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SUMMARY

The CRISPR-associated endonuclease Cas9 can be targeted to specific genomic loci by single 

guide RNAs (sgRNAs). Here, we report the crystal structure of Streptococcus pyogenes Cas9 in 

complex with sgRNA and its target DNA, at 2.5 Å resolution. The structure revealed a bilobed 

architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA 
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heteroduplex in a positively-charged groove at their interface. Whereas the recognition lobe is 

essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease 

domains, which are properly positioned for cleavage of the complementary and non-

complementary strands of the target DNA, respectively. The nuclease lobe also contains a 

carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif 

(PAM). This high-resolution structure and accompanying functional analyses have revealed the 

molecular mechanism of RNA-guided DNA targeting by Cas9, thus paving the way for the 

rational design of new, versatile genome-editing technologies.

INTRODUCTION

The CRISPR (clustered regularly interspaced palindromic repeat)-Cas system is a naturally 

occurring, adaptive microbial immune system for defense against invading phages and other 

mobile genetic elements (Deveau et al., 2010; Horvath and Barrangou, 2010; Marraffini and 

Sontheimer, 2010; Terns and Terns, 2011). Three types (I–III) of CRISPR-Cas systems have 

been functionally identified across a wide range of microbial species (Barrangou et al., 

2007; Brouns et al., 2008; Marraffini and Sontheimer, 2008), and each contains a cluster of 

CRISPR-associated (Cas) genes and its corresponding CRISPR array. These characteristic 

CRISPR arrays consist of repetitive sequences (direct repeats, referred to as repeats) 

interspaced by short stretches of non-repetitive sequences (spacers) derived from short 

segments of foreign genetic material (protospacers). The CRISPR array is transcribed and 

processed into short CRISPR RNAs (crRNAs), which direct the Cas proteins to the target 

nucleic acids via Watson-Crick base pairing to facilitate nucleic acid destruction.

The Type I and III CRISPR systems utilize ensembles of Cas proteins complexed with 

crRNAs to mediate the recognition and subsequent degradation of target nucleic acids 

(Spilman et al., 2013; Wiedenheft et al., 2011). In contrast, the Type II CRISPR system 

recognizes and cleaves the target DNA (Garneau et al., 2010) via the RNA-guided 

endonuclease Cas9 (Sapranauskas et al., 2011) along with two non-coding RNAs, the 

crRNA and the trans-activating crRNA (tracrRNA) (Deltcheva et al., 2011). The crRNA 

hybridizes with the tracrRNA to form a crRNA:tracrRNA duplex, which is loaded onto Cas9 

to direct the cleavage of cognate DNA sequences bearing appropriate protospacer adjacent 

motifs (PAM) (Mojica et al., 2009). Cas9 contains two nuclease domains, HNH and RuvC, 

which cleave the DNA strands that are complementary and non-complementary to the 20-

nucleotide (nt) guide sequence in crRNAs, respectively (Gasiunas et al., 2012; Jinek et al., 

2012).

The Type II CRISPR system was the first to be adapted for facilitating genome editing in 

eukaryotic cells (Cong et al., 2013; Mali et al., 2013b). The Cas9 protein from Streptococcus 

pyogenes, along with a single guide RNA (sgRNA), a synthetic fusion of crRNA and 

tracrRNA (Jinek et al., 2012), could be programmed to cleave virtually any sequence 

preceding a 5′-NGG-3′ PAM sequence in mammalian cells (Cong et al., 2013; Mali et al., 

2013b). This unprecedented flexibility has enabled a broad range of applications, including 

rapid generation of genetically modified cells and animal models (Gratz et al., 2013; Hwang 
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et al., 2013; Wang et al., 2013; Yang et al., 2013), and genome-scale genetic screening 

(Shalem et al., 2014; Wang et al., 2014).

However, despite the brisk progress in the development of Cas9 technology, the mechanism 

by which the Cas9–sgRNA complex recognizes and cleaves its target DNA remains to be 

elucidated. Biochemical analyses at the domain levels have enabled site-specific engineering 

to convert the native Cas9 into a DNA nicking enzyme (Gasiunas et al., 2012; Jinek et al., 

2012; Sapranauskas et al., 2011) that facilitates homology-directed repair in eukaryotic cells 

(Cong et al., 2013; Mali et al., 2013b) and cleaves DNA with improved specificity, given 

appropriately paired sgRNAs (Mali et al., 2013a; Ran et al., 2013). Moreover, a catalytically 

inactive Cas9 can serve as an RNA-guided DNA-binding platform to target effector domains 

and modulate endogenous transcription (Gilbert et al., 2013; Konermann et al., 2013; 

Maeder et al., 2013; Perez-Pinera et al., 2013; Qi et al., 2013). These advances in Cas9 

engineering represent just the first steps toward fully realizing the potential of this flexible 

RNA-guided genome positioning system. Precise structural information about Cas9 will thus 

not only enhance our understanding of how this elegant RNA-guided, adaptive microbial 

immune system functions, but also facilitate further improvements in the Cas9 targeting 

specificity, the in vitro and in vivo delivery, and the engineering of Cas9 for novel functions 

and optimized features.

Here, we report the crystal structure of S. pyogenes Cas9 in complex with sgRNA and its 

target DNA at 2.5 Å resolution. This high-resolution structure, along with functional 

analyses, reveals the key functional interactions that integrate the guide RNA, the target 

DNA, and the Cas9 protein, thus paving the way towards enhancing Cas9 function as well as 

engineering novel applications.

