drms.gnu reftraj ref.nc

12.28 rmsavgcorr

rmsavgcorr [crdset <crd set>] [<name>] [<mask>] [out <filename>] [mass]
[stop <maxwindow>] [offset <offset>]
{reference <ref file> parm <parmfile> | first}

[crdset <crd set>] COORDS data set to use (if not
specified the default COORDS set will be used).

[<name>] Output data set name.

[<mask>] Atoms to calculate RMS average correlation
for.

[out <�lename>] Output filename.

[mass] Mass weight the RMSD calculation.

[stop <maxwindow>] Only calculate RMS average
correlation up to <maxwindow>.

[o�set <o�set>] Skip every <offset> windows in
calculation.

[�rst] Use first averaged frame as reference for each
window (default).

[reference <ref �le> [parm <parm�le>] Use reference
file (with specified parm) as reference for each
window.

189

The RMS average correlation[1] (RAC) is calculated as the average RMSD of
running-averaged coordinates over increasing window sizes (or lag). Output has
format:

<WindowSize> <RAC>

The �rst entry has a window size of 1, and so is just the average RMSD of
all frames to the speci�ed reference structure. The second entry has a window
size of two, so it is the average RMSD of all frames averaged over two adjacent
windows to the speci�ed reference, and so on. The RAC will be calculated up
to the number of frames minus 1 or the value speci�ed by stop, whichever is
lower. The o�set can be used to speed up the calculation by skipping window
sizes. To calculate mass-weighted RMSD specify mass. Note that to reduce
memory costs it can be useful to strip all coordinates not involved in the RMS
�t from the system prior to specifying 'rmsavgcorr'. For example, to calculate
the correlation of C-alpha RMSD of residues 2 to 12:

strip !(:2-12@CA)
rmsavgcorr out rmscorr.dat

The curve generated by RAC decays towards zero due to the way RAC is de-
�ned. By the time the "lag" is N-1 (where N is the total number of frames) you
have only two averaged coordinates: call them Avg1 (averaged over 1 though
N-1 frames) and Avg2 (averaged over 2 through N frames). Barring any extraor-
dinary circumstances the RMSD between Avg1 and Avg2 will almost certainly
be quite low.

The RAC is a way to probe the time scales of interesting events. Any
deviation from a smoothly decaying curve is an indication that there are some
signi�cant structural di�erences occurring over that time interval. RAC curves
can be particularly useful when comparing independent simulations of the same
system.

One thing to keep in mind that since the underlying metric is RMSD, it can
be sensitive to the reference frame you choose. It may be useful to try looking
at both RAC from the �rst frame, as well as an averaged reference frame. For
an example of use see Galindo-Murillo et al.[30], in particular Figure 2.

12.29 rotdif

rotdif [outfile <outfilename>] [usefft]
Options for generating random vectors:

[nvecs <nvecs>] [rvecin <randvecIn>] [rseed <random seed>]
[rvecout <randvecOut>] [rmatrix <set name> [rmout <rmOut>]]

Options for calculating vector time correlation functions:
[order <olegendre>] [ncorr <ncorr>] [corrout <corrOut>]

*** The options below only apply if 'usefft' IS NOT specified. ***
Options for calculating local effective D, small anisotropy:

[deffout <deffOut>] [itmax <itmax>] [tol <tolerance>] [d0 <d0>]

190

[nmesh <NmeshPoints>] dt <tfac> [ti <ti>] tf <tf>
Options for calculating D with full anisotropy:

[amoeba_tol <tolerance>] [amoeba_itmax <iterations>]
[amoeba_nsearch <n>] [scalesimplex <scale>] [gridsearch]

*** The options below only apply if 'usefft' IS specified. ***
Options for curve-fitting:

[fit_tol <tolerance>] [fit_itmax <max # iterations>]

out�le <out�lename> File to write all output from
rotdif command to.

Options for generating random vectors:

nvecs <nvecs> Number of random vectors to generate
(default 1000).

rvecin <randvecIn> File to read random vectors from
(format is 1 per line, 4 columns, <#> <VX> <VY>
<VZ>).

rseed <random seed> Seed for random number generator
(default 80531). Specify -1 to use wallclock time.

rvecout <randvecOut> File to write random vectors to
(format is 1 per line, 4 columns, <#> <VX> <VY>
<VZ>).

rmatrix <set name> Data set to read rotation matrices
from. Rotation matrices will be used to rotate
random vectors.

rmout <rmOut> Write rotation matrices to file, 1 per
line, frame # followed by matrix in row-major order.

Options for calculating vector time correlation functions:

order <olegendre> The order of Legendre polynomials to
use when calculating vector time correlation
functions (default 2).

ncorr <ncorr> Maximum length of time correlation
functions in frames. If this is not specified it
will be set to (tf - ti) / dt (recommended).

corrout <corrOut> If specified write vector time
correlation functions to <corrOut>.X with format:
<Time> <Px>

Options for calculating local e�ective D, small anisotropy:

de�out <de�Out> File to write out local effective
diffusion constants determined in the limit of small
anisotropy.

