
Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 1

Sinhgad Technical Educational Society s‟

SINHGAD INSTITUTE OF TECHNOLOGY

LONAVALA

Lab Manual

Database Management System Lab

(310247)

Class:-TE Computer YEAR:-2018-2019

Prepared By, Marking Scheme

Mr. A. V. Nadargi 50 marks-Practical Exam

Mr. S. M. Shedole 25 marks-Term Work

Mr. A. N. Bandal

Mrs. M. N. Galphade

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 2

Sinhgad Technical Educational Society s‟

SINHGAD INSTITUTE OF TECHNOLOGY

LONAVALA

CERTIFICATE

This is to certify that

Mr./ Miss _______________________________________,

Of Class TE – Computer Roll No. _____ Has completed all the

practical work in the subject Database Management System Lab

satisfactorily in the Department of COMPUTER ENGINEERING

as prescribed by Savitribai Phule Pune University, in the academic

year 2018 – 2019

Staff In-charge Head of the Department Principal

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 3

INDEX

Sr.
No.

Name of Assignment
Page
No.

Date Remark

 Group A - Database Programming Languages – SQL, PL/SQL

1 Study of Open Source Relational Databases :

2
Design and Develop SQL DDL statements which
demonstrate the use of SQL objects such as Table, View,
Index, Sequence, Synonym

3

Design at least 10 SQL queries for suitable database
application using SQL DML statements: Insert, Select,
Update, Delete with operators, functions and set
operator.

4
Design at least 10 SQL queries for suitable database
application using SQL DML statements: all types of Join,
Sub-Query and View.

5

Unnamed PL/SQL code block: Use of Control structure
and Exception handling is mandatory. Write a PL/SQL
block of code for the following requirements:-
Schema:
1. Borrower(Roll,Name,DateofIssue, NameofBook, Status)
2. Fine (Roll, Date, Amt)
 Accept Roll & N ame of book from user.
 Check the number of days (from date of issue), if days
are between 15 to 30 then fine amount will be Rs 5per day.
 If no. of days>30, per day fine will be Rs 50 per day &
for days less than 30, Rs. 5 per day.
 After submitting the book, status will change from I to R.
 If condition of fine is true, then details will be stored into
fine table.
Frame the problem statement for writing PL/SQL block
inline with above statement.

6

Cursors: (All types: Implicit, Explicit, Cursor FOR
Loop, Parameterized Cursor)
Write a PL/SQL block of code using parameterized Cursor,
that will merge the data available in the newly created table
Cust_New with the data available in the table Cust_Old. If
the data in the first table already exist in the second table
then that data should be skipped.
Frame the separate problem statement for writing
PL/SQL block to implement all types

7

PL/SQL Stored Procedure and Stored Function.
Write a Stored Procedure namely proc_Grade for the
categorization of student. If marks scored by students in
examination is <=1500 and marks>=990 then student will
be placed in distinction category if marks scored are
between 989 and900 category is first class, if marks 899 and
825 category is Higher Second Class. Write a PL/SQL block
for using procedure created with above requirement.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 4

Stud_Marks(name, total_marks) Result(Roll,Name, Class)
Frame the separate problem statement for writing
PL/SQL Stored Procedure and function, inline with
above statement. The problem statement should clearly
state the requirements.

8

Database Trigger (All Types: Row level and Statement
level triggers, Before and After Triggers). Write a
database trigger on Library table. The System should keep
track of the records that are being updated or deleted. The
old value of updated or deleted records should be added in
Library_Audit table.
Frame problem statement for writing Database Triggers
of all types, inline with above statement. The problem
statement should clearly state the requirements.

 Group B Large Scale Databases

9
Study of Open Source NOSQL Database: MongoDB
(Installation, Basic CRUD operations, Execution)

10
Design and Develop MongoDB Queries using CRUD
operations. (Use CRUD operations, SAVE method, logical
operators)

11
Implement aggregation and indexing with suitable
example using MongoDB.

12
Implement Map reduces operation with suitable example
using MongoDB.

13 Design and Implement any 5 query using MongoDB

14 Create simple objects and array objects using JSON

15
Encode and Decode JSON Objects using
Java/Perl/PHP/Python/Ruby

 Group C Mini Project : Database Project Life Cycle

16

Write a program to implement MogoDB database
connectivity with PHP/ python/Java Implement Database
navigation operations (add, delete, edit etc.) using
ODBC/JDBC.

17
Implement /Oracle database connectivity with PHP/
python/Java Implement Database navigation operations
(add, delete, edit,) using ODBC/JDBC.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 5

Assignment No. 1

Title Study of Open Source Databases:

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 6

Assignment No. 1

Title : Study of Open Source Databases:

Objectives : To develop basic, intermediate and advanced Database programming skills

Theory :

Introduction A database is a separate application that stores a collection of data. Each

database has one or more distinct APIs for creating, accessing, managing, searching and

replicating the data it holds.

So now days, we use relational database management systems (RDBMS) to store and

manage huge volume of data. This is called relational database because all the data is stored

in to different tables and relations are established using primary keys or other keys known as

foreign keys.

A Relational DataBase Management System(RDBMS) is a software that:

 Enables you to implement a database with tables, columns and indexes.

 Guarantees the Referential Integrity between rows of various tables.

 Updates the indexes automatically.

 Interprets an SQL query and combines information from various tables

RDBMS Terminology:

Before we proceed to explain database system, let's revise few definitions related to

database.

Database: A database is a collection of tables, with related data.

Table: A table is a matrix with data. A table in a database looks like a simple spreadsheet.

Column: One column (data element) contains data of one and the same kind, for example

the Column postcode.

Row: A row (tuple, entry or record) is a group of related data, for example the data of one

subscription.

Redundancy: Storing data twice, redundantly to make the system faster.

Primary Key: A primary key is unique. A key value cannot occur twice in one table. With a

key, you can find at most one row.

Foreign Key: A foreign key is the linking pin between two tables.

Compound Key: A compound key(composite key) is a key that consists of multiple

columns, Because one column is not sufficiently unique.

Index: An index in a database resembles an index at the back of a book.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 7

Referential Integrity: Referential Integrity makes sure that a foreign key value always

points to An existing row.

 is a fast, easy-to-use RDBMS being used for many small and big businesses. is

developed, marketed, and supported by My SQLAB, which is a Swedish company. is

becoming so popular because of many good reasons:

• is released under an open-source license. So you have nothing to pay to use it.

• is a very powerful program in its own right. It handles a large subset of the

functionality of the most expensive and powerful database packages.

• uses a standard form of the well-known SQL data language.

• works on many operating systems and with many languages including PHP, PERL,

C, C++, JAVA, etc.

• works very quickly and works well even with large datasets.

• is very friendly to PHP, the most appreciated language for web development.

• supports large databases, upto 50 million rows or more in a table.

The default file size limit for a table is 4GB, but you can increase this (if your operating

system can handle it) to a theoretical limit of 8 million tera bytes(TB).

• is customizable. The open-source GPL license allows programmers to modify the

software to fit their own specific environments.

The SQL CREATE TABLE Statement

The CREATE TABLE statement is used to create a new table in a database.

Syntax

CREATE TABLE table_name (
 column1 datatype,
 column2 datatype,
 column3 datatype, );

The column parameters specify the names of the columns of the table.

The datatype parameter specifies the type of data the column can hold (e.g. varchar, integer,
date, etc.).

SQL CREATE TABLE Example

The following example creates a table called "Persons" that contains five columns:
PersonID, LastName, FirstName, Address, and City:

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 8

Example

CREATE TABLE Persons (
 PersonID int,
 LastName varchar(255),
 FirstName varchar(255),
 Address varchar(255),
 City varchar(255));

Create Table Using Another Table

A copy of an existing table can be created using a combination of the CREATE TABLE
statement and the SELECT statement.

The new table gets the same column definitions. All columns or specific columns can be
selected.

If you create a new table using an existing table, the new table will be filled with the existing
values from the old table.

Syntax

CREATE TABLE new_table_name AS
 SELECT column1, column2,...
 FROM existing_table_name
 WHERE;

SQL General Data Types

Each column in a database table is required to have a name and a data type.

SQL developers have to decide what types of data will be stored inside each and every table
column when creating a SQL table. The data type is a label and a guideline for SQL to
understand what type of data is expected inside of each column, and it also identifies how
SQL will interact with the stored data.

The following table lists the general data types in SQL:

Data type Description
CHARACTER(n) Character string. Fixed-length n
VARCHAR(n) or
CHARACTER
VARYING(n)

Character string. Variable length. Maximum length n

BINARY(n) Binary string. Fixed-length n
BOOLEAN Stores TRUE or FALSE values
VARBINARY(n) or
BINARY
VARYING(n)

Binary string. Variable length. Maximum length n

INTEGER(p) Integer numerical (no decimal). Precision p
SMALLINT Integer numerical (no decimal). Precision 5
INTEGER Integer numerical (no decimal). Precision 10
BIGINT Integer numerical (no decimal). Precision 19

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 9

DECIMAL(p,s) Exact numerical, precision p, scale s. Example: decimal(5,2) is a number
that has 3 digits before the decimal and 2 digits after the
decimal

NUMERIC(p,s) Exact numerical, precision p, scale s. (Same as DECIMAL)
FLOAT(p) Approximate numerical, mantissa precision p. A floating number in base

10 exponential notation. The size argument for this type consists of a
single number specifying the minimum precision

REAL Approximate numerical, mantissa precision 7
FLOAT Approximate numerical, mantissa precision 16
DOUBLE
PRECISION

Approximate numerical, mantissa precision 16

DATE Stores year, month, and day values
TIME Stores hour, minute, and second values
TIMESTAMP Stores year, month, day, hour, minute, and second values
INTERVAL Composed of a number of integer fields, representing a period of time,

depending on the type of interval
ARRAY A set-length and ordered collection of elements
MULTISET A variable-length and unordered collection of elements
XML Stores XML data

The SQL INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a table.

INSERT INTO Syntax

It is possible to write the INSERT INTO statement in two ways.

The first way specifies both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3, ...)
VALUES (value1, value2, value3, ...);

If you are adding values for all the columns of the table, you do not need to specify the
column names in the SQL query. However, make sure the order of the values is in the same
order as the columns in the table. The INSERT INTO syntax would be as follows:

INSERT INTO table_name VALUES (value1, value2, value3, ...);

The SELECT statement is used to select data from a database.

The data returned is stored in a result table, called the result-set.

SELECT Syntax

SELECT column1, column2, ... FROM table_name;

Here, column1, column2, ... are the field names of the table you want to select data from. If
you want to select all the fields available in the table, use the following syntax:

SELECT * FROM table_name;

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 10

The SQL AND, OR and NOT Operators

The WHERE clause can be combined with AND, OR, and NOT operators.

The AND and OR operators are used to filter records based on more than one condition:

• The AND operator displays a record if all the conditions separated by AND is
TRUE.

• The OR operator displays a record if any of the conditions separated by OR is
TRUE.

The NOT operator displays a record if the condition(s) is NOT TRUE.

AND Syntax

SELECT column1, column2, ... FROM table_name
WHERE condition1 AND condition2 AND condition3 ...;

OR Syntax

SELECT column1, column2, ... FROM table_name
WHERE condition1 OR condition2 OR condition3 ...;

NOT Syntax

SELECT column1, column2, ... FROM table_name
WHERE NOT condition;

AND Example : The following SQL statement selects all fields from "Customers" where
country is "Germany" AND city is "Berlin":

Example

SELECT * FROM Customers
WHERE Country='Germany' AND City='Berlin';

OR Example : The following SQL statement selects all fields from "Customers" where city
is "Berlin" OR "München":

Example

SELECT * FROM Customers
WHERE City='Berlin' OR City='München';

NOT Example : The following SQL statement selects all fields from "Customers" where
country is NOT "Germany":

Example

SELECT * FROM Customers
WHERE NOT Country='Germany';

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 11

The SQL ORDER BY Keyword

The ORDER BY keyword is used to sort the result-set in ascending or descending order.

The ORDER BY keyword sorts the records in ascending order by default. To sort the
records in descending order, use the DESC keyword.

ORDER BY Syntax

SELECT column1, column2, ...
FROM table_name
ORDER BY column1, column2, ... ASC|DESC;

ORDER BY Example

The following SQL statement selects all customers from the "Customers" table, sorted by
the "Country" column:

Example

SELECT * FROM Customers ORDER BY Country;

The SQL SELECT DISTINCT Statement

The SELECT DISTINCT statement is used to return only distinct (different) values. Inside a
table, a column often contains many duplicate values; and sometimes you only want to list
the different (distinct) values. The SELECT DISTINCT statement is used to return only
distinct (different) values.

SELECT DISTINCT Syntax

SELECT DISTINCT column1, column2, ... FROM table_name;

SELECT DISTINCT Examples

The following SQL statement selects only the DISTINCT values from the "Country" column
in the "Customers" table:

Example

SELECT DISTINCT Country FROM Customers;

The SQL WHERE Clause

The WHERE clause is used to filter records.

The WHERE clause is used to extract only those records that fulfill a specified condition.

WHERE Syntax

SELECT column1, column2, .. FROM table_name WHERE condition;

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 12

WHERE Clause Example

The following SQL statement selects all the customers from the country "Mexico", in the
"Customers" table:

Example

SELECT * FROM Customers WHERE Country='Mexico';

Text Fields vs. Numeric Fields

SQL requires single quotes around text values (most database systems will also allow double
quotes).

However, numeric fields should not be enclosed in quotes:

Example

SELECT * FROM Customers WHERE CustomerID=1;

Operators in The WHERE Clause

The following operators can be used in the WHERE clause:

Operator Description
= Equal
<> Not equal. Note: In some versions of SQL this operator may be written as !=
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
BETWEEN Between an inclusive range
LIKE Search for a pattern
IN To specify multiple possible values for a column

The SQL DELETE Statement

The DELETE statement is used to delete existing records in a table.

DELETE Syntax

DELETE FROM table_name WHERE condition;

Note: Be careful when deleting records in a table! Notice the WHERE clause in the
DELETE statement. The WHERE clause specifies which record(s) that should be deleted. If
you omit the WHERE clause, all records in the table will be deleted!

SQL DELETE Example

The following SQL statement deletes the customer "Alfreds Futterkiste" from the
"Customers" table:

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 13

Example

DELETE FROM Customers
WHERE CustomerName='Alfreds Futterkiste';

Delete All Records

It is possible to delete all rows in a table without deleting the table. This means that the table
structure, attributes, and indexes will be intact:

DELETE FROM table_name;

The SQL MIN() and MAX() Functions

The MIN() function returns the smallest value of the selected column.

The MAX() function returns the largest value of the selected column.

MIN() Syntax

SELECT MIN(column_name)
FROM table_name
WHERE condition;

MAX() Syntax

SELECT MAX(column_name) FROM table_name WHERE condition;

MIN() Example

The following SQL statement finds the price of the cheapest product:

Example

SELECT MIN(Price) AS SmallestPrice FROM Products;

MAX() Example

The following SQL statement finds the price of the most expensive product:

Example

SELECT MAX(Price) AS LargestPrice FROM Products;

The SQL COUNT(), AVG() and SUM() Functions

The COUNT() function returns the number of rows that matches a specified criteria.

The AVG() function returns the average value of a numeric column.

The SUM() function returns the total sum of a numeric column.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 14

COUNT() Syntax

SELECT COUNT(column_name) FROM table_name
WHERE condition;

AVG() Syntax

SELECT AVG(column_name) FROM table_name
WHERE condition;

SUM() Syntax

SELECT SUM(column_name) FROM table_name
WHERE condition;

COUNT() Example

The following SQL statement finds the number of products:

Example

SELECT COUNT(ProductID) FROM Products;

AVG() Example

The following SQL statement finds the average price of all products:

Example

SELECT AVG(Price) FROM Products;

SUM() Example

The following SQL statement finds the sum of the "Quantity" fields in the "OrderDetails"
table:

Example

SELECT SUM(Quantity) FROM OrderDetails;

The SQL LIKE Operator

The LIKE operator is used in a WHERE clause to search for a specified pattern in a column.

There are two wildcards used in conjunction with the LIKE operator:

• % - The percent sign represents zero, one, or multiple characters
• _ - The underscore represents a single character

The percent (%) sign and the underscore (_)can also be used in combinations!

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 15

LIKE Syntax

SELECT column1, column2, ... FROM table_name
WHERE columnN LIKE pattern;

Tip: You can also combine any number of conditions using AND or OR operators.

Here are some examples showing different LIKE operators with '%' and '_' wildcards:

LIKE Operator Description
WHERE CustomerName LIKE 'a%' Finds any values that starts with "a"
WHERE CustomerName LIKE '%a' Finds any values that ends with "a"
WHERE CustomerName LIKE
'%or%'

Finds any values that have "or" in any position

WHERE CustomerName LIKE
'_r%'

Finds any values that have "r" in the second position

WHERE CustomerName LIKE
'a_%_%'

Finds any values that starts with "a" and are at least 3
characters in length

WHERE ContactName LIKE 'a%o' Finds any values that starts with "a" and ends with "o"

SQL LIKE Examples

The following SQL statement selects all customers with a CustomerName starting with "a":

Example

SELECT * FROM Customers
WHERE CustomerName LIKE 'a%';

The following SQL statement selects all customers with a CustomerName ending with "a":

Example

SELECT * FROM Customers
WHERE CustomerName LIKE '%a';

The following SQL statement selects all customers with a CustomerName that have "or" in
any position:

Example

SELECT * FROM Customers
WHERE CustomerName LIKE '%or%';

The following SQL statement selects all customers with a CustomerName that have "r" in
the second position:

Example

SELECT * FROM Customers
WHERE CustomerName LIKE '_r%';

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 16

The following SQL statement selects all customers with a Customer Name that starts with
"a" and are at least 3 characters in length:

Example

SELECT * FROM Customers
WHERE CustomerName LIKE 'a_%_%';

The following SQL statement selects all customers with a Customer Name that starts with
"a" and ends with "o":

Example

SELECT * FROM Customers
WHERE ContactName LIKE 'a%o';

The following SQL statement selects all customers with a CustomerName that NOT starts
with "a":

Example

SELECT * FROM Customers
WHERE CustomerName NOT LIKE 'a%';

Conclusion: Thus we have studied how to use open source database .

