
"

",
>

FORTRAN-IO
LANGUAGE MANUAL

Second Edition

(

dec

This manual reflects the software as of Version IA of the
FORTRAN-IO Compiler and Version 2 of the FORTRAN-to
Object Time System (FOROTS).

Additional copies of this manual may be ordered from: Software

Distribution Center, Digital Equipment Corporation, Maynard,

Massachusetts 0 I 754 Order Code: DEC-tO-LFORA-B-D

digital equipment corporation · maynard, massachusetts

First Edi ti OI1' June 1973
Second Edition January 1974

Copyright © 1973,1974 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Actual distribution of the software described in
this manual will be subject to terms and conditions
to be announced at some future date by Digital
Equipment Corporation.

DEC assumes no responsibility for the use or
reliability of its software on equipment which is
not supplied by DEC.

The software described in this manual is furnished
to purchaser under a license for use on a single
computer system and can be copied (with inclusion
of DEC's copyright notice) only for use in such
system, except as may otherwise be provided in
writing by DEC.

The following are trademarks of Digital Equipment
Corporation, Maxnard, Massachusetts:

FLIP CHIP
UNIBUS
PDP

DECtape
DECsystem-10
DECmagtape

CHAPTER 1

1.1

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3

I 2.2.4
2.3
2.3.1
2.3.2
2.3.3

I 2.3.4
2.3.5

I 2.3.6

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3

CHAPTER 4

4.1
4.1.1
4.2
4.2.1
4.3
4.3.1
4.3.2
4.3.3
4.3.4

INTRODUCTION

INTRODUCTION

CHARACTERS AND LINES

CONTENTS

CHARACTER SET
STATEMENT, DEFINITION, AND FORMAT

Statement Label Field and Statemen t Numbers
Line Continuation Field
Statement Field
Remarks

LINE TYPES
Initial and Continuation Line Types
Multi-Stqtement Lines
Comment Lines and Remarks
Debug Lines
Blank Lines
Line-Sequenced Input

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

DATA TYPES
CONSTANTS

Integer Constants
Real Constants .
Double Precision Constants
Complex Constan ts
Octal Constants
Logical Constants
Literal Constants
Statement Labels

SYMBOLIC NAMES
VARIABLES
ARRAYS

Array Element Subscripts
Dimensioning Arrays . .
Order of Stored Array Elements

EXPRESSIONS

ARITHMETIC EXPRESSIONS
Rules for Writing Arithmetic Expressions

LOGICAL EXPRESSIONS
Rela tional Expressions

EVALUATION OF EXPRESSIONS
Paren the sized Subexpressions
Hierarchy of Operators
Mixed Mode Expressions .. .
Use of Logical Operands in Mixed Mode Expressions

Version lA FORTRAN iii

Page

1-1

2-1
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-6

3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-5
3-5
3-5
3-5
3-6
3-7
3-7
3-8
3-9

4-1
4-2
4-2
4-6
4-8
4-8
4-8
4-9

. 4-10

January 1974

•
I

•

I

CHAPTER 5

5.1
5.2

CHAPTER 6

6.1
6.2
6.2.1
6.3
6.4
6.5
6.5.1
6.6
6.7

CHAPTER 7

7.1

CHAPTER 8

8.1
8.2
8.3
8.4

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2
9.4.3
9.5
9.6
9.7
9.7.1

CONTENTS (Cont)

COMPILATION CONTROL STATEMENTS

INTRODUCTION
END STATEMENT

SPECIFICATION STATEMENT

INTRODUCTION
DIMENSION STATEMENT ..

Adjustable Dimensions ..
TYPE SPECIFICATION STATEMENTS
IMPLICIT STATEMENTS
COMMON STATEMENT

Dimensioning Arrays in COMMON Statements
EQUIVALENCE STATEMENT
EXTERN AL STATEMENT

Page

5-1
5-1

. 6-1
6-1
6-2
6-3
6-4
6-5
6-6

· 6-6
6-7

DATA STATEMENT

INTRODUCTION .. 7-1

ASSIGNMENT STATEMENTS

INTRODUCTION
ARITHMETIC ASSIGNMENT STATEMENT
LOGICAL ASSIGNMENT STATEMENTS
ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

CONTROL STATEMENTS

INTRODUCTION
GO TO CONTROL STATEMENTS

Unconditional GO TO Statements
Computed GO TO Statements
Assigned GO TO Statements ..

IF STATEMENTS
Arithmetic IF Statements
Logical IF Statements
Logical Two-Branch IF Statements

DO STATEMENT
Nested DO Statements
Extended Range
Permitted Transfer Operations ..

CONTINUE STATEMENT
STOP STATEMENT ...
PAUSE STATEMENT .

T (TRACE) Option

. 8-1
8-1
8-3
8-3

· 9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-4
94
9-5
9-6
9-7

· 9-8
9-9
9-9

... 9-10
.... 9-10

Version 1A FORTRAN iv January 1974

CONTENTS (Cont)

CHAPTER 10 I/O STATEMENTS

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.3
10.3.4

o 10.3.5
10.3.6
10.3.7
lOA
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.5 .5
10.5.6
10.6
10.7
10.8
10.8.1
10.8.2
10.8.3
10.804
10.8.5
10.8.6
10.9
10.10
10.10.1
10.10.2
10.11
10.12
10.13
10.14
10.15
10.15.1
10.15.2
10.15.3
10.16

DATA TRANSFER OPERATIONS
TRANSFER MODES

Sequential Mode ...
Random Access Mode
Append Mode

I/O STATEMENTS, BASIC FORMATS AND COMPONENTS
I/O Statement Keywords
FORTRAN-l 0 Logical Unit Numbers
FORMAT Statement References . . .
I/O List
The Specification of Records for Random Access
List-Directed I/O
NAMELIST I/O Lists

OPTIONAL READ/WRITE ERROR EXIT AND END-OF-FILE ARGUMENTS
READ STATEMENTS

Sequential Formatted READ Transfers
Sequential Unformatted Binary READ Transfers
Sequential List-Directed READ Transfers
Sequential NAMELIST-Controlled READ Transfers
Random Access Formatted READ Transfers .
Random Access Unformatted READ Transfers

SUMMARY OF READ STATEMENTS
REREAD STATEMENT
WRITE STATEMENTS

Sequential Formatted WRITE Transfers
Sequential Unformatted WRITE Transfer
Sequential List-Directed WRITE Transfers
Sequential NAMELIST-Controlled WRITE Transfers
Random Access Formatted WRITE Transfers
Random Access Unformatted WRITE Transfers

SUMMARY OF WRITE STATEMENTS
ACCEPT STATEMENT

Formatted ACCEPT Transfers
ACCEPT Transfers Into FORMAT Statement

PRINT STATEMENT
PUNCH STATEMENT
TYPE STATEMENT .
FIND STATEMENT .
ENCODE AND DECODE STATEMENTS

ENCODE Statement
DECODE Statement
Example of ENCODE/DECODE Operations

SUMMARY OF I/O STATEMENTS

v

Page

10-1
10-1
10-1
10-1
10-2
10-2
10-3
10-3
10-3
10-5

10-6
10-6
10-8
10-8
10-9
10-9

10-10
10-10
10-11
10-11
10-11
10-11
10-12
10-13
10-13
10-14
10-14
10-14
10-14
10-15
10-15
10-15
10-15
10-16
10-16
10-17
10-18
10-18
10-19
10-19
10-20
10-20
10-21

January 1974

CONTENTS (Cont)

CHAPTER 11 NAMELIST STATEMENTS

11.1
11.2
11.2.1
11.2.2

INTRODUCTION
NAMELIST STATEMENT .

NAMELIST -Controlled Input Transfers
NAMELIST-Controlled Output Transfers

CHAPTER 12 FILE CONTROL STATEMENTS

12.1
12.2
12.2.1
12.2.2

INTRODUCTION
OPEN AND CLOSE STATEMENTS

Options for OPEN and CLOSE Statements
Summary of OPEN/CLOSE Statement Options

CHAPTER 13 FORMAT STATEMENT

INTRODUCTION 13.1
13.1.1
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.3

FORMAT Statement, General Form ..
FIELD DESCRIPTORS

Numeric Field Descriptors
Interaction of Field Descriptors With I/O List Variables During Transfer
G, General Numeric Conversion Code
Numeric Fields with Scale Factors
Logical Field Descriptors
Variable Numeric Field Widths ..
Alphanumeric Field Descriptors .
Transferring Alphanumeric Data Directly Into or From FORMAT Statements
Mixed Numeric and Alphanumeric Fields
Multiple Record Specifications
Record Formatting Field Descriptors

CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS

CHAPTER 14 DEVICE CONTROL STATEMENTS

14.1 INTRODUCTION
14.2 REWIND STATEMENT
14.3 UNLOAD STATEMENT
14.4 BACKSPACE STATEMENT
14.5 END FILE STATEMENT
14.6 SKIP RECORD STATEMENT .
14.7 SKIP FILE STATEMENT
14.8 BACKFILE STATEMENT
14.9 SUMMARY OF DEVICE CONTROL STATEMENTS

CHAPTER 15 SUBPROGRAM STATEMENTS

15.1 INTRODUCTION
15.1.1 Dummy and Actual Arguments
15 .2 STATEMENT FUNCTIONS
15.3 INTRINSIC FUNCTIONS

vi

Page

11-1
11-1
11-2
11-3

12-1
12-1
12-2
12-9

13-1
13-1
13-2
13-4
13-6
13-7
13-7
13-9
13-9
13-9

13-10
13-11
13-12
13-13
13-14

14-1
14-2
14-2
14-2
14-2
14-3
14-3
14-3
14-3

15-1
15-1
15-3
15-3

1504
1504.1

n 1504.2
15.5
15.5.1
15.5.2
15.6
15.6.1
15.7

CONTENTS (Cont)

EXTERNAL FUNCTIONS ..
Basic External Functions
Generic Function Names

SUBROUTINE SUBPROGRAMS
Referencing Subroutines (CALL Statement)
FORTRAN-l 0 Supplied Subroutines

RETURN STATEMENT AND MULTIPLE RETURNS
Referencing External FUNCTION Subprograms

MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT)

CHAPTER 16 BLOCK DATA SUBPROGRAMS

16.1
16.2

INTRODUCTION
BLOCK DATA STATEMENT

APPENDIX A ASCII-1968 CHARACTER CODE SET

APPENDIX B WRITING USER PROGRAMS

B.l
B.l.1
B.I.2
B.2
B.3
BA
BA.l
BA.I.l
BA.l.2
BA.2
BA.3
BAA
BA.5
BA.6
BA.7
BA.8
BA.9
BA.10
B.5
B.s.l
B.s.I.l
B.5.1.2
B.5.I.3
B.5.1.4
B.5.I.5
B.5.I.6
B.5.2
B.5.3

RUNNING THE FORTRAN-l 0 COMPILER
Switches Available with the FORTRAN-l 0 Compiler
Monitor Commands

READING A FORTRAN-l 0 LISTING
ERROR REPORTING
WRITING EFFECTIVE FORTRAN-IO PROGRAMS

General Programming Considerations
Accuracy and Range of Double Precision Numbers
Writing FORTRAN-l 0 Programs for Execution on Non-DEC Machines

Storage of Arrays
Use of COMMON
Use of EQUIVALENCE Statements
Use of ENTRY Statements
Using Floating Point DO Loops
Computation of DO Loop Iterations
List-Directed I/O
Subroutines-Programming Considerations
Reordering of Computations ..

FORTRAN-I0 GLOBAL OPTIMIZER
Optimization Techniques

Elimination of Common Subexpressions
Reduction of Operator Strength
Removal of Constant Computation From Loops
Constant Folding and Propagation
Removal of Inaccessible Code
Global Register Allocation

Improper Function References
Programming Techniques for Effective Optimization

Version 1 A FO RTRAN vii

Page

15-5
15-6
15-6
15-7
15-9

15-10
15-10
15-12
15-13

16-1
16-1

B-1
B-1
B-2
B-3
B-8
B-8
B-8
B-8
B-8
B-9
B-9

B-IO
B-ll
B-12
B-12
B-13
B-14
B-14
B-15
B-16
B-16
B-17
B-17
B-18
B-19
B-19
B-19
B-19

January 1974

B.6
B.6.l
B.6.2
B.6.3
B.6A
B.6.S
B.6.6
B.6.7
B.6.8
B.6.8.l
B.6.8.2
B.6.9
B.6.9.1
B.6.9.2

B.6.9.3

CONTENTS (Cont)

INTERFACING WITH NON-FORTRAN-lOPROGRAMS AND FILES
Calling Sequences
Accumula tor Usage
Argumen t Lists . .
Argument Types .
Description of Arguments
Converting Existing MACRO-lO Libraries for use with FORTRAN-lO
Mixing FORTRAN-l 0 and F40 Compiled Programs
Interaction with COBOL-lO

Calling FORTRAN-lO Subprograms as COBOL-lO Programs
Calling COBOL-lO Subroutines From FORTRAN-l 0 Programs

FOROTS/FORSE Compatibility
FORTRAN-10/F40 Data File Compatibility
Conversion of FOROTS-Developed Data Files Into a
Form Acceptable to FORSE
General Restrictions

APPENDIX C FOROTS

C.l
C.l.l
C.l.2
C.2
C.3
CA
CA.l
CA.2
C.4.2.l
C.4.2.2
C.5
C.S.l
C.S.2
C.S.3
C.SA
C.S.S
C.6
C.6.l
C.6.2
C.6.3
C.6.3.l
C.6.3.2
C.6.3.3

C.6.3A

C.6.3.S

INTRODUCTION
Hardware Requirements
Software Requirements

FEATURES OF FOROTS ..
ERROR PROCESSING
INPUT/OUTPUT FACILITIES

Input/Output Channels
File Access Modes

Sequential Transfer Mode
Random Access Mode

ACCEPT ABLE TYPES OF DATA FILES AND THEIR FORMATS
ASCII Data Files
ASCII Data Files with Line Sequence Numbers
FORTRAN Binary Data Files
Mixed Mode Data Files
Image Binary Files

USING FOROTS AS A GENERAL I/O SYSTEM
FOROTS Entry Points
Calling Sequences
MACRO Calls for FOROTS Functions

Initialization of FOROTS
ENCODE/DECODE Calling Sequences
Formatted/Unformatted Transfer Statements,
Sequential Access Calling Sequences .
NAMELIST Data Transfer Statements,
Sequential Access Calling Sequences .
Formatted/Unformatted Data Transfer Statements,
Random Access Calling Sequences

viii

Page

B-19
B-19
B-20
B-2l
B-22
B-22
B-24
B-29
B-29
B-29
B-3l
B-3l
B-31

B-32
B-34

C-l
C-I
C-l
C-I
C-3
C-3
C-3
C-3
C-3
C-4
C-4
C-4
C-4
C-S
C-S
C-S
C-6
C-6
C-6
C-7
C-8
C-8

C-9

COlO

C-ll

January 1974

C.6.3.6
C.6.3.7
C.6.3.8
C.6.3.9
C.6.3.10
C.6.3.11
C.6.3.12
C.7
C.7.1
C.7.1.1
C.7.1.2
C.7.1.3
C.7.1.4
C.7.1.5
C.7.1.6
C.8
C.8.1
C.9

CONTENTS (Cont)

Calling Sequences for Statements Which Use Default Devices
Calling Sequences for Statements Which Position Magnetic Tape Units
List Directed Input/Output Statements
Input/Output Data Lists
OPEN and CLOSE Statements, Calling Sequences
Memory Allocation Routines
Software Channel Allocation and Deallocation Routines

DETAILED DESCRIPTION
Fa ROTS Source Files

FORPRM Parameter File .
FORINI Initialization File
FORCNV Data Conversion File
FORTRP Trap Handler
FORERR Error Routine ...
FOROTS Main I/O Processing and Control File

FOROTS CORE REQUIREMENTS
Core and Data File Protection

LOGICAL/PHYSICAL DEVICE ASSIGNMENTS

APPENDIX D DEBUGGING FORTRAN PROGRAMS

0.1
0.2
0.2.1
0.2.2
0.2.3
0.2.4
0.2.5
0.2.6
0.2.7
0.2.8
0.2.9
0.2.10
0.2.11
0.2.12
0.2.13

LOADING AND STARTING FORDDT
FORDDT COMMANDS

Starting the Program .
Stopping the Program
Opening Subprograms
Changing the Values of Variables
Grouping Parameters for Commands
Specifying Typeout Modes .
Displaying Values
Setting Pauses (Breakpoints) .
Removing Pauses (Breakpoints)
Continuing After a Pause (Breakpoint)
Obtaining Information ..
Tracing Subroutine Calls .
Entering and Leaving DDT

ix

Page

C-12
C-13
C-14
C-14
C-16
C-17
C-18
C-19
C-20
C-20
C-20
C-20
C-21
C-21
C-21
C-23
C-24
C-24

0-1
0-1
0-2
0-2
0-2
0-3
0-4
0-4
0-5
0-5
0-6
0-7
0-7

0-10
0-11

January 1974

Table No.

1-1
2-1
3-1
3-2
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
8-1
10-1
10-2
10-3
10-4
12-1
13-1
13-2
13-3
13-4

13-5
14-1
15-1
15-2
15-3
B-1
B-2
B-3
B4
C-l
D-l
D-2

TABLES

Title

FORTRAN-l 0 Statement Categories
FORTRAN-l 0 Character Set
Constants
Use of Symbolic Names
Arithmetic Operations and Operators
Type of the Resultant Obtained From Mixed Mode Operations
Permitted Base/Exponent Type Combinations
Logical Operators
Logical Operations, Truth Table
Binary Logical Operations, Truth Table
Relational Operators and Operations .
Hierarchy of FORTRAN -10 Operators
Rules for Conversion in Mixed Mode Assignments
FORTRAN-l 0 Logical Device Assignments
Summary of Read Statements
Summary of WRITE Statements
Summary of FORTRAN-l 0 I/O Statements
OPEN/CLOSE Statement Arguments
FORTRAN-I0 Conversion Codes
Action of Field Descriptors on Sample Data
Numeric Field Codes
Descriptor Conversion of Real and Double Precision Data
According to Magnitude
FORTRAN-l 0 Print Con trol Characters
Summary of FORTRAN-l 0 Device Control Statements
Intrinsic Functions
Basic External Functions
FORTRAN-I0 Library Subroutines
FORTRAN-l 0 Compiler Switches
Argument Types and Type Codes
Upward Compatibility (FORSE TO FOROTS)
Downward Compatibility (FOROTS TO FORSE)
FORTRAN Device Table .
Modes for ACCEPT Values
Typeout Modes

x

Page

1-2
2-1
3-2
3-6
4-1
4-3
4-4
4-4 .
4-5
4-6
4-7
4-9
8-2

104
10-12
10-15
10-22

12-9
13-3
13-5
13-6

13-8
13-14

14-3
· 154
· 15-8
15-15

· B-2
B-22
B-32
B-33
C-24
D-3

· D-4

January 1974

PREFACE

The FORTRAN language set as implemented by the new DECsystem-IO FORTRAN-IO Language Processing System
(referred to as FORTRAN-I 0) is described in this manual.

This manual is intended for reference purposes only; tutorial-type text has been minimized. The reader is expected
to have some experience in writing FORTRAN programs and to be familiar with the standard FORTRAN language
set and terminology as defined in the American National Standard FORTRAN, X3.9-I966.

The descriptions of the FORTRAN-I 0 extensions and additions to the standard FORTRAN language set are printed
in boldface italic type.

I Operating procedures and d~scriptions of the DECsystem-IO programming environment for FORTRAN
programmers are given in Appendix B. The FORTRAN-I 0 Object Time System (FOROTS) is described in Appendix
C.

xi January 1974

CHAPTER 1

FORTRAN-I0 extensions to the 1966 ANSI
standard set are printed in boldface italic type.

1.1 INTRODUCTION

Introduction

CHAPTER 1

INTRODUCTION

The FORTRAN-IO language set is compatible with and encompasses the standard set described in "American
o National Standard FORTRAN, X3.9-I966" (referred to as the 1966 ANSI standard set). FORTRAN-IO also

provides many extensions and additions to the standard set which greatly enhance the usefulness of FORTRAN-IO

I
and increases its compatibility with FORTRAN language sets implemented by other major computer manufacturers.
In this manual the FORTRAN-IO extensions and additions to the 1966 ANSI standard set are printed in boldface
italic type.

A FORTRAN-IO source program. consists of a set of statements constructed using the language elements and the
syntax described in this manual. A given FORTRAN-IO statement will perform anyone of the following functions:

a. It will cause operations such as multiplication, division, and branching to be carried out.

b. It will specify the type and format of the data being processed.

c. It will specify the characteristics of the source program.

FORTRAN-IO statements are comprised of key words (i.e., words which are recognized by the compiler) used with
elements of the language set: constants, variables, and expressions. There are two basic types of FORTRAN-IO
statements: executable and nonexecutable.

Executable statements specify the action of the program; nonexecutable statements describe the characteristics and
arrangement of data, editing information, statement functions, and the kind of subprograms that may be included in
the program. The compilation of executable statements results in the creation of executable code in the object
program. Nonexecutable statements provide information only to the compiler, they do not create executable code.

In this manual the FORTRAN-IO statements are grouped into twelve categories, each of which is described in a
separate chapter. The name, definition, and chapter reference for each statement category are given in Table 1-1.

The basic FORTRAN-I 0 language elements (i.e., constants, variables, and expressions), the character set from which
they may be formed, and the rules which govern their construction and use are described in Chapters 2 through 4.

Version IA FORTRAN 1-1 January 1974

CHAYfER 1

Category Name

Compilation Control
Statements

Specification Statements

DATA Statement

Assignment Statements

Control Statements

Input/Output Statements

NAMELIST Statement

File Control Statements

FORMAT Statement

Device Control Statements

SUBPROGRAM
Statements

BLOCK DATA Statements

Table 1-1
FORTRAN-I 0 Statement Categories

Description

Statements in this category identify programs
and indicate their end.

Statements in this category declare the
properties of variables, arrays, and functions.

This statement assigns initial values to variables
and array elements.

Statements in this category cause named
variables and/or array elements to be replaced
by specified (assigned) values.

Statements in this category determine the order
of execution of the object program and
terminate its execution.

Statements in this category transfer data
between internal storage and a specified input
or output medium.

This statement establishes lists that are used
with certain input/output statements to
transfer data which appears in a special type of
record.

Statements in this category identify, open and
close files and establish parameters for input
and output operations between files and the
processor.

This statement is used with certain
input/output statements to specify the form in
which data appears in a FORTRAN record on a
specified input/output medium.

Statements in this category enable the
programmer to control the positioning of
records or files on certain peripheral devices.

Statements in this category enable the
programmer to define functions and
subroutines and their entry points.

Statements in this category are used to declare
data specification subprograms which may
initialize common storage areas.

1-2

Statement Categories

Chapter Reference

5

6

7

8

9

10

11

12

13

14

15

16

CHAPTER 2 Character Set

FORTRAN-I0 extensions to the 1966 ANSI
standard set are printed in boldface italic type.

2.1 CHARACTER SET

CHAPTER 2
CHARACTERS AND LINES

The digits, letters, and symbols recognized by FORTRAN-I a are listed in Table 2-1. The remainder of the
ASCII-1968 character set!, although accepted by FORTRAN-la, is regarded as meaningless, and if used in a
statement will cause an information-only (nonfatal) message to be printed or displayed at the user's terminal during
program compilation. Null characters are ignored completely.

NOTE
Lower case alphabetic characters are treated as upper case
outside the context of Hollerith constants, literal strings, and
comments.

Table 2-t
FORTRAN-tO Character Set

Letters

A,a J,j S,s
B,b K,k T,t
C,c L,l V,u
D,d M,m V,V
E,e N,n W,w
F,f 0,0 X,X
G,g P,p Y,y
H,h Q,q Z,z
I,i R,r

(continued)

11 The complete ASCII-1968 character set is defined in the X3.4-1968 version of the "American National Standard for Information

Interchange," and is given in Appendix A.

Version lA FORTRAN 2-1 January 1974

I

CHAPTER 2

Exclamation Point
" Quotation Marks
Number Sign
$ Dollar Sign
% Percent
& Ampersand

Acute Accent
(Opening Parenthesis
) Closing Parenthesis
* Asterisk
+ Plus
, Comma
- Hyphen (Minus)
. Period (Decimal Point)

Table 2-t (Cont)
FORTRAN-tO Character Set

Digits

o 5
1 6
2 7
3 8
4 9

Symbols

Non-Printing Characters

Line Termination Characters

Line Feed
Form Feed
Vertical Tab

Line Formatting Characters

Carriage Return
Horizontal Tab
Blank

/ Slant (slash)
Colon
Semicolon

< Less Than
= Equals
> Greater Than
? Question Mark
@ Commercial At Sign
[Opening Bracket
\ Reverse Slant
] Closing Bracket

I\. Circumflex
- Underline

Character Set

Note that horizontal tabs normally advance the character position pointer to the next position that is an even
multiple of 8. An exception to this is the initial tab which is defined as a tab that includes or starts in character
position 6. (Refer to Section 2.3.1 for a description of initial and "continuation line types.) Tabs within literal
specifications count as one character even though they may advance the character position pointer as many as eight
places.

Version lA FORTRAN 2-2 January 1974

o

CHAPTER 2

2.2 STATEMENT, DEFINITION, AND FORMAT

Statement LABEL,
CONTINUATION and STATEMENT

Fields and Remarks

Source program statements are divided into physical lines. A line is defined as a string of adjacent character
positions, terminated by the first occurrence of a line termination character regardless of context. Each line is
divided into four fields:

r~--- Line Character Positions --------------------~~

2 3 4 567 8 70 71 72
~-----_Vy------~/~~~-----------vy-----------~

Statement
Label Field

Continuation
Field

2.2.1 Statement Label Field and Statement Numbers

Statement Field

73 . .
'-----v---'

Remarks

A one to five digit number may be placed in the statement label field of an initial line to identify the statement. Any
source program statement that is referenced by another statement must have a statement number. Statement
numbers may be any number from 1 to 99999; leading zeroes and all blanks in the label field are ignored (e.g., the
numbers 00105 and 105 are both accepted as statement number 105). The statement numbers given in a source
program may be assigned in any order; however, each statement number must be unique with respect to all other
statements in the program. Non executable statements, with the exception of FORMAT statements, cannot be
labeled.

When source programs are entered into a DECsystem-lO system via a standard user terminal, an initial tab may be
used to skip all or part of the label field.

If an initial tab is encountered dun"ng compilation, FORTRAN-IO examines the character immediately following the
tab to determine the type of line being entered. If the character following the tab is one of the digits 1 through 9,
FORTRAN-lO considers the line as a continuation line alld the second character after the tab as the first character
of the statement field. If the character following the tab is other t!zan one of the digits 1 through 9, FOR TRAN-l 0
considers the line to be an initial line and the character following the tab is considered to be the first character of the
statement field. The character following the initial tab is considered to be in character position 6 ill a continuation
line, and in character position 7 in an initial line.

2.2.2 Line Continuation Field

Any alphanumeric character (except a blank or a zero) placed in this field (position 6) identifies the line as a
continuation line (see Paragraph 2.3.1 for description).

n Whenever a tab is used to skip all or part of the label field of a continuation, the next character entered must be one
U of the digits 1 through 9 to identify the line as a continuation line.

2.2.3 Statement Field

Any FORTRAN-IO statement may appear in this field. Blanks (spaces) and tabs do not affect compilation of the
statement and may be used freely in this field for appearance purposes, with the exception of textual data given
within either a literal or Hollerith specification where blanks and tabs are significant characters.

2.2.4 Remarks

In lines comprised of 73 or more character positions, only the first 72 characters are interpreted by FORTRAN-IO.
(Note that tabs generally occupy more than one character position.) All other characters in the line (character
positions 73, 74 ... etc.) are treated as remarks and do not affect compilation.

Version IA FORTRAN 2-3 January 1974

LINE TYPES

Initial and Continuation Lines

I Note that remarks may also be added to a line in character positions 7 through 72 provided the text of the remark is
preceded by the symbol! (refer to Paragraph 2.3.3).

2.3 LINE TYPES

A line in a FORTRAN-lO source program can be

a. an initial line

b. a continuation line

c. a multi·statement line

d. a comment line

I e. a debug line

f. a blank line.

Each of the foregoing line types is described in the following paragraphs.

2.3.1 Initial and Continuation Line Types

I A FORTRAN·lO statement may occupy the statement fields of up to 20 consecutive lines. The first line in a
multi-line statement group is referred to as the "initial" line; the succeeding lines are referred to as continuation
lines.

Initial lines may be assigned a statement number and must have either a blank or a zero in their continuation line
field (i.e., character position 6).

If an initial line is entered via a keyboard input device, an initial tab may be used to skip all or part of the /abel field.
An initial tab used for this purpose must be followed immediately by a nonnumeric character (i.e., the first character
of the statement field must be nonnumeric).

Continuation lines cannot be assigned statement numbers; they are identified by any character (except for a blank or
zero) placed in character position 6 of the line (i.e., continuation line field).

If the source program is being entered via a keyboard, an initial tab may be used to skip all or part of the label field
of a continuation line; however, the tab must be followed immediately by a numeric character other than zero. The
tab·numeric combination identifies the line as a continuation line.

Following is an example of a four line FORTRAN-I0 FORMAT statement using initial tabs:

105 FORMAT (lHl,17HINITIAL CHARGE = ,F10.6,10H COULOME,6X,
21.3HRESISTANCE = ,F9 •. 3,6H OHM/I5H CAPACITANCE = ,F10.6,
.3 8H FA RA D, 1 1 X, 1 .3 HI ND UC TA NC E - , F 7 .3 , 8H HE NER Y / / I
421 H TI ME CURRENT/7H MS ,10X.2HMAII/)

t
Continuation Line Characters (Le., 2, 3, and 4)

Version lA FORTRAN 24 January 1974

2.3.2 Multi-Statement Lines

Multi·Statement Comment,

and Remark Lines

More than one FORTRAN-10 statement may be written in the statement field of one line. The niles for structuring
a multi-statement line are:

a. successive statements must be separated by a semicolon (;J

b. only the first statement in the series can have a statement number

c. statements following the first statement cannot be a continuation of the preceding statement

d. the last statement in a line may be continued to the next line if the line is made a continuation line.

An example of a multi-statement is:

450 DIST=RATE * TIME ;TIME=TIME+0.05 ;CALL PRIME(TIME,DIST)

I 2.3.3 Comment Lines and Remarks

lines that contain descriptive text only are referred to as comment lines. Comment lines are commonly used to
identify and introduce a source program, to describe the purpose of a particular set of statements, and to introduce
subprograms.

The rules for structuring a comment line are:

a. One of the characters C (or c), $,/,*, or ! must be in character position 1 of the line to identify it as a
commen t line.

b. The text may be written into character positions 2 through 72 of the line.

c. Comment lines may appear anywhere in the source program, but may not precede a continuation line.

d. A large comment may be written as a sequence of any number of lines. However, each line must carry
the identifying character (C,$,/ ,*, or !) in its first character position.

The following is an example of a comment that occupies more than one line.

CSUBROUTINE - A12
CTHE PURPOSE OF THIS SUBROUTI NC: IS
CTO FOR MA T AND STOR E THE RES UL TS OF
CTEST PROGRA M HEAT T£5T-1101

Comment lines are printed on all listings but are otherwise ignored by the compiler.

Version lA FORTRAN 2·5 January 1974

Debug and Blank Lines

Line-Sequenced Input

I A remark may be added to any statement field, in character positions 7 through 72, provided the symbol! precedes
the text. For example, in the line

IFCN.EQ.0)STOP! STOP IF CARD IS BLANK

the character group "Stop if card is blank" is identified as a remark by the preceding! symbol. Remarks do not
result in the generation of object program code, but they will appear on listings. The symbol !, indicating a remark,
must appear outside the context of a literal specification.

Note that characters appearing in character positions 73 and beyond are automatically treated as remarks, so that
the symbol! need not be used (refer to Paragraph 2.2.4).

2.3.4 Debug Lines

As an aid in program debugging a D (or d) in character position 1 of any line causes the line to be interpreted as a
comment line, i.e., not compiled with the rest of the program unless the / Include switch appears in the command
string. (Refer to Appendix B for a description of the compile switch options.) When the / Include switch is present
in the command string the D (or d) in character position 1 is treated as a blank so that the remainder of the line is
compiled as an ordinary (noncomment) line. Note that the initial and all continuation lines of a debug statement
must contain a D (or d) in character position 1.

2.3.5 Blank Lines

Lines consisting of only blanks, tabs, or no characters may be inserted anywhere in a FORTRAN-l 0 source program
except between an initial and continuation line, or between two continuation lines. Blank lines are used for
formatting purposes only; they cause blank lines to appear in their corresponding positions in object program
listings; otherwise, they are ignored by the compiler.

2.3.6 Line-Sequenced Input

FORTRAN-10 optionally accepts DECsystem-10 line-sequenced files as produced by LINED or BASIC. These
sequence numbers are used in place of the listing line numbers normally generated by FORTRAN-10.

Version lA FORTRAN 2-6 January 1974

CHAPfER3

FORTRAN-tO extensions to the t966 ANSI
standard set are printed in boldface italic type.

Data Types, Constants

CHAPTER 3
DATA TYPES, CONSTANTS, SYMBOLIC NAMES,

VARIABLES, AND ARRAYS

3.1 DATA TYPES

The data types permitted in FORTRAN-I 0 source programs are

a. integer

b. real

c. double precision

d. complex

e. octal

f. double octal

g. literal

h. statement label, and

i. logical.

The use and format of each of the foregoing data types are discussed in the descriptions of the constant having the
same data type (paragraphs 3.2.1 through 3.2.8).

3.2 CONSTANTS

Constants are quantities that do not change value during the execution of the object program.

The constants permitted in FORTRAN-I 0 are listed in Table 3-1.

3-1 January 1974

CHAPTER 3

Category

Table 3-1
Constants

Constant(s) Types

INTEGER and REAL Constants

Numeric
Truth Values
Literal Data
Statement Label

Integer, real, double precision, complex, and octal
Logical
Literal
Address of FOR TRAN statement label

3.2.1 Integer Constants

An integer constant is a string of from one to eleven digits which represents a whole decimal number (i.e., a number
without a fractional part). Integer constants must be within the range of - 235 to +235 _1 (i.e., -34359738368 to
+34359738367). Positive integer constants may optionally be signed; negative integer constants must be signed.
Decimal points, commas, or other symbols are not permitted in integer constants (except for a preceding sign, + or
-). Examples of valid integer constants are:

345
+345
-345

Examples of invalid integer constants are:

(use of decimal poin t)
(use of comma)

+345.
3,450
34.5 (use of decimal point; not a whole number)

3.2.2 Real Constants

A real constant may have any of the folloWing forms:

a. A basic real constant: a string of decimal digits followed immediately by a decimal point which may
optionally be followed by a fraction (e.g., 1557.00).

b. A basic real constant followed immediately by a decimal integer exponent written in E notation (i.e.,
exponential notation) fonn (e.g., 1559.E2).

c. An integer constant (no decimal point) followed by a decimal integer exponent written in E notation
(e.g., 1559E2).

Real constants may be of any size; however, each will be rounded to fit the precision of 27 bits (Le., 7 to 9 decimal
digits).

Precision for real constants is maintained (approximately) to eight digits. 1

1 This is an approximation, the exact precision obtained will depend on the numbers involved.

3-2

I

CHAPTER 3 DOUBLE PRECISION Constants

TIlC cxponent field of a real constant written in E notation form cannot be empty (Le., blank), it must be either a
zero or an integer constant. The magnitude of the exponent must be greater than -38 and equal to or less than +38
(Le., -38 < n ~ 38). The following are examples of valid real constants.

-98.765
7.0E+0
.7E-3
5E+5
50115.
50.EI

(Le., 7.)
(Le., .0007)
(Le., 500000.)

(i.e., 500.)

The following are examples of invalid real constants.

72.6E75
.375E
500

(exponent is too large)
(exponent incorrectly written)
(no decimal point given)

3.2.3 Double Precision Constants

Constants of this type are similar to real constants written in E notation form; the direct differences between these
two constants are:

a. Double preCIsIon constants depending on their magnitude have precision to either 15 to 17 places
(system with a KAI0 Processor) or 16 to 18 places (system with a KIlO Processor), rather than the
8-digit precision obtained for real constants.

b. Each double precision constant occupies two storage locations.

c. The letter D, instead of E, is used in double precision constants to identify a decimal exponent.

Both the letter D and an exponent (even of zero) are required in writing a double precision constant. The exponent
given need only be signed if it is negative; its magnitude must be greater than -38 and equal to or less than +38 (i.e.,
-38 < n ~ +38). The range of magnitude permitted a double precision constant depends on the type of processor
present in the system on which the source program is to be compiled and run. The permitted ranges are:

Processor
KAIO
KIlO

Range
0.14 X 10- 31 to 1.7 X 10+ 31

0.14 X 10- 3 8 to 1.7 X 10+ 38

TIle following are valid examples of double preciSion constants.

7.9D03
7.9D+03
7.9D-3
79D03
79DO

(Le., 7900)
(Le., 7900)
(Le., .0079)
(Le., 79000)
(Le., 79)

The following are invalid examples of double precision constants.

7.9D99
7.9E5

(exponent is too large)
(denotes a single precision constant)

3-3 January 1974

CHAPIER3 COMPLEX and OCTAL Constants

3.2.4 Complex Constants

A complex constant can be represented by an ordered pair of integer, real or octal constants written within
parentheses and separated by a comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are complex
constants.

In a complex constant the first (leftmost) real constant of the pair represents the real part of the number, the second
real constant represents the imaginary part of the number. Both the real and imaginary parts of a complex constant
can be signed.

The real constants that represent the real and imaginary parts of a complex constant occupy two consecutive storage
locations in the object program.

3.2.5 Octal Constants

Octal numbers (radix 8) may be used as constants in arithmetic expressions, logical expressions, and data statements.
Octal numbers up to 12 digits in length are considered standard octal constants; they are stored right-justified in one
processor storage location. When necessary, standard octal constants are padded with leading zeroes to fill their
storage location.

If more than 12 digits are specified in an octal number, it is considered a double octal constant. Double octal
constants occupy two storage locations and may contain up to 24 right-justified octal digits; zeroes are added to fill
any unused digits.

If a single octal constant is to be assigned to a double precision or complex variable, it is stored, right-justified, in the
high order word of the variable. The low order portion of the variable is set to zero.

If a double octal constant is to be assigned to a double precision or complex variable, it is stored right-jllstified
starting in the low order (rightmost) word and precedes leftwards into the high order word.

All octal constants must be

a. preceded by a double quote (") to identify the digits as octal (e.g., "777), and

b. signed if negative but optionally signed if positive.

The following are examples of valid octal constants:

"123456700007
"123456700007
+"12345
-"7777
"-7777

111e following are examples of invalid octal constants:

"12368
7777

(contains a radix digit)
(no identifying double quotes)

When an octal constant is used as an operand in an expression, its form (i.e., bit pattern) is not converted to
accommodate it to the type of any other operand. For example, the subexpression (A+"202 400000000) has as its
result the sum of A with the floating point number 2.0; while the subexpression (1+"202400 000 000) has as its

I result the sum of I with a large integer.

34 January 1974

CHAPTER 3 LOGICAL and LITERAL Constants,

Statement Labels, Symbolic Names

WIlen a double octal constant is combined in an expression with either all integer or real variable, only the contents
of the high order location (leftmost) are used.

3.2.6 Logical Constants

The Boolean values of truth and falsehood are represented in FORTRAN-I 0 source programs as the logical constants
.TRUE. and .FALSE .. Logical constants are always written enclosed by periods as in the preceding sentence.

Logical quantities may be operated on in arithmetic and logical statements. Only the sign bit of a numeric useu as a
logical constant is tested to determine if it is true (sign is negative) or false (sign is positive).

3.2.7 Literal Constants

A literal constant may be either of the following:

a. A string of alphanumeric and/or special characters contained within apostrophes (e.g., 'TEST#S ').

b. A Hollerith literal, which is written as a string of alphanumeric and/or special characters preceded by nH
(e.g., nHstring). In the prefix nH, the letter n represents a number which specifies the exact number of
characters (including blanks) that follow the letter H; the letter H identifies the literal as a Hollerith
literal. The following are examples of Hollerith literals:

2HAB,
14HLOAD TEST #124,
6H#I24-A

NOTE
A tab (~) in a Hollerith literal is counted as one character
(e.g., 3H -.t All).

Literal constants may be entered into DATA statements as a string of

a. up to ten 7-bit ASCII characters for complex or double precision type variables, and

b. up to five 7-bit ASCII characters for all other type variables.

I1le 7-bit ASCII characters which comprise a literal constant are stored left-justified (starting in the high order word
of a 2-word precision or complex literal) with blanks placed in empty character positions.

3.2.8 Statement Labels

Statement labels are numeric identifiers that represent program statement /lumbers.

Statement labels are written as a string of from one to five decimal digits which are preceded by either a dollar sign
($) or an ampersand (&). For example, either $11992 or &11992 may be used as statement labels.

Statement labels may be used in the argument list of CALL statements and subprogram formal statement lists
(Chapter 15).

3.3 SYMBOLIC NAMES

Symbolic names may consist of any alphanumeric combination of from one to six legal FORTRAN-I 0 characters.
More than six characters may be given but FORTRAN-I0 will ignore all but the first six. The first character of a
symbolic name must be an alphabetic character.

3-5

CHAPTER 3

The following are examples of legal symbolic names:

Al 2345
IAMBIC
ABLE

The following are examples of illegal symbolic names:

#AMBIC
lAB

(symbol used as first character)
(number used as first character)

Symbolic Names, Variables

Symbolic names are used to identify specific items ofa FORTRAN-l 0 source program; these items, together with an
example of a symbolic name and text reference for each, are listed in Table 3-2.

Symbolic Names
Can Identify

1. A Variable
2. An Array
3. An Array element
4. Functions
5. Subroutines
6. External
7. COMMON Block Names

3.4 VARIABLES

Table 3-2
Use of Symbolic Names

For Example

PI, CONST, LIMIT
TAX
TAX (NAME,INCOME)
MYFUNC, V ALFUN
CALCSB,SUB2, LOOKUP
SIN, ATAN, COSH
DATAR, COMDAT

For a detailed description
See Paragraph

3.4
3.5
3.5.1

15.2
15.5
15.4
6.5

A variable is a datum (Le., storage location) that is identified by a symbolic name and is not an array or an array
element. Variables specify values which are assigned to them by either arithmetic statements (Chapter 8), DATA
statements (Chapter 7), or at run time via I/O references (Chapter 10). Before a variable is assigned a value, it is
termed an undefined variable and should not be referenced except to assign a value to it.

If an undefined variable is referenced an unknown value (i.e., garbage) will be obtained.

The value assigned a variable may be either a constant or the result of a calculation which is performed during the
execution of the object program. For example, the statement IAB=5 assigns the constant 5 to the variable lAB; in
the statement IAB=5+B, however, the value of lAB at a given time will depend on the value of variable B at the time
the statement was last executed.

The type of a variable is the type of the contents of the datum which it identifies. Variables may be

a. integer

b. real

c. logical

d. dou ble precision, or

e. complex.

3-6

CHAPTER 3 ARRAYS, ARRAY Element Subscripts

TIle type of a variable may be declared using either implicit or explicit type declaration statements (Chapter 6).
However, if type declaration statements are not used, the following convention is assumed by FORTRAN-IO:

a. Variable names which begin with the letters I, J, K, L, M, or N are integer variables.

b. Variable names which begin with any letter other than I, J, K, L, M, or N are real variables.

Examples of determining the type of a variable according to the foregoing convention are given in the following
table.