191

itmax <itmax> Maximum number of iterations to
determine each local effective diffusion constant
(small anisotropy) assuming fit to single
exponential form (default 500).

tol <tolerance> Tolerance for determining local
effective diffusion constant (small anisotropy)
assuming fit to single exponential form (default
1E-6).

d0 <d0> Initial guess for small anisotropy diffusion
constant in radians^2/ns (default 0.03).

nmesh <NmeshPoints> Number of points per frame to
use when creating cubic-splined-smoothed forms of
vector time correlation curves (default 2).

dt <tfac> Time interval between frames (used in
integrating vector time correlation curves) in ns.

ti <ti> Initial time value in ns for integrating the
time correlation functions (default 0.0).

tf <tf> Final time value in ns for integrating the time
correlation functions. It is recommended this be
less than the maximum simulation time since the
tails of time correlation functions tend to be
noisy.

Options for calculating D with full anisotropy:

amoeba_tol <tolerance> Tolerance for downhill-simplex
minimizer (default 1E-7).

amoeba_itmax <iterations> Number of iterations to run
downhill-simplex minimizer (default 10000).

amoeba_nsearch <n> Number of searches to perform
with downhill-simplex minimizer (default 1).

scalesimplex <scale> Factor to use when scaling
simplexes (default 0.5).

gridsearch If specified, perform a brute-force grid
search to attempt to find a better solution for
diffusion tensor with full anisotropy (may be
expensive).

Evaluate rotational di�usion properties of a molecule over a trajectory according
to an expanded version of the procedure laid out by Wong & Case[31]. Brie�y,
random vectors (representing the orientation of the molecule) are rotated ac-
cording to rotation matrices obtained from an RMS �t to a reference structure
(typically an averaged structure). For each random vector the time correlation
function of the rotated vector is calculated using Legendre polynomials of the

192

speci�ed order. The integral over this time correlation function (which may be
smoothed using cubic splines to improve the integration) is then used to �nd
the e�ective di�usion constant (D) in the limit of small anisotropy. Then, using
each calculated D, the di�usion tensor is determined with full anisotropy. Fi-
nally, a downhill simplex minimizer is used to optimize D with full anisotropy;
(this last step is not described in the original paper).

Rotation matrices are generated via an RMS �t to a reference structure
(see 11.62 on page 132). It is recommended that the RMS �t be done to an av-
erage structure (see 11.7 on page 69). These rotation matrices are used to rotate
each random vector M times (where M is the total number of frames), which
creates a time series for each random vector. The time correlation functions are
calculated for each random vector time series using Legendre polynomials of the
speci�ed order (default 2). The maximum length of the correlation function (or
lag) can be speci�ed by ncorr (in frames). If ncorr is not speci�ed it will be set
internally based on the speci�ed values of ti, tf, and dt; this is recommended.
Note that if ncorr is speci�ed it should be set to a number less than the total
number of frames since noise in time correlation functions increases as ncorr
approaches the # of frames. The integration over the correlation function is
from ti (in whatever units are used of dt, generally ns; 0.0 ns if not speci�ed)
to tf (same units as ti), with the time between frames speci�ed by dt; the �nal
time should be less than the total simulation time (see example below).

The relative size of the mesh used with cubic spline interpolation for integra-
tion is controlled by nmesh (size of the mesh is ncorr points * nmesh); nmesh
= 1 means no interpolation, default is 2. The iterative solver for e�ective value
of the di�usion constant from the correlation functions is controlled by itmax,
tol, and d0, where itmax speci�es the number of iterations to perform (default
500), tol speci�es the tolerance (default 1E-6), and d0 speci�es the initial guess
for the di�usion constant in radians^2 / ns (default 0.03). E�ective di�usion
constants for each random vector can be written out to a �le speci�ed by def-
fout. Results are printed to the �le speci�ed by out�le. Details on the Q and
D tensors are given, as well as observed and calculated tau for each random
vector. First, results are printed for analysis in the limit of small anisotropy.
Next, results are printed for analysis with full anisotropy. The results of the full
anisotropic calculation are �rst given using results from the small anisotropic
analysis as an initial guess, followed by the �nal results after minimization using
the downhill simplex (amoeba) minimizer.

Example

There are two important things to keep in mind when using rotdif analysis:

1. When calculating any kind of di�usive property it is best to simulate
in the microcanonical (NVE) ensemble with a shorter time step and in-
creased SHAKE tolerance; thermostats and barostats will e�ect di�usion
calculations.

2. Time correlation functions become noisier as the length of the function

193

approaches the maximum. Therefore in general one should choose param-
eters for the time correlation function that are much shorter than the total
simulation length.

For example, given a trajectory 'mdcrd.nc' containing 10000 frames with a total
simulation time of 200 ns (so the time between frames is 0.02 ns), to calculate
rotational di�usion using 100 vectors using rotation matrices generated via an
RMS �t to 'avgstruct.pdb', computing and integrating the time correlation func-
tion for each vector from 0 to 5 ns (1/40th of the simulation), and writing out
the e�ective di�usion constants and results to 'de�s.dat' and 'rotdif.out' respec-
tively:

reference avgstruct.pdb [avg]
rms R0 @CA,C,N,O ref [avg] savematrices
trajin mdcrd.nc
rotdif nvecs 100 rmatrix R0[RM] \

ti 0.0 tf 5.0 dt 0.02 deffout deffs.dat \
outfile rotdif.out

12.30 runningavg

runningavg <dset1> [<dset2> ...] [name <dsetname>] [out <filename>]
[[cumulative] | [window <window>]]

<dset1> [<dset2> ...] Data set(s) to calculate running
average for.

