PDP-11
 DEVICE DRIVER PACKAGE

FOR MONITOR VERSION VØO8A

October 1972

SOFTWARE SUPPORT CATEGORY
The software described in this document is supported by Digital Equipment Corporation under Category I, as defined on page ii of this document.

Your attention is invited to the last two pages of this document. The "How to Obtain Software Information" page tells you how to keep up-todate with DEC's software. The "Reader's Comments" page, when filled in and mailed, is beneficial to both you and DEC; all comments received are acknowledged and are considered when documenting subsequent manuals.

Copyright (C) 1971, 1972 by Digital Equipment Corporation

This document is for information purposes and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION
This manual documents the software as of version $V \not \subset 8$ It has been revised to include all new and changed material since version $V \not{ }^{\prime} 4$. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.

Trademarks of Digital Equipment Corporation include:

DEC	PDP-I1
DECtape (logo)	RSTS-11
DIGITAL	RSX-11
COMTEX-11	UNIBUS

SOFTWARE SUPPORT CATEGORIES

Digital Equipment Corporation (DEC) makes available four categories of software. These categories reflect the types of support a customer may expect from DEC for a specified software product. DEC reserves the right to change the category of a software product at any time. The four categories are as follows:

CATEGORY I
 Software Products Supported at no Charge

This classification includes current versions of monitors, programming languages, and support programs provided by DEC. DEC will provide installation (when applicable), advisory, and remedial support at no charge. These services are limited to original purchasers of DEC computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category I to Category II for a particular customer if the software product has been modified by the customer or a third party.

CATEGORY II
Software Products that Receive Support for a Fee
This category includes prior versions of Category I programs and all other programs available from DEC for which support is given. Programming assistance (additional support), as available, will be provided on these DEC programs and non-DEC programs when used in conjunction with these DEC programs and equipment supplied by DEC.

CATEGORY III
Pre-Release Software
DEC may elect to release certain software products to customers in order to facilitate final testing and/or customer familiarization. In this event, DEC witl timit the use of such pre-release software to internal, non-competitive applications. Category III software is only supported by DEC where this support is consistent with evaluation of the software product. While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a pre-release, there exists no commitment to respond to these reports.

CATEGORY IV
Non-Supported Software
This category includes all programs for which no support is given

> PREFACE

The software described in this document is furnished to purchaser under a license for use on a single computer system and can be copied (with inclusion of DEC's copyright notice) only for use in such system, except as may otherwise be provided in writing by DEC.

Within this document, Chapter 1 provides an introduction to device drivers in general: Chapter 2 outlines the established driver structure conventions and the driver's interface to a program using the driver's services; Chapter 3 illustrates methods by which standalone programs can communicate requests for service to the driver and access the results of such requests. Subsequent sections document each of the individual drivers. Each such section is preceded by a title page on red paper.
Page
CHAPTER 1. INTRODUCTION 1-1
CHAPTER 2. DRIVER FORMAT 2-1
2.1 Structure 2-1
2.1.1 Driver Interface Table 2-2
2.1.2 Set up Routines 2-2
2.1.3 Interrupt Servicing 2-2
2.1.4 Error Handling 2-2
2.2 Interface to the Driver 2-3
2.2.1 Control Interface 2-3
2.2.2 Interrupt Interface 2-3
CHAPTER 3. STAND-ALONE USAGE 3-1
3.1 Driver Assembled with Program 3-1
3.1.1 Setting Interrupt Vector 3-1
3.1.2 Parameter Table for Driver Call 3-2
3.1.3 Calling the Driver 3-3
3.1.4 User Registers 3-3
3.1.5 Return from Driver 3-4
3.1.6 Irrecoverable Errors 3-5
3.1.7 General Comment 3-6
3.2 Drivers Assembled Separately 3-6
3.3 Device-Independent Usage 3-8
APPENDIX A I-O DRIVERS WITHIN THE DISK OPERATING SYSTEM A-1

USING DEVICE DRIVERS OUTSIDE DOS

1.0 INTRODUCTION

Subroutines to handle I/O transfers between a PDP-ll and each of its peripheral devices are developed as required for use within the Disk Operating System (DOS). These subroutines are made available within an I/O Utilities Package for the benefit of PDP-ll users who have configurations unable to support DOS or who wish to run programs outside DOS control.

All the subroutines associated with one peripheral device form an entity known as a Driver. The Device Driver Package provides a general description of a driver and shows how it can be used in a stand-alone environment. The unique properties of each driver are discussed in separate documents issued as supplements to the Device Driver Package. The I/O Utilities Package for any system is determined by the peripherals of that system. Thus, the full documentation for a particular package consists of the Device Driver Package and applicable supplements.

CHAPTER 2

DRIVER FORMAT

2.1 STRUCTURE

The basic principle of all drivers under the DOS Monitor is that they must present a common interface to the routines using them in order to provide for device-independent operation. The subroutines are structured to meet this end. Moreover, the driver can be loaded anywhere in memory under Monitor control. Its code is always position-independent.

The detailed description of a driver is found in Appendix A. This section is concerned with driver interfaces.

2.1.1 Driver Interface Table

The first section of each driver consists of a table which contains, in a standard format, information on the nature and capabilities of the device it represents and entry points to each of its subroutines. The calling program can use this table as required, regardless of the device being called.

2.1.2 Setup Routines

Each driver is expected to handle its device under the PDP-11 interrupt system. When called by a program, therefore, a driver subroutine merely initiates the action required by setting the device hardware registers appropriately. It returns to the calling program by a standard subroutine exit.

The main setup routine prepares for a data transfer to or from the device, using parameters supplied by the calling program. Normally, blocks of data will be moved at each transfer. The driver will only return control to the program when the whole block has been transferred or when it is unable to continue because there is no more data available.

The driver can also contain subroutines by which the calling program can request start-up or shut-down action, such as leader or trailer code for a paper tape punch, or some special function provided by the device hardware (or a software simulation of that for some similar device), e.g., rewind of a magnetic tape or DECtape.

2.1.3 Interrupt Servicing

The nature of the driver routine to service device interrupts is particularly dependent upon the extent of the hardware provisions of the device for controlling transfers. In general, the driver determines the cause of the interrupt and checks whether the last action was performed correctly or was prevented by some error condition. If more device action is needed to satisfy the program request, the driver again initiates that action and takes a normal interrupt exit. If the program request has been fully met, control is returned to the program at an address supplied at the time of the request.

2.1.4 Error Handling

Device errors can be handled in two ways. There are some errors for which recovery can be programmed; the driver will, if appropriate, attempt this itself (as in the case of parity or timing failure on a bulk-storage device) or will recall the program with the error condition flagged (as at the end of a physical paper tape). Other errors normally require external action, perhaps by an operator. The driver calls a common error handler based on location 34 (IOT call) with supporting information on the processor stack to handle such errors.

2.2 INTERFACE TO THE DRIVER

2.2.1 Control Interface

The principal link between a calling program and any driver subroutine is the first word of the driver table. In order to provide the control parameters for a device operation, the calling program prepares a list in a standardized form and places a pointer to the list in the driver link. The called driver uses the pointer to access the parameters. If the driver need return status information, it can place it in the list area via the link-word.

The first word of the driver can also act as a busy indicator in that while it remains 0 the driver is not currently performing some task, whereas when the first word contains a list-pointer the driver can be assumed to be busy. Since most arivers support only one job at a time, the link-word state is significant.

2.2.2 Interrupt Interface

Although the driver expects to use the interrupt system, it does not itself ensure that its interrupt vector in the memory area below 400_{8} has been set up correctly; the Monitor under DOS takes care of this. However, the Driver Table contains the information required to initialize the appropriate vector.

CHAPTER 3

STAND-ALONE USE

Because each driver is designed for operation within the deviceindependent framework of DOS Monitor, it can be similarly used in other applications. Since the easiest way to use the ariver is to assemble it with the program which requires it, this method will be described first. Other possible methods will be discussed later.

3.1 DRIVER ASSEMBLED WITH PROGRAM

3.1.1 Setting Interrupt Vector

As noted in paragraph 2.2.2, the calling program must initialize the device transfer vector within memory locations 0-377. The address of the driver's interrupt entry point can be identified on the source listing by the symbolic name which appears as the content of the Driver Table Byte, DRIVER+5. The priority level at which the driver expects to process the interrupt is at byte DRIVER+6. For a program which can use position-dependent code, the setup sequence might be:

MOV	\#DVRINT, VECTOR	;SET INT. ADDRESS
MOVB	DRIVER+6, VECTOR+2	;SET PRIORITY
CLRB	VECTOR+3	;CLEAR UPPER STATUS BYTE

(where the Driver Table shows at DRIVER+5: . BYTE DVRINT-DRIVER).

If the program must be position-independent, it can take advantage of the fact that the Interrupt Entry address is stored as an offset from the start of the driver, as illustrated above. In this case, a sample sequence might be:

MOV	PC, R1
ADD	\#DRIVER-., R1
MOV	\#VECTOR,R2
CLR	@R2
MOVB	$5(R 1), @ R 2$
ADD	R1, (R2)+
CLR	@R2
MOVB	$6(R 1), @ R 2$

;GET DRIVER START
;...\& VECTOR ADDRESSED ;SET INT. ADDRESS ;...AS START ADDRESS+OFFSET
;SET PRIORITY

3.1.2 Parameter Table for Driver Call

For any call to the driver, the program must provide a list of control arguments mentioned in paragraph 2.2.1. This list must adhere to the following format ${ }^{1}$:

```
[SPECIAL FUNCTION POINTER] 2
[BLOCK NO.] }\mp@subsup{}{}{3
STARTING MEMORY ADDRESS FOR TRANSFER
NO. OF WORDS to be transferred (2's complement)
STATUS CONTROL showing in Bits:
    0-2: Function (octally 2=WRITE, 4=READ) 4
    8-10: Unit (if Device can consist of several,
                e.g., DECtape)
    11: Direction for DECtape travel (0 = Forward)
ADDRESS for RETURN ON COMPLETION
[RESERVED FOR DRIVER USE] }\mp@subsup{}{}{5
```

The list can be assembled in the required format if its content will not vary. The driver can return information in this area as described in a later paragraph; however, this will not corrupt the program data and it is cleared by the driver before it begins its next operation.

On the other hand, most programs will probably use the same list area for several tasks or even for different drivers. In this case, the program must contain the necessary routine to set up the list for each task before making the driver call, perhaps as illustrated in the next paragraph. It must be noted, however, that the driver may refer to the list again when it is recalled by an interrupt or to return information to the calling program. Therefore, the list must not be changed until any driver has completed a function requested; for concurrent operations, different list areas must be provided.

[^0]
3.1.3 Calling the Driver

To enable the driver to access the parameter list, the program must set the first word of the driver to an adaress six bytes less than that of the word containing MEMORY START ADDRESS. It can then directly call the driver subroutine required by a normal JSR PC,xxxx call.

As an example, the following position-independent code might appear in a program which wishes to read Blocks \#l00-103 backward from DECtape unit 3 into a buffer starting at address BUFFER:

	MOV	PC, Rø	; GET TABLE ADDRESS
	ADD	\#TABLE+12-., Rø	
	MOV	PC, @Rø	;GET AND STORE...
	ADD	\#RETURN-.,@RØ	;...RETURN ADDRESS
	MOV	\#5404, - (Rø)	; SET READ REV. UNIT 3
	MOV	\#-1024.,-(Rø)	; 4 BLOCKS REQUIRED
	MOV	PC, - (Rø)	; GET AND STORE
	ADD	\#BUFFER-. ©R ${ }^{\text {d }}$; ...BUFFER ADDRESS
	MOV	\#103,-(Rめ)	; START BLOCK
	CMP	- (Rø), - (Rø)	; SUBTRACT 4 FROM POINTER
	MOV	Rø, DT	; SET DRIVER LINK
	JSR	PC, DT. TFR	; GOTO TRANSFER ROUTINE
WAIT:	.		; RETURNS HERE WHEN
	:		; ...TRANSFER UNDER WAY
	:		; RETURNS HERE WHEN
	:		; ...TRANSFER COMPLETE
TABLE:	. WORD	\varnothing	; LIST AREA SET
	. WORD	\varnothing	; ...bY AbOVE SEQUENCE
	. WORD	\emptyset	
	. WORD	\varnothing	
	. WORD		

3.1.4 User Registers

During its setup operations for the function requested, the driver assumes that Processor Registers 0-5 are available for its use. If their contents are of value, the program must save them before the driver is called.

While servicing intermediate interrupts, the driver may need to save or restore its registers. It expects to have two subroutines available for the purpose (provided by the Monitor under DOS). It accesses them via addresses in memory locations 448 (S.RSAV) for saves and 46_{8} (S.RRES for restores) using the sequence:

MOV @\#44,-(SP) ;OR 'MOV @\#46,-(SP)
JSR R5,@(SP) +

It must also ensure that their start addresses are set into the correct locations $\left(448\right.$ and $\left.46_{8}\right)$.

At its final interrupt, the driver saves the contents of Registers 0-5 before returning control to the calling program completion return.

3.1.5 Returns From Driver

As shown in the example in paragraph 3.1.3, the driver returns control to the calling program immediately after the JSR as soon as it has set the device in motion. The program can wait or carry out alternative operations until the driver signals completion by returning at the address specified (i.e., RETURN above). Prior to this, the program must not attempt to access the data being read in, nor refill a buffer being written out.

The program routine beginning at address RETURN varies according to the device being used. In general, the driver has given control to the routine for one of two reasons; namely, the function has been satisfactorily performed, or it cannot be carried out due to some hardware failure with which the driver is unable to cope, though the program may be able to do so. In the latter case, the driver uses the STATUS word in the program list to show the cause:

Bit $15=1 \quad$| indicates that a device parity or |
| :--- |
| timing failure occurred and the |
| driver has not been able to overcome |
| this, perhaps after several attempts. |

Bit $14=1 \quad$| shows that the end of the available |
| :--- |
| data has been reached. |

The driver places in RO the content of its first word as a pointer to the list concerned.

In addition, the driver can have transferred only some of the data requested. In this case, it will show in the RESERVED word of the program list a negative count of the words not transferred in addition to setting Bit 14 of the STATUS word. As mentioned in the note in paragraph 3.1.2, this applies only to non-bulk storage devices. The drivers for DECtape or Disks ${ }^{1}$ always endeavor to complete the full transfer, even beyond a parity failure, or they take more drastic action (see paragraph 3.1.6).

[^1]It is thus the responsibility of the program RETURN routine to check the information supplied by the driver in order to verify that the transfer was satisfactory and to handle the error situations appropriately.

In addition, the routine must contain a sequence to take care of the Processor Stack, Registers, etc. As noted earlier, the driver takes the completion return address after an interrupt and has saved Registers 0-5 on the stack above the Interrupt Return Address and Status. The program routine should, therefore, contain some sequence to restore the processor to its state prior to such interrupt, e.g., using the same Restore subroutine illustrated earlier:

MOV	@\#46,-(SP)	:CALL REGISTER RESTORE
JSR	R5,@(SP)+	
\vdots		;RETURN TO INTERRUPTED PROG.

3.1.6 Irrecoverable Errors

Ali hardware errors other than those noted in the previous paragraph are more serious in that they cannot normally be overcome by the program or by the driver on its behalf. Some of these could be due to an operator fault, such as neglecting to turn a paper tape reader to on or to set the correct unit number on a DECtape transport. Once the operator has rectified the problem, the program could continue. Other errors, however, will require hardware repair or even software repair, e.g., if the program asks for Block 2000 on a device having a maximum of 1000. In general, all these errors will result in the driver placing identifying information on the processor stack and calling IOT to produce a trap through location 348 .

Under DOS, the Monitor provides a routine to print a teleprinter message when this occurs. In a stand-alone environment, the program using the driver must itself contain the routine to handle the trap (unless the user wishes to modify the driver error exits before assembly). The handler format will depend upon the program. Should it wish to take advantage of the information supplied by the driver, the format is as follows:

	(SP) :	Return Address	Stored by IOT Call
4	(SP)	Error No. Code	generally unique to driver
5	(SP) :	Error Type Code:	$1=$ Recoverable after Operator Action
6	(SP) :	Additional Information	3 = No recovery such as content of Driver, Control Register, Driver Identity, etc.

As a rule, the driver will expect a return following the IOT call in the case of errors in Type 1 but will contain no provision following a return from Type 3.

3.1.7 General Comment

The source language of each driver has been written for use with particular,.
which will not be accepted by the Paper Tape Software PAL-11R, in particular, . TITLE, .GLOBL, and Conditional Assembly directives. Such statements should be deleted before the source is used. Similarly, an entry in the driver table gives the device name as . RAD50 'DT' to obtain a specially packed format used internally by DOS. If the user wishes to keep the name, for instance, for identification purposes as discussed in section 3.3 , . RAD50 might easily be changed to .ASCII without detrimental effect, or it might be replaced with . WORD \varnothing.

3.2 DRIVERS ASSEMBLED SEPARATELY

Rather than assemble the driver with every program requiring its availability, the user may wish to hold it in binary form and attach it to the program only when loaded. This is readily possible; the only requirement is that the start address of the driver should be known or be determinable by the program.

The example in paragraph 3.1 .2 showed that the Interrupt Servicing routine can be accessed through an offset stored in the Driver Table. The same technique can be used to call the setup subroutines, as these also have corresponding offsets in the Table, as as follows:

```
DRIVER+7 Open }\mp@subsup{}{}{1
    +1\emptyset Transfer
    +11 Close 
    +12 Special Functions'
```

[^2]The problem is the start address. There is the obvious solution of assembling the driver at a fixed location so that each program using it can immediately reference the location chosen. This ceases to be convenient when the program has to avoid the area occupied by the driver. A more general method is to relocate the driver as dictated by the program using it, thus taking advantage of the position-independent nature of the driver. The Absolute Loader, described in the Paper Tape Software Handbook (DEC-llChapter 6, provides the capability of continuing a load from the point at which it ended. Using this facility to enter the driver immediately following the program, the program might contain the following code to call the subroutine to perform the transfer illustrated in paragraph 3.1.3:

	MOV	PC, R1	; GET DRIVER START ADDRESS
	ADD	\#PRGEND-.,R1	
	MOV	PC,Rø	; GET TABLE ADDRESS
	ADD	\#TABLE+12-.,Rø	;AND SET UP AS SHOWN
	-		;...IN SECTION 3.1.3
	-		
	CMP	-(Rø), -(Rø)	;FINAL POINTER ADJUSTMENT
	MOV	Rø, @R1	;STORE IN DRIVER LINK
	CLR	- (SP)	;GET BYTE SHOWING...
	MOVB	1ø(R1),@SP	; ...TRANSFER OFFSET
	ADD	(SP) +,R1	; COMPUTE ADDRESS
	JSR	PC, @R1	; GO TO DRIVER
	-		
	-		
PRGEND:	,		
	. END		

This technique can be extended to cover situations in which several drivers are used by the same program, provided that it takes account of the size of each driver (known because of prior assembly) and the drivers themselves are always loaded in the same order.

For example, to access the second driver, the above sequence would be modified to:

	MOV	PC, R1	;GET DRIVER 1 ADDRESS
	ADD	\#PRGEND-.,R1	
	ADD	\#DVR1SZ,R1	; STEP TO DRIVER 2
	-		
DVR1SZ=n			
PRGEND:			
	. END		

An alternative method may be to use the Relocatable Assembler PAL-llS in association with the Linker program LINK-llS, both of which are available through the DECUS Library. The start address of each driver is identified as a global. Any calling program need merely include a corresponding .GLOBL statement, e.g., .GLOBL DT.

3.3 DEVICE-INDEPENDENT USAGE

As mentioned earlier, the drivers are assigned for use in a device-independent environment, i.e., one in which a calling program need not know in advance which driver has been associated with a table for a particular execution run. One application of this type might be to allow line printer output to be diverted to some other output medium because the line printer is not currently available. Another might be to provide a general program to analyze data samples although these on one occasion might come directly from an Analog-to-Digital converter and on another be stored on a DECtape because the sampling rate was too high to allow immediate evaluation.

Programs of this type should be written to use all the facilities that any one device might offer, but not necessarily all of them. For instance, the program should ask for start-up procedures because it may sometime use a paper tape punch which provides them, even though it may normally use DECtape which does not. As noted in paragraph 2.1.1, the driver table contains an indication of its capabilities to handle this situation. The program can thus examine the appropriate item before calling the driver to perform some action. As an example, the code to request start-up procedures might be (assuming RO already set to List Address):

MOV	\#DVRADD,R1	; GET DRIVER ADDRESS
TSTB	2 (RI)	;BIT 7 SHOWS.
BPL	NOOPEN	;...OPEN ROUTINE PRESENT
MOV	Rø, @RI	;STORE TABLE ADDRESS
CLRB	- (SP)	; BUILD ADDRESS
MOVB	7 (R1) , @SP	;...OF THIS ROUTINE
ADD	(SP) +,R1	
JSR	PC, CRI	; ...AND GO TO IT
		;FOLLOWED POSSIBLY BY
		; WAIT AND COMPLETION
		;PROCESSING
		;RETURN TO COMMON OPERATION

Similarly, the indicators show whether the device is capable of performing input or output, or both; whether it can handle ASCII or binary data; whether it is a bulk storage device capable of supporting a directory structure or is a terminal-type device requiring special treatment, and the like. Other table entries show the device name as identification and how many words it might normally expect to transfer at a time (in l6-word units). All of the information can readily be examined by the calling program, thus enabling the use of a common call sequence for any I / O operation, as for example

	MOV	\#DVRADR,R5	; SET DRIVER START
	JSR	R5,IOSUB	; CALL SET UP SUB
	BR	WAIT	;SKIP TABLE FOLLOWING ON RETURN
	. WORD	$1 \varnothing$; TRANSFER REQUIRED
	. WORD	$1 \varnothing 3$; BLOCK NO.
	.WORD	BUFFER	;BUFFER ADDRESS
	. WORD	-256	; WORD COUNT
	. WORD	404	; READ FROM UNIT 1
	. WORD	RETURN	; EXIT ON COMPLETION
	. WORD	\emptyset	; RESERVED
WAIT:	.		; CONTINUE HERE... ;WHILE TRANSFER IN PROGRESS
	-		
	$\dot{\sim}$		
IOSUB:	MOV	@SP, Rø	;PICK UP DRIVER ADDR
	MOV	R5, R1	;SET POINTER TO LIST
	TST	(RI) +	; BUMP TO COLLECT CONTENT
	.		; ROUTINE CHECKS ON DEVICE
	.		; ..CAPABILITY USING Rl
	-		;..TO ACCESS LIST AND
	-		; ..RØ THE DRIVER TABLE
	-		; IF O.K...
	MOV	@R1,R1	; GET ROUTINE OFFSET
	ADD	$R \varnothing, R 1$	
	CLR	- (SP)	; USE IT TO BUILD
	MOVB	@R1, @SP	;...ENTRY POINT
	ADD	Rø, @SP	
	JSR	PC, @ (SP) +	; CALL DRIVER
	RTS	R5	;EXIT TO CALLER

The calling program, or a subroutine of the type just illustrated, may also wish to take advantage of a feature mentioned earlier: the fact that when a driver is in use its first word will be non-zero. The driver itself does not clear this word except in special cases shown in the description for the driver concerned. If the program itself always ensures that it is set to zero between driver tasks, this word forms a suitable driver-busy flag. Under DOS, the program parameter list is extended to allow additional words to provide linkage between lists as a queue of which the list indicated in the driver first word is the first link.

The preceding paragraphs are intended to indicate possible ways of incorporating the drivers available into the type of environment for which they were designed. The user will probably find others. However, he should carefully read the more detailed description of the driver structure in Appendix A, and the individual driver specifications before determining the final form of his program.

A word of warning is appropriate here. Although most drivers set up an operation and then wait for an interrupt to produce a completion state, there are some cases in which the driver can finish its required task without an interrupt, e.g., "opening" a paper tape reader involves only a check on its status. Moreover, where "Special Functions" are concerned, the driver routine may determine from the code specified that the function is not applicable to its device and, therefore, will have nothing to do. In such cases, the driver clears the intermediate return address from the processor stack and immediately takes the completion return. Special problems can arise, however, if the driver concerned is servicing several tasks, any of which can causes a queue for the driver's services under DOS. To overcome these problems, the driver expects to be able to refer to flags outside the scope of the list so far described. This can mean that a program using such a driver may also need to extend the list range to cover such possibilities. Particular care should be exercised in such cases.

I-O DRIVERS WITHIN THE DISK OPERATING SYSTEM

The principal function of an I / O driver is to satisfy a Monitor processing routine's requirement for the transfer of a block of data in a standard format to or from the device it services. This will involve both setting up the device hardware registers to cause the transfer and its control under the interrupt scheme of PDP-ll, making allowance for peculiar device characteristics (e.g., conversion to or from ASCII if some special code is used).

It may also include routines for handling device start-up or shut-down such as punching leader or trailer, and for making available to the user certain special features of the device, such as rewind of magtape.

A.l Driver Structure

In order to provide a common interface to the monitor, all drivers must begin with a table of identifying information as follows:

DVR:

BUSY FLAG (initially \varnothing)	
FACILITY INDICATOR (expanded below)	
Offset to Interrupt Routine*	Standard Buffer Size in 16-word Units.
Offset to OPEN Routine	Priority for Interrupt Service
Offset to CLOSE Routine *	Offset to Transfer Routine *
Space	Offset to Special Functions*
DEVICE	NAME (Packed Radix-5¢)

Offsets marked * will enable calling routine to indicate routine required. They will be considered to be an unsigned value to be added to the start address of the driver. This may mean that with a 256 -word maximum, the instruction referenced by the offset will be JMP or BR (routine).

Bits in the Facility Indicator Word define the device for monitor reference:

The table should be extended as follows if the device is filestructured:

The driver routines to set up the transfer and control it under interrupt, and possibly for OPEN, CLOSE, and SPECIAL, follow the table. Their detailed operation will be described later.

A. 2 Monitor Calling

When a Monitor I / O processing routine needs to call the driver, it first sets up the parameters for the driver operation in relevant words of the appropriate DDB^{1}, as follows:

XYZ:

SPECIAL FUNCTION CODE
DEVICE BLOCK NUMBER
MEMORY START ADDRESS
(USer Call Address)
TRANS COUNT (2's COmplement)
COMPLETION RETURN ADDRESS Address)
(DRIVER WORD-COUNT RETURN) Set to Zerd

[^3]The relevant content of the Transfer Function word is as follows:

Provided that the Facility Indicator in the Driver Table described above shows that the driver is able to satisfy the request, both from the point of view of direction and mode and of the service required, the Monitor routine places in Register 1 the relative byte address of the entry in the Driver Table containing the offset to the routine to be used (e.g., for the Transfer routine, this would be 1ф). It then calls the Driver Queue Manager, using JSR PC,S.CDB.

The Driver Queue Manager assures that the driver is free to accept the request, by reference to the Busy Flag (Word \varnothing of the driver table). If this contains \varnothing, the Queue Manager inserts the address of the DDB from Register \varnothing and jumps to the start of the routine in the driver using Register 1 content to evaluate the address required. If the driver is already occupied, the new request is placed in a queue linking the appropriate DDB's for datasets waiting for the driver's services. It is taken from the queue when the driver completes its current task. (This is done by a recall to the Queue Manager from the routine just serviced, using JSR PC,S.CDQ.)

On entry to the Driver Routine, therefore, the address following the Monitor routine call remains as the "top" element of the processor stack. It can be used by the driver in order to make an immediate return to the Monitor (having initiated the function requested), using RTS PC. It should also be noted that the Monitor routine will have saved register contents if it needs them after the device action. The driver may thus freely use the registers for its own operations.

[^4]
Abstract

When the driver has completely satisfied the Monitor request, it should return control to the Monitor using the address set into the DDB. On such return, Register \varnothing must be set to contain the address of the DDB just serviced and since the return will normally follow an interrupt, Registers $\varnothing-5$ at the interrupt must be stored on top of the stack.

A. 3 Driver Routines

A.3.1 TRANSFER

The sole purpose of the TRANSFER routine is to set the device in motion. As indlcated above, the information needed to load the hardware registers is available in the DDB, whose address is contained in the first word of the driver. Conversion of the stored values is, of course, the function of the routine. It must also enable the interrupt; however, it need not take any action to set the interrupt vectors as these will have been preset by the Monitor when the driver is brought into core. Having then given the device GO, an immediate return to the calling processor should be made by RTS PC.

A.3.2 Interrupt Servicing

The form of this routine depends upon the nature of the device. In most drivers it will fall into two parts, one for handing the termination of a normal transfer and the other to deal with reported error conditions.

For devices which are word or byte-oriented, the routine must provide for individual word or byte transfers, with appropriate treatment of certain characters (e.g., TAB or Null) and for their conversion between ASCII or binary and any special device coding scheme, until either the word count in the DDB is satisfied or an error prevents this. On these devices, the most likely cause for such error is the detection of the end of the physical medium; its treatment will vary according to whether the device is providing input or accepting output. The calling program will usually need to take action in the former case and the driver should merely indicate the error by returning the unexpired portion of the word count in DDB Word 7 on exit to the Monitor. Output End of Data, however, will, in general, require operator action. To obtain this, the driver should call the Error Diagnostic Print routine within the Monitor by:

MOV DEVNAM,-(SP)	;SHOW DEVICE NAME	
MOV	$\# 4 \not \subset 2,0(S P)$;SHOW DEVICE NOT READY
IOT		;CALL ERROR DIAGNOSTIC PRINT ROUTINE

On the assumption that the operator will reset the device for further output and request continuation, the driver must follow the above sequence with a Branch or Jump to produce the desired resumption of the transfer.

Normal transfer handling on blocked devices (or those like RFll Disk which are treated as such) is probably simpler since the hardware takes care of individual words or bytes and the interrupt only occurs on completion. Errors may arise from many more causes, and their handling is, as a result, much more complex and device dependent. In general, those which indicate definite hardware malfunctions must lead to the situation in which the operator must be informed by diagnostic message and the only recourse after rectification will be to start the program over.

