Burroughs

TYPICAL D84M COMPUTER CONFIGURATION

- POWER SUPPLY MODULE, SERIES D84/400 Uses discrete component solid-state circuits
- 2 MEMORY MODULE, SERIES D84/200 Uses monolithic integrated circuits, thin-film hybrid circuits, and/or discrete components to implement logic and drivers of DRO and NDRO memories
- INPUT/OUTPUT MODULE, SERIES D84/500
 Uses monolithic integrated circuits and discrete component solid-state circuits
- 4 CENTRAL DATA PROCESSOR MODULE, SERIES D84/100 Uses monolithic integrated circuits

D84M MODULAR COMPUTER SYSTEM

EQUIPMENT DEFINITION

The D84M Modular Computer System is a general-purpose, solid-state, high-speed computing system that employs integrated circuits exclusively for logic implementation, resulting in a system capable of withstanding severe environmental extremes and which is compact, reliable, light weight and of low power consumption.

The D84M has been specifically designed for military field environments.

FEATURES

The D84M Modular Computer System features:

- Four basic types of functionally and physically independent modules (see figure)
- Multiplicity of possible system configurations through combining one or more of Input/Output and Memory modules.
- Flexible design that allows for system expansion and input/output flexibility without design changes
- Built-in logic and controls for interfacing with associated systems and peripheral equipment
- "Custom" input/output design features without the usually attendant high cost

APPLICATIONS

The D84M System's low power, rugged design, and built-in growth potential ideally suit it for military field applications, including centralized command and control functions, guidance and fire control, tactical control, real-time simulation, data reduction and analysis, message switching and digital communications, ground support checkout, navigation, and general-purpose data processing.

EQUIPMENT DESCRIPTION

The D84 Modular Computing System comprises the following functional units, which can be combined into a multiplicity of computer system configurations:

	Series Reference No.
Central Data Processor Module	D84/100
Memory Module	D84/200
Power Supply Module	D84/400
Input/Output Module	D84/500
Peripheral Equipment	D84/600
Mounting Base Assemblies	D84/700
Control Panel Assemblies	D84/800

Each major series of modules is subdivided according to model (or design variation), with the last two numbers of the series reference bearing the specific module identification. A family of modules is thus available, from which the types of modules to be used can be selected according to system needs.

Input/Output Modules may be specially designed for specific needs. Since the D84M System is designed primarily for military applications, the I/O control concept permits the inclusion of special-purpose units. The D84/500 series of Input/Output Modules include several models implementing differing I/O interface control (channel) concepts.

A series of Data Sheets provides detailed information on specific models of the major series of modules and equipment of the D84M Modular Computer System. Identified by both Series and Model Numbers, these data sheets contain equipment descriptions, functional descriptions, block diagrams, and equipment characteristics.

FUNCTIONAL DESCRIPTION

A specific D84 computer system configuration may utilize one or more I/O and Memory Modules. The types of input/output modules used in a system depend on the specific system application. However, even though the I/O modules are specifically designed for the taks to be performed, the CDP interface with the I/O interface control module remains unchanged.

The basic I/O module includes the CDPmemory-I/O interface control, hereafter called the module interface control (MIC). This control group forms the connection between the I/O functions, the memory modules and the central data processor (CDP). Included in the MIC are the interrupt priority control, and the logic needed to resolve memory and CDP access conflicts.

Data transfers to and from peripheral devices are routed via independent I/O interface controls or channels. An I/O module accommodates the MIC, 1 unbuffered channel, and up to 2 buffered channels.

When access to a memory module by a buffered I/O channel is desired, the program supervises the data transfer by using the descriptor command. The descriptor assigns a memory module, or a block of locations within a module, to the I/O channel. The program may, however, interrupt the I/O memory interface to gain access to the memory for loading or unloading. It thus retains control over all memory modules.

Unbuffered channels are under direct program control, requiring an instruction per word transferred.

AVAILABLE SOFTWARE

An Assembler Program written in FORTRAN IV language for use on the 7044 or 7094, and Mathematical Subroutines (trigonometric, exponential, double precision, floating point, etc.) are currently available and applicable to any D84 Computer System configuration. Simulator and Diagnostic Routines written for D84 Systems of specific configurations are also available, portions of which likewise apply to any D84 System configuration.

PACKAGING

A typical D84 Modular Computer System consists of a CDP Module, an I/O module, a Power Supply Module, six Memory Modules, and a Mounting Base Assembly. The modules are separate, sealed packages that plug into the base assembly which contains interconnection wiring between modules. The entire unit is 16 inches deep and 18 inches high; width and weight vary according to module type.