3.5 ARRAYS

Variable
ITEMP
OTEMP
KAl23
AABLE

Beginning Letter
I
o
K
A

Assumed Data Type
Integer
Real
Integer
Real

An array is an ordered set of data identified by an array name. Array names are symbolic names and must conform
to the rules given in Paragraph 3.3 for writing symbolic names.

Each datum within an array is called an array element. Like variables, array elements may be assigned values; before
an array element is assigned a value it is considered to be undefined and should not be referenced until it has been
assigned a value. If a reference is made to an undefined array element the value of the element will be unknown and
unpredictable (i.e., garbage).

Each element of an array is named by using the array name together with a subscript that describes the position of
the element within the array.

3.5.1 Array Element Subscripts

'The subscript of an array element identifier is given, within parentheses, as either one subscript quantity or a set of
subscript quantities delimited by commas. The parenthesized subscript is written immediately after the array name.
'The general form of an array element name is AN (Sl, S2, ... Sn), where AN is the array name and Sl through Sn
represent n number of subscript quantities. Any number of subscript quantities may be used in an element name;
however, the number used must always equal the number of dimensions (Paragraph 3.5.2) specified for the array.

A subscript can be any compound expression (Chapter 4), for example:

a. Subscript quantities may contain arithmetic expressions that involve addition, subtraction,
multiplication, division, and exponentiation. For example, (A+B,C*5,D/2) and (A **3, (B/4+C) *E,3)
are valid subscripts.

b. Arithmetic expressions used in array subscripts may be of any type but noninteger expressions
(including complex) are converted to integer when the subscript is evaluated.

c. A subscript may contain function references (Chapter 14). For example: TABLE (SIN (A) *B,2, 3) is a
valid array element identifier.

d. Subscripts may contain array element identifiers nested to any level as subscripts. For example, in the
subscript (I(J(K(L))),A+B,C) the first subscript quantity given is a nested 3-level subscript.

3-7

CHAPTER 3 Dimensioning Arrays

The following are examples of valid array element subscripts:

a. lAB (1,5,3)

b. ABLE (A)

c. TABLEI (l0/C+K**2,A,B)

d. MAT(A,AB(2*L),.3*TAB(A,M+I,D),55)

3.5.2 Dimensioning Arrays

The size (Le., number of elements) of an array must be declared in order to enable FORTRAN-IO to reserve the
needed amount of locations in which to store the array. Arrays are stored as a series of sequential storage locations.
Arrays, however, are visualized and referenced as if they were single or multi-dimensional rectilinear matrices,
dimensioned on a row, column, and plane basis. For example, the following figure represents a 3-row, 3-column,
2-plane array.

3 ROWS

,~
~------~------~

~C:J
I(-~

'?"

3 COLUMNS

10-1058

The size (i.e., number of elements) of an array is specified by an array declarator written as a subscripted array
name. In an array declarator, however, each subscript quantity is ,a dimension of the array and must be either an
integer, a variable, or an integer constant.

For example, TABLE (I,J,K) and MATRIX (10,7,3,4) are valid array declarators.

The total number of elements which comprise an array is the product of the dimension quantities given in its array
declarator. For example, the array lAB dimensioned as lAB (2,3,4) has 24 elements (2 X 3 X 4 = 24).

3-8

CHAPTER 3 . Dimensioning Arrays,

Order of Stored Array Elements

Arrays are dimensioned only in the specification statements DIMENSION, COMMON, and type declaration (Chapter
6). Subscripted array names appearing in any of the foregoing statements are array dec1arators; subscrjpted array
names appearing in any other statements are always array element identifiers. In array declarators the position of a
given subscript quantity determines the particular dimension of the array (e.g., row, column, plane) which it
represents. The first three subscript positions specify the number of rows, columns, and planes which comprise the
named array; each following subscript given then specifies a set comprised of n-number (value of the subscript) of
the previously defined sets. For example:

The Dimension Declarator Specifies the Array(s)

TAB (2)

TAB (2,2)

TAB (2,2,2)

TAB (2,2,2,2)

NOTE
FOR TRAN-] 0 permits any number of dimensions in an array
declarator.

3.5.3 Order of Stored Array Elements

The elements of an array are arranged in storage in ascending order, with the value of the first subscript quantity
varying between its maximum and minimum values most rapidly, and the value of the last given subscript quantity
increasing to its maximum value least rapidly. For example, the elements of the array dimensioned as 1(2,3) are
stored in the following order:

1(1,1) ~ 1(2,1) ~I(1,2) ~ (2,2) ~ (1,3) ~ (2,3)

TIle following list describes the order in which the elements of the three-dimensional array (B(3,3,3)) are stored:

B(1,I,1) B (2,1,1) B(3,1,1) -I

1=~~~2~~ ___ B~23~ ___ ~ (3,~~-=-J
L_+B(1,3,1) B(2,3,1) B(3,3,1) -I

1 __ + B (1,1,2) B (2,1,2) B (3,1,2) -,

=+~~~L __ Yi~,2) ___ ~(3,2,~~~
~-+ B (1,3,2) B (2,3,2) B (3,3,2) -I

'--+ B (1,1,3) B (2,1,3) B (3,1,3) - I

1=-: ~ ~2~~ ___ B ~23~ ___ ~ (3,~32 ~ J
L_+ B (1,3,3) B (2,3,3) B (3,3,3)

3-9

CHAPTER 4

FORTRAN-I0 extensions to the 1966 ANSI
standard set are printed in boldface italic type.

4.1 ARITHMETIC EXPRESSIONS

Arithmetic Expressions

and Operators

CHAPTER 4

EXPRESSIONS

Arithmetic expressions may be either simple or compound. Simple arithmetic expressions consist of an operand
which may be

a. a constan t

b. a variable

c. an array element

d. a function reference (see Chapter 14 for description), or

e. an arithmetic or logical expression written within parentheses.

Operands may be of type integer, real, double precision, complex, octal, or literal.

The following are valid examples of simple arithmetic expressions:

105
lAB
TABLE (3, 4, 5)
SIN (X)
(A+B)

(integer constant)
(integer variable)
(array element)
(function reference)
(a parenthesized expression)

A compound arithmetic expression consists of two or more operands combined by arithmetic operators. The
arithmetic operations permitted in FORTRAN-10 and the operator recognized for each are given in Table 4-1.

Table 4-1
Arithmetic Operations and Operators

Operation Operator Example

1. Exponentiation ** or t A**B or AtB
2. Multiplication * A*B
3. Division / AlB
4. Addition + A+B
S. Subtraction A-B

4-1
January 1974

CHAPTER 4

4.1.1 Rules for Writing Arithmetic Expressions

The following rules must be observed in structuring compound arithmetic expressions:

Rules for Arithmetic

Expressions, Logical Expressions

a. The operands comprising a compound arithmetic expression may be of different types. Table 4-2
illustrates all permitted combinations of data types and the type assigned to the result of each.

NOTE
Only one combination of data types, double precision with
complex, is prohibited in FORTRAN-lO.

b. An expression cannot contain two adjacent and unseparated operators. For example, the expression
A * /B is not permitted.

c. All operators must be included, no operation is implied. For example, the expression A(B) does not
specify multiplication although this is implied in standard algebraic notation. The expression A * (B) is
required to obtain a multiplication of the elements.

d. In using exponentiation the base quantity and its exponent may be of different types. For example, the
expression ABC** 13 involves a real base and an integer exponent. The permitted base/exponent type
combination and the type of the result of each combination is given in Table 4-3.

4.2 LOGICAL EXPRESSIONS

Logical expressions may be either simple or compound. Simple logical expressions consist of a logical operand which
may be a logical type

a. constant

b. variable

c. array element

d. function reference (see Chapter 15), or

e. another expression written within parentheses.

Compound logical expressions consist of two or more operands combined by logical operators.

The logical operators permitted by FORTRAN-IO and a description of the operation each provides are given in
Table 4-4.

4-2

Integer

Real

Double
Precision

Complex

Logical

Oclal

Double
Octal

Lileral

For operators
+. -. *./

J. Type of operation
used

2. Type associated
with result

3. Conversion on
Argument I

4. Conversion on

Argument 2

1. Type of operation
used

2. Type associated
with result

3. Conversion on
Argument I

4. Conversion on
Argument 2

I. Type of operation
used

2. Type associated
with result

3. Conversion on
Argument 1

4. Conversion on

Argument 2

I. Type of operation
used

2. Type associated

with result
3. Conversion on

Argument J

4. Como'ersion Od

Argument 2

1. Type of operation
used

2. Type associated

with result
3. Conversion on

Argument I

4. Conversion on

Argument 2

I. Typ~ of operation

used

2. Type associated
with result

3 Conversion on
Argument J

4. Conversion on

Argument 2

I. Type of operation

used
2. Type associated

with result
3. Conversion on

Argument I

4. Conversion on
Argument 2

•. I]i c cf \..'r~lt.~:'l

USl'J

2. Type assocuted
with result

3. Conversion on
Argument I

4. Conversion on
Argument 2

. Integer

1. Integer

2. Integer

3. None

4. None

1. Real

2. Real

3. None

4. From Integer to
. Real

1. Double Precision

2. Double Precision

3. None

4. From Integer to

Double Precision

1. Complex

2. Complex

3. None

4. From Integer to
Complex. Value
used as Real part.

I. Integer

2. Integ,",

3. None

4. None

I. Integer

2. Integer

3. None

4. None

1. Integer

2. Integer

3. High order word
is used directly;

low order word
is ignored.

4. None

i.lr.tei er

2. Integer

3. High order word
is used directly;
furth,", words
arc ignored.

4. None

Real

I. Real

2. Real

3. From Integer to
Real

4. None

I. Real

2. Real

3. None

4. None

I. Double Precision

2. Double Precision

3. None

4. Used directly as
the high order

word; low order
word is zero.

I. Complex

2. Complex

3. None

4. Used directly as

the Real part;
imaginary part

is zero.

I. Real

2. Real

3. None

4. None

1. Real

2. Real

3. None

4. None

1. Real

2. Real

3. High order word
is used directly;

low order word

is ignored.
4. None

1. F..c ... li

2. Real

3. High order word
is used directly;

further words
are ignored.

4. None

Table 4-2
Type of the Resultant Obtained
From Mixed Mode Operations

Type of Argumenl 2

Double
Precision

I Double Precision

2. Double Precision

3. From Integer to
Double Precision

4. None

I. Double Precision

2, Double Precision

3. Used directly as
the high order
word ~ low order
word is zero.

4. None

1. Double Precision

2. Double Precision

3. None

4. None

1. Double Precision

2. Double Precision

3. Used directly as
the high order

word ~ low order
word is zero.

4, None

I. Double Precision

2. Double Precision

3. Used dire:tly as
the high order

word: low order
word is zero.

4. None

1. Double Precision

2. Double Precision

3. None

4. None

2. Double Precision

3. First two words
are used directly;
further words
are ignored.

4. None

Complex

I. Complex

2. Complex

3. From Integer to
Complex. Value
used as Real part

4. None

I. Complex

2. Complex

3. Used duectly as
the Real part:

imaginary part

is zero.
4. None

1. Complex

2. Complex

3. None

4. None

1. Complex

2. Complex

3. Used directly as
the Real part;
imaginary part

is zero.
4 ... None

1. Complex

2. Complex

3. Used directly as
the Real part;

imacinary part
is zeru.

4. None

I. Complex

:1. Complex

3. None

4, None

., Complex

3. First two words
are used directly;
further words

are ignored.

4. None

I. Integer

2. Integer

3. None

4. None

I. Real

2. Real

3. l"one

4. None

1. Dou ble Precision

2. Double Precision

3. None

4. Used directly as
the high order
word; low order
word is zero.

I. Complex

2. Complex

3. None

4. Used directly as
the Real part;
imaginary part
is zero.

I. Integer

2. Octal

3. None

4. None

I. Integer

•. Octal

3. None

4. l"one

I. Integer

2. Octal

3. High order word
is used directly;

low ord er word
is ignored.

4 None

Octal

3. IIigh order word
is used directly;

further words
are ignored,

4 None

Octal

I. Integer

2. Integer

3. None

4. l"one

I. Real

2. Real

3. l"one

4. l"one

I. Double Precision

2. Double Precision

3. None

4. Used directly as
the high order

word; low order
word is zero.

I. Complex

2. Complex

3. None

4. Used directly as

the Real PaIt;
imaginary part

is zero.

1. Integer

2. Octal

3. None

4. None

l. Integer

, Octal

3. None

4. r-:one

I. Integer

2. Octal

3. High order word
is used directly;

low order word
is ignored.

4. None

2. Octal

3. High order word

is used directly:
rurther words

arc ignored.
4. ~on('

Double Octal

I. Inleger

'1. Integer

3. None

4. High order word
is used directly;
low order word
is ignored,

1. Real

•. Real

3. l"one

4. High order word

is used directly;
low order word
is ignored.

I. Double Precision

2. Double Precision

3. None

4. None

I. Complex

2. Complex

3. None

4. None

I. Integer

2. Octal

3. None

4. High order word

is used directly;
low order word
is ignored.

I. Integer

2. Octal

3. None

4. High order word
is used directly;
low order word

is ignored.

I. Integer

2. Octal

3. High order word
is used directly;

low order word
is ignored.

4. lfigh order word
is used directly;
low order word
is ignored.

2. Octal

3. High order word

is used directly;
rurther words

are ignored.
4 High order word

is used directly;
low order word

is ignored.

Literal

1. Integer

2. Integer

3. None

4. High order word
is used directly;

further words
are ignored.

I. Real

2. Real

3. None

4. High order,word
is used directly;

further words
are ignored.

I. Double Precision

2. Double Precision

3, None

4. First two words
are used directly;
further words
are ignored.

I. Complex

2. Complex

3. None

4. First two words
are used directly.
Fwther words
are ignored.

I. Integer

2. Octal

3. None

4. High order word

is used dlIectly;
further words
are ignored.

I. Integ,",

2. Octal

3. None

4. High order word
is used directly;

further words
are ignored.

I. Integer

2. Octal

3. 1I1}'.11 nrJcr \I, mJ
is u~lI dircl.'tly:

Illw order \l.orJ ...

;.He i~llorcJ.

4. High~ ord~r word
is uscd dncdly;
low order word.s
are j~nor('(J.

J.1r.tC't,;cr

2. Octal

3. High order word

is used directly;
fwthet words

are ignored.
4. High order word

is used directly;
rwther words

are ignored.

CHAPfER4

Base Operand

Integer
Real
Double Precision
Complex

Operator

.AND.

.OR.

.XOR.

.EQV.

.NOT.

Table 4-3

Base/Exponent Type
Combinations, Logical Operators

Pennitted Base/Exponent Type Combinations

Integer

Integer
Real
Double Precision
Complex

Exponent Operand
Real

Real
Real
Double Precision
Complex

Table 4-4
Logical Operators

Description

Double Precision

Double Precision
Double Precision
Double Precision
(Undefined)

Complex

Complex
Complex

Complex

AND operator. Both of the logical operands combined by this operator must be true
to produce a true result.

Inclusive OR operator. If either or both of the logical operands combined by .OR. are
true, the result will be true.

Exclusive OR operator. If either one but not both of the logical operands combined by
.XOR. is true, the result will be true.

Equivalence operator. If the logical operands being combined by .EQV. are both the
same (i.e., both are true or both are false) the result will be true.

Complementation operator. This operator is used as a prefix that specifies
complementation (Le., inversion) of the item (operand or expression) which it
modifies.

Logical expressions are written in the general form PI .OP. P2 where P is a logical operand and .OP. is any logical
operator but .NOT. The .NOT. operator complements the value of a logical operand and must be written
immediately before the operand which it modifies (e.g., .NOT.P). A truth table illustrating all possible logical
combinations of two logical operands (P and Q) and the resultant of each combination is given in Table 4-5.

When an operand of a logical expression is double precision or complex, only the high order word of the operand is
used in the specified logical opera tion.

The assignment of a .TRUE. or a .FALSE. value to a given operand is based only on the sign of the numeric
representation of the operand.

4-4

CHAPTER 4

Table 4-5
Logical Operations, Truth Table

The result of
the expression: Pis:

.NOT.P True
False

P.AND.Q True
True
False
False

P.OR.Q True
True
False
False

P.XOR.Q True
True
False
False

P.EQV,Q True
True
False
False

Examples

Assume the following variables:

Variable
REAL,RUN
I,J,K
DP,D
L,A,B
CPX,C

When
and Q is:

(Not
Applicable)

True
False
True
False

True
False
True
False

True
False
True
False

True
False
True
False

Type
Real
Integer
Double Precision
Logical
Complex

Examples of valid logical expressions comprised of the foregoing variables are:

L.AND.B
(REAL *1) .XOR. (DP+K)
L.AND. A .OR .. NOT. (I-K)

4-5

Logical Operation Truth Table

Is:

False
True

True
False
False
False

True
True
True
False

False
True
True
False

True
False
False
True

CHAPTER 4 Binary Truth Table,

Relational Expressions

Logical functions are performed bit-wise on the full 36-bit binary processor representation of the operands involved.
The result of a logical operation is found by performing the specified function, simultaneously, for each of the
corresponding bits in each operand. For example, consider the expression A=C.OR.D, where C= "456 and D= "201.
The operation performed by the processor and the result is:

Word Bits
Operand C
Operand D
Result A

o 1
o 0
o 0
o 0

---"·24
---... 0
---... 0
---•• 0

25
o
o
o

26 27 28
010
001
o 1

29 30
o 1
o 0
o 1

31 32 33 34
o 1 1
o 0 0 0
011

35
o

Table 4-6 is a truth table that illustrates all possible logical combinations of two one-bit binary operands (P and Q)
and give~ the result of each combination.

Table 4-6
Binary Logical Operations, Truth Table

The result of When Is:
the expression: Pis: And Q is:

.NOT.P 1 - 0
0 - 1

P.AND.Q 1 1 1
1 0 0
0 1 0
0 0 0

P.ORQ 1 1 1
1 0 1
0 1 1
0 0 0

P.XOR.Q 1 1 0
1 0 1
0 1 1
0 0 0

P.EQV,Q 1 1 1
1 0 0
0 1 0
0 0 1

4.2.1 Relational Expressions

Relational expressions are comprised of two expressions combined by a relational operator. The relational operator
permits the programmer to test, quantitatively, the relationship between two arithmetic expressions.

The result of a relational expression is always a logically true or false value.

4-6

CHAPTER 4 Relational Operators

In FORTRAN-l 0, relational operators may be written either as a two-letter mnemonic enclosed within periods (e.g.,
.GT.) or symbolically using the symbols >, <, = and #. Table 4-7 lists both the mnemonic and symbolic forms of the
FORTRAN-l 0 relational operators and specifies the type of quantitative test performed by each operator.

Table 4-7
Relational Operators and Operations

Operators Relation Tested
Mnemonic Symbolic

.GT. > Greater than

.GE. >= Greater than or equal to

. LT. < Less than

.LE. <= Less than or equal to

.EQ. -- Equal to

.NE. # Not equal to

Relational expressions are written in the general form Al .OP. A2 , where A represents an arithmetic operand and
.OP. is a relational operator.

Arithmetic operands of type integer, real, and double precision may be mixed in relational expressions.

Complex operands may be compared using only the operators .EQ (= =) and .NE. (#). Complex quantities are equal
if the corresponding parts of both words are equal.

Examples

Assume the following variables:

Variables
REAL, RON
I, J, K
DP,D
L,A,B
CPX,C

Type
Real
Integer
Double Precision
Logical
Complex

Examples of valid relational expressions comprised of the foregoing variables are:

(REAL) .GT. 10
1==5
C .EQ. CPX

Examples of invalid relational expressions comprised of the foregoing variables are:

(REAL) .GT 10 (closing period missing from operator)

C>CPX (complex operands can only be combined by .EQ. and .NE. operators)

4-7

CHAPfER4 Evaluation of Expressions

Examples of valid expressions in which both logical and relational operators are used to combine the foregoing
variables are:

(I .GT. 10) .AND. (J< =K)
((I*RON) = = (I/J)) .OR. K
(I .AND. K) # ((REAL) .OR. (RON))
C #CPX .OR. RON

4.3 EVALUATION OF EXPRESSIONS

The order of computation of a FORTRAN-l 0 expression is determined by

a. the use of parentheses

b. an established hierarchy for the execution of arithmetic, relational, and logical operations and

c. the location of operators within an expression.

4.3.1 Parenthesized SUbexpressions

In an expression all subexpressions written within parentheses are evaluated first. When parenthesized sub expressions
are nested (one contained within another) the most deeply nested subexpression is evaluated first, the next most
deeply nested subexpression is evaluated second and so on, until the value of the final parenthesized expression is
computed. When more than one operator is contained by a parenthesized subexpression, the required computations
are performed according to the hierarchy assigned operators by FORTRAN-lO (paragraph 4.3.2).

Example:

The separate computations performed in evaluating the expression

A+B/((A/B)+C)-C are:

a. A/B =Rl

b. Rl+C =R2

c. B/R2=R3

d. R3-C =R4

e. A+R4=R5

NOTE
Rl through RS represent the interim and final results of the
computations performed.

4.3.2 Hierarchy of Operators

The follOWing hierarchy (i.e., order of execution) is assigned to the classes of FORTRAN-! 0 operators:

first - arithmetic operators
second - relational operators
third -logical operators

4-8

CHAPTER 4 Hierarchy of Arithmetic,

Relational and Logical Operators,
Mixed Mode Expressions

The precedence assigned to the individual operators of the foregoing classes is specified (from highe'st to lowest) in
Table 4-8.

With the exception of integer division and exponentiation, all operations on expressions or sub expressions involving
operators of equal precedence are computed in any order that is algebraically correct.

A sub expression of a given expression may be computed in any order. For example, in the expression (F(X) + A*B)
the function reference may be computed either before or after A*B.

Table 4-8
Hierarchy of FORTRAN-tO Operators

Class Level Symbol or Mnemonic

First **

ARITHMETIC
Second - (unary minus) and + (unary plus)
Third *,/
Fourth +-,

RELATIONAL Fifth .GT., .GE., .LT., .LE., .EQ., .NE.
or >, >=, <. <=, ==, #

Sixth .NOT .

LOGICAL
Seventh . AND.
Eighth .OR.
Ninth .EQV., .XOR.

Operations specifying integer division are evaluated from left to right. For example, the expression I/J*K is
evaluated as if it had been written as (I/J)*K.

When a series of exponentiation operations occurs in an expression, they are evaluated in order from right to left.
For example, the expression A **2**B is evaluated in the following order:

first 2**B = Rl (intermediate result)
second A **Rl = R2 (final result).

4.3.3 Mixed Mode Expressions

Mixed mode expressions are evaluated on a subexpression by subexpression basis with the type of the results
obtained converted and combined with other results or terms according to the conversion procedures described in
Table 4-2.

Example

Assume the following:

Variable

D
X
I,J

Type

Double Precision
Real
Integer

4-9

CHAPTER 4 Mixed Mode Expressions,

Using Logical Operands

The mixed mode expression D+ X* (ljI) is evaluated in the following manner:

a. (ljI) = Rl

b. X*Rl = R2

c. D+R2 = R3

NOTE
RI, R2, and R3 represent the interim and final results of the
computations performed.

Rl is integer

RI is converted to type real and is multiplied by X to produce R2

R2 is converted to type double preciSion and is added to D to produce R3

4.3.4 Use of Logical Operands in Mixed Mode Expressions

When logical operands are used in mixed mode expressions, the value of the logical operand is not converted in any
way to accommodate it to the type of the other operands in the expression. For example, in L *R, where L is type
logical and R is type real, the expression is evaluated without converting L to type real.

4-10

•

CHAPTER 5

FORTRAN-tO extensions to the t966 ANSI
standard set are printed in boldface italic type.

END Statement

CHAPTER 5
COMPILATION CONTROL STATEMENTS

5.1 INTRODUCTION

Compilation control statements are used to identify FORTRAN-IO programs and to specify their termination.
Statements of this type do not affect either the operations performed by the object program or the manner in which
the object program is executed .

5.2 END STATEMENT

This statement is used to signal FORTRAN-IO that the physical end of a source program or subprogram has been
reached. END is a nonexecutable statement. The general form of an END statement is

END

The following rules govern the use of the END statement:

a. This statement must be the last physical statement of a source program or subprogram.

b. When used in a main program, the END statement implies a STOP statement operation; in a subprogram,
END implies a RETURN statement operation.

c. An END statement cannot be labeled.

Version IA FORTRAN 5-1 January 1974

CHAPTER 6

FORTRAN-tO extensions to the t966 ANSI
standard set are printed in boldface italic type.

DIMENSION Statement

CHAPTER 6
SPECIFICATION STATEMENT

6.1 INTRODUCTION

Specification statements are used to specify the type characteristics, storage allocations, and data arrangement.
There are six types of specification statements:

a. DIMENSION

b. Statements which specify, explicitly, type.

c. IMPLICIT

d. COMMON

e. EQUIVALENCE

f. EXTERNAL

Specification statements are nonexecutable and, with the exception of IMPLICIT, may appear anywhere in the
source program. They must, however, precede any executable statement that references variables which they specify.

6.2 DIMENSION STATEMENT

DIMENSION statements provide FORTRAN-l 0 with information needed to identify and allocate the space required
for source program arrays. Any number of subscripted. array names may be specified as array de clara tors in a
DIMENSION statement. The general form of a DIMENSION statement is

DIMENSION SI, S2, ... , Sn

where S is an array declarator. Array declarators are subscripted array names of the following form:

name (min/max,min/max, . . . ,min/max)

where name is the symbolic name of the array and each min/max subscript quantity represents minimum and
maximum values of an array dimension.

6-1 January 1974

CHAPTER 6 DIMENSION Statements,

Specifying Adjustable Dimensions

Each min/max value for an array dimension may be either an integer constant or an integer variable. The value given
the minimum specification for a dimension must not exceed the value given the maximum specification. Minimum
values of 1 with their following slash delimiter may be omitted from a dimension subscript.

Examples

DIMENSION EDGE (-l/l,4/8),NET(S,IO,4),TABLE(S67)
DIMENSION TABLE (IAB/J,K,M,lO/20)

(where lAB, J, K, and M are of type integer).

6.2.1 Adjustable Dimensions

When used within a subprogram, an array declarator may use type integer parameters as dimension subscript
quantities. The following rules govern the use of adjustable dimensions in a subprogram:

a. For single entry subprograms, the array name and each subscript variable must be given by the calling
program when the subprogram is called.

h. For multiple. entry subprograms in which the array name is a parameter, any subscript variables may be
passed. If all subscript variables are not passed, the value of the subscript as passed for a previous entry
will be used.

c. The type of the array dimension variables cannot be altered within the program.

d. If the value of an array dimension variable is altered within the program, the dimensionality of the array
will not be affected.

e. The original size of the array cannot exceed the array dimensions assigned within a subprogram (Le., the
size of an array is not dynamically expandable).

Examples

SUBROUTINE SBR (ARRAY,Ml ,M2,M3,M4)
DIMENSION ARRAY (MI/M2;M3/M4)
DO 27 L=M3,M4
DO 27 K=Ml,M2
ARRAY (K,L)=V ALUE

27 CONTINUE
END

SUBROUTINE SBI (ARRI,M,N)
DIMENSION ARRI(M,N)
ARRI (M,N)=V ALUE
ENTRY SB2(ARRI,M)
ENTRY SB3(ARRI,N)
ENTRY SB4(ARRI)

In the foregoing example, the first call made to the subroutine must be made to SBI. Assuming that the call is made
at SBI with the values M=ll and N=13, any succeeding call to SB2 should give M a new value. If a succeeding call is
made to SB4, the last values passed through entries SUBl, SUB2, or SUB3 will be used for M and N.

6·2

CHAPTER 6

Note that for the calling program of the form:

CALL SBl(A,II,13)
M=15
CALL SB3(A,13)

Type Specification Statements

the value of M used in the dimensionality of the array for the execution of SB3 will be 11 (i.e., the last value
passed).

6.3 TYPE SPECIFICATION STATEMENTS

Type specification statements declare explicitly the data type of variable, array, or function symbolic names. An
array name may be given in a type statement either alone (unsubscripted) to declare the type of all its elements or in
a subscripted form to specify both its type and dimensions.

Type specification statements are written in the following form:

type VI, V2, ... ,Vn

where type may be anyone of the following declarators:

a. INTEGER

b. REAL

c. DOUBLE PRECISION

d. COMPLEX

e. LOGICAL

NOTE
In order to be consistent with the type statements used by
other manufacturers, the following type declarators are also
accepted by FORTRAN-IO:

Declarator
INTEGER *4
REAL *4
REAL *8

Form of Variable Specified
Full word integer
Full word real
Double Precisioll (real)

The type statement list (i.e., VI, V2, ... ,Vn) consists of any number of variable, array, or function names which are
to be declared the specified type. The names listed must be separated by commas; a name may appear in only one
type statement in the same source program.

Examples

INTEGER A, B, TABLE, FUNC
REAL R, M, ARRAY (5/10,10/20,5)

6-3

•

CHAPTER 6 Statements, IMPLICIT Statements

NOTE
Variables, arrays, and functions of a source program, which are
not typed either implicitly or explicitly by a specification
statement, are typed by FORTRAN-tO according to the
following conventions:

a. Variable· names, array names, and function names which
begin with the letters I, J, K, L, M, or N are type integer.

b. Variable names, array names, and function names which
begin with any letter other than I, J, K, L, M, or N are type
real.

6.4 IMPLICIT STATEMENTS

I IMPLICIT statements declare the data type of variables and functions according to the first letter of each variable
name. IMPLICIT statements are written in the following form:

I

IMPLICIT type(Al,A2, . . . ,An),type(Bl,B2, . . . ,Bn), . . . ,type

As shown in the foregoing form statement, an IMPLICIT statement is comprised of one or more type declarators
separated by commas. Each type declarator has the form .

type(Al,A2, . . . ,An)

where type represents a data type name and the parenthesized list represents a list of different letters. The data type
names given can be

a. INTEGER

b. REAL

~ DOUBLE PRECISION

d. COMPLEX or

e. LOGICAL.

Each letter given in a type declarator list specifies that each source program variable (not declared in an explicit type
specification statement) which starts with that letter is assigned the data type named in the declarator. For example,
the IMPLICIT type declarator REAL (R,M,N,O) declares that all names which begin with the letters R, M, N, or 0
are type REAL names, unless declared otherwise in an explicit type statement.

Version 1A FORTRAN

NOTE
Type declarations given in an explicit type specification
override those also given in an IMPLICIT statement. IMPLICIT
declarations do not affect the FORTRAN-JO supplied
functions.

6-4 January 1974

CHAPTER 6 COMMON Statement

A range of letters with ill the alphabet may be specified by writing the first and last letters of the desired range
separated by a dash (e.g., A-E for A,B,C,D,E). For example, the statement IMPLICIT INTEGER (I,L-P) declares
that all variables which begin with the letters I,L,M,O, and P are INTEGER variables.

When used, all IMPLICIT statement must appear before allY other declaration statement in the program or
subprogram in which it appears. IMPLICIT statements may be used more than once, but conflicting type statements
should not be givell.

6.5 COMMON STATEMENT

The COMMON statement enables the user to establish storage which may be shared by two or more programs and/or
subprograms and to name the variables and arrays which are to occupy the common storage. The use of common
storage conserves storage and provides a means to implicitly transfer arguments between a calling program and a
subprogram. COMMON statements are written in the following form:

COMMON/AI/VI,V2, ... ,Vn .. ./An/VI,V2, ... ,Vn

where the enclosed letters / Al /, / A2/, and / An/ represent optional name constructs (referred to as common block
names when used).

The list (i.e., VI,V2 ... , Vn) appearing after each name construct lists the names of the variables and arrays that are
to occupy the common area identified by the construct. The items specified for a common area are ordered within
the storage area as they are listed in the COMMON statement.

COMMON storage area may be either labeled or blank (unlabeled). If the common area is to be labeled, a symbolic
name must be given within slashes immediately before the list of items that are to occupy the names area. For
example, the statement

COMMON/ AREAI/ A,B,C/ AREA2/TAB(I3,3,3)

establishes two labeled common areas (Le., AREAl and AREA2). Common block names bear no relation to internal
variables or arrays which have the same name.

If a common area is to be declared but is to be unlabeled (i.e., blank) either nothing or two sequential slashes (/ /) is
given immediately before the list of items that are to occupy blank common. For example, the statement

COMMON/AREAI/A,B,C//TAB(3,3,3)

establishes one labeled (AREAl) and one unlabeled (Le., blank) common area.

A given labeled common name may appear more than once in the same COMMON statement and in more than one
COMMON statement within the same program or subprogram.

Each labeled common area is treated as a separate, specific storage area. The contents of a labeled common area (Le.,
variables and array) may be assigned initial values by DATA statements in BLOCK DATA subprograms. Any
reference made to a given common area must contain the same number, size, and order of variable and array name as
the referenced area.

Items to be placed in a blank common area may also be given in COMMON statements throughout the source
program.

6-5

CHAPTER 6 Dimensioning Arrays In COMMON,
EQUIVALENCE Statement

During compilation of a source program, FORTRAN-I 0 will string together all items listed for each labeled common
area and for blank common in the order in which they appear in the source program statements. For example, the
series of source program statements

COMMON/STI / A,B,C/ST2/TAB(2,2)/ /C,D,E

COMMON/STI /TST(3,4)/ /M,N

COMMON/ST2/X,Y,Z/ /O,P,Q

have the same effect as the single statement

COMMON/STI/A,B,C,TST(3,4)/ST2/TAB(2,2),X,Y,Z//C,D,E,M,N,O,P,Q

I All items specified for blank common are placed into one area. Items within ?lank c~mmon are ordered as they.are
given throughout the source program. Common block names must be umque WIth respect to all subroutme,
function, and entry point names.

•

The largest common area must be loaded first.

6.5.1 Dimensioning Arrays in COMMON Statements

Subscripted array names may be given in COMMON statements as array dimension declarators. However, variables
cannot be used as subscript quantities in a declarator appearing in a COMMON statement; variable dimensioning is
not permitted in COMMON.

Each array name given in a COMMON statement must be dimensioned either by the COMMON statement or by
another dimensioning statement within the program or subprogram which contains the COMMON statement.

Example

COMMON /A/B(100), C(10,IO)
COMMON X(5,I5),Y(5)

6.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement enables the user to control the allocation of shared storage within a program or
subprogram. This statement causes specific storage locations to be shared by two or more variables of either the
same or different types. The EQUIVALENCE statement is written in the following form:

EQUIVALENCE(VI,V2, ... Vn),(Wl,W2, ... Wn),(XI,X2, ...)

where each parenthesized list contains the names of variables and array elements which are to share the same storage
locations. For example, the statements

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE(1»

specify that the variables named A,B, and C are to share the same storage location and that the variable LOC and
array element SHARE(l) are to share the same location.

Version IA FORTRAN 6·6 January 1974

CHAPTER 6 EQUIVALENCE Statement,

EXTERNAL Statement

The relationship of equivalence is transitive; for example, the two following statements have the same effect:

EQUIVALENCE (A,B) , (B,C)
EQUIVALENCE (A,B,C)

Array elements, when used in EQUIVALENCE statements, must have either as many subscript quantities as
dimensions of the array or only one subscript quantity. In either of the foregoing cases, the subscripts must be

I integer constants. Note that the single subscript case treats the array as a one-dimensional array of the given type.

The items given in an EQUIVALENCE list may appear in both the EQUIVALENCE statement and in a COMMON
statement providing the following rules are observed:

a. No two quantities declared in a COMMON statement can be set equivalent to one another.

b. Quantities placed in a common area by means of an EQUIVALENCE statement are permitted to extend
the end of the common area forwards. For example, the statements

COMMON /R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE (A,Y)

cause the common block R to extend from Z to A(4) arranged as follows:

x
Y A(1)
Z A(2)

A(3)
A(4)

(shared location)
(shared location)

c. EQUIVALENCE statements that cause the start of a common block to be extended backwards are not
allowed. For example, the invalid sequence

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIV ALENCE(X,A(3))

would require A(1) and A(2) to extend the starting location of block R in a backwards direction as
illustrated by the following diagram:

f
A(1)
A(2)

X A(3)
Y A(4)
Z

6.7 EXTERNAL STATEMENT

Any subprogram name to be used as an argument to another subprogram must appear in an EXTERNAL statement
in the calling subprogram. The EXTERNAL statement declares names to be subprogram names to distinguish them
from other variable or array names. The EXTERNAL statement is written in the following form:

EXTERNAL namel,name2, ... ,namen

where each name listed is declared to be a subprogram name.

Version lA FORTRAN 6-7 January 1974

CHAPTER 6 EXTERNAL Statement

If a subprogram is given the same name as a FORTRAN-10 library function, that name must be declared a
subprogram name in an EXTERNAL statement.

The names declared in a program EXTERNAL statement are reserved throughout the compilation of the program
I and cannot be used in any other declarator statement, with the exception of a type statement.

Version 1A FORTRAN 6-8
January 1974

CHAnER 7

FORTRAN-lO extensions to the 1966 ANSI
standard set are printed in boldface italic type.

7.1 INTRODUCTION

DATA Statement

CHAPTER 7
DATA STATEMENT

DATA statements are used to supply the initial values of variables, arrays, array elements, and labeled common!
DATA statements are written in the following form:

DATA List I/Data 1/,List 2/Data 2/, ... ,List n/Data n/

where the List portion of each List/Data/ pair identifies a set of items to be initialized and the /Data/ portion
contains the list of values to be assigned the items in the List. For example, the statement

DATA IA/5/,IB/l 0/,IC/15/

initializes variable IA as the value 5, variable IB as the value 10 and the variable Ie as the value 15. The number of
storage locations specified in the list of variables must be less than or equal to the number of storage locations
specified in its associated list of values. If the list of variables is larger (specifies more storage locations) than its
associated value list, an error message is output. When the value list specifies more storage locations than the variable
list the excess values are ignored.

The List portion of each List/Data/ set may contain the names of one or more variables, arrays, array elements, or
labeled common variables. An entire array (unsubscripted array name) or a portion of an array may be specified in a
DATA statement List as an implied DO loop construct (see Paragraph 10.3.4.1 for a description of implied DO
loops). For example, the statement

DATA (NARY (I), I=1,5}/1,2,3,4,5/

initializes the first five elements of array NARY as NARY(J)=1, NARY(2)=2, NARY(3)=3, NARY(4)=4,
NARY(5)=5.

Wilen an implied DO loop is used in a DATA statement, the loop index variable must be of type INTEGER and the
loop Initial, Terminal, and Increment parameters must also be of type INTEGER. In a DATA statement, references
to an array element must be integer expressions in which all terms are either integer constants or indices of
embracing implied DO loops. Integer expressions of the foregoing types cannot include the exponentiation operator.

1 Refer to Paragraph 6.5 for a description of labeled common.

7-1 January 1974

CHAPTER 7 DATA Statement

The /Data/ portion of each List/Data/ set may contain one or more numeric, logical, literal, or octal constants
and/or alphanumeric strings.

Octal constants must be identified as octal by preceding them with a double quote (") symbol (e.g., (777).

Literal data may be specified as either a Hollerith specification (e.g., SHABCDE), or a string enclosed in single
quotes (e.g., 'ABCDE'). Each ASCII datum is stored left-justified and is padded with blanks up to the right boundary
of the variable being initialized.

When the same value is to be assigned to more than one item in List, a repeat specification may be used. The repeat
specification is written as N*D where N is an integer that specifies how many times the value of item D is to be used.
For example, a /Data/ specification of /3 *20/ specifies that the value 20 is to be assigned to the first three items
named in the preceding list. The statement

DATA M,N,L/3*20/

assigns the value 20 to the variables M, N, L.

In instances where the type of the data specified is not the same as that of the variable to which it is assigned.
FORTRAN-10 converts the datum to the type of the variable. The type conversion is performed using the rules
given for type conversion in arithmetic assignments (refer to Chapter 8, Table 8-1). Octal, logical, and literal
constants are not converted.

Sample Statement
DATA PRINT,I,O/,TEST',30,"77/,TAB(30)/30*S)

DATA ((A(I,J),I=I,S),J=1 ,6)/30* 1.0/

DATA ((A(I,J),I=S,1 0),J=6,1 5)/60*2.0/

Use
The first 30 elements of array TAB are
initialized as 5.0.

No conversion required.

No conversion required.

When a literal string is specified which is longer than one variable can hold, the string will be stored left-justified
across as many variables as are needed to hold it. If necessary, the last variable used will be padded with blanks up to
its right boundary.

Example

Assuming that X, Y, and Z are single precision, the statement

DATA X,Y,Z/'ABCDEFGHIJKL'/

will cause

X to be initialized to 'ABC DE'
Y to be initialized to 'FGHIJ'
Z to be initialized to 'KL\?\?\?'

When a literal string is to be stored in double precision and/or complex variables and the specified string is only one
word long, the second word of the variable is padded with blanks.

7-2

CHAPTER 7 DATA Statement

Example

Assuming that the variable C is complex, the statement

DATA C/,ABCDE', 'FGHIJ' I

will cause the first word of C to be initialized to 'ABCDE' and its second word to be initialized to '~~~~~'. The
string 'FGHIJ' is ignored.

7-3

CHAPTERS

FORTRAN-to extensions to the t966 ANSI
standard set are printed in boldface italic type.

Arithmetic Assignment Statements

CHAPTER 8
ASSIGNMENT STATEMENTS

8.1 INTRODUCTION

Assignment statements are used to assign a specific value to one or more program variables. There are three kinds of
assignment statements:

a. Arithmetic assignment statements

b. Logical assignment statements

c. Statement Label assignment (ASSIGN) statements.

8.2 ARITHMETIC ASSIGNMENT STATEMENT

Statements of this type are used to assign specific numeric values to variables and/or array elements. Arithmetic
assignment statements are written in the form

v=e

where v is the name of the variable or array element which is to receive the specified value and e is a simple or
compound arithmetic expression.

In assignment statements the equals symbol (=) does not imply equality as it would in algebraic expressions; it
implies replacement. For example, the expression v=e is correctly interpreted as "the current contents of the
location identified as v are to be replaced by the final value of expression c; the current contents of v are lost."

When the type of the specified variable or array element name differs from that of its assigned value, FORTRAN-l 0
converts the value of the type of its assigned variable or array element. The type conversion operations performed by
FORTRAN-l 0 for each possible combination of variable and value types are described in Table 8-1.

8-1 January 1974

CHAPTERS Mixed Mode Conversion Table

Table 8-1
Rules for Conversion in Mixed Mode Assignments

Expression Type (e) Variable Type (v)
Real Integer Complex Double Precision . Logical

REAL D C R,I

INTEGER C D R,C,I

COMPLEX R C,R D

DOUBLE H C,H,L
PRECISION

LOGICAL D D R,I

OCTAL D D R,I

LITERAL D,H*** C,H*** D**

DOUBLE H H D****
OCTAL*

Legend

D = Direct replacement
C = Conversion between integer and floating-point with rounding
R = Real part only
I = Set imaginary part to 0
H = High order only
L = Set low order part to 0

Notes

H,L. D

H,C,L D

R

D H

H,L D,H

H,C,L D

D** D***

D H

* Octal numbers comprised of from 13 to 24 digits are termed double octal. Double octals require
two storage locations. They are stored right-justified and are padded with zeroes to fill the
locations.

**

Use the first two words of the literal. If the literal is only one word long, the second word is
padded with blanks.

Use the first word of the literal.

**** To convert double octal numbers to complex, the low order octal digits are assumed to be the
imaginary part and the high order digits are assumed to be the real part of the complex value.

8-2

•

CHAPTERS

8.3 LOGICAL ASSIGNMENT STATEMENTS

Logical Assignment Statements,

ASSIGN Statements

This type of assignment statement is used to assign values to variables and array elemen ts of type logical. The logical
assignment statement is written in the form

v=e

where v is one or more variables and/or array element names and e is a logical expression.

