DECSYSIEM

FORTRAN
Reference Manual

Order No. DEC-20-LFRMA-A-D

FORTRAN
Reference Manual

Order No. DEC-20-LFRMA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, January 1976

The information in this document is subject to change without notice and should not be construed as a commit-
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors

that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance

with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment

that is not supplied by DIGITAL.

Copyright (© 1976 by Digital Equipment Corporation

The postage prepaid READER’S COMMENTS form on the last page of this document requests the user’s critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL

DEC

PDP

DECUS

UNIBUS
COMPUTER LABS
COMTEX

DDT

DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC

LAB-8
DECsystem-20

MASSBUS
OMNIBUS
0S/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-10
TYPESET-11

CHAPTER 1
1.1

CHAPTER 2

2.1

2.2

2.2.1
2.2.2
223
224
23

2.3.1
23.2
233
234
235
2.3.6
24

CHAPTER 3

3.1
3.2

3.2.1
322
3.23
3.24
3.2.5
3.26
3.2.7
3.2.8
33

34

35

35.1
3.5.2
3.53

CHAPTER 4

4.1
4.1.1
4.2
4.2.1
4.3
43.1
43.2
433
434

CONTENTS

Page
INTRODUCTION
INTRODUCTION e e e e e e e e e e 1-1
CHARACTERS AND LINES
CHARACTER SET e et e e e e 2-1
STATEMENT, DEFINITION, AND FORMAT 2-3
Statement Label Field and Statement Numbers 2-3
Line Continuation Field 2-3
Statement Field e 2-3
Remarks e e e e e 2-3
LINETYPES o e e 24
Initial and Continuation Line Types 2-4
Multi-Statement Lines L. 2-5
Comment Linesand Remarks 2-5
Debug Lines e e e e e e e 2-6
Blank Lines e e e e e 2-6
Line-Sequenced Input oL oL 2-6
ORDERING OF DECSYSTEM-20 FORTRAN STATEMENTS 2-6
DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS
DATA TYPES . . . e e e e 3-1
CONSTANTS . . . e 3-1
Integer Constants L L e e e 3-2
Real Constants i i e e e e 3-2
Double Precision Constants 3-3
Complex Constants e 34
Octal Constants e e e 34
Logical Constants e e e 3-5
Literal Constants o 0 i i e e e e e 3-5
Statement Label Constants 3-6
SYMBOLIC NAMES e 3-6
VARIABLES e e 3-6
ARRAYS e e 3-7
Array Element Subscripts L L e e 3-7
Dimensioning Arrayso e e e e e e 3-8
Order of Stored Array Elements 39
EXPRESSIONS
ARITHMETIC EXPRESSIONS e 4-1
Rules for Writing Arithmetic Expressions 4-2
LOGICAL EXPRESSIONS e e 4-2
Relational Expressions e 4-6
EVALUATION OF EXPRESSIONS e 4-8
Parenthesized Subexpressions Lo 4-8
Hierarchy of Operators i ittt 4-8
Mixed Mode Expressions e 4-9
Use of Logical Operands in Mixed Mode Expressions 4-10

iii

CHAPTER 5

5.1
5.2
53
54

CHAPTER 6

6.1
6.2
6.2.1
6.3
6.4
6.5
6.5.1
6.6
6.7
6.8

CHAPTER 7
7.1

CHAPTER 8

8.1
8.2
8.3
8.4

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.23
9.3
9.3.1
93.2
9.3.3
94
9.4.1
94.2
94.3
9.5
9.6
9.7
9.7.1

CONTENTS (Cont)

Page
COMPILATION CONTROL STATEMENTS
INTRODUCTION . . . e e e e e e e e e e e 5-1
PROGRAM STATEMENT e e e e e 5-1
INCLUDE STATEMENT e e e e e e 5-1
END STATEMENT e e e e 5-2
SPECIFICATION STATEMENT
INTRODUCTION o e e e e e e e e e e e e e e e e 6-1
DIMENSION STATEMENT i e 6-1
Adjustable Dimensions Lo e 6-2
TYPE SPECIFICATION STATEMENTS 6-3
IMPLICIT STATEMENTS et e e e 64
COMMON STATEMENT e e e e e 6-5
Dimensioning Arrays in COMMON Statements 6-6
EQUIVALENCE STATEMENT e 6-6
EXTERNAL STATEMENT e 6-7
PARAMETER STATEMENT i i 6-8
DATA STATEMENT
INTRODUCTION e e e e e e e e 7-1
ASSIGNMENT STATEMENTS
INTRODUCTION e e e e e e e e e s e 8-1
ARITHMETIC ASSIGNMENT STATEMENT 8-1
LOGICAL ASSIGNMENT STATEMENTS 83
ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT 83
CONTROL STATEMENTS
INTRODUCTION e e e e e e e e e e e e 9-1
GO TO CONTROL STATEMENTS et e 9-1
Unconditional GO TO Statements 9-2
Computed GO TO Statements v 9-2
Assigned GO TO Statements i v i i e e e e e 9-2
IF STATEMENTS e 9-3
Arithmetic IF Statements L o 9-3
Logical IF Statements 94
Logical Two-Branch IF Statements 94
DO STATEMENT e 9-5
Nested DO Statements 9-6
Extend Range 9-7
Permitted Transfer Operations 9-8
CONTINUE STATEMENT e 9-9
STOP STATEMENT it 9-9
PAUSE STATEMENT e 9-10
T(TRACE)Option ittt ettt et 9-10

iv

CHAPTER 10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
1033
1034
103.4.1
10.3.5
103.6
10.3.7
104
10.5
10.5.1
10.5.2
10.5.3
10.54
10.5.5
10.5.6
10.6
10.7
10.8
10.8.1
10.8.2
10.8.3
10.84
10.8.5
10.8.6
10.9
10.10
10.10.1
10.10.2
10.11
10.12
10.13
10.14
10.14.1
10.14.2
10.14.3
10.15

