DASware[®] design

www.DASGIP.com

User Manual

Publisher Version	DASGIP Information and Process Technology GmbH Rudolf-Schulten-Straße 5 52428 Jülich, Germany Tel: +49 (0)2461 / 980-0 Fax: +49 (0)2461 / 980-100 www.dasgip.com E-mail: service@dasgip.de Dezember 2012, 1.0
Copyright	 Copyright [©] 2012 DASGIP Information and Process Technology GmbH, Jülich No part of this publication may be reproduced without the prior permission of the copyright owner. Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor a recommendation. DASGIP Information and Process Technology GmbH assumes no responsibility with regard to the performance or use of these products. All understandings, agreements, or warranties, if any, take place directly between the vendors and the prospective users. Every effort has been made to ensure that the information in this manual is accurate. DASGIP Information and Process Technology GmbH is not responsible for printing or clerical errors. Trademarks are not marked in all cases with [™] or [®] in this manual.

Table of Contents

1.	DASware® Solutions	5									
1.1.	DASware [®] access	6									
1.2.	DASware [®] analyze	7									
1.3.	DASware [®] connect										
1.4.	DASware [®] design										
1.5.	DASware [®] discover										
1.6.	DASware [®] migrate	11									
2.	Introduction	13									
3.	DASware [®] design	19									
3.1.	DoE Builder	20									
	3.1.1. Selecting or Entering Factors	22									
	3.1.2. Selecting Resources	22									
	3.1.3. Saving DoE Settings	24									
	3.1.4. Create Workflows	25									
3.2.	Recipe Editor	27									
	3.2.1. Open	27									
	3.2.2. Overview	27									
3.3.	Starting a Workflow [Run]	29									
3.4.	Process Implementation	30									
3.5.	DASGIP Information Manager	31									
3.6.	DASGIP Documentation Wizard	35									
4.	Application Example	36									
4.1.	Full Factorial DoE with Three Factors and Two Levels	36									
	4.1.1. Implementation without External DoE Software Tools	38									
	4.1.2. Use of External DoE Tools (JMP)	41									
	Index	49									

1. DASware[®] Solutions

Increasing process complexity coupled with rising cost pressures and rapidly evolving regulatory requirements make today's process development efforts a special challenge. The pressure of achieving faster time to market for new and innovative biopharmaceuticals had led to the need to optimize every element of the total development workflow.

DASGIP *DASware* was designed as a suite of smart and flexible software solutions to accelerate bioprocess development. It enables interconnectivity of bioreactors with external labdevices, comprehensive data- and information management, factorial design of experiment and remote control of bioprocesses. *DASware* can be used with the *DASGIP Parallel Bioreactor System* for benchtop applications in microbiology and cell culture as well as with legacy benchtop bioreactor controllers.

In the past, bioreactor processing, recipe management, process and product analysis, data generation, data mining and storage were poorly interconnected thus requiring time-intensive manual work. *DASware* supports interconnectivity combined with sophisticated bioprocess information management. The utilization of *DASware* enables streamlined process development at benchtop scale in accordance with QbD standards.

DASware consists of...

DASware	- for remote monitoring and control of bioprocesses
DASware Meta bolites Nutrients Carbo- cells hydrates analyze	- for integration of lab devices with <i>DASGIP Parallel Bioreactor Systems</i>
DASware DCS PCS Historian connect	 which facilitates a seamless interaction with legacy Corporate Historians and Process Control Systems
DASware DoE design	- to apply the Design of Experiments concept
DASware discover	- a comprehensive and user-friendly data mining and information management solution for bioprocessing
DASware	- to use all <i>DASware</i> solutions with legacy benchtop bioreactor control units

1.1. DASware[®] Access

DASware access provides an unprecedented level of freedom and flexibility in the management of bioprocesses. Each *DASGIP Control System* on-site is accessible remotely by one or more remote clients simultaneously. Depending on the user-defined configuration and associated authentication either monitor or monitor and control access can be enabled for any network or mobile client.

Wi-Fi, Intranet, VPN and 4G connections can be used to provide web based access with almost every browser to one or more bioreactor systems via PC, Notebook or Netbook. The unique *DASGIP iApp* supports access from iPhone, iPod touch and iPad, optionally with webcam support.

DASGIP iApp

1.2. DASware[®] Analyze

DASware analyze was designed for seamless integration of sampling and analytical laboratory devices to the bioreactor system. A broad and growing range of analyzers can be integrated, among them nutrient analyzers, cell counter (YSI Life Science, Nova Biomedical), automation platform and autosampler (Bayer Technology and Services) biomass monitors (Aber Instruments), HPLC (Waters, Shimadzu) and mass spectrometers (Thermo Scientific). The OPC network protocol allows for interconnectivity between the bioreactor system and the analyzer including the pactivity of direct foodback from the bioreactor system and the

analyzer, including the possibility of direct feedback from the bioreactor system according to online measured analytical data. This facilitates feedback control loops for e.g. nutrients, biomass or product concentrations. Online calculations as well as event and data-driven decisions are supported. The unique bidirectional OPC communication, available for supporting devices enables sampling on demand and process dependent analyzer panel selection.

Third Party Analytical Devi	DASGIP Control
 Nutrient Analyzer Cell Counter HPLC Mass Spectrometer Gas Chromatograph Autosampler Etc. 	

Copyright © 2012 DASGIP Information and Process Technology GmbH, Jülich, Germany

1.3. DASware[®] connect

DASware connect was designed to integrate DASGIP's Parallel Bioreactor Systems and 3rd party bioreactor controllers into process control systems and legacy corporate historians. This includes but is not limited to Emerson DeltaV[®], Siemens SIMATIC PCS 7, ABB 800 xA, OSIsoft PI System[®] and Matrikon OPC Historian. *DASware connect* facilitates company-wide access to all relevant bioprocess data like set-points, process values, feed-profiles, calibration and controller parameters as well as events and alarms.

DASGIP Parallel Bioreactor Systems

1.4. DASware[®] design

DASGIP's bioreactor systems serve as an ideal platform to carry out DoE on bioreactors in parallel. *DASware* design automatically compiles DoE information from 3rd party DoE tools into recipes and feeds-back response information into DoE and multivariate analysis and reporting tools.

DASware design comes with a Full Factorial DoE builder. Alternatively, a large variety of DoE designs for screening, process development and optimization can be automatically imported from most powerful 3rd party DoE tools like JMP and others. Parallel recipes incorporating the DoE factor variations (i.e. pH, DO, T set points or feed rates) are automatically populated. Following DASGIP's Point-Click-Grow concept, they can be carried out on a set of bioreactors with a single mouse-click. DoE response information is collected and prepared for an automated export.

1.5. DASware[®] discover

DASware discover helps you to structure efficiently the assortment of process information like

- Process values
- Process events
- Recipes
- Biological,
- Chemical and
- Analytical information

Use this intuitive database query tool to initiate real-time retrievals and run-to-run comparisons. All critical process information is clearly listed as table and can be configured. In addition, you can easily generate charts in Microsoft Excel[®] using *DASGIP Documentation Wizard*.

1.6. DASWARE[®] MIGRATE

A significant installed base of ageing bioreactor controllers offers rudimentary cultivation control capabilities. However, recent advances such as bioprocess data management, analytical device integration, DoE support and remote control, available from DASware solutions, are often missing. Now users of 3rd party bioreactor controllers can also benefit from DASGIP's intelligent software solutions.

DASware migrate integrates most common 3rd party bioreactor control units and systems (e.g. Satorius Stedim Biotech & Applikon) as well as DASGIP modules into legacy bioreactor controllers (e.g. Off-gas analyzer GA4, Gas-mixing station MX4/4, Mulitipump MP8).

DASware migrate enables

- Access to the complete DASware solution suite
- o Sharing recipes between different bioreactor controllers
- Powerful Microsoft Excel[®] reporting
- o Comprehensive information management and process data historian
- Analytical lab device integration
- DoE and remote control

2. Introduction

In current bioprocessing technologies, process-oriented criteria are playing an increasingly important role in the assessment of product quality. Quality by Design (QbD) is a concept that was highlighted, among others, in an FDA guideline on process validation (General Principles and Practices, FDA, January 2011). It states the need for monitoring procedures already at the development stage in order to achieve a controlled process and to ensure a defined product quality.