Examples

Assuming that the variables L, F, M, and G are of type logical, the following statements are valid:

Sample Statement
L=.TRVE.

F=.NOT.G

M=A>T

L=«I.GT.H).AND.(J < =K))

The contents of L are replaced by logical truth.

The contents of L are replaced by the logical complement of
the contents of G.

If A is greater than T, the contents of M are replaced by logical
truth; if A is less than or equal to T, the contents of Mare
replaced by logical false.

The contents of L is replaced by either the true or false
resultant of the expression.

8.4 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

The ASSIGN statement is used to assign a statement label constant (i.e., a 1- to 5-digit statement number) to a
variable name. The ASSIGN statement is written in the following form

ASSIGN n TO I

where n represents the statement number and I is a variable name. For example, the statement

ASSIGN 2000 TO LABEL

specifies that the variable LABEL represents the statement number 2000.

With the exception of complex and double precision, any type of variable may be used in an ASSIGN statement.

Once a variable has been assigned a statement number, FORTRAN-I0 will consider it a label variable. If a label
variable is used in an arithmetic statement, the result will be unpredictable .

The ASSIGN statement is used in conjunction with assigned GO TO control statements (Chapter 9); it sets up
statement label variables which are then referenced in subsequent GO TO control statements. The following
sequence illustrates the use of the ASSIGN statement:

Version lA FORTRAN 8-3 January 1974

CHAPTERS ASSIGN Statement

555 TAX=(A+B+C)* .05

ASSIGN 555 TO LABEL

GO TO LABEL

8-4

CHAPTER 9

FORTRAN-I0 extensions to the 1966 ANSI
standard set are printed in boldface italic type.

9.1 INTRODUCTION

GO TO Statements

CHAPTER 9
CONTROL STATEMENTS

FORTRAN-I0 object programs are normally executed statement-by-statement in the order in which they were
presented to the compiler. The following source program control statements, however, enable the user to alter the
normal sequence of statement execution:

a. GO TO

b. IF

c. DO

d. CONTINUE

e. STOP

f. PAUSE

9.2 GO TO CONTROL STATEMENTS

There are three kinds of GO TO statements:

a. Unconditional

b. Computed

c. Assigned.

A GO TO control statement causes the statement which it identifies to be executed next, regardless of its position
within the program. Each type of GO TO statement is described in the following paragraphs.

9-1 January 1974

CHAPTER 9

9.2.1 Unconditional GO TO Statements

GO TO statements of this type are written in the form

GOTOn

Unconditional, Computed and

Assigned GO TO Statements

where n is the label (i.e., statement number) of an executable statement (e.g., GO TO 555). When executed, an
unconditional GO TO statement causes control of the program to be transferred to the statement which it specifies.

An unconditional GO TO statement may be positioned anywhere in the source program except as the terminating
statement of a DO loop.

9.2.2 Computed GO TO Statements

GO TO statements of this type are written in the form

GO TO (Nl,N2, ... ,Nk)E

where the parenthesized list is a list of statement numbers and E is an arithmetic expression. Any number of
statement numbers may be included in the list of this type of GO TO statement; however, each number given must
be used as a label within the program or subprogram containing the GO TO statement.

NOTE
A comma may optionally follow the parenthesized list.

The value of the expression E must be reducible to an integer value that is greater than 0 and less than or equal to
the number of statement numbers given in the statement's list. If E does not compute within the foregoing range,
the next statement is executed.

When a computed GO TO statement is executed, the value of its expression (i.e., E) is computed first. The value of E
specifies the position within the given list of statement numbers, of the number which identifies the statement to be
executed next. For example, in the statement sequence

GO TO (20,10, S)K
CALL XRANGE(K)

the variable K acts as a switch causing a transfer to statement 20 ifK=I, to statement 10 if K=2, or to statement 5 if
K=3. The subprogram XRANGE is called if K is less than 1 or greater than 3.

9.2.3 Assigned GO TO Statements

GO TO statements of this type may be written in either of the following forms:

GOTOK
GO TO K, (Ll,L2, ... ,Ln)

where K is a variable name and the parenthesized list of the second form contains a list of statement labels (i.e.,
statement numbers). The statement numbers given must be within the program or subprogram containing the GO
TO statement.

9-2

CHAPTER 9 Arithmetic IF Statements

Assigned GO TO statements of either of the foregoing forms must be logically preceded by an ASSIGN statement
that assigns a statement label to the variable name represented by K. The value of the assigned label variable must be
in the same program unit as the GO TO statement in which it is used. In statements written in the form

GO TO K, (L1,L2, ... ,Ln)

if K is not assigned one of the statement numbers given in the statement's list, then the next sequential statement is
executed.

Examples

GO TO STAT1
GO TO STAT1, (177,207,777)

9.3 IF STATEMENTS

I There are three kinds of IF statements: arithmetic, logical, and logical two-branch.

9.3.1 Arithmetic IF Statements

IF statements of this type are written in the form

IF (E) L1, L2, L3

• where (E) is an expression enclosed within parenthesis and Ll, L2, L3 are the labels (i.e., statement numbers) of
three executable statements.

This type of IF statement causes control of the program to be transferred to one of the given statements, according
to the computed value of the given expressions. If the value of the expression is:

a. less than 0, control is transferred to the statement identified by L1;

b. equal to 0, control is transferred to the statement identified by L2;

c. greater than 0, control is transferred to the statement identified by L3.

All three statement numbers must be given in arithmetic IF statements; the expression given may not compute to a
complex value.

Examples

Sample Statement
IF (ETA) 4,7,12

IF (KAPPA - L(10)) 20, 14, 14

Version 1A FORTRAN

Transfer control to statement 4 if ETA is negative, to
statement 7 if ETA is 0 and to statement 12 if ETA is greater
than O.

Transfer control to statement 20 if KAPPA is less than the
10th element of array L and to statement 14 if KAPPA is
greater than or equal to the 10th element of array L.

9-3 January 1974

CHAPTER 9

9.3.2 Logical IF Statements

Logical and Logical Two-Branch

IF Statements, DO Statements

IF statements of this type are written in the form

IF (E) S

where E is any expression enclosed in parentheses and S is a complete executable statement.

Logical IF statements cause control of the program to be transferred either to the next sequential executable
statement or the statement given in the IF statement (Le., S) according to the computed logical value of the given
expression. If the value of the given logical expression is true (negative), control is given to the executable statement
within the IF statement. If the value of the expression is false (positive or zero), control is transferred to the next
sequential executable program statement.

The statement given in a logical IF statement may be any FORTRAN-I0 executable statement except a DO
statement or another logical IF statement.

Examples

Sample Statement
IF (T.OR.S) X = Y + 1

IF (Z.GT.X(K)) CALL SWITCH (S,Y)

IF (K.EQ.INDEX) GO TO 15

9.3.3 Logical Two-Branch IF Statement~

An arithmetic replacement operation is performed if the
result of IF is true.

A subprogram transfer is performed if the result of IF is

true.

An unconditional transfer is performed if the result of
IF is true.

IF statements of this type are written in the form

IF (E) N1, N2

where E is any expression enclosed in parentheses and N1 and N2 are statement labels defined within the program
unit.

Logical two-branch IF statements cause control of the program to be transferred to either statement N1 or N2
depending on the computed value of the given expression. If the value of the given logical expression is true
(negative), control is transfe"ed to statement N1. If the value of the expression is false (positive or zero), control is
transferred to statement N2.

Note that the statement immediately following the logical two-branch IF must be numbered so that control can later
be transferred to the portion of code that was skipped.

Examples

Sample Statement
IF (LOG1) 10,20

IF (A.LT.B.AND.A.LT.C) 31,32

Version lA FORTRAN

Transfer control to statement 10 if LOG1 is negative;
otherwise transfer control to statement 20.

Transfer control to statement 31 if A is less than both Band
C; transfer control to statement 32 if A is greater than or equal
to either B or C.

94 Janaury 1974

CHAPfER9 DO Statement Parameters, Nested DO's

9.4 DO STATEMENT

DO statements simplify the coding of iterative procedures; they are written in the following form:

where

Indexing Parameters

~:::i7 = Ml'1'~:~=~~:
label Terminal

Index Parameter
Variable

-;-In~i-:-ti-:-al--

Parameter

a. Terminal Statement Label N is the statement number of the last statement of the DO statement range.
The range of a DO statement is defined as the series of statements which follows the DO statement up to
and including its specified terminal statement.

b. Index Variable I is an unsubscripted variable, the value of which is defined at the start of the DO
statement operations. The index variable is available for use throughout each execution of the range of
the DO statement but its value should not be altered within this range. It is also made available for use in
the program when

1. control is transferred outside the range of the DO loop by a GO TO, IF, or RETURN statement
located within the DO range,

2. a CALL is executed from within the DO statement range which uses the index variable as an
argument, and

3. if an Input-Output statement with either or both the options END= or ERR= (Chapter 10)
appear within the DO statement range.

c. Initial Parameter M 1 assigns the index variable, V, its initial value. This parameter may be any variable,
array elemen t, or expression.

d. Terminal Parameter M2 provides the value which determines how many repetitions of the DO statement
range are performed:

e. Increment Parameter M3 specifies the value to be added to the initial parameter (MI) on completion of
each cycle of the DO loop.

An indeXing parameter may be any arithmetic expression which should result in either a positive or negative value.
The values of the indexing parameters are calculated only once, at the start of each DO-loop operation. The number
of times that a DO loop will be executed is specified by the formula:

(M2-MI)/M3+1

Version IA FORTRAN 9-5 January 1974

CHAPTER 9 DO Statement, Nested DO's

Since the count is computed at the start of a DO loop operation, changing the value of the loop index variable
within the loop cannot affect the number of times that the loop is executed. At the start of a DO loop operation,
the index value is set to the value of the initial parameter (Ml) and a count variable (generated by the compiler) is
set to the negative of the calculated count. At the end of each DO loop cycle the value of the increment 'parameter
(M3) is added to the index variable and the count variable is incremented. If the number of specified iterations have
not been performed, another cycle of the loop is initiated.

One execution of a DO loop range is always performed regardless of the initial values of the index variable and the
indexing parameters.

Exit from a DO loop operation on completion of the number of iterations specified by the loop count is referred to
as a normal exit. In a normal exit, control is passed to the first executable statement after the DO loop range
terminal statement and the value of the DO statement index variable is considered undefined.

Exit from a DO loop may also be accomplished by a transfer of control by a statement within the DO loop range to
a statement outside the range of the DO statement (paragraph 9.4.3).

9.4.1 Nested DO Statements

One or more DO statements may be contained (Le., nested) within the range of another DO statement. The
following rules govern the nesting of DO statements.

a. The range of each nested DO statement must be entirely within the range of the containing DO
statement.

Example

Valid

DO 1

~
~

Invalid

DO 1

[g
b. The ranges of nested DO statements cannot overlap.

Example

Valid Invalid

DO 1 DO 1

D02 D02

I

~ D03

9-6

The range of
DO 2 is outside
that of DO 1.

The ranges of
loop DO 2 and
DO 3 overlap.

CHAPTER 9 DO Statement, Extended Range and

Transfer Operations

c. More than one DO loop within a nest of DO loops may end on the same statement. When this occurs,
the tenninal statement is considered to belong to the innennost DO statement that ends on that
statement. The statement label 4 of the shared terminal statement cannot be used in any GO TO or
arithmetic IF statement that occurs anywhere but within the range of the DO statement to which it
belongs.

Example

9.4.2 Extend Range

D04

D04

D04

D04
I

All the DO statements
share the same terminal
statement, however, it
belongs to DO 4.

The extended range of a DO statement is defined as the set of statements that are executed between the transfers
out of the innermost DO statement of a set of nested DO's and the transfer back into the range of this innermost DO
statement. The extended range of a nested DO statement is illustrated as follows:

DO 1

D02

D03

Extended Range

9-7

CHAPTER 9

The following rules govern the use of a DO statement extended range:

DO Statement Transfers,
CONTINUE Statement

a. The transfer out statement for an extended range operation must be contained by the most deeply
nested DO statement that contains the location to which the return transfer is to be made.

b. A transfer into the range of a DO statement is permitted only if the transfer is made from the extended
range of that DO statement.

c. The extended range of a DO statement must not contain another DO statement.

d. The extended range of a DO statement cannot change the index variable or indexing parameters of the
DO statement.

e. The use of and return from a subprogram from within an extended range is permitted.

9.4.3 Permitted Transfer Operations

The transfer of program control from within a DO statement range or the ranges of nested DO statements is
governed by the following rules:

a. A transfer out of the range of any DO loop is permitted at any time. When such a transfer is executed
the value of the controlling DO statement's index variable is defined as the current value.

b. A transfer into the range of a DO statement is permitted if it is made from the extended range of the DO
statement.

c. The use of and return from a subprogram from within the range of any DO loop, nested DO loop, or
extended range is permitted.

The follOWing examples illustrate the transfer operations permitted from within the ranges of nested DO statements.

Valid Transfers

Dl

D2

[~ ,
extended range

~4---" -

Invalid Transfers

Dl

9-8

CHAYfER9 STOP Statement

9.5 CONTINUE STATEMENT

CONTINUE statements may be placed anywhere in the source program without affecting the program sequence of
execution. CONTINUE statements are commonly used as the last statement of a DO statement range in order to
avoid ending with a GO TO, PAUSE, STOP, RETURN, arithmetic IF, another DO statement, or a logical IF
statement containing any of the foregoing statements. This statement is written as

12 CONTINUE

Example

In the following sequence the labeled CONTINUE statement provides a legal termination for the range of the DO
loop.

DO 45 ITEM=I,1000
STOCK=NVNTRY (ITEM)
CALL UPDATE (STOCK, TALLY)
IF (ITEM.EQ.LAST) GO TO 77

45 CONTINUE

77 PRINT 20, HEADNG,P AGE NO

9.6 STOP STATEMENT

When executed, the STOP statement causes the execution of the object program to be terminated and control
returned to the DECsystem-l0 Monitor. A descriptive message may, optionally, be included in the STOP statement
to be output to the user's I/O terminal immediately before program execution is terminated. This statement may be
written as

or

STOP
STOP 'N'

STOPn

I where 'N' is a string of ASCII characters enclosed by single quotes and n is an octal string up to 12 digits. The string
N or the value n is printed at the user's I/O terminal when the STOP statement is executed; it may be of any length,
continuation lines may be used for large messages .

•
Examples

STOP 'Termination of the Program'

or

STOP 7777

Version IA FORTRAN 9-9 January 1974

I

CHAPTER 9 PAUSE Statement, TRACE Option

9.7 PAUSE STATEMENT

When executed, a PAUSE statement causes a suspension of the execution of the object program and gives the user
the option to:

a. Continue execution of the program

b. Exit

c. Initiate a TRACE operation (Paragraph 9.7.1).

The permitted forms of the PAUSE statement are:

a. PAUSE

b. PAUSE 'literal string'

c. PAUSE n, where n is an octal string up to 12 digits.

The execution of a PAUSE statement of any of the foregoing forms causes the standard instruction:

TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

to be printed at the user's terminal. If the form of the PAUSE statement contains either a literal string or an integer
constant, the string or constant is printed on a line preceding the standard message. For example, the statement

PAUSE 'TEST POINT A'

causes the following to be printed at the user's terminal:

TEST POINT A
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

The statement

PAUSE I

causes the following to be printed at the user's terminal:

PAUSE 000001
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

9.7.1 T(TRACE) Option

The entry of the character T in response to the message output by the execution of a PA USE statement starts a
TRACE routine. This routine causes the printing, at the user's terminal, of a complete history of all subroutine calls
made during the execution of the program, up to the execution of the PAUSE statement. The history printed by the
TRACE routine consists of:

a. The names of all subroutines called, arranged in the reverse order of their call;

b. The absolute location (written within parentheses) of the called subroutine;

c. The name of the calling subroutine plus an offset factor and the absolute location (written within
parentheses) of the statement within the routine which initiated the call;

Version IA FORTRAN 9-10 January 1974

CHAPTER 9 PAUSE Statement, TRACE Option

d. The number of arguments involved (written within allgle brackets),·

e. An alphabetic code (written within square brackets) that specifies the type of each argument involved.
The alphabetic codes used and the meanillg of each are:

Example

Code Character
U
L
I
F
o
S
D
C
K

Type Specified
Undefined type,· the use of the argument will determine its type.
Logical
INTEGER
Single precision REAL
Octal
Statement Number
Double precision REAL
COMPLEX
A literal or constant

The following printout illustrates the execution of the PAUSE statement "PAUSE 'TEST POINT A"', the entry of a
T character to initiate the TRACE routine, the resulting trace printout, and the entry of the character G to cOlltinue
the execution of the program.

TEST POINT A
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE.
*T

NAME (LOC) «--- CALLER (LOC) <HARGS> (AR fa TY PES 1
TRACE. (411653) «--- MAIN.+612(1032) <#1> [U]
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE.
*~

In addition to its use with the PAUSE statement, the TRACE routine may be called directly, using the form

CALL TRACE

or as a function, using the form

X=TRACE(x)

Execution of the foregoing statements starts the TRACE routine which causes the prillting of the history of all
subprogram calls made during the execution of the program, up to the execution of the CALL statement, or up to
the execution of the function, respectively. The history printed by the TRACE routine under these circumstances is
exactly the same as described in the preceding paragraph.

Version 1A FORTRAN 9-11 January 1974

CHAPTER 10

FORTRAN-I0 extensions to the 1966 ANSI
standard set are printed in boldface italic type.

10.1 DA TA TRANSFER OPERATIONS

Data Transfer Operations and Modes

CHAPTER 10

1/0 STATEMENTS

FORTRAN-10 I/O statements permit data to be transferred between processor storage (core) and peripheral devices
and/or between storage locations. Data in the form of logical records may be transferred using an a) sequential, b)
random access, or c) append transfer mode. The areas in core from which data is to be taken during output (write)
operations and into which data is stored during input (read) operations are specified by

a. a list in the I/O statement which initiated the transfer

b. a list defined by a NAMELIST statement, or

c. between a specified FORMAT statement and the external medium.

The type and arrangement of transferred data may be specified by format specifications located in either a
FORMAT statement or an array (formatted I/O) or by the contents of an I/O list (i.e., list-directed I/O).

The transfer modes, I/O lists, type conversion and arrangement of data, and the statements required to initiate I/O
transfer operations are described in the following paragraphs.

10.2 TRANSFER MODES·

The characteristics and requirements of the a) sequential, b) random access, and c) append data modes are described
in the following paragraphs.

10.2.1 Sequential Mode

Records are transferred during a sequential mode of operation in the same order as they appear in the external data
file. Each I/O statement executed in a sequential mode transfers the record immediately following the last record
transferred from the accessed source file.

10.2.2 Random Access Mode

This mode permits records to be accessed and transferred from a file in any desired order. Random access transfers,
however, may be made only to (or from) a device that permits random-type data addressing operations (i.e., disk)
and to files that have previously been set up for random access transfer operation. Files for random access must
contain a specified number of identically sized records that may be accessed, individually, by a record number.

10-1 January 1974

CHAPTER 10 Append Mode, I/O Statements

Form and Components

The FORTRAN-10 OPEN statement or a subroutine call to DEFINE FILE may be used to set up random access
files.

The OPEN statement is used to establish a random access mode to permit the execution of random access data
transfer operations. The OPEN statement should logically precede the first I/O statement for the specified lOGical
unit in the user source program.

10.2.3 Append Mode

This mode is a special version of the sequential transfer mode: it may be used only for sequential output (write)
operations. The append mode permits the user to write a record immediately after the last logical record of the
accessed file. During an append transfer, the records already in the accessed file remain unchanged, the only function
performed is the appending of the transferred records to the end of the file.

An OPEN statement (Chapter 12) must be used to establish an append mode before append I/O operations can be
executed.

10.3 I/O STATEMENTS, BASIC FORMATS AND COMPONENTS

The majority of the I/O statements described in this chapter are written in one of the follo~ing basic forms, or in
some modification of these forms:

where

Keyword

u

f

list

#R

*

N

Basic Statement Forms
Keyword (u,f)1ist
Keyword (u#R,f)list
Keyword (u, *)list
Keyword (u,N)
Keyword (u)list
Keyword (u#R)list

Use
Formatted I/O Transfer
Random Access Formatted I/O Transfer
List-Directed I/O Transfer
NAMELIST-Controlled I/O Transfer
Binary I/O Transfer
Random Access Binary I/O Transfer

the statement name (i.e., READ or WRITE)

FORTRAN-l 0 logical unit number

FORMAT statement number or the name of an array that contains the desired format
specifications

I/O list

the delimiter # followed by the number of a record in an established random-access file

= symbol specifying a list-directed I/O transfer.

= the name of an I/O list defined by a NAMELIST statement.

Details of the foregoing statement components are given in the follOWing paragraphs.

10-2

CHAPTER 10

10.3.1 I/O Statement Keywords

I/O Statements Key Word, Logical

Unit Numbers and FORMAT References

The keywords (Le., names) of the FORTRAN-lO I/O statements described in this chapter are:

a. READ

b. REREAD

c. WRITE

d. ACCEPT

e. PRINT

f. PUNCH

g. TYPE

h. FIND

i. ENCODE

j. DECODE

10.3.2 FORTRAN-lO Logical Unit Numbers

The physical devices used for most FORTRAN-IO I/O operations are identified by decimal numbers. During
compilation, the compiler assigns default logical unit numbers for the REREAD, READ, ACCEPT, PRINT, PUNCH,
and TYPE statements. Default unit numbers are negatively signed decimal numbers that are inaccessible to the user.

The logical device assignments may be made by the user at run time (FORTRAN-IO User's Guide,
DEC-lO-LFUGA-A-D) or the standard assignments contained by the FORTRAN-IO Object Time System (FOROTS)
may be used. The standard logical device assignments are listed in Table 10-1. It is recommended that the user
specify the device explicitly in the OPEN statement.

10.3.3 FORMAT Statement References

A FORMAT statement contains a set of format specifications which define the structure of a record and the form of
the data fields which comprise the record. Format speCifications may also be stored in an array rather than in a
FORMAT statement. (Refer to Chapter 13 for a complete description of the FORMAT statement.)

The execution of an I/O statement that includes either a FORMAT statement number or the name of an array which
contains format specifications causes the structure and data of the transferred record to assume the form specified in
the referenced statement or array. Records transferred under the control of a format specification are referred to as
"formatted" records. Conversely, records transferred by I/O statements that do not reference a format specification
are referred to as "unformatted" records. During unformatted transfers, data is transferred on a one-to-one
correspondence between internal (processor) and external (device) locations, with no conversion or formatting
operations.

Unformatted files are binary files divided into records by FORTRAN-l 0 embedded control words; the control words
are invisible to the user. Files of this type cannot be prepared by the user without utilizing FOROTS. Unformatted
files are intended to be used only within the FORTRAN-l 0 environment.

10-3

CHAPTER 10 Table of Logical Device Assignments

Table 10-1
FORTRAN-I0 Logical Device Assignments

Device/Function Default Filename FORTRAN Logical Unit Number Use

Standard Devices *

o , ______ FORxx.DAT -______ -.... 00

DSK ..---- .01
CDR 02
UT ~

'" CTY 04
ITY ~

pm w
PTP 07
DIS 08
DTAI 09
DTA2 10
DTA3 11
DTA4 12
DTA5 13
DTA6 14
DU7 n
MTAO 16
MTAI 17
MTA2 18
FORTR 19
DSK 20
DSK 21
DSK 22
DSK 23
DSK 24
DE VI 25
DEV2 26
DEV3 27
DEV4 28
DEV5 29

~.

DEV63 FOR6 .DAT

+ - t
Default Devices (inaccessible to the user)

REREAD
CDR
TTY
LPT
PTP
TTY

Current file
CDR.DAT
TTY.DAT
LPT.DAT
FORPTP.DAT
FORTTY.DAT

+ 63

!
-6
-5
-4
-3
-2
-1

*The total number of standard devices permitted is on installation parameter.

104

ILLEGAL
DISK
Card Reader
Line Printer
Console Teletype
User's Teletype
Paper Tape Reader
Paper Tape Punch
Display
DECtape

I
DECtape
Magnetic Tape

~
Assignable Device
DISK

I
Assignable Devices

DISK

!
REREAD statement
READ statement
ACCEPT statement
PRINT statement
PUNCH statement
TYPE statement

CHAPTER 10 I/O Lists, Implied DO Constructs

10.3.4 I/O List

An I/O list specifies the names of variables, arrays, and array elements to which input data is to be assigned or from
which data is to be output. Implied DO constructs (paragraph 10.3.4.1), which specify specific sets of array
elements, may also be included in I/O lists. The number of items in a statement's list determines the amount of data
to be transferred during each execution of the statement.

10.3.4.1 Implied DO Constructs - When an array name is given in an I/O list all elements of the array are
transferred in the order described in Chapter 3 (paragraph 3.5.3). If only a specific set of array elements is involved,
they may be specified in the I/O list either individually or in the form of an implied DO construct.

Implied DO's are written within parentheses in a format similar to that of DO statements. They may contain one or
more variable, array, and/or array element names, delimited by commas and followed by indexing parameters that
are defined as for DO statements.

The general form of an implied DO is

where

(name(SL),I=Ml,M2,M3)

name = an array name

SL the subscript list of an array name or an array element identifier

Ml,M2,M3

the index control variable that represents a subscript appearing in a preceding subscript
list

the indexing parameters that specify, respectively, the initial, terminal, and increment
values that control the range of I. If M3 is omitted (with its preceding comma), a value
of 1 is assumed.

Examples

(A(S),S=I,5) Specifies the first five elements of the one-dimension array A (Le., A(1),
A(2), A(3), A(4), A(5)).

(A(2,S),S=I, 1 0,2) Specifies the elements A(2,1), A(2,3), A(2,5), A(2,7), A(2,9) of array A.

As stated previously, implied DO constructs may also contain one or more variable names.

Example

I, J, B, and C must be integer variables.

(A(B,C),B=1,10,C=1,10),I,J Specifies a lOX 10 set of elements of array A, the location identified
by I and the location identified by J.

Implied DO constructs may also be nested. Nested implied DO's may share one or more sets of indexing parameters.

Example

((A(J ,K),J= 1,5),D(K),K=I,1 0) Specifies a 5 X 10 set of elements of array A and the first 10
elements of array D.

10-5

CHAPTER 10 Records For Random Access,

List-Directed I/O

When an array or set of array elements are specified as either a storage or transmitting area for I/O purposes, the
array elements involved are accessed in ascending order with the value of the first subscript quantity varying most
rapidly and the value of the last given subscript increasing to its maximum value least rapidly. For example, the
elements of an array dimensional as TAB(2,3) are accessed in the order:

fAB(1,!)
TAB(2,l)
TAB(1,2)
TAB(2,2)
TAB(1,3)
TAB(2,3)

10.3.5 The Specification of Records for Random Access

Records to be transferred in a random access mode must be identified in an I/O statement by an integer expression
or variable preceded by a ' delimiter (e.g., '101).

10.3.6 List-Directed I/O

NOTE
A pound sign (#) may be used in place of the' delimiter (e.g.,
both #101 and '101 are accepted by FORTRAN-10).

The use of an asterisk in an I/O statement in place of a FORMAT statement number causes the specified transfer
operation to be "list-directed." In a Iist-directed transfer, the data to be transferred and the type of each transferred
datum are specified by the contents of an I/O list included in the I/O command used. The transfer of data in this
mode is performed without regard for column, card, or line boundaries. The list-directed mode is specified by the
substitution of an asterisk (*) for the FORMAT statement reference (i.e., f) of an I/O statement. The general form
of a list-directed I/O statement is

keyword (u, *)list

Example

READ (5,*)IJAB,M,L

List-directed transfers may be used to input data from any acceptable input device including an input keyboard
terminal.

NOTE
Device positioning commands, such as BACKSPACE, SKIP
RECORD, etc., should not be used in conjunction with
list-directed I/O operations. If such a combination is used, the
results will be unpredictable.

Data for list-directed transfers should consist of alternate constants and delimiters. The constants used should have
the following characteristics:

a. Input constants must be of a type acceptable to FORTRAN-10. Octal constants, although acceptable,
are not permitted in list-directed I/O operations.

b. Literal constants must be enclosed within single quotes (e.g., 'ABLE').

10-6

CHAPTER 10 List-Directed I/O

c. Blanks serve as delimiters,' therefore, they are not permitted in any but literal constants.

d. Decimal points may be omitted from real constants which do not have a fractional part. FORTRAN-10
assumes that the decimal point follows the right-most digit of a real constant.

Delimiters in data for list-directed input must comply with the following:

a. Delimiters may be either commas or blanks.

b. Delimiters may be either preceded by or followed by any number of blanks, carriage return/line feed
characters, tabs, or line terminators; any such combination is considered by FORTRAN-10 as being only
a single delimiter.

c. A null, the complete absence of a datum, is represented by two consecutive commas which have no
intervening constant(s). Any number of blanks, tabs, carriage return/line feed characters, or end-of-input
conditions may be placed between the commas of a null. Each time a null item is specified in the input
data, its corresponding list element is skipped (i.e., unchanged). The following illustrates the effect of a
null input: '

INPUT Items

Corresponding
I/O List Items

Resulting
Contents of
List Items

101, 'A', tab, 'NOI',

+ ,+ V
A , LIT,JAB,NUMBER

+ ~ ~ ~
101. A un- NO}

changed
lAB

d. Slashes (/) cause the current input operation· to be terminated even if all the items of the directing list
are not filled. The contents of items of the directing I/O list which either are skipped (by null inputs) or
have not received an input datum before the transfer is terminated remain unchanged. Once the I/O list
of the controlling I/O statement is satisfied, the use of the / delimiter is optional.

e. Once the I/O list has been satisfied (transfers have been made to each item of the list) any items
remaining in the input record are skipped.

Constants or nulls in data for list-directed input may be assigned a repetition factor to cause an item to be repeated.

Vze repetition of a constant is written as

r*K

where r is an integer constant that specifies the number of times the constant represented by K is to be repeated.

The repetition of a null is written as an integer followed by an asterisk.

Examples

}0*5
3*'ABLE'
3*

represents 5,5,5,5,5,5,5,5,5,5
represents 'ABLE', 'ABLE', 'ABLE'
represents null,null,null

10-7

CHAPTER 10 NAMELIST I/O

10.3.7 NAMELIST I/O Lists

One or more lists may be defined by a NAMELIST statement (Chapter 11). Each I/O list defined in a NAMELIST
statement is identified by a unique (within the routine) 1 to 6 character name that may be referenced by one or
more READ or WRITE statements. The first character of each I/O list name must be alphabetic. Referencing a
NAMELIST-defined I/O list enables any of the foregoing statements to be written without an 1/0 list and permits
the same list to be used by more than one statement.

I/O statements which reference a NAMELIST-defined I/O list cannot contain either a FORMAT statement reference
or an I/O list. NAMELIST-controlled I/O operation cannot be used to transfer octal numbers or literal strings.

Records for NAMELIST-controlled input operations must be formatted in the following manner:

$NAME Dl,D2,D3 . . . Dn$

where

a. $ symbols delimit the beginning and end of the record. The first $ must be in column 2 of the input
record,· column 1 must be blank.

b. NAME is the name of a NAMELIST-defined input list. The named list identifies the processor storage
locations that are to receive the data items read from the accessed record.

c. Dl through Dn are values of the items of data contained by the record; these items cannot be octal
numbers or literal strings.

Only NAMELIST-controlled READ statements may be used to input records formatted in the foregoing manner.

NAMELIST-controlled WRITE statements will output records in the foregoing format.

NOTE
Device positioning commands such as BACKSPACE, SKIP
RECORD, etc., should not be used in conjunction with
NAMELIST-controlled I/O operations. If such a combination
is used, the results will be unpredictable.

lOA OPTIONAL READ/WRITE ERROR EXIT AND END-OF-FILE ARGUMENTS

Either or both an error exit or an end-of-file argument may, optionally, be added to the parenthesized portion of
most forms of the READ and WRITE I/O statements.

The error exit argument is written as ERR=c where c is a statement number. The use of this argument causes the
current I/O operation to be terminated and program control transferred to the statement identified by the argument
if a device error is detected. For example, the detection of an error during the execution of

READ(lO,77,ERR=101)TABLE,I,M,J

terminates the input operation and transfers program control to statement 101.

10-8

CHAPTER 10 Sequential Formatted

READ Statements

17ze end-of-file argument is written as END=d where d is a statement number. The use of this argument causes the
current I/O operation to be terminated and program control to be transferred to the statement identified by the
argument when an end-of-file condition is detected. For example, the detection of an end-of-file condition during
the execution of

READ(J0,77,END=50)TABLE,J,M,J

transfers program control to statement 50.

If the END= argument is not present and an end of file (EOF) condition is detected, the file is closed, program
execution is terminated, and control is returned to the monitor.

10.5 READ STATEMENTS

READ statements transfer data from peripheral devices into specified processor storage locations. The pennitted
forms of this type of input statement permit READ statements to be used on both sequential and random access
transfer modes for formatted, unformatted, list-directed, and NAMELIST-controlled data transfers.

10.5.1 Sequential Formatted READ Transfers

Descriptions of the READ statements that may be used for the sequential transfer of formatted data follow:

a.

b.

c.

Form:

Use:

Example:

Form:

Use:

Example:

Form:

READ (u,f)list

Input data from logical unit u, formatted according to the specifications given in f, into
the processor storage locations identified in input list.

READ (I 0,555)TABLE(I 0,20),ABLE,BAKER,CHARL

READ (u,f)

Input the data from logical unit u directly into either a Hollerith (H) field descriptor or a
literal field descriptor given within the format specifications of the referenced FORMAT
statement. If the referenced FORMAT statement does not contain either of the foregoing
types of format field descriptors, the input record is skipped. If a required field descriptor
is present, its contents are replaced by the input data.

READ(I 5, 101)

READf

Use: Input the data from the READ default device (card reader) directly into either a Hollerith
(H) field descriptor or a literal field descriptor given within the format specifications of
the referenced FORMAT statement. If the referenced FORMAT statement does not
contain either of the foregoing types of format field descriptors, the input record is
skipped. If a required field descriptor is present, its contents are replaced by the input
data.

Example: READ 66

10-9

CHAPTER 10 Sequential Binary and
List-Directed READ Statements

d. Form: READ f, list

Use: Input the data from the READ default device (card reader) into the processor storage
locations identified in the input list. The input data is formatted according to the
specifications given in f.

Example: READ 15, ARRAY (20,30)

10.5.2 Sequential Unformatted Binary READ Transfers

Only the following form of the READ statement may be used for the sequential transfer of unformatted input
FORTRAN binary data:

Form:

Use:

Example:

READ (u,)list

Input one logical record of data from logical unit u into processor storage as the value of
the location identified in list. Only binary files that have been output by a FORTRAN-10
unformatted WRITE statement may be read by this type of READ statement.

NOTE
If the form READ (u) is used, it will cause one unformatted
input record to be skipped. .

READ (10) BINFIL (10,20,30)

10.5.3 Sequential List-Directed READ Transfers

V,e following forms of the READ statements may be used to control a sequential, list-directed input transfer:

a. Form:

Use:

Example:

b. Form:

Use:

Example:

READ (u, *)list

Input data from logical device u into processor storage or the value of the locations
identified in list. Each input datum is converted, if necessary, to the type of its assigned
list variable.

READ (10, *) IARY (20,20), A,B,M

READ *, list

Input the data from the READ default device (card reader, CDR) into the processor
storage locations identified in the input list. Each input datum is converted, ifnecessary,
to the type of its assigned list variable.

READ *, ABEL(lO,20),I,J,K

10-10

CHAPTER 10 NAME LIST -Controlled and

Random Access READ Statements

10.5.4 Sequential NAMELIST-Controlled READ Transfers

Only the following form of the READ statement may be used to initiate a sequential NAMELIST-controlled input
transfer:

Form:

Use:

READ (u,n)

Input data from logical unit u into processor storage as the value of the location
identified by t/~e NAMELIST input list specified by the name n. The input data is
converted to the type of assigned variable if type conflicts occur. Only input files that
contain records formatted and identified for NAMEL1ST operations (Paragraph 10.3.7)
may be read by READ statements of this form.

10.5.5 Random Access Formatted READ Transfers

Only the following form of the READ statement may be used to initiate a random access formatted input transfer:

Form:

Use:

READ (u#R,f)list

Input data from record R of logical unit u. Format each input datum according to the
format specifications of f and place into processor storage as values of the locations
identified in list. Only disk files that have been set up by either an OPEN or DEFINE
FILE statement may be accessed by a READ statement of this form.

10.5.6 Random Access Unformatted READ Transfers

Only the following form of the READ statement may be used to initiate a random-access unformatted input
transfer:

Form:

Use:

Example:

READ (u#R)list

Input data from record R of logical unit u. Place the input data into processor storage as
the value of the locatiolls identified in list. Only binary files that have beell output by all
unformatted random-access WRITE statement may be accessed by a READ statement of
this form.

READ (01#20) BINF1L

Read record number 20 into array BINFIL.

NOTE
If the form READ (u#R) is used, it will calise one logical input
record to be skipped.

10.6 SUMMARY OF READ STATEMENTS

The various forms of the READ statements are summarized in Table 10-2.

10-11

CHAPTER 10

Type of Transfer

Formatted

Unformatted

List-Directed

NAMELIST

Table 10-2
Summary of Read Statements

Summary Of READ Statements

and REREAD Statement

Transfer Mode
Sequential Random Access

READ (u,t)list
READ (u,t)
READ f,list
READf

READ (u)list
READ (u)

READ (u, *)list
READ * list

READ (u,N)

READ (u#R,t)list

READ (u#R)list
READ (u#R)

Note: The ERR=c and END=d arguments may be included in any
of the above READ statements. When included, the
foregoing arguments must be last, e.g., READ
(I 0,20,END=1 01 ,ERR=500) ARRAY (50,100).

10.7 REREADSTATEMENT

The REREAD statement causes the last record read from the last active input device to again be accessed and
processed.

The REREAD feature of FORTRAN-10 cannot be used until an input (READ) transfer from a file has been
accomplished. If REREAD is used prematurely, an error message will be output by FORTRAN-10 at execution
time.

Once a record has been accessed by a formatted READ statement the record transferred may be reread as many
times as desired. In a formatted transfer, the same or new format specification may be used by each successive
REREAD statement.

The REREAD statement may be used for sequential formatted data transfers only. The form of the REREAD
statement is:

Form:

Use:

REREAD f,list

Reread the last record read during the last initiated READ operation and input the data
contained by the record into the processor storage locations specified in the input list.
Format the data read according to the format specifications given in statement f.

10-12

CHAPTER 10

Example:

Sequential Formatted WRITE Statements

DIMENSION ARRAY(10,10),FORMA(10,10),FORMB(lO,10),FORMC(10,10)

90 READ(I6,100)ARRAY

100 FORMAT(_______)

110 REREAD 1 00, FORMA
115 REREAD 150,FORMB
120 REREAD 160,FORMC

150 FORMAT(________)
160 FORMAT(____ ____)

In the above sequence, statement 90 inputs data formatted according to statement 100 into the array ARRAY.
Statement 110 reads the record read by statement 90 and inputs the data formatted as in the initial READ operation
into the array FORMA.

Statement 115 reads the record read by statements 90 and inputs the data formatted according to statement 150
into the array FORMB.

Statement 120 reads the record read by statement 90 and inputs the data formatted according to statement 160 into
the array FORMC.

10.8 WRITE STATEMENTS

WRITE statements transfer data from specified processor storage locations to peripheral devices. The various forms
of the WRITE statement enable it to be used in sequential, append and random access transfer modes for formatted,
unformatted, list-directed and NAMELIST -controlled data transfers.

10.8.1 Sequential Formatted WRITE Transfers

The following forms of the WRITE statement may be used for the sequential transfer of formatted data:

a. Form:

Use:

Example:

b. Form:

Use:

Example:

WRITE (u,f) list

Output the values of the processor storage locations identified in list, into the file
associated with logical unit u. Convert and arrange the output data according to the
specifications given in statement or array f.

WRITE(06,500)OUT(10,20),A,B

WRITE f,list

Output the values of the processor storage locations identified in list to the default device
(Le., line printer, LPT). Convert and arrange the output data according to the
specifications given in f.

WRITE 10, SEND(5,10),A,B,C

10-13

CHAPTER 10

c. Form:

Use:

Example:

WRITEf

Sequential, NAMELIST -Controlled

and Random Access WRITE Statements

Output the contents of any Hollerith (H) or literal (") field descriptor(s) contained by f
to the default device (i.e., line printer, LPT). If neither of the foregoing types of field
specifications are found in f, no output transfer is performed.

WRITE 10

10.8.2 Sequential Unfonnatted WRITE Transfer

The following form of the WRITE statements may be used for the sequential transfer of unfonnatted data:

Form:

Use:

Example:

WRITE (u) list

Output the values of the processor storage locations identified in list into the file
associated with logical unit u. No conversion or arrangement of output data is performed.

WRITE(I 2,)ITAB(20,20(,SUMS(I 0,5,2)

10.8.3 Sequential List-Directed WRITE Transfers

The following form of the WRITE statement may be used to initiate a sequentiallist-directed output transfer.

Form:

Use:

Example:

WRlTE(u, *)list

Output the values of the processor storage locations identified in list into the file
associated with logical unit u. The conversion of each datum from internal to external
form is performed according to the type of the list variable from which the datum is read.

WRITE(l2, *)C,X,Y JTAB(l 0,1 0)

10.8.4 Sequential NAMELIST-Controlled WRITE Transfers

Only the following form of the WRITE statement may be used to initiate a sequential NAMELIST output transfer.

Form:

Use:

Example:

WRITE(u,N)

Output the values of the processor storage locations identified by the contents of the
NAMELIST-defined list specified by name N.

WRITE(12,NMLST)

10.8.5 Random Access Formatted WRITE Transfers

Only the following form of the WRITE statement may be used to initiate a random access type formatted output
transfer:

Form:

Use:

WRITE(u#R,f)list

Output the values of the processor storage locations identified by the contents of list to
record R of logical device u. Only disk files which have been set up by either an OPEN or
a DEFINE FILE statement may be accessed by a WRITE transfer of this form. The data
transferred will be formatted according to the specifications given in statement or array f.

10-14

CHAPTER 10 Random Access WRITE Statements,
Summary of WRITE Statements,

ACCEPT Statement

10.8.6 Random Access Unformatted WRITE Transfers

Only the folloWing form of the WRITE statement may be used to initiate a random access unformatted output
transfer:

Form:

Use:

WRITE(u#R)list

Output the values of the processor storage locations identified by the contents of list to
record R of the logical device unit u. Only disk files which have been set up by either an
OPEN or a call to the DEFINE FILE subroutine may be accessed by a WRITE transfer of
this form.

10.9 SUMMARY OF WRITE STATEMENTS

The various forms of the WRITE statements are summarized in Table 10-3.

Table 10-3
Summary of WRITE Statements

Type of Transfer Transfer Mode

Formatted

Unformatted

List-Directed

NAMELIST-controlled

Sequential Random Access

WRITE(u,f)list
WRITE f,list
WRITE f

WRITE(u)list

WRITE(u, *)list

WRITE(u,N)

WRITE(u#R,f)list

WRITE(u#R)list

Note: The ERR=c and END=d arguments may be included in any
WRITE statement; however, they must be last.

10.10 ACCEPT STATEMENT

V,e ACCEPT statement enables the user to input data via either a terminal keyboard or a Batch control file directly
into specified processor storage locations. 11lis statement is used only in the sequential transfer mode for the
formatted transfer of inputs from the user's terminal keyboard during program execution. 11le permitted forms of
the ACCEPT statement are described in the follOWing paragraphs.