All module housings are cast aluminum magnesium alloy. The base assembly uses a combination of extruded and wrought structural members. The modular concept, a split-casting "suitcase" technique, permits easy access to all internal electronics upon removal from the main frame. Each module has a manually operable rod assembly with a threaded stud on one end. The rod assembly extends through the module to engage the stud with the mounting base assembly. Each module has multi-pin male connector assemblies that plug into receptacles in the interconnecting wiring box of the mounting base assembly. Combination alignment and support pins on the base mounting assembly assure rigid mounting. Connections to external devices are via the connector assemblies on top of the interconnection wiring box. Cam latch devices lock the "suitcase" prior to insertion into the base assembly. A continuous gasket covers the facing edges of the split castings to provide a completely sealed assembly immune to environmental conditions.

Circuits are packaged on printed circuit pluggable modules. The circuit network module is formed by joining together a carrier assembly and a glass epoxy printed circuit board containing integrated circuit flat-paks. The holder assembly contains 55 connector pins; the pins are formed as blade contacts on one end for external connections, and hooked upward on the other end to accept the plated-through holes on the printed circuit board. The printed circuit board can accommodate up to 12 flat-paks, which are dip-soldered to the

Circuit Network Module

boards. At final assembly, the printed circuit board is inserted into a grooved trough on the inside edge of the holder; the other end of the board is then fitted over the connector pins that protrude slightly above the p. c. board. The pin-to-board connection is then rigidly fixed by dip-soldering the assembly, thus ruggedizing the circuit network module. Heat is removed directly from the flat-pak source via an interface between the flat-pak and the aluminum carrier.

CIRCUITS

Monolithic integrated circuits implement the logic throughout the system, except in the Memory Module, where special circuits

Typical D84 Module

are used to satisfy special high-frequency, low-level, and high-power signal requirements. Burroughs specifications for these circuits ensure worst-case operation over a temperature range of -50° C to 71° C. A life test in excess of 6×10^{6} circuit-hours has resulted in zero failures – an indication of the reliability that can be expected from the proven circuits of the D84 System.

Integrated circuits make possible the small physical size and low power consumption of the D84 System. The simple construction and small number of component parts minimize cost and enable automated assembly, while maintaining environmental protection. Packaging of these circuits into circuit network modules has evolved from proven concepts implemented in earlier systems designs that used discrete components.

SYSTEM FUNCTIONAL CHARACTERISTICS

Because any particular D84 Modular Computer System is composed of a number of functional units, each of which has been selected from the many models available within its series, it is impractical to tabulate in this data sheet the characteristics of each unit that could be selected. Reference to the data sheets of the modules selected to comprise the desired system is therefore suggested. There are, however, many characteristics common to all models within a particular module series. These may be summarized as follows:

Central Data Processor - Series D84/100

Models within this series differ only in packaging approach. All models utilize the identical instruction complement. Execution times are a function of the type of memory module employed.

Memory Module-Series D84/200

Access times are maintained at 1 microsecond, but cycle times and/or write times vary among the various types.

SYSTEM FUNCTIONAL CHARACTERISTICS (Cont'd)

Input/Output Module - Series D84/500

This series is inherently the most variable, since the design must be tailored to meet the needs of a wide variety of devices. Available for inclusion in this series of models are channel designs such as:

- A fully buffered channel capable of transfer rates up to 250,000 24-bit words per second when operating with a 4- μ sec cycle time memory
- An unbuffered channel with transfer rates of 125,000 words per second when operating with a $4-\mu$ sec cycle time memory

Power Supply Module-Series D84/400.

One model of this series serves the majority of the system configurations.

Control Panel Assemblies - Series D84/800

Models of this series generally contain identical panel indicators and controls. Major differences are in the interface logic contained in circuit network modules housed in the enclosure associated with the panel. The number of basic peripheral devices and the types employed will be the major element in the model determination.

ENVIRONMENTAL CAPABILITIES

The D84 is designed to withstand environments for vibrations, shock, and temperature imposed on military equipment. Some of the important operating and non-operating environments which the D84 can withstand are listed here.