This chapter outlines the concepts of design space, design of experiments (DoE) and DoE fields of application. This is followed by a brief overview of the parallel bioreactor system *DASbox* and *DASware design* itself, including a schematic process flow.

Design space

In general, different process settings can be used to achieve good product results. This multidimensional space which is defined by the factors and the corresponding levels is referred to as design space (Fig 1). Within this space, the required quality of the product is guaranteed.

Design space

Fig 1: Design space with 3 factors in 2 levels

The identification of a suitable design space requires a variety of implementations. Design of experiments (DOE) can be helpful to reduce the extent of required testing – the total number of individual experiments.

Design of experiments (DoE)

DoE (Fig. 2) is often used to reduce the number of process runs necessary to determine a suitable design space (Fig 1) for the manufacture of a product. The amount of time saved by using a multifactorial DoE approach, compared to the classical variation of individual parameters (one factor at a time), significantly reduces the development overhead and helps to shorten development times.

Fig. 2: DoE scheme

The advantages of DoE include:

- Fewer individual experiments required.
- Main effects and interactions are recorded.
- Effects of main factors can be quantified and statistically evaluated.
- Process knowledge is improved, allowing the development of more efficient procedures.
- The description of functional process connections facilitates the definition of a mathematical model and thus the design space (Fig 1).

The following points are to be noted regarding DoE-based process development:

- The factors which have an influence on the target value(s) must be identified.
- The process settings must be varied meaningfully, e.g., within the physiologically acceptable temperature or pH range of the used microorganisms/cells.
- Discrete factor values can be selected using prior knowledge or previous examinations.

DoE Fields of Application

A DoE is used, for example, in the process development of biopharmaceuticals, such as vaccines. Equally suitable is the production of biochemicals such as bioethanol or also foodstuffs such as lactic acid. Individual fields of application for optimization are screening, strain or cell line characterization as well as process development itself. The following figure (Fig. 3) provides a schematic overview of the DoE fields of application.

Since DoE minimizes the number of process runs and optimizes the acquisition of knowledge, a number of software products for DoE is available in the market. The following is a list of some well-known products:

- JMP[®]
- Design Expert[®]
- Minitab[™]
- MODDE[®]

System Platform for DoE

Since in the field of bioprocess applications typical designs of experiments can be carried out at the same time using a number of bioreactors, a parallel system is perfectly suited to support the principle of DoE.

DASGIP Parallel Bioreactor Systems ensure defined and controlled process conditions to facilitate both the screening of bacteria or cell cultures and the optimization of media or substrate quantities on a small scale. For example, the easily extendable modular *DASbox* System (four mini bioreactors per unit) offers controlled and reproducible cultivation results.

In *DASGIP Control* all processes can be precisely defined, optimized and adapted. In addition, all results are accurately and precisely documented.

Fig. 4: DASbox System with 6 x 4 bioreactor units

DASware design

DASware design combines statistical design of experiments (DOE) with parallel bioreactor systems, e.g., the *DASbox* or other modular parallel bioreactor systems from DASGIP. The degree of automation achieved considerably simplifies and shortens the processes.

The following is a schematic outline of an experimental sequence (Fig 5).

Fig 5: Schematic process flow

- Within *DASware design*, the DoE Builder facilitates the input of all DoE-relevant parameters. There is also an option to directly integrate files from DoE software tools.
- Individual recipes can be used and resources can be assigned.
- A generated workflow can be saved with one click and seamlessly integrated into *DASGIP Control* via the Recipe Editor. Parallel and controlled process implementation is carried out here, if desired, according to a SOP.
- All process information is automatically saved and can be analyzed and supplemented directly in *DASGIP Control* using the *DASGIP Information Manager*.
- Afterwards, export options allow the process information gained to be traced in the statistical analysis software. Improved process knowledge enables the development of more efficient procedures.

DASware® design

3. DASware[®] design

The configuration, implementation and evaluation of complex experimental designs is a major challenge in process development. *DASware design* helps implementing such designs by seamlessly integrating DoE in *DASGIP Control* and using its precise, parallel process implementation.

With DoE the most important process parameters are initially identified to enable optimal process settings to be made. These parameters can be easily entered via the DoE Builder in *DASware design*. All values are then seamlessly transferred to the Recipe Editor, where they can be supplemented. After a workflow has been started, the parallel bioreactor processes are carried out under approved controlled conditions. Once this is completed, the process results are documented and can be easily evaluated using the *DASGIP Information Manager*. In addition, the evaluated data can be reimported into to a standard DoE software tool.

The following figure summarizes the sequence of a DoE-based process in *DASGIP Control* using *DASware design*. It also provides an overview of the structure of this chapter.

- 1. DoE Builder (3.1)
- 2. Recipe Editor (3.2)
- 3. Run workflow (3.3)
- 4. Monitoring and control of the cultivation processes in bioreactors (3.4)

DoF	- Build	ler DA	SGIP Plant	-0									1
	- Dunu												
DoE ty	Full F	actorial	~ N	umber of factors 3	Number of r	responses 1	✓ N	umber of experir	nents 11	Re	set		
Rando	nize 🗹		U	se repetitions	Use center	points 🛛 🔽							
D-E 9.													
DOC THE													
Numbe	of systems	1 🗸	Block size 4	Y Prefix Do				art index	1	ŀ	1		
System		1 🗸	Recipe E	ditor: Do	E-1-4.Con	itrol							
	Id	Name	Procedure	DO	oH N	Gasflow	×02	XCO2	Feed C	Feed D	т		
	Factor 1	pH	DoE-1	20 %D0	6,8 pH Controller	Controller	Controller	0%	3 mL/h	3 mL/h	35,8 °C		
	Factor 2	DO	DoE-2	20 %DO	7,2 pH Controller	Controller	Controller	0%	3 mL/h	😹 Run Work	Now	3	×
	Factor 3	T	DoE-3	30 %D0	6,8 pH Controller	Controller	Controller	0%	3 mL/h	User Templat	es Workflows waiting to be starter	d	
•	Response 1	Yield	DoE-4	30 %D0	7,2 pH Controller	Controller	Controller	0%	3 mL/h	Identifier	-8 (Aerobic Fermenta Edited	Last modified 9/20/2011 5:24:43 PM	LastModifier Manager
	ld	System	n Workflow	/ Setup	Reactor	Block		Pattern	pH []				
•	2	1	DoE-1-4	DoE-1	1	1	-		7.2				
	6	1	DoE-1-4	DoE-2	2	1			7.2				
	4	1	DoE-1-4	0.50	2	1	_	- (4) -	7.2				
	3	1	DoE-1-4										
	11	1	DoE-5-8	in the second second	- Contraction -	-	-				100 C		
	9	1	DoE-5-8	Colorest 1	-		-		1.00		100		
	1	1	DoE-5-8	A DECK					- 10		100		
	10	1	DoE-5-6						1.00				
	5	1	DoE-9-11				100		1.00		10.0		
	8	1	DoE-9-11				1.00		1.00		Designed		
_											Section 2.		
						_			1.00		States and the		
				1.0		-					100 C		
											Taxaban I.		
				1.00			- 1		1.00		and the second se		
					-								
					and the second	-	-						
							1.00				1.000		
				1.1.1									
				1.00									

User Manual DASware[®] design

Fig. 6: Overview of a DoE-based process flow with DASware design

- 5. Documentation using the Information Manager (3.5)
- 6. Analysis of historical cultivation data for the plausibility check in the DASGIP Documentation Wizard (3.6)
- 7. DoE evaluation (4)

3.1. DOE BUILDER

The DoE Builder allows the direct selection or input of all DoE-relevant parameters.

Click on Tools in the *DASGIP Control* menu bar to open the DoE Builder by clicking on Design of Experiments (DoE).

