PDP-11

Paper Tape
Software Handbook
Order No. DEC-11-XPTSA-B-D

PDP-11

Paper Tape
Software Handbook
Order No. DEC-11-XPTSA-B-D

digital equipment corporation - maynard, massachusetts

First Printing, April 1970
Revised: March 1971
January 1972

February 1973

June 1975

April 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright@ 1970, 1971, 1972, 1973, 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECsystem-20 TYPESET-11

7/77-34

CONTENTS

CHAPTER 1 PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

CHARACTER SET
STATEMENTS
Label
Operator
Operand
Comments
Format Control
SYMBOLS

e o o o o
o o o
abdbwN =

.3.1 Permanent Symbols
.3.2 User-Defined Symbols
.3.3 Direct Assignment
.3.4 Register Symbols

. EXPRESSIONS

. Numbers

Arithmetic and Logical Operators
ASCII Conversion
Mode of Expressions
ASSEMBLY LOCATION COUNTER
RELOCATION AND LINKING
ADDRESSING
- Register Mode
Deferred Register Mode
Autoincrement Mode
Deferred Autoincrement Mode
Autodecrement Mode
Deferred Autodecrement Mode
Index Mode
Deferred Index Mode
Immediate Mode and Deferred Immediate
(Absolute) Mode ’
Relative and Deferred Relative Modes
Table of Mode Forms and Codes (6-bit(A)
format only - see Section 1.7.12)
.12 Instruction Forms
ASSEMBLER DIRECTIVES
.1 .TITLE
.2 . GLOBL
3 Program Section Directives (.ASECT and
.CSECT)
.EOT
.EVEN
. END
.WORD
.BYTE
.ASCII
0 .RAD50
1 +LIMIT
2 Conditional Assembly Directives

....
S wWN R

FHEREFHEFRPRPRRHRFRRHERPRRRRRRRRRERRR R P

NSNS NNGI NI N9 oSSR PR OWWWWNNNNDNDNDND

o o
CoOoOJAaAUTdWN -

ENIEN
e
o

o o

FRRRPRRHERPRE RPRERR PP

e o o o o o o o
00 0O 00 00 0O 00 00 0O O
FRFRFEWOWLOJO Ul

iii

Page

=
I
[

R R e b
HIEWOOOONOAOUTUTUTA S S WWNN

1-16

1-18

CONTENTS (CONT.)

Page
1.9 OPERATING PROCEDURES 1-24
1.9.1 Introduction 1-24
1.9.2 Loading PAL-11S 1-24
1.9.3 Initial Dialogue 1-24
1.9.4 Assembly Dialogue 1-28
1.9.5 Assembly Listing 1-30
1.9.6 Object Module Output 1-30
1.9.6.1 Global Symbol Directory 1-30
1.9.6.2 Text Block 1-31
1.9.6.3 Relocation Directory 1-31
1.10 ERROR CODES 1-31
1.11 SOFTWARE ERROR HALTS 1-32
CHAPTER 2 WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS 2-1
2.1 CHARACTER SET 2-2
2.2 STATEMENTS 2-2
2.2.1 Label 2-3
2.2.2 Operator 2-3
2.2.3 Operand 2-3
2.2.4 Comments 2—4
2.2.5 Format Control 2-4
2.3 SYMBOLS 2-5
2.3.1 Permanent Symbols 2-5
2.3.2 User-Defined Symbols 2-5
2.3.3 Direct Assignment 2-5
2.3.4 Register Symbols 2-6
2.4 EXPRESSIONS 2-7
2.4.1 Numbers 2-7
2.4.2 Arithmetic and Logical Operators 2-8
2.4.3 ASCII Conversion 2-8
2.5 ASSEMBLY LOCATION COUNTER 2-8
2.6 ADDRESSING 2-9
2.6.1 Register Mode 2-10
2.6.2 Deferred Register Mode 2-10
2.6.3 Autoincrement Mode 2-10
2.6.4 Deferred Autoincrement Mode 2-11
2.6.5 Autodecrement Mode 2-11
2.6.6 Deferred Autodecrement Mode 2-11
2.6.7 Index Mode 2-11
2.6.8 Deferred Index Mode 2-12
2.6.9 Immediate Mode and Deferred Immediate
(Absolute) Mode 2-12
2.6.10 Relative and Deferred Relative Modes 2-13
2.6.11 Table of Mode Forms and Codes (6-bit (A)
format only - see Section 3.7) 2-13
2.7 INSTRUCTION FORMS 2-14
2.8 ASSEMBLER DIRECTIVES 2=15
2.8.1 .EOT 2-15
2.8.2 .EVEN 2-16
2.8.3 .END 2-16
2.8.4 .WORD 2-16
2.8.5 .BYTE 2-17
2.8.6 .ASCII 2-17
2.9 OPERATING PROCEDURES 2-17
2.9.1 Introduction 2-17
2.9.2 Loading PAL-11A 2-18

iv

CONTENTS (CONT.)

Page
2.9.3 Initial Dialogue 2-18
2.9.4 Assembly Dialogue 2-23
2.9.5 Assembly Listing 2-24
2.10 ERROR CODES 2-25
2.11 SOFTWARE ERROR HALTS 2-26
CHAPTER 3 LINK-11S LINKER 3-1
3.1 INTRODUCTION 3-1
3.1.1 General Description 3-1
3.1.2 Absolute and Relocatable Program Sections 3-2
3.1.3 Global Symbols 3-2
3.2 INPUT AND OUTPUT 3-3
3.2.1 Object Module 3-3
3.2.2 Load Modules 3-3
3.2.3 Load Map 3-4
3.3 OPERATING PROCEDURES 3-5
3.3.1 Loading and Command String 3-5
3.3.1.1 Operational Cautions 3-6
3.3.2 Error Procedure and Messages 3-7
3.3.2.1 Restarting 3-7
3.3.2.2 Non-Fatal Errors 3-7
3.3.2.3 Fatal Errors 3-7
3.3.2.4 Error HALTs 3-8
CHAPTER 4 EDITING THE SOURCE PROGRAM 4-1
4.1 COMMAND MODE AND TEXT MODE 4-1
4.2 COMMAND DELIMITERS 4-2
4.2.1 Arguments 4-2
4.2.2 The Character Location Pointer (Dot) 4-2
4.2.3 Mark 4-3
4,2.4 Line-Oriented Command Properties 4-3
4,2.5 The Page Buffer 4-3
4.3 COMMANDS 4-4
4.3.1 Input and Output Commands 4-4
4,3.1.1 Open 4-4
4,3.1.2 Read 4-4
4,3.1.3 List and Punch 4-5
4.3.1.4 Next 4-5
4.3.1.5 Form Feed and Trailer 4-6
4.3.1.6 Procedure with Low-Speed Punch 4-6
4.3.2 Commands to Move Dot and Mark 4-6
4.3.2.1 Beginning and End 4-6
4.3.2.2 Jump and Advance 4-6
4.3.2.3 Mark 4-7
4.3.3 Search Commands 4-7
4,3.3.1 Get 4-7
4.3.3.2 wHole ' 4-7
4.3.4 Commands to Modify the Text 4-8
4,3.4.1 Insert 4-8
4.3.4.2 Delete and Kill 4-9
4.3.4.3 Change and Exchange 4-9
4.4 OPERATING PROCEDURES 4-10
4.4.1 Error Corrections 4-10
4.4.2 Starting 4-11
4.4.3 Restarting 4-11

CONTENTS (CONT.)

Page
4.4.4 Creating a Paper Tape . ‘ 4-11
4.4.5 Editing Example o 4-12
4.5 SOFTWARE ERROR HALTS : : 4-17
CHAPTER 5 DEBUGGING OBJECT PROGRAMS ON-LINE 5-1
5.1 INTRODUCTION 5-1
5.1.1 ODT-11 and ODT-11X 5-1
5.1.2 ODT's Command Syntax 5-2
5.2 COMMANDS AND FUNCTIONS 5-3
5.2.1 , Opening, Changing, and Closing Locations 5-4
5.2.1.1 The Slash (/) 5-4
5.2.1.2 The LINE FEED Key 5-4
5.2.1.3 The Up-Arrow (%) 5-5
5.2.1.4 The Back-Arrow (<) 5-5
5.2.1.5 Accessing General Registers 0-7 5-5
5.2.1.6 Accessing Internal Registers 5-6
5.2.2 Breakpoints 5-6
5.2.2.1 Setting the Breakpoint (n;B) 5-6
5.2.2.2 Locating the Breakpoint ($B) 5-7
5.2.3 Running the Program(n G and n;P) 5-7
5.2.4 Searches 5-8
5.2.4.1 Word Seach(n;W) 5-8
5.2.4.2 Effective Address Search(n;E) 5-9
5.2.5 Calculating Offsets (n;0) 5-9
5.2.6 ODT'S Priority Level ($P) 5-10
5.3 ODT-11X 5-10
5.3.1 Opening, Changing and Closing Locations 5-10
5.3.1.1 Open the Addressed Location (@) 5-11
5.3.1.2 Relative Branch Offset(>) 5-11
5.3.1.3 Return to Previous Sequence (<) 5-11
5.3.2 Calculating Offsets(n;0) : 5-11
5.3.3 Breakpoints : 5-12
5.3.4 Single-Instruction Mode 5-12
5.4 ERROR DETECTION 5-13
5.5 PROGRAMMING CONSIDERATIONS 5-14
5.5.1 Functional Organization ’ 5-14
5.5.2 Breakpoints - . 5-14
5.5.3 Search : - 5-18
5.5.4 Teletype Interrupt 5-19
5.6 OPERATING PROCEDURES - : 5-20
5.6.1 Linking Procedures (LSI-11 Systems Only) 5-20
5.6.2 Loading Procedures (non-LSI-11 Systems
Only) 5-20
5.6.3 Starting and Restarting : . 5-21
CHAPTER 6 LOADING AND DUMPING MEMORY 6-1
6.1 PAPER TAPE BOOTSTRAPS 6-2
6.1.1 BM792-YA Paper Tape Bootstrap ROM 6-2
6.1.2 BM873-YA Bootstrap Loader ROM 6-2
6.1.3 LSI-11 Firmware Paper Tape Bootstrap 6-3
6.1.4 M9301-YB Bootstrap Loader 6-3
6.1.5 M9301-YA Bootstrap Loader 6-4
6.1.6 Other Bootstrap Loaders 6-4
6.1.6.1 Loading the Loader into Core 6-5

vi

CONTENTS (CONT.)

Page
6.1.6.2 Loading Bootstrap Tapes 6-6
6.1.6.3 Bootstrap Loader Operation 6-8
6.2 THE ABSOLUTE LOADER- . 6-10
6.2.1 Loading the Loader into Core : 6-11
6.2.2 Using the Absolute Loader. - 6-11
6.2.3 Absolute Loader Operation 6-13
6.3 CORE MEMORY DUMPS 6-14
6.3.1 Operating Procedures 6-14
6.3.1.1 Using DUMPAB on Systems without Switch
Registers 6-15
6.3.1.2 Using DUMPAB and DUMPTT on Systems with
Switch Registers 6-16
6.3.2 Output Formats : 6-17
6.3.3 Storage Maps 6-17
CHAPTER 7 INPUT/OUTPUT PROGRAMMING 7-1
7.1 INTRODUCTION 7-1
7.1.1 Using IOX with the LSI-11 Processor 7-3
7.1.2 Using IOX with Unibus PDP-11 Processors 7-3
7.1.3 IOX Interrupt and Trap Vectors 7-3
7.2 THE DEVICE ASSIGNMENT TABLE 7-3
7.2.1 Reset 7-4
7.2.2 Initialization ' - 7-4
7.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS 7-4
7.3.1 Buffer Size : - 7-5
7.3.2 Mode Byte 7-5
7.3.3 Status Byte 7-6
7.3.3.1 Non=Fatal Error Codes (Octal) 7-6
7.3.3.2 Done Bit 7-7
7.3.3.3 End-0Of-Medium Bit 7-7
7.3.3.4 End-Of-File Bit 7-7
7.3.4 Byte Count 7-8
7.4 MODES : 7-8
7.4.1 Formatted ASCII 7-8
7.4.2 Unformatted ASCII 7-10
7.4.3 Formatted Binary 7-10
7.4.4 Unformatted Binary 7-11
7.5 DATA TRANSFERS 7-11
7.5.1 Read 7-11
7.5.2 Write 7-12
7.5.3 Device Conflicts In Data Transfer Commands 7-12
7.5.4 Waitr (Wait, Return) 7-13
7.5.5 Waitr vs. Testing the Buffer Done Bit 7-13
7.5.6 Single Buffer Transfer on One Device 7-14
7.5.7 Double Buffering . 7-15
7.5.8 Readr (Real-time Read) ; . 7-15
7.5.9 Writr (Real-time Write) 7-16
7.6 REENABLING THE READER AND RESTARTING 7-16
7.6.1 Seek . _ 7-16
7.6.2 Restart ' 7-16
7.7 FATAL ERRORS) 7-17
7.8 EXAMPLE OF PROGRAM USING IOX 7-17
7.9 IOX INTERNAL INFORMATION 7-19
7.9.1 Conflict Byte/Word : 7-19
7.9.2 Device Interrupt Table (DIT) ' 7-20
7.9.3 Device Status Table (DST) 7-21

vii

CONTENTS (CONT.)

Page

Teletype Hardware Tab Facility 7-21
Adding Devices To IOX 7-21
.1 Device Codes 7-21
.2 Table Modification 7-22
.3 Interrupt Routines 7-23

L}
[ai}

CHAPTER 8 FLOATING POINT MATH PACKAGE OVERVIEW

O

CHAPTER 9 PROGRAMMING TECHNIQUES

WRITING POSITION INDEPENDENT CODE
1 Position Independent Modes
2 Absolute Modes
3 Writing Automatic PIC
4 Writing Non-Automatic PIC
4
4
4

°

WWWNH e

.1 Setting Up The Stack Pointer
.2 Setting Up A Trap or Interrupt Vector
.3 Relocating Pointers
LOADING UNUSED TRAP VECTORS
CODING TECHNIQUES
Altering Register Contents
Subroutines

W WV WWLWLWWWYWWLWWYWWLLYOLY
\D\D\DLO\O\ID\D\D\O\D\D\D

N -

b4
1

APPENDIX ASCII CHARACTER SET

>

APPENDIX PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

TERMINATORS

ADDRESS MODE SYNTAX

INSTRUCTIONS
1 Double Operand Instructions OP A,A
2 Single Operand Instructions OP A
3 Rotate/Shift
4
5

1
AUEBWNH H HFHEONNNYN 60 GTOUBBNDNHE H P N e dWWNH

Operation Instructions Op
Branch Instructions Op E Where
-12810<(E-.—2)/2<127lo

.6 Subroutine Call JSR ER,A

.7 Subroutine Return

.8 Extensions for the LSI-11 Version Of PAL-11lS
ASSEMBLER DIRECTIVES
ERROR CODES

. INITIAL OPERATING PROCEDURES

LI T O I I |
= o

APPENDIX PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

SPECIAL CHARACTERS

ADDRESS MODE SYNTAX

INSTRUCTIONS
1 Double-Operand Instructions Op A,A
2 Single-Operand Instructions Op A
3 Rotate/Shift Instructions Op A
4
5
6

e o o o o
W WwWWwwwwwn -
I I I |

Operate Instructions Op
Trap Instructions Op or Op E Where 053:3778

Branch Instructions Op E where

128, < (E-.-2)/2<127,

aOQQOQO000 0 WWTWWW W wwwowwwoww W

°

’OOOOOOOOO O Uowwww

¢
~

0

viii

CONTENTS (CONT.)

Cc.3.7 Subroutine Call Op ER, A
C.3.8 Subroutine Return Op ER
C.4 ASSEMBLER DIRECTIVES

C.5 ERROR CODES

C.6 INITIAL OPERATING PROCEDURES

APPENDIX D TEXT EDITOR, ED-11

INPUT/OUTPUT COMMANDS
POINTER-POSITIONING COMMANDS
SEARCH COMMANDS
COMMANDS TO MODIFY THE TEXT
SYMBOLS
GROUPING OF COMMANDS
OPERATING PROCEDURES
Loading
Storage Requirements
Starting
Initial Dialogue
Restarting

NOdNdNdNdNoauke wh e

.
s Wb

vAvlvAvivAvivlvivhvlvlv]

APPENDIX

=

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11
AND ODT-11X

E.1l SUMMARY OF CONTENTS
APPENDIX F LOADING AND DUMPING CORE MEMORY

F.l THE BOOTSTRAP LOADER

F.1l.1 Loading The Bootstrap Loader
F.2 THE ABSOLUTE LOADER

F.3 CORE MEMORY DUMPS

APPENDIX G INPUT/OUTPUT PROGRAMMING, IOX
G.1 INSTRUCTION SUMMARY

G.2 PROGRAM FLOW SUMMARY

G.3 FATAL ERRORS

H

SUMMARY OF FLOATING POINT MATH PACKAGE,
FPMP-11

APPENDIX

H.1 OTS ROUTINES
H.2 NON-OTS ROUTINES
H.3 ROUTINES ACCESSED VIA TRAP HANDLER

APPENDIX I TAPE DUPLICATION

APPENDIX ASSEMBLY AND LINKING INSTRUCTIONS
SYSTEMS WITHOUT SWITCH REGISTERS
1 I0X/IOXLPT

1.1 Assembling IOX

1.2 Assembling IOXLPT

1.3 Linking IOX and IOXLPT

2 ODT11X

ix

g
V]
Q
(0]

| T O R O O O B B |
R ERARBWWNDNDNDE [l O 000

vAvivivivivivlvivivivivie N oNoNeRoNe!

TR T
Nan =

H

guLOgy o
PHREHERR =

CONTENTS (CONT.)

Page
J.1l.2.1 Assembling ODT11X J-1
J.1.2.2 Linking ODT11X . J=-2
J.1l.3 ED-11 J-2
J.1.3.1 Assembling ED-11 J-2
J.1.3.2 Linking ED-11 J-2
J.1l.4 PAL-11S J-2
J.1l.4.1 Assembling PAL-11S J-2
J.l.4.2 Linking PAL-11S, J-3
J.1.5 LINK-11S J-3
J.1.5.1 Assembling LINK-11S J-4
J.1.5.2 Linking LINK-11S J-4
J.2 SYSTEMS WITH SWITCH REGISTERS J-5
J.2.1 Assembling PAL-11A J-5
J.2,2 Assembling ED-11 J-6
J.2.3 ODT-11/0DT-11X J-6
J.2.4 Assembling IOX/IOXLPT J-7
J.2.5 Assembling and Linking PAL-11S J-8
J.2.6 Assembling and Linking LINK-11S J-11
APPENDIX K STANDARD PDP-11 ABBREVIATIONS K-1
APPENDIX L CONVERSION TABLES L-1
L.l OCTAL-DECIMAL INTEGER CONVERSIONS -1
L.2 POWERS OF TWO L-5
L.3 SCALES OF NOTATION I-6
L.3.1 2¥ In Decimal L-6
L.3.2 10*1 In Octal L-6
L.3.3 n Log 2 and 10 In Decimal L-6
L.3.4 Addition and Multiplication, Binary and
Octal L-6
L.3.5 Mathematical Constants In Octal L-7
APPENDIX M NOTE TO USERS OF SERIAL LA30 AND 600, 1200,
AND 2400 BAUD VTO05'S M-1
APPENDIX N USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT
SWITCH REGISTERS N-1
N.1l LSI-11 N-1
N.2 M9301-YB BOOTSTRAP LOADER N-3
N.3 M9301-YA BOOTSTRAP LOADER N-4

INDEX ’ Index-1

CONTENTS (CONT.)

Page
FIGURES
FIGURE 5-1 Communication and Data Flow 5-15
6-1 Bootstrap Loader Instructions 6-4
6-2 Loading and Verifying the Bootstrap Loader 6-7
6-3 Loading Bootstrap Tapes Into Core 6-8
6-4 The Bootstrap Loader Program 6-9
F-1 Loading and Verifying the Bootstrap Loader F-2
F-2 Loading Bootstrap Tapes into Core F-3
F-3 Loading with the Absolute Loader F-5
F-4 Dumping Using DUMPAB or DUMPTT F-6
TABLES
TABLE 1-1 Instruction Operand Fields 1-17
2-1 Instruction Operand Fields 2-14

xi

CHAPTER 1

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

PAL-11S Assembly (Program Assembly Language for the PDP-11,
Relocatable, Stand Alone Version) enables you to write source
(symbolic) programs using letters, numbers, and symbols which are
meaningful to you. The source programs, generated either on-line
using the Text Editor (ED-11), or off-line, are then assembled into
object modules which are processed by the PDP-11 linker, LINK-11S.
LINK~-11S produces a load module which is loaded by the Absolute Loader
for execution. Object modules may contain absolute and/or relocatable
code and separately assembled object modules may be linked with global
symbols. The object module is produced after two passes through the
Assembler; an optional third pass produces a complete octal/symbolic
listing of the assembled program. This listing is especially useful
for documentation and debugging purposes.

This chapter not only explains how to write PAL-11S programs but also
how to assemble the source programs into object modules. All facets
of the assembly language are explained and illustrated with many
examples, and the chapter concludes with assembling procedures. In
explaining how to write PAL-11S source programs, it 1is necessary,
especially at the outset, to make frequent forward references.
Therefore, we recommend that you first read through the entire chapter
to get a "feel" for the language, and then reread the chapter,’ this
time referring to appropriate sections as indicated, for -a thorough
understanding of the language and assembling procedures.

Some notable: features of PAL-11S are:

1. Selective assembly pass functions.

2. Device specification for pass functions.

3. Optional error listing on the teleprinter.

4. Double buffered and concurrent I/O (provided by IOXLPT).

5. Alphabetized, formatted symbol table listing.

6. Relocatable object modules.

7. Global symbols for linking between object modules.

8. Conditional assembly directives.

9. Program Sectioning Directives.
The PAL-11S Assembler requires 8K of memory and provides for about 900
user-defined symbols (see Section 1.3.2). In addition, it allows a

line printer to be used for program 1listing and/or symbol table
listing.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

The following discussion of the PAL-11S Assembly Language assumes that
you have read the PDP-11 Processor Handbook with emphasis on those
sections which deal with the PDP-11 instruction repertoire, formats,
and timings -- a thorough knowledge of these is vital to efficient
assembly language programming.

1.1 CHARACTER SET

A PAL-11S source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, -argument separators, and
line terminators written using the following ASCII' characters.

1. The letters A through 2. (Upper and lower case letters are
acceptable, although wupon input, lower case letters will be
converted to upper case letters.) :

2. The numbers 0 through 9.

‘3. The characters . and $. (These characters are reserved for
systems use.) i

4. The separating or terminating symbols:
= % 0@ () 4, 5 "+ - & !

carriage return tab space . line feed form feed

1.2 STATEMENTS

A source program is composed of a sequence of statements, .where each
statement is on a single line. The statement is terminated by a
carriage return character which must be immediately followed by either
a line feed or form feed character. Should a carriage return
character be present and not be followed by a line feed or. form feed,
the Assembler will generate a Q error (Section 1.10), and that portion
of the line following the carriage return will be ignored. Since the
carriage return terminator is a required statement terminator, a line
feed or form feed not immediately preceded by a carriage return will
have one inserted by the Assembler.

It should be noted that, if the Editor (ED-11) is being used to create
the source program, a typed carriage return (RETURN key) automatlcally
generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters
as explained below and summarized in Appendix B. The four fields are:

Label Operator Operand Comment
The label and comment fields are optional. The operator and operand

fields are inter-dependent -- either may be omitted depending upon the
contents of the other.

1
ASCII stands for American Standard Code for Information Interchange.

1-2

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.1 Label

A label is a user-defined symbol (see Section 1.3.2) which is assigned
the. value of the current location counter. This value may be either
absolute or relocatable depending on whether the location counter
value 1is absolute or .relocatable. In the latter case, the final
absolute value is assigned by the Linker, 1i.e., the 'value '+ the
relocation constant. A label is a symbolic means of referring to a
specific location within a program. If present, a label always occurs
first in a statement and must be terminated by a colon. For example,
if the current location is absolute 100 the statement:

ABCD: MOV A,B

will assign the value 100 to the 1label ABCD so that subsequent
reference to ABCD will be to location 100 . In the above case if the
location counter were relocatable then the final value of ABCD would
be 100 +K, where K is the location of the beginning of the relocatable
section in which the label ABCD appears. More than one 1label may
appear within a single label field; each label within the field will
have the same value. For example, if the current location counter is
100 , multiple labels in the statement:

ABC: $DD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value
100 ($ and . are reserved for system software).

The error code M (multiple definition of a symbol) will be generated
during assembly if two or more 1labels have the same first six
characters. '

1.2.2 Operator

An operator follows the label field in a statement, and may be an
instruction mnemonic or an assembler directive (see Section 1.8 and
Appendix B). When it is an instruction mnemonic, it specifies what
action is to be performed on any operand(s) which follows it. When it
is an assembler directive, it specifies a certain function or action
to be performed during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or more operands and/or a comment. An operator is
legally terminated by a space, tab, or any of the following
characters:

+ - e (" ' s ! & , ;

line feed form feed carriage return
The use of each character above will be explained in this chapter.

Consider the following examples:

MOV ——=| A,B ;——=| (TAB) terminates operator MOV
MOV@A,B ;@ terminates operator MOV

When the operator stands alone without an operand or comment, it 1is
terminated by a carriage return followed by a line feed or form feed
character.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.3 Operand

An operand is that part of a statement which is operated on by the
operator -- an instruction mnemonic or assembler directive. Operands
may be symbols, expressions, or numbers. When multiple operands
appear within a statement, each is separated from the next by a comma.
An operand may be preceded by an operator and/or label, and followed
by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE.,BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field
and began the operand field; the comma separated the operands GEORGE
and BOB; the semicolon terminated the operand field and began the
comment.

1.2.4 Comments

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
the Assembler when used in the comment field.

The comment field may be preceded by none, any, or all of the other
three fields. It must begin with the semicolon and end with a
carriage return followed by a line feed or form feed character. . For
example,

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program execution, but

they are useful .in program listings for later analysis, checkout or
documentation purposes.

1.2.5 Format Control

The format is controlled by the space and tab characters. They have
no effect on the assembling process of the source program unless they
are embedded within a symbol, number, or ASCII text; or are used as
the operator field terminator. Thus, they can be used to provide a
neat, readable program. A statement can be written:

LABEL:MOV (SP)+,TAG; POP VALUE OFF STACK
or, using formatting characters it can be written:
LABEL: MOV (SP)+,TAG ; POP VALUE OFF STACK
which is much easier to read.
Eage size is controlled by the form feed character. A page of n lines
1s created by inserting a form feed (CTRL/FORM keys on the keyboard)

after the nth 1line. If no form feed 1is present, a page 1is
automatically terminated after 56 lines.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.3 SYMBOLS

There are two types of symbols, permanent and user-defined. Both are
stored 1in the Assembler's symbol table. 1Initially, the symbol table
contains the permanent symbols, but as the source program is
assembled, user-defined symbols are added to the table.

1.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
B.3) and assembler directives (see Section 1.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program.

1.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 1.2.1)
or by direct assignment (see Section 1.3.3). These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods only; again $'s and .'s are reserved for system
software. Any other character is illegal and, if used, will result in
the error message I or QU (see Section 1.10). I is a 1low priority
error which may be flagged as QU first. The following rules also
apply to user-defined symbols:

1. The first character must not be a number.
2. Each symbol must be unique within the first six characters.

3. A symbol may be written with more than six legal characters
but the seventh and subsequent characters are only checked
for 1legality, and are not otherwise recognized by the
Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value
associated with a permanent symbol that is also user-defined depends
upon its use:

1. A permanent symbol encountered in the operator field is
associated with its corresponding machine op-code.

2. If a permanent symbol in the operand field is also
user-defined, 1its user-defined value is associated with the
symbol. If the symbol is not found to be user-defined, then
the corresponding machine op-code value is associated with
the symbol.

User-defined symbols are either internal or global. All symbols are
internal unless they are explicitly typed as global with the .GLOBL
assembler directive (see Section 1.8.2). Global symbols are used to
provide 1links between object modules. A global symbol which is
defined (as a label or by direct assignment) in a program is called an
entry symbol or entry point. Such symbols may be referred to from
other object modules or assemblies. A global symbol which 1is not
defined in the current assembly is called an external symbol. Some
other assembly must define the same symbol as an entry point.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.3.3 Direct Assignment

A direct .assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the Assembler's symbol table and the
specified value 1is associated with it. A symbol may be redefined by
assigning a new value to a previously defined symbol. The newly
assigned value will replace the previous value assigned to the symbol.

The symbol takes on the relocatable or absolute attribute of the
defining expression. However, if the defining expression is global,
the defined symbol will not be global wunless previously defined as
such (see Section 1.4). :
The general format for a direct assignment .statement is:

symbol = expression.

The following conventions apply:

l. 'An equal sign (=) must separate the symbol from the
expression defining the symbol.

2. A direct assignment statement may be preceded by a label and
may be followed by a comment.

3. Only one symbol can be defined by any one direct assignment
statement.

4. Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

X =Y
Y =12
z =1

X and Y are both undefined throughout pass 1 and will be listed on the
teleprinter as such at the end of that pass. X 1is undefined
throughout pass 2, and will cause a U error message.

Examples:

R FTHE SYMROL A I8 EQUATED WITH THE VALUE 1
B (-1 EMASKLLOW FTHE SYMROL B I8 EQUATED WITH THE EXFRESSION’S
sVALUE
[D=3 $THE SYMROL I IS EQUATED WITH 3. THE
E?3 MOV 1y ABLE SLARELS © AND E ARE EQUATED WITH THE

FNUMERTCAL MEMORY ALDRESS OF THE MOV
5 COMMAND

1.3.4 Register Symbols

The eight general registers of the PDP-11 are numbered 0 through 7.
These registers may be referenced by use of a register symbol; that
is, a symbolic name for a register. A register symbol is defined by
means of a direct assignment, where the defining expression contains
at least one term preceded by a $ or at least one term previously
defined as a register symbol. 1In addition, the defining expression of
a register symbol must bé absolute. For example:

1-6

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

RO=%0 - SNEFINE RO AS REGISTER 0
R3=RO+3 ’ SOEFINED R3:-AS REGISTER 3

‘ RA4=14%3 sOEFINE R4 AS REGISTER 4
THERE=%2 SNEFINE "THERE® AS REGISTER 2

It is important to note that all register symbols must be defined
before they are referenced. A forward reference to a register symbol
will generally cause phase errors (see Section 1.10).

The % may be used in any expression thereby indicating a reference to
a register. Such' an -expression is a register expression. Thus, .the
statement: :

CLR $6
will clear register 6 while the statement:
CLR 6 |
will clear the word at memory address 6. In certain cases a register
can be referenced without the use of a register symbol or register
expression. These cases are recognized through the context of the

statement and are thoroughly explained in Sections 1.7.11 and 1.7.12.
Two obvious examples of this are: " '

JER Sy BURR FTHE FIRST OFERAND FIELD MUST ALWAYS
PRE A REGISTER :

CGlLR K2 $ANY EXPRESSTON ENCLOSED IN ¢) MUST BRE
6 REGISTER. IN THIS CASE. INDEX REGISTER

R
2

1.4 EXPRESSIONS

Arithmetic and logical operators (see Section 1.4.2) may be wused to
form expressions. A term of an expression may be a permanent or
user-defined symbol (which may be absolute, relocatable or global), a
number, ASCII data, or the present value of the assembly location
counter represented by the period (see Section 1.5). Expressions are
evaluated from left to right. Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands of a .BYTE
directive (Section 1.8.8) are evaluated as word expressions before
truncation to the 1low-order eight bits. The . evaluation of an
expression includes the evaluation of the mode of the resultant
expression; that 1is, absolute, relocatable or external. The
definition of the modes of expression are given below in Section
1.4.4. . . :

A missing term, expressioﬂ or external symbol will be interpreted as
0. A missing operator will be interpreted as +. The error code Q
(Questionable syntax) will be generated for a missing operator. For
example,

A + =100 . ;OPERAND MISSING
will be evaluated as A + 0 - 100, and

TAG ! LA 177777 ;OPERATOR MISSING

will be evaluated as TAG ! LA+177777.
1-7

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

The value of an external expression will be the value of the absolute
part of the expression; e.g., EXT+A will have a value of A. This
will be modified by the linker to become EXT+A.

l1.4.1 Numbers

The Assembler accepts both octal and decimal numbers. Octal numbers
consist of the digits 0 through 7 only. Decimal numbers consist of
the digits 0 through 9 followed by a decimal point. If a number
contains an 8 or 9 and is not followed by a decimal point, the N error
code (see Section 1.10) will be printed and the number will be
interpreted as decimal. Negative numbers may be expressed as a number
preceded by a minus sign rather than in a two's complement form.
Positive numbers may be preceded by a plus sign although this is not
required.

If a number is too large to fit into 16 bits, the number is truncated
from the left. 1In the assembly listing the statement will be flagged
with a Truncation (T) error. Numbers are always considered to be
absolute quantities (that is, not relocatable).

1.4.2 Arithmetic And Logical Operators

The arithmetic operators are:

+ indicates addition or a positive number

- indicates subtraction or a negative number
The logical operators are:

& indicates the logical AND operation

! indicates the logical inclusive OR operation

AND-: OR
0&0=0 0! 0=0
0&1=0 0!11=1
1&&0=0 110=1
161=1 111=1

1.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null,
rubout, carriage return, 1line feed, or form feed) is assigned the
7-bit ASCII value of the character (see Appendix A). For example,

'A

is assigned the value 1018.
When preceded by a quotation mark, two ASCII characters (not including
null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each
7-bit wvalue 1is stored in an 8-bit byte and the bytes are combined to
form a word. For example "AB will store the ASCII value of A in the
low-order (even) byte and the value of B in the high-order (odd) byte:

1-8

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

high-order byte ! low-order byte
B's value = 1 0 2 \ 1 0 1 = A's value
"“N\"—\MA P
0 100 001 001 000 001
—— N~ ~T~' —_— -
0 4 1 i 0 1
"AB=041101"

ASCII text is always absolute.

1.4.4 Mode of Expressions

The mode of an expression may be absolute, relocatable or external as
defined below:

A term of an expression is absolute, relocatable or external depending
on whether its definer (i.e., number, symbol, etc.) is absolute,
relocatable or external. Numbers, permanent symbols and generated
data are always treated as absolute. i

An absolute expression is defined as:

1. Absolute term (one whose value is defined at assembly time)
preceded optionally by a single plus or minus sign, or

2. Relocatable expression minus a relocatable term, or

3. Absolute expression followed by an operator followed by an
absolute expression.

A relocatable expression is defined as:

1. Relocatable term (one whose value is not known until 1link
time), or . .

2. Relocatable expression followed by an arithmetic operator
followed by an absolute expression, or

3. Absolute expression followed by a plus operator followed by a
relocatable expression.

An external expression is defined as:

1. External term (one whose value 1is defined outside the
program), oOr '

2. External expression followed by an arithmetic operator
followed by an absolute term, or

3. Absolute expression followed by a plus operétor followed by
- an external expression.

In the following examples:
ABS is an absolute symbol,
' REL is a relocatable symbol,

EXT is an external symbol.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Examples:
Thevfdllowiné are valid expressions:
EXT + ABS | ;External expression-
REL+REL-REL ;Relocatable expression
ABS+REL-REL & ABS ;Absolute expression
The following are illegal expressions:
EXT+REL

REL+REL
ABS-EXT

1.5 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly :location counter. (Note
difference of Program Counter. #PC. See Section 1.7.) When used
in the operand field of an instruction, it represents the address of
the first word of the instruction. When used in the operand field of
an .assembler directive, it represents the address of the current byte
or word. - For example,

A: MOV #.,RO :.refers to location A,
si.e., the address of the
; MOV instruction

(# is explained in Section 1.7.9.)

At the beginning of each assembly pass, the Assembler clears the
location counter. 'Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the 1location where
the object data 1is stored may be changed by a direct assignment
altering the location counter:

.=expression

Similar to other symbols, the location counter symbol "." has a mode
associated with it. However, the mode cannot be external. Neither
can one change the existing mode of the location counter . by using a
defining expression of a different mode.

The mode of the location counter symbol can be changed by the wuse of
the .ASECT or .CSECT directive as explained in Section 1.8.3.

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another.

Examples:

LASECT ~
« =500 SHET LOCATION COUNTER TO ARSOLUTE 500
FIRSTS MOV o410 COUNT STHE LAREL FIRST HAS THE VALUE 00
sCOCTALY 410 EQUALS 510 (0CTALY . THE
SCONTENTS OF LOQCATION 510 (0CTALY WILL
$RE DEFOSTTED IN LOUATION COUNT.

= G20 sTHE ASSEMEBLY LOCATION COUNTER NOW
sHAS A VALUE OF ABSOLUTE H520 (0CTAL).

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

SECONDS MOV . v INDEX s THE LAREL SECOND HAS THE VaALUE 520
S COCTALYy THE CONTENTS OF LOCATION $520
FTHAT I8y THE RBINARY CODE FOR -

FINSTRUCTION ITHEL WILL BE DEFQOSITITED
FIN LOCATION ITNDEX.
LOCBECT
«$o+20 SEET LOCATION COUNTER TO RELOCATARLE
$20.
THIRD? SWORD O THE - LAREL THIRD HAS THE VaALUE OF

wr as

RELOCATARLE 20.

Storage area may be reserved by advancing the location counter. For
example, 1if +the current value of the location counter is 1000, the
direct assignment statement

.=.+100

will reserve 100 bytes of storage space in the program. The next
instruction will be stored at 1100.

1.6 RELOCATION AND LINKING

The output of the relocatable assembler is an object module which must
be processed by the ©PDP-11 Linker, LINK-11S, before loading and
execution. The Linker essentially fixes (i.e., makes absolute) the
values of external or relocatable symbols and creates another module
(load module) which contains the binary data to be 1loaded and
executed.

To enable the Linker to fix the value of an expression the assembler
issues certain directives to the Linker together with the required
parameters. In the case of relocatable expressions the Linker adds
the base of the relocatable section (the location in memory of
relocatable 0) to the value of the relocatable expression provided by
the Assembler. 1In the case of an external expression the value of the
external term in the expression is determined by the Linker (since the
external symbol must be defined in one of the other object modules
being linked and adds it to the value of the external expression
provided by the Assembler.

All instructions that are to be modified as described above will be
marked by a single apostrophe in the assembly listing. Thus the
binary text output will look as follows for the given examples:

QOH06E" CLR EXTERNAL (5) y

Q00000 sVALUE OF EXTERNAL SYMROL
FASSUMED ZEROF WILL RE
FMODIFIED RY THE LINKER.

Q05065 CLR EXTERNAL+6E) §

0000046 v

0050657 CLR RELQCATARLE (3) FASSUMING WE ARE IN THE

000040 FARSOLUTE SECTION AND

$THE VALUE OF RELOCATARLE
18 RELOCATARLE 40

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7 ADDRESSING

The Program Counter (register 7 of the eight general registers) always
contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the Program Counter must be understood. The
key rule is:

Whenever the processor implicitly uses the Program
Counter to fetch a word from memory, the Program
Counter is automatically incremented by two after
the fetch.

That is, when an instruction is fetched, the PC is incremented by two,
so that it 1is pointing to the next word in memory; and, if an
instruction uses indexing (see sections 1.7.7, 1.7.8 and 1.7.10), the
processor uses the Program Counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now points
to the next word.

The following conventions are used in this section:

1. Let E be any expression as defined in Section 1.4.

2. Let R be a register expression. This 1is any expression
containing a term preceded by a % character of a symbol
previously equated to such a term.

Examples:
RO
Rl

R2

%0 §GENERAL REGISTER 0O
RO+ GENERAL REGISTER 1
1+%1 $GENERAL REGISTER 2

HoHoH

3. Let ER be a register expression or an expression in the range
0 to 7 inclusive.

4. Let A be a general address specification which produces a
6-bit mode address field as described in a PDP-11 Processor
Handbook.

The addressing specifications, A, may now be explained in terms of E,
R, and ER as defined above. Each will be illustrated with the single
operand instruction CLR or double operand instruction MOV.

1.7.1 Register Mode

The register contains the operand.
Format: R
Example:

RO=%0 STEFINE RO A8 REGISTER O
CLLR RO SCLEAR REGISTER 0O

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.2 Deferred Register Mode

The register contains the address of the operand.

Format: @R or (ER)

Example:
CLRERL FCLEAR THE WORD AT THE
or FANDRESS CONTAINED IN
ClL.RCL) PREGISTER 1L

1.7.3 Autoincrement Mode

The contents of the register are incremented immediately after being
used as the address of the operand.

Format: (ER) +

Examples:

CLR (ROY+ sCLEAR WORDS AT ANDRESSES
CLR (RO+3)+ SCONTAINED IN REGISTERS 023y AND 2
CLLR (234 FAND INCREMENT REGISTER CONTENTS
sRY TWO.
NOTE
Both JMP and JSR instructions using mode
2 (non-deferted autoincrement mode),
execute differently on different PDP-11
processors. Avoid use of these

instructions with mode 2 addressing.

Double operand instructions of the
addressing. form %R, (R)+ or %R, —-(R)
where the source and destination
registers are the same, give different
results on different PDP-11 processors,
and should be avoided.

1.7.4 Deferred Autoincrement Mode

The register ‘contains .the pointer to the address of the operand. : The
contents of the register are incremented after being used.

Format: @ (ER)+
Example:
CLR @(3)+ $CONTENTS OF REGISTER 3 FOINT

$TO ADDRESS OF WORD TO RE CLEARED
SREFORE REING INCREMENTED RY TWO

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.5 Autodecrement Mode

The contents of the register are decremented before being used as the
address of the operand (see note in Section 1.7.3).

Format: - (ER)
Examples:
CLR ~(ROY SRECREMENT CONTENTS OF REGISTERS

CLR ~(RO+3) $0» 3 AND 2 BEFORE USING
Cl.k —-{2) A5 ADDRESSES OF WORDS TO BE CLEARED

1.7.6 Deferred Autodecrement Mode

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format: @-(ER)
Example:
CLR @-(2) SOECREMENT CONTENTS OF REG. 2

FREFORE USING AS FOINTER TO ADDRESS
CS30F WORD TO BE CLEARED.

1.7.7 Index Mode

Format: . E(ER)
The value of an éxpressibn E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

Examples:

EFFECTIVE ADDRESS 18 X+2 FLUS
FTHE CONTENTS OF REGISTER 1

CLR X+2(R1)

ClLR —203) FEFFECTIVE ARDDRESS I8 -2 PLUS
THE CONTENTS OF REGISTER 3

1.7.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the
address of the operand. '

Format:- QE(ER)
Example:

CLE 21404 5IF REGISTER 4 HOLDE 100y aND LOCATION
FLL4 HOLDS 2000 LOC.2000 I8 CLEARED.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.9. Immediate Mode and Deferred Immediate (Absolute) Mode .

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It. is assembled as an
autoincrement of register 7, the PC.

Format:' . 4E
Examples:

MOU #100sRO $MOVE AN OCTAL 100 TO REGISTER ©
MOV #XeRO FMOVE THE VALUE OF SYMROL X TO |
FREGISTER O,

The operation of this mode is explained as follows:

The statement MOV #100,R3 assembles as two words. These are:
012703
000100
Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode 1is 27
(autoincrement the PC). Thus the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented
by two, to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

1.7.10 Relative and Deferred Relative Modes

Relative mode is the normal mode for memory references.
Format: E
Examples:

ClL.Rk 100 9CLEQR LOCATION 100
MOV XY SMOVE CONTENTS OF LOCATION X T0
PLOCATION Y. .

This mode is assembled as 1Index mode, using 7, the PC, as the
register. The base of the address calculation, which is stored in the
second or third word of the instruction, is not the address of the
operand. Rather, it 1is the number which, when added to the PC,
becomes the address of the operand. Thus, the base 1is X-PC. The
operation is explained as follows: : : :

If the statement MOV 100,R3 is assembled at absolute location 20 then
the assembled code is:

Location 20: 01
00

6 703
Location 22 0 05 4
The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=100,

the operand address.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Since the Assembler considers "." as the address of the first word of
the instruction, an equivalent statement would be

MOV 100 -.- 4(PC),R3

This mode is called relative because the operand address is calculated
relative to the <current PC. The base is the distance (in bytes)
between the operand and the current PC. If the operator and its
operand are moved in memory so that the distance between the operator
and data remains constant, the instruction will operate correctly.

If E is preceded by @ the expression's value is the pointer to the
address of the operand.

1.7.11 Table of Mode Forms and Codes (6-bit(A) format only - see
Section 1.7.12)

Each instruction takes at least one word. Operands of the first six
forms 1listed below, do not increase the length of an instruction.
Each operand in one of the other modes, however, increases the
instruction length by one word.

Form Mode Meaning
None R On Register
of @R or - (ER) 1n Register deferred
these (ER) + 2n -Autoincrement
forms @(ER)+ “3n ‘Autoincrement deferred
increases -(ER) 4n Autodecrement
the @-(ER) 5n Autodecrement deferred
instruc-
tion
length.
Form Mode Meaning
Any of these E(ER) 6n Index
forms adds a @E(ER) 7n Index deferred
word to the #E 27 Immediate
instruction Q#E 37 Absolute memory reference
length. E 67 Relative
QE 77 Relative deferred reference
Notes:

1. An alternate form for @R is (ER). However, the form @O0 (ER)
is equivalent to @O (ER).

2., The form @#E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the
operand and the PC. Thus, the statement CLR @#100 will clear
location 100 even if the instruction is moved from the point
at which it was assembled.

The Assembler is not particular about left and right and dangling +
and - signs in address fields. The following are some examples of
incorrect syntax that assemble as indicated, without an error
indication.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Form Assembles As: Form Assembles As:
(R2)A A(R2) (R2) - -(R2)

A-(R2) A(R2) or A-0(R2) @ (R2)A @ A(R2)

A(Rw) + A(R2) A(R2)+B A+B (R2)

+(R2) (R2) +

1.7.12 1Instruction Forms

The instruction mnemonics are given in Appendix B. This section
defines the number and nature of the operand fields for these
instructions.

In the table that follows, let R, E, and ER represent expressions as
defined in Sections 1.4 ‘and 1.7 and let A be a 6-bit address
specification of the forms:

E QE - (ER) @ -(ER)

R @R or (R) E (ER) @ E(ER)

(ER) + @ (ER) + #E @ #E
Table 1-1

Instruction Operand Fields

Instruction Form Example
Double Operand Op A,A MOV. (R6)+, @Y
Single Operand Op A CLR -(R2)
OPERATE OoP HALT
Branch Op E BR X+2
BLO .-4

where -128<(E-.-2)/2<127
Subroutine Call JSR ER,A JSR PC,SUBR
Subroutine Return RTS ER RTS PC
EMT/TRAP Op or Op E EMT

where 0<E<377 EMT 31

The branch instructions are one word instructions. The high byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.

2. Multiply the result by 2. This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.
The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC 1is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.
Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

1-17

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE

It is illegal to branch to a 1location
specified as an external symbol, or to a
relocatable symbol when within. an
absolute section, or to an absolute
symbol when within a relocatable
section.

The EMT and TRAP instructions do not use the low-order byte of ‘the
word. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an- expression,
the value is put into the low-order byte of the word. However, if the
expression is too big(>377g) it is truncated to eight bits and a
Truncatlon (T) error occurs.

Do not try to micro-program the condition code operators (see Appendix
B, B. 4) This makes sense in the PDP-11 hardware; however, the
current PAL-11S Assembler does not support this capability. Thus:

CLC!CLV

results in a Q error (see Appendix B, B.5) and the statement 1is
assembled as CLC.

Expressions in the Assembler ‘do, however, allow logical operators and
the wuse of instruction mnemonics. Thus, the proper ways to write the
above statement:

WORD CLEGC! i0rerard of WORD
+CLCTELY J0erand of default WORD
HCL.CTCLY P0rarandg of de ault WORD

1.8 ASSEMBLER DIRECTIVES

Assembler d1rect1ves (sometimes called pseudo-ops) direct the assembly
process and may generate data.

Assembler directives may be preceded by a label and followed by a
comment. The assembler directive occupies the operator field. Only
one directive may be - placed in any one statement. One Or more
operands may occupy the operand field or it may be void -- allowable
‘operands vary from directive to directive. :

1.8.1 .TITLE
The .TITLE directive is used to name the object module. The name is

assigned by the first symbol following the directive. If there is no
.TITLE statement the default name ‘assigned is ":MAIN.".

1.8.2 .GLOBL
The .GLOBL directive is used to declare a symbol as being global. It
may be an entry symbol, in which case it is defined in the program, or
it may be a external symbol, in which case it should be defined 1in
another program which will be linked with this program by the linker.
The form of the .GLOBL directive is

.GLOBL NAMA, NAMB,...,NAMN

1-18

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE
A symbol cannot be declared global by

defining it as a global expression in a
direct assignment statement.

If an illegal character is detected in the operand field of a .GLOBL

statement, an error message is not generated; and the Assembler may

ignore the remainder of the statement. Thus: : :
GLOBL A,B,@C,D

assembles without error as:

.GLOBL A,B

1.8.3 Program Section Directives (.ASECT andi.CSECT)

The relocatable assembler provides for two program sections, an
absolute section declared by an .ASECT directive and a relocatable
section declared by a .CSECT directive. These directives therefore
enable the programmer to specify that parts of his program be
assembled in the absolute section and others in a relocatable section.
The scope of each directive extends until a directive to the contrary
is given. The Assembler initially starts in the relocatable section:
Thus, if the first statement of a program were i

A: (ASECT

the label "A" would be a relocatable symbol which 1is assigned the
value of relocatable zero. The absolute value of A will be calculated
by the Linker by adding the value of the base of - the relocatable
section. : . ’ AR o

Example:
+ASECT FASSEMRBRLER IN ARSOLUTE SECTION
e 000 sFC o= 1000 ARSOLUTE
Al CLR X A = 1000 ARSOLUTE
LCHECT FASSEMRLE IN RELOCATARLE SECTION
Xt JMF A §X=0 RELOCATARLE
+END

The absolute and/or relocatable section may be discontinued (by
Switching to the alternate section) and then continued where they left
off by using another .ASECT or .CSECT statement.

Examplei

+CBECT

+WORD Opls2 sASSEMBLED AT RELOCATARLE O» 2 and 4
+ASECT

+WORD 05152 : SASSEMBLED AT ARSOLUTE 05 2 and 4
+CSECT

+WORD O sASSEMBLED AT RELOCATARLE 6.

+END

If a label is defined twice, first in an absolute section and then in
a relocatable section, the symbol will be relocatable but its value
will be as defined in the absolute section.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.8.4 .EOT

The .EOT directive indicates the physical End Of Tape though not. the
logical end of the program. If the .EOT is followed by a single line
feed or form feed, the Assembler will still read to the end of the
tape, but will not process anything past the .EOT directive. If .EOT
is followed by at least two line feeds or form feeds, the Assembler
will stop before the end of the tape. Either case is proper, but it
should be understood that even though it appears as if the Assembler
has read too far, it actually hasn't.

If a .EOT is embedded in a tape, and more information to be assembled
follows it, .EOT must be immediately followed by at least two line
feeds or form feeds. Otherwise, the first 1line following the .EOT
will be lost.

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as
one program. The last tape should be terminated by a .END directive
(see Section 1.8.6) but may be terminated with .EOT (see .END
emulation in Section 1.9.4).

1.8.5 .EVEN

The .EVEN directive ensures that the assembly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored.

1.8.6 - .END

The .END directive indicates the logical and physical end of the
source program. The .END directive may be followed by only one
operand, an expression indicating the program's transfer address.

At load time, the load module will be 1loaded and program execution
will begin at the transfer address indicated by the .END directive.
If the address is not specified, the loader will halt after reading in
the load module.

1.8.7 .WORD

" The .WORD assembler directive may have one or more operands, separated
by commas. Each operand is stored in a word of the object program.
If there is more than one operand, they are stored 1in successive
words. The operands may be any legally formed expression. For
example,

+= 1420

SAl.=0

SWORD 177530y 442801 $8TORED IN WORDS 1420 1422 AND
$1424 WILL RE 177533e 1426y AND O

Values exceeding 16 bits will be truncated from the 1left, to word
length.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

A .WORD directive followed by one or more void operands separated by
commas will store zeros for the void operands. For example,

+=1430 $ZER0Ds FIVEs AND ZERO ARE STORED
+WORDL 5y FIN WORDS 1430y 1432y AND 1434

An operator field 1left blank will be interpreted as the .WORD
directive if the operand field contains one or more expressions. The
first term of the first expression in the operand field must not be an
instruction mnemonic or assembler directive unless preceded by a +, -,
or one of the logical operators, ! or &. For example,

+ =440 STHE OF-CODE FOR MOV WHICH IS 010000,
LAREL Y +MOVyLAREL IS STORED IN LOCATION 440. 440 I8
FOTORED IN LOCATION 442.

Note that the default .WORD will occur whenever there 1is a leading
arithmetic or 1logical operator, or whenever a leading symbol is
encountered which is not recognized as an instruction mnemonic or
assembler directive. Therefore, if an instruction mnemonic or
assembler directive is misspelled, the .WORD directive is assumed and
errors will result. Assume that MOV is spelled incorrectly as MOR:

MOR A,B

Two error codes can result: A Q will occur because an expression
operator is missing between MOR and A, and a U will occur if MOR is
undefined. Two words will be generated; one for MOR A and one for B.

1.8.8 .BYTE

The .BYTE assembler directive may have one or more operands separated
by commas. Each operand is stored in a byte of the object program.
If multiple operands are specified, they are stored 1in successive
bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example,

SAM=3 SSTORED IN LOCATION 410 WILL BE
+u5410 $060 (THE 0CTAL EQUIVALENT QF 48).
+RBYTE 48, y5AM $IN 411 WILL RE-005.

If the expression has a result of more than 8 bits, it will be
truncated to its low-order 8 bits and will be flagged as a T error.
If an operand after the .BYTE directive 1is 1left wvoid, it will be
interpreted as zero. For example,

+ =420 FZERD WILL RBE STOREX IN
JRBYTE » FRYTES 420y 421 AND 422,

If the expression is relocatable, a warning flag, A, will be given.

1.8.9 .ASCII

The .ASCII directive translates strings of ASCII characters into their
7-bit ASCII codes with the exception of null, rubout, carriage return,
line feed and form feed. The text to be translated is delimited by a
character at the beginning and the end of the text. The delimiting
character may be any printing ASCII character except colon and equal
sign and those used in the text string. The 7-bit ASCII code
generated for each character will be stored in successive bytes of the
object program. For example,

1-21

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

=500 FTHE ASCII CODE FOR Y WILL EE

+ASCIT /SYES/ FBTORED IN 500» THE CODE FOR E
sIN 501y THE CODRE FOR 8 IN 302,

SASCIT /543727 $THE DELIMITING CHARACTER QCCURS

sAMONG THE OFERANDS. THE ASCII
SCONES FOR 5 » + » AND 3 ARE
sSTORED IN BYTES 3503y 504y AND
$303. 2/ I8 NOT ASSEMELED.

The .ASCII directive may be terminated by any legal terminator except
for = and :. ©Note that if the text delimiter is also a terminator,
the leading text delimiter can also serve as the .ASCII directive
terminator. For example,

JASCIT /ARCD/ $THE SFACE IS REQUIRED
SRECAUSE / I8 NOT A TERMINATOR.
+ASCTITHARCIDY $NO SPACE IS REQUIRED.

1.8.10 .RADSO0

PDP-11 system programs often handle symbols in a specially coded form
caled "RADIX 50" (this form is sometimes referred to as "MOD40").
This form allows 3 characters to be packed into 16 bits; therefore,
any symbol can be held in two words, the form of the directive is:

.RAD50 /CCC/

The single operand is of the form /CCC/ where the slash (the
delimiter) can be any printable character except for = and :. The
delimiters enclose the characters to be converted which may be A
through 2, 0 through 9, dollar ($), dot (.) and space (). If there
are fewer than 3 characters they are considered to be 1left-justified
and trailing spaces are assumed. Any characters following the
trailing delimiter are ignored and no _error results.

Examples:

LRADEO /ARC/ FFACK ARC INTO ONE WORD
fRANSO /AR/ FFACK AR (SPACE) INTO ONE WORDS
JSAANE0 S/ FFACK 3 SFACES INTO ONE WORD

The packing algorithm is as follows:

A. Each character is translated into its RADIX 50 -equivalent as
indicated in the following table:

Character RADIX 50 Equivalent (octal)
(SPACE) 0

A-7 1-32

S 33

. 34

0-9 36-47

Note that another character can be defined for code 35.