Operating Environment	Imposed Stress Level	Applicable Specifications
Vibrations, Linear	MIL-STD-167 Type I, 0.5 to 5 cps, 5g peak, but not to exceed 6-inch peak-to-peak displacement; 5 to 200 cps, 10 g; 200 to 2000 cps, 20 g	MIL-1-983
Altitude	Pressures of 1062 to 11 millibars (1,300 feet below sea level to 100,000 feet above sea level)	MIL-M-1191 MIL-E-5400, Classes i through IV MIL-E-4158
Temperature	High: +71°C (160°F) at sea level Low: -50°C (-65°F) at sea level	MIL-E-4158 MIL-E-4158 MIL-E-5400, Class I MIL-E-16400, Class I MIL-M-11991
RFI	MIL-1-26600	MIL-E-4158
Linear Snock	MIL-S-901, Type II MIL-E-5400, para. 3.2.21.6	MIL-1-983 MIL-E-16400
Humidity	100 percent from -32°C (-25°F) to +37.8°C (100°F) and as low as 5 percent at +52°C (+85°F)	MIL-I-983 MIL-E-5400 MIL-E-4158 MIL-E-16400 MII-M-11991
Enclosure, Drip-proof	MIL-STD-108	MIL-I-983
Blowing Sand & Dust	Air Force Specification Bulletin 106	MIL-E-16400 MIL-M-11991 MIL-E-5400
Corrosive Atmosphere	Federal Test Method Standard No. 151, Method 811.1, for 48 hours	MIL-M-11991 MIL-I-983B MIL-E-5400 MIL-E-16400
Fungus	MIL-E-5272	MIL-M-11991 MIL-E-4158 MIL-E-5400
Non-operating Environment	Imposed Stress Level	Applicable Specifications
Temperature	—62°C (—80°F) to 75°C (+167°F)	M1L-I-983 MIL-E-4158 MIL-E-5400, Class II MIL-E-16400, Classes I through IV MIL M17001
Humidity	Absolute humidity as high as 13 grains of moisture per cubic foot of air. Relative humidity as great as 100 percent, with condensa- tion as a result of temperature change	MIL-II-1991 MIL-I-983 MIL-E-4158 MIL-E-5400 MIL-E-16400 MIL-M-11991
Transportation Shock	The D84 can withstand specified shock requirements, such as 28g shock in each of three mutually perpendicular directions. In addi- tion, the D84 when packaged in the shipping container can with- stand a 30 inch drop to concrete on all faces	As required
MISHAHUTING SHOCK	the Dak assembly and each of the packages can withstand a 2-inch drop on a hardrock maple surface	As required

PHYSICAL CHARACTERISTICS

Since the D84 Modular Computer System admits of many possible combinations of modules, two different system configurations are given in the Module Complement Table in order to exemplify system capability and flexibility versus corresponding physical dimensions and power requirements.

	 CDP I/O Power Supply (403) Mounting Base (704) 4096-Wd Memory 	1 CDP 1 I/O 1 Power Supply (403-1) 1 Mounting Base (704) 6 4096-Wd Memories				
Height	18.0 inches	18.0 inches				
Depth	16.5 inches	16.5 inches				
Width	21.0 inches	30.0 inches				
Volume	3.9 cu. ft.	5.25 cu. ft.				
Weight	150 pounds	218 pounds				
Power	160 watts	230 watts [*]				
* Based on one 4096-word memory active, balance or standby						

Module Complement

additional information

Available on request from Defense and Space Marketing Division, Burroughs Corporation Paoli, Pennsylvania 19301

Burroughs

D84M Modular Computer System

CENTRAL DATA PROCESSOR MODULE (CDP) SERIES D84/100 MODEL D84/103

EQUIPMENT DEFINITION

The Series D84/100 Central Data Processor Module, one of the modular elements of the D84 Modular Computer System, is the arithmetic and program execution module. The CDP interfaces with and exercises control over all other modules of the D84 System.

FEATURES

- Fractional binary, fixed-point operation
- 23-bit parallel adder
- One-megacycle clock
- 47 basic commands; over 300 variations
- Multi-level indirect addressing
- Addressing capability of 32,768 words
- Index registers stored in memory
- Index registers program-determined
- Program interrupts
- Logical operations
- Memory block search
- Double precision operations
- Floating point arithmetic programmable
- Monolithic integrated circuits
- MTBF: 11,700 hrs

B

Central Data Processor

FUNCTIONAL DESCRIPTION

The D84/103 Central Data Processor Module consists of two functional areas: the arithmetic and the program execution control. As the diagram indicates, there is no complete separation between the two since they share many logic blocks in order to increase over-all system efficiency.

The arithmetic unit includes the two arithmetic registers, A and C, a 23-bit parallel adder, the data input register, and the data output multiplex. All data enters the CDP via the data input register. All data exiting the CDP is transferred out via the data output multiplex. Most arithmetic and logical operations are carried out either in the A or C registers.

The CDP program execution control comprises all the logic necessary for command decoding and subcommand generation, for fetching instructions and data from memory, and for control of data transfer between the CDP and other modules of the D84 system.

Instructions read from memory are transferred to the operation register and the address field register. If address field modification or indirect addressing is indicated, the appropriate address is transferred to the memory.

FUNCTIONAL CHARACTERISTICS

Operation

Synchronous, parallel

Word Length

24 bits plus parity check bit

Arithmetic Registers

Sign plus 23 bits magnitude

Operating Speeds

Basic clock rate: 1 mc/sec
Basic instruction execution, including memory access time: 4 µsecs
Typical execution times for a 4-µsec read/restore cycle DRO memory: Literal: 4 µsecs

Add:	8 µsecs
Branch:	$4 \ \mu secs$
Multiply:	$28 \ \mu secs$

Addressing

Addressing capability up to 32,768 words.