10.10.1 Formatted ACCEPT Transfers

'/he following forms of the ACCEPT statement are used for the sequential transfer of formatted data.

a. Form:

Use:

Example:

ACCEPT f,list

Input data character-by-character into the processor storage locations identified by the
contents of list. Format the input data according to the format specifications given in f.

ACCEPT 101,LINE(73)

10-15

CHAPfER 10

b. Form:

Use:

Example:

ACCEPT and PRINT Statements

ACCEPT *,list

Input data character-by-character into the processor storage locations identified by the
contents of list. Convert the input characters, where necessary, to the type of its assigned
list variable.

ACCEPT *, lAB, ABE, KAB, MAR

10.10.2 ACCEPT Transfers Into FORMAT Statement

The following form of the ACCEPT statement may be used to input data from the user's terminal keyboard directly
into a specified FORMAT statement if the FORMAT statement has either or both a Hollerith (H) or literal ('s') field
descriptor. If the referenced statement has neither of the foregoing field descriptors, the input record is skipped.

Form:

Use:

Example:

ACCEPTf

Replace the contents of the appropriate fields of statement f with the data entered at the
user's terminal keyboard.

ACCEPT 101

10.11 PRINT STATEMENT

The PRINT statement causes data from specified processor storage locations to be output on the standard output
device (i.e., line printer, LPT, Table 10-1). This statement may be used only for sequential formatted data transfer
operation and may be written in either of the three following forms:

a. Form:

Use:

Example:

b. Form:

Use:

Example:

c. Form:

Use:

Example:

PRINT f,list

Output the values of the processor storage locations identified by the contents of list to
the line printer. The values output are to be formatted and arranged according to the
format specifications given in statement f.

PRINT 55,TABLE(10,20),I,J,K

PRINT * ,list

Output the values of the processor storage locations identified by the contents of list to
the line printer. The conversion of each datum from internal to external form is
performed according to the type of the list variable from which the datum is read.

PRINT *,C,X,Y,ITAB(10,10)

PRINT f

Output the contents of the FORMAT statement Hollerith (H) or literal field descriptors
to the line printer. If neither an H nor a literal field descriptor is present in the referenced
FORMAT statement, no operation is performed.

PRINT 55

10-16

CHAPTER 10 PUNCH Statement

The second form of the PRINT statement is particularly useful when employed with ACCEPT f statements to cause
desired data (i.e., comments or headings) to be inserted into reports at program execution time.

Example

The sequence

55 FORMAT ('~END~OFljROUTINE')

PRINT 55

results in the printing of the phrase END OF ROUTINE on the line printer.

10.12 PUNCH STATEMENT

The PUNCH statement causes data from specified processor storage locations to be output to the system's standard
paper tape punch (PTP). (See Table 10-1 for device assignments.) This statement may be used only for sequential
formatted data transfers and may be written in one of the three following forms:

a.

b.

c.

Fonn:

Use:

Example:

Form:

Use:

Example:

Form:

PUNCH f,list

Output the values of the processor storage locations identified by the contents of list to
the standard PTP unit. The values output are to be formatted and arranged according to
the format specifications given in statement f

PUNCH 10,TABLE(10,20),I,J,K

PUNCH * ,list

Output the values of the processor storage locations identified by the contents of list to
the paper tape punch unit. The conversion of each datum from internal to external form
is performed according to the type of the list variable from which the datum is read.

PUNCH * ,I,A,B,M, T AB(5,10)

PUNCHf

Use: Output the contents of the referenced FORMAT statement Hollerith (H) or literal field
descriptors to the standard PTP unit. If neither an H nor a literal field descriptor is
present in the referenced FORMAT statement, no operation is perf6rmed.

The latter form of the PUNCH statement is particularly useful when employed in conjunction with an ACCEPT f
statement to cause user-entered data (Le., comments or headings) to be added to an output file at program execution
time.

10-17

CHAPTER 10 TYPE and FIND Statements

10.13 TYPESTATEMENT

The TYPE statement causes data from specified processor storage locations to be output to the user's (control)
terminal printing or display device (see Table 10·1 for device assignment for TYPE). This statement may be used
only for sequential formatted data transfers and may be written in one of the following forms:

a. Form:

Use:

Example:

h. Form:

Use:

Example:

c. Form:

Use:

Example:

TYPEf,list

Output the values of the processor storage locations identified by the contents of list to
the user's terminal printing or display device. The values output are to be formatted
according to the format specifications given in statement f.

TYPE 101,TABLE(10,20)I,J,K

TYPEf

Output the contents of the referenced FORMAT statement Hollerith (H) or literal field
descriptors to the user's terminal printing or display device. If the referenced FORMAT
statement does not contain either an H or a literal field descriptor, no operation is
performed.

TYPE 101

TYPE *,list

Output the values of the processor storage locations identified by the contents of list to
the printing or display device of the user's terminal. The conversion of each datum from
internal to external form is performed according to the type of the list variable from
which the datum is read.

TYPE *JAB(1,5),A,B

10.14 FINDSTATEMENT

The FIND statement does not initiate a data transfer operation; it is used during random access read operations to
locate the next record to be read while the current record is being input. The main program does not have access to
the "found" record until the next READ statement is executed.

The form of the FIND statement is

FIND (u#R)

Example

In the sequence

READ (01#90)
FIND (01#101)

READ (01#101)

the FIND statement will locate record #101 on device 01 after record 90 has been retrieved. Record #101 is not
actually processed until the second READ statement in the sequence is executed.

10-18

CHAPTER 10 ENCODE Statement

10.15 ENCODE AND DECODE STATEMENTS

The ENCODE and DECODE statements are used to perform sequential formatted data transfer between two defined
areas of processor storage (i.e., an I/O list and a user-defined buffer); no peripheral I/O device is involved in the
operations performed by these statements.

Vze ENCODE statement transfers data from the variables of a specified I/O list into a specified user storage area.
ENCODE operations are similar to those performed by a WRITE statement.

Vze DECODE statement transfers data from a specified user storage area into the processor storage locations
identified by the variables of an I/O list. DECODE operations are similar to those performed by a READ statement.

The ENCODE and DECODE statements are written in the following forms:

ENCODE(c,f,s)list
DECODE(c,f,s)list

where

c specifies the number of characters to be in each internal storage area. This argument may be an integer, an
integer expression, or either a real or double precision expression that is converted to an integer form.

NOTE
Characters are stored in the buffer five characters per storage
location without regard to the type of variable given as the
starting location.

f specifies either a FORMAT statement or an array that contains format specifications.

s specifies the address of the first storage location that is to be used in the transfer operations. When multiple
records are specified by the format being used, the succeeding records follow each other in order of increasing
storage addresses.

list specifies an I/O list of the standard form (Paragraph 10.3.4).

When multiple records are stored by ENCODE, each new record is started on a new boundary rather than there
being a CRLF inserted between records.

10.15.1 ENCODE Statement

A description of the form and use of the ENCODE statement follows:

Form:

Use:

Example:

ENCODE(c,f,s)list

The values of the processor storage locations identified by the contents of list are
converted to ASCII character strings according to the format specifications contained by
f. The converted characters are then written into the destination area starting at location
s. If more characters are to be transferred than the specified area can contain, the excess
characters are ignored; they are not written into any following records.

If fewer characters are to be transferred than specified for the record size, the empty
character locations are filled with blanks.

ENCODE(500,10J,START)TABLE

10-19

CHAPTER 10

10.15.2 DECODE Statement

A description of the form and use of the DECODE statement follows:

Form: DECODE(c,f,s)/ist

DECODE Statement and

ENCODE/DECODE Operations

Use: The character strings stored in the internal reference and are read starting at location s,
converted (decoded) according to the format specifications contained by f, and stored as
the values of the locations iden tified in list.

If the format specification requires more characters from a record than are specified by c,
the extra characters are assumed to be blanks. If fewer characters are required from a
record than are specified by c, the extra characters are ignored.

Example: DECODE(50,50,START)GET(5,10)

10.15.3 Example of ENCODE/DECODE Operations

The following program illustrates the use of both the ENCODE and DECODE statements:

Example

Assume the contents of the variables to be as follows:

A(I) contains the floating point binary number 300.45
A(2) contains the floating point binary number 3.0
J is an in teger variable
B is a four-word array of indeterminate contents
C contains the ASCll string 12345

D02J=I,2
ENCODE(J6,10,B)J, A(J)

10 FORMAT (JX,2HA(,Il,4H)~=~,F8.2)
TYPE II,B

11 FORMAT (4A5)
2 CONTINUE

DECODE (4, 12, C) B
12 FORMAT (3Fl.0,lX,Fl.O)

TYPE 13,B
13 FORMAT (4F5.2)

END

Array B can contain twenty ASCII characters. Vie result of the ENCODE statement after the first iteration of the
DO loop is:

B(J)
B(2)
B(3)
B(4)

A(J)
=
300.4
5

Typed as

A (J)=300.45

The result after the second iteration is:

B(I)
B(2)
B(3)
B(4)

A (2)

3.0

Typed as

A (2)=3. 0

10-20

CHAPTER 10 ENCODE/DECODE Example

17le DECODE statement

a. extracts the digits 1, 2, and 3 from C

b. converts them to {loating point binary value

c. stores them in B(J), B(2), and B(3)

d. skips the next character

e. extracts the digit 5 from C

f. converts it to a {loating point binary value, and,

g. stores it in B(4).

10.16 SUMMARY OF I/O STATEMENTS

A summary of all permitted fOnTIS of the FORTRAN-l 0 I/O statement is given in Table 10-4.

10-21

CHAPrERIO Table-Summary of I/O Statements

Table 10-4
Summary of FORTRAN-I 0 I/O Statements

I/O Statements
Formatted

READ
Sequential READ(u,f)list

READ f,list
READf

Random READ(u#R,f)list

WRITE
Sequential or WRITE(u,f)list
Append l WRITE f,list

WRITE f

Random 2 WRITE(u#R,f)list

REREAD
Sequential REREAD f,list

FIND
Random-only FIND(u#R)

ACCEPT
Sequential only ACCEPT f,list

or ACCEPTf

PRINT
Sequential only PRINT f,list

or PRINT f

PUNCH
Sequential only PUNCH f,list

or PUNCH f

TYPE
Sequential only TYPE f,list

or TYPEf

ENCODE
Sequential only ENCODE(c,f,s)list

DECODE
Sequential only DECODE(c,f,s)list

Legend:
u logical unit number
f

list
n

statement number of FORMAT
statement or name of array
containing format information
I/O list
name of specific NAMELIST
I/O list

Transfer Format Control
Unformatted Namelist List-Directed

READ(u)list READ(u,n) READ(u, *)list
READ *,list

READ(u#R)list

WRITE(u)list WRITE(u,n) WRITE(u, *)Iist

WRITE(u#R)list

FIND(u#R)

*

#R

c

ACCEPT *,1ist

PRINT *,1ist

PUNCH *,list

TYPE *,list

symbol used to specify list-directed I/O
operator
variable which specifies logical record
position
number of characters per internal record
address of the first storage location to
be used

1 An OPEN statement must be used to set up an append mode.
2 Either the OPEN statement or a call to the DEFINE FILE subroutine must be used to set up a random access mode.

10-22

CHAPTER 11 NAMELIST Statement

FORTRAN-I0 extensions to the 1966 ANSI
standard set are printed in boldface italic type.

11.1 INTRODUCTION

CHAPTER 11

NAMELIST STATEMENTS

The NAMELIST statement is used to define I/O lists similar to those described in Chapter 10 (Paragraph 10.3.4).
Defined NAMELIST I/O lists are referenced in special forms of the READ and WRITE statements to provide a
method of transferring and converting data without referencing format specifications or specifying an I/O list in the
I/O statement.

11.2 NAMELISTSTATEMENT

NAMELIST statements are written in the following form:

NAMELIST/Nl/Al,A2, . . . ,An/N2/Bl,B2, . . . ,Bn/Nn/ . ..

where

/N/ through /Nn/

Al through An
and

Bl through Bn

Example

represents names of individual lists; the names are always written enclosed by
slashes (/N/)

are the items of the lists identified, respectively, by names Nl and N2. A list may
contain one or more variable, array, or array element names. The items of a list are
delimited by commas. Each list of a NAMELIST statement is identified (and
referenced to) by the name immediately preceding the list.

NAMELIST/T ABLE/ A,B,C/SUMS/TOT AL

In the foregoing example, the name TABLE identifies the list A,B,C(2,4) and the name SUMS identifies the list
comprised of the array TABLE.

Once a list has been defined in a NAMELIST statement, its name may be referenced by one or more I/O statements.

11-1 January 1974

CHAPTER 11

The rules for structuring a NAMELIST statement are:

Structuring NAMELIST Statements,

NAME LIST Input Transfers

a. A NAMELIST name may not be longer than six characters,' it must start with an alphabetic character,' it
must be enclosed in slashes; it must precede the list of entries to which it refers; and it must be unique
within the program.

b. A NAMELIST name may be defined only once and must be defined by a NAMELIST statement. Once
defined, a name may appear only in READ or WRITE statements. The NAMELIST name must be
defined in advance of the I/O statement in which it is used.

c. A variable used in a NAMELIST statement cannot be used as a dummy argument in a SUBROUTINE
definition.

d. Any dimensioned variable contained in a NAMELIST statement must have been defined in a preceding
array declaration statement.

11.2.1 NAMELIST-Controlled Input Transfers

During input (read) transfer operations in which a NAMELIST-defined name is referenced, the record accessed is
scanned until the symbol $ followed by the referenced name is found. Once the proper symbol-name combination is
found, the data items following it are transferred on a one-to-one basis to the processor storage locations identified
by the contents of the referenced list. The input data is always converted to the type of the list varible when there is
a conflict of tjpes. The input operation continues until another $ symbol is detected. If variables appear in the
NAMELIST record that do not appear in the NAMELIST list, an error condition will occur. Data items of records to
be input (read) using NAMELIST-defined lists must be separated by commas and may be of the following form:

V=Kl,K2, . . . ,Kn

where

a. V may be a variable, array, or array element name.

b. Kl through Kn are constants of type integer, real, double precision, complex (written as (A,B) where A
and B are real), or logical (written as T for true or F for false). A series of identical constants may be
represented as a single constant preceded by a repetition factor (e.g., 5*5 represents 5,5,5,5,5).

In transfers of this type, logical and complex constants must be equated to variables of their own type. Other type
constants (real, double precision, and integer) may be equated to any other type of variable (except logical or
complex), and will be converted to the variable type. For example, assume A is a 2-dimensional real array, B is a
J-dimensional integer array, Cis an integer variable, and that the input data is as follows:

$FRED A (7,2)=4, B=3,6*2.8, C=3.32$

A READ statement referring to the NAMELIST defined name FRED will result in the following: the integer 4 will
be converted to floating point and placed in A (7,2). The integer 3 will be placed in B(J) and the integer 2
(converted) will be placed in B(2),B(3), . . . ,B(7). The floating point number 3.32 will be converted to the integer 3
and placed in C.

11-2

CHAPTER 11 NAME LIST Output Transfers

11.2.2 NAMELIST·Contro/led Output Transfers

When a WRITE statement refers to a NAMELIST-defined name, all variables and arrays and their values belonging to
the named list are written out, each according to its type. Arrays are written out by columns. Output data is written
so that:

a. The fields for the data will be large enough to contain a/l the significant digits.

b. The output can be read by an input statement referencing a NAMELIST -defined list.

For example, if JOE is a 2 X 3 array, the statement

NAMELIST/NAM1/JOE,Kl,ALPHA
WRITE (u,NAM1)

generates the following form of output:

Column

$NAMI
JOE= -6.75
-1- -17.8,
Kl =73.1,

.234E-04,
0.0

ALPHA =3. $

680,
-.197E+07,

11·3

CHAPTER 12

FORTRAN-tO extensions to the t966 ANSI
standard set are printed in boldface italic type.

OPEN and CLOSE Statements

CHAPTER 12
FILE CONTROL STATEMENTS

12.1 INTRODUCTION

File control statements are used to set up files and establish parameters for I/O operations and to terminate I/O
operations.

111e OPEN, CLOSE, and CALL RELEASE statements are described in this chapter.

12.2 OPEN AND CLOSE STATEMENTS

Both the OPEN and CLOSE statements are unique to FORTRAN-IO; they both use the same format and have the
same options and arguments.

The OPEN statements enable the user to define, explicitly, all of the important aspects of each desired data transfer
operation; they provide an extensive list of required and optional arguments which define in detail:

a. the name and location of the data file

b. the type of access required

c. the data format within the file

d. the protection code l to be assigned an output data file

e. the disposition of the data file

f. data file record, block and file sizes

g. a data file version identifier

h. error modes

In addition, a DIALOG argument is provided which permits the user to establish a dialogue mode of operation when
the OPEN statement containing it is executed. In a dialogue mode, interactive user terminal/program communication
is established. This enables the user, dun·ng program execution, to define, redefine, or defer the vailles of the
'Optional arguments contained by the current OPEN statement.

1 Refer to Chapter 6 of the DECsystem-IO Monitor Calls Manual, DEC-IO-MRRC-D, for a description of file access
protection codes.

12-1 January 1974

CHAPTER 12 OPEN and CLOSE Statement Options

The general form of the OPEN statement is:

OPEN(Arg1,Arg2, . . . ,Argn)

The CLOSE statement is used in the termination of an I/O operation to dissociate the I/O device being used from
the active file and file-related information, and to restore the core occupied by I/O buffers and other transfer-related
operations. All required device dependent termination functions are also performed on the execution of a CLOSE
statement; the I/O device, however, is not released.

Once a CLOSE statement has been executed, another OPEN statement is required to regain access to the closed file.

The general form of the CLOSE statement is:

CLOSE(Arg1.,Arg2., . . . ,Argnj

12.2.1 Options for OPEN and CLOSE Statements

The options and their arguments, which may be used in both the OPEN and CLOSE statements, are:

a. UNIT

b. DEVICE

c. ACCESS

This option is required; it defines the FOR TRAN I/O unit number to
be used. FORTRAN devices are identified by assigned decimal numbers
within the range 1-63; however, UNIT may be assigned an integer
variable or constant. The general form of this argument is:

UNIT = An integer variable or constant

NOTE
FORTRAN-10 standard logical unit assignments are described
in Chapter 10 (Table 10-1). The range (i.e., 1-63) for the
possible UNIT numbers is an installation defined parameter.

This option may specify either the physical or the logical name of the
I/O device involved. (A logical name always takes precedence over a
physical name.) The DEVICE arguments may specify I/O devices
located at remote stations, as well as logical devices. The general form
of the DEVICE argument is:

DEVICE = A literal constant or variable

If this option is omitted, the first logicai name u (where u is the decimal
unit number) is tried; if this is not successful, the standard (default)
device is attempted.

A required option, ACCESS describes the type of input and/or output
statements and the file access mode to be used in a specified data
transfer operation. ACCESS may be assigned anyone of six possible
names, each of which specifies a specific type of I/O operation. The
assignable names and the operations specified are:

12-2

CHAPfER 12 MODE Option

d. MODE

1. SEQIN The specified data file is to be read in sequential
access mode.

2. SEQOUT The specified data file is to be written in a sequential
access mode.

3. SEQINOUT The specified data file may be first read then written
(READ/WRITE sequence) record-by-record in a
sequential access mode. When SEQINOUT is
specified, a WRITE/READ sequence is illegal unless
the file has been removed.

4. RANDOM The specified data file may be either read or written
into, one record at a time. In a random access mode
of operation, the relative position of each record is
independent of the previous READ or WRITE
statement,' all records accessed must have a fixed
logical record length. This argument is required for
random access operations. A disk device must be
specified wizen the random argument is used.

5. RANDIN This argument enables the user to establish a special,
read-only random access mode with a named file.
During a RANDIN mode, the user may read the
named file simultaneously with other users who have
also established a RANDIN mode and with the owner
of the file. The use of RANDIN enables a data base to
be shared by more than one user at the same time.

6. APPEND The record specified by a corresponding WRITE
statement is to be added to the logical end of a
named file. The modified file must be closed then
reopened in order to permit it to be read.

The general form of the A CCESS argument is:

ACCESS =

'SEQIN'
'SEQOUT'
'SEQINOUT'
'RANDOM'
'RANDIN'
'APPEND'

This option defines the character set of an external file or record. The
lise of this argument is optional,' if it is not given, one of the following
is assumed:

ASCII for a formatted I/O file transfer
Binary for an unformatted I/O file transfer

12-3

CHAPTER 12

e. DISPOSE

DISPOSE Option

One of the following character set specifications must be used with the
MODE argument:

NOTE
Refer to the DECsystem-lO Monitor Calls Manual for a
detailed description of the data modes given in the following
list.

Literal Action Indicated

'ASCII' Specifies an ASCII character set.

'BINARY' Specifies data formatted as a FORTRAN binary data file.

'IMAGE' Specifies an image (I) mode data transfer for the associated
READ or WRITE statements. IMAGE is an unformatted
binary mode. .

'DUMP' The data file to be transferred is to be handled in a DUMP
mode of operation.

The general form of the MODE argument is:

MODE =

'ASCII'
'BINARY'
'IMAGE'
'DUMP'

This option specifies an action to be taken regarding a file at close time.
When used, DISPOSE must be either an ASCII variable or one of the
following literals:

Literal

'SAVE'

'DELETE'

'PRINT'

'PUNCH'

'RENAME'

Action Indicated

Leave the file on the device.

If the device involved is either a DECtape or disk,
remove the file; otherwise, take no action.

If the file is on disk, queue it for printing; otherwise,
take no action.

Paper tape punch output.

Ozange filename.

If the DISPOSE argument is not given, the argument DISPOSE = SA VE
is assumed. The general form of the DISPOSE argument is:

DISPOSE =

12-4

'SAVE'
'DELETE'
'PRINT'
'PUNCH'
'RENAME'

CHAPTER 12

f.

g.

h.

FILE

FILE, PROTECTION, DIRECTORY Options

This option specifies the name of the file involved in the data transfer
operation. FILE must be either an ASCII literal, double precision,
complex, or single precision variable. Single precision variables are
assumed to contain a 1 to 5 character file specification; double
precision variables, permit 10-character file specification. The format is
a 1 to 6 character filename optionally followed by a period and a 0 to 3
character extension. Any excess characters in either the name or
extension are ignored. If the period and extension are omitted, the
extension .DAT is assumed; if just the extension is omitted, a "." is
assumed.

If a file name is not specified or is zero, a default name is generated
which has the form

FORxx.DAT

where xx is the FORTRAN logical unit number (decimal) or is the
logical unit name for the default statements ACCEPT, PRINT, PUNCH,
READ, or TYPE. The general form of a FILE argument is:

FILE = An ASCII literal, a complex, single
precision, or double precision variable.

PROTECTION This option specifies a protection code to be assigned the data file being
transferred. The protection code determines the level of access to the
file that three possible classes of users (i.e., owner, member, or other)
will have. PROTECTION may be a 3-digit octal literal or a variable; if
the argument is assigned a zero value or is not given, the default
protection code established for the DECsystem-10 installation is used.
The general form of th~ PROTECTION argument is:

DIRECTORY

PROTECTION = 3-digit octal, a literal, or variable

. This option is used for disk files only. It specifies the location of the
user file directory (UFD) or the sub-file directory (SFD) which contains
the file specified in the OPEN statement. A directory identifier may
consist of either:

1. the user's project programmer number which identifies the UFD, for
example, 10,7, or

2. A UFD/SFD directory path specification. A path specification lists
the UFD and the names of its SFD's which form a path to the
desired SFD. For example, the following path specification identifies
the path leading to SFD 1234:

10,7,SFDA,SFDB,1234

NOTE
Refer to the DECsystem-10 Monitor Calls manual for a
complete description of directories and multilevel directory
structures.

12-5

CHAPTER 12 DIRECfORY Option

The general form of a DIRECTOR Y argument is:

DIRECTORY= UFD name or directory path specification

The user may also establish an array containing the directory
specification as its elements and reference the array in the
DIRECTOR Y argument. Single precision arrays permit 5-character
directory names to be used; double precision arrays permit 6-character
names to be used. A zero (0) entry must be used to terminate a
directory path specification given in an array.

Examples of the use of single and double precision arrays in an OPEN
statement DIRECTOR Y specification follow:

1. Single Precision Array

OPEN (UNIT = 5, DIRECTOR Y = PATH, . ..)

where PATH and its elements are:

DIMENSION PATH (5)
PATH (1)= "10 - - - (PROJECT NUMBER)
PATH (2)= "7 - - - (PROGRAMMER NUMBER)
PATH (3)= ISFDA'} Names of sub-file
PATH (4)= ISFDB' directoties (SFD's)
PATH (5)= 0 .

2. Double Precision Array

OPEN (UNIT=5, DIRECTOR Y = PATH, . ..)

where PATH and its elements are:

DOUBLE PRECISION PATH (5)

PATH (1) "000010000007 - - - (PROJ, PROG. NUMBERS
=UFD)

PATH (2) ISFDABC' } '"
PATH (3) IMYAREA' names of sub-file directories (SFD's)
PATH (4) IYOURIT'
PATH (5) 0

The elements of a directory specification may then be either a literal
or a single or double precision array.

The fol/owing is an example of a literal specification:

(DIRECTOR Y=II 0, 7,SFDI,SFD2,SFD3'
~l T I

Project . Sub-File
Programlner Directory
Number Path

12-6

CHAPTER 12

i. BUFFER COUNT

j. FILE SIZE

k. VERSION

I. BLOCK SIZE

m. RECORD SIZE

BUFFER COUNT, FILE SIZE, VERSION,

BLOCK SIZE, RECORD SIZE Options

Whenever the specification is all array, the required project allli
programmer lIumbers may be specified either as one word with the.
project number ill the left half and the programmer 11lImber in the right
half, or as the right /wiJ'es of separate sequential word locations.

This optioll enables the user to specify the Ilumber of I/O buffers to be
assigned to a particular device. It this argumellt is not given or is
assigned a value of zero, the ,Monitor default is assllmed. The general
form of this argument is:

BUFFER COUNT = An integer constant or variable

11,is option is used for disk operations DIlly; it enables the lIser to
estimate the number of words that an output file is going to contain.
11le lise of FILE SIZE enables the IIser to ensure at the start of a
program that enough space is available for its execution. If tire size
specified is found to be too small during program executions, the
Monitor allocates additional space according to tire normal Monitor
algorithms. 11le value assigned to the FILE SIZE arguments may be an
integer constant or variable. Tire general form of tlris argument is:

FILE SIZE = An integer constant or variable

This option is used for disk operations only; it enables tire user to either
assign a 12-digit octal number to a file when it is output or retrieve the
version specification of an input file. The quantity assigned to the
VERSION argument may be either an octal constant or variable. The
gelleral form of the argument is:

VERSION = All octal constant or variable

This option can be lIsed for all storage media except disk and DECtape.
It enables the user to speCify a physical storage block size for devices
other than disk or DECtape. The value assigned the BLOCK SIZE
arguments may be an integer constant or variable. The size specified
must be greater than or equal to 3 alld less than or equal to 4095. 11le
general form of this argument is:

BLOCK SIZE = An integer, constant or variable

Tltis option enables the lIser to force all logical records to be a specified
length. If a logical record exceeds tire specified length, it is truncated; if
a logical record is less than the speCified size, nulls are added to pad the
record to its full size. The RECORD SIZE argument is required
whenever a random access mode is specified. The value assigned to this
argument may be either an integer constant or variable, and may be
expressed as tire numbers of words or characters depending on the
mode of the file being described. The general form of this argument is:

RECORD SIZE = An integer constant or variable

12-7

CHAPTER 12

n. ASSOCIATE VARIABLE

o. PARITY

p. DENSITY

q. DIALOG

ASSOCIATE VARIABLE, PARITY,

DENSITY, DIALOG Options

This option is for disk random access operations only. It provides
storage for the number of the record to be accessed next if the program
being executed were to continue to access records one after another
from the specified random access file. The general form of this
argumellt is:

ASSOCIATE VARIABLE = Variable Name

This Optioll is for magnetic tape operations ollly; it permits the user to
specify the type of parity to be observed (odd or even) during the
transfer of data. The ~eneral form of this option is:

PARITY = 'ODD'
'EVEN'

This option is for magnetic tape operations only; it permits the user to
specify any of three possible bit-per-inch (bpi) tape density parameters
for magnetic tape transfer operations. 171e general form of this option
is:

DENSITY =
'200'
'556'
'800'

171e use of this option in an OPEN statement enables the user to
supersede or defer, at execution time, the values previously assigned to
the arguments of the statement. The value assigned to DIALOG may be
nUll, a literal, or an array. The general form of this argument is:

DIALOG = Literal, array, or /lull

Whenever DIALOG is assigned a /lull vallie, it establishes a user/program
dialogue mode when the OPEN statement containing it is executed.
During a dialogue mode FOROTS outputs the following messages at the
lIser's terminal.

ENTER FILE SPECIFICATIONS FOR LOGICAL UNIT XX

(FOROTS then types the existing file specifications defined by the
cllrrent OPEN statement.)

Once the message and defined file specification are output the IIser may
enter any desired changes. Ollly the arguments that are to be changed
need to be entered.

Whenever a literal or all array is assigned to DIALOG, it must contain,
in ASCII~ the file specification illformation or indicate where to request
dialog information.

12·8

CHAPTER 12 Summary of Options

12.2.2 Summary of OPEN/CLOSE Statemellt Options

V,e options permitted and required ill the OPEN and CLOSE statements and the type of value required by each are
summarized in Table 12-1.

Argument

UNIT =
MODE =
DIRECTORY=
FILE SIZE =
BUFFER COUNT =
ASSOCIATE VARIABLE =
ACCESS =

FILE =
DIALOG =
BLOCK SIZE =
VERSION =
DEVICE =
PROTECT =
DISPOSE =
RECORD SIZE =
PARITY =
DENSITY =

Table 12-1
OPEN/CLOSE Statement Arguments

Values Required

Integer variable or constant
Literal COilS tan t or variable
Literal or array
Integer constant or variable
integer constant or variable
Variable Ilame
'SEQIN', 'SEQOUT', 'SEQINOUT', 'RANDIN', 'RANDOM', 'APPEND'
Literal constant or variable
Literal array or null
Integer COllstallt or variable
Octal constant or variable
Literal constant or variable
All octal constant or variable
Literal constant or variable
Integer constant or Jlariable
Literal
Literal

12-9

CHAPTER 13

FORTRAN-I0 extensions to the 1966 ANSI
standard set are printed in boldface italic type.

13.1 INTRODUCTION

FORMAT Statement, General Form

CHAPTER 13
FORMAT STATEMENT

FORMAT statements are used in conjunction with the I/O list of I/O statements during formatted data transfer
operations. The FORMAT statements contain field descriptors which, together with the list items of associated I/O
statements, specify the forms of the data and data fields which comprise each record.

FORMAT statements may appear anywhere in a FORTRAN-IO source program; however, they must be labeled to
enable them to be referenced by I/O statements.

13.1.1 FORMAT Statement, General Form

TI1e general form of a FORMAT statement follows:

where

k FORMAT(SAI ,SA2, ... ,SAn/SBI ,SB2, ... ,SBn/ ...)

k the required statement number

SA 1 through SAn = individual field descriptor sets
and

SBl through SBIl

In the foregoing statement form the individual field descriptors arc deliminated by commas (,): field descriptors and
records are delimited by slashes (/). For example, a FORMAT statement of the form:

FORMAT(SAI ,SA2/SB 1 ,SB2/SC 1 ,SC2)

contains format specifications for three records with each record comprised of two field descriptor sets.

13-1 January 1974

CHAPTER 13 FORMAT Statement, Field Descriptors

Adjacent slashes (f I) in a FORMAT statement specify that a record is to be skipped during input or is to consist of
an empty record on output. For example, a FORMAT statement of the form:

FORMAT(SAI ,SA21 IISB I ,SB2)

specifies four records are to be processed; however, the second and third records are to be skipped.

Repeated field descriptors or groups of field descriptors may be represented using a repeat form. The repetition of a
single field descriptor is written by preceding the descriptor with an integer constant which specifies how many
times the descriptor is to be repeated. For example, a FORMAT statement of the form

FORMAT(SAI ,SA2,SA3,SAl ,SA 2, SA 3, SA 1 ,SA 2, SA 3)

may be written as

FORMAT(3(SAl,SA2,SA3))

The repeat forms of field descriptor may be nested to any depth. For example, a FORMA Tstatement of the form

FORMAT(SAI ,SA 2,SA 2, SA 3,SA 1,SA2,SA2, SA 3)

may also be written in the form

FORMAT(2(SA 1,2SA 2, SA 3))

The manner in which the foregoing statement forms may be used and the effect each has on the data involved are
discussed in the following paragraphs.

13.2 FIELD DESCRIPTORS

FORMAT statement field descriptors describe the desired conversion, scaling, and editing of data for a specific field
within a record. In FORTRAN·IO, no restrictions are placed on the depth to which parenthesized format field
descriptors may be nested. FORTRAN-I 0 permits the following forms of field descriptors:

Forms

rFw.d}
rEw.d
rDw.d
rGw.d

rIw

rLw

rAw

nHs

nX
Tw

nP

Comments

Floating point numeric field descriptors

Integer field descriptor

Logical field descriptor

Alphanumeric data field descriptor

Alphanumeric data in a FORMAT statement field descriptor

Formatting field descriptors

Numerical scale factor descriptor

13-2

CHAPTER 13 FORTRAN Conversion Codes

where

Forms Comments

/ Record delimiter

$ Format in field descriptor

's' A string of ASCII characters within a FORMAT statement

rOw Octal field descriptor

r an optional unsigned integer that represents a repeat count. This option enables a field descriptor
to be repeated r times.

w an optional integer constant which represents the width (total number of characters contained) of
the external form of the field being described. All characters including digits, decimal points, signs,
and blanks that are to comprise the external form of the field must be included in the value of w .

. d an optional unsigned integer that specifies the number of fractional digits which are to appear in
the external representation of the field being described.

r an unsigned integer that specifies the number of characters to be processed during the transfer of
alphanumeric data or formatting character counts or a signed scale factor.

s represents a string of ASCII (alphanumeric) characters.

Il a signed integer constant (plus signs are optional).

The characters F,E,D,G,I,L,A,H,X,T,O, and P indicate the manner of conversion and editing to be performed
between the internal (processor) and external representations of the data within a specific field; these characters are
referred to as conversion codes. The FORTRAN-l 0 conversion codes and a brief description of the function of each
are given in Table 13-1.

Table 13-1
FORTRAN-tO Conversion Codes

Code Function

A Transfer alphanumeric data
D Transfer real data with a D exponent l

E Transfer real data with an E exponent l

F Transfer real data without an exponent
G Transfer integer, real, complex, or logical data
H Transfer literal data
I Transfer integer data
L Transfer logical data ° Transfer octal data

1 An exponent of 0 is assumed if none is given.

13-3

CHAPTER 13 FORMAT Statement, Numeric

Field Descriptors

Detailed descriptions of the various types of field descriptors, the manner in which they are written and employed
and their use in FORMAT statements are given in the following paragraphs.

13.2.1 Numeric Field Descriptors

The forms of the field descriptors used to specify the format and conversion of numeric data follow.

Description
Dw.d
Ew.d
Ew.d,Ew.d
Fw.d
Fw.d,Fw.d
Iw
Ow
Gw.d
Gw
Gw.d,Gw.d

Type of Data Used For
Double precision real data with a D exponent
Real data with an E exponent
For the real and imaginary parts of a complex datum
Real data without an exponent
For the real and imaginary parts of a complex datum
Integer data
Octal data
Real or double precision data
For in teger (or logical) data
For the real and imaginary parts of a complex da tum

NOTE
The G conversion code may be used for all but octal numeric
data types.

Examples

Consider the following program segment:

INTEGER 11,12
REAL RI, R2, R3
DOUBLE PRECISION Dl, D2
11 = 506
12 = 8
Rl = 506.0
R2 = 18.1
R3 = 506001.0
DI = 18.0
D2 = -504.0

The actions performed by several types of formatted WRITE statements on the data given in the foregoing program
segment are described in Table 13-2.

134

CHAPTER 13 Field Descriptors, Action of

Table 13-2
Action of Field Descriptors On Sample Data

Item Descriptor Sample WRITE Statement External Form of External Appearance
Form Descriptor Using the Sample Sample Field of Sample Data

. Descriptor Described

I Dw.d D8.2 WRITE (-,-) D 1 Z.nnD±nn 0.18D+02
2 Ew.d E8.2 WRITE (-,-) Rl Z.nnE±nn 0.51E+03
3 Fw.d F5.2 WRITE (-,-) R2 aa.nn 18.10
4 Iw IS WRITE (-,-) 11 aaaan ~~506
5 Iw 12 WRITE (-,-) 11 an **
6 Ow OS WRITE (-,-) 12 nnnnn 00010
7 Gw.d G8.2 WRITE (-,-) D2 Z.nnD±nn -.500+02
8 Gw.d G8.2 WRITE (-,-) R3 Z.nnE±nn 0.51E+06
9 Gw.d G8.2 WRITE (-,-) R2 aa.nn 18.10

10 Gw G5 WRITE (-,-) 11 anaan ~~506

where: a. 11 represen ts a numeric character

b. Z represents either a - or 0 (Note that if nod > 6, a negative number cannot be output.)

c. a represents a digit, leading blank (~) or a minus sign depending on the numeric output.

Notes:

1. In Item 1, the value D 1 has only 2 significant digits and d=2, so no rounding will occur on input.

2. In Item 2, since Rl has 3 significant digits, it is rounded to fit into the specified field.

3. In Item 5, the width (w) part of a format descriptor specifics an exact field which permits no rounding of
its contents. If the w specification is too small for the datum to be transferred, asterisks arc output to
indicate that the transfer was not made.

4. In Item 6, Integer 8 = Octal 10.

5. In Items 8 and 9, the relationship between G and fixed and floating real data is discussed in Paragraph
13.2.3.

The internal and external forms of the data specified by the numeric format conversion code are summarized in
Table 13-3.

13-5

CHAPTER 13

Table 13-3
Numeric Field Codes

Numeric Field Codes, Interaction of

Field Descriptors With List Variables

Internal Form Conversion Code External Form

Binary floating point
double precision

Binary floating point

Binary floating point

Binary integer

Binary word

One of the following:
single precision,
binary floating point,
binary integer, binary
logical, or binary
complex

D

E

F

o

G

Decimal floating point with D exponent

Decimal floating point with E exponent

Decimal fixed point

Decimal integer

Octal value

Single precision decimal floating point integer,
logical (T or F), or complex (two decimal
floating point numbers), depending upon the
internal form

Complex quantities are transferred as two independent real quantities. The format specification for complex
quantities consists of either two successive real field descriptors or one repeated real field descriptor. For example,
the statement

FORMAT(2E1SA,2(F8.3,F8.S))

may transfer up to three complex quantities.

The equivalent of the foregoing statement is

FO RMA T(E 1 5 .4,E 1 5.4, F 8.3 ,F 8.5 ,F 8.3, F 8.5)

13.2.2 Interaction of Field Descriptors With I/O List Variables During Transfer

The execution of an I/O statement that specifies a formatted data transfer operation initiates format control. The
actions performed by format control depend on information provided by the elements of the I/O statement's list of
variables and the field descriptors which comprise the referenced FORMAT statement's format specifications.

In processing each FORMAT controlled I/O statement which has an I/O list, FORTRAN-10 scans the contents of
the list and the format specifications in step. Each time another variable or array element name is obtained from the
list, the next field specification is obtained from the format specification. If the end of the fonnat specification is
reached and more items remain in the list, a new line or record is established and the scan process is restarted, either
at the first item in the format specification or, if parenthesized sets of format specifications exist within the format
specification, with the last set within the format specification.

During transfer operations the corresponding list variables and field descriptors (Le., first variable and first field
descrip.tor, second variable and second field descriptor, etc.) are used by format control to determine which datum
to transfer and its final form on completion of the transfer.

13-6

CHAPTER 13 G Conversion Code, Scale Factors

During formatted read operations, the first input record is read when format control is initiated, additional records
are then read only when specified by the format specifications.

During formatted write operations, the writing of a record occurs each time one is specified in the format
speCification.

In both the formatted read and write operations all unprocessed characters of a record (input or output) are skipped
when

a. a slash (/) is found in the format speCification,

b. the delimiting right parentheses,), of the FORMAT statement is found and

c. if there are no more items in the input list or Hollerith field descriptors in the FORMAT statement.

When the scan of the format specification reaches the right closing parenthesis, format control tests to see if any
variable remains in the I/O statement list. If no list variable is found, format control is terminated and the program
proceeds to the next statement. If a list variable is found, transfer operations are continued starting with the first
field descriptor of the format specification or, if uncounted repeated groups of specifications exist within the format
specification, to the last (rightmost) uncounted repeat specification group. In either case, a new record is accessed.

13.2.3 G, General Numeric Conversion Code

The G conversion code may be used in field descriptors for the format control of real, double precision, integer,
logical, or complex data.

With the exception of real and double precision data, the type of conversion performed by a G type field descriptor
depends on the type of its corresponding I/O list variable. In the case of real and double precision data, the kind of
conversion performed is a function of the external magnitude of the datum being transferred. Table 13-4 illustrates
the conversions performed for various ranges of magnitude (external form) of real and double-precision data.

13.2.4 Numeric Fields with Scale Factors

Scale factors may be added to D,E,F, and G conversion codes in field descriptors. The scale factor has the form

nP

where Il is a signed integer (+ is optional) and P identifies the operation. When used, a scale factor is added as a
prefix to field descriptors.

Examples

-2PFI0.S
IPE8.2

When added to an F type field descriptor (or G type if the external field is a fixed point decimal) a scale factor
specifies a power of 10 so that

External Form of Number = (Internal Form)*10(scalc factor)

For example, assuming the data involved to be the real number 26.451, the field descriptor

F8.3

produces the external field

1P1P26.451

13-7

CHAPTER 13

Table 13-4
Descriptor Conversion of Real and Double Precision Data

According to Magnitude

Magnitude of Data in its
External Form (M)

0.1 ~M< 1
1 ~M< 10

10d- 2 ~ M < 10d- 1

10d- 1 ~M< 10d

ALL OTHERS

Equivalent Method of
Conversion Performed

F(w-4).d,4X
F(w-4).(d-I),4X

F(w-4).I,4X
F(w-4).0,4X
Ew.d

Note: In all numeric field conversions the field width
(w) specified should be large enough to include
the decimal point, sign, and exponent character
in addition to the number of digits. If the
specified width is too small to accommodate the
converted numbcr, the field will be filled with
asterisks (*). If the number converted occupies
fewer character positions than specified by w, it
will be right-justified in the field and leading
blanks wiJI be used to fill the field.

TI1C addition of the scale factor of - I P

-IPF8.3

produces the external field

bbb2.645

Conversion of Real and Double

Precision Data, Scale Factors

When added to D, E, and G (external field not a decimal fixed point) type field descriptors, the scale factor
multiplies the number by the specified power of ten and the exponent is changed accordingly.

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the only ones
affected by scale factors.

When no scale factor is specified, it is understood to be zero. Once a scale factor is specified, however, it holds for all
subsequent D, E, F, and G type field descriptors within the same format specification unless another scale factor is
specified. A scale factor is reset to zero by specifying a scale factor of zero. Scale factors have no effect on I and 0
type field descriptors.

13-8

CHAPTER 13

13.2.S Logical Field Descriptors

Logical Descriptors, Variable Field

Widths, Alphanumeric Descriptors

Logical data may be transferred under format control in a manner similar to numeric data transfer by use of the field
descriptor

Lw

where L is the control character and w is an integer specifying the field width. The data is transmitted as the value of
a corresponding logical variable in the associated input/output list.