B. The RADIX 50 equivalents for characters 1 through 3 (C1,C2,C3) are
combined as follows:

RESULT=((C1*50)+C2) *50+C3

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.8.11 LIMIT

A program often wishes to know the
The .LIMIT directive generates
the low and high addresses of the
(inserted 1into the first word)
code. The high address 1is the
following the relocated code.
since all relocatable sections are
relocatable section consists of an
one to the size to make it even.

boundaries of the relocatable code.
two words into which the linker puts
relocated code. The 1low address
is the address of the first byte of
address of the first free byte
These addresses will always be even
loaded at even addresses and 1if a
odd number of bytes the linker adds

1.8.12 Conditional Assembly Directives
Conditional assembly directives provide the programmer with the
capability to «conditionally include or not include portions of his
source code in the assembly process. In what follows, E denotes an
expression and S(i) denotes a symbol. The conditional directives are:

.IFZ E ;IF E=0

. IFNZ E ; IF E#0

.IFL E ; IF E<O

.IFLE E ;IF E<0

.IFG E ;IF E>0

. IFGE E ;IF E>0

. IFDF S (1) [!t,&]1 S (2) [!,&]...[1,&] S(N) (1=0R, &=AND)

. IFNDF S (1) [!t,&] S (2) [!,&)...[1,&] S(N)

If the condition is met, all statements up to the matching
the statements are ignored until the matching

assembled. Otherwise,
.ENDC is detected.

In the above,.IFDF and .IFNDF mean
respectively. The scan is left to

Example:

SIFOF 81T

LIFNDF TERUS

General Remarks:

An errored or null expression take
of the conditional test. An error
than ;, !, &, or CR results in the
.IFNDF, as does an errored or null

All conditionals must end with the
operand field of .ENDC is ignored.

of 127 . Labels are permitted on
scan is purely left to right. For
JIFZ 1
Az .ENDC
A is ignored.
A .IFZ 1
.ENDC

A is entered in the symbol table.

.ENDC are

"if defined" and "if undefined”
right, no parentheses permitted.

Means assemble if either S or T 1is

defined and U is defined

Means assemble if both T and U
undefined or if S is undefined

are

s the default value 0 for purposes

in syntax, e.g., a terminator other
undefined situation for .IFDF and
symbol.

.ENDC directive. Anything in the

Nesting is permitted up to a depth
conditional directives,; but. the
example:

1-23

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

If a .END is encountered while inside a satisfied conditional, a Q
flag will appear, but the .END directive will still be processed
normally. If more .ENDC's appear than are required, Q flags appear on
the extras.

1.9 OPERATING PROCEDURES

1.9.1 1Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-11
statements into a relocatable binary tape (object module). To do
this, two or three passes are necessary. On the first pass, the
Assembler creates a table of user-defined symbols and their associated
values, and a list of undefined symbols is printed on the teleprinter.
On the second pass the Assembler assembles the program and punches out
an absolute binary tape and/or outputs an assembly 1listing. During
the third pass (this pass 1is optional), the Assembler punches an
absolute binary tape or outputs an assembly listing. The symbol table
{(and/or a 1list of errors) may be output on any of these passes. The
input and output devices as well as various options are specified
during the initial dialogue (see Section 1.9.3). The Assembler
initiates the dialogue immediately after being loaded and after the
last pass of an assembly.

1.9.2 Loading PAL-11S

PAL-11S is loaded by the Paper Tape Software Absolute Loader. Note
that on systems with hardware switch registers, the start address of
the Absolute Loader must be in the Switch Register when 1loading the
Assembler. This is because the Assembler tape has an initial program
which clears all of core up to the address specified in the Switch
Register, and jumps to that address to start loading the Assembler.

1.9.3 1Initial Dialogue

After being loaded, the Assembler prints its name and version and then
initiates dialogue by printing on the teleprinter

*S

meaning "What is the Source symbolic input device?" The response may
be

use Low-speed reader (</denotes typing the RETURN key)
meaning High-speed reader

meaning Low-speed reader

meaning Teleprinter keyboard

HL".’I!&

The device specification is terminated, as is all wuser response, by
typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will

erase the immediately preceding character if it is on the current
line. Typing CTRL/U will erase the whole line on which it occurs.

1-24

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

After the *S question and response, the Assembler prints:
*B

meaning "What is the Binary output device?" The responses to *B are
similar to those for *S:

H meaning High-speed punch

L meaning Low-speed punch

</ meaning do not output binary tape (</denotes typing
the RETURN key)

In addition to I/0 device specification, various options may be
chosen. The binary output will occur on the second pass unless /3
(indicating the third pass) is typed following the H or L. Errors
will be 1listed on the same pass if /E is typed. If /E is typed in
response to more than one inquiry, only the last occurrence will be
honored. It 1is strongly suggested that the errors be listed on the
same pass as the binary output, since errors may vary from pass to
pass.

If both /3 and /E are typed, /3 must precede /E. The response is
terminated by typing the RETURN key. Examples:

*B L/E Binary output on the low-speed punch and
the errors on the teleprinter, both
during the second pass.

*B H/3/E Binary output on the high-speed punch
and the errors on the teleprinter during
the third pass.

*B </ The RETURN key alone will cause the
Assembler to omit binary output

After the *B question and response, the Assembler prints:
*L

meaning "What is the assembly Listing output device?" The response to
*L may be:

meaning Low-speed punch

meaning High-speed punch

meaning Teleprinter

meaning Line Printer

meaning do not output listing (<~/denotes typing RETURN)

t"ﬂ'—iﬂ:t"

After the I/O0 device specification, pass and error 1list options
similar to those for *B may be chosen. The assembly listing will be
output on the third pass unless /2 (indicating the second pass) 1is
typed following H, L, T, or P. Errors will be 1listed on the
teleprinter during the same pass if /E is typed. If both /2 and /E
are typed, /2 must precede /E. The response is terminated by typing
the RETURN key. Examples:

*L L/2/E Listing on low-speed punch and errors on
teleprinter during second pass.

*L H Listing on high-speed punch during third
pass
* </ The RETURN key alone will cause the

Assembler to omit listing output.

1-25

|

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

After the *L question and response, the final question is printed on
the teleprinter:

*T

meaning "What is the symbol Table output device?" The device
specification is the same as for *L question. The symbol table will
be output at the end of the first pass unless /2 or /3 is typed in

response to *T, The first tape to be assembled should be placed in
the reader before typing the RETURN key because assembly will begin
upon typing RETURN to the *T question. The /E option is not a
meaningful response to *T. Example
*T T/3 Symbol table output on teleprinter at
end of third pass.
*T Typing the RETURN key alone will cause
the Assembler to omit symbol table
output.

The symbol table is printed alphabetically, three symbols per line.
Each symbol printed is followed by its identifying characters and by
its value. If the symbol is wundefined, six asterisks replace its
value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct assignment, register symbol,
etc. The following examples show the various forms.

ABCDEF 001244 (Defined Label)

R3 = $000003 (Register Symbol)

DIRASM = 177777 (Direct Assignment)

XYZ = Ehkkkx (Undefined direct assignment)
R6 = grEE I KKK (Undefined register symbol)
LABEL = *hkkkkx (Undefined label)

Generally, undefined symbols and external symbols will be 1listed as
undefined direct assignments. Multiply-defined symbols are not
flagged in the symbol table printout but are flagged wherever they are
used in the program.

If the symbol is relocatable or global or both, the symbol's value
will be followed by an R, a G or both.

It is possible to output both the binary tape and the assembly listing
on the same pass, thereby reducing the assembly process to two passes

(see Example 1 below). This will happen automatically unless the
binary device and the listing device are conflicting devices or the
same device (see Example 2 below). The only conflicting devices are

the teleprinter and the low-speed punch. Even though the Assembler
deduces that three passes are necessary, the binary and listing can be
forced on pass 2 by including /2 in the responses to *B and *L (see
Example 3 below).)

Example 1. Runs 2 passes:

High-speed reader
High-speed punch
Line Printer
Teleprinter

315 s
Homm

Example 2. Runs 3 passes:

*S H High-speed reader
*B H High-speed punch
*L H High-speed punch
*T T Teleprinter

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Example 3. Runs 2 passes:

*S H High-speed reader

H/2 High-speed punch on pass 2
H/2 High-speed punch on pass 2
T Teleprinter

|31 5]

Note that there are several cases where the binary output can be
intermixed with ASCII output:

a. *B H/2 Binary and listing to punch on pass 2.
*L H/2
b. *B L/E Binary to low-speed punch and error 1listing to
teleprinter (and low-speed punch).
c. *B L/2/E Binary, error listing, and
*L T/2 listing to low speed punch.

The object module so generated is acceptable to the Linker as long as
there are no CTRL/A characters in the source program. The start of
every block on the binary tape is indicated by a 001 and the Linker
ignores all information wuntil a 001 is detected. Thus, all source
and/or error messages will be ignored if they do not contain any
CTRL/A characters (octal 001).

If a character other than those mentioned is typed in reponse to a
question, the Assembler will ignore it and print the question again.
Example: ‘

*S H High-speed reader
*B 0] Q is not a valid response
*B The question is repeated

If at any time you wish to restart the Assembler, type CTRL/P. If the
low-speed reader is the source input device, turn it off before typing
CTRL/P.

When no passes are omitted or error options specified, the Assembler
performs as follows:

PASS 1:

Assembler creates a table of user-defined symbols and their associated
values to be wused in assembling the source to object program.
Undefined symbols (not including external globals) are listed on the
teleprinter at the end of the pass. The symbol table is also listed
at this time. If an 1illegal 1location statement of the form
.=expression is encountered, the line and error code will be printed
out on the teleprinter before the assembly proceeds. An error in a
location statement is usually a fatal error in the program and should
be corrected.

PASS 2:

Assembler punches the object module, and prints the pass error count
and undefined location statements on the teleprinter.

PASS 3:

Assembler prints or punches the assembly program 1listing, undefined
location statements, and the pass error count on the teleprinter.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

The functions of passes 2 and 3 will occur simultaneously on pass 2 if
the binary and listing devices are different, and do not conflict with
each other (the low-speed punch and teleprinter conflict).
Furthermore, if the binary object module is not requested, the listing
will be produced on pass 2. '

The following table summarizes the initial dialogue questions:

PRINTOUT INQUIRY
*S What is the input device of the Source symbolic tape?
*B What is the output device of the Binary object tape?
*L What is the output device of the assembly Listing?
*T What is the output device of the symbol Table?

The following table summarizes the legal responses:

CHARACTER RESPONSE INDICATED

T Teleprinter keyboard

L Low-speed reader or punch

H High-speed reader or punch

P Line Printer

/1 Pass 1

/2 Pass 2

/3 Pass 3

/E Errors listed on same pass (not meaningful
response to *S or *T)

</ Omit function (except in response to *S).

Typical examples of complete initial dialogues:
For minimal PDP-11 configuration:

*S L Source input on low-speed reader
*B L/E Binary output on low-speed punch
errors during same (second) pass
*L T Listing on teleprinter during pass 3
*T T Symbol table on teleprinter at end of pass 1

For a PDP-11 with high-speed I/O devices:

*S H Source input on high-speed reader
*B H/E Binary output on high-speed punch
errors during same (second) pass
*L </ No listing
*T T/2 Symbol table on teleprinter at end of pass 2.

1.9.4 Assembly Dialogue

During assembly, the Assembler will pause to print on the teleprinter
various messages to indicate that you must respond in some way before
the assembly process can continue. You may also type CTRL/P, at any
time, if you wish to stop the assembly process and restart the initial
dialogue, as mentioned in the previous section.

When a .EOT assembler directive is read on the tape, the Assembler
prints

EQF ?

and pauses. During this pause, the next tape is placed in the reader,
and RETURN is typed to continue the assembly.

1-28

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

If the specified assembly listing output device 1is the high-speed
punch and if it is out of tape, or if the device is the Line Printer
and is out of paper, the Assembler prints on the teleprinter

EOM ?
and waits for tape or paper to be placed in the device. Type the
RETURN key when the tape or paper has been replenished; assembly will
continue.

Conditions causing the EOM ? messages for an assembly listing device
are:

HSP . LPT

No power No power

No tape Printer drum gate open
Too hot
No paper

There is no EOM if the line printer is switched off-line, although
characters may be lost for this condition as well as for an EOM.

If the binary output device is the high-speed punch and if it 1is out
of tape, the Assembler prints:

EOM ?
*S

The assembly process is aborted and the initial dialogue 1is begun
again.

When a .END assembler directive is read on the tape, the Assembler
prints:

END ?

and pauses. During the pause the first tape is placed in the reader,
and the RETURN key is typed to begin the next pass. On the last pass,
the .END directive causes the Assembler to begin the initial dialogue
for the next assembly.

If you are starting the binary pass and the binary is to be punched on
the 1low-speed punch, turn the punch on before typing the RETURN key
for starting the pass. The carriage return and line feed characters
will be punched onto the binary tape, but the Linker will ignore them.

If the last tape ends with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by
the RETURN key. The Assembler will then print

END ?

and wait for another RETURN before starting the next pass. Example:

EOF ? E./
END ?

Note that forcing a .END in this manner causes the error counter to be
incremented by one.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.9.5 Assembly Listing

PAL-11S produces a side-by-side assembly listing of symbolic source
statements, their octal equivalents, assigned addresses, and error
codes, as follows:

EELLLLLL OOOOOOASSS....... S
000000
000000

The E's represent the error field. The L's represent the address.
The O's represent the object data in octal. The S's represent the
source statement. "A" represents a single apostrophe which indicates
that either the second, third or both words of the instruction will be
modified by the Linker. While the Assembler accepts 72 characters
per 1line on input, the listing is reduced by the 16 characters to the
left of the source statement.

The above represents a three-word statement. The second and third
words of the statement are 1listed wunder the command word. No

addresses precede the second and third words since the address order
is sequential.

The third line is omitted for a two-word statement; both second and
third lines are omitted for a one-word statement.

For a .BYTE directive, the object data field is three octal digits.
For a direct assignment statement, the value of the defining
expression 1is given in the object code field although it is not
actually part of the code of the object program.

The .ASECT and .CSECT directives cause the current value of the
appropriate location counter (absolute or relocatable) to be printed.

Each page of the listing is headed by a page number (octal).

1.9.6 Object Module Output

The output of the assembler during the binary object pass is an object
module which is meaningful only to the linker. What follows gives an
overview of what the object module contains and at what stage each
part of it is produced.

The binary object module consists of three main types of data block:

a) Global symbol directory (GSD)
b) Text blocks - (TXT)
c) Relocation Directory (RLD)

1.9.6.1 Global Symbol Directory - As the name suggests, the GSD
contains a 1list of all the global symbols together with the name of
the object module. Each symbol is in Radix-50 form and contains
information regarding its mode and value whenever known.

The GSD is created at the start of the binary object pass.

1-30

.PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.9.6.2 Text Block - The text blocks consist entirely of the binary
object data as shown in the 1listing. The operands are in the
unmodified form.

1.9.6.3 Relocation Directory - The RLD blocks consist of directives
to the Linker which may reference the text block preceding the RLD.
These directives control the relocation and linking process.

Text and RLD blocks are constructed during the binary object pass.
Outputting of each block is done whenever either the TXT or RLD buffer
is full and whenever the location counter needs to be modified.

1.10 ERROR CODES

The error codes printed beside the octal and symbolic code in the
assembly listing have the following meanings:

Error Code Meaning

A Addressing error. An address within the instruction
is incorrect. Also may indicate a relocation error.

B Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location
counter is updated by +1.

D Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

I Illegal <character detected. Illegal characters
which are also non-printing are replaced by a ? on
the listing.

L Line buffer overflow. Extra characters on a line
(more than 72) are ignored.
M Multiple definition of a label. A label was

encountered which was equivalent (in the first six
characters) to a previously encountered label.

N Number containing 8 or 9 has decimal point missing.

P Phase error. A label's definition or wvalue varies
from one pass to another.

Q Questionable syntax. There are missing arguments or
the instruction scan was not completed or a carriage
return was not immediately followed by a 1line feed
or form feed.

R Register-type error. An invalid use of or reference
to a register has been made.

S Symbol table overflow. When the quantity of
user-defined symbols exceeds the allocated space
available in the user's symbol table, the assembler
outputs the current source 1line with the S error
code, then returns to the initial dialogue.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

T Truncation error. A number generated more than 16
bits of significance or an expression generated more
than 8 bits of significance during the wuse of the
.BYTE directive.

U Undefined symbol. An undefined symbol was
encountered during the evaluation of an expression.
Relative to the expression, the undefined symbol is
assigned a value of zero.

1.11 SOFTWARE ERROR HALTS

PAL-11S loads all of its unused trap vectors with the code
.WORD .+2,HALT
so that if the trap does occur, the processor will halt in the second

word of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt.

Address of Halt (octal) Meaning

12 Reserved instruction executed

16 Trace trap occurred

26 Power fail trap

32 EMT executed
A halt at address 40 indicates an IOXLPT detected error. RO
(displayed in the console lights) contains an identifying code:
Code in RO Meaning

0 Illegal memory reference, SP overflow or

illegal instruction.
Illegal IOX command.

Slot number out of range.
Device number illegal
Referenced slot not INITed.
Illegal Data Mode.

O N

IOXLPT also sets R1 as follows:
If the error code is 0, Rl contains the PC at the time of the error.

If the error code is 1-5, Rl points to some element in the IOT
argument 1list or to the instruction following the argument list,
depending on whether IOXLPT has finished decoding all the arguments
when it detects the error.

CHAPTER 2

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS'

PAL-11A (Program Assembly Language for the PDP-11's Absolute
Assembler) enables you to write source (symbolic) programs using
letters, numbers, and symbols which are meaningful to you. The source
programs, generated either on-line using the Text Editor (ED-11), or
off-line, are then assembled into object programs (in absolute binary)
which are executable by the computer. The object program is produced
after two passes through the Assembler; an optional third pass
produces a complete octal/symbolic listing of the assembled program.
This listing is especially useful for documentation and debugging
purposes.

This chapter explains not only how to write PAL-11A programs but also
how to assemble the source programs into computer-acceptable object
programs. All facets of the assembly language are explained and
illustrated with many examples, and the chapter concludes with
assembling procedures. In explaining how to write PAL-11A source
programs it is necessary, especially at the outset, to make frequent
forward references. Therefore, we recommend that you first read
through the entire chapter to get a "feel" for the language, and then
reread the chapter, this time referring to appropriate sections as
indicated, for a thorough understanding of the language and assembling
procedures.

Some notable features of PAL-11A are:
1. Selective assembly pass functions
2. Device specification for pass functions
3. Optional error listing on Teletype
4. Double buffered and concurrent I/O (provided by IOX)
5. Alphabetized, formatted symbol table listing

The PAL-11A Assembler is available in two versions: a 4K version and
an 8K version.

The assembly language applies equally to both versions. The 4K
version provides symbol storage for about 176 user-defined symbols,
and the 8K version provides for about 1256 user-defined symbols (see
Section 2.3).

In addition, the 8K version allows a line printer to be used for the
program listing and/or symbol table listing.

'"PAL-11A is not currently available for PDP-11 systems without switch
registers.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The following discussion of the PAL-11A Assembly Language assumes that
you have read the PDP-11 Processor Handbook, with emphasis on those
sections which deal with the PDP-11 instruction set, formats, and
timings -- a thorough knowledge of these is vital to efficient
assembly language programming.

2.1 CHARACTER SET

A PAL-11A source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, arguments separators, and
line terminators written using the following ASCII' characters.

1. The letters A through Z. (Upper and lower case letters are
acceptable, although upon input, lower case letters will be
converted to upper case letters.)

2. The numbers 0 through 9.
3. The characters . and $ (reserved for system software).
4. The separating or terminating symbols:

t =% 4@ (), "+ -8l

carriage return tab space line feed form feed

2.2 STATEMENTS

A source program is composed of a sequence of statements, where each
statement 1is on a single 1line. The statement is terminated by a
carriage return character and must be immediately followed by either a
line feed or form feed character. Should a carriage return character
be present and not be followed by a 1line feed or form feed, the
Assembler will generate a Q error (Section 2.10) and that portion of
the line following the carriage return will be ignored. Since the
carriage return 1is a required statement terminator, a line feed or
form feed not immediately preceded by a carriage return will have one
inserted by the Assembler.

It should be noted that, if the Editor (ED-11) is being used to create
the source program (see Section 4.4.4), a typed carriage return
(RETURN key) automatically generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters
as explained below and summarized in Appendix B. The four fields are:

Label Operator Operand Comment
The label and comment fields are optional. The operator and operand

fields are interdependent -- either may be omitted depending upon the
contents of the other.

ASCII stands for American Standard Code for Information Interchange.

2-2

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.2.1 Label

A label is a user-defined symbol (see Section 3.3.2) which is assigned
the value of the current location counter. It is a symbolic means of
referring to a specific location within a program. If present, a
label always occurs first in a statement and must be terminated by a
colon. For example, if the current 1location 1is 100(octal), the
statement

ABCD: MOV A,B

will assign the value 100(octal) to the label ABCD so that subsequent
reference to ABCD will be to location 100(octal). More than one label
may appear within a single label field; each label within the field
will have the same value. For example, if the current location is
100, multiple labels in the statement

ABC: $SDD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value
100 (octal) . ($ and . are reserved for system software.)

The error code M (multiple definition of a symbol) will be generated
during assembly if two or more labels have the same first six
characters.

2.2.2 Operator

An operator follows the label field in a statement, and may be an
instruction mnemonic or an assembler directive (see Appendix B). When
it is an instruction mnemonic, it specifies what action 1is to be
performed on any operand(s) which follows it. When it is an assembler
directive, it specifies a certain function or action to be performed
during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or more operands and/or a comment. An operator is
legally terminated by a space, tab, or any of the following
characters.

¥ + - e ¢ " ' g ! & , ;
line feed form feed carriage return

The use of each character above will be explained in this chapter.
Consider the following examples:

MOV AsR ;=|(TAB) terminates operator MOV
MOVRAY R ;@ terminates operator MOV

When the operator stands alone without an operand or comment, it 1is
terminated by a carriage return followed by a line feed or form feed
character.

2.2.3 Operand

An operand is that part of a statement which is operated on by the
operator -- an instruction mnemonic or assembler directive. Operands
may be symbols, expressions, or numbers. When multiple operands
appear within a statement, each is separated from the next by a comma.

2-3

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

An operand may be preceded by an operator and/or label, and followed
by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE,BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field
and began the operand field; the comma separated the operands GEORGE
and BOB; the semicolon terminated the operand field and began the
comment.

2.2.4 Comments

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
Assembler when used in the comment field.

The comment field may be preceded by none, any, or all of the other
three fields. It must begin with the semicolon and end with a
carraige return followed by a line feed or form feed character. For
example,

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program execution, but

they are wuseful in program listings for later analysis, checkout or
documentation purposes.

2.2.5 Format Control

The format is controlled by the space and tab characters. They have
no effect on the assembling process of the source program unless they
are embedded within a symbol, number, or ASCII text; or are used as
the operator field terminator. Thus, they can be used to provide a
neat, readable program. A statement can be written

LABEL:MOV (SP)+,TAG; POP VALUE OFF STACK
or, using formatting characters it can be written
LABEL: MOV (SP)+,TAG ; POP VALUE OFF STACK
which is much easier to read.
Page size is controlled by the form feed character. A page of n lines
is created by inserting a form feed (CTRL/FORM keys on the keyboard)

after the nth line. If no form feed is present, a page is terminated
after 56 lines.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.3 SYMBOLS

There are two types of symbols, permanent and user-defined. Both are
stored in the Assembler's symbol table. 1Initially, the symbol table
contains the permanent symbols, but as the source program is
assembled, user-defined symbols are added to the table.

2.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
B.3) and assembler directives (see Section 2.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program.

2.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 2.2.1)
or by direct assignment (see Section 2.3.3). These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods only; again, dollar signs and periods are reserved
for wuse by the system software. Any other character is illegal and,
if used, will result in the error message I (see Section 2.11). The
following rules also apply to user-defined symbols:

1. The first character must not be a number.
2. Each symbol must be unique within the first six characters.

3. A symbol may be written with more than six 1legal characters
but the seventh and subsequent characters are only checked
for 1legality, and are not otherwise recognized by the
Assembler.

4, Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value
associated with a permanent symbol that is also user-defined depends
upon its use:

1. A permanent symbol encountered in the operator field is
associated with its corresponding machine op-code.

2. If a permanent symbol in the operand field is also
user-defined, its wuser-defined value is associated with the
symbol. If the symbol is not found to be user-defined, then
the corresponding machine op-code value is associated with
the symbol.

2.3.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the Assembler's symbol table and the
specified value 1is associated with it. A symbol may be redefined by
assigning a new value to a previously defined symbol. The newly
assigned value will replace the previous value assigned to the symbol.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The general format for a direct assignment statement is
symbol = expression
The following conventions apply:

1. An equal sign (=) must separate the symbol from the
expression defining the symbol.

2. A direct assignment statement may be preceded by a label and
may be followed by a comment.

3. Only one symbol can be defined by any one direct assignment
statement.

4. Only one level of forward referencing is allowed.
Example of the two levels of forward referencing (illegal):
X

Y

Y
Z
Z 1

X and Y are both undefined throughout pass 1 and will be listed on the
printer as such at the end of that pass. X is undefined throughout
pass 2, and will cause a U error message.

Examples:

A =] sTHE SYMROL. A IS EQUATED WITH THE VALUE 1

B o= 2f-1 2MASKL.OW s THE SYMROL B I8 EQUATED WITH THE EXFRES-
JSTONS VALUE.

(I n o= 3 §THE SYMROL D IS EQUATED WITH 3. THE

E?3 MOV &1y ARLE SLARELS C AND E ARE EQUATED WITH THE

FNUMERICAL MEMORY ADDRESS OF THE MOV
COMMANIT .

2.3.4 Register Symbols

The eight general registers of the PDP-11 are numbered 0 through 7.
These registers may be referenced by use of a register symbol, that
is, a symbolic name for a register. A register symbol is defined by
means of a direct assignment, where the defining expression contains
at least one term preceded by a $ or at 1least one term previously
defined as a register symbol.

SNEFINE RO A8 0
SUEFINE R3 A8 3
SUEFINE R4 A8 4

§ TEF INE "THERE“.AS REGISTER 2

It is important to note that all register symbols must be defined
before they are referenced. A forward reference to a register symbol
will generally cause phase errors (see Section 2.10).

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The % may be used in any expression thereby indicating a reference to
a register. Such an expression is a register expression. Thus, the
statement

CLR %6
will clear register 6 while the statement
CLR 6

will clear the word at memory address 6. In certain cases a register
can be referenced without the use of a register symbol or register
expression. These cases are recognized through the context of the
statement and are thoroughly explained in Sections 2.6 and 2.7. Two
obvious examples of this are:

JER Gy SURR $THE FIRST QPERAND FIELD MUST
FALWAYS RBE A REGISTER.

ClL.R X2 FANY EXFRESSION ENCLOSED IN
0y MUST BE A REGISTER. IN
sTHIS CABE» INDEX REGISTER 2.

2.4 EXPRESSIONS

Arithmetic and logical operators (see Section 2.4.2) may be wused to
form expressions. A term of an expression may be a permanent or
user-defined symbol, a number, ASCII data, or the present value of the
assembly location counter represented by the period. Expressions are
evaluated from left to right. Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands of a .BYTE
directive (Section 2.8.5) are evaluated as word expressions before
truncation to the low-order eight bits.

A missing term or expression will be interpreted as 0. A missing
operator will be interpreted as +. The error code Q (Questionable
syntax) will be generated for a missing operator. For example,

A + -100 ; OPERAND MISSING
will be evaluated as A + 0 - 100, and
TAG ! LA 177777 :OPERATOR MISSING

will be evaluated as TAG ! LA+177777.

2.4.1 Numbers

The Assembler accepts both octal and decimal numbers. Octal numbers
consist of the digits 0 through 7 only. Decimal numbers consist of
the digits 0 through 9 followed by a decimal point. If a number
contains an 8 or 9 and is not followed by a decimal point, the N error
code (see Section 2.10) will be printed and the number interpreted as
decimal. Negative numbers may be expressed as a number preceded by a
minus sign rather than in a two's complement form. Positive numbers
may be preceded by a plus sign although this is not required.

If a number is tbo large to fit into 16 bits, the number is truncated
from the left. 1In the assembly listing the statement will be flagged
with a Truncation (T) error.

2=-7

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.4.2 Arithmetic and Logical Operators

The arithmetic operators are:
+ indicates addition or a positive number
- indicates subtraction or a negative number
The logical operators are defined and illustrated below.
& indicates the logical AND operation

! indicates the logical inclusive OR operation

AND OR
0&0=0 0! 0=0
0&1=0 0t1-=1
1&0=0 110=1
l1&l1l=1 11 1=1

2.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null,
rubout, carriage return, 1line feed, or form feed) is assigned the
7-bit ASCII value of the character (see Appendix A). For example,

A
is assigned the value 101 (octal).

When preceded by a quotation mark, two ASCII characters (not including
null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each
7-bit value 1is stored in an 8-bit byte and the bytes are combined to
form a word. For example, "AB will store the ASCII value of A in the
low-order (even) byte and the value of B in the high-order (odd) byte:

high-order byte low-order byte

|
|
|
!
|
|

B's value = 1 0 2 1 0 1 = A's value
0 100 001 001 000 001
~—— —— ~—— ~—~— -
0 4 1 1 0 1
"AB = 041101

2.5 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. (Note
difference of Program Counter. . = PC. See Section 2.6.) When used
in the operand field of an instruction, it represents the address of
the first word of the instruction. When used in the operand field of
an assembler directive, it represents the address of the current byte
or word. For example,

2-8

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Al MOV 4.y RO REFERS TO LOCATION Ay T E.»

FTHE ADURESS OF THE MOV INSTRUCTION

(# is explained in Section 2.6.9).

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the 1location where
the object data is stored may be changed by a direct assignment
altering the location counter.

.=expression

The expression defining the period must not contain forward references
or symbols that vary from one pass to another. Examples:

+u=GG0
FIRST: MOV ++1L0yCOUNT 3THE LAREL FIRST HAS THE VALUECDCTAL)
Fotl0Q EQUALS S10C0CTALY . THE CONTENTS
FOF THE LOCATION $5100CTAL) WILL BE DE-
FFOSITED IN LOCATION COUNT.
s =20 $THE ASSEMRLY LOCATION COUNTER NOW
SHAS A VUALUE OF S2000CTAL)Y .
SECOND:? MOV . » INDEX STHE LLAREL SECOND HAS THE VALUE S20C0CTAL) .

FTHE CONTENTS OF LOCATION 320C0CTAL) »
FTHAT I8y THE RINARY CODE FOR THE
FINSTRUCTION ITSELFs WILL RE DEFOSITED
FIN LOCATION INDEX.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

.=.+100

will reserve 100(octal) bytes of storage space in the program. The
next instruction will be stored at 1100.

2.6 ADDRESSING

The Program Counter (register 7 of the eight general registers) always
contains the address of the next word +to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble (see Section 2.6.11), the action of the Program Counter must
be understood. The key rule is:

Whenever the processor implicitly uses the Program Counter (PC) to
fetch a word from memory, the Program Counter is automatically
incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two,
so that it 1is pointing to the next word in memory; and, if an
instruction uses indexing (see Sections 2.6.7, 2.6.8, and 2.6.10), the
processor uses the Program Counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now points
to the next word.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The following conventions are used in this section:
a. Let E be any expression as defined in Section 3.4.
b. Let R be a register expression. This 1is any expression
containing a term preceded by a % character or a symbol

previously equated to such a term.

Examples:

RO = %0 ; GENERAL REGISTER 0
Rl = RO + 1 ;GENERAL REGISTER 1
R2 = 1 + %1 ;GENERAL REGISTER 2

c. Let ER be a register expression or an expression in the range
0 to 7 inclusive.

d. Let A be a general address specification which produces a
6-bit address field as described in the PDP-11 Handbook.

The addressing specification, A, may now be explained in terms of E,
R, and ER as defined above. Each will be illustrated with the single
operand instruction CLR or double operand instruction MOV.

2.6.1 Register Mode

The register contains the operand.

Format: R

Example:
RO = %0 ;DEFINE RO AS REGISTER 0
CLR RO ; CLEAR REGISTER 0

2.6.2 Deferred Register Mode

The register contains the address of the operand.

Format: @R or (ER)
Example:
ClLFE @Rl sCLEAR THE WORD AT THE
ar FANNRESS CONTAINED IN

CLR T PREGISTER 1.

2.6.3 Autoincrement Mode

The contents of the register are incremented immediately after being
used as the address of the operand.!

La. Both JMP and JSR instructions using mode 2 may increment the
register before or after its use, depending on what PDP-11 processor
is being used. This mode should be avoided.

b. In double operand instructions of the addressing form %R, (R)+ or
gR,-(R) where the source and destination registers are the same, the
results may be different when executed on different PDP-11 processors.
The use of these forms should be avoided!

2-10

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Format: (ER) +

Examples:

CLR (ROY+ sCLEAR WORDS AT ANDRESSES
CLR (RO+3D+ SCONTAINED IN REGISTERS O» 3y AND 2 AND
CLR 23+ FINCREMENT REGISTER CONTENTS

$BY TWO.

2.6.4 Deferred Autoincrement Mode

The register contains the pointer to the address of the operand.
contents of the register are incremented after being used.

Format: @ (ER) +
Example
CLR @3+ FCONTENTS OF REGISTER 3 FOINT

$TO ADDRESS OF WORD TO RE CLEARED
FBEFORE BEING INCREMENTED RY TWO

2.6.5 Autodecrement Mode

The contents of the register are decremented before being used as
address of the operand.’

Format: - (ER)

Examples:

CLE - (RO) FOECREMENT CONTENTS OF REG-
CLE ~(RO+3) FISTERS O 3y AND 2 REFORE USING
CLRE —-(2) $A8 ADDRESSES OF WORDS TO RE CLEARED

2.6.6 Deferred Autodecrement Mode

The contents of the register are decremented before being used as
pointer to the address of the operand.

Format: @- (ER)
Example:
CLR @) SOECREMENT CONTENTS OF REG. 2

SREFORE USING A% POINTER TO ADURESS
sOF WORD TO RE CLEARED

2.6.7 1Index Mode
Format: E (ER)

The value of an expression E is stored as the second or third word

The

the

the

of

the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

1 .
:See previous footnote.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Examples:

CLR X+2(R1) sEFFECTIVE ADDRESS IS X+2 FLUS
s THE CONTENTS OF REGISTER 1

CLR -2(3) JEFFECTIVE ADDRESS IS -2 FLUS
$THE CONTENTS OF REGISTER 3

2.6.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the
address of the operand.

Format: QE (ER)
Example:
CLR @R14¢4) $IF REGISTER 4 HOLDS 100y AND LOCA-
STION 114 HOLDS 2000y LOC. 2000 1S
$CLEARED

2.6.9 Immediate Mode and Deferred Immediate (Absolute) Mode

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It is assembled as an
autoincrement of register 7, the PC. '

Format: #E

Examples:

MOV #1000y RO SMOVE AN OCTAL 100 TO REGISTER 0

MOV #Xy RO sMOVE THE VALUE OF SYMROL X TO
SREGISTER ©

The operation of this mode is explained as follows:

The statement MOV #100,R3 assembles as two words. These are:

Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to fetch
the operand (the second word of the instruction) before being
incremented by two, to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

N
I

12

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.6.10 Relative and Deferred Relative Modes

Relative Mode is the normal mode for memory references.

Format E
Examples:
CLR 100 SCLEAR LLOCATION 100

MOV XY FMOVE CONTENTS QF LOCATION X TO
SLOCATION Y

This mode is assembled as Index Mode, wusing 7, the PC, as the
register. The base of the address calculation, which is stored in the
second or third word of the instruction, is not the address of the
operand. Rather, it 1is the number which, when added to the PC,
becomes the address of the operand. Thus, the base is X - PC. The
operation is explained as follows.

If the statement MOV 100,R3 is assembled at 1location 20, then the
assembled code is:

Location 20: 0 1 66 7 0 3
Location 22: 0 0 0 0 5 4

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base 1is added to the designated register. That is, Base + PC = 54 +
24 = 100, the operand address.

Since the Assembler considers . as the address of the first word of
the instruction, an equivalent statement would be

MOV 100-.-4(PC),R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance (in bytes)
between the operand and the current PC. If the operator and its
operand are moved in memory so that the distance between the operator
and data remains constant, the instruction will operate correctly.

If E is preceded by @, the expression's value is the pointer to the
address of the operand.

2.6.11 Table of Mode Forms and Codes (6-bit (A) format only - see
Section 3.7)

Each instruction takes at least one word. Operands of the first six
forms listed below do not increase the length of an instruction. Each
operand in one of the other forms however, increases the instruction
length by one word.

Form Mode Meaning

R On Register
None of these @R or (ER) 1n Register n deferred
forms increase (ER) + 2n Autoincrement
the instruction @ (ER) + 3n Autoincrement deferred
length. - (ER) 4N Autodecrement

@- (ER) 5N Autodecrement deferred

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

E (ER) 6n Index
Any of these QE (ER) 7n Index deferred
forms adds a #E 27 Immediate
word to the Q#E 37 Absolute memory
instruction reference
length E 67 Relative

QE 77 Relative deferred

reference
Notes:
1. An alternate form for @R is (ER). However, the form @(ER) is

equivalent to QO (ER).

2. The form @#E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the
operand and the PC. Thus, the statement CLR @#100 will clear
location 100 even if the instruction is moved from the point
at which it was assembled.

2.7 INSTRUCTION FORMS

The instruction mnemonics are given in Appendix B. This section
defines the number and nature of the operand fields for these
instructions.

In the table that follows, let R, E, and ER represent expressions as
defined in Section 3.4, and let A be a 6-bit address specification of
the forms:

E Q@E
R @R or (R)
(ER)+ @(ER)+
-(ER) @-(ER)
E (ER) QE (ER)
#E Q#E
Table 2-1
Instruction Operand Fields
Instruction Form Example
Double Operand Op A,A MOV (R6)+,@QY
Single Operand Op A CLR =(R2)
Operate Op HALT
Branch Op E : BR X+2
BLO .-4
where -128 <(E-.-2)/2<127
Subroutine Call JSR ER,A JSR PC,SUBR
Subroutine Return RTS ER RTS PC
EMT/TRAP Op EMT
or
Op E EMT 31
where 0<E<377 (octal)

2-14

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The branch instructions are one word instructions. The high byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

a) Extend the sign of the offset through bits 8-15.

b) Multiply the result by 2. This creates a word offset rather
than a byte offset.

c) Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.
Since PC = .+2, we have
Byte offset = (E-.-2)/2 truncated to eight bits.

The EMT and TRAP instructions do not use the 1low-order byte of the
word. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word. However, if the
expression is too big (>377(octal)) it is truncated to eight bits and
a Truncation (T) error occurs.

2.8 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops direct the assembly
process and may denerate data. They may be preceded by a label and
followed by a comment. The assembler directive occupies the operator
field. Only one directive may be placed in any one statement. One or
more operands may occupy the operand field or it may be void --
allowable operands vary from directive to directive.

2.8.1 .EOT

The .EOT directive indicates the physical End-of-Tape though not the
logical end of the program. If the .EOT is followed by a single line
feed or form feed, the Assembler will still read to the end of the
tape, but will not process anything past. the .EOT directive. If .EOT
is followed by at least two line feeds or form feeds, the Assembler
will stop before the end of the tape. Either case is proper, but it
should be understood that even though it appears as if the Assembler
has read too far, it actually hasn't.

If a .EOT is embedded in a tape, and more information to be assembled
follows it, .EOT must be immediately followed by at least two line
feeds or form feeds. Otherwise, the first 1line following the .EOT
will be lost.

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as
one program. The last tape is normally terminated by a .END directive
(see Section 3.8.3) but may be terminated with .EOT (see .END
emulation in Section 3.9.4).

2-15

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.8.2 .EVEN

The .EVEN directive ensures that the assembly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored.

2.8.3 .END

The .END directive indicates the 1logical and physical end of the
source program. The .END directive may be followed by only one
operand, an expression indicating the program's entry point.

At load time, the object tape will be 1loaded and program execution
will begin at the entry point indicated by the .END directive. If the
entry point is not specified, the Loader will halt after reading in
the object tape. ‘

2.8.4 .WORD

The .WORD assembler directive may have one or more operands, separated
by commas. Each operand is stored in a word of the object program.
If there is more than one operand, they are stored in successive
words. The operands may be any legally formed expressions. For
example,

=] 420

SAl=0

SWORD 1277538 « +42 800 $8TORED IN WORDS 14205 1422y AND
$1424 WILL RE L7735335y 1424 AND O,

Values exceeding 16 bits will be truncated from the 1left, to word
length.

A .WORD directive followed by one or more void operands separated by
commas will store zeros for the void operands. For example,

« =1 430 $ZERQy FIVEy AND ZERO ARE STORED
+WORD »5y sIN WORDS 1430s 1432y AND 1434,

An operator field 1left blank will be interpreted as the .WORD
directive 1if the operand field contains one or more expressions. The
first term of the first expression in the operand field must not be an
instruction or assembler directive unless preceded by a +, -, or one
of the logical operators ! or &. For example,

s 440 FTHE OP-CODE FOR MOVe WHICH I8 010000y
LAREL S MOV LAREL $I8 BTORED IN LOCATION 440. 440 I8
FETORED IN LOCATION 442,

Note that the default .WORD will occur whenever there is a 1leading
arithmetic or 1logical operator;, or whenever a 1leading symbol is
encountered which is not recognized as an instruction mnemonic or
assembler directive. Therefore, 1if an instruction mnemonic or
assembler directive is misspelled, the .WORD directive is assumed and
errors will result. Assume that MOV is spelled incorrectly as MOR:

MOR A,B
Two error codes can result: a Q will occur because an expression

operator is missing between MOR and A, and a U will occur if MOR is
undefined. Two words will be generated; one for MOR A and one for B.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.8.5 .BYTE

The .BYTE assembler directive may have one or more operands separated
by commas. Each operand is stored in a byte of the object program.
If multiple operands are specified, they are stored in successive
bytes. The operands may be any 1legally formed expression with a
result of 8 bits or less. For example,

SAM=9 SETORED IN LOCATION 410 WILL RE
=410 060 (THE 0QCTAL EQUIVALENT OF 48).
+BYTE 48,9 5AM JIN 411 WILL RE 005,

If the expression has a result of more than 8 bits, it will be
truncated to its 1low-order 8 bits and will be flagged as a T error.
If an operand after the .BYTE directive 1is 1left wvoid, it will be
interpreted as zero. For example,

+ =420 FZERO WILL RE STORED IN
+BYTE » SRYTES 420y 421 AND 422,

2.8.6 .ASCII

The .ASCII directive translates strings of ASCII characters into their
7-bit ASCII codes with the exception of null, rubout, carriage return,
line feed, and form feed. The text to be translated is delimited by a
character at the beginning and the end of the text. The delimiting
character may be any printing ASCII character except colon and equal
sign and those used in the text string. The - 7-bit ASCII code
generated for each character will be stored in successive bytes of the
object program. For example,

«=E000 sTHE ASCIT CORE FOR "Y" WILL RE
+ASCIT /YES SETORED IN 500y THE CODE FOR “E®
sIN S01y THE CODE FOR "§" IN 502.

SASCIT /543727 STHE DELIMITING CHARACTER QCCURS
FAMONG THE QPERANDS. THE ASCII
sCODES FOR "3y "+"y AND "3" ARE
FETORED IN RBYTES 503y G504y AND
$E05. 2/ 18 NOT ASSEMRLED.

The ASCII directive must be terminated by a space or a tab.

2.9 OPERATING PROCEDURES

2.9.1 Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-11A
statements into an absolute binary tape. To do this, two or three
passes are necessary. On the first pass the Assembler creates a table
of user-defined symbols and their associated values, and a list of
undefined symbols is printed on the teleprinter. On the second pass
the Assembler assembles the program and punches out an absolute binary
tape and/or outputs an assembly listing. During the third pass (this
pass 1s optional) the Assembler punches an absolute binary tape or
outputs an assembly listing. The symbol table (and/or a 1list of
errors) may be output on any of these passes. The input and output
devices as well as various options are specified during the initial
dialogue (see Section 3.3.9). The Assembler initiates the dialogue
immediately after being loaded and after the last pass of an assembly.

2-17

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.9.2 Loading PAL-11A

PAL-11A is loaded by the Absolute Loader (see Chapter 6 for operating
procedures) . Note that the start address of the Absolute Loader must
be in the Switch Register when loading the Assembler. This is because
the Assembler tape has an initial portion which clears all of core up
to the address specified in the Switch Register, and jumps to that
address to start loading the Assembler.

2.9.3 1Initial Dialogue

After being loaded, the Assembler initiates dialogue by printing on
the teleprinter:

*S

meaning "What is the Source symbolic input device?" The response may
be:

H meaning High-speed reader
L meaning Low-speed reader
T meaing Teletype keyboard

If the response is T, the source program must be typed at the terminal
once for each pass of the assembly and it must be identical each time
it is typed.

The device specification is terminated, as is all user response, by
typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will

erase the 1immediately preceding character if it is on the current
line. Typing CTRL/U will erase the whole line on which it occurs.

After the *S question and response, the Assembler prints:
*B

meaning "What is the Binary output device?" The responses to *B are
similar to those for *S:

H meaning High-speed punch
L meaning Low-speed punch

</ meaning do not output binary tape
(<’ denotes typing the RETURN key)

In addition to I/0 device specification, various options may be
chosen. The binary output will occur on the second pass unless /3
(indicating the third pass) is typed following the H or L. Errors
will be listed on the same pass if /E is typed. If /E is typed in
response to more than one inquiry, only the last occurrence will be

honored. It 1is strongly suggested that the errors be listed on the
same pass as the binary output, since errors may vary from pass to
pass. If both /3 and /E are .typed, /3 must precede /E. The response

is terminated by typing the RETURN key. Examples:

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

*B L/E Binary output on the low-speed punch and the
errors on the the teleprinter, both during
the second pass.

*B H/3/E Binary output on the high-speed punch and the

T errors on the teleprinter, both during the
third pass.
*B </ Typing just the RETURN key will cause the

Assembler to omit binary output.
After the *B question and response, the Assembler prints:
*L

meaning "What is the assembly Listing output device?" The response to
*L may be:

L meaning Low-speed punch (outputs a tab as a tab-rubout)
H meaning High-speed punch

T meaning Teleprinter (outputs a tab as multiple spaces)
P meaning line Printer (8K vérsion only)

</ meaning do not output listing
(< denotes typing the RETURN key)

After the I/O device specification, pass and error 1list options
similar to those for *B may be chosen. The assembly listing will be
output to the third pass unless /2 (indicating the second pass) is
typed following H, L, T, or P. Errors will be 1listed on the
teleprinter during the same pass if /E is typed. If both /2 and /E
are typed, /2 must precede /E. The response is terminated by typing
the RETURN key. Examples:

*L L/2/E Listing on low-speed punch and errors
on teleprinter during second pass.

*L H Listing on high-speed punch during
third pass.

*L </ The RETURN key alone will cause the
Assembler to omit listing output.

After the *L question and response, the final question is printed on
the teleprinter: :

*T

meaning "What is the symbol Table output device?" The device
specification is the same as for the *L question. The symbol table
will be output at the end of the first pass unless /2 or /3 1is typed
in response to *T. The first tape to be assembled should be placed in
the reader before typing the RETURN key because assembly will begin
upon typing the RETURN key in response to the *T question. The /E
option is not a meaningful response to *T. Example:

*T T/3 Symbol table output on teleprinter at
end of third pass.

*T </ Typing just the RETURN key will cause the
Assembler to omit the symbol table output.

2-19

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The symbol table is printed alphabetically, four symbols per line.
Each symbol printed is followed by its identifying characters and by
its value. If the symbol is undefined, six asterisks replace its
value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct-assignment, register symbol,
etc. The following examples show the various forms:

ABCDEF 001244 (Defined label)

R3 = $000003 (Register symbol)

DIRASM = 177777 (Direct assignment)

XYZ = *hkkkk (Undefined direct assignment)
R6 = grA KKk K (Undefined register symbol)
LABEL = kkkkkk (Undefined label)

Generally, undefined symbols (including 1labels) will be 1listed as
undefined direct assignments.

Multiply-defined symbols are not flagged in the symbol table printout
but they are flagged wherever they are used in the program.

It is possible to output both the binary tape and the assembly listing
on the same pass, thereby reducing the assembly process to two passes
(see Example 1 below). This will happen automatically unless the
binary device and the listing device are conflicting devices or the
same device (see Example 2 below). The only conflicting devices are
the teleprinter and the low-speed punch. Even though the Assembler
deduces that three passes are necessary, the binary and listing can be
forced on pass 2 by including /2 in the responses to *B and *L (see
Example 3 below).

Example 1. Runs 2 passes:

*S H High-speed reader
*B H High-speed punch
*L P Line Printer

*T T Teleprinter

Example 2. Runs 3 passes:

*S H High-speed reader
*B H High-speed punch
*L H High-speed punch
*T T Teleprinter

Example 3. Runs 2 passes:

*S H High-speed reader

*B H/2 High-speed punch on pass 2
*L H/2 High-speed punch on pass 2
*T T Teleprinter

2-20

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Note that there are several cases where the binary output can be
intermixed with ASCII output:

a. *B H/2 Binary and
*L H/2 : listing to punch on pass 2
b. *B L/E Binary to low-speed punch and
error listing to teleprinter
(and low-speed punch)
c. *B L/2/E Binary, error listing, and
*L T/2 listing to low-speed punch.

The binary so generated is loadable by the Absolute Loader as long as
there are no CTRL/A characters in the source program. The start of
every block on the binary tape is indicated by a 001 and the Absolute
Loader ignores all information wuntil a 001 is detected. Thus, all
source and/or error messages will be ignored if they do not contain
any CTRL/A characters (octal 001).

If a character other than those mentioned is typed in response to a
question, the Assembler will ignore it and print the question again.
Example:

*S H High-speed reader
*B 0 Q is not a valid response
*B The question is repeated

If at any time you wish to restart the Assembler, type CTRL/P.

When no passes are omitted or error options specified, the Assembler
performs as follows:

PASS 1: Assembler creates a table of user-defined symbols and their
associated values to be used in assembling the source to
object program. Undefined symbols are 1listed on the
teleprinter at the end of the pass. The symbol table is also
listed at this time. If an illegal location statement of the
form .=expression 1is encountered, the line and error code
will be printed out on the teleprinter before the assembly
proceeds. An error in a location statement is usually a
fatal error in the program and should be corrected.

PASS 2: Assembler punches the object tape, and prints the pass error
count and undefined location statements on the teleprinter.

PASS 3: Assembler prints or punches the assembly program 1listing,
undefined 1location statements, and the pass error count on
the teleprinter.

The functions of passes 2 and 3 will occur simultaneously on pass 2 if
the binary and listing devices are different, and do not conflict with
each other (low-speed punch and Teleprinter conflict).

The follo

Printout
*S
*B
*L

*T

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

wing table summarizes the initial dialogue questions:
Inquiry
What is the input device of the Source symbolic tape?
What is the output device of the Binary object tape?
What is the output device of the assembly Listing?

What is the output device of the symbol Table?

The following table summarizes the legal responses:

Character
T
L
H
P
/1
/2
/3
/E

</

Response Indicated
Teletype keyboard or printer
Low-speed reéder or punch
High-speed reader or punch
Line Printer (8K version only)
Pass 1
Pass 2
Pass 3

Errors listed on same pass (not meaningful in response to *S
or *T)

Omit function

Typical examples of complete initial dialogues:

For minimal PDP-11 configuration:

*S L Source input on low-speed reader
*B L/E Binary output on low-speed punch
Errors during same (second) pass
*L T Listing on teleprinter during pass 3
*T T Symbol table on teleprinter at end of pass 1

For a PDP-11 with high-speed I/O devices:

*Ss H Source input on high-speed reader
*B H/E Binary output on high-speed punch,
Errors during same (second) pass.
*L No listing
*T T/2 Symbol table on teleprinter at end of pass 2

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.9.4 Assembly Dialogue

During assembly, the Assembler will pause to print on the teleprinter
various messages to indicate that you must respond in some way before
the assembly process can continue. You may also type CTLR/P, at any
time, if you wish to stop the assembly process and restart the initial
dialogue, as mentioned in the previous section.

When a .EOT assembler directive is read on the tape, the assembler
prints:

EOF ?

and pauses. During this pause, the next tape is placed in the reader,
and RETURN is typed to continue the assembly.

If the specified assembly listing output device 1is the high-speed
punch and if it is out of tape, or if the device is the Line Printer
and is out of paper, the Assembler prints on the teleprinter:

EOM ?

and waits for tape or paper to be placed in the device. Type the
RETURN key when the tape or paper has been replenished; assembly wil
continue.

Conditions causing the EOM? message for an assembly 1listing device
are:

HSP LPT
No power No power -
No tape Printer drum gate open
Too hot
No paper

There is no EOM if the line printer is switched off-line, although
characters may be lost for this condition as well as for an EOM. If
the binary output device is the high-speed punch and if it is out of
tape, the Assembler prints:

EOM ?
*S

The assembly process is aborted and the initial dialogue 1is begun
again.

When a .END assembler directive is read on the tape, the Assembler
prints:

END ?

and pauses. During the pause the first tape is placed in the reader,
and the RETURN key is typed to begin the next pass. On the last pass,
the .END directive causes the Assembler to begin the initial dialogue
for the next assembly.

If you are starting the binary pass and the binary is to be punched on
the 1low-speed punch, turn the punch on before typing the RETURN key
for starting the pass. The carriage return and line feed characters
will be punched onto the binary tape, but the Absolute Loader will
ignore them.

2-23

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

If the last tape ends with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by
the RETURN key. The Assembler will then print:

END ?

and wait for another RETURN before starting the next pass. Example:

EQF ? E
2

NOTE

When a .END directive is emulated with
an E response to the EOF? message, the
error counter is incremented.

To avoid incrementing the error counter,
place a paper tape containing only the
line .END in the reader and press the
RETURN key instead of wusing the E
response.

2.9.5 Assembly Listing

PAL-11A produces a side-by-side assembly listing of symbolic source
statements, their octal equivalents, assigned absolute addresses, and
error codes as follows:

EELLLLLL 000000 $58:s464.8
' 0oaoo0o
aonoo0o

The E's represent the error field. The L's represent the absolute
address. The O's represent the object data in octal. The S's
represent the source statement. While the Assembler accepts
72 (decimal) characters per line on input, the listing is reduced by
the 16 characters to the left of the source statement.

The above represents a three-word statement. The second and third
words of the statement are 1listed under the command word. No
addresses precede the second and third word since the address order is
sequential.

The third line is omitted for a two-word statement; both second and
third lines are omitted for a one-word statement.

For a .BYTE directive, the object data field is three octal digits.
For a direct assignment statement, the wvalue of the defining
expression is given 1in the object code field although it is not
actually part of the code of the object program.

Each page of the listing is headed by a page number.

2.10

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

ERROR CODES

The error codes printed beside the octal and symbolic code 1in the
assembly listing have the following meanings:

Error Code Meaning

A Addressing error. An address within the instruciton is
incorrect.

B Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location counter
is updated by +1.

D Doubly-defined symbol referenced. Reference was made to a
symbol which is defined more then once.

I Illegal character detected. Illegal characters which are
also non-printing are replaced by a ? on the listing.

L Line buffer overflow. Extra characters on a line (more than
72 (decimal)) are ignored.

M Multiple definition of a label. A 1label was encountered
which was equivalent (in the first @ six characters) to a
previously encountered label.

N Number containing 8 or 9 has no decimal point.

P Phase error. A label's definition or value varies from one
pass to another.

Q Questionable syntax. There are missing arguments or the
instruction scan was not completed or a carriage return was
not immediately followed by a line feed or form feed.

R Register-type error. An invalid use of or reference to a
register has been made.

S Symbol table overflow. When the quantity of wuser-defined
symbols exceeds the allocated space available in the user's
symbol table, the assembler outputs the current source 1line
with the S error code, then returns to the initial dialogue.

T Truncation error. A number generated more than 16 bits of
significance or an expression generated more than 8 bits of
significance during the use of the .BYTE directive.

U Undefined symbol. An undefined symbol was encountered during

the evaluation of an expression. Relative to the expression,

the undefined symbol is assigned a value of zero.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.11 SOFTWARE ERROR HALTS

PAL-11A loads all unused trap vectors with the code

.WORD .+2,HALT

so that if the trap does occur, the processor will halt in the second
word of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt. In
addition to the halts which may occur in the vectors, the standard IOX
error halt at location 40 may occur (see Chapter 7).

Address of Halt Meaning
12 Reserved instruction executed
16 Trace trap occurred
26 Power fail trap
32 EMT executed
40 IOX detected error

See Appendix B for summaries of PAL-11A features.

CHAPTER 3

LINK-11S LINKER

3.1 INTRODUCTION

3.1.1 General Description

LINK-11S (stand alone) is a PDP-11 system program designed to link and
relocate programs previously assembled by PAL-11S. The user can
separately assemble the main program and each of its various
subroutines without assigning an absolute load address at assembly
time. The binary output of assembly (called an object module) is
processed by LINK-11S to:

1. Relocate each object module and assign absolute addresses.

2. Link the modules by correlating global symbols defined in one
module and referenced in other modules.

3. Print a load map which displays the assigned absolute
addresses.

4. Punch a load module which can subsequently be loaded (by the
Absolute Loader) and executed.

Some of the advantages of using PAL-11S and LINK-11S are:

1. The program is divided into segments (usually subroutines)
which are assembled separately. If an error is discovered in
one segment, only that segment needs to be reassembled. The
new object module 1is then 1linked with the other object
modules.