CONTENTS (Cont)

1/0 STATEMENTS

DATA TRANSFER OPERATIONS e
TRANSFER MODES e e e e
Sequential Mode e
Random Access Mode e
Append Mode L. e
I/0 STATEMENTS, BASIC FORMATS AND COMPONENTS
I/O Statement Keywords
Logical Unit Numbers
FORMAT Statement References
I/OList . . . e e e e e e e e e e e
Implied DO Constructs e
The Specification of Records for Random Access
List-Directed I/O e e e
NAMELISTI/O Lists o o o it e
OPTIONAL READ/WRITE ERROR EXIT AND END-OF-FILE ARGUMENTS
READ STATEMENTS e e e e e e e e e
Sequential Formatted READ Transfers
Sequential Unformatted Binary READ Transfers
Sequential List-Directed READ Transfers
Sequential NAMELIST-Controlled READ Transfers
Random Access Formatted READ Transfers
Random Access Unformatted READ Transfers
SUMMARY OF READ STATEMENTS
REREAD STATEMENT it
WRITE STATEMENTS e e e e e e
Sequential Formatted WRITE Transfers
Sequential Unformatted WRITE Transfer
Sequential List-Directed WRITE Transfers
Sequential NAMELIST-Controlled WRITE Transfers
Random Access Formatted WRITE Transfers
Random Access Unformatted WRITE Transfers
SUMMARY OF WRITE STATEMENTS
ACCEPT STATEMENT e it e
Formatted ACCEPT Transfers
ACCEPT Transfers Into FORMAT Statement
PRINT STATEMENT e e e e e e
TYPE STATEMENT
FINDSTATEMENT
ENCODE AND DECODE STATEMENTS
ENCODE Statement
DECODE Statement
Example of ENCODE/DECODE Operations
SUMMARY OF 1/O STATEMENTS

CHAPTER 11

11.1
11.2
11.2.1
11.2.2

CHAPTER 12

12.1
12.2
12.2.1
12.2.2

CHAPTER 13

13.1
13.1.1
13.2
13.2.1
13.2.2
13.2.3
13.24
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
133

CHAPTER 14

14.1
14.2
14.3
144
14.5
14.6
14.7
14.8
14.9

CHAPTER 15

15.1
15.1.1
15.2
153
154
154.1
154.2

CONTENTS (Cont)

NAMELIST STATEMENTS

INTRODUCTION . . . e e e e e e e e e e e
NAMELIST STATEMENT e ..
NAMELIST-Controlled Input Transfers
NAMELIST-Controlled Output Transfers

FILE CONTROL STATEMENTS

INTRODUCTION e e e e e s e e
OPEN AND CLOSE STATEMENTS
Options for OPEN and CLOSE Statements
Summary of OPEN/CLOSE Statement Options

FORMAT STATEMENT

INTRODUCTION e e e e e e e s
FORMAT Statement, General Form

FORMAT DESCRIPTORS e
Numeric Field Descriptors
Interaction of Field Descriptors With I/O List Variables During Transfer
G, General Numeric Conversion Code
Numeric Fields with Scale Factors
Logical Field Descriptors
Variable Numeric Field Widths L L.
Alphanumeric Field Descriptors,
Transferring Alphanumeric Data Directly Into or From FORMAT Statements
Mixed Numeric and Alphanumeric Fields
Multiple Record Specifications 0oL
Record Formatting Field Descriptors

CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS

DEVICE CONTROL STATEMENTS

INTRODUCTION e e e e e e
REWIND STATEMENT
UNLOAD STATEMENT e
BACKSPACE STATEMENT
END FILE STATEMENT o
SKIP RECORD STATEMENT
SKIP FILE STATEMENT
BACKFILE STATEMENT
SUMMARY OF DEVICE CONTROL STATEMENTS

SUBPROGRAM STATEMENTS

INTRODUCTION e e e e e
Dummy and Actual Arguments
STATEMENT FUNCTIONS it
INTRINSIC FUNCTIONS (DECsystem-20 FORTRAN DEFINED FUNCTIONS)
EXTERNAL FUNCTIONS it e e e e
Basic External Functions (DECsystem-20 FORTRAN Defined Functions)
Generic Function Names L oL o oo,

vi

15.5
15.5.1
15.5.2
15.6
15.6.1
15.7

CHAPTER 16

16.1
16.2

APPENDIX A

APPENDIX B

B.1
B.1.1
B.1.2
B.2
B.2.1
B.2.2

APPENDIX C

C.1
C.1.1
C.1.1.1
C.1.2
C.2
C.2.1
C3
C.3.1
C3.2
C4

APPENDIX D

D.1
D.1.1
D.1.2
D.1.3
D.1.4
D.1.5
D.1.6
D.1.7
D.2
D.2.1
D.2.1.1
D.2.1.2
D.2.1.3
D.2.1.4

CONTENTS (Cont)