At the other end of the scale there are errors which the driver itself can attempt to overcome by restarting the transfer - device parity failure on input is a common example. If a retrial, or several, still does not enable a satisfactory conclusion, the driver should normally allow programmed recovery and merely indicate the error by Bit 15 of DDB word 5. Nevertheless, because the program may wish to process the data despite the error, the driver should attempt to transfer the whole block requested if this has not already been effected. Between these two extremes, the remaining forms of error must be processed according to the type of recovery deemed desirable.

Whether the routine uses processor registers for its operation or not will naturally depend on considerations of the core space saved against the time taken to save the user's content. However, on completion (or error return to the Monitor), as indicated in an earlier paragraph, the calling routine expects the top of the stack to contain the contents of Registers $\varnothing-5$ and Register \varnothing to be set to the address of the $D D B$ just serviced. The driver must, therefore, provide for this.

A. 3.3 OPEN

This routine need be provided only for those devices for which some hardware initialization by the user is required. It should not
normally appear in drivers for devices used in a file-oriented manner. Its presence must be indicated by the appropriate bit (Bit 7) in the driver table Facility Indicator.

The routine itself may vary according to the transfer direction of the device. For output devices, the probable action required is the transmission of appropriate data, e.g., CR/LF at a keyboard terminal, form-feed at a printer, or null characters as punched leader code, and for this a return interrupt is expected. The OPEN routine should then be somewhat similar to that for TRANSFER in that it merely sets the device going and makes an interim return via RTS PC, waiting until completion of the whole transmission before taking the final return address in the DDB.

On the other hand, an input OPEN will likely consist of just a check on the readiness of the device to provide data when requested. In this case, the desired function can be effected without any interrupt wait. The routine should, therefore, take the completion return immediately. Nevertheless, it must ensure that the saved PC value on top of the stack from the call to $S . C D B$ is appropriately removed before exit. In the case of drivers which can only service one dataset at a time (i.e., Bit \varnothing of their Facility Pattern word is set to \varnothing) and can never, therefore, be queued; it will be sufficient to use TST (SP) + toeffect this. A multi-user driver, however, must allow for the possibility that it may be recalled to perform some new task waiting in a queue. This is shwon by the byte at DDB-3 being non-zero. In this case, the intermediate return to the routine originally requesting the new task has already been made directly by S.CDB. The address now on top of the stack is the return to the routine, whose task the driver has just completed and which has called S.CDQ to dequeue the driver. This return must be taken when the first routine has performed its Completion Return processing. Moreover, this first routine expects to exit as from an interrupt. When a driver is recalled from a queue, it must simulate this interrupt. A possible sequence might be:

	MOV	DRIVER, R \varnothing	; PICK UP DDB ADDRESS
	MOV	(SP) +, R5	;SAVE INTERIM RETURN
	TSTB	-3 (Rめ)	; COME FROM QUEUE?
	BEQ	EXIT	
	MOV	@\#177776, - (SP)	; IF SO, STORE STATUS
	MOV	R5,-(SP)	; ...\& RETURN
	SUB	\#14, SP	; DUMMY SAVE REGS
EXIT:	JMP	@14(Rø)	

A. 3.4 CLOSE

As with OPEN, this routine should provide for the possibility of some form of hardware shut down such as the punching of trailer code and is not necessary for file-structured devices. Moreover, it is likely to be a requirement for output devices only. If it is provided, Driver Table Facility Indicator (Bit 6) must be set.

Again, the probable form is initialization of the hardware action required, with immediate return via $R T S$ PC and eventual completion return via the DDB-stored address.

A.3.5 SPECIAL

This routine may be included if either the device itself contains the hardware to perform some special function or there is a need for software simulation of such hardware on other devices, e.g., tape rewind. It should not be provided otherwise. Its presence must be indicated by Bit 5 of the Facility Indicator.

The function itself is stored by the Monitor as a code in the DDB as shown earlier. When called, the driver routine must determine whether such function is appropriate in its case. If not, the completion return should be taken immediately with prior stack clearance, as discussed under OPEN. For a recognized function, the necessary routine must be provided. Again, its exit method will depend upon the necessity for an interrupt wait or otherwise.

A. 4 Drivers for Terminals

The rate of input from terminal devices is normally dictated externally by the operator, rather than being program-driven; moreover, for both input and output, the amount of data to be transferred on each occasion may be a varying value, i.e., a line rather than a block of standard size. Furthermore, there may be problems with the conflict between echo of input during output. As a result, drivers for such devices will demand special treatment.

Normal output operation, i.e., .WRITE by the program, is handled by the Monitor Processor. On recognizing that the device being used is a terminal, as shown by Bit 8 of the facility indicator, this routine always causes a driver transfer at the end of the user line, even though the internal buffer has not been filled. The driver, however, is given the whole of a standard buffer, padded as necessary with
nulls. Provided the driver can ignore these, the effect is that of just a line of output.

Input control on the other hand, must remain driver responsibility. Overcoming the rate problem will, in most cases, require circular buffering within the driver until demanded by the Monitor. At this point, transfer of data already in should occur. If this is sufficient to fill the monitor buffer, the driver can await the next request before further transfer onward. If insufficient, it should operate as any other device and use subsequent interrupts to continue to satisfy the Monitor request. It must, nevertheless, stop any transfer at the end of a line in normal operation. In order to allow the Monitor to continue, the driver must simulate the filling of the buffer by null padding (of no consequence, since terminals are by nature character-based). (Normal operation, of course, means response to user . READ's and is indicated by the size of the buffer to be filled, namely the driver stancard. Should the user be requesting .TRAN's, the buffer size will vary from the standard in all likelihood and the driver may then assume he requires operation as a normal device -- complete buffer fill-up before return.)

Where input echo is a further complexity, there will doubtless be other requirements. If the echo is made immediately after the input, it may be desirable to have a second buffer to cater for the likely situation that the echo will not exactly match its origin. On the other hand, if the echo is held for any length of time, perhaps to provide correct relations between program-driven output and the echo, the second buffer could be too expensive, A larger input buffer and routines to allow for several outputs to one input character while sitting on that character might be more convenient. The conflict between such echo and program-driven output will require controlled switching within the driver input and output handlers.

$$
\text { PD P - } 11
$$

October 1972

SUPPLEMENT TO:
PDP-ll DEVICE DRIVER PACKAGE
DEC-11-ODDPA-A-D

MONITOR VERSION Vøø8

COPYRIGHT (C) 1972 BY DIGITAL EQUIPMENT CORPORATION

NOTE
This document is for information purposes only and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION

This manual documents the software as of Monitor version Vø8. It has been revised to include all new and changed material since Monitor version $V \varnothing 4$. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.

The RC11 Disk Driver provides the software interface between the RC11 Control and the Monitor in the Disk Operating System on PDP-1l. It consists of routines to initiate block transfers of data to or from the disk and to handle interrupts arising from completion or through failure.

It does not include OPEN \& CLOSE processors. As a file-structured device, these will be unnecessary owing to the form of the Monitor file-management system. SPECIAL FUNCTION processing is also omitted. If it is found necessary to simulate the hardware function of a similar device, the necessary routine could be added later.

This driver is part of the permanently resident Monitor when the RC11 is the system disk for DOS; it can nevertheless be used when the RCll is just another device on a system based on a different type of disk.

The driver is in two parts: 1) a table providing the interface between the driver and the Monitor, and 2) the routines to service the calls for disk operations.

1. Driver Table

The Driver Table (DC) occupies the first nine words of the driver. It complies with the standards specified for all Monitor-driver interfacing in general, and for file-structured devices in particular. The descriptive elements of the table are set up as follows:
a) Facilities available: Multi-dataset handling on a single $=100037$
b) Standard buffer size: 64 unit.
Input \& output in ASCII or binary. File-structured with no limit to the number of files that may be in creation at one time.
c) Interrupt vector address: $21 \varnothing$
d) Interrupt servicing

e) Device name DC
f) Directory start block: 1
g) No. of bit map pointers: 1

2. Service Routines

The driver contains two routines: Set-up Transfer and Service Interrupt.

2.1 Setup Transfer (DC.TFR)

This routine first initializes a counter which is used to control the number of retries in the event of parity or timing failure. Using the address of the DDB for the dataset it is servicing (as supplied by the calling routine in the first word of the driver table), it then collects control data from the DDB and transmits it to the hardware registers for the RCll, beginning at 377440.

Two of the items involved require special processing before outward transmission; the rest are moved directly.

1. For compatibility with RFll based DOS systems, the disk is handled in blocks of 64-words which are assumed to be continuous across whole RCll disk surface ${ }^{1}$. The block number passed to the driver must be converted to the 32 -word sector and drive structure of the hardware.
2. The function bits contained in the DDB automatically produce the required transfer operation. To them, however, must be added the INT ENB \& GO bits (combined value 1018) needed to set the RCll Control. Register correctly for the transfer operation to begin.

On completion of the setup, control is returned to the calling Monitor routine via the interim return address stored on top of the stack by the calling sequence.

2.2 Interrupt Service (DC.INT)

The RCll Control causes a priority-5 interrupt either on satisfactory completion of the transfer or because an error has been detected. Having saved the processor registers on the stack, the servicing routine must determine which of these events has occurred by examination of bit 15 of the Control Status Register. On transfer completion, it collects the address of the DDB it is servicing from the first word of the driver table anduses it to return to the completion address set in the DDB. At this exit, $\mathrm{R} \varnothing$ is set to the DDB address, as required by the established convention.

[^5]An error may be one of the several types as indicated by further bits of the Control Status or Extended Status registers. The servicing routine, however, is concerned with only two categories:

(1) Errors which can be handled internally

Data Synchronization or Block Parity failures may be eliminated on a second or later attempt. For the sake of simplicity, a retry is initiated by restarting the transfer from the beginning again rather than from the point at which the error was detected. If finally the eighth attempt produces no satisfactory result, the processing routine sets Bit 15 of word $D D B+12$ to show the failure. When a block-parity error is its cause, the data may still be of some value to the user program and so is passed on. However there may still be some words yet to be transferred beyond the failing block. The routine therefore attempts to resume from this point. If this is successful, it then takes the normal completion exit. Further failure, however, is treated as fatal (see below). Such treatment is immediate in the case of a repeated data sync error, since then no data can have yet been transferred.

(2) Errors which must be rectified by the operator when recovery is possible

All other failures cause an exit to the Error diagnostic print routine, with DSK ERROR F026 as the message and the contents of the Control Status register as evidence. Write lock-out or non-resident disk may be the result of an operator fault. The operator may be able to correct this and resume program execution by the appropriate keyboard command. Such action will probably be impossible in the case of a non-existent memory error, and other errors classified as 'HARD' in the RCll Specification or after persistent parity or timing failures.
(3) VfføB Program Listing

A complete assembly listing of the driver follows.


```
OV,CC MACRC VORA-14 13-SEPm72 QP:5% PAGF?
1 ITRANSFER INITIATE
```



```
\ OQQO2F OIE7OO MOV DCPFO GGEF DOR ADORESS
\triangleORQ\32 R22Q2R DC.RPT: CMP (FQ)+,(RQ)* IRUMP FOINTER TO RLOCK NO:
E OROO34 012702 MOV *OC.DCS=4,R?
ISET HKR POINTEF
MOVE IN RLOCK NC: %:'
E 0R0040 012012 MOV (EQ:%,*R2
    ASL OR2
    ADO #10,R2
    MOV (FD)+,R2 MOVE IN ADOR REGC,:O
10 00Q52 \12042
11 00054 C120a1
1200056 154701
13 R0日60 C4?701
    177470
14 POQE4 F1F142 MOV R1.-(R2) ,SENOTO CONTROL
15 OROGG MORZAY RTS PR PRETURA TO MONITOR FOR NCW
16 :(******) CARF|!|! USED AS IITFRAL EY PREVICUS INSTRUCTION
```



```
CV.CC MACRO VRUA-14 13-SEP-72 O2:SO PAGF A
```

1		JDEFINTTIONS
2	177446	DC, DCs=173446
3	agna?:	Dr, DIRE1
4	009426	DC, ENC $=1426$
5	MOCRA4	$V . R S A V=44$
6	P00042	V VIT=4?
7	010090	SORVR=10000
e	agoonil	FND


```
    DEFINITIONS:
    177446 DC,DCSa177446
    000001 DC.DIRE1
    001426 DC,ENO=1426
    ggOO44 V.RSAVE44
    000042 V.XIT=42
    geagel .END
```

000000 ERRORS

DC	00000日RG	DC. AGN	0001348	$D C . D C S$	- 177446
DC.DIR	- 000001	DC.ENO	= 01426	DC. ERR	090122R
DC.INT	000070 R	OC. NAM	090014 R	DC. OFF	000176R
DC.PER	OOD150R	DC.REC	O日0140R	DC. RPT	000032 R
DC.RTC	0001302	DC. TFR	090022R	DC. XIT	000116R
PC	1 $\times 000007$	RO	2\%000000	R1	- \%000gol
R2	- $\times 000002$	R3	\% 2080003	24	\%x900got
R5	- \%000005	SP	5\%090006	S.RSAV	- ******
S.XIT		V.RSAV	- 030044	V,XIT	- gaoz42

$$
\text { PD P - } 11
$$

RFII DISK DRIVER

October 1972

SUPPLEMENT TO:

 PDP-11 DEVICE DRIVER PACKAGEDEC-11-ODDPA-A-D

MONITOR VERSION Vøø8

COPYRIGHT (C) 1972 BY DIGITAL EQUIPMENT CORPORATION

NOTE

This document is for information purposes only and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION

This manual documents the software as of Monitor version V $\varnothing 8$. It has been revised to include all new and changed material since Monitor version V $\emptyset 4$. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.

The RFll Disk Driver consists of routines to initiate block transfers of data to or from the disk and to handle interrupts arising from com= pletion or through failure.

It does not include OPEN \& CLOSE processors. As a file-structured device, these will be unnecessary owing to the form of the Monitor file-management system. SPECIAL FUNCTION processing is also omitted. If it is found necessary to simulate the hardware function of a similar device, the necessary routine could be added later.

This driver is part of the permanently resident Monitor when the RFll is the system disk. It may also be used when RFll is merely another device in a system based on a different type of disk.

The driver is in two parts: l) a table providing the interface between the driver and the Monitor, and 2) the routines to service the calls for disk operations.

1. Driver Table

The Driver Table (DF) occupies the first nine words of the driver. It complies with the standards specified for all Monitor-driver interfacing in general, and for file-structured devices in particular. The descriptive elements of the table are set up as follows:

a)	```Facilities available: =100037```	Multi-dataset handling on a single unit. Input and output in ASCII or binary. File-structured with no limit to the number of files that may be in creation at one time.
b)	Standard buffer size:	64
c)	Interrupt vector address:	204
d)	Interrupt servicing priority	5
e)	Device name	DF
f)	Directory start block:	1
g)	No. of bit map pointers:	1

2. Service Routines

The driver contains two routines: Setup Transfer and Service Interrupt.

2.1 Set-up Transfer (DF.TFR)

This routine first initializes a counter which is used to control the number of retries in the event of parity or timing failure. Using the address of the DDB for the dataset it is servicing (as supplied by the calling routine in the first word of the driver table), it then collects control data from the DDB and transmits it to the hardware registers for the RFll, beginning at 377460.

Two of the items involved require special processing before outward transmission; the rest are moved directly.

1. The driver block number set into the DDB must be converted to meet the platter and word structure of RFIl. All the platters currently under one control are considered as a single continuous surface. As a result, the most significant bits of the block number represent the appropriate platter number and the remainder the word starting the block. The required conversion is therefore merely multiplication of the block number by 64 across 21 bits.
2. The function bits contained in the DDB automatically produce the required transfer operation. To them, however, must be added the INT ENB \& GO bits (combined value lOl_{8}) needed to set the RFll Control Register. correctly for the transfer operation to begin.

On completion of the setup, control is returned to the calling Monitor routine via the interim return address stored on top of the stack by the calling sequence.

2.2 Interrupt Service (DF.INT)

The RFll control causes a priority-5 interrupt either on satisfactory completion of the transfer or because an error has been detected. Having saved the processor registers on the stack, the servicing routine must determine which of these events has occurred by examination of bit 15 of the Control Status Register. On transfer completion, it collects the address of the DDB it is servicing from the first word of the driver table and uses it to return to the completion address set in the DDB. At this exit, $R \varnothing$ is set to the $D D B$ address, as required by the established convention.

An error may be one of the several types as indicated by further bits of the Control Status or Extended Status registers. The servicing routine, however, is concerned with only two categories:
(1) Errors which can be handled internally

Parity or timing failures may be eliminated on a second or later attempt. For the sake of simplicity, a retry is initiated by restarting the transfer from the beginning again rather than from the point at which the error was detected. If finally the eighth attempt produces no satisfactory result, the processing routine sets Bit 15 of Word DDB +12 to show the failure. It then checks if any words still remain to be transferred beyond the failing one. If so, it attempts to resume the transfer from this point. If this is successful, it then takes the normal completion exit. Further failure, however, is treated as fatal.
(2) Errors which must be rectified by the operator (when recovery is possible)
All other failures cause an exit to the Error diagnostic print routine, with DSK ERROR F026 as the message and the contents of the Control Status register as evidence. Write lock-out or non-resident disk may be the result of an operator fault. The operator may be able to correct this and resume program execution by the appropriate keyboard command. Such action will probably be impossible in the case of a non-existent memory error, and other errors classified as 'HARD' in the RFll Specification or after persistent parity or timing failures.
(3) Program Listings

A complete assembly listing of the driver monitor vø8-ø2 follows.


```
CV,EF MACPC VOQ4-14 13-SEP-72 22:51 PAGF 3*
SYMPOL TARLF
\begin{tabular}{|c|c|c|c|c|c|}
\hline CF & OAQORARG & DFFLGS & OQQOORR & DF, \(\triangle G N\) & Qali36R \\
\hline CF.CCS \(=\) & \(=177460\) & DF. OTR & 008001 & DF.ENC= & - 0 O1426 \\
\hline CF.ERR &  & DF.IAT & OOR1E2R & DF, NAM & OQQOIAR \\
\hline CF.CFF & QCO204R & DF PEF & QOR160R & DF.REC & QQO150R \\
\hline CF.RPT & QROO26R & DF,RTE E & 900149R & DF. SND & 0a0230R \\
\hline CF, TFR & 000022 c & DF XIT & QRE124R & PC. \(\quad=\) & \% \% ¢0007 \\
\hline Re & \%00000r & R1 = & \%OQRQR1 & P2 2 & \% \(\%\) 9000? \\
\hline A3 3 & \% \% 000003 & R4 \(=\) & \%reero4 & P5 \(\quad\) - & \%raceos \\
\hline SORVR = & \(=010000\) & SP = & \% Ma80e6 & V.RSAVE & -000044 \\
\hline
\end{tabular}
0
FREF CORE: 19413. WORDS
OPI<DT:OF
```

A listing of the DF: Driver for Monitor Vø4 release follows:
ICOPYRIGHT 1971. DIGITAL EQUIPMENT CORP.' MAYNARD, MASS.

ITRANSFER INITIATE


```
006102 013746
    0n0ッ44
000105 004035
0a0110012701
    177400
0a0114 012102
00116 140404
0012% 916700
    177654
OQ124 016007 
OQ0124 016007 (
    MOV G#V,RSAV,m(SP)
    JSR RS,0(SP)*
    -ENDC
    MOV #DF.DES,RI IERROR CAUSE INTERRUPTY
    mgV (R1)+,R2
    BMI DF.ERR IYES - GO FIND CAUSE
    MOV DF,RO IGET DDB ADDRESS
    DF:XIT:MOV I4(RO),PC IRETURN MONITOR
OF:XIT: MOV 
000130 n32702
000134 v61423
000136 106027
    0u0ban
    A@@14D
020142 103406
04|144 4,4767
        177656
    O
    OF.ERR: EIT
```



```
OF,ERR: EIT
    BCS DF.PER IF SO FORCE CONTINUE
    JSR PC,DF,RPT
    IOTHERWISE TRY AGAIN
DF,REC: .IFOF SYSOV
    JMF S.XIT&A ITAKE COMMON EXIT
00015% 013705
    00avi42
ano154 000.155
an0154 a00155
    #11#0日,R2 IPARITY OR MISSED?
    #O IYES - RETRIED 8 TIMES?
    -ENDC
    -IFNDF SYSDV
    MOY OHV.XIT,RS
    JMP 4(R5)
```



```
    IERROR IS NOT IMMEOIATELY RECOVERABLEI
    DFOOFF: IFDF SYSDV
    CLR DF ;FREE DISK FOR EDP
        -ENDC
        MOV
002044 -14146
0\4206 $12740
    W01420
000212 00ngma
    MOV OLR.ENO,-(SP) ISETUPERROR NO.
    IDISK STATUS IS EVIDENCE
    IOT
    IDEFINITIONS:
    177460 DFF,DCS=177460
O
BEQ
    #0
MFOROM
```

```
            EO
                    !
```

 I INTERRURT SERVICE
 OF.INT: IFOF SYSDV
JSR R S,S.RSAV IGO SAVEREGISTERS
- ENDC
- IFNOF SYSUV
SYSOV
IGO SAVE REGISTERS

```
ROODE1 OFODR=1
CO142% UF,ENOE1426
\20पАZ V.XIT=42
HGN044 V.R5AVE44
bonngl END
```

```
000nvin E%PUकS
```

DF	－STVAORG	DF．AGN	Vint $36 R$	OF．OCS	－ 177460
DF．OIR	－goonos	DF．ENO	－0U1426	OF．ERR	0日G130R
OF．INT	geder ${ }^{\text {ar }}$	OF．NAM	000014 R	DF．OFF	000204 R
DF．PER	Q日6150k	DF．REC	0001502	DF．RPT	$004026 R$
DF．RTL	－Ans1as	DF．TFR	039022R	DF．XIT	OAO 124 R
$P C$	＝\％ravory	$R \square$	＝\％oangoa	R1	\％\％000001
R2	\％youbanc	R3	$=2000003$	R4	－8090004
R5	＝\％006め15	5 P	－ x 000006	S．RSAV	－＊＊＊＊＊＊
S．XIT	z＊＊＊＊＊＊	V．RSAV	$=$ utun 44	V．XIT	000042

$$
\text { P D P - } 11
$$

RKII DISK DRIVER

October 1972

SUPPLEMENT TO:
PDP-11 DEVICE DRIVER PACKAGE
DEC-11-ODDPA-A-D

MONITOR VERSION Vøø8

COPYRIGHT (C) 1972 BY DIGITAL EQUIPMENT CORPORATION

Abstract

NOTE This document is for information purposes only and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION

This manual documents the software as of Monitor version V $\emptyset 8$. It has been revised to include all new and changed material since Monitor version Vø4. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.
sOftware distribution

RK11 DISK DRIVER

The RK1l Disk Driver consists of routines which initiate block transfers of data to or from a disk cartridge and which handle interrupts arising from normal completion or errors.

Special functions, OPEN and CLOSE processing, are not necessary and thus are not supported. Advance seeks are not supported in this initial release for several reasons, among which are:

- The majority of the DOS installations which utilize the RK have only one unit, so the extra code in the driver (approximately $25 \varnothing_{1 \varnothing}$ words) would be detrimental in most cases.
- No DOS system programs do their I/O in a manner which would reap huge benefits by seeking ahead.
- The Monitor would have to be altered to inform the RK driver before a Bus Init is issued.

The driver should be assembled at each installation where low density drives are present. If low density drives are present, proceed as follows:
(a) If all drives are low density, then define LOWDEN at assembly time.
(b) If there is a mixture of high and low density drives, then define MIXED at assembly time and define CONFIG as follows:

```
Imagine CONFIG as an 8-bit field, the
rightmost bit of which corresponds to
unit \(\varnothing\). If a bit in a given position
is one (l), then that particular drive
is low density. For example, CONFIG=12 (8)
โøøøøøiø̆iø̆(2) indicates thai units
1 and 3 are low density.
```

LOWDEN and MIXED should not be simultaneously defined. If they are, MIXED is ignored, i.e., the assembly proceeds as if LOWDEN
is defined and MIXED is undefined. If MIXED is defined, but CONFIG is not, an assembly error will result, viz., a "U" flag on the line labeled DENIND.

The default assembly condition, where no parameters are defined, is that all units are high density.

1. Driver Table

This driver contains the driver table required for the Monitor interface. The elements are:
(a) Facilities indicator=1ø2ø37 Multi-dataset handling on a single unit. ASCII and Binary input and output. File-structured. Multiunit. No limit to the number of files which may be simultaneously created.
(b) Standard buffer size ${ }^{256} 1 \varnothing$ (words)
(c) Interrupt Vector Address $22 \varnothing$
(d) Interrupt servicing priority 5
(e) Device name DK
(f) Directory start block 1
(g) Number of bit map pointers 8

2. The Transfer Routine

The retry counter is cleared; the unit number, block number, memory address, word count, and function (read or write) are obtained from the DDB, the address of which is in register zero at entrance. If the block number exceeds 4799, then output an error message. Otherwise:
(1) convert the block number to a disk address,
(2) set I.D.E, (bit 6) and GO (bit 9) in the function word, and
(3) send to the controller and return to the caller via RTS PC.

3. The Interrupt Processing Routine

This routine is entered at level 5. The registers are saved on the stack, and pertinent RK controller registers are obtained in case this is an error. If it is not an error, and the last function issued was not a drive reset (see below), the completion return (@(DDB+14) is taken. If it is an error situation, then an attempt to re-try will be made if the error was one of the following:
(1) any "soft" error,
(2) seek incomplete,
(3) read timing error,
(4) data late, or
(5) seek error

All other error conditions result in a fatal error message. In addition, if the word count is not zero after eight re-tries, a fatal error message is issued. Otherwise, a parity error is returned.

NOTE
Errors (2), (3), (4), and (5) above are among the "hard" errors. A control reset must be issued in order to continue. Additionally, a drive reset must be issued in order to continue after a seek incomplete. Thus, if the last function issued was a drive reset, the retry logic is called.