2. Absolute addresses need not be assigned at assembly time.
The Linker automatically assigns absolute addresses. This
keeps programs from overlaying each other. This also allows
subroutines to change size without influencing the placement
of other routines.

3. Separate assemblies allow the total number of symbols to
exceed the number allowed in a single assembly.

4. 1Internal symbols (symbols which are not global) need not be
unique among object modules. Thus, naming rules are required
only for global symbols when separate programmers prepare
separate subroutines of a single program.

5. Subroutines may be provided for general use in object module
form to be linked into the user's program.

LINK-11S LINKER

LINK-11S is designed to run on an 8K PDP-11 with an ASR-33. A PCl1
(high speed paper tape reader and punch) and an LPl11l (line printer)
may be used if available. The PCll significantly speeds up the
linking process. An LP11 provides a fast device for the load map
listing.

3.1.2 Absolute and Relocatable Program Sections

A program assembled by PAL-11S may consist of an absolute program
section, declared by the .ASECT assembler directive, and a relocatable
program section, declared by the .CSECT assembler directive. (If a
program has neither an .ASECT or .CSECT directive, the assembler
implicitly assumes a .CSECT directive.) The program and data 1in the
absolute section are assigned absolute addresses as specified by the
location counter setting statements (.=x). The Linker assigns
absolute addresses to the program and data in the relocatable section.
Addressses are normally assigned such that the relocatable section is
at the high end of memory. The assignment of addresses may be
influenced by command string options (see Section 3.3.2).

The Linker appropriately modifies all instructions and/or data as
necessary to account for the relocation of the control section.

LINK-11S can handle object modules containing named control
(relocatable) sections as generated by PAL-11R. However, PAL-11S can
create only the unnamed control section (which has the special default
name of 6 blanks) and the absolute section (with the special name
. ABS.). The unnamed control section 1is internal to each object
module. That 1is, every object module may have an unnamed control
section (each with the name 6 blanks) but the Linker treats them
independently. Each 1is assigned an absolute address such that they
occupy mutually exclusive areas of memory. Named control sections, on
the other hand, are treated globally. That is, if different object
modules each have control sections with the same name, they are all
assigned the same absolute 1load address and the size of the area
reserved or loading of the section is the maximum of the sizes of each
section. Thus, named control sections allow the sharing of data
and/or programs among object modules. This is very similar to the
handling and function of labelled COMMON in FORTRAN IV. A restriction
of LINK-11S is that the name of a control section must not be the same
as the name of a global entry symbol, as this results in multiple
definition errors.

3.1.3 Global Symbols

Global symbols provide the 1links for communication between object
modules = (or assemblies). Global symbols are created with the .GLOBL
assembler directive. Symbols which are not global are called internal
symbols. If the global symbol is defined (as a label or direct
assignment) in an object module it is called an entry symbol, and
other object modules may reference it. If the global symbol is not
defined in the object module it is an external symbol. It is assumed
to be defined (as an entry symbol) in some other object module.

As the Linker reads the object modules it records all the global
symbol definitions and references. It then modifies the instructions
and/or data that reference the global symbols.

LINK-11S LINKER

3.2 INPUT AND OUTPUT

3.2.1 Object Module

Input to LINK-11lS is the object module. This is the output of PAL-11S
(or any other program which can create an object module). The Linker
reads each object module twice; that is, it is a two-pass processor.

On pass 1, the Linker reads each object module to gather enough
information to assign absolute addresses to all relocatable sections
and absolute values to all globals. This information appears 1in the
global symbol directory (GSD) of the object module.

On pass 2, the Linker reads all of each object module and produces the
load module (see Section 3.2.2). The data gathered on pass 1 guides
the relocation and linking process on pass 2.

3.2.2 Load Modules

The normal output of the Linker is a load module which may be loaded
and run.

A load module consists of formatted binary blocks holding absolute
load addresses and object data as specified for the Paper Tape System
Absolute Loader and the PDP-11 Disk Monitor. The first few words of
data are the communications directory (COMD) and have an absolute load
address equal to the lowest relocated address of the program. The
absolute 1loader 1loads the COMD at the specified address but the
program subsequently overlays it.' The disk monitor loader expects the
COMD and 1loads it where the monitor wants it. The end of the load
module is indicated by a TRA block; that is, a block containing only
a load address. The byte count in the formatted binary block is 6 on
this block; on all other blocks the byte count is larger than 6. The
TRA (transfer address) is selected by the Linker to be the first even
transfer address seen. Thus, if four object modules are 1linked
together and if the first and second had a .END statement, the third
had a .END A and the fourth had a .END B, the transfer address would
be A of module three.

"The overlaying of the COMD by the relocated program 1is a trick to
allow the Absolute Loader to handle 1load modules with a COMD.
However, a problem arises if a load module is to be 1loaded by the
absolute loader and either of the following conditions exists:

a. The object modules used to <construct the 1load module
contained no relocatable code; or

b. The total size of the relocatable code is 1less than 20
(decimal) bytes (the size of the COMD).

In either case, there is not enough relocatable code to overlay the
COMD which means the COMD will load into parts of memory not intended
to be altered by the user. The COMD's load address, selected by the
Linker in the above <cases, 1is such that it will be up against the
current top of memory (see *T option in section 3.3.1). If the top
happens to be very 1low, the Linker does not allow the COMD to be
loaded below address 0; it loads it at 0.

LINK-11S LINKER

3.2.3 Load Map

The load map provides several types of information concerning the load
module's make-up. The map begins with an indication of the low and
high limits of the relocatable code and the transfer address. Then
there 1is a section of the map for each object module included in the
linking process. Each of these sections begins .with the module name
followed by a 1list of the control sections and the entry points for
each control section. For each control section, the base of the
section (its 1low address) and its size (in bytes) is printed to the
right of the section name (enclosed in angle brackets). Following
each section name 1is a 1list of entry points and their addresses.
After all information has been printed for each object module, any
undefined symbols are listed. ©Note that modules are loaded such that
if modules A, B and C are linked together, A is 1lowest and C is
highest in memory.

The format is quite self-explanatory as can be seen from the following
example:

LOAD MAP

TRANSFER ADDRESS: 037434

LOW LIMIT: B37406

HIGH LIMIT: @37460

ke ke 3k ko ok ok koK

MODULE MODI!

SECTION ENTRY ADDRESS SIZE

<. ABS.> 00000 000030
< > P37406 G20044
X3 @37452
X4 237440
XS 237450
X7 B37430

oKk koK K koK kk

- MODULE MOD2
SECTION ENTRY ADDRESS SIZE

< > @37452 QQOBO6
X1 @37452
X2 237452

skok ok kook ok ok skek ok

%>k >k ok vk ok ok ok kK

UNDEFINED REFERENCES

X6

PASS 2

*

LINK-11S LINKER

3.3 OPERATING PROCEDURES

3.3.1 Loading and Command String

The Linker is loaded by the Absolute Loader and is self-starting. It
uses a simple command dialogue which allows the object module, load
module and load map devices to be specified. During pass 1 and pass
2, the Linker asks for each object module individually.

Operation begins by the linker typing its name and version. This is
followed by the input option printed as *IA. The responses are:

</ Read object module from HSR.

HS/ Read object module from HSR.

L/ Read object module from LSR.

The input option is followed by the output option *OA. The responses
are:

</ Punch load module on HSP.
He' Punch load module on HSP.
L/ Punch load module on LSP.
LINK-11S asks if a load map is desired by typing *MA. The legal

responses are </ for no map, T</ or H./ or P_./for a map on the
teleprinter, high-speed punch, or line printer, respectively.

The next two options concern the placement of the relocated object
program in memory. The standard version of the Linker assumes it is
linking for an 8K machine. It relocates the program such that it 1is
as high as ©possible in 8K but leaves room for the Absolute and Boot
Loaders. These assumed values may be changed by altering parameters
HGHMEM (highest 1legal memory address +1) and ALODSZ (number of bytes
allocated for Absolute Loader and Boot Loader) and reassembling the
Linker. The user may control where a program is relocated to with the
*T and *B options. After the option *TA has been typed, the user may
respond as follows:

</ Relocate so that program 1is up against the
current top of memory. If the top has not
been changed, then the top is the assembled-in
top (HGHMEM-ALODSZ). The standard assumption
is 16272 decimal (16384-112) or 37460 octal.

N/ N is an octal number (unsigned) which defines
a new top address.

If a new top is specified, the *B option is suppressed.
After the option *BA has been printed the user may respond as follows:
</ Use current top of memory.
NG/ N is an unsigned octal number which defines
the bottom address of the program. That is, a
new top of memory is calculated so that the

bottom of the program corresponds with N.

Once a top of memory has been calculated (by *T or *B), that value is
used until it is changed.

LINK-11S LINKER

LINK-11S indicates the start of pass one by typing PASS 1. The input
is requested. by the Linker, one tape at a time, by typing *A. The
legal responses are:

</ Read a tape and request more input.
U</ List all undefined globals on the teleprinter
: and request more input.
EL./ End of input. If there are undefined globals,
list them on the teleprinter and request more
input. Otherwise print the 1load map, if

requested, and enter pass 2.

C</ End of input. Assign 0 to any undefined
globals, print the 1load map (if requested),
and enter pass 2.

The Linker indicates the start of pass 2 by typing PASS 2. It then
requests each input tape as in pass 1.

A carriage return is the only useful response to * on pass 2. The
modules must be read on pass 2 in the same order as pass 1. When the
last module has been read the Linker automatically finishes the 1load
module and restarts itself.

Leader and trailer are punched on the load module.

If the LSP is being used for the load module output, it should be
turned on before pass 2 begins. Thus, turn it on before typing E /or
C<{ The echo of these characters (and the load map, if printed on the
TTY) 1is punched on the load module but may be easily removed since
leader is punched on the load module. In any case, ASCII information
in a load module is ignored by the Absolute and Disk Monitor loaders.
However, the LSP can be turned on while leader is being punched (after
the 1linker has typed PASS 2) to keep the load map, etc., from being
punched onto the tape.

Note:
On all command string options, except for *T and *B, the linker
examines only the last character typed preceding the carriage return.
Thus,

ABCDEFGH./

is equivalent to Had

3.3.1.1 Operational Cautions - The Linker does not give a warning if
a program is linked so low in memory that it goes below address 0.
However, this case is easily seen by examining the low and high limits
which are always printed (on the load map or on the teleprinter).

The Linker reads object modules until an end of medium is detected.
Object modules from the DEC Program Library contain a special checksum
at the end of the tape which must be removed before they are 1linked.
Failure to remove this checksum can result in fatal Linker errors.

LINK-11S LINKER

3.3.2 Error Procedure and Messages

3.3.2.1 Restarting - CTRL/P (symbolized as "P) is wused for two
purposes by LINK-11. If a “P is typed while a load map is being
printed, the load map is aborted and the Linker continues. A “P typed
at any other time causes the Linker to restart itself.

3.3.2.2 Non-Fatal Errors -

1. Non-unique object module name - this error is detected during
pass 1; an error message 1is 1issued and the module is
rejected. The message is:

TMODULE NAME oo NOT UNIQUE
The Linker then asks for more input.

2. Load map device EOM - this error allows the user to fix the
device and continue or abort the map listing. The Linker
prints:

MAF DEVICE EOM.
TYFE <CR> TO CONTINUE

Any response, terminated by </ or causes the Linker to
continue. A 4 P causes the map to be aborted.

3. A byte relocation error - the Linker tries to relocate and
link byte quantities. However, relocation usually -fails and
linking may fail. Failure is defined as the high byte of the
relocated value (or the linked value) not being all zero. In
such a case, the value 1is truncated to 8 bits and the
following message is printed:

PTRYTE RELOC ERROR AT ARS ADNRESS o0,
The Linker automatically continues.

4, If the object modules are not read in the same order on pass
2 as pass 1, the Linker indicates which module should be
loaded next by typing:

?LOAD xxxxxx NEXT!

The linker then asks for more input.

5. Multiply-Defined Globals - this results in the following
error message during pass 1:

VI

),
HE PRI

¢ MULTIPLY DEFINED BY MOQUILLE 0064,

The second definition is ignored and the Linker continues.

3.3.2.3 Fatal Errors - Each of the following errors causes the
indicated error message to be printed and the Linker to be restarted.

1. Symbol Table overflow - the message is:
TOYMEROL TARLE OQVERFLOW ~ MODULE »ooooads SYMROL soooo0¢

3-7

LINK-11S LINKER

2. System Errors - this class of errors prints:
PEYSTEM ERROR 04

where xx is an identifying number as follows:

Number Meaning

01 Unrecognized symbol table entry was found.

02 A relocation directory references a global
name which cannot be found in the symbol
table.

03 A relocation directory contains a location
counter modification command which 1is not
last.

04 Object module does not start with a GSD.

05 The first entry in the GSD is not the module
name.

06 An RLD references a section name which cannot
be found.

07 The TRA specification references a

non-existent module name.

08 The TRA specification references a
non-existent section name.

09 An internal jump table index is out of range.

10 A checksum error occurred on the object
module.

11 An object module binary. block 1is too big

(more than 64 decimal words of data).

12 A device error occurred on the 1load module
output device.

All system errors except for numbers 10 and 12 indicate a program
failure either in the Linker or the program which generated the object
module. - Error 05 can occur if a tape is read which is not an object
module.

3.3.2.4 Error HALTs - LINK-11lS loads all of its unused trap vectors
with the code:

.WORD .+2, HALT
so that if the trap occurs, the processor halts in the second word of

the vector. The address of the halt, displayed in the console lights,
therefore indicates the cause of the halt.

LINK-11S LINKER

3.3.2 Error Procedure and Messages

3.3.2.1 Restarting - CTRL/P (symbolized as "P) 1is wused for two
purposes by LINK-11. If a “"P 1is typed while a load map is being
printed, the load map is aborted and the Linker continues. A “P typed
at any other time causes the Linker to restart itself.

3.3.2.2 Non-Fatal Errors -

1. Non-unique object module name - this error is detected during
pass 1; an error message 1is issued and the module is
rejected. The message is:

PTMODULE NAME sooooor NOT UNIQUE
The Linker then asks for more input.

2. Load map device EOM - this error allows the user to fix the
device and continue or abort the map listing. The Linker
prints:

TMAF DEVICE EOM.
TYFE <CR> TO CONTINUE

Any response, terminated by </ or ¢ causes the Linker to
continue. A 4 P causes the map to be aborted.

3. A byte relocation error - the Linker tries to relocate and
link byte quantities. However, relocation usually -fails and
linking may fail. Failure is defined as the high byte of the
relocated value (or the linked value) not being all zero. 1In
such a case, the value 1is truncated to 8 bits and the
following message is printed:

PRYTE RELOC ERROR AT ARS ANDRESS sooodx
The Linker automatically continues.

4., If the object modules are not read in the same order on pass
2 as pass 1, the Linker indicates which module should be
loaded next by typing:

?LOAD xxxxxxXx NEXT!

The linker then asks for more input.

5. Multiply-Defined Globals - this results in the following
error message during pass 1l:

Proooatd MULTIPLY DEFINED BY MODULE soo0000.

The second definition is ignored and the Linker continues.

3.3.2.3 Fatal Errors - Each of the following errors causes the
indicated error message to be printed and the Linker to be restarted.

1. Symbol Table overflow - the message is:

TOSYMROL TARLE QUVERFLOW -~ MODULE sooooats SYMROL sooooo

LINK-11S LINKER

2. System Errors - this class of errors prints:
PEYSTEM ERROR x4

where xx is an identifying number as follows:

Number Meaning

01 Unrecognized symbol table entry was found.

02 : A relocation directory references a global
name which cannot be found in the symbol
table.

03 A relocation directory contains a location
counter modification command which is not
last.

04 Object module does not start with a GSD.

05 The first entry in the GSD is not the module
name.

06 An RLD references a section name which cannot
be found.

07 The TRA specification references a

non-existent module name.

08 The TRA specification references a
non-existent section name.

09 An internal jump table index is out of range.

10 A checksum error occurred on the object
module.

11 An object module binary block is too big

(more than 64 decimal words of data).

12 A device error occurred on the 1load module
output device.

All system errors except for numbers 10 and 12 indicate a program
failure either in the Linker or the program which generated the object
module. - Error 05 can occur if a tape is read which is not an object
module.

3.3.2.4 Error HALTs - LINK-11S loads all of its unused trap vectors
with the code:

.WORD .+2, HALT
so that if the trap occurs, the processor halts in the second word of

the vector. The address of the halt, displayed in the console lights,
therefore indicates the cause of the halt.

LINK-11S LINKER

Address of HALT (octal) Meaning
12 Reserved instruction executed.
16 Trace trap occurred.
26 Power fail trap.
32 EMT executed.
A halt at address 40 indicates an IOXLPT detected error. RO
(displayed in the console lights) contains an identifying code:
Code in RO Meaning
0 Illegal memory reference, SP overflow or

illegal instruction.

Illegal IOX command.

Slot number out of range.
Device number illegal.
Referenced slot not INIT ed.
Illegal data mode.

U wWwN =

IOXLPT also sets Rl as follows:
If the error code is 0, Rl contains the PC at the time of the error.

If the error code is 1-5, R1 points to some element in the IOT
argument 1list or to the instruction following the argument list,
depending on whether IOXLPT has finished decoding all the arguments
when it detects the error.

CHAPTER 4

EDITING THE SOURCE PROGRAM

The PDP-11 Text Editor program (ED-11) enables you to display your
source program (or any text) on the teleprinter, make corrections or
additions to it, and punch all or any portion of the program on paper
tape. This is accomplished by typing simple one-character commands on
the keyboard.
The Editor commands can be grouped according to function:

1. input/output;

2. searching for strings of characters;

3. positioning the current character location pointer;

4. inserting, deleting, and exchanging text portions.

All input/output functions are handled by IOX, the PDP-11 Input/Output
Executive (see Chapter 7).

4.1 COMMAND MODE AND TEXT MODE

Whenever ED-11 prints an * on the teleprinter, you may type a command
to 1it. (Only one command per line is acceptable.) The Editor is then
said to be in Command Mode. While most commands operate exclusively
in this mode, there are five ED-11 commands that require additional
information in order for the commands to be carried out. The Editor
goes into Text Mode to receive this text.

Should a nonexistent command be typed or a command appear in incorrect
format, ED-11 prints a ?. This is followed by an * at the beginning
of a new line indicating that the Editor is in Command Mode.

Editor processing begins in Command Mode. When you type a command, no
action occurs until you follow it by typing the RETURN key (symbolized
as /). If the command is not a text-type command, typing the RETURN
key initiates the execution of the command and ED-11 remains in
Command Mode. However, if the command is a text-type command (Insert,
eXchange, Change, Get, or wHole), typing the RETURN key causes the
Editor to to into Text Mode. At this time you should type the text to
be operated on by the command. This can include the non-printing
characters discussed below, as well as spaces and tabs (up to eight
spaces generated by the CTRL/TAB keys).

Note that typing the RETURN key always causes the physical return of
the Teletype print element to the beginning of the 1line, and
automatically generates a line feed, thereby advancing the carriage to
a new line. In Text Mode, the RETURN key not only serves these

4-1

EDITING THE SOURCE PROGRAM

mechanical functions, allowing you to continue typing at the beginning
of a new 1line, but at the same time it enters a carriage return and
line feed character into the text. (A carriage return not followed by
a line feed cannot, therefore, be entered from the keyboard.)

RETURN and LINE FEED are both counted as characters and can be edited
along with the printing characters (as can the form feed, discussed in
Section 4.2.5). When you wish to terminate Text Mode and reenter
Command Mode, you must type the LINE FEED key symbolized as ¢). A
typed LINE FEED is not considered to be part of the text unless it is
the first character entered in Text Mode.

4.2 COMMAND DELIMITERS

4.2.1 Arguments

Some ED-11 commands require an argument to specify the particular
portion of text to be affected by the command or how many times to
perform the command. In other commands this specification is implicit
and arguments are not allowed.

The ED-11 command arguments are described as follows:

1. n stands for any number from 1 through 32767 (decimal) and
may, except where noted, be preceded by a + or -.

If no sign precedes n, n is assumed to be a positive number.

Where an argument 1is acceptable, 1its absence implies an
argument of 1 (or -1 if a - is present).

The role of n varies according to the command with which it
is associated.

2. 0 refers to the beginning of the current line.

3. @ refers to a marked (designated) character 1location (see
Section 4.2.3).

4. / refers to the end of text in the Page Buffer.

The roles of all arguments are explained further with the
corresponding commands which qualify them.

4.,2.2 The Character Location Pointer (Dot)

Almost all ED-11 commands function with respect to a movable reference
point, Dot. This character pointer is normally located between the
most recent character operated upon and the next character and, at any
given time, can be thought of as "where the Editor is" in your text.
There are commands which move Dot anywhere in the text, thereby
redefining the "current location" and allowing greater facility in the
use of the other commands.

EDITING THE SOURCE PROGRAM

4.2.3 Mark

In addition to Dot, a secondary character pointer known as Mark also
exists in ED-11. This less agile pointer is used with great effect to
mark or "remember" a location by moving to Dot and conditionally
remaining there while Dot moves on to some other place in the text.
Thus, it is possible to think of Dot as "here" and Mark as "there".
Positioning of Mark, which is referenced by means of the argument @,
is discussed below in several commands.

4.2.4 Line-Oriented Command Properties

ED-11 recognizes a line as a unit by detecting a 1line terminator - in
the text. This means that ends of lines (line feed or form feed
characters) are counted in line-oriented commands. This is important
to know, particularly if Dot, which is a character location pointer,
is not pointing at the first character of a line.

In such a case, an argument n does not affect the same number of lines
(forward) as 1its negative (backward). For example, the argument -1
applies to the character string beginning with the first character
following the second previous end-of-line character and ending at Dot;
argument +1 applies to the character string beginning at Dot and
ending at the first end-of-line character. If Dot is located, say, in
the center of a line, notice that this affects 1-1/2 lines back or 1/2
line forward, respectively:

Example of List Commands -1L and +1L:

Text Command Printout
CMPB ICHAR,#033 *~1L BEQ SALT
BEQ SALT CMPB I
CMPB ICHAR, #175 *+1L T~
BNE PLACE CHAR, #175 Dot remains
Dot is here here

4.2.5 The Page Buffer

The Page Buffer holds the text being edited. The unit of source data
that 1is read into the Page Buffer from a paper tape, is the page.
Normally a page is terminated, and therefore defined, by a form feed
(CTRL/FORM) in the source text wherever a page is desired. (A form
feed is an acceptable Text Mode character.) Overflow, no-tape, or
reader-off conditions can also end a page of input (as described in
Section 4.3.1.2). Since more than one page of text can be in the
buffer at the same time, it should be noted that the entire contents
of the Page Buffer are available for editing.

4-3

EDITING THE SOURCE PROGRAM

4.3 COMMANDS

4.3.1 Input and Output Commands

Three commands are available for reading in a page of text. The Read
command (Section 4.3.1.2) 1is a specialized input command; the Next
command (Section 4.3.1.4) reads in a page after punching out the
previous page; and the wHole command (Section 4.3.3.2) reads in and
punches out pages of text as part of a search for a specified
character string.

Output commands either list text or punch it on paper tape. The List
command causes specified lines of text to be printed at the terminal
so that they may be examined. Paper tape commands (Next and wHole
also perform input) provide for the output of specified pages, lines,
form feeds (for changing the amount of data that constitutes a given
page), and blank tape. Note that the process of outputting text does
not cause Dot to move.

~4.3.1.1 Open - The Open command (0O) should be typed whenever a new
tape 1is put in the reader. This is used when the text file being
edited is on more than one paper tape.

Note also that if the reader is off at the time an input command 1is
given, turning the reader on must be followed by the Open command.

4.3.1.2 Read - One way of getting a page of text into the Page Buffer
so that it can be edited 1is the Read (R) command. The R command
causes a page of text to be read from either the low-speed reader or
high-speed reader (as specified 1in the starting dialogue, Section
4.4.2), and appended to the contents (if any) of the Page Buffer.

Text is read in until either:
1. A form feed character is encountered;

2. The page buffer is 128 characters from being filled, or a
line feed 1is encountered after the buffer has become 500
characters from being filled;

3. The reader is turned off, or runs out of paper tape (see Open
command, Section 4.3.1.1).

Following execution of an R command, Dot and Mark are located at the
beginning of the Page Buffer.

A 4K system can accommodate about 4000 characters of text. Each
additional 4K of memory provides space for about 8000 characters.

NOTE

An attempt to overflow the storage area
causes the command (in this case, R) to
stop executing. A ? is then printed,
followed by an * on the next 1line
indicating that a command may be typed.
No data is lost.

EDITING THE SOURCE PROGRAM

4.3.1.3 List and Punch - Output commands List (L) and Punch (P) can
be described together, as they differ only in that the device
addressed by the former is the terminal, and the device addressed by

the latter 1is the paper tape punch. Dot 1is not moved by these

commands.

nL Lists } the character string beginning at Dot and

nP Punches ending with the nth end-of-line

-nL Lists } the character string beginning with the

-nP Punches first character following the (n+l)th pre-
vious end-of-line and terminating at Dot -

oL Lists } the character string beginning with the

(13 Punches first character of the current line and
ending at Dot

QL Lists } the character string between Dot and the

@p Punches Marked location

/L Lists } the character string beginning at Dot and

/P Punches ending with the last character in the Page
Buffer

In addition to the above List commands, there are three special List
commands that accept no arguments. The current line is defined as the
line containing Dot, i.e., from the line feed (or form feed) preceding
Dot to the line feed (or form feed) following Dot.

v Lists the entire line containing Dot
< Same as -1L. If Dot is located at the

beginning of a line, this simply lists
the line preceding the current line

> Lists the line following the current line
Examples:
TEXT COMMANDS PRINTOUT
CMPB ICHAR,#033 A% CMPB ICHAR, #175
BEQ SALT < BEQ
CMPB CHAR, #175 CMPB
BNE LACE > BNE

Dot is here! Dot remains here.

4,3.1.4 Next - Typing nN punches out the entire contents of the Page
Buffer (followed by a trailer of blank tape if a form feed is the last
character in the buffer), deletes the contents of the buffer, and
reads the Next page into the buffer. It performs this sequence n
times. If there are fewer than the n pages specified, the command is
executed for the number of pages actually available, and a ? is
printed out. Following execution of a Next, Dot and Mark are located
at the beginning of the Page Buffer.

EDITING THE SOURCE PROGRAM

4,3.1.5 Form Feed and Trailer -

F Punches out a Form feed character and four inches of blank
tape

nT Punches out four inches of Trailer (blank) tape n times

4.3.1.6 Procedure with Low-Speed Punch - If the low speed punch is
the specified output device (see Section 4.4.2), the Editor pauses
before executing any tape command just typed (Punch, Form feed,

Trailer, Next, wHole). The punch must be turned on at this time,
after which typing the SPACE bar initiates the execution of the
command. Following completion of the operation, the Editor pauses

again to let you turn the punch off. When the punch has been turned
off, typing the SPACE bar returns ED-11 to Command Mode.

4.3.2 Commands to Move Dot and Mark

4.3.2.1 Beginning and End -

B Moves Dot to the Beginning of the Page Buffer

E Moves Dot to the End of the Page Buffer (see also /J
and /A below)

4.3.2.2 Jump and Advance -

nJ Jumps Dot forward past n characters
-nJ Moves Dot backward past n characters
nA Advances Dot forward past n ends-of-lines to the

beginning of the succeeding line

-nA Moves Dot backwards across n ends-of-lines and
: positions Dot immediately after n+l ends-of-lines,
i.e., at the beginning of the -n line.

0J or 0A Moves Dot to the beginning of the current line
@J or @A Moves Dot to the Marked location

/J or /A Moves Dot to the end of the Page Buffer (see also E
above)

Notice that while n moves Dot n characters in the Jump command, its
role becomes that of a line counter in the Advance command. However,
because 0, @, and / are absolute, their wuse with these commands
overrides line/character distinctions. That 1is, Jump and Advance
perform identical functions if both have either 0, @ or / for an
argument.

EDITING THE SOURCE PROGRAM

4.3.2.3 Mark - The M command marks ("remembers") the current position
of Dot for 1later reference in a command using the argument @. Note
that only one position at a time can be in a marked state. Mark is
also affected by the execution of those commands which alter the
contents of the Page Buffer:

C D H I K N R X

4.3.3 Search Commands

4.3.3.1 Get - The basic search command nG starts at Dot and Gets the
nth occurrence of the specified text in the Page Buffer. If no
argument is present, it is assumed to be 1. When you type the
command, followed by the RETURN key, ED-11 goes into Text Mode. The
character string to be searched for must now be typed. (ED-11 " will
accept a search object of up to 42 characters.) Typing the LINE FEED
key terminates Text Mode and initiates the search.

This command sets Dot to the position immediately following the found
character string, and a OL 1listing is performed by ED-11. If a
carriage return, line feed, or form feed is specified as part of the
search object, the automatic OL displays only a portion of text -- the
part defined as the last line. Where any of these characters 1is the
last character of the search object, the O0OL of course yields no
printout at all.

If the search is unsuccessful, Dot is at the end of the Page Buffer
and a ? 1is printed out. The Editor then returns to Command Mode.

Examples:
1. Text Command Printout
MOV @RMAX,@R5 26/ BEQ CK
ADD #6, (R5)+ CK
CLR SCK3
TST R2
BEQ CKCR
Dot was here. Dot is now here®
2. CMPB ICHAR, #RUBOUT G/ BR
BEQ SITE TE ./
BR PUT BRY
Dot Dot

4.3.3.2 wHole - A second search command, H, starts at Dot and 1looks
through - the wHole text file for the next occurrence of the character
string you have specified in Text Mode. It combines a Get and a Next
such that if the search 1is not successful in the Page Buffer, the
contents of the buffer are punched on tape, the buffer contents are
deleted, and a new page is read in, where the search is continued.
This continues until the search object is found or until the complete
source text has been searched. In either case, Mark is at the
beginning of the Page Buffer.

EDITING THE SOURCE PROGRAM

If the search object is found, Dot is located immediately following
it, and a OL is performed by ED-11. As in the Get command, if the
search is not successful Dot is at the end of the buffer and a ?
.appears on the teleprinter. Upon completion of the command, the
Editor will be in Command Mode. No argument is allowed. Note that an
H command specifying a nonexistent search object can be used to close
out an edit, i.e., copy all remaining text from the input tape to the
output tape.

4.3.4 Commands to Modify the Text

4.3.4.1 Insert - The Insert command (I) allows text to be inserted at
Dot. After I is typed (followed by the typing of the RETURN key), the
Editor goes into Text Mode to receive text to be inserted. Up to 80
characters per 1line are acceptable. Execution of the command occurs
when the LINE FEED key (which does not Insert a 1line feed character
unless it 1is the first key typed in Text Mode) is typed terminating
Text Mode. At this point, Dot is located in the position immediately
following the last inserted text character. If the Marked location
was anywhere after the text to be Inserted, Dot becomes the new Marked
location.

During an insert, it sometimes happens that the user accidentally
types CTRL/P rather than SHIFT/P (for @), thus deleting the entire
insert (see Section 4.4.1). To minimize the effect of such a mistake,
the insert may be terminated every few lines and then continued with a
new Insert command.

As with the Read command, an attempt to overflow the Page Buffer
causes a ? to be printed out followed by an * on the next line
indicating that a command may be typed. All or part of the last 1line
typed may be lost. All previously typed lines are inserted.
Examples:

Text Command Effect
1. MOV #8.,EKOT 1/ MOV #8.,EKOCNT
\ CN J
Dot Dot
2. Inserting a carriage return (and automatic line feed):
CLR RICLR R2 I/ CLR R1
</ CLR R2
Dot ¥

3. Inserting a single line feed:

1./
LOOK WHAT HAPPENS HERE v LOOK WHAT
v HAPPENS HERE

Dot
Dot

EDITING THE SOURCE PROGRAM

4.3.4.2 Delete and Kill - These commands are closely related to each
other; they both erase specified text from the Page Buffer. The
Delete command (D) differs from the Kill command (K) only in that the
former accepts an argument, n, that counts characters to be removed,
while the latter accepts an argument, n, that counts 1lines to be
removed. 0, @, and / are also allowed as arguments. After execution
of these commands, Dot becomes the Marked location.

nD Deletes the following n characters
-nD Deletes the previous n characters
nkK Kills the character string beginning at Dot and ending

at the nth end-of-line

-nK Kills the character string beginning with the first
character following the (n+l)th previous end-of-line
and ending at Dot

0D or OK Removes the current line up to Dot

@D or @K Removes the character string bounded by Dot and Mark

/D or /K Removes the character string beginning at Dot and
ending with the last character in the Page Buffer

Text Command Effect
1. ;CHECK THE MOZXDE -2D ;CHECK THE MODE
Dot Dot
2. ;IS IT A TAB, OR 2K ;IS IT A TAB

;IS ITACR‘ /
Dot Dot

4.3.4.3 Change and exchange - The Change (C) and eXchange (X)
commands can be thought of as two-phase commands combining,
respectively, an Insert followed by a Delete, and an Insert followed
by a Kill. After the Change or eXchange command is typed, ED-11 goes
into Text Mode to receive the text to be inserted. If n is wused as
the argument, it is then interpreted as in the Delete
(character-oriented) or Kill (line-oriented), and accordingly removes
the indicated text. 0, @, and / are also allowed as arguments.

nC Changes the following

XXXX n characters

XXXX

-nC Changes the previous

XXX n characters

nX eXchanges the character

XXXX string beginning at Dot and

XXXX ending at the nth end-of-line

-nX eXchanges the character

XXX string beginning with the first character

following the (n+l)th previous end-of-line and
ending at Dot

EDITING THE SOURCE PROGRAM

0C or 0X Replaces the current line up to Dot
XXXX XXXX
XXXX XXXX

@cC or @X Replaces the character string bounded by Dot

XXX XXX and the Marked location

XXX XXX

/C or /X Replaces the character string beginning at Dot

XXX XXX and ending with the last character in the Page
Buffer.

Again, the use of absolute arguments 0, and @, and / overrides the
line/character distinctions that n and -n produce in these commands.

If the Insert portion of a Change or eXchange is terminated because of
attempting to overflow the Page Buffer, data from the latest line may
have been lost, and text removal does not occur. Such buffer overflow
might be avoided by separately executing a Delete or Kill followed by
an Insert, rather than a Change or eXchange, which does an Insert
followed by a Delete or Kill. Examples:

Text Command Effect
;A LINE FEED IS HERE -9C/ ; A TAB IS HERE
TABY
; THIS 2X 4/ ; THIS
;IS ON Dot PAPER ;IS ON
; FOUR : PAPER
: LINES j
Dot Dot

4.4 OPERATING PROCEDURES

4.4.1 Error Corrections

During the course of editing a page of the program, it may become
necessary to «correct mistakes in the commands themselves. There are
four special commands which do this:

1. Typing the RUBOUT key removes the preceding typed character,
if it 1is on the current line. Successive RUBOUTs remove
preceding characters on the line (including the SPACE), one
character for each RUBOUT typed.

2. The CTRL/U combination (holding down the CTRL key and typing
U) removes all the characters in the current line.

3. CTRL/P cancels the current command in its entirety. This
includes all the current command text just typed, if ED-11
was in Text Mode. Do not use another CTRL/P before typing a
line terminator as this will cause an ED-11 restart (see 4.
below). TIf CTRL/P is typed while a found search object of a
Get or wHole is being printed out, the normal position of Dot
(just after the specified search object) is not affected.

CTRL/P should not be used while a punch operation is in
progress as it is not possible to know exactly how much data
will be output.

EDITING THE SOURCE PROGRAM

4. Two CTRL/P's not interrupted by a typed 1line terminator
restart ED-11, initiating the dialogue described in Section
4.4.2.

After removing the incorrect command data, the user can directly type
in the desired input.

4.4.2 Starting

The Editor is loaded by the Absolute Loader (see Chapter 6, -Section
6.2.2) and starts automatically. Once the Editor has been loaded, the
following sequence occurs:

ED-11 Prints User Types
* L </ (if the low-speed Reader is to be used
for source input)
H./ (if the high-speed Reader is to be used
for source input)
*Q L4/ (if the low-speed Punch is to be used
for edited output)
HS/ (if the high-speed Punch is to be used

for edited output)

If all text is to be entered from the keyboard (i.e., via the Insert
command), either L or H may be specified for Input.

If the output device is the high-speed punch (HSP), the Editor enters
Command Mode to accept input. Otherwise, the sequence continues with:

LSP OFF </ (when low-speed Punch (LSP) is off)

Upon input of ./ from the keyboard, the Editor enters Command Mode and
is ready to accept input.

4.4.3 Restarting

To restart ED-11, type CTRL/P twice. This initiates the normal
starting dialogue described in Section 4.4.2. If the Low-speed Reader
(LSR) is in operation it must first be turned off. The text to be
edited should be loaded (or reloaded) at this time.

4.4.4 Creating a Paper Tape

Input commands assume that text is to be read from a paper tape by the
low-speed reader or high-speed reader. However, the five commands
that go into Text Mode enable the user to input from the keyboard.
The Insert command, in particular (Section 4.3.4.1) can be useful for
entering large quantities of text not on paper tape. The Page Buffer
can thus be filled from the keyboard, and a paper tape actually
created by using a command to punch out the buffer contents.

EDITING THE SOURCE PROGRAM

4.4.5 Editing Example

The following example consists of three parts:

1.
changes.

2.

The marked up source program listing indicating the

The ED-11 commands to implement those changes (with

on the editing procedure).

NOTE

Typing the RETURN key terminates Command Mode in all

cases. In

the terminator.

3. The edited text.

Part I

s COMMON INFUT ROUTINE FOR USE RY NON FILE

ICHAR (REY +
- (.S

(R4 RMAX
CRE)+ MODADR

$INFUTE ADRC
CLR
MOV

MOV

EMODATIRy FASCTT
CRBIN

FORMONE S RITR
BNE

TETR
BEQ

TCHAR
CK

$CRNUL E

EMODATIR » BFARRIT
FAROK .
TCHAR QCHAR

7 s FARGEN
TCHAR y QUHAR
FAROK
FFARERR » @MOTIATIR
OCHAR

F172200 TCHAR
@E1OCRADDD » ERKBRD
OKO

ERQOCNT

HOR

TCHAR

LkA

FORFART BITR
BNE
MOVR
JER
SUE
BEQ
RIS
CLR
RIC
CMFR
BNE
TETR
BEQ
CLR

S

FAaROK?

$IF2CK L

commands
typing the LINE FEED key (symbolized as +)

then go into Text Mode,
produces

which

Original Source for Edit

DEVICES

FUFDATE CRSUM

sCLEAR DONE

FGET ADR MAX

sGET AR MODE

JRE NOW FOINTS TO FOINTER

SIS THIS ASCIT
BNO===TRY Kryapy

PAZCTT——~18 CHAR A
SYES—--NO GO

NUIL.L.

$L.OOK
FQUFFOSED
$NO

SYES——~CK IT

AT MODE TO SEE IF
TO CHECK FARITY®?

v

s OR?
FNQ---GET ERR RIT
SETRIF FARITY

#1868 THIS KRD
$NO

§YE G DONE
FYES

FNO - TIROF

INFUT
ERKQ OF LABT?

NEW CHAR

THE CHAR
TCHAR » CTRLC

sWHAT I8

$OK2 CMPR

uv

IT & "¢

v 18

BNE
MOV
INC
MOV
BR

HUFCy QCHAR:
RIUN
TFABRTADY 20 (R&)
LS 1

#¥ND
PYES-—ECHD ™G

oﬁf

sDINOLE RETURN AR

desired

comments

EDITING THE SOURCE PROGRAM

PN B P T | W o %

NI RS BTN s
I Y

RSN s e e vy |

KEGTal
QKO
RESTAI.
LTCHAR
RIUN
EUFF» QCHAR

(R&)

JAL HE

SET

FLLES L

TR Iyt

R

CHMPR
BEQ
BR

L9 o v i 4 g

TCHAR y EHRURDUT

K
FUT

sTHIS TNFUT N *ﬂngﬁb
A" s =)W W‘ﬂﬁb

" . S AT
s g uM

npw - ZIEY - L. 1
e B MR e A8 T, HAYpLep

IS THIS A RUROUT
G- TENORE TT

i UL

T Tt
id 4

CRUFLE

iyl
;ZNUPU //

AT IrT

e I W |

CK

FRELASHy OCHAR

(RS +
@RS
ERO

TCHAK » FCTRIU

by CRED+
@RS
ERQ

PYES-——FORGET IT
SECHD A N
PFQINTER=FOINTER-L
$ROC=RC-A

[571T A "U?
SFPOINTER=RUFATIRY6

§ RO=0
s ECHO

CRTARY CMPR
BNE
MOV
MOV
BR

CRCRZ CMFR
BNE
MOV
ING
ER

X

TCHAR » FHTAR
CRCR
ERLNKS » QOUHAR
TARCNT » EKQUNT
FuT

TCHAR y #CR
ORI
FCRLF » QOCHAR
RIUIN

FLUSL

$18
§NO
FYES—~—ECHD BLANKS
FBET UF COUNTER

»

¥

IT A& TaR

$18 IT A CR?

$ND
FYES——~ECHD CRLF

a
¥

e
$CN?3 CMPR
REQ

CMPR
REQ
CMFR
BNE

JPyTvRe

ICHAR » 4033
$al.T
ICHAR» 175
$ALT
ICHAR #1764

ALT

> I8 Chap
AN ATMops @

fn

CKiA

MR LALSL LA Iy

EX

LR AT A

MOV

Y
L) ==

L A} SORE v 4) i) 1) i oy

175y TCHAR

A —_— T A LL
s

IWS¥INEN]

..

)

—— #acr

#&P-—--ﬁﬂii~;::::;__-

CKRLF2 CMPR
ENE
ING
BR

CRFF3 MOV
CMFR
BNE
MOV
MOV
BR

EDITING THE SOURCE PROGRAM

TCHAR » LF
CKFF
ROUN
PUT

LCHAR » OCHAR
TCHAR » #FF
FUT

HE sy EKDCNT
FLFLF y DCHAR
FUT

Part II: Editing Session

Assume that ED-11 has been started, is in Command Mode, and the
is in the reader. Underlined matter indicates ED-11 output.

*R

*H
2CK:¥
$JP2CK:

*G
CK

;Reads in a page of text
;Searches entire program for 2CK: -
;when found ED-11 performs a OL

;Searches current page for next CK -
;when found ED-11 performs a OL

SJP2CK JMP CK

*1 ;Inserts DUN following CK

DUNvY

*G ;Searches for next CKUPP -

CKUPPY ;when found ED-11 performs a OL

BNE CKUPP

*-5C OK0 replaces last 5 characters (CKUPP)

OKO0

*6A ;Dot is moved 6 lines ahead (including
;a blank line)

*9K ;9 lines are killed starting with CKUPP:

*L ;Next line is listed - Dot is not moved
;THIS IS NOT KBD INPUT

*I :Blank line is inserted

</

¥

*A ;:Dot is moved 1 line ahead to point to
;character O of OKO:

*4X ;Following comments replace the next 4
;lines
: FORMATTED AND UNFORMATTED
;ASCII ARE HANDLED THE SAME+Y

*G :Searches for next CKINP:'—

CKINP:+ OL printout occurs when found

CKINP:

4-14

tape

EDITING THE SOURCE PROGRAM

*0J ;Dot is moved to the beginning of the
;current line.

*/K ;The rest of the page is killed (3 lines)

*N ;Current page is punched out on paper tape -

;a new page is read in

*L ;The next line is listed - Dot is not moved
TST 2(R5) ;BC=0?

*15K ;715 lines are killed starting with TST

*2L ;1 blank line and 1 line of text

;are listed - Dot is not moved

CKTAB: CMPB ICHAR,#HTAB ;IS IT A TAB

*2G ;Searches for 2nd occurrence of $CK3 -
SCK3y ;0L printout verifies it is found

SCK3

*-C ;ALT replaces preceding character

ALTY

*V ;Lists entire current line to verify

SCKALT: CMPB ICHAR,#033 ;the above-C result

*G ;Searches for the 033 to position Dot
033+ ;for next command -- OL occurs
$SCKALT: CMPB ICHAR,#033

*I ;:The following text is inserted in the
;comment field
;IS CHAR AN ALTMODE?

*G ;Searches for next CKLF -- OL occurs
CKLFY
BNE CKLF

*-2C ;EX replaces the preceding two characters

EX i (LF)

*2J ;Jumps Dot past the carriage return and
;line feed characters

*K ;Kills next line (starting with $ALT:)

*I ;Inserts SALT: at beginning of the fol-

SALT :v ;lowing line

*A ;Advances Dot past 1 line feed to the
;beginning of the next line

*M ;Marks the position of Dot

*B ;Moves Dot to the beginning of the cur-
;rent page

EDITING THE SOURCE PROGRAM

*@p ;Punches out the lines from Dot to the
;position just marked - Dot not moved
;Moves Dot from the beginning of the

*ea
;page to the marked position

*2K
*

PART III

SINFUTS

SCRMODE 2

$CRKNUL. 2

FORKFARS

FAaROR 2

$JP2CKE

HOKE

CRTAR?

:Kills the next 2 lines

Edited Source

s COMMON INFUT ROUTINE FOR USE RBY NON FILE DEVICES

AL
CLR
MOV
MOV

BRITR
BNE

TETH
BEQ

BITH
BNE
MOVR
MEST
SUB
BEQ
BI&
CLR
BIC
G
BNE
THTR
BEQ
CLE
S

sWHAT T¢

CMPR
ENE
MOU
TNG
MOy
BE

CMF R
RBEQ
RBR

MR
BNE
MO
MO
"R

TCHAR s (RTD +
= {(L.5)

(RS +yRMAX
(RE) 4y MODADR

EMODADNER FASCIT
CRRBIN

TCHAR
CK

EMODALNR y EFARRITT
FAROK

TCHAR» OCHAR

R7 s FARGEN
TCHAR» OCHAR
FARDK
EFARERR y @MODALIR
OCHAR

F177200y ICHAR
CLOCRADD) v FKED
OKO

ERKQOCNT

$OK

TCHAR

CRIUN

THE CHAR
TCHAR y RCTRILC
RO
EUFCy QCHAR
RYIUN
FABRTALDy 20 (R&)D
FLUSL

TCHAR » FRUEOUT
CK

FUT

TCHAR #HTAR
CRGR
FBLNKS » OCHAR
TARCNT y EKDCNT
FUT

SUFDIATE CRSUM
SCLEAR TONE
SGET AR MAX
SGET AR MODE
SRS NOW FOINTS TO FOINTER
518 THIS ASCII

ND——=TRY BINARY

CHAR & NULL

sLOOK AT MODE TO SEE IF
sSUPFOSED TO CHECK PARITY?
§NO

PYES~

e GROTT

OR®
N e v e SET

er Sy e

ERR RIT
STRIF FARITY
I8 THIS KRD
0

E&--NONE ERKO OF
8

0

¥
¥ INFUT
N

Y LAST?
v Y

$NO---0ROF NEW CHAR

I8 IT A "0
§NO
FYES--ECHD ™C

SOTDNLE RETURN ADR

sTHIS T8 NOT KRDOOINFUT
SFORMATTED AND UNFORMATTED
SAGCTT ARE HANDLED THE SAME
sI8 THIS A RUROUT
SYES---TGNORE IT

PR -

sI8 IT A TAR

$NO

§YES---ECHD BLANKS

FHET UF COUNTER

EDITING THE SOURCE PROGRAM

CRCR? CHMFR ICHAR» #CR $I8 IT A CRT
ENE $CK3 $NO
MOV FCRLFy QOCHAR PYES-—~ECHO CRLF
INC RIOUN
RRE FL.US1 §
$ORALTE CMPR ICHAR» #033 I8 CHAR AN ALTMODET
BEQ $ALT
CMPE ICHAR » 175
BEQ $ALT
CMFR ITCHAR» #1746
BNE CREX
BALTS MoV F1L75» TCHAR
CRLF$ CMPR ITCHAR » #1F
BNE CKFF
INCG RIOUN
RR FUT
CRFF2 Moy ICHAR » OCHAR
CMEF ICHAR » FF
BRNE FUT
MOV F8 s EKOCNT
MOV FLFLFy DCHAR
RE FUT

4.5 SOFTWARE ERROR HALTS

ED-11 loads all unused trap vectors with the code
.WORD .+2,HALT

so that if the trap does occur, the processor halts in the second word
of the vector. The address of the halt, displayed in the console
address register, therefore indicates the <cause of the halt. In
addition to the halts which may occur in the vectors, the standard IOX
error halt at location 40 may occur (see Chapter 7).

Address of HALT Meaning
12 Reserved instruction executed
16 Trace trap occurred
26 Power fail trap
32 EMT executed
36 TRAP executed
40 IOX detected error

CHAPTER 5

DEBUGGING OBJECT PROGRAMS ON-LINE

5.1 INTRODUCTION

ODT-11 (On-line Debugging Technique for the PDP-11) 1is a system
program which aids in debugging assembled object programs. From the
Teletype keyboard you interact with ODT and the object program to:

. print the contents of any 1location for examination or
alteration

. run all or part of an object program using the breakpoint
feature

. search the object program for specific bit patterns

. search the object program for words which reference a
specific word

. calculate offsets for relative addresses

During a debugging session you should have at the terminal the
assembly 1listing of the program to be debugged. Minor corrections to
the program may be made on-line during the debugging session. The
program may then be run under control of ODT to verify any change
made. Major corrections, however, such as a missing subroutine,
should be noted on the assembly 1listing and incorporated in a
subsequent updated program assembly.

A binary tape of the debugged program can be obtained by use of the
DUMPAB program (see Chapter 6, section 6.3).

5.1.1 ODT-11 and ODT-11X

There are two versions of ODT included in the PDP-11 Paper Tape
Software System: a standard version, ODT-11, and an extended version,
ODT-11X.' Both versions are independent, self-contained programs.
ODT-11X has all the features of ODT-11, plus some additional features.
Each version is supplied on two separate paper tapes: a source tape
and an absolute binary tape. The purpose of the tapes, and loading
and starting procedures are explained in a later section of this
chapter.

ODT-11 is completely described in section 5.2, and the additional
features of ODT-11X are covered in section 5.3. 1In all sections of
this chapter, except where specifically stated, reference to ODT

' Only ODT-11X is available for the LSI-11 or the PDP-11/03.

5-1

DEBUGGING OBJECT PROGRAMS ON-LINE

applies to both versions. Concluding sections discuss ODT's internal
operations -- how it effects breakpoints, how it uses the "trace trap"
and the T-bit, and other useful data.

The following discussion assumes that the reader is familiar with the

PDP-11 introduction formats and the PAL-11A Assembly Language as
described in Chapter 3.

5.1.2 ODT's Command Syntax

ODT's commands are composed of the following characters and symbols.
They are often used in combination with the address upon which the
operation is to occur, and are offered here for familiarization prior
to their thorough coverage which follows. Unless indicated otherwise,
n below represents an octal address.

n/ open the word at location n
/ reopen last opened location
n\ (SHIFT/L) open the byte at location n (ODT-11X only)
\ reopen the last opened byte (ODT-11X only)
¥ (LINE FEED key) open next sequential location
A open previous location
RETURN close open location and accept the next command
2 take contents of opened location, index by contents of

PC, and open that location

@ take contents of opened location as absolute address
and open that location (ODT-11X only)

> take contents of opened 1location as relative branch
instruction and open referenced location (ODT-11X only)

< return to sequence prior to last @, >, or _ command and
open succeeding location (ODT-11X only)

$n/ open general register n (0-7)

separates commands from command arguments (used with
alphabetic commands below)

<o

:B remove Breakpoint(s) (see description of each ODT
version for particulars)

n;B set Breakpoint at location n

"The circumflex appears on some keyboards and printers in place of the
up-arrow.

’The underline appears on some keyboards and printers in place of the
back-arrow.

DEBUGGING OBJECT PROGRAMS ON-LINE

n;rB set Breakpoint r at location n (ODT-11X only)
;B remove r (th) Breakpoint (ODT-11X only)
n;E search for instructions that reference Effective

address n
n;w search for Words with bit patterns which match n

;nS enable Single-instruction mode (n can have any value
and is not significant); disable breakpoints

;S disable Single-instruction mode

n;G Go to location n and start program run

;P Proceed with program execution from breakpoint; stop
when next breakpoint is encountered or at end of
program

In Single-instruction mode only (ODT-11X), Proceed to
execute next instruction only

n;P Proceed with program execution from breakpoint; stop
after encountering the breakpoint n times.

In single-instruction mode only (ODT-11X), Proceed to
execute next n instructions.

n/(word)n;0O calculate Offset from location n to location m

$B/ open Breakpoint status word (ODT-11)
open BREAKPOINT 0 STATUS WORD (ODT-11X)
sM/ open search Mask
$s/ open location containing user program's Status register
$p/ open location containing ODT's Priority level A

With ODT-11, location references must be to even numbered 16-bit
words. With ODT-11X, 1location references may be to 16-bit words or
8-bit bytes.

The semicolon in the above commands is ignored by ODT-11, but is wused

for the sake of consistency, since similar commands to ODT-11X require
it.

5.2 COMMANDS AND FUNCTIONS

When ODT is started as explained in section 5.6, it indicates its
readiness to accept commands by printing an asterisk (*) on the left
margin of the terminal paper. 1In response to the asterisk, you can
issue most commands; for example, you can examine and, if desired,
change a word, run the object program in its entirety or in segments,
or even search core for certain words or references to certain words.
The discussion below first explains some elementary features, and then
covers the more sophisticated features.

All commands to ODT are issued using the characters and symbols shown
above in Section 5.1.2.

DEBUGGING OBJECT PROGRAMS ON-LINE

5.2.1 Opening, Changing, and Closing Locations

An open location 1is one whose contents ODT has printed for
examination, and whose contents are available for change. A closed
location is one whose contents are no 1longer available for change.
Any even-numbered location may be opened using ODT-11.

The contents of an open location can be changed by typing the new
contents followed by a single character command, which requires no
argument (i.e. ¥+ 4 RETURN « @ > <). Any command typed to open a
location when another location is already open causes the currently
open location to be closed.

5.2.1.1 The Slash (/) - One way to open a location is to type its
address followed by a slash:

*1000/012746

Location 1000 is open for examination and is available for change.
Note that in all examples ODT's printout is underlined; your typed
input is not.

Should you not wish to change the contents of an open location, merely
type the RETURN key and the 1location will be closed; ODT prints
another asterisk and waits for another command. However, should you
wish to change the word, simply type the new contents before giving a
command to close the location.

*1000/012746 012345
*

In the example above, location 1000 now contains 012345 and is closed
since the RETURN key was typed after entering the new contents, as
indicated by ODT's second asterisk.

Used alone, the slash reopens the last location opened:

*1000/012345 2340
*/002340

As shown in the example above, an open location can be closed by
typing the RETURN key. In this case, ODT changed the contents of
location 1000 to 002340 and then closed the location before printing
the *, A single slash then directed ODT to reopen the last location
opened. This allowed us to verify that the word 002340 was correctly
stored in location 1000. (ODT supplies the leading zeroes if not
given.)

Note again that opening a location while another 1is currently open
automatically closes the currently open location before opening the
new location.

5.2.1.2 The LINE FEED Key - If the LINE FEED key 1is typed when a
location 1is open, ODT closes the open location and opens the next
sequential location:

*1000/002340 + (¥+ denotes typing the LINE FEED key)
001002/012740 :

DEBUGGING OBJECT PROGRAMS ON-LINE

In this example, the LINE FEED key instructed ODT to print the address
of the next location along with its contents and to wait: for further
instructions. After the above operation, location 1000 is closed and
1002 is open. The open location may be modified by typing the new
contents.

5.2.1.3 The Up-Arrow(#%) - The up-arrow (or curcumflex) symbol is
effected by typing the SHOFT and N key combination. If the up-arrow
is typed when a location is open, ODT closes the open: location and
opens the previous location (as shown by continuing from the example
above) : ‘ : ‘ ' : : o

001002/012740 + (* is printed by typing SHOFT and N)
001000/002340

Now location 1002 is closed and 1000 is open. The open location may
be modified by typing the new contents. ‘

5.2.1.4 The Back-Arrow(«) - The back-arrow (or underline) symbol is"
effected by typing the SHIFT and O key combination. If the back-arrow
is typed to an open location, ODT interprets the contents of the
currently open location as an address indexed by the Program Counter
(PC) and opens the location so addressed:)

*1006,/000006 + (« is printed by typing SHIFT and O)
001016,/100405

Notice in this example that the open location(1006) was indexed by the
PC as if it were the operand of an instruction with address mode 67 as
explained in Chapter 3.