Page
SUBROUTINE SUBPROGRAMS 15-7
Referencing Subroutines (CALL Statement) 15-9
DECsystem-20 FORTRAN Supplied Subroutines 15-10
RETURN STATEMENT AND MULTIPLE RETURNS 15-10
Referencing External FUNCTION Subprograms 15-12
MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT) 15-13
BLOCK DATA SUBPROGRAMS
INTRODUCTION e e e e e e 16-1
BLOCK DATA STATEMENT i 16-1
ASCII-1968 CHARACTER CODE SET
SPECIFYING DIRECTORY AREAS
USING LOGICAL NAMES e e B-1
Giving The DEFINE Command B-1
Using The Logical Name B-2
USING PROJECT-PROGRAMMER NUMBERS B-2
Running The TRANSL Program B-2
Using The Project-Programmer Number B-2
USING THE COMPILER
RUNNING THE COMPILER C-1
Switches Available with DECsystem-20 FORTRAN C-1
The /[DEBUG Switch C-2
LOAD Class Commands it C-4
READING A DECsystem-20 FORTRAN LISTING C-5
Compiler Generated Variables C-6
ERROR REPORTING e C-10
Fatal Errors and Warning Messages C-10
Message Summary L L L e C-11
CREATE A REENTRANT FORTRAN PROGRAM WITHLINK C-11
WRITING USER PROGRAMS
GENERAL PROGRAMMING CONSIDERATIONS D-1
Accuracy and Range of Double Precision Numbers,.DlI
Writing FORTRAN Programs for Execution on Non-DEC Machines D-1
Using Floating Point DO Loops D-1
Computation of DO Loop Iterations D-1
Subroutines — Programming Considerations, D-2
Reordering of Computations n-2
Dimensioning of Formal Arrays D-3
DECsystem-20 FORTRAN GLOBAL OPTIMIZATION D-4
Optimization Techniques D-4
Elimination of Redundant Computations D-4
Reduction of Operator Strength D-5
Removal of Constant Computation From Loops D-6
Constant Folding and Propagation D-7

vii

D.2.1.5
D.2.1.6
D.2.1.7
D.2.1.8
D.2.1.9
D.2.2
D.23
D.3
D.3.1
D.3.2
D.3.3
D.3.4
D.3.5
D.3.6

D3.7
D.3.7.1
D3.7.2

APPENDIX E

E.l
E.2
E.3
E.3.1
E.3.2
E.3.2.1
E.3.2.2
E.4
E.4.1
E4.2
E.4.2.1
E.4.3
E.4.4
E.5
E.5.1
E.5.2
E.5.3
E.5.3.1

E.5.3.2

E.5.3.3
E53.4

E.5.3.5
E.5.3.6

E.5.3.7

CONTENTS (Cont)

Page
Removal of Inaccessible Code D-7
Global Register Allocation D-7
I/O Optimization e D-7
Uninitialized Variable Detection D-8
Test Replacement D-8
Improper Function References D-8
Programming Techniques for Effective Optimization D-8
INTERFACING WITH NON-DECsystem-20 FORTRAN PROGRAMS AND FILES D-8
Calling Sequences e D-9
Accumulator Usage D-10
Argument Listso Lo L. D-10
Argument Types e e D-12
Description of Arguments L. L. e e e D-12
Converting Existing MACRO Libraries for Use with DECsystem-20
FORTRAN e D-13
Interaction with COBOL, D-18
Calling FORTRAN Subprograms from COBOL Programs D-18
Calling COBOL Subroutines from FORTRAN Programs D-19
FOROTS
FEATURES OF FOROTS e E-1
ERRORPROCESSING e E-2
INPUT/OUTPUT FACILITIES e E-2
Input/Output Channels Used Internally by FOROTS E-2
File AccessModes L Lo e E-2
Sequential TransferMode E-2
Random AccessMode E-3
ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS E-3
ASCIT Data Files e e e E-3
FORTRAN Binary DataFiles E-3
Formatof Binary Files E-4
Mixed Mode Data Files E-11
Image Files e e E-11
USING FOROTS s e e E-12
FOROTS Entry Points E-12
Calling Sequences e e E-12
MACRO Calls for FOROTS Functions E-13
Formatted/Unformatted Transfer Statements, Sequential Access
Calling Sequences i v v v i i it e e e e e e e e E-14
NAMELIST Data Transfer Statements, Sequential Access
Calling SEqUENCES v v v e e e e e e e e e e e e e E-15
Array Offsetsand Factoring, E-16
Formatted/Unformatted Data Transfer Statements,
Random Access Calling Sequences E-17
Calling Sequences for Statements Which Use Default Devices E-18
Calling Sequences for Statements Which Position Magnetic
Tape Units e E-19
List Directed Input/Qutput Statements E-20

viii

E.5.3.8
E.5.3.9
E.5.3.10
E.6

APPENDIX F

F.1
F.1.1
F.1.2
F.1.3
F.2
F.2.1
F.3
F.4
F.5
F.6
F.7
F.8
F.9

APPENDIX G

APPENDIX H

CONTENTS (Cont)

Page
Input/Output Data Lists E-20
OPEN and CLOSE Statements, Calling Sequences E-23
Software Channel Allocation and De-allocation Routines E-24
LOGICAL/PHYSICAL DEVICE ASSIGNMENTS E-25
FORDDT
INPUT FORMAT e e e e e e e e e e e F-2
Variablesand Arrays F-2
Numeric Conventions e e F-3
Statement Labels and Source Line Numbers F-3
NEW USER TUTORIAL e e e s F-3
Basic Commands e F-3
FORDDT AND THE FORTRAN /DEBUG SWITCH F-6
LOADING AND STARTING FORDDT F-7
SCOPE OF NAME AND LABEL REFERENCES F-8
FORDDT COMMANDS e e e e e e e e e F-8
ENVIRONMENT CONTROL e e e F-16
FORTRAN /OPTIMIZE SWITCH F-16
FORDDT MESSAGES e F-16
COMPILER MESSAGES

DECsystem-10 COMPATIBILITY

iX

Table No.