DoE	E Builder:	DASGIP	Lant		2		3		4	9		
DoE ty	pe Full Factoria		Number of fa	actors 3	~	Number of respons	es 1 🔽	Number of experimen	ts 11	Reset		
Rando	mize 💌 👩		Use repetitio	ns 🔽	-7	Jse center points	E -8					
DoF file		10				1 2			-13	<u> </u>	9	
		1 1	_ _			Ψ						
Number	r of systems 1	Block size	4 🎽 Prefi:	(Dol	E			Start index	1		4	
			_									
System	1		Tem	olate Dol	E Standar	d 201201	¥ —	16	Lifeate Wo	rkflows	V	
	ld	Name	EU	Numeric		Low						
	Factor 1	pН		~]	6.8	19					
	Factor 2	DO	%	~	1	20	30					
	Factor 3	Т	°C	~]	35.8	37.2					
•	Response 1	Yield	mg/L	~]	0	0					
	L4	Sustan)) (orkflow	Satura		Peaster	Plack	Pattern	-4.0	00.1%1	TICI	Yield Ima /L1
•	2	1	DoE 1.4	DoE 1		1	1	- attern	20 70	20	25.0	neid (ng/c)
·	6	1	DoE 1.4	DoE 2		2	1	+ 	7.2	20	33.0	
	4	1	DoE 1.4	DoE 2		2	1		7.2	20	37.2	
	3	1	DoE-1-4	DoE-0		4	1		6.9	30	35.0	
	11	1	DoE 5.9	DoEF		1	- 2	000	7	25	30.0	
	9	1	DoE-5-8	DoE-6		2	2	000	7	25	36.5	
	1	1	DoE-5-8	DoE-7		2	2	20	6.9	20	35.9	
	7	1	DoE-5-8	DoE-8		4	2		6.8	30	37.2	
	10	1	DoE-9-11	DoE-9		1	3	000	7	25	36.5	
	5	1	DoE-9-11	DoE-10		2	3		68	20	37.2	
	8	1	DoE-9-11	DoE-11		3	3	+++	7.2	30	37.2	

Structure of the DoE Builder:

Fig. 7: Overview of the DoE Builder

No.	Control element	Description
1.	DoE type	For selecting a DoE type (e.g., Full Factorial).
2.	Number of factors	Selects the number of factors
3.	Number of responses	Selects the number of responses
4.	Number of experiments	Indicates the number of individual experiments
5.	Reset	Resets all entries.
6.	Randomize	If you select this checkbox, a random assignment of individual experiments takes place to the existing bioreactors.
7.	Use repetitions	If you select this checkbox, all experiment runs are automatically doubled.
8.	Use center points	Here you can select the addition of a center point identification per reactor unit.
9.	Open	Imports DoE data see 4.1.2.
10.	Number of systems	For selecting the number of available systems see also 3.1.1.
11.	Block size	Indicates the number of bioreactors per unit/block
12.	Prefix	Here you can enter a prefix to be attached to the front of all workflow and setup names.
13.	Start index	Adjusts the numbering start point.
14.	Save	Saves all entries see 3.1.3.
15.	System	Limits the selection by system.
16.	Template	Selects previously created recipe templates.
17.	Creating workflows	Uses the entered DoE data to automatically compile executable workflows for <i>DASGIP Control</i> see 3.1.4.
18.	Name	For defining factor and response names.
19.	Low / High	Level assignment for factors.
20.	Table	The DoE table is automatically adjusted and filled.

3.1.1. Selecting or Entering Factors

The number of table rows in the lower part of the DoE Builder is adapted to the number of factors and the response(s) that were selected.

Standard factor names that correspond to the DASGIP Control naming convention can be selected in the dropdown menu in the Name column. The EU (unit), Low and High (level) columns are then automatically filled with default values. You can click on these values and adjust them as necessary.

DoE B	uilder: DA	ASGIP F	Plant						
DoE type	Full Factorial		 Number of factors 	3 🗸	Number of responses	1 🗸	Number of experiments	11	Reset
Randomize			Use repetitions		Use center points				
DoE file									`
Number of sys	tems 1 💌	Block size	4 V Prefix	DoE			Start index	1	Ħ

Numbe	r of systems	1	*	Block size		4 🗸	Prefix		DoE				Start index	1	H	
System		1	*				Templ	ate	DoE Standa	rd 201201	(*		Crea	ate Workflows	
	ld		Nam	e		U		Nume	eric	Low	High					
•	Factor 1		pН	•	•				~	-1	-1					
	Factor 2		pH D0						~	-1	4					
	Factor 3		T	•					~	-1	4					
	Response 1		Feed	A												
			Feed Feed Feed	B C D	•											

You can also directly enter new factors which have not yet been stored.

	Id	Name	EU	Numeric	Low	High
	Factor 1	pН		~	6.8	7.2
	Factor 2	DO	2		20	30
•	Factor 3	Medium			LB	PAN

3.1.2. **Selecting Resources**

The middle part of the DoE Builder allows the selection and assignment of existing resources.

Select the number of used systems in the dropdown menu next to Number of systems. If several systems exist, you can select which system should be used via System.

DoE Builder: DASGIP Plant													
DoE type	Full Factor	rial	N	~	Number of factors	3 🗸	Number of responses	1 🗸	Number of experiments	11	Reset		
Randomize				ι	Use repetitions		Use center points	V					
DoE file													
Number of syst	tems 💈	~	Block size	4	Y Prefix	EC			Start index	1	H		
System	2 3 4	43			Template	DoE Standar	1 201 201	~		Create	Workflows		

Also select the number of reactors of a system unit next to Block size.

DoE Builder: DASGIP Plant													
DoE type	Full Factorial		V Number of fac	tors 3 🐱	Number of responses	1 🗸	Number of experiments	10	Reset				
Randomize	✓		Use repetition	s 🔲	Use center points								
DoE file													
Number of syste	ems 2	Block size	Prefix	DoE			Start index	1	H				
System	1	~	12 以 16 Templ	ate DoE Standa	ard 201201	*		Create	e Workflows				

Enter a prefix to be attached to the front of all workflow and setup entries.

In the Template dropdown, select previously saved template files that contain all experimentrelevant parameters (e.g., speed, temperature, feed rate etc.).

Next to Start index enter the number at which the setup numbering should start. It may be useful to adjust this number if, e.g., different systems are used.

DoE Bu	uilder: D	ASGIP	Plar	nt						
DoE type	Full Factorial		~	Number of factors	3 🗸	Number of responses	1 🗸	Number of experiments	11	Reset
Randomize	V			Use repetitions		Use center points	v			
DoE file										`
Number of syste	ems 1 🗸	Block size	4	Prefix	DoE			Start index	1	H
System	1 🗸]		Template	DoE Standar	d 201201	~		Create	Workflows

3.1.3. Saving DoE Settings

To save all the settings you have made, click on the Save button. A file manager dialog appears in which you can enter a file name and select a storage location.

DoE B	uilder: DA	SGIP PI	ant						
DoE type	Full Factorial	~	Number of fa	ctors 3 🗸	Number of responses	1 🗸	Number of experiments	11	Reset
Randomize			Use repetition	ns 📃	Use center points	V			
DoE file									
Number of syst	tems 1 💌	Block size	4 🔽 Prefix	DoE			Start index	1	
System	1 🗸		Temp	late DoE Standa	ard 201201	*		Creat	e Workflows

Resource Example

The use of three systems with a block size of four reactors is shown as an example.

1. 3 is selected for Number of systems and 4 for Block size. To save the settings for the first system, number 1 has to be selected for System.

DoE B	uilder: DASGIP Plai	nt					
DoEtype Randomize	Full Factorial	Number of factors Use repetitions	3 🗸	Number of responses Use center points	1 🗸	Number of experiments	Reset
DoE file	Z:\Share\01012012_DoE-1-11 (System1).doe					
Number of sys	tems 3 🗸 Block size 4	Prefix	DoE			Start index	
System	1	Template	DoE Standard	201201	*		Create Workflows

The saved .doe file can be reimported at the desired process computer in the DoE Builder using the button.