Access time: 1 µsec Read/restore cycle(DRO): 4 µsecs Single address, direct, modular (4096 words/module) On program command: multi-level indirect to any memory location within 32, 768 words of memory

Index Registers

Index registers stored in memory Number of index registers and their locations program-determined

Indexing

All instructions modifiable by content of selected index register. Index modification of address field is modulo 32, 768

Command Repertoire

47 basic commands; over 300 variationsCommands include single and double precision arithmetic, logical operation, and memory block search

Input/Output

Input and output commands for I/O data transfer between memory and I/O, or arithmetic unit and I/O Program control over I/O by use of control descriptors Program interrupts

AVAILABLE SOFTWARE

An Assembler Program, written in FORTRAN IV language, and Mathematical Subroutines (trigonometric, exponential, double precision, floating point, etc.) are currently available and applicable to any D84 Computer System configuration. Simulator and Diagnostic Routines, written for D84 Systems of specific configurations are also available; portions of which likewise apply to any D84 System configuration.

CDP ORDER CODES

Octal			Execution			
Code	Mnemonic Code	Description & Variations	Time [*] (μsec)		Octal Code	м
30	ADD	Basic Addition	8		04	T I I
	ADA	Add to A				TAI
	ADC	Add to C Add to A Magnitude				TCI
	ADCM	Add to C Magnitude				TAI
	,				21	TEC
31	SUB	Basic Subtraction	8			TAI
	SBA	Subtract from A				TCI
	SBC	Subtract from C				TAI
	SBAM	Subtract from C Magnitude			25	TG
					20	TAC
10	ADL	Basic Add Literal	4	1		TCO
	ADAL	Add to A Literal				TAC
	ADCL	Add to C Literal				
	ADALM	Add to A Literal Magnitude			24	
	ADCLIM	Add to C Efferal Magintude				TCI
11	e DI	Pagio Sub Literal	4	-		TAI
11	SDAL	Subtract from A Literal	1		25	TCI
	SBCL	Subtract from C Literal			. 30	RRI
	SBALM	Subtract from A Literal Magnitude				RCI
	SBCLM	Subtract from C Literal Magnitude				AN
		T :	10			ANG
70	ADS	Basic Add & Store	12		34	SRI
	ADAS ADCS	Add to A and store Add to C and store				SAL
	ADAMS	Add to A Magnitude and store				XØF
	ADCMS	Add to C Magnitude and store				ХØF
						[
71	SBS	Basic Sub & Store	12		15	RR
	SBAS	Subtract from A and Store Subtract from C and Store				RAI
	SBAMS	Subtract from A Magnitude and Store				RE
	SBCMS	Subtract from C Magnitude and Store				RC
61	BTE	Basic Block Test Equal	$16+8(m-1)^{1}$ 12+8(m-1) ²			AN
	BTAE	Block Test A Equal	10.000			RE
	BTAEM	Block Test A Equal Magnitude				ANG
	BTCEM	Block Test C Equal Magnitude				
65	BTG	Block Test Greater Than	$16+8(m-1)^{1}$		14	SRI
	BTAG	Block Test A Greater Than	12+0(m-1)			SAL
	BTAGM	Block Test & Greater Than Magnitude				XØI
	BTCGM	Block Test C Greater Than Magnitude				XØI
64	BTL	Block Test Less Than	$16+8(m-1)^{1}$		75	RR
	BTAL	Block Test A Less Than	12+0(11-1)			AN
	BTALM	Block Test A Less Than Magnitude				AN
	BTCLM	Block Test C Less Than Magnitude				RC
01	TLE	Test Literal Equal	4			
	TAEL	Test A Equal Literal				
	TCEL TAELM	Test C Equal Literal Test A Equal Literal Magnitude				
	TCELM	Test C Equal Literal Magnitude			1	1
05	TLG	Test Literal Greater Than	4			
	TAGL	Test A Greater Than Literal				
	TCGL	Test C Greater Than Literal Test A Greater Than Literal Magnitude				
	TCELM	Test C Greater Then Literal Magnitude				Ł

¹Test met. ²Test not met. *Based on DRO memory, 1μsec access time, 4 μsec cycle time