A modification to the opened location can be made before a+, +, or «
is typed. Also, the new contents of the location will be used for
address calculations using the _ command. Example:

*100/000222 44y (modify to 4 and open next location)
000102/000111 6+ (modify to 6 and open previous location)
000100/000004 100+« (change to 100 and open location indexed
000202/ (contents) by PC)
5.2.1.5 Accessing General Registers 0-7 - The = program's general
registers 0-7 can be opened using the following command format:
*$n/

where n is the integer representing the desired register (in the range
0 through 7). When opened, these registers can be examined or changed
by typing in new data as with any addressable location. For example:

*$0,/000033 (RO was examined and closed)
*

and

*$4/000474 464 (R4 was opened, changed, and closed)
*

DEBUGGING OBJECT PROGRAMS ON-LINE

The example above can be verified by typing a slash in response to
ODT's asterisk:

*/000464

The v+ , 4, «, or @ commands may be used when a register is open (the @
is an ODT-11X command).

5.2.1.6 Accessing Internal Registers - The program's Status Register
contains the condition codes of the most recent operational results
and the interrupt priority level of the object program. It is opened
using the following command:

*$5/000311

where $S represents the address of the Status Register. In response
to $S/ in the example above, ODT printed the 16-bit (of which only the
low-order 8 bits are meaningful): Bits 0-3 indicate whether a carry,
overflow, zero, or negative (in that order) has resulted, and bits 5-7
indicate the interrupt priority level (in the range 0-7) of the object
program. - , :

The $ is used to open certain other internal locations:

$B internal breakpoint status word (see section 5.2.2.2)

sM mask location for specifying which bits are to be
examined during a bit pattern search (see section
5.2.4)

$P location defining the operating priority of ODT (see

section 5.2.6)

- $S location containing the condition codes (bits 0-3) and
interrupt priority level (bits 5-7)

5.2:2 Breakpoints‘

The breakpoint feature facilitates monitoring the progress of program
execution. A Dbreakpoint may be set at any instruction which is not
referenced by the program for data. When a breakpoint 1is set, ODT
replaces the contents of the breakpoint 1location with a trap
instruction. Thus, when the program is executed and the breakpoint is
encountered, program execution is suspended, the original contents of
the breakpoint location are restored, and ODT regains control.

5.2.2.1 Setting the Breakpoint(n;B) - ODT-11 provides only one
breakpoint; ODT-11X provides eight. Breakpoint(s) may be changed at
any time. A breakpoint is set by typing the address of the desired
location of the breakpoint followed by ;B. For example:

*1020;B
*

sets a breakpoint at location 1020. The breakpoint above 1is - changed
to location 1120 as shown below.

*1020;B
¥1120;B
*

DEBUGGING OBJECT PROGRAMS ON-LINE

Breakpoints should not be set at locations referenced by the program
for data, nor at an IOT, EMT, or TRAP instruction. This restriction
is explained in section 5.5.2.

The breakpoint is removed by typing ;B without an argument, as shown
below.

1120;B (sets breakpoint at location 1120)
;B (removes breakpoint)

1] *| %

5.2.2.2 L6cating the Breakpoint ($B) - The command $B/ causes ODT-11
to print the address of the breakpoint (see also section 5.3.3 on $B
in ODT-11X): ' '

*$B/001120

The breakpoint was set at location 1120. S$B represents the address
containing ODT-11's breakpoint location. Typing the RETURN key in the
example above leaves the breakpoint at location 1120 and returns
control to ODT-11. The breakpoint could be changed to a different
location:

*$B/001120 1114
*$B/001114

I3+

The breakpoint was found in location 1120, changed to 1location 1114,
and the change was verified.

If no breakpoint is set, $B contains an address internal to oDT-11.

5.2.3 Running the Program(n;G and n;P)

Program execution is under control of ODT. There are two commands for
running the program: n;G and n;P. The n;G command is used to start
execution (GO) and n;P to continue (Proceed) execution after halting
at a breakpoint. For example:

*¥1000;G

starts execution at location 1000. The program runs until it
encounters a breakpoint or until program completion. If the program
enters an infinite 1loop, it must be restarted or reentered as
explained in section 5.6.2.

When a breakpoint is encountered, execution stops and ODT-11 prints B;
followed by the address of the breakpoint. Desired locations can then
be examined for expected data. For example:

*1010;B (breakpoint is set at location 1010)
*1000;G (execution started at location 1000)
B;001010 (execution stopped at location 1010)
*

To continue program execution from the breakpoint, type ;P in response
to ODT-11's last *.

When a breakpoint is set in a loop, it may be desirable to allow the
program to execute a certain number of times through the loop before

5-7

DEBUGGING OBJECT PROGRAMS ON-LINE

recognizing the-breakpoint. This may be .done by typing the n;P
command and specifying the number of times the breakpoint is to be
encountered before program execution is suspended (on the -n(th)
encounter) . (See section 5.3.3 for ODT-11X interpretation of this
command when more than one breakpoint is set in a loop.)

Example:
B;001010 (execution halted at bréakpoint)
*1250;B (set breakpoint at location 1250)
*4;P : (continue execution. loop through
B;001250 breakpoint 3 times and halt on the

*

4 (th) occurrence of the breakpoint)

The breakpoint repeat count can be inspected by typing $B/ followed by
LINE FEED. The repeat count is then printed. This also provides an
alternative way of specifying the count. Since the location is open,
its contents can be modified in the wusual manner by typing new
contents followed by the RETURN key.

*$B/001114 4 (address of breakpoint is 1114)
nnnnnn/000003 6 (repeat count was 3, changed to 6)
* : . .
Breakpoints are inserted when performing an n;G or n;P command. Upon

execution of the n;G or n;P command, the general registers 0-6 are set
to the values in the locations specified as $0-$6 and the ' processor
status register is set to the value in the location specified as $S.

5.2.4 Searches

With ODT you can search all or any specyfied portion of core memory
for any specific bit pattern or for references to a specific location.

The location represented by $M is used to specify the mask of the
search. The next two sequential locations contain the lower and upper
limits of the search. Bits set to 1 in the mask are examined during
the search; other bits are ignored. For example,

*$M/000000 177400 ¥ (+ denotes typing LINE FEED)
nnnnnn/000000 1000 ¥ (starting address of search)
nnnnnn/000000 1040 (last address in search)
*

where nnnnnn represents some location in ODT. This location varies

and is meaningful only for reference purposes. Note that in the first
line above, the slash was used to open $M which now contains 177400,
and that the LINE FEEDs opened the next two sequential locations which
now contain the lower and upper limits of the search.

5.2.4.1 Word Search(n;W) - Before initiating a word search, the mask
and search 1limits must be specified as explained above. Then the
search object and the initiating command are given using the n;W
command where n is the search object. When a match is found, the
address of the unmasked matching word is printed. For example:

*$M/000000 177400 + (test high order eight bits)
nnnnnn/000000 1000 +

nnnnnn/000000 1040

*400;W (initiating word search)
001010/000770

001034/000404

*

DEBUGGING OBJECT PROGRAMS ON-LINE

In the search process, the word currently being examined and the
search object are exclusive ORed (XORed), and the result is ANDed to
the mask. If this result is zero, a match has been found, and 1is
reported at the terminal. Note that 1if the mask 1is zero, all
locations within the limits are printed.

5.2.4.2 Effective Address Search(n;E) - ODT enables you to search for
words which address a specified location. After specifying the search
limits (section 5.2.4), type n;E (where n is the effective address) to
initiate the search.

Words which are either an absolute address (argument n itself), a
relative address offset, or a relative branch to the effective address
are printed after their addresses. For example:

*$M/177400 +
nnnnnn/001000 1010 +
nnnnnn/001040 1060

*1034;E (initiating search)
001016/001006 (relative branch)
001054/002767 (relative branch)

*1020;E (initiating a new searhc)
001022/177774 (relative address offset)
001030/001020 (absolute address)

*

Particular attention should be given to the reported references to the
effective address because a word may have the specified bit pattern of
an effective address without actually being so used. ODT will report
these as well.

5.2.5 Calculating Offsets(n;0)

Relative addressing and branching use an offset - the number of wrods
or bytes forward or backward from the current 1location of the
effective address. During the debugging session it may be necessary
to change a relative address or branch reference by replacing one
instruction offset with another. ODT calculates the offsets in
response to the n;0 command.

The command n;O causes ODT to print the 16-bit and 8-bit offsets from
the currently open location to address n. In ODT-11, the 8-bit offset
is printed as a 16-bit word. For example:

*346/000034 414;0 000044 000022 22
*/000022 ’
¥20,/000046 200;0 000156 000067 67
¥20,/000067

In the first example, location 346 is opened and the offsets from that
location to location 414 are calculated and printed. The contents of
location 346 are then changed to 22 and verified on the next 1line.
The * 16-bit offset is printed followed by the 8-bit offset. In the
example above, 000156 is the 16-bit offset and 000067 1is the 8-bit
offset.

The 8-bit offset is printed only if the 16-bit offset is even, as in
the case above. With ODT-11 only, the user must determine whether the
8-bit offset is out of the range 177600 to 000177 (-128 decimal to 127
decimal). The offset of a relative branch is calculated and modified
as follows:

¢ 5-9

DEBUGGING OBJECT PROGRAMS ON-LINE

*1034/103421 1034;0 177776 177777 103777
*

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte. Location 1034 was still open after the
calculation, thus typing 103777 changed its contents; the location
was then closed.

5.2.6 ODT'S Priority Level ($P)

$P represents a location in ODT that contains the priority 1level at
which ODT operates. If $P contains the value 377, ODT operates at the
priority level of the processor at the time ODT is entered. Otherwise
$P may contain a value between 0 and 7 corresponding to the fixed
priority at which ODT operates.

To set ODT to the desired priority level, open §$P. ODT prints the
present contents, which may then be changed:

*$P/000006 3717
* -

If SP is not specified, its value is seven.

Breakpoints may be set in routines at different priority 1levels. For
example, a program running at a low priority level may use a device
service routine operating at a higher priority level. If a breakpoint
occurs from a low priority routine, if ODT operates at a low priority,
and if an interrupt does occur from a high priority routine, then the
breakpoints in the high priority routine will not be executed since
they have been removed.

5.3 O0ODT-11X

ODT-11X has all the commands and features of ODT-11 as explained 1in
section 5.2, plus the following.

5.3.1 Opening, Changing and Closing Locations

In addition to operating on words, ODT-11X operates on bytes.

One way to open a byte is to type the address of the byte followed by
a backslash:

*1001/025 (\ is printed by typing SHIFT and L)

A backslash typed alone reopens the last open byte. If a word was
previously open, the backslash reopens its even byte. :

*1002/000004\004

The LINE FEED and up-arrow (or circumflex) keys operate on bytes if a
byte is open when the command is given. For example:

*1001\025 +

001002\004 ¢
001001\025
* -

DEBUGGING OBJECT PROGRAMS ON-LINE

5.3.1.1 Open the Addressed Location(@) - The symbol @ optionally
modifies, closes an open word, and uses its contents as the address of
the location to open next. ‘

*1006/001024 @ (open location 1024 next)

001024/000500
*1006,/001024 2100 @ (modify to 2100 and open
002100/177774 location 2100)

5.3.1.2 Relative Branch Offset(>) - The right angle bracket, >
optionally modifies, closes an open word, and uses its even byte as a
relative branch offset to the next word opened.

*¥1032/000407 301 >

z 900407/ (modify to 301 and interpret
000636/000010

as a relative branch)

Note that 301 is a negative offset (-77). The offset 1is doubled
before it is added to the PC; therefore, 1034 + -176 = 636.

5.3.1.3 Return to Previous Sequence(<) - The left angle bracket, <,
optionally modifies, closes an open location, and opens the next
location of the previous sequence interrupted by a «, @, or > command.
Note that « , @, > cause a sequence change to the word opened. If a

sequence change has not occurred,

< simply opens the next location as

a LINE FEED does. The command operates on both words and bytes.

*1032/000407 301 >
000636/000010 <

001034/001040 @
001040/000405\005 <

(> causes a sequence change)
(<causes a return to original
sequence)

(@ causes a sequence change)
(< now operates on byte)

001035\ 002 <

(< acts like +)
001036\ 004

5.3.2 Calculating Offsets (n;0)

The command n;0 causes ODT to print the 16-bit and 8-bit offsets from
the currently open 1location to address n. The following examples,
repeated from the ODT-11 section describing this command (see section
5.2.5), show a difference only in printout format:

*346/000034 414;0 000044 022 22
*/000022

*1034/103421 1034;0 177776 377\021 377
*/103777

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte.

DEBUGGING OBJECT PROGRAMS ON-LINE

5.3.3 Breakpoints

With ODT-11X you can set up to eight breakpoints concurrently,
numbered 0 through 7. The n;B command used in ODT-11 to set the
breakpoint at address n sets the next available breakpoint in ODT-11X.
Specific breakpoints may be set or changed by the n;mB command where m
is the number of the breakpoint. For example:

*1020;B (sets breakpoint 0)
*1030;B (sets breakpoint 1)
*1040;B (sets breakpoint 2)
*1032;1B (resets breakpoint 1)
*

The ;B command used in ODT-11 to remove the only breakpoint removes
all breakpoints in ODT-11X. To remove only one of the breakpoints,
use the ;nB command, where n is the number of the breakpoint. For
example:

*;2B (removes the second breakpoint)
*

The $B/ command opens the location containing the address of
breakpoint 0. The next seven locations contain the addresses of the
other breakpoints in order, and thus can be opened using the LINE FEED
key. (The next location is for single-instruction mode, explained in
the next section.) Example:

*$B/001020 ¥
nnnnnn/001032 +
nnnnnn/ (address internal to ODT)

In this example, breakpoint 2 is not set. The contents are an address
internal to ODT. After the table of breakpoints is the table of
Proceed command repeat counts for each breakpoint and for the
single-instruction mode (see Section 5.3.4).

. ¥

nnnnnn/001036 ¢ (address of breakpoint 7)
nnnnnn/nnnnnn ¥ (single-instruction address)
nnnnnn/000000 15 + (count for breakpoint 0)
nnnnnn/000000 (count for breakpoint 1)

It should be noted that a repeat count in a Proceed command refers
only to the most recent breakpoint. Execution of other breakpoints
encountered is determined by their own repeat counts.

5.3.4 Single-Instruction Mode

With this mode you can specify the number of instructions you wish
executed before suspension of the program run. The Proceed command,
instead of specifying a repeat count for a breakpoint encounter,
specifies the number of succeeding instructions to be executed. Note
that breakpoints are disabled when single-instruction mode is
operative. Commands for single-instruction mode follow:

:nsS Enables single-instruction mode (n can have any value
and serves only to distinguish this form from the form
:S); breakpoints are disabled.

DEBUGGING OBJECT PROGRAMS ON-LINE

n;P Proceeds with program run for next 'n .instructions
before reentering ODT (if n is-missing, it is assumed
to be 1). (Trap instructions:and - associated handlers
can affect ‘the Proceed repeat . count. See section
5.5.2.)

;S Disables single-instruction mode

When the repeat count for single-instruction mode is exhausted and the
program suspends executlon, ODT prints:

o2}

8;n

I %

where n is the address of the next instruction to be executed. The $B
breakpoint table contains this address following:that of breakpoint 7.
However, unlike the table entries for breakp01nts 0-7, the B8 entry is
not affected by direct modification.

Similarly, the repeat count for single-instruction mode follows - the

repeat count for breakpoint 7. This table entry, however, may be
directly modified, and thus is an alternative way of setting the
single-instruction mode repeat count. In such a case, ;P implies the

argument set in the $B repeat count table rather than the argument 1.

5.4 ERROR DETECTION

ODT-11 and ODT-11X inform you of two types of errors: illegal or
unrecognizable command and bad breakpoint entry.

Neither ODT-11 nor ODT-11X checks for the iegality of an address when
commanded to open a location for examination or modification.

Thus, the command

177774/
references nonexistent memory, and causes a trap through the vector at
location 4. If this vector has not been properly initialized (by IOX,
or the user program if IOX is not used), unpredictable results occur.
Similarly, a command such as

$20/

which references an address eight times the value represented by $2,
may cause an illegal (nonexistent) memory reference.

Typing other than a legal command eauses ODT to 1ignore the command,
print

[E3EY

and wait for another command. Therefore, to cause ODT to 1ignore a
command just typed, type an illegal character (such as 9 or RUBOUT)
and the command will be treated as an error, i.e., ignored.

ODT suspends program execution whenever it encounters a breakpoint,
i.e., a trap to its breakpoint routine. If the breakpoint routine is
entered and no known breakpoint caused the entry, ODT prints:

BE001542

DEBUGGING OBJECT PROGRAMS ON-LINE

and waits for another command. In the example above, BE001542 denotes
Bad Entry from location 001542. A Dbad entry may be caused by an
illegal trace trap instruction, setting the T-bit in the status
register, or by a jump to the middle of ODT.

5.5 PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient use of
ODT. However, its content does provide a better understanding_of how
ODT performs some of its functions.

5.5.1 Functional Organization

The internal organization of ODT is almost totally modularized into
independent subroutines. The internal structure consists of three
major functions: command decoding, command execution, and various
utility routines.

The command decoder interprets the individual commands, checks for
command errors, saves input parameters for use in command execution,
and send control to the appropriate command execution routine.

The command execution routines take parameters saved by the command
decoder and use the utility routines to execute the specified command.
Command execution routines exit either to the object program or back
to the command decoder.

The utility routines are common routines such as SAVE-RESTORE and I/O.
They are used by both the command decoder and the command executers.

Communication and data flow are illustrated in Figure 5-1.

5.5.2 Breakpoints

The function of a breakpoint is to pass control to ODT whenever the
user program tries to execute the instruction at the selected address.
Upon encountering a breakpoint, the user can utilize all of the ODT
commands to examine and modify his program.

When a breakpoint is executed, OoDT removes the breakpoint
instruction(s) from the wuser's code so that the locations may be
examined and/or altered. ODT then types a message to the user, in the
form Bn(Bm;n for ODT-11X), where n is the breakpoint address (and m is
the breakpoint number). The breakpoints are automatically restored
when execution is resumed.

A major restriction in the use of breakpoints is that the word

DEBUGGING OBJECT PROGRAMS ON-LINE

MANUAL
ENTRY
- BREAKPOINT - COMMAND
HANDLER DECODER
‘ |
PROGRAM INTERNAL
PROGRAM EXAMINATION & TABLE MAIN-
- ACTION MODIFICATION PULATION
COMMANDS COMMANDS COMMANDS
USER 7
. A
—_———— -~ - - — — — - — — R |
| i
ooT
-— - = INTERNAL
I TABLES
PROGRAM *
I
!
UTILITY
—_———- e~ —— = - - ROUTINES
(1/0,ETC.)
USER ENVIRONMENT oDT
LEGEND
Flow of control — — —
Flow of data —_—
11-0065
Figure 5-1 Communication and Data Flow

DEBUGGING OBJECT PROGRAMS ON-LINE

where a breakpoint has been set must not be referenced by the program
in any way since ODT has altered the word. Also, no breakpoint should
be set at the location of any instruction that clears the T-bit. For
example:
MOV $#240,177776 ; SET PRIORITY TO LEVEL 5.

A breakpoint occurs when a trace trap instruction (placed in the user
program by ODT) is executed. When a breakpoint occurs, ODT takes the
following steps: :

1. Set processor priority to seven (automatically set by trap
instruction).

2. Save registers and set up stack.
3. If internal T-bit trap flag is set, go to step 13.
4. Remove breakpoint(s).

5. Reset processor priority to ODT's priority' or user's
priority.

6. Make sure a breakpoint or Single-instruction mode caused the
interrupt.

7. If the breakpoint did not cause the interrupt, go to step 15.
8. Decrement repeat count.
9. Go to setp 18 if non-zero, otherwise reset count to one.

10. Save Teletype status.

11. Type message to user about the breakpoint or
Single-instruction mode interrupt.

12. Go to command decoder.

13. Clear T-bit in stack and internal T-bit flag.
14. Jump to the "GO" processor.

15. Save Teletype status.

l6. Type "BE" (Bad Entry) followed by the address.

17. Clear the T-bit, if set, in the user status and proceed to
the command decoder.

18. Go to the "Proceed", bypassing the TTY restore routine.
Note that steps 1-5 inclusive take approximately 100 microseconds
during which time interrupts are not permitted to occur (ODT is
running at level 7).
When a proceed (;P) command is given, the following occurs:

1. The proceed is checked for legality.

2. The processor priority is set to seven.

3. The T-bit flags (internal and user status) are set.

DEBUGGING OBJECT PROGRAMS ON-LINE

The user registers, status, and Program Counter are restored.
Control is returned to the user.
When the T-bit trap occurs, steps 1, 2, 3, 13, and 14 of the

breakpoint sequence are executed, breakpoints are restored,
and program execution resumes normally.

When-a breakpoint is placed on an IOT, EMT, TRAP, or any 1instruction
causing a trap, the following occurs:

1.

2.

When the breakpoint occurs as described above, ODT is
entered.

When ;P is typed, the T-bit is set and the IOT, EMT, TRAP, or
other trapping instruction is executed.

The current PC and status (with the T-bit included) are
pushed on the stack.

The new PC and status (no T-bit set) are obtained from the
respective trap vector.

The whole trap service routine 1is executed without any
breakpoints.

When an RTI is executed, the saved PC and PS (including the
T-bit) are restored. The instruction following the
trap-causing instruction is executed. If this instruction is
not another trap-causing instruction, the T-bit trap occurs,
causing the breakpoints to be reinserted in the user program,
or the Single-instruction mode repeat count to be
decremented. If the following instruction is a trap-causing
instruction, this sequence is repeated, starting at step 3.

NOTE

Exit from the trap handler must be via the RTI
instruction. Otherwise, the T-bit will be lost. ODT
will not gain control again since the breakpoints
have not been reinserted yet.

In ODT-11, the ;P command is illegal if a breakpoint has not occurred
(ODT responds with ?). In ODT-11X, ;P is legal after any trace trap

entry.

WARNING

Since ODT-11 ignores all semicolons,
typing the ODT-11X form of breakpoint
command number to ODT-11, specifying a
breakpoint number n, causes the
following error:

100;B (sets the breakpoint at location

100)
100;0B (sets the breakpoint at
location 1000)
100;4B (sets the breakpoint at 1location
1004)

DEBUGGING OBJECT PROGRAMS ON-LINE

The internal breakpoint status words for ODT-11 have the following
format:

1. The first word contains the breakpoint address. If this
location points to a location within ODT, it is assumed no
breakpoint is set for the cell (specifically, ODT has set a
dummy breakpoint within itself).

2. The next word contains the breakpoint repeat count.
For ODT-11X (with eight breakpoints) the formats are:

1. The first eight words contain the breakpoint addresses for
breakpoints 0-7. (The ninth word contains the address of the
next instruction to be executed in Single-instruction mode.)

2. The next eight words contain the respective repeat counts.
(The following word contains the repeat count for
Single-instruction mode.)

The user may change these words at will, either by using the
breakpoint commands or by direct manipulation with $B.

When program runaway occurs (that is, when the program is no longer
under ODT control, perhaps executing an unexpected part of the program
where a breakpoint has not been placed) ODT may be given control by
pressing the HALT key to stop the machine, and restarting ODT (see
Section 5.6.2). ODT prints *, indicating that it is ready to accept a
command .

If the program being debugged uses the terminal for input or output,
the program may interact with ODT to causes an error since ODT also
uses the terminal. This interactive error does not occur when the
program being debugged is run without ODT.

1. If the terminal output interrupt is enabled upon entry to the
ODT break routine, and no output interrupt is pending when
ODT is entered, ODT is entered, ODT generates an unexpected
interrupt when returning control to the program.

2. If the interrupt of the terminal input (the keyboard) is
enabled upon entry to the ODT break routine, and the program
is expecting to receive an interrupt to input a character,
both the expected interrupt and the character will be lost.

3. If the terminal input (keyboard) has just read a character
into the reader data buffer when the ODT break routine is
entered, the expected character in the input data buffer will
be lost.

5.5.3 Search

The word search allows the wuser to search for bit patterns in
specified sections of memory. Using the $M/ command, the user
specifies a mask, a lower search limit ($M+2), and an upper search
limit ($SM+4). The search object is specified in the search command
itself.

The word search compares selected bits (where ones appear in the mask)
in the word and search object. If all selected bits are equal, ODT
prints the unmasked word.

DEBUGGING OBJECT PROGRAMS ON-LINE

The search algorithm is:
1. Fetch a word at the current address.
2. XOR (exclusive OR) the word and search object.
3. AND the result of step 2 with the mask.
4. If the result of step 3 is zero, type the address of the
unmasked word and its contents. Otherwise, proceed to step
5.
5. Add two to the current address. If the current address is
greater than the upper 1limit, type * and return to the
command decoder, otherwise go to step 1.
Note that if the mask is zero, ODT prints every word between the
limits, since a match occurs every time (i.e., the result of step 3 is
always zero).
In the effective address search, ODT interprets every word 1in the
search range as an instruction which is interrogated for a possible
direct relationship to the search object.

The algorithm for the effective address search is (where (x) denotes
contents of x, and k denotes the search object):

1. Fetch a word at the current address X.
2. If (x)=k [direct reference], print contents and go to step 5.

3. If (x)+x+2=k [indexed by PC], print contents and go to step
5.

4. TIf (x) is a relative branch to k, print contents.
5. Add two to the current address. If the current address is
greater than the upper limit, perform a carriage return/line

feed and return to the command decoder; otherwise, go to
step 1.

5.5.4 Teletype Interrupt

Upon entering the TTY SAVE routine, the following occurs:
1. Save the LSR status register (TKS).
2. Clear interrupt enable and maintenance bits in the TKS.
4. Clear interrupt enable and maintenance bits in the TPS.
To restore the TTY:
1. Wait for completion of any I/O from ODT.
2. Restore the TKS.

3. Restore the TPS.

DEBUGGING OBJECT PROGRAMS ON-LINE

NOTES

If the TTY printer interrupt is enabled
upon entry to the ODT break routine, the
following may occur:

1. If no output interrupt 1is pending
when ODT is entered, an additional
interrupt always occurs when ODT
returns control to the user.

2. If an output interrupt 1is pending
upon entry, the expected interrupt
occurs when the user regains
control.

If the TTY reader (keyboard) is busy or
done, the expected character in the
reader data buffer will be lost.

If the TTY reader (keyboard) interrupt
is enabled wupon entry to the ODT break
routine, and a character is pending, the
interrupt (as well as the character)
will be lost.

5.6 OPERATING PROCEDURES

This section describes procedures for linking ODT on LSI-11 machines,
and for loading ODT on other PDP-11 machines. It describes starting,
restarting, error recovery, and setting the priority level of ODT.

5.6.1 Linking Procedures (LSI-11 Systems Only)

For LSI-11 systems, ODT-11X is supplied on relocatable object tapes.
Binary tapes are produced by linking the ODT-11X object tape with the
object tapes of the program to be debugged (using LINK-11S). The
ODT-11X tape should be the first tape processed by LINK-11S; in this
manner, ODT-11X is started first when the binary tape is loaded.

5.6.2 Loading Procedures (non-LSI-11 Systems Only)

For all systems other than LSI-11, ODT 1is supplied on source and
binary tapes. Appendix N explains assembly instructions for source
tapes. Binary tapes are loaded with the Absolute Loader. Since ODT
is started as soon as it is loaded, the program to be debugged should
be loaded prior to ODT.

When supplied on binary tape, ODT-11 1loads beginning at 1location
13026, and occupies about 533 (decimal) words of memory. ODT-11X
loads beginning at location 12054, and requires about 800 (decimal)
words of memory. '

DEBUGGING OBJECT PROGRAMS ON-LINE

5.6.3 Starting and Restarting

The Absolute Loader starts ODT automatically after 1loading it into
core. ODT indicates its readiness to accept input by printing an *.

The starting address for ODT-11 on binary tape is 13026; the starting
address for ODT-11X on binary tape is 12054. 1If ODT is reassembled
using PAL-11A, the starting address in indicated in the symbol table
as the value of the symbol 0.0DT: If ODT is linked using LINK-11S,
the starting address is indicated in the link map as the value of the
global symbol O.ODT.

When ODT is started at its start address, the SP register is set to an
ODT internal stack, registers RO-R5 are left untouched, and the trace
trap vector is initialized. 1If ODT is started after breakpoints have
been set 1in a program, ODT ignores the breakpoints and leaves the
program modified, i.e., the breakpoint instructions are left 1in the
program.

There are two ways to restart ODT:
l. Restart at start address+2
2. Reenter at start address+4

To restart, key in the start address+2, press LOAD ADDRess and then
START. A restart saves the general registers, removes all the
breakpoint instructions from the user program and then ignores all
breakpoints, i.e., simulates the ;B command.

To reenter, key in the load address+4, press LOAD ADDRess and then
START. A reenter saves the general registers, removes the breakpoint
instructions from the user program, and types the BE (Bad Entry) error
message. ODT remembers which breakpoints were set and resets them on
the next ;G command (;P is illegal after a Bad Entry).

CHAPTER 6

LOADING AND DUMPING MEMORY

This chapter describes procedures for loading programs into memory
(using the Bootstrap Loader and Absolute Loader) and for dumping the
contents of memory (using the DUMPAB and/or DUMPTT programs).

The Bootstrap Loader, which loads short paper tape programs (162 or
fewer octal words), appears on one of three forms, depending upon the
system configuration:

1. Hardware - on some CPUs, the Bootstrap Loader is present as a
ROM chip.

2. Software - on some CPUs, the Bootstrap Loader must be toggled
in via console switches.

3. Firmware - on LSI-1ls, the Bootstrap Loader 1is a firmware
loader, present as a programmable ROM chip.

Once familiar with the operation of the Bootstrap Loader, the user can
load other programs (such as the Absolute Loader, DUMPAB, and DUMPTT).

The Absolute Loader {(see section 6.2) is a system program that enables
the wuser to load data punched on paper tape in absolute binary format
into any available memory bank. It is wused primarily to 1load the
paper tape system software, binary programs assembled with PAL-11A,
and binary tapes produced by LINK-11S from object tapes produced by
PAL-11S.

The loader programs are loaded into the upper-most area of available
core and are available for use with system and user programs.
Programs should not use the locations used by the 1loaders without
restoring their contents; otherwise, the loaders must be reloaded
since they will have been altered by the object program.

Core memory dump programs (see section 6.3) print or punch the
contents of specified areas of core. For example, when developing or
debugging user programs it is often necessary to get a copy of the
program or portions of core. There are two dump programs supplied in
the paper tape software system: DUMPTT, which prints or punches the
octal representation of specified portions of core, and DUMPAB, which
punches specified portions of core in absolute binary format suitable
for loading with the Absolute Loader.

LOADING AND DUMPING MEMORY

6.1 PAPER TAPE BOOTSTRAPS

Procedures for operating the various PDP-11 paper tape bootstraps are
described below:

6.1.1 BM792-YA Paper Tape Bootstrap ROM

1.

2.

Set the console ENABLE/HALT switch to HALT.

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap 1leader code over the reader
sensors (under the reader station).

If the low-speed reader (ASR-33) 1is to be wused, and a
high-speed reader 1is, present on the system, turn the high
speed reader OFF. If the high-speed reader is to be used,
turn it ON.

Set the console ENABLE/HALT switch to ENABLE.

Set the console switch register to 773000.

Press the cohsole START switch. The contents of the
bootstrap tape will be loaded into the highest locations of

memory.

The bootstrap transfers control to the program Jjust 1loaded.
Typically, this program halts.

6.1.2 BM873-YA Bootstrap Loader ROM

1.

2.

5a.

5b.

Set the console ENABLE/HALT switch to HALT.

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap 1leader code over the reader
sensors (under the reader station).

If the low-speed reader (ASR-33) 1is to be wused, and a
high-speed reader 1is present on the system, turn the
high-speed reader OFF. If the high-speed reader 1is to be
used, turn it ON.

Set the console ENABLE/HALT switch to ENABLE.

If the low-speed reader is to be used, set the console switch
register to 773210.

If the high-speed reader is to be wused, set the console
switch register to 773312.

Press the console START switch. The contents of the
bootstrap tape will be loaded into the highest locations of
memory.

The bootstrap transfers control to the program just 1loaded.
Typically, this program halts.

LOADING AND DUMPING MEMORY

6.1.3 LSI-11 Firmware Paper Tape Bootstrap

1.

2.

Press the front panel BOOT/INIT switch. This enables the
micro-ODT; an @ prints at the terminal.

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap 1leader code over the reader
sensors (under the reader station).

If the low-speed reader (ASR-33) 1is to be used, and a
high-speed reader 1is present on the system, turn the
high-speed reader OFF. If the high-speed reader 1is to be
used, turn it ON.

Type the command/status register address of the input device
followed by L to load the tape.

For example, when loading from the «console terminal
reader, type:

@ 177560L

After reading the contents of the tape, the LSI-11
microprocessor starts the program, which typically halts. 1In
this case, the micro-ODT automatically restarts and prints @
followed by the address of the instruction after the HALT
instruction. For example, after loading the Absolute Loader
on an 8K system, the micro-ODT prints:

@375000
@

The starting address of the Absolute Loader in this case is
375000.

6.1.4 M9301-YB Bootstrap Loader

la.

1b.

If the system does not have a switch register, press the
front panel BOOT/INIT switch.

If the system does not have a BOOT/INIT switch, set the
console switch register to 773000; press LOAD/ADDR; then
press START.

Four numbers are printed at the terminal, followed by a S$.
These numbers are the contents of the general registers RO,
R4, R6, and R5, respectively. For CPUs without switch
registers (such as the 11/04), R5 contains the contents of
the program counter (PC) at the time BOOT/INIT was pressed.

For example:

007740 012450 005446 004054
&

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

LOADING AND DUMPING MEMORY

4. Type the device code (PR for high-speed reader, TT for
terminal reader), and type RETURN, as follows:

$PR,/ or $TT/
After reading the contents of the tape, the Bootstrap Loader

transfers control to the program just loaded. Typically,
this program halts.

6.1.5 M9301-YA Bootstrap Loader

If a console terminal is available, boot instructions for the M9301-YA
Bootstrap Loader are the same as for the M9301-YB Bootstrap Loader
(Section 6.1.4).

If no console terminal is available, the auto-boot feature of the
M9301-YA must be wused. See the M9301 Maintenance Manual for
instructions on placing the appropriate paper tape bootstrap in the
M9301 module micro-switch. Then follow the procedure below:

1. Place the bootstrap tape in the desired paper tape reader
with the special bootstrap 1leader code over the reader
sensors (under the reader station).

2. Set the console HALT/CONT switch to CONT.
3. Press the console BOOT/INIT switch. After reading the

contents of the tape, the Bootstrap Loader transfers control
to the program just loaded. Typically, this program halts.

6.1.6 Other Bootstrap Loaders

This section is for users without any of the bootstrap aids 1listed
above.

The Bootstrap Loader should be loaded (toggled) into the highest core
memory bank. The locations and corresponding instructions of the
Bootstrap Loader are listed and explained below.

Location Instruction
xx7744 016701
xx7746 000026
xx7750 012702
xx7752 000352
xx7754 005211
xx7756 105711
xx7760 100376
xx7762 116162
xx7764 000002
xx7766 xx7400
xx7770 005267
xx7772 177756
xx7774 000765
xx7776 YYYYYY

Figure 6-1 Bootstrap Loader Instructions

LOADING AND DUMPING MEMORY

In Figure 6-1, xx represents the highest available memory bank. For
example, the first 1location of the Loader would be one of the
following, depending on memory size, and xx in all subsequent
locations would be the same as the first.

Location Memory Bank Memory Size
017744 0 4K
037744 1 8K
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 28K

Note also in Figure 6-1 that the contents of location xx7766 should
reflect the appropriate memory bank in the same manner as the
location.

The contents of location xx7776 (yyyyyy in the Instruction column of
Figure 6-1) should contain the device status register address of the
paper tape reader to be used when loading the bootstrap formatted
tapes. Either paper tape reader may be used, specified as follows:

Teletype Paper Tape Reader -— 177560
High-Speed Paper Tape Reader - 177550

6.1.6.1 Loading the Loader Into Core - Toggle in the Bootstrap Loader
as explained below.

1. Set xx7744 in the Switch Register (SR) and press LOAD ADDRess
(xx7744 is displayed in the ADDRESS REGISTER).

2. Set the first instruction, 016701, in the SR and lift DEPosit
(016701 is displayed in the DATA register).

NOTE

When DEPositing data into consecutive words, the
DEPosit automatically increments the ADDRESS REGISTER
to the next word.

3. Set the next instruction, 000026, in the SR and 1lift DEPosit
(000026 is displayed in the DATA register).

4. Set the next instruction in the SR, press DEPosit, and
continue depositing subsequent instructions (ensure that
location xx7766 reflects the proper memory bank) until after
000765 has been deposited in location xx7774.

5. Deposit the desired device status register address in
location xx7776, the last location of the Bootstrap Loader.

It is good programming practice to verify that all instructions are
stored correctly. This is done by proceeding at step 6 below.

6. Set xx7744 in the SR and press LOAD ADDRess.

LOADING AND DUMPING MEMORY

7. Press EXAMine (the octal instruction in 1location xx7744 |is
displayed in the DATA register so that it can be compared to
the correct instruction, 016701. If the instruction is
correct, proceed to step 8; otherwise go to step 10.

8. Press EXAMine (the instruction of the location displayed in
the ADDRESS REGISTER is displayed in the DATA register;
compare the DATA register contents to the instruction for the
displayed location.

9. Repeat step 8 until all instructions have been verified or go
to step 10 whenever the correct instruction is not displayed.

When an incorrect instruction is displayed, it can be corrected by
performing steps 10 and 11.

10. With the desired location displayed in the ADDRESS REGISTER,
set the <correct instruction in the SR and 1ift DEPosit (the
contents of the SR are deposited in the displayed location).

11. Press EXAMine to ensure that the instruction was correctly
stored (it is displayed in the DATA register).

12. Proceed at step 9 until all instructions have been verified.

The Bootstrap Loader is now loaded into core. The procedures above
are illustrated in the flowchart of Figure 6-2.

6.1.6.2 Loading Bootstrap Tapes - Any paper tape punched in bootstrap
format 1is referred to as a bootstrap tape (see Section 6.1.3) and is
loaded into core using the Bootstrap Loader. Bootstrap tapes begin
with about two feet of special bootstrap leader code (ASCII code 351,
not blank leader tape as required by the Absolute Loader).

With the Bootstrap Loader in core, the bootstrap tape is 1loaded into
core starting anywhere between location xx7400 and location xx7743,
i.e., 162 (octal) words. The paper tape input device wused 1is that
which is specified in location xx7776 (see section 6.1.6.1).

Bootstrap tapes are loaded into core as explained below.
1. Set the ENABLE/HALT switch to HALT.
2. Place the bootstrap tape in the specified reader with the
special bootstrap leader code over the reader sensors (under

the reader station).

3. Set the console switch register to xx7744 (the starting
address of the Bootstrap Loader) and press LOAD ADDRess.

4. Set the ENABLE/HALT switch to ENABLE.

5. Press START. The bootstrap tape passes through the reader as
data is being loaded into core.

6. The bootstrap tape stops after the last frame of data (see
Figure 6-5) has been read into core. The program on the
bootstrap is now in core.

The procedures above are illustrated in the flowchart of Figure 6-3.

LOADING AND DUMPING MEMORY

(INITIALIZE >

{

SETSR TO

LOAD

xx7744

PRESS
LOAD ADDR

t

LOAD
OR VERIFY

SETSRTO
016701

LIFT DEP

A

SETSRTO
B NEXT
INSTRUCTION

LIFT DEP

ALL
INSTRUCTIONS
DEPOSITED

Figure 6-2

INSTRUCTIONS
?

VERIFY

PRESS EXAM |«

NO INSTRUCTION

M

SETSR TO
CORRECT
INSTRUCTION

LIFT DEP

R

CORRECT
?

ALL
INSTRUCTIONS
VERIFIED
?

FINISHED

Loading and Verifying the Bootstrap Loader

LOADING AND DUMPING MEMORY

WITH BOOTSTRAP
LOADER.IN CORE Y
(SEE FIGURE 6-2)
SET ENABLE/HALT
‘ TO ENABLE
SET ENABLE/HALT
TO HALT
PRESS START
)
PLACE BOOTSTRAP
TAPE IN SPECIFIED
READER (CODE 351 I
MUST BE OVER TAPE READS IN
READER SENSORS) AND STOPS AT
END OF DATA
!
SETSR TO Y
xx7744 DATA IS
IN CORE
¥
PRESS
LOAD ADDR

L

Figure 6-3 Loading Bootstrap Tapes Into Core

Should the bootstrap tape not read in immediately after depressing the
START switch, one of the following conditions may exist:

1. Bootstrap Loader not correctly loaded.
2. Wrong input device used.
3. Code 351 not directly over the reader sensors.

4. Bootstrap tape not properly positioned in reader.

6.1.6.3 Bootstrap Loader Operation - The Bootstrap Loader source
program 1s shown below. The starting address in the example denotes
that the Loader is to be loaded into memory bank zero (a 4K system).

= 0RO S WD -

11

13
14
15
16
17
18

19

20
21
22
23
24
25

17744

17758
17752

17754
17756
17760
17762

17770

17774
17776

LOADING AND DUMPING MEMORY

200000 «ASECT

0000631 R1 = %1 SPOINTER TO DEVICE ADDRESS

p26032 R2 = z2 3$LOAD ADDRESS DISPLACEMENT

008237 PC = %7 5 PROGRAM COUNTER

217400 LOAD = 17400 3 DATA CANNOT BE LOADED BELOV
$THIS ADDRESS

A17744 o = LOAD+344 3 STARTING ADDRESS

@167@1 START: MOV DEVICE,RI 5 COPY DEVICE ADDRESS

poav2é6

p12782 LOOP: MOV (PC)+,R2 5 COPY ADDRESS DI SPLACEMENT

PAB352 DSPMNT: ++.=-LOAD JINITIALLY OFFSET TO THIS LOC
SNOTE THAT THIS LOC IS PART OF
3 PREVIQUS INSTRUCTION

a@5211 INC @Rl 3 START THE PAPER TAPE READER

165711 WAIT: TSTB @Rl 3 FRAME READY?

183376 BPL VAIT 35BR IF NOT

116162 MOVB 2(R1),LOAD(R2) 3 STORE FRAME READ IN MEMORY

" Po006B2

217400

205267 INC DSPMNT s INCREMENT DISPLACEMENT TO NEXT

177756
3LOCATION

9208765 BRNCH: BR LOOP 3 READ NEXT BYTE

177568 DEVICE: 1775608 3 ADDRESS OF INPUT DEVICE, MAY BE
3177550 IF HIGH SPEED READER

peoen1 "’ +END

Figure 6-4 The Bootstrap Loader Program

The program above is a brief example of the PAL-11A Assembly Language
which is explained in Chapter 2.

Bootstrap tapes are coded in the following format.

351

351
XXX
AAA

BBB
CcCcC

277
301
035
026
000
302
025
373

YYy

Special bootstrap leader code (at least two feet
in length)

Load offset (see text below)

Program to be loaded (up to 162 words or 344

frames)

Boot overlay code, as shown.

Jump offset (see text below)

Figure 6-5

Bootstrap Tape Format

LOADING AND DUMPING MEMORY

The Bootstrap Loader starts by loading the device status register
address into Rl and 352g into R2. The next instruction indicates a
read operation in the device and the next two instructions form a loop
to wait for the read operation to be completed. When data is
encountered it is transferred to a location determined by the sum of
the index word (xx7400) and the contents of R2.

Because R2 is initially 352g, the first word is moved to location
xx7752, and it becomes the immediate data to set R2 in the next
execution of the loop. This immediate data is then incremented by one
and the program branches to the beginning of the loop.

The leader code, plus the increment, is equal in value to the data
placed in R2 during the initialization; therefore, leader code has no
effect on the loader program. Each time leader <code 1is read the
processor executes the same loop and the program remains unmodified.
The first code other than leader code, however, replaces the data to
be loaded into R2 with some other value which acts as a pointer to the

program starting location (loading address). Subsequent bytes are
read not into the location of the immediate data but into consecutive
core locations. The program will thus be read in byte by byte. The

INC instruction which operates on the data for R2 puts data bytes in
sequential locations, and requires that the value of the 1leader code
and the offset be one less than the value desired in R2.

The boot overlay code overlays the first two instructions of the
Loader, because the last data byte is placed in the core location
immediately preceding the Loader. The first instruction is unchanged
by the overlay, but the second instruction is changed to place the
next byte read, jump offset, into the 1lower byte of the branch
instruction. By changing the offset in this branch instruction, the
Loader can branch to the start of the loaded program or to any point
within the program.

The Bootstrap Loader is self-modifying, and the program loaded by the
Loader restores the Loader to its original condition by restoring the
contents of 1locations xx7752 and xx7774 to 000352 and 000765
respectively.

6.2 THE ABSOLUTE LOADER

The Absolute Loader is a system program that enables the user to 1load
data punched on paper tape in absolute binary format into any
available memory bank. It is used primarily to load the paper tape
system software, binary programs assembled with PAL-11A, and binary
tapes produced by LINK-11S from object tapes produced by PAL-11S. The
major features of the Absolute Loader include:

1. Testing of the checksum on the input tape to assure complete,
accurate loads.

2. Starting the 1loaded program- upon completion of 1loading
without additional user action, as specified by the .END in
the program just loaded.

3. Specifying the load bias of position independent programs at
load-time rather than at assembly time, by using the desired
Loader switch register option.

LOADING AND DUMPING MEMORY

6.2.1 Loading the Loader Into Core

The Absolute Loader is supplied on punched paper tape in bootstrap
format. Therefore, a Bootstrap Loader is used to load the Absolute
Loader into core. It occupies locations xx7474 through xx7743, and
its starting address is xx7500. The Absolute Loader program is
72 words long, and is loaded adjacent to the Bootstrap Loader as
explained in section 6.1.6.2.

6.2.2 Using the Absolute Loader

Paper tapes punched in absolute binary format are also called absolute
tapes, binary tapes, or .LDA tapes. These are the tapes loaded by the
Absolute Loader.

In the following discussion, reference is made to a "switch register."
For systems without switch registers (such as the LSI-11 and
PDP-11/04), this term refers to a software switch register, which is a
memory location internal to the Absolute Loader for systems without
hardware switch registers. The location within the Absolute Loader is
xxx516, where xxx reflects memory size as follows:

Memory XXX
4K 017
8K 037

12K 057
16K 077
20K 117
24K 137
28K 157

When text indicates that a value be placed in a switch register, users
without hardware switch registers must use either the M9301 console
emulator or the LSI-11 micro-ODT, as appropriate, to store the switch
register value in location xxx516. Once this value has been stored,
the user starts the Absolute Loader at location =xxx500. Once the
Absolute Loader is loaded, it initializes the value of location xxx516
to 0. This value changes only when modified by the user.

A normal load occurs when data is loaded into memory according to the
load addresses on the binary tape. The user must set bit 0 of the
switch register to 0 immediately before starting the load.

There are two types of relocated loads:

1. Loading to continue from where the loader left off after the
previous load -

This is used, for example, when the object program being
loaded 1is. contained on more than one tape. It is specified
by setting the switch register to 000001 immediately before
starting the load.

2. Loading into a specific .area of core -

This is normally used when 1loading position independent
programs. A position independent program is one which may be
loaded and run anywhere in available core. The program 1is
written wusing the position independent instruction format
(see Chapter 9). This type of load is specified by setting
the switch register to the 1load bias and adding 1 to it

6-11

LOADING AND DUMPING MEMORY

(i.e., setting bit 0 to 1). The effect of this is to add the
value in the switch register to the start address o#n the
tape.

Optional switch register settings for the three types of 1loads are
listed below.

Switch Register

Type of Load Bits 1-14 Bit 0
Normal (ignored) 0
Relocated - continue 0 1

loading where left off

Relocated - load in nnnnn 1
specified area of core (specified
address)

The absolute tape may be loaded using either of the paper tape
readers. The desired reader 1is specified in the 1last word of
available core memory (xx7776), the input device status word, as
explained in section 6.1.6. The input device status word may be
changed at any time prior to loading the absolute tape.

With the Absolute Loader in core as explained in section 6.1.6.2,
absolute tapes are loaded as explained below.

1. Set the ENABLE/HALT switch to HALT.

To use an input device different from that used when loading
the Absolute Loader, change the address of the device status
word (in location xx7776) to reflect the desired device,
i.e., 177560 for the Teletype reader or 177550 for the
high-speed reader.

2. Set the switch register to xx7500 and preéss LOAD ADDR.

3. Set the switch register to reflect the desired type of 1load
(Figure E-3 in Appendix E).

4. Place the absolute tape in the proper reader with blank
leader tape directly over the reader sensors.

5. Set ENABLE/HALT to ENABLE.

6. Press START. The absolute tape begins passing through the
reader station as data is being loaded into core.

If the absolute tape does not begin passing through the reader
station, the Absolute Loader 1is not in core correctly. Reload the
Loader and start over at step 1 above. If it halts in the middle of
the tape, a checksum error occurred in the last block of data read in.

Normally, the absolute tape stops passing through the reader station
when it encounters the transfer address as generated by the statement,
.END, denoting the end of a progranm. If the system halts after
loading, check that the low byte of the DATA register is zero. If so,
the tape 1is correctly loaded. If not zero, a checksum error
(explained 1later) has occurred in the block of data just loaded,
indicating that some data was not correctly loaded. Reload the tape
starting at step 1 above.

LOADING AND DUMPING MEMORY

When loading a continuous relocated load, subsequent blocks of data
are loaded by placing the next tape in the appropriate reader and
pressing the CONTinue switch.

The Absolute Loader may be restarted at any time by starting at step 1
above.

6.2.3 Absolute Loader Operation

The Loader uses the eight general registers (R0-R7) and does not
preserve or restore their ©previous contents. Therefore, caution
should be taken to restore or load these registers when necessary
after using the Loader.

A block of data punched on paper tape in absolute binary format has
the following format.

FRAME 1 001 start frame
2 000 null frame
3 XXX byte count (low 8 bits)
4 XXX byte count (high 8 bits)
5 YYY load address (low 8 bits)
6 YYY load address (high 8 bits)
. data is
. placed
. here
ZZZ last frame contains a block checksum

A program on paper tape may consist of one or more blocks of data.
Each block with a byte count (frames 3 and 4) greater than six causes
subsequent data to be 1loaded into core (starting at the address
specified in frames 5 and 6 for a normal load). The byte count is a
positive integer denoting the total number of bytes 1in the block,
excluding the checksum. When the byte count of a block is six, the
specified load address is checked to see whether the address is to an
even or to an odd location. If even, the Loaded transfers control to
the address specified. Thus the loaded program runs upon completion
of loading. If odd, the loader halts.

The transfer address (TRA) may be explicitly specified in the source
program by placing the desired address in the operand field following
the .END statement. For example,

.END ALPHA
specifies the symbolic location ALPHA as the TRA, and

. END
causes the Loader to halt. With

.END nnnnnn
the Loader also halts if the address (nnnnnn) is odd.
The checksum is displayed in the low byte of the DATA register of the
computer console. Upon completion of a load, the low byte of the DATA
register should be all zeros (unlit). Otherwise, a checksum error has
occurred, indicating that the load was not correct. The checksum is
the low-order byte of the negation of the sum of all the previous

bytes in the block. When all bytes of a block including the checksum
are added together, the low-order byte of the result should be zero.

6-13

LOADING AND DUMPING MEMORY

If not, some data was 1lost during the load or erroneous data was
picked up; the 1load was incorrect. When a checksum error is
displayed, the entire program should be reloaded, as explained in the
previous section. The 1loaders occupy core memory as illustrated
below.

xx7776 1/0 DEVICE WORD
xx7744 BOOTSTRAP LOADER
xx7500 ABSOLUTE LOADER
xx7474 LOADER STACK
USER AND
SYSTEM
PROGRAMS

6.3 CORE MEMORY DUMPS

A core memory dump program.is a system program whith enables the user
to dump (print or punch) the contents of any specified portion of core
memory onto the Teletype printer and/or punch, line printer or
high-speed punch. There are two dump programs available in the Paper
Tape Software System:

1. DUMPTT', which dumps the octal representation of the contents
of specified portions of core onto the teleprinter, low-speed
punch, high-speed punch, or line printer.

2. DUMPAB, which dumps the absolute binary code of the contents
of specified portions of core onto the low-speed punch or
high-speed punch.

Both dump programs are supplied on punched paper tape in bootstrap and
absolute binary formats. The bootstrap tapes are loaded over the
Absolute Loader as explained in section 6.1.6.3, and are used when it
would be undesirable to alter the contents of user storage (below the
Absolute Loader). The absolute binary tapes are position independent
and may be loaded and run anywhere in core as explained in section
6.2.2.

DUMPTT and DUMPAB are similar in function, and differ primarily in the
type of output they produce.

6.3.1 Operating Procedures

Neither dump program punches leader or trailer tape, but DUMPAB always
punches ten blank frames of tape at the start of each block of data
dumped .

1
DUMPTT is not available for systems without switch registers.
6-14

6.3.1.1

LOADING AND DUMPING MEMORY

Using DUMPAB on Systems Without Switch Registers - Operating

procedures for DUMPAB on systems without switch registers are as

follows:

1.

2a.

2b.

7a.

7b.

Select either the absolute binary or the bootstrap version of
DUMPAB and place it in the reader specified by location
xx7776 (see section 6.1).

If using a bootstrap tape, load the tape using the procedure
outlined in section 6.1. When the computer halts, go to step
3.

If using an absolute binary tape, load the tape using the
procedure outlined in section 6.2.2, relocating as follows:

a. Select the address to which the program 1is to be
relocated. The relocation offset is then equal to the
loading address. For example, if the desired relocation
address is 000400, the relocation offset is 000401.

b. Deposit the relocation offset with bit 0 set 1in the
Absolute Loader's software switch register. Using the
example from the previous step, the wuser would deposit
000401 into location xxx516.

Start the Absolute Loader.

When the program halts, find the address in the program
counter. For LSI-11 machines, the value is printed at the
console terminal by the micro-ODT. For UNIBUS PDP-11
machines, the user must press the BOOT/INIT switch to obtain
register values at the console terminal (see section 6.1.4).
The last of the four values displayed is the PC contents.

Add 2 to the value of the PC. (For example, the PC contents
for the bootstrap version of DUMPAB are xxx516; adding 2 to
this value gives xxx520.) This new value is the address of
the first of these succeeding parameters, described 1in
subsequent steps.

Deposit the address of the first byte to be dumped into the
first parameter (whose address was determined in the previous
step) .

Deposit the address of the last byte to be dumped into the
second parameter (next sequential location).

The third parameter contains the value 177564 (a default
specifying the ASR-33 punch). If this is the first time this
step is executed and the high-speed reader 1is the desired
output device, change the value of the third parameter to
177554.

If using the LSI-11, type P to proceed.

If using a UNIBUS PDP-11, restart the program (at xxx510 if
bootstrap tape); press CONT when the program halts.

DUMPAB dumps the specified segment of memory and halts.

Repeat steps 4 through 8 until all desired memory segments
have been dumped.

6-15

LOADING AND DUMPING MEMORY

10. A transfer block for DUMPAB must be generated to terminate
the dump. This wvalue must be deposited in the first
parameter (step 4) to terminate DUMPAB. If the tape is not
to be self-starting, use 000001 as the transfer address.
Under no conditions can 000000 be wused as the transfer
address.

11. Deposit 000000 in the second parameter (as in step 5).

12. Repeat step 7a or 7b, as appropriate, to punch the transfer
block.

6.3.1.2 Using DUMPAB and DUMPTT on Systems with Switch Registers -

1. Select the dump program desired and place it in the reader
" specified by location xx7776 (see Section 6.1).

2. If a bootstrap tape is selected, load it using the Bootstrap
Loader, section 6.1.6.2. When the computer halts go to step
4,

3. If an absolute binary tape is selected, 1load it wusing the
Absolute Loader (section 6.2.2), relocating as desired.

Place the proper start address in the switch register, press
LOAD ADDRess and START. (The start addresses are shown in
section 6.3.3).

4. When the computer halts, enter the address of the desired
output device status register in the switch register and
press CONTinue (low-speed punch and teleprinter = 177564;
high-speed punch = 177554; 1line printer = 177514).

5. When the computer halts, enter in the switch register the
address of the first byte to be dumped and press CONTinue.
This address must be even when using DUMPTT.

6. When the computer halts again enter in the switch register
the address of the last byte to be dumped and press CONTinue.
When using the low-speed punch, set the punch to ON before
pressing CONTinue.

7. Dumping proceeds on the selected output device.
8. When dumping is complete, the computer halts.

If further dumping is desired, proceed to step 5. It is not necessary
to respecify the output device address except when changing to another
output device. In such a case, proceed to the second paragraph of
step 3 to restart.

If DUMPAB is being used, a transfer block must be generated as
described below. If a tape read by the Absolute Loader does not have
a transfer block, the loader will wait in an input loop. In such a
case, the program may be manually initiated. However, this practice
is not recommended, as there is no .guarantee that load errors will not
occur when the end of the tape is read.

The transfer block is generated by performing step 5 with the transfer
address in the Switch Register, and step 6 with the transfer address
minus 1 in the Switch Register. If the tape 1is not to be
self-starting, an odd-numbered address must be specified in step 5
(000001, for example).