If, on input, the first nonblank character in the logical data fields is Tor F, the value of the logical variable is stored
in the list variable as true or false, respectively. If the entire input data field is blank or empty, a value of false is
stored.

On output, w minus I blanks followed by T or F will be output if the value of the logical variable is true or false,
respectively.

13.2.6 Variable Numeric Field Widths

The D, E, F, G, and I conversion codes may appear in a FORMAT statement without the w (field width) or d (the
number of places after the decimal point) portion of the w.d specification. In the case of input, omitting w implies
that the numeric field is delimited by the first character which is illegal in the field, or one of the characters -, +, .,
E, D, or blank, provided it is not the first character of the numeric field. For example, input according to the format

10 FORMAT(21,F,E)

might appear on the input medium as

-IO,3/IS.62I-.0016E-IO,777

If w is given and d is not, d is assumed to be zero. During data output operations if d and ware omitted I , the
following defaults are used:

Format Code

D
E
F
G single precision

double precision

L

13.2.7 Alphanumeric Field Descriptors

Assumed Default
forKAIO for KilO
D2S.I6 D2S.18
EIS.7 EIS.7
FlS.7
GIS.7
G2S.16
115
LIS

FlS.7
GIS.7
G2S.I8
115
LIS

The formatted transfer of alphanumeric data may be accomplished in a manner similar to the formatted transfer of
numeric data by use of the field descriptor Aw, where A, is the control character and w is the number of characters

1 If d is given and w is left out, d is ignored and the default is used.

13-9

CHAPTER 13 Data Transfer Directly To or From

FORMAT Statements

in the field. Alphanumeric characters are transferred into or from a variable in an input/output list depending on the
I/O operation. A list variable may be of any type. For example, the sequence

I READ (6,5) V
5 FORMAT (A4)

causes four alphanumeric characters to be read from the card reader and stored in the variable V.

For a double precision variable the maximum number of characters transferred is ten (i.e., two storage locations are
used); for all other variables, the maximum is five characters. If w exceeds the maximum, the leftmost characters are
lost on input and are replaced with blanks on output. If, on input, w is less than the maximum, blanks are filled in to
the right of the given characters until the maximum is reached. If, on output, w is less than the maximum, the
leftmost w characters are transmitted to the external medium. Since for complex variables each word requires a
separate field specification, the maximum value of w is 5. For example,

COMPLEXC
ACCEPT I,C

1 FORMAT (2A5)

transfers ten alphanumeric characters from the user's I/O terminal (TTY) into complex variable C.

13.2.8 Transferring Alphanumeric Data Directly Into or From FORMAT Statements

Alphanumeric data may be transmitted directly into or from the FORMAT statement by two different
methods: H-conversion, or the use of single quotes (i.e., a literal field descriptor).

In H-conversion, the alphanumeric string is specified in the form nH, where H is the control character and n is the
total number of characters (including blanks) in the string. For example, the following statement sequence may be
used to print the words PROG RAM COMPLETE on the device LPT:

PRINT 101
101 FORMAT (17H~PROGRAM~COMPLETE)

Read and write operations of this type are initiated by I/O statements which reference a format statement and a
logical device bu t do not contain an 1/0 list (see preceding example).

Write transfers from a FORMAT statement cause the contents of the statement field descriptor to be output to a
specified logical device. The contents of the field descriptor, however, remain unchanged.

Read transfers with a FORMAT statement cause the contents of the field descriptors involved to be replaced by the
characters input from the specified logical device.

Alphanumeric data is stored in a field descriptor right-justified. If the data input into a field has fewer characters
than the field, leading blanks are added to fill the field. If the data input is larger than the field of the descriptor, the
excess leftmost characters are lost.

Examples

WRITE (1,101)
101 FORMAT (17H~PROGRAM~COMPLETE)

cause the string PROGRAM COMPLETE to be output to the file on device 1.

13-10 January 1974

CHAPTER 13 Mixed Fields

Assuming the string START on device 1, the sequence

READ (I,101)
101 FORMAT (I 7H~PROGRAM~COMPLETE)

would change the con ten ts of sta temen t 101 to

101 FORMAT (I 7HSTART~~~~~~~~~~~~)

TIle foregoing functions may also be accomplished by a literal field descriptor consisting of the desired character
string enclosed within apostrophes (i.e., ·string'). For example, the descriptors

101 FORMAT (17H~PROGRAM~COMPLETE)

and

101 FORMAT ('~PROGRAMpCOMPLETE')

may be used in the same manner.

The result of literal conversion is the same as H-collversion; on lilPllt, the characters between the apostrophes are
replaced by input characters and, on output, the characters between the apostrophes (including blanks) are written
as part of the output data.

An apostrophe character within a literal field should be represented by two successive apostrophe marks; otherwise,
the statement containing the field will not compile. For example, the statement sequence

50 FORMAT (,DON"T')
PRINT 50

will compile and will cause the word DON'T to be output on the line printer. The statement

50 FORMAT ('DON'T)

however, will calise a compile error.

13.2.9 Mixed Numeric and Alphanumeric Fields

An alphanumeric field descriptor may be placed among other fields of the format. For example, the statement:

FO RMAT (IS, 7H~FO RCE= F 10.5)

may be used to output the line:

~~22~FORCE=~~17.68901

The separating comma may be omitted after an alphanumeric format field, as shown in the foregOing statement.

When a comma delimiter is omitted from a format specification, format control associates as much information as
possible with the leftmost of the two field descriptors.

13-11

CHAPTER 13 Multiple Record Specifications

13.2.10 Multiple Record Specifications

To handle a group of input/output records where different records have different field descriptors, a slash is used to
indicate a new record. For example, the statement

FORMAT (308/I5,2F8.4)

is equivalent to

FORMAT (308)

for the first record, and

FORMAT (I5,2F8.4)

for the second record.

Separating commas may be omitted when a slash is used. When n slashes appear at the end or beginning of a format,
n blank records will be written on output or skipped on input. When n slashes appear in the middle of a format, n-I
blank records are written on output or n-I records skipped on input.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record. If the list of
an input/output statement dictates that the transmission of data is to continue after the closing parenthesis of the
format is reached, the format is repeated starting with that group repeat specification terminated by the last right
parenthesis of level one or level zero if no level one group exists.

Thus, the statement

FORMAT (F7.2,(2(E15.5EI5.4), 17») ~

level 0/ I Aevel 0
level 1 level 1

causes the format

2(E 15.5,E 15.4),17

to be used on the first record.

As a further example, consider the statement

FORMAT (F7.2/(2(E15.5,EI5.4),17))

TIle first record has the format

F7.2

and successive records have the format

2(E15.5EI5.4),I7

13-12

CHAPTER 13 Record Formatting Descriptors

13.2.11 Record Formatting Field Descriptors

Two field descriptors, Tw and nX, ma), be used to position data within a record.

171e field descriptor Tw may be used to specify the character position (external form) in which a record begins. In
the Tw field descriptor the letter T is the control character and w is all unsigned integer constant which specifies the
character position, in a FORTRAN-I0 record, where the transfer of data is to begin. When the output is printed, w
corresponds to the (w-l)th print position since the first character of the output buffer is a forms control character
and is not printed. It is recommended that the first field specificatioll of the output format be I X, except where a
forms control character is used.

NOTE
Two successive T field specifications will result in the second
field overwriting the first field.

Examples

171e statement sequence

PRINT 2
2 FORMAT (T50, 'BLACK 'T30, , WHITE')

causes the fol/owlilg line to be printed

WHITE BLACK

+ t
(print position 29) (print position 49)

171e statement sequence

1 FORMAT (T35, 'MONTH')
READ (2,1)

causes the first 34 characters of the input data associated with logical unit 2 to be skipped, alld the next five
characters to replace the characters M,O,N, T, and H in storage. If an input record containing

ABCbbbXYZ

is read with the format specification

10 FORMAT (T7,A3,Tl,A3)

then the characters XYZ and ABC are read, ill that order.

The field descriptor nX may be used to introduce blanks into output records or to skip characters of input records.
The letter X specifies the operation and n is a positive integer that specifies the number of character positions to be
either made blanks (output) or skipped (input).

Example

The statement

FORMAT (5H~STEP15,10X2HY=F7.3)

may be used to print the line

13-13

CHAPTER 13 Print Control Characters

13.3 CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS

The first character of an ASCII record may be used to control the spacing operations of the line printer or Teletype
terminal printer unit on which the record is being printed. The control character desired is specified by beginning the
FORMAT field specification for the ASCII record to be output with IHa ... where a is the desired control character.
The control characters permitted in FORTRAN-I0 and the effect each has on the printing device are described in
Table 13-5.

FORTRAN Character

space

0 zero

1 one

+ plus

* asterisk

- minus

2 two

3 three

/ slash

period

, comma

Table 13-5
FORTRAN-tO Print Control Characters

Prin ter Character Octal Value

LF 012

LF,LF 012

FF 014

DC3 023

LF,LF,LF 012

DLE 020

VT 013

DC4 024

DC2 022

DC1 021

Effect

Skip to next line
with form feed after
60 lines

Skip a line

Form feed - go to
top of next page

Suppress skipping -
overprint the line

Skip to next line
with no form feed

Skip two lines

Space 1/2 of a page

Space 1/3 of a page

Space 1/6 of a page

Triple space with a
form feed after every
20 lines printed

Double space with a
form feed after every
30 lines printed

Note: Printer control characters DLE, DCI, DC2, DC3, and DC4 affect only the line printer.

13-14

CHAPTER 14 Device Control Statements, Introduction

FORTRAN-I0 extensions to the 1966 ANSI
standard set are printed in boldface italic type.

CHAPTER 14
DEVICE CONTROL STATEMENTS

14.1 INTRODUCTION

The following device control statements may be used in FORTRAN-l 0 source programs:

1. REWIND

2. UNLOAD

3. BACKSPACE1

4. ENDFILE

5. SKIPRECORD 1

6. SKIPFILE, and

7. BACKFILE

The general form of the foregoing device control statements is

where

keyword u
keyword (u)

keyword
u

is the statement name
is the FORTRAN-I0 logical device number (Chapter 10, Table 10-1)

The operations performed by the device control statement are normally used only for magnetic tape device (MT A).
In FORTRAN-10, however, the device control operations are simulated for disk devices.

I The results of these commands are unpredictable when used on list-directed and NAMELIST-controlled data.

14-1 January 1974

CHAPTER 14 REWIND, UNLOAD, BACKSPACE

ENDFILE

14.2 REWIND STATEMENT

Descriptions of the form and use of the REWIND statement follow:

Form:

Use:

Example:

REWIND u

Move the file contained by device u to its initial (load) point. If the medium is already at
its load point, this statement has no effect. Subsequent READ or WRITE statements that
reference device u will transfer data to or from the first record located on the medium
mounted on device u.

REWIND 16

14.3 UNLOADSTATEMENT

Descriptions of the form and use of the UNLOAD statement follow:

Form:

Use:

Example:

UNLOADu

. Move the medium contained on device 11 past its load point lIntil it has been completely
rewound onto the source reel.

UNLOAD 16

14.4 BACKSPACE STATEMENT

Descriptions of the form and use of the BACKSPACE statement follow:

Form:

Use:

Example:

BACKSPACE u

Move the medium contained on device u to the start of the record that precedes the
current record. If the preceding record prior to execution of this statement was an endfile
record, the endfile record becomes the next record after execution. If the current record
is the first record of the file, this statement has no effect.

NOTE
This statement cannot be used for files set up for random
access or NAMELIST-controlled I/O operations.

BACKSPACE 16

14.5 END FILE STATEMENT

Descriptions of the form and use of the END FILE statement follow:

Form:

Use:

Example:

END FILE u

Write an endfile record in the file located on device u. The endfile record defines the end
of the file which contains it. If an endfile record is reached during an I/O operation
initiated by a statement that does not contain an END= option, the operation of the
current program is terminated.

END FILE 16

14-2

CHAPTER 14 SKIP RECORD, SKIP FILE,

BACKFILE Statements, Summary

14.6 SKIPRECORDSTATEMENT

Descriptions of the form and use of the SKIP RECORD statement follow:

Form:

Use:

SKIP RECORD u

In accessing the file located on device u, skip the record immediately followlilg the
current (last accessed) record. The repeat option may be used to cause any desired
number of records to be skipped.

Example: SKIP RECORD 16

14.7 SKIP FILE STATEMENT

Descriptions of the form and use of the SKIP FILE statement follow:

Form:

Use:

SKIP FILE II

III accessing the medium located on unit u, skip the file immediately following the
current (last accessed) file. If the number of SKIP FILE operations specified exceeds the
number of following files available, all error will occur.

Example: SKIP FILE 01

14.8 BACKFILE STATEMENT

Descriptions of the form and use of the BACKFILE statement follow:

Form:

Use:

BACKFILEu

Move the medium mounted on device u to the start of the file which precedes the current
(last accessed) file.

If the number of BACKFILE operations performed exceeds the number of preceding
files, completion of the last operation will move the medium to the start of the first file
on the medium.

Example: BACKFILE 20

14.9 SUMMARY OF DEVICE CONTROL STATEMENTS

The form and use of the FORTRAN-1 0 device control statements are summarized in Table 14-1.

Table 14-1
Summary of FORTRAN-l 0 Device Control Statements

Statement Form

REWINDu
UNLOADu
END FILE u
SKIP RECORD u
SKIP FILEu
BACKFILEu
BACKSPACE u

Use

Rewind medium to its load point
Rewind medium onto its source reel
Write an endfile record in to the current file
Skip the next record
Skip the next file
Move medium backwards 1 file
Move medium back one record

14-3

CHAPTER 15

FORTRAN-I0 extensions to the 1966 ANSI
standard set are printed in boldface italic type.

Types of Subroutine

Statements and Arguments

15.1 INTRODUCTION

CHAPTER 15
SUBPROGRAM STATEMENTS

Procedures that are used repeatedly by a program may be written once and then referenced each time the procedure
is required. Procedures that may be referenced are either internal (written and contained within the program in
which they are referenced) or external (self-contained executable procedures that may be compiled separately). The
kinds of FORTRAN-l 0 procedures that may be referenced are:

a. statement functions

b. intrinsic functions

c. external functions, and

d. subroutines

The first three of the foregoing categories are referred to, collectively, as either functions or function procedures;
procedures of the last category are referred to as either subroutines or subroutine procedures.

15.1.1 Dummy and Actual Arguments

Since subprograms may be referenced at more than one point throughout a program, many of the values used by the
subprogram may be changed each time it is used. Dummy arguments in subprograms represent the actual values to
be used which are passed to the subprogram when it is called.

Functions and subroutines use dummy arguments to indicate the type of the actual arguments which they represent
and whether the actual arguments are variables, array elements, arrays, subroutine names or the names of external
functions. Each dummy argument must be used within a function or subroutine as if it were a variable, array, array
clement, subroutine, or external function identifier. Dummy arguments are given in an argument list associated with
the identifier assigned to the subprogram; actual arguments are normally given in an argument list associated with a
call made to the desired subprogram. (Examples of argument lists are given in the following paragraphs.)

TIle position, number, and type of each dummy argument in a subprogram list must agree with the position,
number, and type of each actual argument given in the argument list of the subprogram reference.

15-1 January 1974

CHAPTER 15 Dummy Arguments

Dummy arguments may be

a. variables

b. array names

c. subroutine identifiers

d. function identifiers, or

e. statement label identifiers which are denoted by the symbol *, $, or &.

When a subprogram is referenced, its dummy arguments are replaced by the corresponding actual arguments supplied
in the reference. All appearances of a dummy argument within a function or subroutine are related to the given
actual arguments. Except for subroutine identifiers and literal constants, a valid association between dummy and
actual arguments occurs only if both are of the same type; otherwise, the results of the subprogram computations
will be unpredictable. Argument association may be carried through more than one level of subprogram reference if
a valid association is maintained through each level. The dummy factual argument associations established when a
subprogram is referenced are terminated when the desired subprogram operations are completed.

The following rules govern the use and form of dummy arguments:

a. The number and type of the dummy arguments of a procedure must be the same as the number and type
of the actual argumen ts given each time the procedure is referenced.

b. Dummy argument names may not appear in EQUIVALENCE, DATA, or COMMON statements.

c. A variable dummy argument should have a variable, an array element identifier, an expression, or a
constant as its corresponding actual argument.

d. An array dummy argument should have either an array name or an array element identifier as its
corresponding actual argument. If the actual argument is an array, the length of the dummy array should
be less than or equal to that of the actual array. Each element of a dummy array is associated directly
with the corresponding elements of the actual array.

e. A dummy argument representing a subroutine identifier should have a subroutine name as its actual
argument.

f. A dummy argument representing an external function must have an external function as its actual
argument.

g. A dummy argument may be defined or redefined in a referenced subprogram only if its corresponding
actual argument is a variable. If dummy arguments are array names, then elements of the array may be
redefined.

Additional information regarding the use of dummy and actual arguments is given in the description of how
subprograms are defined and referenced.

15-2

CHAYTER 15 Statement and Intrinsic Functions

15.2 STATEMENT FUNCTIONS

Statement functions define an internal subprogram in a single statement. The general form of a statement function
is:

where

name (argi ,arg2, ... ,argn)=E

name

(argl . . . argn)

E

is a user-formulated name comprised of from 1 to 6 characters. The name used must
conform to the rules for symbolic names given in Paragraph 3.3.

The type of a statement function is determined either by the first character of its
name or by being declared in an explicit or implicit type statement.

represents a list of dummy arguments.

is an arbitrary expression.

TIle expression E of a statement function may be any legitimate arithmetic expression which may use the given
dummy arguments and indicates how they are combined to obtain the desired value. The expression may reference
intrinsic functions (paragraph 15.3) or any other defined statement function, or call an external function. It may not
reference any function that directly or indirectly references the given statement function or any subprogram in the
chain of references which lead to this function.

Statement functions produce only one value, the result of the expression which it contains. A statement function
cannot reference itself.

All statement functions within a program unit must be defined before the first executable statement of the program
unit. When used, the statement function name must be followed by an actual argument list enclosed within
parentheses and may appear in any arithmetic or logical expression.

Examples

SSQR(K)=(K *(K + 1)* 2*K + 1)/6
ACOSH(X)=(EXP(X/ A)+EXP(- XI A))/2.0

1 5.3 INTRINSIC FUNCTIONS

Intrinsic functions are subprograms that are defined and supplied by FORTRAN-IO. An intrinsic function is
referenced by using its assigned name as an operand in an arithmetic or logical expression. The names of the
FORTRAN-IO intrinsic functions, the type of the arguments which each accepts, and the function it performs arc
described in Table 15-1. TIlese names always refer to the intrinsic function unless declared in an EXTERNAL
statement or conflicting explicit type statement.

Version 1 A FORTRAN 15-3 January 1974

CHAPTER 15

Function Mnemonic

Absolute value:
Real ABS*
Integer lABS
Double precision DABS
Complex to real CABS

Conversion:
Intege"r to real FLOAT*
Real to integer IFIX*

Double to real SNGL
Real to double DBLE
Integer to double DFLOAT
Complex to real REAL
(obtain real part)
Complex to real AIMAG
(obtain imaginary
part)
Real to complex CMPLX

I
Truncation:

Real to real AINT

Real to in teger INT*
Double to integer IDINT

Remaindering:
Real AMOD
Integer MOD
Dou ble precision DMOD

Maximum value:
AMAXO
AM AX I *
MAXO
MAXI
OM AX 1

Minimum Value:
AMINO
AMINI
MINO
MINI
DMINI

*In line functions.

Version 1 A FORTRAN

arg
arg

Table 15-1
Intrinsic Functions

Definition

arg
C=(X2 +y2)1/2

Sign of arg *
largest integer
:::;;; largl

c=Argl +i*Arg2

Sign of arg *
largest integer
:::;;; largl

{ The remainder }
when Arg I is

" divided by Arg 2

{ Max(Arg, ,Arg2, ... J }

{ Min(Arg, ,Arg2,' .. }

154

Number of
Arguments

1
1
1
1

1
I

1
I
I
I

I

2

I

I
I

2
2
2

~2

~2

~2

~2

~2

~2

~2

~2

~2

~2

Table of Intrinsic Functions

Type of
Argument Function

Real Real
Integer Integer
Double Double
Complex Real

Integer Real
Real Integer

Double Real
Real Double
Integer Double
Complex Real

Complex Real

Real Complex

Real Real

Real Integer
Double Integer

Real Real
Integer Integer
Double Double

Integer Real
Real Real
Integer Integer
Real Integer
Double Double

Integer Real
Real Real
Integer Integer
Real Integer
Double Double

January 1974

CHAPTER 15

Function

Transfer of Sign:
Real
Integer
Double precision

Positive Difference:
Real
Integer

*In line functions.

Mnemonic

SIGN*
ISIGN
DSIGN

DIM
IDIM

Table 15-1 (Cont)
Intrinsic Functions

Definition

(Sgn(Arg,)*IAfgt I)

(Arg, - Min(Arg, ,Arg, ~

Number of
Arguments

2
2
2

2
2

Table of Intrinsic Functions

External Functions

Type of
Argument Function

Real Real
Integer Integer
Double Double

Real Real
Integer Integer

15.4 EXTERNAL FUNCTIONS

External. functions are function subprograms that consist of a FUNCTION statement followed by a sequence of
FORTRAN-IO statements that define one or more desired operations; subprograms of this type may contain one or
more RETURN statements and must be terminated by an END statement. Function subprograms are independent
programs that may be referenced by other programs.

The FUNCTION statement that identifies an external function has the form

type FUNCTION name (argl ,arg2, ... ,argn)

where

type

flame

(arg 1, ... ,argn)

is an optional type specification of the form INTEGER, REAL, DOUBLE
PRECISION, COMPLEX or LOGICAL.

is the name assigned to the function. The name may consist of from 1 to 6 characters,
the first of which must be alphabetic.

is a list of dummy arguments.

If type is not given in the FUNCTION statement, the type of the function may be assigned, by default, according to
the first character of its name, or may be specified by an IMPLICIT statement or by an explicit statement given
within the subprogram itself.

If the user wants to use the same name for a user-generated function as the name of a library basic external function,
the desired name must be declared in an EXTERNAL statement.

15-5

•

CHAPTER 15 Rules For FUNCTION Statements,

Basic (Generic) Ex tcrnal Functions

The following rules govern the structuring of a FUNCTION subprogram:

a. The symbolic name assigned a FUNCTION subprogram must also be used as a variable name in the
subprogram. During each execution of the subprogram this variable must be defined and, once defined,
may be referenced as redefined. The value of the variable at the time of execution on any RETURN
statement is the value of the subprogram.

NOTE
A RETURN statement returns control to the calling statement
that initiated the execution of the subprogram. See Paragraph
15.4.1 for a description of this statement.

b. The symbolic name of a FUNCTION subprogram must not be used in any nonexecutable statement in
the subprogram except in the initial FUNCTION statement.

c. Dummy argument names may not appear in any EQUIVALENCE, COMMON, or DATA statement used
within the subprogram.

d. The function subprogram may define or redefine one or more of its arguments so as to effectively return
results in addition to the value of the function.

e. The function subprogram may contain any FORTRAN-IO statement except BLOCK DATA,
SUBROUTINE PROGRAM, another FUNCTION statement or any statement that directly or indirectly
references the function being defined or any subprogram in the chain of subprograms leading to this
function.

f. ll1e function subprogram should contain at least one RETURN statement and must be terminated by an
END statement. The RETURN statement signifies a logical conclusion of the computation made by the
subprogram and returns the computed function value and control to the calling program. A subprogram
may have more than one RETURN statement.

The END statement specifies the physical end of the subprogram and implies a return .

15.4.1 Basic External Functions

FORTRAN-IO contains a group of predefined external functions which are referred to as basic functions. Table 15-2
describes each basic function, its name, and its use. These names always refer to the basic external functions unless
declared in an EXTERNAL or conflicting explicit type statement.

15.4.2 Generic Function Names

The compiler will generate a call to the proper FORTRAN-lO supplied function, depending on the type of the
arguments, for the following generic function names.

Version 1 A FORTRAN 15-6 January 1974

CHAPTER 15

ABS
AMAXI
AMINI
ATAN
ATAN2
COS
INT
MOD
SIGN
SIN
SQRT
EXP
ALOG
ALOGIO

A name loses its generic properties if it appears in an EXTERNAL or explicit type statement.

15.5 SUBROUTINE SUBPROGRAMS

Generic Function Names

SUBROUTINE Statement

A subroutine is an external computational procedure which is identified by a SUBROUTINE statement and mayor
may not return values to the calling program. The SUBROUTINE statement used to identify a subprogram of this
type has the form:

SUBROUTINE Ilame(argl ,arg2, ... ,argn)

where

name

(argl, . . . ,argnj

Version 1 A FORTRAN

is the symbolic name of the subroutine to be defined.
is an optional list of dummy arguments.

15-7 January 1974

CHAPTER 15 Table of Basic External Functions

Table 15-2
Basic External Functions

Function Mnemonic Definition Number of Type of
Arguments Argument Function

Exponen tial:

{ c
Arg } Real EXP 1 Real Real

Double DEXP 1 Double Double
Complex CEXP 1 Complex Complex

Logarithm:
Real ALOG loge(Arg) 1 Real Real

ALOGIO log} o(Arg) 1 Real Real
Double DLOG loge(Arg) 1 Double Double

DLOGIO log} o(Arg) 1 Double Double
Complex CLOG log (Arg) e 1 Complex Complex

Square Root:
(Arg)1/2 Real SQRT* I Real Real

Double DSQRT (Arg)1/2 I Double Double
Complex CSQRT (Arg)1/2 1 Complex Complex

Sine:
Real (radians) SIN*

{ SinCArg7

1 Real Real
Real (degrees) SIND I Real Real
Double (radians) DSIN 1 Double Double
Complex CSIN 1 Complex Complex

Cosine:
Real (radians) COS*

{ COSCArg7

1 Real Real
Real (degrees) COSD 1 Real Real
Double (radians) DCOS 1 Double Double
Complex CCOS 1 Complex Complex

Hyperbolic:
Sine SINH sinh(Arg) 1 Real Real
Cosine COSH cosh(Arg) 1 Real Real
Tangent TANH tanh(Arg) 1 Real Real

Arc sine ASIN asin(Arg) 1 Real Real

Arc cosine ACOS acos(Arg) 1 Real Real

Arc tangent
Real ATAN* atan(Arg) 1 Real Real
Double DATAN datan(Arg) 1 Double Double
Two REAL arguments ATAN2* atan(Argl / Arg2) 2 Real Real
Two DOUBLE arguments DATAN2 atan(Arg} / Arg2) 2 Double Double

*Gencrates in-line code.

15-8

CHAPTER 15 CALL Statement

Function Mnemonic

Table 15-2 (Cont)
Basic External Functions

Definition Number of Type of
Arguments Argument Function

Complex Conjugate CONJG Arg=X+iY,CONJG=X-iY 1 Complex Complex

Random Number RAN Result is a random Integer, Real
number in the range 1 Dummy Real,
of 0 to 1.0. Argument Double,

or
Complex

*Generates in-line code.

The following rules control the structuring of a subroutine subprogram:

a. The symbolic name of the subprogram must not appear in any statement within the defined subprogram
except the SUBROUTINE statement itself.

b. The given dummy arguments may not appear in an EQUIVALENCE, COMMON, or DATA statement
within the subprogram.

c. The subroutine subprogram may define or redefine one or more of its arguments so as to effectively
return resul ts.

d. The subroutine subprogram may contain any FORTRAN-IO statement except BLOCK DATA,
FUNCTION, another SUBROUTINE statement, or any statement that either directly or indirectly
references the subroutine being defined or any of the subprograms in the chain of subprogram references
leading to this subroutine.

e. Dummy arguments that represent statement labels may be either an *, $, or &.

f. The subprogram should contain at least one RETURN statement and must be terminated by an END
statement. The RETURN statements indicate the logical end of a computational routine; the END
statement signifies the physical end of the subroutine.

g. Subroutine subprograms may have as many entry points as desired (see description of ENTRY statement
given in Paragraph 15.4.1).

15.5.1 Referencing Subroutines (CALL Statement)

Subroutine subprograms must be referenced using a CALL statement of the following form:

CALL name(argl ,arg2, ... ,argn)

where

name

(argl, . . . ,argn)

Version 1 A FORTRAN

is the symbolic name of the desired subroutine subprogram.

is an optional list of actual arguments. If the list is included, the given actual
arguments must agree in order, number, and type with the corresponding dummy
arguments given in the defining SUBROUTINE statement.

15-9 January 1974

CHAPTER 15 CALL Statement Arguments,

FORTRAN Subroutines, RETURN Statement

MUltiple Returns

The use of literal constants is an exception to the rule requiring agreement of type between dummy and actual
arguments. An actual argument in a CALL statement may be:

a. a constan t

b. a variable name

c. an array element identifier

d. an array name

e. an expression

f. the name of an external subroutine, or

g. a statement label.

Example

The subroutine

SUBROUTINE MATRIX(I,J,K,M, *)

END

may be referenced by

CALL MATRIX(l 0,20,30,40,$101)

15.5.2 FORTRAN-I0 Supplied Subroutines

FORTRAN-lO provides the user with an extensive grou p of predefined subroutines. The descriptions and names of
these predefined subroutines are given in Table 15-3.

15.6 RETURN STATEMENT AND MULTIPLE RETURNS

The RETURN statement causes control to be returned from a subprogram to the calling program unit. This
statement has the form

RETURN (standard return)

or

RETURN e (multiple returns)

where e represents all illteger constant, variable, or expression. The execution of this statement in the first of the
foregoing forms (i.e., standard return) causes control to be returned to the statement of the calling program which
follows the statement that called the subprogram.

15-10

CHAPTER 15 Multiple Returns

V,e Illultiple returns form of this statement (i.e., RETURN e) enables the IIser to select any labeled statemellt of the
calling program as a return point. When the mUltiple returns form of this statemellt is executed, the assiglled or
calculated value of e specifies that the return is to be made to the eth statement label ill the argument list of the
calling statement. The value of e should be a positive integer wlrich is equal to or less than the Ilumber of statemellt
labels givell ill the argument list of the calling statement. If e is less thall 1 or is larger thall the Ilumber of available
statement labels, a stalldard retum operation is performed.

NOTE
A dummy argument for a stateme1lt label must be either a *,

$, or & symbol.

Any number of RETURN (standard return) statements may be used in any subprogram. The use of the mUltiple
returns form of the RETURN statement, however, is restricted to SUBROUTINE subprograms. The execution of a
RETURN statement in a main program will terminate the program.

Example

Assume the following statement sequence in a main program:

10

15

20

CALL EXAMP(I,S 10,K,$20,M,S30)
GO TO 101

Assume the following statement sequence in the called SUBROUTINE subprogram:

SUBROUTINE EXAMP (L,* ,M,* ,N,*)

RETURN

RETURN

RETURN(C/D)

END

15-11 January 1974

I

CHAPTER 15 Referencing External FUNCTION Subprograms

Each occurrence of RETURN returns control to the statement GO TO 101 in the calling program.

If, on the execution of the RETURN(C/D) statement, the value of (C/D) is:

Less than or equal to:
o
1
2
3

Greater than or equal to:
4

The fol/owing is performed:
a standard return to the GO TO 101 statement is made
the re turn is made to statement 10
the return is made to statement 15
the return is made to statement 20

The fol/owing is performed:
a standard return to the GO TO 101 statement is made.

15.6.1 Referencing Extemal FUNCTION Subprograms

An external function subprogram is referenced by using its assigned name as an operand in an arithmetic or logical
expression in the calling program unit. The name must be followed by an actual argument list. The actual arguments
in an external function reference may be:

a. a variable name

b. an array element identifier

c. an array name

d. an expression

e. a statement number

f. the name of another external procedure (FUNCTION or SUBROUTINE).

Example

NOTE
Any subprogram name to be used as an argument to another
subprogram must first appear in an EXTERNAL statement
(Chapter 6) in the calling program unit.

The subprogram defined as:

INTEGER FUNCTION ICALC(X,Y,Z)

(\

I RETURN
END

may be referenced in the following manner:
e

TOTAL = ICALC(IAA,IAB,IAC)+500

15-12 January 1974

I

CHAPTER 15

15. 7 ~fULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT)

ENTRY Statement,

Multiple Entry Points

FORTRAN-I0 provides an ENTRY statement which enables the user to specify additional entry points into all
external subprogram. This statement used in conjunction with a RETURN statement enables the lIscr to employ
only one computational routine of a subprogram which contains several such routines. The form of the ENTR Y
statement is:

ENTRY llame(argI,arg2, . . . ,argn)

where

name is the symbolic name to be assigned the desired entry point

(argl, . . . ,argn) is all optional list of dummy arguments. This list may contain

a. variable names

b. array declarators

c. the name of an extemal procedure (SUBROUTINE or FUNCTION), or

d. all address constant denoted by either a *, $, or & symbol

17ze rules for the use of an ENTR Y statmellt follow.

a. 171e ENTRY statement allows entry into a subprogram at a place other thall that defined by the
subroutine or fUllctioll statemellt. Any Ilumber of ENTR Y statemellts may be included in an external
subprogram.

b. Execution is begun at the first executable statement following the ENTR Y statement.

c. Appearance of an ENTR Y statement in a subprogram does not preclude the rule that statement
functions in subprograms mllst precede the first executable statement.

d. Entry statements are nonexecutable and do not affect the execution flow of a subprogram.

e. An ENTR Y statement may not appear in a main program, Ilor maya subprogram reference itself
through its entry points.

f. An ENTR Y statemellt may Ilot appear ill the range of a DO or all extellded DO statemellt cOllstruction.

g. The dummy arguments ill the ENTR Y statement need /lot agree in order, number, or type with the
dummy arguments ill SUBROUTINE or FUNCTION statemellts or allY other ENTR Y statement ill the
subprogram. However, the argumellts for each call or fUllction reference must agree with the dummy
arguments in the SUBROUTINE, FUNCTION, or ENTRY statement that is referenced.

h. Entry into a subprogram illitializes the dummy arguments of the referenced ENTR Y statement, all
appearances of these argumellts ill the entire subprogram are initialized.

i. A dummy argument may not be referenced unless it appears in the dummy list of all ENTR Y,
SUBROUTINE, or FUNCTION statement by which the subprogram is entered.

Version 1 A FORTRAN 15-13 January 1974

CHAPTER 15 Entry Points

j. The source subprogram must be ordered such that references to dummy arguments in executable
statements must follow the appearance of the dummy argument in the dummy list of a SUBROUTINE,
FUNCTION, or ENTR Y statement.

k. Dummy arguments that were defined for a subprogram by some previous reference to the subprogram
are undefined for subsequent entry into the subprogram.

I. The vallie of the function must be returned by using the current entry name.

Version 1A FORTRAN 15-14 January 1974

CHAPTER 15

Subroutine Name

AXIS

DATE

DEFINE FILE

o

Table of Library Subroutines

Table 15-3
FORTRAN-I 0 Library Subroutines

Effect

CALL AXIS(X,Y ,ASC,N ASC,S, THE T A,XMIN ,DX)

Causes an axis with tic marks and scale values at I-inch increments to be
drawn. An identifying label may also be plotted along the axis. Parameters X
and Y specify the start of the axis. The axis is plotted, starting at X, Y, at an
angle of THETA degrees for a distance of S inches. The angle THETA is
usually either 0 (X axis) or 90.0 (Y axis). Characters NASC of array ASC arc
plotted as a label for the axis drawn. If NASC is positive, the tic marks, label,
and scale values arc placed on the positive (clockwise) side of the axis~ if
NASC is negative, the foregoing items arc placed on the negative
(cou n tercloc kwise) side of the axis.

Parameter XMIN is the value of the scale at the beginning of the axis~

parameter DX is the change in scale for a I-inch increment. The values of
XMIN and DX may be determined by subroutine SCALE.

Places today's date as left-justified ASCII characters into a dimensioned
2-word array.

CALL DATA (array)

where array is the 2-word array. The date is in the form

dd-mmm-yy

where dd is a 2-digit day (if the first digit is 0, it is converted to a blank),
mmm is a 3-digit month (e.g., MAR), and yy is a 2-digit year. The date is
stored in ASCII code, left-justified, in the two words.

A DEFINE FILE call can be used to establish and define the structure of each
file to be used for random access I/O operations.

NOTE
The OPEN statement may be used to perform the same
functions as DEFINE FILE.

The format of a DEFINE FILE call may be

CALL DEFINE FILE (u,s,v,f,pj,pg)

where

15-15 January 1974

CHAPTER 15

Subroutine Name

DEFINE FILE
(cont)

DUMP

u

Table 15-3 (Cont)
FORTRAN-iO Library Subroutines

Effect

logical FORTRAN-IO device numbers.

Table of Library Subroutines

s = the size of the records which comprise the file being defined. The
argument s may be an integer constant or variable.

v an associated variable. The associated variable is an in teger
variable that is set to a value that points to the record that
immediately follows the last record transferred. This variable is
used by the FIND statement (Chapter 10). At the end of each
FIND operation the variable is set to a value that points to the
record found. The variable v cannot appear in the I/O list of any
I/O statement that accesses the file set up by the DEFINE FILE
statement.

f = filename to be given the file being defined.

pj = user's project number.

pg = user's programmer's number.

NOTE
Numbers pj and pg identify the User's File Directory.

Example

The statement

DEFINE FILE 01 (IOOO,IO,FORTFL.DAT,ASCVAR)

establishes a file named FORTFL.DAT on device 01 (i.e., disk) which
contains 1000 words divided into 100 10-word records.

Causes particular portions of core to be dumped and is referred to in the
following form:

where Land U 1 are the variable names which give the limits of core memory
1

to be dumped. Either Ll or U 1 may be upper or lower limits. F 1 is a number
indicating the format in which the dump is to be performed: 0 = octal, 1 =
real, 2 = integer, and 3 = ASCII.

If F is not 0, I, 2, 3, the dump is in octal. If F n is missing, the last section is
dumped in octal. If U and F are missing, an octal dump is made from L to n n
the end of the J'ob area. If L , U , and F are missing, the entire job area is n n n
dumped in octal.

The dump is terminated by a call to EXIT.

15-16

CHAPTER 15

Subroutine Name

ERRSET

EXIT

ILL

LEGAL

LINE

MKTBL

NUMBER

PDUMP

Table 15-3 (Cont)
FORTRAN-I0 Library Subroutines

Effect

Table of Library Subroutines

Allows the user to control the typeout of execution-time arithmetic error
messages, ERRSET is called with one argument in integer mode.

CALL ERRSET(N)

Typeout of each type of error message is suppressed after N occurrences of
that error message. If ERRSET is not called, the default value of N is 2.

Returns control to the Monitor and, therefore, terminates the execution of
the program.

Sets the ILLEG flag. If the flag is set and an illegal character is encountered in
floating point/double precision input, the corresponding word is set to zero.

CALL ILL

Clears the ILLEG flag. If the flag is set and an illegal character is encountered
in the floating point/double precision input, the corresponding word is set to
zero.

CALL LEGAL

Causes a line to be drawn through the N points specified by
(X(I),Y(I)),(X(2),Y(2)) ... (X(N),Y(N)) where the elements of X and Yare
spaced K words apart in storage.

CALL LINE (X,Y,N,K)

CALL MKTBL(I,J)

Specifies a special character set where I is the number to be assigned the set
and J contains the starting address of a character table of 200s consecutive
words. In each character table word the left half contains the number of
strokes in the character (0 if nothing is to be plotted for the word) and the
righ t half con tains the address of the table of strokes for the character.

CALL NUMBER(X,Y,SIZE,FNUM,THETA,NDIGIT)

Causes a floating point number to be plotted as text. Parameters X, Y, SIZE
and THETA have the same meanings as for the SYMBOL call. Parameter
NDIGIT is the number of digits plotted to the right of the decimal point. If
NDIGIT is a negative value, only the integer part of the number is plotted.
FNUM specifies the number to be plotted.

The arguments are the same as those for DUMP. PDUMP is the same as DUMP
except that control returns to the calling program after the dump has been
executed.

15-17

CHAPTER 15

Subroutine Name

PLOT

PLOTS

RELEAS

SAVRAN

SCALE

SETABL

SETRAN

SLITE(i)

Table t5-3 (Cont)
FORTRAN-tO Library Subroutines

Effect

CALL PLOT(X,Y,IPEN)

Table of Library Subroutines

Move the pen in a straight line from its current position to the position
specified by X,Y. If IPEN=3, the pen is raised before the movement; if
IPEN=2 the pen is lowered before movement; if IPEN=I the pen is left
unchanged from its previous state. If the value of IPEN is negative (-1, -2 or
- 3) the pen action is the same as for the corresponding positive values except
that on completion of the indicated motion the new pen position is taken as a
new origin and the output buffer is sent to the plotter.

The plotter is not released on completion of the specified movement.

CALL PLOTS (I)

The plotter setup rou tine is called. If the plotter is not available, I is set to -1;
if it is available, I is set to O. This call must be the first plotter routine called.

CALL RELEAS(unit*)

Closes out I/O on a device initialized by the FORTRAN Operating System
and returns it to the uninitialized state.

SAVRAN is called with one argument in integer mode. SAVRAN sets its
argument to the last random number (interpreted as an integer) that has been
generated by the function RAN.

CALL SCALE(X,N,X,XMIN,OX)

Selects scale values for an AXIS call where X and N specify a I-dimensional
array X with the length N. Parameter S specifies the length of the desired
axis, SCALE determines a value of OX which allows X to be plotted in S
inches. XMIN is selected as the smallest clement of the array X, and is
truncated to be a multiple of OX.

CALL SET ABL(I,J)

. Specifies a character set where I is an integer which gives the number of the
desired character set. If a character set has been defined by I, the value of J is
set to 0; if not, J is set to -1. The standard ASCII character set is defined as
1.

SETRAN has one argument which must be a non-negative integer < 231
. The

starting value of the function RAN is set to one value of this argument, unless
the argument is zero. In this case, RAN uses its normal starting value.

Turn sense lights on or off. i is an integer expression. For I~ i ~ 36 sense
light i will be turned on. If i=O, all sense lights will be turned off.

15-18

CHAPTER 15

Subroutine Name

SLITET(i,j)

SSWTCH(iJ)

SYMBOL

TIME

WHERE

Table J 5-3 (Cont)
FORTRAN-J 0 Library Subroutines

Effect

Table of Library Subroutines

Checks the status of sense light i and sets the variable j accordingly and turns
off sense light i. If i is on, j is set to 1; and if i is off, j is set to 2.

Checks the status of data switch i (0,:(; i :(; 35) and sets the variable j
accordingly. If i is set OFF, j is set to 1; and, if i is ON, j is set to 2.

CALL SYMBOL(X,Y,SIZE,BCD,THETA,NBCD)

Raise pen and move it to position specified by X and Y. Lower pen and plot
characters found in array ASC. Parameter SIZE specifies the height of the
characters plotted in inches (floating point values); THETA specifies the
direction of the base line on which the text of array ASC is to be plotted, and
NASC specifies the number of characters in array ASC.

Returns the current time in its argument(s) in left-justified ASCII characters.
If TIME is called with one argument,

CALL TIME(X)

the time is in the form

hh:mm

where hh is the hours (24-hour time) and mm is the minutes. If a second
argument is requested,

CALL TIME(X,Y)

the first argument is returned as before and the second has the form

sS.t

where ss is the seconds and t is the ten ths of a second.

CALL WHERE(X,Y)

Variables X and Yare set to the values which identify the current position of
the pen.

15-19

CHAPTER 16

FORTRAN-IO extensions to the 1966 ANSI
standard set are printed in boldface italic type.

BLOCK DATA Statement

CHAPTER 16
BLOCK DATA SUBPROGRAMS

16.1 INTRODUCTION

Block da ta subprograms are used to initialize data to be stored in any common areas. Only specification and DATA
statements are permitted (i.e., DATA, COMMON, DIMENSION, EQUIVALENCE, and TYPE) in block subprograms.
A subprogram of this type must start with a BLOCK DATA statement.