FAQ ?

1. Compare Vs. SQL Server.

2. What are the features of ?

3. What do DDL, DML, and DCL stand for?

4. What is the difference between CHAR and VARCHAR?

5. What is the difference between primary key and candidate key?

6. What is the difference between DELETE TABLE and TRUNCATE TABLE &

DROP table commands in ?

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 17

Assignment No. 2

Title

Design and Develop SQL DDL statements which demonstrate

the use of SQL objects such as Table, View, Index, Sequence,

Synonym

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 18

Assignment No. 2

Title: Design and Develop SQL DDL statements which demonstrate the use of SQL objects
such as Table, View , Index, Sequence, Synonym

Objectives: To study SQL DDL statements

Theory: SQL – Structured Query Language

Data Definition in SQL

Creating Tables

Syntax:-

Create table<table name>

(colume_name 1 datatype size(),

colume_name 2 datatype size(),

….

colume_name n datatype size());

e.g. Create table student with the following fields(name,roll,class,branch)

Create table student

(name char(20),

Roll number(5),

Class char(10),

Branch char(15));

A table from a table

• Syntax :

CREATE TABLE <TableName> (<ColumnName>, <Columnname>) AS

SELECT <ColumnName>, <Columnname> FROM <TableName>;

- If the source table contains the records, then new table is also created with the same

records present in the source table.

• If you want only structure without records then select statement must have

condition. Syntax:

CREATE TABLE <TableName> (<ColumnName>, <Columnname>) AS

SELECT <ColumnName>, <Columnname> FROM <TableName> WHERE

1=2; (Or)

CREATE TABLE <TableName> (<ColumnName>, <Columnname>) AS

SELECT <ColumnName>, <Columnname> FROM <TableName> WHERE

ColumnName =NULL;

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 19

Constraints

The definition of a table may include the specification of integrity constraints. Basically

two types of constraints are provided: column constraints are associated with a single

column whereas table constraints are typically associated with more than one column. A

constraint can be named. It is advisable to name a constraint in order to get more

meaningful information when this constraint is violated due to, e.g., an insertion of a

tuple that violates the constraint. If no name is specified for the constraint, Oracle

automatically generates a name of the pattern SYS C<number>.Rules are enforced on

data being stored in a table, are called Constraints.

Both the Create table & Alter Table SQL can be used to write SQL sentences that

attach constraints.

Basically constraints are of three types

1) Domain

- Not Null

- Check

2) Entity

- Primary Key

- Unique

3) Referential

- Foreign key

4) Not Null:-Not null constraint can be applied at column level only.

We can define these constraints

1) at the time of table creation Syntax :

CREATE TABLE <tableName> (<ColumnName>

datatype(size) NOT NULL,

<ColumnName> datatype(size),….

);

2) After the table creation

ALTER TABLE <tableName> Modify(<ColumnName>

datatype(size) NOT NULL);

Check constraints

- Can be bound to column or a table using CREATE TABLE or ALTER TABLE

command.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 20

- Checks are performed when write operation is performed .

- Insert or update statement causes the relevant check constraint.

- Ensures the integrity of the data in tables.

Syntax :

• Check constraints at column level

Syntax :

CREATE TABLE <tableName>

(<ColumnName>datatype(size)CHECK(columnName

condition),<columnname datatype(size));

CREATE TABLE <tableName>

(<ColumnName> datatype(size) CONSTRAINT <constraint_name>

CHECK (columnName condition),..

);

• Check constraints at table level

Syntax :

CREATE TABLE <tableName>

(<ColumnName> datatype(size),
<ColumnName> datatype(size),

CONSTRAINT <constraint_name> CHECK (columnName condition),..);

• Check constraints at table level

Syntax :

CREATE TABLE

<tableName>

(<ColumnName>

datatype(size),

<ColumnName> datatype(size),….,

CHECK (columnName condition));

After table creation

Alter table tablename

Add constraints constraintname ckeck(condition)

The PRIMARY KEY Constraint

A primary key is one or more column(s) in a table used to uniquely identify each row in

the table.

• A table can have only one primary key.

• Can not be left blank

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 21

• Data must be UNIQUE.

• Not allows null values

• Not allows duplicate values.

• Unique index is created automatically if there is a primary key.

Primary key constraint defined at column level

Syntax:

CREATE TABLE <TableName>

(<ColumnName1> <DataType>(<Size>)PRIMARY
 KEY,<columnname2

<datatype(<size>),…..);

• Primary key constraint defined at Table level

Syntax:

CREATE TABLE <TableName>

(<ColumnName1> <DataType>(<Size>) ,…,
 PRIMARY

KEY(<ColumnName1> <ColumnName2>));
• key constraint defined at Table level

Syntax:

CREATE TABLE <TableName>

(<ColumnName1> <DataType>(<Size>) <columnname2

datatype<(size)<,<columnname3 datatype<size>constraint constraintname

PRIMARY KEY(<ColumnName1>));

After table creation

Alter table tablename

Add(constraint constraintname primary key(columnname));

The Unique Key Constraint

- The unique column constraint permits multiple entries of NULL into the

column.

- Unique key not allowed duplicate values

- Unique index is automatically created.

- Table can have more than one unique key.

• UNIQUE constraint defined at column level

Syntax :

Create table tablename(<columnname> <datatype>(<Size>

UNIQUE),<columnname> datatype(<size>)…………);

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 22

UNIQUE constraint defined at table level

Syntax :

CREATE TABLE tablename (<columnname> <datatype>(<Size>),

<columnname> <datatype>(<Size>), UNIQUE(<columnname>,

<columnname>));

After table creation

Alter table tablename

Add constraint constraintname unique(columnname);

 The Foreign Key (Self Reference) Constraint Foreign key represents relationships
between tables.

A foreign key is a column(or group of columns) whose values are derived from primary

key or unique key of some other table.

Foreign key constraint defined at column level

Syntax:

<columnName> <DataType> (<size>) REFERENCES <TableName>[(<ColumnName>)]

[ON DELETE CASCADE]

• If the ON DELETE CASCADE option is set, a DELETE operation in the

master table will trigger a DELETE operation for corresponding records

in all detail tables.

• If the ON DELETE SET NULL option is set, a DELETE operation in the

master table will set the value held by the foreign key of the detail tables

to null.

Foreign key :

ALTER TABLE <child_tablename> ADD CONSTRAINT <constraint_name> FOREIGN

KEY (<columnname in child_table>) REFERENCES <parent table name>;

1) FOREIGN KEY constraint at table level

2) FOREIGN KEY constraint defined with ON DELETE CASCADE

FOREIGN KEY(<ColumnName>[,<columnname>]) REFERENCES

<TableName> [(<ColumnName>, <ColumnName>) ON DELETE

CASCADE

• FOREIGN KEY constraint defined with ON DELETE SET NULL

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 23

FOREIGN KEY(<ColumnName>[,<columnname>]) REFERENCES

<TableName> [(<ColumnName>, <ColumnName>) ON DELETE SET

NULL

• To view the

constraint Syntax:

Select constraint_name, constraint_type, search_condition from

user_constraints where table_name=<tablename>;

Select constraint_name, column_name from user_cons_columns where
table_name=<tablename>;

To drop the constraints

Syntax:-

Drop constraint constraintname;

Describe commands

To view the structure of the table created use the DESCRIBE command.The

command displays the column names and datatypes

Syntax:-

Desc[ribe]<table_name>

e.g desc student

Restrictions for creating a table:

1.Table names and column names must begin with a letter.

2.Table names and column names can be 1 to 30 characters long.

3.table names must contain only the characters A-Z,a-z,0-9,underscore_,$ and #

4.Table name should not be same as the name of another database object.

5.Table name must not be an ORACLE reserved word.

6.Column names should not be duplicate within a table definition.

Alteration of TABLE:-

Alter table command

Syntax:-

Case1:-

Alter table <table_name>

Add(colume_name 1 datatype size(),

colume_name 2 datatype size(),

colume_name n datatype size());

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 24

Case2:-

Alter table <table_name>

Modify(colume_name 1 datatype size(),

colume_name 2 datatype size(),
…...

colume_name n datatype size());

After you create a table, you may need to change the table structures because you need to have

a column definition needs to be changed. Alter table statement can be used for this purpose.

You can add columns to a table using the alter table statement with the ADD clause.

E.g. Suppose you want to add enroll_no in the student table then we write

 Alter table student Add(enroll_no number(10));

You can modify existing column in a table by using the alter table statement with modify

clause.

E.g. Suppose you want to modify or chang the size of previously defined field name in the

student table then we write

 Alter table student modify(name char(25));

Dropping a column from a table

Syntax :

ALTER TABLE <Tablename> DROP COLUMN <ColumnName> ;

Drop table command Syntax:-

Drop table <table_name>

Drop table command remnoves the definitions of an oracle table.When you drop a table

,the database loses all the data in the table and all the indexes associated with it.

e.g drop table student;

Truncate table command
Syntax:-

Trunc table<table_name>

The truncate table statement is used to remove all rows from a table and to release the storage

space used by the table.

e.g.Trunc table student;

Rename table command

Syntax:-

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 25

Rename<oldtable_name> to<newtable_name>

Rename statement is used to rename a table,view,sequence,or synonym. e.g.

Rename student to stud;

Database objects:-

Index

An index is a schema object that can speed up retrieval of rows by using pointer. An index

provides direct & fast access to rows in a table. Index can be created explicitly or automatically.

Automatically :- A unique index is created automatically when you define a primary key or

unique key constraint in a table definition.

Manually :- users can create non unique indexes or columns to speed up access time to the rows.

Syntax:

Create index<index_name> On table(column[, column]…);

Eg. Create index emp_ename_idx On emp(ename);

When to create an index

a) The column is used frequently in the WHERE clause or in a join condition.

b) The column contains a wide range of values.

c) The column contains a large number of values.

To display created index of a table

eg.

Select ic.index_name, ic.column_name, ic.colun_position col_pos, ix.uniqueness from

user_indexes ix, user_ind_columns ic where ic.index_name=ix.index_name

and ic.table_name= emp ;‟ ‟

Removing an Index

Syntax:-

Drop index <index_name>; eg. Drop

index emp_name_idx;

Note: 1) we cannot modify indexes.

2) To change an index, we must drop it and the re-create it.

Views

View is a logical representation of subsets of data from one or more tables. A view takes the

output of a query and treats it as a table therefore view can be called as stored query or a virtual

table.The tables upon which a view is based are called base tables. In Oracle the SQL

command to create a view (virtual table) has the form

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 26

Create [or replace] view <view-name> [(<column(s)>)] as

<select-statement> [with check option [constraint <name>]];

The optional clause or replace re-creates the view if it already exists. <column(s)> names the

columns of the view. If <column(s)> is not specified in the view definition, the columns of the

view get the same names as the attributes listed in the select statement (if possible).

Example: The following view contains the name, job title and the annual salary of employees

working in the department 20:

Create view DEPT20 as

select ENAME, JOB, SAL∗12 ANNUAL SALARY from EMP where DEPTNO = 20;

In the select statement the column alias ANNUAL SALARY is specified for the expression

SAL∗12 and this alias is taken by the view. An alternative formulation of the above view

definition is

Create view DEPT20 (ENAME, JOB, ANNUAL SALARY) as select ENAME, JOB, SAL ∗

12 from EMP where DEPTNO = 20;

A view can be used in the same way as a table, that is, rows can be retrieved from a view(also

respective rows are not physically stored, but derived on basis of the select statement inthe view

definition), or rows can even be modified. A view is evaluated again each time it is accessed. In

Oracle SQL no insert, update, or delete modifications on views are allowed

that use one of the following constructs in the view definition:

• Joins

• Aggregate function such as sum, min, max etc.

• set-valued subqueries (in, any, all) or test for existence (exists)

• group by clause or distinct clause

In combination with the clause with check option any update or insertion of a row into the view

is rejected if the new/modified row does not meet the view definition, i.e., these rows would not

be selected based on the select statement. A with check option can be named using the constraint

clause.

A view can be deleted using the command delete <view-name>. To

describe the structure of a view

e.g. Describe stud;

To display the contents of view e.g. Select * from stud

Removing a view:

Syntax:- Drop view <view_name>

e.g. Drop view stud

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 27

Sequence:
A sequence is a database object, which can generate unique, sequential integer values. It can be

used to automatically generate primary key or unique key values. A sequence can be either in an

ascending or descending order.

Syntax :

Create

sequence<sequence_name>

[increment by n]

[start with n]

[{maxvalue n |

nomaxvalue}] [{minvalue n|

nominvalue}] [{cycle |

nocycle}]

[{cache n| nocache}];

 Increment by n Specifies the interval between

 sequence number where n is an

 integer. If this clause is omitted, the

 sequence is increment by 1.

 Start with n Specifies the first sequence number to

 be generated. If this clause is omitted ,

 the sequence is start with 1.

 Maxvalue n Specifies the maximum value, the

 sequence can generate

 Nomax value n Specifies the maximum value of

 10e27-1 for an ascending sequence & -

 1 for descending sequence. This is a

 default option.

 Minvalue n Specifies the minimum sequence

 value.

 Nominvalue n Specifies the minimum value of 1 for

 an ascending & 10e26-1 for

 descending sequence. This is a default

 option.

 Cycle Specifies that the sequence continues

 to generate values from the beginning

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 28

 after reaching either its max or min

 value.

 Nocycle Specifies that the sequence can not

 generate more values after reaching

 either its max or min value. This is a

 default option.

 Cache / nocache Specifies how many values the oracle

 server will preallocate & keep in

 memory. By default, the oracle server

 will cache 20 values.

 After creating a sequence we can access its values with the help of pseudo columns

 like curval & nextval.

 Nextval : nextval returns initial value of the sequence when reference to for the first

 time. Last references to the nextval will increment the sequence using the increment

 by clause & returns the new value.

 Curval : curval returns the current value of the sequence which is the value returned

 by the last reference to last value.

 Modifyning a sequence:

 The sequence can be modified when we want to perform the following :

 Set or eliminate minvalue or maxvalue

 Change the increment value.

 Change the number of cache sequence number.

Syntax :

 Alter sequence <sequence_name>
 [increment by n]

 [start with n]

 [{maxvalue n | nomaxvalue}]

 [{minvalue n| nominvalue}]

 [{cycle | nocycle}]

 [{cache n| nocache}];

Synonym:

A synonym is a database object,which is used as an alias(alternative name)for a

table,view or sequence.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 29

Syntax:-

Create[public]synonym

<synonym_name>for<table_name>;

In the syntax

Public:-Creates a synonym accessible to all users.

Synonym:-Is the name of the synonym to be created.

Synonym can either be private or public.A private synonym is created by normal

user,which is available to that persons.

A public synonym is created by a database administrator(DBA),which can be availed by

any other database user.

Uses:-

1.Simplify SQL statements.

2.Hide the name and owner of an object.

3.Provide public access to an object.

Guidelines:-

1.User can do all DML manipulations such as insert ,delete,update on synonym.

2.User cannot perform any DDL operations on the synonym except dropping the

synonym.

3.All the manipulations on it actually affect the table e.g

Create synonym stud1 for student;

 SQL, pronounced SEQUEL, is the standard language to access relational databases.SQL is an
abbreviation for Structured Query Language. I'll just add that SQL is composed of DML and
DDL. DML are the keywords you use to access and manipulate data, hence the name
DataManipulation Language. DDL are the keywords you use to create objects such as views,
tables and procedures, hence the name Data Definition Language.

Tables
In relational database systems (DBS) data are represented using tables (relations). A query issued
against the DBS also results in a table. A table has the following structure:

 Column 1 Column 2 . . . Column n

← Tuple (or Record)

 ………. ………. ………. ………..

A table is uniquely identified by its name and consists of rows that contain the stored
information, each row containing exactly one tuple (or record). A table can have one or more
columns.

Attributes

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 30

A column is made up of a column name and a data type, and it describes an attribute of the
tuples. The structure of a table, also called relation schema, thus is defined by its attributes.The
type of information to be stored in a table is defined by the data types of the attributes at table
creation time.SQL uses the terms table, row, and column for relation, tuple, and attribute,
respectively.
A table can have up to 254 columns which may have di fferent or same data types and sets of
values (domains), respectively. Possible domains are alphanumeric data (strings), numbers and
date formats.

Datatype Description
Max
Size:
Oracle 7

Max
Size:
Oracle
8

Max Size:
Oracle 9

Max
Size:
PL/SQL

PL/SQL
Subtypes/
Synonyms

VARCHAR2(s
ize)

Variable length
character string
having
maximum
length size
bytes.
You must
specify size

2000
bytes
minimum
is 1

4000
bytes
minimu
m is 1

4000 bytes
minimum is 1

32767
bytes
minimum
is 1

STRING
VARCHA
R

NVARCHAR2
(size)

Variable length
national
character set
string having
maximum
length size
bytes.
You must
specify size

N/A

4000
bytes
minimu
m is 1

4000 bytes
minimum is 1

32767
bytes
minimum
is 1

STRING
VARCHA
R

VARCHAR

Now deprecated
- VARCHAR is
a synonym for
VARCHAR2
but this usage
may change in
future versions.

- - -

CHAR(size)

Fixed length
character data of
length size
bytes. This
should be used
for fixed length
data. Such as
codes A100,
B102...

255 bytes
Default
and
minimum
size is 1
byte.

2000
bytes
Default
and
minimu
m size is
1 byte.

2000 bytes
Default and
minimum size
is 1 byte.

32767
bytes
Default
and
minimum
size is 1
byte.

CHARAC
TER

NCHAR
(size)

Fixed length
national
character set

N/A
2000
bytes
Default

2000 bytes
Default and
minimum size

32767
bytes
Default

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 31

data of length
size bytes. This
should be used
for fixed length
data. Such as
codes A100,
B102...

and
minimu
m size is
1 byte.

is 1 byte. and
minimum
size is 1
byte.