6-16

LOADING AND DUMPING MEMORY

The dump programs use all eight general registers and do not restore
their original contents. Therefore, after a dump the general
registers should be 1loaded as necessary prior to their use by
subsequent programs.

6.3.2 Output Formats

The output from DUMPTT is in the following format:

XXXXXX>YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY

where xxxxxx is the octal address of the first location printed or
punched, and yyyyyy are words of data, the first of which starts at
location xxxxxx. This is the format for every line of output. There
will be no more than eight words of data per line, but there will be
as many lines as are needed to complete the dump.

The output from DUMPAB is in absolute binary, as explained in section
6.2.3.

6.3.3 Storage Maps

The DUMPTT program is 87 words long. When used in absolute format the
storage map is:

xx7776

BOOTSTRAP LOADER
xx7744

ABSOLUTE LOADER
xx7500
xx7474 LOADER STACK SPACE
XXXXXX+256

DUMPTT

XXXXXX TWO-WORD STACK SPACE

xxxxxx = desired load address = start address

When used in bootstrap format the storage map is:

LOADING AND DUMPING MEMORY

xx7776
BOOTSTRAP LOADER
xx7744
DUMPTT
start address = xx7440
xx7434 TWO-WORD STACK SPACE

The DUMPAB program (for systems with a switch register) 1is 65(10)
words long. When used in absolute format the storage map is:

xx7776

BOOTSTRAP LOADER
xx7744

ABSOLUTE LOADER
xx7500
xx7474 LOADER STACK SPACE
XXXXXX+244

DUMPAB

XXXXXX
THREE-WORD STACK SPACE

xxxxxx = desired load address = start address

When used in bootstrap format the storage map is:

LOADING AND DUMPING MEMORY

xx7776

BOOTSTRAP LOADER

xx7744

DUMPAB

start address = xx7510
xx7500 THREE-WORD STACK SPACE

The DUMPAB program (for systems without a switch register) 1is 82(10)
words long. When used in absolute format the storage map is:

xx7776

BOOTSTRAP LOADER
xx7744

ABSOLUTE LOADER
xx7500
xx7474 LOADER STACK SPACE
XXXXXX+202

DUMPAB

XXXXXX -
TWO-WORD STACK SPACE

xxxxxx = desired load address = start address

LOADING AND DUMPING MEMORY

When used in bootstrap format the storage map is:

xx7776

BOOTSTRAP LOADER

xx7744

DUMPAB

start address = xx7500

xx7474
TWO-WORD STACK SPACE

CHAPTER 7

INPUT/OUTPUT PROGRAMMING

7.1 INTRODUCTION

The PDP-11 Input/Output eXecutive (IOX), frees the user from dealing
directly with I/O devices. It provides programming formats that allow
programs written for the paper tape software system to be wused later
in a monitor environment with only minor coding changes.

I0X provides asynchronous I/0 service for the following
non-file-oriented devices:

1. Teletype keyboard, printer, and tape reader and punch
2. High-speed paper tape reader and punch

For line printer handling, in addition to all IOX facilities, IOXLPT
is available.

Simple I/O requests can be made, specifying devices and data forms for
interrupt-controlled data transfers, that can occur concurrently with
the execution of a user program. Multiple I/O devices can run single-
or double-buffered I/O processing simultaneously.

Real-time capability is provided by allowing user programs to be
executed at device priority levels upon completion of a device action
or data transfer.

Communication with IOX is accomplished by IOT (Input/Output Trap)
instructions in the wuser's program. Each IOT is followed by two or
three words consisting of one of the IOX commands and 1its operands.
The IOX commands can be divided into two categories:

1. those concerned with establishing necessary conditions for
performing input and output (mainly initializations), and

2. those concerned directly with the transfer of data.

When transfer of data is occurring, IOX is operating at the priority
level of the device. The calling program runs at its priority level,
either concurrent with the data transfer, or sequentially.
Programming format for commands is:

I0T

.WORD (an address)

.BYTE (a command code), (a slot number)

Before using the data transfer commands, two preparatory tasks must be
performed:

INPUT/OUTPUT PROGRAMMING

1. Since device specifications are made by referring to "slots"
in IOX's Device Assignment Table (DAT) rather than devices
themselves, the slots specified in the code must have devices
assigned to them.

2. The buffer, whose address is specified in the code, must be
set up with information about the data.

In those non-data-transfer commands where an address or slot number
does not apply, a 0 must be used. Addresses or codes indicated can,
of course, be specified symbolically.

The following program segment illustrates a simple
input-process-output sequence. It includes:

1. The setting up of a single buffer

2. All necessary initializations

3. A formatted ASCII read into the buffer
4. A wait for completion of the read

5. Processing of data just read

6. A write command from the buffer.

RESET =2 FASSIGN TOX COMMAND CODES

REATI=11
WAL TR=4
WRITE=12
rar $TOX RESET TO DO NECESSARY
SWORD O FINITIALIZATIONS INCLUDNING
+BYTE RESETO SINITING SLOT O FOR KRIy AND 1 FOR TTY
0T FTRAF TO 10X
SJWORD BUFFER FOFECIFY BUFFER
+BYTE READS O sREAD FROM KERD (SL.0T 0) TILL
SLINE FEED OR FORM FEED
WAIT? 10T s TRAF TO 10X
+WORD WAILT FRBUSY RETURN ADNNRESS WHILE WALITING
sFOR KRIDN TO FINISH
+BYTE WAITRYO SWAIT FOR KBD (SLOT 02 TO FINISH
(rrocess BUFFER)
IoT FTRAF TO T0X
+WORD RBUFFER FOFECIFY RBUFFER
+BYTE WRITE»1 SWRITE TO TELEFRINTER (SLOT 1)
BUFFER? 100 JBUFFER SIZE IN RYTES
0 sCONE FOR FORMATTED ASCII MODE
0] FIOX WILL SET HERE THE NUMRER OF RBRYTES
+ = +100 FSTORAGE RESERVED FOR 100 RYTES

In more complex programming it is likely that more than one buffer
will be set up for the transfer of data, so that data processing can
occur concurrently rather than sequentially, as here. Note too, that
there are five I0X commands not used in this example that will help
meet the requirements of I/O problems not as straightforward as this.

READ

INPUT/OUTPUT PROGRAMMING

7.1.1 Using IOX With The LSI-11 Processor

IOX (IOXLPT) is supplied on source and relocatable object tapes. It
is thus unnecessary to assemble IOX unless the program is to be
modified. User object tapes can be linked with the IOX object tape
(using LINK-11S) to produce an absolute binary tape. Appendix J
describes assembly procedures for source tapes.

IOX requires approximately 633 (decimal) words of «core; IOXLPT
requires approximately 724 (decimal) words.

7.1.2 Using IOX with Unibus PDP-11 Processors

IOX (IOXLPT) is supplied on source and binary tapes. Appendix J
describes assembly procedures for source tapes. Binary tapes are
loaded prior to user programs by the Absolute Loader. After 1I0X is
loaded, the Absolute Loader halts.

IOXLPT is used instead of IOX if the program uses a line printer.

IOX is supplied on an absolute binary tape with a loading address of
15100; the load address for IOXLPT is 34600. If the user desires
different 1load addresses, the programs must be reassembled as
described in Appendix J.

IOX requires approximately 634 (decimal) words of core; IOXLPT
requires approximately 725 (decimal) words.

7.1.3 1I0X Interrupt and Trap Vectors

IOX (IOXLPT) loads the following interrupt and trap vectors:

Console terminal

high speed reader and punch
timeout and other errors
I0T

line printer (IOXLPT only)

7.2 THE DEVICE ASSIGNMENT TABLE

The Device Assignment Table (DAT) makes programs device-independent by
allowing the user to refer to a slot to which a device has been
assigned, rather than a specific device itself. Thus, changing the
input or output device becomes a simple matter of reassigning a
different device to the slot indicated in the program.

The DAT is created by means of the Reset and/or 1Init commands. The

IOX <codes for devices (listed in the description of the Init command
below) are assigned to the slots.

7-3

INPUT/OUTPUT PROGRAMMING

7.2.1 Reset

I0T
.WORD 0
.BYTE 2,0

This command must be the first IOX command issued by a user program.
It clears the DAT, initializes IOX, resets all devices to their state
at power-up, enables keyboard interrupts, and initializes DAT slots 0
and 1 for the keyboard and teleprinter, respectively.

7.2.2 Initialization

I0T
.WORD (address of device code)
.BYTE 1, (slot number)

The device whose code (stored as a byte) is found at the specified
address 1is associated with the specified slot (numbered in the range
0-7). The device interrupt is turned off when necessary. (The
keyboard interrupt always remains enabled.) There is no restriction on
the number of slots that can be initialized to the same device.

DEVICE
DEVICE CODE
Teletype Keyboard (KBD) 1
Teletype printer (TTY) 2
Low-S8peed Reader (LSR) 3
Low-Speed Punch (LSP) 4
High-Speed Reader (HSR) 5
High-Speed Punch (HSP) 6
Line Printer ‘
(IOXLPT only) (LPT) 10

Note that a device code is used only in the Initialization (INIT)
command . All other commands that refer to a device do so by means of
a slot. Example:

INTT=1

rar FTRAF TO TOX
SWORD HERCOD SINIT LT 3
SBYTE INIT»3 PFOR HER

¢

*

H&ERCOD2 SRYTE 5 sHER COXE

7.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS

Use of data-transfer commands (Read, Write, Real-time Read, Real-time
Write) requires the creation of at least one buffer. This buffer is
used not only to store data for processing, but to hold information
regarding the quantity, form, and status of the data. The non-data

7-4

INPUT/OUTPUT PROGRAMMING

portion of the buffer is called the buffer header, and precedes the
data portion. In data transfer commands, it is the address of the
first word of the buffer header that 1is specified in the word
following the IOT of the command.

NOTE
IOX uses the buffer header while

transferring data. The user's program
must not change or reference it.

The buffer format is:

Location Contents
Buffer Maximum number of data bytes (unsigned
integer)
BUFFER Buffer+2 Mode of data (byte)
HEADER
Buffer+3 Status of data (byte)
Buffer+4 Number of data bytes involved in transfer

(unsigned integer)

Buffer+6 Actual data begins here

BUFFER SIZE (IN BYTES)

STATUS MODE

BYTE COUNT

DATA

7.3.1 Buffer Size

The first word of the buffer contains the size (in bytes) of the data
portion of the buffer as specified by the user. IOX will not store
more than this many data bytes on input. Buffer size has no meaning
on output.

7.3.2 Mode Byte

The low-order byte of the second word holds information concerning the
mode or transfer. A choice of four modes exists:

Coded as
1. Formatted ASCII 0 (or 200 to suppress echo)
2. Formatted Binary 1
3. Unformatted ASCII 2 (or 202 to suppress echo)
4., Unformatted Binary 3

INPUT/OUTPUT PROGRAMMING

The term echo applies only to the KBD. Data transfers from other
devices never involve an echo.

MODE BYTE
Bits 7 6 5 4 3 2 1 0 Bits
_ UNFOR- - ~
1= NO ECHO MATTED | BINARY 1
FOR- -
- ASCII =0
0= ECHO MATTED

7.3.3 Status:-Byte

The high-order byte of the second word of the buffer header contains
information set by IOX on the status of the data transfer:

Bits 0-4 contain the non-fatal error codes (coded octally)

Bit 5 1 = End-0Of-File has occurred (attempt at reading data
after an End-Of-Medium)

Bit 6 1 = End-of-Medium has occurred (see Section 7.3.3.3)

Bit 7 1 = Done (Data Transfer complete)

STATUSBYTE

7 6 5 4 3 2 1 0
T T T T

= 1= = SEE CODES
DONE | EOM EOF

NON-FATAL ERRORS

7.3.3.1 Non-Fatal Error Codes (Octal) -

2 = checksum error
3 = truncation of a long line
4 = an improper mode

1. A checksum error can occur only on a Formatted Binary read
(see Section 7.4.3).

INPUT/OUTPUT PROGRAMMING

2. Truncation of a long line can occur on either a Formatted
Binary or Formatted ASCII read (Section 7.4.1). This error
occurs when the binary block or ASCII line is bigger than the
buffer size specified in the buffer header. In both cases,
IOX continues reading characters into the last byte in the
buffer until the end of the binary block or ASCII line is
encountered.

3. An improper mode can occur only on a Formatted Binary read.
Such occurrence means that the first non-null character
encountered was not the ©proper starting character for a
Formatted Binary block (see Section 7.4.3)

7.3.3.2 Done Bit - When the data transfer to or from the buffer is
complete, the Done Bit is set by IOX.

7.3.3.3 End-Of-Medium Bit - The following conditions cause the EOM
bit to be set in the buffer Status byte associated with a data
transfer command. An EOM occurrence also sets the Done Bit.

HSR HSP LSR LPT
No tape No tape Timeout No paper
detected
Off line No power No power
No power Printer drum gate open

Overtemperature condition

An End-Of-Medium condition on an output device is cleared by a manual
operation such as putting a tape in the high-speed punch. IOX does
not retain any record of an EOM on an output device. However, an EOM
on an input device is recorded by IOX so that succeeding attempts to
read from that device will cause an End-Of-File (see Section 7.3.3.4).
To reenable input the device must be manually réadied and a Seek
command (Section 7.6) executed on the proper slot. The INIT and RESET
commands will also clear the EOM condition for the device.

See Section 7.5.3 for information on detection of conditions causing
LSR timeouts.

When an End-Of-Medium has occurred on a Read, there may be data in the
buffer. If an EOM has occurred on a Write, there is no way of knowing
how much of the buffer was written.

7.3.3.4 End-Of-File Bit - An EOF condition appears in the Status byte
if an attempt to read is made after an EOM has occurred. EOF cannot
occur on output. When an EOF has occurred, no data 1is available 1in
the buffer.

INPUT/OUTPUT PROGRAMMING

7.3.4 Byte Count
The third word contains the Byte Count:

Input: In unformatted data modes, IOX reads as many data bytes
as the wuser has specified. 1In formatted modes, IOX
inserts here the number of data bytes available in the
buffer. In all modes, if an EOM occurs, I0X will set
the Byte Count equal to the number of bytes actually
read. If an EOF occurs, Byte Count will be set to 0.

Output: Byte Count determines the number of bytes output, for
all modes. An HSP end-of-tape or LPT out-of-paper
condition will also terminate output, and EOM will be
set in the Status byte. IOX does not modify the Byte
Count on output.

7.4 MODES

7.4.1 Formatted ASCII

A Formatted ASCII read transfers 7-bit characters (bit 8 will be zero)
until a line feed or form feed is read. IOX sets the Byte Count word
in the buffer header to indicate the number of characters in the
buffer. If the 1line 1is too long, characters are read and overlaid
into the last byte of the buffer until an end-of-line (a line feed or
form feed) or EOM is detected. Thus, if there is no error, the buffer
will always contain a line feed or form feed.

A Formatted ASCII write transfers the number of 7-bit characters
specified by the buffer Byte Count. Bit 8 will always be output as
Zero.

Device-Dependent Functions

Keyboard

Seven-bit characters read from the keyboard are entered in the buffer
and are echoed on the teleprinter except as follows:

Null - Ignored. This character is not echoed or
transferred to the buffer.

Tab - Echoes as spaces up to the next tab stop. "Stops"
(CTRL/TAB are located at every 8th carriage position.
keys)

RUBOUT - Deletes the previous character on the current 1line
and echoes as a backslash (\). If there are no
characters to delete, RUBOUT is ignored.

CTRL/U - Deletes the current line and echoes as *U.

Carriage - Echoes as a carriage return followed by a line feed.

Return Both characters enter the buffer.

(RETURN key)

CTRL/P - Echoes as 4P and causes a jump to the restart
address, if non-zero (see 7.6.2).

The echo may be suppressed by setting bit 7 of the buffer header Mode
byte.
7-8

INPUT/OUTPUT PROGRAMMING

If the buffer overflows, only the characters which fit into the buffer
are echoed. Of course, characters which are deleted by RUBOUT or
CTRL/U do not read into the buffer even though they are echoed. If a
carriage return causes an overflow, or is typed after an overflow has
occurred, a carriage return and line feed will be echoed but only the
line feed will enter the buffer.

In the following Formatted ASCII examples:
1. assume there is room for five characters
2. <’/ indicates:
in left column, the RETURN key
in center column, the execution of a carriage return
in right column, the ASCII code for carriage return
3. ¢ indicates:
in center column, the execution of a line feed
in right column, the ASCII code for line feed

4, RUB indicates the RUBOUT key

ouT
5. CTRL indicates the CTRL and U keys.
U
Typed Echoed Entered Buffer
ABC./ ABC/+ ABCL/+
ABCD_/ ABCD _/+ ABCD +
ABCDEF./ ABCD/+ ABCD +
ABCDEF RUB_ ABCD\ </+ ABC/+
ouT
CTRL RUB_J
U ouT ‘U <+
ABCDEF RUB RUB_J ABCD\\ </ + AB_/+
OUT OUT
ABCDEF RUB RUB RUB _ ABCD \\\X/+ AX /4

ouT OUT OuT

Low-Speed Reader and High-Speed Reader

All characters are transferred to the buffer except that nulls and
rubouts :are ignored.

Teleprinter

Characters are printed from the buffer as they appear except that
nulls are ignored and tabs are output as spaces up to the next tab
stop.

Low-Speed Punch and High-Speed Punch

Characters are punched from the buffer as they appear except that
nulls are ignored and tabs are followed by a rubout.

INPUT/OUTPUT PROGRAMMING

Line Printer (IOXLPT only)

Characters are printed from the buffer as they appear except as
follows:

Nulls - Ignored
Tab - Output as spaces up to the next tab stop.
Carriage - Ignored. It is assumed that a line feed or form

Return feed follows. These characters cause the 1line
printer "carriage" to advance.

All characters beyond the 80th are ignored except a line feed or form
feed.

7.4.2 Unformatted ASCII

Unformatted ASCII transfers the number of 7-bit characters specified
by the header Byte Count.

Device-Dependent Functions
Keyboard
Characters are read and echoed except as follows;
Tab - Echoes as spaces up to the next tab stop.

CTRL/P - Echoes as "P and causes a jump to the restart
address, if non-zero (see 7.6.2).

7.4.3 Formatted Binary

Formatted Binary is used to transfer checksummed binary data (8-bit
characters) in blocks. A Formatted Binary block appears as follows:

Byte (Octal) Meaning
001 - Start of block
000 - Always null
XXX - Block Byte Count (low-order followed by
XXX - high-order). Count includes data and

preceding four bytes.

DDD
DDDT
. - Data bytes
DDD
DDD
CCC - Checksum. Negation of the sum of all

preceding bytes in the block.

7-10

INPUT/OUTPUT PROGRAMMING

IOX creates the block on output, from the buffer and buffer header.
The Byte Count word in the buffer header specifies the number of data
bytes following, which are to be output. Note that the Byte Count
output is four 1larger than the header Byte Count. As the block is
output, IOX calculates the checksum which is output following the last
data byte.

On Formatted Binary reads, IOX ignores null characters until the first
non-null character 1is read. If this character is a 001, a Formatted
Binary block is assumed to follow and is read from the device under
control of the Byte Count value. If the first non-null character is
not 001, the read is immediately terminated and error code 4 is set in
the Status byte. As the block is read a checksum is calculated and
compared to the checksum following the block. If the checksum 1is
incorrect, error code 2 1is set in the Status byte of the buffer
header. 1If the binary block is too large (Byte Count less 4, 1larger
than the Buffer Size specified in the header), the last byte of the
buffer is overlaid until the last data byte has been read; error code
3 is set in the Status byte. B

Device-Dependent Functions

None. Eight-bit data characters are transferred to and from the
device and buffer exactly as they appear.

7.4.4 Unformatted Binary

This mode transfers 8-bit characters with no formatting or character
conversions of any kind. For both input and output, the buffer header
Byte Count determines the number of characters transferred.

Device-Dependent Functions

None

7.5 DATA TRANSFERS

7.5.1 Read

10T
.WORD (address of first word of the buffer header)
.BYTE 11, (slot number)

This command causes IOX to read from the device associated with the
specified slot according to the information found in the buffer
header. 1IOX initiates the transfer of data, clears the Status byte,
and returns control to the calling program. If the device on the
selected slot is busy, or a conflicting device (see Section 7.5.3) is
busy, IOX retains control until the data transfer can be initiated.
Upon completion of the Read, the appropriate bits in the Status byte
are set by IOX and the Byte Count word indicates the number of bytes
in the data buffer. Note that use of the KBD while an LSR Read is in
progress will intersperse KBD characters into the buffer
unpredictably.

INPUT/OUTPUT PROGRAMMING

7.5.2 Write

I0T
.WORD (address of first word of the buffer header)
.BYTE 12, (slot. number)

IOX writes on the device associated with the specified slot according
to the information found in the buffer header. Transfer of data
occurs in the amount specified by Byte Count (Buffer+4). IOX returns
control to the «calling program as soon as the transfer has been
initiated. If the device on the selected slot is busy, or a
conflicting device is busy, IOX retains control until the transfer can
be initiated. Upon completion of the Write, IOX will set the Status
byte. to the latest conditions. If a Write causes an EOM condition,
the user has no way of determining how much of his buffer has been
written (the Byte Count remains the same.)

7.5.3 Device Conflicts In Data Transfer Commands

Because there is a physical association between the devices on the ASR
Teletype, certain devices cannot be in use at the same time. When a
data transfer command is given, IOX simultaneously checks for two
conditions before executing the command:

1. Is the device requested already in use? and,

2. Is there some other device in use that would result in an
operational conflict?

IOX resolves both conflict situations by waiting until the first
device 1is no longer busy, before allowing the requested device to
start functioning. (This is an automatic Waitr command. See next
section.) For example, if the LSR is in use, and either a KBD request
or a second request for the LSR itself is made, IOX will wait until
the current LSR read has been completed before returning control to
the calling program. In the particular case of the LSR, I0X also
performs a timeout check while waiting for it to become available.

When a Read command has been issued for the LSR, IOX waits about 100
milliseconds for each character to be read. If no character is
detected by this time (presumably because the LSR is turned off, or
out of tape), a timeout 1is declared and IOX sets EOM 1in the
appropriate buffer Status byte.

The following is a table listing the devices. Corresponding to each

device on the left is a list of devices (or the echo operation) which
would conflict with it in operation.

All Possible Conflicting

Device Devices or Operations
KBD CHO, KBD, TTY, LSR, LSP
TTY Echo, KBO, TTY, LSP
LSR KBD, LSR
LSP Echo, KBD, TTY, LSP
HSR HSR
HSP HSP

LPT (IOXLPT only)LPT

INPUT/OUTPUT PROGRAMMING

7.5.4 Waitr (Wait, Return)

I0T
.WORD (busy return address)
.BYTE 4, (slot number)

Waitr, like device conflict resolution, causes IOX to test the status
of the device associated with the specified slot. If the device (or
any possible conflicting device) is not transferring data, control is
passed to the instruction following the Waitr. Otherwise, IOX
transfers program control to the busy return address. If it is
desired to continuously test for completion of data transfer on the
device, the busy return address of the immediately preceding IOT
instruction can be specified, effecting a Wait loop.

If a slot is inited to any device other than the LSR, control is
returned to the calling program about 150 microseconds after execution
of a Waitr. For the LSR, however, the time is about 100 milliseconds.

Note that a not-busy return from Waitr normally means the device is
available. However, in the case of a Write, this only means that the
last character has been output to the device. The device is still in
the process of printing or punching the character. Thus, care must be
exercised when performing an IOX Reset, hardware RESET, or HALT after
a Write-Waitr sequence, since these may prevent the last character
from being physically output.

7.5.5 Waitr vs. Testing the Buffer Done Bit

Since IOX permits you to have device-independent code, it may not be
known, from run to run, what devices will be assigned to the slots in
your program. Waitr tests the status, not only of the device it
specifies, but also of all possible conflicting devices.

This means that when Waitr indicates that the device is not busy, the
data transfer on the device of interest may have been done for some
time. Depending on the program and what devices are assigned to the
slots for a given run, the Waitr could have been waiting an additional
amount of time for a conflicting device to become free.

Where this possibility exists and buffer availability is what is of
interest, testing the Done bit of the Status byte (set when buffer
transfer is complete) would be preferable to Waitr; whereas - Waitr
would be preferable if device availability is what is of interest.

This distinction is made in order to write device-independent code.
In the example below:

1. If the devices at slots 2 and 3 could be guaranteed always to
be conflicting, neither Waitr nor testing the Done bit would
be necessary, because IOX would automatically wait for the
busy device to finish before allowing the other device to
begin.

2. If these devices could be guaranteed never to be conflicting,
it wouldn't matter which of these methods was used, because
Waitr couldn't be waiting extra time for a conflicting device
(0of no interest) to become free.

INPUT/OUTPUT PROGRAMMING

Example: PROGRAM A PROGRAM B
ror ror
LWORD RUF2 +WORD BRUF2
+BYTE READy SLOT2 +RBYTE READy SL0T2
IarT IorT
LWORD BUFL WORD BUFL
LRYTE READy 8LOT2 LRBYTE READy $1LOT2
ror IoT
+WORD RUF2 LWORD BUF2
SRYTE WRITE» 8SLOT3 LRBYTE WRITE, $1.0T3
DUNTST? TETR BUF14+3 DEVTST? Ior
RBFL. DUNTST SWORD DEVTST

+BYTE WATITRSLOTR

rar
LSWORD SLOT2DEV
+BYTE INIT» $1.0T4

Programs A and B do two successive reads from the same device into two
different buffers. Since the devices are the same, IOX waits for the
first read to finish before allowing the second to begin.

In Program A, we wish to process buffer 1. To have issued a Waitr for
the device associated with slot 2 could have meant waiting also for
the device at slot 3 if that device were in conflict. Hence, testing
the Done bit in the buffer header is the proper choice.

In Program B, we wish control of the device at slot 2, so that it can

be assigned to another slot and so we must know its availability.
Therefore, Waitr is appropriate.

7.5.6 Single Buffer Transfer on One Device

Al TOT sTRAF TO 10X
+WORDD BRUF L FSFECIFY RUFFER
+BYTE READSLOTI sREAD FROM NEVICE AT
$8L.0T 3 INTO BUFFER
RUSY: IOT sTRAF TO 10X
+WORD BUSY sSFECIFY RUSY RETURN ADDRESS
+BYTE WAITR»SLOT3 FWATT FOR DEVICE AT SLOT

3 TO FINISH READING
(srocess buffer 1)

JMF A

The program segment above includes a Waitr which goes to a Busy Return
address that is its own IOT -- continuously testing the device at slot
3 for availability. 1In this instance, involving only a single device
and a single buffer, a Done condition in the Buffer 1 Status byte can
be inferred from the availability of the device at slot 3. This
knowledge assures us that all data requested for Buffer 1 is available
for processing.

Testing the Done Bit of Buffer 1 might have been used instead, but was
not necessary with only one device operating. Moreover, a Waitr,
unlike a Done Bit test, would detect a timeout on the LSR if that
device happened to be associated with slot 3.

7-14

INPUT/OUTPUT PROGRAMMING

7.5.7 Double Buffering

ror $TRAF TO TOX
SWORD RUF L SSFECIFY RUFFER 1
+SRBYTE REAISL.OT3I SREAD FROM DEVICE AT
$6L.OT 3 INTO RUFFER 1
Az ror STRAF TO TOX
SWORD RUF2 SOFECIFY RUFFER 2
+RBYTE READSLOTI READ FROM DEVICE AT 8L.0T

33 INTO RUFFER 2

(rrocess RUFL comncurrernt with Resd into BUF2)

B2 IoT $TRAF TO TOX
+WORD RUFL JBFECIFY RUFFER 1
+RBYTE READySL.OT3 SREAD FROM DEVICE AT

$SLOT 3 INTO RUFFER 1
(rrocess BUF2 concurrent with Read into BUFL)
JMFA

The example above illustrates a time-saving double-buffer scheme
whereby data is processed in Buffer 1 at the same time as new data is
being read into Buffer 2; and, sequentially, data 1is processed in
Buffer 2 at the same time as new data is being read into Buffer 1.

Because IOX ensures that the requested device 1is free before
initiating the command, the subsequent return of control from the IOT
at A implies that the read prior to A 1is complete; that 1is, that
buffer 1 1is available for processing. Similarly, the return of
control from the IOT at B implies that buffer 2 is available. Waitr's
are not required because IOX has automatically ensured the device's
availability before initiating each Read.

7.5.8 Readr (Real-time Read)

I0T

.WORD (address of first word of the buffer header)
.BYTE 13, (slot number)

.WORD (done-address)

The Readr command functions as the Read except that upon completion of
the data transfer, program control goes to the specified Done-address
at the priority level of the device. Readr is used when you wish to
execute a segment of your program immediately upon completing the data
transfer. 1IOX goes to the Done address by executing a JSR R7,
Done-address.

The general registers, which were saved when the 1last character
interrupt occurred, are on the SP stack in the order indicated below:

(SP)~» Return address to IOX

INPUT/OUTPUT PROGRAMMING

Return to IOX is accomplished by an RTS R7 instruction. IOX will then
restore all registers and return to the interrupted program.-‘Care
should be taken in initiating another data transfer if the specified
device can conflict with device requests at other priority levels.
Waitr cannot be used to resolve conflict situations between priority
levels.

7.5.9 Writr (Real-time Write)

IO0T

.WORD (address of first word of the buffer header)
.BYTE 14, (slot number of device)

.WORD (done address)

The Writr command functions as the Write except that, upon completion
of the data transfer, program control goes to the specified
Done-address at the priority level of the device. IOX goes to the
Done-address by executing a JSR R7, Done-address. The condition of
the general registers and the return to IOX are the same as for Readr.
Writr 1is wused when you wish to execute a segment of your program
immediately upon completing the data transfer.

As in the Readr, care should be taken in initiating another data

transfer if the specified device can conflict with device requests at
the priority level of the calling program.

7.6 REENABLING THE READER AND RESTARTING

7.6.1 Seek

I0T
.WORD 0
.BYTE 5, (slot number of LSR or HSR)

The Seek command clears IOX's internal End-Of-Medium (EOM) indicator
on the LSR or HSR, making possible a subsequent read on those devices.
With no EOM, an EOF cannot occur. The device associated with the
specified slot remains Inited.

7.6.2 Restart

I0T
.WORD (address to restart)
.BYTE 3,0

This command designates an address at which to restart your program.
After this command has been issued, typing CTRL/P on the KBD will
transfer program control to the restart address, providing there is no
LSR read 1in progress. In such a case, the LSR must be turned off
(causing a timeout) before typing a CTRL/P. If the Restart address is
designated as 0, the CTRL/P Restart capability is disabled.

The Restart command does not cancel any I/O in progress. It 1is the
program's responsibility in its restart routine to clean up any I/C by
executing a RESET command and ensuring that the stack pointer is
reset.

7.7

INPUT/OUTPUT PROGRAMMING

FATAL ERRORS

Fatal errors result in program termination and a jump to location 40g
(loaded with a HALT by IOX), with RO set to the error code and Rl set
as follows:

If the fatal error was due to an illegal memory reference (code
0), R1 will contain the PC at the time of the error.

If the fatal error was due to an error coded in the range 1-5, Rl
will point to some element in the IOT argument list or to the
instruction following the argument 1list, depending on whether IOX
has finished decoding the arguments when it detects the error.

Fatal Error Code Reason
0 ;llegal Memory Reference, SP overflow, illegal
instruction
1 Illegal IOX command
2 Slot out of range
3 Device out of range
4 Slot not inited
5 Illegal data mode

Note that the SP stack contains the value of the registers at the time
of the error, namely

(SP)»> R5

R4
R3
R2
R1
RO
PC
Processor Status (PS)

(See Section 7.3.3.1 for a discussion of non-fatal errors.)

7.8

EXAMPLE OF PROGRAM USING IOX

This program is used to duplicate paper tape. Note that it could be
altered by changing the device code at RDEV or PDEV. For instance,
the program could easily be made to list a tape.

RESTRT =

INTT==1

INPUT/OUTPUT PROGRAMMING

WAL TR=4

REAI=11

WRITE=12

EOQF:=20000

CR=13 sCR ASSIGNED ASCII CODE FOR CARRIAGE RETURN

LF=12 sLF ASSIGNED ASCITI CODE FOR LLINE FEED
+=1000

MG 0 s CANNED MESSAGE
0 sFORMATTED ASCII

MEGIRCE ENDL-MSGIRC-2 sRYTE COUNT

+RYTE CRyLLF

+ASCIT / PLACE TAFE IN READER/

+BYTE CRyLLF

+ASCIT / STRIKE CR WHEN READY/
ENIILS +EVEN

RUF 33 2 FRUFFER SIZE
0 SFORMATTED ASCII MOLF
4] s RC
0 sCROLF
RIEVE 5 sNEVICE CODRE FOR HSR
FOEVE b sNEVICE CODE FOR HSF
RUFL3 100 SRUFFER SIZE
3 SCONE FOR UNFORMATTED RINARY
100 JSFECIFIES NUMRBER OF RYTES FOR TRANSFER
e 3100 FRESERVES STORAGE FOR DATA
RUF23 100 sRUFFER SIZE
3 $CODE FOR UNFORMATTED RINARY
100 PEFECIFIES NUMRER OF BYTES FOR TRANSFER
e+ 100 FRESERVES STORAGE FOR DATA
REGIN:G MOV 500y Ré FOFECIFY ADDRESS FOR ROTTOM OF STACK
roT
0
«BYTE RESET 0 FINITIALTZATION
IoT
REGIN FUREGIN® SFECIFIEDN A8 RESTART
cRBYTE RESTRT» O FALDRESS FOR CTRL. F
MOV E=100y BUF L+4 FOET UP INITIAL BC ON BUF1
MOV #1000 BUF2+4 SOET UM INITIAL RC ON RBUF2
ror STYFE QUT DIRECTIONS
MSGL
«BYTE WRITE,TSLOT
ror SREAD A CRyLF
RUF3
SRYTE READyKSGLOT
Al ror SWALT FOR HIM TO TYFE A CARRIAGE RETURNSs
SLINE FEEDR
A
JBYTE WALITRKSLOT
IoT SINIT READER
RIEV
SRBYTE INITyRSLOT
ror $INIT FUNCH

FREY
SRYTE INIT»FSLOT

INPUT/OUTPUT PROGRAMMING

IoT FOTART FIRST READ
BUF L
SRYTE READRSLOT

L.OOF2 ror SREAD INTO 2ND BUFFER
BUF2
SBYTE READyRELOT

BIT

©ORUFLA2 SEND OF FILE?
BNE s

rorT SWRITE OUT THIS RUFFER
BUF1
YRYTE WRITEyFSLOT

(4 rar SWATLT TILL DEVICE HAS FINISHED
G
SRYTE WALTRyFSLOT

IoT FREAN INTO 18T RBUFFER
RUF 1
SRBYTE READyRSLOT

BRIT FEQF » BUF 242 FEND OF FILET
EBNE REGIN

Ior SWRITE OUT BUFFER 2
RUF2
SRBYTE WRITEFSLOT

E3 rarT SWALT TILL DEVICE HAS FINISHED
B
JRBYTE WALTRyFSLOT
ER L.OOF
+ EXNT BREGIN

7.9 I0X INTERNAL INFORMATION

7.9.1 Conflict Byte/Word

The IOX Conflict byte (in IOXLPT, Conflict Word) contains the status
(busy or free) of all devices as well as whether or not an echo is in
progress. Bit 0 is the echo bit, bits 1-6 (and 8 in IOXLPT) refer to
the corresponding codes for devices:
If Bit is Set
Bit 0 = Echo in progress

Bit
1 = KBD busy
Device

Bit
2 = TTY busy
Device

Bit
3 = LSR busy
Device

7-19

INPUT/OUTPUT PROGRAMMING

Bit

4 = LSP busy
Device
Bit

5 = HSR busy
Device
Bit

6 = HSP busy
Device
Bit 8

= LPT busy

Device 108

In IOXLPT, the Conflict Byte 1is expanded to a word in order to
accommodate the line printer, there being no bit 8 to correspond with
that device's code of 10 (octal) (the lowest available code for an
output device - see Section 7.9.5.1).

All Possible Conflict
Device Conflicting Devices Number
KBD Echo, KBD, TTY, LSR, LSP 37
TTY Echo, KBD, TTY, LSP 27
LSR KBD, LSR 12
LSP Echo, KBD, TTY, LSP) 27
HSR HSR 40
HSP HSP 100
LPT LPT 400

For each of the devices in the left hand column, all the possible
conflicts are 1listed along with their respective conflict numbers.
These numbers, representing bit patterns of the devices 1listed 1in
column two above, are used to resolve any conflicting requests for
devices. The appropriate number is masked with the conflict byte. If
the result is zero, there are no conflicts and the device being tested
has its bit set allowing data transfer to begin.

7.9.2 Device Interrupt Table (DIT)

Each device interrupt handler has associated with it a Device
Interrupt Table (DIT) containing information that the handler needs:

DIT Checksum

DIT+2 Byte size from buffer header

DIT+4 Address of Mode byte in buffer header
DIT+6 Byte Location Pointer

DIT+10 Byte Count

DIT+12 Device code

INPUT/OUTPUT PROGRAMMING

DIT+14 Real time done-address
DIT+16 Address of device's data buffer register
The device interrupt routines gain access to the proper data by means

of the DIT entry. When a transfer is. complete, they set the
appropriate bits in the buffer header pointed to by the DIT contents.

7.9.3 Device Status Table (DST)

The Device Status Table (DST) is wused by IOX to <check for EOF
conditions. This table contains a word for each device indicating an
EOM condition with a 1. When an EOM condition is recognized ‘on input,
IOX not only sets the appropriate bit in the buffer status byte
associated with the data transfer, it also records this occurrence 1in
the DST. When a data transfer command is given, IOX checks the DST
for the EOM condition. If the appropriate word has a value of 1, IOX
sets EOF in the Status byte of the current-command buffer. Since EOF
is only possible for the LSR (code 3), and HSR (code 5), the words
corresponding to those devices are the only ones that can ever be set
to 1.

7.9.4 Teletype Hardware Tab Facility

If the Teletype model has a hardware tab facility, teleprinter output
can be speeded up by:

1. For IOX, deleting the code from I.TTYCK+6 through I.TAB3+3.

2. For IOXLPT, skipping the code from I.IOLF through I.TAB3+3
(for the teleprinter only - not the line printer).

7.9.5 Adding Devices To IOX

In order to add a device to IOX the following tasks must be done:
1. Assign a legal code to the device
2. Modify the IOX tables
3. Provide an interrupt routine to handle data for the device.

The line printer (in IOXLPT) will be used as an example throughout
this discussion.

7.9.5.1 Device Codes - The numbers from 7 to 17 (octal) are available
for new-device <codes, with the exception of 10 (octal) 'in the IOXLPT
version. This code has been assigned to the line printer. The device
code must be o0dd for an input device and even for an output device.
This is so a check can be made for command/device correspondence;
i.e., for a Read from an input device or a Write to an output device.

If the newest device was assigned a number that is higher than the
codes of all the other devices, I.MAXDEV must be redefined to that
value. This is so an out-of-range device specification in an 1Init
command can be detected. In IOXLPT, I.MAXDEV=10.

7-21

INPUT/OUTPUT PROGRAMMING

Since each device code functions as an index in several word tables,
the entries relating to a given device must be placed at the same
relative position in each appropriate table. That is, the code nmumber
must indicate how many words into the table the entry for that device
will be found. This, of course, means accounting for any unused space
preceding the entry, if the codes are not assigned in strict sequence.
Table entries for the line printer are found at the 10th (octal) word
past the table tag, i.e., at Table+20.

7.9.5.2

1.

Table Modification -

I.FUNC - Each entry is the octal value of the bit pattern in
the device Control/Status Register that enables the
corresponding device and/or any interrupt facility it has.
Bit setting this number into the device's Control/Status
register turns the device on; bit clearing turns it off.
Determine this value for the device to be added, and place
the entry in the appropriate device position in the table.
For example, the line printer Control/Status Register has an
Interrupt Enable facility in bit 6. This pattern of 100 is
the LPT entry, and is located at I.FUNC+20.

I.SCRTAB - This table contains the addresses of the device
Control/Status registers. The 1line printer entry I.LPTSCR
has the value 177514, and is located at I.SCRTAB+20.

I.DST - (Refer to Section 7.9.3.) Create an entry of 0 for
the device in ‘the proper table location. Inserting a word of
0 at I.DST+20 created a device status entry for the 1line
printer.

I.CONSIT - An entry in this table is used to set or «clear a
device's busy/free bit in the Conflict Byte (Conflict Word in
IOXLPT). (See Section 7.9.1, and 5. below.) Each value is
obtained by setting one bit only - the bit number
corresponding to the device number. The line printer, being
device 10(octal), has a value of 400(octal) (bit 10 set) and
is located at I.CONSIT+20.

In the IOX version without the line printer, entries to this
table are found in the high-order bytes of Table I.CONFLC.
One more input device entry can be added to it. In IOXLPT,
however, TI.CONSIT 1is a separate word table, allowing eight
more devices (four input and four output) to be added. Byte
operations in the IOX 1I.CONSIT became word operations in
IOXLPT to adapt to this expansion.

I.CONFLC - (Refer to Section 7.9.1 on Conflict Byte/Word.)
Entries are bit patterns of conflicting devices. Since the
line printer can only conflict with itself, the I.CONFLC
entry 1is equal to the I.CONSIT entry. As in the I.CONSIT
table, byte operations were changed to word operations for
I.CONFLC in IOXLPT.

Create a DIT for the device (refer to Section 7.9.2) by
assigning a DIT label and seven words of 0. If it is an
output device, the address of the Device Buffer Register must
be added as an eighth word.

INPUT/OUTPUT PROGRAMMING

7. I.INTAB - This is a table of DIT addresses. Place the 1label
of the DIT (mentioned in 6. above) in the correct position
in the table. I.INTAB+20 contains the 1line printer entry
I.LPTDIT.

7.9.5.3 Interrupt Routines - Write (and assign a label to) an
interrupt routine for the device to:

l. Get a character

2. Check for errors by means of the device Control/Status
register

3. Do character interpretation according to the device and mode
4. Get a character in or out of the buffer
5. Update IO0X's Byte Count

6. Compare IOX's Byte Count to User's Byte Count and Buffer size
specification '

7. Return for next character

Place the label of the interrupt routine at the address of the device
vector, and follow it with the value of the interrupt priority in bits
7, 6, and 5. I.LPTIR, the address of the 1line printer interrupt
routine, 1is at location 200. Location 202 contains the value 200
(indicating priority level 4).

If the device to be added is similar to the other single-character
devices, steps 3-7 above can be performed by IOX as indicated below:

There are two routines, I.INPUT and I.OUTPUT, that are called from the
interrupt routines. These routines mainly perform common functions
for input and output devices. They are called as follows:

JSR R5,I.INPUT and JSR R5,I.OUTPUT

At the location following one of these calls is the DIT for the proper
device. The routine 1is thus able to use R5 to reference the DIT
entries.

I.INPUT and I.OUTPUT also contain device-dependent code to perform
functions such as tab-counters for the teleprinter and line printer,
and deletion of carriage returns in Formatted ASCII mode for the 1line
printer. The device index value is used to identify the device. For
the line printer, a symbol I.LPT, has been assigned the value 20 for
convenient reference to the device index.

CHAPTER 8

FLOATING POINT MATH PACKAGE OVERVIEW'

The new Floating-Point Math Package, FPMP-11, is designed to bring the
2/4 word floating point format of the FORTRAN environment to the paper
tape software system of the PDP-11. The numerical routines in FPMP-11
are the same as those of the DOS/BATCH FORTRAN Operating Time System
(0TS) . TRAP and error handlers have been included to aid in
interfacing with the FORTRAN routines.

FPMP-11 provides an easy means of performing basic arithmetic
operations such as add, subtract, multiply, divide, and compare. It
also provides transcendental functions (SIN, COS, etc.), type
conversions (integer to floating-point, 2-word to 4-word, etc.), and
ASCII conversions (ASCII to 2-word floating-point, etc.).

Floating-point notation is particularly useful for computations
involving numerous multiply and divide operations where operand
magnitudes may vary widely. FPMP-11 stores very large and very small
numbers by saving only the significant digits and computing an
exponent to account for leading and trailing zeros.

To conserve core space in a small system, FPMP-11l can be tailored to
include only those routines needed to run a particular user program.

For more information on FPMP-11, refer to the FPMP-11 User's Manual
(DEC-11-NFPMA-A-D) and to Appendix H of this manual.

' FPMP is not currently available for the LSI-11 (PDP-11/03).
8-1

CHAPTER 9

PROGRAMMING TECHNIQUES

This chapter presents various programming techniques. They can be
used to enhance your programming and to make optimum use of the PDP-11
processor. The reader is expected to be familiar with the PAL-11
assembly language (Chapters 1 & 2).

9.1 WRITING POSITION INDEPENDENT CODE

When a standard program is available for different wusers, it often
becomes wuseful to be able to load the program into different areas of
core and to run it there. There are several ways to do this:

1. Reassemble the program at the desired location.

2. Use a relocating loader which accepts specially coded binary
from the assembler.

3. Have the program relocate itself after it is loaded.
4. Write code which is position independent.

On small machines, reassembly is often performed. When the required
core is available, a relocating 1loader (usually called a linking
loader) is preferable. It generally is not economical to have a
program relocate itself since hundreds or thousands of addresses may
need adjustment. Writing position independent code 1is usually not
possible because of the structure of the addressing of the object
machine. However, on the PDP-11, position independent code (PIC) is
possible.

PIC is achieved on the PDP-11 by using addressing modes which form an
effective memory address relative to the Program Counter (PC). Thus,
if an instruction and its object(s) are moved in such a way that the
relative distance between them is not altered, the same offset
relative to the PC can be used in all positions in memory. Thus, PIC
usually references 1locations relative to the current location. PIC
may make absolute references as long as the locations referenced stay
in the same place while the PIC is relocated. For example, references
to interrupt and trap vectors are absolute, as are references to
device registers in the external page and direct references to the
general registers.

9.1.1

PROGRAMMING TECHNIQUES

Position Independent Modes

There are three position independent modes or forms of instructions.
They are:

1.

Branches -- the <conditional branches, as well as the
unconditional branch, BR, are position independent since the
branch address is computed as an offset to the PC.

Relative Memory References -- any relative memory reference
of the form

CLR X
MOV X,Y
JMP X

is position independent because the assembler assembles it as
an offset indexed by the PC. The offset is the difference
between the referenced location and the PC. For example,
assume the instruction CLR 200 is at address 100:

100/ Q05067 sFIRST WORD OF CLR 200
1027 000074 SOFFSET = 200104

The offset is added to the PC. The PC contains 104, 1i.e.,
the address of the word following the offset.

Although the form CLR X is position independent, the form CLR
@X is not. Consider the following:

83 CLR X sCLEAR LOCATION A

°
+

+

X1 JUWORD A sFOINTER TO A

A JWORD O

The contents of location X are used as the address of the
operand in the location labeled A. Thus, if all of the code
is relocated, the contents of location X must be altered to
reflect the new address of A. If A, however, was the name
associated with some fixed 1location (e.g., trap vector,
device register), then statements S and X would be relocated
and A would remain fixed. Thus, the following code is
position independent.

A o= 3é SANDRESS OF SECOND WORD OF
. s TRAF VECTOR .
8t CLR @X $CLEAR LOCATION A
X3 +WORD A FPOINTER TO A
Immediate Operands -- The assembler addressing form #X

specifies immediate data, that 1is, the operand is in the
instruction. Immediate data is position independent since it
is a part of the instruction and is moved with the

9-2

PROGRAMMING TECHNIQUES

instruction. Immediate data is fetched using the PC in the
autoincrement mode.

As with direct memory references, the addressing form @#X is
not position independent. As before, the final effective
address is absolute and points to a fixed 1location not
relative to the PC. i

9.1.2 Absolute Modes

Any time a memory location or register is used as a pointer to data,
the reference is absolute. If the referenced data is fixed in memory,
independent of the position of the PIC (e.g., trap-interrupt vectors,
device registers), the absolute modes must be used.' If the data is
relative to the PIC, the absolute modes must not be wused unless the
pointers involved are modified. The absolute modes are:

@x Location X is a pointer

@#Xx : The immediate word is a pointer

(R) ' The register is a pointer

(R) + and - (R) The register is a pointer

@(R)+ and @-(R) The register points to a pointer

X (R) R#6 or 7 The base, X, modified by (R) is
: the address of the operand

@X(R) The.base, modified by (R), is a

pointer

The non-deferred index modes and stack operations require a 1little
clarification. As described 1in Sections 3.6.10 and 9.1.1, the form
X(7) is the normal mode to reference memory and is a relative mode.
Index mode, using a stack pointer (SP or other register) is also a
relative mode and may be used conveniently in PIC. Basically, the
stack pointer points to a dynamic storage area and index mode is used
to access data relative to the pointer. The stack pointer may be
initially set up by a position independent program as shown in Section
9.1.4.1. In any case, once the pointer is set up, all data on the
stack is referenced relative to the pointer. It should also be noted
that since the form 0 (SP) is considered a relative mode so is its
aquivalent @SP. In addition, the forms (SP)+ and - (SP) are required
for stack pops and pushes.

9.1.3 Writing Automatic PIC

Automatic PIC is code which requires no alteration of addresses or

pointers. Thus, memory references are limited to relative modes
unless the 1location referenced 1is fixed (trap-interrupt vectors,

etc.) . In addition to the above rules, the following must be
observed: ‘

1. Start the program with .=0 to allow easy relocation using the
Absolute Loader (see Chapter 6).

"When PIC is not being written, references to fixed locations may be
performed with either the absolute or relative forms.

9-3

PROGRAMMING TECHNIQUES

2. All location setting statements must be of the form .=.%X or
.= function of tags within the PIC. For example, .=A+10
where A is a local label.

3. There must not be any absolute location setting statements.
This means that a block of PIC cannot set up trap and/or
interrupt vectors at load time with statements such as:

+ =34
+WORD TRAFH»340 s TRAF VECTOR

The Absolute Loader, when it is relocating PIC, relocates all
data by the 1load bias (see Chapter 6). Thus, the data for
the vector would be relocated to some other place. Vectors
may be set at execution time (see Section 9.1.4).

9.1.4 Writing Non-Automatic PIC

Often it is not possible or economical to write totally automated PIC.
In these .cases, some relocation may be easily peformed at execution
time. Some of the required methods of solution are presented below.
Basically, the methods operate by examining the PC to determine where
the PIC is actually located. Then a relocation factor can be easily
computed. In all examples, it is assumed that the code is assembled
at zero and has been relocated somewhere else by the Absolute Loader.

9.1.4.1 Setting Up The Stack Pointer - Often the first task of a

program 1is to set the stack pointer (SP). This may be done as
follows:

o0 sREG IS THE FIRST INSTRUCTION OF
s THE FROGRAM
REG? MOV FCsSF $8F=AR REG+2
TST ~(8F) SUECREMENT SF RY 2.

$A FUSH ONTO THE STACK WILL STORE
s THE TATA AT REG-2.

9.1.4.2 Setting Up A Trap or Interrupt Vector - Assume the first word
of the vector is to point to location INT which is in PIC.

X3 MOV FCeRO FRO = ADR X+2
AN FINT-X-29yRO sAND OFFSET
MOV RO» @EVECT sMOVE FOINTER TO VECTOR

The offset INT-X-2 is equivalent to INT-(X+2) and X+2 is the value of
the PC moved by statement X. If PC is the PC that was assumed for
the program when loaded at 0, and if PC 1is the current real PC, then
the calculation is:

INT—PCO+PCn=INT+(PCn—PCO)

Thus, the relocation factor, PC_-PC_., is added to the assembled value
of INT to produce the relocated value of INT.

PROGRAMMING TECHNIQUES

9.1.4.3 Relocating Pointers - If pointers must be used, they may be
relocated as shown above. For example, assume a list of data is to be
accessed with the instruction

ADD (RO)+,R1

The pointer to the list, list L, may be calculated at execution time
as follows:

M MOV FCsRO $GET CURRENT PC
Al dHL-M-2y RO $ADD OFFSET

Another variation is to gather all pointers into a table. The
relocation factor may be calculated once and then applied to all
pointers in the table in a loop.

X2 MOV FCsRO SRELOCATE ALL ENTRIES IN FTRTEL

SUR #X+2YRO $CALCULATE RELOCATION FACTOR
MOV EFTRTRLyRL $GET AND RELOCATE A FOINTER
ADD RO#RI § TO PTRTRL
MOV #TRLLENsR2 SGET LENGTH OF TARLE

L.OOF3 AL ROy (R1)+ SRELODCATE AN ENTRY
nEec R2 sCOUNT
RGE L.OOF FERRANCH IF NOT DONE

Care must be exercised when restarting a program which relocates a
table of pointers. The restart procedure must not include the
relocating again, i.e., the table must be relocated exactly once after
each load. :

9.2 LOADING UNUSED TRAP VECTORS

One of the features of the PDP-11 is the ability to trap on various
conditions such as illegal instructions, reserved instructions, power
failure, etc. However, if the trap vectors are not loaded with
meaningful information, the occurrence of any of these traps will
cause unpredictable results. By loading the vectors as indicated
below, it 1is possible to avoid these problems as well as gain
meaningful information about any unexpected traps that occur. This
technique, which makes it easy to identify the source of a trap, is to
load each unused trap vector with:

.=trap address
.WORD .+2,HALT

This will load the first word of the vector with the address of the
second word of the vector (which contains a HALT). Thus, for example,
a halt at location 6 means that a trap through the vector at location
4 has occurred. The old PC and status may be examined by looking at
the stack pointed to by register 6.

The trap vectors of interest are:

Vector Halt At
Location Location Meaning
4 6 Bus Error; Illegal Instruction;
Stack Overflow; Nonexistent
Memory; Nonexistent Device; Word
Referenced at 0dd Address
10 12 Reserved Instruction

PROGRAMMING TECHNIQUES

14 16 Trace Trap Instruction (000003) or
T-bit Set in Status Word (used by
ODT)

20 22 IOT Executed (used by IOX)

24 26 Power Failure or Restoration

30 32 EMT Executed (used by FPP-11)

34 36 ' TRAP Executed

9.3 CODING TECHNIQUES

Because of the great' flexibility in: PDP-11 coding, time- and
space-saving ways. of performing operations may not be immediately
apparent. - Some comparisons follow. :

9.3.1 Altering Register Contents

The techniques described in this section take advantage of the
automatic stepping feature of autoincrement and autodecrement modes
when used especially in TST and .CMP instructions. These instructions
do not alter operands. However, it is important to make note of the
following:

e These alternative ways of altering register contents
affect the condition codes differently.

® Register contents must be even when stepping by 2.

e These techniques work properly only if the registers are
pointing to an -existing memory location; otherwise, a
trap is generated.

1. 'Adding 2 to a register might be accomplished by ADD #2,R0.
However, this takes two words, whereas TST (R0)+ which also
adds 2 to a register, takes only one word.

2. Subtracting 2 from a register can be done by the
complementary instructions SUB #2,R0 or TST -(R0) with the
same conditions as in adding 2.

3. This can be extended to adding or subtracting 2 from two
different registers, or 4 from the same register, in one
single-word instruction:

CMF (ROY+5 (ROD+ ; sANN 4 TO RO

CMF = (R1)y—(R1) sSURTRACT 4 FROM R1

CMF (RO +s-(R1) JAND 2 TO RO» SURTRACT 2 FROM R1
CMF =~ (R3)»~(R1) $SUBTRACT 2 FROM ROTH R3 AND R1
CMF (R3)+» (ROD+ sAND 2 TO ROTH R3 AND RO

or

9.3.2

1.

PROGRAMMING TECHNIQUES

Variations of the examples above can be employed if the
instructions operate on bytes and one of the registers is the
Stack Pointer. These examples depend on the fact that the
Stack Pointer (as well as the PC) is always autoincremented
or autodecremented by 2, whereas registers RO-R5 step by 1 in
byte instructions.

CMFR (SF) 4y (R3)+ sADD 2 TO SFP AND 1 TO R3

CMFR ~(R3)»—(SF) sOURTRACT 1 FROM R3 AND 2 FROM SF
CMFER (R3)+5-(SF) sAND 1 TO R3y SURTRACT 2 FROM SF

Popping an unwanted word off the processor stack (adding 2 to
register 6) and testing another value can be two separate
instructions or one combined instruction:

CTET (8P + sFOF WORD
TET COUNT FSET CONDITION CORES FOR COUNT
MOV COUNT> (SF)+ sFOF WORDN & SET CORES FOR COUNT

The differences are that the TST instructions take three
words and clear the Carry bit, and the MOV instruction takes
two words and doesn't affect the Carry bit.

Subroutines

Condition codes set within a subroutine can be used to
conditionally branch upon return to the calling program,
since the RTS instruction does not affec¢t condition codes.

JER FCeX sCALL SURBRROUTINE X

ENE ARC sERANCH ON CONDITION SET
. s IN SUBROUTINE X
X3 s SUBROUTINE ENTRY
CMF R2»sDEF sTEST CONDITION
RTS FC SRETURN TO CALLING FROGRAM

When a JSR first operand register is not the PC, data stored
following - a subroutine call can be accessed within the
subroutine by referencing the register. (The register
contains the return address.)