4. Vøø2 Program Listing

A listing follows, conditionalized for all drives being high density.

```
CV.EKH MACRC VCOA-14 13-SEPM72 R2:52 PAGF I
```



```
CV.CKH MACRO VOQ4-14 13-SEP.72 Q2:52 PAGF?
\begin{tabular}{|c|c|c|}
\hline 1 & Mnabor & Rロシ\％ \\
\hline 2 & 000201 & R \(1=\% 1\) \\
\hline 3 & 0nogoz & \(R 2=\% 2\) \\
\hline 4 & 909003 & \(R 3=\% 3\) \\
\hline 5 & a 10004 & R \(4=\% 4\) \\
\hline 6 & 990075 & \(R 5=\% 5\) \\
\hline 7 & 900008 & 26：\％ \\
\hline 8 & F00097 & Pre\％\(\%\) \\
\hline g & 177400 & RKOS＝1774a0 \\
\hline 10 & 177492 & RKER＝177472 \\
\hline 11 & 177494 & RKCSE177404 \\
\hline 12 & 977496 & RKWC： 177406 \\
\hline 13 & 177410 & RKBA＝ 177410 \\
\hline 14 & 177412 & RKDA \(=177412\) \\
\hline 15 & agagoi & RKDIRE！ \\
\hline 16 & 900044 & \(V \cdot R S A V=\triangle 4\) \\
\hline 17 & 090042 & \(V . X I T=42\) \\
\hline 18 & 177776 & PSE177776 \\
\hline 19 & 010000 & STRVRa1900： \\
\hline
\end{tabular}
22 .FLORI DK
23
24 ISTANDARD DOS IATERFACE TARIE
25
26 OQOOO POOONO DK: NORO O IO YF IMLF, DNB FTR OTHFRUISE
27 DQOQ2 1, \2.37 DKFLGS: *ORD 122037 IFACIIITES MORC
28OOQA T2O GFYTE 2
2900705 172 :RYTE OKINT-DK
30.00006 210
100007 OQQ OQO OYTE O
O0010 O4Q .OYTE DKSTRTMOK
QOOII QOQ .OYTE Q
OOQ12 OOQ BYTE O
QQa.3 QQQ OPYE O
00日14 ब15270 DKNAM:
OQOIG OOCOCI ,NORO RKCIR
    LCCK
00020 00000Q , NORO 0, 2,0,0,0,0,0,0
    02024 000ROQ
    00026 000000
    00030 000000
    00032 agapa0
    00034 000000%
    00036 ब0,0QOO
3 9
AO ODGAD O117K7 NKSTRT: MOV
    M,\а17a
1 OQCAA 11GQR1 OKRTRY: ANVA 13(GQ),R1
```



```
    17777&
43
44
4 5
46
4 7
    -TFOF MIXED
    - tFNDF lramen
    MOV FI.EA ;SAVF LNIT FOR LATER ISF
    . FNMC
    .FNDC
```

```
CV,CKH MACRO VOGA-14 13-SEP-72 22:52 PAGF 2*
4800054 006201
49 OON55 OMFOC1
EO OQC6% OMEOO1
5I DQOER bogegal
52 00064 0220?0
E3 00066 012qC2
54
5
5
57
58
E9
60
6
E2
6
E4
6
6
67
\begin{tabular}{|c|c|c|}
\hline ASR & R1 & SLEFT-JUSTIFY UAIT \\
\hline ROQ & R 1 & \\
\hline ROR & 91 & \\
\hline ROR & R1 & ILNIT ACK AS DESIRED \\
\hline CMP &  & PPOTNTER ODR*PLCCK \\
\hline MOV & (FR) + R ? & \\
\hline - TFDF & MIXED & \\
\hline . TfNRF & LOEPEN & \\
\hline MOV & (PC) + R 3 & -get oenstty pattern \\
\hline - WhRe & COAFIC & \\
\hline ASL & R3 & :MOVE APPROP, TC LNIT \\
\hline DFC & R 4 & \\
\hline AGE & , -4 & \\
\hline HCC & . +4 & IIF LCM DFNSITY... \\
\hline ASL & R2 & :ADIUST BICCK Ne. \\
\hline \multicolumn{3}{|l|}{, FNDC} \\
\hline \multicolumn{3}{|l|}{- ENDC} \\
\hline .TFDF & IRATEN & \\
\hline ASI. & R? & \\
\hline - FNne & & \\
\hline
\end{tabular}
```

```
CV.EKH MACQC VCQ4-14 13-SEP-72 D2:52 PAGF 3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & \(00007 \pi\) & \[
\begin{aligned}
& 027227 \\
& 01,3 m ?
\end{aligned}
\] & & cmp & R2,*489x. & IT B BLCEK WTTHIA BOUNDS? \\
\hline 2 & Q0Q074 & 103410 & & 81.0 & DKIN2\% & ;yEs - RRANCH \\
\hline 3 & 000076 & 014846 & & MEV & -(RO)--(R6) & B OUTPIT ILLEGAL RICCK NUMRER \\
\hline 4 & 000100 & \[
\begin{aligned}
& 012746 \\
& 01435
\end{aligned}
\] & & MOV & * \(1435 .=(R 6)\) & PANP FQ35 \\
\hline E & 200184 & 009501 & & 8F & DKER20 & \%... AFTER SYSDV Chk \\
\hline 6 & 000.26 & 060271 & OKINI?: & \(\triangle 00\) & R?, R! & -ADO IA VALTO QLCTIENT \\
\hline 7 & 00011a & 006272 & & \(A S R\) & R? & IADI REMATNDER FCR EIV BY 12 \\
\hline 8 & 000112 & a06272 & & \(A S P\) & 2? & \\
\hline 9 & 200114 & 760472 & & \(A D D\) & R4, F 2 & \\
\hline 10 & 00115 & 010204 & OKIN20: & MOV & 22,R4 & MOIVIPE EY 16 - SAVE REMAJNOER \\
\hline \multirow[t]{2}{*}{11} & 00120 & 042704 & & HIC & *177760.R4 & \\
\hline & & 1777ag & & & & \\
\hline 12 & 00124 & 0.40402 & & B1C & Q4, 02 & Bfxtract olf \\
\hline 13 & 00126 & 091367 & & GNE & OKIM10 & \(\because \because\) If Any buill fesuly \\
\hline \multirow[t]{2}{*}{14} & -213a & (220427 & & CNP & R4, 12. & : ChFCK REMATNDER \\
\hline & & 990014 & & & & \\
\hline 15 & 00134 & 002402 & & AL T & - \({ }^{+6}\) & ITFBFTWEFN \(12815 \ldots\) \\
\hline \multirow[t]{2}{*}{16} & 0.136 & 062704 & & 400 & HA, 24 & シ'.: CaUsF surfacf incri. \\
\hline & & 000004 & & & & \\
\hline 17 & 02142 & 060401 & & \(A D D\) & RA, 1 & IPUT SECTAR INTE REST \\
\hline \multirow[t]{2}{*}{18} & OQ144 & 012704 & & MOV & *FKRARA & \\
\hline & & 177412 & & & & \\
\hline 19 & 00154 & 910194 & & mov & R1, R 4 & - SET LF DISK ADCRFSS \\
\hline 20 & 00152 & 012044 & & mov & (RR) + - - (RA) & -SET LF MFMORY \(\triangle\) DORESS \\
\hline 21 & 00154 & 012044 & & MOV & \((\mathrm{QD})+, \mathrm{F}(\mathrm{R} 4)\) & -SET LF KARD COUNT \\
\hline 22 & 00156 & 012001 & & MOV & (RQ) + 2 R 1 & : PUT in the flnetion \\
\hline 23 & 00160 & 151771 & & BIS \({ }^{\text {a }}\) & -FC,R1 & SET I. Di.f. And GO RITS \\
\hline \multirow[t]{2}{*}{24} & 2016? & 042701 & & HIC & +177460.R4 & :PLEAR GARPAGF -****** \\
\hline & & 177460 & & & & \\
\hline 25 & 0.0166 & 010144 & & Mny & R1.-(R4) & g SEND FUnPTTOR TO CONTRPL \\
\hline 26 & 00170 & 000207 & & RTS & PC & \\
\hline 27 & & & 1 & -*** & UEEP AS LPTER & BY THE DRFVTOUS IASTRUCYICN \\
\hline
\end{tabular}
```

```
CV.EKH NACEO VCQA-14 13-SEP-72 QP:52 PAGF A
```

$\frac{1}{2}$;					
			1	INTE	T PROCESSAR			
3								
4	008172	$\begin{aligned} & 0.3746 \\ & 0.00044 \end{aligned}$	DKINT:	Mnv	**V,RSAV,-(26)			
5	000176	004536		JSR	RE, (R6) +			
ϵ	00020a	916700		MOV	DK, FQ	IGET THE DDR		
		177574						
7	000204	812705		MOV	*RKRSPR5			
		977490						
8	Qe0210	012501		mov	(F5) + , R 1	ISAVE FKDS AND	RKFR F	FQR LATER
9	00021?	717502		mav	(R5) +, R2			
10	-0214	011584		Mov	- $25 . R 4$	g SAVE FKCS		
11	00216	100405		BM	DKERP	IYES - RRANCH		
12	R022a	032704		HTT	W12.24	OWAS LAST FCN	\triangle DRIVE	E RESET?
		000010						
13	-0224	001204		BAE	DKEROA	gyes - branch		
14	00?26	007178	OKXIT:	smp	- 14(Ra)	PFXIT		
		000814						

	. EKH	MACRO VEQ	OV4-1413	3-SEP.	Q2:52 PAGF 5	
1			IERROR	PROCESSOR:		
2	$00023 ?$	006394	DKERP:	ASI.	F4	FHARD ERRCR?
3	020234	100440		BMI	OKHFR	YYES - RRANCH
4	00.0236	906177	DKERCQ:	ROL	$(P C)+$;TRTEP \& TIMES?
5	000240	000000	DKREPT:	, WORC	0	
6	000242	103227		BCC	DKER25	ITF NET TPY SOMF NORE
7	0e0244	052750	DKER10:	HTS	*100070.17(20)	ISET FAILIIRF FLAG
		100000				
		000912				
8	00025?	005737		TST	- *FKWC.	; HAS UCRO CCUNT REACHED Q?
		177476				
9	002256	017763		AFO	OKXPT	IVES - GO EXIT
10	00260	010246	OKER15:	MOV	R2,-(26)	OUTPPL RKER
	0026?	917746		MOV	* 427.0 (R6)	IAND FR27
		001427				
12	00266	132792		BITE	47.43(R9)	OPS THIS UAIT OP
		000007				
		000093				
	00274	000005		BNE	OKER20	INO - ERANCH
	0027	232767		Q1T	WSORVR, AKFLGS	SSYSTEM CRIVER?
		910008				
		177476				
15	00304	001401		BEQ	DKER20	PNO - ERANCH
16	00306	0 75096		CLR	EF6	iset ccoe to malt
	02310.	005067	DKER20:	CLR	OK	PFREE CRIVER
		177464				
18	00314	000004		507		POUTPLT NESSAGE
	00316	012657		MOV		itf ecrf rack reset flag
		177456				
20	02322	004767	DKER25:	JSR	PE, DKRTRY	PRE-INIT TFR
		177515				
21	0.0325	P1.3795	DKER30:	MOV	-*V, XIT,R5	
		000842				
z2	$0033 ?$	0010165		SMP	A(R5)	
		0 000\% 4				

1	000336	$\begin{aligned} & 21=715 \\ & 0,10001 \end{aligned}$	DKHER:	Mnv	* 1.925	, clear thf contecl
2	000342	145715	OKHRCO:	TSTR	QR5	P PORE YET?
3	000344	169375		RPL	DKtega	ONO - LCOP
4	000346	$\begin{aligned} & 030701 \\ & 010200 \end{aligned}$		BTT	420?.R1	ITS IT DRTVE NOY PEADY
5	000352	001416		BES	DKREY	:TF YFS: AOMO
ϵ	000354	$\begin{aligned} & 337 a y \\ & m 01090 \end{aligned}$		P! T	* 1000,R!	ITS IT SEFK INCOMPLFTE?
7	000360	001475		HFQ	DKMRQ5	BNO - ERANCH
8	n0Q36?	$\begin{aligned} & 010165 \\ & 000004 \end{aligned}$		H?V	RY, (R5) $^{\text {(}}$	PREPLACE MRTVF*
5	000366	$\begin{aligned} & 010715 \\ & 040145 \end{aligned}$		mov	4115.8 R 5	ISET LF FOR DRIVE RESET
10	00377	0.00755		BR	DKEE30	; TAKE INTFRTM EXIT
11	00374		DKHRES:	ATt	- ! 14ncra	PCAN LE PASSIRLY GO ONP
12	OQAED	7:1915		BVE	DKERGA	gVES - RRANCH
13	POAE?	$\begin{aligned} & 337792 \\ & \pi 20900 \end{aligned}$		Q? ${ }^{\text {a }}$	*20030, 22	;is it weyte lock cut?
14	00406	min1724		HFA	DWFR!5	PNO- ERANCH
15	02410	010046	DKREY:	MMV	R7, (26)	isave plisy flag
16	0Q4i?	$\begin{aligned} & \because 16746 \\ & 177376 \end{aligned}$		mov	DKAAM, - (Ra)	; CIJTPLT Name
17	08416	$\begin{aligned} & 0127 \Delta n \\ & \text { mincact } \end{aligned}$		M $\mathrm{V}^{\text {V }}$	*12?-(R6)	- \triangle NO \triangle PQ2
18	1042?	000732		HR	DKERZA	
19		0000011		. ENR		

```
CV,FKH MACFO VOQ4-14 13-SEP-72 Q2:52 PAGF 6+
SYMPOL TAQLIF
\begin{tabular}{|c|c|c|c|c|c|}
\hline CK & OOOR2TRE & OKERP & 272032R & PKFQQO & Q90236R \\
\hline CKEFIT & QRSOAS & DKER15 & QOVったのR & OKEQ20 & \(090310 R\) \\
\hline CKEF25 & Q0R32？R & DKER30 & A2R326R & PKFIGS & OAOOO2R \\
\hline CKHFR & 0003350 & DKHRQO & 7023．42R & NKHRQE & QRO374R \\
\hline CKIAT & QRO172R & OKIN10 & 970106R & OKIN20 & Q00116R \\
\hline CKNAM & \(\theta 0 \rightarrow 014 R\) & DKPGY &  & CKRFPT & Qoc240R \\
\hline EKRYRY & 090044 O & OKSTRT & 072？40R & CKXPT & 202226R \\
\hline FC． & \(=\% 808007\) & PS & \(=177776\) & PKRA & 177410 \\
\hline FKCE & －177474 & RKOA & \(=179412\) & RKOIR & －9a0701 \\
\hline FKCS & － 177480 & RKER & \(=177482\) & FKWC & － 177406 \\
\hline Fiol & ＝\％ranooo & R1 & a\％onenot & R？ & \％erra02 \\
\hline F3 & \(=\%\) ¢0n003 & R4 & \(=\% 002004\) & P5 & \％qaogos \\
\hline F6 & ＝\％oninof & SMRVR & \(=04200 \pi\) & \(V^{\prime}\) RREAV & － 0 ana 4 \\
\hline
\end{tabular}
- AFS 0m0000 000
ERRPRS NETFPTFD: Q
FREE CORE: 19347, WORDS
LLP:<DT:DK
```

5. Vøø1A Program Listing
;
agavan Ramea
vanal R1=\%!
000072 R25\%2
Qunno. R3 $2 \% 3$
000004 R4\#\%4
-nawas R5 55
Don0006 R65\% 5
जタabal PCEx7

177402 RKER=177422
177474 RKCS=177434
177420 RKWC 177416
177410 RKBA=177410
177412 RKDA=177412
GAGMOI RKDIREI
Qum04a V.RSAVa44
000042 V.XIT=42
$177776 \mathrm{PS}=177776$
-TITLE OK
-OISK DRIVER (RKII) VERSION VOOSA 01
OOPYRIGHT OIGITAL EQUIPMENT CORPORATION IMAYNARD, MASSACHUSETTS October 1971
.GLOBL DK
istandarg dos interface table

000054	00
000056	abnar
000069	006001
000062	006001
000064	022020
000056	012.

ASA	R1	OLEFTEJUSTIFY UNIT
ROR	RI	
ROR	R1	
RQR	R1	TUNTT NOW AS DESIRED
CMP	(RD) + , (RD) +	PPOINTER ODB*8LOEK
MOV	(RO) * R2	
- IFDF	MIXED	
-IFNDF	LOWOEN	
MOV	(PC) +, R3	; GEt density pattern
- ${ }_{\text {- }}^{\text {¢ }}$	CONFIG	
ASL	R3	IMOVE APPROP, TO UNIT
DEC	R4	
BGE	. -4	
BCC	. +4	IIF LOW DENSITY..
ASL	R2	IADJUST BLOCK NO.
- ENDC		
-ENDC		
-IFDF	LOWDEN	
ASL	R2	
-ENDC		

ankala	-29227		CMP	R2, 74800.	1TS BLOCK WITHIN BOUNDS?
	0113 Al				
anan7	103410		810	OKIN2a	; YES - BRANCH
000076	214c46		Mov	- (R0), - (R6)	I OUTPUT ILLEGAL BLOEK NUMBER
0anioa	012746		mov	(1435, - (R6)	IANO F035
	901435				
0.0104	000470		BR	DKER20	I. A AFTER SYSDV CHK
000106	060201	DKINIO:	$A D D$	R2,R1	IADO IN VALIO QUOTIENT
008110	ancent		$\triangle S R$	R2	IADS REMAINOEP FOR DIV EY 12
-00112	006202		ASR	R2	
006114	060402		ADO	R4.R2	
000116	012204	DKIN20:	Mov	R2,R4	IDIVIDE By 16 - SAVE REMAINDER
000120	042704		BIC	\#177760,R4	
	177760				
00124	040402		B10	RA, R2	EEXTRACT QUQTIENT
000126	001357		BNE	DKIN10	I.A. IF ANY BUILD RESULT
000130	020427		CMP	R4, \#12.	OCHECK REMAINDER
	000014				
000134	0n2402		BLT	- +6	IFF BETWEEN 12815 \%
020136	862104		ADO	\# $4, \mathrm{R}^{4}$	1... CAUSE SURFACE INCR,
	onana 4				
000142	06042,		AOO	R4.R1	JPUT SECTOR INTO REST
000144	912704		MOV	\#RKDA,RA	
	177412				
000150	-19114		mav	R1.0R4	ISET UP DISK ADORESS
0015	812044		mov	(RQ)*, $=(R A)$	ISET UP MEMORY ADORESS
000154	012044		MOV	$(R D)+$ (R 4$)$	ISET UP WQRD COUNT
000150	012 Иn!		MOV	(RD) + R R	IPUT IN THE FUNCTION
000160	151781		BISB	-PC, ${ }_{1} 1$	1SET I.D.E. ANO GO BITS
000162	042701		QIC	W1774R0,R1	ICLEAR GARBAGE *******
	177460				
000166	019144		MOV	R1, - (R4)	ISEND FUNETION TO CONTROL
000170	000207		RTS	PC	
		,	****	USED AS LIT	BY THE PREVIOUS INSTRUCTION

			－SLOBL S．RSAV，S．XIT		
		1			
			INTERRUPT PROCESSOR		
		OKINTI	－IFDF	sysiv	
			\＄$\$ 2$	RS，S．RSAV	isave registers
			－ENOC		
			－IFNDF	SYSOY	
000172	413748		Mov	CHV．RSAV，－（R6）	
	000644				
000176	004535		JSR	R5．（R6）＊	
			－ENDC		
（1）¢20	015700		Mov	DK，RD	IGET PHE ODS
	177574				
000264	012705		Mov	\＃RKOS，R5	
	177404				
000210	012501		Mov	（RS）${ }^{\text {（R）RI }}$	ISAVE RKOS AND RKER FOR LATER
0×0212	012502		HOV	（R5）＋R2	
000214	011504		mov	－R5，R4	ISAVE RKCS
000216	100sts		BMI	DKERP	IYES－GRANCH
004220	a32704		B1T	410.84	IWAS LAST FEN A DRIVE RESET？
	000010				
090224	0.01004		GNE	OKERリA	IYES－BRANCH
900226	anc17a	OKXIT：	JMP	－14（大⿹）	PEXIT
	ตnaら̆ 4				
		IERROR PR	PROCESSOR：		
000232	ana304	OKERP：	ASL	R4	IHARD ERROR？
000234	140425		BMI	DKHER	MES－BRANCH
000236	0965127	UKERDO：	ROL	（PC）＋	ITRIED 8 TIMES？
00024π	009008	DKREPT：	－WORD	0	
000242	193014		BCC	DKER2S	IIF NOT TRY SOME MORE
100244	652163	DKER10：	615	\＃109000．12（R0）	ISET FAILURE FLAG
	1990い				
	日日av12				
D0a252	0.5737		TST	－\＃RKWC，	IHAS WORD COUNT REACHED 97
	177460				
000255	Qa1753		BEO	DKXIT	IYES－GO EXIT
aun20才	018246	DKER15：	Mov	R2，－（R6）	IOUTPUT RKER
000202	012／46		mov	41427，－（R6）	；AND FOR7
	－ 11427				
			－IFDF	SYSDV	
			QITB	$47.13(20)$	
			BNE	DKER2O	INO - BRANCH
			CLR	ORG	
			－ENDC		
		OKER20：	－1FDF	SYSOV	
			ClR －ENDC	DK	ICLEAR BUSY FLAg
000266	agona 4		Iot		I OUTPUT MESSAGE
004279	012067		mov	$(26)+$ DK	Iff come baek reset plag
	177504				
000274	248467	OKER25：	JSR	PC．OKRTRY	IREWINIT TFR
	177544				
		OKER30：	$\begin{aligned} & \text { IFOF } \\ & \text { IMP } \end{aligned}$	$\begin{aligned} & \operatorname{sysiv} \\ & s . x I^{T} \neq 4 \end{aligned}$	1．．．\＆TAKE INTERIM EXIT
			－ENDC		＊＊＊TAKE INTERIM EXIT
			－IFNDF	SYSive	
000300	V13705		Mov	PHV，XIT，R5	
	000642				
000364	Qa， 165		JMP	$4(R 5)$	
	（0）				
			－ENDC		

000318	012715	OKHER：	mov	\＃1，0R5
	anaua！			
000314	145715	DKMROQ：	TSTE	ORS
000316	100376		BPL	OKHRVG
080320	032701		BI ${ }^{\text {T }}$	\＃1a3v，R！
	001000			
000324	001425		BEQ	OKHRQ5
000325	010165		nov	R1， 1 （R5）
	090604			
000332	212715		MOV	\＃125：0R5
	000195			
000336	000760		BR	DKER3O
000340	9327a？	OKHRO5	B1T	\＃11400，R2
	011400			
000344	901334		bne	DKERDO
000346	032702		817	420000.82
	02abag			
000352	01742		850	DKERIS
Qub354	410046		Moy	RR，－（R6）
000356	015745		MOV	DKNAM，－（R6）
	177432			
000362	012745		MOV	\＃402－（R6）
	000432			
Qub366	000737		89	QKER20
	auana！		－END	

```
ICLEAR THE CONTROL
IDONE YET?
INO LOOP
IIS IT SEEK INCQMPLETE?
INO - BRANCH
PREPLACE DRIVE#
ISET UP FOR DRIVE RESET
itAKE INTERIM EXIT
ICAN WE POSSIBLY GO ON?
IYES - BRANCH
IIS IT WRITE LOCK OUT?
INO BRANCH
ISAVE BUSY FLAG
IOUTPUT NAME
IAND ADGZ
I... & GO PRINT
```

OODOUG ERRORS

DK	Dacbenkg
OKERIO	GRU244R
OKER25	UQV274R
DKHRGV	0903148
OKINIG	OOU146R
DKREPT	QOQ2AOR
DKXIT	Vav228R
RKBA	－177412
RKOIR	－anamar
RKwC	177476
R2	\％\％nonu？
R 5	\％xananus
S．XIT	＝＊＊＊＊＊＊
	00037 9

DKERP	$061232 R$
OKER15	$000260 R$
DKER30	D0030日R
DKMR日S	OOG349R
DKIN20	DOA116R
DKRTRY	000044 K
PC	－\％D00007
RKCS	－ 177404
RKDS	－ 177460
Re	－\％00000a
R3	－\％angau3
F6	\％$\%$ a0gos
V．RSAV	－ 000044

DKERDO	0902368
DKER20	0002668
DKHER	$000310 R$
DKINT	O＊O272R
OKNAM	QQQ日IAR
DKSTRT	$000040 R$
PS	－177776
RKDA	－177412
RKER	－177402
R！	＝x900001
24	＝ 8000004
S．RSAV	－＊＊＊＊＊＊G
V．XIT	$=200042$

$$
\text { PD P - } 11
$$

TC11 DECTAPE DRIVER

October 1972

```
SUPPLEMENT TO:
PDP-11 DEVICE DRIVER PACKAGE
DEC-11-ODDPA-A-D
```


MONITOR VERSION Vøø8

COPYRIGHT (C) 1971, 1972 BY DIGITAL EQUIPMENT CORPORATION

NOTE
This document is for information purposes only and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION

This manual documents the software as of Monitor version $V \emptyset 8$. It has been revised to include all new and changed material since Monitor version Vø4. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.

software distribution CENTER

DRIVER for TCll DECtape Control

The principal function of the TCll Driver is to transfer data between the hardware control and a memory area specified by a calling Monitor routine on behalf of a user program. The number of words transferred, the DECtape transport, the absolute starting block on the tape, and the direction of tape travel in each case are all determined by the calling routine.

As required by the standard Monitor-driver interface for all devices and, as DECtape will be handled as such, for file-structured devices in particular, the first part of the driver consists of two consecutive tables:
a) Table of descriptors and pointers to routines included.
b) File-structured usage data

All data transfers utilize the normal read/write capability of the PDP-ll NPR facility. The driver contains a setup sequence to initiate a search for the requisite start block and routines then to handle interrupts for continuation of such search and, if this is successful, the subsequent data transfer specified.

As a file-structured device, the opening and closing of files are the responsibility of the Monitor file management routines. There are therefore no OPEN or CLOSE routines.

Also, no routine to handle SPECIAL FUNCTIONS is currently provided. This could be added later if it is found desirable to simulate the normal operation of some similar device, e.g., rewind as for Magnetic Tape.

1. Initial Tables

Relevant entries for this driver are as follows:

WORD $\varnothing:=\varnothing$ initially-set to address of $D D B$ for dataset being serviced when busy, by calling routine.

WORD 1: = Facility Pattern $=140037$ signifying:
a) File-structured Device
b) DECtape (or similar reversible medium)

```
                    c) Capable of Input or Output in either ASCII or Binary
                on more than one dataset at a time.
WORD 2: = a) Standard Buffer Size = 16 x l6-word units (i.e., l
                        standard DECtape block).
                    b) Offset to Interrupt Service routine.
WORD 3: = a) Priority for Interrupt Service = 7
            b) \emptyset [NO OPEN routine included]
WORD 4: = a) Offset to TRANSFER Set-up routine
            b) }\varnothing\mathrm{ [No CLOSE routine included]
WORD 5: = \emptyset [No SPEC FUNC routine present]
WORD 6: = Name 'DT' in RADIX 50 format.
WORD 7: = Start Block of Directory Structure = 100
WORDS 1\emptyset-17: = Reserved for pointers to in-core Bit Maps for each of
                        8 transports supportable by TCll.
```


2. Processing Routines

2.1 Transfer Setup

A Monitor routine effectively calls for transfer setup by JSR PC XXXX where $X X X X$ is the start address evaluated from the offset in WORD 4 of the table. The address of the DDB containing relevant parameters will be stored in WORD \varnothing of the table.

The setup routine will first set a counter for number of returns to be made in the event of parity or timing failures in tape operations (8-9). Using the given DDB address, it then extracts the following information and actions it as shown:
Block No. (DDB+4) - two copies are stored internally as con-
trols during Start Block search as detailed below.
Word Count \& Memory Address (DDB+6 \& lo) - these are stored
immediately in the TCll WC \& BA registers for use
as soon as the Start Block has been found.
Function (DDB+l2) - the requirement for Read or Write is con-
verted from the standard Monitor specification (4
or 2) into the corresponding DECtape value (4 or
14) and stored internally until completion of block
search.

The setup routines also sets two switches appropriately:
a) In any transfer, two types of interrupt may occur; the first at each block encountered during the search for the start specified; the second thereafter arising when the transfer has been completed. The switch is initially set for the first type.
b) The tape is started in the eventual transfer direction. Turn-around, however, may be necessary if the tape is badly positioned. The second switch is set initially to reflect the start direction in order to provide adequate control during such turn-around.

The driver then sets the TCll Control Register for the search, and restores control to the calling Monitor routine, via RTS PC, to await its first interrupt.

As permitted by the General Driver Spec, the setup routine makes full use of the processor registers, without saving or restoring their original content.

2.2 Interrupt Servicing - Search Mode

Provided that a tape block-mark is encountered without error, the search interrupt servicing routine compares the number found (from TCll Data Register) with one copy of that for the required block, stored internally by SETUP. If the comparison shows that current tapemotion will eventually lead to the required block, the routine exits immediately and waits for a subsequent interrupt to show that the transfer may begin.

If tape-motion is in the wrong direction, the routine resets the TCll Control register to produce tape turn-around on exit. A second turn-around will now be essential for a transfer in the require direction. The routine therefore modifies, appropriately, by 2 the copy of the block number required used in the comparison. This factor is provided so the tape is sufficiently positioned beyond the block required to ensure that it will be up to speed at the right point after the second turn. For example, in order to transfer Block 100 forward, the first turn will seek Block 76 in reverse.

An equal comparison might then result after a single turn-around. The block number found is, therefore, checked against the second, unmodified, stored value. If not equal, a turn-around has occurred: the TCll is reset for the second time and the first stored number is restored to its original value. When both stored values and the block
found are all equal, the correct tape travel is assumed and the trans fer is effected by moving the stored function into the TCll control (byte only to avoid hardware delay imposition). The interrupt switch is changed to show that the operation is now in Transfer Mode.

In the event of an error in Search Mode, the TCll Test Register is examined. If this shows that the cause is "End Zone Reached", the turn-around procedure is again effected, since such a condition is initially the same as being, for example, at Block 102 when 100 is wanted forwards. All other hardware-reported errors are treated as discussed in a subsequent paragraph.

Another type of error may occur but this can only be detected by software, i.e., a failure to find the block either because its number on the tape is corrupted or the one required is outside the range of the tape. For both situations the tape might rock endlessly owing to the turn-around algorithm. The search interrupt processor therefore counts the number of times a turn is effected. It gives up at the sixth attempt and requests printing of an Føl6 message with the failing Block Number as evidence.

To avoid unnecessary time wastage in the storage and retrieval of their contents, the normal search interrupt processing does not use processor registers.

2.3 Interrupt Servicing - Transfer Mode

The normal cause of an interrupt in transfer mode is the satisfactory completion of the whole of the data transfer specified. The driver must then recall the monitor routine which requested the transfer. Because this routine may have surrendered control to the user program during the period of the search and transfer operations, the driver must assume such is the case and save all register contents before setting $\mathrm{R} \varnothing$ to the DDB address from its WORD \varnothing and taking the completion return set into $\mathrm{DDB}+14$.

The interrupt may also occur if an error is determined by examination of the TCll Test Register. In Transfer Mode, two types of errors specifically processed are Party or Timing Failure. Following either of these, the servicing routine restarts the whole process over from the original block search until at least 8 attempts to produce a satisfactory transfer have been made. If these all fail, the routine returns a flag indicating the error in Bit 15 of the relevant DDB+12.

It checks, however, whether the failure occurred at an intermediate block of a transfer involving several blocks. If such is the case, it endeavors to provide a satisfactory transfer of the remaining blocks. It then recalls the monitor at the completion return address.

Of the other types of error, transfer mode servicing also handles Non-existent Memory and End Zone. Both of these conditions are assumed to be the result of a programming error and cause printing of a fatal error message Føl5 with User Call Address as evidence.

2.4 Recoverable Errors

In both Search and Transfer modes, for errors not especially noted, a general routine is used to request printing of a diagnostic message requesting operator action. SEL and ILO errors are assumed to indicate a "Device Not Ready" state for which the device name (DT) is supporting evidence for the message 'Aøø2'. For the rest, and Mark Track Errors in particular, which might be resolved by changing tapes -- the message 'Aøø3' is printed with the TCll Test Register content as evidence. For all these errors, the operator might request program resumption by a Monitor "Continue" command. The driver restarts the whole search and transfer process if this occurs.

3. Implementation

a. Comments on the driver listing show general methods of implementation. It should be noted, however, that in several instances, in-line code is modified. In particular, the two switches mentioned under "Setup" are variable Branch Instructions and the internal storage of data has already been indicated. This means first that the driver is not reentrant an unlikely requirement when one control may only service the transport at a time, even though eight may be attached to it. In the second place, the driver, as written is not immediately usable in a ROM.
b. The priority level for interrupt servicing should also be mentioned. The hardware level is 6; the initial software level, however, is set at 7. This is to ensure that there will be no delay due to any other interrupt in the critical case in which the required block number has been found and a change of function from Search to Read or Write must occur within 400 msecs. The interrupt routines themselves lower the level to 6 , if the critical case is not being actioned. This will mean that other interrupts may be delayed up to 50 msecs. in the worst case, the critical one.
c. A further minor point of interest is that the tape is always stopped at the end of each transfer (or when an error occurs to prevent this) in order to maintain correct tape positioning. A program STOP request is issued to effect this in all cases, even though the hardware may be set up to provide for it. However, resetting the TCll Status Register for this purpose can remove error conditions. The content of this register is, therefore, examined (or is saved for later examination) before the STOP command is given.