If any entry of a labeled common block is initialized by a BLOCK DATA subprogram, the entire block must be
included even though some of the elements of the block do not appear in DATA statemen ts.

Initial values may be entered into more than one labeled common block in a single subprogram of this type.

An executable program may contain more than one block data subprogram.

16.2 BLOCK DATA STATEMENT

The form of the BLOCK DATA statement is

BLOCK DATA name

where

name is a symbolic name given to identify the subprogram.

16-1 January 1974

APPENDIX A

ASCII-1968 CHARACTER CODE SET

The character code set defined in the X3.4-l968 Version of the American National Standard for Information
Interchange (ASCII) is given in the following matrix.

1st 2 Last octal digit
oct~ 0 1 2 3 4 5 6 7
digits

OOx
Olx
02x
03x

I 04x
05x
06x
07x
lOx
llx
l2x
13x
l4x
l5x
l6x
l7x

NUL
BS
DLE
CAN

~
(
0
8
@

H
p

x

h
p
x

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

SOH STX ETX EaT ENQ ACK DEL
HT LF VT FF CR SO SI
DCl DC2 DC3 DC4 NAK SYN ETB
EM SUB ESC FS GS RS US
! " # $ % &

,

) * + - / ,
I 2 3 4 5 6 7
9 , < = > ?
A B C D E F G
I J K L M N a
Q R S T U V W
Y Z [\] 1\ (t) (+-)

b d f -a c e g
i j k I m n 0

q r s t u v w
y z { I } (ESC) DEL

Characters inside parentheses are ASCII-1963 Standard.

Null DLE Data Link Escape
Start of Heading DCl Device Control 1
Start of Text DC2 Device Control 2
End of Text 1?C3 Device Control 3
End of Transmission DC4 Device Control 4
Enquiry NAK Negative Acknowledge
Acknowledge SYN Synchronous Idle
Bell ETB End of Transmission Block
Backspace CAN Cancel
Horizontal Tabulation EM End of Medium
Line Feed SUB Substitute
Vertical Tabulation ESC Escape
Form Feed FS File Separator
Carriage Return GS Group Separator
Shift Out RS Record Separator
Shift In US Unit Separator

DEL Delete (Rubout)

A-I

Graphic
subsets
64 95

January 1974

APPENDIX B
WRITING USER PROGRAMS

The DECsystem-l 0 FORTRAN-l 0 compiler is distributed under the name FORTRAN. The FORTRAN compiler is a
highly optimizing compiler particularly useful in a scientific production environment. This appendix contains
information about the use of the FORTRAN-lO compiler. It assumes the reader is familiar with the FORTRAN-lO
language and the DECsystem-lO TOPS-lO monitor. .

B.I RUNNING THE FORTRAN-I 0 COMPILER

The command to run the FORTRAN-l 0 compiler is:

.RFORTRA

The compiler responds with an asterisk (*) and is then ready to accept a command line. A command is of the general
form

object file name, listing file name = source file name(s).

The file names can be fully specified SFD paths. If no object file name is specified, no relocatable binary file is
generated. If no listing file is specified, no listing is generated. Several source files may be specified; each must
contain one or more complete FORTRAN-lO compilation units (i.e., a program or subprogram that terminates with
an END line). The source files will be compiled in the order specified and stored in relocatable binary form in the
single specified object file.

B.1.1 Switches Available with the FORTRAN-I 0 Compiler

Switches to the FORTRAN-! 0 compiler are accepted anywhere in the command line. They arc totally position- and
file-independent. The switches are shown in Table B-1.

B-1 January 1974

Switch

CROSSREF

EXPAND

INCLUDE

KAlO

KIlO

MACROCODE

NOERRORS

NOWARNINGS

OPTIMIZE

SYNTAX

Example:

.R FORTRAN

Minimum
Abbreviation

C

E

KA

KI

M

NOE

NOW

o

S

Table B-l
FORTRAN-lO Compiler Switches

Meaning

Generate a file that can be input to the CREF program.

Include the octal-formatted version of the object file in the
listing.

Compile a D in card column 1 as a space.

Compile code to run on a KA 1 0 processor.

Compile code to run on a KIl 0 processor.

Add the mnemonic translation of the object code to the listing
file.

Do not print error messages on the terminal.

Do not print warning messages on the terminal.

Perform global optimization.

Perform syntax check only.

OFILE, LFILE = SFILE/M, S2FILE

The I M switch will cause the macro code equivalent for both input files (SFILE and S2FILE) to appear on the
listing.

If neither the /KA 10 or /KIl 0 switch is used, code will be compiled for the processor type on which the compilation
is occurring. The processor type of the code in the object file is indica ted at the top of each listing page.

B.1.2 Monitor Commands

When both FORTRAN-I 0 and F40 are present in a DECsystem-l0 system, users can specify which compiler is to be
used. The switches /Fl 0 or /F40 may be added to the commands

COMPILE
LOAD
EXECUTE
DEBUG

Example:

EXECUTE ROTOR /FI0

B-2 January 1974

If the switch is not specified and the file extension is FOR, the FORTRAN-l 0 compiler will be used. If the switch is
not specified and the file extension is F4, the F40 compiler will be used.

B.2 READING A FORTRAN-tO LISTING

When a listing is requested from the FORTRAN-I0 compiler, the listing contains the following information:

1. A printout of the source program text plus an internal sequence number assigned to each line by the
compiler. This internal sequence number is referenced in any error or warning messages generated during
the compila tion.

2. A summary of the names and relative program locations (in octal) of scalars and arrays in the source
program plus compiler generated variables.

3. All COMMON blocks and the relative locations (in octal) of the variables in each COMMON block.

4. A listing of the subprograms referenced (both user defined and FORTRAN-I0 supplied library
functions).

5. A summary of temporary locations generated by the compiler.

6. A heading on each page of the listing containing the program name (MAIN., subroutine or function
principle entry) and the date and time of the compilation. Whether or not a specific processor switch
(/KA 10, /KI 1 0) was used, the processor for which the code was generated is also at the top of the listing
page. If the /OPTIMIZE switch was used, /OPT also appears on the listing page heading.

7. If the /MACRO switch was used, a mnemonic printout of the generated code (in a format similar to
MACRO-I0) is appended to the listing. This section of the listing has four fields:

LINE: This column contains the internal sequence number of the line corresponding to the mnemonic code.
It appears on the first instruction of the code sequence associated with that internal sequence number. An
asterisk (*) indicates a compiler-inserted line.

LOC: The relative location in the object program of the instruction.

LABEL: Any program- or compiler-generated label. Program labels have the letter P appended.
Compiler-generated labels are followed by the letter M.

GENERATED CODE: The MACRO-l 0 mnemonic code.

8. A summary of all argument blocks generated by the compiler.

The following example shows a listing where all of these features are pointed out.

B-3 January 1974

Name of program Name of source file The optimizer was selected

I / I
MAIN .. T I r,~ 2 .. FOR fORTRAN Vet IKI/OPT 9 .. NOV-73 11: 1 ~
Each line is assigned an internal sequence number + code was compiled for a KI processor

DODOl
00002
00003
00004
00005
00006
00007
OOOos
00009
00010
00011

~
00012

~ 0(1013
00014
00015
00016
00017
00018
00019

lon
C

10

IMPLICIT INTEGER (A.Z)
DIM~NSION A(100,200),hC100,200)
SIH~ 1 =0
SU~'2=O

cn 10C' J=1,200
DC' 1(10 1=1,100
Kl=I*L.J
1 f (K 1 • I· T. 5 0 0 • () R. K 1 , G T. 1 5 (1 0) K 1 = 0
ACI,lJ)=Kl
K2=I+J
If (K2 ,EO, 100 ,OR, K2 ,EO, 200 .OR, K2.EQ,300) K2=K2+1
~(t'll)=K2
SUM 1 =SlijY~ 1 +1(1
SUt'''2=SUM2+K2
CONTINUE:

PRINT 10,SUM1,SUM2
fORMAT(7H SUM!= ,19,lOH
~ND

SUM2= ,I9)

5UPPPOGRAM5 CALLED

SCALA~S ~Nn APFAYS

~ Kl
~ .50001
c.:
~ K2
~

1
116105
11~113

~ TEMpnF<~PIFS

B
,sooon
StH) 1

The relative address of all variables is given

2
l1nl06
1161'.4

,F0001
sur"~2

47042
1.10107

,HOODO
T

47043
1161to

J
,00001

PAGE 1

47044
116111

A
,00000

47045
116112

~ , octal displacement of instruction

LINE riDe Id~4 R EL GENEPATED conE

0 Jr"CL 0,0
*indicates a compiler inserted "line"

1 .JSP 1 t , Rfo:S ~ T •
2 o,Q

3 .3 Sr::TZ8 '),SUMl
4 4 SF':TZR ?,SUM2

* " ~~ ov r: 1 /,144
~ ~~ (1 V r: M 2, .ROOO1

5 7 M(1V~~ 2, [777470(00001)
10 HLRFM 2, .SOOQO
1 1 r..tJ: ~ compiler generated label

HP.~Z~' 2, \..1
4- , 2 7n:

M.OVE 2,J
13 \··OVt:: M 2, .ROOOO

* t 4 ~HJVE 2"HOQC)1
15 MOVE~1 2, ,noooo

* 16 MOVE 1!>, .00001
t::::O

* 17 ""OVE 14,K2 LIl

* 20 ~~OVE , 3 , t(1
4- 21 ~.~ 0 V F: 12, .ROOOO

* '2 ~i("1 V E l , ,stTi"; 2
4- 23 ~'t(lVE 1 0 , S U ~~ 1

" 24 ~Crvr: 2, (777634000001]
* 25 ~L'" :

~OVr:I 1.5,0(2)
26 ADD 15, ,00000

7 27 ~"~ 0 V t; t .3 , 12
~ 30 C.A. I J.., '3,764

31 CA ILF-: '3,2734
8 32 1 0 ~~ :

1>1 n V F.. 1 13, 0

9 33 qr:
t-.. ~., OV E ~1 13,A-14~(15) ~

c
c.::

10 34 MOVE 14,J
-. 35 Ac-DI 14,0(2) '<

~ 1 1 36 C A I~: 14,144
--.)

37 JRST o , 1 2 ~1 +:>.

40 CAlF. 14,3tO

4 1 1 3 ~~ :
C A I ~J 14,454

1 1 42 1 2"'~ :
AnnI 14, 1

12 43 11 J~ J

MOV~~" 14,R-14:,(15)
1 3 44 AOr..) 10, 13
14 ;5 ADD , 1 , 1 4

program label
* 46 toop: ..

u .. ~ :
ADD 12,J

47 AOPI,]N ? , ~H~

* 50 4 Me ..
~HJ Vr~ ~ 10, s U~~ 1 .. 51 ~v~ () V E)~ 11 , S In·~ 2

* S2 MOVr-:M 12, • Ronoo .. 53 1o..lOV~~M 13, K t

* 54 ~HJ V E:~' 14,K2 .. 55 MOVEM 1~, .(10001
t:O .. 5b /.;~ :
&-

~~ Li V E I 2,144
57 ADD:--' 2, .~OOO1
60 ADS -; , ,.1
61 t..OSGE 0, ,SOOOO
62 ,1PST () , 7 A.\

17 63 ~~OVE I tb,14r'"
64 Pl1SHJ t7,OlJl.
65 ":lOVEt 16, 1 ~p.,
66 PtiSHLl 17,IOLST,

19 67 10P:
3 Iv: :

r.~ OVt; I 16, sr1
70 PUSHJ 17,EXIT.

c....,
~
::l
C
~
-t

'<

\0
-..J
~

t::C
~

c.....
~
::l
C
~
o-t

"<

-.0
-..l
~

A R G U f..\ E r J T R 1J 0 C K S :

MAIN.

"71
72
7.3
74
7~
7h

77
100
101
1C2
103
104
o rRRORS

5 j-l :

141~ :

0, , 0
0, ,0
777773,,0
0,,777775
o , , ()
0, ,0

340,,116115
0, , 7
0, ,0

15M: tlOO"SUMl
1100, ,SU'.42
4000,,0

eETFCTFD

Argument blocks

errors summary

B.3 ERROR REPORTING

If an error occurs during the initial pass of the compiler (while the actual source code is being read and processed),
an error message referencing the internal sequence number of the incorrect line is printed on the listing following the
incorrect line and on the user's terminal. An English text that describes the error follows the message.

Errors that are detected after the initial pass of the compiler appear at the end of the listing (or terminal output).
They also reference the internal sequence number of the line in error.

A reference to an internal sequence number of zero (0) is an error detected after the initial pass of the compiler in a
line that was inserted by the compiler. The accompanying message, however, accurately describes the error.

There are two levels of error, warning and fatal. The warning message mayor may not actually contain the word
WARNING. It indicates a minor error or inconsistency. The compilation will continue and the object program may
be correct. If a fatal error is encountered in the initial pass of the compiler, the remaining passes will not be called.
As the word fatal denotes, it is not possible to generate a correct object program for the source program containing
the error.

Most errors (both levels) are detected in the initial pass of the compiler. However, if fatal errors are detected in the
initial compiler pass, additional errors that would be detected in later compiler passes may not become apparent
until the first errors are corrected.

The printing of error and warning messages on the user's terminal can be suppressed by use of the /NOERRORS or
/NOW ARNINGS switches, respectively.

At the end of the listing file and on the terminal, an error summary is printed after each subprogram unit is
compiled. This message is of the form:

NAME number ERRORS DETECTED

Where name is the subprogram name and number is the cumulative total of all fatal errors and warnings. If this line is
followed by a question mark (?) appearing on the far left of the line, fatal errors were encountered.

B.4 WRITING EFFECTIVE FORTRAN-lO PROGRAMS

B.4J General Programming Considerations

Programming considerations that should be observed when preparing a FORTRAN program to be compiled by
FORTRAN-l 0 are described in the following paragraphs.

B.4.l.l Accuracy and Range of Double Precision Numbers - Floating point and real numbers may consist of up to
16 digits in a double precision mode; they must be within the range (decimal) ±.l468E-38 to ±114E+38. Care must
be taken when testing the value of a number within the foregoing range since, although numbers up to 1038 may be
represented, FORTRAN-IO can only test numbers of up to 8 significant digits (REAL precision) and 16 Significant
digits (DOUBLE precision).

Care must also be taken when testing the floating point computation for a result of O. In most cases the anticipated
result (i.e., 0) will be obtained; however, in some cases the result may be a very small number which approximates O.
Such an approximation of 0 would cause tests within statements (e.g., an arithmetic IF) to fail.

B.4.1.2 Writing FORTRAN-lO Programs for Execution on Non-DEC Machines - If a program is to prepared to run
on both a DECsystem-l0 computer and a non-DEC machine, the user should:

I. Avoid using the non-standard features of FORTRAN-IO, and

2. Consider the accuracy and size of the numbers which the non-DEC machine is capable of handling.

B-8 January 1974

BA.2 Storage of Arrays

The elements of an array are arranged in storage in ascending order, with the value of the first subscript quantity
varying between its maximum and minimum values most rapidly and the value of the last given subscript quantity
increasing to its maximum value least rapidly. For example, the elements of the array dimensioned as 1(2,3) are
stored in the following order:

I(1,1) ~ 1(2,1) ~ 1(1 ,2) ~ 1(2,2) ~ I(1 ,3) ~ 1(2,3)

The following list describes the order in which the elements of the three-dimensional array B(3,3,3) arc stored:

B(1,l,1) .. B(2,1,1) .. B(3,1,1) -,

~ ... B(1,2,1) .. B(2,2,1) ... B(3,2,1) -.

'- -+ B (1, 3 , 1 .. B (2 , 3, 1) ... B (3, 3, 1) -,

!.. ... B(I,I,2) ... B(2,1,2) ... B(3,1,2) -,

1_... B (1 , 2 , 2) ... B (2 , 2 , 2) ... B (3 " 2 , 2) -,

!.. ... B(1,3,2) ... B(2,3,2) ... B(3,3,2) -,

------------------------------------1 •
-+ B(1,1,3) ... B(2,1,3) ... B(3,1,3) -I

~ ... B(1,2,3) ... B(2,2,3) .. B(:I12,3) - •

... ...,. B(I,3,3) + B(2,3,3) + B(3,3,3)

BA.3 Use of COMMON

The COMMON statement enables the user to establish storage which may be shared by two or more programs and/or
subprograms and to name the variables and arrays that are to occupy the common storage. The use of common
storage conserves storage and provides a means to implicitly transfer arguments between a calling program and a
subprogram. COMMON statements are written in the following form:

COMMON/A 1 /VI ,V2, ... ,Vn/ .. ./ An/VI ,V2, ... ,Vn/

where: The enclosed letters /AI/, /A2/, and /An/ represent optional name constructs (referred to as COMMON
BLOCK NAMES when used).

The list (i.e., VI,V2 ... Vn) appearing after each name construct lists the names of the variables and arrays which are
to occupy the common area identified by the construct. The items specified for a common area are ordered within
the storage area as they are listed in the COMMON statement.

COMMON storage area may be either labeled or blank (unlabeled). If the common area is to be labeled, a symbolic
name must be given within slashes immediately before the list of items which are to occupy the names area. For
example, the statement:

COMMON/AREAl/A,B,C/AREA2/TAB(13,3,3)

establishes two labeled common areas (i.e., AREAl and AREA2). Common block names bear no relation to internal
variables or arrays that have the same name.

If a common area is to be declared but is to be unlabeled (i.e., blank), either nothing or two sequential slashes (/ /) is
given immediately before the list of items which are to occupy blank common. For example, the statement:

COMMON/ AREA 1 / A,B,C/ /T AB(3,3 ,3)

establishes one labeled (AREAl) and one unlabeled (i.e., blank) common area.

B-9 January 1<)74

A given labeled common name may appear more than once in the same COMMON statement and in more than one
COMMON statement within the same program or subprogram.

Each labeled common area is treated as a separate, specific storage area. The contents of a labeled common area (i.e.,
variables and array elements) may be assigned initial values by DATA statements in BLOCK DATA sUbprograms.
Any reference made to a given common area must contain the same number, size, and order of variable and array
names as the reference area.

Items to be placed in a blank common area may be given in COMMON statements throughout the source program
and may also be initialized in DATA statements anywhere in the program.

During compilation of a source program, FORTRAN-J 0 will string together all items listed for each labeled common
area and for blank common in the order in which they appear in the source program statements. For example, the
series of source program sta temcnts:

COMMON/STI / A,B,C/ST2/TAB(2,2)/ /C,D,E

COMMON/ST I /TST(3,4)/ /M ,N

COMMON/ST2/X,Y ,Z/ /O,P,Q

have the same effect as the single statement:

COMMON/ST 1/ A,B,C,TST(3,4)/ST2/TAB(2,2),X,Y ,Z/ /C,D,E,M,N,O,P,Q

All items speCified for blank common arc placed into one area. Items within blank common are ordered as they are
given throughout the source program.

Subscripted array names may be given in COMMON statements as array dimension declarators. However, variables
cannot be used as subscript quantities in a declarator appearing in a COMMON statement.

Each array name given in a COMMON statement must be dimensioned either by the COMMON statement or by
another dimensioning statement within the program or subprogram that contains the COMMON statement.

B.4.4 Use of EQUIVALENCE Statements

Statements of this type are used to:

1. Save storage space. Arrays that are used independently, but not concurrently, may be made equivalent in
order to share the same storage locations. For example, the sequence:

DIMENSION A (10), B (5,3)
EQUIVALENCE (A (1), B (1,1))

causes arrays A and B to share the same storage locations with B overlapping A.

2. Take advantage of the convenience of arrays in I/O lists and loops, but still retain meaningful names for
selected clements. For example, the sequence:

DIMENSION RECORD (I 0), NAME (2)
EQUIVALENCE (IDENT, RECORD (I)), (NAME (I),RECORD (2))

assigns the identification IDENT to the first location of array RECORD. IDENT is maintained as a
non-shared location by equivalence arrays NAME and RECORD starting at location 2 of RECORD.

B-10 January] 974

3. To link logically related variables of different types in one array. For example, the program sequences:

DIMENSION RECORD (10), NAME (2)
EQUIVALENCE (IDENT, RECORD (1)), (NAME (1),VOLUME)

Care must be taken in equivalencing COMPLEX and DOUBLE PRECISION variables which occupy two
storage locations each with variables of types which occupy only one storage location.

4. To handle all elements of a multi-subscripted structure simultaneously in a single loop. For example, the
program sequence:

DIMENSION A(3,4,7), ZERO(84)
EQUIVALENCE (ZERO(1), A(1 ,1 ,1))
DO 101=1,84

10 ZERO (1) = 0

Zeroes all elements of the array A using the I-dimensional array ZERO.

B.4.S Use of ENTRY Statements

FORTRAN-IO provides an ENTRY statement that enables the user to specify additional entry points into an
external subprogram. This statement, in conjuilction with a RETURN statement, enables the user to employ only
one computational routine of a subprogram which contains several relatively independent sections. The form of the
ENTRY statement is:

ENTRY name(arg I ,arg2, ... ,argn)

where:

name is the symbolic name to be assigned the desired entry point

(argl-argn) is an optional list of dummy arguments. This list may contain:

1. variable names
2. array decIarators
3. the name of an external procedure (SUBROUTINE or FUNCTION), or
4. an address constant denoted by either a * or $ symbol

The rules for the use of an ENTRY statement follow:

1. The ENTRY statement allows entry into a subprogram at a place other than that defined by the
subroutine or function statement. Any number of ENTRY statements may be included in an external
subprogram.

2. Execution is begun at the first executable statement following the ENTRY statement.

3. Appearance of an ENTRY statement in a subprogram does not preclude the rule that statement
functions in subprograms must precede the first executable statement.

4. ENTRY statements are non-executable and do not affect the execution flow of a subprogram.

5. An ENTRY statement may not appear in a main program, nor maya subprogram reference itself
through its entry points.

B-l1 January 1974

6. An ENTRY statement may not appear in the range of a DO or an extended DO statement construction.

7. The dummy arguments in the ENTRY statement need not agree in order, number, or type with the
dummy arguments in a SUBROUTINE or FUNCTION statement or any other ENTRY statement in the
subprogram. However, the arguments for each call or function reference must agree with the dummy
arguments in the SUBROUTINE, FUNCTION, or ENTRY statement that is referenced.

8. Entry into a subprogram initializes the dummy arguments of the referenced ENTRY statement; all
appearances of these arguments in the entire subprogram are initialized.

9. A dummy argument must not be used in any executable statement in the subprogram unless it has been
previously defined in an executable statement or in the dummy list of an ENTRY, SUBROUTINE, or
FUNCTION statement.

10. The value of the function in function subprograms may be returned by using either the function name or
an entry name. The type of the function name and the type of the entry name need not be the same.

Example:

The function subprogram

INTEGER FUNCTION IAB(J,K)
101 lAB = J+K

RETURN
120 ENTRY ISUB(J)

IF (J>K)101 ,150
150 lAB = J- K

RETURN
END

has two entry points, the FUNCTION statement and statement 120. References to these entry points from another
program may be

TOT AL = IAB(1 O+P ,ITOT)

SUB = ISUB(50)

BA.6 Using Floating Point DO Loops

FORTRAN-I0 permits the user to employ non-integer single or double precision numbers as the parameter variables
in a DO statement. The primary advantage of the foregoing is to enable the user to generate a wider range of values
for the DO loop index variables which may, in turn, be used inside the loop for computations.

BA.7 Computation of DO Loop Iterations

The number of times through a DO loop is computed outside the loop and remains static for each cycle performed.
The formula for the number of times a DO loop is executed is:

m2 - m, + m3 ----- = Number of cycles
m3

B-12 January 1974

The values of the parameters (i.e, ml to m3) may be of any type, however, proper consideration must be given to
the foregoing formula, particularly when using logicals.

B.4.8 List-Directed I/O

In a list-directed transfer, the data to be transferred and the type of each transferred datum are specified by the
element of an I/O list included in the I/O statement used. The transfer of data in this mode is performed without
regard for column, card, or line boundaries. The list-directed mode is specified by the substitution of an asterisk (*)
for the FORMAT statement reference (i.e., f) of an I/O statement. The general form of a list-directed statement is:

keyword (u,*)l

Example:

READ(5,*)I,IAB,M,L

List-directed transfers may be used to input data from any acceptable input device including an input keyboard
terminal.

Input data for list-directed transfers should consist of alternate constants and delimiters. The constants used should
have the following characteristics:

1. Each input constant must be of an acceptable type.

2. Literal constants must be enclosed within single quotes (e.g., 'ABLE').

3. Blanks serve as delimiters and therefore arc not significant in any but literal constants.

4. Decimal points may be omitted from real constants which do not have a fractional part. FORTRAN-l 0
assumes that the decimal point follows the rightmost digit of a real constant.

Delimiters in data for list-directed input must comply with the following:

1. Delimiters may be either commas or blanks.

2. Delimiters may be either preceded by or followed by any number of blanks, carriage return/line feed
characters, tabs, or line terminators; any such combination is considered by FORTRAN-IO as being only
a single delimiter.

3. A null, the complete absence of a datum, is represented by two consecutive commas which have no
intervening constant(s). Any number of blanks, tabs, carriage return/line feed characters, or end-of-input
conditions may be placed hetween the commas of a null. Each time a null item is specified in the input
data, its corresponding list element is skipped (i.e., unchanged). The following illustrates the effect of a
null input:

INPUT Items 101, 'A', tab, 'NO}'

~ ~ ~
~ ,

Corresponding A , LIT, TAB, NUMBER

I/O List Items I I I I
Resulting Contents 101. A unchanged NOl
of List I terns TAB

B-13 January 1974

4. Slashes (/) cause the current input operation to be terminated even if all the items of the directing list
are not filled. The contents of items of the directing I/O list which either are skipped (by null inputs) or
have not received an input datum before the transfer is terminated remain unchanged. Once the I/O list
of the controlling I/O statement is satisfied, the use of the / delimiter is optional.

Constants or nulls in data for list-directed input may be assigned a repetition factor to cause an item to be repeated.

The repetition of a constant is written as:

r*K

where r is an integer which specifies the number of times the constant (represented by K) is to be repeated.

The repetition of a null is written as an integer followed by an asterisk.

Examples:

10*5
3*'ABLE'
3*

represents 5,5,5,5,5,5,5,5,5,5
represents 'ABLE', 'ABLE', 'ABLE'
represents null,null,null

B.4.9 Subroutines-Programming Considerations

The following items must be considered when preparing and executing subroutines:

1. During execution, no check is made to see if the proper number of parameters were passed.

2. If the number of actual arguments passed to a subroutine are less than the number of dummy arguments
specified, the unused arguments will contain garbage.

3. If the number of actual arguments passed to a subroutine is greater than the number of dummy
arguments given, the excess arguments are ignored.

NOTE
No notice is given to the user if either of the situations
described in items 1 and 2 occur.

4. If an actual parameter is a constant and its corresponding dummy argument is set to another value, all
references made to the constant in the calling program will be changes to the value of the dummy
argument.

B.4.1 0 Reordering of Computations

Computations which are not enclosed within parentheses are reordered by the compiler. Often it is necessary to use
parentheses to prevent improper results from being obtained from a specific computation.

B-14 January 1974

For example, assuming that I) RLi represents a large number such that RLi * RLi+ 1 will cause an overflow
condition, and that 2) RSi is a very small number (i.e., less than I), the program sequence:

A = RSI * RLI * RL2
B = RS2 * RL2 * RLI

will not produce an overflow when evaluated in an unoptimized left-to-right manner since the final computation in
each expression (i.e., RS 1 * RLI and RS2 * RL2) will produce an interim result which is smaller than either large
number (RLI or RL2).

During optimization of the foregoing sequence, the subexpression RLI * RL2 is handled as a common subexpression
as in the following sequence (optimized):

C = RLI * RL2
A = RSI * C
B = RS2 * C

The computation of C will then cause an overflow.

The program sequence should be written in the following manner to ensure that the desired results are obtained after
optimiza tion:

A = (RSI * RLI) * RL2
B = (RS2 * RL2) * RLI

B.5 FORTRAN-lO GLOBAL OPTIMIZER

An optional global! object code optimizer may be invoked during compilation. When used, the global opt imizer
utilizes the output of the lexical and syntax analysis phase of the compiler to develop an optimized source program
which is the equivalent of the original program. (The original and optimized programs are considered equivalent if
their object programs produce equivalent results and error messages.) The optimized program is then processed
through the standard compiler code generation and peephole optimization phase. The function of the global
optimizer is to produce an optimized object program which will execute in less time than its equivalent
non-optimized object program.

I An optimizer which considers groups of statements in the source program as a single entity for optimization purposes is referre~ to

as a global optimizer.

B-I5 January 1974

B.s.1 Optimization Techniques

B.s.1.1 Elimination of Common Subexpressions - Often the same sub expression will appear in more than one
computation throughout a program. If the values of the operands of such a common expression are not changed
between computations, the sub expression may be written as a separate arithmetic expression and the variable
representing its resultant may then be substituted where the subexpression appears. For example, the instruction
sequence:

A = B*C + E*F

H=A +G- B*C

IF ((B*C)-H) 10,20,30

contains the common subexpression B*C. Rewriting the foregoing sequence as:

T=B*C
A = T + E*F

H=A+G-T

IF ((T)-H) 10,20,30

eliminates two computations of the subexpression B*C from the overall sequence.

Decreasing the number of arithmetic operations performed in a source program by the elimination of common
subexpressions shortens the execution time of this resulting object program.

The following is a more subtle example of the manner in which the global optimizer applies the foregoing technique.
The instructions:

A(I,1)=B(I,1)

where A and B are dimensioned 25,25 will, during compilation, produce an instruction sequence of the form:

K = 1*25
K=K+ I
Load A(K)
N = 1*25
N = N+I
Store B(N)

B-16 January 1974

The variables K and N of the foregoing sequence represent equivalent expressions. The global optimizer recognizes
this redundancy and will produce the following equivalent sequence:

K = 1*25
K=K+ I
Load A(K)
Store B(K)

The optimized sequence will execute faster since it requires the execution of fewer machine instructions, and it
requires less internal storage since it is shorter than the original sequence.

B.S.1.2 Reduction of Operator Strength - The time required to execute arithmetic operations will vary according
to the operator(s) involved. The hierarchy of arithmetic operators according to the amount of execution time

required is:

MOST TIME OPERATOR

j **

*

LEAST TIME +-,

During the development of an equivalent optimized program, the global optimizer replaces, where possible*, those
arithmetic operations which require the most time with operations which require less time. For example, consider
the following DO loop which is used to create a table for the conversion of from 1 to 20 miles to their equivalent in
feet.

DO 10 MILES = 1,20
10 IFEET(MILES) = 5280*MILES

The execution time of the foregoing loop would be shorter if the expensive (in terms of time) multiply operation
(i.e., 5280*MILES) could be replaced by a cheaper operation. Since the variable MILES is incremented by 1 on each
iteration of the loop, the multiply operation may be replaced by an add and total operation. In its optimized form,
the foregoing loop would be replaced by a sequence equivalent to:

K = 5280
DO 10 MILES = 1,20
IFEET (MILES) = K

10 K=K+5280

In the optimized form of the loop, the value of K is set to 5280 for the first iteration of the loop and is increased by
5280 for each succeeding iteration of the loop.

The foregoing situation occurs frequently in subscript calculations which implicitly contain multiplications whenever
the dimensionality is two or greater.

B.S.1.3 Removal of Constant Computation From Loops - The speed with which a given algorithm may be
executed can be increased if instructions and/or computations are moved out of frequently traversed program
sequences into less frequently traversed program sequences. Movement of code is possible only if none of the
arguments in the items to be moved are redefined within the code sequences from which they are to be taken.
Computations within a loop comprised of variables or constants which are not changed in value within the loop may
be moved outside the loop. Decreasing the number of computations made within a loop will greatly decrease the
execution time required by the loop.

*Numerical analysis considerations severely limit the number of cases where it is possible.

B-17 January)974

For example, in the sequence:

DO 10 I = 1,100
10 F = 2.0 * Q * A(I) + F

The value of the computation 2.0*Q, once calculated on the first iterations, will remain unchanged during the
remaining 99 iterations of the loop. Reforming the foregoing sequence to:

QQ = 2.0*Q
DO 10 I = 1,100

10 F = QQ*A(I) + F

moves the calculation 2.0*Q outside of the scope of the loop. This movement of code eliminates 99 multiply
operations.

B.5.1.4 Constant Folding and Propagation - In this method of optimization, expressions containing determinate
constant values are detected and the constants are replaced, at compile time, by their defined or calculated value.
For example, assume that the constant PI is defined and used in the following manner:

PI = 3.14159

x = 2*PI * y

At compile time, the optimizer will have used the defined value of PI to calculate the value of the subexpression
2*PI. The optimized sequence would then be:

PI = 3.14159

x = 6.28318 * Y

thus eliminating a multiply operation from the object code program.

The computation of determinate constant values at compile time is termed "folding;" the use of the defined value of
a constant for replacement purposes throughout a program sequence is termed "propagation of the constant." The
execution time saved by the foregoing type of compile time optimization is particularly important when the
modified instruction occurs in a frequently traversed section of the program.

During the initial compilation procedures, all constants are carried in KII 0 processor format to provide maximum
accuracy. If a program is being compiled to run on a KA 1 0 processor, the optimizer will cause the double precision
constants to be folded and propagated throughout the program at compile time.

B-18 January 1974

B.S.1.S Removal of Inaccessible Code - The optimizer detects and eliminates any code within the source program
which cannot be accessed. In general, the foregoing condition will not exist since programmers will not normally
include such code in their programs, however, inaccessible code may appear in a program during the debugging
process. The removal of inaccessible code by the optimizer will reduce the size of the optimized object program.

B.S.1.6 Global Register Allocation - During the compilation of a source program the optimizer controls the
allocation of registers to minimize computation time in the optimized object program. The intent of the allocation
process is to minimize the number of MOVE and MOVEM machine instructions which will appear in the most
frequently executed portions of the code.

Allocation is performed on a loop basis working from the inner loop to the outer loop when loops are nested. Each
loop is considered only once during the optimization process.

B.S.2 Improper Function References

The ANSI FORTRAN standard prohibits the use of a function's reference that has side effects that will influence the
statement in which the function is referenced (such as defining or redefining other elements in the statement). The
optimizer depends on strict adherence to the foregoing rule.

If a source program contains a function reference which violates the foregoing rule, it may be compiled without
optimization to produce an object program which will give the desired results. The same program when compiled
with optimization will produce an object program which may yield results that differ from those produced by the
unoptimized object program.

B.S.3 Programming Techniques For Effective Optimization

The following recommendation, when observed during the coding of a FORTRAN source program, will improve the
effectiveness of the optimizer.

1. DO loops with an extended range should not be used.

2. When an assigned GO TO statement with an optional label list is used, each label listed should be
completely specified.

3. Avoid transferring alphanumeric data directly to or from the fields of a FORMAT statement.

4. Nest loop so that the innermost index varies the most rapidly.

5. In writing nested loops, try to keep the inner loops smaller than 200 lines of code.

B.6 INTERACTING WITH NON-FORTRAN-tO PROGRAMS AND FILES

B.6.t Calling Sequences

The standard procedures for the writing of DECsystem-l a subroutine calls are described in the following paragraphs.

1. Procedure

a. The calling program must load the right half of accumulator (AC) 16 with the address of the first
argument in the argument list.

b. The left half of AC 16 must be set to zero.

c. The subroutine is then called by a PUSHJ instruction to AC 17.

d. The returns will be made to the instruction immediately after the PUSHJ 17 instruction.

B-19 January 1974

2. Restrictions

a. Skip returns are not permitted.

b. The contents of the pushdown stack located before the address specified by AC 17 belongs to the
calling program; it cannot be read by the called subprogram.

B.6.2 Accumulator Usage

The specific functions performed by accumulators (AC) 17, 16,0 and 1 are as follows:

1. Pushdown pointer

AC 17 is always maintained as a pushdown pointer. Its right half points to the last location in use on the
stack and its left half contains the negative of the number of (words-I) allocated to the unused
remainder of the stack (a trap occurs when something is pushed into the next to last location. The trap
instruction may itself be a PUSHJ on the KIlO processor which uses the last location). A positive left
half is not permitted.

2. Argument List pointer

AC 16 is used as the argument pointer. The called subprogram does not need to preserve its contents.
The calling program cannot depend on getting back the address of the argument list he passed to the
callee. AC 16 cannot point to the ACs or to the stack.

3. Temporary and value return registers

AC 0 and 1 are used as temporary registers and for returning values. The called subprogram does not
need to preserve the contents of AC 0 or 1 (even if not returning a value). The calling program must
never depend on getting back the original contents of the data passed to the called subprogram.

4. Returning values

At the option of the designer of a called subprogram, a subroutine may pass back results by modifying
the arguments, returning a single precision value in AC 0 or a double precision or complex value in AC 0
and 1. A combination of the above may be used. However, two single precision values cannot be
returned in AC 0 and 1 since FORTRAN would not be able to handle it.

5. Preserved ACs

The calling subprogram must preserve ACs 2-15 (octal). Thus, the design of the called subprogram must
save and restore any of ACs 2-15 which are changed. This relieves the caller from the burden thereby
saving space at the call site. ACs are usually saved on the stack (to save code and data space and allow
recursion). However, the allocation of storage for AC saving is up to the called subprogram.

The design of the called subprogram cannot depend on the contents of any of the ACs being set up by
the calling subprogram, except for ACs 16 and 17. PaSSing information must be done explicitly by the
argument list mechanism. Otherwise, the called subprograms cannot be written in either FORTRAN-I 0
or COBOL.

B-20 January 1974

B.6.3 Argument Lists

The format of the argument list is as follows:

Arg. list addr. arg count word
first arg entry
second arg entry

last arg entry

The format of the arg count word is:

bits 0-17 These contain -n, where n is the number of arg entries.

bits 18-35 These are reserved and must be o.

The format of an arg entry is as follows (each entry is a single word):

bits 0-8 Reserved for future DEC development (set to 0 for now).

bits 9-12 Arg, Type code.

bit 13 Indirect bit if desired.

bits 14-17 Index field, must be 0 for present.

bits 18-35 Address of the argument.

The following restrictions should be observed:

1. Neither the argument lists nor the arguments themselves can be on the stack. This restriction is imposed
so that the stack can be moved at any time to its overflow or the overflow of an adjacent region. The
same restriction applies to any indirect argument pointers. Furthermore, neither the argument list nor
the arguments can be in the ACs.

2. The called program may not modify the argument list itself. The argument list may be in a
write-protected segment, but cannot be in the ACs.

Example:

REG

Note that the arg count word is at position -1 with respect to the contents of AC 16. This word is
always required even if the subroutine does not handle a variable number of arguments. A subroutine
which has no arguments, e.g., RANDOM, must still provide an argument list consisting of one word (i.e.,
the argument count word with a 0 in it).

MOVEI 16,1 + [EXP - 3Bl 7,A,B,C]

PUSHJ 17,SUB

; SETUP ARG LIST

; CALL SUBROUTINE
; RETURN HERE

; SUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS
SUB; MOVE T,@O(16) ; GET FIRST ARG

ADD T ,@1(16) ; ADD SECOND ARG
MOVEM T,@2(16) ; SET THIRD ARG
POPJ 17, ; RETURN TO CALLER

B-21 January 1974

B.6.4 Argument Types

Table B-2
Argument Types and Type Codes

Type Code Description
FORTRAN Use COBOL Use

0 unspecified unspecified

1 FORTRAN logical
2 integer I-word-COMP

3
4 real COMP-I

5
6
7 label procedure address

10 double real
11 2-word CaMP
12
13
14 complex
15 byte string descriptor
16
17 ASCIZ string

Literal arguments are permitted, but they must reside in a writable segment. This is because FORTRAN must copy
all formals back to the caller's arguments in order to conform to the ANSI standard.

All unused type codes are reserved for future DEC development.

B.6.S Description of Arguments

The types of the arguments which may be passed are:

1. Type 0 Unspecified

The calling program has not specified the type. The called subprogram should assume that the argument
is of the correct type if it is checking types. If several types are possible, the called subprogram should
assume a default as part of its specification. If none of the above conditions are true, the called

subprogram should handle the argument as an integer (type 2).

2. Type 1 FORTRAN logical

A 36-bit binary value containing 0 to specify 'FALSE' and non-O to specify 'TRUE'.

3. Type 2 Integer and I-word-COMP

A 36-bit 2's complement signed binary integer.

4. Type 4 Real and COMP-I

A 36-bit DECsystem-IO format floating point number:

B-22 January 1974

bit 0 sign

bits 1-8 excess 128 exponent

bits 9-35 mantissa

5. Type 6 Octal

A 36-bit unsigned binary value.

6. Type 7 Label and procedure address

A 23-bit memory address right justified in a 36-bit word:

bits 0-12 always 0

bit 13 indirect flag

bits 14-17 index register

bits 18-35 the basic address

7. Type 10 Double real

A double precision floating point number for the CPU being executed (i.e., KA format on a KAI 0 and
KI format on a KIl 0).

8. Type 11 2-word-COMP

A 2-word (72-bit) 2's complement signed binary integer:

word 1, bit 0 sign

word I, bits 1-35 high order

word 2, bit 0 same as word 1, bit 0

word 2, bits 1-35 low order

9. Type 12 Double octal

A 72-bit unsigned binary value.

10. Type 14 Complex

A complex number represented as an ordered pair of 36-bit floating point numbers. The first of which
represents the real part and the second of which represents the imaginary part.

11. Type 15 Byte String descriptor

The format of the byte string descriptor is:

B-23 January 1974

word 1:

word 2:

ILDB-type byte pointer (Le., aimed at the byte
preceding the first byte of the string)

EXP byte count

The byte descriptor may not be modified by the called program.

The byte string itself must consist of a string of contiguous bytes of a uniform size. The byte size may be
any number of bits from 1 to 36. The byte count must be large enough to encompass 256K words of
storage, i.e., 24 bits for I-bit bytes. The rest of the word must be o.

12. Type 17 ASCIZ string

A string of contiguous 7-bit ASCII bytes left justified on the word boundary of the first word and
terminated by a null byte in the last word. The length of the string may be from 1 to 256K words.

B.6.6 Converting Existing MACRO-lO Libraries for use with FORTRAN-lO

The following simple example illustrates the FORTRAN-IO calling sequence.

B-24 January 1974

ttl
N
VI

c.....;
~
::3 s::
~

-<
.......
\0
-.)

~

MAIN. Ext,FOR FORTRAN V, 1 IKI 9-NOV.73 12152 PAGE 1

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018

c AN EXAMPLE OF A CALL TO A SUBROUTINE WITH A VARIETY OF ARGUMENTS

c
c
c
C
C
C
C
C

DOUBLE PRECISION DP
DIMENSION B(10)
THE ARGUMENTS AREa
1. A REAL VARIABLE
2. AN ARRAY NAME
3. AN ARRAY ELEMENT REFERENCE
4. AN INTEGER VARIABLE
5, A DOUBLE PRECISION VARIABLE
6, AN OCTAL CONSTANT
7. A LITERAL

CALL SUB1(A,B,BCI),K,DP,"777,'ABC')

END

s

SUBPROGRAMS CALLED

SUB1

SCALARS AND ARRAYS

DP 1 I< 3 B 4 A

TEMPORARIES

.QOOOO 20

16 I 17

t::O
N
0\

I-;
ll.l
::l
~
ll.l

~
......
\0
-......l
+:0.