2. To save the entries for the second system, number 2 has to be selected for System.

Number of system	is 1 🔽	Block size	4 🗸	Prefix	DoE				Start index	1	
System				Template	DoE Standa	rd 201201		*		Cre	ate Workflows
ld	3 2 1	E	EU	Nume	eric	Low	High				
A Francis	4 °					-1	+1				

This ensures that only the data relevant to the second system is saved and can be transferred to a process computer.

3. The procedure with the data for the third system is identical. In this case, number 3 has to be selected for System before saving.

Number of systems	3 🗸	Block size	4	✓ Pr	Prefix	DoE		Start index	1	Ħ
System	3 🗸			Te	emplate	DoE Standard 201201	/		Create W	orkflows

3.1.4. Create Workflows

After all DoE parameters have been entered, which are summarized in a table in the lower part of the DoE Builder, they are merged into the selected recipe template using the Create Workflows button.

DoB	E Builder:	DASGIP	Plant								
DoE ty	pe Full Factoria		Number of fa	actors 3 💌	Number of respons	es 1 🗸	Number of experimen	ts 11	Reset		
Rando	mize 🔽		Use repetitio	ns 📃	Use center points						
DoE file											
Numbe	r of systems 1	V Block size	4 💌 Prefi:	k DoE			Start index	1	H		
System	1	*	Tem	plate DoE Standa	rd 201201	~		Create Wo	orkflows R		
	Id	Name	EU	Numeric	Low	High					
	Factor 1	pН		V	6.8	7.2					
	Factor 2	DO	%	V	20	30					
	Factor 3	Т	°C	v	35.8	37.2	-				
1	Response 1	Yield	mg/L								
	ld	System	Workflow	Setup	Reactor	Block	Pattern	pH ()	DO [%]	T [* C]	Yield []
▶	1	1	DoE-1-4	DoE-1	1	1		6.8	20	35.8	
	2	1	DoE-1-4	DoE-2	2	1	+	7.2	20	35.8	
	3	1	DoE-1-4	DoE-3	3	1	-+-	6.8	30	35.8	
	4	1	DoE-1-4	DoE-4	4	1	++-	7.2	30	35.8	
	5	1	DoE-5-8	DoE-5	1	2	+	6.8	20	37.2	
	6	1	DoE-5-8	DoE-6	2	2	+-+	7.2	20	37.2	
	7	1	DoE-5-8	DoE-7	3	2	·++	6.8	30	37.2	
	8	1	DoE-5-8	DoE-8	4	2	+++	7.2	30	37.2	
	9	1	DoE-9-9	DoE-9	1	3	000	70	25	365	

This ensures that several workflows are automatically created, e.g., if several systems are used, or a single system with a low block size is used several times. Each workflow contains a set of individual recipes containing the parameter variations of the design.

All automatically created workflows appear in *DASGIP Control* at the left under Editing in the Navigation Tree.

Before carrying out the experiment, it is recommended that you check the individual entries in the Recipe Editor (3.2) and complement them as necessary.

The workflows from the example are divided as follows:

System 1

Recipe E	Recipe Editor: DoE-1-4.Control										
Procedure	DO	pН	N	Gasflow	X02	XCO2	Feed C	Feed D	Т		
DoE-1	30 %DO	6.4 pH	Controller	Controller	Controller	0%	0 mL/h	2	37 °C		
DoE-2	30 %DO	7.2 pH	Controller	Controller	Controller	0%	3 mL/h	Σ	37 °C		
DoE-3	30 %DO	7.2 pH	Controller	Controller	Controller	0%	3 mL/h	Σ	37 °C		
DoE-4	30 %DO	6.4 pH	Controller	Controller	Controller	0%	3 mL/h	2	34 °C		

System 2

Recipe E	ditor: l	DoE-5	-8.Con	trol			
Procedure	DO	pН	N	Gasflow	X02	XCO2	F

Procedure	DO	pН	N	Gasflow	X02	XCO2	Feed C	Feed D	Т
DoE-5	30 %DO	6.8 pH	Controller	Controller	Controller	0%	3 mL/h	ζ	35.5 °C
DoE-6	30 %DO	6.8 pH	Controller	Controller	Controller	0%	3 mL/h	ζ	35.5 °C
DoE-7	30 %DO	7.2 pH	Controller	Controller	Controller	0%	3 mL/h	ζ	37 °C
DoE-8	30 %DO	7.2 pH	Controller	Controller	Controller	0%	3 mL/h	2	34 °C

System 3

Recipe E	Recipe Editor: DoE-9-11.Control											
Procedure	DO	pН	N	Gasflow	X02	XCO2	Feed C	Feed D	т			
DoE-9	30 %DO	6.4 pH	Controller	Controller	Controller	0%	3 mL/h	Σ	37 °C			
DoE-10	30 %DO	6.8 pH	Controller	Controller	Controller	0%	3 mL/h	Σ	35.5 °C			
DoE-11	30 %DO	6.8 pH	Controller	Controller	Controller	0%	3 mL/h	Σ	34 °C			

3.2. RECIPE EDITOR

The Recipe Editor provides an intuitive interface representing all parameter variations of all setups in a table. In the recipe editor any individual parameter adjustment is possible before starting the process.

3.2.1. Open

By right-clicking on the name of the main procedure (Control...), a context menu appears in which you can click on Edit in order to open the Recipe Editor of *DASGIP Control*.

3.2.2. Overview

During the experimental setup, in addition to the preconfigured DoE parameters, other process parameters like PID or feed-rates can be adjusted either all descriptive key parameters can be entered at this point. This includes details on the used strain, cell line, medium composition, temperature etc. The Recipe Editor allows these entries to be made individually for each setup/reactor.

The appearance of the editor varies depending on the configuration of each *DASGIP Control System* and according to the defined workflow. The table displayed contains different columns and one row for each reactor (setup).

Recipe E	ditor: [DoE-1	-4.Con	trol						Procedure .	Attributes ExternalAlarms
Procedure	DO	pН	N	Gasflow	X02	XCO2	Feed C	Feed D	T	Template	Aerobic Fermentation: pH Control
DoE-1	20 %DO	6,8 pH	Controller	Controller	Controller	0%	3 mL/h	3 mL/h	35,8 °C		CO2 Gassing;
DoE-2	20 %DO	7,2 pH	Controller	Controller	Controller	0%	3 mL/h	3 mL/h	35,8 °C	C Show Or	ion iou
DoE-3	30 %DO	6,8 pH	Controller	Controller	Controller	0%	3 mL/h	3 mL/h	35,8 °C	1 3110W 0 1	(ci view
DoE-4	30 %DO	7,2 pH	Controller	Controller	Controller	0%	3 mL/h	3 mL/h	35,8 °C	Comment	
										Fermentation and Base; Ca Speed, O2 C Gassing.	of Aerobic Cells: pH Control using Acid secaded DO Control with Agitation oncentration and Gas Flow; CO2

Comprehensive, detailed information on processes can be especially useful for the individual comparison of historical process data.

Attributes and conditions for individual setups can be easily entered into predefined entry fields. The fields which appear depend on the previous configuration in the Workflow Editor (for more information see User Manual *DASware migrate* 2.3.2.).

Clicking on a single setup cell displays the corresponding buttons (Attributes, Conditions) in the right area of the editor. Information can be added here.

Recipe Editor:										
Procedure D0										
DoE-5	30 %D(
DoE-6	30 %D(
DoE-7	30 %D(
DoE-8	30 %DC									

Reactor Condition	ns Summary	Attributes	
Purpose	DoE		
CellLine	E. coli		
Product	ху		
Medium	LB		
Acid			
Base			
Nutrients A	Glucose		
Nutrients B			
Nutrients C			
Nutrients D			

When a workflow has been created from the DoE Builder via Create Workflow and the usual factor names (e.g., pH, DO, T etc.) have been selected in *DASGIP Control*, the Recipe Editor is automatically filled with the parameters.