JEBR RG»Y
+WORD HIGH
<WORD LOW e
. sLATEST RS VALUE WILL FOINT HERE
Y MOV (R3)+sR2 sVALUE OF HIGH ACCESSED
MOV (R3)+5R4 sVALUE OF LOW ACCESSED
RTS RS SRETURN TO LOCATION

sCONTAINED IN RS

9-7

PROGRAMMING TECHNIQUES

Another possibility is:

JSR R3»SUR

BR FSTARG sLOW-ORDER RYTE IS OFFSET TO RETURN
sADDRESSy WHICH EQUALS NO. QF ARGS.
+WORD A sADDRESS OF ARG A
+WORD R SANNRESS OF ARG R
+WORDN © sANDRESS OF ARG C
FSTARG? SRETURN ADDRESS
SUR: MOVEERSy COUNT $GET NO. OF ARGS FROM 1L.OW RYTE

$0F BR (IF DESIREDD.
MOV @LA4(RG)yR2 SE.G.» GET &6TH ARGUMENT
MOV R&(RS) v R $GET 3RI ARGUMENT

RTS RS FRETURNS TO RBRANCH WHICH JUMFS FAST
FARG ILIST TO REAL RETURN ADDRESS

In the example above, the branch instruction contributes two main
advantages:

1. If R5 is unaltered when the RTS 1is executed, return will
~always be to the branch instruction. This ensures a return
to the proper location even if the 1length of the argument
list is shorter or longer than expected.

2. The operand of the branch, being an offset past the argument
list, provides the number of arguments in the list.

Arguments can be made sharable by separating the data from the main
code. This is easily accomplished by treating the JSR and its return
as a subroutine itself:

Cal.l.: . ARGL.ST? JER REGySUR
. BR FSTARG
JBR POy ARGLET SWORD A

* *
* *

* *

3. The examples above all demonstrate the calling of subroutines
from a non-reentrant program. The called subroutine can be
either reentrant or non-reentrant in each case. The
following example illustrates a method of also allowing
calling programs to be reentrant. The arguments and linkage
are first placed on the stack, simulating a JSR R5,SUB, so
that arguments are accessed from the subroutine via X(R5).
Return to the calling program is executed from the stack.

PROGRAMMING TECHNIQUES

calLL?t
+
MOV R3Gs—-(SF) $SAVE RS ON STACK.
MOV JUSEBRy—-(8F) §PUSH INSTRUCTION JBR R&6y@RS ON
+ FSTACK. FPUSH ADDRESSES OF ARGU-
B SMENTS ON STACK IN REVERSE ORIER
. §(SEE RELOW) .,
MOV RBRN»-—-(8F) FFUSH BRANCH INSTRUCTION ON STACK
: MOV SPsRS FMOVE ADDRESS OF BRANCH TO RS.
JBR PCySUR sCALL SUR AND SAVE RETURN ON STACK,
RET? MOV (SF)+sRS SRESTORE OLIN RS UFON RETURN.
. sNATA AREA OF FROGRAM.
JEBERR JEBR Ry BRG
BRNG BR o+ HNENER FBRANCH PAST N WORD ARGUMENTS

The address of an argument can be pushed on the stack in
several ways. Three are shown below.

The arguments A, B, and C are read-only constants which are
in memory (not on the stack):

MOV $Cy-—-(SF) FFUSH ANDRESS OF €
MOV Ry~ (SF) sFUSH ADDRESS OF R
MOV e~ (SF) FPUSH ADDRESS OF A

Arguments A, B, and C have their addresses on the stack at
the Lth, Mth, and Nth bytes from the top of the stack.

MOV N(SF) y—(8F) SPUSH ANDRESS OF ©

MOV MA2(S8F) v~ (BF) 5PUSH ADDRESS OF R

MOV L+4(SF) v~ (8F) $FUSH ADDRESS OF A
Note that the displacements from the top of the stack are
adjusted by two for each previous push because the top of the
stack is being moved on each push.

Arguments A, B, and C are on the stack at the Lth, Mth, and
Nth bytes from the top but their addresses are not.

MOV N2y~ (8F) SPUSH DISPLACEMENT TO ARGUMENT

ALDD SFy @S5F sCALCULATE ACTUAL ADDRESS OF ©
MOV dMt4s - (GF)

AND 5Py RSP sANNRESS OF R

MOV dltéy—(5F)

Al SFyRSF SADNRESS OF A

PROGRAMMING TECHNIQUES

When subroutine SUB is entered, the stack appears as follows:

RET

BR .+N+N+2
A
B

JSR R6,@R5 ;BRANCH IS TO HERE
OLD R5

Subroutine SUB returns by means of an RTS R5, which places R5
into the PC and pops the return address from the stack into
R5. This causes the execution of the branch because R5 has
been loaded (at location X) with the address of the branch.
The JSR branched to then returns control to the «calling
program, and in so doing, moves the current PC value into the
SP, thereby removing everything above the o0ld R5 from the
stack. Upon return at RET, this too is popped, restoring the
original R5 and SP values.

The next example is a recursive subroutine (one that calls
itself). Its function 1is to look for a matching right
parenthesis for every 1left parenthesis encountered. The
subroutine 1is called by JSR PC,A whenever a left parenthesis
is encountered (R2 points to the character following it).
When a right parenthesis is found, an RTS PC is executed, and
if the right parenthesis is not the last legal one, another
is searched for. When the final matching parenthesis is
found, the RTS returns control to the main program.

[T MOVR (R2)+RO sGET SUCCESSIVE CHARACTERS.

CMFR &7 (sRO #LOOK FOR LEFT FARENTHESIS.
BNE R $FOUND?
JER FCy A sLEFT FAREN FOUNDy CALL SEL.
BR A G0 LODOK AT NEXT CHARACTER
B CMPE 7)) 2RO PLEFT FAREN NOT FOUNDe LOOK FOR
FRIGHT FAREN.
BNE @ sFOUNDT IF NOT» GO TO A.
RTG FC sRETURN FAREN FOUND. IF NOT LAST»

sG0O0 TO R. IF LLASTy GO TO MAIN FROGRAM.

The example below illustrates the use of co-routines, called
by JSR PC,@(SP)+. The program uses double buffering on both
input and output, performing as follows:

Write O1 Write 02
Read I1 concurrently Read I2 concurrently
Process I2 Process Il

JSR PC,@(SP)+ always performs a jump to the address specified
on top of the stack and replaces that address with the new
return address. Each time the JSR at B is executed, it jumps
to a different 1location; initially to A and thereafter to
the location following the JSR executed prior to the one at
B. All other JSR's jump to B+2.

PROGRAMMING TECHNIQUES

FC=%7
BEGING (o I/70 resetsy dimitsy elto.)
10T sREAD INTU I1 TO START FROCESS
SWORD T1
SBYTE REAL INSLOT
MOV Ay —-(H) FINITIALTZE STACK FOR FIRST JSR
B3 JER FCeRHIT SN0 I70 FOR 01 AND I1 OR 02 AND I2
N sarform Frocessing
BR B FMORE 170

FEND OF MAIN LOOF
s 1/70 CO-ROUTINES
Al 10T sREAD INTO I2
LWORD T2
LRBYTE REAIy INSLOT

13

. selt rarameters Lo rrocess ITly 01
JER PCyRCHIH SRETURN TO PROCESS AT B4+2
1ToT SWRITE FROM 01

MWORD 01

JEYTE WRITE OUTSLOT

ToT SREADN INTO T1
CWORT T

JEYTE REAN INSLOT

3

» sl rarameters to rrocess 12y 02
JER FCeR(SHIT SRETURN TO FROCESS AT B+2
10T SWRITE FROM 02

LWORD 02
SRYTE WRITEs QUTSLOT
RR A SREAD INTO I2

6. The trap handler, below, simulates a two-word JSR instruction
with a one-word TRAP instruction. In this example, all TRAP
instructions in the program take an operand, and trap to the
handler address at location 34. The table of subroutine
addresses (e.g., A, B, ...) can be constructed as follows;

TARLE?
CALA=, ~TARLE
LWORK A yCALLED BY: TRAF CALA
CALR= . ~TARLE
LWORD R sCALLED RBYS TRAF CALR

Another way to construct the table:

TARLE?
CAl.a= . ~TARLE+TRAF
LWORD A sCALLED RY: CalA

PROGRAMMING TECHNIQUES

The TRAP handler for either of the above methods follows:

TRAF34: MOV RSFy2(SF) SREFLACE STACKED PS8 WITH FCT.
SUR E2y@8F $GET POINTER TO TRAF INSTRUCTION.
MOV @(SP)Y+y-(8F) SREFLACE ANDRESS OF TRAF WITH
§ TRAF INSTRUCTION ITSELF.
ADD FTARLE-TRAFy @5F 5 CALCULATE SURROUTINE ADDR.
MOV @(SF)+s 0 FJUMF TO SURROUTINE .

In the example above, if the third instruction had been written
MOV @(SP), (SP) it would have taken an extra word since @(SP) is in
Index Mode and assembles as @0(SP). In the final instruction, a jump
was executed by a MOV @(SP)+,PC because no equivalent JMP instruction
exists.

Following are some JMP and MOV equivalences (note that JMP does not
affect condition codes).

JMP (R4) = MOV R4,PC

JMP @ (R4) = MOV (R4),PC
(2 words) (1 word)

none = MOV @(R4) ,PC

JMP - (R4) = none

JMP @ (R4)+ = MOV (R4),PC

JMP @-(R4) = MOV -(R4) ,PC

none = MOV @ (R4)+,PC

none = MOV @-(R4) ,PC

JMP X = MOV #X,PC

JMP @X = MOV X,PC

none = MOV @X,PC

The TRAP handler can be useful, also, as a patching technique.
Jumping out to a patch area is often difficult because a two-word jump
must be performed. However, the one-word TRAP instruction may be used
to dispatch to patch areas. A sufficient number of slots for patching
should first be reserved in the dispatch table of the TRAP handler.
The jump can then be accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to be made.

JReplacing the saved PS loses the T-bit status. If a breakpoint has
been set on the TRAP instruction, ODT will not gain control again to
reinsert the breakpoints because the T-bit trap will not occur.

9-12

EVEN 7-BIT
PARITY OCTAL
BIT CODE
0 000
1 001
1 002
0 003
1 004
0 005
0 006
1 007
1 010
0 011
0 012
1 013
0 014
1 015
1 016
0 017
1 020
0 021
0 022
1 023
0 024
1 025
1 026
0 027
0 030
1 031
1 032
0 033

CHARACTER

NUL
SOH

STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

DLE
DC1

DC2
DC3
DC4
NAK

SYN
ETB

CAN
EM

SUB
ESC

APPENDIX A

ASCII CHARACTER SET

REMARKS

NULL, TAPE FEED, CONTROL SHIFT P.

START OF HEADING; ALSO SOM, START OF
MESSAGE, CONTROL A,

START OF TEXT; ALSO EOA, END OF ADDRESS,
CONTROL B,

END OF TEXT: ALSO EOM, END OF MESSAGE
CONTROL C,

END OF TRANSMISSION (END): SHUTS OFF TWX
MACHINES, CONTROL D,

ENQUIRY (ENQRY); ALSO WRU, CONTROL E,
ACKNOWLEDGE. ALSO RU, CONTROL F.

RINGS THE BELL. CONTROL G.

BACKSPACE: ALSO FEO, FORMAT EFFECTOR.
BACKSPACE SOME MACHINES, CONTROL H.
HORIZONTAL TAB. CONTROL I.

LINE FEED OR LINE SPACE (NEW LINE):
ADVANCES PAPER TO NEXT LINE, DUPLICATED
BY CONTROL J.

VERTICAL TAB (VTAB). CONTROL K.

FORM FEED TO TOP OF NEXT PAGE (PAGE).
CONTROL L.

CARRIAGE RETURN TO BEGINNING OF LINE.
DUPLICATED BY CONTROL M.

SHIFT OUT: CHANGES RIBBON COLOR TO RED.
CONTROL N.

SHIFT IN: CHANGES RIBBON COLOR

TO BLACK. CONTROL O

DATA LINK ESCAPE. CONTROL P (DCO).
DEVICE CONTROL 1, TURNS TRANSMITTER
(READER) ON, CONTROL Q (XON).

DEVICE CONTROL 2, TURNS PUNCH OR AUXI-
LIARY ON. CONTROL R (TAPE, AUX ON).
DEVICE CONTROL e, TURNS TRANSMITTER
(READER) OFF, CONTROL S (XOFF).

DEVICE CONTROL 4. TURNS PUNCH OR AUXI-
LIARY OFF. CONTROL T (TAPE, AUX OFF)
NEGATIVE ACKNOWLEDGE: ALSO ERR. ERROR.
CONTROL U.

SYNCHRONOUS IDLE (SYNC). CONTROL V.

END OF TRANSMISSION BLOCK: ALSO LEM.
LOGICAL END OF MEDIUM. CONTROL W.
CANCEL (CANCL). CONTROL X.

END OF MEDIUM. CONTROL Y.

SUBSTITUTE. CONTROL Z.

ESCAPE. PREFIX.

HOOHHOOHOHHOHOOHOHHOOHHOHOOHOHHOHOORHOOHOHHOHOOHOHHOOHHOHOOKRKROO KM

034
035

036

037
040
041
042
043
044
045
046
047
050
051
052
053
054

056
057
060
061

062

063
064
065
066
067

070

072
073
074
075
076

100

101
102
103
104
105
106
107
110
111

113
114
115
116
117
120
121
122
123
124
125
126
127
130

132
133

+ %~ o~ =2 00 H

=

e WO JOUT B WN KON .

—NKXS<CHNODOUYWOZEORUHIQEEBOOQODIP® YUYV I A

ASCII CHARACTER SET

FILE SEPARATOR. CONTROL SHIFT L.
GROUP SEPARATOR. CONTROL SHIFT M.
RECORD SEPARATOR. CONTROL SHIFT N.
UNIT SEPARATOR. CONTROL SHIFT O.
SPACE.

ACUTE ACCENT OR APOSTROPHE.

SHIFT K

A-2

HOOOOMMO

HOHHOOHHOHOOHOHHOHOOHHOO O M H

134
135
136
137
140
175
176
177

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174

>

DEL

NNKXECcANRQUODE HRULHITQHD QO T

ASCII CHARACTER SET

SHIFT L
SHIFT M
SHIFT N

ACCENT GRAVE.

THIS CODE GENERATED BY ALT MODE.

THIS CODE GENERATED BY ESC KEY (IF PRESENT)
DELETE, RUB OUT.

LOWER CASE ALPHABET FOLLOWS (TELETYPE
MODEL 37 ONLY).

APPENDIX B

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.1 TERMINATORS

The list below defines all characters which are considered to be
terminators. The order of the list implies the descending hierarchy
of significance.

Character Function
CTRL/FORM Source line terminator.
LINE FEED Source line terminator.
RETURN Source line terminator
: Label terminator

= Direct assignment delineator
2 Register term delineator

TAB ——3 Item terminator
Field terminator

BLANK or Item terminator

SPACE Field terminator

Immediate expression field indicator
@ Deferred addressing indicator

(Initial register field indicator

) Terminal register field indicator

Operand field separator

; Comments field delimiter

+ Arithmetic addition operator

- Arithmetic subtraction operator
& Logical AND operator

! Logical OR operator

" Double ASCII text indicator

! Single ASCII text indicator.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.2 ADDRESS MODE SYNTAX

r is an integer between 0 and 7.

R is a register expression, E 1is

an expression,

ER 1is either a

register expression or an absolute expression in the range of 0 to 7.

Address Address Mode Symbol in
Mode Name Operand
Number Field Meaning
Or Register R Register R contains the operand. R
is a register expression.
1r Deferred Register @R or (R)Register R contains the operand
address.
2r Autoincrement (ER) + The contents of the register
specified by ER 1is incremented
after being used as the address of
the operand.
Deferred
3r Autoincrement @ (ER) + ER contains the pointer to the
address of the operand. ER is
incremented after use.
4r Autodecrement - (ER) The contents of register ER is de-
cremented before it is used as the
address of the operand.
Deferred
5r Autodecrement @-(ER) The contents of register ER is de-
cremented before it is used as the
pointer to the address of the oper-
Index by the and.
register
6r Specified E(ER) ° E plus the contents of the register
specified, ER, is the address of
Deferred index the operand.
by the register
7r specified @E (ER) E added to ER gives the pointer to
the address of the operand.
27 Immediate Operand #E E is the operand.
37 Absolute address Q#E E is the operand address.
67 Relative address E E is the address of the operand.
77 Deferred rela-
tive address. QE E is the pointer to the address of
the operand.

B.3 INSTRUCTIONS

The tables of instructions which follow are grouped

operands they take and according
op-codes.

to the bit

according to the
patterns of their

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

In the representation of op-codes, the following symbols are used:

SS Source operand

DD Destination operand

XX 8-bit offset to a
location

R Integer between 0 and 7

specified by a 6-bit
address mode

specified by a 6-bit
address mode
(branch instructions)

representing a general
register

Symbols used in the description of instruction operations are:

SE Source effective address

DE Destination effective address
() contents of

- becomes

PS Processor Status word

The condition codes in the processor status word (PS) are affected by

the instructions;

these condition codes are represented as follows:

N Negative bit: set if the result is negative

Z Zero bit: set if the
\ oVerflow bit: set if the
C Carry bit: set if the

In the representation of the instruction's

result is zero
result had an overflow
result had a carry

effect on the condition

codes, the following symbols are used:

* Conditionally set
- Not affected

0 Cleared

1 Set

To set conditionally means to
determine the state of the code.

use the instruction's

result to

Logical operators are represented by the following symbols:

! Inclusive OR
(:) Exclusive OR
& AND

- (used over a symbol) NOT (i.e., 1's complement)

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.3.1 Double Operand Instructions OP A,A

Condition Codes
Op-code MNEMONIC Stands for Operation N Z Vv C
0lssdd mov move (SE)~>DE * * 0 -
11ssdd movb move Byte
02SSDD CMP CoMPare (SE) - (DE) LA A
12SSDD CMPB CoMPare Byte
03SSDD BIT BIt Test (SE) & (DE) * * 0 -
13SSDD BITB BIt Test Byte
04SSDD BIC BIt Clear (SE) & (DE)~>DE * k0 -
14SSDD BICB BIt Clear Byte
05SSDD BIS BIt Set (SE) ! (DE)-DE * * 0 -
15SSDD BISB BIt Set Byte
06SSDD ADD ADD (SE) + (DE)>DE * ok x x
16SSDD SUB SUBtract (DE) - (SE)->DE * x kx X
B.3.2 Single Operand Instructions OP A

Condition Codes
Op-code MNEMONIC Stands for Operation: N Z v C
0050DD CLR CLeaR 0-DE 0 1 0 O
1050DD CLRB CLeaR Byte
0051DD COM COMplement (DE)-~DE * % 0 1
1051DD COMB COMplement Byte
0052DD INC INCrement (DE) + 1-DE * %]
1052DD INCB INCrement Byte
0053DD DEC DECrement (DE) -1-»DE * o x -
1063DD DECB DECrement Byte
0054DD NEG NEGate (DE) + 1-»DE LI
1054DD NEGB NEGate Byte
0055DD ADC ADd Carry (DE) + (C)»DE * % %
1055DD ADCB ADd Carry Byte
0056DD SBC SuBtract Carry (DE)-(C)»>DE * ok ok .k
1056DD SBCB SuBtract Carry Byte
0057DD TST TeST (DE) - 0-DE * * 0 O
1057DD TSTB TeST Byte

B.3.3 Rotate/Shift

0060DD

1060DD

0061DD

1061DD

0062DD

1062DD

0063DD

1063DD

0001DD

0003DD

Op-Code

000000

000001

000002

000003

000004

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

ROR

RORB-

ROL

ROLB

ASR

ASRB

ASL

ASLB

JMP

SWAB

C

ROtate Right rD-—I':PI ok ox ok

ROtate Right

Byte
ROtate Left

ROtate Left
Byte

Arithmetic
Shift Right

Arithmetic
Shift Right
Byte

Arithmetic
Shift Left

Arithmetic
Shift Left
Byte
JuMP

SWAp Bytes

C

Oe

=[]0

C * * * *
O]
C * * * *
0
DE—PC - - - -

=

B.3.4 Operation Instructions Op
MNEMONIC Stands for
HALT HALT
WAIT WAIT
RTI ReTurn from
Interrupt

000003 breakpoint
trap

I0T Input/Output
Trap

RESET RESET

000005

Condition
Operation N 2 V

The computer stops - - -
all functions.

The computer stops - - -
and waits for an
interrupt.

The PC and PS are - - -
popped off the SP

stack:

((SP))+PC

(SP) +2>SP

((SP))-»PS

* * *

Trap to location 14.
This is used to
call ODT-11.

Trap to location * ok k
20. This is used
to call IOX.

Returns all I/0 -
device handlers to
power—-on state.

Codes
C

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Trapping Op or Op E where 05Eg37%
104000- EMT EMulator Trap-to location koK
104377 Trap 30. This is used

to call system

programs.
104400- TRAP TRAP Trap to location * ok ok
104777 34. This is used

to call any routine
desired by the pro-
grammer .

CONDITION CODE OPERATES

Op-code MNEMONIC Stands for

000241 CLC CLear Carry bit in PS.
000261 SEC SEt Carry bit.

000252 CLV CLear oVerflow bit.

000262 SEV SEt oVerflow bit.

000244 CLZ CLear Zero bit.

000264 SEZ SEt Zero bit.

000250 CLN CLear Negative bit.

000270 SEN SEt Negative bit.

000254 CNz CLear Negative and Zero bits.
000257 CCC CLear all Condition Codes.
000277 SCC Set all Condition Codes.
000240 NOP No-operation.

B.3.5 Branch Instructions Op E Where -1287<(E-.-2)/2<127719

Condition to be

Op—-Code MNEMONIC Stands for met if branch is to occur

0004xX BR BRanch always

0010xXX BNE Branch if Not Equal to Zero z=0

0014XX BEQ Branch if EQual (to zero) Z=1

0020XX BGE Branch if Greater than or NC:)V=0
equal (to zero)

0024XX BLT Branch if Less Than (zero) N<:>V =1

0030XX BGT Branch if Greater Than Z!(N<:>V)=0
(zero)

0034XX BLE Branch if Less than or zz(N(:>V)=1
Equal (to zero)

B-6

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1000XxX BPL Branch if PLUS N=0
1004XxX BMI Branch if MInus N=1
1010XX BHI Branch if HIgher c(Dz=0
1014xX BLOS Branch if LOwer or Same Clzi=1
1020XX BVC Branch if‘oVerflow Clear V=0
1024XX BVS Branch if oVerflow Set v=1

1030XX BCC (or BHIS)
: Branch if Carry Clear C=0
(or Branch if HIgh or Same)

1034xX BCS (or BLO)

Branch if Carry Set (or Cc=1
Branch if LOw)

B.3.6 Subroutine Call JSR ER,A

Op-code MNEMONIC Stands for Operation
004RDD JSR Jump to. Sub- Push register on the SP stack, put
Routine the PC in the register:

DE ~ TEMP -a temporary storage reg-
ister internal to proc-
essor

(SP)-2>SP

(REG) »> (SP)

(PC)+m REG -m depends upon the ad-
dress mode.

(TEMP) » PC
B.3.7 Subroutine Return
Op-code MNEMONIC Stands for Operation
00020R RTS ReTurn from Put register contents in PC and
’ Subroutine pop old contents from SP stack

into register.

B.3.8 Extensions for the LSI-11 Version Of PAL-11S

Op-code MNEMONIC Stands for Operation Condition Codes
N Z2 VvV C
0067dd - SXT Sign eXTend Nx (-1) DE - * 0 -
1067dd MFPS . Move byte (PS) DE * *x 0 -
From PS

'These extensions are available only with the LSI-11 version of
PAL-11S.

1064ss

074rdd
070rss
071css

072rss

073rss

0064nn

077crnn

000006

B.4

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

MTPS

XOR

MUL

DIV

ASH

ASHC

MARK

SOB

RTT

Move byte
To PS

eXclusive OR
MULtiply
DIVide

Arithmetic
SHift

Arithmetic
SHift
Combined

MARK

Subtract One
and Branch
if 0

ReTurn from
Trap

ASSEMBLER DIRECTIVES

MNEMONIC

.EOT

.EVEN

.END
(E

.WORD

.BYTE

.ASCII

.TITLE

.ASECT

.CSECT

.LIMIT

Operand

none

none

E

optional)

E,E,..

E,E,...

E,E...

/XXX..

NAME

none

none

none

.X/

Stands for

End Of Tape

EVEN

END

WORD
(the void
operator)
BYTE

ASCII

TITLE

ASECT

CSECT

LIMIT

(SE) PS ok ok x
r ! (DE) DE * x 0 -
r x (SE) r * * Q0 *
r / (SE) r * * % %

SP+2xnn SP -
R5 PC
SP”™ R5

(r)-1r; if - - -
(r) 0 then
(PC)-2xnn PC

P)) PC loaded from stack
P))+2 SP

P)) PS

)

((s
((s
((S
(SP)+2 SP

Operation
Indicates the physical end of the
source input medium

Insures that the assembly location
counter 1is even by adding 1 if it
is odd.

Indicates the physical and logical
end of the program and optionally
specifies the entry point (E)

Generates words of data
Generates words of data

Generates bytes of data

Generates 7-bit ASCII characters
for text enclosed by delimiters.
the

Generates a name for

module.

object

Initiates the Absolute section.

Initiates the Relocatable Control

section.

Generates two words containing the

.GLOBL

.RAD50

.IFZ

.IFNZ

.IFL

.IFLE

.IFG

. IFGE

. IFDF

. IFNDF

.ENDC

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

NAME ,NAME, ...

GLOBAL

/ XXX/ RADIX 50

E IF E=0

E IF E#0

E IF E<O

E IF E<0

E IF E>O0

E IF E20

NAME IF NAME
defined

NAME IF NAME
undefined

none End of
Conditional

low and high limits of the reloca-
table section.

Specifies each name to be a global
symbol

Generates the RADIX 50
representation of the ASCII
character in delimiters.

Assemble what follows up to the
terminating .ENDC if the expres-
sion E is 0.

Assemble what follows up to the
terminating .ENDC, if the expres-
sion E is not 0.

Assemble what follows up to the
terminating .ENDC, if the
expression E is less than 0.

Assemble what follows up to the
terminating .ENDC, if the
expression E is less than or equal
to 0.

Assemble what follows up to the
terminating .ENDC, if the
expression E is greater than 0.

Assemble what follows up to the
terminating .ENDC, if the
expression E is greater than or
equal to 0.

Assemble what follows up to the
terminating .ENDC 1if the symbol
NAME is defined.

Assemble what follows up to the
terminating .ENDC if the symbol
NAME is undefined.

Terminates the range of a condi-
tional directive.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.5 ERROR CODES

Error Code

A

Meaning
Addressing error. An address within the
instruction is incorrect. Also includes
relocation errors.
Bounding error. Instructions or word data are

being assembled at an odd address in memory.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

Illegal <character detected. Ilegal characters
which are also non-printing are replaced by a ?
on the listing.

Line buffer overflow. All extra characters beyond
72 are ignored.

Multiple definition of a 1label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing an 8 or 9 was not terminated by
a decimal point.

Phase error. A label's definition or value varies
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction scan was not completed, or a
carriage return was not followed by a linefeed or
form feed.

Register-type error. An invalid use of or
reference to a register has been made.

Symbol table overflow. When the quantity of
user-defined symbols exceeds the allocated space
available in the user's symbol table, the
assembler outputs the current source line with the
S error code, then returns to the command string
interpreter to await the next command string to be
typed.

Truncation error. More than the allotted number
of bits were input so the 1leftmost bits were
truncated. T error does not occur for the result
of an expression.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression. Relative to the expression, the
undefined symbol is assigned a value of zero.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.6 INITIAL OPERATING PROCEDURES

Loading: Use Absolute Loader. The start address of the
Loader must be in the console switches.

Storage Requirements:PAL-11S uses 8K of memory.

Starting: Immediately upon 1loading, PAL-11S will be in
' control and initiate dialogque.

Initial Dialogue:

Printout Inquiry
*S What is the input device of the Source symbolic tape?
*B What is the output device of the Binary object tape?
*L What is the output device of the assembly Listing?
*T What is the output device of the symbol Table?

Each of these questions may be answered by any one of the following
characters:

Character Answer Indicated
T Teleprinter keyboard
L Low-speed reader or punch
H High-speed reader or punch
P Line Printer

Each of these answers may be followed by the other characters
indicating options:

Option Typed Function to be performed
/1 on pass 1
/2 on pass 2
/3 on pass 3
/E errors to be listed on the Teletype on the same pass

(meaningful only for *B or *L).

Each answer is terminated by typing the RETURN key. A RETURN alone as
answer will delete the function.

Dialogue During Assembly:

Printout Response

EOF ? Place next tape in reader and type RETURN. A .END
statement may be forced by typing E followed by
RETURN.

END ? Start next pass by placing first tape in reader and

typing RETURN.

EOM ?

Restarting:

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

If the end-of-medium is on the 1listing device, the
device may be readied and the assembly may be
continued by typing RETURN.

If the end-of-medium is on the binary device, the
assembler will discontinue the assembly and restart
itself.

Type CTRL/P. The initial dialogue will be started
again.

APPENDIX C

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.1 SPECIAL CHARACTERS

Character

form feed
line feed
carriage return

tab

space

Function

Source line terminator
Source line terminator
Source statement terminator
Label terminator

Direct assignment indicator
Register term indicator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
Operand field separator

Comment field indicator
Arithmetic addition operator
Arithmetic subtracfion operator
Logical AND operator

Logical OR operator

Double ASCII character indicator
Single ASCII character indicator

Assembly location counter

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.2 ADDRESS MODE SYNTAX

n is an integer between 0 and 7 representing a register. R is a
register expression, E 1is an expression, ER is either a register
expression or an expression in the range 0 to 7.

Address Address
Mode Mode

Format Name Number Meaning

R Register On Register R contains the
operand. R is a
register expression.

@R or (ER) Deferred Register 1n Register R contains the
operand address.

(ER) + Autoincrement 2n The contents of the
register specified by ER
are incremented after
being used as the
address of the operand.

@ (ER) + Deferred Auto- 3n ER contains the pointer

increment to the address of the
operand. ER is
incremented after use.

- (ER) Autodecrement 4n The contents of register
ER are decremented
before being used as the
address of the operand.

@-(ER) Deferred Auto- 5n The contents of register

decrement ER are decremented
before being used as the
pointer to the address
of the operand.

E (ER) Index 6n E plus the contents of
the register specified,
ER, is the address of
the operand.

QE (ER) Deferred Index 7n E added to ER gives the
pointer to the address
of the operand.

#E Immediate 27 E is the operand.

Q#E Absolute 37 E is the address of the
operand.

E Relative 67 E is the address of the
operand.

@QE Deferred Relative 77 E is the pointer to the

address of the operand.

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3 INSTRUCTIONS

The instructions whi¢h follow are grouped according to the operands
they take and the bit patterns of their op-codes.

In the representation of op-codes, the following symbols are used:

SS Source operand specified by a 6-bit address mode.

DD Destination operand specified by a 6-bit address
mode.

XX 8-bit offset to a location (branch instructions)

R Integer between 0 and 7 representing a general
register.

Symbols used in the description of instruction operations are:

SE Source Effective address

DE Destination Effective address
() Contents of

> Is transferred to

PS Processor Status word

The condition codes in the processor status word (PS) are affected by
the instructions. These condition codes are represented as follows:

N Negative bit: set if the result is negative

Z Zero bit: set if the result is zero

Y oVerflow bit: set if the operation caused an
overflow

C Carry bit: set if the operation caused a
carry

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

* Conditionally set
- Not affected

0 Cleared

1 Set

To set conditionally means to wuse the instruction's result to
determine the state of the code (see the PDP-11 Processor Handbook).

Logical operations are represented by the following symbols:

! Inclusive OR
<:> Exclusive OR
& AND

- (used over a symbol) NOT (i.e., 1's complement)

C-3

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.1 Double-Operand Instructions Op A,A

Status Word
Condition Codes

Op-Code MNEMONIC Stands for Operation N Z \Y C
01SSDD MOV MOVe (SE) - DE * * 0 -
11SSDD MOVB MOVe Byte

02SSDD CMP CoMPare (SE)-(DE) * * * *
12SSDD CMPB CoMPare Byte

03SSDD BIT BIt Test (SE) & (DE) * * 0 -
13SSDD BITB BIt Test Byte

04SSDD BIC BIt Clear (SE) & (DE) + DE * k0 -
14SSDD BICB BIt Clear Byte

05SSDD BIS BIt Set (SE) ! (DE) +~ DE * * 0o -
15SSDD BISB BIt Set Byte

06SSDD ADD ADD (SE) +(DE) > DE * % * *
16SSDD SUB SUBtract (DE)~-(SE) -~ DE * * * *

C.3.2 Single-Operand Instructions Op A

Status Word
. ; Condition Codes
Op-Codes MNEMONIC Stands for Operation N Z \" C

0050DD CLR CLeaR 0 DE 0 1 0 0
1050DD CLRB CLeaR Byte

0051DD coM COMplement (DE) DE * x 0 1
1051DD COMB COMplement Byte

0052DD INC INCrement (DE)+1 DE * * * -
1052DD INCB INCrement Byte

0053DD DEC DECrement (DE)-1 DE * * * -
1053DD DECB DECrement Byte

0054DD NEG NEGate (DE)+1 DE LI S
1054DD NEGB NEGate Byte

0055DD ADC ADd Carry (DE) +(C) ~ DE ok ok %
1055DD ADCB ADd Carry Byte

0056DD SBC SuBtract Carry (DE)-(C) > DE * * * *
1056DD SBCB SuBtract Carry Byte]
0057DD TST TeST (DE) -0 » DE * * 0 0
1057DD TSTB TeST Byte

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.3 Rotate/Shift Instructions Op A

Status Word
Condition Codes

Op-Code MNEMONIC Stands for Operation N Z v C
c 15 0
0060DD ROR ROtate Right r—[H Ij
* * * *
1060DD RORB ROtate Right even or odd byte
Byte rDI * * * *
0061DD ROL ROtate Left r{_—_H l~|
* * * *
1061DD ROLB ROtate Left even or odd byte
Byte [_D{ j * * * *
C 1514 10
0062DD ASR Arithmetic O I 11T
Shift Right ;l I\I\I \I'I ook ok
1062DD ASRB Arithmetic even or odd byte
Shift Right [I\I\ I\I 5 o* * * *
Byte miunm —
p—
c
0063DD ASL Arithmetic J [T [T)o
Shift Left I:l[f/ll /L/] * * * *
1063DD ASLB Arithmetic even or odd byte
Shift Left J L)l [‘LﬁA/o * * * *
Byte (11 |
0001DD JMP JuMP DE » PC - - - -
15 ¥ 87 ! 0
0003DD SWAB SWAp Bytes K |]
L_\/'—J\'_\./__J * * 0 0
I
C.3.4 Operate Instructions Op
Status Word
Condition Codes
Op-Code MNEMONIC Stands for Operation N Z Y C
000000 HALT HALT The computer stops all - - - -
functions.
000001 WAIT WAIT The computer stops and - - - -
waits for an inter-

rupt.

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

000002 RTI ReTurn The PC and PS are popped * * * *
from off the SP stack:
Inter-
rupt ((SP))~» PC
(SP)+2~> SP
((SP)) >~ PS
(SP)+2~+> SP
RTI is also used to re-
turn from a trap.
000005 RESET RESET Returns all I/O devices - - - -
to power-on state.
C.3.5 Trap Instructions Op or Op E Where 05Es3778
Status Word
Condition Codes
Op-Code MNEMONIC Stands for Operation N Z v C
*000003 (none) (breakpointTrap to location 14. This * * * *
trap) is used to call ODT.
*000004 I0T Input/Out- Trap to location 20. This * * * *
put Trap is used to call IOX.
104000- EMT EMulator Trap to location 30. This * * * *
104377 Trap is used to call system pro-
grams.
104400 TRAP TRAP Trap to location 34. This * * * *
104777 is used to call any routine
desired by the programmer.
*Op (only)

CONDITION CODE OPERATES

Op-Code
000241
000261
000242
000262
000244
000264
000250
000270
000254
000257

000277

MNEMONIC Stands for

CLC

SEC

CLV

SEV

CLZ

SEZ

CLN

SEN

CNZ

CCcC
SCC

CLear Carry bit in PS.
SEt Carry bit.

CLear oVerflow bit.
SEt oVerflow bit.
CLear Zero bit.

SEt Zero bit.

CLear Negative bit.
SEt Negative bit.

CLear Negative and Zero bits.

Clear all Condition Codes.

Set all Condition Codes.

C-6

C.3.6

Op-Code
0004XxX

0010XX

0014xX

0020XX

0024XxX

0030XX

0034XX

1000XX
1004XX
1010XX
1014XX
1020XX
1024XX

1030XX

1034XX

C.3.7

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

Branch Instructions Op E where-128

10

< (E-.-2) /25127

10

Condition to be met if

Op-Code MNEMONIC

004RDD

MNEMONIC Stands for branch is to occur
BR BRanch always
BNE Branch if Not Equal Z=0
(to zero)
BEQ Branch if EQual (to z=1
Zero)
BGE Branch if Greater than N<:>V 0
or Equal (to zero)
BLT Branch if Less Than N<:>V 1
(zero)
BGT Branch if Greater Than 71 (N<:>V)=O
(zero)
BLE Branch if Less than or Z! (N<:>V)=l
Equal (to zero)
BPL Branch if PLus N=0
BMI Branch if MInus N=1
BHI Branch if HIgher c ! =0
BLOS Branch if LOwer or Same c ! =1
BVC Branch if oVerflow Clear V=0
BVS Branch if oVerflow Set v=1
BCC (or Branch if Carry Clear C=0
BHIS) (or Branch if HIgher or
Same)
BCS (or Branch if Carry Set (or C=1
BLO) Branch if LOwer)
Subroutine Call Op ER, A
Stands for Operation
JSR Jump to SubRoutine Push register on the SP
stack,put the PC in the
register:

DE (TEMP) - a temporary
storage register
internal to
processor.

(SP)-2=>SP

(REG) - (SP)

(PC) - REG

(TEMP) + PC

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.8 Subroutine Return Op ER
Op-Code MNEMONIC Stands for Operation
00020R RTS ReTurn from Sub- Put register contents into PC

routine and pop old contents from SP
stack into register.

C.4 ASSEMBLER DIRECTIVES

Op-Code MNEMONIC Stands for Operation
.EOT End Of Tape Indicates the physical end of
the source input medium
.EVEN EVEN Ensures that the assembly
location counter is even by
adding 1 if it is odd
+END m END Indicates the physical and
(m optional) logical end of the program and
optionally specifies the entry
point (m)
.WORD WORD Generates words of data
E,E,.. .
E,E,... (the void operator) Generates words of data
.BYTE BYTE Generates bytes of data
E,E,...
.ASCII ASCII Generates 7-bit Ascii
/XXX.eooX/ character for the text

C.5

Error Code

A

enclosed by delimiters

ERROR CODES

Meaﬁing

Addressing error. An address within the instruction is
incorrect.

Bounding error. Instructions or word data are being
assembled at an odd address in memory.

Doubly-defined symbol referenced. Reference was made to a
symbol which is defined more than once.

Illegal character detected. Illegal characters which are
also non-printing are replaced by a ? on the listing.

Line buffer overflow. Extra characters (more than 7210)
are ignored. '

Multiple definition of a label. A label was encountered
which was equivalent (in the first six characters) to a
previously encountered label.

Number containing an 8 or 9 has a decimal point missing.

Phase error. A label's definition or value varies from
one pass to another.

Cc-8

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

Questionable syntax. There are missing arguments or the
instruction scan was not completed, or a carriage return
was not followed by a line feed or form feed.

Register-type error. An invalid use of or reference to a
register has been made.

Symbol-table overflow. When the quantity of user-defined
symbols exceeds the allocated space available in the
user's symbol table, the assembler outputs the current
source 1line with the S error code, then returns to the
command string : interpreter to await the next command
string to be typed.

Truncation error. A number was too big for the allotted
number of Dbits; the leftmost bits were truncated. T
error does not occur for the result of an expression.

Undefined symbol. An undefined symbol was encountered
during the evaluation of an expression. Relative to the
expression, the undefined symbol is assigned a value of
Zero.

C.6 INITIAL OPERATING PROCEDURES

Loading:

Storage Re-
quirements:

Starting

Initial
Dialogue:

Use Absolute Loader (see Chapter 6). Make sure that the
start address of the absolute loader is in the switches
when the assembler is loaded.
PAL-11A exists in 4K and 8K versions.
Immediately upon loading, PAL-11A will be in control and
initiate dialogue.

Printout Inquiry

*S What is the input device of the Source
symbolic tape?

*B What is the output device of the Binary object
tape?

*L What is the output device of the assembly
Listing?

*T What is the output device of the symbol Table?

Each of these questions may be answered by one of the following

characters:

Character Answer Indicated
T Teletype keyboard
L Low-speed reader or punch
H High-speed reader or punch
P line Printer (8K version only)

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

Each of these answers may be followed by other characters indicating

options:
Option Typed
/1
/2
/3
/E

Function to be Performed

on pass 1

on pass 2

on pass 3

errors to be listed on the Teletype

on the same pass (meaningful or *B
or *L only)

Each answer is terminated by typing the RETURN key. A RETURN alone as
answer will delete the function.

Dialogue during assembly:

Printout

EOF ?

END ?

EOM ?

Restarting:

Response

Place next tape in reader and type RETURN. A
.END statement may be forced by typing E
followed by RETURN.

Start next pass by placing first tape 1in
reader and typing RETURN.

If listing on HSP or LPT, replenish tape or
paper and type RETURN. If binary on HSP,
start assembly again.

Type CTRL/P. The initial dialogue will be
started again.

=}

N o

=]

N® O

APPENDIX D

TEXT EDITOR, ED-11

INPUT/OUTPUT COMMANDS

R

nT

nN

Reads a page of text from input device, and appends it to
the contents (if any) of the page buffer. Dot is moved to
the beginning of the page and Marked. (See B and M below.)

Opens the input device when the user wishes to continue
input with a new tape in the reader.

ARGUMENTS

(n) beginning at Dot and ending
with nth line feed character.
Lists the character
string (-n) beginning with 1st character
following the (n+l)th previous
line feed and terminating at

Dot.

(0) beginning with 1st character
of current line and ending at
Dot.

(@) bounded by Dot and the Marked
location (see M).
Punches the character

string (/) beginning at Dot and ending
with the last character in the
page.

Outputs a Form Feed character and four inches of blank
tape.

Punches four inches of Trailer (blank tape) n times.

Punches contents of the page buffer (followed by a trailer
if a form feed 1is present), deletes the contents of the
buffer, and reads the next page into the page buffer. It
does this n times. At completion, Dot and Mark are located
at the beginning of the page buffer.

Lists the entire line containing Dot (i.e., from previous
line feed to next line feed or form feed).

Same as -1L. If Dot is located at the beginning of a line,
this simply lists the line preceding the current line.

Lists the line following the current line.

TEXT EDITOR, ED-11

D.2 POINTER-POSITIONING COMMANDS

B Moves Dot to the beginning of the page.
E Moves Dot to the end of the page.
M Marks the current position of Dot for later reference in a

command using the argument @. Certain commands implicitly
move Mark.

n (n) forward past n characters

-n (-n) backward past n characters

0 J Moves Dot: (0) to the beginning of the current line

@ (@) to the Marked location

/ (/) to the end of the page

n (n) forward past n ends-of-lines

-n (=n) to first character following the (n+l)th
' previous end-of-line

0 A Moves Dot: (0) to the beginning of current line

¢ (@) to the Marked location

/ /) to the end of the page

D.3 SEARCH COMMANDS

nG Gets (searches for) the nth occurrence of the specified

XXXX character string on the current page. Dot 1is set
immediately after the last character in the found text,
and the characters from the beginning of the line to Dot
are listed on the teleprinter. If the search 1is
unsuccessful, Dot will be at the end of the buffer and a
? will be printed out.

H Searches the wHole file for .the next occurrence of the

XXXX specified character string. Combines G and N commands.
If search is not successful on current page, it continues
on Next page. Dot is set immediately after the last
character in the found text and the characters from the
beginning of the 1line to Dot are 1listed on the
teleprinter. If the Search object is not found, Dot will
be at the end of the buffer and a ? will be printed out.
In such a case, all text scanned is copied to the output
tape.

D.4 COMMANDS TO MODIFY THE TEXT

Character-Oriented Line-Oriented
nD Deletes | the following nK Kills the character string
nC Changes §{ n characters nX eXchanges beginning at Dot
XXXX XXXX and ending at the
nth end-of-line.
-nD Deletes | the previous -nK Kills } the character string
-nC Changes f n characters -nX eXchanges beginning with th
XXXX XXXX first character foi-

lowing the (n+1)th
previous end-of-line
and ending at Dot.

TEXT EDITOR, ED-11

0D Deletes }the current line OK Kills the current line up
0cC Changes f up to Dot 0X eXchanges } to Dot.
XXXX XXXX
@D Deletes | The character @K Kills } the character string
QcC Changes }string begin- @x eXchanges beginning at Dot and
XXXX ning at Dot and XXXX ending at a previ-
ending at a pre- ously Marked loca-
viously Marked tion.
location.
/D Deletes }the character /K Kills } the character
/C Changes f string begin- /X eXchanges string begin-
XXXX ning at Dot and XXXX ning at Dot and
ending with the ending with the
last character last character
of the page. of the page.
I Inserts the specified text. LINE FEED terminates Text Mode and
XXXX causes execution of the command. Dot is set to the 1location
immediately following the last character inserted. If text was
inserted before the position of Mark, ED-11 performs an M
command .
SYMBOLS
Dot Location following the most recent character operated
upon.
4 Holding down the CTRL key (not the + key) in
combination with another keyboard character.
RETURN If in command mode, it executes the current command;
goes into Text Mode if required. If in Text Mode, it
terminates the current line, enters a carriage return
and line feed into the buffer and stays in text mode.
At all times causes the carriage to move to the
beginning of a new line. (RETURN .is often symbolized
as /).
¥ (Typing the LINE FEED key) Terminates Text Mode
unless the first character typed in Text Mode;
executes the current command.
CTRL/FORM A Form feed which terminates, and thus defines, a
page of the user's text.
GROUPING OF COMMANDS
No Arguments Argument n only All Arguments (n,-n,0,@,/)
\Y4 (Verify: G (Get) A (Advance)
Lists current line) N (Next) C (Change)
< (Lists previous 1line) T (Trailer) D (Delete)
> (Lists next line) J (Jump)
B (Begin) K (Kill)
E (End) L (List)
F (Form feed) P (Punch)
H (wHole) X (eXchange)
I (Insert)
M (Mark)
(0] (Open)
R (Read)

Requiring
Text Mode

C (Change)
G (Get)

H (wHole)

I (Insert)
X eXchange)

D.7 OPERATING PROCEDURES

D.7.1 Loading: Use Absolute

D.7.2 Storage Requirements:

D.7.3 Starting: Immediately

D.7.4 1Initial Dialogue:

Program Types

*T L/
HS/
*Q L/
H,/

(if
(if
(if
(if

If the output device is the

command mode to accept input.

LSP OFF?

Line
Oriented

(Kill)
(List)

W) eR >

Binary Loader

(Punch)
eXchange)

(Advance)

TEXT EDITOR, ED-11

Character
Oriented

J (Jump)
D (Delete)

C (Change)

(see Chapter 5).

ED-11 uses all of core.

upon loading, ED-11 will be in control.

User

LSR is to
HSR is to

LSP is to
HSP is to

Response

be
be

be
be

used
used

used
used

high-speed punch
Otherwise the sequence continues with:

for source input)
for source input)

for edited output)
for edited output)

(HSP), Editor enters

</(when LSP is off)

Upon input of _/ from the keyboard, Editor enters command mode and 1is

ready to accept input.

D.7.5 Restarting:

Type CTRL/P twice, initiating the normal

initial dialogue.

should be loaded

time.

The text to be edited
(or reloaded) at this

APPENDIX E

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11 AND ODT-11X

E.1 SUMMARY OF CONTENTS

ODT indicates readiness to accept commands by typing * or by opening a
location by printing its contents.

1. ODT-11
n/ opens word n
\ reopens last word opened

RETURN key closes open location

¥ opens next location

+ opens previous location

« opens relatively addressed word

$n/ opens general register n (0-7)

n;G goes to word n and starts execution

n;B sets breakpoint at word n

;B removes breakpoint

$B/ opens breakpoint status word

: P proceeds from breakpoint, stops again on next
encounter

n;P proceeds from breakpoint, stops again on nth
encounter

sM/ opens mask for word search

n;w searches for words which match n in bits specified
in S$M

n;E searches for words which address word n

n/ (con- calculates offsets from n to m

tents) m;O

$s/ opens location containing user program's status
register
$p/ opens location containing ODT's priority level

2. ODT-

In addit
version

n\
\

$B/

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11 AND ODT-11X

NOTE

If a word 1is «currently open, new
contents for the word may be typed
followed by any of the commands
RETURN,¥,4, « or . The open word will be
modified and <closed before the new
command is executed.

11X
ion to the commands of the regular version, the extended
has the fol;qwing:
opens byte
reopens last byte opened
opens the absolutely addressed word
opens the word to which the branch refers
opens next location of previous sequence
B (r between 0 and 7) sets breakpoint r at word n
removes breakpoint r
removes all breakpoints
opens breakpoint 0 status word. Successive LINE

FEEDs open words for other breakpoints and single-

instruction mode.

enables Single-instruction mode (n can
value and is not significant)

in single-instruction mode, Proceeds with

have

any

program

run for next n instructions before reentering ODT

(if n is missing, it is assumed to be 1)

disables Single-instruction mode

APPENDIX F

LOADING AND DUMPING CORE MEMORY

F.1 THE BOOTSTRAP LOADER

This appendix pertains only to systems with a Switch Register.

F.1l.1 Loading The Bootstrap Loader

The Bootstrap Loader should be toggled into the highest core memory
bank.

xx7744 016701
xx7746 000026
xx7750 012702
xx7752 000352
xx7754 005211
xx7756 105711
xx7760 100376
xx7762 116162
xx7764 000002
xx7766 xx7400
xx7770 005267
xx7772 177756
xx7774 000765
xx7776 YYYYYY
xxX represents the highest available memory bank. For example, the

first 1location of the loader would be one of the following, depending
on memory size, and xx in all subsequent locations would be the same
as the first.

Location Memory Bank Memory Size
017744 0 4K
037744 1 8K
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 28K

The contents of location xx7776 (yyyyyy) in the 1Instruction column
above should contain the device status register address of the paper
tape reader to be used when 1loading the bootstrap formatted tapes
specified as follows:

Teletype Paper Tape Reader -- 177560

High-speed Paper Tape Reader -- 177550

Set SRto 016701
Lift DEP

LOADING AND DUMPING CORE MEMORY

Set SR to xx7744
Press LOAD ADDR

Load

or Verify

Instructions
?

Load Verify

Press EXAM

Lift DEP

Set SR

Instruction
Correct

to correct
Instruction

?

Set SR to next
Instruction

No

Figure F-1

All

Lift DEP instructions
verified
?
All
Instructions
?
Yes

11-0068

Loading and Verifying the Bootstrap Loader

F.2

LOADING AND DUMPING CORE MEMORY

With Bootstrap .
LoaderinCore |~ ~ 7 T 77 see Figure E-1

Set ENABLE/HALT
To HALT

I

Place Bootstrap
Tape in Code 351 must be

specified reader over reader sensors

Set SR to xx7744

Prees LOAD ADDR

Set ENABLE/HALT
to ENABLE

Press START

i

Tape Reads in

and stops | _ _ _ _ _ see Figure 5-5
At end of Data

Data is in Core

i

11-0067

Figure F-2 Loading Bootstrap Tapes into Core

THE ABSOLUTE LOADER

1.

Loading the Absolute Loader

The Bootstrap Loader is used to load the Absolute Loader into
core. (See Figure F-2.) The Absolute Loader occupies
locations xx7474 through xx7743, and its starting address is
xx7500.

Loading with the Absolute Loader
When using the Absolute Loader, there are three types of

loads available: normal, relocated to specific address, and
continued relocation.

Optional switch register settings for the three types of 1loads are
listed below.

LOADING AND DUMPING CORE MEMORY

Switch Register

Type of load Bits 1-14 Bit 0
Normal (ignored) 0
Relocated - continue loading 0 1

where left off

Relocated - load in specified nnnnn 1
area of core (specified address)

F.3 CORE MEMORY DUMPS

The two dump programs are

DUMPTT, which dumps the octal representation of the contents
of all or specified portions of core onto the teleprinter,
low-speed or high-speed punch, or line printer.

DUMPAB, which dumps the absolute binary code of the contents
of specified portions of core onto the low-speed (Teletype)
or high-speed punch.

Both dumps are supplied on punched paper tape 1in bootstrap and
absolute binary formats. The following figure summarizes loading and
using the Absolute binary tapes.

LOADING AND DUMPING CORE MEMORY

INITIALIZE

ABS
LOADER
IN CORE
?

(-

SET
ENABLE/HALT
TO HALT

LOAD ABS
LOADER

-

SET xx7776
TO SPECIFY
READER

!

PLACE TAPE
IN READER

!

SETSRTO
xx7500. PRESS
LOAD ADDR

SEE FIGURE F-2

HSR = 177550
LSR = 177560
xx IS HIGHEST
CORE MEMORY
BANK

(This is necessary only

if using a reader different
from that used by the
bootstrap loader.)

SETBITOOF | RELOCATE TYPE NORMAL CLEAR BITO
SR.SPECIFY IS5 SpeCiFIC OAD OF SR
ADDR IN BITS 1-14 1057
CONTINUING | RELOCATION
SETBITO
OF SR. CLEAR
BITS 1-14
SET
ENABLE/HALT
TO ENABLE
PRESS
PRESS START
CONTINUE
I |
TAPE RELOAD

READS IN
?

CHECK-
SUM ERROR

REMOVE
TAPE

Figure F-3

LOADER

é

PLACE NEXT
TAPE IN
READER

<L

Loading with the Absolute Loader

SEE FIGURE F-1

TOGGLE IN NO
BOOT LOADER ;

LOADING AND DUMPING CORE MEMORY

LOADER

IN CORE
?

YES

SEE FIGURE F-2 |- — - -

LOAD
DUMP TAPE

INITIALIZE

!

SPECIFY
READERIN [—
xx7766

FORMAT
?

LSR = 177560
HSR = 177550

xx IS HIGHEST CORE
MEMORY BANK

SEE FIGURE F-2

LOAD
ABS LOADER

LOAD
DUMP TAPE

!

SETSRTO
TRANSFER
ADDRESS

1

TTY OR LSP

OUTPUT
DEVICE FOR
bDumP
?

HSP

PRESS
LOAD ADDR
AND START

— — - - JSEE FIGURE F-3

SET SR TO SET SR TO
177564 177554
SET SR TO
177514
TTY
LSP
PRESS
PUNCH ON
v
PRESS
CONTINUE
Figure F-4 Dumping Using DUMPAB or DUMPTT

LOADING AND DUMPING CORE MEMORY

SETSR TO
»| FIRSTBYTE

YES

ADDRESS
DUMPED

'

PRESS
CONTINUE

\

SET SR TO
LAST BYTE
ADDRESS
DUMPED

1

PRESS
CONTINUE

!

CORE IS
DUMPED

MORE

TO DUMP
?

Figure F-4 (continued).

DUMPAB
?

SETSR TO

TRANSFER

ADDRESS
(TRA)

!

PRESS
CONTINUE

[

SETSR TO
TRA-1

}

PRESS
CONTINUE

!

TRA BLOCK
IS DUMPED

An odd transfer address
causes absolute loader
to halt)

Dumping Using DUMPAB or DUMPTT

APPENDIX G

INPUT/OUTPUT PROGRAMMING, IOX

G.1 INSTRUCTION SUMMARY

1l. Format

10T

.WORD (an address)

.BYTE (a command code, a slot number of a device)

.WORD (done address) ;s READR AND WRITR ONLY

2. Command Codes:

INIT =1
RESET = 2
RSTRT =3
WAITR = 4

SEEK =5

READ =11
WRITE = 12
READR =13
WRITR = 14

G.2 PROGRAM FLOW SUMMARY

1. Set up buffer header:

Location Contents
r‘Buffer and Maximum number of data bytes (unsigned
Buffer+l integer)
BUFFER Buffer+2 Mode of data (byte)
HEADER
Buffer+3 Status of data (byte)
Buffer+4 and Number of data bytes involved in trans-
_Buffer+5 fer (unsigned integer)
Buffer+6 Actual data begins here.