[name <dsetname>] Output running average data set
name.

[out <�lename>] File to write results to.

[cumulative] Calculate cumulative running average
instead.

[window <window>] Size in frames of window over which
to calculate running average.

Calculate running average over windows of given size for data in selected data
set(s).

12.31 spline

spline <dset0> [<dset1> ...] [out <outfile>] [meshsize <n> | meshfactor <x>]
[meshmin <mmin>] [meshmax <mmax>]

<dsetX> Data set(s) to perform splining on.

[out <out�le>] Write splined data to <outfile>.

194

[meshsize<n>] Size of the mesh to use for splining.

[meshfactor <x>] If meshsize is not given, use a mesh
of data set size * <x>.

[meshmin <mmin>] Mesh X minimum value.

[meshmax <mmax>] Mesh X maximum value.

Cubic spline the given data sets.

12.32 statistics | stat

stat {<name> | ALL} [shift <value>] [out <filename>] [noeout <filename>]
[ignorenv] [name <noe setname>]

<name> Name of data set to analyze.

ALL analyze all data sets.

shift <value> Subtract <value> from all elements in
each data set.

[out <�lename>] Write analysis results to <filename>
(STDOUT if not specified).

[noeout <�lename>] (Type 'noe' only) Write summary of
NOE results to <filename>.

[ignorenv] (Type 'noe' only) Ignore negative NOE
violations (i.e. shorter-than-expected distances).

[name <noe setname>] (Type 'noe' only) Name for
output NOE data sets.

DataSet Aspects for type 'noe' output:

[R6] Averaged 1/r6distance for each set.

[NViolations] Number of violations based on given bounds
for each set.

[AvgViolation] 1/r6 averaged distance minus expected
distance for each set.

[NOEnames] Name of each set.

Analyze angles, dihedrals, distances, and/or puckers and calculate various prop-
erties. More speci�c analyses can be obtained by labelling distances/dihedrals/puckers
(from e.g. the distance , dihedral , pucker commands or with the dataset
command) with the 'type <label>' keyword:

dihedral type labels: alpha, beta, gamma, delta, epsilon, zeta, chi, c2p h1p,
phi, psi, omega, pchi

distance type labels: noe

195

pucker type labels: pucker

For each input data set, the average, standard deviation, initial and �nal values
will be reported. The cyclic nature of dihedral/pucker data sets is taken into
consideration when averaging.

12.32.1 Torsion Analysis

A table will be written in ASCII format showing the distribution of torsion
values for each data set. More speci�c information may be printed based on the
set type. Values in the output marked SNB are from those de�ned by Schneider,
Neidle, and Berman.[32] For more information on nucleic acid torsion as pertains
to RNA see further work by Schneider et al..[33]

For example, to perform in-depth analysis on some nucleic acid dihedral
angles:

dihedral g0 out dihedrals.dat :1@O5' :1@C5' :1@C4' :1@C3' type gamma
dihedral d0 out dihedrals.dat :1@C5' :1@C4' :1@C3' :1@O3' type delta
dihedral c0 out dihedrals.dat :1@O4' :1@C1' :1@N9 :1@C4 type chi
analyze statistics all out stat.dat

12.32.2 Distance Analysis

A table will be written in ASCII format showing the distribution of distance
values < 6.5. If a distance is labled as 'type noe' a compact time series will
be printed in ASCII format showing the NOE as strong, medium, or weak.
In addition the <r^-6>^(-1/6) averaged value will be reported, as well as the
number of upper/lower bound violations. If 'noeout' is speci�ed, a summary
of these results will be written with format:

<#NOE> <R6> <Nviolation> <AvgViolation> <Name>

Where <#NOE> is an index, <R6> is the <r^-6>^(-1/6) averaged distance,
<Nviolation> is the total number of bounds violations, <AvgViolation> is the
average di�erence from expected distance Rexp when the distance is violated
(note that if not explicitly set, Rexp is set to the upper bound when the lower
bound is 0.0, or the average of upper and lower bounds otherwise), and <Name>
is the data set legend.

For example, the following input could be used to check certain distances
for NOE violations:

distance :3@HB= :10@HG= type noe noe_medium
distance :3@HE= :10@HG= type noe noe_strong
distance :3@HA :12@HA type noe noe_medium
distance :3@HD= :12@HG= type noe noe_medium
distance :3@HE= :12@HA type noe noe_strong
analyze statistics all out dpdp.noe.dat noeout noe_graph.dat name Res3_NOE

196

12.32.3 Pucker Analysis

A table will be written in ASCII format showing the distribution of pucker
phases for each data set.