	·		
Т		35.50	°C
pН		6.80	pН
DO		30.00	%D0
N		0.00	rpm
F		0.00	
V		0.00	
FA	0		
FB	0		
FC	3		
FD	3		
Reactor	0		

Setup Reactor Conditions Summary Attri 4

3.3. STARTING A WORKFLOW [RUN]

To start a workflow created in the Workflow Editor, you can either click on Run Workflow under File in the menu bar or click directly on the corresponding button in the toolbar.

芝 🧐 🖓 🛃 📑 📐 🖄 👶 🖄	8	DASC	GIP Contr	ol 4.0	- [Plant	Overv
	10 ⁻¹	File	Edit Viev	v Tools	Window	Help
		Ne Op	ew Workflo oen Workflo	w	Ctrl+N Ctrl+O	2
		Ru	un Workflov	v N	Ctrl+R	
		Clo	ose	16	Ctrl+F4	
	É.,	Sa	ive		Ctrl+S	
		E×	port Event	s (CSV)		
		Lo	ick Applicat	ion	Ctrl+L	
		Ex	at			

The following dialog lists the workflows that have not yet been started under Workflows waiting to be started.

😹 Run Workfl	ow				×
User Template	Workflows waiting	to be started			
Identifier		Status	Last modified	LastModifier	
DoE-12 (Aero	bic Fermentation:	Edited	3/21/2012 11:31:34 AM	Manager	
DoE-5-8 (Aer	obic Fermentation	Edited	3/21/2012 11:29:48 AM	Manager	
DoE-92 (Aero	bic Fermentation:	Edited	3/21/2012 11:30:11 AM	Manager	
			Run	Cancel	

Click on the Run button to continue the process.

3.4. PROCESS MONITORING AND CONTROL

The selected procedures are started depending on workflow.

After the main procedure has started, the Summary View is displayed. It summarizes all the important process operations at a glance.

A Summary View is shown below which is based on a DoE experiment setup with varied temperature set points (Fig. 8). By clicking on the temperature symbol, the values of the temperature controller are displayed on the right side. The diagram in the lower part represents the course of the dissolved oxygen (DO) in the medium, in addition to the three different temperature set points.

Fig. 8: Exemplary overview (Summary View) in *DASGIP Control*; bioreactor processes of a variation of temperature set points

More information can be found in the DASGIP Control User Manual.

After completion of all processes, the process data is saved in *DASGIP Control* and can be used for further analysis.

3.5. DASGIP INFORMATION MANAGER

In addition to the automatic documentation of all general process and DoE-relevant data, it is also possible to supplement additional user-definable information such as the product yield, the maximum density of vital cells (VCD.Max) or general quality data. This information is entered in the *DASGIP Information Manager*. Such data can contain information on the DoE responses to be exported in an analysis tool.

The following figure provides an overview of the *DASGIP Information Manager*.

	1				2							3				
Info	rmano	on Mana	age	r: DASGI	lant							1				
	- Works	flow Sets	P	Started	- T ["C]	= pH (pH)	- D0 [%D0]	- N (spm)	- FC	- FD	- YH	Spec	- Quality		DoE-1-4	
	DoE-1-4	~	-	×	×	~	×	~	×	×		~	×		Cell Cultivation: pH DD Control (XD2,F	Control (CO2/base);
•	DoE-1-4	DoE-2	4	/17/2012 10:48 AM	37	7.4	30	80	3	3	0		100	<u> </u>	State:	Finished
	DoE-1-4	DoE-3	4	/17/2012 10:48 AM	37	7.2	30	80	3	3	0	_	100		Procedures: Setups:	4
	DoE-1-4	DoE-1	4	/17/2012 10:48 AM	37	7.2	30	80	3	3	0		100		Created:	
															3/22/2012 1:59:0 Last Modified:	PM Manager
		Щ													4/17/2012 10:13: Stated:	CSAM Manager
	(4)													4/17/2012 3:48:3 Stopped:	2 AM Manager
		-													Comment	in a logar
															Cell Cultivation: pH and Base: Cascad	Control using CO2 ed DO Control using
															Oxygen Concentra	tion and Gas Flow.
Export F	older: C.	DASGIP\Export	6											Expo	nt Table Export Re	port Reset View

Fig. 9: Overview of the DASGIP Information Manager

- 1. Query criteria appear in the column headings.
- 2. You can use the buttons to select comparative operators in order to limit a query.
- It is possible to subsequently enter values, such as Yield or Quality, that have been determined based on process data. (Additional individual columns can be used if they were defined before the start of the process. More information can be found in the DASGIP Control Manual).
- 4. The query results are summarized in table form and can be selected individually.
- 5. General data on selected setups or workflows is displayed.
- 6. Export options.

In the *DASGIP Information Manager* it is also possible to carry out queries during an ongoing experiment. However, note that the current data of this ongoing experiment cannot yet be included in the query. This data will only be available after the experiment has been completed.

6

A query in the *DASGIP Information Manager* includes all the experiment runs with the corresponding recipes and process data as well as the events and user-specific context information. Only the procedure data of calibrations, CIP and Clean is not included. The result of a query can then be exported to Microsoft Excel[®].

1. You can either click directly on the Information Management button in the taskbar to open the *DASGIP Information Manager* or call the Tools menu and select the Information Management menu item.

😹 File Edit View Tools Window Help	🚋 File Edit View	Tools Window Help
📄 🤣 🛂 🛀 🕨 🔊 🧑 😫 🏠 🗌	2 19	Options
		Backup
Overview Instructions Naviastics	Overview I	User Manager
Plant	🌄 Plant	Information Management
	🗄 💒 DASGIP Plar	Design of Experiments (DoE)

2. When you click on a corresponding cell, general information on a workflow or setup is displayed on the right.

= Workflow	= Setup	= Cell Line	= Product	= Medium	= Feed1	= Feed2	I I	= pH (pH)	- Yi	EC_112 (Unit 4) State: Finished
×	×	×	×	×	×	×	×	×		Started:
Production N15	EC_111	E.coli K12	N15	PAN + 0.2% Glucose	50% Glucose	10% Struktol	37	7.1	1.48	3/10/2010 10:06:03 AM Manager
Production N15	EC_112	E.coli K12	N15	PAN + 0.2% Glucose	50% Glucose	10% Struktol	37	6.8	0.82	Stopped:
Production N15	EC_110	E.coli K12	N15	PAN + 0.2% Glucose	50% Glucose	10% Struktol	37	7	1.25	3/10/2010 10:24:07 AM Manager
Production N15	EC_109	E.coli K12	N15	PAN + 0.2% Glucose	50% Glucose	10% Struktol	37	7.2	0.94	Comment:
										Attributes: Purpose=Production Cell Line=E.coli K12 Product=N15 Medium=PAN + 0.2% Glucose Feed1=50% Glucose Feed2=10% Struktol

All entries can be edited, with the exception of the workflow, setup and unit names. Please use this option with caution.

3. All available query criteria are displayed when you click with the right mouse button on a column heading. From the dropdown menu, select the column headings to be displayed. This allows the displayed data to be limited as needed and saved.

Copyright[©] 2012 DASGIP Information and Process Technology GmbH, Jülich, Germany

User Manual DASware design

4. You can also directly enter query values below each column heading in the input field or select values from the dropdown list which is automatically filled with existing values.

The additional entries for this process are saved together with the process values and are available for additional analysis in each further export.

5. You can use the button to the left next to each column heading to select relational operators for the qualification of a query.

Example: You want to select all process data where *E. coli* K12 was used and for which a product yield of at least 0.2 g/ L was achieved. For this, the two query criteria are entered in the corresponding CellLine and Product Yield [g/L] columns. The table will then list all the matching process data.