RESULTS

Overall structure of the Cas9–sgRNA–DNA ternary complex

We solved the crystal structure of full-length S. pyogenes Cas9 (residues 1–1368; D10A/

C80L/C574E/H840A), in complex with a 98-nt sgRNA and a 23-nt target DNA, at 2.5 Å 

resolution by the SAD (single-wavelength anomalous dispersion) method, using a SeMet-

labeled protein (Figure 1, Figure S1 and Table S1). To improve the solution behavior of 

Cas9, we replaced two less conserved cysteine residues (Cys80 and Cys574) with leucine 

and glutamic acid, respectively. This C80L/C574E mutant retained the ability to efficiently 

cleave genomic DNA in human embryonic kidney 293FT (HEK293FT) cells, confirming 

that these mutations have no effects on the Cas9 nuclease function (Figure S2). Additionally, 

to prevent target DNA cleavage during crystallization, we replaced two catalytic residues, 

Asp10 from the RuvC domain and His840 from the HNH domain, with alanines.

The crystallographic asymmetric unit contained two Cas9–sgRNA–DNA ternary complexes 

(Mol A and Mol B). Although there are conformational differences between the two 

complexes, the sgRNA and the DNA are recognized by Cas9 in similar manners. Most 

notably, while the HNH domain in Mol A is connected to the RuvC domain by a disordered 

linker, the HNH domain in Mol B is not visible in the electron density map, indicating the 

flexible nature of the HNH domain. Thus, we will first describe the structural features of 
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Mol A unless otherwise stated, and then discuss the structural differences between the two 

complexes, which suggest the conformational flexibility of Cas9.

The crystal structure revealed that Cas9 consists of two lobes, a recognition (REC) lobe and 

a nuclease (NUC) lobe (Figures 1A–D). The REC lobe can be divided into three regions, a 

long α-helix referred to as the Bridge helix (residues 60–93), the REC1 (residues 94–179 

and 308–713) domain, and the REC2 (residues 180–307) domain (Figures 1A–D). The NUC 

lobe consists of the RuvC (residues 1–59, 718–769 and 909–1098), HNH (residues 775–

908), and PAM-interacting (PI) (residues 1099–1368) domains (Figures 1A–D). The 

negatively-charged sgRNA:target DNA heteroduplex is accommodated in a positively-

charged groove at the interface between the REC and NUC lobes (Figure 1E). In the NUC 

lobe, the RuvC domain is assembled from the three split RuvC motifs (RuvC I–III), and 

interfaces with the PI domain to form a positively-charged surface that interacts with the 3′ 

tail of the sgRNA (Figure 1E). The HNH domain lies in between the RuvC II–III motifs and 

forms only a few contacts with the rest of the protein.

The REC lobe interacts with the repeat:anti-repeat duplex

The REC lobe includes the REC1 and REC2 domains. REC1 adopts an elongated, α-helical 

structure comprising 25 α-helices (α2–α5 and α12–α32) and two β-sheets (β6 and β10, and 

β7–β9), whereas REC2 adopts a six-helix bundle structure (α6–α11) (Figure 2A and Figure 

S3). A Dali search (Holm and Rosenstrom, 2010) revealed that the REC lobe does not share 

structural similarity with other known proteins, indicating that it is a Cas9-specific 

functional domain.

The REC lobe is one of the least conserved regions across the three Cas9 families within the 

Type II CRISPR system (IIA, IIB and IIC), and many Cas9 orthologs contain significantly 

shorter REC lobes (Figures S4, S5). In the present structure, the REC2 domain does not 

contact the bound guide:target heteroduplex. We thus hypothesized that truncations in the 

REC lobe could be tolerated. As expected, a Cas9 mutant lacking the REC2 domain (Δ175–

307) retained ~50% of the wild-type Cas9 activity (Figure 2B), indicating that the REC2 

domain is not critical for DNA cleavage. The lower cleavage efficiency may be attributed in 

part to the reduced expression levels of the Δ175–307 mutant relative to that of the wild-type 

protein (Figure 2C). In striking contrast, the deletion of either the repeat-interacting region 

(Δ97–150) or the anti-repeat-interacting region (Δ312–409) of the REC1 domain abolished 

the DNA cleavage activity (Figure 2B), indicating that the recognition of the repeat:anti-

repeat duplex by the REC1 domain is critical for the Cas9 function.

The PAM-interacting (PI) domain confers PAM specificity

The NUC lobe contains the PI domain, which forms an elongated structure comprising 

seven α-helices (α46–α52), a three-stranded antiparallel β-sheet (β18–β20), a five-stranded 

antiparallel β-sheet (β21–β23, β26 and β27), and a two-stranded antiparallel β-sheet (β24 and 

β25) (Figure 2D and Figure S3). Similar to the REC lobe, the PI domain also adopts a novel 

protein fold unique to the Cas9 family.

The locations of the bound complementary DNA strand and the active site of the RuvC 

domain in the present structure suggested that the PI domain is positioned to recognize the 
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PAM sequence on the non-complementary DNA strand. We tested whether the replacement 

of the PI domain of S. pyogenes Cas9 (SpCas9; Cas9 in this study) with that of an 

orthologous Cas9 protein, recognizing a different PAM, would be sufficient to alter their 

PAM specificities. The Streptococcus thermophilus CRISPR-3 Cas9 (St3Cas9) shares ~60% 

sequence identity with SpCas9. While their crRNA repeats and tracrRNAs are 

interchangeable (Fonfara et al., 2013), SpCas9 and St3Cas9 require different PAM 

sequences (5′-NGG-3′ for SpCas9 and 5′-NGGNG-3′ for St3Cas9) for target DNA cleavage 

(Fonfara et al., 2013).

We swapped their PI domains to generate two chimeras, Sp-St3Cas9 (SpCas9 with the PI 

domain of St3Cas9) and St3-SpCas9 (St3Cas9 with the PI domain of SpCas9), and 

examined their cleavage activities for target DNA sequences bearing 5′-NGG-3′ PAM (5′-

GGGCT-3′) or 5′-NGGNG-3′ PAM (5′-GGGCG-3′) (Figure 2E). SpCas9 and St3-SpCas9, 

but not St3Cas9, cleaved the target DNA with 5′-NGG-3′ PAM (Figure 2E), indicating that 

the PI domain of SpCas9 is required for the recognition of 5′-NGG-3′ PAM and is sufficient 

to alter the PAM specificity of St3Cas9. Sp-St3Cas9 retained the cleavage activity for the 

target DNA with 5′-NGG-3′ PAM, albeit at a lower level than that of SpCas9 (Figure 2E). 