1-1
21
31
3.2
4-1
4-2
43
4-4
4.5
4-6
4.7
4-8
8-1
101
10-2
103
104
12-1
13-1
13-2
133
134

13-5
14-1
15-1
15-2
15-3
C-1
C-2
D-1
D-2
D-3
E-2
F-1

TABLES

Title Page
FORTRAN Statement Categories v v v i it it e oo 1-2
DECsystem-20 FORTRAN Character Set 2-1
Constants L L e e e e e e e e e e e e e e e e e 3-2
Use of Symbolic Names e 3-6
Arithmetic Operations and Operators 4-1
Type of the Resultant Obtained From Mixed Mode Operations 4-3
Permitted Base/Exponent Type Combinations 44
Logical Operators i e e e e e e e 44
Logical Operations, Truth Table 4-5
Binary Logical Operations, Truth Table 4-6
Relational Operators and Operations 4-7
Hierarchy of FORTRAN Operators 49
Rules for Conversion in Mixed Mode Assignments 8-2
DECsystem-20 FORTRAN Logical Device Assignments 104
Summary of Read Statements 10-12
Summary of WRITE Statements 10-15
Summary of DECsystem-20 FORTRAN [/O Statements 10-21
OPEN/CLOSE Statement Arguments 129
DECsystem-20 FORTRAN Conversion Codes 13-3
Action of Field Descriptors On Sample Data 13-5
Numeric Field Codes 13-6
Descriptor Conversion of Real and Double Precision Data
According to Magnitude L L. 13-8
FORTRAN Print Control Characters 13-14
Summary of DECsystem-20 FORTRAN Device Control Statements 14-3
Intrinsic Functions (DECsystem-20 FORTRAN Defined Functions) 154
Basic External Functions (DECsystem-20 FORTRAN Defined Functions) 15-8
FORTRAN Library Subroutines 15-15
FORTRAN Compiler Switches o . .. C-2
Modifiers to /[DEBUG Switch C-3
Argument Types and Type Codes, D-12
Upward Compatibility (FORSE TO FOROTS) D-21
Downward Compatibility (FOROTSTOFORSE) D-22
FORTRAN Device Table E-27
Table of Commands F-1

PREFACE

The DECsystem-20 FORTRAN Reference Manual describes the FORTRAN language as
implemented for the DECsystem-20 FORTRAN Language Processing System (referred to as
DECsystem-20 FORTRAN).

The language manual is intended for reference purposes only; tutorial type text has becn
minimizced. The rcader is expected to have some experience in writing FORTRAN programs
and to be familiar with the standard FORTRAN language set and terminology as defined in
the American National Standard FORTRAN, X3.9-1966.

The descriptions of the DECsystem-20 FORTRAN extensions and additions to the standard
FORTRAN language sct are printed in bold face italic type.

Opcrating procedures and descriptions of the DECsystem-20 programming environment are
included in the appendices.

Xi

CHAPTER 1 Introduction

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set arc printed in boldface italic type.

CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

The DECsystem-20 FORTRAN language set is compatible with and encompasses the standard set described in
“American National Standard FORTRAN, X3.9-1966” (referred to as the 1966 ANSI standard set). DECsystem-20
FORTRAN also provides many extensions and additions to the standard set which greatly enhance the usefulness of
DECsystem-20 FORTRAN and increases its compatibility with FORTRAN language sets implemented by other
major computer manufacturers. In this manual the DECsystem-20 FORTRAN extensions and additions to the 1966
ANSI standard set are printed in boldface italic type.

A DECsystem-20 FORTRAN source program consists of a set of statements constructed using the language elements
and the syntax described in this manual. A given FORTRAN statement will perform anyone of the following functions:

a. It will cause operations such as multiplication, division, and branching to be carried out.
b. It will specify the type and format of the data being processed.
c. It will specify the characteristics of the source program.

FORTRAN statements arc comprised of key words (i.e., words which are recognized by the compiler) used with

elements of the language set: constants, variables, and expressions. There are two basic types of FORTRAN
statements: executable and nonexecutable.

Executable statements specify the action of the program; nonexecutable statements describe the characteristics and
arrangement of data, editing information, statement functions, and the kind of subprograms that may be included in
the program. The compilation of executable statements results in the creation of executable code in the object
program. Nonexecutable statements provide information only to the compiler, they do not create executable code.

In this manual the FORTRAN statements are grouped into twelve categories, each of which is described in a separate
chapter. The name, definition, and chapter reference for each statement category are given in Table 1-1.

The basic FORTRAN language elements (i.e., constants, variables, and expressions), the character set from which
they may be formed, and the rules which govern their construction and use are described in Chapters 2 through 4.

1-1

CHAPTER 1

Table 1-1
FORTRAN Statement Categories

Statement Categories

Category Name

Description

Chapter Reference

Compilation Control
Statements

Specification Statements

DATA Statement

Assignment Statements

Control Statements

Input/Output Statements

NAMELIST Statement

File Control Statements

FORMAT Statement

Device Control Statements

SUBPROGRAM
Statements

BLOCK DATA Statements

Statements in this category identify programs
and indicate their end.