LINE LOC LABEll GENERATED CODE

0 JFCL 0,0
1 JSP 16,RESET,

14
2 0,0
3 MOVE 15,1 } Code to set up the array
4 MOVEI 15,S-1(15) element reference as an
5 MOVEM 15,,00000 actual argumen t
6 MOVEI 16,2M
7 PtJSHJ 17,SUBl

16 10 MOVEI 16,lM
1 1 PUSHJ 17,EXIT.

ARGUMENT BLOCKS:

MAIN,

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011

12
13
14
15
16
17
20
21
22
23

1MI

2M:

0,,0 } 0,,0
777771,,0
200"A}
200,,8
220",QOOOO
100"K
400"DP
0" [000000000777]
740" [406050320100]

EX1,FOR FORTRAN V,l IKI 9.NOV~73

Argument block for a call with no arguments

word with negative argument count

argument type is "real"

NOTE: indirect bit set (array element reference)
type is in teger
type is double precision
type is unspecified
type is Ii teral

12:52 PAGE 1

SUBROUTINE SUB1(REAL1,ARYNAM,ARYELM,INT1,DBLPRC,OCT,LIT)
DOUBLE PRECISION DBLPRC
DIMENSION ARYNAMCI0)

C THIS SUS-PROGRAM ILLUSTRATES THE USE AND MODIFICATION OF
C SOME OF THE ARGUMENT TYPES

REAL1=ARYELM
Q=ARYNA~(rNT1)

OCT="776
RETURN
f~ND

SUBPROGRAMS CALLED

SCALARS AND ARRAYS

LIT 1 OCT 2 Q 3 ARYELM 4 DBLPRC 5 REAL1 7
INT1 10 ARYNA~1 11

TEMPORARIES

,SU816 12 0 636542,,210000

LINE LOC LABEL GENERATED CODE

.u. A local copy of all parameters is made

SUB1I
0 MOVEM 16,.5UB16

t::C 1 MOVE 0,(aOC16) N
-l 2 MQVEM O,REAL1

3 MOVEI O,@1(16) } Note that for the array, it is

4 MOVEM O,ARYNAH the address tha t is copied and
5 MOVE O,@2(16) stored in ARYNAM
6 ~'OVEM O,ARYELM
7 MOVE 0,@3(16)
10 MOVEM O,INTl
11 DMOVE O,@4(16)
12 O~~OVEM O,DBLPRC
13 MOVE O,@5(16)
14 MOVEM O,OCT
15 ~OVE 0,136(16)
16 MOVEM O,LIT
17 JRST Q,3M
20 2 ~j : Epilogue:

c....
MOVE 16,.5UB16 Only parameters that are ~

::l
c 21 MOVE O,REALl changed are copied back. ~
'"1
'< 22 MOVE~' O,@O(16) This includes the constant which
\0 23 HOVE O,OCT -l is then "clobbered" ~ 24 MOVEM O,@S(16)

OJ
N
00

~
~
::I
c::
~
>-I

'-<
.......
\0
-.)
.,J:::.

7

8

9

10
11

25
26

27
30
31
32
33
34
35
36
37

POPJ
3MI

MOVE

MOVE~'
MOVE
ADD
MOVE
MOVEM
MOVEI
~10VE:"1
JHST
JRST

ARGUMENT BLOCKS:

40 0,,0
41 1M: 0,,0

SUBl o ERRORS DETECTED

17,0

2,ARYELM

2,P.EAL1 The formal array (line 8) is
2,INT1 referenced by adding the
2,ARYNAM address (passed as an actual 2,777777(2)
2,Q argument) to the subscript

2,776 value and using that as an index.
2,OCT
O,2M
O,2M

To conveniently convert existing MACRO-IO programs so that they will still load and execute correctly when called
from F40 or FORTRAN-I 0, the user can:

1. transfer the initial entry sequence for a routine to:

entry: CAIA
PUSHJ 17, entry

2. Change all returns to POPJ 17, O.

These are the functions performed by the HELLO and GOODBY macros. These macros (available in the file
FORPRM.MAC, part of the FOROTS release) were successfully used in converting the library routines to run with
both F40 and FORTRAN-IO.

In addition, since the FORTRAN-IO compiler uses the indirect bits on argument lists (note that this permits shared,
pure code argument lists), it is essential that code which accesses parameters takes this into account. Specifically,
sequences that obtained the values of parameters through use of operations such as

HRRZ R, 1 (l6)

to pick up the second argument may be changed to

MOVE R, @ 1 (16)

This latter operation will work when interfacing to either F40 or FORTRAN-IO.

Refer to the previous example which illustrates the code generated by the FORTRAN-IO compiler for specific
details of how each argument is accessed. Note specifically that in the case of the formal array, it is the address of the
array that is accessed through the:

MOVEI 0, @ X {16)

B.6.7 Mixing FORTRAN-tO and F40 Compiled Programs

Starting with Version IA of LINK-I 0, use of the switch /MIXFOR will permit loading of FORTRAN-IO and F40
programs. This is achieved by modifying the code while it is loaded.

This introduces extra code that results in a degradation of the execution of programs so loaded. This feature is
provided as a convenience for conversion. It is not intended that it be used for other than conversion assistance.

B.6.8 Interaction with COBOL-tO

The FORTRAN-IO programmer may call COBOL-IO programs as subprograms and, conversely, the COBOL
programmers may call FORTRAN-I 0 programs as subprograms.

In either of the foregoing cases, I/O operation must not be performed in the called subprogram.

B.6.8.t Calling FORTRAN-tO Subprograms as COBOL-tO Programs - COBOL programmers may write
subprograms in FORTRAN-IO to utilize the conveniences and facilities provided by this language. The COBOL verb
ENTER is used to call FORTRAN-IO subroutines. The form of ENTER is as follows:

ENTER FORTRAN program name [using

{

identifier-I }
literal-I
procedure name-I [

, {:~:~~:~~er-2 }] ...]
procedure name-2

B-29 January 1974

The USING clause of the foregoing forms moves the data within the COBOL program which is to be passed to the
called FORTRAN-I 0 subprogram. The passed data must be in a form acceptable to FORTRAN-IO ..

The calling sequence used by COBOL in calling a FORTRAN-I 0 subprogram is:

MOVEI 16, address of first entry in argument list

PUSHJ 17, subprogram address

If the USING clause appears in the ENTER statement, an argument list is created which contains an entry for each
identifier or literal in the order of appearance in the USING clause. It is preceded by a word containing, in its left
half, the negative number of the number of entries in the list. If no USING clause is present, the argument list
contains an empty word and the preceding word is set to O. Each entry in the list is one 36-bit word at the form:

o 8 9 12 13 35

o type address

Bits 0-8 are always O.

Bits 9-12 contain a type code that indicates the USAGE of the argument.

Bits 13-35 contain the address of the argument or the first word of the argument; the address can be indexed
or indirect.

The types, their codes, how the codes appear in the argument list, and the locations specified by the addresses are
described below.

a. For I-word COMPUTATIONAL items

CODE: 2
IN ARGUMENT LIST: XWD 100, address
ADDRESS: that of the argument itself

b. For 2-word COMPUTATIONAL items

CODE: 11
IN ARGUMENT LIST: XWD 440, address
ADDRESS: that of the high-order word of the argument

c. For COMPUT ATIONAL-I items

CODE: 4
IN ARGUMENT LIST: XWD 200, address
ADDRESS: that of the argument itself

B-30 . January 1974

d. For DISPLAY-6 and DISPLAY-7 items

CODE:
IN ARGUMENT LIST:
ADDRESS:
WORD 1:
WORD 2:

15
XWD 640, address
that of a 2-word descriptor for the argument
a byte pointer to the identifier or literal
bit ° is 1 if the item is numeric
bit 1 is 1 if the item is signed
bit 2 is 1 if the item is a figurative constant (including ALL)
bit 3 is 1 if the item is a literal
bits 4 through 11 are reserved for expansion
bit 12 is 1 if the item has a PICTURE with one or more Ps

just before the decimal point (e.g., 99PPV)
bits 13 through 17 are the number of decimal places. If bit 12

is 1, this is the number of Ps.
bits 18 through 35 contain the size of the item in bytes.

e. For procedure names (which cannot be used for calls to COBOL subprograms)

CODE:
IN ARGUMENT LIST:
ADDRESS:

7
XWD 340, address
that of the procedure

The return from a subprogram is POPJ 17 statement after call.

B.6.8.2 Calling COBOL-tO Subroutines From FORTRAN-tO Programs - To call COBOL subroutines use the
standard subroutine calling mechanism:

CALL COBOLS (args ...) subroutine call

or

x = COBOLS (args ...) function call

The COBOL subroutine must have been compiled using the COBOL compiler described in the DECsystem-10
COBOL Programmer's Reference Manual.

B.6.9 FOROTS/FORSE Compatibility

The information presented in Paragraphs B.6.9.l and B.6.9.2 is intended only for those users who have programs and
data files which were developed using the F40 FORTRAN compiler and the FORSE object time system. The manner
in which both upward and downward compatibility between the FORTRAN-10, FOROTS and F40, FORSE
FORTRAN systems may be achieved is described in the following sections.

B.6.9.1 FORTRAN-tO/F40 Data File Compatibility - Upward compatibility of data files (FORSE TO FOROTS) is
described in Table B-3. Downward compatibility of data files (FOROTS TO FORSE) is described in Table B-4.

B-31 January 1974

B.6.9.2 Conversion of FOROTS-Developed Data Files Into a Form Acceptable to FORSE - The following
paragraphs describe procedures which may be used to convert FOROTS sequential mixed, random access ASCII and
random access binary data files into a form which can be read by FORSE.

B.6.9.2.1 Conversion of FOROTS Sequential Mixed Files - The following steps are suggested as a method of
converting a FOROTS sequential mixed file into either a sequential ASCII or sequential binary file which is
acceptable to FORSE:

1. Prepare and run a FORTRAN-IO I/O program which will produce either a sequential ASCII or a
sequential binary output file.

2. If a sequential ASCII file is produced, it must be line-blocked before it can be read by FORSE.
Line-blocking is accomplished by copying the file using either the system COpy command (with an A
switch) or PIP. The copy will be line-blocked and will be acceptable to FORSE. The following is an
example of the command sequence needed to line-block the data file FOROT.DAT:

.COPY FOROT.DAT = FOROT.DAT/A

3. If a sequential binary file is produced it must be record-blocked before it can be read by FORSE.
Record-blocking is accomplished using the /K feature of the program BAKWDS. The following is an
example of the command sequence needed to record-block the data file FOROT.DAT:

.RBAKWDS
*FOROT.DAT = FOROT.DAT/K

Table B-3
Upward Compatibility (FORSE TO FOROTS)

FORSE File Type May Be Read by FOROTS In the Following Manner:

1. Sequential
ASCII

2. Sequential
Binary

3. Sequential
Mixed Files

4. Random Access
ASCII Files

5. Random Access
Binary Files

Yes

Yes

Yes

No

No

B-32

May be read directly; record positioning
operations (e.g., BACKSPACE, SKIP RECORD)
may be used.

May be read directly in a forward fashion only,
record positioning operations are not permitted.

May be read directly in a forward fashion only,
record positioning operations not permitted.

NOTE: It is suggested that the random access file
be read (using FORSE) and be rewritten as a
sequential file which can be accepted by FOROTS.

(The conversion suggested in the above note also
applies in this case).

January 1974

Table B-4
Downward Compatibility (FOROTS TO FORSE)

FOROTS File Type May Be Read by FORSE In the Following Manner:

1. Sequential
ASCII File

Yes This operation is permitted if the file is
line-blocked. This may be accomplished by making
a copy of the file using either the system copy
command (with an A switch) or the PIP program.
The resulting copy will be line-blocked.

An example of the command sequence needed to
line block a FOROTS file, using PIP, follows:

.RPIP
*FORSE.DAT=FOROTS.DAT/A

2. Sequential
Binary File

Yes This operation is permitted if the file is
record-blocked. This type of blocking is
accomplished by using the /K option of the
program BAKWDS. The following is an example of
a command sequence which record-blocks a file .

3. Sequential
Mixed File

4. Random Access
ASCII File

5. Random Access
Binary File

No

No

No

. RBAKWDS
*FORSE.DAT=FOROTS.DAT/K)

(See Paragraph B.6.9.2.1 for suggested conversion
procedure).

(See Paragraph B.6.9.2.1 for suggested conversion
procedure).

(See Paragraph B.6.9.2.1 for suggested conversion
procedure).

B.6.9.2.2 Conversion of FOROTS Random Access ASCII Files - The following procedure is suggested as a method
of converting a FOROTS random access ASCII file into a form acceptable to FORSE.

1. Prepare and run a FORTRAN-I0 I/O program which will create a sequential ASCII file comprised of the
records of the random access file.

2. Line-block the sequential ASCII file using either the system COpy command (with an A switch) or the
PIP program. The following is an example of the COpy command:

.COPY LNBLK.DAT = SEQFL.DAT/A

The foregoing command would produce a line-blocked copy (LNBLK.DAT) of the sequential file
SEQFL.DAT.

3. Prepare and run an F40 I/O program which will read the file produced in step 2 and will rewrite the file
as a FORSE-generated random access file.

B-33 January 1974

B.6.9.2.3 Conversion of FOROTS Random Access Binary Files - The following procedure is suggested as a method
of converting a FOROTS random access binary file into a form acceptable to FORSE.

1. Prepare and run a FORTRAN-I 0 I/O program which will create a sequential binary file comprised of the
records of the random access file.

2. Record-block the sequential file. This is accomplished by using the /K feature of the program BAKWDS.
The following example illustrates the command sequence required to convert the file FOROTS.DAT
into the record-blocked fil~ FORBLK.DAT .

. RBAKWDS
*FORBLK.DAT = FOROTS.DAT/K

3. An F40 I/O program may then be written to convert the sequential record-blocked file into a FORSE
generated random access file.

B.6.9.3 General Restrictions - The following restrictions must be observed during the preparation of
FORTRAN-I 0 programs and data files.

1. Sets of files comprised of a mixture of files compiled for the KAI 0 processor and files compiled for the
KIlO processor will not be loaded by the LINKING LOADER. If such a set is detected, the LOADER
will abort the load operation and will issue the following message at the user's terminal (or log file if in
Batch mode):

? CANNOT MIX KA 1 0 AND KIl 0 COMPILED CODE

2. CHAIN functions (as implemented for the F40A compiler) are not implemented in FORTRAN-IO. An
overlay capability which is greatly superior to CHAIN will be implemented in a future version of
LINK-IO. '

B-34 January 1974

I APPENDIX C

C.1 INTRODUCTION

The primary function of FOROTS is to act as a direct interface between user object programs and the
DECsystem-IO monitor during input and output operations. It implements all program data file -functions (e.g.,
READ, WRITE, REWIND, etc.) and provides the user with an extensive run-time error reporting system. The
functions needed to define files, assign devices, allocate core memory for data buffers, and data conversion are all
provided by this operating system.

FOROTS implements all standard FORTRAN I/O operations as described in the standard entitled "American
National Standard FORTRAN, ANSI X3.9-1966." In addition, FOROTS provides the user with capabilities and
programming features beyond those described in the ANSl standard.

C.l.l Hardware Requirements

FOROTS may be run using either a DECsystem-IO KAIO or KIlO processor. It requires:

a. a minimum of 6K of user core (not including monitor or user program requirements) and

b. re-entrant hardware.

FOROTS interfaces with all DECsystem-IO peripheral devices.

C.1.2 Software Requirements

The software items associated with FOROTS are:

a. a 5.06 or later monitor,

b. the MACRO-I 0 assembler (Version 47 or later),

c. the LINK-I 0 loader (Version 1A or later),

d. the system program COMPIL (VerSion 22 or later), and

e. the FORTRAN-I 0 Compiler.

C.2 FEATURES OF FOROTS

Many user features of FOROTS are described, briefly, in the following list; more detailed information concerning
• the implementation of these features is given later in this appendix.

a. A user program may run in either batch or timesharing mode without changing the program. All
differences between batch mode and timesharing mode operations are resolved by FOROTS.

C-l January 1974

b. User programs may access both directory and non-directory devices in the same manner.

c. FOROTS provides complete data file compatibility between all DECsystem-l0 devices.

d. Line-blocking, a requirement that each output buffer must contain only an integral number of lines (no
lines can be split across output buffers) is not required by FOROTS.

e. Line-numbered files may be read and written.

f. Up to 15 data files may be accessed simultaneously. Any number or all of the open data files may be
accessed randomly.

g. FOROTS treats devices located at remote stations similar to local devices.

h. Programs written for magnetic tape operations will run correctly on disk under FOROTS supervision.
The commands needed for magnetic tape operations are simulated by FOROTS.

L Object program device and file specifications may be changed or specified via a FOROTS interactive
dialogue mode.

j. Non-FORTRAN binary data files may be read, in image mode, by FOROTS.

k. FOROTS provides interactive program/operating system error processing routines. These routines permit
the user to route the execution of the program to specific error processing routines whenever designated
types of errors are detected.

1. An error traceback facility for fatal errors provides a history of all subroutine calls made back to the
main program, together with the line and statement numbers of the point at which the error occurred.

m. Extensive trap handling for arithmetic functions, including default values and error reports, is provided
by FOROTS.

n. ASCII and binary records may be mixed in the same file and both may be accessed in either sequential
or random access mode.

o. During random access operations, the user may establish a series of buffers to contain sequential records
picked from some selected point within the accessed file. The buffered records may be accessed without
requiring physical I/O operations. FOROTS will automatically size the storage buffer to hold one logical
record of the accessed file; the user may specify more buffering if desired.

p. FOROTS permits the user program to switch from READ to WRITE on the same I/O device without
loss of data or buffering.

q. Data files can be either read or written across more than one unit of a mountable storage medium (Le.,
magtape, DECtape). FOROTS will issue the required mount or dismount commands to the system
operator whenever a change is required.

r. Although primarily designed for use with a FORTRAN Compiler, FOROTS may also be used as an
independent I/O system. FOROTS may be used as an I/O system for MACRO-I0 object programs as well
as for FORTRAN object programs.

C-2 January 1974

C.3 ERROR PROCESSING

The FOROTS error processing system is given control of program execution whenever a run-time error is detected.
This system determines the class of the error and either outputs an appropriate message at the controlling user
terminal or branches the program to a predesignated error processing routine.

Error messages may be printed at any of several levels of reporting ranging from a simple octal code to a complete
descriptive text. The level of error reporting and/or the classes of error which are to be handled by the program may
be selected by the user either in his program or via an interactive dialogue mode of operation.

C.4 INPUT/OUTPUT FACILITIES

FOROTS utilizes monitor-buffered I/O during all modes of access. Display devices are supported in dump mode.
Formatted text is handled in ASCII line mode; unformatted files are accessed as FORTRAN binary files.

I/O data channels and access modes are described, individually, in the following paragraphs.

C.4.1 Input/Output Channels

Fifteen software channels (1-15) are available in I/O operations. Software channel 0 is reserved for the following
system functions:

1. the printing of error messages, and

2. GETSEG UUO operations (loading and initialization of FOROTS).

Software channels 1 through 15 are available for user program data transfer operations. When a request is made for a
da ta channel, a search table is scanned, starting at channell, until a free channel is found. The first free channel is
assigned to the requesting program; on completion of the assigned transfer, control of the software channel is
returned to FOROTS.

C.4.2 File Access Modes

Data may be transferred between processor storage and peripheral devices in two major modes:

1. Sequential and

2. Random

C.4.2.1 Sequential Transfer Mode - In sequential data transfer operations, the records involved are transferred in
the same order as they appear in the source file. Each I/O statement executed in this mode transfers the record
immediately following the last record transferred from the accessed source file. A special version of the sequential
mode (referred to as Append) is available for output (write) operations. The special Append sequential mode permits
the user to write a record immediately after the last logical record of the accessed file. During an Append operation,
the records already in the accessed file remain unchanged; the only function performed is the appending of the
transferred records to the end of the file.

Transfer modes (other than default mode) must be specified by setting the ACCESS option of an OPEN statement
to one of several possible arguments. For the sequential mode, the arguments are:

ACCESS = SEQIN (sequential read-only mode)

ACCESS = SEQOUT (sequential write-only mode)

ACCESS = SEQUINOUT (sequential read followed by a sequential write)

ACCESS = APPEND (sequential Append mode)

C-3 January 1974

C.4.2.2 Random Access Mode - This transfer mode permits records to be accessed and transferred from a source
me in any desired order. Random access transfers, however, may he made between processor core and a device
which permits random addressing operations (e.g., disk) and to files which have been set up for random access. Files
for random access must contain a specified number of identically-sized records which may be accessed, individually,
by a record number.

Random access transfers may be carried out in either a read/write mode or a special read-only mode. The read-only
mode is designed to permit a large number of users to read, simultaneously, the same files; this enables a (single) data
base to be set up for access by a large group of users. Transfer modes (other than system default mode) must be
speCified by setting the ACCESS option of an OPEN statement to one of several possible arguments. For the random
access mode, the arguments are:

ACCESS = RANDOM (random read/write mode)

ACCESS = RANDIN (random special read-only mode)

C.s ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS

The types of data files which are acceptable to FOROTS are described, individually, in the following paragraphs.

C.S.1 ASCII Data Files

Each record within an ASCII data me consists of a set of contiguous 7-bit characters; each set is terminated by a
vertical paper-motion character (Le., Form Feed, Vertical Tab, or Line Feed). All ASCII records start on a word
boundary; the last word in a record is padded with nulls, if necessary, to ensure that the record also ends on a word
boundary. Logical records may be split across storage blocks. There is no implied maximum length for logical
records.

NOTE
On sequential input, FOROTS does not require conformation
to word boundaries, it reads what it sees; however, any file
that is written by FOROTS will conform to the foregoing
format requirements.

C.5.2 ASCII Data Files with Line Sequence Numbers

The addition of line sequence numbers to an ASCII data file is performed according to the following rules:

a. Each line sequence number consists of five ASCII decimal digits which are stored in the first word of the
line. Each sequence number is right-justified within the first word location with leading Os.

b. Bit 35 of the line sequence number word must be set to 1.

c. The first character following a line sequence number is interpreted by FOROTS in the following
manner:

1. On input, if the character is either a tab or a blank, it is skipped and the next character is
processed; all other characters are processed.

NOTE
The D delimiter used in BASIC data files is treated as a data
character and is passed to the user program.

C-4 January 1974

2. On output, the line sequence number is always followed by a tab. FOROTS always adds line
sequence numbers to ASCII output files when in this mode. Sequence numbers start at 1 and are
incremented by 1 (default value) unless another increment is specified by the user (via an OPEN
statement). The maximum line sequence number is 99999; if this number is reached, the count is
restarted at 1.

C.S.3 F:ORTRAN Binary Data Files

Each logical record in a FORTRAN binary data file contains data which may be referred to by either a READ or a
WRITE statement in the program being executed. A logical record is preceded by a control word and may have one
or more control words embedded within it. In FORTRAN binary data files there is no relationship between logical
records and physical block sizes. When stored, each logical record follows immediately the previous record on the
storage medium. There is no implied maximum length for logical records.

C.S.4 Mixed Mode Data Files

FOROTS permits files containing both ASCII and binary data records to be read. Mixed files may be accessed in
either sequential or random access mode. Logical ASCII and binary records have the same format as described in the
preceding paragraphs.

C.S.S Image Binary Files

The image binary data transfer mode is a buffered mode in which data is transferred in a blocked format consisting
of a word count located in the right half of the first data word of the buffer followed by n number of 36-bit data
words. The devices which permit image binary data transfers and the form in which the data is read or written are:

Device

Card Punch

Card Reader

Magnetic Tape

Paper Tape Punch

Paper Tape Reader

Plotter

Data Fonns

In image binary mode, each buffer contains three 12-bit bytes. Each byte corresponds to
one card column. Since there is room for 81 columns in the buffer (3 X 27) and there are
only 80 columns on a card, the last word contains only 2 bytes of data; the third byte is
thrown away. Image binary causes exactly one card to be punched for each output. The
CLOSE punches the last partial card and then punches an EOF card.

All 12 punches in all 80 columns are packed into the buffer as 12-bit bytes. The first
12-bit byte contains column l. The last word of the buffer contains columns 79 and 80 as
the left and middle bytes, respectively. Cards are not split between two buffers.

Data appears on magnetic tape exactly as it appears in the buffer. No processing or
checksumming of any kind is performed by the service routine. The parity checking of
the magnetic tape system is sufficient assurance that the data is correct. Normally, all
data, both binary and ASCII, is written with odd parity and at 800 bits per inch unless
changed by the installation.

Binary words taken from the output buffer are split into six 6-bit bytes and punched witl.
the eighth hole punched in each frame. There is no format control or checksumming
performed by the I/O routine. Data punched in this mode is read back by the paper tape
reader in the same mode.

Characters not having the eighth hole punched are ignored. Characters are truncated to
six bits and packed six to the word without further processing. This mode is useful for
reading binary tapes having arbitrary blocking format.

Six 6-bit characters per word are transmitted to the plotter exactly as they appear in the
buffer.

C-5 January 1974

C.6 USING FOROTS AS A GENERAL I/O SYSTEM

FOROTS has been designed to lend itself for use as an I/O system for programs written in languages other than
FORTRAN. Currently, MACRO programmers may employ FOROTS as a general I/O system by writing simple
MACRO calls which simulate the calls made to FOROTS by a FORTRAN compiler. The calls made to FOROTS are
to routines which implement FORTRAN I/O statements such as READ, WRITE, OPEN, CLOSE, RELEASE, etc.

FOROTS will provide automatic memory allocation, data conversion, I/O buffering, and device interface operations
to the MACRO user.

C.6.1 FOROTS Entry Points
FOROTS provides the following entry points for calls from either a FORTRAN compiler or a non-FORTRAN
program:

Entry Point

ALCHN.
ALCOR.
CLOSE.
DEC.
DECHN.
DECOR.
ENC.
EXIT.
FIN.
FIND.
FORER.
IN.
INIT.
10LST.
MTOP.
NLI.
NLO.
OPEN.
OUT.
RELEA.
RESET.
RTB.
TRACE.
WTB.

C.6.2 Calling Sequences

Function

Allocate software channels
Allocate dynamic core blocks
Close a file
DECODE routine
Deallocate software channels
Deallocate dynamic core blocks
ENCODE routine
Terminate program execution
Input/Output list termination routine
Position to. th~ next record (RANDOM ACCESS)
Error processor
Formatted input routine
Initialize and assign dynamic core
Input/Output list routine
File utility processing routine
NAMELIST input routine
NAMELIST output routine
Open a file
Formatted output routine
Release a device (CLOSE implied)
Job initialization entry
Binary input routine
Trace subroutine calls
Binary output routine

All calls made to FOROTS must be made using the following general form:

MOVEI
PUSHJ

return

where:

16,ARGBLK
1 7,Entry Point

a. ARGBLK is the address of a specifically formatted argument block which contains information needed
by FOROTS to accomplish the desired I/O operation.

b. Entry Point is an entry point identifier (see list given in Paragraph C.6.1) which specifies the entry point
of the desired FOROTS routine.

C-6 January 1974

With three exceptions, all returns from FOROTS will be made to the program instruction immediately following the
call PUSHJ 17, entry point instruction. The exceptions are:

a. an error return to a specified statement number (Le., READ or WRITE statement ERR= option),

b. an end-of-file return to a statement number (Le., READ or WRITE statement END= option),

c. a fatal error which returns to the monitor or to a debug package.

Paragraphs C.6.3.1 through C.6.3.12 give the MACRO calls and required argument block formats needed to initialize
FOROTS and FOROTS I/O operations.

C.6.3 MACRO Calls for FOROTS Functions

The forms of the MACRO calls to FOROTS which are made by the FORTRAN-! 0 compiler are described in the
following paragraphs. The calls described are identified according to the language statement which they implement.
The following terms and abbreviations may be used in the description of the argument block (ARGBLK) of each
call.

n binary count of ASCII characters,

f = FORMAT statement number,

v = the name of an array containing ASCII characters,

list an Input/Output list,

c the statement to which control is transferred bn an "END OF FILE" condition,

d = the statement to which control is transferred on an "ERROR" condition,

name = a NAMELIST name,

#R = a variable specifying the logical record number where I/O begins for random access mode,

repeat = an integer constant, variable, or expression which specifies the number of times the operation
is to be repeated,

* LIST DIRECTED I/O, the FORMAT statement not used,

type = a variable type specification,

addr = a memory address,

bit 13 to specify indirect addreSSing,

x = bits 14-17 for indexing, MUST BE AC 15 OR LESS AT ALL LEVELS,

arg = the count of the number of arguments in the block,

unit = the FORTRAN logical unit number,

T = type field,

-+ = pointer to the second word in the argument block (Le., the address pointed to by the argument
ARGBLK in the calling sequence).

C-7 January 1974

C.6.3.1 Initialization of FOROTS - The RESET. call to FOROTS must precede all other calls to the object time
system. The general form of the RESET. call is:

JSP 16.RESET.
ARG

(return)

where ARG is in the form:

0-----12

flags

14-----17 18-----35

X o

NOTE
The instruction ARG is unused (a zero instruction) at this
time; it is provided to implement future features of FOROTS.

C.6.3.2 . ENCODE/DECODE Calling Sequences - The ENCODE and DECODE statements and the calling sequence
of each are:

ENCODE (n,f,v) list
ENCODE (n,f,v, END=c,ERR=d) list

MOVEI 16, ARGBLK
PUSHJ 17, ENC.

and

DECODE (n,f,v) list
DECODE (n,f,v, END=c,ERR=d) list

MOVEI 16, ARGBLK
PUSHJ 17, DEC.

Where ARGBLK is:

0-----8 I 9-----12 I 13 I 14-----17 I
-6

Reserved 2 I X

7 I X

7 I X

0 I X

2 I X

Reserved 0 I X

C-8

18-----35

Character Count (n)

END=c

ERR=d

Format Address (f)

Format Size (in words)

Array Address (v)

January 1974

C.6.3.3 Fonnatted/Unformatted Transfer Statements, Sequential Access Calling Sequences - The READ and
WRITE statements for formatted sequential data transfer operations ~nd their calling sequences are:

READ (u,f, END=c, ERR=d) list
MOVEI 16, ARGBLK
PUSHJ 17, IN.

and

WRITE (u,f, END=c, ERR=d) list
MOVEI 16, ARGBLK
PUSHJ 17, OUT.

Where ARGBLK is:

0-----8 I 9-----12

-5

Reserved 2

7

7

0

Reserved 2

I 13 I 14-----17 I 18-----35

I X Unit Number (u)

I X END=c

I X ERR=d

I X Format Address (D

I X Format Size (in words)

The READ and WRITE statements for unformatted sequential data transfer operations and their calling sequences
are:

READ (u, END=c, ERR=d) list
MOVEI 16, ARGBLK
PUSHJ 17, RTB.

and

WRITE (u, END=c, ERR=d) list
MOVE I 16, ARGBLK
PUSHJ 17, WTB.

Where ARG BLK is:

0-----8 I 9-----12

-3

Reserved 2

J
7

Reserved 7

I 13 I 14-----17 I 18-----35

I X Unit Number (u)

I X END=c

I X ERR=d

C-9
January 1974

C.6.3.4 NAMELIST Data Transfer Statements, Sequential Access Calling Sequences - The READ and WRITE
statements for namelist-directed sequential data transfer operations and their calling sequences are:

READ (u, name)
READ (u, name, END=c, ERR=d)

MOVEI 16, ARGBLK
PUSHJ 1 7, NLI.

and

WRITE (u, name)
WRITE (u, name, END=c, ERR=d)

MOVEI 16, ARGBLK
PUSHJ 17, NLO.

Where ARGBLK is:

0-----8 ~ 9-----12

-4

Reserved 2

j 7

7

Reserved 0

I 13 I 14-----17 I 18-----35

I X Unit Number (u)

I X END=c

I X ERR=d

I X Namelist Address

The NAMELIST table illustrated below is generated from the FORTRAN NAMELIST. The first word of the table is
the NAMELIST name; following that are a number of" 2-word entries for scalar variables, and a number of
(N+3)=word entries for array variables, where N is the dimensionality of the array. The NAMELIST argument block
has the following formats:

NAMELIST ADDR/

o 8 9 12 14 17 18 35

SIXBIT /NAMELIST NAME/

The names specified in the NAMELIST statement are stored, in SIXBIT form, first in the table. Each name entry is
followed by a list of arguments associated with the name; this argument list may be of any length and is terminated
by a 0 entry. The name argument list may be in either a scalar or an array form (refer to the following diagrams).

C-IO . January 1974

SCALAR ENTRIES

0 8 9 12 14 17 18 35

SIXBIT /SCALAR NAME/

0 I 0 I I I X I SCALARADDR

ARRA Y ENTRIES

0 8 9 12 14 17 18

SIX BIT /ARRAY NAME/

#DIMS T I X

ARRAY SIZE OFFSET

I X FACTOR 1

I X FACTOR 2

I X FACTOR 3
_L.. -I" .. v ... 1..- .. v '"

r T r X r FACTORN r
C.6.3.S Fonnatted/Unformatted Data Transfer Statements, Random Access Calling Sequences - The READ and
WRITE statements for random access data transfer operations and their calling sequences are:

READ (u#R, f, END=c, ERR=d) list
MOVEI 16, ARGBLK
PUSHJ 17, RTB.

and

WRITE (u#R, f, END=c, ERR=d) list

MOVEI16,ARGBLK
PUSHJ 17, WTB.

C-ll January 1974

Where ARGBLK is:

0-----8 I 9-----12 I 13 I 14-----17 I 18-----35

-6

Reserved 2 x Unit Number (u)

7 x END=c

7 x ERR=d

o o

o o

Reserved 2 x Record Number

C.6.3.6 Calling Sequences for Statements Which Use Default Devices - The FORTRAN-I0 statements which
require the use of a reserved system default device and their calling sequences are:

ACCEPT f, list
READ f, list
REREAD f, list

MOVEI 16, ARGBLK
PUSHJ 17, IN.

Where ARGBLK is:

Default Device

UNIT=-4
UNIT= -5
UNIT=-6

0-----8 I 9-----12 I 13 I
-5

Reserved 2 I

7 I

7 I

0 I

Reserved 2 I

(TTY)
(CDR)
(REREAD)

14-----17 I
X

X

X

X

X

C-12

18-----35

Unit Number (u)

END=c

ERR=d

Format Address (f)

Format Size (in words)

January 1974

PRINT f, list
PUNCH f, list
TYPE f, list

MOVEI 16, ARGBLK
PUSHJ 17, OUT.

Where ARGBLKis:

0-----8 I 9-----12

-3

Reserved 2

I 7

Reserved 7

Default Device

UNIT=-3
UNIT=-2
UNIT=-1

I 13 I

I

I

I

(LPT)
(PTP)
(TTY)

14-----17

X

X

X

I 18-----35

Unit Number (u)

END=c

ERR=d

C.6.3.7 Calling Sequences for Statements which Position Magnetic Tape Units - The FORTRAN-I0 statements
which may be used to control the positioning of a magnetic tape device and their calling sequences are:

COMMANDS:

SKIPFILE u
BACKFILE u
BACKSPACE u
ENDFILE u
REWIND u
SKIPRECORD u
UNLOADu

CALL:

MOVEI 16, ARGBLK
PUSHJ 17, MTOP.

Where ARGBLK is:

0-----8 I 9-----12

-3

Reserved FUN

j 7

Reserved 7

FUN=7
FUN=3
FUN=2
FUN=4
FUN=O
FUN=5
FUN=!

I 13

I

I

I

I 14-----17 I 18-----35

X Unit Number (u)

X END=c

X ERR=d

C~13 January 1974

C.6.3.8 List Directed Input/Output Statements - Any form of a formatted input/output statement may be written
as a list-directed statement by replacing the referenced FORMAT statement number with an asterisk (*). The
list-directed forms of the READ and WRITE statements and their calling sequences are:

READ (u, *,END=c, ERR=d) list
READ (u#R, *, END=c ERR=d) list

MOVEI 16, ARGBLK
PUSHJ 17, IN.

and

WRITE (u, *, END=c, ERR=d) list
WRITE (u#R, *, END=c, ERR=d) list

MOVEI 16, ARGBLK
PUSHJ 17, OUT.

Where ARG BLK is:

0-----8 I 9-----12

-5

Reserved 2

7

7

Reserved

I 13 I 14-----17 I 18-----35

I X Unit Number (u)

I X END=c

I X ERR=d

0

0

C.6.3.9 Input/Output Data Lists - The compiler generates a calling sequence to the runtime system if an I/O list is
defined for the READ or WRITE statement. The argument block associated with the calling sequence contains the
addresses of the variables and arrays to be transferred to or from an I/O buffer. The general form of an I/O list
calling sequence is:

MOVEI 16, ARGBLK
PUSHJ 17, 10LST.

Any number of elements may be included in the ARGBLK. The end of the argument block is specified by a zero
entry or a call to the FIN. routine.

The elements of an I/O list are:

1. DATA. Value=l

The DATA. element converts one single, double, or complex precision item from external to internal
form for a READ statement and from internal to external form for a WRITE statement. Each DATA.
element has the following format.

C-14 January 1974

0-----8 9-----12 13 14-----17 18-----35

DATA. TYPE I X SCALARADDR

2. SLIST. Vall,le=2

The SLIST. argument converts an entire array from internal to external form or vice versa depending on
the type of statement (Le., READ or WRITE) involved. An SLIST. table has the following form:

0-----8 9------12

SLIST.

0 TYPE

For example, the sequence:

DIMENSION A(lOO), B(100)
REi\D (-,-) A

develops an SLIST. table of the form:

0-----8 I 9-----12

0

SLIST.

I

13 14-----17 18-----35

I X # ELEMENTS

I X INCREMENT

I X BASE ADDRI.

13 1 14-----17 I 18-----35

100

1

A

The end of an I/O list is indicated by a call to the FIN. routine in the object time system. This call must be made
after each I/O initialization call, including calls with a null I/O list. The FIN. routine may be entered by an explicit
call or by an argument in the I/O list argument block. If both calls are used, the explicit call is ignored. The FIN.
element has the following formats.

EXPLICIT CALL:

PUSHJ 17, FIN. (FIN.=4)

I/O LIST CALL:

1

0

--:--

8

I o

9-----12 14-----17

o

C-15 January 1974

C.6.3.10 OPEN and CLOSE Statements, CaIling Sequences - The form and calling sequences for the OPEN and
CLOSE FORTRAN-I0 statements are:

OPEN STATEMENT CALL

MOVEI 16, ARGBLK
PUSHJ 17, OPEN.

CLOSE STATEMENT CALL

MOVEI 16, ARGBLK
PUSHJ 17, CLOSE.

Where ARGBLK is:

0-----8 I 9-----12

Negative Count

Reserved 2

I 7

7

G Type

G Type

G Type

G Type

G Type

G Type

G Type

G Type

1
13 I 14-----17 I 18-----35

I X Unit Number (u)

I X END=c

I X ERR=d

I X H

I X H

I X H

I X H

I X H

I X H

I X H

I X H

The G field (bits 0-8) contains a 2-digit numeric which defines the argument name; the H field (bits 18-35)
contains an address which points to the value of the argument.

The numeric codes which may appear in the G field and the argument which each identifies are:

C-16 January 1974

G Field Open Argument Dialog Argument

01 DIALOG= / DIALOG:
02 ACCESS= / ACCESS:
03 DEVICE= / STRING:
04 BUFFER COUNT= / BUFFER COUNT:
05 BLOCK SIZES= / BLOCK SIZE:
06 FILE NAME= / STRING, STRING:
07 PROTECTION= / PROTECTION:
10 DIRECTORY= [PROJ.,PROG.,SFD, ...]
11 LIMIT= / LIMIT:
12 MODE= / MODE:
13 FILE SIZE= / FILE SIZE:
14 RECORD SIZE= / RECORD SIZE:
15 DISPOSE= / DISPOSE:
16 VERSION= / VERSION:
17 REELS= / REELS:
20 MOUNT= / MOUNT:
21 ERROR= ILLEGAL
22 ASSOCIATE= ILLEGAL
23 PARITY=ODD, EVEN / PARITY:
24 DENSITY=200, 556, 800 / DENSITY:

C.6.3.11 Memory Allocation Routines - The memory management module is called to allocate or deallocate core
blocks. There are two entry points, ALCOR. and DECOR., that control memory allocation and deallocation.

The ALCOR. entry is used to allocate the number of blocks specified by the contents of the argument block
variable. Upon return AC 0 will contain either the address of the allocated core block or a -1 value which indicates
that core is not available. The calling sequence for ALCOR. call is:

MOVEI 16, ARGBLK
PUSHJ 17, ALCOR.

Where ARGBLK is:

0-----8 9-----12

Negative Count

Reserved Type

14-----17 18-----35

x Number of Words

The DECOR. entry is used to deallocate a previously allocated block of memory; the argument variable must be
loaded with the address of the core block to be returned. Upon return, AC 0 is set to O.

C-17 January 1974

The calling sequence for a DECOR. call is:

MOVE I 16, ARGBLK
PUSHJ 17, DECOR.

Where ARGBLK is:

0-----8 I 9------12 1 13 J 14-----17 I 18-----35

Negative Count

Reserved I Type I J x I Add of Blocks to be returned

C.6.3.12 Software Channel Allocation and Deallocation Routines - Software channels may be allocated by
MACRO programs via calls to the ALCHEN. routine and deallocated by calls to the DECHAN. routine. Values are
returned in AC O.

The ALCHN. entry is used to allocate a particular channel or the next available channel. If the contents of the
argument block variable contains a zero the next available channel will be assigned. If the argument block variable is
non-zero, it must contain the requested channel number (1-17). If the channel request is not available or all
channels are in use, ALCHN. returns with -1 in AC O. Normal returns contain the assigned channel number in AC O.

The calling sequence of an ALCHN. routine is:

MOVEI 16, ARGBLK
PUSHJ 17, ALCHN.

Where ARG BLK is:

0-----8 9-----=12

-1

Reserved Type

14-----17 18-----35

x Arg. block variable

The DECHN. entry is used to deallocate a previously assigned channel. The channel to be released is passed to
DECHN. in the argument block variable. If the channel to be deallocated was not assigned by ALCHN., AC 0 is set
to -Ion return.

The calling sequence for a DECHAN. routine is:

MOVEI 16, ARGBLK
PUSHJ 17, DECHN.

C-18 January 1974

Where ARGBLK is:

0-----8 I 9-----12 I 13 I 14-----17 I 18-----35

-1

Reserved I Type I x I Channel to be returned

C.7 DETAILED DESCRIPTION

FOROTS is designed to run as either 1) a system comprised of one high segment shared by all users, plus one low
segment for each FORTRAN user or 2) a non-sharable system which can be loaded into a user's low segment as part
of the user object program. Different users may employ different FORTRAN Object Time Systems within the
DECsystem-l0 timesharing systems at the same time.

The FOROTS source files are written in MACRO-I0 and are part of the FORTRAN library (FORLIB.REL). The
Source fIles which compose the FOROTS system are:

Source File

FORPRM.MAC
FORINI.MAC
FORCNV.MAC
FORTRP.MAC
FORJAK.MAC
FOROTS.MAC
FORERR.MAC

Parameter File.
Initialization File.
Format Conversion File.
Trap Handler

Function

Translator For Interfacing With the FORTRAN F40 Compiler.
Main I/O Processing and Control File.
Error Processing File.

More detailed descriptions of the foregoing source fIles are given in Paragraphs C.7 .1.1 through C.7 .1.7.