Mode Byte Format

Mode Byte Format

Bits 7 6 5 4 3 2 1 0 Bits
UNFOR-

1= NO ECHO MATTED| BINARY =1
FOR-

0= ECHO MATTED| ASCH =0

INPUT/OUTPUT PROGRAMMING, IOX

Coding Mode Byte

Formatted ASCII 0 (or 200 to suppress echo)
Formatted Binary 1
Unformatted ASCII 2 (or 202 to suppress echo)
Unformatted Binary 3

Status Byte Format

Status Byte Format
7 6 5 4 3 2 1 0
I I | |

SEE CODES
DONE EOM EOF | | 1 |

= 1= =

NON-FATAL ERRORS

Coding Non-Fatal Errors

checksum error (formatted binary)
truncation of a long line
an improper mode

2
3
4
2. Assign devices to slots in Device Assignment Table:
(RESET and INIT commands)

Slot numbers are in the range 0 to 7.

Device Codes:

KBD = 1 LSP = 4 LPT = 10
TTY = 2 HSR = 5
LSR = 3 HSP = 6
3. Use a data transfer command to initiate the transfer.

G.3 FATAL ERRORS

Fatal errors result in a jump to 40 with RO set to the error code.
Rl is set to the value of the PC for error code 0. Errors 1-5 cause
Rl to be set to an IOT argument or to the instruction following the
arguments.

Fatal Error Code Reason
0 Illegal Memory Reference, SP overflow, illegal
instruction
1 Illegal command
2 Slot out of range
3 Device out of range
4 Slot not inited
5 Illegal data mode

G-2

APPENDIX H

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

This appendix lists all the global entry points of FPMP-11 and
provides a brief description of the purposes of each. Sections H.1
and H.2 are for reference when it is desired to call FPMP-11 routines
directly (i.e., without the use of the TRAP handler). Entry names
preceded by an octal number can be referenced via the TRAP handler.
The number is the "routine number" referred to in the FPMP-11 manual.
If the number is enclosed 1in parentheses, the routine cannot be
accessed by the present TRAP handler, but has been assigned a number
for future use. For a more detailed explanation of the Floating Point
Math Package, refer to the FPMP-11 User's Manual DEC-11-NFPMA-A-D.

Examples of the calling conventions are:

POLISH MODE: .
JSR R4,S$SPOLSH ;enter Polish mode
$subrl ;call desired subroutines
$subr?2
$subrn ;call last subroutine desired
.WORD .+2 :leave Polish mode
J5RR:) '
JSR R5,subr scall desired subroutine
BR XX
.WORD argl ;subroutine argument address

.WORD arg2

.WORD argn ;last argument
XX: . ;return point

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

JPC: .

push args onto stack

JSR PC,subr

°
.

H.1 OTS ROUTINES

These are the routines taken from the FORTRAN operating ' time system.
The codes used in the following table are: :
S = Routine is included in the standard single precision (2-word)
package. ‘
D = Routine is included in the standard double precision (4-word)
package.
SD = Routine is included in both standard packages.
Octal codes shown in parentheses are not yet implemented.
OCTAL # OF

NAME CODE PKG ARGU MODE DESCRIPTION

SADD 14 D 2 Polish The double precision add
routine. Adds the top stack
item (4-words) to the second
item (4-words) and leaves the
four word sum in their place.

SADR 12 S 2 Polish The single precision add
routine. Same as S$ADD except
it uses 2 word numbers.

AINT 26 S 1 J5RR Returns sign of argument *
greatest real integer =
absolute value of the argument
in RO;R1.

ALOG 53 = S 1 J5RR Calculates natural logarithm
of 1its single argument and
returns a two word result in
RO,R1.

ALOG10 54 S - 1 J5RR Same as ALOG, except
calculates base-10 logarithm.

ATAN 42 S 1 J5RR Returns the arctangent of its
argument in RO,RI1.

ATAN?2 (43) S 2 J5RR Returns ARCTAN (ARG1l/ARG2) in
RO,R1.

$SCMD 16 D 2 Polish Compares top 4 word items on
the stack, flushes the two
items, and returns the
following condition codes:
4 (SP) @Sp N=1,Z=0
4(SP) = @SP N=0,zZ=1
4(SP) @sp N=0,2=0

SCMR.

Cos

DATAN

DATAN2

DBLE

$DCI

$DCO

DCOS

DEXP

$DI

SDINT

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

17

37

44

(45)

(34)

(57)

(61)

41

52

(11)

(76)

SD

SD

SD

Poli

J5RR

J5RR

J5RR

J5RR

. JPC

JPC

J5RR

~J5RR

Poli

Poli

sh

sh

sh

Same as SCMD except it is for
2 word arguments.

Single precision version ~of
DCOS.

Double precision version of
ATAN.

Double precision version of
ATAN2.

Returns in RO0-R3 the double
precision equivalent of the
single precision (two word)
argument.

ASCII to double conversion.

Calling sequence:
Push address of start of
ASCII field. Push length
of ASCII field in Dbytes.
Push format scale D (from
W.D) position of assumed
decimal point (see FORTRAN
manual) . Push P format
scale (see FORTRAN
manual). JSR PC,SDCI.

Returns 4 word result on top
of stack.

‘Double precision to ASCII

conversion. Calling sequence:
Push address of start of
ASCII field. Push length
in bytes of ASCII field (W
part of 'W.D) Push D part
of W.D position of decimal

point). Push P scale.
Push 4 word value to be
converted, lowest order

word first. JSR PC,S$DCO.

Calculates the cosine of its
double precision argument and
returns the double precision
result in RO-R3.

Calculates the exponential of
its double precision argument,
and returns the double
precision result in RO-R3.

Converts double precision
number on the top of the stack
to integer. Leaves result on
stack.

0TS internal function to £find
the integer part of a double
precision number.

DLOG

DLOG10

$DR

DSIN

DSQRT

$DVD

$DVI

$DVR

SECO

EXP

$SFCALL

$FCO

FLOAT

$GCO

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

55

56

(6)

40

47

23

(24)

25

(62)

51

(64)

(32)

(63)

SD

SD

SD

J5RR

J5RR

Polish

J5RR

J5RR

Polish

Polish

Polish

JPC

J5RR

JpC

J5RR

JPC

Double precision (4 word)
version of ALOG.

Double precision (4 word)
version of ALOGI10.

Replaces the.double precision
item at the top of the stack
with its two word, rounded
form.

Calculates the sine of its
double precision arg. and
returns the double precision
result in RO-R3.

Calculates the square root of
its double precision arg. and
returns the double precision
result in RO-R3.

The double precision division
routine. Divides the second
4-word item on the stack by
the top item and leaves the
quotient in their place.

The integer division routine.
Calculates 2(SP)/@Sp and
returns the integer quotient
on the top of the stack.

The single precision division
routine. Same as $DVD, but
for 2 word floating point
numbers.

Single precision to ASCII
conversion according to E
format. Same calling sequence
as $DCO except that a 2-word
value is to be converted.

Single precision version of
DEXP. Returns result in
RO,R1.

Internal OTS routine.

Same as $ECO except uses F
format conversion.

Returns in RO-R1l, the real
equivalent of its integer
argument.

Same as $ECO except wuses G
format conversion.

$ICI

$ICO

IDINT

$ID

IFIX

INT

SINTR

SIR

$MLD

SMLI

$SMLR

$NGD

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

(65)

(67)

(31)

(5) SD
(35)

(30)

(27) s

(4) SD
22 D

(20)

21 S

(3) SD

2 JPC

3 JPC

1 J5RR

1 Polish
1 J5RR

1 J5RR

1 Polish
1 Polish
2 Polish
2 Polish
2 Polish
2 Polish

ASCII to integer conversion
calling sequence:
Push address of start of
ASCII field. Push length
in bytes of ASCII field.
JSR PC,SICI
Returns with integer result on
top of stack.

Integer to ASCII conversion.
Calling sequence:
Push address of ASCII
field. Push length in
bytes of ASCII field.
Push integer value to be
converted. JSR PC,S$ICO
Error will return with C bit
set on. Ro-R3 destroyed.

Returns sign of arg * greatest
integer <= arg in RO. Arg
is double precision.

Convert full word argument on
the top of the stack to double
precision and return result as
top 4-words of stack.

Returns the truncated and
fixed real argument in RO.

Same as IDINT for single
precision args.

Same function as AINT, but
called in Polish mode with
argument and returns result on
the stack.

Convert full word argument on
the top of the stack to single
precision and return result as
top 2-words of stack.

Double precision multiply.
Replaces the top two doubles
on the stack with their
product.

Integer multiply. Replaces
the top 2 integers on the
stack with their full word
product.

Single precision multiply.
Replaces the top two singles
on the stack with their
product.

Negate the double precision
number on the top of the
stack.

SNGI

S$NGR

$OCI

$0CO

$POLSH

$POPR3

$POPR4

$POPR5

$PSHRI1

$PSHR2
$PSHR3
$PSHR4
SPSHR5

SRCI

SRD

SRI

$SBD

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

(l), SD»
(2) SD
(66)

(70)

- SD.
- D
- D
-— ' D
- SD
- SD
- SD
- SD
- SD
(60) SD
(7)

(10) SD
15 D

Polish

Polish

JpC

JPC

Polish

Polish

Polish

Polish

Polish
Polish
Polish
Polish

JPC

Polish

Polish

Polish

Negate the integer on the top
of the stack.

Negate the single precision
number on the top of the
stack.

ASCII to octal conversion.
Same call as S$ICI.

Octal to ASCII conversion.
Same call as S$SICO.

Called whenever it is desired
to enter Polish mode from
normal in-line code. It must
be called via a JSR R4,S$POLSH.

Internal routine to pop
2-words from the stack and
place them into RO,R1.

Internal routine to pop
4-words from the stack and
place them in RO-R3.

Internal routine to pop
4-words -from the stack and
place them in registers RO-R3.

Internal routine to push the
contents of RO onto the stack.

Same as SPSHRI.
Push RO,R1 onto stack.
Push RO—R3 onto stack.
Same as $PSHRA4.

ASCII to single precision
conversion. Same calling
sequence as S$DCI. Returns
2-word result on top of stack.

Converts the single precision
number on the top of the stack
to double precision format.
Leaves result on stack.

Converts single precision
number on the top of the stack
to integer. Leaves result on
stack.

The double precision subtract
routine. Subtracts the double
precision number on the top of
the stack from the second
double precision number on the
stack and leaves the result on
the top of the stack in their
place.

SUMMARY ‘OF FLOATING POINT MATH PACKAGE, FPMP-11

S$SBR 13 S : Polish Same as $SBD but for single
precision.

SIN 36 .S 1 J5RR Single precision version of
. DSIN. :

SNGL (33) 1 J5RR Rounds double precision

argument to single precision.
Returns result in RO,Rl.

SQRT 46 S 1 J5RR Single 'precision version of
DSQRT.

TANH 50 S 1 J5RR Single precision hyperbolic
tangent function. Returns
(EXP (2*ARG) -1/ (EXP (2*ARG) +1)
in RO,R1.

H.2 NON-OTS ROUTINES

These routines are written especially for FPMP-11 and should not be
called directly by the user.

OCTAL
NAME CODE PKG DESCRIPTION
SERR - SD Internal error handler.
SERRA - SD Similar to S$ERR.
SLDR 71 S Load FLAC, single precision.
SLDD 72 D Load FLAC, double precision.
$STR 73 S Store FLAC, single precision.
$STD 74 D Store FLAC, double precision.
TRAPH - SD The TRAP handler routines and tables.

H.3 ROUTINES ACCESSED VIA TRAP HANDLER

The following is a table of the FPMP-11 routines which can be accessed
via TRAPH, the trap handler. Each routine name (entry point) is
preceded by its TRAP code number to be used to access it, and followed
by a brief description of 1its operation when called via the TRAP
handler. Those entries. which are preceded by an asterisk (*) perform
operations only on the FLAC, and address no operands. For example, a
TRAP call to the single precision square root routine can be coded as
follows:

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

The net effect of the above TRAP instruction is to replace the
contents of the FLAC with its square root and then set the condition
codes to reflect the result. Note that since the FLAC is implicitly
addressed in this instruction, the TRAP call supplies no other
address. For such a TRAP call, the addressing mode bits (bits 6 and 7
of the TRAP instruction) are ignored.

All entries not marked by an asterisk require an operand when called.
The operand is addressed in one of the four addressing modes explained
in section 3.1.1. of the FPMP-11 User's Manual. The addressing mode
is specified in bit 6-7 of the TRAP instruction.

("Operand" is the contents of the 1location addressed in the TRAP
call.)

OCTAL NAME DESCRIPTION

CODE

14 SADD Double precision addition routine. Adds
operand to the FLAC. Assumes 4-word
operand.

12 SADR Single precision addition routine. Adds
operand to the FLAC. Assumes 2-word
operand.

* 26 AINT Replaces contents of the FLAC by its
integer part. SIGN(FLAC) * greatest
integer <= |FLAC| . Assumes 2-word
argument in FLAC.

* 53 ALOG Replaces contents of the FLAC by its
natural logarithm. Assumes 2-word
argument in FLAC.

* 54 ALOG10 Same as ALOG, except calculates base-10
log.

* 42 ATAN Replaces contents of the FLAC by its
arctangent. Assumes 2-word argument in
FLAC.

16 SCMD Compares operand to the contents of the
FLAC, and returns the following condition
codes.

FLAC<operand, N=1,Z=0
FLAC=operand, N=0,Z=1
FLAC>operand, N=0,Z=0

Assumes 4-word operands.

17 SCMR Same as $CMD, but for 2-word operands.
* 37 COos Same as DCOS, but for 2-word argument.
* 44 DATAN Same as ATAN, but for 4-word argument.
* 52 DEXP Replaces the contents of the FLAC by its
exponential. Assumes 4-word argument in
the FLAC.

55

56

41

40

47

23

25
51
72
71

22

21

15

13
36
46
73

74

50

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

DLOG

DLOG10

DCOS

DSIN

DSQRT

$DVD

$DVR
EXP
SLDD

SLDR

MLD

$MLR

$SBD

$SBR
SIN
SQORT

$STR

$STD

TANH

Same as ALOG, but for 4-word argument.
Same as ALOG1l0, but for 4-word argument.

Replaces the contents of the FLAC by its
cosine. Assumes 4-word argument in the
FLAC.

Same as DCOS, but calculates sine instead
of cosine.

Replaces the contents of the FLAC by its
square root. Assumes 4-word argument in
the FLAC.

Double precision division routine.
Divides the FLAC by the operand and
stores the result in the FLAC. Assumes

4-word operands.

Same as $DVD, but for 2-word operands.
Same as DEXP, but for 2-word argument.
Same as S$LDR, but assumeé 4-word operand.

Replaces the contents of the FLAC by the
operand. Assumes 2-word operand.

Double precision multiplication routine.
Multiplies the contents of the FLAC by
the operand and stores the result in the
FLAC. Assumes 4-word operands.

Same as S$MLD, but for 2-word operands.
The double precision subtraction routine.
Subtracts the operand from the contents
of the FLAC. Assumes a 4-word operand.
Same as $SBD, but for 2-word operand.
Same as DSIN, but for 2-word argument.
Same as DSQRT, but for 2-word argument.
Stores the contents of the FLAC into the
operand location. The contents of the

FLAC are unchanged.

Same as $STR, but assumes 4-word operand
location.

Replaces the contents of the FLAC by its
hyperbolic tangent. Assumes 2-word
argument.

‘

APPENDIX I

TAPE DUPLICATION

Duplication of paper tapes can be accomplished via low- or high-speed
I/O devices by toggling (as with the Bootstrap Loader) the following
program directly into memory through the Switch Register. (Refer to
Section 6.1.1 in Chapter 6 if necessary, for toggling procedure.)

1.

Turn on appropriate device switches and place tape in desired
reader.

Set ENABLE/HALT switch to HALT.

Set Switch Register to the desired starting address and press
LOAD ADDR.

Set Switch Register to each value 1listed in the CONTENTS
column below, 1lifting the DEP switch after each setting.
(Addresses are automatically incremented.) The desired input
device (either Low- or High-Speed Reader) and output device
(Low— or High-Speed Punch) are specified in the last two
words.

ADDRESS CONTENTS
0 016700
2 000024
4 016701
6 000022
10 005210
12 105710
14 100376
16 105711
20 100376
22 022021
24 111011
26 000764
30 177560 (LSR) or 177550 (HSR)
32 177564 (LSP) or 177554 (HSP)

Set Switch Register to starting address specified in 3 above
and press LOAD ADDR.

Set ENABLE/HALT switch to ENABLE.

Press START switch.

TAPE DUPLICATION

NOTE

This program is recommended as a simple
way of duplicating the system tapes.
However, for extensive tape duplication,
the program shown in section 7.8 is
recommended.

APPENDIX J

ASSEMBLY AND LINKING INSTRUCTIONS

J.1 SYSTEMS WITHOUT SWITCH REGISTERS

J.1l.1 IOX/IOXLPT

IOX/IOXLPT is provided in both source and relocatable object form.
Unless modifications are made to the source it is not necessary to
assemble the source tapes. The object tape may be 1linked with the
user's object tapes to produce an absolute tape (.LDA).

J.1l.1.1 Assembling IOX - IOX consists of three source tapes (-PAl to
-PA3). These tapes are assembled together in sequence with PAL-11S.

J.1.1.2 Assembling IOXLPT - IOXLPT consists of two source tapes (-PAl
to PA2). These tapes are assembled together in sequence with PAL-11S.

J.1.1.3 Linking IOX and IOXLPT - IOX and IOXLPT are linked by
LINK-11S with the user's object tapes to produce an absolute tape.

J.1.2 ODT11X

ODT11X is provided in both source and relocatable object form. Unless
modifications are made to the source, it is not necessary to assemble
the source tape. The object tape may be linked with the user's object
tapes to produce an absolute tape.

J.1.2.1 Assembling ODT11lX - ODT11X consists of one source tape (-PAL)
which is terminated with the following:

.EOT
form feed
.END O.0DT

When PAL-11S indicates that it has encountered the .EOT, type return
so that it will process the .END statement.

ASSEMBLY AND LINKING INSTRUCTIONS

J.1.2.2 Linking ODT11X - ODT11lX is linked with user object tapes. It
is self starting and should be the first object tape input to LINK-11S
so that it will be the program started by the Absolute Loader when the
program is loaded.

J.1.3 ED-11

The ED-11 source file is available only in RT-11 format on a flexible
diskette. The RT-11 MACRO assembler is required to assemble ED-11.
The RT-11 linker (LINK) is used to produce the absolute tape.

J.1.3.1 Assembling ED-11 - The RT-11 commands to assemble ED-11 are
as follows:

.R MACRO
*EDIT11=DX1:EDIT11

J.1.3.2° Linking ED-11 - The RT-11 commands to 1link ED-11 are as
follows:

.R LINK
*PP:EDIT11/L=EDIT11

J.1.4 PAL-11S

The PAL-11S source file 1is available only in RT-11 format on a
flexible diskette. The RT-11 MACRO assembler is required to assemble
PAL-11S. The RT11 linker (LINK) or LINK-11S may be used to produce
the absolute tape.

J.1.4.1 Assembling PAL-11S - There are three sources which are
assembled separately for PAL-11S. One of these, the symbol table
source, is available in three versions: 8K, 12K, and 16K. The RT-11
commands to assemble PAL-11S source files are as follows:

.R MACRO
*RELMEM=DX1 :RELMEM. PAL Clear Memory Program
*PSYM08=DX1:PSYM08.PAL 8K Symbol Table
*PSYM12=DX1:PSYM12.PAL 12K Symbol Table
*PSYM16=DX1:PSYM16.PAL 16K Symbol Table
*PAL11S=DX1:PAL11S.PAL Assembler

In addition to the above, IOXLPT is wused by PAL-11S. The IOXLPT

source 1is also available in RT-11 format on a flexible diskette. The
commands to assemble IOXLPT are:

.R MACRO
*IOXLPT=DX1:IOXLPT.PAL

ASSEMBLY AND LINKING INSTRUCTIONS

J.1.4.2 Linking PAL-11S - PAL-11S may be linked with LINK-11S or the
RT-11 1linker, LINK. The PAL-11S tape actually contains two programs:
RELMEM and PAL-11S. RELMEM precedes PAL-11S on the tape.

Using LINK-11S, link PAL-11S as follows:

1. Link RELMEM as a separate program and do not remove the tape
from the punch when finished.

2. Link PAL11S.0OBJ, IOXLPT.OBJ, and one of the symbol table
object tapes (PSYM08.0BJ, PSYM12.0BJ, or PSYM16.0BJ) in that
order. The symbol table tape is selected depending on the
size of the memory of the computer on which the program is to
be executed. If the target computer has 8K words of memory
then PSYM08.0BJ, if 12K then PSYM12.0BJ, and if 16K then
PSYM16.0BJ. Specify a top address of 57460 for 12K and 77460
for 16K.

Do not link PAL-11S to run above 16K. The size of the symbol
table 1is fixed, and there is no need to re-link at a higher
address even on large systems.

Using RT-11 LINK, link PAL-11S as follows:
1. Link RELMEM as a separate program as shown

.R LINK
*RELMEM/L=RELMEM

2. Link 8K, 12K, and 16K versions of PAL-11S

+ROLINK

XFALOB/L/BIZ204=FAL118y TOXLLPTFSYMOB
K¥FALLZ2/L/RBIZ204=FALLLLISy TOXLFTyFSEYMIL2
XFALLS/L/RI204=FPALLLISy TOXLFTFSYM16

3. Use RT-11 PIP to punch the tapes. Remember not to remove the
tape from the punch after punching RELMEM.

+R FIF
KPP =RELMEM . LDA/R
XFF=FALOB..LDA/R

remove 8K PALl11S.LDA from punch

¥FFI=RELMEM.LIA/R
XFP=FALLZ2 . LDA/R

remove 12K PAL11S.LDA from punch

KPP =RELMEM. LIA/R
¥FFPI=PALLS JLDA/R

J.1.5 LINK-11S

The LINK-11lS source file is available only in RT-11 format on a
flexible diskette. The RT-11 MACRO assembler is required to assemble
LINK-11S. LINK-11S is composed of two components: LINK-11S proper
and IOXLPT. See Section N.1l.4.1 for instructions on how to assemble
IOXLPT using RT-11.

ASSEMBLY AND LINKING INSTRUCTIONS

J.1.5.1 Assembling LINK-11S - The RT-11 commands to assemble LINK-11S
follow:

+R MACRO
KLINK11=DX1$LINK11

J.1.5.2 Linking LINK-11S - LINK-11S may be linked with LINK-11S or
the RT-11 1linker, LINK. There are two object tapes which are linked
together to produce LINK-11S: LINK11.0BJ and IOXLPT.OBJ.

Using LINK-11S to link LINK-11S, 1link the following two tapes 1in
order: LINK11.0BJ and IOXLPT. If versions are desired for systems
with more than 8K, specify a top address of 57460 for 12K and 77460
for 16K.

Using RT-11 LINK to link LINK-11S is a two step process because of a
difference in philosophy. An initial link is required which produces
a link map so that the size of LINK11lS can be determined. A final
link 1is then made with the information obtained in the initial link
used to compute the bottom address.

The initial 1link is executed as follows:

+ROLINK
XKeTT =L INK11s IOXLFT

The value displayed for "HIGH LIMIT" is used to compute the bottom
address for the final link. Assume for an example that the following
was displayed:

HIGH LIMIT = Q13572

Select 37460, 57460, or 77460 depending on whether an 8K, 12K, or 16K
top address is desired. The bottom address is computed as follows:

B=T- 4+ 1000

Where: B = bottom address
T = top address
H = high limit
Example: B = 37460-15572+1000
B = 22666

Using the figures in the example above, the final 1link for an 8K
system would be executed as follows:

R LINK
XPFPL/BIZ2Z666/ Ly TTE=LINKLLy TOXLFT

As a check, examine the link map produced and verify that the high
limit matches the one used in the calculations above. 1In the example,
the high limit value must be 37460.

ASSEMBLY AND LINKING INSTRUCTIONS

J.2 SYSTEMS WITH SWITCH REGISTERS

J.2.1 Assembling PAL-11A

The following procedures are for assembling the PAL-11 Assembler
source tapes. An 8K version of the PAL-11A (V007A) Assembler is
required, thus also requiring at least an 8K PDP-11 system.

The Assembler consists of two programs. The first program, on tape 1,
is a memory clear program and is very short (DEC-11-UPLAA-A-PAl). The
second program is the Assembler proper, and consists of eleven ASCII
tapes (DEC-11-UPLAA-A-PA2-PAl2). They are assembled as follows:

l. Generate a sufficient amount of blank leader tape.

2. Assemble the memory clear program source tape
(DEC-11-UPLAA-A-PAl) and assign the binary output to the
high-speed punch. For example, PAL-11A's initial dialogue to
specify the 2-pass assembly would be:

*S H

*B H/E

*L

*T

- (PAl assembly - 1lst pass)
END?

(PAl1 assembly - 2nd pass)
000000 ERRORS (No errors - Do not remove
the binary tape from the punch.)

[@]

3. Assemble the rest of the Assembler's source tapes (PA2 -
PAl2) in numerical sequence.

Assign the binary output to the high-speed punch. For
example, the initial dialogue should be answered as follows:

*S H

*B H/E

*L

*T

EOF ? (Enter tape PA2 for lst pass)
EOF ? (End of tape PA2, enter PA3)
EOF ? (End of tape PA3, enter PA4)
EOF ? (End of tape PA4, enter PA5)
EOF ? (End of tape PA5, enter PAG)
EOF ? (End of tape PA6, enter PA7)
EOF ? (End of tape PA7, enter PAS8)
EOF ? (End of tape PA8, enter PA9)
EOF ? (End of tape PA9, enter PAl0)
EOF ? (End of tape PAl0, enter PAll)
EOF ? (End of tape PAll, enter PAl2)
MAXCL13 = *#%**%%% GTIMBC = **#**%*% (End of first pass)
END ?

EOF ? (Enter tape PA2 for 2nd pass)
EOF ? (End of tape PA2, enter PA3)
EOF ? (End of tape PA3, enter PA4)
EOF ? (End of tape PA4, enter PA5)
EOF ? (End of tape PA5, enter PA®6)
EOF ? (End of tape PA6, enter PA7)
EOF ? (End of tape PA7, enter PAS8)
EOF ? (End of tape PA8, enter PA9)
EOF ? (End of tape PA9, enter PA1l0)
EOF ? (End of tape PAl0, enter PAll)
EQF ? (End of tape PAll, enter PAl2)

J-5

ASSEMBLY AND' LINKING INSTRUCTIONS

000000 ERRORS (End of 2nd pass)
C
*s

Note that at the end of the first pass there are two undefined
symbols: MAXC13 and SIMBC. These undefined symbols are resolved so
that there are no errors reported during the second pass.

Be sure that there is sufficient blank trailer. tape on the binary
output tape before removing the assembled tape from the punch.

Normally, using high-speed paper tape input and output,: this process
requires about 45 minutes. If a symbol table and 1listing are
requested, there will be about 750 symbols and about 4500 1lines of
listing.

J.2.2 Assembling ED—ll

ED-11 consists of five source tapes (PAl to PA5) which are assembled
together in sequence with 8K PAL-11A.

J.2.3 ODT-11/0DT-11X

In subsequent discussion, reference to ODT applies to both versions.
ODT is supplied on both source and absolute binary tapes.

If the program being debugged requires storage where the version of
ODT being used is normally loaded, it is necessary to reassemble ODT
after changing the starting location.

The source tape of ODT is in three segments, each separated from the
next by blank tape. The first segment contains:

«=n (standard location setting statement)
.EOT

where n=13026 for ODT-11 or n=12054 for ODT-11X. This statement tells
the Assembler to start assembling at address n. To relocate ODT to
another starting address, substitute for segment one a source tape
consisting of:

. =N ‘(n is the new load address for ODT)
.EOT)

The .EOT statement tells the Assembler that this is the end of the
segment but not the end of the program -- the Assembler will stop and
wait for another tape to be placed in the reader.

The second segment of tape contains the ODT source program. This
segment is also terminated with .EOT.

The third segment of the tape consists of the statement:
.END O.O0DT

where .END means "end of program” and O.ODT represents the starting
address of the program (see Section 6.2.3).

When relocating ODT, the first segment of the source tape must be
changed to reflect the desired load address. The third segment may be
changed to .END without a start address. The latter will cause the
Loader to halt upon completion of loading.

J-6

ASSEMBLY AND LINKING INSTRUCTIONS

The segmentation allows the following assembly forms:

1. Assemble alone but at a new address. A new segment one must
be generated and assembled with segments two and three.

2. Assemble immediately after the user's program to be debugged.
Assemble the tape of the user's program (ending with .EOT)
followed by ODT's segment two and either segment three or a
new segment three.

3. Assemble inside the program to be debugged. Assemble the
first part of the user program (ending with .EOT) followed by
ODT's second segment followed by the second part of the user
program.

When setting locations before assembling, it must be noted that
immediately preceding ODT a minimum internal stack of 40g bytes is
required for the ODT-11 and 116 bytes is required - for ODT-11X.
Additional room must be allocated for subroutine calls and possible
interrupts while ODT is in control. Twelve bytes maximum will be used
by ODT proper for subroutine calls and interrupts, giving a minimum
safe stack space of 52g bytes for ODT-11 or 130g bytes for ODT-11X.

Once a new binary tape of ODT has been assembled, load it using the
Absolute Loader as explained in Section 6.2.2. Normally, the program
to be debugged is loaded before ODT, since ODT will automatically be
in control immediately after 1loading, unless the third segment of
ODT's source tape was altered before assembly. As soon as the tape is
read 1in, ODT will print an * on the Teletype to indicate that it is
ready for a command.

J.2.4 Assembling IOX/IOXLPT

In subsequent discussion, reference to IOX applies to both versions.
IOX is supplied on both source and absolute binary tapes.

If there is more than 4K of core available and it is desired to load
IOX (or IOXLPT) in other than the normal location, IOX must be
reassembled.

The code

+=15100
+EOT

appears at the beginning of the first IOX tape (PAl) and contains the
starting address. Create a new tape containing the new starting
address desired; be sure to allow enough room for 634319 words for
IOX, 725109 for IOXLPT. For example,

+=25100
LEQT

Use PAL-11A to assemble IOX and substitute the new section of tape for
the first part of the old tape (PAl). After the new section is read,
insert the IOX tape in the reader so the read head is past the old
starting address and .EOT and type the RETURN key to read in the rest
of the tape.

Now read in the second tape (PA2). An EOF? message is output at the

end of the second tape. Type the RETURN key and the END? message is
printed. Put the tapes through for the second pass of the assembler.

J-7

ASSEMBLY AND LINKING INSTRUCTIONS

IOX (IOXLPT) can also be assembled with a user program if desired.
The .=15100 and .EOT lines must be deleted before IOX is assembled
with a user program.

IOX can be assembled into the program wherever desired but if it is
the first tape read by the assembler, remove it from the reader before
typing the RETURN key (after the EOF? message of the second tape.
IOX and IOXLPT have a .END code which would cause the assembly pass to
end when read). Assembling a user program and IOX together eliminates
the need to read in IOX each time the program is run.

J.2.5 Assembling and Linking PAL-11S

PAL-11S consists of two independent programs. The first program is a
memory clear program. The second is the assembler. All programs are
available as ASCII source tapes, object modules and as a load module.

The memory clear program, MEMCLR, (DEC-11-UPLSA-A-PAl) consists of one
ASCII tape. This program should never need to be assembled. The
object module may be used when constructing a new load module of
PAL-11S.

The assembler consists of three program modules which are assembled
separately and then 1linked together. The first is the main program
called PAL-11S. It consists of 13 ASCII tapes (DEC-UPLSA-A-PA2-PAl4).
The second module is the symbol table, PALSYM, which consists of 2
ASCII tapes (DEC-11-UPLSA-A-PA15-PAl6). The third is IOXLPT
consisting of 2 ASCII tapes (DEC-11-UPLSA-A-PAl17-PAl8). Also included
is PALSYM, specially created for 12K and 16K, consisting of one tape
each (DEC-11-UPLSA-A-PA19-PA20).

If changes are made in any of these modules, that module must be
assembled by PAL-11S (V003A) and the new object module can be linked
with the other object modules. It should be noted that assembly of
these programs will result in:

Program Pages of Listing (Decimal) Number of Symbols (Decimal)
PAL-11S 160 756
PALSYM 11 32
IOXLPT 29 191

Also note that there will be two undefined symbols listed at the end
of pass 1. These are forward references on direct assignments which
get defined properly in pass 2.

An example of the PAL-11S assembly follows:

PAL-11S V003A

*S H

*B H

*L P

*T P/2 (first pass on PAl)

END ? : (2nd pass on PAl)

000000 ERRORS (End of tape #1 assembly)

(Remove tape from punch)

ASSEMBLY AND LINKING INSTRUCTIONS

PAL-11S V003A

*S H

*B H

*L P

*T P/2 (Insert PA2 for 1lst pass)
EOF ? (End of PA2, insert PA3)
EOF ? (End of PA3, insert PA4)
EOF ? (End of PA4, insert PAS)
EOF ? (End of PA5, insert PA6)
EOF ? (End of PA6, insert PA7)
EOF ? (End of PA7, insert PAS)

" EOF ? (End of PA8, insert PA9)
EOF ? (End of PA9, insert PAlO0)
EOF ? (End of PAl10, insert PAll)
EOF ? (End of PAll, insert PAl2)
EOF ? (End of PAl2, insert PAl3)
EOF ? (End of PAl3, insert PAl4)
BINCNT=*****%* STMBC=***%*x%* (End of PAl4 and 1lst pass)
END ? (Insert PA2 for 2nd pass)
EOF ? (End of PA2, insert PA3)
EOF ? (End of PA3, insert PA4)"
EOF ? (End of PA4, insert PAS5)
EOF ? (End of PA5, insert PA®6)
EOF ? (End of PA6, insert PA7)
EOF ? (End of PA7, insert PAS8)
EOF ? (End of PA8, insert PA9)
EOF ? (End of PA9, insert PAlO0)
EOF ? (End of PAl10, insert PAll)
EOF ? (End of PAll, insert PAl2)
EOF ? (End of PAl2, insert PAl3)
EOF ? (End of PAl13, insert PAl4)
000000 ERRORS (End of PAl4 and 2nd pass)

(Remove tape from punch)
PAL-11S V003A

*S H

*B H

*L P

*T P/2 (1st pass on PAlS)

EOF ? (End of PAl5, insert PAl6)

END ? (End of PAl6, insert PAl5 for 2nd pass)
EOF ? (End of PAl5, insert PAl6)

000000 ERRORS (End of 2nd pass)

(Remove tape from punch)
PAL-11S V003A

*S H

*B H

*L P

*T P/2 (1st pass on PAl7)

EOF ? (End of PAl7, insert PA1lS8)

END ? (End of PAl18, insert PAl7 for 2nd pass)
EOF ? (End of PAl7, insert PAl8)

000000 ERRORS (End of 2nd pass)

(Remove tape from punch)
PAL-11S V003A

*S H

*B H

*L P

*T P/2 (Pass 1 on PA20)
END ? (Pass 2 on PA20)
000000 ERRORS (End of pass 2)

(Remove tape from punch)

ASSEMBLY AND LINKING INSTRUCTIONS

The final load module is constructed by LINK-11S.

clear program

and IOXLPT

The resulting tape contains two load modules.

object

module

is

processed by
resulting load module is left in the punch while the PAL-11S,
object modules are linked to create a second load module.
The first clears memory

First the memory
the 1linker and the
PALSYM,

and then jumps to the absolute loader to load the second.

In order to take advantage of core sizes larger than 8K,
for 12K core and 16K
To link
the appropriate object tape for PALSYM

symbol table,

16K), simply

top address

Do not relink PAL-11S to run above 16K.
fixed, and there is no need to re-link at a higher address even on

is
large systems.

specially
object modules are included with the assembler.
substitute
DEC-11-UPLSA-A-PR5 for 12K or DEC-11-UPLSA-A-PR6 for
to LINK-11S of 57460 for 12K
described in the preceding paragraph.

created

The supplied tapes are identified as follows:

Library Code

DEC-11-UPLSA-A-PAl

DEC-11-UPLSA-A-PA2
DEC-11-UPLSA-A-PA3
DEC-11-UPLSA-A-PA4
DEC-11-UPLSA-A-PA5
DEC-11-UPLSA-A-PAG
DEC-11-UPLSA-A-PA7
DEC-11-UPLSA-A-PAS8
DEC-11-UPLSA-A-PA9
DEC-11-UPLSA-A-PA10
DEC-11-UPLSA-A-PAll
DEC-11-UPLSA-A-PAl2
DEC-11-UPLSA-A-PAl3
DEC-11-UPLSA-A-PAl4

DEC-11-UPLSA-A-PAlS5
DEC-11-UPLSA-A-PAl6

DEC11-UPLSA-A-PAl7

DEC-11-UPLSA-A-PAl8
DEC-11-UPLSA-A-PAl9
DEC-11-UPLSA-A-PA20

DEC-11-UPLSA-A-PR1
DEC-11-UPLSA-A-PR2
DEC-11-UPLSA-A-PR3
DEC-11-UPLSA-A-PR4
DEC-11-UPLSA-A-PR5

DEC-11-UPLSA-A-PR6

DEC-11-UPLSA-A-PL

Tape

Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape

Tape
Tape

Tape
Tape
Tape
Tape

Tape
Tape
Tape
Tape
Tape

Tape

1

of

of
of
of
of
of
of
of
of
of
of
of
of
of

of
of

of
of
of
of

of
of
of
of
of

of

2

A OO O

(=)}

°

One
Assembly

One
Assembly

One
Assembly

One

Assembly

One Assembly
One Assembly

(77460 for 16K)

The size of the symbol

PALSYM, the
core, and the
for 12K (or

(use

16K) specify a

and link as

table

Contents

RELMEM

(Memory Clear Program)

PAL-11S (Main Program)

PALSYM (Symbol Table)
IOXLPT
PALSYM (Symbol Table)

PALSYM

RELMEM Object Module

PAL-11S Object Module

PALSYM Object Module
IOXLPT Object Module
PALSYM Object Module
assembler
PALSYM Object Module
Assembler

PAL-11S Load Module'

1
This tape is the concatenation of a link of the RELMEM object module

followed by a
modules.

J-10

link of the PAL-11S, PALSYM for 8K, and IOXLPT object

for 8K

for 12K

(Symbol Table) for 16K

for 8K
for 12K

for 16K

ASSEMBLY AND LINKING INSTRUCTIONS

J.2.6 Assembling And Linking LINK-11S

LINK~-11S is available as an absolute load module (for an 8K machine),
as two object modules (for relinking) and as several ASCII source
tapes. There is one object module for the Linker and one for IOXLPT.
The supplied object modules may be relinked (using the supplied load
module) to load into any size machine larger than 8K. However, the
resulting Linker will still assume a top of memory corresponding to an
8K machine (this can be overridden in the command string options).
The assumed top of memory and reserved Absolute Loader space may be
changed by editing the first 1linker ASCII tape with ED-11. The
parameters to be changed are HGHMEM (high memory address +1 (always
even)) and ALODSZ (Absolute Loader size (always even)). The source
tapes for the Linker may then be assembled with PAL-11S and the new
object module can then replace the supplied Linker object module.

The tapes are identified as follows:

Library Code

DEC-11-ULKSA-A-PAl Tape 1 of 6 LINK-11S (Main Program)
DEC-11-ULKSA-A-PA2 Tape 2 of 6 One

DEC-11-ULKSA-A-PA3 Tape 3 of 6 Assembly

DEC-11-ULKSA-A-PA4 Tape 4 of 6

DEC-11-ULKSA-A-PAS5 Tape 5 of 6 One IOXLPT
DEC-11-ULKSA-A-PA6 Tape 6 of 6 Assembly

DEC-11-ULKSA-A-PR1 Tape 1 of 2 LINK-11S Object Module
DEC-11-ULKSA-A-PR2 Tape 2 of 2 IOXLPT Object Module
DEC-11-ULKSA-A-PL LINK-11S Load Module

Abbreviation

ABS
A/D
ADC
ADRS
ASCII

ASL
ASR

BAR
BBSY
BCC
BCS
BEQ

BGE
BGT
BHI
BHIS
BIC
BIS
BIT
BLE
BLOS
BLT
BMI
BNE
BPL
BR
BRD
BRX
BSP
BSR

BSY
BVC
BVS

CBR
CLC
CLK
CLN
CLR
CLV

APPENDIX K

STANDARD PDP-11 ABBREVIATIONS

Definition

absolute
analog-to-digital

add carry

address

American Standard Code
for Information Inter-
change

arithmetic shift left
arithmetic shift right
automatic send/receive

byte

bus address register
bus busy

branch if carry clear
branch if carry set
branch if equal

bus grant

branch if greater or equal

branch if greater than
branch if higher

branch if higher or same
bit clear

bit set

bit test

branch if less or equal
branch if lower or same
branch if less than
branch if minus

branch if not equal
branch if plus

branch

bus register data

bus request

back space

bus shift register

back space record

busy

branch if overflow clear
branch if overflow set

console bus request
clear carry

clock

clear negative
clear

clear overflow

STANDARD PDP-11 ABBREVIATIONS

CLZ clear zero
CMP compare
CNPR console nonprocessor request
CNTL control
COM complement
COND condition
CONS console
CONT contents
continue
CP central processor
CSR control and status register
D . data
D/A digital-to-analog
DAR device address register
DATI data in
DATIP data in, pause
DATO data out
DATOB data out, byte
DBR data buffer register
DCDR decoder
DE destination effective address
DEC decrement
Digital Equipment Corp.
DEL delay
DEP deposit
DEPF deposit flag
DIV divide
DMA direct memory access
DSEL device select
DST destination
DSX display, X-deflection register
EMT emulator trap
ENB enable
EOF end-of-file
EOM end-of-medium
ERR error
EX external
EXAM examine
EXAMF examine flag
EXEC execute
EXR external reset
F flag (part of signal name)
FCTN function
FILO first in,last out
FLG flag
GEN generator
INDIVR integer divide routine
INC increment
increase
INCF increment flag
IND indicator
INH inhibit
INIT initialize
INST instruction
INTR interrupt
INTRF interrupt flag
I/0 input/output
I0T input/output trap
I0X input/output executive routine

K-2

IR
IRD
ISR

JMP
JSR

LIFO
LKS
LOC
LP
LSB
LSBY
LSD

MA

MAR
MBR
MEM

MOV
MSB
MSBY
MSD
MSEL
MSYN

ND
NEG
NOR
NPG
NPR
NPRF
NS

ODT

OPR

PA
PAL
PB
PC
PD
PDP
PERIF
PGM
PP
PPB
PPS
PR
PRB

PROC
PRS

PS
PTR

PTS
PUN

STANDARD PDP-11 ABBREVIATIONS

instruction register
instruction register decoder
instruction shift register

jump
jump to subroutine

last in,first out

line time clock status register
location co

line printer

least significant bit

least significant byte

least significant digit

memory address

memory address register
memory buffer register
memory

memory location

move

most significant bit
most significant byte
most significant digit
memory select

master sync

negative driver

negate

normalize

nonprocessor grant
nonprocessor request
nonprocessor request flag
negative switch h

octal debugging technique
operate

operation

operator

operand

parity available

program assembly language

parity bit

program counter

positive driver

programmed data processor

peripheral

program

paper tape punch

paper tape punch buffer register

paper tape punch status register

paper tape reader

paper tape reader buffer
register

processor

paper tape reader status
register :

processor status

positive switch

priority transfer

paper tape software system

punch

TEMP
TK
TKB
TKS
TP
TPS
TRT
TSC
TST

UTR

VEC

WC
WCR

XDR
XRCG
XWCG

YDR
YRCG
YWCG

STANDARD PDP-11 ABBREVIATIONS

read

reader

register

release

reset

rotate left

read-only memory
rotate right

rotate shift

return from interrupt
return from subroutine
read/write

read/write shift register

single

selection acknowledge
SUBTRACT CARRY
single cycle
source effective address
set carry

select

set negative

set overflow

sign extend

set zero

single instruction
stack pointer
spare

switch register
source

slave sync

start

set trap marker
strobe

subtract

service

swap byte

trap address
track address
temporary
teletype keyboard

teletype keyboard buffer register
teletype keyboard status register

teletype printer

teletype printer status register

trace trap
timing state control
test

user trap
vector

word count
word count register

X-line driver
X-line read control group
X-line write control group

Y-line driver

Y-line read control group
Y-line write control group

K-4

CONVERSION TABLES

APPENDIX L

L.1 OCTAL-DECIMAL INTEGER CONVERSIONS
o 1 2 3 4 5 6 1 o 1 2 3 4 5 6 1
0000 {0000 0001 0002 0003 0004 0005 0006 0007 || 0400 |0256 0257 0258 0259 0260 0261 0262 0263
0000 0000 (0010 {0008 0009 0010 0011 0012 0013 0014 0015 ([04100264 0265 0266 0267 0268 0269 0270 0271
to to 0020 {0016 0017 0018 0019 0020 0021 0022 0023 || 0420 [0272 0273 0274 0275 0276 0277 0278 0279
0777 0511 |0030 {0024 0025 0026 0027 0028 0029 0030 0031 || 0430 0280 0281 0282 0283 0284 0285 0286 0287
(Octal) | (Decimal)|0040 {0032 0033 0034 0035 0036 0037 0038 0039 || 0440|0288 0289 0290 0291 0232 0293 0294 0295
0050 | 0040 0041 0042 0043 0044 0045 0046 0047 || 0450|0296 0297 0298 0299 0300 0301 0302 0303
0060 10048 0049 0050 0051 0052 0053 0054 0055 || 0460|0304 0305 0306 0307 0308 0309 0310 0311
Octal Decimal 0070|0056 0057 0058 0059 0060 006! 0062 0063 || 0470|0312 0313 0314 0315 0316 0317 0318 0319
;gggg' g?gg 0100 {0064 0065 0066 0067 0068 0069 0070 0071 || 0500|0320 0321 0322 0323 0324 0325 0326 0227
30000 - 12288 0110 {0072 0073 0074 0075 0076 0077 0078 0079 |[0510|0328 0329 0330 0331 0332 0333 0334 0335
20000 - 16384 0120|0080 0081 0082 0083 0084 0085 0086 0087 || 0520|0336 0337 0338 0339 0340 0341 0342 0343
50000 . 20480 0130 {0088 0083 0090 0091 0092 0093 0094 0095 |(0530|0344 0345 0346 0347 0348 0349 0350 0351
60000 .- 24576 0140 {0096 0097 0098 0099 0100 0101 0102 0103 || 0540|0352 Q353 0354 0355 0356 0357 0358 0359
70000 - 28672 01500104 0105 0106 0107 0108 0109 0110 0111)/ 0550 [0360 0361 0362 0363 0364 0365 0366 0367
0160{0112 0113 0114 0115 0116 0117 0118 0119 [| 0560|0368 0369 0370 0371 0372 0373 0374 0375
01700120 0121 0122 0123 0124 0125 0126 0127 || 0570[0376 0377 0378 0379 0380 0381 0382 0383
02000128 0129 0130 0131 0132 0133 0134 0135 0600|0384 0385 0386 0387 0388 0389 0390 0391
0210[0136 0137 0138 0139 0140 0141 0142 0143(| 0610|0392 0393 0394 0395 0396 0397 0398 0399
0220|0144 0145 0146 0147 0148 0149 0150 0151 |/ 0620|0400 0401 0402 0403 0404 0405 0406 0407
02300152 0153 0154 0155 0156 0157 0158 0159 || 0630|0408 0409 0410 0411 0412 0413 0414 0415
02400160 0161 0162 0163 0164 0165 0166 0167 || 0640|0416 0417 0418 0419 0420 0421 0422 0423
0250 (C168 0169 0170 0171 0172 0173 0174 0175||0650|0424 0425 0426 0427 0428 0429 0430 0431
0260|0176 0177 0178 0179 0180 0181 0182 0183 || 0660|0432 0433 0434 0435 0436 0437 0438 0439
0270 (0184 0185 0186 0187 0188 0189 0190 0191 || 0670,0440 0441 0442 0443 0444 0445 0446 0447
03000192 0193 0194 0195 0196 0197 0198 0199 ovoo!oua 0449 0450 0451 0452 0453 0454 0455
0310|0200 0201 0202 0203 0204 0205 0206 020707100456 0457 0458 0459 0460 0461 0462 0463
0320|0208 0209 0210 0211 0212 0213 0214 0215 (| 0720, 0464 0465 0466 0467 0468 0469 0470 0471
03300216 0217 0218 0219 0220 022} 0222 0223 [|0730!0472 0473 0474 0475 0476 0477 0478 0479
0340|0224 0225 0226 0227 0228 0229 0230 0231 ||0740|0480- 0481 0482 0483 0484 0485 0486 0487
0350|0232 0233 0234 0235 0236 0237 0238 0239 | 0750|0488 0489 0490 0491 0492 0493 0494 0495
0360|0240 0241 0242 0243 0244 0245 0246 0247 ||0760| 0496 0497 0498 0499 0500 0501 0502 0503
0370|0248 0249 0250 0251 0252 0253 0254 0255|/0770|0504 0505 0506 0507 0508 0509 0510 0511
= 20 O O T
0 1 2 3 4 5 6 7 L0 1 2 3 4 5 6 7
1000|0512 0513 0514 0515 0516 0517 0518 0519]| 1400|0768 0769 0779 0771 0772 0773 0774 0775
1000 0512 1010|0520 0521 0522 0523 0524 0525 0526 0527 14100776 0777 0778 0779 0780 0781 0782 0783
to to 1020|0528 0529 0530 0531 0532 0533 0534 0535|| 1420.0784 0785 0786 0787 0788 0789 0790 0791
1777 1023 10301 0536 0537 0538 0539 0540 0541 0542 0543 || 1430!0792 0793 0794 0795 0796 0797 0798 0799,
(Octal) | (Decimal)| 1040|0544 0545 0546 0547 0548 0549 0550 0351 || 1440|0800 0801 0802 0803 0804 0805 0808 0807
1050/ 0552 0553 0554 0555 0556 0557 0558 0559 || 1450|0808 0809y 0810 0811 0812 0813 0814 0815
1060|0560 US61 0562 0563 0564 N565 0566 0567 || 1460|0816 0817 0818 0819 0820 0821 0822 0823
1070|0568 0569 0570 0571 0572 0573 0574 0575 mo’osu 0825 0826 0827 0828 0829 0830 0831
1100|0576 0577 0578 0579 0580 0581 0582 0583 1500!0332 0833 0834 0835 0836 0837 0838 0839
1110|0584 0585 0586 0587 0588 0889 0590 0591 | 1510]0840 0841 0842 0843 0844 0845 0846 0847
112010592 0593 0594 0595 0596 0597 0598 0599 || 1520|0848 0849 0850 085! 0852 0853 0854 0855
1130/ 0600 0601 0602 0603 0604 0605 0606 0607|| 1530,0856 0857 0858 0859 0860 0861 0852 0863
1140|0608 0609 0610 0611 0612 0613 0614 0615|| 1540|0864 0865 0866 0867 0868 0869 0870 0871
1150/ 0616 0617 0618 0619 0620 0621 0622 0623 1550:0872 0873 0874 0875 0876 0877 0878 0879
1160(0624 0625 0626 0627 0628 0629 0630 0631|| 1560|0880 0881 0882 0883 0884 0885 0886 0887
1170/ 0632 0633 0634 0635 0636 0637 0638 0639 || 1570|0888 0889 0890 0891 0892 0893 0894 0895
1200/ 0640 0641 0642 0643 0644 0645 0646 0647|1600 |0896 0897 0898 0899 0900 0901 0902 0903
1210{ 0648 0649 0650 0651 0652 0653 0654 0655||1610|0904 0905 0906 0907 0908 0909 0910 0911
1220|0656 0657 0658 0659 0660 0661 0662 0663|1620 (0912 0913 0914 0915 0916 0917 0918 0919
1230|0664 0665 0666 0667 0668 0669 0670 0671|1630 (0920 0921 0922 0923 0924 0925. 0926 0927
1240|0672 0673 0674 0675 0676 0677 0678 0679 | [1640 {0928 0929 0930 0931 0932 0933 0934 0935
1250|0680 0681 0682 0683 0684 0685 0686 0687 |1650;0936 0937 0938 0939 0940 0941 0942 0943
1260|0688 0689 0690 0691 0692 0693 0694 0695) | 1660|0944 0945 0946 0947 0948 0949 0950 0951
1270|0696 0697 0698 0699 0700 0701 0702 0703 | | 16700952 0953 0954 0955 0956 0957 0958 0959
1300|0704 0705 0706 0707 0708 0709 0710 0711|1700 |0960 0961 0962 0963 0964 0965 0966 0967
1310|0712 0718 0714 0715 0716 0717 0718 0719 [17100968 0969 0970 0971 0972 0973 0974 0975
132010720 0721 0722 0723 0724 0725 0726 0727) 1720/0976 0977 0978 0979 0980 0981 0982 0983
1330/0728 0729 0730 0731 0732 0733 0734 0735 | 17300984 0985 0986 0987 0988 0989 0990 0991
1340(0736 0737 0738 0739 0740 0741 0742 0743 [1740|0992 0993 0994 0995 0996 0997 0998 0999
1350(0744 0745 0746 0747 0748 0749 0750 0751 [1750[100c 1001 1002 1003 1004 1005 1008 1007
1360{0752 0753 0754 0755 0756 0757 0758 0759 | |1760{1008 1009 1010 1011 1012 1013 1014 1015
1370/ 0760 0761 0762 0763 0764 0765 0766 0767 [1770/1016 1017 1018 1019 1020 1021 1022 1023

L-1

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSIOMNS

(Continued)

2000 1024
to to

2777 1535

(Octal) | (Decimal)

Octai Decimal
10000 - 4096
20000- 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

2000
2010
2020
2030
2040
2050
2060
2070

2100
2110
2120
2130
2140
2150
2160
2170

2200
2210
2220
2230
2240
2250
2260
2270

2300
2310
2320
2330
2340
2350
2360
2370

1024
1032
1040
1048
1056
1064
1072
1080

1088
1096
1104
112
1120
1128
1136
1144

1152
1160
1168
1176
1184
1192
1200
1208

1216
1224
1232
1240
1248
1256
1264
1272

1025
1033
1041
1049
1057
1065
1073
1081

1089
1097
1105
113
1121
1129
nym
1145

1153
1161
1169
177
1185
1193
1201
1209

1217
1225
1233
1241
1249
1257
1265
12713

1026
1034
1042
1050
1058
1066
1074
1082

1090
1098
1106
1114
122
1130
1138
1146

1154
1162
1170
1178
1186
1194
1202
1210

1218
1226
1234
1242
1250
1258
1266
1274

1027
1035
1043
1051
1059
1067
1075
1083

1091
1099
1107
1115
1:23
13
1139
1147

1155
1163
1))
1179
1187
1195
1203
1211

1219
1227
1235
1243
1251
1259
1267
1275

1028
1036
1044
1052
1060
1068
1076
1084

1092
1100
1108
1116
1124
1132
1140
1148

1156
1164
1172
1180
1188
1196
1204
1212

1220
1228
1236
1244
1252
1260
1268
1276

1029
1037
1045
1053
1061
1069
1077
1085

1093
1101
1109
117
1125
1133
1141
1149

1187
1165
173
1181
1189
1197
1205
1213

1221
1229
1237
1245
1253
1261
1269
12717

1030
1038
1046
1054
1062
1070
1078
1086

1094
1102
1110
1118
1126
1134
1142
1150

1158
1166
1174
1182
1190
1198
1206
1214

1222
1230
1238
1246
1254
1262
1270
1278

1031
1039
1047
1055
1063
1071
1079
1087

1095
1103
1
119
127
1135
1143
1151

1159
1167
1175
1183
1191
1199
1207
1215

1223
1231
1239
1247
1255
1263
1211

1279

3000 1536

to to
3777 2047
(Octal) | (Decimal)