Statements in this category declare the
properties of variables, arrays, and functions.

This statement assigns initial values to variables
and array elements.

Statements in this category cause named
variables and/or array elements to be replaced
by specified (assigned) values.

Statements in this category determine the order
of execution of the object program and
terminate its execution.

Statements in this category transfer data
between internal storage and a specified input
or output medium.

This statement establishes lists that are used
with certain input/output statements to
transfer data which appears in a special type of
record.

Statements in this category identify, open and
close files and establish parameters for input
and output operations between files and the
processor.

This statement is wused with certain
input/output statements to specify the form in
which data appears in a FORTRAN record on a
specified input/output medium.

Statements in this category enable the
programmer to control the positioning of
records or files on certain peripheral devices.

Statements in this category enable the
programmer to define functions and
subroutines and their entry points.

Statements in this category are used to declare
data specification subprograms which may
initialize common storage areas.

5

10

11

12

13

14

15

16

1-2

CHAPTER 2

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

2.1 CHARACTER SET

Character Set

CHAPTER 2

CHARACTERS AND LINES

The digits, letters, and symbols recognized by DECsystem-20 FORTRAN are listed in Table 2-1. The remainder of
the ASCII-1968 character set!, although acceptable within literal constants or comment text, causes a fatal error in
other contexts. An exception is CTRL/Z which, when used in terminal input, means end-of-file.

NOTE

Lower case alphabetic characters are treated as upper case
outside the context of Hollerith constants, literal strings, and

comments.

Table 2-1

DECsystem-20 FORTRAN Character Set

Letters

Aa Jj Ss
B,b K,k T,t
C,c L1 U,u
D,d M,m Vv
Ee N,n W,w
F.f 0,0 X,x
G.g Pp Y,y
H,h Qq 2z
Li R,r

(continued)

! The complete ASCII-1968 character set is defined in the X3.4-1968 version of the “American National Standard for Information

Interchange,” and is given in Appendix A.

CHAPTER 2

Table 2-1 (Cont)

DECsystem-20 FORTRAN Character Set

Character Set

Digits

A WN—=O
O 00 O\

Symbols

! Exclamation Point
” Quotation Marks

Number Sign

$ Dollar Sign

& Ampersand

> Apostrophe

(Opening Parenthesis
) Closing Parenthesis
* Asterisk

+ Plus

, Comma
Hyphen (Minus)
. Period (Decimal Point)
| Slant (slash)
Colon
Semicolon
Less Than
Equals
Greater Than
\ Circumflex

\VAT! A CRERE

Line Termination Characters

Line Feed
Form Feed
Vertical Tab

Line Formatting Characters

Carriage Return
Horizontal Tab
Blank

Note that horizontal tabs normally advance the character position pointer to the next position that is an even
multiple of 8. An exception to this is the initial tab which is defined as a tab that includes or starts in character
position 6. (Refer to Section 2.3.1 for a description of initial and continuation line types.) Tabs within literal
specifications count as one character even though they may advance the character position pointer as many as eight

places.

2-2

Statement LABEL,
CONTINUATION and STATEMENT
CHAPTER 2 Fields and Remarks

2.2 STATEMENT, DEFINITION, AND FORMAT

Source program statements are divided into physical lines. A line is defined as a string of adjacent character
positions, terminated by the first occurrence of a line termination character regardless of context. Each line is
divided into four fields:

‘1 Line Character Positions =|‘
1 2 3 4 5 6 7 8 70 71 72 73 .
~ —~ 7\ VAN T J - Y
Statement Continuation Statement Field Remarks
Label Field Field

2.2.1 Statement Label Field and Statement Numbers

A one to five digit number may be placed in the statement label field of an initial line to identify the statement. Any
source program statement that is referenced by another statement must have a statement number. Statement
numbers may be any number from 1 to 99999; leading zeroes and all blanks in the label field are ignored (e.g., the
numbers 00105 and 105 are both accepted as statement number 105). The statement numbers given in a source
program may be assigned in any order; however, each statement number must be unique with respect to all other
statements in the program. Non executable statements, with the exception of FORMAT statements, cannot be
labeled.

When source programs are entered into the system via a standard user terminal, an initial tab may be used to skip
all or part of the label field.

If an initial tab is encountered during compilation, FORTRAN examines the character immediately following the
tab to determine the type of line being entered. If the character following the tab is one of the digits 1 through 9,
FORTRAN considers the line as a continuation line and the second character after the tab as the first character
of the statement field. If the character following the tal is other than one of the digits 1 through 9, FORTRAN
considers the line to be an initial line and the character following the tab is considered to be the first character of the
statement field. The character following the initial tab is considered to be in character position 6 in a continuation
line, and in character position 7 in an initial line.

2.2.2 Line Continuation Field

Any alphanumeric character (except a blank or a zero) placed in this field (position 6) identifies the line as a
continuation line (see Paragraph 2.3.1 for description).

Whenever a tab is used to skip all or part of the label field of a continuation line, the next character entered must be
one of the digits 1 through 9 to identify the line as a continuation line.

2.2.3 Statement Field

Any FORTRAN statement may appear in this field. Blanks (spaces) and tabs do not affect compilation of the state-
ment and may be used freely in this field for appearance purposes, with the exception of textual data given within
either a literal or Hollerith specification where blanks and tabs are significant characters.