NUMBER(p,s)
Number having
precision p and
scale s.

The
precision
p can
range
from 1 to
38.
The scale
s can
range
from -84
to 127.

The
precisio
n p can
range
from 1
to 38.

The
scale s
can
range
from -84
to 127.

The precision
p can range
from 1 to 38.

The scale s
can range
from -84 to
127.

Magnitud
e
1E-130 ..
10E125

maximum
precision
of 126
binary
digits,
which is
roughly
equivalen
t to 38
decimal
digits
The scale
s can
range
from -84
to 127.
For
floating
point
don't
specify
p,s
REAL
has a
maximum
precision
of 63
binary
digits,
which is
roughly
equivalen
t to 18
decimal
digits

fixed-point
numbers:
DEC
DECIMAL
NUMERIC

floating-
point:
DOUBLE
PRECISIO
N FLOAT
binary_dou
ble
binary_floa
t

integers:
INTEGER
INT
SMALLIN
T
simple_inte
ger(10g)

BOOLEA
N
REAL

PLS_INTEGE
R

signed integers
PLS_INTEGER
values require
less storage and

PL/SQL
only

PL/SQL
only

PL/SQL only

magnitud
e range is
-
21474836

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 32

provide better
performance
than NUMBER
values.
So use
PLS_INTEGER
where you can!

47 ..
21474836
47

BINARY_INT
EGER

signed integers
(older slower
version of
PLS_INTEGER
)

magnitud
e range is
-
21474836
47 ..
21474836
47

NATURA
L
NATURA
LN
POSITIVE
POSITIVE
N
SIGNTYP
E

LONG

Character data
of variable
length (A bigger
version the
VARCHAR2
datatype)

2
Gigabytes

2
Gigabyt
es

2 Gigabytes -
but now
deprecated

32760
bytes
Note this
is
smalller
than the
maximum
width of a
LONG
column

DATE Valid date range

from
January 1,
4712 BC
to
December
31, 4712
AD.

from
January
1, 4712
BC to
Decemb
er 31,
9999
AD.

from January
1, 4712 BC to
December 31,
9999 AD.

from
January 1,
4712 BC
to
December
31, 9999
AD.
(in
Oracle7 =
4712 AD)

TIMESTAMP
(fractional_sec
onds_precision
)

the number of
digits in the
fractional part of
the SECOND
datetime field.

- -

Accepted
values of
fractional_sec
onds_precisio
n are 0 to 9.
(default = 6)

TIMESTAMP
(fractional_sec
onds_precision
) WITH
{LOCAL}
TIMEZONE

As above with
time zone
displacement
value

- -

Accepted
values of
fractional_sec
onds_precisio
n are 0 to 9.
(default = 6)

INTERVAL Time in years - - Accepted

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 33

YEAR
(year_precision
) TO MONTH

and months,
where
year_precision
is the number of
digits in the
YEAR datetime
field.

values are 0 to
9. (default =
2)

INTERVAL
DAY
(day_precision)
TO SECOND
(fractional_sec
onds_precision
)

Time in days,
hours, minutes,
and seconds.

day_precision is
the maximum
number of digits
in 'DAY'

fractional_secon
ds_precision is
the max number
of fractional
digits in the
SECOND field.

- -

day_precision
may be 0 to 9.
(default = 2)

fractional_sec
onds_precisio
n may be 0 to
9. (default =
6)

RAW(size)

Raw binary data
of length size
bytes.
You must
specify size for
a RAW value.

Maximum
size is 255
bytes.

Maximu
m size is
2000
bytes

Maximum
size is 2000
bytes

32767
bytes

LONG RAW

Raw binary data
of variable
length. (not
intrepreted by
PL/SQL)

2
Gigabytes
.

2
Gigabyt
es.

2 Gigabytes -
but now
deprecated

32760
bytes
Note this
is
smalller
than the
maximum
width of a
LONG
RAW
column

ROWID

Hexadecimal
string
representing the
unique address
of a row in its
table.
(primarily for
values returned
by the ROWID
pseudocolumn.)

8 bytes 10 bytes 10 bytes

Hexadeci
mal string
representi
ng the
unique
address of
a row in
its table.
(primarily
for values
returned

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 34

by the
ROWID
pseudocol
umn.)

UROWID

Hex string
representing the
logical address
of a row of an
index-organized
table

N/A

The
maximu
m size
and
default
is 4000
bytes

The maximum
size and
default is
4000 bytes

universal
rowid -
Hex
string
representi
ng the
logical
address of
a row of
an index-
organized
table,
either
physical,
logical, or
foreign
(non-
Oracle)

See
CHARTO
ROWID
and the
package:
DBMS_R
OWID

MLSLABEL

Binary format of
an operating
system
label.This
datatype is used
with Trusted
Oracle7.

CLOB
Character Large
Object

4Gigabyte
s

4Gigaby
tes

4Gigabytes
4Gigabyt
es

NCLOB
National
Character Large
Object

4Gigaby
tes

4Gigabytes
4Gigabyt
es

BLOB
Binary Large
Object

4Gigaby
tes

4Gigabytes
4Gigabyt
es

BFILE
pointer to binary
file on disk

4Gigaby
tes

4Gigabytes

The size
of a
BFILE is
system
dependent
but
cannot
exceed
four
gigabytes
(2**32 -
1 bytes).

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 35

Conclusion:

Thus we have studied how to use SQL DDL Statements.

FAQ : Consider relational schema Student(Roll_no, Name, Deptno, Marks,Email_id)

 Develop SQL DDL statements.

1. Create table Student;

2. Insert values in student table.

3. Add a new attribute date of birth in student record using alter statement.

4. Drop date of birth attribute from student table.

5. Update a student marks where roll no is 7;

6. Delete a record of student whose roll no is 4;

7. Create view for student table;

8. Create index on Roll no in student table.

9. Create sequence on student table.

10. Create synonym on student table.

XMLType XML data - - 4Gigabytes

Populate
with
XML
from a
CLOB or
VARCH
AR2.

or query
from
another
XMLTyp
e column.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 36

Assignment No. 3

Title
Design at least 10 SQL queries for suitable database
application using SQL DML statements: Insert, Select, Update,
Delete with operators, functions, and set operator.

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 37

Assignment No. 3
Title:- Design at least 10 SQL queries for suitable database application using SQL DML

statements: Insert, Select, Update, Delete with operators, functions, and set operator.

Objectives:- To study SQL DML statements

THEORY: Data Manipulation Language (DML)
A data manipulation language (DML) is a family of syntax elements similar to a
computer programming language used for selecting, inserting, deleting and updating data in
a database. Performing read-only queries of data is sometimes also considered a component of
DML.
Data manipulation language comprises the SQL data change statements, [2] which modify stored
data but not the schema or database objects.
Data manipulation languages have their functional capability organized by the initial word in a
statement, which is almost always a verb. In the case of SQL, these verbs are:

 SELECT ... FROM ... WHERE ...
 INSERT INTO ... VALUES ...
 UPDATE ... SET ... WHERE ...
 DELETE FROM ... WHERE ...

The purely read-only SELECT query statement is classed with the 'SQL-data' statements and so
is considered by the standard to be outside of DML. The SELECT ... INTO form is considered to
be DML because it manipulates (i.e. modifies) data. In common practice though, this distinction
is not made and SELECT is widely considered to be part of DML.
Most SQL database implementations extend their SQL capabilities by providing imperative, i.e.
procedural languages.

 Inserting Data into Table:
To insert data into table, you would need to use SQL INSERT INTO command. You can insert
data into table by using > prompt or by using any script like PHP.
Syntax:
Here is generic SQL syntax of INSERT INTO command to insert data into table:

INSERT INTO table_name (field1, field2,...fieldN)
 VALUES (value1, value2,...valueN);

To insert string data types, it is required to keep all the values into double or single quote, for
example:-"value".
Inserting Data from Command Prompt:
This will use SQL INSERT INTO command to insert data into table tutorials_tbl.
Example:
Following example will create 3 records into tutorials_tbl table:

 INSERT INTO tutorials_tbl (tutorial_title, tutorial_author, submission_date)
 VALUES ("Learn PHP", "John Poul", NOW());

 INSERT INTO tutorials_tbl (tutorial_title, tutorial_author, submission_date)
 VALUES ("Learn ", "Abdul S", NOW());

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 38

INSERT INTO tutorials_tbl (tutorial_title, tutorial_author, submission_date)
 VALUES ("JAVA Tutorial", "Sanjay", '2007-05-06');

Here, NOW() is a function, which returns current date and time.

 Fetching Data from Table:
The SQL SELECT command is used to fetch data from database. You can use this command at
> prompt as well as in any script like PHP.
Syntax:
Here is generic SQL syntax of SELECT command to fetch data from table:

SELECT field1, field2,...fieldN table_name1, table_name2...
[WHERE Clause]
[OFFSET M][LIMIT N]

 You can use one or more tables separated by comma to include various conditions using

a WHERE clause, but WHERE clause is an optional part of SELECT command.
 You can fetch one or more fields in a single SELECT command.
 You can specify star (*) in place of fields. In this case, SELECT will return all the fields.
 You can specify any condition using WHERE clause.
 You can specify an offset using OFFSET from where SELECT will start returning

records. By default offset is zero.
 You can limit the number of returns using LIMIT attribute.

Fetching Data from Command Prompt:
This will use SQL SELECT command to fetch data from table tutorials_tbl
Example:
Following example will return all the records from tutorials_tbl table:

> SELECT * from tutorials_tbl
+-------------+----------------+-----------------+-----------------+
| tutorial_id | tutorial_title | tutorial_author | submission_date |
+-------------+----------------+-----------------+-----------------+
| 1 | Learn PHP | John Poul | 2007-05-21 |
| 2 | Learn | Abdul S | 2007-05-21 |
| 3 | JAVA Tutorial | Sanjay | 2007-05-21 |
+-------------+----------------+-----------------+-----------------+

The SQL SELECT statement returns a result set of records from one or more tables.
A SELECT statement retrieves zero or more rows from one or more database tables or
database views. In most applications, SELECT is the most commonly used Data Manipulation
Language (DML) command. As SQL is a declarative programming language, SELECT queries
specify a result set, but do not specify how to calculate it. The database translates the query into a
"query plan" which may vary between executions, database versions and database software. This
functionality is called the "query optimizer" as it is responsible for finding the best possible
execution plan for the query, within applicable constraints.
The SELECT statement has many optional clauses:

 WHERE specifies which rows to retrieve.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 39

 GROUP BY groups rows sharing a property so that an aggregate function can be applied
to each group.

 HAVING selects among the groups defined by the GROUP BY clause.
 ORDER BY specifies an order in which to return the rows.
 AS provides an alias which can be used to temporarily rename tables or columns.

WHERE Clause

We have seen SQL SELECT command to fetch data from table. We can use a conditional
clause called WHERE clause to filter out results. Using WHERE clause, we can specify a
selection criteria to select required records from a table.
Syntax:
Here is generic SQL syntax of SELECT command with WHERE clause to fetch data from
table:

SELECT field1, field2,...fieldN table_name1, table_name2...
[WHERE condition1 [AND [OR]] condition2.....

 You can use one or more tables separated by comma to include various conditions using

a WHERE clause, but WHERE clause is an optional part of SELECT command.
 You can specify any condition using WHERE clause.
 You can specify more than one conditions using AND or OR operators.
 A WHERE clause can be used along with DELETE or UPDATE SQL command also to

specify a condition.

The WHERE clause works like an if condition in any programming language. This clause is
used to compare given value with the field value available in table. If given value from outside
is equal to the available field value in table, then it returns that row.
Here is the list of operators, which can be used with WHERE clause.
Assume field A holds 10 and field B holds 20, then:

Operator Description Example

=
Checks if the values of two operands are equal or not, if yes then
condition becomes true.

(A = B) is not true.

!=
Checks if the values of two operands are equal or not, if values are
not equal then condition becomes true.

(A != B) is true.

>
Checks if the value of left operand is greater than the value of right
operand, if yes then condition becomes true.

(A > B) is not true.

<
Checks if the value of left operand is less than the value of right
operand, if yes then condition becomes true.

(A < B) is true.

>=
Checks if the value of left operand is greater than or equal to the
value of right operand, if yes then condition becomes true.

(A >= B) is not
true.

<=
Checks if the value of left operand is less than or equal to the value
of right operand, if yes then condition becomes true.

(A <= B) is true.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 40

The WHERE clause is very useful when you want to fetch selected rows from a table, especially
when you use Join.
It is a common practice to search records using Primary Key to make search fast.
If given condition does not match any record in the table, then query would not return any row.

Fetching Data from Command Prompt:
This will use SQL SELECT command with WHERE clause to fetch selected data from table
tutorials_tbl.
Example:
Following example will return all the records from tutorials_tbl table for which author name
is Sanjay:

> SELECT * from tutorials_tbl WHERE tutorial_author='Sanjay';
+-------------+----------------+-----------------+-----------------+
| tutorial_id | tutorial_title | tutorial_author | submission_date |
+-------------+----------------+-----------------+-----------------+
| 3 | JAVA Tutorial | Sanjay | 2007-05-21 |
+-------------+----------------+-----------------+-----------------+

Unless performing a LIKE comparison on a string, the comparison is not case sensitive. You can
make your search case sensitive using BINARY keyword as follows:

SELECT * from tutorials_tbl WHERE BINARY tutorial_author='sanjay';

LIKE Clause

We have seen SQL SELECT command to fetch data from table. We can also use a conditional
clause called WHERE clause to select required records.
A WHERE clause with equals sign (=) works fine where we want to do an exact match. Like if
"tutorial_author = 'Sanjay'". But there may be a requirement where we want to filter out all the
results where tutorial_author name should contain "jay". This can be handled using
SQL LIKE clause along with WHERE clause.
If SQL LIKE clause is used along with % characters, then it will work like a meta character (*)
in UNIX while listing out all the files or directories at command prompt.
Without a % character, LIKE clause is very similar to equals sign along with WHERE clause.
Syntax:
Here is generic SQL syntax of SELECT command along with LIKE clause to fetch data from
table:

SELECT field1, field2,...fieldN table_name1, table_name2...
WHERE field1 LIKE condition1 [AND [OR]] filed2 = 'somevalue'

 You can specify any condition using WHERE clause.
 You can use LIKE clause along with WHERE clause.
 You can use LIKE clause in place of equals sign.
 When LIKE is used along with % sign then it will work like a meta character search.
 You can specify more than one conditions using AND or OR operators.
 A WHERE...LIKE clause can be used along with DELETE or UPDATE SQL command

also to specify a condition.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 41

Using LIKE clause at Command Prompt:
This will use SQL SELECT command with WHERE...LIKE clause to fetch selected data from
table tutorials_tbl.
Example:
Following example will return all the records from tutorials_tbl table for which author name
ends with jay:

 SELECT * from tutorials_tbl WHERE tutorial_author LIKE '%jay';
+-------------+----------------+-----------------+-----------------+
| tutorial_id | tutorial_title | tutorial_author | submission_date |
+-------------+----------------+-----------------+-----------------+
| 3 | JAVA Tutorial | Sanjay | 2007-05-21 |
+-------------+----------------+-----------------+-----------------+

GROUP BY Clause

You can use GROUP BY to group values from a column, and, if you wish, perform calculations
on that column. You can use COUNT, SUM, AVG, etc., functions on the grouped column.
To understand GROUP BY clause, consider an employee_tbl table, which is having the
following records:

 > SELECT * FROM employee_tbl;
+------+------+------------+--------------------+
| id | name | work_date | daily_typing_pages |
+------+------+------------+--------------------+
| 1 | John | 2007-01-24 | 250 |
| 2 | Ram | 2007-05-27 | 220 |
| 3 | Jack | 2007-05-06 | 170 |
| 3 | Jack | 2007-04-06 | 100 |
| 4 | Jill | 2007-04-06 | 220 |
| 5 | Zara | 2007-06-06 | 300 |
| 5 | Zara | 2007-02-06 | 350 |
+------+------+------------+--------------------+
7 rows in set (0.00 sec)

Now, suppose based on the above table we want to count number of days each employee did
work.
If we will write a SQL query as follows, then we will get the following result:

 SELECT COUNT(*) FROM employee_tbl;
+---------------------------+
| COUNT(*) |
+---------------------------+
| 7 |

But this is not serving our purpose, we want to display total number of pages typed by each
person separately. This is done by using aggregate functions in conjunction with a GROUP
BY clause as follows:

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 42

 SELECT name, COUNT(*) FROM employee_tbl GROUP BY name;

+------+----------+
| name | COUNT(*) |
+------+----------+
Jack	2
Jill	1
John	1
Ram	1
Zara	2
+------+----------+
5 rows in set (0.04 sec)

We will see more functionality related to GROUP BY in other functions like SUM, AVG, etc.

COUNT Function

COUNT Function is the simplest function and very useful in counting the number of records,
which are expected to be returned by a SELECT statement.
To understand COUNT function, consider an employee_tbl table, which is having the following
records:

 > SELECT * FROM employee_tbl;
+------+------+------------+--------------------+
| id | name | work_date | daily_typing_pages |
+------+------+------------+--------------------+
| 1 | John | 2007-01-24 | 250 |
| 2 | Ram | 2007-05-27 | 220 |
| 3 | Jack | 2007-05-06 | 170 |
| 3 | Jack | 2007-04-06 | 100 |
| 4 | Jill | 2007-04-06 | 220 |
| 5 | Zara | 2007-06-06 | 300 |
| 5 | Zara | 2007-02-06 | 350 |
+------+------+------------+--------------------+
7 rows in set (0.00 sec)

Now, suppose based on the above table you want to count total number of rows in this table, then
you can do it as follows:

 >SELECT COUNT(*) FROM employee_tbl ;
+----------+
| COUNT(*) |
+----------+
| 7 |
+----------+
1 row in set (0.01 sec)

Similarly, if you want to count the number of records for Zara, then it can be done as follows:

SELECT COUNT(*) FROM employee_tbl WHERE name="Zara";
+----------+

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 43

| COUNT(*) |
+----------+
| 2 |
+----------+
1 row in set (0.04 sec)

NOTE: All the SQL queries are case insensitive so it does not make any difference if you give
ZARA or Zara in WHERE condition.