Octal	Mnemonic		Execution Time*
Code	Code	Description & variations	(µsec)
04	TLL	Test Literal Less Than	4
	TALL	Test A Less Than Literal	
	TCLL	Test C Less Than Literal Test A Less Than Literal Magnitude	
	TCLLM	Test C Less Than Literal Magnitude	
21	TEQ	Basic Test Equal	8
	TAE	Test A Equal	
	TCE	Test C Equal Test A Equal Magnitude	
	TCEM	Test C Equal Magnitude	
25	TGT	Basic Test Greater Than	8
	TAG	Test A Greater Than	
	TCG	Test C Greater Than Test A Greater Than Magnitude	
	TCGM	Test C Greater Than Magnitude	
24	TLT	Basic Test Less Than	8
	TAL	Test A Less Than	
	TCL	Test C Less Than	
	TALM	Test A Less Than Magnitude Test C Less Than Magnitude	
35	RRB	Basic Reset Register Bits	8
	RAB	Reset A Bits	
	RCB	Reset C Bits	
	ANA	AND to A AND to C	
94	CPD	Pasia Sat Begister Bits	8
01	SAB	Set A Bite	Ű
	SCB	Set C Bits	
	XØRA	Exclusive OR to A	
	XØRC	Exclusive OR to C	
15	BRL	Reset Register Bits Literal	4
10	BABL	Reset A Bits Literal	-
	RELA	Reset Least Significant Half of A	
	RELC	Reset Least Significant Half of C	
	ANAL	AND to A Literal	
	REUA	Reset Upper Half of A	-
	REUC	Reset Upper Half of C	
	mol		
14	SRL	Set Register Bits Literal	4
	SABL	Set A Bits Literal	
	SCBL	Set C Bits Literal	
	XØRAL XØRCL	Exclusive OR to A Literal Exclusive OB to C Literal	
75	RRS	Reset Register Bits & Store	12
	ANAS	AND to A and Store	
	RABS	Reset A Bits and Store	
	RCBS	Reset C Bits and Store	
		START ADDR - FEE ADDR Y	
	1	BLOCK STOP ADDR = Z (contents of XL)	
		TEST MATCHED ADDR(15BITS)-(PX) & IJC = 1	
		LIF NO MATCH, LIC = 0 & PX UNCHANGED	· •
	1		

CDP ORDER CODES

CDP ORDER CODES

Octal Code	Mnemonic Code	Description & Variations	Execution Time [*] (µsec)	
63	TMX ADX DECX TXL TXG SEX	Test or Modify Index Add to X Decrement X (Pseudo-Op) Test X Less Than Test X Greater Than Set X	12	
45	STR STA STC STZ	Basic Store Register Store A Store C Store Zeros	8	-
40	SXL	Store XL Register	8	
55	SCA	Double Precision Store	12	
72	<u>DPA</u> DPAM	Algebraic (Basic DP Add) Double-Precision Add Magnitude	12	
73	<u>DPS</u> DPSM	Algebraic (Basic DP Sub) Double-Precision Subtract Magnitude	12	
76	LCA	Double Precision Load	12	
33	<u>MUL</u> MULR MULA	Basic Multiply Multiply and Round Multiply and Add A	28	
32	DIV DVA DVB	Basic Divide Divide A Divide Both	51	
36	LDR LDA LDC	Load Register Load A Load C	8	
37	LXL	Load XL Register	8	
77	MDT STX LDX	Memory Data Transfer Store X Load X	12	
03	BCN BIS BIR BES BPCS	Branch Conditional Branch on IJC Set Branch on IJC Reset Branch on EJC Set Branch on Program Control Set	4	

Octal Code	Mnemonic Code	Description & Variations	Execution Time [*] (µsec)
02	BUN	Unconditional Branch	4
27	BCM	Branch on Condition of Memory	8
21	LPM LSM LBM LMAC APM ASM	Load Primary Selection Register Load Secondary Selection Register Load Both Selection Registers Load Memory Access Controls Assign Primary Module (Pseudo-Op) Assign Secondary Module (Pseudo-Op)	Ū
67	LSP LPSAC LACSP LSMAC	Load & Store P Count Load P and Store Access Controls Load Access Controls and Store P Load and Store Memory Access Controls	12
41	STP SMAC	Store P and Memory Access Controls Store Memory Access Controls	8
06	CDT ØCDA ØCDB ØCDC ØCDD	Control Descriptor Transfer Output Control Descriptor via A Output Control Descriptor via B Output Control Descriptor via C Output Control Descriptor via D	4
07	<u>TRO</u> ØFAA/B/C/D ØFCA/B/C/D	Transfer Register Out Output from A Register via A, B, C or D Output from C Register via A, B, C or D	4
22	<u>TDO</u> ØFMA/B/C/D	Transfer Data Out Output from Memory via A, B, C or D	8
26	TIR INAA/B/C/D INCA/B/C/D	Transfer Input to Register Input to A Register via A, B, C or D Input to C Register via A, B, C or D	4
66	<u>TIM</u> INMA/B/C/D	Transfer Input to Memory Input to Memory via A, B, C or D	8
		Memory Access Controls: P Register Primary Selection Register Secondary Selection Register	