		= CellLine	= Medium	= Feed1	= Feed2	= T [°C]	= pH (pH)	= D0 (%D0)	= Yield.Spec [pg/Cell/d]	= Quality [%]	Product.Yield [g/L]	= CDW [g/L]
		~	~	~	~	~	*	~	~	*	*	~
۲		E. coli K12	PAN + 0,2% Gluc	50% Glucose	10% Struktol	37.0	6.50	30	1.500	90	1.245	90.0
	$\mathbf{\overline{\mathbf{V}}}$	E. coli K12	PAN + 0,2% Gluc	50% Glucose	10% Struktol	37.0	7.00	30	0.850	40	0.214	45.0
		E. coli K12	PAN + 0,2% Gluc	50% Glucose	10% Struktol	37.0	5.50	30	1.300	90	0.985	80.0
		E. coli K12	PAN + 0,2% Gluc	50% Glucose	10% Struktol	37.0	6.00	30	1.400	85	0.758	75.0

The entry of search criteria is not case-sensitive, but spaces are considered.

= Setup	=	Unit
∑ (Show All)		
∧ (Contains)		
= (Equal)		
≠ (Not Equal)	
< (Smaller)		
≤ (Smaller o	r Eq	ual)
≥ (Greater o	rΕqu	ial)
> (Greater)		

Exporting Data

You can export all query data using the Export Table or Export Report buttons (including all process data).

In addition to Export Folder:, the storage path of the export file is displayed. This can be changed using the Folder button in the Browse For Folder dialog window.

Export Folder:	C:\DASGIP\Export\		
	Br	rowse For Folder	?×
		Choose a Folder where the export should be placed.	
		My Documents My Computer General Disk (C:) DASGIP DasGIP Data Doc DPP-Insight Doc DPP-Insight	
		Export Export Help Make New Folder OK Can	> cel

The compiled information that is listed in table form can be exported in various forms:

Export Table	Export Report	Reset View
N		

- Select Export Table in order to export all DoE-relevant parameters as a .txt file.

An exported DoE table is shown below as an example. It is used as a basis for further analysis in Microsoft Excel[®] or special DoE analysis tools, such as JMP.

Workflow	Setup	Unit	User	T [°C]	pH [pH]	Gluc.Conc [g	OD600
Contains	Equal	Equal	Equal	Equal	Equal	Equal	Equal
KK107_DASbox_DoE-1-4	KK107_DASbox_DoE-1	Unit 1	Manager	37	6,8	40	45,4
KK107_DASbox_DoE-1-4	KK107_DASbox_DoE-2	Unit 2	Manager	40	7,2	60	46,7
KK107_DASbox_DoE-1-4	KK107_DASbox_DoE-3	Unit 3	Manager	34	7,2	60	65,8
KK107_DASbox_DoE-1-4	KK107_DASbox_DoE-4	Unit 4	Manager	40	7,2	20	23,6
KK107_DASbox_DoE-5-8	KK107_DASbox_DoE-5	Unit 1	Manager	40	6,4	60	67,4
KK107_DASbox_DoE-5-8	KK107_DASbox_DoE-6	Unit 2	Manager	37	6,8	40	47,6
KK107_DASbox_DoE-5-8	KK107_DASbox_DoE-7	Unit 3	Manager	34	7,2	20	25,6
KK107_DASbox_DoE-5-8	KK107_DASbox_DoE-8	Unit 4	Manager	40	6,4	20	26,1
KK107_DASbox_DoE-9-11	KK107_DASbox_DoE-9	Unit 1	Manager	34	6,4	60	56,8
KK107_DASbox_DoE-9-11	KK107_DASbox_DoE-10	Unit 2	Manager	34	6,4	20	33,6
KK107_DASbox_DoE-9-11	KK107_DASbox_DoE-11	Unit 3	Manager	37	6,8	40	50,9

 Export Report exports the entire process data, including recipes, process data history and events as a .csv file. This can be opened for further processing, e.g., for diagram creation in the DASGIP Documentation Wizard.

Reset View resets all query settings.

3.6. DASGIP DOCUMENTATION WIZARD

Evaluating and graphically displaying exported process data is particularly easy and convenient using the Microsoft Excel[®] add-in *DASGIP Documentation Wizard*. Both current and historical process data can be used and compared for the automatic creation of cultivation reports. Even individual ranges of process values, such as pH or DO, can be automatically grouped from different process datasets and displayed together graphically. It is recommended to select the process duration or directly the inoculation time as basis to ensure that the data series are automatically synchronized.

The synchronized process flows significantly facilitate plausibility checks.

All diagrams generated in the *DASGIP Documentation Wizard* can be formatted and edited with the standard Microsoft Excel[®] options.

More information can be found in the DASGIP Documentation Wizard Manual.

4. Application Example

Design of Experiments (DoE) is a method for the planning and statistical evaluation of experiments/processes. The goal of DoE is to learn as much as possible about the relationships between influencing variables (Input) and results (Output) with as little effort as possible.

DASware design, especially in combination with the *DASGIP Information Manager*, supports and synchronizes process management through the seamless integration of DoE. The experiment design, which has been either created in the DoE Builder or imported from external DoE software tools, can be easily integrated and implemented in *DASGIP Control*.

DoE software tools can provide the experiment design that can be easily integrated and implemented in *DASGIP Control*.

This chapter outlines the implementation of a DoE strategy with and without DoE software tools (JMP) as an example.

4.1. FULL FACTORIAL DOE WITH THREE FACTORS AND TWO LEVELS

A full factorial experiment setup consists of two or more factors with discrete values that are determined in two or more levels. In contrast to a fractional factorial setup, all factor combinations are carried out. This approach allows the observation or calculation of the effects of individual factors on the response as well as the interactions between the factors.

In the following, the cultivation of *Escherichia coli* is considered with three variable factors in two levels for the determination of optimal growth conditions. The response used is the bacteria biomass which is determined based on the determination of the optical density (OD_{600}) . All possible combinations are carried out on *DASbox* System with three blocks.

Please keep in mind that this simple example is intended to teach - the outcome is evident.

Center Point Analysis

To obtain sufficient information about the accuracy of the process results, the use of repetitions is recommended in literature. However, this significantly increases the work involved. This is generally not feasible in industrial practice.

The selected experiment setup includes two levels per factor, so that a possible non-linear relationship (curvature) between the factors and the response cannot be eliminated. A center point determination will help to verify this. If the center point deviation is significant, then at least one factor has a non-linear influence.

It is important that the center point experiments are carried out together with the other experiments and not carried out later. If the experiment is divided into several blocks, a center point experiment should be implemented in each block. This is the only way of distinguishing between a deviation from the linearity and a change over time.

The threefold determination of the center point provides reliable information on the accuracy of the data at an economically justifiable cost.

In addition, the influence of inoculation cultures (differences between reactor blocks) can be determined.

The selected settings are summarized below:

Three factors with two levels and center points

	Factors	Levels				
No.	Name	- 1	1	Center point		
1	рН	6.8	7.2	7		
2	T [° C]	34	37	35.5		
3	Glucose concentration [g/L]	20	60	40		

The corresponding three-dimensional experimental space (design space) with center point looks as follows:

- Response

No. Name R Biomass (OD₆₀₀)

Response

Randomization

The reactor positions are assigned to the three blocks. The assignment is random within the blocks to prevent a trend or any undetected fluctuation (e.g., sensor signal) from distorting the estimation of the effects of the factors.

4.1.1. Implementation without External DoE Software Tools

DoE Builder

The DoE Builder allows the desired entries to be entered directly:

DoE	EBuilder:	DASGIP	Plant	1		2				
DoE typ	Full Factoria	l	Number of fa	ctors 3	Number of response	es 1	Number of experiments	11	Reset	
Randor	nize 🔽 — 4		Use repetitio	ns 📃	Use center points	⊠-3				
DoE file	Z:\Share\0	1012 5 6E-1-11 (S)ystem1).doe							
Number of systems 1 v Block size 4 v Prefix DoE Start index 1										
System	1	~	Temp	olate DoE Standa	rd 201201	~		Create	e Workflows	
	ld	Name	EU	Numeric	Low	High				
	Factor 1	pН	pН	~	6.4	7.2				
	Factor 2	Т	°C	~	34	37				
	Factor 3	Glucose	g/L	~	20	60				
1	Response 1	Biomasse	OD	 ✓ 						

- 1. Select the number of factors: 3
- 2. Select the number of responses: 1
- 3. Select Use center points
- 4. Select Randomize
- 5. Select Number of systems 1 and Block size 4.