Additionally, the deletion of the PI domain (Δ1099–1368) abolished the cleavage activity 

(Figure 2E), indicating that the PI domain is critical for the Cas9 function. These results 

revealed that the PI domain is a major determinant of the PAM specificity.

The RuvC domain has an RNase H fold

The RuvC domain consists of a six-stranded mixed β-sheet (β1, β2, β5, β11, β14 and β17) 

flanked by α-helices (α33, α34 and α39–α45) and two additional two-stranded antiparallel 

β-sheets (β3/β4 and β15/β16) (Figure 3A and Figure S3). It shares structural similarity with 

the retroviral integrase superfamily members characterized by an RNase H fold, such as 

Escherichia coli RuvC (Ariyoshi et al., 1994) (PDB code 1HJR, 14% identity, root-mean-

square deviation (rmsd) of 3.6 Å for 126 equivalent Cα atoms) and Thermus thermophilus 

RuvC (Gorecka et al., 2013) (PDB code 4LD0, 12% identity, rmsd of 3.4 Å for 131 

equivalent Cα atoms) (Figure 3B). The RuvC nucleases have four catalytic residues (e.g., 

Asp7, Glu70, His143 and Asp146 in T. thermophilus RuvC), and cleave Holliday junctions 

through a two-metal mechanism (Ariyoshi et al., 1994; Chen et al., 2013; Gorecka et al., 

2013). Asp10 (Ala), Glu762, His983 and Asp986 of the Cas9 RuvC domain are located at 

positions similar to those of the catalytic residues of T. thermophilus RuvC (Figures 3A, B), 

consistent with previous results showing that Asp10 is critical for the cleavage of the non-

complementary DNA strand, and that Cas9 requires Mg2+ ions for the cleavage activity 

(Gasiunas et al., 2012; Jinek et al., 2012). Moreover, the alanine substitution of Glu762, 

His983 or Asp986 also converted Cas9 into a nickase (Figures 3C, D). Each nickase mutant 

was able to facilitate targeted double strand breaks using a pair of juxtaposed sgRNAs 

(Figures 3C, D, Table S2), as previously demonstrated with the D10A nickase (Ran et al., 

2013). This combination of structural observations and mutational analyses suggested that 

the Cas9 RuvC domain cleaves the non-complementary strand of the target DNA through 

the two-metal mechanism, as previously observed for other retroviral integrase superfamily 

nucleases.
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It is important to note that there are key structural dissimilarities between the Cas9 RuvC 

domain and the RuvC nucleases, which explain their functional differences. Unlike the Cas9 

RuvC domain, the RuvC nucleases form dimers and recognize Holliday junctions (Gorecka 

et al., 2013) (Figure 3B). In addition to the conserved RNase H fold, the Cas9 RuvC domain 

has other structural elements involved in interactions with the guide:target heteroduplex (an 

end-capping loop between α42 and α43) and the PI domain/stem loop 3 (β-hairpin formed 

by β3 and β4) (Figure 3A).

The HNH domain has a ββα-metal fold

The HNH domain comprises a two-stranded antiparallel β-sheet (β12 and β13) flanked by 

four α-helices (α35–α38) (Figure 3E). It shares structural similarity with the HNH 

endonucleases characterized by a ββα-metal fold, such as phage T4 endonuclease VII (Endo 

VII) (Biertümpfel et al., 2007) (PDB code 2QNC, 20% identity, rmsd of 2.7 Å for 61 

equivalent Cα atoms) and Vibrio vulnificus nuclease (Li et al., 2003) (PDB code 1OUP, 8% 

identity, rmsd of 2.7 Å for 77 equivalent Cα atoms) (Figure 3F). HNH nucleases have three 

catalytic residues (e.g., Asp40, His41, and Asn62 in Endo VII), and cleave nucleic acid 

substrates through a single-metal mechanism (Biertümpfel et al., 2007; Li et al., 2003). In 

the structure of the Endo VII N62D mutant in complex with a Holliday junction, a Mg2+ ion 

is coordinated by Asp40, Asp62, and the oxygen atoms of the scissile phosphate group of 

the substrate, while His41 acts as a general base to activate a water molecule for catalysis 

(Figure 3F). Asp839, His840, and Asn863 of the Cas9 HNH domain correspond to Asp40, 

His41, and Asn62 of Endo VII, respectively (Figure 3E), consistent with the observation that 

His840 is critical for the cleavage of the complementary DNA strand (Gasiunas et al., 2012; 

Jinek et al., 2012). The N863A mutant functions as a nickase (Figure 3C, D), indicating that 

Asn863 participates in catalysis. These observations suggested that the Cas9 HNH domain 

may cleave the complementary strand of the target DNA through a single-metal mechanism, 

as observed for other HNH superfamily nucleases. However, in the present structure, 

Asn863 of Cas9 is located at a different position from that of Asn62 in Endo VII, whereas 

Asp839 and His840 (Ala) of Cas9 are located at positions similar to those of Asp40 and 

His41 in Endo VII, respectively (Figures 3G). This might be due to the absence of divalent 

ions, such as Mg2+, in our crystallization solution, and Asn863 may point towards the active 

site and participate in catalysis. Although the HNH domain shares a ββα-metal fold with 

other HNN endonucleases, their overall structures are distinct (Figures 3E, F), consistent 

with the differences in their substrate specificities.