12.33 ti

ti <dset0> [<dset1> ...] {nq <n quad pts> | xvals <x values>}
[name <set name>] [out <file>] [curveout <ti curve file>]
[nskip <#s to skip>]
[avgincrement <#> [avgmax <#>] [avgskip <#>]]
[bs_samples <samples> [bs_points <points>] [bs_seed <#>]
[bs_fac <factor>]]

<dset0> [<dset1> ...] Data set arguments specifying
input DV/DL values.

nq <n quad pts> Number of points for Gaussian
quadrature integration. Expect one data set per
point.

xvals <x values> Comma-separated list of X values for
integration. Expect one data set per value.

name <set name> Output data set name.

out <�le> File to write results of integration to.

curveout <ti curve �le> File to write TI curves to.

nskip <#s to skip> Comma separated list of number of
points to skip. For each number given, the TI
integration will be repeated.

avgincrement <#> [avgmax <#>] [avgskip <#>]
Starting from point 'avgskip' (default 0), repeat
the TI integration calculation in increments of <#>
up to 'avgmax' (default all points), so
'avgincrement 10' will do points 0-10, 0-20, etc.

bs_samples <samples> [bs_points <points>] [bs_seed<#>] [bs_fac <factor>]
Estimate error via bootstrap analysis, repeating the
TI integration <samples> times using <points> points
or <factor> times the total number of points.
Randomize with given seed.

DataSet Aspects:

[TIcurve] Raw TI curve. If 'nskip' index is number of
points skipped. If bootstrapping, index is sample
index. If 'avgincrement' the index is the number of
points.

197

[SD] For bootstrap analysis, standard deviation of
average free energy over samples.

Calculate free energy using DV/DL energies from thermodynamic integration.
The results of integration of the DV/DL curve will be written to <�le>, while
the curves themselves will be written to <ti curve �le>. Use nq to specify
number of Gaussian quadrature points; otherwise the lambda values should be
speci�ed by xvals, where <x values> is a comma-separated list.

For example, to perform Gaussian quadrature integration using data sets
named 'TIdata', repeating the calculation for various number of skipped data
points:

ti TIdata nq 9 name Curve out skip.agr curveout curve.agr nskip 0,5,10,15,20,30,40,50

12.34 timecorr

timecorr vec1 <vecname1> [vec2 <vecname2>] out <filename>
[order <order>] [tstep <tstep>] [tcorr <tcorr>]
[dplr] [norm] [drct] [dplrout <dplrfile>] [ptrajformat]

vec1 <vecname1> [vec2 <vecname2>] Vector(s) on which
to operate. By default the auto-correlation
function will be calculated if one vector is
specified, and the cross-correlation function will
be calculated if two vectors are specified.

out <�lename> Name of file to write output to.

[order <order>] Order of Legendre polynomials to use;
default 2.

[tstep <tstep>] Time between snapshots (default 1.0).

[tcorr <tcorr>] Maximum time to calculate correlation
functions for (default 10000.0).

[dplr] Output correlation functions Cl ≡< Pl/(r(0)
3r(τ)3) >

and < 1/(r(0)3r(τ)3) > in addition to the Pl
correlation function.

[norm] Normalize all correlation functions, i.e.,
Cl(t = 0) = Pl(t = 0) = 1.0.

[drct] Use the direct method to calculate correlations
instead of FFT; this will be much slower.

[dplrout] (dplr only) Write extra information for each
vector related to dplr option to <dplrfile>.

[ptrajformat] Write output in ptraj style (prevents use
of data formatting options).

198

DataSet Aspects:

[P] P<order> correlation function.

[C] C<order> correlation function (dplr only).

[R3R3] <1/(r(0)3r(t)3> correlation function (dplr
only).

[R] (_TC_DIPOLAR_) Average magnitude (<R>).

[RRIG] (_TC_DIPOLAR_) Sqrt(<R^2>).

[R3] (_TC_DIPOLAR_) <1/R^3>.

[R6] (_TC_DIPOLAR_) <1/R^6>.

[Name] (_TC_DIPOLAR_) Vector name.

Calculate time auto/cross-correlation functions for vectors using spherical har-
monics theory. NOTE: To calculate direct correlation functions for vectors just
use the corr analysis command. The norm keyword will normalize the result-
ing correlation functions. Note that if dplr is speci�ed, a new global data set
named _TC_DIPOLAR_ will be created, containing extra data for each vector
analyzed with a 'timecorr dplr' command.

Examples

Vectors between atoms 5 and 6 as well as 7 and 8 are calculated below, for which
auto and cross time correlation functions are obtained.

vector v0 @5 @6
vector v1 @7 @8
timecorr vec1 v0 tstep 1.0 tcorr 100.0 out v0.out order 2
timecorr vec1 v1 tstep 1.0 tcorr 100.0 out v1.out order 2
timecorr vec1 v0 vec2 v1 tstep 1.0 tcorr 100.0 out v0_v1.out order 2

Similarly, a vector perpendicular to the plane through atoms 18, 19, and 20 is
obtained and further analyzed.

vector v2 @18,@19,@20 corrplane
timecorr vec1 v3 tstep 1.0 tcorr 100.0 out v2.out order 2

12.35 vectormath

vectormath vec1 <vecname1> vec2 <vecname2> [out <filename>] [norm] [name <setname>]
[dotproduct | dotangle | crossproduct]

vec1 <vecname1> vec2 <vecname2> Vector(s) on which
to operate.

[out <�lename>] Name of file to write output to.

199

[dotproduct] (Default) Calculate the dot-product of the
two vectors.

[dotangle] Calculate angle from dot-product between the
two vectors; vectors will be normalized.

[crossproduct] Calculate cross-product of the two
vectors.

[norm] Normalize the vectors; this will affect any
subsequent calculations with the vectors. This is
turned on automatically if dotangle specified.