MAX Function

MAX function is used to find out the record with maximum value among a record set.
To understand MAX function, consider an employee_tbl table, which is having the following
records:

 > SELECT * FROM employee_tbl;
+------+------+------------+--------------------+
| id | name | work_date | daily_typing_pages |
+------+------+------------+--------------------+
| 1 | John | 2007-01-24 | 250 |
| 2 | Ram | 2007-05-27 | 220 |
| 3 | Jack | 2007-05-06 | 170 |
| 3 | Jack | 2007-04-06 | 100 |
| 4 | Jill | 2007-04-06 | 220 |
| 5 | Zara | 2007-06-06 | 300 |
| 5 | Zara | 2007-02-06 | 350 |
+------+------+------------+--------------------+
7 rows in set (0.00 sec)

Now, suppose based on the above table you want to fetch maximum value of
daily_typing_pages, then you can do so simply using the following command:

SELECT MAX(daily_typing_pages) FROM employee_tbl;
+-------------------------+
| MAX(daily_typing_pages) |
+-------------------------+
| 350 |
+-------------------------+
1 row in set (0.00 sec)

You can find all the records with maximum value for each name using GROUP BY clause as
follows:

 SELECT id, name, MAX(daily_typing_pages) FROM employee_tbl GROUP BY name;
+------+------+-------------------------+
| id | name | MAX(daily_typing_pages) |
+------+------+-------------------------+
| 3 | Jack | 170 |
| 4 | Jill | 220 |

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 44

1	John	250
2	Ram	220
5	Zara	350
+------+------+-------------------------+
5 rows in set (0.00 sec)

You can use MIN Function along with MAX function to find out minimum value as well. Try
out the following example:

SELECT MIN(daily_typing_pages) least, MAX(daily_typing_pages) max FROM employee_tbl;
+-------+------+
| least | max |
+-------+------+
| 100 | 350 |
+-------+------+
1 row in set (0.01 sec)

MIN Function

MIN function is used to find out the record with minimum value among a record set.
To understand MIN function, consider an employee_tbl table, which is having the following
records:

 SELECT * FROM employee_tbl;
+------+------+------------+--------------------+
| id | name | work_date | daily_typing_pages |
+------+------+------------+--------------------+
1	John	2007-01-24	250
2	Ram	2007-05-27	220
3	Jack	2007-05-06	170
3	Jack	2007-04-06	100
4	Jill	2007-04-06	220
5	Zara	2007-06-06	300
5	Zara	2007-02-06	350
+------+------+------------+--------------------+
7 rows in set (0.00 sec)

Now, suppose based on the above table you want to fetch minimum value of daily_typing_pages,
then you can do so simply using the following command:

SELECT MIN(daily_typing_pages) FROM employee_tbl;
+-------------------------+
| MIN(daily_typing_pages) |
+-------------------------+
| 100 |
+-------------------------+
1 row in set (0.00 sec)

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 45

You can find all the records with minimum value for each name using GROUP BY clause as
follows:

SELECT id, name, MIN(daily_typing_pages) FROM employee_tbl GROUP BY name;
+------+------+-------------------------+
| id | name | MIN(daily_typing_pages) |
+------+------+-------------------------+
3	Jack	100
4	Jill	220
1	John	250
2	Ram	220
5	Zara	300
+------+------+-------------------------+
5 rows in set (0.00 sec)

You can use MIN Function along with MAX function to find out minimum value as well. Try
out the following example:

SELECT MIN(daily_typing_pages) least, MAX(daily_typing_pages) max FROM employee_tbl;
+-------+------+
| least | max |
+-------+------+
| 100 | 350 |
+-------+------+
1 row in set (0.01 sec)

AVG Function

AVG function is used to find out the average of a field in various records.

To understand AVG function, consider an employee_tbl table, which is having following
records:

 SELECT * FROM employee_tbl;
+------+------+------------+--------------------+
| id | name | work_date | daily_typing_pages |
+------+------+------------+--------------------+
1	John	2007-01-24	250
2	Ram	2007-05-27	220
3	Jack	2007-05-06	170
3	Jack	2007-04-06	100
4	Jill	2007-04-06	220
5	Zara	2007-06-06	300
5	Zara	2007-02-06	350
+------+------+------------+--------------------+
7 rows in set (0.00 sec)

Now, suppose based on the above table you want to calculate average of all the
dialy_typing_pages, then you can do so by using the following command:

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 46

 SELECT AVG(daily_typing_pages) FROM employee_tbl;
+-------------------------+
| AVG(daily_typing_pages) |
+-------------------------+
| 230.0000 |
+-------------------------+
1 row in set (0.03 sec)

You can take average of various records set using GROUP BY clause. Following example will
take average all the records related to a single person and you will have average typed pages by
every person.

 SELECT name, AVG(daily_typing_pages) FROM employee_tbl GROUP BY name;
+------+-------------------------+
| name | AVG(daily_typing_pages) |
+------+-------------------------+
Jack	135.0000
Jill	220.0000
John	250.0000
Ram	220.0000
Zara	325.0000
+------+-------------------------+
5 rows in set (0.20 sec)

SUM Function

SUM function is used to find out the sum of a field in various records.
To understand SUM function, consider an employee_tbl table, which is having the following
records:

SELECT * FROM employee_tbl;
+------+------+------------+--------------------+
| id | name | work_date | daily_typing_pages |
+------+------+------------+--------------------+
1	John	2007-01-24	250
2	Ram	2007-05-27	220
3	Jack	2007-05-06	170
3	Jack	2007-04-06	100
4	Jill	2007-04-06	220
5	Zara	2007-06-06	300
5	Zara	2007-02-06	350
+------+------+------------+--------------------+
7 rows in set (0.00 sec)

Now, suppose based on the above table you want to calculate total of all the dialy_typing_pages,
then you can do so by using the following command:

SELECT SUM(daily_typing_pages) FROM employee_tbl;
+-------------------------+
| SUM(daily_typing_pages) |

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 47

+-------------------------+
| 1610 |
+-------------------------+
1 row in set (0.00 sec)

You can take sum of various records set using GROUP BY clause. Following example will sum
up all the records related to a single person and you will have total typed pages by every person.

SELECT name, SUM(daily_typing_pages) FROM employee_tbl GROUP BY name;
+------+-------------------------+
| name | SUM(daily_typing_pages) |
+------+-------------------------+
Jack	270
Jill	220
John	250
Ram	220
Zara	650
+------+-------------------------+
5 rows in set (0.17 sec)

HAVING clause
The HAVING clause is used in the SELECT statement to specify filter conditions for group of
rows or aggregates. The HAVING clause is often used with the GROUP BY clause. When
using with the GROUP BY clause, you can apply a filter condition to the columns that appear in
the GROUP BY clause. If the GROUP BY clause is omitted, the HAVING clause behaves like
the WHERE clause. Notice that the HAVING clause applies the condition to each group of
rows, while the WHERE clause applies the condition to each individual row.
Examples of using HAVING clause
Let s take a look at an example of using ‟ HAVING clause.
We will use the orderdetails table in the sample database for the sake of demonstration.

We can use the GROUP BY clause to get order number, the number of items sold per order and
total sales for each:

SELECT ordernumber,
 SUM(quantityOrdered) AS itemsCount,
 SUM(priceeach) AS total
FROM orderdetails
GROUP BY ordernumber

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 48

Now, we can find which order has total sales greater than $1000. We use the HAVING clause
on the aggregate as follows:
SELECT ordernumber,
 SUM(quantityOrdered) AS itemsCount,
 SUM(priceeach) AS total
 FROM orderdetails
 GROUP BY ordernumber
 HAVING total > 1000

We can construct a complex condition in the HAVING clause using logical operators such
as OR and AND. Suppose we want to find which order has total sales greater than $1000 and
contains more than 600 items, we can use the following query:

SELECT ordernumber,
 sum(quantityOrdered) AS itemsCount,
 sum(priceeach) AS total
 FROM orderdetails
 GROUP BY ordernumber
 HAVING total > 1000 AND itemsCount > 600

The HAVING clause is only useful when we use it with the GROUP BY clause to generate the
output of the high-level reports. For example, we can use the HAVING clause to answer some
kinds of queries like give me all the orders in this month, this quarter and this year that have total
sales greater than 10K.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 49

UPDATE Query
There may be a requirement where existing data in a table needs to be modified. You can do so
by using SQL UPDATE command. This will modify any field value of any table.
Syntax:
Here is generic SQL syntax of UPDATE command to modify data into table:

UPDATE table_name SET field1=new-value1, field2=new-value2
[WHERE Clause]

 You can update one or more field altogether.
 You can specify any condition using WHERE clause.
 You can update values in a single table at a time.

The WHERE clause is very useful when you want to update selected rows in a table.
Updating Data from Command Prompt:
This will use SQL UPDATE command with WHERE clause to update selected data into table
tutorials_tbl.
Example:
Following example will update tutorial_title field for a record having tutorial_id as 3.

UPDATE tutorials_tbl
 SET tutorial_title='Learning JAVA'
 WHERE tutorial_id=3;

DELETE Query
If you want to delete a record from any table, then you can use SQL command DELETE
FROM. You can use this command at > prompt as well as in any script like PHP.
Syntax:
Here is generic SQL syntax of DELETE command to delete data from a table:

DELETE FROM table_name [WHERE Clause]

 If WHERE clause is not specified, then all the records will be deleted from the given

table.
 You can specify any condition using WHERE clause.
 You can delete records in a single table at a time.

The WHERE clause is very useful when you want to delete selected rows in a table.
Deleting Data from Command Prompt:
This will use SQL DELETE command with WHERE clause to delete selected data into table
tutorials_tbl.
Example:
Following example will delete a record into tutorial_tbl whose tutorial_id is 3.

DELETE FROM tutorials_tbl WHERE tutorial_id=3;

Create table location(location_id numeric(3) primary key,regional_group varchar(15));

Create table department(Department_ID numeric(2) primary key,name varchar(20),location_id
int, foreign key(location_id) references location(location_id));

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 50

Create table job(job_ID numeric(3) primary key,function varchar(20));

Create table employee(employee_ID numeric(4) primary key,last_name varchar(20),first_name
varchar(20),middle_name varchar(20),job_id numeric(3),manager_id varchar(20), hired_date
date, salary numeric(6), comm numeric(4), department_id numeric(2) not null,FOREIGN KEY
(job_id) REFERENCES job(job_id),FOREIGN KEY (department_id) REFERENCES
department(department_id));

1. List the details about “SMITH”

Select * from employee where last_name=‘SMITH’;

2. List out the employees who are working in department 20

Select * from employee where department_id=20

3. List out the employees who are earning salary between 3000 and 4500

Select * from employee where salary between 3000 and 4500

4. List out the employees who are working in department 10 or 20

Select * from employee where department_id in (10,20)

5. Find out the employees who are not working in department 10 or 30

Select last_name, salary, comm, department_id from employee where
department_id not in (10,30)

6. List out the employees whose name starts with “S”

Select * from employee where last_name like 'S%';

7. List out the employees whose name start with “S” and end with “H”

Select * from employee where last_name Like 'S%H';

8. List out the employees whose name length is 5 and start with “S”

Select * from employee where last_name like 'S____';

9. List out the employees who are working in department 10 and draw the salaries more
than 3500

Select * from employee where department_id=10 and salary>3500

10. List out the employees who are not receiving commission.

Select * from employee where commission is Null

11. List out the employee id, last name in ascending order based on the employee id.

Select employee_id, last_name from employee order by employee_id

12. List out the employee id, name in descending order based on salary column

Select employee_id, last_name, salary from employee order by salary desc

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 51

13. List out the employee details according to their last_name in ascending order and
salaries in descending order

Conclusion: Thus we have studied to use & implement various DML queries.

FAQ :

1. Explain DML.

2. Explain INSERT command with syntax.

3. Explain DELETE command with syntax.

4. Explain UPDATE command with syntax.

5. Explain SELECT command with syntax.

6. Enlist different comparisons operator. Explain with example.

7. Enlist different Logical operator. Explain with example.

8. Explain Order by clause.

9. Enlist different Aggregation function. Explain with example.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 52

Assignment No. 4

Title

Design at least 10 SQL queries for suitable database

application using SQL DML statements: all types of Join,

Sub-Query and View.

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 53

Assignment No: 4

Title:- Design at least 10 SQL queries for suitable database application using SQL DML

statements: all types of Join, Sub-Query and View.

Objectives:- To study all types of Join, Sub-Query and View SQL statements.

THEORY: SQL – Join

The ability of relational „join operator is ‟ an important feature of relational systems. A join

makes it possible to select data from more than table by means of a single statement. This joining

of tables may be done in a many ways.

Types of JOIN

1) Inner

2) Outer(left, right,full)

3) Cross

1) Inner join :

- Also known as equi join.

- Statements generally compares two columns from two columns with the equivalence

operator =.

- This type of join can be used in situations where selecting only those rows that have

values in common in the columns specified in the ON clause, is required.

• Syntax :

(ANSI style)

SELECT<columnname1>, <columnname2> <columnNameN> FROM <tablename1>

INNER JOIN <tablename2>ON <tablename1>.<columnname> =

<tablename2>.<columnname> WHERE <condition> ORDER BY <columnname1>;

(theta style)

SELECT<columnname1>, <columnname2> <columnNameN> FROM <tablename1>,

<tablename2> WHERE <tablename1>.<columnname> = <tablename2>.<columnname>

AND <condition> ORDER BY <columnname1>;

• List the employee details along with branch names to which they belong.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 54

Emp(empno,fname,lname,dept,desig,branchno)

Branch(bname,branchno)

Select e.empno,e.fname,e.lname,e.dept, b.bname, e.desig from emp e inner join branch b on

b.branchno=e.branchno;

Select e.empno, e.fname, e.lname, e.dept, b.bname, e.desig from emp e, branch b on where

b.branchno=e.branchno;

Eg. List the customers along with the account details associated with them.

Customer(custno,fname,lname)

Acc_cust_dtls(fdno,custno)

Acc_mstr(accno,branchno,curbal)

Branch_mstr(name,branchno)

• Select c.custno, c.fname, c.lname, a.accno,a.curbal,b.branchno,b.name from customer c inner

join acc_cust_dtls k on c.custno=k.custno inner join acc_mstr a on k.fdno=a.accno inner join

branch b on b.branchno=a.branchno where c.custno like „C% order by c.custno;‟

• Select c.custno, c.fname, c.lname, a.accno,a.curbal,b.branchno,b.name from customer c,

acc_cust_dtls k, acc_mstr a, branch b where c.custno=k.custno and k.fdno=a.accno and

b.branchno=a.branchno and c.custno like „C% order by c.custno;‟

Outer Join

Outer joins are similar to inner joins, but give a little bit more flexibility when selecting data from

related tables. This type of joins can be used in situations where it is desired, to select all rows from the

table on left(or right, or both) regardless of whether the other table has values in common & (usually)

enter NULL where data is missing.

• Tables

Emp_mstr(empno,fname,lname,dept)

Cntc_dtls(codeno,cntc_type,cntc_data)

Left Outer Join
List the employee details along with the contact details(if any) using left outer join.

• Select e.empno, e.fname, e.lname, e.dept, c.cntc_type, c.cntc_data from emp_mstr e left join

cntc_dtls c on e.empno=c.codeno;

• Select e.empno, e.fname, e.lname, e.dept, c.cntc_type, c.cntc_data from emp_mstr e cntc_dtls c

where e.empno=c.codeno(+);

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 55

All the employee details have to be listed even though their corresponding contact information is not

present. This indicates all the rows from the first table will be displayed even though there exists no

matching rows in the second table.

Right outer join

List the employee details with contact details(if any using right outer join.

• Tables

Emp_mstr(empno,fname,lname,dept)

Cntc_dtls(codeno,cntc_type,cntc_data)

• Select e.empno, e.fname, e.lname, e.dept, c.cntc_type, c.cntc_data from emp_mstr e right join

cntc_dtls c on e.empno=c.codeno;

• Select e.empno, e.fname, e.lname, e.dept, c.cntc_type, c.cntc_data from emp_mstr e cntc_dtls c

where e.empno(+)=c.codeno;

Since the RIGHT JOIN returns all the rows from the second table even if there are no matches in the

first table.

Cross join

A cross join returns what known as a Cartesian Product. This means that the join combines

every row from the left table with every row in the right table. As can be imagined, sometimes

this join produces a mess, but under the right circumstances, it can be very useful. This type of

join can be used in situation where it is desired, to select all possible combinations of rows &

columns from both tables. The kind of join is usually not preferred as it may run for a very long

time & produce a huge result set that may not be useful.

• Create a report using cross join that will display the maturity amounts for predefined deposits,

based on min & max period fixed/ time deposit.

• Tables

Tem_fd_amt(fd_amt)

Fd_mstr(minprd,maxprd,intrate)

• Select fd_amt, s.minprd, s.maxprd, s.intrate,round (t.fd_amt+(s.intrate/100) * (s.minprd/365)

)) “amount_min_period”,round(t.fd_amt+(s.intrate/100)*(s.maxprd/365)))
“amount_max_period” from fd_mstr s cross join tem_fd_amt t;

• Select t.fd_amt, s.minprd, s.maxprd, s.intrate, round(t.fd_amt+(s.intrate/100) * (s.minprd/365)))

“amount_min_period”, round(t.fd_amt+(s.intrate/100)*(s.maxprd/365))) “amount_max_period”

from fd_mstr s, tem_fd_amt t;

Self join

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 56

- In some situation, it is necessary to join to itself, as though joining 2 separate tables.

- This is referred to as self join

Example

- Emp_mgr(empno,fname, lname,mgrno)

• Select e.empno,e.fname,e.lname, m.fname “manager” from emp_mgr e, emp_mgr m where

e.mgrno=m.empno;

Three tire Architecture:

A three-tier architecture is a client-server architecture in which the functional process logic, data

access, computer data storage and user interface are developed and maintained as independent modules

on separate platforms. Three-tier architecture is a software design pattern and a well-established

software architecture.