2.2.4 Remarks

In lines comprised of 73 or more character positions, only the first 72 characters are interpreted by FORTRAN.
(Note that tabs generally occupy more than one character position, advancing the counter to the next character
position that is an even multiple of eight.) All other characters in the line (character positions 73, 74 ... etc.) are
treated as remarks and do not affect compilation.

2-3

LINE TYPES
Initial and Continuation Lines

Note that remarks may also be added to a line in character positions 7 through 72 provided the text of the remark is
preceded by the symbol ! (refer to Paragraph 2.3.3).

2.3 LINE TYPES
A line in a DECsystem-20 FORTRAN source program can be

a. aninitial line
b. acontinuation line
c. amulti-statement line
d. acomment line
e. adebug line
f. ablank line.
Each of the foregoing line types is described in the following paragraphs.

2.3.1 Initial and Continuation Line Types

A FORTRAN statement may occupy the statement fields of up to 20 consecutive lines. The first line in a multi-
line statement group is referred to as the “initial” line; the succeeding lines are referred to as continuation
lines.

Initial lines may be assigned a statement number and must have either a blank or a zero in their continuation line
field (i.e., character position 6).

If an initial line is entered via a keyboard input device, an initial tab may be used to skip all or part of the label field.
An initial tab used for this purpose must be followed immediately by a nonnumeric character (i.e., the first character
of the statement field must be nonnumeric).

Continuation lines cannot be assigned statement numbers: they are identified by any alphanumeric character (ex-
cept for a blank or zero) placed in character position 6 of the line (i.e., continuation line field). The label field of a
continuation line is treated as remark text.

If a continuation line is being entered via a keyboard, an initial tab may be used to skip all or part of the label field;
however, the tab must be followed immediately by a numeric character other than zero. The tab-numeric
combination identifies the line as a continuation line.

Note that blank lines, comments, and debug lines that are treated like comments, i.e., debug lines that are not
compiled with the rest of the program (refer to section 2.3.4), terminate a continuation sequence.

Following is an example of a four line FORTRAN FORMAT statement using initial tabs:

185 FORMAT (1HI,l1 THINITIAL CHARGE = ,F10,.,6,10H COULOME, 6X ,
213HRESISTANCE = ,F9,.,3,6H OHM/15H CAPACITANCE = ,Fl10.6,
38H FARAD,11X,13HINDUCTANCE = ,F7.3,8H HENERY///
421H TI ME CURRENT/7H MS,lBX.2HMA/Z//)

Continuation Line Characters (i.e., 2, 3, and 4)

24

Multi-Statement Comment,
and Remark Lines

2.3.2 Multi-Statement Lines

More than one FORTRAN statement may be written in the statement field of one line. The rules for structuring a
multi-statement line are:

a. successive statements must be separated by a semicolon (;)

b. only the first statement in the series can have a statement number

c. statements following the first statement cannot be a continuation of the preceding statement

d. the last statement in a line may be continued to the next line if the line is made a continuation line.

An example of a multi-statement line is:

450 DIST=RATE * TIME $TIME=TIME+0.85 ;CALL PRIMECTIME,DIST)

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are referred to as comment lines. Comment lines are commonly used to
identify and introduce a source program, to describe the purpose of a particular set of statements, and to introduce
subprograms.

The rules for structuring a comment line are:

a. One of the characters C (or ¢), $,/,*, or ! must be in character position 1 of the line to identify it as a
comment line.

b. The text may be written into character positions 2 through the end of the line.

¢. Comment lines may appear anywhere in the source program, but may not precede a continuation line
because comments terminate a continuation sequence.

d. A large comment may be written as a sequence of any number of lines. However, each line must carry
the identifying character (C,$,/,*, or !) in its first character position.

The following is an example of a comment that occupies more than one line.

CSUBROUTINE - Al2

CTHE PURPOSE OF THIS SUBROUTINE IS
CTO FORMAT AND STORE THE RESULTS OF
CTEST PROGRAM HEAT TEST-1101

Comment lines are printed on all listings but are otherwise ignored by the compiler.

2-5

Debug and Blank Lines
Line-Sequenced Input
Ordering of Statements

A remark may be added to any statement field, in character positions 7 through 72, provided the symbol ! precedes
the text. For example, in the line

IF(N.EQ.8)STOP! STOP IF CARD IS BLANK

the character group “Stop if card is blank” is identified as a remark by the preceding ! symbol. Remarks do not
result in the generation of object program code, but they will appear on listings. The symbol !, indicating a remark,
must appear outside the context of a literal specification.

Note that characters appearing in character positions 73 and beyond are automatically treated as remarks, so that
the symbol ! need not be used (refer to Paragraph 2.2.4).

2.3.4 Debug Lines

As an aid in program debugging a D (or d) in character position 1 of any line causes the line to be interpreted as a
comment line, i.e., not compiled with the rest of the program unless the / Include switch appears in the command
string. (Refer to Appendix C for a description of the compile switch options.) When the / Include switch is present
in the command string the D (or d) in character position 1 is treated as a blank so that the remainder of the line is
compiled as an ordinary (noncomment) line. Note that the initial and all continuation lines of a debug statement
must contain a D (or d) in character position 1.

2.3.5 Blank Lines

Lines consisting of only blanks, tabs, or no characters may be inserted anywhere in a FORTRAN source program
except immediately preceding a continuation line, because blank lines are by definition initial lines and as such
terminate a continuation sequence. Blank lines are used for formatting purposes only; they cause blank lines to
appear in their corresponding positions in object program listings; otherwise, they are ignored by the compiler.