 $2^3 = 8$ runs are needed. In addition, a center point is determined for each block so that a total of 11 runs are necessary. They are randomly distributed to system on an automatic basis and summarized in table form as follows:

	ld	System	Workflow	Setup	Reactor	Block	Pattern	pH (pH)	T [°C]	Glucose [g/L]	Biomasse [OD]
Þ	4	1	DoE-1-4	DoE-1	1	1	++-	7.2	37	20	
	1	1	DoE-1-4	DoE-2	2	1		6.4	34	20	
	8	1	DoE-1-4	DoE-3	3	1	+++	7.2	37	60	
	11	1	DoE-1-4	DoE-4	4	1	000	6.8	35.5	40	
	10	1	DoE-5-8	DoE-5	1	2	000	6.8	35.5	40	
	5	1	DoE-5-8	DoE-6	2	2	+	6.4	34	60	
	3	1	DoE-5-8	DoE-7	3	2	-+-	6.4	37	20	
	6	1	DoE-5-8	DoE-8	4	2	+-+	7.2	34	60	
	2	1	DoE-9-11	DoE-9	1	3	+	7.2	34	20	
	9	1	DoE-9-11	DoE-10	2	3	000	6.8	35.5	40	
	7	1	DoE-9-11	DoE-11	3	3	-++	6.4	37	60	

The entries in the DoE Builder can be saved using the Save button in order to transfer them if required, e.g., to an additional *DASbox* PC.

After the suitable workflow has been selected as a template, all entries are transferred with Create Workflow to the Recipe Editor.

Create Workflows

Recipe Editor

In the Recipe Editor, the entries can be adjusted or supplemented before the process is implemented.

The second run (block) is shown as an example:

Recipe Editor: DoE-5-8.Control										Reactor C	onditions 9	Summary Attributes 1 🔸 🕨	
r teoipe E			0.001								Т		35.50 °C
Procedure	DO	pH	N	Gasflow	×02	XCO2	Feed C	Feed D	т		pН		6.80 pH
DoE-5	30 %D 0	6.8 pH	Controller	Controller	Controller	0%	3 mL/h	Σ.	35.5 °C		DO		30.00 %D0
DoE-6	30 %D 0	6.8 pH	Controller	Controller	Controller	0%	3 mL/h	Ζ	35.5 °C		N		0.00 rpm
DoE-7	30 %D 0	7.2 pH	Controller	Controller	Controller	0%	3 mL/h	Σ	37 °C		F		0.00
DoE-8	30 %D 0	7.2 pH	Controller	Controller	Controller	0%	3 mL/h	ζ	34 °C		V		0.00
											FA	0	
											FB	0	
											FC	3	
											FD	3	
											Reactor	0	
													Save
												_	

All entries are saved using the Save button and the process can be started using the Run button.

Process Monitoring and Control

During a process any manual operation in the Reactor View is possible. However we recommend avoiding any manual adjustment since they affect the DoE result potentially. After all processes are completed, the process data is saved in DASGIP Control and can be used for further analysis.

DASGIP Information Manager

The DASGIP Information Manager is a helpful tool for performing plausibility checks and for complementing data. Process data can be grouped together with historical data and exported (see also 3.5).

Data Analysis

The exported process data can be generated by using the Export Table function and analyzed in Microsoft Excel[®].

- Temp pН Gluc.-conc. OD600 (t1) В С A 33.6 26,1 25,6 + + + 23.6 + 56.8 67.4 + + 65,8 + + + 46.7 48,0 center center center
- Most favorable factor combinations

The most favorable factor combination is determined by the highest biomass concentration.

Main effects

The main effects are analyzed by calculating the average values for the high (+) and the low (-) factor level. The difference of the average values is the effect in question.

Temp	pН	Glucconc.	
А	В	С	
41,0	40,4	59,2	Average Level "-"
48,0	48,0	48,0	Average Center Points
45,5	6 46,0	27 2	Average Level "+"
-4,5	5,6	32,0	iffect

It is obvious that the factor glucose concentration has the largest effect on the response biomass. This is represented graphically with 1 and -1 for the two levels below.

In addition, the determined center points provide information about a possible deviation from linearity. The 3-fold implementation of the center point determination used in this example provides an indication of the chance variation.

Interactions

The figures below show the average values of both levels of a factor depending on the setting of an additional factor.

An indicator of an interaction is the degree of non-parallelism between the corresponding straight lines. The greater the degree of parallelism between the straight lines, the lower the interactions.

The presented results indicate an interaction between the factors pH and temperature, because the straight lines intersect. In the subsequent stage of process optimization, these two factors should be considered together.

4.1.2. Use of External DoE Tools (JMP)

JMP is a standard software tool for the statistical planning of experiments, such as DoE. The following screenshots briefly outline the procedure for an experiment setup using JMP.

- 1. Define design
- 2. Define responses
- 3. Define factors
- 4. Define center points

Eile	<u>E</u> dit <u>T</u> ables	Rows 9	<u>C</u> ols <u>D</u> OE	Analyze	Graph	T <u>o</u> ols	Add-Ins	⊻iew	<u>W</u> indow	Help	
6											
	Full Facto	orial De	esign								
⊿	Response)S									
- 1	Add Respons	se 🕶 🛛 R	emove	Number	of Resp	onses	.				
ĺ	Respo	nse Nan	ne	Go	al		 Lower l	imit	Upp	er Limit	Importan
	OD600			Ма	ximize						
	optional iten	n									
	Factors										
- 1	Continuous '	- Categ	gorical 👻	Remove	9						
Í	Name		Role			Val	lies				
·	AT.	-	Conti	nuous		34	400		41	1	
	Ha 📐		Conti	nuous		6.4			7.	2	
	Gluc.Con	с	Conti	nuous		20			60)	
2x2	2x2 Factorial										
Γ^{C}	output Option	ns —				1					
R	lun Order:		Rando	mize	•						
	lumber of Ru	ins:			8						
N	lumber of Ce	nter Poir	nts:	3							
		nlicatoe	:	0							
	lumber of Re	phicates.									
N N N	lumber of Re Make Table	piicates.									
	lumber of Re Make Table	pricates.									
	lumber of Re Make Table Back	pincates.									

5. Generate a table with all entries

KK107_2x2x2 Factorial with center points - JMP [2]											
<u>File Edit Tables Rows C</u>	ols <u>D</u> OE <u>A</u> naly:	e <u>G</u> raph	T <u>o</u> ols Ad	d-I <u>n</u> s ⊻ie	w <u>W</u> indow	Help					
· · · · · · · · · · · · · · · · · · ·											
♥KK107_2x2x2 Fact Design 2x2x2 Factorial		Pattern	т	рН	Gluc.Conc	OD600					
Screening	• 1	000	37	6.8	40	•					
💌 Model	• 2	+++	40	7.2	60	•					
	• 3	-++	34	7.2	60	•					
	• 4	++-	40	7.2	20	•					
	• 5	+-+	40	6.4	60	•					
	• 6	000	37	6.8	40	•					
Columns (5/0)	• 7	-+-	34	7.2	20	•					
Pattern 🔍	• 8	+	40	6.4	20	•					
⊿ ⊺ ≭	• 9	+	34	6.4	60	•					
🚄 pH 🛠	• 10		34	6.4	20	•					
Gluc.Conc 🗶	• 11	000	37	6.8	40	•					
🚄 OD600 🕊											

Save the table as a Text Export File (*.txt) type.

Save JMP File As	×
COO V ASGIP > Dev > Export	 ✓ ✓
File <u>n</u> ame: PHPOT JMP	
Save as type: Text Export File (*.txt)	•
() Browse Folders	Options Save Cancel
	6

This table generated and saved in JMP can now be easily loaded to the DoE Builder (4.1.1) of *DASGIP Control* so that all entries are automatically adopted.