Calculate dot product, angle from dot product (degrees), or cross product for
speci�ed vectors. Note that norm normalizes the vectors themselves; the vec-
tors will remain normalized for subsequent calculations or output. Either vec1
or vec2 can be of size 1; in that case each vector in the set with N frames
operates on the single vector. For example, if vec1 is size N and vec2 is size 1,
then each frame of vec1 is operated on the single vector from vec2.

For example, to get the angles between two previously calculated vectors v1
and v2:

vectormath vec1 v1 vec2 v2 dotangle out dotproduct.dat name acos(|V1|*|V2|)

12.36 wavelet

wavelet [crdset <set name>] nb <n scaling vals> [s0 <s0>] [ds <ds>]
[correction <correction>] [chival <chival>] [type <wavelet>]
[out <filename>] [name <setname>]
[cluster [minpoints <#>] [epsilon <value>] [clusterout <file>]

[clustermapout <file>] [cmapdetail] [kdist] [cprefix <PDB prefix>]
[overlay <trajfile>] [overlayparm <parmfile>]]

[crdset <set name>] COORDS data set to use

nb <n scaling vals> Number of scales. The smaller the
number the better resolution, but slower to plot.

[s0 <s0>] The smallest scale of the wavelet function
(default 2dt where dt is time between snapshots in
ps)

[ds <ds>] Spacing between discrete scales. (Default is
0.25. Smaller value of ds gives finer resolution.
The largest values that give adequate sampling in
scale for Morlet and Paul are 0.5 and 1.5,
respectively)

[correction <correction>] The scale-to-wavelength
parameter (1.01 for Morlet, 1.389 for Paul).

200

Automatically set based on wavelet if not otherwise
specified.

[chival <chival>] The value of χ2
2at a particular

confidence level

[type <wavelet>] Type of wavelet function to use
<morlet> or <paul>

[out <�lename>] Write results to file named <filename>

[name <setname>] Store results in data set with name
<setname>

[cluster] Perform wavelet clustering i.e. wavelet
feature extraction analysis.

[minpoints <#>] Minimum number of points necessary
to form a region of interest.

[epsilon <value>] Minimum region of interest size.

[clusterout <�le>] Output for clustering (see
below).

[clustermapout <�le>] Output cluster map
(recommended gnuplot format, see below).

[cmapdetail] Instead of the map being smoothed to
cluster regions, show full detail.

[kdist] Can be used to determine minpoints and
epsilon - see below.

[cpre�x <PDB pre�x>] Output cluster region PDBs
(only containing from minimum to maximum atom
and minimum to maximum frame) with given prefix.

[overlay <traj�le>] Create a trajectory that can be
overlaid with the original trajectory to
highlight atoms of interest. Atoms in cluster
regions will get their normal coordinates - all
others are set to the common center of mass.

[overlayparm <parm�le>] Topology that can be used
with the overlay trajectory.

<wavelet>: morlet, paul

Perform the wavelet analysis using fast Fourier transform (FFT) algorithm on
speci�ed trajectory and write out to a gnuplot-formatted �le named <name.gnu>.
The created Wavelet map provides a clear picture of the signi�cant motions
which are characterized both in time and space. Note that typically the tra-
jectory in question should have rotational and translational movement removed
(via e.g. the rms command); otherwise these will be re�ected in the wavelet
analysis results.

Wavelet analysis contains two main steps which performs continues wavelet
transform (CWT) and statistical signi�cance testing as proposed by Torrence

201

and Compo[34]. Analysis is executed on one dimensional (1-D) coordinate which
is de�ned as the displacement from the starting position. For each atom, CWT
is calculated over a speci�ed range of scales from S0up to S02

(nb−1)ds. To
obtain the CWT of the trajectory the Fourier transform of atom's displace-
ment and wavelets which scaled by S (S is calculated from: S = S02

jds; j =
0, 1, 2, . . . , nb − 1) is computed and then the inverse Fourier transform of the
product of Fourier transforms will be calculated as the CWT. After calculating
the wavelet coordinates for all atoms, a signi�cance testing is performed to de-
termine the signi�cance of each wavelet coordinate. For doing this test we need
to have an appropriate background spectrum to consider as a mean or expected
spectrum and compare our wavelet coordinates against this background. In or-
der to calculate the background spectrum since wavelet spectrum (according to
the convolution theorem) follows the Fourier spectrum, the Fourier coe�cients
over every atom's displacement is calculated using the following formula and a
model (µk) is constructed on average which Fourier coe�cients �t (Xn) is the
time series which is the atom's displacement and k is the frequency index[35].

fk= 1
N

N−1∑
n=0

exp

(
−2πikn
N

)
Xn

This test is implemented based on the null hypothesis that the assumption is
that Fourier coordinates normally distributed around the expected value, then
the wavelet coordinates should also be normally distributed. Assuming the
expected background spectrum and since the square of a normally distributed
variable is chi-square distributed, then the distribution for the square of the
absolute values of wavelet coordinates (|Wi,k|2 is as follows (σ2is the variance
of the atom's displacement).

σ2µkχ
2
2/2

Then choosing a con�dence level we can determine the minimum acceptable
value for |Wi,k|2to be considered as a signi�cant coordinates at that certain
con�dence level. In the �nal map the scales of only those wavelet coordinates
which are signi�cantly above the expected distribution are stored.