The sgRNA:DNA complex adopts a T-shaped architecture

The sgRNA consists of crRNA- and tracrRNA-derived sequences connected by an artificial 

tetraloop (Figure 4A). The crRNA sequence can be divided into guide (20-nt) and repeat 

(12-nt) regions, while the tracrRNA sequence can be divided into anti-repeat (14-nt) and 

three tracrRNA stem loops (Figure 4A). The crystal structure revealed that the sgRNA binds 

the target DNA to form a T-shaped architecture comprising a guide:target heteroduplex, a 

repeat:anti-repeat duplex, and stem loops 1–3 (Figures 4A, B). The repeat:anti-repeat duplex 

and stem loop 1 are connected by a single nucleotide (A51), while stem loops 1 and 2 are 

connected by a 5-nt single-stranded linker (nucleotides 63–67).
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The guide (nucleotides 1–20) and target DNA (nucleotides 1′–20′) form the guide:target 

heteroduplex via 20 Watson-Crick base pairs (Figures 4A, B). The conformation of the 

heteroduplex is distorted from that of the canonical A-form RNA duplex (Figure S6). The 

repeat (nucleotides 21–32) and the anti-repeat (nucleotides 37–50) form the repeat:anti-

repeat duplex via nine Watson-Crick base pairs (U22:A49–A26:U45 and G29:C40–

A32:U37) (Figures 4A, B). Within this region, G27, A28, A41, A42, G43 and U44 are 

unpaired, with A28 and U44 flipped out from the duplex (Figure 4C). The G27 and A41 

nucleobases stack with the A26:U45 and G29:C40 pairs, respectively, and the 2-amino 

group of G27 interacts with the backbone phosphate group between G43 and U44, 

stabilizing the duplex structure (Figure 4C). G21 and U50 form a wobble base pair at the 

three-way junction between the guide:target heteroduplex/repeat:anti-repeat duplexes and 

stem loop 1, contributing to the formation of the T-shaped architecture (Figure 4C).

As expected from the RNA-fold predictions based on the nucleotide sequence, the tracrRNA 

3′ tail (nucleotides 68–81 and 82–96) forms stem loops 2 and 3 via four and six Watson-

Crick base pairs (A69:U80–U72:A77 and G82:C96–G87:C91), respectively (Figures 4A, 

B). In addition, nucleotides 52–62 form the newly detected stem loop (stem loop 1) via three 

Watson-Crick base pairs (G53:C61, G54:C60 and C55:G58), with U59 flipped out from the 

stem (Figures 4A, B). Stem loop 1 is stabilized by the G62–G53:C61 stacking interaction 

and the G62–A51/A52 polar interactions (Figure 4C).

The guide:target and repeat:anti-repeat duplexes are deeply buried in a positively-charged 

groove at the interface of the two lobes, while the rest of the sgRNA extensively interacts 

with the positively-charged surface on the back side of the protein (Figure 1E). In Mol A, 

the three nucleotides at the 5′ end of the target DNA (3′-ACC-5′, complementary to the 

PAM) are not visible in the electron density map. Although the two adjacent nucleotides (3′-

AC-5′) in Mol B are structurally ordered due to the crystal packing interactions, and are 

visible in the electron density map, these nucleotides are not recognized by Cas9 (data not 

shown). These observations suggested that the 3′-NCC-5′ sequence complementary to the 

5′-NGG-3′ PAM is not recognized by Cas9, and are consistent with previous biochemical 

data showing that Cas9-catalyzed DNA cleavage requires the 5′-NGG-3′ PAM on the non-

complementary strand but not the 3′-NCC-5′ sequence on the complementary strand (Jinek 

et al., 2012).

Previous studies showed that, although sgRNA with a 48-nt tracrRNA tail [referred to as 

sgRNA(+48)] is the minimal region for the Cas9-catalyzed DNA cleavage in vitro (Jinek et 

al., 2012), sgRNAs with extended tracrRNA tails, sgRNA(+67) and sgRNA(+85), 

dramatically improved the Cas9 cleavage activity in vivo (Hsu et al., 2013). The present 

structure revealed that sgRNA(+48), sgRNA(+67) and sgRNA(+85) contain stem loop 1, 

stem loops 1–2 and stem loops 1–3, respectively (Figures 4A, B). These observations 

indicated that, whereas stem loop 1 is essential for the formation of the functional Cas9–

sgRNA complex, stem loops 2 and 3 further support the stable complex formation and 

enhance the stability of the sgRNA, thus improving the in vivo activity.

To determine the significance of each sgRNA structural component on the Cas9 function, 

we tested a number of sgRNAs with mutations in the repeat:anti-repeat duplex, stem loops 
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1–3, and the linker between stem loops 1 and 2. Our results revealed that, whereas stem 

loops 2 and 3 as well as the linker region can tolerate a large number of mutations, the 

repeat:anti-repeat duplex and stem loop 1 are critical for the Cas9 function (Figure 4D). 

Moreover, the sgRNA sequence can tolerate a large number of mutations (Figure 4D, 

reconstructed sgRNA). These results highlight the functional significance of the structure-

dependent recognition of the repeat:anti-repeat duplex by Cas9.

The conserved arginine cluster on the Bridge helix is critical for sgRNA:DNA recognition

The sgRNA guide region is primarily recognized by the REC lobe (Figure 5). The backbone 

phosphate groups of the guide region (nucleotides 2, 4–6 and 13–20) interact with the REC1 

domain (Arg165, Gly166, Arg403, Asn407, Lys510, Tyr515 and Arg661) and the Bridge 

helix (Arg63, Arg66, Arg70, Arg71, Arg74 and Arg78) (Figure 6A). The 2′-hydroxyl groups 

of G1, C15, U16 and G19 hydrogen bond with Val1009, Tyr450, Arg447/Ile448 and 

Thr404, respectively (Figure 6A). These observations suggested that the Watson-Crick faces 

of eight PAM-proximal nucleotides in the Cas9-bound sgRNA are exposed to the solvent, 

thus serving as a nucleation site for pairing with the complementary strand of the target 

DNA. This is consistent with previous reports that the 10–12 bp PAM-proximal “seed” 

region is critical for the Cas9-catalyzed DNA cleavage (Cong et al., 2013; Fu et al., 2013; 

Hsu et al., 2013; Jinek et al., 2012; Mali et al., 2013a; Pattanayak et al., 2013).