A modular structure was used in designing FOROTS to provide flexibility and ease of maintenance. The
correspondence between the FOROTS high-segment modules and its source fIles is shown in the following table:

MAJOR MODULES SOURCE FILE

a. Memory Management

b. OPEN Statement

c. FORMA-T Statement
Encoding Routine
Dispa tch Routine

d. I/O LIST Routine
DATA
SLIST
ELIST FOROTS.MAC
XLIST

~

C-19 January 1974

e. I/O Initialization

f. I/O Termination

g. ENCODE/DECODE

h. CLOSE/RELEASE
FOROTS.MAC

i. QUEUING routine

1 j. Buffer Control

k. Traps FORTRAP.MAC

1. Error FORERR.MAC

m. Data Conversion FORCNV.MAC

The FOROTS source files not shown in the foregoing table (Le., FORJAK and FORINI) operate in the user's low
segment.

C.7.1 FOROTS Source Files

The source files which contain the modules of the FOROTS systems are described, individually, in the following
paragraphs.

C.7.1.1 FORPRM Parameter File - The FORPRM file contains the definitions of, a) accumulator usage,
b) pointers to dynamic core blocks, and c) the entry points for the FOROTS high segment. This file is a universal
file which must be assembled with all modules of the FOROTS system.

C.7.1.2 FORINI Initialization File - This routine operates in the user's low segment. It checks for the presence of a
current FOROTS system in the high segment of core. If a FOROTS system is present, it initializes FOROTS for the
segment it represents; if a FOROTS system is not present, it loads the desired sharable version of FOROTS. FORINI
is also used during library search operations to resolve any undefined external symbols since it contains the entry
point (RESET) which is declared as an EXTERN by all FORTRAN main programs. The file FORINI is called by
each RUN, START, or EXECUTE command.

C.7.1.3 FORCNV Data Conversion File - The FORCNV high segment module contains all of the routines required
to convert I/O list items from an internal-to-external form and, conversely from an external-to-internal form. The
conversion performed is determined by either a FORMAT statement or a variable type code. The FORMAT
statement directives always take precedence over a variable type directive when both occur at the same time.

Whenever NAME LIST , LIST DIRECTED, or G descriptors are used to indicate an I/O conversion, the variable type
is used to select the conversion routine. Whenever a READ or WRITE statement is used to initiate an I/O operation,
the FORCNV conversion type (i.e., routine) is selected from the referenced FORMAT statement.

C-20 January 1974

C.7.1.4 FORTRP Trap Handler - FORTRP is an arithmetic-interrupt routine which, initially, receives control from
the FOROTS RESET module. All traps which occur when a job is running are enabled; this. includes traps for
1) illegal memory references, 2) nonexistent memory references, 3) pushdown list overflows, 4) integer arithmetic
overflow faults, and 5) floating point overflow and underflow faults. Whenever an instruction is detected which
causes a trap, the handler interrupts the execution of the program and:

a. for arithmetic faults, it attempts to correct the faulty item by either patching or denormalizing it,

b. outputs an error message if it is required,

c. restarts the program at the instruction immediately following the one that causes the trap if the error
condition permits.

C.7.1.5 FORERR Error Routine - This routine, on the detection of a run-time error, determines the class of each
error and outputs, if directed, an error message to the controlling user terminal. FORERR is given program control
from the user program, FORTRAN library, or the Object Time System whenever a run-time error is detected.

On completion of the error processing procedures, program control is returned to either the user or the monitor
depending on the class of the detected error and parameters established for error processing by the user. The user
can determine the operations to be performed for specific classes of errors by using error processing routines, the
READ or WRITE statement ERR=n argument, and the OPEN statement ERROR argument. The ERR=n argument
specifies the address of the first statement of a user routine to which the program is branched whenever an error is
detected by FOROTS; the ERROR argument identifies the type and class of the error detected to permit the user
routine to determine what action to take.

Text for short error messages to be output to the controlling user's terminal is stored in FORERR; text for long
error messages is stored on the systems device.

C.7.1.6 FOROTS Main I/O Processing and Control File - This file contains, in individual modules, the routines
needed for:

a. the management of memory during I/O operations,

b. the implementation of the OPEN and FORMAT statement operations,

c. the implementation of the READ, WRITE, and NAME LIST data list processing,

d. the initialization and termination of I/O operations,

e. ENCODE/DECODE functions,

f. queue control,

g. I/O buffer control, and

h. the implementation of both sequential and random access READ and WRITE statements.

C-21 January 1974

The input and output operations performed by FOROTS involve the following five sections of the FOROTS file
code:

a. Open Section - This section defines the file and the FORTRAN logical device unit number which are to
be read or written.

b. Positioning Section - This section is used during random access to compute a block number from a
given logical record number.

c. I/O List Section - This section controls the transfer of data from an input buffer to the storage
locations specified by the variables of an input list or from storage locations specified by an output list
to output buffer.

d. FORMAT Statement Section - This section performs the operations needed to convert I/O list variables
according to the basic field descriptors given in the FORMAT statement.

e. Closing Section - This section terminates the current I/O operation and disassociates the file involved
from the specified FORTRAN logical unit.

C-22 January 1974

C.8 FOROTS CORE REQUIREMENTS

The following core map illustrates a typical core layout during FOROTS operations.

o

140

SI

Dl

JBFF

CORMAX

400000

HI

256K

JOBDAT

USER'S LOW SEG.

STATIC TABLES

DYNAMIC TABLES

FREE CORE

NONEXISTENT MEMORY

FOROTS

NONEXISTENT MEMORY

Job Data Area.

A user's low
segment including
the FORINI module.

Low Segment
storage tables.

Limit of user
addressable core.

Sharable High
segment.

The management of each user's low segment is under the control of the high segment Memory Management Module.
The size of a user low segment depends on the I/O activity of the user's object program. The low segment consists of
a basic data base, a static table storage area and a dynamic storage area (to location .JBFF).

The static table storage area contains data save areas; tables for ENCODE and DECODE array pointers, logical unit
number, software channel number, and an error table; a pointer to FORMAT statement information located in the
dynamic storage area and byte pointer. The dynamic core area starts immediately after the static storage area and
increases upwards until either the dynamic core requirements are satisfied or the user-addressable space is exhausted
(CORMAX is reached).

The sharable high segment of FOROTS occupies less than 6K of core. The modules which comprise the high segment
were introduced and described in Paragraphs C.7 through C.7.1.1.

C-23
January 1974

C.8.1 Core and Data File Protection

FOROTS conforms to the standard relocation and protection scheme used by the DECsystem-l0 monitors. The
sharable high segment of FOROTS is write-protected to prevent terminal user modifications being made to the
system. Transferred data files are given the protection code established as the installation standard (default) code
unless a code is specified by the PROTECT option of the OPEN statement.

C.9 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS

FORTRAN logical and physical device assignments are made by the user at run time or standard system assignments
are made according to a FOROTS Device Table (Le., DEVTB.). The standard assignments contained by the Device
Table are shown in Table C-l.

Table C-l
FORTRAN Device Table

Device/Function FORTRAN Logical Use
Unit Number

REREAD -6 REREAD statement
CDR -5 READ statement
TTY -4 ACCEPT statement
LPT -3 PRINT statement
PTP -2 PUNCH statement
TTY -1 TYPE statement
0 00 ILLEGAL
DSK 01 DISK
CDR 02 Card Reader
LPT 03 Line Printer
CTY 04 Console Teletype
TTY 05 User's Teletype
PTR 06 Paper Tape Reader
PTP 07 Paper Tape Punch
DIS 08 Display
DTAI 09 DECtape
DTA2 10

j DTA3 11
DTA4 12
DTA5 13
DTA6 14
DTA7 15 DECtape
MTAO 16 Magnetic Tape
MTAI 17

~ MTA2 18
FORTR 19 Assignable Device
DSK 20 DISK
DSK 21

J
DSK 22
DSK 23
DSK 24
DEVI 25 Assignable Devices
DEV2 26

! DEV3 27
DEV4 28
DEV5 29

C-24 January 1974

APPENDIX D

DEBUGGING FORTRAN PROGRAMS

FOROOT is an interactive program that is used to debug FORTRAN programs. With FORDOT, the user can:

a. change the contents of a variable,

b. set up to 10 pauses in a program,

c. continue from a pause or any other point,

d. type the contents of a variable,

e. display the current pause settings,

f. trace subroutine calls, and

g. display all variables (symbols) in the program.

D.I LOADING AND STARTING FORDDT

FORODT is loaded and started with a compiled program by means of the DEBUG command. The user should note
that DDT (the standard system debugging program) will also be loaded so that he can also use it for debugging. The
command to load and start FORDDT is shown below .

• DEBUG file.ext, FORDDT

FORDDT responds with the message:

»ENTERING FORDOT

Angle brackets (») are used by FORDDT to indicate that it is ready to receive a command. The user can issue any
FORDDT command described in the following section.

D.2 FORDDT COMMANDS

Described below are the commands to FORODT. Only enough letters of the command to make it unique need be
typed for FORDDT to recognize the command. Parameters to some commands can be gathered into groups so that
the user need not type these parameters each time he wishes to use them. This is accomplished by means of the
GROUP command, described below. Unless variables are globally defined within the program, the user can only refer
to local variables within the main program or subprogram in which he is currently working. To open a section (main
program or subprogram) that is not currently open, the user issues the OPEN command described below. There is no
capability in FORDDT to refer to elements in multi-dimensional arrays because the dimension bounds are not

D-l January 1974

available at run-time. The user must request the appropriate array element. For example, in the multi-dimensional
array A (1/5, 1/6), the user must refer to A (2,4) as A (17). He can derive the correct element by means of the
formula n+5*(m-1) where nand m are the subscripts. For example, A (2,4)=2+5*(4-1)=17. Also, DO loop
parameters are not accessible within the range of the loop because at run-time these parameters are maintained in
registers and not in the variables in the DO statement. The user can allow for this by including an assignment in his
DO loop which stores the value of the parameter in a variable.

D.2.1 Starting the Program

The START command is used to start or restart execution of the program. The START command has the forms:

START
STARTn
ST ART program name

The START command without an argument causes the program to be started or restarted at the beginning. If the
START command has a numeric argument, the program will be started at the specified statement label. If the
command has a program name as its argument, FORDDT will start the named program at its beginning.

Examples:

»S TART

»START 100

»S TAR T MYPROG

D.2.2 Stopping the Program

The STOP command terminates program execution, causes all files that are open to be closed, and exits to the
monitor. The form of the STOP command is:

STOP

Example:

»S TOP
• EXI T

D.2.3 Opening Subprograms

The OPEN command allows the user to open a particular subprogram of the loaded program so that the variables
local to the subprogram will be available. When a subprogram is opened, the previously open subprogram or the main
program is automatically closed. Only global variables and those variables defined within the currently open
subprogram are accessible at any given time. When FORDDT is entered, the main program is automatically opened.
The forms of the OPEN command are:

OPEN name
OPEN

D-2 January 1974

The first form causes the named subprogram to be opened. The second causes the main program to be reopened.

Examples:

»QPEN SUBI
»QPEN

D.2.4 Changing the Values of Variables

The ACCEPT command allows the user to change the contents of a variable in the currently open section of the
program. The form of the ACCEPT command is:

ACCEPT variable-name/x value

where:

variable-name is the variable to be changed and

x is the mode of the value. It can have one of the forms shown in the table below.

value is the new value of the variable

Notes:
1.

2.

Examples:

Mode

A
C
D
E
I
0
S

Table D-1
Modes for ACCEPT Values

Meaning

ASCII
Complex
Double Precision
Floating Point
Integer
Octal
Symbolic

Example

/FOO/
1.25, 79.0IE-5
123.4567899
123.45678
123456789
7654321
PSI (M)

Only the first five characters between the slashes are used in an ASCII value.

When a symbolic value is entered, the current values are used, e.g., in the above
example if M = 3, the variable is set to the value in PSI (3).

·>ACCEPT IPROJ/A IELEC.I

~PROJ = -0.2466446E+32 -31354338468. < E >< L >< E >< C >< • >

~> ACCEPT S/F' 3.5

= 3.500000 17565745152.

D-3 January 1974

D.2.S Grouping Parameters for Commands

The GROUP command allows the user to store a group of parameters for use in the TYPE or PAUSE commands.
This facility eliminates the necessity for the user to type the same parameters in successive TYPE or PAUSE
commands. The GROUP command has the forms:

GROUP n list
GROUPn

where:

n is an integer from 1 to 8 that names the group, and
list is any combination of variables, ranges of variables,
and other groups.

The form of the GROUP command that contains a list causes the components of the list to be included in the named
group. The other form causes the contents of the group to be displayed. If a group is to be included in another
group, it must be preceded by a slash (f).

Examples:

»GROUP 6 At ALPHA(7)-B(7), PI, /5

This command causes the variable A, the range of values ALPHA (7) through B (7), the variable PI, and group 5 to
be stored as group 6.

»GROUP 6
At ALPHA(7)-B(7), PI, /5

This example causes the contents of group 6 to be displayed.

D.2.6 Specifying Typeout Modes

The MODE command controls the modes in which variables will be typed. Normally each variable will be typed in
floating point and integer form. The user can change the modes by means of the MODE command. The forms of the
MODE command are:

MODE list
MODE

where list contains one or more modes taken from the following table.

Table D-2
Typeout Modes

Mode Meaning

F Floating Point
D Double Precision
I Integer
o Octal
A ASCII

D-4 January 1974

The second form of the MODE command causes the default mode setting (floating point and integer) to take effect
after the mode had previously been changed. The first form sets the mode to those indicated. If all five modes are
specified, the modes of the values of the variable are typed in the following order:

Floating point, double precision, integer, octal, ASCII.

Example:

»MODE F', I
»TYPE I
I = 0.0000000E-38

D.2.7 Displaying Values

1 • <NUL><NUL><NUL><NUL><NUL>

The TYPE command causes the contents of one or more variables in the currently opened section to be typed on the
user's terminal. The forms of the TYPE command are:

TYPE list
TYPE

where list contains one or more variable or array names and/or group numbers separated by commas. Group
numbers must be preceded by a slash (/).

If an array is specified, the user must specify the exact location of the elements, e.g., B(17) - B(2S). This will cause
the range of values from B(17) through B(2S) to be typed. The variables will be typed in the order specified in the
TYPE command. If no variable-names or group-names are specified, FORDDT uses the names specified in the last
TYPE command. To request typeout of the value of a complex variable, the variable-name must be specified as an
array, e.g., C(1) - C(2).

Examples:

»TYPE L,PRL

L = 0.0000000E-38 10.

PRL = 0.1500000 16991964365.

D.2.8 Setting Pauses (Breakpoints)

The PAUSE command sets a pause (or breakpoint) at a statement number or subprogram entry point in the
program. Up to 8 pauses can be set. The forms of the PAUSE command are:

PAUSE n
PAUSE n AFTER integer
PA USE n IF condition
PAUSE n TYPING group-number
PAUSE n AFTER integer TYPING group-number
PAUSE n IF condition TYPING group-number

The PAUSE n command causes the program to stop and return to FORDDT each time the numbered statement or
named subprogram is encountered. When this occurs, FORDDT types the message:

PAUSE AT n

»

D-S January 1974

The PAUSE n AFTER integer command causes the program to stop and return controL to FORDDT when the
statement or subprogram entry point has been passed the specified number of times. The parameter AFTER cannot
be abbreviated.

The PAUSE n IF condition command causes the program to stop and return control to FORDDT at the specified
statement or subprogram if the specified condition is true. The allowable conditions are .LT., .LE., .GE., .GT., .EQ.,
and .NE .. The variables and/or numeric values in an IF condition must be of the same type; except that an integer
variable can be compared to an ASCII or octal value.

The PAUSE n TYPING group-number command causes FORDDT to suspend program execution temporarily at the
specified statement or subprogram entry point and to type the information requested in the specified group. The
TYPING parameter cannot be abbreviated.

The PAUSE n AFTER interger TYPING group-number command causes the information requested in the specified
group to be typed every time the specified statement or subprogram is encountered and causes the program to stop
and return control to FORDDT after the statement or subprogram has been passed the specified number of times.

The PAUSE n IF condition TYPING group-number command causes the information requested by the specified
group to be typed every time that the specified statement or subprogram is encountered and causes the program to
stop and return control to FORDDT at the specified statement or subprogram if the specified condition is true.

When the PAUSE command is used with the TYPING argument, control will be transferred to FORDDT on the next
occurrence of the specified statement if a character is typed on the user's terminal. Thus, typing ahead is not
permissible.

Examples:

»PA USE 30
»PA USE 100
»PA USE 55
»PAUSE BIV
»PAUSE 11
»PAUSE 28

AFTER 39
IF X.LE.Y
TYPING 4
AFTER 14 TYPING 6
IF" A (7) .GE. 3.142E-5 TYPING 3

D.2.9 Removing Pauses (Breakpoints)

The RESET command removes the pause (or breakpoint) at a specified line number in the currently open section.
The RESET command has the forms:

RESET n
RESET

If the line number is not specified, all pauses that have been set in the program are removed.

Examples:

»R ESET 100
»R ESET

D-6 January 1974

D.2.10 Continuing After a Pause (Breakpoint)

The CONTINUE command causes the program to continue execution after a pause (or breakpoint) occurred. The
CONTINUE command has the forms:

CONTINUE
CONTINUEn

where n is a number or variable that will be treated as an integer value.

Mter a CONTINUE command is executed, the program runs either to completion or until another pause is reached.
If a value is included with the command, the program runs un til the nth occurrence (proceed count) of the preceding
pause has been reached. Note, however, that the value included with the CONTINUE command will be ignored if the
pause is conditional (i.e., the PAUSE command contains an IF condition) because conditional pauses are always in
effect until reset or redifined.

Example:

»CONTINUE 20

D.2.11 Obtaining Information

The HELP command causes typeout of a list of FORDDT commands with examples. No description of command
usage is given. The HELP command has the form:

HELP

Example:

»HELP

COMMANDS:-
PA USE RESET
GROUP WHAT

EXAMPLES

OPEN
DDT

START
LOCATE

PAUSE 10 AFTER 20 TYPING 2

STOP
STRACE

PAUSE SUB IF I .GT. A(19) TYPING 3
TY PEA (B (M)) , B (9) - B (5) , / 4 , 1 00 , I
ACCEPT 100 ('FORMAT')
ACCEPT X/COMPLEX 1.2,3.4
GROUP 5 A,I,/3,TAB(24)

CONTINUE

MODE FLOATING,DOUBLE,INTERGER,OCTAL,ASCII
CONTINUE A(8)

TYPE ACCEPT

The WHAT command causes FORDDT to list the current status of all the user's pause requests and group settings.
The form of the WHAT command is:

WHAT

D-7 January 1974

The output from the WHAT command has the following form:

OPEN SECTION: - name
GROUP # PROCEED PAUSE

number {nu;ber}

GROUP # 1. variables

GROUP#n

{
statement nUmber}
subroutine name

IF condition

If a PAUSE command includes the conditional option, IF is typed under PROCEED and the IF condition is added
to the end of the line.

Example:

»WHAT
OPEN SECTION:-FATAN

GROUP# PROCEED PAUSE
8. IF 1 IF XOX IN BIV .NE. ALPHAR IN MAIN PROGRAM

IF BIV IF PSI(S.) .GE. -.10345669E-3
4. 100. 802 IN MAIN PROGRAM
6. 0. 804 IN mI N PROGRAM

1 • 20 IN MAIN PROGRAM

GROUP# 1 •
GROUP# 2.
GROUP# 3.
GROUP# 4.
GROUP# 5.
GROUP# 6.
GROUP# 7.
GROUP# 8.
»

The LOCATE command causes typeout of either all variables or the subprogram in which a particular variable is
defined. The forms of the LOCATE command are:

LOCATE variable
LOCATE

The first form of the command is used to obtain the name of the subprogram in which the variable is defined. The
second form is used to obtain a list of all global variables available to the program including those from JOBDAT,
FOROTS, and the program itself.

D-8 January 1974

Examples:

»LOCATE RJ
MA IN PROGRA M RIRR
»LOCA TE

PAT ••
PAT ••

EXI T CEXI T.
F"ORXIT

TRACE
TRACE

ALOG 1'~ ALOG. ALOG ALGl~.
ALOG

EXP. EXP
EXP

EXP2.6 EXP2.4 EXP2.2 EXP2.0 EXP2.
EXP2

STOP. PA USE. PAUSe
F"ORPSE

TY7.DDB TRACE7. FORER?
FORERR

NMLTBL NMLST? NLOEN. NLIS0
NMLST?

LSTDR?
LSTDR?

PTLEN. LOTEN. HITEN. EXP10.
POWTS?

OCTAL?
OCTAL?

LOGIC7.
LOGIC?

INTEG?
I NTEG7.

FLOUT?
FLOUT?

D-9 January 1974

REAL? FLIRT?
FLIRT?

ALPHA 7.
ALPHA?

FORQ U7.
FORQUE

WPOINT SMEM7.? SAVE. RELE?? ,PMEM7.? OPOINT OP.SWT OP.DSP OBYTE
OBLOK. NXTLN. MOD.TB IPEEK. IOLS?7. INIT? IBYTE. IBLOK. GMEM7.
FORO T? EXIT? DPOINT DIS.TB CLOSO. CLOSI. CLOSB. ACC.TB
FORCTS

WTS. VERINI TRACE. RTB. RESET. RElEA. OUT. OPEN. NLO.
NLI. MTOP. IOLST. IN. FORER. FIND. FIN. EXI T. ENC.
DECOR. DECH N. DEC. CLOSE. ALCOR. ALCH N.
FORI NI

•• PETH RETURN FORDDT DDTEND
FORDDT

.Q0000 12 13 14 15 16 17 111 18
19 20 21 22 210 100 211 1 101
2 102 3 103 4 104 400 5 105
6 7 8 108 9 220 109 10 221
1 1 C I L RNPV R RI IT .S00~
.S0001 J CONT SNPV 51 COC S2 IPROJ
MAl N PROGRAM

.JBVER • JBJJO • JBUSY .J BTPC .JBSYM .JBSA .JBREN .JBREl .JBPF

.JBOPS • JBOPC .JBINT .JSHVR .JBHSM .JBHRL .JBHNM .JBHGH .JBHO
• JBHCR • JBFF • JBERR .JBDDT .JBDA .JBCS! .JaCOR .JBCNI .JBCN
.JBCHN • JBBLT .JBAPR .JB41 7.J OBO! JOBVER JOBUUO JOBUSY, JOBTP
JOBSYM JOBSA JOBREN JOBREl JOBPF'I JOBOPC JOBIN! JOBHVR JOBHSi
JOBHRL JOBH NM JOBHGH JOBHDA JOBFF JOBERR JOBODT JOBDA JOBCO
JOBCNI JOBCN6 JOBCHN JOBBLT JOBAPR JOB41
JOBOAT

D.2.12 Tracing Subroutine Calls

The STRACE command allows the user to obtain the present nested level of subprogram calls when a pause occurs.
The form of the STRACE command is:

STRACE

The output printed is the same as that given by the TRACE option of the PAUSE statement in the FORTRAN-l 0
compiler. Refer to Paragraph 9.7.1 for a description and example of the printout.

D-IO January 1974

D.2.13 Entering and Leaving DDT

The DDT command allows the user ,to transfer control from FORDDT to DDT (the standard system debugging
program). The form of the DDT command is:

DDT

Example:

, »ODT

The RETURN command allows the user to return from DDT. The RETURN command has the form:

RETURN @G

where: @ means ALTMODE or ESCAPE

The return is made to the point in the program where processing had left off due to the transfer to DDT.

Examples:

RETURN@ G

D-l1 January 1974

A

A (alphanumeric) field descriptor, 13-9

Access,

OPEN/CLOSE statement
option, 12-2

Accuracy and range of double precision numbers, B-8

Action of field descriptors, 13-5

Actual and dummy arguments, agreement between,
15-1

Actua\ arguments

CALL statement, 15-10
external function reference, 15-12
generic function names, 15-6
use of, 15-1

Acute accent, 2-2

Adjustable dimensions, 6-2

type statement, 64

Alphanumeric character transfer, 13-10

Alphanumeric field descriptors, 13-9, 13-11

Apostrophe representation, 13-11

Argument lists, B-21

Argument types, B-22

Arguments

actual, 15-1
actual function reference, 15-12
agreement between actual and dummy, 15-1
description of, B-22
ENTRY statement, 15-13

Arithmetic assignment statement, 8-1

INDEX

Index-l

Arithmetic expression,

compound, 4-1
rules for, 4-2
simple, 4-1

Arithmetic IF statement, 9-3

Arithmetic operations and operators, 4-1

Arrays

adjustable dimensions, 6-2
description, 3-7
dimensioning, 3-8
double precision, 12-6
dummy argument name, 15-2
element, 3-7,3-9
single preciSion, 12-6
storage, B-9

ASCII character, 2-1

Code Set, A-I

ASSIGN statement, 8-3

Assigned GO TO, 9-2

Assignment of .FALSE Value, 44

Assignment of .TRUE Value, 44

Assignment statements,

arithmetic, 8-1
ASSIGN, 8-1,8-3
logical, 8-1,8-3

B

BACKFILE statement, 14-3

BACKSPACE statement, 14-2

Base/ exponent operand types, 4-4

Basic external functions, 15-6

Table of, 15-8, 15-9

Blank, Line type, 24, 2-6

Blank common, 6-5

BLOCK data statement, 16-1

Block data subprograms, 16-1

Boldface italic type, 1-1

C

Calculation of DO loop iterations, 9-5

CALL statement, 15-9, 15-10

Categories of statements, 1-2

Character transfer,

maximum alphanumeric, 13-10

Character,

variable type by initial, 3-7

Characters

apostrophe representation, 13-11
ASCII, 2-1, A-I
continuation field, 2-3
digits, 2-2
nonprinting, 2-2
print control, 13-14
symbolic, 2-2
upper/lower case, 2-1

CLOSE Statement, 12-1, 12-2

CloSing parenthesis, FORMAT statement, 13-12

COBOL-I0, interaction with, B-29

Code Set,

ASCII Character, A-I

INDEX (Cont)

Index-2

Codes

Table of conversion, 13-3
Table of numeric fields, 13-6

Comma delimiter, fonnat specification, 13-11

Comment,

line identifier, 2-5
line type, 24
within a line, 2-5

Common,

blank,6-5
labeled, 6-5

COMMON statement, 6-5, 6-6, B-9

Compilation control statements, 5-1

END statement, 5-1

Complex constant, 34

Complex data, 3-1

Complex quantities, transfer of, 13-6

Computation of DO loop iterations, 9-5, B-12

Computed GO TO, 9-2

Constants, 3-1

complex, 34
double octal, 34
double preCision, 3-3
literal, 3-5
logical, 3-5
octal, 34
statement label, 8-3

Constant size,

double octal, 34
double preCision, 3-3
integer, 3-2
octal, 34
real, 3-2

Continuation field, 2-3

Continuation lines, 24

CONTINUE statement, 9-9

Control characters for printer, 13-14

Control statements,

device, 14-1, 14-3
program, 9-1

Conversion,

H,13-10
Result of literal, 13-11

Conversion codes, 13-3

Conversion for

double precision data, 13-8
mixed mode assignments, 8-2
real data, 13-8

D

Data conversion, 13-8

DATA statement, 7-1, 7-2

Data statement label, 3-1

Data subprograms, BLOCK, 16-1

Data types, 3-1

Debug Line, 24, 2-6

Debugging FORTRAN-l 0 programs, D-l

Declarators,

Array, 3-8
type, 6-3

INDEX (Cont)

Definition of,

array subscripts, 3-7
external function, 15-5
intrinsic function, 15-3
statement function, 15-3

Delimiter,

format specification comma, 13-11
record, 13-1, 13-12

Descriptors,

A (alphanumeric field), 13-9
Action of Field, 13-5
Field, 13-1, 13-2
L (logical) field, 134, 13-9
Literal Field, 13-10, 13-11
numeric field, 134
single quotes, 13-10
record formatting field, 13-13
T field, 13-13
X field, 13-13

Descriptors and variables, interaction of, 13-6

Device OPEN/CLOSE statement option, 12-2

Device control statements, 14-1

summary, 14-3

Dialog OPEN/CLOSE statement option, 12-8

Digit characters, 2-2

Dimension declaration, 3-9

DIMENSION statement, 6-1

Dimensioning of arrays, 3-8

in COMMON, 6-6

Dimensions, adjustable, 6-2, 64

Directory, OPEN/CLOSE statement option, 12-5

Index -3

DIRECTORY specification,

double precision arrays, 12-6
single precision arrays, 12-6

DO Loop, 9-5, 9-6

DO statement, 9-5

computations of iterations, 9-5, B-12
extended range, 4-7, 9-7
index variable, 9-5
nested, 9-6, 9-7
parameters, 9-5
transfer operations, 9-8
using floating point, B-12

Double octal constant, 34

Double octal data, 3-1

Double precision constant, 3-3

Double precision data conversion, 13-8

Dummy arguments, 15-1, 15-2

E notation, 3-3

Elements,

array, 3-7
language set, 1-1
order of array, 3-9

E

END FILE statement, 14-1, 14-2

END statement, 5-1

Entry Points,

multiple subprogram, 15-13
subroutine subprograms, 15-7

ENTRY statement, 15-13, 15-14, B-ll

EQUIVALENCE statement, 6-1, 6-6, 6-7, B-I0

INDEX (Cont)

Index4

Error reporting, B-8

Evaluation of expressions, 4-8

mixed mode, 4-9
nested sub expressions, 4-8

Executable statements, 1-1

Execution of RETURN statement, 15-12

Expressions,

arithmetic, 4-1,4-2
complex arithmetic, 4-1
compound, 4-1
evaluation of, 4-8
evaluation of mixed mode, 44
logical, 4-2
mixed mode, 4-10
relational, 4-6
use of logical operands, 4-10

Extended range DO statement, 9-7

External FUNCTION statement, 15-5

External FUNCTION subprograms, 15-6, 15-12

External functions,

basic, 15-6, 15-8, 15-9
definitions of, 15-5
Octal arguments for, 15-12

External procedures, 15-1

EXTERNAL statement, 6-1,6-7, 15-1, 15-3, 15-5

declaring function names, 6-8

F

Factors, scale, 13-7, 13-8

.FALSE. Value, assignment of, 44

Field codes, Table of numeric, 13-6

Field descriptors, A (alphanumeric), 13-9, 13-11

action of, 13-S
Alphanumeric, 13-9, 13-11
Forms of, 13-2
L (logical), 13-9
literal, 13-10, 13-11
numeric, 134
Record formatting, 13-13
Repeat format of, 13-2
T, 13-13
X,13-13

Field width, variable numeric, 13-9

Fields,

line continuation, 2-3, 24
line statement, 2-3
mixed numeric and alphanumeric, 13-11
scale factors in, 13-7
statement label, 2-3

File control statements, 12-1

Floating point DO loops, B-12

FORDDT

commands, D-l
loading and starting, D-l
using for debugging, D-l

Form of

BACKFILE statement, 14-3
BACKSPACE statement, 14-2
BLOCK data statement, 16-1
CALL statement, IS-9
END FILE statement, 14-2
ENTRY statement, IS-13
External FUNCTION statement, IS-S
RETURN, Multiple Return, lS-10
RETURN statement, IS-10
REWIND statement, 14-2
SKIP RECORD statement, 14-3
statement functions, IS-3
SUBROUTINE statement, IS-7
UNLOAD statement, 14-2

Format specification comma delimiter, 13-11

INDEX (Cont)

Index-S

FORMAT statement, 13-1

closing parenthesis, 13-12
READ/WRITE transfer to/from, 13-10

Format-Controller I/O statement processing, 13-6

Formatting field descriptors, 13-2

FOROTS

ASCII data files, C4
binary data files, C-S
calling sequences, C-6, C-12, C-13
core requirements, C-23
device assignments, C-24
entry points, C-6
error processing, C-3
features of, C-l
hardware requirements, C-l
image binary files, C-S
input/output facilities, C-3
MACRO calls for FOROTS functions, C-7
mixed mode data files, C-S
software requirements, C-l
source files, C-20

FORTRAN Subroutines, IS-10

FORTRAN-I0

global optimizer, B-lS
running the compiler, B-1
switches, B-1
writing programs, B-8

FUNCTION dummy arguments, 15-2

FUNCTION statement, IS-5

FUNCTION subprogram, IS-6

names,IS-12

Functions, IS-1

basic external, IS-6, IS-8, IS-9
dummy arguments in, IS-2
external, IS-I, IS-S
generic names for, IS-6, 15-7
intrinsic, IS-I, IS-3, IS-4, IS-S

INDEX (Cont)

logical, 4-6
Statement, 15-1, 15-3
use of library name for, 15-5

G

G numeric conversion code, 13-7

Generic names for functions, 15-6, 15-7

Global optimizer

constant folding and propagation, B-18
elimination of common sub expressions, B-16
global register allocation, B-19
improper function references, B-19
optimization techniques, B-16
programming techniques for effective optimization,

B-19
reduction of operator strength, B-17
removal of constant computation from loops, B-17
removal of inaccessible code, B-19

GO TO Statement, 9-1,9-2,9-3

assigned, 9-2, 9-3
computed, 9-2
types of, 9-1
unconditional, 9-2

H Conversion, 13-10

H

Hierarchy, of operators, 4-8, 4-9

Hollerith literal, 3-5

I

I/O statements processing, 13-6

Identifier,

array elements, 3-9
comment line, 2-5

Index-6

IF STATEMENT, 9-3, 94

arithmetic, 9-3
logical~ 94
logical two-branch, 94

IMPLICIT statement, 64, 6-5

Increment parameter DO statement, 9-5

Initial character, typing variables by, 3-7

Initial line, 24

statement number, 2-3,24
use of tab, 2-3

Initial parameters DO statement, 9-5

Initial tab, 2-2, 2-3, 24

Input, line-sequenced, 2-6

Input transfers,

NAMELIST control1ed, 11-2

Integer constants

size, 3-2

Integer data, 3-1

Integer variable types, 3-6

Interaction of descriptors and variables, 13-6

Interfacing with non-FORTRAN-I0 programs and
files, B-19

Internal procedures, 15-1

Intrinsic functions, 15-3, 154, 15-5

Iterations, calculation of DO loop, 9-5

L

L (logical) field descriptor, 13-9

Label statement, 3-5, 15-11

Label in data statement, 7-1

Label dummy arguments, 15-2

Label field in statement, skipping, 2-3

Label in CALL statement, 15-10

Labeled common area, 6-5

Language set, elements of, 1-1

Library subroutines, 15-15 through 15-19

Line Identifier for comments, 2-5

Line Printer control characters, 13-14

Line-sequenced Input, 2-6

Line statement field, 2-3

. Line Types, 2-4

Literal constant, 3-5

in CALL statements, 15-10

Literal conversion, 13-11

Literal data, 3-1, 3-5

Literal field description, 13-10, 13-11

Literals, Hollerith, 3-5

Logical

assignment statement, 8-3
bit combinations, 4-6
constant, 3-5
data, 3-1,3-5
expression form, 4-4
expressions, 4-3
field descriptor, 13-9

INDEX (Cont)

Index-7

functions, 4-6
IF statement, 9-4
operations binary truth table, 4-6
operations truth table, 4-5
operators, 4-4
two-branch IF statement, 9-4
variable types, 3-6

Lower case characters, 2-1

M

MACRO-10, interaction with, B-24

Mixed mode

assignment, rules for conversion, 8-2
expression, 4-9
expression, evaluation of, 4-10
expression, use of logical operand, 4-10

Mixed numeric and alphanumeric fields, 13-11

Monitor commands, B-2

Multi-statement line, 2-5

Multiple record specification, 13-12

Multiple returns,

definitions, 15-10
RETURN statement with, 15-10

Multiple subprogram entry points, 15-13

N

Name, symbolic, 3-5, 3-6

NAMELIST controlled I/O transfers, 11-2, 11-3

NAME LIST statement, 11-1, 11-2

Names,

Function generic, 15-6, 15-7
FUNCTION Subprogram, 15-12

INDEX (Cont)

Nested DO statements, 9-6,9-7 Operation

Nested sub expressions , 4-8 of DO loop, 9-6
of DO statement transfer, 9-7

Nonexecutable statements, 1-1
Operator hierarchy, 4-8,4-9

Numbers for statement lines, 2-3, 24
Operators,

Number of RETURNS, 15-11

Numeric and alphanumeric fields, mixed, 13-11
arithmetic, 4-1
logical, 4-4
relational,4-7

Numeric Conversion code, G, 13-7

Numeric field codes, 13-6

Numeric field descriptors, 134

Numeric field width, variable, 13-9

Numeric fields with scale factors, 13-7

o

Octal constants, 34

Octal data, 3-1,34

OPEN/CLOSE statement Options

access, 12-2
associate variable, 12-8
buffer count, 12-7
density, 12-8
dialogue, 12-8
directory, 12-5
dispose, 124
mode, 12-3
parity, 12-8
protection, 12-5
record size, 12-7
summary, 12-9
unit, 12-2
version, 12-7

OPEN statement, 12-1, 12-2

Operand types, 4-1

Options, summary of OPEN/CLOSE statement, 12-9

Output transfers, NAMELIST controlled, 11-3

P

P Scale Factor, 13-8

Parameters of DO statement, 9-5

Parenthesis in FORMAT statement, 13-12

Parenthesized subexpressions, 4-8

PAUSE statement, 9-10

Printer control characters, 13-14

Procedures (functions), 15-1

Programs, source, 1-1

Protection option for OPEN/CLOSE statement, 12-5

Q

Quotes descriptor, 13-13

R

/"1
f{ 1)}v1 JJ -- Range of DO loop, 9-5

))'J~
5~V~~rJ c,r READtransfer,formatted,13-10

/} ft~) IJ'
~ r:i ,<. /tI

...J c Reading a FORTRAN-l 0 listing, B-3

Index-8

INDEX (Cont)

Real

variables, 3-6, 3-7
data, 3-1,3-2
data, conversion of, 13-8
constant, size of, 3-2, 3-3

Record delimiter, 13-1, 13-12

Record formatting field descriptors, 13-13

Record specification, multiple, 13-12

Referencing external FUNCTION subprograms, 15-12

Relational expressions, 4-6,4-7

Remarks, 2-3, 2-5, 2-6

Reordering of computations, B-14

Repeat format of field descriptors, 13-2

Replacement of dummy arguments, 15-2

Representing apostrophe characters, 13-11

Result of literal conversion, 13-11

Result of statement function, 15-3

RETURN statement, 15-10, 15-11, 15-12

Subprogram, 15-7

Returns, mUltiple, 15-10, 15-11

REWIND statement, 14-2

Rules for FUNCTION Subprogram, 15-6

Rules for multi-statement line, 2-5

Rules for Use of ENTRY statement, 15-13, 15-14

Rules, form and use of dummy arguments, 15-2

Rules for SUBROUTINE Statement, 15-9

Running the FORTRAN-I0 compiler, B-1

Index-9

S

Scale Factors, 13-7, 13-8

Single quotes descriptor, 13-10

Size of

double octal constant, 3-5
double precision constant, 3-3
Integer constant, 3-2
Octal constant, 3-4
Real constant, 3-2

SKIPFILE statement, 14-3

SKIPRECORD Statement, 14-3

Skipping label field, 2-3

Slash (/) used as record delimiter, 13-1, 13-12

Source programs, 1-1

Specification of multiple record, 13-12

Specification comma delimiter, 13-11

Specification statements, 6-1

Statement,

Actual Arguments for CALL, 15-9
Arguments for ENTRY, 15-13
Arithmetic assignment, 8-1

Statements,

ACCEPT, 10-15,10-16
ASSIGN,8-3
BACKFILE, 14-1, 14-3
BACKSPACE, 14-1, 14-2
BLOCK data, 16-1
CALL, 15-9
CLOSE, 12-1
COMMON, 3-9, 6-1,6-5
CONTINUE, 9-1,9-9
DATA, 7-1, 7-2, 7-3
DECODE, 10-19, 10-20, 10-21
DIMENSION, 3-9,6-1

DO, 9-1,9-5
ENCODE, 10-19, 10-20, 10-21
END, 5-1
ENDFILE, 14-1
ENTRY, 15-13
EQUIVALENCE, 6-1,6-6
EXTERNAL, 6-1, 6-7,15-3,15-5
FIND,10-18 .
FORMAT, 13-1 through 13-14
FUNCTION, 15-5
GO TO, 9-1
IF, 9-1, 9-3
IMPLICIT, 6-1 , 64
NAMELIST, 11-1 through 11-3
OPEN/CLOSE, 12-1 through 12-9
PAUSE, 9-10
PRINT, 10-16
PUNCH, 10-17
READ, 10-9 through 10-12
REREAD, 10-12,10-13
RETURN, 15-10
REWIND, 14-2
SKIPFILE, 14-3
SKIPRECORD, 14-3
STOP, 9-9
SUBROUTINE, 15-7
TYPE, 10-18
UNLOAD, 14-2
WRITE, 10-13 through 10-15

Storage of arrays, B-9

Subexpressions, 4-8

Subprogram names, FUNCTION, 15-12

Subprogram RETURN statement, 15-7

Subprograms,

block data, 16-1
multiple entry points for, 15-13
Referencing External FUNCTION, 15-12
Subroutine, 15-7

SUBROUTINE Statement, 15-7

Subroutines,

FORTRAN, 15-10
library, 15-15 through 15-19
programming considerations, B-14

INDEX (Cont)

Subscripts, definition of array, 3-7

Summary of device control statements, 14-3

Summary of OPEN/CLOSE statement Options, 12-9

Switches available with FORTRAN-I0 compiler, B-1

Symbolic

characters, 2-2
name, 3-5,3-6
relational operators, 4-7

T

T Field Descriptor, 13-13

T (TRACE) option, 9-10,9-11

Tab, use of in initial line, 24

Tables

basic external functions, 15-8, 15-9
conversion codes, 13-3
intrinsic functions, 154, 15-5
library functions, 154, 15-5
library subroutines, 15-15, 15-16, 15-17,15-18,

15-19 .
numeric field codes, 13-6
print control characters, 13-14

Teletype printer control characters, 13-14

Terminal Parameter DO statement, 9-5

TRACE option, 9-10, 9-11

TRACE routine, 9-10, 9-11

Transfer of COMPLEX quantities, 13-6

Transfer operation, DO statement, 9-8

Transfer with FORMAT statement, 13-10

.TRUE. value, assignment of,44

Type declarators, 6-3

Index-l0

Type of External FUNCTION Statement, IS-S

Type of statement function, IS-3

Type Specification statements, 6-1,6-3

Types of dummy arguments, IS-2

u

Unconditional GO TO, 9-2

Unit option in OPEN/CLOSE statement, 12-2

UNLOAD statement, 14-2

Unspecified scale factor, 13-8

Upper case characters, 2-1

Use of

COMMON, B-9
EQUIVALENCE statements, B-I0
ENTRY statements, B-ll
Floating point DO loops, B-12

Using library name for user function, IS-S

INDEX (Cont)

Index-ll

v

Variables,

complex, 3-6
DO index, 9-S
double precision, 3-6
dummy argument, IS-2
integer, 3-6
logical, 3-6
numeric field width, 13-9
real, 3-6
types of, 3-6
types of initial characters, 3-7

w

Width of variable numeric field, 13-9

WRITE transfer from FORMAT statement, 13-10

Writing FORTRAN-I0 Programs for execution on
non-DEC machines, B-8

Writing user programs, B-1

X

X field descriptor, 13-13

READER'S COMMENTS

DECsystem-lO
FORTRAN-lO Language Manual
DEC-lO-LFORA-B-D

NOTE: This form is for document comments only. Problems with software should be
reported on a Software Problem Report (SPR) form

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

D
D
D
D
D
D Non-programmer interested in computer concepts and capabilities

Name _______________________ Date

Organization ______________________________________ _

Street __ ___

City ______________ State ________ Zip Code _____________ _

If you do not require a written reply, please check here. D

or
Country

- - - - - - - - - - - FoldHere - - - - - - - - - - --

- - - -- -- -- -- -- Do Not Tear - Fold Here and Staple -'- -- -- -- -- -- -- --

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation
Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

•