2400
2410
2420
2430
2440
2450
2460
2470

2500
2510
2520
2530
2540
2550
2560
2570

2600
2610
2620
2630
2640
2650
2660
2670

2700
2710
2720
2730
2740
2750
2760
2770

1280
1288
1296
1304
1312
1320
1328
1336

1344
1352
1360
1368
1376
1384
1392
1400

1408
1416
1424
1432
1440
1448
1456
1464

1472
1480
1488
1496
1504
1512
1520
1528

1281
1289
1297
1305
1313
1321
1329
1337

1345
1353
1361
1369
13717
1385
1393
1401

1409
1417
1425
1433
1441
1449
1457
1465

1473
1481
1489
1497
1505
1513
1521
1529

1282
1290
1298
1306
1314
1322
1330
1338

1346
1354
1332
1370
1378
1386
1394
1402

1410
1418
1426
1434
1442
1450
1458
1466

1474
1482
1490
1498
1506
1514
1522
1530

1283
1291
1299
1307
1315
1323
1331
1339

1347
1355
1363
1371
1379
1387
1395
1403

1411
1419
1427
1435
1443
1451
1459
1467

1475
1483
1491
1499
1507
1515
1523
1531

1284
1292
1300
1308
1316
1324
1332
1340

1348
1356
1364
1372
1380
1388
1396
1404

1412
1420
1428
1436
1444
1452
1460
1468

1476
1484
1492
1500
1508
1516
1524
1532

1285
1293
1301
1309
1317
1325
1333
1341

1349
1357
1365
1373
1381
1389
1397
1405

1413
1421
1429
1437
1445
1453
1461
1469

1477
1485
1493
1501
1509
1517
1525
1533

1286
1294
1302
1310
1318
1326
1334
1342

1350
1358
1366
1374
1382
1330
1398
140€

1414
1422
1430
1438
1446
1454
1462
1470

1478
1486
1494
1502
1510
1518
1526
1534

1287
1295
1303
1311
1319
1327
1335
1343

1351
1359
1367
1375
1383
1391
1399
1407

1415
1423
1431
1439
1447
1455
1463
14n

1479
1487
1495
1503
1511
1519
1527
1535

6

0

2

S

3000
3010
3020
3030
3040
3050
3060
3070

3100
13110
3120
3130
3140
3150
3160
3170

3200
3210
3220
3230
3240
3250
3260
3270

3300
3310

3330
3340
3350
{3360
3370

33204

1536
1544
1552
1560
1568
1576
1584
1592

1600
1608
1616
1624
1632
1640
1648
1656

1664
1672
1680
1688
1696
1704
1712
1720

1728
1736
1744
1752
1760
1768
1776
1784

1537
1545
1553
1561
1569
1577

1585

1593

1601
1609
1617
1625
1633
1641
1649
1657

1665
1673
1681
1689
1697
1708
1713
1721

1729
1737
1745
1753
1761
1769
17717
1788

1538
1546
1554
1562
1570
1578
1586
1594

1602
1610
1618
1626
1634
1642
1650
1658

1666
1674
1682
1690
1698
1706
1714
1722

1730
1738
1746
1754
1762
1770
1778
1786

1539
1547
1555
1563
1571
1579
1587
1595

1603
1611
1619
1627
1635
1643
1651
1659

1667
1675
1683
1691
1699
1707
1719
1723

1731
1739
1747

1755

1763
177
1779
187

1540
1548
1556
1564
1572
1580
1588
1596

1604
1612
1620
1628
1636
1644
1652
1660

1668
1676
1684
1692
1700
1708
1716
1724

1732
1740
1748
1756
1764
1772
1780
1788

1541
1549
1587
1565
1573
1581
1589
1597

1605
1613
1621
1629
1637
1645
1653
1661

1669
1677
1685
1693
1701

1709
1717
1725

1733
1741
1749
1757
1765
1773
1781
1789

1542
1550
1558
1566
1574
1582
1590
1598

1606
1614
1622
1630
i638
1646
1604
1662

1670
1678
1686
169¢
1702
1710
1718
1726

1734
1742
1750
1758
1766
1774
1782
1799

1543
1551
1559
1567
1575
1583
1591
1599

1607
1615
1623
1631
1639
1647
1655
1663

1671
1679
1687
1695
1703
1711
17119
nn

1735
1743
1751
1759
1767
1775
1783
1791

3400
3410
3420
3430
3440
3450
3460
3470

3500
3510
3520
3530
3540
3550
3560
3570

3600
3610
3620
3630
3640
3650
3660
3670

3700
3710
3720
3730
3740
3750
3760

1792
1800
1808
1816
1824
1832
1840
1848

1856
1864
1872
1880
1888
1896
1904
1912

1920
1928
1936
1944
1952
1960
1968
1976

1984
1992
2000
2008
2016
2024
2032

[3770] 2040

1793
1801
1809
1817
1825
1833
1841
1849

1857
1865
1873
188)
1889
1897
1905
1913

1921
1929
1937
1945
1953
1961
1969
197

1985
1993
2001
2009
2017
2025
2033
204:

1794
1802
1810
1818
1826
1834
1842
1850

1858
1866
1874
18682
1890
1898
1906
1914

1922
1930
1938
1946
1954
1962
1970
1978

1986
1994
2002
2010
2018
2026
2034
21042

1795
1803
1811
1819
1827
1835
1843
1851

1859
1867
1875
1883
1891
1899
1907
1915

1923
1931
1939
1947
1955
1963
1971
1979

1987
1998
2003
2011
2019
2027
2035
_2043,

1796
1804
1812
1820
1828
1836
1844
1852

1860
1868
1876
1884
1892
1900
1908
1916

1924
1932
1940
1948
1956
1964
1972
1980

1988
1996
2004
2012
2020
208
2636
2044

1797
1805
1813
1821
1829
1837
1845
1853

1861
1869
1877
1885
1893
1901
1909
1917

1925
1933
1941
1949
1957
1965
1973
1981

1989
1997
2005
2013
2021
2029
2037

1798
1806
1814
1822
1830
1838
1846
1854

1862
1870
1878
1886
1894
1902
1910
1918

1926
1934
1942
1950
1958
1966
1974
1962

1990
1998
2008
2014
2022
2030
202§

2045 2046

1799
1807
1815
1823
1831
1839
1847
1855
1883
1871
1879
1887
1895
1903
1911
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2001
2015
2023
2031
2039
2047)

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSIONS (Continued)

4000
to
4777

1 2

3

4

S

7

0

1)

8 7

2048
to
2559

(Octal) | (Decimal)

Octal Decimal

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4270

4300
400
4320
4330
4340
4350
4360
4370

2048
2056
2064
2072
2080
2088
2096
2104

2112
2120
2128
2136
2144
2152
2160
2168

2176
2184
2192
2200
2208
2216
2224
2232

2240
2248
2256
2264
2272
2280
2288
2296

2049 2050
2057 2058
2065 2066
2073 2074
2081 2082
2089 2090
2097 2098
2105 2106

2113 2114

2051
2059
2067

2052
2060
2068

2053
2061
2069

2075 2076 2077

2121
2129
2137
2145
2153
2161
2169

21717
2185
2193
2201
2209
2217
2225
2233

2241
2249
2257
2265
22713
2281
2289
2297

2122
2130
2138
2146
2154
2162
2170

21178
2186
2194
2202
2210
2218
2226
2234

2242
2250
2258
2266
2274
2282
2290
2298

2083
2091
2099
2107

2115
2123
213
2139
2147
2155
2163
217

2179
2187
2195
2203
2211
2219
2227
2235

2243
2251
2259
2267
2275
2283
2291
2299

2084
2092
2100
2108

2116
2124
2132
2140
2148
2156
2164
2172

2180
2188
2196
2204
2212
2220
2228
2236

2244
2252
2260
2268
2276
2284
2292
2300

2085
2093
2101
2109

2117
2125
2133
2141
2149
2157
2165
2173

2181
2109
2197
2205
2213
2221
2229
2237

2245
2253
2261
2269
2211
2285
2293
2301

2054
2082
2070
2078
2086
2094
2102
2110

2118
2126
2134
2142
2150
2158
2166
L2174

2182
2190
2198
2206
2214
2222
2230
2238

2246
2254
2262
2270
2278
2286
2294
2302

2055
2063
20T

2079
2087
2095
2103
2111

2119
2127
2135
2143
2151
2159
2167
2175

2183
2191
2199
2207
2215
-2223
223
2239

2247
2255
2263
2271
2219
2287
2295
2303,

4400
4410
4420
4430
4440
4450
4460
4470

4500
4510
4520
4530
4540
4550
4560

2304
2312
2320
2328
2336
2344
2352
2360

2368
2376
2384
2392
2400
2408

2416

4570 2424

4600!2!32
4610 | 2440
4620 12448
4630|2456
4640 12464
4650 {2472
4660 | 2480
4670 2488

4700 | 2496
4710 [2504
472012512
4730|2520

4740
4750
4760

4770

2528
2536
12544
12552

2305
2313
2321
2329
2337
2345
2353
2361

2369
2317
2385
2393
2401
2409
2417
2425

2433
2441
2449
2457
2465
2473
2481
2489

2497
2505
2513
2521
2529
2537
2545
2553

2306
2314
2322
2330
2338
2346
2354
2362

2370
2318
2386
2394
2402
2410
2418
2426

2434
2442
2450
2458
2466
2474
2482
2490

2498
2506
2514
2522
2530
2538
2546
2554

2307
2315
2323
2331
2339
2347
2355
2363

231
23719
2387
2395
2403
2411
2419
2427

‘2435

2443
2451
2459
2467
2475
2483
2491

2499
2507
2515
2523
2531
2539
2547
2555

2308
2218
2324
2332
2340
2348
2356
2364

2372
2380
2388
2396
2404
2412
2420
2428

2436
2444
2452
2460
2468
2476
2484
2492

2500
2508
2516
2524
2532
2540
2548
2556

2309
217
2325
2333
2341
2349
2357
2365

23713
2381
2389
2397
2405
2413
2421
2429

2437
2445
2453
2461
2469
24717
2485
2493

2501
2509
2517
2525
2533
2541
2549
2557

2310 2911
231812319
2326 2327

234
2342

335
3343

2350 2351
2358 2359
2366 2367

2374
2382
2390
2398
2406
2414
2422
2430

2438
2446
2454
2462
2470
2478
2486
2494

2502
2510
2518
2526
2534
2542
2550
2558

23715
2383
2391
2399
2407
2415
2423
2431

2439
2447
2455
2463
M
2479
2487
2495

2503
2511
2519
2527
2535
2543
2551
2559,

1

2

3

4

5

6

7

0

(5

6

7

$000
to
5777
(Octal)

2560
to
3071
(Decimal)

5000
5010
5020
$030
5040
5050
5060
5070

5100
5110
$120
5130
5140
5150
5160
5170

5200
5210
$220
5230
5240
$250
5260
$270

$300
5310
5320
$330
5340
$350
$360
$370

2560
2568
2576
2584
2592
2600
2608
2616

2624
2632
2640
2648
2656
2664
2672
2680

2€88
2696
2704
2712
2720
2728
2736
2744

2752
2760
2768
2776
2784
2792
2800
20808

2561
2569
2577
2585
2593
2601
2609
2617

2625
2633
2641
2649
2657
2665
2673
2681

2689
2697
2705
2713
2721
2729
2713
2745

753
2761
2769
2117
2785
2793
2801
2009

2562
2570
2578
2986
2594
2602
2610
2618

2626
2634
2642
2650
2658
2666
2674
2682

2690
2698
2706
2714
2722
2730
2738
2746

2754
21762
27170
2778
2786
2794
2802
2010

2563
2571

2379

2587
2595
2603
2611
2619

2627
2635
2643
2651
2659
2667
2675
2683

2691
2699
2707
2715
2723
2731
2739
2747

2755
2763
27
27719
2787
2795
2803
2811

2564
2572
2580
2588
2596
2004
2612
2620

20628
2636
2644
2652
2660
2668
2676
2684

2692
2700
2708
2716
2724
2732
2740
2748

2756
2764
2772
2780
2788
2796
2804
2812

2565
2573
2581
2509
2597
2605
2613
2621

2629
2637
2645
2653
2661
2669
2677
2685

2693
2701
2709
2717
2725
2733
2741
2749

2757
2765
2713
21781
2789
2797
2805
2813

2566
2574
4582
2590
2598
2606
2614
2622

2630
2638
2646
2654
2662
2670
2678
2686

2694
2702
2710
2718
2726
2734
2742
2750

2758
2766
2774
2782
2790
2798
2806
2814

2567
2575
2583
2591
2599
2607
2615
2623

2631
2639
2647
2655
2663
2671
2679
2687

2695
2703
2711
2719
2727
2735
2743
2751

2759
21767
2775
2783
2791
2799
2807
2815

5400
S410
5420
5430
5440
5450
5460
5470

$500
$510
5520
5530
5540
$550
5560
5570

5600
5610
5620
$630
5640
5650
5660
15670

5700
5710
$720
5730
5740
5750
5760
5770

2816
2824
2832
2840
2848
2856
2864
2872

2880
2888
2896
2904
2912
2920
2928
2936

2944
2952
2960
2968
2976
2534
2992
3000

3008
3016
3024
3032
3040
3048
3056
3084

2817
2825
2833
2841
2849
2857
2865
2873

2881
2889
2897
2905
2913
2921
2929
2937

2945
2953
2961
2969
2977
2985
2993
3001

3009
3017
3025
3033
3041
3049
3057
3085

2818
2826
2834
2842
2850
2858
2866
2874

2882
2890
2898
2906
2914
2922
2930
2938

2946
2954
2962
2970
2978
2986
2994
3002

3010
3018
3026
3034
3042
3050
3058
3066

2819
2827
2835
2843
2851
2859
2867
2875

2883
2891

2899
2907
2915
2923
2931
2939

2947
2955
2963
2971
2979
2987
2995
3003

3011
3019
3027
3035
3043
3051
3059
3067

2820
2628
2836
2844
2852
2860
2868
2876

2884
2892
2900
2908
2916
2924
2932
2940

2948
2956
2964
2972
2980
2928
2996
3004

o2
3020
3028
3036
3044
3052
3060
3068

2821
2829
2837
2845
2853
2861
2869
2877

2885
2893
2901
2909
2917
2925
2933
2941

2949
2957
2965
2973
2961
2989
2997
3005

3013
3o21

3029
3037
2045
3053
3061
3069

2022
2830
2838
2846
2854
20862
2870
2878

2886
2894
2902
2910
2918
2926
2934
2942

2950
2958
2966
2974
2982
2990
2990
3006

3014
3022
3030
3038
3046
3054
3062
3070

2823
2831
2839
2847
20%%
2863
287
2879

2887
20899
2903
2911
2919
2927
293%
2943

2951
2959
2967
2975
2903
2991
2999
3007

3015
3023
3031
3039
3047
3055
3063
3071

OCTAL-DECIMAL

6000

- to
6777
(Octal)

Octal

10000 -
20000 -
30000 -
40000 -
50000 -
60000 -
70000 -

7000
to
7777
(Octal)

3072

to
3583
(Decimal)

Decimal
4096
8192

3584
to
4095
(Decimal)

CONVERSION TABLES

INTEGER CONVERSIONS (Concluded)

0

0

8000
6010
6020
6030
6040
8050
6060
6070

6100

3072
3080
3088
3096
3104
2
3120
3128

13136

6110 .3144
6120 .3152
GIJOiJIGO
61403168

6150
6160
6170

6200

13176

3184
3192

3200

6210 1 3208
6220 13216

6230
6240
6250
6260
6270

3224
3232
3240
3248
3256

6300 , 3264
6310 13272
6320 | 3280
6330 3288
6340 ; 3296
6350 3304
6360 :3312
6370 ! 3320

3073
3o81
3089
3097
3108
313
21
29

a7
3145
3133
3161
3169
an
3185
3193

3201
3209
17
3225
323
3241
3249
3257

3265
2713
3281
3289
3297
3305
313
3321

3074
3os2
3090
3098
3106
e
3122
3130

3138
3146
3154
3162
3170
3178
3186
3194

3202
3210
3218
3226
3234
3242
3250
3258

3266
3274
3282
3290
3298
3306
3314
3322

3075
3083
3091
3099
3107
3115
323
3131

3139
3147
3155
J163
37
3173
3187
3195

3203
az11
3219
3227
3235
3243
3251
3259

3267
3275
3283
3291
3299
3307
3315
3323

3076
3084
3092
3100
3108
3116
3124
3132

3140
3148
3156
3164
3172
3180
3188
3196

3204
3212
3220
3228
3236
3244
3252
3260

3268
3276
3284
3292
3300
3308
3316
3324

3077
3085
3093
3101
3109
an
125
3133

3141
3149
3157
3165
1173
3181
J1e9
3197

3205
213
3221
3229
3237
3245
3253
3261

3269
32717
3285
3293
3301
3309
an?
3325

3078
3086
3094
3102
3110
3ne
3126
3134

3142
3150
3158
3166
3174
3182
3190
3198

3206
3214
3222
3230
3238
3246
3254
3262

3270
3278
3286
3294
3302
3310
38
3326

3079
3087
3095
3103
il
kIR E)
3127
3135

3143
3151
3159
3167
n1s
3183
3191
3199

3207
3215
3223
3231
3239
3247
3255
3263

3271
3279
3287
3295
3303
331
3319
3327

6400
6410
6420
6430
6440
6450
6460
6470

6500
6510
6520
6530!
6540,

3328
3336
3344
3352
3360
3368
3376
3384

3392
3400
3408
3416
3424

6550, 3432
6560 3440
6570 3448

ssoo':qss
6610, 3464
6620 3472
6630 3480
6640 3488
6650, 3496
66601 3504
6670, 3512

6700 3520
6710 3528
6720 3536
67301 3544
6740/ 3552
6750 3560
l6760! 3568
Ls710{ 3576

3329
3337
3345
3353
3361
3369
3317
3385

3393
3401
3409
3417
3425
3433
3441
3449

3457
3465
3473
3481
3489
3497
3505
3513

3521
3529
3537
3545
3553
3561
3569
3577

3330
3338
3346
3354
3362
3370
3378
3386

3394
3402
3410
3418
3426
3434
3442
3450

3458
3466
3474
3482
3490
3498
3506
3514

3522
3530
3538
3546
3554
3562
3570
3578

334
3339
3347
3355
3363
3371
3379
3387

3395
3403
3411
3419
3427
3435
3443
3451

3459
3467
3475
3483
3491
3499
3507
3515

3523
3531
3539
3547
3555
3563
3571
3579

3332
3340
3348
3356
3364
3372
3380
3388

3396
3404
3412
3420
3428
3426
3444
3452

3460
3468
3476
3484
3492
3500
3508
3516

3524
3532
3540
3548
3556
3564
3572
3580

3333
3341
3349
3357
3365
33713
3381
3389

3397
3405
3413
3421
3429
3437
3445
3453

3461
3469
477
3485
3493
3501
3509
3517

3525
3533
3541
3549
3557
3565
3573

3581

3334
3342
3350
3358
3366
3374
-3382
3390

3398
3406
3414
3422
3430
3438
3446
3454

3462
3470
3478
3486
3494
3502
3510
3518

3526
3534
3542
3550
3558
3566
3574
3582

3335
3343
3351
3359
3367
3375
3383
3391

3399
3407
M5
3423
3431
3439
3447
2455

3463
3471
3479
3487
3495
3503
3511
3519

3527
3535
3543
3551
3559
3567
3575
3583

0

!

0

1

7000
7010
7020
7030
7040
7050
7060
7070

7100
7110
7120
7130
7140
7150
7160
7170

7200
7210
7220
7230
7240
7250
72080
7270

7300
7310
7320
7330
7340
73%
7360
7370

3584
3592
3600
3608
3616
3624
3632
3640

3648
3656
3664
3672
3680
aees
3696
3704

na2
3720
3nze
3736
3744
3782
3760
3768

3776
3784
3792

3808
3016
3824
3832

3585
3593
3601
3609
617
3625
3633
3641

3649
3657
3665
3673
3681
3689
3697
3705

N3
3721
329
3737
3745
3783
3761
3769

M
3788
3793
3801
3809
381
3825
3833

3586
3594
3602
3610
3618
3626
3634
3642

3650
3658
3666
3674
3682
3690
3698
3706

3714
3722
3730
3738
3746
3754
3762
3770

3778
3708
3794
3802
3810
kL)
3826
3834

3587
3595
2603
3611
3619
3627
3635
3643

3651
3659
3667
3675
3683
3691
3699
3707

3ns
3723
3731
3739
3747
3798
3763
M

3779
3787
3795
3803
3011
3819
3827
3835

3588
3596
3604
3612
3620
3628
3636
3644

3652
3660
3668
3676
3684
3eo2
3700
3708

ane
3724
3732
3740
3748
3756
3764
37172

3780
3788
379¢
3804
3812
3020
3028
3838

3589
3597
3605
3613
3621
3629
3637
3645

3653
3661
3869
3677
3685
3693
3701
3709

NI
3726
3733
3741

3749

3787
3765
713

3181
3789
3797
3805
3813
3821
3029
3037

3590
3598
3608
3614
3622
3630
3638
3646

3654
3662
3670
3678
3686
3694
3702
ano

3718
3726
3734
3742
3750
3758
3766
3774

3782
3790
3798
3806
3814
3022
3830
3838

3591
3599
3607
3615
3623
3631
3639
3647

3655
3663
3671
3679
3687
3695
3703
am

3719
3127
3738
3743
3751
3759
3767
3778

3783
3791
3799
3807
3815
3623
3831
1839

7400
7410
7420
7430
7440
7450
7460
7470

7500
7510
7520
7530
7540
7550
7560
7570

7600
7610
7620
7630
7640
7650
7660
7670

7700
7710
7720
7730
7740
7750
7760

1770

3840
3848
3856
3864
3872
3880
kLEL]
3896

3904
3912
3920
3928
3936
3944
3952
3960

3968
3976
3984
3992
4000
4008
4016
4024

4032
4040
4048
4056
4064
4072
4080
4088

3841
3849
3857
3865
3873
388t
3889
3897

3905
913
3921
3929
3937
3945
3953
3961

3969
3977
398%
3993
4001
4009
4017
4025

4033
4041
4049
4057
4065
4073
4081
4089

3842
3850
3858
3866
3874
3882
3890
3898

3906
3914
3922
3930
3938
3946
3954
3962

3970
3978
3986
3994
4002
4010
4018
4026

4034
4042
4050
4058
4066
4074
4082
4090

3843
3851
3859
3867
3875
3883
3891
3899

3907
3915
3923
3931
3939
3947
3955
3963

3971
3979
3987
3995
4003
4011
4019
4027

4035
4043
1051
4059
4067
407%
4083
4091

3844
3852
3860
3868
3876
3884
3892
3900

3908
3916
3924
3932
3940
3948
3956
3964

3972
3980
3988
3996
4004
4012
4020
4028

4036
4044
4052
4060
4068
4078
4084
4092

3845
3853
3861
3869
3877
3885
3893
3901

3909
917
3925
3933
3941
3949
3957
3965

3973
3981
3989
3997
4005
4013
4021
4029

4037
4045
4053
4061
4069
4077
4085
4093

3846
3854
3862
3870
3878
3886
3894
3902

3910
3918
3926
3934
3942
3950
3958
3966

3974
3982
3990
3998
4008
4014
1022
4030

4038
4046
4054
4062
4070
4078
40868
4094

3847
3855
3863
3871
3879
3887
3895
3903

3911
919
3927
3935
3942
3951
3959
3967

3975
3982
3991
3999
4007
4015
4023
4031

4038
4047
4055
4083
4071
4079
4087
4095

L.2

POWERS OF TWO

0 aN -

18

72

144
288
576
1152

POWERS OF TWO

N® A -

w
&

68
137
274
549

+ 099

199
398
796
592
184
368
737
474
949
899
799
599
199
398
797
594
188
376
752
504

o a N -

32
64
128
256
512
1 024
2 048
4 096

8 192
16 384
32 768
65 536
131 072
262 144
524 288
048 576
097 152
194 304
388 608
777 216
554 432
-108 864
217 728
435 456
870 912
741 824
483 848
967 296
934 592
869 184
738 368
476 736
953 472
906 944
813 888
627 776
255 552
511 104
022 208
044 416
088 832
177 664
355 328
710 656
421 312
842 634
985 248
370 496
740 992
481 984
963 968
927 936
855 872
711 744
423 488
846 976

SOomMNOLAEWN—O

E]

oL v L v w BB A DB ADDDWWW WWww W W NRRNRONRNRRNRNR = — — — o ot —
SO RN e RrdRN LSS SR EG RO 8889 RERENEEEBRNRARRENESIsIadsom=

[sR-N-NoNoNo oo Rl R-NoN N NN N NN N-R- NNl NNl N-N-N-N-)

25

625
812
906
953
976
488
244
122
061
030
015
007
003
001
000
000

000
000

000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000

000
000
000
000
000
000
000
000

CONVERSION TABLES

25

125
562
281
140
070
035
517
258
629
814
907
953
476
238
19
059
029
014
007
003
001

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000

000
000
000
000
000
000
000
000

25
625
312
156
578
789
394
697
348
674
837
418
209
604
802
901
450
725
862
93
465
232
116
058
029
014
007
003
001
000
000
000
000
000
000
000
000
000
000
000

000
000

000
000
000
000
000
000
000
000

25

125
062
531
265
632
316
158
579
289
644
322
161
580
290
645
322
661
830
415
207
103
551
275
637
818
909
454
227
n3
056
028
014
007
003
001
000

000
000
000
000
000
000
000
000
000

25

625
812
406
203
01
550
775
387
193
596
298
149
574
287
643
321
660
830
N5
957
978
989
494
747
373
686
843
421
210
105
552
776
888
444
222
m
055
027
013
006
003
001
000

25

125
562
781
390
695
847
923
461
230
615
307
653
826
913
456
228
614
807
403
701
350
675
837
418
709
854
427
713
356
178
089
044
022
5N
755
877
938
469
734
867

25

625
312
656
808
N4
957
478
739
869
934
467
733
366
183
091
545
772
886
443
721
860
430
75
357
678
839
419
209
604
302
151
575
787
893
446
723
361

25

125
062
031
515
257
628
814
407
703
851
425
712
856
928
464
232
616
808
404
202
601
800
400
700
850
925
462
23
615
807
903
951
475
737

25

625
812
906
453
226
613
806
903
951
475
237
18
059
029
014
007
003
001
500
250
125
062
031
515
257
628
814
907
953
976
988

25

125
562
081
640
320
660
830
95
957
478
739
869
434
n7
858
929
464
232
616
308
654
827
913
456
228
614
807
403

25

625
N2
156
078
039
519
759
379
689
844
422
n
355
677
338
169
084
042
021
510
755
377
188
094
547

25

125
062
531
765
882
941
970
485
242
621
810
905
452
726
363
7
590
215
647
823
40
205

25
625
812

703
351
675
337
668
334

333
166

25

125
562
781
890
945
472
236
668
834

513 417

79
395
697
848
924
962

708
854
927
963
481
240

25

625
312
656
328
164
582
041
520
260
130
565
782
8N

5
25
125
062
031
015
507
253
126
063
531
265

5

25

625

812 5

906 25

953 125
476 562 5
738 281 25
869 140 625

CONVERSION TABLES

L.3 SCALES OF NOTATION

2}{

In Decimal

28223223

000000000
8@\‘00’ WA =

o

—

o
I+
=]

In Octal

7 346 545

10

Y
N
o
CONOU 2WN~O I

000

62581

2
000000000
323352282

WA ==

97782

n Log 2 and 10 In Decimal

AaWN I

nlogo 2

0.30102 99957
0.60205 99913
0.90308 99870
1.20411 99827
1.50514 99783

n logy 10

3.32192 80949
6.64385 61898
9.96578 42847
13.28771 23795
16.60964 04744

ra X
1.00695 55500 56719 0.1
1.01395 94797 90029 0.2
1.02101 21257 07193 03
1.02811 38266 56067 0.4
1.03526 49238 41377 0.5
1.04246 57608 41121 0.6
1.04971 66836 23067 0.7
1.05701 80405 61380 0.8
1.06437 01824 53360 0.9
10

00 112 402 762 000

31 1351 035 564 000

66 16 432 451 210 000

77 221 411 634.520 000

15 2 657 142 036 440 000

64 34327 724 461 500 000

37 434 157 115 760 200 000

75 5 432 127 413 542 400 000

2? 67 405 553 164 731 000 000
n nloge 2

6 1.80617 99740

7 2.10720 99696

8 2.40823 99653

9 2.70926 99610

10 3.01029 99566

2¢

1.07177 34625 36293

1.14869

59830 73615

3352 sees
3388 38383
3358 38388 _

n logz 10

19.93156 85693
23.25349 66642
26.57542 47591
29.89735 28540
33.21928 09489

Addition and Multiplication, Binary and Octal
~ Addition Multiplication
: Binary Scale
o+1-9182 S ox1=33958
1+1=10 1x1=1
Octal Scale
ojo1 02 03 04 05 06 07 1|02 03 04 05 06 07
1]02 03 04 05 06 07 10 2|04 06 10 12 14 16
2/03 04 05 06 07 10 11 3/06 11 14 17 22 25
3/04 05 06 07 10 11 12 4010 14 20 24 30 34
4|05 06 07 10 11 12 13 512 17 24 31 36 43
slo6 07 10 11 12 13 14 614 22 30 36 44 52
6]o7 10 11 12 13 14 15 7|16 25 34 43 52 €1
7110 1 12 13 14 15 16

8338 88888 7

8888 8

537
043
003

337 66

657
136
411
264

022

000

CONVERSION TABLES

L.3.5 Mathematical Constants In Octal

7 = 3.11037 552421, e = 255760 521305 v = 0.44742 147707,
7! = 0.24276 301556, e-! = 0.27426 530661, Iny = — 0.43127 233602,
Vvr = 1.61337 611067, Ve = 151411 230704, logay = — 0.62573 030645,
Inm = 1.11206 404435, logoe = 0.33626 754251, VZ = 132404 746320,

logam = 1.51544 163223, logie = 1.34252 166245, In2 = 0.54271 027760,
V10 = 3.12305 407267, log: 10 = 3.24464 741136, In10 = 2.23273 067355,

APPENDIX M

NOTE TO USERS OF SERIAL LA30 AND 600, 1200, AND 2400 BAUD VTO05'S

The serial LA30 requires that filler characters follow each carriage
return; the 600, 1200, and 2400 baud VT05's require that filler
characters follow each line feed. The following table 1lists the
filler characters needed. The byte at location 44g has been
established as the filler count and the byte at location 43g contains
the character to be filled. These locations are initially set to zero
by PAL-11A and ED-11 to allow normal operation of the program.

Depending on the terminal, change the locations as follows:

LOC 44 LOC 45 Resulting Word (binary)
LA30 011 015 0000110100001001
VT05 600 Baud 001 012 0000101000000001
VT05 1200 Baud 002 012 0000101000000010
VTO05 2400 Baud 004 012 0000101000000100

The proper binary word can be stored at location 44 by wusing the
console switches as described in section 2.1.2 of this manual.
Furthermore, users with a 2400 baud VT05 should avoid the use of
vertical tab characters in their programs. Vertical tabs will not be
properly filled and may cause characters to be lost.

Once the changes have been made, the program may be dumped to paper
tape by using the bootstrap version of DUMPAB (see section 6.3 in this
manual). However, since programs change each time a new version is
released, it 1is necessary to have a program listing to determine the
exact memory limits to be dumped.

The above changes only affect output to the console teleprinter.

Users of IOX or IOXLPT source tapes will find the byte at location 44
tagged "I.44:" and the byte at location 45 tagged "I.45:". These
locations are defined near the end of the second source tape and can
be changed to appropriate values using ED-11.

ODT-11 uses the locations (44 and 45) but does not set them to zero
initially.

APPENDIX N

USING THE ABSOLUTE LOADER ONYPDP—ll'S WITHOUT SWITCH REGISTERS

This appendix describes the procedures for loading and using the
Absolute Loader on PDP-11's without switch registers. The procedures
are divided into LSI-11, M9301-YB bootstrap loader, and M9301-YA
bootstrap 1loader. Chapter 6 describes the procedures for machines
with switch registers.

N.l LSI-11

The following are instructions for 1loading and wusing the Absolute
Loader on an LSI-11.

1. Press the BOOT/INIT switch on the LSI-11 front panel to
enable the bootstrap loader. An @ prints at the terminal.

2. Place the Absolute Loader tape (DEC-11-UABLB-A-PO) in the
reader.

3. Type the status register address of the input device and L to
load the Absolute Loader.

For example, when loading from the console terminal paper
tape reader, type:

@177560L

When the tape has been read, an @ followed by the start
address of the Absolute Loader prints at the terminal.

For example, on a machine with 8K memory, type:
@177560L

The Absolute Loader prints the address of the Absolute
Loader:

@37500
@

4. Place the tape to be loaded via the Absolute Loader in the
reader.

5. Select the type of loading from the following:
a. Normal Loading

For normal loading, type the address of the Absolute
Loader (printed at the terminal), followed by G, e.g.,

@xxx500G

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

where xxx is the memory size of the system and is:

XXX Memory Size
017 4K
037 8K
057 12K
077 16K
117 20K
137 24K
157 28K

For example, in an 8K system, type:
@37500G

Normal loading can also be achieved by typing the P
command, e.g.,

QP
b. Relocated Loading

Type the software switch register value and deposit the
relocation value as follows:

@xxx516/yYyyyy 2z2227z</
@xxx500G

or type:

@xxx516/yyyyYy 2z2z2zZ<’/
QP

where xxx516 is dependent on memory size and 1is the
address of the software switch register, yyyyyy is the
0ld content of the switch register, and zzzzzz is the new
relocation value.

The value of zzzzzz is explained in Section 6.2.2 for the
value of the switch register for relocated loading. For
example, in an 8K system, the dialogue would be:

@37516/yyyyyy zzzzzz<’/
@

The following is an example of a normal 1load on an 8K

machine.
;boot system and put Absolute Loader
;in reader
@177560L ;Absolute Loader tape is read
@37500 ;put tape to be loaded in reader
@p ;tape is read in.

The following is an example of a relocated load on an 8K

machine:
sboot system
@177560L ;put Absolute Loader tape
@37500 ;in reader
@37516/000000 1001 ;put tape in reader
[;tape is read

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG
To continue loading, change 1001 in the above example to
1.

6. If more tapes are to be loaded as explained in Section 6.2.2,
put the next tape in the reader and repeat section a or b of
item 5.

7. If the tape is not self-starting, the halt address of the
Absolute Loader is printed, followed by an @. Type the
starting address followed by a G to start the program.

@37500
@xxxxxxG

where xxxxxx is the starting address of the program.

N.2 M9301-YB BOOTSTRAP LOADER

The following are instructions for loading and using the Absolute
Loader on a PDP-11 (e.g., PDP-11/04) without a switch register.

1. Press the BOOT/INIT switch on the PDP-11 front panel to
enable the bootstrap loader. A $ and four numbers print at
the terminal. The four numbers are the values of RO, R4, R6,
and the PC, respectively.

For example:

0077400 012450 000546 004054
$

2. Place the Absolute Loader (DEC-11-UABLB-A-PO) in the reader.

3. Type the device code (PR for the PCll high-speed reader or TT
for the terminal reader) to load the Absolute Loader.

$PRL/
or
$TT./
when the tape has read in, the machine halts.

4. Place the tape to be loaded by the Absolute Loader in the
reader.

5. Select the type of loading from the following:
a. Normal Loading

For normal loading, press the CONT switch on the PDP-11
front panel.

b. Relocated Loading

1) Press the BOOT/INIT switch; a $ followed by the four
numbers explained in item 1 prints at the terminal.

2) Load the address of the software switch register as
follows:

$L xxx516/

N-3

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

If more tapes are to be loaded as explained in Section 6.2.2,

put the next tape in the reader and repeat section a or b of

3) Deposit the relocation-.value in the. software switch

register as follows:

$D YyYYyYy-'

where yyyyyy is the value explained in Section 6.2.
for relocated loading.

4) Load the starting address of the Absolute ‘Loader
follows: .

$L xxx500</
5) Type S to start running the Absolute Loader.
$s./

item 5.

If the tape is not self—starting;

a.

b.

Press the BOOT/INIT switch.

Load. the startlng address of the program with the
command, i.e. .

SL xxxxxx</
Start the program with the S command:
$s</

The following are examples for PDP-11 with 16K words of memory.

Relocateo - coﬁtinuous loading:

$L 77516+
$D 14/

$L 775004/
$5</

Relocated - load in specified area of core:

$L 775164/
$D 10014/
$L 77500/
$5</

N.3 M9301-YA BOOTSTRAP LOADER

The instructions for loading and using the Absolute Loader on a PDP-11
PDP-11/04). without a switch register but with a console

(e.g.,

terminal are the same as described in Section 0.2.

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

PDP-11's without console terminals may only be 1loaded with normal
loading methods. See the M9301 Maintenance Manual for instructions on
placing the address of the paper tape bootstrap in the micro switch on
the M9301 module. The following instructions are for PDP-11's without
console terminals.

1. Place the Absolute Loader tape (DEC-11-UABLB-A-PO) in the
reader.

2. Press the BOOT/INIT switch. When the tape has read in, the
machine halts.

3. Place the self-starting tape to be 1loaded by the Absolute
Loader in the reader.

4. Press the CONT switch.

Abbreviations, standard
PDP-11, K-1

Absolute and relocatable
program sections,
LINK-11S, 3-2

Absolute expressions, PAL-11S,

1-9

Absolute Loader, 6-1, 6-10, F-3

PAL‘llS 7 1_24

Accessing internal registers,

oDT-11, 5-6

Adding devices to IOX, 7-21

Address Mode syntax,
PAL-11A, C-2
PAL-11S, B-2

Addressing,

PAL-11A, 2-9
PAL-11S, 1-12

Altering register contents,

9-6
Arithmetic and logical
operators,
PAL-11A, 2-8
PAL-11S, 1-8
ASCII,
character set, A-1

conversion, PAL-11A, 2-8
conversion, PAL-11S, 1-8

.ASCII directive,
PAL-11A, 2-17
PAL-11S, 1-21
.ASECT and .CSECT program
section directives,
PAL-11S, 1-19
Assembler directives,
PAL-11A, 2-3, 2-15
PAL-11S, 1-18, B-8

Assembly and linking instruc-

tions, J-1

Assembly dialogue, PAL-11A,

2-23
Assembly listing,
PAL-11A, 2-24
PAL-11S, 1-30

Assembly Location Counter,

PAL-11A, 2-8
PAL-11S, 1-10
Assignment, direct,
PAL-11A, 2-5
PAL-11S, 1-6
Autodecrement Mode,
PAL-11A, 2-11
PAL-11s, 1-14
Autoincrement Mode,
PAL-11A, 2-10
PAL-11A deferred, 2-11
PAL-11S, 1-13

INDEX

Blank operator field, PAL-11A,
2-16
Bootstrap Loader, 6-1, F-1
loading and verifying the, 6-7
Bootstrap tapes, loading into
core, 6-8
Bootstraps, paper tape, 6-2
Breakpoints,
ODT-11, 5-6
opT-11X, 5-12, 5-14
Buffer arrangement in data
transfer command, 7-4
Buffer size, IOX, 7-5
Buffering, double, 7-15
Byte count, IOX, 7-8
.BYTE directive,
PAL-11A, 2-17
PAL-11s, 1-21
Byte offset, PAL-11S, 1-17

Calculating offsets,
oDT-11, 5-9
ODT-11X, 5-11
Changing, opening, and closing
locations,
opT-11, 5-4
OoDT-11X, 5-10
Character location pointer (Dot),
ED-11, 4-2
Character set,
ASCII, A-1
PAL-11A, 2-2
PAL-11S, 1-2
Closing, opening, and changing
locations,
ODT-11, 5-4
OoDT-11X, 5-10
Codes, PAL-11lA error, 2-25
Coding techniques, 9-6
Commands and functions, ODT-11,
5-3
Command delimiters, ED-11, 4-2
Command Mode and Text Mode, ED-11,
4-1
Command properties, line-oriented,
ED-11, 4-3
Commands, ED-11, 4-4
to modify the text, 4-8
to move Dot and Mark, 4-6
Comments,
PAL-11A, 2-4
PAL-11S, 1-4
Communication and data flow,
OoDT-11X, 5-15
Communication with IOX, 7-1

Index-1

INDEX (Cont.)

Conditional assembly directives, Directives (cont.),
PAL-11S, 1-23 PAL-11S .CSECT, 1-19
Control format, PAL-11lS, 1l-4 PAL-11S .END, 1-20
Conversion, PAL-11S ASCII, 1-8 PAL-11S .EOT, 1-20.
Conversion tables, L-1)) PAL-11S .EVEN, 1-20
Core memory dumps, 6-14, F-4 PAL-11S .GLOBL, 1-18
Counter, PAL-11S program, 1-12 PAL-11S .LIMIT, 1-23
Creating a paper tape, ED-11, PAL-11S .RAD50, 1-22
4-11 PAL-11S .TITLE, 1-18
CTRL/U, PAL-11lS, 1-24 PAL-11S .WORD, 1-20
Directory, PAL-11S global symbol,
1-30
Done bit, IOX, 7-7
Data transfer commands, (Dot) character ‘location pointer,
buffer arrangement in, 7-4 ED-11, 4-2
device conflicts in, 7-12 Double buffering, 7-15
Data transfers, I0OX, 7-11 Dumps ,
Decimal numbers, PAL-11S, 1-8 core memory, 6-14, F-4
Deferred Autodecrement Mode, output formats, 6-17
PAL-11A, 2-11 storage maps, 6-17
PAL-11lS, 1-14 Duplication, tape, I-1

Deferred Autoincrement Mode,
PAL-11a, 2-11
PAL-11Ss, 1-13

Deferred Immediate (Absolute) ED-11,
and Immediate Mode, PAL-11A, Character location pointer,
2-12 (Dot), 4-2
Deferred Index Mode, command delimiters, 4-2
PAL-11A, 2-12 Command Mode and Text Mode, 4-1
PAL-11S, 1-14 commands, 4-4
Deferred Register Mode, PAL-11S, commands to modify the text, 4-8
1-13 commands to move Dot and Mark,
Deferred Relative and Relative 4-6
Mode, PAL-11A, 2-13 creating a paper tape, 4-11
Device Assignment Table, IOX, editing example, 4-12
7-3 error corrections, 4-10
Device conflicts in data grouping of commands, D-3
transfer commands, 7-12 input and output commands, 4-4,
Device Interrupt Table (DIT), D-1
7-20 line-oriented command properties,
Device Status Table, (DST), 4-3
7-21 Mark, 4-3
Dialogue, operating procedures, 4-10, D-4
PAL-11A assembly, 2-23 page buffer, 4-3
PAL-11A initial, 2-18 pointer-positioning commands,
PAL-11S initial, 1-24 D-2
Direct assignment, restarting, 4-11
PAL-11A, 2-5 search commands, 4-7, D-2
PAL-11S, 1-6 software error halts, 4-17
Directives, starting, 4-11
PAL-11A .ASCII, 2-17 symbols, D-3
PAL~-11A .BYTE, 2-17 Editing example, ED-11, 4-12
PAL-11A .END, 2-16 Editor (ED-11), PAL-11S, 1-2
PAL-11A .EOT, 2-15 .END directive,
PAL-11A .EVEN, 2-16 PAL-11A, 2-16
PAL-11A .WORD, 2-16 PAL-11S, 1-20
PAL-11S .ASCII, 1-21 End-of-File Bit, IOX, 7-7
PAL-11S .ASECT, 1-19 End-of-Medium Bit, IOX, 7-7

PAL-11S .BYTE, 1-21

Index-2

INDEX (Cont.)

.EOT directive,
PAL-11A, 2-15
PAL-11S, 1-20
Error codes,
I0X, 7-6
PAL-11A, 2-7, 2-25, C-8
PAL-11S, 1-31, B-10
Error corrections, ED-11, 4-10
Error detection, ODT-11X, 5-13
Error halts, PAL-11lA software,
2-26
Error procedure and messages,
LINK-11s, 3-7
Error, Q, PAL-11ls, 1-2
.EVEN directive,
PAL-11A, 2-16
PAL-11S, 1-20 .
Example of program using IOX,
7-17
Expressions,
absolute, PAL-11S, 1-9
external, PAL-11S, 1-9
mode of, PAL-11S, 1-9
PAL-11A, 2-7
PAL-11s, 1-7
relocatable, PAL-11S, 1-9
External expression, PAL-11S,
1-9
External symbol, PAL-11S, 1-5

Fatal errors, IOX, 7-17, G-2
Fields, PAL-11A instruction
operand, 2-14
Format control,
PAL-11A, 2-4
PAL-11Ss, 1-4
Format, PAL-11lS statement, 1-2
Forms, PAL-11A instruction,
2-14
FPMP-11,
non-OTS routines, H-7
OTS routines, H-2
routines accessed via trap
handler, H-7
summary, H-1
Functions and commands, ODT-11,
5-3

General registers, PAL-11lS,
1-6
Global symbol directory,
PAL-11Ss, 1-30
Global symbols,
LINK-11s, 3-2
PAL-11S, 1-5

.GLOBL directive, PAL-11S, 1-18
Grouping of commands, ED-11, D-3

Halts, PAL-11A software error,
2-26

Immediate and Deferred Immediate
~ (Absolute) Mode,
PAL-11A, 2-12
PAL-11s, 1-15
Index Mode,
PAL-11A, 2-11
PAL-11S, 1-14
Initial dialogue,
PAL-11A, 2-18
PAL-11S, 1-24
Initial operating procedures,
PAL-11A, C-9
PAL-11Ss, B-11
Initialization, 7-4
Input and output, LINK-11S, 3-3
Input/output commands, ED-11, 4-4,
D-1
Instruction forms,
PAL-11A, 2-14
PAL-11S, 1-17
Instruction mnemonic, PAL-11A,
2-3
Instruction operand fields,
PAL-11A, 2-14
PAL-11ls, 1-17 :
Instruction summary, IOX, G-1
Instructions,
Assembly and linking, J-1
PAL-11A, C-3
PAL-11lS, B-2
Integer conversions, octal-decimal,
L-1
Internal information, IOX, 7-19
Internal registers, accessing,
ODT-11, 5-6
Internal symbol, PAL-11S, 1-5
Introduction, ODT-11, 5-1
10X, ,
adding devices to, 7-21
buffer size, 7-5
byte count, 7-8
communication with, 7-1
data transfers, 7-11
device assignment table, 7-3
Done Bit, 7-7
End~of-File Bit, 7-7
End-of-Medium Bit, 7-7
error codes, 7-6
example of program using, 7-17

Index-3

INDEX (Cont.)

I0X (cont.),
fatal errors, 7-17, G-2
instruction summary, G-1
internal information, 7-19
Mode Byte, 7-5
modes, 7-8
program flow summary, G-1
reenabling the reader and

restarting, 7-16

Status Byte, 7-6
using, 7-3

Label,
PAL-11A, 2-3
PAL-11S, 1-3

.LIMIT directive, PAL-11S,

Line-oriented command

properties, ED-11, 4-3
LINK-11S, ,
absolute and relocatable
program sections, 3-2
error procedure and
messages, 3-=7
global symbols, 3=-2
input and output, 3-3
load map, 3-4
load modules, 3-3
loading and command string,
3-5
object module, 3-3
operating procedures, 3-5
Linking and assembly instruc-
tions, J-1
Linking and relocation,
PAL-11lS, 1-11

Listing, assembly,
PAL-11A, 2-24
PAL-11S, 1-30

Load map, LINK-11lS,

1-23

3-4

Load modules, LINK-11S, 3-3
Loader,
Absolute, 6-1, 6-10, F-3
Bootstrap, 6-1, F-1
PAL-11S Absolute, 1-24
Loading,
bootstrap tapes into core,
6-8
PAL-11A, 2-18

PAL-11S, 1-24
unused trap vectors, 9-5
Loading and command string,
LINK-11S, 3-5
Loading and verifying the
Bootstrap Loader, 6-7
Location counter, PAL-11S,
assembly, 1-10

Logical and arithmetic.operators,
PAL-11A, 2-8
PAL-11S, 1-8

Mark, ED-11, 4-3
Mathematical constants in octal,

L-7
Mnemonic, PAL-11A instruction,
2-3
Mode,
10X, 7-8
PAL-11A, Autodecrement, 2-11
PAL-11A, Autoincrement Deferred,
2-11
PAL-11A, Deferred Autodecrement,
2-11
PAL-11A, Deferred Index, 2-12
PAL-11A, Immediate and Deferred
Immediate (Absolute), 2-12
PAL-11A, Index, 2-11
PAL-11A, Relative and Deferred

Relative, 2-13
Mode Byte, IOX, 7-5
Mode of expressions, PAL-11S, 1-9

Negative numbers, PAL-11S, 1-8
Non-OTS routines, FPMP-11, H-7
Notation, scales of, L-6
Numbers,

decimal, PAL-11ls, 1-8

negative, PAL-11S, 1-8

octal, PAL-11S, 1-8

PAL-11A, 2-7

positive, PAL-11S, 1-8

Object module, LINK-11lS, 3-3
Object module output, PAL-11S,

1-30

Octal-decimal integer conversions,
L-1

Octal numbers, PAL-11S, 1-8

oDT,

command syntax, 5-2
priority level, 5-10
ODT-11,

accessing internal registers,
5-6

breakpoints, 5-6

calculating offsets, 5-9

commands and functions, 5-3

introduction, 5-1

opening, changing, and closing
locations, 5-4

Index-4

INDEX (Cont.)

oDT-11 (cont.),
operating procedures, 5-20
running the program, 5-7
searches, 5-8, 5-18
starting and restarting, 5-21
summary, E-1
teletype interrupt, 5-10
opT-11X,
breakpoints, 5-12, 5-14
calculating offsets, 5-11
communication and data flow,
5-15
error detection, 5-13
opening, changing, and
closing locations, 5-10
programming considerations,
5-14
single-Instruction Mode,
5-12
Offsets,
calculating, ODT-11, 5-9
calculating, ODT-11X, 5-11
PAL-11S byte, 1-17
One device, single buffer
transfer on, 7-14
Opening, changing, and closing
locations,
opT-11, 5-4
oDpT-11X, 5-10
Operand,
PAL-11A, 2-3
PAL-11lSs, 1-4
Operand fields, instruction,
PAL-11A, 2-14
PAL-11lS, 1-17
Operating procedures,
ED-11, 4-10, D-4
LINK-11S, 3-5
oDT-11, 5-20
PAL-11A, 2-17
PAL-11A initial, C-9
PAL-11S, 1-24
PAL-11S initial, B-11
Operator,
PAL-11A, 2-3
PAL-11S, 1-3
Operators,
PAL-11A, arithmetic and
logical, 2-8
PAL-11S, arithmetic and
logical, 1-8
OTS routines, FPMP-11l, H-2
Output formats, dumps, 6-17
Output, PAL-11S object module,
1-30

Page size,

PAL-11A, 2-4
PAL-11s, 1-4

PAL-11A,

Index-5

Address Mode syntax, C-2
addressing, 2-9

arithmetic and logical operators,

2-8

ASCII conversion, 2-8

.ASCII directive, 2-17

assembler directives, 2-3, 2-15

assembly dialogue, 2-23

assembly listing, 2-24

Assembly Location Counter, 2-8

Autodecrement Mode, 2-11

Autoincrement Mode, 2-10

blank operator field, 2-16

.BYTE directive, 2-17

character set, 2-2

comments, 2-4

Deferred Autodecrement Mode,
2-11

Deferred Autoincrement Mode,
2-11

Deferred Index Mode, 2-12

direct assignment, 2-5

.END directive, 2-16

.EOT directive, 2-15

error code, 2-7

error codes, 2-25, C-8

.EVEN directive, 2-16

expressions, 2-7

format control, 2-4)

Immediate and Deferred Immediate
(Absolute) Mode, 2-12

Index Mode, 2-11

initial dialogue, 2-18

initial operating procedures,
Cc-9

instruction forms, 2-14

instruction mnemonic, 2-3

instruction operand fields, 2-14

instructions, C-3

label, 2-3

loading, 2-18

numbers, 2-7

operand, 2-3

operating procedures, 2-17

operator, 2-3

page size, 2-4

permanent symbols,

Program Counter, 2

Register Mode, 2-10

register symbols, 2-6

Relative and Deferred Relative
Mode, 2-13

software error halts, 2-26

special characters, C-1

statements, 2-2

2-5
-9

INDEX (Cont.)

PAL-11A (cont.),]
user-defined symbols, 2-5
.WORD directive, 2-16
PAL-11S '
absolute expression, 1-9
Absolute Loader;,. 1-24
Address Mode syntax, B-2
addressing, 1-12
ASCII conversion, 1-8
.ASCII directive, 1-21
assembler directives, 1-18,
B-8

assembly listing, 1-30

Autodecrement. Mode, 1-14

Autoincrement Mode,.1-13

.BYTE directive, 1-21

byte offset, 1-17

character set, 1-2

comments, 1-4

conditional assembly direc-
tives, 1-23 o

control format, 1-4

CTRL/U, 1-24 ,

decimal numbers, 1-8

Deferred Autodecrement
Mode, 1-14

Deferred Autoincrement
Mode, 1-13

Deferred Index Mode, 1-14

Deferred Register Mode, 1-13

direct assignment, 1-6

Editor (ED-11), 1-2

.END directive, 1-20

.EOT directive, 1-20

error codes, 1-31, B-10

.EVEN directive, 1-20

expressions, 1-7

external symbol, 1-5

general registers, 1-6

global symbol, 1-5

global symbol directory, 1-30

.GLOBL directive, 1-18

Immediate and Deferred
Immediate (Absolute) Modes,
1-15

Index Mode, 1-14

initial dialogue, 1-24

initial operating procedures,
"B-11

instruction forms, 1-17

instruction operand fields,
1-17

instructions, B-2

internal symbol, 1-5

label, 1-3

+LIMIT directive, 1-23

loading, 1-24

negative numbers, 1-8

object module output, 1-30

PAL-11S (cont.),
octal numbers, 1-8
operand, 1-4 .
operating procedures, 1-24
operator, 1-3 S
page size, 1-4
permanent symbols, 1-5
positive numbers, 1-8
Program Counter, 1-12
program section directives
(.ASECT and .CSECT), 1-19
.RAD50 directive, 1-22
Register Mode, 1-12
register symbols, 1-6
Relative and Deferred Relative
Modes, 1-15
relocatable expression, 1-9
relocation and linking, 1-11
relocation directory, 1-31
RUBOUT, 1-24
software error halts, 1-32
statement format, 1-2
statements, 1-2
symbol table, 1-5
symbols, 1-5
terminators, B-1
text block, 1-31
.TITLE directive, 1-18
truncation, 1-8
user—-defined symbols, 1-5
.WORD directive, 1-20
Paper tape bootstraps, 6-2
Permanent symbols,
PAL-11A, 2-5
PAL-11s, 1-5
Pointer-positioning commands,
ED-11, D-2
Position-independent code, writing,
9-1
Positive numbers, PAL-11S, 1-8
Powers of two, L-&
Priority level, ODT, 5-10
Program Counter,
PAL-11A, 2-9
PAL-11ls, 1-12
Program flow summary, IOX, G-1
Program section directives
(.ASECT and .CSECT) PAL-11lS,
1-19
Programming considerations,
ODT-11X, 5-14

Q error, PAL-11lS, 1-2

Index-6

INDEX (Cont.)

.RAD50 directive, PAL-11S, 1-22 Storage maps, dumps, 6-17

Real-time capability, 7-1 Subroutines, 9-7

Reenabling the reader and Summary,

restarting, IOX, 7-16 FPMP-11, H-1

Register contents, altering, oDpT-11, E-1

9-6 Symbol,

Register Mode, external, PAL-11lS, 1-5
PAL-11A, 2-10 global, PAL-11lS, 1-5
PAL-11S, 1-12 internal, PAL-11lS, 1-5

Register symbols, Symbol table, PAL-11S, 1-5
PAL-11A, 2-6 Symbols,

PAL-11S, 1-6 ED-11, D-3
Registers, general, PAL-11S, PAL-11A permanent, 2-5
1-6 PAL-11A register, 2-6
Relative and Deferred Relative PAL-11A user-defined, 2-5
Mode, PAL-11S, 1-5
PAL-11A, 2-13 permanent, PAL-11S, 1-5
PAL-11S, 1-15 register, PAL-11lS, 1-6
Relocatable expression, user-defined, PAL-11lS, 1-5

PAL-11S, 1-9
Relocation and linking,
PAL-11ls, 1-11

Relocation directory, PAL-11S, Table, symbol, PAL-11S, 1-5
1-31 Tables, conversion, L-1
Restarting and starting ODT-11, Tape duplication, 1-1
5-21 Techniques, coding, 9-6
Restarting ED-11, 4-11 Teletype interrupt, ODT-11, 5-19
Routines accessed via trap Terminators, PAL-11lS, B-1
handler, FPMP-11, H-7 Text block, PAL-11s, 1-31
RUBOUT, PAL-11S, 1-24 .TITLE directive, PAL-11S, 1-18
Running the program, ODT-11, Trap vectors, loading unused, 9-5
5=7 Truncation, PAL-11S, 1-8

Two, powers of, L-5

Scales of notation, L-6

Search commands, ED-11, 4-7, Unused trap vectors, loading, 9-5
D-2 User-defined symbols,

Searches, ODT-11, 5-8, 5-18 PAL-11A, 2-5

Single buffer transfer on PAL-11S, 1-5
one device, 7-14 Using IOX, 7-3

Single-Instruction Mode,
ODT-11X, 5-12
Software error halts,
ED-11, 4-17 Verifying and loading the boot-
PAL-11A, 2-26 strap loader, 6-7
PAL-11S, 1-32
Special characters, PAL-11A,

c-1
Standard PDP-11 abbreviations, .WORD directive,

K-1 PAL-11A, 2-16
Starting and restarting ODT-11, PAL-11Ss, 1-20

5-21 Writing position-independent
Starting ED-11, 4-11 code, 9-1

Statement format, PAL-11lS, 1-2
Statements,

PAL-11A, 2-2

PAL-11S, 1-2
Status Byte, IOX, 7-6

Index-7

PDP-11 Paper Tape
Software Handbook
DEC-11-XPTSA-B-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. [j

- — — — DoNot Tear - Fold Here and Tape — — — — — — — — —

gt e

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45
DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

- — — — DoNotTear-FoldHep¢g — — — — — — — — _—_ - - = = - —

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

digital equipment corporation

Printed in U.S.A.