TYPICAL AVAILABLE SUBROUTINES

SUBROUTINE		EXECUTION TIME (μsec)*
Double precision multiplication		132
Double provision division	min	234+2n **
	max	316+2n
	min	234
Square root (single precision)	max	1060+6n
Square root (double precision)		1279+6n
Floating point multiplication		74
Election point division	min	106+n
Floating point division	max	188+n
The time resist - ddition (subtraction	min	28
Floating point addition/subtraction	max	85+2n

^{*}Based on 4 μ sec memory cycle time

** n is the number of shifts executed

CDP WORD STRUCTURE

φ	567	8	9	<u> 10</u>	11	12	23	24
OP CODE	PX	I	R	V	М	ADDRESS (12 BITS)		Ρ
·····								

INDEX

INDIRECT ADDRESS

PXI I INDIRECT ADDRESS (15 BITS)	Ī
----------------------------------	---

- РΧ - Specifies primary index register SX - Secondary index (specifies register) I - Specifies indirect address - Tertiary index (specifies $\mathbf{T}\mathbf{X}$ (follows indexing) register) - Command options R-V - Specifies that MV is to be sub-MS
- stituted for previous module - "0" specifies primary memory Μ "1" specifies secondary memory designation
 - Designates Memory Module MV

OTHER CHARACTERISTICS

CDP logic is implemented by single-input resistor transistor logic (RTL) circuits in monolithic integrated circuit form. Burroughs specifications for these devices ensure worst-case operation over the full temperature range of the D84 equipment. Both medium-power and low-power devices are used.

The Central Data Processor Module is housed in a hinged cast aluminum-magnesium enclosure which is completely environmentally sealed and RF tight. Each portion of the housing is basically identical, accommodating 172 circuit network modules when both halves are filled to capacity. Back-plane wiring in each housing is readily accessible upon removal of the sealed side covers.

Height

16 inches

Width

6 inches

Depth

 $14 \ 1/2 \text{ inches}$

Weight

50 pounds

Volume

0.78 cubic foot

Power

43 watts

ENVIRONMENTAL CHARACTERISTICS

See Data Sheet 676-21M

additional information

Available on request from Defense and Space Marketing Division, Burroughs Corporation Paoli, Pennsylvania 19301

Burroughs

MEMORY MODULE SERIES D84/230 MODEL D84/233

EQUIPMENT DEFINITION

The Model D84/233 Memory Module, one of the modular elements of the D84 Modular Computer System, performs the information storage function. The memory is a DRO (destructive read-out) type, using wide temperature ferrite cores operated in a coincident current mode, and configured in a 4096-word 25-bit array. Operation maybe in a read-restore or clear-write mode. Access time is less than 1 microsecond; cycle time is 4 microseconds. Silicon monolithic integrated circuits implement logical gating up to the final switching stages. Highly reliable discrete components are used in the final driver-switch stages.

FEATURES

The Model D84/233 Memory Module features:

- Maximum use of integrated circuits
- Low input power
- Stable operation over wide temperature range
- 25-bit words: 24 data, 1 parity
- Rugged, light-weight construction
- RFI protected
- Environmentally sealed
- Pluggable circuit module cards
- Pluggable core stack assemblies
- Forcedair cooling or fans not required
- Backplane wiring readily accessible
- Corrosion resistant exterior
- Memory protected against overheat, over-flow, over/under-voltage
- MTBF: 3,500 hrs

Memory Module

FUNCTIONAL DESCRIPTION

A 12-bit address is required to provide selection of one of 4096 memory locations. The desired 12-bit address is transmitted to the selected Memory Module from an address register which is part of the Module Interface Control located in the Input-Output module. Three bits from the address register are presented to the Y prefix (YP) decoder array, while three additional bits are presented to the Y suffix (YS) decoder array. This arrangement provides for selecting one of 64 "Y" drive lines via the sixteen read-write (R/W) switches. Similarly, the remaining six bits are used to select one of 64 "X" drive lines through sixteen read-write switches.

With the address selection completed, the current regulators supplying X and Y read currents are enabled. Cores at the intersection of the selected drive lines are switched to the ZERO state, causing output signals to be introduced to the sense amplifiers at bit locations corresponding to the cores that originally had ONEs stored in them. After amplification in the sense amplifiers, the information is strobed into the 25-bit data register (DR), for use elsewhere in the system.

In the read-restore mode of operation, re-entry of information from the data register to the Memory Module cores is accomplished by energizing the X and Y write current regulators, following the application of an inhibit current to those bits which are to remain ZERO. In the clear-write mode, external information is presented to the Memory Module data register prior to application of the inhibit and write currents.

Active power dissipation of a memory block (4096 words) is less than 75 watts. Stand-by power consumption is 12 watts. The power drain at a given time is a function of the number of active and stand-by memory blocks. Input power values are based on one 4096-word system being active, and the remaining words on "stand-by". Worst-case active power considers a $4-\mu$ sec cycle with all inhibit drivers turned on.