In a Three-tier architecture, the client machine acts as merely a front end and does not contain

any direct database calls. Instead, the client end communicates with an application server, usually

through a forms interface. The application server in turn communicates with a

database system to access data. The business logic of the application, which says what actions to carry

out under what conditions, is embedded in the application server, instead of being distributed across

multiple clients. Three-tier applications are more appropriate for large applications, and for applications

that run on the World Wide Web.

 Fig. 1 Three Tire Architecture

Three-tier architecture allows any one of the three tiers to be upgraded or replaced independently. The

user interface is implemented on a desktop PC and uses a standard graphical user interface with

different modules running on the application server. The relational database management system on the

database server contains the computer data storage logic. The middle tiers are usually multitiered.

The three tiers in a three-tier architecture are:

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 57

1. Presentation Tier: Occupies the top level and displays information related to services available

on a website. This tier communicates with other tiers by sending results to the browser and other

tiers in the network.

2. Application Tier: Also called the middle tier, logic tier, business logic or logic tier, this tier is

pulled from the presentation tier. It controls application functionality by performing detailed

processing.

3. Data Tier: Houses database servers where information is stored and retrieved. Data in this tier is

kept independent of application servers or business logic.

Employee (Eno, Ename, Deptno, Salary) Eno=pk, Deptno=fk

Department (Deptno, Dname) Deptno=pk

Implement all join operation –cross join, natural join ,equi join, left outer ,right outer join etc & Write

SQL Queries for following questions

 i) List of employee names of 'Computer' department.

 ii) Find the Employee who s‟ Salary above 50000 of each department.

 iii) Find department name of employee name 'Amit'.

Conclusion: Thus we have studied to use & implement various join operation with nested queries.

FAQ:

1. Explain Join Function.

2. Enlist the different types of join operations.

3. Explain CROSS Join explain with example.

4. Explain Natural join explain with example.

5. Explain Inner join explain with example.

6. Explain Outer join explain with example.

7. What is the use of nested Query. Explain with Example.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 58

Assignment No. 5

Title
Unnamed PL/SQL code block: Use of Control structure and
Exception handling is mandatory.

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 59

Assignment No: 5

Title:- Unnamed PL/SQL code block: Use of Control structure and Exception handling is mandatory.

Write a PL/SQL block of code for the following requirements:-
Schema:
1. Borrower(Rollin, Name, DateofIssue, NameofBook, Status)
2. Fine(Roll_no,Date,Amt)
 Accept roll_no & name of book from user.
 Check the number of days (from date of issue), if days are between 15 to 30 then fine amount will be
Rs 5per day.
 If no. of days>30, per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day.
 After submitting the book, status will change from I to R.
 If condition of fine is true, then details will be stored into fine table.

Frame the problem statement for writing PL/SQL block inline with above statement.

Objective:- Learn the concept of PL/SQL

Theory:
Introduction :-PL/SQL

The development of database applications typically requires language constructs similar to those that
can be found in programming languages such as C, C++, or Pascal. These constructs are necessary in
order to implement complex data structures and algorithms. A major restriction of the database
language SQL, however, is that many tasks cannot be accomplished by using only the provided
language elements.

PL/SQL (Procedural Language/SQL) is a procedural extension of Oracle-SQL that o ffers language
constructs similar to those in imperative programming languages.

Or
A PL/SQL is a procedural language extension to the SQL in which you can declare and use the
variables, constants, do exception handling and you can also write the program modules in the form of
PL/SQL subprograms.PL/SQL combines the features of a procedural language with structured query
language

PL/SQL allows users and designers to develop complex database applications that require the usage of
control structures and procedural elements such as procedures, functions, and modules.

The basic construct in PL/SQL is a block. Blocks allow designers to combine logically related (SQL-)
statements into units. In a block, constants and variables can be declared, and variables can be used to
store query results. Statements in a PL/SQL block include SQL statements, control structures (loops),
condition statements (if-then-else), exception handling, and calls of other PL/SQL blocks.

PL/SQL blocks that specify procedures and functions can be grouped into packages. A package is
similar to a module and has an interface and an implementation part. Oracle o ffers several predefined
packages, for example, input/output routines, file handling, job scheduling etc. (see directory
$ORACLE HOME/rdbms/admin).

Another important feature of PL/SQL is that it o ffers a mechanism to process query results in a tuple-
oriented way, that is, one tuple at a time. For this, cursors are used. A cursor basically is a pointer to a
query result and is used to read attribute values of selected tuples into variables. A cursor typically is

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 60

used in combination with a loop construct such that each tuple read by the cursor can be processed
individually.

In summary, the major goals of PL/SQL are to

• Increase the expressiveness of SQL,

• Process query results in a tuple-oriented way,
• Optimize combined SQL statements,
• Develop modular database application programs,
• Reuse program code, and
• Reduce the cost for maintaining and changing applications

Advantages of PL/SQL:-
Following are some advantages of Pl/SQL
1) Support for SQL :-PL/SQL is the procedural language extension to SQL supports all the

functionalities of SQL.
2) Improved performance:- In SQL every statement individually goes to the ORACLE server, get
processed and then execute. But in PL/SQL an entire block of statements can be sent to ORACLE
server at one time, where SQL statements are processed one at atime.PL/SQL block statements
drastically reduce communication between the application and ORACLE. This helps in improving the
performance.

3) Higher Productivity:- Users use procedural features to build applications.PL/SQL code is written in
the form of PL/SQL block.PL/SQL blocks can also used in other ORACLE Forms, ORACLE reports.
This code reusability increases the programmers productivity.
4) Portability :- Applications written in PL/SQL are portable. We can port them from one environment
to any computer hardware and operating system environment running ORACLE.
5) Integration with ORACLE :-Both PL/SQL and ORACLE are SQL based.PL/SQL variables have
datatypes native to the oracle RDBMS dictionary. This gives tight integration with ORACLE.

Features of PL/SQL:-
1) We can define and use variables and constants in PL/SQL.

2) PL/SQL provides control structures to control the flow of a program. The control structures

supported by PL/SQL are if..Then, loop, for..loop and others.

3) We can do row by row processing of data in PL/SQL.PL/SQL supports row by row processing using
the mechanism called cursor.

4) We can handle pre-defined and user-defined error situations. Errors are warnings and called as

exceptions in PL/SQL.

5) We can write modular application by using sub programs.
The structure of PL/SQL program:-

The basic unit of code in any PL/SQL program is a block. All PL/SQL programs are composed of
blocks. These blocks can be written sequentially.

The structure of PL/SQL block:-

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 61

DECLARE

 Declaration section
BEGIN
 Executable section
EXCEPTION
 Exception handling section
END;

Where
1) Declaration section

PL/SQL variables, types, cursors, and local subprograms are defined here.
2) Executable section

Procedural and SQL statements are written here. This is the main section of the block.
This section is required.

3) Exception handling section
Error handling code is written here
This section is optional whether it is defined within body or outside body of program.

Conditional statements and Loops used in PL/SQL

Conditional statements check the validity of a condition and accordingly execute a set of statements.
The conditional statements supported by Pl/SQL is

1) IF..THEN
2) IF..THEN..ELSE
3) IF..THEN..ELSIF

1) IF..THEN

 Syntax1:-
If condition THEN
Statement list
END IF;

2) IF..THEN..ELSE

Syntax 2:-
IF condition THEN

 Statement list
ELSE

 Statements
END IF;

3) IF..THEN..ELSIF
Syntax 3:-

If condition THEN
 Statement list

ELSIF condition THEN
 Statement list
 ELSE
 Statement list
 END IF;

END IF;

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 62

2) CASE Expression :CASE expression can also be used to control the branching logic within
PL/SQL blocks. The general syntax is

CASE
WHEN <expression> THEN <statements>;
WHEN <expression> THEN <statements>;
.
.
ELSE
<statements>;
END CASE;

Here expression in WHEN clause is evaluated sequentially. When result of expression is TRUE, then
corresponding set of statements are executed and program flow goes to END CASE.

ITERATIVE Constructs : Iterative constructs are used to execute a set of statements respectively. The
iterative constructs supported by PL/SQL are follows:

1) SIMPLE LOOP
2) WHILE LOOP
3) FOR LOOP

1) The Simple LOOP : It is the simplest iterative construct and has syntax like:

LOOP
 Statements
END LOOP;

The LOOP does not facilitate a checking for a condition and so it is an endless loop. To end the
iterations, the EXIT statement can be used.

LOOP

 <statement list>
 IF condition THEN
 EXIT;
 END IF;

 END LOOP;

The statements here is executable statements,which will be executed repeatedly until the condition
given if IF..THEN evaluates TRUE.

2) THE WHILE LOOP
The WHILE…LOOP is a condition driven construct i.e the condition is a part of the loop construct and
not to be checked separately. The loop is executed as long as the condition evaluates to TRUE.

The syntax is:-

WHILE condition LOOP
 Statements
END LOOP;

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 63

The condition is evaluated before each iteration of loop. If it evaluates to TRUE, sequence of statements
are executed. If the condition is evaluated to FALSE or NULL, the loop is finished and the control
resumes after the END LOOP statement.

3) THE FOR LOOP :The number of iterations for LOOP and WHILE LOOP is not known in advance.
THE number of iterations depends on the loop condition. The FOR LOOP can be used to have a definite
numbers of iterations.

The syntax is:-

For loop counter IN [REVERSE] Low bound..High bound LOOP
Statements;
End loop;

Where
• loop counter –is the implicitly declared index variable as BINARY_INTEGER.
• Low bound and high bound specify the number of iteration .
• Statements:-Are the contents of the loop

EXCEPTIONS:- Exceptions are errors or warnings in a PL/SQL program.PL/SQL implements error
handling using exceptions and exception handler.
Exceptions are the run time error that a PL/SQL program may encounter.
There are two types of exceptions

1) Predefined exceptions
2) User defined exceptions

1) Predefined exceptions:- Predefined exceptions are the error condition that are defined by ORACLE.
Predefined exceptions cannot be changed. Predefined exceptions correspond to common SQL errors.
The predefined exceptions are raised automatically whenever a PL/SQL program violates an ORACLE
rule.

2)User defined Exceptions:- A user defined exceptions is an error or a warning that is defined by the
program.User defined exceptions can be define in the declaration section of PL/SQL block.
User defined exceptions are declared in the declarative section of a PL/SQL block. Exceptions have a
type Exception and scope.
Syntax :

DECLARE
 <Exception Name> EXCEPTION;
BEGIN

….
RAISE <Exception Name>

 …
EXCEPTION
 WHEN <Exception name> THEN
 <Action>
END;

Exception Handling

A PL/SQL block may contain statements that specify exception handling routines. Each error or
warning during the execution of a PL/SQL block raises an exception. One can distinguish between two
types of exceptions:

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 64

• System defined exceptions
• User defined exceptions (which must be declared by the user in the declaration part of a block where
the exception is used/implemented)

System defined exceptions are always automatically raised whenever corresponding errors or warnings
occur. User defined exceptions, in contrast, must be raised explicitly in a sequence of statements using
raise <exception name>. After the keyword exception at the end of a block, user defined exception
handling routines are implemented. An implementation has the pattern

 when <exception name> then <sequence of statements>;

The most common errors that can occur during the execution of PL/SQL programs are handled by
system defined exceptions. The table below lists some of these exceptions with their names and a short
description.

Oracle
Error

Equivalent Exception Description

ORA-0001 DUP_VAL_ON_INDEX Unique constraint violated.
ORA-0051 TIMEOUT_ON_RESOURSE Time-out occurred while waiting for

recourse
ORA-0061 TRANSACTION_BACKED_OUT The transaction was rolled back to

due to deadlock.
ORA-1001 INVALID_CURSOR Illegal cursor operation.
ORA-1012 NOT_LOGGED_ON Not connected to Oracle.
ORA-1017 LOGIN_DENIED Invalid username/passward
ORA-1403 NO_DATA_FOUND No data found.

ORA-1410 SYS_INVALID_CURSOR Conversion to a universal rowed
failed.

ORA-1422 TOO_MANY_ROWS A SELECT…INTO statement
matches more than one row.

ORA-1476 ZERO_DIVIDE Division by zero.
ORA-1722 INVALID_NUMBER Conversion to a number failed.
ORA-6500 STORAGE_ERROR Internal PL/SQL error raised if

PL/SQL runs out of memory.
ORA-6501 PROGRAM_ERROR Internal PL/SQL error.
ORA-6502 VALUE_ERROR Truncation, arithmetic or conversion

error.
ORA-6504 ROWTYPE_MISMATCH Host cursor variable and PL/SQL

cursor variable have incompatible
row type

ORA-6511 CURSOR_ALREADY_OPEN Attempt to open a cursor that is
already open.

ORA-6530 ACCESS_INTO_NULL Attempt to assign values to the
attributes of a NULL object.

ORA-6531 COLLECTION_IS_NULL Attempt to apply collection methods
other than EXISTS to a NULL
PL/SQL table or varray.

ORA-6532 SUBSCRIPT_OUTSIDE_LIMIT Reference to a nested table or varray
index outside the declared range.

ORA-6533 SUBSCRIPT_BEYOND_COUNT Reference to a nested table or varray
index higher than the number of

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 65

elements in the collection
ORA-6592 CASE_NOT_FOUND No matching WHEN clause in a

CASE statement is found
ORA-30625 SELF_IS_NULL Attempt to call a method on a

NULL object instance

Syntax:-

<Exception_name>Exception;

Handling Exceptions:- Exceptions handlers for all the exceptions are written in the exception handling
section of a PL/SQL block.
Syntax:-

Exception
 When exception_name then

Sequence_of_statements1;
When exception_name then

Sequence_of_statements2;
When exception_name then

Sequence_of_statements3;
End;

Example:
Declare

emp sal EMP.SAL%TYPE;
emp no EMP.EMPNO%TYPE;
too_high_sal exception;

begin
select EMPNO, SAL into emp no, emp sal
from EMP where ENAME = KING ;‟ ‟
if emp sal ∗ 1.05 > 4000 then raise too high sal
else update EMP set SQL . . .
end if ;

exception
when NO DATA FOUND – – no tuple selected
then rollback;
when too_high_sal then insert into high sal emps values(emp no);
commit;

end;

After the keyword when a list of exception names connected with or can be specified. The last when
clause in the exception part may contain the exception name others. This introduces the default
exception handling routine, for example, a rollback.

If a PL/SQL program is executed from the SQL*Plus shell, exception handling routines may contain
statements that display error or warning messages on the screen. For this, the procedure raise
application error can be used. This procedure has two parameters <error number> and <message text>.
<error number> is a negative integer defined by the user and must range between -20000 and -20999.
<error message> is a string with a length up to 2048 characters.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 66

The concatenation operator “||” can be used to concatenate single strings to one string. In order to
display numeric variables, these variables must be converted to strings using the function to char. If the
procedure raise application error is called from a PL/SQL block, processing the PL/SQL block
terminates and all database modifications are undone, that is, an implicit rollback is performed in
addition to displaying the error message.

Example:

if emp sal ∗ 1.05 > 4000
then raise application error(-20010, Salary increase for employee with Id || to char (EMP no) || ‟ ‟ ‟
is too high);‟

E.g.
Declare
 V_maxno number (2):=20;

V_curno number (2);
E_too_many_emp exception;

Begin
Select count (empno)into v_curno from emp
Where deptno=10;
If v_curno>25 then
Raise e_too_many_Emp;
End if;

Exception
when e_too_many_emp then
….
…..

end;

Lab Exercise

1) Write a PL/SQL block to calculate factorial. Use Exception Handling.
2) Write a PL/SQL block to find prime number for first 30 numbers.
3) Write a PL/SQL block to find Fibonacci series for first 50 numbers.
4) Write a PL/SQL block to find a raised to power b i.e. a b
5) Write a PL/SQL block to find the grade of a student. Enter marks for 5 subjects.
6) Write a PL/SQL block to update the table. Table: ACCT_MSTR ==>

7) Write on your own one PL/SQL block for the problem statement.

FAQ :

1) What is PL/SQL? Explain.
2) What is the difference between "SQL" and "PL/SQL"?
3) What are the different Goals of PL/SQL?
4) What are exceptions? What are the different types of exceptions?
5) What are the different conditional statements used in PL/SQL?
6) What are the different iterative construct used in PL/SQL? Explain in short.
7) What are the features of PL/SQL? Explain.
8) What are the advantages of PL/SQL? Explain
9) How will you stop an infinite loop without closing the program?
10) Why PL/SQL does not support retrieving multiple records?

ACCT_NO CURBAL
SB1 500
SB5 500
SB9 500
SB13 500

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 67

Assignment No. 6

Title
Cursors: (All types: Implicit, Explicit, Cursor FOR Loop,
Parameterized Cursor)

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 68

Assignment No: 6

Title :- Cursors: (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor) Write a
PL/SQL block of code using parameterized Cursor, that will merge the data available in the newly
created table Cust_New with the data available in the table Cust_Old. If the data in the first table
already exist in the second table then that data should be skipped. Frame the separate problem statement
for writing PL/SQL block to implement all types

Objective :- Learning the concept of cursor in PL/SQL

Theory :- CURSOR:-

For the processing of any SQL statement, database needs to allocate memory. This memory is called

context area. The context area is a part of PGA (Process global area) and is allocated on the oracle

server.

A cursor is associated with this work area used by ORACLE, for multi row queries. A cursor is a handle

or pointer to the context area .The cursor allows to process contents in the context area row by row.

There are two types of cursors.

1) Implicit cursor:-Implicit cursors are defined by ORACLE implicitly. ORACLE defines implicit

cursor for every DML statements.

2) Explicit cursor:-These are user-defined cursors which are defined in the declaration section of the

PL/SQL block. There are four steps in which the explicit cursor is processed.