A mutational analysis demonstrated that the R66A, R70A and R74A mutations on the 

Bridge helix markedly reduced the DNA cleavage activities (Figure 6B), highlighting the 

functional significance of the recognition of the sgRNA “seed” region by the Bridge helix. 

Although Arg78 and Arg165 also interact with the “seed” region, the R78A and R165A 

mutants showed only moderately decreased activities (Figure 6B). These results are 

consistent with the fact that Arg66, Arg70 and Arg74 form multiple salt bridges with the 

sgRNA backbone, while Arg78 and Arg165 form a single salt bridge with the sgRNA 

backbone (Figure 6A). The cluster of arginine residues on the Bridge helix is highly 

conserved among the Cas9 proteins in the Type II-A–C systems (Figures S4, S5), suggesting 

that the Bridge helix is a universal structural feature of the Cas9 proteins. This notion is 

supported by the previous observation that a strictly conserved arginine residue, equivalent 

to Arg70 of S. pyogenes Cas9, is essential for the function of Francisella novicida Cas9 in 

the Type II-B system (Sampson et al., 2013). Moreover, the alanine mutations of the 

repeat:anti-repeat duplex-interacting residues (Arg75 and Lys163) and the stem loop 1-

interacting residue (Arg69) resulted in decreased DNA cleavage activity (Figure 6B), 

confirming the functional importance of the recognition of the repeat:anti-repeat duplex and 

stem loop 1 by Cas9.

The sgRNA guide region is recognized by Cas9 in a sequence-independent manner, except 

for the U16–Arg447 and G18–Arg71 interactions (Figures 5 and 6A). This base-specific 

G18–Arg71 interaction may partly explain the observed preference of Cas9 for sgRNAs 

with guanines in the four PAM-proximal guide region (Wang et al., 2014).
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The REC1 and RuvC domains facilitate RNA-guided DNA targeting

Cas9 recognizes the 20-bp guide:target heteroduplex in a sequence-independent manner 

(Figure 5). The backbone phosphate groups of the target DNA (nucleotides 1′, 9′–11′, 13′ 

and 20′) interact with the REC1 (Asn497, Trp659, Arg661 and Gln695), RuvC (Gln926), 

and PI (Glu1108) domains. The C2′ atoms of the target DNA (nucleotides 5′, 7′, 8′, 11′, 19′ 

and 20′) form van der Waals interactions with the REC1 domain (Leu169, Tyr450, Met495, 

Met694 and His698) and the RuvC domain (Ala728) (Figure 5). These interactions are 

likely to contribute toward the ability of Cas9 to discriminate between DNA and RNA 

targets. The terminal base pair of the guide:target heteroduplex (G1:C20′) is recognized by 

the RuvC domain via end-capping interactions (Figure 6C); the sgRNA G1 and target DNA 

C20′ nucleobases interact with the Tyr1013 and Val1015 side chains, respectively, whereas 

the 2′-hydroxyl and phosphate groups of sgRNA G1 interact with Val1009 and Gln926, 

respectively. These end-capping interactions are consistent with the previous observation 

that Cas9 recognizes a 17–20-bp guide:target heteroduplex, and that extended guide 

sequences are degraded in cells and do not contribute to improving sequence specificity 

(Ran et al., 2013). Taken together, these structural findings explain the RNA-guided DNA 

targeting mechanism of Cas9.

The repeat:anti-repeat duplex is recognized by the REC and NUC lobes in a sequence-
dependent manner

In contrast to the sequence-independent recognition of the sgRNA guide region, sequence-

dependent interactions exist between Cas9 and the repeat:anti-repeat duplex (Figures 5, 6D 

and 6E). The nucleobases of U23/A49 and A42/G43 hydrogen bond with the side chain of 

Arg1122 and the main-chain carbonyl group of Phe351, respectively (Figure 6D). The 

nucleobase of the flipped U44 is sandwiched between Tyr325 and His328, with its N3 atom 

hydrogen bonded with Tyr325, while the nucleobase of the unpaired G43 stacks with 

Tyr359 and hydrogen bonds with Asp364 (Figure 6E).

The present structure revealed that the repeat:anti-repeat duplex is recognized by the REC 

lobe, which is divergent in both sequence and length among the Cas9 orthologs within the 

Type II-A–C systems (Figures S4, S5). This structural finding explains the previous 

observation that Cas9 and sgRNA are interchangeable only between closely related Type II 

systems (Fonfara et al., 2013). The three PAM-distal base pairs (C30:G39–A32:U37) are not 

recognized by Cas9 and protrude from the complex (Figure 5), consistent with a proposed 

model in which the Cas9-bound repeat:anti-repeat duplex is processed by the host RNase III 

enzyme (Deltcheva et al., 2011).

The nucleobases of G21 and U50, in the G21:U50 wobble pair, stack with the terminal 

C20:G1′ pair in the guide:target heteroduplex and Tyr72 on the Bridge helix, respectively, 

with the U50 O4 atom hydrogen bonded with Arg75 (Figure 6D). Notably, A51 adopts the 

syn-conformation, and is oriented in the direction opposite to U50 (Figures 4C and 6F). The 

nucleobase of A51 is sandwiched between Phe1105 and U63, with its N1, N6 and N7 atoms 

hydrogen bonded with G62, Gly1103 and Phe1105, respectively (Figure 6F). Whereas the 

repeat:anti-repeat duplexes have diverse sequences and lengths among the Type II-A–C 

systems, the G:U base pair at the three-way junction is highly conserved among the 
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repeat:anti-repeat duplexes in these three systems (Fonfara et al., 2013), suggesting that this 

wobble pairing is a universal structural feature involved in the three-way junction formation.