4．PROGRAM LISTINGS

4．1 Vø2 Program Listing

```
ICOPYRIGHT 197!, OLGITAL EQUIPMENT CURP., MAYNARD, MASS.
```

IVERSIUN NUMDER：VAZ
－．TITLE OV．DT

IOECTAPE URIVER VERSION： 23 JULY 70
；presently cuitains only routdne for transfer 1

ISTAMOARU URIVER TABLE：
UT：WURU \triangle ；BUSY FLAG（DDG ADOR WHEN BUSY）
－DITE 37．300 ：FACILITY INDICATUR
－BYTE 16．；STO BUFF SIZE／IG．
－BYTE DT．INT－UT ；POINTER TOINT SVCE
－BYTE 346 BINT SVCE PRIORITY
－OYTE OUESPATCH TABLE．．．．
－BYTE OT．THKOUT I．．．POR TRANSFER ONLY」
－EYTE
－Erite 0
－GYFE B SPARE
DT，NAM：HADSO IOTI
WURU OT．OJK ；FIXEDMFO BLOCK
－WORU O，$\triangle, \theta, \theta, \theta, \theta, \theta, \theta$ IVUINTERS FOR BIT MAP ACCESS
；REGISTEK $\triangle S S I G N M E N T S:$
Ruagb
R1＝\％1

Rコごち
R4：\％4
RSE＊ 5
SPa\％
PC＝\％7
；SET LP IKANGFER：
DT．TFE：MUY POLUT．KTC ISET RETKY COUNT
DT．PK1：MOV UT，RO IGET $\triangle D O R E S S$ OF ODE
MUV HOT．CBA，KI ；．．．\＆OF HWR GLOCK
CLK OR！
CLRP（RN）＊，（RO）FSKIH USER LINE IN OOB
MOV（RQ）＊，UT，BRO ISAVE BLUCK NO FOR LATER
nav（RO）＋iOKI ；SET READY MEMUKY ADDK．．．
MOV（Kロ）＊i＊（R1）i．．．\＆WURD COUNT
OT．PK2：LLRG UTEINT ISET INTIRUPT SW．TO SRCH
mUV OTBERG，UTABEK SET BLK CTRL FOR SREH
MUV \＃GOQRO IUSEU IN NEXT SEQUENCE
MOV KSUUT．TAG ：SET TURN AROUNO COUNT
MuV RRO－（SH）IGET UNIT，DIRECTION Z FUNC
DIL \＃1763A1．OSF BCLEAR PUSS．GARBAGE
BIS RZ，OSP ：ADO IN INTENB EIT
OITG SPOPC FWKIIEKLQD？
BEO＊+0 （KEAO O．K．ALROY）＊＊＊＊＊
AUU A12，OSP IF SO GET DECTAPE EQUIV．
MUVG SPP，DT，FKQ ISAVE FUNE FUR LATER
MOVG PRG，OSP BRESET FUNC TO SRCH（INTENB）
ASG K3 ；（NON CONTAINS 2OO）＊＊＊＊＊
OIT OSP，S4DVE ITRAVEL FORWARU？
DRE ：＊4
DNC KU IFF TO RJ NOW 201 \＄ 50.0
MUVE R3，UT．SSW ；MAKING OPL UR BMI AS REOD
MUV（SH）＊－（RI）ISET UECIAPE CONTRUL
KIS PC ；KETURN TO CALLER FOR NUN
；＊＊＊＊＊CARE USED AS LITERAL GY PREVIUUS LINSTRUCTION！！！

IINTERKUKT SERVICE（A）－SEARCH IN PKORESS：			
OT．SLP：	TST	GUT．CCM	；check status
	BMI	DT．SER	：\downarrow Fr ERROR GO INVESTIGATE
	CMP		ICHECK BLOCK FOUND
	bed	UT．OFU	IIF UNE KEQD，GO ACTIUN
	OMI	DT．SXT	－GET TO DLOCK THIS WAY？
DT．SSWa，	－1		；（BPL Ir travel backwaro）
DT．TAI：	－165	5 \＃40，¢ 4177776	；DROP PRIORITY
	ASRE	－\＃	；HOW MANY TURNS？
DT．TAC $=.-2$			
	ocs	UT，BEF	；IF o Caivit find block
	Mov	$44000, \mathrm{~m}$（SP）	；UTMERMISE MUST TUKN AROUNO
	Mov	＊2，（SP）	IASSUME TRAVEG NOW FWD
	H0Rg	3 UT：SS\％	－Crecr direction
	BCS	DT．TAZ	IIF FWD UMIT NEXT
	NEG	2（SF）	；IF OWD，REVERSE EVERYTHING
	NEG	$0 \mathrm{SP}^{\text {P }}$	
DT．TA2：	Sus	（SF）＊，DT，GRE	；ALLUN 2 BLKS FOR 2NO TURN
	400	（SP）＋，ADT．CCM	ISWITCHSTATUS
	KULE	OT，SSW	IKESET DLE SW（C bIT REVERSES）
DT．SXT：	dNCH	O\＃UT，CCM	；CONIINUE SEARCH
	RTI		；WAIT NEXT BLOCK
；BLOCK FUUNO－Check travel correcti			
OT．BFD：	CNF	－ビあり	；TRAVEL AS ORIGINALLY STORED？
OT，BKGF．－ 4			
$\text { OT. } B C K z \text {. }$	-2		
	ONE	UT．TAL	ILF NOT MUST TURN AGAIN
	INCB	3 OT．INI	；RESET INTIRUPT SW FOR TFR
	move	－\＃C，O\＃UT．CCM	IMOVE IN CORRECT FUNG
OT．FKO＝．$=4$			
	Oi	UT．SXT	I．．．R GU SET UNDEKWAY
IINTERKUPT SERVICE（S）－TKANSFER COMPLETE（T）：			
DT．INT：	Bk	．+2	O INTERRUNT SWITCH
	¢ ${ }^{\text {k }}$	UT，SIP	PFOR SRCH COMES HERE：
	Bico	b 40，© 177775	PUNOR PRLORITY
	Muv		DON TRANSFER CUMPLETE $=$ \％
	JSH	RSIO（SP）	OGAVE USER REGISTEKS
	nov	Otikn	；GET ODS AODR
	muv	\＃D1．CCM，R1	－GET STATUS ADOR
	mov	410,103	；SET MAGIC CONSTANT
	1 s 1	－\％ 1	；ERRUR CAUSE INTIRUPT？
	OHI	QT．TEK	IIF SO GU \＆SEE WHY
	move	－R3，＠R！	OUTHERWISE STOP TAPE．．．
DT，TXT：	muv	14（RU），PC	；．．．\＆TAKE COMPLETE RETN
DT. SER:	ERKGK	gr－determine cause	
	TST	－UT．TST	I IN END LUNE？
	OMI	UT．TAl	；O．K．MEANS TURN AKOUND
	－IC．	－ 400.04177778	GUROP PRIURITY
	muv	－av，KSAV，－（SF）	f SAVE ALG USER REGS．
	JSk	RSOP（SP）＊	
	nüv	\＃DT，TST，R1	；get dectape status
DT．EXT：	Mov	QR1，${ }^{\text {（SP）}}$	；SET UP TO TELL USER
	muv	\＃DT，IKE，－（SP）	
	OIT	$414000,(41)+$	B．．．．ASSUMING H－W FAIbURE
	beq	UT，STP	．．．．．IF SEL OR ILU
	muv	\＃01．NKE，©Sİ	duIALNOSE TAPE FAULT OIFF．
	muv	OT，NAM， $2\left(5^{\circ}\right)$	1．．．AS Not ready
OT．STP：	muva LUT	－ 10.0 ml	istor tare in case ：Go ro olag print
DT，RXTi	jSir	PC，DT．PHI	I ON KECOVERY，SET UP KETKY
	Muy	OR，RKES，RS	；KESIORE USER REGS
	JSW	RSOHS	
	KTI		B．．．\＆HUPE FOR BETTER THINGS！
BGLOCK N DT．BER：	NUT F	UUNO IN SEARCH：	
	mov	UT，BCK，－（ S^{+}）	；GIVE Bluck no．As EVIdence
	ifuy	\＃0T， BHE ，－（SP）	
	Moy	\＃DI．CCM，${ }^{\text {d }}$	；GET CONTROL ADORESS
	BK	UT．STH	

```
; TRANSTER ERKOR:
\begin{tabular}{|c|c|c|}
\hline DT.TEK: OLT & 434000, - (R1) & ITAPE FALLURE/OPERATOK FAUGT? \\
\hline ONE & DT.EXT & IfF SO PKINT \& WAIT RECOVERY \\
\hline 015 & \#100406, (R1) \({ }^{\text {a }}\) & : END ZONE/N,E,M? \\
\hline dive & OT.FEK & :IF SO TREAT AS FATAL \\
\hline ; Recuvtrayle & ORS (TIMING OR & PARITY: \\
\hline ASL & \(\# 0\) & ; KETKIEU 8-9 TIMES ALROY? \\
\hline OTAKIC=. 2 & & \\
\hline BLC & OT.RXT & IIF NOT TRY AGAIN .... \\
\hline -1S & \#140000, 12 (R0) & ; OTHERWISE SIGNAL ERRUR \\
\hline muve & R3) (K1) \({ }^{\text {( }}\) ( & ISTOP TAPE IN CASE \\
\hline mov & 1 (k1),R2 & 1...DUT CHK ALL WOROS DONE. \\
\hline -60 & OT.TXT & IfF SO THATIS ITl \\
\hline ADO & H3,Ry & IGO TO WURD COUNT IN UDB \\
\hline sub & (R6) *, R2 & 1... \& USE TO UETERMINE ... \\
\hline SWAB & -2 & 1... NO. OF Blocks done \\
\hline ©ITB & R3, (K1) \({ }^{\text {( }}\) & - Check present travel \\
\hline B60 & - +4 & IADJUST NO. ACCOROLNGLY \\
\hline NEG & स2 & \\
\hline AUO & R2,OT, BRU & IMOOLFY SEARCM START BLOCK \\
\hline CLR & DTAKTC & '... \& RETRY COUNT \\
\hline JSR & PC.DR.PK2 & :GO SET UP NEW STAKT \\
\hline BK & OT, RKT*4 & \%... \& WAIT RESULTS! \\
\hline ; FATAL EKKORS & ENJ LONE OK NO & -EXISIENT MEMURY: \\
\hline OTAFER: MOV & PRD, - (SP) & IGIVE CALL AS EVIDENCE \\
\hline mov & \#DT,FKE, - (SP) & ;PRINT DIAGNOSIS \\
\hline BR & DT.STP & \\
\hline missctulaneuu & FINITIUNS: & \\
\hline \(V . R S A V=44\) & & \\
\hline V,RRESA4b & & \\
\hline OT.OLR=1wも & & \\
\hline DT.TST=177546 & & \\
\hline  & & \\
\hline UT, CbAF177940 & & \\
\hline DT.CUT \(=177306\) & & \\
\hline DT. NRE \(=402\) & & \\
\hline DT.IKEF404 & & \\
\hline DT,FKE=1410 & & \\
\hline DT.3NE=1410 & & \\
\hline -ENU & & \\
\hline
\end{tabular}
```


4.2 Vøø1A Program Listing

A complete assembly listing of the driver follows.

006186	319367		MOV	R3,DT.TAC	: SET TUQN AROUND COUNT
	9e0920				
000112	त11046		Mig	- 20.0 (S°)	IGET UNIT, DIRECTION \& FUNC
000114	342716		BIC	\#170341.0sp	- CLEAR poss. gareage
	170341				
000129	250316		BIS	R3.0SP	;ADD IN INT ENB EIT
000122	131617		BITA	OSP,OPC	; WRITE REDD?
000124	201422		8EQ	. +6	((READ O.K. ALRDY)*****
000126	$\begin{aligned} & x 62716 \\ & 90012 \end{aligned}$		ADO	\#12.sp	; IF SO GET DECTAPE EOUIV.
000132	$\begin{array}{r} 111657 \\ 909144 \end{array}$		move	OSP,OT,FRG	; SAVE func for later
000136	111716		Move	OPC.OSP	: RESET FUNC TO SRCH (INT ENB)
000140	9063)3		ASL	R3	; (NOW CONTAINS 203)*****
000142	$\begin{aligned} & 331627 \\ & 004000 \end{aligned}$		BIT	- SP, \#4ana	- TRAVEL FORNARD?
600146	at 1091		BVE	+ +4	
000159	305293		INC	R3	: IF SO R3 NOW 2018 SO
620152	110367		Anva	R3.DT.SSW	;MAKING 8PL OR BMI AS REQD
	900023				
200156	012641		MOV	$(S P)+p=(R 1)$, SET DECTAPE CONTROL
000167	909207		RTS	PC	; RETURN TO CALLER FOR NOW
		; *****	CARE	AS LTtERAL BY	DEEVIOUS INSTRIJCTIONI!!
		- Interr	Het S	CE (A) - SEARCH	IN PRORESS:
900162	205737	DT.SIP:	TST	-\#DT. CCM	: CHECK STATUS
	177342				
2001 66	189473		611	DT. SER	: If error go investigate
000170	123767		CMP	OFDT.CDT, ОT. BPQ	ICHFCK GLOCK FOUND
	$\begin{array}{r} 177350 \\ 909070 \end{array}$				
an6176	\% 11432		BEQ	nT. BFD	; IF ONE REQD, GO ACTION
00020a	10 1426		B4I	DT.SXT	:GET TO BIOCK THIS WAY?
	74271	JT. SSW=	-1		: (BPL IF TRAVEL BACKWARD)
040202	$\begin{aligned} & 142737 \\ & \times 004 E \end{aligned}$	JT.TAI:	HTCA	\#40.04177776	I DROP PRIDRITY
	177776				
000210	186227		ASRB	\# 0	; HOW MANY TURNS?
	9anoza				
	909212	DT. TAC=			
090214	143517		-cs	DT. AER	- IF 6 CANIT FIND BLOCK
00021^	012746		Mov	\#4000, - (SP)	: OTHERWISE MUST TURN AROUND
000222	112746		moy	\# $2,-(S P)$: ASSUME TRAVEL NOW Fwd
	700202				
400226	105857		RORE	DT.SSW	; CHECK DIRECTION
	177747				
20023?	103473		BCS	DT.TAL	: IF FND OMIT NEXT
00023 A	905466		MEG	2(SP)	: IF BND, REVERSE EVERYTHING
	anamb				
6ne24	905416		NFG	-9P	
0190242	102667	DT.TAP:	SJB	$(S P)+$ OT, ${ }^{\text {PR }}$?	; ALLOH 2 SLKS FOR 2ND TURN
	*u962\%				
000246	962637		ADD	(SP) + \% \# DT.CC4	:SWITCH STATUS
	177342				
000252	106157		ROL ${ }^{\text {a }}$	DT.SSW	PRESET DIR SW (C BIT REVERSES)
	177723				
300256	145237	2T.SXT:	IICB	O\#CT.CCM	- CONTINUE SEARCH
	177342				
202262	909096		RT5		; WAIT NEXT BLOCK

200436	909034		IOT		: GO TO DIAG PRINT
8R044F	90.4767	DT.RXT:	JSR	PC,DT, PRI	I IN RECOVERY, SET UP RETRY
	177490				
308444	913795		ming	*V.RRES,P5	;PESTORE USER REGS
	909046				
000450	080515		JSR	R5,0R5	
290452	agavaz		RTI		:... HOPE FOR BETTER THINGS!
		; ${ }^{\text {PLOCK }}$	Not Fow	TN SEARCH:	
808154	016746	DT.8ER:	Mav	DT.RCK,-(SP)	; GIVE block no. As EVIDENCE
	177610				
008460	012746		M 2 V	\#DT.BRE,-(SO)	
	961416				
000464	712791		MDV	\#OT.CCM,R1	IGET CONTROL ADDRESS
	177342				
000479	909760		BR	DT.STP	
		; TRANSF	R ER		
020472	932741	DT.TER:	BIT	\$34n02,-(F1)	PTAPF FAILURE/OPERATOR FAULT?
	$33^{40} 4$				
000176	081342		EVE	DT.EXT	: IF SO PRINT \& WAIT RECOVERY
000509	932721		EIT	\#100400, (P1) +	PEND ZOME/N.E.M?
	189078				
000504	OR1627		BNE	DT.FER	IIf SO treat as fatal
		; PECOVE	A3LE	PORS (TIMING OR	PARITY):
200506	006327		ASL	\#	PRETRIED 9-9 TIMES ALRDY?
	960602				
	909510	OT. RTC=			
000512	103352		BCC	DT.RXT	; If NOT TRY AGAIN
200514	\$52766		B15	\#109090.12(20)	OTHERWISE SIGNAL ERROR
	100626				
	aqag 12				
006522	110321		move	R3, (R1) +	: Stop tape in case
गats524	16172		MOV	1(R1),R2	1...BUT CHK ALL KORDS DONF!
	ababl				
204530	-01716		BFQ	DT.TXT	: IF SO THAT'S IT.
300532020534	760330		ADD	R3, RQ	:GO TO WRRD COUNT IN DDB
	162692		S:1B	(Ra) + R 2	:... \& USE TO DETERMINE ...
000536	720372		SJAS	$R 2$	\#.. NO. OF BLOCKS DONE
00.0544°	139321		BITA	23, (R1) +	; CHECK PRESENT TRAVEL
	90141		BEQ	+ +4	: ADJUST NO. ACCORDINGLY
000542 000544	005492		NEG	R?	
000546	962267		$A D D$	R2, DT.BRQ	: MODIFY SEARCH START BLOCK
	177514				
200552	065867		CLR	DT.PTC	;... \& RETRY COUNT
	177732				
00.5556	904767		JSR	PC,OT.PR2	: GO SET UP NEN START
	177396				
00.062	90730		F?	OT. RXT+4	:... \& YAIT RESULTS:
		; FATAL	FRRORS	END ZONE OR NM	-FXISTENT MEMORY:
00564 0のロ506	111646	DT.FER:	MOV	Q P0:- (SP)	; GIVE call as evidence
	912746		mov	\# $)$ T,FRE, - (SP)	:PRINT DIAGNOSIS
	909415				
200572 an9717			B2	DT.STP	

```
    MISCELLANEOUSDFFINITIONS:
MgMR44 V.RSAV=44
#ORG46 V.RRES=46
ME01\0 DT.DIP=10*
177340 DT.TST=177340
177342 OT.CCM=177342
177346 DT,CBA=177346
177350 DT.CDT=177350
700402 DT. VFE=402
DGRATA DT.IRE=404
TQ1415 DT,FRE=1415
901416 DT.RRF=1416
900001
- End
```

GODROX FRROPS

DT	00602020	OT. BCK	$=390270 \%$	DT. EFP	799454R
DT.BFO	006264.	OT.BRE	$=011416$	AT. RRG	$=379662$
DT.CBA	$=177346$	DT.CCM	$=177342$	OT.COT	$=177350$
DT.DIR	$=200100$	DT.EXT	OMA404R	OT, FER	ग20564R
OT.FRE	= 001415	AT.FPQ	$=070392 R$	DT.INT	293310R
DT.IRE	= 032484	OT.NAM	\triangle ACO14R	OT, RRE	$=0.90402$
OT.PR1	006944マ	DT.PR2	ganalar	OT.RTC	= 9305172
DT.FXT	R2C442?	OT.SER	072355 R	OT.SIF	700162R
DT.SSW	= 00n2012	DT.STP	OU232R	TT. SXT	930326R
DT.TAC	$=$ - 2 20212?	DT.TA1	$090202 R$	OT.TA2	073242R
DT.TER	0104728	OT, TFR	60na40R	DT.TST	$=177340$
DT.TXT	400352R	PC	$=\% 090007$	Q0	-4agaga
R1	=\%0069e1	R2	$=\% 000002$	23	= \%angan
R4	$=\% \mathrm{Canag} 4$	D5	$=\% 300005$	SP	$=\% 030006$
V.RRES	$=098746$	V. PSAV	$=996044$		= 998574R

$$
\text { P D P - } 11
$$

TM11/TU10 MAGTAPE DRIVER

October 1972

SUPPLEMENT TO:
PDP-11 DEVICE DRIVER PACKAGE
DEC-11-ODDPA-A-D

MONITOR VERSION V $\varnothing \varnothing 8$

COPYRIGHT (C) 1971, 1972 BY DIGITAL EQUIPMENT CORPORATION

NOTE

This document is for information purposes only and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION

This manual documents the software as of Monitor version V $\varnothing 8$. It has been revised to include all new and changed material since Monitor version Vø4. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.

SOFTWARE
distribution CENTER

CONTENTS

1.0 INTRODUCTION 1
2.0 TAPE FORMAT 1
2.1 Files 1
2.2 Logical End-of-Tape 1
2.3 End-of-Tape Marker 2
2.4 File Label Record 2
$2.5 \quad 7 / 9$ Track Bit Storage Patterns 2
3.0 OPERATION 5
3.1 Standard Monitor Functions 5
3.1 .1 OPEN 5
3.1.1.1 OPENI 5
3.1.1.2 OPENE 5
3.1.1.3 OPENO 6
3.1.1. 4 OPENC 6
3.1.1.5 OPENU 6
3.1.2 CLOSE 6
3.1 .3 READ/WRITE 6
3.1.4 BLOCK 6
3.1 .5 TRAN 7
3.2 Special Functions 7
3.2 .1 Special Function Block 7
3.2 .2 OFFLINE 8
3.2 .3 WRITE END-OF-FILE 8
3.2 .4 REWIND 8
3.2 .5 SKIP RECORD (S) 8
3.2 .6 BACKSPACE RECORD (S) 8
3.2 .7 SET DENSITY AND PARITY 8
3.2 .8 TAPE UNIT STATUS 9
3.3 Error Processing 10
3.3 .1 Cyclical Redundancy/Parity Error 10
3.3.2 Record Length Error 10
3.3 .3 Bad Tape Error 10
3.3.4 BUS Grant Late 11
3.3.5 Non-existent Memory 11
3.3.6 Illegal Command 11
3.3.7 OFFLINE 11
3.3.8 WRITE LOCK 11
3.4 Diagnostics Issued 11
4.0 CHARACTER CONVERSIONS BY THE DEVICE DRIVER 12
4.1 Prototype Conversion Routine 12
5.0 PROCESSING NON-PDP-11 CREATED FILES 13
6.0 MAGTAPE DRIVER LISTING VØø6A 13
6.1 MAGTAPE DRIVER LISTING Vøøø4A 25

1.0 INTRODUCTION

The TMll/TUlO Magtape driver provides the interface between the DOS Monitor transfer routines and the TMll Magtape control unit. It supports the operation of both 7 and $9-t r a c k$ TUlO Magtape units. In addition to supporting DOS Monitor OPEN/CLOSE, READ/WRITE, and TRAN processing, this driver provides several functions to enable user control of special device features.

2.0 TAPE FORMAT

Although Magtape is not considered a file-structured device, certain structure and label processing features have been implemented to enable creation and retrieval of multiple files on a Magtape.

2.1 Files

A file is a collection of sequential records bounded by end-of-file (EOF) records or by the bottom-of-tape (BOT) marker and an end-of-file record. In nonfile-structured TRAN processing, each record of a file is 256 decimal words long except for the first record, which is the file label and which is seven words* long.

2.2 Logical End-of-Tape

In order to accomplish label searching, it is necessary to know when the last file of a tape has been passed. This is accomplished through the CLOSE request, which writes a logical end-of-tape (EOT) marker, i.e., a null file (three end-of-file records with no intervening data records).

A tape which has no files on it must be initialized by having at least one end-of-file record written on it in order to be used with OPEN/CLOSE processing.
*Six words for monitor release. . Vøø4A

The last file on a tape is the one which was last opened for output. Any files which were on the tape following that file are not recoverable. New files which are added to the tape write over the old LEOT and write a new LEOT after the last record.

2.3 End-of-Tape Marker

Access is allowed beyond the end-of-tape (EOT) marker for all operations except WRITE. Attempts to write beyond the EOT marker are rejected and EOF/EOM status is set.

2.4 File Label Record

Each file created by OPEN processing has as its label (first record) a 7-word record of the following form:

```
LABEL+\varnothing FILE (WORD)
LABEL+2 NAME (WORD)
LABEL+4 EXTENSION (WORD)
LABEL+6 UIC (DEFAULT TO LOGIN UIC IF NOT SPECIFIED) (WORD)
LABEL+8 PROTECT CODE (DEFAULT TO 233) IF NOT SPECIFIED (BYTE)
LABEL+9 UNUSED (BYTE)
LABEL+1\emptyset DATE CREATED (WORD)
LABEL+12 UNUSED (WORD)
```

This is also the form of the user's filename block.
2.5 7/9 Track Bit Storage Patterns

The following is a short description of the bit patterns stored on magnetic tape by DEC's TMll interface. The TMll interfaces the 7 and 9-track TU1め drive to the PDP-11.

Figure 1 depicts the results of a normal write on 7-track tape. Bits 6, 7, 14 and 15 are dropped. The density may be $2 \varnothing \varnothing, 556$ or $8 \varnothing \varnothing$ BPI. For this type of write operation, a "character" is six bits of an 8-bit computer byte. The output from one computer word (minus 4 bits) is stored in 2 characters.

Figure 2 illustrates the 7-track "CORE DUMP" mode of transfer. This mode is written at $8 \emptyset \varnothing$ BPI only and channels "DATA5" and DATA6" are set to zero. The result is that 4 bits equal one character and 4 characters contain all the bits of one computer word (as shown).

Figure 1 7-Track Magtape PDP-11

Bit $\varnothing=\underset{\text { Bit }}{\text { Least Significant }}$
Bits 6, 7, 14 \& 15 are dropped

$$
6 \text { Bits }=1 \text { character }
$$

(i.e.: Bits $\varnothing-5$ or 8-13)

The above is a graphic representation of 7 -track Magtape after a normal write.


```
Bit \emptyset = Least
    Significant
    Bit
4 Bits = 1 Character
    (i.e.: Bits \emptyset-3 or
    4-7 or 8-11)
```

The above is a graphic representation of 7 -track magtape after a "CORE DUMP" transfer. DATA5 and DATA6 channels are set $=\varnothing$ for this mode.

For 9-track tape units, all 16 bits are transfered as shown in Figure 3. One computer byte (8 bits) is equal to one "character" and two characters contain one computer word. Recording density on the 9-track units is $8 \varnothing \varnothing$ BPI only.

A record may be 2 to 32767_{10} words in length. The end of record is marked as follows:

```
1. 9-track: 3 blank "characters",
    CRC "character",
    3 blank "characters",
    LPC "character"
2. 7-track: 3 blank "characters"
    LPC "character
```

Finally, an EOF for 9-track is a 238 plus an LPC of 23_{8} and for 7 -track an EOF is a 178_{8} plus an LPC of 178 .

```
CRC - Cyclical redundency check
LPC - Longitudinal parity check
EOF - End-of-file
```


Figure 3 9-Track Magtape PDP-11

$$
\text { Bit } \varnothing=\underset{\text { Least }}{ } \begin{aligned}
& \text { Significant } \\
& \text { Bit }
\end{aligned} \quad 8 \text { Bits }=1 \text { Byte }=1 \text { Character }
$$

The above is a graphic representation of 9 -track magtape after a write operation.

```
Density: 8\emptyset\emptyset BPI Only
```


3.0 OPERATION

An OPEN or CLOSE request causes the Magtape to be rewound.

3.1 Standard Monitor Functions

3.1.1 OPEN

In general, an OPEN performs the following:
a) The driver rewinds the Magtape;
b) the driver checks if the device is already open and if so takes the user error exit;
c) if the OPEN is for output processing, the driver then checks that the write lock bit is off. If the write lock bit is on, the driver issues an action Monitor request to insert the file protect ring before continuing;
d) the driver then reads the first record of each file, comparing the filename, extension and UIC of the label with a merged version of the user filename block and any overriding assignment until it finds a match or until the logical end-of-tape is read.

If an error occurs while reading a file label, an action error message is printed. If the operator elects to continue processing, the label is read as though no error had occurred. When OPEN processing has been successfully completed, the device is set open and control returns to the user.

3.1.1.1 OPENI

This request requires that the file be found during file search. If LEOT is encountered, the user error exit is taken.

3.1.1.2 OPENE

If the file is found, the driver skips to the end-of-file. If the file is not found (i.e., LEOT read during file search), the file label is written over the LEOT.

3.1.1.3 OPENO

If the file is not found, the file label is written over the LEOT. If the file is found, an action diagnostic is issued. If the operator removes the current tape and readies a new one, the entire search procedure recurs. If the operator continues to operate without replacing the tape, OPEN behaves as if the driver just wrote the file label.
3.1.1.4 OPENC

Same as OPENE except that if file is found, does not skip to the end-of-file.
3.1.1.5 OPENU

This request is not allowed.
3.1.2 CLOSE

If the last operation to the device was a WRITE, CLOSE writes the logical end-of-tape and rewinds the tape. If the last operation was not a WRITE, CLOSE rewinds the tape. In either case, CLOSE clears the OPEN status.

3.1.3 READ/WRITE

These requests are buffered through the Monitor and allow all normal modes of character transmission (e.g., formatted ASCII, unformatted binary). EOF/EOM is flagged when an EOF record is read, or during output when the EOT marker is sensed.

Unlike most other devices, Magtape flags parity errors on WRITE operations.
3.1 .4 BLOCK

This request is not allowed.

3.1.5 TRAN

This request allows sequential processing of records from 2 to 32767 words in length. On output all requested words are written. On input the requested number of words is read or all words in a record are read, whichever is less. Where the number of words requested is less than the number of words in a record, an error is flagged (see Section 3.2.2). Where the number of words requested is greater than the number of words in a record, a residue word count is returned. In the latter case, the Monitor may flag EOF/EOM; however, this will be erroneous unless the residue word count equals the requested word count (which case will occur only when an EOF is read).

If a record is short by an odd number of bytes, it is padded with one null character and the word count is set to (NUM BYTES READ+1)/2 before short record checking is done. Thus, the user can determine the size of a record only to the nearest rounded word.

3.2 Special Functions

These functions are provided for use in TRAN processing or outside the scope of OPEN/CLOSE processing. However, they are not restricted to these areas and care must be exercised in their use.