1) Declaring a cursor

2) Opening a cursor

3) Fetching rows from an opened cursor

4) Closing cursor

General syntax for CURSOR:-

DECLARE

 Cursor cursor_name IS select_statement or query;

BEGIN

 Open cursor_name;

Fetch cursor_name into list_of_variables;

 Close cursor_name;

END;

Where

1) Cursor_name:-is the name of the cursor.

2) Select_statement:-is the query that defines the set of rows to be processed by the cursor.

3) Open cursor_name:-open the cursor that has been previously declared.

 When cursor is opened following things happen

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 69

i) The active set pointer is set to the first row.

ii) The value of the binding variables are examined.

4) Fetch statement is used to retrieve a row from the selected rows, one at a time,

 into PL/SQL variables.

5) Close cursor_name:-When all of cursor rows have been retrieved, the cursor should be

closed.

Explicit cursor attributes:-

Following are the cursor attributes

1. %FOUND: - This is Boolean attribute. It returns TRUE if the previous fetch returns a row and false

if it doesn t.‟

2. %NOTFOUND:-If fetch returns a row it returns FALSE and TRUE if it doesn t. This‟ is often used

as the exit condition for the fetch loop;

3. %ISOPEN:-This attribute is used to determine whether or not the associated cursor is open. If so it

returns TRUE otherwise FALSE.

4. %ROWCOUNT:-This numeric attribute returns a number of rows fetched by the cursor.

Cursor Fetch Loops

1) Simple Loop

Syntax:-

LOOP

 Fetch cursorname into list of variables;

EXIT WHEN cursorname%NOTFOUND

Sequence_of_statements;

END LOOP;

2) WHILE Loop

Syntax:-

 FETCH cursorname INTO list of variables;

 WHILE cursorname%FOUND LOOP

 Sequence_of_statements;

 FETCH cursorname INTO list of variables;

 END LOOP;

3) Cursor FOR Loop

Syntax:

 FOR variable_name IN cursorname LOOP

 -- an implicit fetch is done here.

 -- cursorname%NOTFOUND is also implicitly checked.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 70

 -- process the fetch records.

 Sequence_of_statements;

 END LOOP;

There are two important things to note about :-

i) Variable_name is not declared in the DECLARE section. This variable is implicitly

declared by the PL/SQL compiler.

ii) Type of this variable is cursorname%ROWTYPE.

Implicit Cursors

PL/SQL issues an implicit cursor whenever you execute a SQL statement directly in your code, as long
as that code does not employ an explicit cursor. It is called an "implicit" cursor because you, the
developer, do not explicitly declare a cursor for the SQL statement.

If you use an implicit cursor, Oracle performs the open, fetches, and close for you automatically; these
actions are outside of your programmatic control. You can, however, obtain information about the most
recently executed SQL statement by examining the values in the implicit SQL cursor attributes.

PL/SQL employs an implicit cursor for each UPDATE, DELETE, or INSERT statement you execute in a
program. You cannot, in other words, execute these statements within an explicit

cursor, even if you want to. You have a choice between using an implicit or explicit cursor only when you
execute a single-row SELECT statement (a SELECT that returns only one row).

In the following UPDATE statement, which gives everyone in the company a 10% raise, PL/SQL
creates an implicit cursor to identify the set of rows in the table which would be affected by the update:

UPDATE employee
 SET salary = salary * 1.1;

The following single-row query calculates and returns the total salary for a department. Once again,
PL/SQL creates an implicit cursor for this statement:

SELECT SUM (salary) INTO department_total
 FROM employee
 WHERE department_number = 10;

If you have a SELECT statement that returns more than one row, you must use an explicit cursor for
that query and then process the rows returned one at a time. PL/SQL does not yet support any kind of
array interface between a database table and a composite PL/SQL datatype such as a PL/SQL table.

Drawbacks of Implicit Cursors

Even if your query returns only a single row, you might still decide to use an explicit cursor. The
implicit cursor has the following drawbacks:

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 71

• It is less efficient than an explicit cursor
• It is more vulnerable to data errors
• It gives you less programmatic control

The following sections explore each of these limitations to the implicit cursor.

Inefficiencies of implicit cursors

An explicit cursor is, at least theoretically, more efficient than an implicit cursor. An implicit cursor
executes as a SQL statement and Oracle's SQL is ANSI-standard. ANSI dictates that a single-row query
must not only fetch the first record, but must also perform a second fetch to determine if too many rows
will be returned by that query (such a situation will RAISE the TOO_MANY_ROWS PL/SQL exception).
Thus, an implicit query always performs a minimum of two fetches, while an explicit cursor only needs to
perform a single fetch.

This additional fetch is usually not noticeable, and you shouldn't be neurotic about using an implicit
cursor for a single-row query (it takes less coding, so the temptation is always there). Look out for
indiscriminate use of the implicit cursor in the parts of your application where that cursor will be
executed repeatedly. A good example is the Post-Query trigger in the Oracle Forms.

Post-Query fires once for each record retrieved by the query (created from the base table block and the
criteria entered by the user). If a query retrieves ten rows, then an additional ten fetches are needed with
an implicit query. If you have 25 users on your system all performing a similar query, your server must
process 250 additional (unnecessary) fetches against the database. So, while it might be easier to write
an implicit query, there are some places in your code where you will want to make that extra effort and
go with the explicit cursor.

Vulnerability to data errors

If an implicit SELECT statement returns more than one row, it raises the TOO_MANY_ROWS
exception. When this happens, execution in the current block terminates and control is passed to the
exception section. Unless you deliberately plan to handle this scenario, use of the implicit cursor is a
declaration of faith. You are saying, "I trust that query to always return a single row!"

It may well be that today, with the current data, the query will only return a single row. If the nature of
the data ever changes, however, you may find that the SELECT statement which formerly identified a
single row now returns several. Your program will raise an exception. Perhaps this is what you will
want. On the other hand, perhaps the presence of additional records is inconsequential and should be
ignored.

With the implicit query, you cannot easily handle these different possibilities. With an explicit query,
your program will be protected against changes in data and will continue to fetch rows without raising
exceptions.

Lab Exercise

1) Create table with name student having the field rollno, first name, last name & branch. Insert

10 records into table. Write a PL/SQL to create a cursor to hold all the record of student table

having branch „Computer Science‟. Display all the records.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 72

2) Write a PL/SQL block to update the record of rollno =100 & set the branch to E and TC’ , if it

is not present then insert the record into the student table with the id=100; (use implicit cursor

sql%notfound).

3) Write a cursor and use it to raise the employee salaries as follows:

 i) All employees of department 20 get 5% raise

 ii) All employees of department 30 get 10% raise

 iii) Rest of employees get 7.5% raise

Use separate cursor.

FAQ :

1) What is cursor?

2) What are the different types of cursors?

3) What are the different attributes of explicit cursor? Explain in brief.

4) What is implicit cursor?

5) Explain the FOR loop of Cursor.

6) What is difference between simple loop, while loop & for loop?

7) What is difference between Implicit & Explicit Cursor?

8) Explain FOR UPDATE cursor with an example.

9) What is CURRENT OF clause in cursor? Give an example.

10) List all predefined cursor.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 73

Assignment No. 7

Title Write a PL/SQL stored procedure and function.

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 74

Assignment No: 7

Title :- PL/SQL Stored Procedure and Stored Function Write a Stored Procedure namely proc_Grade
for the categorization of student. If marks scored by students in examination is <=1500 and marks>=990
then student will be placed in distinction category if marks scored are between 989 and900 category is
first class, if marks 899 and 825 category is Higher Second Class. Write a PL/SQL block for using
procedure created with above requirement. Stud_Marks(name, total_marks) Result(Roll,Name, Class).
Frame the separate problem statement for writing PL/SQL Stored Procedure and function, inline
with above statement. The problem statement should clearly state the requirements.

Objective :-Learning the concept of procedure, function & package in PL/SQL
Theory :-

PROCEDURE:-

A procedure is a subprogram that performs a specific action or task. A procedure has two parts.

1) The procedure specification: The procedure specification specifies the procedure name and the

parameters it accepts. It is not necessary to create a procedure that accepts parameters.

2) The procedure body: The procedure body contains the declarative section without DECLARE

keyword, the executable section and an exception section.

Syntax for creating a procedure

 Create [or replace] PROCEDURE procedure_name

 [(argument1 [IN / OUT / IN OUT] type),

 (argument2 [IN / OUT / IN OUT] type),

 ….]

 IS/AS

 Procedure_body

Where

 Procedure_name: – is the name of the procedure to be created

 Argument:- is the name of the procedure parameter

 Type:- Is the data type of the associated parameter

 Procedure_body:-Is a PL/SQL block that makes up the code of the procedure.

IN:-This is default mode. The value of the actual parameter is passed into the procedure. Inside

the procedure the formal parameter is considered read only.

 OUT:-Any value the actual parameter has when the procedure is called ignored. Inside the

procedure ,the formal parameters are considered as write only.

 IN OUT:-this mode is combination of IN and OUT

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 75

Deleting procedure:- To remove a procedure from the database.

Syntax:-

 Drop procedure<procedure_name>;

FUNCTION:-

A function is a subprogram, which is used to compute values. It is similar to a procedure, function also

takes arguments and can be in different modes. Function also can be stored in the database. It is a

PL/SQL block consisting of declarative, executable and exception section.

Difference between procedure and function is that the procedure call is a PL/SQL statement by itself,

while a function call is called as a part of an expression.

A function can return more than one value using OUT parameter.

A function can be called using positional or named notation.

Syntax for creating a function:-

 Create [or replace] FUNCTION function_name

 [(argument1 [IN / OUT / IN OUT] type),

 (argument2 [IN / OUT / IN OUT] type),

 ….]

 Return return_type IS / AS

 Function_body

Where

 Function_name: – is the name of the function to be created

 Argument: - is the name of the function parameter

 Type:- Is the data type of the associated parameter

 Function_body:-Is a PL/SQL block containing code for the function.

IN:-This is default mode. The value of the actual parameter is passed into the procedure. Inside

the procedure the formal parameter is considered read only.

OUT:-Any value the actual parameter has when the procedure is called ignored. Inside the

procedure ,the formal parameters are considered as write only.

 INOUT:-this mode is combination of IN and OUT

Deleting a Function:- To remove the subprogram from the database.

Syntax:-

 Drop function<function_name>;

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 76

Package :

A package is a PL/SQL construct that allows related objects to be stored together. A package has 2

separate parts: the specification and the body. Each of them stored separately in the data dictionary.

Package Specification :

CREATE OR REPLACE PACKAGE package_name

{IS|AS}

type_definition|

procedure_specification |Function specification|

variable_declaration |

exception_declaration |

 cursor_declaration |

 pragma declaration |

 end [procedure_name];

Package Body:

The package body is separate data dictionary object from the package header. It cannot be successfully

compiled unless the package header has already been successfully compiled.

Syntax:

 CREATE OR REPLACE PACKAGE BODY package_name AS

 Procedure definition;

 Function definition;

 …….

 End package_name

To drop the package(both specification & the body) use the drop package command as follows:

Syntax :

Drop package <package_name>;

Lab Exercise

1) Write a procedure on EMP table. It should increase commission of an employee. Employee

number and commission are passed as parameters to the called procedure.

2) Write a function that returns the number of employees working in a department. Pass department

number as an input to the function.

3) Create table classes with the following fields

(Deptno, course, cur_student, max_student) Insert 4 or 5 records and

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 77

Write a function which returns true if the specified class is 80 percent full or more, and false

otherwise. Write a PL/SQL block to call this function and use cursor in PL/SQL block to hold

the records of all department.

4) Write a procedure to update records of classes table and write a PL/SQL block to call that

procedure.

5) Create a package which consist of procedures for insert ,delete and update the data of classes

table.

FAQ :

1) Explain the term procedure and function of PL/SQL in short.

2) What is the difference between "procedure" and "function"?

3) What is the difference between "%type" and "%rowtype"?

4) What is package? Explain.

5) What is the use of package?

6) What are the different modes of argument passing?

7) What is difference between IN & IN OUT?

8) Write a package which consists of cursor, trigger, procedure & function.

9) What are the advantages of procedure & function?

10) Write the syntax to drop function, procedure & package.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 78

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 79

Assignment No. 8

Title To create row level & statement level trigger.

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 80

Assignment No: 8

Title :- Database Trigger (All Types: Row level and Statement level triggers, Before and After
Triggers). Write a database trigger on Library table. The System should keep track of the records that
are being updated or deleted. The old value of updated or deleted records should be added in
Library_Audit table.
Frame the problem statement for writing Database Triggers of all types, in-line with above
statement. The problem statement should clearly state the requirements.

Objective :-Learning the concept of use of trigger
Theory :-

DATABASE TRIGGERS:-

A database trigger is a PL/SQL program unit, which gets fired automatically whenever the data event

such as DML or DDL system event. Triggers are associated with a specific table and are fired

automatically whenever the table gets manipulated in a predefined way. The act of executing a trigger is

called as firing a trigger.

Triggers are similar to procedures in that they are named PL/SQL blocks with declarative, executable

and exception handling sections. But the difference is a procedure is executed explicitly from another

block via a procedure call but a trigger is executed implicitly whenever the triggering event happens. A

procedure can pass arguments but trigger doesn t accept arguments‟

A database trigger has following components:-

 1.A triggering Event

 2.A triggering Constraint

 3.A triggering Action

Trigger categories

Triggers are categorized in various ways.

 1)Trigger type

 2)Triggering time

 3)Triggering event

Trigger types

There are two types of triggers

1. Statement Trigger:-A statement trigger is a trigger in which the trigger action is executed once for

the manipulation operation that fires the trigger.

2. Row Trigger:-A row trigger is a trigger in which the trigger action is performed repeatedly for each

row of the table that is affected by the manipulation operation that fires the trigger.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 81

Triggering time

Triggers can specify the time of trigger action.

1) Before the triggering event

The trigger action is performed before the operation that fires the trigger is executed. This trigger is

used when execution of operation depends on trigger action.

2)After the triggering event

The trigger action is performed after the operation that fires the trigger is executed.

This trigger is used when triggering action depends on the execution of operation.

Triggering Events

Triggering events are the DML operations. These operations are insert, update and delete When these

operations are performed on a table, the trigger which is associated with the operation is fired.

Triggering events divide triggers into three types.

 1) DELETE TRIGGER

 2) UPDATE TRIGGER

 3) INSERT TRIGGER

General syntax for creation of Trigger

 Create [or replace] TRIGGER <trigger_name>

 <BEFORE | AFTER>

 DELETE | [OR] INSERT | [OR] UPDATE[OF <column1>[,<column2>…..]

 ON <table_name>

 [for each row[when <condition>]

 Begin

 ……… ………

 ……………….

 End;

Where

 Trigger_name:-trigger name is the name of the trigger.

 Table_name :-is thye table name for which the trigger is defined.

Trigger-condition:-The trigger condition in the when clause,if present is evaluated first.The body

of the trigger is executed only when this condition evaluates to true.

Dropping trigger

Suppose you want to drop trigger then the syntax is

 Syntax:-Drop trigger trigger_name;

Enabling and Disabling Triggers

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 82

The Trigger can be disabled without dropping them. When the trigger is disabled, it is still exists in data

dictionary but never fired, To disable trigger, use alter command.

Syntax:-

 Alter TRIGGER trigger_name DISABLE/ENABLE;

For all triggers on a particular table

Syntax:-

 Alter TRIGGER trigger_name (DISABLE/ENABLE) all triggers;

Lab Exercise :-

1) Create a trigger that audits the operations on an Emp table.

 Steps

 Create table emp_audit

 (id number, operation varchar2(6), Dt date, User_id number, Username varchar2(20));

If any operation like insert, update, delete done on EMP table then insert into EMP_audit table

information like the name of the operation with id, user_id and date.

2) Create a table Employee(id, Emp_name, Salary, City)

Create a trigger to convert the Emp_name into upper case before inserting or updating on

Employee table.

3) Create a trigger to check Salary is less than 20000 before inserting or updating on Employee

table.

4) Create a trigger (Statement Level Trigger) to display messages after inserting or updating or

deleting records on Employee Table.

FAQ :

1) Write a database Trigger
2) Explain Database Trigger Components.
3) Explain Trigger Types with e.g.
4) Explain difference between Row-Level & Statement-Level Trigger.
5) Write a Syntax for Enable & Disable Trigger.
6) Write a Syntax for Displaying Trigger Errors.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 83

Assignment No. 9

Title Study of Open Source NOSQL Database

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 84

Assignment No. 9

Title : Study of Open Source NOSQL Database: MongoDB (Installation, Basic

CRUD operations, Execution)

Objectives : Learn the concept of NOSQL

Theory : NOSQL

A NoSQL (originally referring to "non SQL" or "non relational") database provides a mechanism for

storage and retrieval of data that is modeled in means other than the tabular relations used in relational

databases. Such databases have existed since the late 1960s, but did not obtain the "NoSQL" moniker

until a surge of popularity in the early twenty-first century, triggered by the needs of Web 2.0

companies such as Facebook, Google, and Amazon.com. NoSQL databases are increasingly used in big

data and real-time web applications. [6] NoSQL systems are also sometimes called "Not only SQL" to

emphasize that they may support SQL-like query languages.

Motivations for this approach include: simplicity of design, simpler "horizontal" scaling to clusters of

machines (which is a problem for relational databases), [2] and finer control over availability. The data

structures used by NoSQL databases (e.g. key-value, wide column, graph, or document) are different

from those used by default in relational databases, making some operations faster in NoSQL. The

particular suitability of a given NoSQL database depends on the problem it must solve. Sometimes the

data structures used by NoSQL databases are also viewed as "more flexible" than relational database

tables.

Many NoSQL stores compromise consistency (in the sense of the CAP theorem) in favor of availability,

partition tolerance, and speed. Barriers to the greater adoption of NoSQL stores include the use of low-

level query languages (instead of SQL, for instance the lack of ability to perform ad-hoc joins across

tables), lack of standardized interfaces, and huge previous investments in existing relational databases.

Most NoSQL stores lack true ACID transactions, although a few databases, such as MarkLogic,

Aerospike, FairCom c-treeACE, Google Spanner (though technically a NewSQL database), Symas

LMDB, and OrientDB have made them central to their designs. (See ACID and join support.)