The Model D84/233 Memory Module enclosure accommodates 4,096 words. A maximum of eight such modules may be employed in a D84 system.

FUNCTIONAL CHARACTERISTICS

ENVIRONMENTAL CHARACTERISTICS

Memory Access Time

Less than 1.0 μ sec

Memory Cycle Time

Less than 4.0 μ secs

Memory Type

DRO (Destructive Read-Out)

Modes

Read-restore or Clear-write

Cores

Wide temperature ferrites

Memory Module Capacity

4096, 25-bit, words

ELECTRICAL CHARACTERISTICS

Circuits

Silicon monolithic, and highly reliable discrete components

RFI (Radio Frequency Interference)

See Data Sheet D676-21M

Power

75 watts active, 12 watts standby

See Data Sheet D676-21M

PHYSICAL CHARACTERISTICS

Module Height 8 inches

Module Width 3.9 inches

Module Depth 14 1/2 inches

Module Volume 0.26 cubic feet

Module Weight 13 pounds

Housing Cast aluminum magnesium

Cooling

Radiation and internal conduction (no fans required)

additional information

Available on request from Defense and Space Marketing Division, Burroughs Corporation Paoli, Pennsylvania 19301

D676-26M

18 February 1965

Burroughs

POWER SUPPLY MODULE SERIES D84/400 MODEL D84/403

EQUIPMENT DEFINITION

The Model D84/403 Power Supply Module supplies operating voltages for D84 Modular Computer System Modules:

Central Data Processor Module, Series 100 Memory Modules, Series 230 Input/Output Modules, Series 500

FEATURES

- Efficiency approximately 80 percent
- High speed fault protection
- Converter provides all outputs
- Single voltage regulator for converter
- Memory information protection if primary power fails
- No input power transformer
- Forced cooling not required
- Quick access to internal parts
- Various sizes available to suit system size requirements
- One temperature variable output for memory
- MTBF: 29,860 hrs.

FUNCTIONAL DESCRIPTION

A power system efficiency of about 80 percent is achieved by using a single high-voltage switching type regulator rather than several low-voltage regulators. Compactness is achieved by elimi - nating the need for an input power transformer and using a high-frequency d-c to d-c converter.

Input power, filtered and rectified, is fed to the starter and converter drive circuit. A series regulator controls the converter input voltage. The converter output is sensed to provide input control to the regulator. Rectified converter outputs provide the specified d-c outputs to the computer circuits. A temperature-controlled series regulator gives the temperature-variable 15-V supply.

Power sequencing protects information storage in memory. Logical control signals to the computer control ensure proper computer operation during power interrupts. Over- and undervoltage sensing on the output and under-voltage sensing on the input are also provided.

PHYSICAL CHARACTERISTICS

The power supply module comprises two cast aluminum-magnesium housings that are hinged together for quick access to internal parts. The enclosures thus formed is completely sealed with respect to environment. Radiation cooling and internal conduction are used; no fans or external cooling air are required within the temperature limits of the D84 specifications (see Data Sheet D676-21M). Electrical components are mounted directly in the casting or on subassembly modules that are easily removed for maintenance and repair.

	D84/403		$\underline{D84/403}$
Height:	16 inches	Volume:	0.52 cu ft
Width	4.5 inches	Weight:	35 lb.
Depth:	14 $1/2$ inches	Output Capacity:	300 watts

ELECTRICAL CHARACTERISTICS

Primary Power Requirements

120/208 volts (84v to 190v per phase) 3-Phase; 400 cycles (47 cps to 1000 cps) Power Factor - Near unity

Voltage Outputs

- 6 volts
- + 3.7 volts
- +10 volts
- +15 volts (output designed to vary linearly from +15 volts at 100°C to +13.5 volts at -55°C)

Voltage Regulation

- +15-volt output ±3 percent (for 100 percent active load change)
- Other outputs ±5 percent (includes maximum output voltage variations measured peak to peak, resulting from worst case combination of maximum variation of input voltage, input frequency, temperature, output noise, output ripple, and 50 percent load changes)

Memory Data Protection

Loss of a-c input power, and turn-on/turnoff transients will not result in loss of information stored in memory

Supply Protection

Over- and under-voltage protection and automatic shut-off

- Short circuit detection and automatic shut-off
- **Over-temperature detection**

Restart Provisions

- Automatic restart following input failures Manual restart following internal or load failure
- Manual restart following output voltage fault detection of over-temperature conditions

Components

All solid-state elements except for one 3-phase circuitbreaker

Signals Generated

Clear Power Ready Memory Inhibit

ENVIRONMENTAL CHARACTERISTICS

See Data Sheet D676-21M

additional information

Available on request from Defense and Space Marketing Division, Burroughs Corporation Paoli, Pennsylvania 19301

D676-31M

18 February 1965

Litho in U.S.A.