3.2.1 Special Function Block

The Magtape driver requires a special function block to perform the special function requests. The following is the calling sequence for Magtape special functions and the special function block format:

3.2.2 OFFLINE (Rewind and Unload) - function Code 1

This request causes the Magtape to be rewound to the beginning-uf-tape (BOT) marker and SELECT REMOTE status to go off. If the last command to the driver for this device was a WRITE, an EOF is written before rewinding. Thus, this function could cause data to be lost if it is issued before a CLOSE during READ/WRITE processing.

3.2.3 WRITE END-OF-FILE - function Code 2

This request writes an end-of-file record on Magtape. It may cause data to be lost as described under OFFLINE.

3.2.4 REWIND - function Code 3

The REWIND request performs the same function as OFFLINE except that the SELECT REMOTE status does not go off.

3.2.5 SKIP RECORD (S) - function Code 4

Skips forward over the requested number of records (SFBLK+4) until either the SKIP count is exhausted or until an EOF record is encountered, in which case the EOF is spaced over and counted, but the operation terminates and a residue count (SFBLK+6) is returned. (if any).

3.2.6 BACKSPACE RECORD (S) - function Code 5

This request skips backwards over the requested number of records until either the SKIP count is exhausted or until an EOF or the BOT marker is encountered. If an EOF is encountered it is spaced over and counted, but the operation terminates and a residue count is returned (if any). If the BOT marker is encountered, it is not skipped or counted, and a residue count is returned.

3.2.7 SET DENSITY AND PARITY - function Code 6

This request is ignored for 9-track tapes; it sets density and parity as follows for 7-track tapes:

DENSITY (SFBLK+5)
$\varnothing=2 \varnothing \varnothing \mathrm{BPI}$
$1=556 \mathrm{BPI}$
$2=8 \varnothing \varnothing \mathrm{BPI}$
$3=8 \varnothing \varnothing$ BPI Dump Mode
The default density and parity are $8 \emptyset \emptyset$ BPI Dump Mode, ODD. In this mode, one byte from core is represented as two bytes on 7-track Magtape. Changing from this default causes one byte from core to be represented by one byte on tape with a loss of the two high order bits (6-7) of the byte.
3.2.8 TAPE UNIT STATUS - function Code 7

This request returns the current status of the tape unit in SFBLK+2 in the following form:
Bits \quad Content

甲 - 2 Last command was:

$$
\begin{aligned}
& \varnothing=\text { OFFLINE } \\
& 1=\text { READ } \\
& 2=\text { WRITE } \\
& 3=\text { WRITE EOF } \\
& 4=\text { REWIND } \\
& 5=\text { SKIP RECORD } \\
& 6=\text { BACKSPACE RECORD }
\end{aligned}
$$

3-6 Unused.
7
$1=$ TAPE AFTER EOF (BEFORE EOF IF LAST COMMAND WAS BACKSPACE)
$1=\operatorname{TAPE}$ AT BOT MARKER
$1=$ TAPE AFTER EOT MARKER
$1=$ WRITE LOCK ON
PARITY:
$\phi=$ ODD
$1=$ EVEN (DEFAULT $=$ ODD)

12
$\varnothing=9$ TRACK
$1=7$ TRACK
13-14 DENSITY:
$\phi=2 \not \varnothing \varnothing$ BPI
$1=556$ BPI
$2=8 \varnothing \varnothing$ BPI
3 = 8øø BPI DUMP MODE
15
1 = LAST COMMAND CAUSED ERROR

Tape unit status is returned in SFBLK+2 for all special functions.

3.3 Error Processing

In most circumstances, the device driver attempts recovery from error conditions by retrying the operation several times, and failing to complete the operation either returns to the user with the error flag set or issues a fatal diagnostic.

3.3.1 Cyclical Redundancy/Parity Error

On input operations, the driver attempts to reread 15 times and if error persists, returns control to the user with error flag set.

On output operations, the driver attempts to rewrite 15 times with an extended record gap and if error persists issues an action diagnostic before returning to the user with the error flag set.

On other operations, the condition is not relevant and is ignored.

3.3.2 Record Length Error

On input the driver returns to the user with the error flag (bit 15 of TRNBLK+6) set (see DOS Programmers Manual). The condition is not possible on write operations.

If the number of words requested in an input TRAN is less than the physical record size on magtape, bit 15 of the Function/Status Word is turned on, the number of words requested are transferred, and the driver returns normally. The remaining information in the record'is "lost" in the sense that it can only be read by back-spacing and re-TRANing with a larger request. The next TRAN will get the next physical record.

Record length errors can be differentiated from other (e.g., parity) errors only by inspecting the hardware registers.

3.3.3 Bad Tape Error

This error is treated as described in Section 3.3.1.

3.3.4 BUS Grant Late

Driver checks status word of device* to detect BuS Grant Late errors and issues a fatal diagnostic.

3.3.5 Non-existent Memory

The driver issues a fatal diagnostic.
3.3.6 Illegal Command

The driver issues a fatal diagnostic.

3.3.7 OFFLINE

Whenever the driver detects a device not-ready condition, it issues an action diagnostic before processing the command.

3.3.8 WRITE LOCK

If the last command given is a WRITE or WRITE EOF and the WRITE LOCK is on, the driver issues an action diagnostic before processing the command.

3.4 Diagnostics Issued

A $\varnothing \varnothing 2$ - DEVICE NOT READY OR FILE PROTECT RING NEEDED (see 3.1.1, 3.3.7, 3.3.8).

A $\varnothing 66$ - UNRECOVERABLE WRITE ERROR AFTER 15 RETRIES (see 3.3.1).

A $\varnothing \varnothing 7$ - LABEL FOUND DURING OPENO (see 3.1.1.3).
AøIø - UNRECOVERABLE READ ERROR AFTER 15 RETRIES DURING OPEN (see 3.1.1)

Føl2 - NO USER ERROR RETURN SPECIFIED IN FILE NAME BLOCK DURING OPEN.

FØ 32 - FATAL ERROR ON MAG TAPE (see 3.3, 3.3.4-3.3.6).
FØ33 - BAD SPECIAL FUNCTION BLOCK FORMAT (see 3.2.1).
*Release Vøø4A does not check status word but does 15 attempts and gives fatal error.

4.0 CHARACTER CONVERSIONS BY THE DEVICE DRIVER

It has been suggested that it would be desirable to have the device driver convert data from ASCII to other coding schemes or vice versa. Although this presents no great implementation problem, there are two reasons why it is not being done:

1) The tables necessary to perform these conversions would be large.
2) The user can maintain his own tables and do conversions more flexibly than the driver.

4.1 Prototype Conversion Routine

The following is an example of a conversion routine which a user might use to do coding scheme conversions:
;
; CONVERT FROM CODING SCHEME A TO CODING SCHEME B
;
CONVAB: MOV \#RECADR,R1 ;ADDR OF BYTES IN SCHEME A MOV RECLEN,R2 ; NUMBER OF BYTES TO CONVERT
;
NEXT CLR Rø ;GET BYTE IN SCHEME A BISB @RI,Rø ADD \#CONAB,R \varnothing; ADD ADDR OF A TO B TABLE MOVB @Rø, (R1)+ ; REPLACE SCHEME A BYTE WITH

DEC R2 ;DECREMENT BYTE COUNT
BNE NEXT ;BRANCH IF NOT FINISHED
-
\cdot

NOTE
Conversion table CONAB contains bytes in coding scheme B ordered such that the numeric value of A byte in coding scheme A is the index into CONAB of the corresponding byte in coding scheme B.

5.0 PROCESSING NON-PDP-11 CREATED FILES

This feature is not yet available.
6.0 MAGTAPE DRIVER LISTING VØØ6A
CV.NT MACPO VROA-14 13-SEP.72 2?:07 DAGF,

1		POPYRIGHT:	OtGTTAL FQUTOMENT	RF. MAYAARD, NASS.
2		;	1071.1972	
3		;		
4		- VERSTOA NO:-	VORFA. 800	
5		;		
ϵ		!		
7		, TFRF	DVEFA	
ε		.TITI.F	DV.OT	
9		- 61.081	\$1	
10		- FNOC		
11		- Tfacf	DVFPat	
12		- TITLE	DV.NT	
13		- cinfl	${ }^{M T}$	
14		- Finc		
15		;		
16	0.00201	1 . CSFCT		
17	9.90090	$R \mathrm{R}=\%$ 为 \quad ODR $P T$		
18	Rno? 01	R!=\% : 1 CMMA		
19	ninono	R2m\% : ©MMD R	Fr,	
20	290703	$R 3=\% 3$:SP FLN	C OLCKM PTA	
21	0 ancos 4	R4=\%4 :		
22	080005	R5:\%5 : SCPATC		
23	960295	SF $=\% 6$		
24	009097	Pr $=\% 7$		
25		:		
26		;		
27		:		
28	179593	$M T S=172520$:trit status	
29	170522	MTC $=17252$?	;f* 1 COMMAND	
30	172524	MTERCE172524	;TNII BYTF/RFCORD	counter
31	172526	MTCMA $=172526$;TM I CORF MENOFY A	ADDEESS
32	172578	$M T O=17253 \times$:TMII DATA QUFFFR	
33	172572	MTRE=172532	;TMIf QFAC I INFS	
34		;		
35	977775	$P S=977775$: PRCCESSOR Status	
36		;		
37		;		
38		IMTG RITS		
39		;		
40	109278	ILC=100009		
41	$\bigcirc 47200$	$E C F=40000$		
42	020700	$C P E=20000$		
43	910Q7e	$P \triangle E=10000$		
44	004800	$B E L=4000$		
45	922000	FCTE200a		
46	C.100?	RIE=100a		
47	$\therefore 80472$	$\square T E=400$		
48	Mna2?	$N X N=200$		
49	97910	SFLR=1an		
50	010240	$B C T=40$		
51	000020	$C H 79=20$		
52	moopl?	SOW: $=10$		
53	man?94 4	$n \mathrm{CL}=4$		
E4	000002	RuS=2		
¢5	a9a0al	TUR=1		
56	30140	DFAR $=14 \pi$		
E7	ngoal?	PARP=10		

CV.NT MACPC VOQ4-14 13-SFP-72 O3:OZ PAGF +


```
CV.MT MACRO VCQ4.14 13-SED.72 OT:OD OAGE &*
```

		atoec 0				
141	0156	105011		$C 1 R 2$	(FI)	grlfar non tnft statp
142	2160	9ูの297	INITX:	RTS	DP	
143			3			
144	$016 ?$	105057	STMPOM:	C. RR	ESESA	; clfar frror swfter
		177565				
145	0166	105757		TSTR	IATENE	PRRANCF IF INT RET
		177655				
146	0172	001005		BNE	MTEXIT	
147	0174	105760		TSTA	-3(00)	PPRANCH IF CALLFO FROM RUELE
		177775				
148	0200	-191292		RNE	MTEXIT	
149	Q2e2	952796		$A D D$	*22.80	;PEMQYE PR,PS ANO FFGS
		900020				
150	0206	105067	MTEXIT:	CIRR	IATENR	
		177635				
151	0212	00170		JNP	- 14 (R9)	OCOMPIETICN EXIT
		a00014				
152			;			
153			;			
154			;			
155			1			
156	0216	912667	GO8	Mnv	(SF) +, INTRET	; SAVE INT RFTURA ADDR
		177626				
157	0222	$1{ }_{1} 16737$	GOA:	140 V	CNA, WMTCMA	
		177634				
		172576				
158	0230	0.16737		MPV	BRC.OWMTRRC	
		177630				
		172524				
159	0236	121127		CMPR	(C1), HWRITE'	PCHFCK IF THIS IS A WRItE
		nunpar				
162	02.42	001097		BNE	Ge2	: RRANCT IF MOT
161	0244	037737	GR1:	BTT	\#WRL, *\#MTS	PCHFCK PF MRITE LCCK ON
		000204				
		472520				
162	0252	701403		RFO	GCa	PRPANCT IF AOT
163	2754	004767		JSR	PCPEEADYI	; PSSUF \triangle CTION MSE
		000034				
164	-26a	909771		BR	gr 1	POO TFET TF LACK STILI ON
165	026?	008757	602:	JSR	Pr,geady	: ChFCK TF CEVICF READY
		000242				
166	2266	156137		BISR	106519,*MTC+1	:SET CEN ANA PAF
		000010				
		172523				
167	0274	0527×2		HIS	WTAT+GDR,R2	; SET INT FAB AND GO BITS
		000101				
168	03ea	110237		mova	R D.AUMTE	; issuf instructica
		172522				
169	0304	01.3746	603:	Mnv	A*46.-(SP)	: PFSTCFF REGS
		ПM?046				
172	0310	024538		JSR	RS, (SP) ${ }^{\text {(}}$	
171	8312	anapaz		RTI		; PETURA ta interflet
172			,			
173			;			
174	2314	?16746	RFADY:	Mov		: TScue action diac -
		177474	呥			

```
CV.NT MACGO VCOA-4A 13-SEP-72 Z3:7M DAGF 9*
```



```
CV,NT NACEO VOUA-1A 13-SEP-72 N3:OO PAGF 1*
```


CV.NT MACEO VCQA-14 13-SEP-72 O3:00 PAGF it


```
CVNT NACEC VOQA-14 13-SEP-72 33:QO PAGF 1+
```


434	$160 ?$	115067	INT7：	CIRB	TCMND	－CLfAF	RETRY IN	InTicators
		1752A4						
435	1686	105067		C）R R	RFTEY			
		176242						
436	1612	－16797		mov	INTRET，PC	－60 TC	SPECIFIC	routine
		176232						
437			；					
438			；					
439		agromil		－FND				

CV．NT MACOR VOQA－14 13－SEP－72 M3：OQ PAGF 1＊ EYMROL TAFLF

$\triangle B Q E T$	Q00700日	
EOT		9
ESPE	＝goaran	
CLOSE	Qci？6AR	C
CNA	OEOOCOR	c
CRE	－Q 20000	
CENE	$=000140$	
EOFCK1	001777AR	E
ERR	$=10$ moen	
60	Qrą	
COI	Q？a？$\triangle \triangle F$	
ILC	$=1080$	
INT	$=$ 20909	
INTH	0913290	
INTI	Oの1A0nR	
INTA	QCIF60R	
LASTAT	eramerag	
NTBFC	$=17256^{4}$	
NTO	$=172430$	
NTS	$=172^{5} 2^{\circ}$	
CFFIIN	－Q0，${ }^{\text {a }}$	
FAR	$=0 \times 4000$	
FC	＝\％000087	
REAP	$=00000.1$	
GEAPY 1	ecosida	
FW0	$=009084$	
FWACX	Qan764R	R
Fe	＝\％ounco	
F3	＝\％a00003	
sown	－00001a	S
SKP	Q01？65R	
εP	x\％oruora	
SPECT		
STATI	QO1？19R	
ETAT4	QF1746R	
trans	ONO．374R	
tran 2	Qaghoar	
tran 5	Qounime	
tryent	an305RR	
CNIT	$=203180$	
WRL	$=$ anacot	
－$A E S$ ．	annopa	000
	ariala	aes
FREE CCOE：IGEYO WORDS		
，LP：＜？	T：MT	

HGL $=$	＝9，4000
RSP	Q01190R
rH70＝	＝Qagazo
rions	290370R
COM．	Qal314R
DFN＝	＝ 200000
FOFPK	COQ766R
FOT＝	$=002098$
GAPSDA $=$	$=010070$
GOB $=$	$=000001$
for 3	P00304R
INITX	200160R
INTF	Cal37ar
INTRET	Qago50R
TNT3	201474R
TNT7	OD1602R
M ${ }^{\text {T }}$	Qgocgare
MTCMA＝	$=17252 \mathrm{~K}$
MTR＝	$=172532$
NXM＝	－Qa020a
PAF E	－01090日
PAREEN	201024R
PS $=$	$=177776$
RFAMYX	Q20356R
RIF＝	－201090．
RUNDC	QOQ740R
RWU＝	－Qaeage
R？$=$	\％\％anasa？
＋5＝	＝\％paqのgs
STMCOM	Qa0162R
SKPR＝	$=000005$
SPEEJ	200364R
SOLST＝	$=0.0006$
STAT3	001234R
trano	QOQ450R
trani	OARA70R
tran 4	200570R
tran 7	QOOU66R
TUSTAT	O日1150R
WFITE＝	－gapana

6.1 MAGTAPE DRIVER LISTING Vøøø4A

```
    ;COPYOIGHT:= DIGITAL ERUIPMENT CORP.,MAYNARD,MASS.
    : 1971
    VERSION NO:- VAOLA
    ;
        - TITlE MT
        -GLOBL MT
        -CSECT
agana0
0000a0 R0=%% ;DOB PTR
gonga1 R1=%1 :LCMMD PTR
GROOQ2 R2=%2 :GMMD RFG
g0003 R3=%3 SP FUNC BLOCK PTR
70n0a4 R4=%4;
GOOOR5 R5=%5 :SCRATCH
000006 SPa%6
9000007 PC=%7
    ;
    :
172520 UTS=17252\pi ;TM11 STATUS
172522 MTC=172522 :TMI! COMMAND
172524 MTBRCO172524 :TM11 EYTF/RECORD COUNTER
172526 YTCMA=172526 :TM11 CORE MEMORY ADORESS
172530 MTD=172530 ;TMI1 DATA SUFFFR
172532 MTRD=172532 ITM11 READ LINES
177776 PS=177776 ;PRCCESSQR STATUS
    ;
    :
    MTS RITS
    !
100006 ILC=100009
```



```
ब1बGаढ PAE=100न0
*04070 BGL=4000
002000 EOT=2000
A010日G RLE=190%
Mgब4OO BTE=4M(1)
A0R2OO NXM=2a0
*00100 SELR=100
900040 30T=40
400020 C470=20
OOOM1SOWN=10
309604 WRL=4
300002 रws=2
\0ang1 TUR=1
OOG 4O DENR=14O
OQO1O PARB=10
    ;
    MTC RITS
    ;
10月0OE ERR=100A0%
760%OC DEN=690AO
```

```
0100NO DOWR=10N0%
GO\triangleGOGO PARE4OOD
003400 UNIT=340%
90日200 CUR=2GO
00100 INT=100
900060 ADEX=60
OOPO16 CMMD=16
000001 G08=1
    ;
    MTRD BIT
    *
910000 GAPSDN=10ODD
    ;
    -COMMANDS
    ;
aganag RWU=0
mONOO1 READ=1
M00002 WRITE=2
MOOOMS EOFME3
NOOOG4 RWD=4
#OGGO5 SKPR=5
MOQ\6 BSPR=5
    !
    THIS IS THE DEVICE DRIVER FOQ THE TMII/TUIO
```



```
DOOM14 a52140 MT,NAM: .2AD5Q /MT/
    B
000016
```



```
0n032: 2,0
000ल22 000
000023 000
000924 000
000.25 000
000926
000027 377
000030 377
000031 377
00日\3? 377
000033 377
000034 377
000035 377
00603* 000
gaga37 000
.BYTE 0,0,0,0,0,0,0,0;DEN/PAR FOR EACH DEVICE
```


000202	$\begin{aligned} & 962706 \\ & 009020 \end{aligned}$		AOD	\＃20，SP	PEMOVE PC，PS AND REGS
000206	$\begin{aligned} & 105057 \\ & 177635 \end{aligned}$	YTEXIT：	CLRA	INTENB	
900212	$\begin{aligned} & 909170 \\ & 900014 \end{aligned}$		JMP	－14（R）	COMPLETION EXIT
		；			
		：			
		：			
		：			
0n0216	912667	60：	HOV	（SP）＋，INTRET	；SAVE INT RETURN ADDR
	177626				
000222	015737	GOA：	40 V	CHA，\＃MTCMA	
	177634				
	172526				
000230	916737		MOV	BRC，\＃MTBPC	
	177630				
	172524				
000236	121127		CMPB	（R1）\＃WRITE	：CHECK IF THIS IS A WRITE
	909092				
000242	001097		BVE	G 02	；BRANCH IF NOT
000244	032737	601：	BIT	\＃WRL，©\＃MTS	PHECK IF WRITE LOCK ON
	00¢084				
	172520				
$00025 ?$	001403		BEQ	G02	PRRANCH IF NOT
000254	004767		JSR	PC，READYI	；ISSUE ACTION MSG
	000034				
000260	900771		$B R$	G01	IGO TEST IF LOCK STILL ON
000262	904767	G02：	JSR	PC，PEADY	ICHECK IF DEVICE READY
	900040				
900266	156137		BISA	1の（R1），OMMTC＋1	ISET DEN AND PAR
	900010				
	172523				
000274	752702		BIS	\＃INT＋GOR，R2	：SET INT ENB AND go
	000101				
000309	110237		move	R2，\＃MTC	iISSUE INSTRUCTION
	172522				
000304	013746	603：	MOV	－\＃ $46 \mathrm{~F}=$（SP）	；RESTORE REGS
	709045				
00031π	084536		JSR	R5，（SP）＋	
$00031 ?$	90n002		RTI		；RETURN TO INTERRUPT
		；			
		：			
000314	\＄16746	READY1：	MOV	MT，NAM，$=(S P)$	：ISSUE ACTION DIAS＊
	177474				
000320	012746		MOV	\＃402，－（SP）	，DEVICE NOT READY
	900402				
006324	900004		IOT		
000326	132737	READY：	BIT	\＃SELR，0\＃MTS	，TEST IF DEVICE READY
	の0ロ100				
	172520				
000334	901767		BEQ	READYI	；BRANCH IF NOT
000336	032737		BIT	\＃TUR＋RWS＋SDWN，	MTS
	900013				
	172521				
000344	901094		BiNE	READYX	

DИオAOG ERRORS

$\triangle B O R T$	000700R	$\triangle D E X$	$=990060$	－RGI	$=904000$
BOT	$=000040$	RRC	090064R	QSo	gal10ar
BSPR	－900006	RTE	$=90400$	CH79	－090020
Close	0912642	CLOSJ	gag370R	CMA	gan才62R
CMMD	－0noxi6	COMJ	091314 R	CRE	＝ 0200000
CUR	$=00200$	DEN	$=060000$	DENB	－ 3×140
EOF	－ 0400000	FOFCK	000766 R	EOFCK1	$090776 R$
EOFM	＝000003	FOT	＝032000	ERR	－100900
ERRSN	Q00053R	GAPSDN	＝010900	GO	$000216 R$
GOA	OAV222R	GOB	$=000001$	GO9	gag244R
G02	CMR262R	903	090304R	TLC	＝190000
INIT	0000662	INITX	900160R	INT	－000100
INTENB	000047R	TNTF	001370R	TNTH	$001320 R$
INTJ	COOS60R	INTRET	OMgasor	INT1	gal 400 R
INT2	Q01426R	INT3	0才1474R	INT4	O日156日R
INT6	Q191536R	INT7	0才1602R	LASTAT	OU0060R
LCMMD	－00026R	MT	gagagarg	MTRRE	－ 172524
MTC	－ 172522	MTCMA	－ 172526	MT0	－ 172530
MTEXTT	0002062	MTRD	$=172532$	MTS	$=172520$
MT．NAM	000014R	NXM	$=000200$	OFFLTN	日G0710R
OPNFLG	OQOO16R	PAE	＝010900	PAR	$=804900$
PARB	－000010	PARDEN	0 1024R	PC	＝\％090日07
POWR	＝ 010900	PS	$=177776$	READ	－ 090001
READY	000326R	READYX	990356R	READY1	9a0314R
RETRY	0000542	PLE	$=001000$	2Wก	－000004
RWND	090726R	RWNDC	90日740R	QWNDX	000764 R
RWS	－ 000002	Rwil	＝GOQa日a	RO	＝\％000日0日
R1	－ 2000001	R2	\％\％angage	R3	
R4	＝\％000904	R5	＝\％990005	SDWN	－900010
SEIR	－008100	SIMCOM	O日Q162R	SKD	0の1966R
SKPB9P	O日，13GR	SKPR	＝ga0ag5	SP	＝$\times 090006$
SPEC	gan612R	SPECJ	OAO364R	SPECT	VA0662R
SPFST	＝000001	SPLST	－Dagan6	STATI	091210R
STAT2	UR122？	STAT3	の91234R	STAT4	可1246R
TCMMD	GAEA5？R	TRANO	gag450R	TRANS	gag374R
TRANX	000574 R	TRANI	090470R	TRAN2	090500R
TRAN3	0065462	TRANA	O90579R	TRAN5	000610R
trang	09053？	TRAN7	030466 R	TRYCNT	090056R
TUR	－000061	tugtat	90116月R	UNTT	$=093400$
WEDF	OAIDI2R	WRITE	＝000002	WRL．	$=390004$
	－021616？				

$$
\text { PD P - } 11
$$

LP11 LINE PRINTER DRIVER

October 1972

SUPPLEMENT TO:
PDP-11 DEVICE DRIVER PACKAGE
DEC-11-ODDPA-A-D

MONITOR VERSION Vøø8

COPYRIGHT (C) 1972 BY DIGITAL EQUIPMENT CORPORATION

Abstract

NOTE This document is for information purposes only and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION

This manual documents the software as of Monitor version $V \emptyset 8$. It has been revised to include all new and changed material since Monitor version $V \emptyset 4$. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.
 distribution CENTER

The line printer driver provides the basic, device specific functions for the PDP-11 Line Printer (LPll) or the Centronics 101A. The driver accepts a block of any specified length (48-word standard) and feeds it to the printer. The block may contain any number of lines (line feed characters) or pages (form feed characters) to be printed in a single call to the driver.

The line printer driver consists of two sections: the fixed driver table and the driver code. The driver table gives the following information:

- Line printer facilities:

$$
\begin{aligned}
& \text { Single user } \\
& \text { Output only } \\
& \text { ASCII only } \\
& \text { Non-file structured }
\end{aligned}
$$

- Standard buffer size of 48 words
- Entry points to the various line printer function routines.

The detailed description of the functions of the line printer driver is given in the following flow chart. The following special points should be noted:

1. Both the OPEN and CLOSE functions cause a skip to head of form (a form feed is printed) on the printer.
2. The transfer (and interrupt) function(s) transfer as many characters as possible to the line printer with the line printer interrupt temporarily disabled. This transfer ter= minates when one of two conditions is reached:
a. The line printer starts a physical operation (because its buffer is full, or because a line terminator character was transferred); or
b. The transfer count is exhausted.
3. Special character handling: NUL's, DEL's and VT's are deleted; AUX OON is transmitted as LF (for LPll) or as VT (for Centronics); CR is transmitted (if necessary) before LF, VT, or FF; TABs are transmitted as l-8 SPACEs (depending on current line position); all other characters are passed without change.
4. Trailing SPACEs (and TABS) on a line are not printed.

The maximum characters per line is an assembly parameter, which may be specified by statements:

LPll=80 or LPll=132

If not specified, LP1l=80 by default. Furthermore, the Centronics line printer version of this driver is produced by an assembly parameter, specified as:

CENT=132

If specified, CENT causes code unique to the Centronics printer to be assembled and overrides any LPll parameter specification.

A flow chart and listings of the driver follow.