MongoDB

MongoDB is a cross-platform, document oriented database that provides, high performance, high

availability, and easy scalability. MongoDB works on concept of collection and document.Database

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 85

Database is a physical container for collections. Each database gets its own set of files on the file

system. A single MongoDB server typically has multiple databases.

Collection

Collection is a group of MongoDB documents. It is the equivalent of an RDBMS table. A collection

exists within a single database. Collections do not enforce a schema. Documents within a collection can

have different fields. Typically, all documents in a collection are of similar or related purpose.

Document

A document is a set of key-value pairs. Documents have dynamic schema. Dynamic schema means that

documents in the same collection do not need to have the same set of fields or structure, and common

fields in a collection's documents may hold different types of data.

Sample Document

Following example shows the document structure of a blog site, which is simply a comma

separated key value pair.

{

_id: ObjectId(7df78ad8902c)

title: 'MongoDB Overview',

description: 'MongoDB is no sql database',

by: 'tutorials point',

url: 'http://www.tutorialspoint.com',

tags: ['mongodb', 'database', 'NoSQL'],

likes: 100,

comments: [{

user:'user1',

message: 'My first comment',

dateCreated: new Date(2011,1,20,2,15),

like: 0

},

{

user:'user2',

message: 'My second comments',

dateCreated: new Date(2011,1,25,7,45),

like: 5

}]

}

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 86

_id is a 12 bytes hexadecimal number which assures the uniqueness of every document. You can

provide _id while inserting the document. If you don t provide then MongoDB provides a unique id ‟

for every document. These 12 bytes first 4 bytes for the current timestamp, next 3 bytes for machine id,

next 2 bytes for process id of MongoDB server and remaining 3 bytes are simple incremental VALUE.

MongoDB ─ Advantages:

Any relational database has a typical schema design that shows number of tables and the relationship

between these tables. While in MongoDB, there is no concept of relationship.

Advantages of MongoDB over RDBMS

 Schema less: MongoDB is a document database in which one collection holds

different documents. Number of fields, content and size of the document can differ

from one document to another.

 Structure of a single object is clear.

 No complex joins.

 Deep query -ability.

 MongoDB supports dynamic queries on documents using a document-based query language that's

nearly as powerful as SQL.

 Tuning.

 Ease of scale -out: MongoDB is easy to scale.

 Conversion/mapping of application objects to database objects not needed.

 Uses internal memory for storing the (windowed) workin g set, enabling faster access of data.

Why Use MongoDB?

 Document Oriented Storage: Data is stored in the form of JSON style documents.

 Index on any attribute

 Replication and high availability

 Auto -sharding

 Rich queries

 Fast in -place updates

 Professional support by MongoDB

Where to Use MongoDB?

 Big Data

 Content Management and Delivery

 Mobile and Social Infrastructure

 User Data Management

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 87

 Data Hub

MongoDB Help

To get a list of commands, type db.help() in MongoDB client. This will give you a list of

commands as shown in the following screenshot.

The use Command

MongoDB use DATABASE_NAME is used to create database. The command will create a new

database if it doesn't exist, otherwise it will return the existing database.

Syntax

Basic syntax of use DATABASE statement is as follows:

use DATABASE_NAME

Example

If you want to create a database with name <mydb>, then use DATABASE statement would be as

follows:

>use mydb

switched to db mydb

To check your currently selected database, use the command db

>db

mydb

If you want to check your databases list, use the command show dbs.

>show dbs

local 0.78125GB

test 0.23012GB

Your created database (mydb) is not present in list. To display database, you need to insert at least one

document into it.

>db.movie.insert({"name":"tutorials point"})

In MongoDB default database is test. If you didn't create any database, then collections will be stored

in test database.

The dropDatabase() Method

MongoDB db.dropDatabase() command is used to drop a existing database.

Syntax

db.dropDatabase()

The createCollection() Method

MongoDB db.createCollection(name, options) is used to create collection.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 88

Syntax : db.createCollection(name, options)

In the command, name is name of collection to be created. Options is a document and is used to specify

configuration of collection.

--

Parameter Type Description

Name String Name of the collection to be created

Options Document (Optional) Specify options about memory

 Size and indexing.

The drop() Method

MongoDB's db.collection.drop() is used to drop a collection from the database.

Syntax

db.COLLECTION_NAME.drop().

MongoDB supports many datatypes. Some of them are:

 String: This is the most commonly used datatype to store the data. String in MongoDB must be

UTF-8 valid.

 Integer: This type is used to store a numerical value. Integer can be 32 bit or 64 bit depending upon

your server.

 Boolean : This type is used to store a boolean (true/ false) value.

 Double: This type is used to store floating point values.

 Min/Max Keys: This type is used to compare a value against the lowest and highest BSON

elements.

 Arrays: This type is used to store arrays or list or multiple values into one key.

 Timestamp: ctimestamp. This can be handy for recording when a document has been modified or

added.

 Object: This datatype is used for embedded documents.

 Null: This type is used to store a Null value.

 Symbol: This datatype is used identically to a string; however, it's generally reserved for languages

that use a specific symbol type.

 Date: This datatype is used to store the current date or time in UNIX time format. You can specify

your own date time by creating object of Date and passing day, month, year into it.

 Object ID: This datatype is used to store the document s ID.‟

 Binary data: This datatype is used to store binary data.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 89

 Code: This datatype is used to store JavaScript code into the document.

 Regular expression: This datatype is used to store regular expression.

MongoDB ─ Insert Document

The insert() Method

To insert data into MongoDB collection, you need to use MongoDB's insert() or

save()method.

Syntax

The basic syntax of insert() command is as follows −

>db.COLLECTION_NAME.insert(document)

MongoDB ─ Query Document

The find() Method

To query data from MongoDB collection, you need to use MongoDB's find()method.

Syntax

The basic syntax of find() method is as follows:

>db.COLLECTION_NAME.find()

find()method will display all the documents in a non-structured way.

The pretty() Method

To display the results in a formatted way, you can use pretty() method.

Syntax

>db.mycol.find().pretty()

Apart from find() method, there is findOne() method, that returns only one document.

RDBMS Where Clause Equivalents in MongoDB

To query the document on the basis of some condition, you can use following operations

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 90

Logical operators:--

AND in MongoDB

Syntax

In the find() method, if you pass multiple keys by separating them by ',' then MongoDB

treats it as AND condition. Following is the basic syntax of AND −

>db.mycol.find({key1:value1, key2:value2}).pretty()

OR in MongoDB

Syntax

To query documents based on the OR condition, you need to use $or keyword. Following

is the basic syntax of OR −

>db.mycol.find({ $or: [{key1: value1}, {key2:value2}] }).pretty()

Using AND and OR Together

Example

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 91

The following example will show the documents that have likes greater than 100 and whose title is

either 'MongoDB Overview' or by is 'tutorials point'. Equivalent SQL where clause is 'where likes>10

AND (by = 'tutorials point' OR title = 'MongoDB Overview')'

db.mycol.find({"likes": {$gt:10}, $or: [{"by": "tutorials point"}, {"title": "MongoDB Overview"

}]}).pretty()

{ "_id": ObjectId(7df78ad8902c),

"title": "MongoDB Overview",

"description": "MongoDB is no sql database",

"by": "tutorials point",

"url": "http://www.tutorialspoint.com",

"tags": ["mongodb", "database", "NoSQL"],

"likes": "100" }

 MongoDB's update()

MongoDB's update() and save() methods are used to update document into a collection. The update()

method updates the values in the existing document while the save() method replaces the existing

document with the document passed in save() method.

MongoDB Update() Method

The update() method updates the values in the existing document.

Syntax

The basic syntax of update() method is as follows:

>db.COLLECTION_NAME.update(SELECTIOIN_CRITERIA, UPDATED_DATA)

MongoDB Save() Method

The save() method replaces the existing document with the new document passed in the save() method.

Syntax

The basic syntax of MongoDB save() method is −

>db.COLLECTION_NAME.save({_id:ObjectId(),NEW_DATA}).

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 92

The remove() Method

MongoDB's remove() method is used to remove a document from the collection. remove() method

accepts two parameters. One is deletion criteria and second is justOne flag.

 deletion criteria: (Optional) deletion criteria according to documents will be removed.

 justOne: (Optional) if set to true or 1, then remove only one document.

Syntax

Basic syntax of remove() method is as follows:

>db.COLLECTION_NAME.remove(DELLETION_CRITTERIA)

Remove Only One

If there are multiple records and you want to delete only the first record, then set justOne parameter in

remove() method.

>db.COLLECTION_NAME.remove(DELETION_CRITERIA,1)

Remove All Documents

If you don't specify deletion criteria, then MongoDB will delete whole documents from the collection.

This is equivalent of SQL's truncate command.

>db.mycol.remove()

>db.mycol.find()

The Limit() Method

To limit the records in MongoDB, you need to use limit() method. The method accepts one number

type argument, which is the number of documents that you want to be displayed.

Syntax

The basic syntax of limit() method is as follows:

>db.COLLECTION_NAME.find().limit(NUMBER)

MongoDB Skip() Method

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 93

Apart from limit() method, there is one more method skip() which also accepts number type argument

and is used to skip the number of documents.

Syntax

The basic syntax of skip() method is as follows:

>db.COLLECTION_NAME.find().limit(NUMBER).skip(NUMBER)

The sort() Method

To sort documents in MongoDB, you need to use sort() method. The method accepts a document

containing a list of fields along with their sorting order. To specify sorting order 1 and -1 are used. 1 is

used for ascending order while -1 is used for descending order.

Syntax

The basic syntax of sort() method is as follows:

>db.COLLECTION_NAME.find().sort({KEY:1})

Installation steps in Fedora:

->download the software “mongodb-linux-x86_64-3.4.9.tgz”

Copy to Download

[root@localhost Downloads]# tar -xvzf mongodb-linux-x86_64-3.4.9.tgz

[root@localhost Downloads]# cd mongodb-linux-x86_64-3.4.9/

[root@localhost mongodb-linux-x86_64-3.4.9]# cd bin

[root@localhost bin]# ./mongod -dbpath /home/admin/

[root@localhost bin]# ./mongo

Installation steps in Windows:

1. Install MongoDB setup

2. Open "C:\Program Files (x86)\MongoDB\Server\3.0\bin"

3. mongod.exe ==> Server file || mongo.exe ==> Client file

4. Create Folder like "D:\TE\data\db"

5. Run MongoDB Server

 -> Open Command prompt as Administrator

 -> cd C:\Program Files (x86)\MongoDB\Server\3.0\bin

 -> mongod.exe --dbpath "D:\TEB\data\db"

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 94

6. Run MongoDB Client

 -> Open Second Command prompt

 -> cd C:\Program Files (x86)\MongoDB\Server\3.0\bin

 -> mongo.exe

Conclusion : Thus we have studied new concept NOSQL-MongoDB.

FAQ :

1. What makes MongoDB the best?

2. If you remove an object attribute, is it deleted from the database? Explain with example.

3. How does MongoDB provide consistency?

4. Define MongoDB.

5. What are the key features of mongodb?

6. Which command is use to create database? Explain with example

7. Which command is use to drop database? Explain with example

8. What is the use of pretty() method? Explain with example

9. Which method is used to remove the document form the collection? Explain with example

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 95

Assignment No. 10

Title

Design and Develop MongoDB Queries using CRUD

operations. (Use CRUD operations,

SAVE method, logical operators)

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 96

Assignment No. 10

Objectives : Learn the concept of MONGO DB

Theory : MongoDB is a cross-platform, document oriented database that provides, high
performance, high availability, and easy scalability. MongoDB works on concept of collection and
document.

Database
Database is a physical container for collections. Each database gets its own set of files on the file
system. A single MongoDB server typically has multiple databases.

Collection
Collection is a group of MongoDB documents. It is the equivalent of an RDBMS table. A collection
exists within a single database. Collections do not enforce a schema. Documents within a collection can
have different fields. Typically, all documents in a collection are of similar or related purpose.

Document
A document is a set of key-value pairs. Documents have dynamic schema. Dynamic schema means that
documents in the same collection do not need to have the same set of fields or structure, and common
fields in a collection's documents may hold different types of data.

The following table shows the relationship of RDBMS terminology with MongoDB .

CRUD is the basic operation of Mongodb ,it stands CREATE , READ , UPDATE, DELETE.

Aim : Design and Develop MongoDB Queries using CRUD operations. (Use CRUD

operations, SAVE method, logical operators)

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 97

MongoDB ─ 1. Create Collection

The createCollection() Method

MongoDB db.createCollection(name, options) is used to create collection.

Basic syntax of createCollection() command is as follows:

db.createCollection(name, options)

In the command, name is name of collection to be created. Options are a document and are used to specify
configuration of collection.

Options parameter is optional, so you need to specify only the name of the collection. Following is the list of
options you can use:

While inserting the document, MongoDB first checks size field of capped collection, then it

checks max field.

Examples

Basic syntax of createCollection() method without options is as follows:

>use test

switched to db test

>db.createCollection("mycollection")

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 98

{ "ok" : 1 }

>

You can check the created collection by using the command show collections.

>show collections

mycollection

system.indexes

2. READ-The find() Method

To query data from MongoDB collection, you need to use MongoDB's find()method.

Syntax

The basic syntax of find() method is as follows:

>db.COLLECTION_NAME.find()

find()method will display all the documents in a non-structured way.

The pretty() Method

To display the results in a formatted way, you can use pretty() method.

Syntax

>db.mycol.find().pretty()

Example

>db.mycol.find().pretty()

{

"_id": ObjectId(7df78ad8902c),

"title": "MongoDB Overview",

"description": "MongoDB is no sql database",

"by": "tutorials point",

"url": "http://www.tutorialspoint.com",

"tags": ["mongodb", "database", "NoSQL"],

"likes": "100"

}

>

Apart from find() method, there is findOne() method, that returns only one document.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 99

3. UPDATE

MongoDB's update() and save() methods are used to update document into a collection.

The update() method updates the values in the existing document while the save() method replaces the
existing document with the document passed in save() method.

MongoDB Update() Method

The update() method updates the values in the existing document.

The basic syntax of update() method is as follows:

>db.COLLECTION_NAME.update(SELECTIOIN_CRITERIA, UPDATED_DATA)

Example

Consider the mycol collection has the following data.

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Following example will set the new title 'New MongoDB Tutorial' of the documents whose

title is 'MongoDB Overview'.

>db.mycol.update({'title':'MongoDB Overview'},{$set:{'title':'New MongoDB

Tutorial'}})

>db.mycol.find()

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"New MongoDB Tutorial"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

>

By default, MongoDB will update only a single document. To update multiple documents,

you need to set a parameter 'multi' to true.

>db.mycol.update({'title':'MongoDB Overview'},

{$set:{'title':'New MongoDB Tutorial'}},{multi:true})

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 100

MongoDB Save() Method

The save() method replaces the existing document with the new document passed in the

save() method.

The basic syntax of MongoDB save() method is −

>db.COLLECTION_NAME.save({_id:ObjectId(),NEW_DATA})

Example

Following example will replace the document with the _id '5983548781331adf45ec7'.

>db.mycol.save(

{

"_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point New

Topic",

"by":"Tutorials Point"

})

>db.mycol.find()

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"Tutorials Point New Topic",

"by":"Tutorials Point"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

4.DELETE-The remove() Method

MongoDB's remove() method is used to remove a document from the collection.

remove() method accepts two parameters. One is deletion criteria and second is justOne flag.

 deletion criteria: (Optional) deletion criteria according to documents will be removed.

 justOne: (Optional) if set to true or 1, then remove only one document.

Basic syntax of remove() method is as follows:

>db.COLLECTION_NAME.remove(DELLETION_CRITTERIA)

Example

Consider the mycol collection has the following data.

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 101

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Following example will remove all the documents whose title is 'MongoDB Overview'.

>db.mycol.remove({'title':'MongoDB Overview'})

>db.mycol.find()

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

LOGICAL OPERATORS:

AND in MongoDB

Syntax

In the find() method, if you pass multiple keys by separating them by ',' then MongoDB

treats it as AND condition. Following is the basic syntax of AND −

>db.mycol.find({key1:value1, key2:value2}).pretty()

Example

Following example will show all the tutorials written by 'tutorials point' and whose title is

'MongoDB Overview'.

>db.mycol.find({"by":"tutorials point","title": "MongoDB Overview"}).pretty()

{

"_id": ObjectId(7df78ad8902c),

"title": "MongoDB Overview",

"description": "MongoDB is no sql database",

"by": "tutorials point",

"url": "http://www.tutorialspoint.com",

"tags": ["mongodb", "database", "NoSQL"],

"likes": "100"

}>

For the above given example, equivalent where clause will be ' where by='tutorials point' AND title =
'MongoDB Overview' '. You can pass any number of key, value pairs in find clause.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 102

OR in MongoDB

Syntax : To query documents based on the OR condition, you need to use $or keyword. Following

is the basic syntax of OR −

>db.mycol.find({ $or: [{key1: value1}, {key2:value2}] }).pretty()

Example will show all the tutorials written by 'tutorials point' or whose title is 'MongoDB Overview'.

>db.mycol.find({$or:[{"by":"tutorials point"},{"title": "MongoDB Overview"}]}).pretty()

{ "_id": ObjectId(7df78ad8902c),
"title": "MongoDB Overview",
"description": "MongoDB is no sql database",
"by": "tutorials point",
"url": "http://www.tutorialspoint.com",
"tags": ["mongodb", "database", "NoSQL"],
"likes": "100" }
Using AND and OR Together Example
The following example will show the documents that have likes greater than 100 and whose title is
either 'MongoDB Overview' or by is 'tutorials point'. Equivalent SQL where clause is 'where likes>10
AND (by = 'tutorials point' OR title = 'MongoDB Overview')'

>db.mycol.find({"likes": {$gt:10}, $or: [{"by": "tutorials point"},{"title": "MongoDB
Overview"}]}).pretty()

{
"_id": ObjectId(7df78ad8902c),
"title": "MongoDB Overview",
"description": "MongoDB is no sql database",
"by": "tutorials point",
"url": "http://www.tutorialspoint.com",
"tags": ["mongodb", "database", "NoSQL"],
"likes": "100" }

Conclusion: Thus we have studied MongoDB Queries using CRUD operations.