2.3.6 Line-Sequenced Input
FORTRAN optionally accepts line-sequenced files as produced by EDIT, the DECsystem-20 editor. These sequence
numbers are used in place of the listing line numbers normally generated by FORTRAN.

2.4 ORDERING OF DECSYSTEM-20 FORTRAN STATEMENTS

The order in which FORTRAN Statements appear in a program unit is important. That is, certain types of
statements have to be processed before others in order to guarantee that compilation takes place as expected. The
proper sequence for FORTRAN statements is summarized by the following diagram.

2-6

Ordering of Statements

PROGRAM, FUNCTION, Subprogram, or
BLOCK DATA Statements

IMPLICIT Statements

PARAMETER Statements

DIMENSION, COMMON,
Comment Lines FORMAT Statements EQUIVALENCE, EXTERNAL,
NAMELIST, or Type
Specification Statements

Statement
Function

DATA Statements Definitions

Executable
Statements

END Statement

Horizontal lines indicate the order in which FORTRAN statements must appear. That is, the statements in the
horizontal sections cannot be interspersed. For example, all PARAMETER statements must appear after all
IMPLICIT statements and before any DATA statements, i.e., PARAMETER, IMPLICIT, and DATA statements
cannot be interspersedx Statement function definitions must appear after IMPLICIT statements and before
executable statements.

Vertical lines indicate the way in which certain types of statements may be interspersed. For example, DATA
statements may be interspersed with statement function definitions and executable statements. FORMAT
statements may be interspersed with IMPLICIT statements, parameter statements, other specification statements,
DATA statements, statement function definitions, and executable statements. The only restrictions on the
placement of FORMAT statements are that they must appear after any PROGRAM, FUNCTION, SUBPROGRAM,
and BLOCK DATA statements, and before the END statement.

Special Cases:
a. The placement of an INCLUDE statement is dictated by the types of statements to be INCLUDEd.
b. The ENTRY statement is allowed only in functions or subroutines. All executable references to any of
the dummy parameters must physically follow the ENTRY statement unless the references appear in the

function definition statement, the subroutine, or in a preceding ENTRY statement.

¢. BLOCK DATA subprograms cannot contain any executable statements, statement functions, FORMAT
statements, EXTERNAL statements, or NAMELIST statements. (Refer to section 16.1.)

FORTRAN expects users to adhere to the foregoing ordering guidelines and issues warning messages when
statements are out of place.

2-7

CHAPTER 3 Data Types, Constants

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 3

DATA TYPES, CONSTANTS, SYMBOLIC NAMES,
VARIABLES, AND ARRAYS

3.1 DATA TYPES
The data types permitted in DECsystem-20 FORTRAN source programs are
a. integer
b. real
c. double precision
d. complex
e. octal
f. double octal
g literal
h. statement label, and

i. logical.

The use and format of each of the foregoing data types are discussed in the descriptions of the constant having the
same data type (Paragraphs 3.2.1 through 3.2.8).

3.2 CONSTANTS
Constants are quantities that do not change value during the execution of the object program.

The constants permitted in DECsystem-20 FORTRAN are listed in Table 3-1.

3-1

CHAPTER 3 INTEGER and REAL Constants

Table 3-1
Constants
Category Constant(s) Types
Numeric Integer, real, double precision, complex, and octal
Truth Values Logical
Literal Data Literal
Statement Label Address of FORTRAN statement label

3.2.1 Integer Constants

An integer constant is a string of from one to eleven digits which represents a whole decimal number (i.e., a number
without a fractional part). Integer constants must be within the range of -2%°~1 to +2>°-1 (i.e.,-34359738367 to
+34359738367). Positive integer constants may optionally be signed; negative integer constants must be signed.
Decimal points, commas, or other symbols are not permitted on integer constants (except for a preceding sign, + or
-). Examples of valid integer constants are:

345
+345
-345

Examples of invalid integer constants are:

+345. (use of decimal point)
3,450 (use of comma)
34.5 (use of decimal point; not a whole number)

3.2.2 Real Constants

A real constant may have any of the following forms:

a. A basic real constant: a string of decimal digits followed immediately by a decimal point which may
optionally be followed by a fraction (e.g., 1557.00).

b. A basic real constant followed immediately by a decimal integer exponent written in E notation (i.e.,
exponential notation) form (e.g., 1559.E2).

c. An integer constant (no decimal point) followed by a decimal integer exponent written in E notation
(e.g., 1559E2).

Real constants may be of any size; however, each will be rounded to fit the precision of 27 bits (i.e., 7 to 9 decimal
digits).

Precision for real constants is maintained (approximately) to eight digits.

! This is an approximation, the exact precision obtained will depend on the numbers involved.

32

CHAPTER 3 DOUBLE PRECISION Constants

The exponent field of a real constant written in E notation form cannot be empty (i.e., blank), it must be either a
zero or an integer constant. The magnitude of the exponent must be greater than -38 and equal to or less than +38
(i.e., -38 < n < 38). The following are examples of valid real constants.

-98.765
7.0E+0 (e, 7.)
JE-3 (ie., .0007)
SE+5 (i.e., 500000.)
50115.

50.E1 (ie., 500.)

The following are examples of invalid real constants.