Open		? 🗙
Look in:	🔁 DOE 🔮 🤔 🔛 🚥	
My Recent Documents	JMP DoE 2012.04.A1	
My Documents		
My Computer		
My Network	File name: Image: Compare the second secon	Open A

Loading External DoE Data to the DoE Builder

DASware design offers the possibility to seamlessly integrate DoE data from different DoE software tools, such as JMP, in *DASGIP Control*.

DoE Builder: DASGIP Plant										
DoE type	Full Factorial	Number of factors	4 🗸	Number of responses 2	Number of experiments	19 Reset				
Randomize		Experiment repetitions	0 🗸	Number of center points 3 💌						
DoE file										
Number of syst	tems 2 💌 Block size	8 💌 Prefix	DoE		Start index	1				
System	1 🔽	Template	Dasgip 49	v		Create Workflows				

Click on the **button** to open the following dialog.

Open						? 🛛
Look in:	🗀 DOE		~	G 🦻	بي 🥲	,
My Recent Documents	IMP DoE 2012.0	04.A1				
Desktop						
My Documents						
My Computer						
	File name:				*	Open
My Network	Files of type:	JMP DoE (*.txt)			~	Cancel
		DASGIP DoE (*.doe) JMP DoE (*.txt) Design Expert (*.txt) Umetrics Modde (*.mde				

Select a file and click on the Open button to open the file choosing the appropriate File type.

The DoE data is then loaded into the DoE Builder and can still be adjusted if necessary.

	ld	System	Workflow	Setup	Reactor	Block	Pattern	pH (pH)	T [°C]	Glucose [g/L]	Biomasse [OD]
•	4	1	DoE-1-4	DoE-1	1	1	++-	7.2	37	20	
	1	1	DoE-1-4	DoE-2	2	1		6.4	34	20	
	8	1	DoE-1-4	DoE-3	3	1	+++	7.2	37	60	
	11	1	DoE-1-4	DoE-4	4	1	000	6.8	35.5	40	
	10	1	DoE-5-8	DoE-5	1	2	000	6.8	35.5	40	
	5	1	DoE-5-8	DoE-6	2	2	+	6.4	34	60	
	3	1	DoE-5-8	DoE-7	3	2	-+-	6.4	37	20	
	6	1	DoE-5-8	DoE-8	4	2	+-+	7.2	34	60	
	2	1	DoE-9-11	DoE-9	1	3	+	7.2	34	20	
	9	1	DoE-9-11	DoE-10	2	3	000	6.8	35.5	40	
	7	1	DoE-9-11	DoE-11	3	3	-++	6.4	37	60	

Process Monitoring and Control

The process is executed as described under 4.1.1.

After all processes are completed, the process data is saved in *DASGIP Control* and can be used for further analysis. Use the documentation wizard to select and export the factor and response table.

Data Analysis

The exported DoE text file can be opened using the Open button in JMP.

<u>F</u> ile <u>E</u> di	t Tabl	es <u>R</u> ows <u>⊂</u> ols	DOE Analy	ze <u>G</u> raph T <u>o</u> ols	: Add-I <u>n</u> s <u>V</u> iew	<u>W</u> indow <u>H</u>	telp
: 🚑 🐐	2	a 🐰 🗈 🛍	s 🖶 😹 💂	: 🄛 🌬 🛤	■ 📲 📲		

Most favorable factor combinations

The most favorable factor combination is determined by the highest biomass concentration.

							_	
🗒 KK103_2x2x2 Faktorie	I - JMP [2]							
<u>File Edit Iables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help</u>								
: 🗃 🍋 🧭 🔲 🔉 ங 🛍 🖶 😹 📑 : 🕼 Խ 🛍 🛤 🛤 🛤 🖿 🎞 🖬 📾 🛅 🕮 🧝								
💌 KK103_2x2x2 Fakt 👂	۹ 🔪 💌							
Design 2x2x2 Faktoriell		Pattern	т	pН	Gluc.Conc	OD600		
💌 Screening	1	000	37	6.8	40	45.4		
💌 Modell	2	+++	40	7.2	60	46.7		
	3	-++	34	7.2	60	65.8		
			40	7.0		00.0	č.	
	5	+-+	40	6.4	60	67.4		
			27	0.0		11.2	1	
Columns (5/0)	7	-+-	34	7.2	20	25.6		
🖺 Pattern 🚑	8	+	40	6.4	20	26.1		
	9	+	34	6.4	60	56.8		
A Chua Cana 🕊	10		34	6.4	20	33.6		
	11	000	37	6.8	40	50.9		

Main effects

The main effects are analyzed at this point using a linear regression. The gradient is an indication of the effect of a factor.

In the following, it can be seen that the glucose concentration has the largest effect on the response biomass.

Interactions

The average values of both levels of a factor are also shown here depending on the setting of another factor.

The results indicate an interaction between the factors pH and temperature. These should therefore be considered together in a subsequent process optimization stage.

The following shows an additional display to determine the significance of effects, both of individual factors as well as of factor-factor interactions.

Contrasts					
			Individual	Simultaneous	
Term	Contrast	Lenth t-Ratio	p-Value	p-Value	Aliases
Gluc.Conc	13.6235	4.73	0.0058*	0.0437*	
pН	-2.3665	-0.82	0.3837	0.9983	
т	-1.9188	-0.67	0.5237	1.0000	
Gluc.Conc*Gluc.Conc	-2.1229	-0.74	0.4421	1.0000	рН*рН, Т
Gluc.Conc*pH	-0.1279	-0.04	0.9684	1.0000	
Gluc.Conc*T	0.1066	0.04	0.9742	1.0000	
pH*T	-2.5797	-0.90	0.3373	0.9922	
Gluc.Conc*pH*T	-3.7523	-1.30	0.1764	0.8206	
Null10	-1.1801	-0.41	0.7266	1.0000	
Null11	0.0243	0.01	0.9959	1.0000	

Index

А

Attributes, conditions, summary	
Setup parameters28	

В

Block size	
DoE Builder	

С

Create Workflows	
DoE Builder	25

D

DASGIP Documentation Wizard	35
DASGIP Information Manager	31
DASware design	
Overview	19
Data analysis	
Factor combinations	40
Interactions	41
JMP	45
Main effects	40
Microsoft Excel [®]	39
Data export	34
Data preparation	
JMP	41
Definition	
Design space	13
Design space	
Definition	13
Documentation	31
DoE	
field of application	15
Full factorial	36
DoE application example	36
DoE Builder	
Block size	23
Creating workflows	25
Number of systems	22
Prefix	23
Saving settings	24
Start index	23
Systems	23
Template	23
DoE Builder	20
Overview	21
Resource selection	22
Selection, entry of factors	22

DoE Builder	
Resource example	24
DoE Builder	
Loading external DoE data	43

F

Factor combinations	
Data analysis	40
JMP data analysis	45
Field of application	
DoE	15

I

Interactions	
Data analysis	41
JMP data analysis	46

J

JMP	
Data analysis	45
Data preparation	41
JMP data analysis	
Interactions	46
Main effects	45
JMP data analysis	
Factor combinations	45

L

Loading external DoE data	
DoE Builder4	3

Μ

Main effects	
Data analysis	
JMP data analysis	45

Ν

Number of systems	
DoE Builder	22

0

Open	
Recipe Editor	27
Overview	
DASware design	19
DoE Builder	21

Recipe I	Editor	27
Necipe i	Luitoi	

Ρ

Plausibility check	.20, 35
Doe Builder	23
Process flow	
schematic	17
Process implementation	30
1	

Q

QbD	
Quality by Design	14
Quality by Design	
QbD	14

R

Recipe Editor	27
Open	27

Overview2	7
Resource example	
DoE Builder2	4
Resource selection	
DoE Builder2	2

S

Saving settings	
DoE Builder	24
Selection, entry of factors	
DoE Builder	22
Start index	
DoE Builder	23
Summary view	30
System	
DoE Builder	23

Т

Template	
DoE Builder	23