INPUT-OUTPUT MODULE SERIES D84/500 MODEL D84/504

The Model D84/504 I/O Module features:

- An unbuffered channel capable of carrying on multiple programmed data transfers after a single initial descriptor set-up
- Module interface control (MIC), used for memory addressing, switching, and interrupt functions
- Addressable interval timer with programmable presets
- Compatibility logic to interface with paper tape reader and punch, and typewriter input and output.

MTBF: 12000 hrs.

FUNCTIONAL DESCRIPTION OF D84/504-1 I/O MODULE

This module is divided into three functional areas: module interface control (MIC), an unbuffered channel, and the compatibility logic for paper-tape and typewriter.

Model D84/504-1 Input/Module

Module Interface Control (MIC)

The module interface control logic controls the flow of data between the Central Data Processor (CDP), memory, and input/output; resolves memory access conflicts; and contains the program interrupt logic. The MIC services memory access requests in order of their occurrence, with an access request from the CDP having the priority. If input and output data is handled by program command, the MIC provides the logic for the data

Module Interface Control

routing. The MIC also provides a fully maskable program interrupt. Provisions are made for 24 program interrupts. When an interrupt signal occurs, a bit is set in the interrupt register. However, a program interrupt is generated only if the specific interrupt has not been masked out by the interrupt mask. The interrupt mask is preset by the program. The program may also sample and/or reset the content of the interrupt register.

B

Unbuffered Input/Output Channel

The unbuffered channel is capable of servicing a number of peripheral devices. It does not include any specialized input and output controls except the interval timer. and the specialized logic to present attachment of paper tape and typewriter (both for input and output use). The program controls operation of the unbuffered channel, using the control descriptor command to identify a peripheral device and to determine the function to be performed

The program, finding the unbuffered channel not busy, transmits a descriptor specifying a device. A "select device strobe" is generated, indicating that a descriptor transfer is in process. The descriptor is presented on the common 24-bit output bus linking all peripheral devices. When the "select device strobe" is high, all devices examine the output bus to determine which device is being selected. The intended recipient then transmits a "received" signal on the common control line. The selected device also transmits an identification code which is compared with the descriptor, thus assuring that only the proper device has been selected. The device selection descriptor need not be retransmitted as long as the selected device remains the source or sink of data. When the device selection has been completed, data transfers may be made under program control.

Interval Timer

Functionally, the interval timer is part of the unbuffered channel. The interval timer can be preset, under program control, with a least significant bit precision of 1 millisecond.

FUNCTIONAL CHARACTERISTICS

PHYSICAL CHARACTERISTICS

 $14 \ 1/2 \text{ inches}$

Data Transfer Rates	Height	Weight
Based upon use of 4 μ sec cycle time DRO memory	16 inches	40 pounds
Buffered channel: 250,000 24-bit words per second (maximum)	Width	Volume
Unbuffered channel: 125,000 24-bit	6 inches	0.78 cu ft
words per second (maximum)	Depth	

ELECTRICAL CHARACTERISTICS

Silicon monolithic integrated, and discrete components

Circuit Network Module Capacity

172

RFI Protected

See Data Sheet D676-21M

Input Power

21 watts

Interface Signal Levels

0 and +3 volts

ENVIRONMENTAL CHARACTERISTICS

See Data Sheet D676-21M

additional information

Available on request from Defense and Space Marketing Division, Burroughs Corporation Paoli, Pennsylvania 19301

Burroughs

D84M Modular Computer System

MOUNTING BASE ASSEMBLY SERIES D84/700 MODEL D84/704

EQUIPMENT DEFINITION

The Model D84/704 Mounting Base Assembly

- Provides a common mounting for D84 Modular Computer System Modules:
- Provides backplane wiring for all module interconnections
- Provides for connection of peripheral equipment, primary power input, and other signal sources or destinations

FEATURES

- Available for various size system configurations
- Simple, rugged construction
- Removable backplane assembly
- Module arrangement to suit requirements
- Connector types and locations to suit customer requirements
- Rapid removal of module packages for ease of maintenance
- Expandable memory capacity without electrical or structural alterations

PHYSICAL CHARACTERISTICS

A rugged structural aluminum framework and backplane assembly, both designed to withstand or exceed the environmental specifications of the D84 system. The removable backplane assembly provides interfacing connection between each D84 module to produce an integrated computer system. Power and input/output connections to the computer system are provided for by standard MIL type connectors mounted on the top edge of the backplane assembly. Module positioning and support pins and rails are included; installation mounting bolt locations can be arranged to suit customer requirements.

Height

18 inches

Depth

16 inches

Width

determined by module complement

Weight

approximately 15 pounds

ENVIRONMENTAL CHARACTERISTICS

See Data Sheet D676-21M

additional information

Available on request from Defense and Space Marketing Division, **Burroughs** Corporation Paoli, Pennsylvania 19301