To verify the importance of the sequence-dependent recognition of the repeat:anti-repeat 

duplex by Cas9, we evaluated the effects of repeat:anti-repeat mutations on the Cas9-

mediated DNA cleavage (Figure 6B). The replacement of G43, which forms base-specific 

hydrogen bonds with Phe351 and Asp364, with cytosine reduced the Cas9 activity by over 

3-fold. In addition, the replacement of the flipped U44 with guanine resulted in an over 5-

fold drop in the cleavage activity, whereas the replacement of U44 with another pyrimidine 

base (cytosine) did not significantly affect the cleavage activity (Figure 6B). These results 

confirmed the functional importance of the base-specific recognition of G43 and U44 by 

Cas9.

Stem loops 1–3 reinforce the interaction between Cas9 and sgRNA

Stem loop 1 is primarily recognized by the REC lobe, together with the PI domain (Figure 

5). The backbone phosphate groups of stem loop 1 (nucleotides 52, 53 and 59–61) interact 

with the REC1 domain (Leu455, Ser460, Arg467, Thr472 and Ile473), the PI domain 

(Lys1123 and Lys1124), and the Bridge helix (Arg70 and Arg74), with the 2′-hydroxyl 

group of G58 hydrogen bonded with Leu455 (Figure 6G). A52 interacts with Phe1105 

through a face-to-edge π–π stacking interaction (Figure 6F), and the flipped U59 nucleobase 

hydrogen bonds with Asn77 (Figure 6G).

The single-stranded linker and stem loops 2 and 3 are primarily recognized by the NUC lobe 

(Figure 5); in contrast, stem loop 1 and the guide:target/repeat:anti-repeat duplexes are 

recognized by both the REC and NUC lobes. The backbone phosphate groups of the linker 

(nucleotides 63–65 and 67) interact with the RuvC domain (Glu57, Lys742 and Lys1097), 

the PI domain (Thr1102), and the Bridge helix (Arg69), with the 2′-hydroxyl groups of U64 

and A65 hydrogen bonded with Glu57 and His721, respectively (Figure 6H). The C67 

nucleobase forms two hydrogen bonds with Val1100 (Figure 6H).

Stem loop 2 is recognized by Cas9 via the interactions between the NUC lobe and the non-

Watson-Crick A68:G81 pair, which is formed by direct (between the A68 N6 and G81 O6 

atoms) and water-mediated (between the A68 N1 and G81 N1 atoms) hydrogen-bonding 

interactions (Figure 6I). The A68 and G81 nucleobases contact Ser1351 and Tyr1356, 

respectively, while the A68:G81 pair interacts with Thr1358 via a water-mediated hydrogen 

bond (Figure 6I). The 2′-hydroxyl group of A68 hydrogen bonds with His1349, while the 

G81 nucleobase hydrogen bonds with Lys33 (Figure 6I).

Stem loop 3 interacts with the NUC lobe more extensively, as compared to stem loop 2 

(Figure 5). The backbone phosphate groups of C91 and G92 interact with the RuvC domain 

(Arg40 and Lys44), while the G89 and U90 nucleobases hydrogen bond with Gln1272 and 

Glu1225/Ala1227, respectively (Figure 6J). The A88 and C91 nucleobases are recognized 

by Asn46 via multiple hydrogen-bonding interactions (Figure 6J).
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Structural flexibility of Cas9 and sgRNA

Although the HNH domain cleaves the complementary strand of the target DNA at a 

position three nucleotides upstream of the PAM sequence (Gasiunas et al., 2012; Jinek et al., 

2012), in the present structure, the HNH domain is located away from the scissile phosphate 

group of the bound complementary strand (Figure 7A). A structural comparison of Mol A 

and Mol B provided mechanistic insights into complementary strand cleavage by the HNH 

domain. In Mol A, the HNH domain is followed by the α39 helix of the RuvC domain, 

which is connected to the α40 helix by the α39–α40 linker (residues 919–925) (Figure 7A). 

In Mol A, residues 913–925 form the C-terminal portion of the α39 helix and the α39–α40 

linker, while in Mol B, these residues form an extended α-helix, which is directed toward 

the cleavage site of the complementary strand (Figure 7A). These observations suggested 

that the HNH domain can approach and cleave the target DNA through conformational 

changes in the segment connecting the HNH and RuvC domains.

The structural comparison further revealed the conformational flexibility between the REC 

and NUC lobes (Figure 7B). As compared to Mol A, Mol B adopts a more open 

conformation, in which the two lobes are rotated by 15° at a hinge loop between the Bridge 

helix and strand β5 in the RuvC domain (Figure 7B). The bound sgRNA also undergoes an 

accompanying conformational change at the linker, which interacts with the hinge loop 

(Figure 7C). We also observed the concomitant displacement of the β17–β18 loop of the PI 

domain, which interacts with the repeat:anti-repeat duplex and the α2–α3 loop of the REC1 

domain (Figure 7B). Notably, there is no direct contact between the two lobes in the present 

structure, except for the interactions between the α2–α3 and β17–β18 loops (Figure 7D), 

suggesting that Cas9 is highly flexible in the absence of the sgRNA. The flexible nature of 

Cas9 is likely to play a role in the assembly of the Cas9–sgRNA–DNA ternary complex.

DISCUSSION

The present structure revealed that the 20-bp heteroduplex, formed by the sgRNA guide 

region and the complementary strand of the target DNA, is accommodated in the positively-

charged groove at the interface between the REC and NUC lobes, with the scissile 

phosphate group of the target DNA properly positioned for cleavage by the HNH domain. 