A listing of the V007A driver for use under DOS Monitor release V08-02 follows;
CV.LP MACRO VCQ4-14 13-SEP-72 03:11 PAGF 1

PVIP MACQO VCQAm14 13-SEP-72 V3: 11 PAGF $1+$


```
CV.1P MACRO YCZAm14 13-SEP-72 03:11 PAGF i*
1770452 162657 SUR O (SP)+,LP,DKG BADN 1 TO 8 BIANKS
    177342
1780456 900716
AR LP.TRT
179
180
181
182
77776 S.STAT=177776
    OOORA4 S.RSVE44
    OOQQNRI END LF
```

CV.LP NACEC VOU4-14 13-SEP-72 Q3:11 PAGF 1*
SYMEOL TARLF

ETCT	ancos2R
LP,FKS	Qのgezar
LP,CSR $=$	$=177514$
LP.ENP	Qan3iar
LP.INT	$030102 ?$
LP.LPR	ODO144R
LP,ETA	
LP, Siz=	$=000120$
LP.STJ	Q0U367R
LP.1RM	0×013312
LP,TRT	Qa0314R
F9 =	a\%angoan
¢3 3	$2 \% 000003$
SP =	- \% ¢0apga

BUFAD	D02024R	$1 p$	QOROROR
LP.CLC	OD2?56R	10.Cls	Qana3ar
LD.0IS	90219?R	IP.DNF	O日0330R
LP.FRR	DOVAEAR	LP,FRN	OQDO2ER
LP. IN	OPRO16R	LP. LOP	ga0140R
LP.NAM	QORO14R	LPMPPA	0a0030R
LP.RSA	OVQ304R	LP,RSC	200252R
LP, Sk2 =	= garel?	LP,STP	090356R
I.P,STS	ancatar	LP. ${ }^{\text {P }}$ (RF	000310R
Lo.trn	O7205?	LP.TRF=	- 090200
1.P19 =	$=072120$	Pe $=$	\% 000007
R9 =	$=\%$ aneol	R? $=$	\% \%agag?
RA =	\% \%00R034	R5 $=$	\%200905
S.RSV	- GOROA4	S.STATz	177776

```
-AES. ganaOa 000
    09046% 02%
ERRPRS DFTECTFD: 
FREE CORE: 10357, WORDS
|LP:<DT:LP
```

A 1 isting of the VOOJA driver for use under DOS Monitor release V04A follows:

0×2074	116074		Mov	17(R0), 24	;	PRESERVE DDR W.C.
	909010					
000100	ग05334		ASL	R 4	;	CHARACTER COUNT
000102	205484		NEG	R4	;	make positive
000104	310467		Mov	RA, RTCT		
	177712					
000110	42737	LP.TNT:	EIC	\#10A, O\#L.P.CSR	;	DJSABIE INTERRUPT
	200170					
	177514					
200116	025737		TST	\#LP.CSR	;	CHECK FOR ERROR
	177514					
000122	109516		BMI	LP, ERR	;	YES
080124	\$19146		Mov	R1, = (SP)		OUICK SAVE
00. 126	919246		mov	R2,-(SP)		; RESS,
200130	916791		MOV	BTCT,R1	;	get current byte count
	177656					
000134	901474		BEO	LP.DNE	;	NO MORE
000136	$\begin{aligned} & 316792 \\ & 177662 \end{aligned}$		Mov	BUFAD:R2	;	GET CURRENT BUF LOC.
000142	105737	LP.LOP:	TSTB	- ${ }_{\text {HP, }}$ CSR		- IS PRINTER GOING
	177514					
200146	102055		BPL	LO.STI	\%	YES
geot5\%	121227		CMP9	(22),\#11	;	TAB?
	002011					
na0154	701523		BEQ	LP.PTP		
000156	121227		CAPB	(22).\#15	;	CARRIAGE RETURN
	900015					
090162	\% 41416		BEQ	LO.RSC	\%	... RESET COUNTS
090164	105712		TSTR	922	;	IGNORE VULL ...
000166	701537		BEQ	LP. DNP		
000178	121227		$C A P B$	-R2.\#13	;	VERTICAL TAB...
	309213					
000174	781534		BEQ	LP. RNP		
000176	121227		C4P9	-22,\#177	;	.. 8 RUBOUT
	909177					
000202	901531		BEQ	LP. ONP		
000204	121227		C4P3	-92,\#12	;	If LINE TERMINATOR..
	2exel2					
-0021a	9121403		BEQ	LP.RSC		
000212	121227		CYP3	-22,\#14		
	apoct					
090216	021827		BNE	LP.CLO		
D06220	$\geqslant 12757$	6P.PSC:	MOV	\#9..lP.tar	;	... RESET COUNTS
	aval1					
	177600					
20022	912767		3108	\#PFSIZE+1.L゚.		
	A 0121					
	177554					
006234	009403		BP	LP.TBF		... \& OMIT NEXT
000236	$\begin{aligned} & 905767 \\ & 177556 \end{aligned}$	LP.CLO:	TST	LP.LIN	;	OTHERWISE CHECK LINE OFlo
006242	981511		BEQ	LP. DNP	;	IGNORE CHAR IF FULL

020244	$\begin{aligned} & 112237 \\ & 177516 \end{aligned}$	LP.TBF:	move	(R2) +, \#\#LP,9UF	;	PRINT CHAR
006250	905367		OEC	LP.LIN	;	COUNT CHARS. DESPATCHED
	177544					
000254	745367		DEC	LD.TAB	$!$	UPOATF TAR COINT
	177546					
008260	701093		BNE	LP. TRT		.
000262	312767		MOV	\#S..LP.TAP	;	feset tab count
	000010					
	177536					
006270	925391	LP.TRT:	DEC	R1	1	UPDATE COUNT
200272	201323		BNE	LP.LOP : MORE		
000274	105737		TSTA	- ${ }^{\text {LP, CSR }}$;	PRINTER GOING
	177514					
000300	100412		B4I	LP. ONE	;	NO, SO NO INTERRUPT
000302	018167	LP.STI:	Mov	R1, BTCT	;	SET UP FOR NEXT TIME
	177514					
000306	$\cdots 10267$		Hov	R2,RUFAD		
	177512					
000312	052737	LP.TWC:	BIS	\#10日, \#\#LP.CSR	;	ENABLE INTERRUPT
	900100					
	177514					
000320	912682		MOV	$(S P)+, R 2$;	RESTORE REGS
000322	912681		MOV	$(S P)+$ R1		
000324	900002		RTI		;	THROUGH INTERRUPT
000326	112672	LP.DNF:	MOV	(SP) + R 2	!	RESTORE REGS
020332	12681		mav	(SP) +,R1		
000332	913767		M3V	$04 L P, S A V, .+10$;	save all regs
	900644					
	000092					
000340	24.4537		JSR	R5,0\% 0		
	902000					
000344	025037		CLR	- \# LP, CSP	:	DISABLE INTERRUPT
	177514					
000350	016700	LP.IGN:	Mov	LP, RIG		
	177424					
000354	900176		J4P	314(RD)	\%	COMPLETION RETURN
	000014					
800360	116746	LP.ERF:	MOV	LP. NAM, - (SP)	;	ON ERROR SHON NAME
	177430					
000364	012746		MOV	\#402, - (SP)	:	$1=2$ ERR MSG
	90, 092					
00037 ?	000094		IOT			
080372	1209646		BR	LP. INT		


```
000000 ERRORS
```

BTCT	094022R	BUFAD	Q90.24R	1.	ganagarg
LP.8P	$=206322$	LP. BUF	$=177516$	LP.CLO	Q 0.036 R
LP.CLS	= 0960302	LP.CSR	- 177514	LP. DME	070.326R
LP.DNP	QQE466R	LP.ERR	0903602	LP.EVN	0.0460R
LP.FRM	ROQal6R	LP.IGN	O90350R	LP.INT	Q90119R
LP.LIN	006020R	LP.LOP	ORE142R	LP.MTB	Q70432R
LP.NAM	0000148	IP.OPN	0920302	LP.PTB	O90424R
LP.RSC	200220R	LP.SAV	$=090044$	LP.STI	030302 R
LP.STS	bak. 374 R	LP.STV	$=940202$	LP.TAB	O90926R
LP.TPF	2002448	LP.TFR	$030056 R$	LP.TRT	020270R
LP. TWC	प01312R	$P C$	$=\% 909007$	PRSIZE	= 9, 0120
$P \square$	-\%20290\%	R1	$=\% \mathrm{ctan} 01$	R2	$=\% 300002$
R3	=\%eacab 3	24	$=\%$ \%anata	Q5	$=\%$ 9angos
SP	=\%020966	S.STAT	$=177776$.	= OM0472R

$$
\text { P D P - } 11
$$

CR11/CM11 CARD READER DRIVER

October 1972

```
                    SUPPLEMENT TO:
                PDP-11 DEVICE DRIVER PACKAGE
                DEC-1l-ODDPA-A-D
```

 MONITOR VERSION Vøø8
 COPYRIGHT c 1971, 1972 BY DIGITAL EQUIPMENT CORPORATION

NOTE
This document is for information purposes only and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION
This manual documents the software as of Monitor version V $\varnothing 8$. It has been revised to include all new and changed material since Monitor version $V \emptyset 4$. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.
Page
Section
1.0 BASIC DRIVER (ASCII ONLY) - CRII 1
1.1 Driver Table 1
1.2 Service Routines 2
1.2.1 OPEN 2
1.2.2 TRANSFER 2
1.2.3 Interrupt Service 2
1.2.4 Error Handling 4
1.3 Alternative Drivers for ASCII Only Usage 4
1.3.1 DEFAULT 4
1.3.2 ONLY26/ONLY29 4
1.3.3 BLANKS 5
2.0 READING OF BINARY CARDS 5
2.1 BINARY FORMAT 6
2.2 CODING CHANGES FOR BINARY OPERATIONS 7
2.2.1 Driver Table 7
2.2.2 OPEN 7
2.3 TRANSFER 8
2.4 INTERRUPT SERVICING 8
2.5 ERROR HANDLING
3.0 CMIl MARK SENSE READER DRIVER 9
4.0 DETAILED IMPLEMENTATION 9
APPENDIX
A PDP-ll Card Codes A-1B NOTES ON ALGORITHMS USED IN CRII/CMII CARD READERDRIVERB-1
B.l Hollerith to ASCII Conversion B-1
B. 2 Binary Packing B-1
B. 3 SwitchingB-2
C UNPACKING BINARY DATA FROM THE CRII/CMII CARD READER DRIVER -- A SUGGESTED ALGORITHMC-1
D PREPARATION AND USAGE OF CRII/CMII CARD READER DRIVER D-1
D. 1 Preparation D-1
D.1.l Assembly D-1
D.1.2 Linking D-2
D.1.3 Inclusion in DOS Monitor Library D-2
D. 2 Usage

CRII/CMI1 CARD READER DRIVER

The card-reader driver performs device-dependent I/O functions for the PDP-1l CRIl Card Reader Control within the Disk Operating System (DOS). At each Monitor request on behalf of a running program, the driver, in its basic version, reads a single card, which may be punched in either 026 or 029 Hollerith notation as indicated by specially coded cards in the input deck. The resultant data is stored in a specified area as a line of up to 80 ASCII characters terminated by a carriage-return/linefeed.

By conditional assembly of its source, however, the driver may be produced in various versions to include the following additional features:

- Restriction of input conversions to one type of punch.
- Automatic deletion of card-columns 73-80 and of trailing spaces from preceding columns.
- Reading of cards punched in a binary format with data passed to the user, packed 4 columns to 3 words.
- Provision of similar facilities for the 40-column Mark Sense Reader under CMll control.

All cards are read under the PDP-11 interrupt system. The driver, therefore, contains the routines needed, firstly, to initiate a card transfer and, secondly, to service the interrupt as each column is read and supply the required conversion of its content until the end of the card is seen. An OPEN function is also included to enable a using program to ensure that the reader is on-line before issuing its first read. CLOSE and Special Functions processing is unnecessary and is not provided.

1.0 BASIC DRIVER (ASCII ONLY) - CR11

The driver is in two parts: the Driver Table and the Service Routines.

1.l Driver Table

The table occupies the first seven words of the driver in the standard format for I / O drivers under DOS. It includes the following particular information:

- Capabilities: Single user Input in ASCII only Non-file structured
- Standard buffer size $=96$ bytes
- Interrupt servicing at priority level 6
- Device Name: CR

1.2 SERVICE ROUTINES

1.2.1 OPEN

The OPEN routine first checks the Control Status of the reader. If for any reason this is off-line, printing of an Aøø2 error message (device not ready) is requested. If a return is made, the check and message are repeated until an on-line state is detected. The routine then prepares the driver to accept 029 punching by default and returns control to the calling Monitor routine.

1.2.2 TRANSFER

Using the starting address set into its first word by the calling routine, the driver's TRANSFER processor accesses the DDB for the dataset requiring the card input to extract and store internally pointers to the start and end of the buffer area for the data. The first word of the buffer is then cleared as an indicator that the first column is yet to be read. The routine returns to the Monitor with the Reader Control set to INT ENB and GO.

1.2.3 Interrupt Service

At each interrupt, a check is first made for error or card-done conditions. If neither is seen, the column data just accessed is used to compute an index into a table of associated parity-ASCII characters (see Appendix A), the relevant character is extracted and stored as a byte in the buffer provided. The next buffer byte is set to a positive non-zero value to show that a valid read is under way. An interrupt return is then tken.

For card column l, however, checks are also made for a card with any of the following special codings in that colum:

-	12-2-4-8 ${ }^{1}$	This indicates that the cards which follow are to be read as 026 punch codes, and on recognition of this an internally stored offset is modified to use the appropriate section of the table of ASCII values.
-	12-0-2-4-6-8 ${ }^{1}$	This indicates that the following cards contain 029 and cause similar offset modification.

[^6] release.
\[

$$
\begin{aligned}
& \text { 12-11-0-1-6-7-8-91 }
\end{aligned}
$$ $$
\begin{aligned}
& \text { This indicates the end of the card } \\
& \\
& \text { file, and a card so coded must be } \\
& \\
& \text { present ("Hopper Empty" is merely } \\
& \text { deemed a "Device not ready" state } \\
& \text { to allow usage of very large decks). } \\
& \text { When this card is seen, the next } \\
& \text { buffer byte is set negative to show } \\
& \text { EOF. Since no data will now be forth- } \\
& \text { coming, the appropriate word is set in } \\
& \text { the dataset DDB to show this. }
\end{aligned}
$$
\]

When any of the three cases is seen, the Reader Control Status is reset to EJECT before the interrupt exit is taken, thereby causing the remainder of the card to be ignored.

The rest of a card is similarly ejected if, during the processing of any column, the buffer is filled. In normal READ operations for which the Monitor provides a standard-sized buffer of 96 bytes, this cannot occur. This is not necessarily the case if the user program has requested TRAN. If this program also supplies short buffers, this can mean the possible loss of card data, intentionally or otherwise.

When a card-done condition is detected, the Reader interrupt is disabled. The underway state, shown as noted earlier in the next buffer byte, is then checked. If no data has yet been processed because the card just read merely contained a control code, a new card transfer is requested by recalling the TRANSFER routine. Otherwise, the unused portion of the buffer provided is cleared and the parityASCII values for RETURN and LINE FEED are inserted to follow the last data read (in the short buffer, these will overwrite the last two columns processed). As required by the general driver specification, the service routine then saves all user registers on the processor stack and takes the supplied completion return with Register 0 set to the address of the DDB just serviced.

It should be noted that this process allows the reading of only one card at each request, regardless of the size of the buffer provided. Because a card-read (once it has begun) must continue to completion, any attempt to fill the unused buffer space must necessitate the internal storage of any overflow, if possible loss of data is to be avoided. In keeping the size of the driver to a reasonable limit, the provision of such internal storage is not considered desirable. For the READ form of I / O, the buffer supplied by the Monitor must be

[^7]excessive, as space is allocated in 16 -word units; the null padding, however, is not passed on to the user program. On the other hand, it can be seen that no advantage is gained by a program defining a buffer larger than 82 bytes when using the device-dependent TRAN.

1.2.4 Error Handing

The detection of any error condition is taken to mean a "Device not ready" state, leading to the printing of an $A \varnothing \varnothing 2$ message with the reader interrupt disabled. If the operator requests resumption by a CONTINUE Command at the keyboard, the error processor will recall the TRANSFER routine to repeat the read and exit to await a fresh interrupt. This allows the operator to rectify the error, if possible: the card causing the error should be replaced as the first to be read after the resumption.

NOTE

```
A "Hopper Empty" condition is detected before
the last card has been processed. It is, there-
fore, essential that the EOF card for a deck be
followed by at least one more card (can be blank).
Should this be omitted, normal completion can be
effected by re-insertion of the EOF card followed by a blank card.
```


1.3 ALTE RNATIVE DRIVERS FOR ASCII ONLY USAGE

As has been shown in the previous section, the standard driver accepts cards punched in either 026 or 029 codes when so directed by control cards, or the driver assumes 029 by default. Unless the user program then requests input by TRAN with short buffer sizes, 80-character lines are the norm. To provide other versions of the driver more suited to the needs of a particular installation, the following conditional assembly parameters have been included in the source language. If these are defined when the source is processed (DEFALT $=\varnothing$ is sufficient definition), the driver will operate as indicated.

1.3.1 DEFALT

This forces the driver to assume 026 card codes as the default. Control cards as defined, however, will still override this assumption. The effect on the driver length is negligible - one word.

1.3.2 ONLY26/ONLY29

If the user has only one type of punch, he can restrict the driver accordingly by the definition of the relevant one of these parameters.

In this case, control cards will have no effect and will be ignored if present. Because the driver then needs only half of its conversion tables and certain checks can be eliminated, the driver size is reduced by some 45 words.

1.3.3 BLANKS

By common practice, card columns 73-80 are often used only for control information, e.g., sequence numbering, which need not be processed by the using program (initial value of Blank suppress is off). Moreover, quite a number of columns before these may contain nothing but blanks (translated into spaces in ASCII). Although cards of this type will be accepted by systems programs such as Assembler or Editor without error, the burden on lines always 80 characters long can be excessive, especially if, as one example, the only means for listing the assembly of a card source is a teleprinter.

The parameter BLANKS has been included to enable the user optionally to remove this burden, provided that he is also prepared to accept an increase of some 18 words in driver size (initial value of Blank suppress is off). The driver in this case will still continue to transfer 80 characters as its normal operation. If, however, the card deck is preceded by a control card punched 12-11-0-7-8-9 in column 1 , or at any point contains a card so punched, columns 73-80 in all subsequent cards will be ignored and the $C R / L F$ terminating the line each card represents will be set immediately after the last non-blank data column. The automatic deletion will remain until the user program requests an OPEN for a fresh deck.

NOTE

DEFALT, ONLY26, and ONLY29 are of course mutually exclusive. BLANKS, on the other hand, may be defined alone or with any one of the other three.

2.0 READING OF BINARY CARDS

Some users may wish to have the additional facility of reading cards directly as 12 bits per column rather than as ASCII characters, perhaps for one of the following situations:

- Linking or loading of card programs produced by cross-assemblers or linkers developed on other computers.
- Processing of binary data output by other computers.
- Reading of cards using character codes other than those associated with 026 or 029 punches ${ }^{1}$.

A further conditional assembly parameter, BINARY, has been included in the driver source to meet this requirement.

2.1 BINARY FORMAT

The driver, assembled with this parameter defined, still continues to function exactly as described earlier whenever the using program requests ASCII input. If, however, abinary transfer is called, the processing Monitor routine will inform the driver of this by setting to 1 bit \varnothing of the status word of the DDB for the dataset concerned (DDB+12). On recognition of this, the driver accepts each column as 12 data bits and passes it to the program in a packed form, four columns taking three words, in accordance with the following pattern:

This format, which is compatible with that used by IBM 1130 and 1800 Series, has been chosen because it alone provides for all the facilities listed above and, moreover, is compatible with the deviceindependent philosophy of DOS. It may nevertheless mean that the user who needs to process each column on a word basis must include in his program the routine to unpack again the data from the driver (a possible algorithm is offered in Appendix C).

The main effect of the inclusion of the binary capability in the driver is a substantial increase in its size, hence the reason for this not being made a feature of the standard version. Apart from the coding changes need to cater for the different processing (which are outlined in subsequent paragraphs), the assumption made in the case of ASCII data, that null padding in oversize buffers can be safely overlooked, no longer applies. Each buffer word must always be considered

[^8]as valid data. In order that the driver may cope with this situation (the Monitor can only supply a buffer made up of l6-word units), it must now contain its own internal buffer to hold any residue from a card used to fill the remaining Monitor area. Allowing that such resi= due can be stored already packed in its final form, the internal buffer must be at least 60 words long. Together with the additional coding, the driver increases from its 200 words, in the basic ASCII-only form, to 380. Against this, however, the presence of the internal buffer also means that the driver can supply valid binary data into user buffers of any length for a program issuing TRAN requests.

It should be noted, too, that the format used does not in itself provide any checking upon the read accuracy of each card. All 80 columns are assumed to contain actual data. Programs READing in unformatted binary modes or using TRAN must make their own checks if these are important, in just the same way as with other drivers. On the other hand, the Monitor processing formatted binary READs will expect the data to conform to its normal standards for each request.

```
Byte \emptyset: =1
Byte 1: =\varnothing
Bytes 2-3: Number of bytes to be read including bytes
    \emptyset-3 but not the final checksum.
Bytes 4-N: DATA BYTES
Byte N+1: Checksum of Bytes }\varnothing-
```

If program developed to produce binary cards in such format also punch one card for each READ, the data checksum can serve as card checksum as well (in this case, nulls following the checksum will be ignored).

2.2 CODING CHANGES FOR BINARY OPERATIONS

The changes in the driver's operations brought about by the definition of BINARY are as follows:

2.2.1 DRIVER Table

Capabilities as indicated in Section 1.1 are extended to include binary input.

2.2.2 OPEN

The OPEN processor still first checks the on-line state of the reader and takes appropriate action as described earlier if it is not ready. It now, however, anticipates the fact that after its exit, the driver will be recalled immediately to fill the Monitor buffer against the program's first READ. At this time the Monitor will be unable to di-
rect the driver on the mode of reading. The OPEN routine therefore sets a switch to cause a return to be made without a card transfer, when this recall occurs. It also means that the Monitor will give the user program 96 bytes of null (equivalent to leader on a paper tape) for its first unformatted binary operations. (Incidentally, the switch is set to perform a proper read when the driver is loaded into memory; if, therefore, the program does not request an OPEN but starts by a READ, the correct result will occur.)

2.3 TRANSFER

As with all drivers, the card reader driver must contain only positionindependent code. To control its internal buffer, however, it needs absolute pointers. The first actual read causes execution of some once-only code to establish these. Again, a switch effects this. A further switch is then set according to the mode in which the data is to be handled. As mentioned earlier, if this is ASCII, the code for the standard version of the driver is followed, both during the TRANSFER and INTERRUPT service functions.

For binary transfers, any data remaining from a previous read is passed to the Monitor buffer immediately. If this is sufficient to satisfy the Monitor's requirements, an immediately completion return is taken. (Since this would normally follow an interrupt and the Monitor will expect this, the driver must in this case simulate the appropriate conditions, i.e., leave an interrupt exit on the stack, supposedly preceded by saved registers.) A new card read is initiated in the same way as ASCII if more data is needed. In addition, the second byte in the Monitor buffer not yet filled is cleared as a switch for use by the packing algorithm which handles odd and even card columns differently (see Appendix B).

2.4 INTERRUPT SERVICING

The packing of binary data is accomplished as each column is read. At the beginning of each card a check is again made for EOF. Unlike the ASCII case, the coding of a single column cannot provide a unique identification. The same pattern (12-11-0-1-6-7-8-9 ${ }^{1}$) is therefore looked for in each of the first eight columns before the end-of-data is signalled and the remainder of the card ejected. (The same card can still be used for either data form; the ASCII processor merely uses the first column punched.) No other control cards are expected in binary mode.
${ }^{1}$ This was code $12-11-0-1$ in Version $\varnothing \varnothing 5 \mathrm{~A}$ Monitor V $\varnothing \varnothing 4 \mathrm{~A}$ release.

After the entire card has been read as indicated by a card-done condition, the TRANSFER routine is recalled to continue its process of transferring the data into the Monitor buffer. Since an interrupt has no occurred, the return to the Monitor on completion is by normal means.

2.5 ERROR HANDLING

Any error condition is again considered a "device not ready" and is handled accordingly. Because a repeat of the TRANSFER routine as a way of resuming read operations on return would perhaps lose data already passed to the Monitor from a previous card, a failure in binary mode leads only to that part of the TRANSFER operations which causes a new card read.

3.0 CM11 MARK SENSE READER DRIVER

The CM1I Control is expected to use only 40-column cards. (The normal CRIl driver with or without definition of the special assembly parameters will function without change if 80 -column cards are used.) To provide the following particular benefits in view of the smaller amount of data available at each card read, one more parameter for conditional assembly has been included - MARKS:

- Standard Buffer size $=64$ bytes rather than 96.
- Internal buffer for binary operation is reduced from 60 to 30 words.
- If BLANKS has been defined, automatic deletion of trailing spaces will follow recognition of the relevant control card but not of the last 8 columns.

4.0 DETAILED IMPLEMENTATION

Comments on the listing which follow illustrate the general form of the driver. Further explanation of some of the more obscure techniques used is given in Appendix B. Other appendices summarize the ASCII/Hollerith equivalences, the procedures for obtaining the various rersions of the driver, and the comparative sizes of each.

```
CV,CR MACEO VCQA-14 13-SEP-72 \?:E7 PAGF,
```


CV,CR	MACER VCRO		3-SEP-72 日大:57 PAGF?
1	1	(3)	TF THF PARAMETER "BTNARY" IS PEFINEP AT ASSFMRLY,
ε	;		
3	;		
4	;		THIS VERSTC MILL AISA AIIOU REAOTNG OF CAROS
5	;		If: RIAARY FORMAT, AS EACH CARE IS RFAD, 12 EITS FROM
ϵ	;		AIL 20 COIS WILL RE ACCESSED $\&$ STARED IA AN INTERNAL
7	1		BL'FER PN A PACKER FORM, T.F. 4 COLS z 3 KCROS AS
ε	;		FCLLCWS:-
5	\%		C', E. i > WMRn 1, RTTS 1E.4
10	1		C.C.2 > WMRA 9, AITS 30® WMRD 2, BITS 4508
11	;		C.C.3 > WCRA 2, FTTS 7-2: WORE 3, ETTS 15-12
12	;		C.C. $4>$ WARM 3, EITS 19-0
13	,		
14	;		THF PACKER FQRM WTLI RE TRANSFERRFD TO THF USFR
15	;		BUFFER UNTII THIS IS FILLFD, AAY CATA THEN REMAINTNG
16	!		In the tnternal buffer rfing retatnfo until the
17	;		NEXT REAM REQUESt'.
18	;		
19	1		TREATMENT CF ASCIT READING WIIL STILL FPLLOW PATtFRN
20	;		IESCRPEFD IA THF DRFVIOUS PARAGRADH WITHCIT EXCFPTION,
21	;		
22	;		THE CNLY POATROL CARD WHTEH WILL Have any efffep
23	1		
24	?		THIS CASE 12-11-0-1-6-7-8.9 PLACHTNG MUST APPFAR IN AT
25	,		IEAST C.C, (THRU 89.
26	,		
27	;		
28	?		CALI KIII, AMT CALSE READING OF A CARD TC ALLOW THIS
29	,		to be translaten as requifer py the rfar mede
30	1		grectaini er thf usfr.
31	;		
32	;	C)	TRIVE CAN ALSO RF IISED FAR 80-COLUMN MARK
33	1		SENSE RFATFQ. FOR 4P COLGMA READER, ECONCMIES
34	;		T' RLFFER STLF CAN RE ORTAINFD RY DEFINTTION
35	;		AT ASSEMLEY CF PARAMETER BMARKS". THIS HILL
36	,		AL SO PRFYFAT \triangle UTOMATIC REMOVAL OF COLS 33-40
37	;		IN 'BLAAKS-SUPPRESSI MODE DF LSAGF.

```
CV.CR MACRO VOQ4-14 13mSEPm72 \triangle2:57 PAGF 3
```


CV.CR NACEC VCQA-14 13-SEP-72 AO:E7 PAGF 5
1
2
3
4
5
6
7
8
8
9
10
11
12
13
14
15
16
17
18
19
20

```
ISURSTOTARY ROUTINES:
; A) RESTART \triangleFTEP FRROR:
CR,AGN: IFDF RTMARV ITN BTAARY VERSICA :O:
    TSTR CE.TSN B.O CHFEK TF BTAARY'READ
    REQ CE.TFR ITFNCT CAN JUST START OVFR
    HE CF.FRT :FLSE LFAVE USER RUFFER ALONE
3 E) INTTPALISE IATERNAI RUFFER POINTFRS:
CR.ISP: 10V PC,OSSP) FIET RLFFER START
            AOD #PA,RUF=..OSP
            Mnv ASD,(PC)*
CR.IBS: WORO O
    AND WCR,RSZ.ASP :NOW FET FNA
    MOV SP.(PC)+ STMRF AS CONTRCL
CR.IRE: &MORO (SP)+,(DC)+ ;#V & AS INIT, PTR
CR,IBP:,WORO O
    TMCR DDC IMUSTNIT TONE HFRE AGAIN:
    . FNDC
```


1			IINTERRIINT SERVICF ROIITTNFS:			
2			; A	P.HECK	FOR FFFCE $\&$ POILLFC	TNPUT:
3	00010	910846	CR,INT:	mnv	HC,-SSP)	: SAVE LSED RG
4	ROQ119	$\begin{aligned} & 916700 \\ & 177756 \end{aligned}$		HOV	CF. $1 R P$ RA	GGET LSER RUFF FTR $\because:$
5	200114	$\begin{aligned} & 17746 \\ & 177160 \end{aligned}$		mav	**CR,CSR, - (SP)	$\therefore \therefore$ \& READFR Status
6	000120	906326		Ast,	(SF) ${ }^{\text {a }}$	PCHFCK FOE SPFCTAL CASES
7	00812?	143002		BrC	- +6	
8	000124	$\begin{aligned} & 000167 \\ & 000376 \end{aligned}$		Imp	CR,FRR	-GO RFTRY TF ERROF
9	QRe130	100573		HM I	CP, Cun	; Clfar up if pone
10	0013?	719146		MOV	FI, - SSD	SNOK SAVE USER RI
11				.TFDF	BTMARY	OTN, BTMARY VERSTCN
12			CR.ISW:	AR	- +4	
13				HR	CF. \triangle SC	
14			: B)	RTMARY	COAVEET \& STORE:	
15				may	CP. TBF,R!	GGET TAT RUFF PTF
16				mav	SWCR, CB (,-(SP)	; : 8 INPUT
17				MOV	ASP, - (SP)	$\because \because \because$ CORIFS FOR LATFR
18				C.OMR	1 (RO)	icdn ceiluma
19				HDL	CR,RST	
20				ASL	OP	: TF SO SHTFT PNFUT TO HPGH
21				ASL	5. 5 P	
22				ASL	CF	
23				ASL	0 SP	
24				CIRR	(F1) +	gMAKE AXT INSTR $=$ NOVR
25			CR.BST:	BISP	$1(S P),-1(21)$	gSET HIGH RYTF AS REQD.
26				hinva	(SP) + (R1)*	: THFN LOK EYTF
27				Mev	RG,CR.IRP	; SAVE FTR
28				CMP	(SF)+,47477	SNOW LCOK FCR ECF CARO
39				FSAE.	CE.EXT	
30				DFCR	-20	\therefore ¢ PLNCHEn 2-11-0.1
31				HPL	CF. ${ }^{\text {PT }}$	\because OTA CC 1 THRL 8
32				ASLA	9 FO	
33				PMT	CF.rxt	: PF NOT FNO TRY AFXT TIME
34				IMP	CR,FDF	O OTHEFKTSF TGMORE RFST OF CARD
35				. ENDC		