For example, to perform wavelet analysis on residues 1 to 17 with 40 scal-
ing values starting from scaling of 0.2 with a spacing of 0.25 using the Morlet
wavelet:

parm nowat.withions.parm7
trajin nowat.image.nc
rms :1-17@C*,N*,O*,P* first mass
wavelet nb 40 s0 0.2 ds 0.25 correction 1.01 chival 1.6094 type morlet \

:1-17 out wavelet.gnu usemap

Wavelet Analysis Feature Extraction

Wavelet analysis feature extraction (WAFEX)[36] uses a density-based clus-
tering algorithm (a modi�ed version of the DBSCAN algorithm) to highlight

202

physical and temporal regions that have signi�cant motions from wavelet map-
sand can extract the speci�c atoms and frames involved in these motions for
further analysis. Cluster regions shown in the map will be smoother by de-
fault for easier visualization (unless cmapdetail is speci�ed). Details of the
clustering are provided via the clusterout keyword with format:

#Cluster [points] [minatm] [maxatm] [minfrm] [maxfrm] [avgval]

#Cluster Cluster region number.

points Number of points in the cluster.

minatm Starting atom of the region.

maxatm End atom of the region.

minfrm Starting frame of the region.

maxfrm End frame of the region.

avgval Average value of points in the region.

For example, to create a 2D gnuplot map highlight regions of interest called
'cluster.gnu' one could use the following input.

parm ../DPDP.parm7
trajin ../DPDP.nc
rms @C,CA,N first
wavelet nb 10 s0 2 ds 0.25 type morlet correction 1.01 chival 0.25 \

:1-22 name DPDP \
cluster clustermapout cluster.gnu clusterout cluster.dat \

minpoints 66 epsilon 10.0
datafile cluster.gnu usemap palette kbvyw

Some experimentation with kdist may be required to obtain reasonable values
for minpoints and epsilon. See 12.4 on page 165 as well as the Heidari et al
paper for further discussion.

13 Analysis Examples

Please note that typically for principal component analysis (PCA) the trajectory
needs to be aligned against a reference structure to remove overall global and
translation motion. Use the rms command for this.

13.1 Cartesian covariance matrix calculation and projec-
tion (PCA)

After calculating modes, snapshots can be projected onto these in an additional
pass through the trajectory. It is very important that the snapshots used when
projecting are exactly the same as those used to generate the original covariance
matrix. This example takes advantage of the COORDS data set functionality
in cpptraj to save snapshots for the purposes of projection.

203

Step one. Generate average structure.
RMS-Fit to first frame to remove global translation/rotation.
parm myparm.parm7
trajin mytraj.nc
rms first !@H=
average crdset AVG
run
Step two. RMS-Fit to average structure. Calculate covariance matrix.
Save the fit coordinates.
rms ref AVG !@H=
matrix covar name MyMatrix !@H=
createcrd CRD1
run
Step three. Diagonalize matrix.
runanalysis diagmatrix MyMatrix vecs 2 name MyEvecs
Step four. Project saved fit coordinates along eigenvectors 1 and 2
crdaction CRD1 projection evecs MyEvecs !@H= out project.dat beg 1 end 2

13.2 Dihedral covariance matrix calculation and projec-
tion for backbone phi/psi (PCA)

parm ../1rrb_vac.prmtop
trajin ../1rrb_vac.mdcrd
Generation of phi/psi dihedral data
multidihedral BB phi psi resrange 2
run
Calculate dihedral covariance matrix and obtain eigenvectors
matrix dihcovar dihedrals BB[*] out dihcovar.dat name DIH
diagmatrix DIH vecs 4 out modes.dihcovar.dat name DIHMODES
run
Project along eigenvectors
projection evecs DIHMODES out dih.project.dat beg 1 end 4 dihedrals BB[*]
run

References

[1] Daniel R. Roe and T.E. Cheatham, III. PTRAJ and CPPTRAJ: Software
for Processing and Analysis of Molecular Dynamics Trajectory Data. J.
Chem. Theory Comput., 9:3084�3095, 2013.

[2] Daniel R. Roe and Thomas E. Cheatham III. Parallelization of CPPTRAJ
enables large scale analysis of molecular dynamics trajectory data. Journal
of Computational Chemistry, 39(25):2110�2117, 2018.

[3] S. Chatterjee, P. G. Debenedetti, F. H. Stillinger, and R. M. Lynden-Bell.
A Computational Investigation of Thermodynamics, Structure, Dynam-

204

ics and Solvation Behavior in Modi�ed Water Models. J. Chem. Phys.,
128:124511, 2008.

[4] T. Lazaridis. Inhomogeneous Fluid Approach to Solvation Thermodynam-
ics. 1 Theory. J. Phys. Chem. B, 102:3531�3541, 1998.

[5] C. N. Nguyen, T. Kurtzman Young, and M. K. Gilson. Grid Inhomoge-
neous Solvation Theory: Hydration Structure and Thermodynamics of the
Miniature Receptor cucurbit[7]uril. J. Chem. Phys., 137:044101, 2012.

[6] W. Humphrey, A. Dalke, and K. Schulten. VMD Visual Molecular Dynam-
ics. J. Molec. Graph., 14:33�38, 1996.

[7] D. J. Sindhikara, N. Yoshida, and F. Hirata. Placevent: An Algorithm
for Prediction of Explicit Solvent Atom Distribution-Application to HIV-1
Protease and F-ATP Synthase. J. Comput. Chem., 33:1536�1543, 2012.