Although the present structure does not contain the non-complementary DNA strand, the 

position of the bound complementary strand suggested that the scissile phosphate of the non-

complementary strand is located in the vicinity of the active site of the RuvC domain, 

consistent with previous biochemical data (Gasiunas et al., 2012; Jinek et al., 2012). 

Furthermore, our structural and functional analyses indicated that the PI domain participates 

in the PAM recognition.

Based on these observations, we propose a model for the Cas9-catalyzed RNA-guided DNA 

cleavage (Figure 7E). Cas9 recognizes the PAM-proximal guide region and the repeat:anti-

repeat duplex of sgRNA, to form the Cas9–sgRNA binary complex. The binary complex 

subsequently recognizes the DNA sequence complementary to the 20-nt guide region of the 

bound sgRNA, to form the final Cas9–sgRNA–target DNA ternary complex. Prior to the 

ternary complex formation, the PI domain recognizes the PAM sequence on the non-

complementary strand, thereby triggering the R-loop formation. Upon the assembly of the 
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ternary complex, the mobile HNH domain approaches and cleaves the complementary 

strand in the guide:target heteroduplex, whereas the RuvC domain cleaves the single-

stranded, non-complementary strand. Biochemical studies indicated that PAM recognition 

by Cas9 is important for both the binding and cleavage of the target DNA, suggesting that 

the Cas9–sgRNA complex may indeed undergo an inactive-to-active conformational 

transition upon PAM recognition (Gasiunas et al., 2012; Sternberg et al., 2014). This notion 

is consistent with the fact that the present structure is likely to represent an inactive state, 

where the HNH domain is located away from the complementary strand.

The present crystal structure provides a critical step towards understanding the molecular 

mechanism of RNA-guided DNA targeting by Cas9. Further structural and functional 

studies with S. pyogenes Cas9 or related orthologs, including the structural elucidation of the 

Cas9–sgRNA–DNA ternary complex containing the non-complementary strand, will be 

important for illuminating the mechanisms of PAM recognition, the conformational changes 

occurring upon PAM recognition, and the mismatch tolerance between the guide:target 

heteroduplex. However, this study has provided a useful scaffold for the rational engineering 

of Cas9-based genome modulating technologies. For example, we created an S. pyogenes 

Cas9 truncation mutant (Figure 2B) that will facilitate the packaging of Cas9 into size-

constrained viral vectors for in vivo and therapeutic applications. Moreover, future 

engineering of the PI domain may allow us to program the PAM specificity, improve the 

target site recognition fidelity, and increase the versatility of the Cas9 genome engineering 

platform.

EXPERIMENTAL PROCEDURES

Detailed experimental procedures are described in the Supplemental Experimental 

Procedures.

The S. pyogenes Cas9 D10A/C80L/C574E/H840A mutant (residues 1–1368) was expressed 

in Escherichia coli Rosetta 2 (DE3) (Novagen) and purified by chromatography on Ni-NTA 

Superflow (QIAGEN), Mono S (GE Healthcare) and HiLoad Superdex 200 16/60 (GE 

Healthcare) columns. The SeMet-labeled Cas9 protein was expressed in E. coli B834 (DE3), 

and was purified using a similar protocol as for the native protein. The 98-nt sgRNA was in 

vitro transcribed with T7 polymerase and purified by 10% denaturing polyacrylamide gel 

electrophoresis. The 23-nt target DNA was purchased from Sigma-Aldrich. The purified 

Cas9 protein was mixed with sgRNA and DNA (molar ratio, 1:1.5:2.3), and the complex 

was purified by gel filtration chromatography on a Superdex 200 Increase column (GE 

Healthcare).

The purified complex was crystallized at 20°C by the hanging-drop vapor diffusion method. 

Crystals were obtained by mixing 1 μl of complex solution (A260 nm, 15) and 1 μl of 

reservoir solution (13% PEG 3,350, 100 mM Tris-HCl, pH 8.0, 200 mM ammonium acetate 

and 100 mM NDSB-256). The SeMet-labeled protein was crystallized under conditions 

similar to those for the native protein. X-ray diffraction data were collected at 100 K on the 

beamlines BL32XU and BL41XU at SPring-8 (Hyogo, Japan). The structure was 
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determined by the SAD method, using the 2.6 Å resolution data set from the SeMet-labeled 

crystals. The final model was refined using the 2.5 Å resolution native data set.

The human embryonic kidney (HEK) cell line 293FT (Life Technologies) was seeded into 

24-well plates (Corning) at a density of 120,000 cells/well, 24 h prior to transfection. Cells 

at 70–80% confluency were transfected using Lipofectamine 2000 (Life Technologies), 

according to the manufacturer’s recommended protocol. The Cas9 plasmid (400 ng) and the 

U6::sgRNA PCR product (100 ng) were transfected into each well. Genomic modifications 

were evaluated using the SURVEYOR nuclease assay, as described previously (Cong et al., 

2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall structure of the Cas9–sgRNA–DNA ternary complex
(A) Domain organization of S. pyogenes Cas9. BH, Bridge helix.

(B) Schematic representation of the sgRNA:target DNA complex.

(C) Ribbon representation of the Cas9–sgRNA–DNA complex. Disordered linkers are 

shown as red dotted lines.

(D) Surface representation of the Cas9–sgRNA–DNA complex. The active sites of the RuvC 

(D10A) and HNH (H840A) domains are indicated by dashed yellow circles.

(E) Electrostatic surface potential of Cas9. The HNH domain is omitted for clarity. 

Molecular graphic images were prepared using CueMol (http://www.cuemol.org).