CV.CR		MACRO VCQA-14 1		13-SEP-72	Q2:57 PAGF R*		
48	00234	052701		RIIS	* $\Delta Q \cdot R$ q	-WILL EE RIT 3	
		900040					
49	00240	O日大2?		ASR	F ${ }^{4}$		
50	00242	agezol		ASR	R!	;11-9 AOK TA 7-5, 3-4 ALSO SET	
51	02244	$\begin{aligned} & 632702 \\ & 000774 \end{aligned}$		ATt	*774.22	PCHFCK 8-?	
52	0.0250	001405		HFQ	CR.CUD	: ALI DCNE IF ZERC	
53	Q225?	muram2		$A S R$	R2		
54	00254	900302		SWAR	R?	: OLD 8.2 NOK PN 15.9	
55	02056	905201	CR,CVL:	INC	R 4	: ALC Thts Just to be compatable	
56	00260	alces?		ASL	R2	; WITH THE 10	
57	$0026 ?$	103375		Are	CR.PVI.		
58	00264	O12692	CR,CVO:	MOV	(SP) + R ?	PRESTCAF ISFR R2	
59	00266	110101		m@va	R9,RI	SSIGN EXTEAR IF ETT 7 ON.	
60	00270	$\begin{aligned} & 01 \geqslant 746 \\ & 907194 \end{aligned}$	CR,CVT:	MnV	* RA, = (SP)	: SET TADEX FOR SFECIAL character	
61	00274	120127		CMPR	Q1,*240	:TEST IF RPG SPECTAL	
		000240					
E2	00300	091422		BFQ	CR.RUG		
63	0030?	a, ¢5216		INC	(SP)		
64	Q0.304	120127		CMPR	R9,*140	PTEST IF PPR SPFCIAL	
		700142					
65	20319	701416		BFO	CR,RPG		
66	02312	mga72a		TST	(SP) +		
67	00314	10.0701		TSTA	R!		
68	00315	190002		RPL	. +6	PCONVEAT CORES >2al \ldots	
69	00320	062701		AOD	*340,R1	$\because \therefore$ TC RANEF > 140	
70	00324	110146		90 V	R1:-(SP)	ICONVEFT CARD CPCE $\because:$	
71	Q0326	$\begin{aligned} & 1627 \pi 1 \\ & 090040 \end{aligned}$	CR.SUR:	SUR	* AP, RI	PFOR FACH 40 IN CCOE:	
72	2033?	140403		$8{ }^{4 / 5}$	CR, STO		
73	0.0334	$\begin{aligned} & 162716 \\ & 090897 \\ & 00077 ? \end{aligned}$		SUR	*17.09P	\because : \because TC GFt table index	
74	0.834				AR		CR, SUR
75	0.0342		CR,STO:	.IFNCF	ONLYZGRANTYOS		
76	P034?	$\begin{aligned} & 956716 \\ & 177456 \end{aligned}$		$\triangle D O$	CR.TOS.CSP	BPICK APPROP. TAELE	
77				- ENAC			
78	0.0346	950716	CR,RPG:	$A \cap D$	Prosp	SCOMPUTF \triangle OLR OF PYTE REGO	
79	Q035a	$\begin{aligned} & 062716 \\ & 0.92202 \end{aligned}$		$A D D$	WRF:TRL-..ASP		
80	0.0354	113620		MAVR	Q(SP)*, (RA)*RP,	:. \therefore STARF IN PUFFER PAUFFFF FI!LI?	
81	9035	920867		C.MP			
		17750.4					
82	00362	001452		BED	CF.EXT		
83	00364	111710	CR, RXT:	MPVR	APC.ARS	ITF NPT SFt undfruay flag	
84	0.366	$\begin{aligned} & 010057 \\ & 177500 \end{aligned}$	CR,CXT:	MOV	RO.CR.URP	g SAVE AFK PCINTFR	
85	$0037 ?$	012691		yov	$(S P)+, R$ q	IRFSTCFE USFR RFGS,	
86	00374	a12600	CR,IXT:	Mov	$(S P)+R Q$		
87	0.0376	9400?2		RTI		$\ldots \mathrm{EXPT}$	

1			; D)	CARO CO	LFTFD:	
2	200400	105037	CP, DUN:	CIRA	- ct, rsp	ISTMP IntFRRUPTS
		17719\%				
3	20040.4	10551?		tsta	080	PIF NC PRCEESSING YET :
4	Qogana	001427		REO	CR.g.0	1. \quad cocnttaue
5	Q08410	-126\%\%		mov	(SP) +, RQ	IMTHEFATSF RFSTCRE USFR RO
6	Q2041?	213746		MOV	AWCR,RSV, (SP)	\#... 2 NOW SAVE ALL
		त-70814				
7	000416	90.9536		19R	25,5(50)+	
ε	00042?	016700		m@v	CR, 19P, R才	Q SET USER RUFF PTF
		177446				
5				- TFDF	Rinary	:FOR RINADY VFRSIOA \because :
10				TSTE	CR.TSW	\%.. CHECK if binary read
11				BME	CFAPA	- TF SR ACTION ACCRODINGLY
12				, FNDC		
13	00424	016791		MnV	CD, ME, RI	PFOR ASCII, SET END PTR
		177436				
14				- IFDF	HI. Anks	$\therefore . . .8$ PERMAPS CFFCK SUPPRESS
15			CR,2Sk:	Br	- + ?	BSWITCH ON?
16				92	CR, ADN	IIF NET N S SUPPRESSION
17				- TFNOF	MARKS	
18				TSTA	ARO	- TEST IF FNO OF FILF
19				BMI	CF.EXT	ISKTP AFXT CAICLLATION IF EOF
20				CMP	RO, P ?	; TF blffer full CNIT AEXT
21				AEQ	, +6	
22				3113	*9., R\%	PCTHERUTSF LOSE CP 73-80
23				- FNDC		
24				rupg	-(80).424?	dthFn tratling spaces
25				HFQ	, -4	
26				TSTR	($50.1+$: AD,UST PTR WLEN PCNF
27			CR. $\triangle D N:$	- FNDC		
28	0243 m	105501		CIR ${ }^{\text {R }}$	-(可i)	PPLEAF REST OF PLFFER
29	?043?	-20190		cup	29,00	
30	02434	121375		BHI	- -4	
31	0.0436	112721		anva	\#?15,(R9)*	- MOVE IN CARRIAGE RETURN
		000215				
32	08442	112721		MOVA	-712, (R1)	; MOVE IN I INE FEEP
		080012				
33	Q8446	914790	CR.AXT:	MOV	CR, 2	IGFT PCR ADCRFSS
		1773?6				
34	00452	$\begin{aligned} & 090172 \\ & 900019 \end{aligned}$		jMp	- ! 4 (2a)	ITAKE COMPLETION EXIT
35				. IFDF	binaty	,
36			CR. $P D \mathrm{C}:$	Mnv	CP.TAS,R!	IFAR PINARY, INTT INT PTR
37				mova	- 0 Q, R?	:FXIT IF FOF SEEN
38				3¢5	$C \mathcal{C P K}$	1 11 SO SFTS TNTEARLPT FLIG
39				JSR	PC,CR.BIN	:FgSF ge move data to liser
40				Mnv	*CR.SXT. 25	B IF CONF RACK, NCRE READ RECD.
41				jup	4(R5)	:SO TAKF SYSTEM EXIT
42				- Finc		

CV．	，CR	NACRO VCQA－14 13－SEP－72 $2=: 57$ PAGF 10				
1			－SPECTAL	l case	PROCESSTNG：	
2			1 ${ }^{\text {a }}$ ）	FRROR R	ROUTIAF：	
3	20045	105037	CR，FRR：	CL RB		：STMP INTFRRIJPTS
		17716\％				
4	00.062	084707		35R	PR，CR．NRY	；TNFORN OPERATOR
		090050				
5	000466	034767	CR，RPT：	JSR	PC，CR．ATS	：IF RETURA TRY \triangle gain
		177352				
ϵ	000472	709740		MR	CF．IX ${ }^{\text {T }}$	\because A \＆FXTY FOR NOW
7			；R）	FND OF	FILF CARD SFEN：	
8	080474	016791	CR，FOF：	Mov	CR．FI	：CFT AER ADMRFSS
		177300				
¢				－IFARF	－BTAARY	PFOR SIMPIE VFRSICN \because ．
10	08500	015141		Mnv	10（R1）．16（R1）	\because UC DATA REAC ON ECF
		000810				
		$\because 00296$				
11				－FNDC		
12				．JFAF	binazy	inaybe scme if rinary $\quad \therefore$
13				$A D D$	H16．89	BSOMPVF TO UNUSED COLAT STCRE
14				Mnv	RP，RR	：$\because . .8$ COMPUTF VAlUE RECO
15				SUA	CE．LAF，ARI	
16				ASR	－ 21	$\because \because$ AS WRRESI
17				－Finde		
18	00586	735117		COM	922	：SET FLAG
19	08510	152737	CR，FXT：	RTSR	\＃2．＊＊CR．CSR	－ALIOK REST OF CAFC PHRU
		000092				
		177150				
20	00516	090723		B2	CF．ext	
21			3 C．）	CONTRCL	CAFD SEEN：	
22				－IFNig	F OMLY268nN Yog	BFOR RLAL PUNCH DRIVER，
23	00520	710767	CR，026：	MOV	Y1EGMR．TAS	1．．．SET TAPLF CFFSFT．．．
		$\operatorname{man} 196$				
		177376				
24	02525	220778		日R	C9．Ext	\therefore＇． 2 IGNORF RFST OF CTL CARO
25	08530	？ 35897	C0．029：	C． 12	CE．tos	
		177390				
26	00534	7オフ765		69	CF．FXT	
27				－ENDE		
28				－IFAF	AIAMKS	IIN，SIFPRFSS VERSICN
29			CF．70N：	mova		$\because \because \mathrm{ASET}$ SUPDRFSS OA
30				BR	CO．EXT	IAGAIA PGAORE RFET OF CARD
31				－FNAC		

```
CV.CR MACRO VCQA-14 13-SEP.72 QP:57 PAGF II
1 ;READFR NOT RFAOY SUGROUTTNE:
Z QOO535 \1F7A6 CR,NRY: MOV CR,NAM,-(SPY
        177252
320054P-1:746 MOV #40%.0(SP)
        004x2
A DR&5\Deltaf nanga4
00055? 900207 RTS PC
*
    ;NISCELLANEOLS CEFINITIONS:
    177150 CO,CSR=177160
    177152 CR.OB1=177162
    177154 CF, DB2=177164
    AMOO12 CR,SXT=42
    aga,14 CP.RSV=44
    07447 ECF=007417
    O4424? SET?6=g04?4?
    7#5252 SET29=07525?
    007007 BSUP=007007
ITOFNTIFY DFVICF
ggive not reany code
AOR CA!L ERP
gTRY AEAIA TF CENF FACK
B12-11-7-1-6-7-8-9 PUNCH
:12-2-4-8 PUNCH
:12-9-2-4-6.8 PLACH
112-11-0.7-8.9 PLNCH
```

CV, RR MACRO VCRA-14 13-SED-72 QO:57 PAGF 12


```
CV.CR MACPO VOQ4-14 13-SEP-72 2?:57 MAGE 14
```


CV.CR MACPO VCQC-14 13-SEP-72 Q2:n7 PAGF 15					
10	000722	055	, RYTF	55	1-
2	000723	312	- $2 Y T E$	342	1.1
3	000724	113	- RYTE	113	; K
4	000725	314	gryte	314	;
5	000726	115	- PYTE	115	3
ϵ	000727	116	- RYTE	116	:
7	002730	317	-FYTE	317	10
ε	000731	170	gryte	120	: P
9	Q00.732	321	, RYTF.	321	10
10	00733	200	-RYTE	24.	FMPTY
11	00734	272	- RYTE	72	;:
12	00735	Q14	- AYtE	44	; 8
13	00736	252	gryte	252	;*
14	20737	333	- RYTE	333	; 1
15	00740	276	, RyTE	275	; $>$
16	08744	246	Q RYTE	246	ir
17	0074?	322	- PYte	322	1 R
18					
19	00743	053	PYyTE	53	;
2a	00744	101	-PYTE	191	:1
21	08745	122	-RyTE	102	; R
22	Qe746	373	- RYTE	303	;
23	20747	174	-Ryte	104	;
24	00750	$3 \sim 5$	dRYTE	305	BF
25	0275	396	- RYTE	306	; F
26	00752	197	, RYTF	107	36
27	0.0753	190	-RYTE	110	;
28	20754	240	- 2 YTE	24.	; FMPTY
29	0.755	777	- TYTE	77	:?
30	02756	256	- QYTE	56	;
31	20757	2^{5} !	GYTE	251	\%
32	00769	335	- RYTE	335	;
33	00761	874	, RYTE	74	; <
34	02762	241	-RYTE	41	;
35	00763	3!1	- PYTE	311	3
36	02764	173	drype	173	- LEFT CllR Y RRACKFP
37	00755	175	- gYte	175	PRIGHT RUFLY RRACKET
38			- FNAC		

```
CV.CR NACRC VCQ4-14 13-SEP-72 QP:57 PAGF 96
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & & IINTERNA & L BUFF & FCR \(\quad\) \\
\hline 2 & & & . TFDF & BINARY \\
\hline 3 & & CR.BUF: & . IFNDF & MAEKS \\
\hline 4 & & CR,RS7=1 & 20. & \\
\hline 5 & & & - ENDE & \\
\hline \(\epsilon\) & & & . IFDF & MARKS \\
\hline 7 & & CR,RSZ=6 & & \\
\hline \(\varepsilon\) & & & .FNDC & \\
\hline 5 & & . \(=. * C R, R\) & & \\
\hline 10 & & & . ENDC & \\
\hline 11 & 900gonl & & -FNO & \\
\hline
\end{tabular}
```

```
EV,RR MAC=C YOQA-14 13-SED-72 7%:57 PAGF 164
SYMPO! TAPIF
```

ESU5	027927
CR．ASC	0 an9 340
CR，CVO	OOU26AR
CR，CXT	QO刀3ARR
CR，PB2＝	$=177164$
CR，FOF	QOAATAR
ER，INT	0\％6！ 0 ¢
CR，ARY	2005362
CR，FPG	aOD？ 4 5R
CRETM	の003A2R
CR，TBL	00，1552R
CR，I AF	O9， 0 GAR
CR．029	Q？年5372
F0＝	＝\％anaxam
F3 3	＝\％ロoare？
SET－6＝	$=00424 ?$

Cio	ADQDAORG	CPAGA	2070449
CR．PXT	2023．0R	CD．CSF＝	177960
CR，CVI	Q0V256R	rR，CVT	0 O 270 R
CO．C1	APO145R	CR，P PI $=$	$17796 ?$
CR，DUA	DO2AOOR	CR， PXP	QOQ 4 SR
CR，EGR	ATR $456 R$	PQ FXT	$002510 R$
CR，TXT	何㐫374R	CRAA	
CR．ONR	900016R	CR．OPA	OOQ022R
CQ．RPT	70QA66R	PR．RSV $=$	900044
CR，SLR	g？2325R	CQ SXT	000042
CR，TFR	070044 T	CQ．TOS	000034 R
CQ．UPP	900072R	CR． 226	200520R
$E \cap F$	$=007417$	PC＝	\％800007
R 1	a 9008001	R2＝	\％マワ000？
R1	$=\% 000004$	25＝	\％earaos
SET29	$=70525 ?$	SP	\％ 2 2arge

```
- ARS. बrgogO D00
    000756 001
ERRPRS METECTFO: O
FREF CQPE: 19337. WORDS
-LP;<OT:CO
```

```
:COPYRIGHT 1971, DIGITAL EQIIPMFNT COPR., MAYNARD, MASS.
:VERSION NUMBER: VOQSA
%
I
CARD READER DRIVER (CR)
4) FOR ASCII INPUT. AT EACH TRANSFER REQUEST
        ONE CARD WILL BE READ. IP TO 8G CHARACTERS,
        FOLLOWED BY CR-LF, WILL BE PASSED TO THE
        CALLING ROUTINE AS SPECIFIED BY THE WORO
        COUNT GIVEN. (IF THIS IS > 41, REMAINING
        BYTES WTLL RE CLEARED.
        ALL ERRORS (INCLUNING 'HOPPER EMPTYI UPON
        AN 'OPEN' CALL) WILL RE TREATED AS 'DEVICE
        NOT READY'. USER CAN RESUME OPERATION BY
        RECTIFICATION OF ERROQ OR RFFILL OF HOPPER
        AND ENTRY OF 'CO' COMMAND AT KEYBOARD.
        THE END OF A FILE WILL QE DETERMINED BY
        RECOGNITION OF A TERMINAL CONTROL CARD:-
        12-11-0-1 P!JNCHED IN C.C. 1
        XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
\begin{tabular}{lll}
\(x\) & & \(x\) \\
\(x\) & NOTES & \(x\) \\
\(x\) & & \(x\)
\end{tabular}
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1) THIS DRTVER CAN BE ASSEMBLED FOR USE
        IN CONNECTION WITH EITHER 'G25' OR '029'
        PIJNCHES OR ROTH AS INDICATED RY PARAMETER
        SPECIFICATION AT START MF SOURCE INPUT
        AS FOILLOWS:-
\begin{tabular}{|c|c|c|c|c|c|}
\hline A) & "ONLY26=6" & QEAD & ONLY & '926' & cones. \\
\hline B) & "ONLY29=0" & READ & OnLY & ' 9291 & CODEs \\
\hline C) & "DEFALT=g" & PEAD & BOTH & TYPES & OF CODE \\
\hline & & WITH & 10261 & AS D & EFAIJLT \\
\hline D) & NIL & READ & BOTH & TYPES & Of CODE \\
\hline & & WITH & 10291 & AS D & FAULT \\
\hline
\end{tabular}
    IN CASES (C) & (D), DRIVER WILL USE DEFAULT
    UNLESS DIRECTED OTHERWISE BY ENTRY OF A
    CONTROL CARD PUNCHED IN C.C. 1:=
    12-0-7-9 = 1029' CODES FOLLOW
2) IF PARAMETER "BLANKS" IS DEFINED, C.C. 73-80
& TRAILING SPACES BEFORF THESE WILL BE DISCARDED,
WITH 'CR-LF' FOLLOWING LAST VALID DATA, PROVIDED
THAT CARD FILE IS PRECEDEO BY CTL CARD WITH
12-11-0-7-8-9 P!JNCHED IN C.C. 1. IN THIS CASE
HOWEVER, IF THE USER RUFFER IS </』 82 BYTES,
ONLY TRAILING SPACE REMIVAL WILL BE EFFFCTED.
```

```
B) IF THE PARAMETER "BINARY" IS DEFINED AT ASSEMBLY,
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    THIS VERSTON WILL ALSO ALLOW READING OF CARDS
        IN BTNARY FORMAT. AS EACH CARD IS READ, 12 AITS FROM
        ALL 8O COLS WILL EE ACCESSEO & STOREO IN AN INTERNAL
        B!JFFER IN A PACKED FORM, I.E. 4 COLS I 3 AORDS AS
        FOLLOWS:-
            C.C.1 > WORD 1, BITS 15-4
            C.C.2 > WORD 1, BITS 3-ה, WORD 2, BIT3 15-8
            C.C.3 F WORO 2, BITS 7-n; WORD 3, BITS 15-12
            C.C.4>WORD 3, BITS 11=0
        THE PACKED FORM WILL GE TRANSFERRED TO THE USER
        BUFFER UNTIL THIS IS FILLED, ANY DATA THEN REMAINING
        IN THE INTERNAL BUFFER REING RETAINED UNTIL THE
        NEXT READ REQUEST.
        TREATMENT OF ASCII READTNG WILL STILL FOLLOW PATTERN
        DESCRIBED IN THE PREVTOUS PARAGRAPH WITHOUT EXCEPTION.
        THE QNLY CONTROL CARD WHICH WILL HAVE ANY EFFECT
        IN BINARY PEADING WILL RE THAT INDICATING E.O.F. (IN
        THIS CASE 12-11-0-1 PUNCHING MUST APPEAR IN AT LEAST
        C.C. 1 THRU 8).
        N.B. WHFN ASSEMPLFD FOR USAGE IN SOTH MODES, AN IOPEN:
        CALL WILL NOT CAUSE READING OF A CARD TO ALLOW THTS
        TO BE TRANSLATED AS RFQUIRED RY THE READ MODE
        SPECIFIED BY THE USER.
C) DRIVER CAN ALSO BF USFO FOR 8\=COLUMN MARK
    SENSE RFADER, FOR 4T -CNLUMN READER, FCONOMTES
    IN BUFFER SIZE CAN BE ORTAINED BY DEFINITION
    AT ASSEMLBY OF PARAMETEP "MARKS". THIS NILL
    ALSO PREVENT AUTOMATIC DEMOVAL OF COLS 33-4#
    IN 'BLANKS-SUPPRESS' MODE OF USAGE.
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
        M NOTE 
        XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    PARAMETER DEFINITIONS CAN BE MADE DURING PASS {
OF THF ASSEMBLY ONLY IF REQD AS DESCRIBFD IN
PAL-11R MANUAL, SECTION 9-2, E.G.
    #CR,LP:;/PA:2<KR:/PA:1,DF:CR
FOLLOWED RY:=
    ONLY29=0
    BINARYE%
    BLANKS=?
    AC
    *FND<CR><LF>
    XXXXXXXXXXXXXXXXYXXXXXXXXXXXXX
```


CR．BLP：	IFDF	BINARY eR1	IWITH BINARY DATA ．．． \％．．．COMPLETE CONVERSTON
	MOV	（R1）＋（ R（ ${ }^{\text {P }}+$	\％．．．G GIVE TO USER
	CMP	RO，CR．UBE	IUSER BUFFER FULL？
	BNE MOV	$\begin{aligned} & C R . B I N \\ & \text { RI;CR.IBP } \end{aligned}$	IIF NOT GET NEXT WORD OTHERWISE SAVE INT PTR
	TST	R2	；COME HERE ON INTERRUPT？
	BNE	CR．ODN	IIF SO MODE SW．SET
	MOV	－SP，${ }^{\text {（ }}$（ SP）	PELSE MUST SIMULATE
	MOV	－（R2），2（SP）	1．．．STORE PC \＆PS
	SUB	\＃ 16.3 P	1．．．${ }^{\text {d }}$ SUMMY SAVE REGS．
CR．ODN：	TST	（SP）＋	IIGNORE RETURN PC
	BR	CR．DXT	I．．．\＆TAKE COMPLETION EXIT
	－ENDC		

I INTERRUPT SERVICE ROUTINES：，A）CHECK FOR ERROR \＆COLLECT INPUT：					
000104	010046	CR．INT：	Mov	$R \mathrm{R}, \mathrm{-}$（SP）	ISAVE USER RO
000106	¢16700		MOV	CR，UBP，RD	GGET USER BUFF PTR
	177756				
$09011 ?$	013746		MOV	－\＃CR．CSR，$=(S P)$	1．A R READER STATUS
	177160				
000116	906326		ASL	（SP）＋	ICHECK FOR SPECIAL CASES
000120	103477		BCS	CR．ERR	PGO RETRY IF ERROR
000122	109447		BMI	CR，DUN	Prifan ue je mowe
000124	入19146		MOV	R1，－（SP）	＇NOW SAVE USER RI
			－IFDF	BINARY	IIN BINARY VERSION
		CR．ISW：	BR BR	$\begin{aligned} & +4 \\ & \text { CR. } A S C \end{aligned}$	H．．．USE APPROPRIATE CONVERGION
		（B）	AINARY	CONVERT \＆STORE：	
			Moj Mッツ	witand，लil －4CD．DQ4－（SP）	
			MOV	－SP，－（SP）	．．．． 2 COPIES FOR LATER
			COMB	1 （Rロ）	：00D COLUMN？
			BPL	CR．RST	
			ASL	－9P	：IF SO SHIFT INPUT TO HIGH
			ASL	－SP	
			ASL	OSP	
			ASL	－SP	
			CLRB	（R1）＋	：MAKE NXT INSTR ：MOVA
		CR．BST：	BISB	1（SP）－1（R1）	ISET HIGH BYTE AS REQD．
			move	（SP）＋（RI）＋	PTHEN LOW BYTE
			MOV	R1，CR．ISP	SSAVE PTR
			CMP	（SP）＋，\＃7400	INOW LOOK FOR EOF CARD
			BNE	CR．BXT	
			DECB	－R 0	1．．．PUNCHED 12－11－9．1
			BPL	CR．BXT	\％．．．IN CC 1 THRU 8
			ASLB	－RD	
			$B P L$	CR．EOF	IIF FND IGNORE REST OF GARD
			BR	CR．CXT	ICTHERWISE TRY NEXT TIME
			－ENDC		

000242	105037	$\begin{aligned} & \text { P } \quad D \\ & C R, D U N: \end{aligned}$	CARD COM CLRB	LFTED: $\theta \# C R . C S R$	ISTOP INTERRUPTS
	177160				
000246	105710		TSTE	020	IIF NO PROCESSING YET.
000250	901427		BEO	CR,RPT	\%... CONTINUE
200252	712600		MOV	$(S P)+, R Q$	BOTHEPWISE RESTIRE USER RG
000?54	013746		MOV	-\#CR.RSV, $=$ (SP)	\ldots... NON SAVE ALL
	909044				
000260	004536		JSR	R5, (SP) +	
000262	016790		MOV	CR, UBP, RQ	: SET USER BUFF PTR
	177602				
			- IFDF	BINARY	;FOR BINARY VERSION
			TSTB	CR.ISW	?... CHECK IF BINARY READ
			BNE	CR.BDN	IIF SO ACTION ACCRODINGLY
			- ENDC		
000266	$\begin{aligned} & \pi 16791 \\ & 177572 \end{aligned}$		MOV	CR,UBE,R1	PFOR ASCIT, SFT END PTR
			- TFDF	BLANKS	\%.. P PERHAPS CHFCK SUPPRESS
		CR.2SW:	BR	- +4	, SWITCH QN?
			BR	CR.ADN	; IF NOT NO SUPPRESSION
			- IFNDF	MARKS	
			TSTB	-RD	:TEST IF END MF FILE
			BMI	CR.DXT	; SKIP NEXT CALCIJLATTON IF EMF
			CMP	R $0_{\text {, R1 }}$	BIF BIIFFER FULL OMIT NEXT
			8EQ	- +6	
			SUB	\#8. R (SOTHERWISE LOSE CC 73-89
			- ENDC		
			CMPB	- (R0), \#24?	ITHEN TRAILTNG SPACES
			BEQ	- -4	
			TSTB	$(R 0)+$:ADSUST PTR WHEN DONE
		CR.ADN:	- ENDC		
$00027 ?$	105041		CLRE	- (R1)	BCLFAR REST OF BUFFER
000274	920190		CMP	R1, RO	
000276	101375		BHI	- -4	
000300	112721		MOVB	\#215,(R1) +	:MOVE IV CARRIAGE RETIJR
	-100215				
000304	112721		MOVB	\# O12, $^{\text {(R1) }}$ +	: MQVE IN LINE FFED
	90agi2				
000310	916700	CR.DXT:	MOV	$C R, R \emptyset$	PGET DDR ADDRESS
	177464				
000314	anal70		JMP	- 14(Ra)	:TAKE COMPLETION EXIT
	ana014				
		CR.BDN:	. IFDF	BINARY	
			MOV	CR,IRS, R1	:FCR RINARY, INTT INT PTR
			MOVB	- 2 O.R2	PEXIT IF EOF SEEN
			BMI	CR.DXT	;AISO SETS INTERRUPT FLAG
			JSR	PC,CR.BIN	: ELSE GO MOVE DATA TO USFP.
			MOV	- \#CR.SXT,R5	IIF COME BACK, MORE READ REJD.
			JMP	4 (R5)	:SO TAKE SYSTEM EXIT
			- ENDC		

SPECIAL CASE PROCESSING: 1 A) FRROR ROUTINE:					
000320	$\begin{aligned} & 105037 \\ & 177160 \end{aligned}$	CR.ERR:	CLRB	- \#CR,CSR	STOP INTERRUPTS
24032A	$\begin{aligned} & 304767 \\ & 900050 \end{aligned}$		J SR	PC,CRENRY	IINFORM OPERATOR
000330	$\begin{aligned} & 904767 \\ & 177506 \end{aligned}$	CR.RPT:	JSR	PC,CR,AGN	PIF RETURN PRY AGAIN
000334	000740	B)	$\begin{aligned} & \text { BR } \\ & \text { END OF } \end{aligned}$	$C R=I X T$ FILE CARD SFEN:	He EXIT FOR NOW
000336	$\begin{aligned} & 16701 \\ & 177436 \end{aligned}$	C只, EOF:	MñV	CR,R1	IGET DDS AODRESS
000342	$\begin{aligned} & 916161 \\ & 900010 \\ & 900016 \end{aligned}$		$\begin{aligned} & \text { IFNDF } \\ & \text { MOV } \end{aligned}$	BINARY 19(R1).16(R1)	$\begin{aligned} & \text { IFOR SIMPLE VERSION } \\ & \text { HO NO DATA READ ON EOF } \end{aligned}$
			- ENDC - IFDF ADD MOV	BINARY \#16,R1 RO, QR1	IMAYBE SOME IF BINARY ... SO MOVE TO UNUSED COUNT STORE :... \& COMPUTE VALUE REQD
			$\begin{aligned} & \text { SUB } \\ & \text { ASR } \end{aligned}$	$\begin{aligned} & \text { CR,UBE, ORI } \\ & \text { ORI } \end{aligned}$;... AS WORDSI
000350	905110		$\begin{aligned} & \text { ENDC } \\ & \text { COM } \end{aligned}$	020	SET FLAG
000352	$\begin{aligned} & 152737 \\ & \text { apa0日2 } \end{aligned}$	CR.EXT:	BISA	\#2, \#\#CR.CSR	IALLOW REST OF CARD PHRU
	177160				
090360	900723		BR	CR. CXT	
200362		1 C)	$\begin{aligned} & \text { IFNDF } \\ & \text { MOV } \end{aligned}$	$\begin{aligned} & \text { ONLY268ONLY29 } \\ & \text { IG4,ER.TOS } \end{aligned}$	IFOR DUAL PUNCH DRIVER...
	$\begin{aligned} & 912767 \\ & 900104 \\ & 177444 \end{aligned}$	CR. 226 :			1... SET TARLE OFFSET ...
000370	000770		8R	$C R, E X T$	1.. S IGNORE REST OF CTL CARD
000372	$\begin{aligned} & 705067 \\ & 177436 \end{aligned}$	CR. $929:$	CLR	$C R, T O S$	
000376	800765		BR	CR.EXT	
			- ENDC		
			IFDF	BLANKS	
		CR. ZON:	MOVB	$\# \text { I, CR. } 2 S W$	I...SET SUPPRESS ON
			$B R$	CR.EXT	- AGAIN IGNORE REST OF CARD
		-ENDC			
000400	016746	CR, NRY:	MOV	CR, NAM, - (SP)	IIDENTIFY DEVICE
	177410				
000404	212746		MOV	\#402, - (SP)	IGIVE ONT READY CODE
	000402				
000410	909004		IOT		\%.. 2 CALL EDP
20041?	309277		RTS	$P C$	ITRY $\triangle G A I N$ IF COME SACK
		1			
		MISCELIANEOUS DEFINITIONS: CR.CSR=177160			
	177160				
	177162	CR.DB1=177162			
	177164	$C R=D B 2=177164$			
	000042	CR, $3 X T=42$			
	900044	CR,RSV=44			