FAQ:-

1. Explain CREATE Operation with example.
2. Explain AND Operator with example.
3. Explain DELETE function in Mongodb.
4. Explain DELETE function in Mongodb.
5. Explain FIND function in Mongodb.
6. Explain OR Operator with example.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 103

Assignment No. 11

Title
Implement aggregation and indexing with suitable example

using MongoDB.

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 104

Assignment No. 11

Aim : Implement aggregation and indexing with suitable example using MongoDB.

Objectives : Learn the concept of MongoDB

Theory : MongoDB is an open-source document database and leading NoSQL database.

MongoDB is written in C++. This tutorial will give you great understanding on MongoDB concepts

needed to create and deploy a highly scalable and performance-oriented database.

Aggregations operations process data records and return computed results. Aggregation operations group

values from multiple documents together, and can perform a variety of operations on the grouped data to return a

single result. In SQL count(*) and with group by is an equivalent of mongodb aggregation.

The aggregate() Method For the aggregation in MongoDB, you should use aggregate() method.

Basic syntax of aggregate() method is as follows:

>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)

Example

In the collection you have the following data:

{

_id: ObjectId(7df78ad8902c)

title: 'MongoDB Overview',

description: 'MongoDB is no sql database',

by_user: 'tutorials point',

url: 'http://www.tutorialspoint.com',

tags: ['mongodb', 'database', 'NoSQL'],

likes: 100

},

{

_id: ObjectId(7df78ad8902d)

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 105

title: 'NoSQL Overview',

description: 'No sql database is very fast',

by_user: 'tutorials point',

url: 'http://www.tutorialspoint.com',

tags: ['mongodb', 'database', 'NoSQL'],

likes: 10

},

{

_id: ObjectId(7df78ad8902e)

title: 'Neo4j Overview',

description: 'Neo4j is no sql database',

by_user: 'Neo4j',

url: 'http://www.neo4j.com',

tags: ['neo4j', 'database', 'NoSQL'],

likes: 750

},

Now from the above collection, if you want to display a list stating how many tutorials are written by each user,

then you will use the following aggregate() method:

> db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum :1}}}])

{

"result" : [

{

"_id" : "tutorials point", "num_tutorial" : 2

},

{

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 106

"_id" : "Neo4j","num_tutorial" : 1

}],

"ok" : 1

}>

Sql equivalent query for the above use case will be select by_user, count(*) from mycol group by

by_user.

Pipeline Concept

In UNIX command, shell pipeline means the possibility to execute an operation on some input and use
the output as the input for the next command and so on. MongoDB also supports same concept in

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 107

aggregation framework. There is a set of possible stages and each of those is taken as a set of
documents as an input and produces a resulting set of documents (or the final resulting JSON document
at the end of the pipeline). This can then in turn be used for the next stage and so on.

Following are the possible stages in aggregation framework:

 $project: Used to select some specific fields from a collection.

 $match: This is a filtering operation and thus this can reduce the amount of documents that are given

as input to the next stage.

$group: This does the actual aggregation as discussed above.

 $sort: Sorts the documents.

 $skip: With this, it is possible to skip forward in the list of documents for a given amount of

documents.

 $limit: This limits the amount of docu ments to look at, by the given number starting from the
current positions.

 $unwind: This is used to unwind document that are using arrays. When using an array, the data is

kind of pre-joined and this operation will be undone with this to have individual documents again. Thus
with this stage we will increase the amount of documents for the next stage.

Indexes support the efficient resolution of queries. Without indexes, MongoDB must scan every
document of a collection to select those documents that match the query statement This scan is highly
inefficient and require MongoDB to process a large volume of data.

Indexes are special data structures, that store a small portion of the data set in an easy -to-traverse form.
The index stores the value of a specific field or set of fields, ordered by the value of the field as
specified in the index.

The ensureIndex() Method

To create an index you need to use ensureIndex() method of MongoDB. The basic syntax of
ensureIndex() method is as follows().

>db.COLLECTION_NAME.ensureIndex({KEY:1})

Here key is the name of the file on which you want to create index and 1 is for ascending order. To
create index in descending order you need to use -1.

Example

>db.mycol.ensureIndex({"title":1})

In ensureIndex() method you can pass multiple fields, to create index on multiple fields.

>db.mycol.ensureIndex({"title":1,"description":-1})

ensureIndex() method also accepts list of options (which are optional). Following is the list:

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 108

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 109

Conclusion: - Thus we have studied use and implementation of aggregation function &indexing function.

FAQ : -

1. Enlist various aggregation operations.

2. Explain MIN function with example.

3. Explain PUSH function with example.

4. Explain SUM & AVG function with example.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 110

Assignment No. 12

Title
Implement Map reduces operation with suitable example

using MongoDB

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 111

Assignment No. 12

Aim : Implement Map reduces operation with suitable example using MongoDB

Objectives : Learn the concept of NOSQL MongoDB

Theory :

As per the MongoDB documentation, MapReduce is a data processing paradigm for condensing large

volumes of data into useful aggregated results. MongoDB uses mapReduce command for map-reduce

operations. MapReduce is generally used for processing large data sets.

MapReduce Command

Following is the syntax of the basic mapReduce command

>db.collection.mapReduce (
 function() { emit(key,value); }, //map function

function(key,values) {return reduceFunction},
{ //reduce function

out: collection,
query: document,
sort: document,
limit: number

})
The map-reduce function first queries the collection, then maps the result documents to

emit key-value pairs, which is then reduced based on the keys that have multiple values.

In the above syntax –

 map is a javascript function that maps a value with a key and emits a key-value pair
 reduce is a javascript function that reduces or groups all the documents having the same key
 out specifies the location of the map -reduce query result
 query specifies the optional selection criteria for selecting d ocuments
 sort specifies the optional sort criteria
 limit specifies the optional maximum number of documents to be returned Using MapReduce
Consider the following document structure storing user posts. The document stores user_name of the

user and the status of post.

{"post_text": "tutorialspoint is an awesome website for tutorials" ,
"user_name": "mark",
"status":"active" }

We will use a mapReduce function on our posts collection to select all the active posts, group them on

the basis of user_name and then count the number of posts by each user using the following code

>db.posts.mapReduce(

function() { emit(this.user_id,1); },

function(key, values) {return Array.sum(values)}, {

query:{status:"active"},

out:"post_total" })

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 112

The above mapReduce query outputs the following result −

{
"result" : "post_total",
"timeMillis" : 9,"counts" :
{
"input" : 4,
"emit" : 4,
"reduce" : 2,
"output" : 2
},
"ok" : 1,
}
The result shows that a total of 4 documents matched the query (status:"active"), the

map function emitted 4 documents with key-value pairs and finally the reduce function

grouped mapped documents having the same keys into 2.

To see the result of this mapReduce query, use the find operator −

>db.posts.mapReduce (function() { emit(this.user_id,1); }, function(key, values) {return
Array.sum(values)}, {query:{status:"active"}, out:"post_total"}).find()

The above query gives the following result which indicates that both users tom

and mark have two posts in active states −

{ "_id" : "tom", "value" : 2 }

{ "_id" : "mark", "value" : 2 }

In a similar manner, MapReduce queries can be used to construct large complex aggregation queries.

The use of custom Javascript functions make use of MapReduce which is very flexible and powerful.

Conclusion: Thus we have studied Map reduce function.

FAQ : -

1. Define and Explain mapreduce in MongoDB with examples.

2. Why to use Mapreduce in MongoDB

3. Explain the structure of ObjectID in MongoDB.

4. What are NoSQL databases? What are the different types of NoSQL databases?

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 113

Assignment No. 13

Title Design and Implement any 5 query using MongoDB

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 114

Assignment No. 13

Objectives : Learn the concept of MONGO DB

Theory : MongoDB is a cross-platform, document oriented database that provides, high

performance, high availability, and easy scalability. MongoDB works on concept of collection and

document.

MongoDB ─ Projection

In MongoDB, projection means selecting only the necessary data rather than selecting whole of the data

of a document. If a document has 5 fields and you need to show only 3, then select only 3 fields from

them.

The find() Method

MongoDB's find() method, explained in MongoDB Query Document accepts second optional parameter

that is list of fields that you want to retrieve. In MongoDB, when you execute find() method, then it

displays all fields of a document. To limit this, you need to set a list of fields with value 1 or 0. 1 is used

to show the field while 0 is used to hide the fields.

Syntax

The basic syntax of find() method with projection is as follows:

>db.COLLECTION_NAME.find({},{KEY:1})

Example

Consider the collection mycol has the following data

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Following example will display the title of the document while querying the document.

>db.mycol.find({},{"title":1,_id:0})

{"title":"MongoDB Overview"}

{"title":"NoSQL Overview"}

{"title":"Tutorials Point Overview"}

The Limit() Method

To limit the records in MongoDB, you need to use limit() method. The method accepts one number type

argument, which is the number of documents that you want to be displayed.

Syntax

The basic syntax of limit() method is as follows:

Aim : Design and Implement any 5 query using MongoDB

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 115

>db.COLLECTION_NAME.find().limit(NUMBER)

Example

Consider the collection myycol has the following data.

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Following example will display only two documents while querying the document.

>db.mycol.find({},{"title":1,_id:0}).limit(2)

{"title":"MongoDB Overview"}

{"title":"NoSQL Overview"}

If you don't specify the number argument in limit() method then it will display all documents from the

collection.

MongoDB Skip() Method

Apart from limit() method, there is one more method skip() which also accepts number type argument

and is used to skip the number of documents.

Syntax

The basic syntax of skip() method is as follows:

>db.COLLECTION_NAME.find().limit(NUMBER).skip(NUMBER)

Example

Following e.g. will display only the second document. The default value in skip() method is 0.

>db.mycol.find({},{"title":1,_id:0}).limit(1).skip(1)

{"title":"NoSQL Overview"}

The sort() Method

To sort documents in MongoDB, you need to use sort() method. The method accepts a document

containing a list of fields along with their sorting order. To specify sorting order 1 and -1 are used. 1 is

used for ascending order while -1 is used for descending order.

Syntax

The basic syntax of sort() method is as follows:

>db.COLLECTION_NAME.find().sort({KEY:1})

Example

Consider the collection myycol has the following data.

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 116

Following example will display the documents sorted by title in the descending order.

>db.mycol.find({},{"title":1,_id:0}).sort({"title":-1})

{"title":"Tutorials Point Overview"}

{"title":"NoSQL Overview"}

{"title":"MongoDB Overview"}

FAQ:-

1. Explain Projection Operation with example.

2. Explain SKIP method with example.

3. Explain Limit Method in Mongodb.

4. Explain Sort Method in Mongodb.

5. Explain distinct function in Mongodb.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 117

Assignment No. 14

Title Create simple objects and array objects using JSON

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 118

Assignment No. 14

Objectives : Learn the concept of JSON

Theory : What is JSON

JSON is an open standard for exchanging data on the web. It supports data structures like object and
array. So it is easy to write and read data from JSON.

• JSON stands for JavaScript Object Notation.
• JSON is an open standard data-interchange format.
• JSON is lightweight and self describing.
• JSON is originated from JavaScript.
• JSON is easy to read and write.
• JSON is language independent.
• JSON supports data structures such as array and objects.

Features of JSON

• Simplicity
• Openness
• Self Describing
• Internationalization
• Extensibility
• Interoperability
• Light-weight

Why use JSON?
• Standard Structure: JSON objects are having a standard structure that makes developers job

easy to read and write code, because they know what to expect from JSON.
• Light weight: When working with AJAX, it is important to load the data quickly and

asynchronously without requesting the page re-load. Since JSON is light weighted, it becomes
easier to get and load the requested data quickly.

• Scalable: JSON is language independent, which means it can work well with most of the
modern programming language. Let s say if we need to change the server side language, in that ‟

case it would be easier for us to go ahead with that change as JSON structure is same for all the
languages.

JSON Example

File: first.json

 {"employees":[
 {"name":"Sonoo", "email":"sonoojaiswal1987@gmail.com"},
 {"name":"Rahul", "email":"rahul32@gmail.com"},
 {"name":"John", "email":"john32bob@gmail.com"}
]}

Aim : Create simple objects and array objects using JSON.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 119

XML Example
 <employees>
 <employee>
 <name>Vimal</name>

 <email>vjaiswal1987@gmail.com</email>
 </employee>

 <employee>
 <name>Rahul</name>
 <email>rahul12@gmail.com</email>

 </employee>
 <employee>

 <name>Jai</name>
 <email>jai87@gmail.com</email>

 </employee>
 </employees>

JSON Example

JSON example can be created by object and array.

Each object can have different data such as text, number, boolean etc.

JSON data structure types and how to read them:

• JSON objects
• JSON objects in array
• Nesting of JSON objects

JSON vs XML

A list of differences between JSON and XML are given below

JSON Object Example

• A JSON object contains data in the form of key/value pair.
• The keys are strings and the values are the JSON types.
• Keys and values are separated by colon.
• Each entry (key/value pair) is separated by comma.
• The { (curly brace) represents the JSON object.

 {
 "employee":
 {
 "name": "sonoo",
 "salary": 56000,
 "married": true
 }
 }

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 120

JSON Array example

The [(square bracket) represents the JSON array. A JSON array can have values and objects.

["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"]

[
 {"name":"Ram", "email":"Ram@gmail.com"},
 {"name":"Bob", "email":"bob32@gmail.com"}
]

JSON Example :

{ "menu": {
 "id": "file",
 "value": "File",
 "popup": {
 "menuitem": [

 {"value": "New", "onclick": "CreateDoc()"},
 {"value": "Open", "onclick": "OpenDoc()"},
 {"value": "Save", "onclick": "SaveDoc()"}

]
 } } }

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 121

JSON Nested Object Example
{
 "firstName": "Sonoo",
 "lastName": "Jaiswal",
 "age": 27,
 "address" : {
 "streetAddress": "Plot-6, Mohan Nagar",
 "city": "Ghaziabad",
 "state": "UP",
 "postalCode": "201007"
 }
 }

JSON Array of Objects
{"employees":[
 {"name":"Ram", "email":"ram@gmail.com", "age":23},

 {"name":"Shyam", "email":"shyam23@gmail.com", "age":28},

 {"name":"John", "email":"john@gmail.com", "age":33},

 {"name":"Bob", "email":"bob32@gmail.com", "age":41}

]}

Java JSON
The json.simple library allows us to read and write JSON data in Java.
In other words, we can encode and decode JSON object in java using json.simple library.

The org.json.simple package contains important classes for JSON API.

• JSONValue
• JSONObject
• JSONArray
• JsonString
• JsonNumber

Install json.simple

To install json.simple, you need to set classpath of json-simple.jar.
Download json-simple.jar (https://www.javatpoint.com/jsonpages/json-simple-1.1.1.jar)

FAQ:-
1. Explain JSON with example.
2. Explain difference between JSON vs XML.
3. List JSON data structure types.
4. Explain JSON Object.
5. Explain JSON Array Object.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 122

Assignment No. 15

Title Encode and Decode JSON Objects using Java / Perl / PHP /
Python / Ruby.

Roll No.

Class T.E. (C.E.)

Date

Subject Database Management System Laboratory

Signature

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 123

Assignment No. 15

Objectives : Learn the concept of JSON

Theory : What is JSON

JSON is an open standard for exchanging data on the web. It supports data structures like object and
array. So it is easy to write and read data from JSON.

• JSON stands for JavaScript Object Notation.
• JSON is an open standard data-interchange format.
• JSON is lightweight and self describing.
• JSON is originated from JavaScript.
• JSON is easy to read and write.
• JSON is language independent.
• JSON supports data structures such as array and objects.

Install json.simple

To install json.simple, you need to set classpath of json-simple.jar.

Download json-simple.jar (https://www.javatpoint.com/jsonpages/json-simple-1.1.1.jar)

Environment

Before you start with encoding and decoding JSON using Java, you need to install any of the JSON
modules available. For this assignment we have downloaded and installed JSON.simple and have added
the location of json-simple-1.1.1.jar file to the environment variable CLASSPATH.

Mapping between JSON and Java entities

JSON.simple maps entities from the left side to the right side while decoding or parsing, and maps
entities from the right to the left while encoding.

Aim : Encode and Decode JSON Objects using Java / Perl / PHP / Python / Ruby.

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 124

On decoding, the default concrete class of java.util.List is org.json.simple.JSONArray and the default
concrete class of java.util.Map is org.json.simple.JSONObject.

Encoding JSON in Java

Following is a simple example to encode a JSON object using Java JSONObject which is a subclass of
java.util.HashMap. No ordering is provided. If you need the strict ordering of elements, use
JSONValue.toJSONString (map) method with ordered map implementation such as
java.util.LinkedHashMap.

On compiling and executing the above program the following result will be generated –

{"balance": 1000.21, "num":100, "is_vip":true, "name":"foo"}

Following is another example that shows a JSON object streaming using Java JSONObject −

Database Management System Laboratory TE Computer Engineering (2018-19)

Department of Computer Engineering, SIT, Lonavala Page 125

On compiling and executing the above program, the following result is generated –
 {"balance": 1000.21, "num":100, "is_vip":true, "name":"foo"}

Decoding JSON in Java
The following example makes use of JSONObject and JSONArray where JSONObject is a
java.util.Map and JSONArray is a java.util.List, so you can access them with standard operations of
Map or List.

On compiling and executing the above program, the following result will be generated –
 The 2nd element of array
 {"1":{"2":{"3":{"4":[5,{"6":7}]}}}}
 Field "1"
 {"2":{"3":{"4":[5,{"6":7}]}}}
 {}
 [5]
 [5,2]

FAQ:-

1. Which JSON modules available need to download to run JSON program?
2. Explain Encode JSON in Java .
3. Explain Decode JSON in Java .
4. How to create JSON Object in Java?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125