[8] J.J. Chou, D.A. Case, and A. Bax. Insights into the mobility of methyl-
bearing side chains in proteins. J. Am. Chem. Soc., 125:8959�8966, 2003.

[9] C. Perez, F. Lohr, H. Ruterjans, and J.M. Schmidt. Self-Consistent Karplus
Parameterization of (3)J couplings depending on the polypeptide side-chain
torsion chi(1). J. Am. Chem. Soc., 123:7081�7093, 2001.

[10] P.H. Hunenberger, A.E. Mark, and W.F. van Gunsteren. Fluctuation
and Cross-correlation Analysis of Protein Motions Observed in Nanosec-
ond Molecular Dynamics Simulations. J. Mol. Biol., 252:492�503, 1995.

[11] J.J. Prompers and R. Brüschweiler. Dynamic and structural analysis of
isotropically distributed molecular ensembles. Proteins, 46:177�189, 2002.

[12] J.J. Prompers and R. Brüschweiler. General framework for studying the
dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy
and MD simulation. J. Am. Chem. Soc., 124:4522�4534, 2002.

[13] M.L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst.,
16:548�558, 1983.

[14] M. A. El Hassan and C. R. Calladine. Two distinct modes of protein-
induced bending in dna. J. Mol. Biol., 282:331�343, 1998.

[15] XJ Lu and WK Olson. 3dna: a software package for the analysis, rebuilding
and visualization of three-dimensional nucleic acid structures. NUCLEIC
ACIDS RESEARCH, 31:5108�5121, 2003.

[16] M.S. Babcock, E.P.D. Pednault, and W.K. Olson. Nucleic Acid Structure
Analysis. J. Mol. Biol., 237:125�156, 1994.

205

[17] Wilma K. Olson, Manju Bansal, Stephen K. Burley, Richard E. Dicker-
son, Mark Gerstein, Stephen C. Harvey, Udo Heinemann, Xiang-Jun Lu,
Stephen Neidle, Zippora Shakked, Heinz Sklenar, Masashi Suzuki, Chang-
Shung Tung, Eric Westhof, Cynthia Wolberger, and Helen M. Berman. A
standard reference frame for the description of nucleic acid base-pair ge-
ometry. J. Mol. Biol., 313:229�237, 2001.

[18] C Altona and M Sundaralingam. Conformational analysis of the sugar
ring in nucleosides and nucleotides. a new description using the concept of
pseudorotation. J Am Chem Soc, 94:8205�8212, 1972.

[19] SC Harvey and M Prabhakaran. Ribose puckering - structure, dynamics,
energetics, and the pseudorotation cycle. J Am Chem Soc, 108:6128�6136,
1986.

[20] D Cremer and JA Pople. A general de�nition of ring puckering coordinates.
J Am Chem Soc, 97:1354�1358, 1975.

[21] W. Kabsch and C. Sander. Dictionary of protein secondary structure: pat-
tern recognition of hydrogen-bonded and geometrical features. Biopoly-
mers, 22:2577�2637, 1983.

[22] G. Cui, J. M. Swails, and E. S. Manas. SPAM: A Simple Approach for
Pro�ling Bound Water Molecules. J. Chem. Theory Comput., 9:5539�5549,
2013.

[23] J. Weiser, P.S. Shenkin, and W.C. Still. Approximate Atomic Surfaces from
Linear Combinations of Pairwise Overlaps (LCPO). J. Comput. Chem.,
20:217�230, 1999.

[24] M. Ester, H. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. Proc. Second
Int. Conf. Knowledge Disc. Data Mining (KDD-96), pages 226�231, 1996.

[25] Alex Rodriguez and Alessandro Laio. Clustering by fast search and �nd of
density peaks. Science, 344:1492�1496, 2014.

[26] A. Bakan, L.M. Meireles, and I. Bahar. ProDy: Protein Dynamics Inferred
from Theory and Experiments. Bioinformatics, 27(11):1575�1577, 2011.

[27] Donald A. McQuarrie. Statistical Thermodynamics. Harper and Row, New
York, 1973.

[28] Chia-En Chang, Wei Chen, and Michael K. Gilson. Evaluating the Accu-
racy of the Quasiharmonic Approximation. Journal of Chemical Theory
and Computation, 1(5):1017�1028, 2005. PMID: 26641917.

[29] Daniel R. Roe, Christina Bergonzo, and Thomas E. Cheatham III. Evalua-
tion of enhanced sampling provided by accelerated molecular dynamics with
hamiltonian replica exchange methods. J. Phys. Chem. B, 118(13):3543�
3552, 2014.

206

[30] Rodrigo Galindo-Murillo, Daniel R. Roe, and T.E. Cheatham, III. Con-
vergence and reproducibility in molecular dynamics simulations of the
DNA duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta,
1850:1041�1058, 2015.

[31] V. Wong and D.A. Case. Evaluating rotational di�usion from protein md
simulations. J. Phys. Chem. B, 112:6013�6024, 2008.

[32] B. Schneider, S. Neidle, and H. M. Berman. Conformations of the
sugar-phosphate backbone in helical dna crystal structures. Biopolymers,
42(1):113�124, 1997.

[33] B. Schneider, Z. Moravek, and H. M. Berman. Rna conformational classes.
Nucleic Acids Res., 32(5):1666�1677, 2004.