200477	246	. BYTE 246	; 8
000500	101	-BYTE 101	; 4
000501	102	- GYTE 102	1 P
000502	393	- BYTE 303	;
000503	104	- BYTE 104	: 0
000504	305	- BYTE 305	P
000505	306	- BYTE 3 ab	, F
200506	107	- BYTE 197	; 9
000507	110	- BYTE 110	1 H
000510	240	- BYTE 240	P EMPTY
000511	333	. RYTE 333	1 !
000512	856	. SYTE 56	i.
000513	074	-BYTE 74	;
200514	050	- GYTE 50	,
000515	053	- BYTE 53	1+
000516	336	- BYTE 336	; 1
000517	311	-BYTE 311	; 1
		- ENDC	

000562	055	- BYTE	55	10
000563	312	-BYTE	312	1. ${ }^{\text {d }}$
000564	113	- BYTE	113	\%
000565	314	- AYTE	314	16
000566	115	. BYTE	115	M
000567	116	-RYTE	116	N
000570	317	- RYTE	317	: 0
000571	120	-BYTE	120	$1 p$
000572	321	- BYTE	321	: 0
000573	240	- GYTE	240	EMPTY
000574	072	-BYTE	72	:
000575	044	- BYTE	44	\% 8
000576	252	-BYTE	252	**
000577	333	- BYTE	333	[
000600	276	-BYTE	276	;
900n01	246	-BYTE	246	18
00060?	322	- BYTE	322	1R
000503	053	- BYTE	53	;
000604	101	-BYTE	101	1A
000605	102	-BYTE	102	18
000606	303	- AYTE	303	, 0
000607	104	-BYTE	104	10
000610	305	-BYTE	305	IE
000611	306	-BYTE	306	if
000612	107	-BYTE	107	16
000613	110	- BYTE	110	OH
000614	240	-BYTE	240	IFMPTY
000615	877	-BYTE	77	1?
000616	0.56	-RYTE	56	;
000617	251	- RYTE	251	1)
090524	335	- BYTE	335	11
बत062:	074	Q BYTE	74	;
$09062 ?$	041	-BYTE	41	11
200623	311	:BYTE -ENDC	311	II

[^9]
000000 ERRORS

CR	anogoarg	CR．AGN	goon42R	CR．ASC	$090126 R$
CR．BXT	O日0226R	CR．CSR	－177160	CR．CVT	990166R
CR．CXT	$000230 R$	CR．OBI	－ 177162	CR．DB2	－ 177164
CR．DIJN	ORO242R	CR．DXT	09031gR	CR．EDF	990336R
CR．ERR	OAO320R	CR．EXT	$000352 R$	CR．INT	900104R
CR．IXT	000236 R	CR．NAM	090014R	CR，NRY	gag40日R
CR．ONR	0000162	CR．OPN	anon22R	CR，RPT	OOO330R
CR．RSV	－ 000044	CR．STO	090204 R	CR．SXT	－000042
CR．TRL	000414 R	CR．TFR	O日0042R	CR．TOS	gaga34R
CR，URE	O日0064R	CR．UAP	090970R	CR．026	O90362R
CR．029	OU0372R	$P C$	\％\％000907	Q0	\％\％9nosoo
R1	－ 8000001	R2	－\％000002	23	\％ 4070803
R4	＝\％000904	R5	－\％090905	SP	－\％090006
－	－MaC624R				

A. 1 CARD CODES

CARD CODES (ANSI X3.26-1970)													
	12	11	0		12 0	12	11 0	12 9	11 9	0 9	9	$\begin{aligned} & 12 \\ & 0 \\ & 9 \end{aligned}$	12 11 9
	\&	-	0	space	\{	1	$\}$						
1	A	J	1	1	a	j	\sim	SOH	DCi				
2	B	K	S	2	b	k	s	STX	DC2		SYN		
3	C	L	T	3	c	1	t	ETX	DC3				
4	D	M	U	4	d	m	u						
5	E	N	V	5	e	n	v	HT		LF			
6	F	0	w	6	f	\bigcirc	w		BS	ETB			
7	G	P	X	7	g	p	x	DEL		ESC	EOT		
8	H	Q	Y	8	h	q	y		CAN				
9	I	R	Z	9	1	r	2						
8-1				grave					EM			NUL	DLE
8-2		1	1	:									
8-3	.	\$,	\#				VT					
8-4	<	*	\%	@				FF	FS		DC4		
8-5	()	-	,				CR	GS	ENQ	NAK		
8-6	$+$;	>	$=$				SO	RS	ACK			
8.7	!	-	?	"				SI	US	BEL	SUB		
NOTES To determine the card punch for a particular character, locate the character in the table and read the corresponding zone punch and then digit punch. For example, the card punch for a $\%$ is $0-8-4$. To obtain the character corresponding to a particular card punch, locate the junction of the zone punch and the digit punch. For example, the character corresponding to the card punch 12-11-9 is r.													

A. 2 PDP-11 PUNCHED CARD CODES

A. 2 PDP-11 PUNCHED CARD CODES

CHARACTER	$\begin{aligned} & \text { Parity } \\ & \text { ASCII } \end{aligned}$	DECø29	DECØ26	CHARACTER	Parity ASCII	DECव29	DECø26
\{	173	$12 \varnothing$	$12 \emptyset$				
\}	175	119	$11 \varnothing$				
SPACE	24ø	NONE	NONE	@	$3 \varnothing \varnothing$	84	84
-	841	1287	1287	A	$1 \varnothing 1$	121	121
"	942	87	$\varnothing 85$	B	$1 \varnothing 2$	122	122
\#	243	83	$\emptyset 86$	C	$3 \varnothing 3$	123	123
\$	$\not \subset 44$	1183	1183	D	$1 \varnothing 4$	124	124
$\%$	245	$\varnothing 84$	¢ 87	E	305	125	125
\&	246	12	1187	F	$3 \not 86$	126	126
,	047	85	86	G	187	127	127
$($	656	1285	$\square_{18} 8$	H	119	128	128
$)$	251	1185	1284	I	311	129	129
*	252	1184	1184	J	312	111	111
+	¢5 3	1286	12	K	113	112	112
,	254	$\emptyset 83$	$\emptyset 83$	L	314	113	113
-	$\emptyset 55$	11	11	M	115	114	114
	956	1283	1283	N	116	115	115
1	257	$\emptyset 1$	61	0	317	116	116
\emptyset	¢6ø	\emptyset	\emptyset	P	12\%	117	117
1	261	1	1	Q	321	118	118
2	262	2	2	R	322	119	119
3	$\not \square 63$	3	3	S	123	$\varnothing 2$	$\emptyset 2$
4	264	4	4	T	324	$\varnothing 3$	$\emptyset 3$
5	Ø65	5	5	U	125	$\varnothing 4$	$\emptyset 4$
6	¢66	6	6	V	126	$\emptyset 5$	$\emptyset 5$
7	267	7	7	W	327	$\square 6$	96
8	279	8	8	X	336	67	$\varnothing 7$
9	871	9	9	Y	131	68	$\emptyset 8$
,	$\varnothing 72$	82	1182	2	132	69	09
	273	1186	$\bigcirc 82$	[333	1282	1185
$<$	$\not \subset 74$	1284	1286	1	134	682	87
$=$	275	86	83	1	335	1182	1285
>	276	086	1186	\uparrow or	336	1187	85
?	$\varnothing 77$	$\emptyset 87$	1282	+or	137	$\emptyset 85$	82

B. 1 HOLLERITH TO ASCII CONVERSION

Examination of the valid Hollerith character codes listed at Appendix A shows that in any one character there can be only one punch, if any, in control zones 12,11 , and 0 . When translated by the CRII Control into byte form, as follows:

it can be seen that all characters must fall into one of the octal ranges: $0-37,40-77$; 100-137, 200-237. Moreover, within each range, the values are in fact restricted to the first seventeen. Basically, it is therefore possible to establish a table in four sections, each corresponding to one of these ranges, or two like tables if both 026 and 029 punches are considered.

Further, if the bytes so formed are transferred from the CRll buffer into a register, values in the last range produce negative results by sign extension. If 3408 is added to these, their range now becomes 140-177; a natural progression from the other three. Using a second register as a form of counter, a relative index to the required ASCII equivalent within its appropriate table section can be thus established simply by adding 21_{8} to the low-order 5 bits of the Hollerith code for each time 40_{8} can be successfully subtracted from the high-order three bits. (In practice, this is accomplished by subtracting 178 from one register containing the final index, to remove the 40 while adding 21 , while reducing the counter register.) T o the index must then be added the appropriate offset into the correct table for the punch concerned (0 for 029 and 1048 for 026 if both tables are present). The address of the ASCII value required is merely the index added to a computed absolute table base.

B. 2 BINARY PACKING

Basically, the packed format in which binary data is passed to a user program can first be considered as a problem of packing two i2-bit words representing card columns into three 8 -bit bytes as:

or, in other words, the first column is shifted to the high-order position over the first two bytes while the second column remains in the low-order position in which it was read over the last two. Using a simple flip-flop type of switch, the algorithm distinguishes between columns 1 and 2 to accomplish this during the appropriate interrupts. Columns 3 and 4 require similar treatment. Owing to the byte addressing scheme of PDP-1l, however, the result so obtain means that the bytes within each word are misplaced. A simple byte-swap when the word is passed to the user corrects this.

B. 3 SWITCHING

The version of the driver which allows binary processing requires several switches as noted in the main text. Because the Monitor will never allow the driver to be called to perform more than one operation at a time, there is no need for the driver to be restricted to reentrant code. As a result, the general form of switching used is of the form:

```
SWITCH: BR .+2
    BR PROC.B
PROC.A:
```

When the low-order byte of SWITCH is cleared, the effective instruction at that point then cecomes $B R .+2$ and the branch to process B is taken. If on the other hand that byte is then incremented, the instruction becomes $B R .+4$ and process A is entered.

A variation of this technique has been used at the start of the TRANSFER routine in the binary-type driver firstly to allow OPEN to stop a first read as described in the main text, and secondly to cause execution of the once-only code needed to initialize the internal buffer pointers. This extends the single fixed branch to a table:

If OPEN is called, the switch byte is cleared causing the first transfer call to branch to CR.OXT (BR . +2). The routine at CR.OXT merely increments it back to the $B R .+4$ state and exits. The next entry at CR.TFR (or the first if OPEN is not called) takes branch to CR.ISP. The last instruction of this routine, which also immediately precedes CR.TFR, executes INCB @PC, hence finally setting the switch byte for

BR.+6 leading to all successive calls beginning normal execution immediately, until either the driver is re-initialized by a new OPEN or is removed from core and brought in afresh.

APPENDIX C

UNPACKING BINARY DATA FROM THE CRIl/CMIl CARD READER DRIVER
A SUGGESTED ALGORITHM

1. Each four card-columns of data passed to a user program in binary format appear in memory as follows, when the byte-addressing scheme of PDP-ll is considered:

At first sight, a simple algorithm to restore the original l2-bit card column images from this format might seem a problem. If, however, the bytes in each word are first switched, the format now shows a more logical sequence:

and the solution reduces merely to one of splitting two like sets of three bytes into two 12-bit words. The first step, therefore, is to perform the necessary swap across all words transferred. Assuming the data has been read into a line buffer as defined under DOS, the appropriate code might be:

MOV	\#LINE+4, Rø	; GET BYTE COUNT FROM LINE HDR	
MOV	(R\\|) + , R1	;... \& BUMP POINTER TO FIRST DATA	
ADD	R $\varnothing, \mathrm{R} 1$; USE CNT TO SET LINE END	
MOV	$R \emptyset, R 2$; SAVE START POINTER	
SWAB	(R2) +	;... \& DO BYTE SWITCH	
CMP	R2, R1		
BLO	. -4		

2. The column 1 image is simply obtained by taking byte 0 as the high-order part and byte l as the low-order part of a word which is then shifted until the required 12 high-order bits are right-justified. Column 2 image is similarly extracted from byte 1 and byte 2 except that no shift is needed. Using a simple flip-flop type switch to differentiate between odd and even columns, the necessary sequence might be:

	CLR	R2
A:	MOVB	$(R \varnothing)+,-(S P)$
	SWAB	@SP
	MOVB	(Rø) + , @SP
	COM	R2
	BPL	B
	ASR	@SP
	DEC	Rø
B :	BIC	\#17øøø¢, @SP
	...	
	CMP	$R \varnothing, R 1$
	BLO	A

```
;INIT. FLIP-FLOP
;GET FIRST BYTE
;... INTO HIGH ORDER SPOT
;... & 2ND INTO LOW
;FIRST COLUMN?
;IF SO, RIGHT JUSTIFY
;STAY AT SECOND BYTE
;REMOVE GARBAGE
;REQD. IMAGE NOW ON STACK TOP
;... & CAN BE PROCESSED AS NECESSARY
;END OF BUFFER?
;IF NOT, GET NEXT IMAGE
NOTES
```

a) The stack is used rather than a register to build the image, as this avoids the problem of possible sign extension in the operation at A+4. After processing, the image should of course be removed before proceeding to the next.
b) For mere storage of images in another buffer, a further register might be used as a pointer, e.g., MOV \#BUFFER,R3 and all references to SP can then be changed to @R3 until the one at B, which should become (R3)+ to step to next word.

D. 1 PREPARATION

It has been shown that, by defining the relevant conditional parameters at assembly time, the user can tailor the card-reader driver to meet the particular needs of his installation. To allow him to do this, the driver is supplied as a source tape. The following paragraphs illustrate special points to be observed in preparing this tape for usage. It is assumed that the user is already familiar with the general operating procedures of the PAL-llR Assembler and Link-ll Linker.

D.1.1 Assembly

In order to enter the definitions for the required optional parameters, the user should specify that the keyboard will be used to supply input on Pass l only. Thus, assuming a disk-to-disk assembly with lineprinter listings, the response to $P A L-11 R$ request for command input might be:

$$
\text { \#CR. OBJ,LP:, LP: <KB:/PA: }, \mathrm{DF}: C R . P A L
$$

After this, the user can begin to type in the definitions he needs, e.g.:

```
BLANKS = \emptyset
BINARY = \varnothing
```

and then terminate by calling the Monitor to signal the end of this particular input as:

```
^C (CTRL/C 
```

Thereafter, the assembly proceeds in the normal way.

For easy reference, the possible parameters and their effects are summarized below:

Parameter	Driver Version		Size
Nil	ASCII only -026 or 029	(029 default)	200
DEFALT	ASCII only -026 or 029	$(026$ default)	+1

Parameter	Driver Version	Size
ONLY26	ASCII only - 026 punch only	-51
ONLY29	ASCII only - 029 punch only	-51
BLANKS	Auto-deletion of cc 73-80 \& trailing spaces by Special Card Control	+18
BINARY	Adds binary to other capabilities.	+161
MARKS	Restricted driver for 40-col CMll	$\begin{array}{r} 0 \text { on Basic } \\ -4 \text { on BLANKS } \end{array}$
		-30 on BINARY

NOTE

Signed size values should be added to the basic size for the ASCII-only version, e.g., driver assembled with ONLY29, BINARY, and BLANKS defined is 328 words long. Also first four mutually exclusive.)

D.1.2 Linking

The output file from PAL-llR should then be linked to paper tape, using Link-ll. It must be origined at location \varnothing if it is to be used within DOS, i.e., the Command String in this case might be:
\#PP: ,LP: <CR/B: \varnothing / E

D.1.3 Inclusion in DOS Monitor Library

The DOS Monitor has already been set up to recognize the Card Reader Driver. Therefore, the user need merely incorporate the linked module into the Monitor Library, either by making the paper tape part of the input while building the system on disk by SYSLOD or by including it in the Monitor Library on a DECtape using MODS. The associated descriptions for these programs give details of method.

D. 2 USAGE

In general, a card file consists merely of the data cards followed by an EOF card, then a blank. It has been shown that control cards may also be included to force the driver to function in a special way. The format for each of these is summarized below:

EOF	12-11-0-1-6-7-8-9 ${ }^{1}$	in c.c. 1 for ASCII, in c.c. l-8 for Binary
029 codes	12-0-2-4-6-8 ${ }^{2}$	in c.c. 1 if also in
026 codes	12-2-4-8 ${ }^{3}$	in c.c. 1 c.c. 80, card
Suppress Blanks	12-11-0-7-8-9	$\text { in c.c. } 1\} \begin{aligned} & \text { is symmetrical } \\ & \& \text { can be used } \\ & \text { any way up. } \end{aligned}$

${ }^{1}$ 12-11-0-1 for Version $\varnothing \varnothing 5 \mathrm{~A}$ Monitor Release 4A.
${ }^{2}$ 12-0-7-9 for Version $\varnothing \varnothing 5 A$ Monitor Release 4A.
${ }^{3} 12-11-8-9$ for Version $\varnothing \varnothing 5 A$ Monitor Release 4A.

After placing the card file in the hopper, the operator should ensure that power has been turned on and that both the MOTOR START \& READ START buttons have been pressed (both indicators green). The read will then respond to any program request for input from device CR.

If an error occurs at any time, the Monitor message "Aøø2 12ø6ø" will indicate this. The operator should rectify the error if possible, replace the last card read with the remainder of the deck in the hopper, re-enable the reader and type $C O$ to resume.

$$
\text { P D P - } 11
$$

PCII HIGH-SPEED PAPER TAPE READER DRIVER

October 1972

SUPPLEMENT TO:
PDP-11 DEVICE DRIVER PACKAGE
DEC-11-ODDPA-A-D

MONITOR VERSION Vøø8

COPYRIGHT (C) 1971, 1972 BY DIGITAL EQUIPMENT CORPORATION

NOTE
This document is for information purposes only and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION

This manual documents the software as of Monitor version Vø8. It has been revised to include all new and changed material since Monitor version Vø4. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.

software DISTRIBUTION CENTER

The paper tape reader driver provides the device dependent I/O functions for the PDP-ll paper tape reader. To allow the common I/O processor to be device independent, the paper tape reader driver is a block processor. Any size block may be processed by the driver, but to provide the most efficient operation the standard buffer size is 32 words. The driver code is position independent.

1.1 DESCRIPTION

The paper tape reader driver consists of two sections: the standard driver header and the driver body.

The driver header gives the following information about the paper tape driver:

1. Capabilities
a. Single user
b. Input only device
c. ASCII and BINARY both may be handled
d. Non-file structured
2. 32 word standard buffer size
3. Interrupt entry address and priority (4)
4. Dispatch table containing entry addresses for:
a. Open
b. Transfer
5. Internal word count and buffer address

The driver body contains the code to perform the three paper tape reader functions: opening, reading (transfer), and interrupt servicing.
1.2 OPEN

The OPEN function for the paper tape reader exists to give the user a means to ensure the reader is ready for operation (i.e., contains tape, is turned on, etc.). The OPEN routine tests the tape reader status register for an error indication. If such exists, an A002 message (Device Not Ready) is printed to the operator. The check is repeated
following a return from the Diagnostic Print routine indicating that the operator has requested continuation. Because no interrupt is necessary to make this check, the routine merely removes the interim return address stored on the top of the processor stack by the calling sequence and takes the completion exit immediately (since this driver is for single-use only, there can be no queue for its services, hence it need take no action to cater for a queue situation).

1.3 TRANSFER

The TRANSFER entry initializes the driver and initiates the read of the first character. Initialization consists of storing the byte count (2 * Word Count) and buffer address from the calling DDB into the driver header positions reserved for them, and enabling the reader interrupt.

1.4 INTERRUPT SERVICE

Interrupt servicing is the heart of the paper tape reader driver. The following flow chart gives a detailed explanation of this function.

It should be particularly noted that an error during interrupt servicing signifying "Reader Off" or "Out of Tape" is considered an "End of Data" and is treated accordingly.

1．5 Program Listing

A complete assembly listing of the driver follows．

CV，FR MACOO VORA－14 13－SEP．72 g3：09 PAGF；

```
    ICOPYRIGHT 1971. DIGITAL FQIIPMMFAT CORF., MAYNAFD, MASS: SO
:VERSION NUMBER: VAOIA
```



```
1 PAPER TAPF READER DRTVER (PR)
                            \(\begin{array}{ll}\text {-TITLE } & \text { DV,DR } \\ \text {-TLOBL } & \text { DO }\end{array}\)
```

 MOODOD ROEFR
 OORQR1 R1=\%1
 \(\mathrm{MORORO} R 2=\% 2\)
 の日のロの3 R35\%3
 ROROC R \(4=\% 4\)
 900005 R5=\%5
 000206 SP=\%6
 93020の7 PC=\%7
 : PRFAMBLE
 70.0900 anoanq PR: WORO \square
P BCURFENT ORCR OR a
18 OQQQ? 234 BYYE PFARP FACTLTTYSINEIPATOR

23 QQOQ 170 BYTE PROPPNGPR BTSFATCH OPFN

25 QQeII DOA PYTE Q CIOSE

29 QQAIG AOQOQ INTCNT: WORD \quad I INTFFNAL COUNT

$\begin{array}{ll}31 & \text { ? MAIA ORTVER } \\ 32 & \text {; RECIN TRAASFER }\end{array}$


```
CV,FR MACOR VCQA-14 13-SEP-72 03:TG DAGF 1*
```


$$
\text { P D P - } 11
$$

PC05 HIGH-SPEED PAPER TAPE FUNCH DRIVER

October 1972

```
SUPPLEMENT TO:
PDP-11 DEVICE DRIVER PACKAGE
DEC-11-ODDPA-A-D
```

MONITOR VERSION V $\varnothing \varnothing 8$

COPYRIGHT (C 1971, 1972 BY DIGITAL EQUIPMENT CORPORATION

NOTE
This document is for information purposes only and is subject to change without notice. DEC assumes no responsibility for the use or reliability of its software on equipment which is not supplied by DEC.

NEW AND CHANGED INFORMATION

This manual documents the software as of Monitor version V $V 8$. It has been revised to include all new and changed material since Monitor version Vø4. Such material is indicated by vertical bars in the outside margin. Whole new pages are not so marked but are dated in the lower outside corner.

The paper tape punch driver supplies the basic device dependent operating functions for the PDP-ll paper tape punch. To facilitate the device dependent operation of the I / O common routines, the paper tape punch driver processes blocks of data to be punched. The driver will process any size block (as given in the DDB) but for efficient operation a default (standard) block size of 32 words has been chosen.

The paper tape reader driver provides open, close, transfer, and interrupt.servicing functions. The open and close functions cause the paper tape punch to punch two fanfolds of blank leader and trailer tape respectively. The transfer function causes the punching of the given block of data. Since the PDP-ll paper tape punch punches one character at a time, the interrupt servicing function provides the actual control of the punch for each of the other functions.

2.1 DESCRIPTION

The paper tape punch driver consists of two distinct parts: the standard driver table and the driver body.

The driver table contains the following information:

1. Facilities indicator - The facilities provided by the paper tape punch driver are:
a) Single User
b) Output only
c) ASCII or Binary format
d) Non-file Structured
2. 32 word standard buffer size
3. Run at priority 4
4. Internal information
a) Trailer Indicator
b) Internal byte count
c) Internal (byte) buffer address

The code for the paper tape driver is organized as follows. The open, close, and transfer routines perform their initialization processes and control is transferred to the interrupt service routine for
actual control of the data transfer. The initialization processes consist of setting the internal byte count, the beginning buffer address, and the trailer indicator (\varnothing implies open/close in process, lotherwise). The interrupt servicing routine is then called. Leader/trailer punching and actual transfer punching differ only in that the internal buffer address always points to a zero in the former case, and this pointer is incremented through the block in the later case. Upon total completion of the requested operation, the DDB completion return is taken; the DDB intermediate return occurs immediately upon initiation of the punching of the initial byte. At each interrupt the detection of an error (Punch Out of Tape) results in a request for an A002 message at the console (Device Not Ready). If a return from the Diagnostic Print routine occurs, indicating an operator request to continue, the function is again resumed.

2.2 Program Listing

A complete assembly listing of the driver follows.

65	0.0212	0.9746	MOV	PC，－（SP）					
66	Q2214	062716	ADD	＊FP，TPLm．．ASP					
		$1776 ? 2$			，	SFT	EUFFER	\triangle DCFESS	
67	00220	$? 12657$	MOV	（SP）＊，PDFPT					
		177576							
68	00224	0.12767	MOV	＊177524．PPC	；		Folns traflfa		
		177524							
		177566							
69	$0023 ?$	202711	BR	PP．IIEN	，	NOR	$\triangle 1$ FROM	HERF O	

1	177776	ST．ATS＝977776
2	909076	PP，VCT＝76
3	177554	PP，CSR＝177554
4	177558	PP，BRG＝177556
5	9 000.44	PP，SAV＝44
c	900332	PP，RP＝ 332
7	0001921	IPP．$S P F=P$ P．IGN
ε	0000911	－

```
EV,FF MACRC VOZ4-14 13-SEP-72 93:T0 PAGF ?*
SYMEOL TARLF
```

FC	\％\quad geage 7
PPFFT	
FP，CLS	QのJPQAR
FP，ERR	Q00172R
FP，A AM	QOQOIAR
FP．SAVE	$=000044$
FP，TRL	
FO＝	－\％日a0？ 07
63	\％\％0 00003
SP＝	\％\％0090の
ADS	000027
	000234

ERRCRS DETECTED: O
FREF CORE: 19413. WORDS
-LP: $C D T: P D$

Announcements for new and revised software, as well as programming notes, software problems, and documentation corrections are published by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 and PDP-12
Digital Software News for the PDP-11
Digital Software News for 18-bit Computers

These newsletters contain information applicable to software available from Digital's Software Distribution Center. Articles in Digital Software News update the cumulative Software Performance Summary which is contained in each basic kit of system software for new computers. To assure that the monthly Digital Software News is sent to the appropriate software contract at your instaliation, please check with the Software Specialist or Sales Engineer at your nearest Digital office.

Questions or problems concerning Digital's software should be reported to the Software Specialist. In cases where no Software Specialist is available, please send a Software Performance Report form with details of the problems to:

> Digital Equipment Corporation
> Software Information Service
> Programming Department
> Maynard, Massachusetts 01754

These forms, which are provided in the software kit, should be fully filled out and accompanied by Teletype output as well as listings or tapes of the user program to facilitate a complete investigation. An answer will be sent to the individual and appropriate topics of general interest will be printed in the newsletter.

Orders for new and revised software manuals, additional Software Performance Report forms, and software price lists should be directed to the nearest Digital Field office or representative. USA customers may order directly from the Software Distribution Center in Maynard. When ordering, include the code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a catalog of programs as well as the DECUSCOPE magazine for its members and non-members who request it = For further information, please write to:

Digital Equipment Corporation
DECUS
Programming Department
Maynard, Massachusetts 01754

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publications. To do this effectively we need user feedback -- your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.
\qquad

Did you find errors in this manual? If so, specify by page.
\qquad
\qquad
\qquad
\qquad

How can this manual be improved?
\qquad
\qquad
\qquad
\qquad
\qquad
Other comments?
\qquad
\qquad
\qquad
Please state your position. Date: \qquad

City: \qquad State: \qquad Zip or Country

[^0]: ${ }^{1}$ In some cases, it can be further extended as discussed in later paragraphs.
 ${ }^{2}$ Required only if Driver is being called for Special Function; addresses a Special Function Block.
 ${ }^{3}$ Required only if the Device is bulk storage (e.g., Disk or DECtape).
 ${ }^{4}$ Most devices transfer words regardless of their content, i.e., ASCII or Binary. Some devices (e.g., Card Reader) may be handled differently depending on the mode for these, Bit 0 must also be set to indicate ASCII=0, Binary=1. In these cases, the driver always produces or accepts ASCII even though the device itself uses some other code.
 ${ }^{5}$ This word may be omitted if the device is bulk storage (see below).

[^1]: ${ }^{1}$ This includes RFll Disk; although this is basically word-oriented, it is assumed to be subdivided into 64 -word blocks.

[^2]: ${ }^{1}$ If the routine is not provided, these are 0 .

[^3]: TDataset Data Block- in full, a l6-word table which provides the main source of communication between the Monitor drivers and a particular set of data being processed on behalf of a using program.

[^4]: ${ }^{1}$ Note that bits 7 and 14 are undefined in DOS Monitors which precede v $\varnothing \varnothing 8$.

[^5]: ${ }^{T}$ Although the user may manually set disk drive numbers without regard for sequence, the DOS Monitor will assume that a strict ascending order has been established, i.e., Units \varnothing and 1 on a two-drive system. Drive units out of sequence will be ignored.

[^6]: ${ }^{1}$ These codes are 12-11-8-9 and 12-0-7-9 in Version $\varnothing \varnothing 5 \mathrm{~A}$ Monitor Vøø4

[^7]: ${ }^{1}$ This code is $12-11-0-1$ in Version $\varnothing \varnothing 5 \mathrm{~A}$ Monitor Vøø4 release.

[^8]: ${ }^{1}$ An alternative in this case might be to change the driver's comversion tables to satisfy the different codes, provided that these use the same pattern - null, 0 , 11 or 12 in association with one punch in range l-7, perhaps with a punch in 8 or 9.

[^9]: IINTERNAL BUFFER FOR EINARY STORAGE:
 -IFDF BINARY
 CR.BUF: IFNDF MARKS
 CR.BSZ-120.

 - ENDC
 -IFDF MARKS
 CR.BSZ=60.
 - ENDC

 - ENDC
 aのM001 END