See also Figures S1, S2 and Table S1.
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Figure 2. REC lobe and PI domain
(A) Structure of the REC lobe. The REC2 domain and the Bridge helix are colored dark gray 

and green, respectively. The REC1 domain is colored gray, with the repeat-interacting and 

anti-repeat-interacting regions colored pale blue and pink, respectively. The bound 

sgRNA:DNA is shown as a semi-transparent ribbon representation.

(B) Mutational analysis of the REC lobe. Schematics show the truncation mutants. The bar 

graph shows indel mutations generated by the truncation mutants, measured by the 

SURVEYOR assay (n = 3, error bars show mean ± S.E.M., N.D., not detectable).
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(C) Western blot showing the expression of the truncation mutants in HEK 293FT cells.

(D) Structure of the PI domain. The bound sgRNA is shown as a semi-transparent ribbon 

representation.

(E) Mutational analysis of the PI domain. Schematics show wild-type SpCas9 and St3Cas9, 

chimeric Sp-St3Cas9 and St3-SpCas9, and the SpCas9 PI domain truncation mutant. Cas9s 

were assayed for indel generation at target sites upstream of either NGG (left bar graph) or 

NGGNG (right bar graph) PAMs (n = 3, error bars show mean ± S.E.M., N.D., not 

detectable).

See also Figures S3–S5.
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Figure 3. NUC lobe
(A) Structure of the RuvC domain. The core structure of the RNase H fold is highlighted in 

cyan. The active-site residues are shown as stick models.

(B) Structure of the T. thermophilus RuvC dimer in complex with a Holliday junction (PDB 

ID 4LD0). The two protomers are colored cyan and gray, respectively.

(C) Mutational analysis of the RuvC and HNH domains. The sequences (top) illustrate Cas9 

nicking targets on opposite strands of DNA. Targets 1 and 2 are offset by a distance of 4-bp 

in between. The cleavage sites by the HNH and RuvC domains are indicated by pink and 

cyan triangles, respectively. The heatmap (bottom) shows the ability of each catalytic 
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mutant to induce double- (with either sgRNA 1 or 2) or single-stranded breaks (only with 

both sgRNAs together). Gray boxes, not assayed.

(D) Indel formation by Cas9 nickases depends on the off-set distance between sgRNA pairs. 

The off-set distance is defined as the number of base pairs between the PAM-distal (5′) ends 

of the guide sequence of a given sgRNA pair (n = 3, error bars show mean ± S.E.M., N.D., 

not detectable).

(E) Structure of the HNH domain. The core structure of the ββα-metal fold is highlighted in 

magenta. The active-site residues are shown as stick models.

(F) Structure of the T4 Endo VII dimer in complex with a Holliday junction (PDB ID 

2QNC). The two protomers are colored pink and gray, respectively, with the ββα-metal fold 

core highlighted in magenta. The bound Mg2+ ion is shown as an orange sphere.

(G) Superimposition of the Cas9 HNH domain and T4 Endo VII (PDB ID 2QNC).

See also Table S2.
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Figure 4. sgRNA and its target DNA
(A) Schematic representation of the sgRNA:target DNA complex. The guide and repeat 

regions of the crRNA sequence are colored sky blue and blue, respectively. The tracrRNA 

sequence is colored red, with the linker region colored violet. The target DNA and the 

tetraloop are colored yellow and gray, respectively. The numbering of the 3′ tails of the 

tracrRNA is shown on a red background. Watson-Crick and non-Watson-Crick base pairs 

are indicated by black and gray lines, respectively. Disordered nucleotides are boxed by 

dashed lines.

(B) Structure of the sgRNA:target DNA complex.

(C) Close-up view of the repeat:anti-repeat duplex and the three-way junction. Key 

interactions are shown with gray dashed lines.

(D) Effects of sgRNA mutations on the ability to induce indels. Base changes from the 

sgRNA(+85) scaffold are shown at the respective positions, with dashes indicating unaltered 

bases (n = 3, error bars show mean ± S.E.M., p values based on unpaired Student’s t-test, 

N.D., not detectable).

See also Figure S6.
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Figure 5. Schematic representation of sgRNA:target DNA recognition by Cas9
Residues that interact with the sgRNA:DNA via their main chain are shown in parentheses. 

Note that water-mediated hydrogen-bonding interactions are not shown, for clarity.
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Figure 6. sgRNA:target DNA recognition by Cas9
(A and C–J) Recognition of the guide (A), the guide:target heteroduplex (C), the repeat (D), 

the anti-repeat (E), the three-way junction (F), stem loop 1 (G), the linker (H), stem loop 2 

(I) and stem loop 3 (J). Hydrogen bonds and salt bridges are shown as dashed lines. In (A), 

the target DNA is omitted, for clarity.

(B) Effects of Cas9 (top) and sgRNA (bottom) mutations on the ability to induce indels (n = 

3, error bars show mean ± S.E.M., p values based on unpaired Student’s t-test. N.D., not 

detectable).
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Figure 7. Structural flexibility of the complex and a model for RNA-guided DNA cleavage by 
Cas9
(A) Structural comparison of Mol A and Mol B. In Mol A (left), the disordered linker 

between the RuvC and HNH domains is indicated by a dotted line. In Mol B (right), the 

disordered HNH domain is shown as a dashed circle. The flexible connecting segment (α39 

and α40) in the RuvC domain is colored orange.

(B) Superimposition of the Cas9 proteins in Mol A and Mol B. The two complexes are 

superimposed based on the core β-sheet of the two RuvC domains. The HNH domain and 

the bound sgRNA:target DNA complex were omitted, for clarity.
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(C) Superimposition of the sgRNA:target DNA complex in Mol A and Mol B. After 

superimposition of the two complexes as in (B), the Cas9 proteins were omitted to show the 

sgRNA:target DNA complex.

(D) Molecular surface of Cas9. The HNH domain and the sgRNA:target DNA complex 

were omitted, for clarity.

(E) Model of RNA-guided DNA cleavage by Cas9.
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