[34] C. Torrence and G. P. Compo. A practical guide to wavelet analysis. Bull.
Am. Meteorol. Soc., 79(1):61�78, 1998.

[35] N. C. Benson and V. Dagget. Wavelet analysis of protein motion. Int. J.
Wavelets Multi., 10(4), 2012.

[36] Z. Heidari, D. R. Roe, R. Galindo-Murillo, J. B. Ghasemi, and T. E.
Cheatham, III. Using Wavelet Analysis To Assist in Identi�cation of Sig-
ni�cant Events in Molecular Dynamics Simulations. J. Chem. Inf. Model.,
56:1282�1291, 2016.

207

	Introduction
	Manual Syntax Format

	Running Cpptraj
	Command Line Syntax
	Commands
	Getting Help
	Batch mode
	Interactive mode
	Trajectory Processing ``Run''
	Actions and multiple topologies

	Parallelization
	MPI Trajectory Parallelization
	OpenMP Parallelization
	CUDA Parallelization

	General Concepts
	Units
	Atom Mask Selection Syntax
	Ranges
	Parameter/Reference Tagging

	Variables and Control Structures
	for
	set
	show

	Data Sets and Data Files
	Data Set Selection Syntax
	Data Set Math

	Data File Options
	Standard Data File Options
	Grace Data File Options
	Gnuplot Data File Options
	Amber REM Log Options
	Amber MDOUT Options
	Evecs File Options
	Vector psuedo-traj Options
	OpenDX file options
	CCP4 file options
	Charmm REPD log options
	Amber Constant pH Out options

	Coordinates (COORDS) Data Set Commands
	combinecrd
	crdaction
	createcrd
	crdout
	loadcrd
	loadtraj
	permutedihedrals
	reference
	rotatedihedral

	General Commands
	activeref
	calc
	clear
	create
	createset
	datafile
	datafilter
	dataset
	debug | prnlev
	ensextension
	exit | quit
	go | run
	help
	list
	noexitonerror
	noprogress
	precision
	readdata
	readensembledata
	readinput
	removedata
	rst
	runanalysis
	select
	selectds
	sortensembledata
	write | writedata
	System Commands

	Topology File Commands
	angleinfo | angles | printangles
	atominfo | atoms | printatoms
	bondinfo | bonds | printbonds
	change
	charge
	comparetop
	dihedralinfo | dihedrals | printdihedrals
	mass
	molinfo
	parm
	PDB format:

	parmbox
	parminfo
	parmstrip
	parmwrite
	resinfo
	scaledihedralk
	solvent

	Trajectory File Commands
	ensemble
	ensemblesize
	reference
	trajin
	Options for Amber NetCDF, Amber NC Restart, Amber Restart:
	Options for CHARMM DCD:

	trajout
	Options for pdb format:
	Options for Amber ASCII format:
	Options for Amber NetCDF format:
	Options for Amber Restart/NetCDF Restart format:
	Options for CHARMM DCD:
	Options for GROMACS TRX/XTC format:
	Options for mol2 format:
	Options for SQM input format:

	Action Commands
	angle
	areapermol
	atomiccorr
	atomicfluct | rmsf
	atommap
	autoimage
	average
	avgcoord
	bounds
	box
	center
	check | checkoverlap | checkstructure
	checkchirality
	closest | closestwaters
	cluster
	clusterdihedral
	contacts
	createcrd
	createreservoir
	density
	diffusion
	dihedral
	dihedralscan
	dipole
	distance
	drms | drmsd (distance RMSD)
	dssp
	energy
	esander
	filter
	fixatomorder
	fiximagedbonds
	gist (Grid Inhomogeneous Solvation Theory)
	grid
	hbond
	image
	jcoupling
	lessplit
	lie
	lipidorder
	lipidscd
	makestructure
	mask
	matrix
	mindist
	minimage
	molsurf
	multidihedral
	multivector
	nastruct
	nativecontacts
	outtraj
	pairdist
	pairwise
	principal
	projection
	pucker
	radgyr | rog
	radial | rdf
	randomizeions
	replicatecell
	rms | rmsd
	rms2d | 2drms
	rmsavgcorr
	rmsf | atomicfluct
	rotate
	rotdif
	runavg | runningaverage
	scale
	secstruct
	spam
	setvelocity
	stfcdiffusion
	strip
	surf
	symmrmsd
	temperature
	trans | translate
	unstrip
	unwrap
	vector
	velocityautocorr
	volmap
	volume
	watershell

	Analysis Commands
	autocorr
	avg
	calcstate
	cluster
	cphstats
	corr | correlationcoe
	crank | crankshaft
	crdfluct
	crosscorr
	curvefit
	diagmatrix
	divergence
	fft
	hist | histogram
	integrate
	ired
	kde
	lifetime
	lowestcurve
	meltcurve
	modes
	multicurve
	multihist
	phipsi
	regress
	remlog
	rms2d | 2drms
	rmsavgcorr
	rotdif
	runningavg
	spline
	statistics | stat
	Torsion Analysis
	Distance Analysis
	Pucker Analysis

	ti
	timecorr
	vectormath
	wavelet

	Analysis Examples
	Cartesian covariance matrix calculation and projection (PCA)
	Dihedral covariance matrix calculation and projection for backbone phi/psi (PCA)