72.6E75 (exponent is too large)
375E (exponent incorrectly written)
500 (no decimal point given)

3.2.3 Double Precision Constants

Constants of this type are similar to real constants written in E notation form; the direct differences between these
two constants are:

a. Double precision constants depending on their magnitude have precision to 16 or 18 places, rather than
the 8-digit precision obtained for real constants.

b. Each double precision constant occupies two storage locations.

c. Theletter D, instead of E, is used in double precision constants to identify a decimal exponent.
Both the letter D and an exponent (even of zero) are required in writing a double precision constant. The exponent
given need only be signed if it is negative; its magnitude must be greater than -38 and equal to or less than +38 (i.e.,
-38 <n < +38). The range of magnitude permitted a double precision constant depends on the type of processor
present in the system on which the source program is to be compiled and run. The permitted range is 0.14 X 1038

to 3.4 X 10*38,

The following are valid examples of double precision constants.

7.9D03 (i.e., 7900)
7.9D+03 (i.e., 7900)
7.9D-3 (i.e., .0079)
79D03 (i.e., 79000)
79D0 (i.e., 79)

The following are invalid examples of double precision constants.

7.9D99 (exponent is too large)
7.9E5 (denotes a single precision constant)

33

CHAPTER 3 COMPLEX and OCTAL Constants

3.2.4 Complex Constants

A complex constant can be represented by an ordered pair of integer, real or octal constants written within
parentheses and separated by a comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are complex
constants.

In a complex constant the first (leftmost) real constant of the pair represents the real part of the number, the second
real constant represents the imaginary part of the number. Both the real and imaginary parts of a complex constant
can be signed.

The real constants that represent the real and imaginary parts of a complex constant occupy two consecutive storage
locations in the object program.

3.2.5 Octal Constants

Octal numbers (radix 8) may be used as constants in arithmetic expressions, logical expressions, and data statements.
Octal numbers up to 12 digits in length are considered standard octal constants; they are stored right-justified in one
processor storage location. When necessary, standard octal constants are padded with leading zeroes to fill their
storage location.

If more than 12 digits are specified in an octal number, it is considered a double octal constant. Double octal
constants occupy two storage locations and may contain up to 24 right-justified octal digits; zeroes are added to fill
any unused digits.

If a single octal constant is to be assigned to a double precision or complex variable, it is stored, right-justified, in the
high order word of the variable. The low order portion of the variable is set to zero.

If a double octal constant is to be assigned to a double precision or complex variable, it is stored right-justified
starting in the low order (rightmost) word and precedes leftwards into the high order word.

All octal constants must be
a. preceded by a double quote (*) to identify the digits as octal (e.g., “777), and
b. signed if negative but optionally signed if positive.
The following are examples of valid octal constants:
“123456700007
“123456700007
+“12345
-“7777
“-7777

The following are examples of invalid octal constants:

“12368 (contains a radix digit)
7777 (no identifying double quotes)

When an octal constant is used as an operand in an expression, its form (i.e., bit pattern) is not converted to
accommodate it to the type of any other operand. For example, the subexpression (A+'202 400 000 000) has as its
result the sum of A with the floating point number 2.0; while the subexpression (I+*202 400 000 000) has as its
result the sum of I with a large integer.

34

CHAPTER 3 LOGICAL and LITERAL Constants,
Statement Labels, Symbolic Names

When a double octal constant is combined in an expression with either an integer or real variable, only the contents
of the high order location (leftmost) are used.

3.2.6 Logical Constants

The Boolean values of truth and falsehood are represented in FORTRAN source programs as the logical constants
.TRUE. and .FALSE.. Logical constants are always written enclosed by periods as in the preceding sentence.

Logical quantities may be operated on in arithmetic and logical statements. Only the sign bit of a numeric used in a
logical IF statement is tested to determine if it is true (sign is negative) or false (sign is positive).

3.2.7 Literal Constants

Aliteral constant may be either of the following:
a. A string of alphanumeric and/or special characters contained within apostrophes (e.g., ‘TEST#5’).

b. A Hollerith literal, which is written as a string of alphanumeric and/or special characters preceded by nH
(e.g., nHstring). In the prefix nH, the letter n represents a number which specifies the exact number of
characters (including blanks) that follow the letter H; the letter H identifies the literal as a Hollerith
literal. The following are examples of Hollerith literals:

2HAB,
14HLOAD TEST #124,
6H#124-A

NOTE
A tab (1) in a Hollerith literal is counted as one character
{e.g., SH»{ AB).

Literal constants may be entered into DATA statements as a string of
a. up to ten 7-bit ASCII characters for complex or double precision type variables, and
b. up to five 7-bit ASCII characters for all other type variables.

The 7-bit ASCII characters which comprise a literal constant are stored left-justified (starting in the high order word
of a 2-word precision or complex literal) with blanks placed in empty character positions. Literal constants that
occupy more than one variable are stored in successive variables in the list. The following example illustrates how the
string of characters

A LITERAL OF MANY CHARACTERS
is stored in a six-element array called A.

DIMENSION A(6)
DATA A |['A LITERAL OF MANY CHARACTERS’/

A(l) is set to ‘A_LIT’
A(2) is set to ‘ERAL_’
A(3) is set to ‘OFE.MA’
A(4) is set to ‘NY_CH’
A(S) is set to ‘ARACT’
A(6) is set to ‘ERS__

3-5

CHAPTER 3 Symbolic Names, Variables

3.2.8 Statement Label Constants

Statement labels are numeric identifiers that represent program statement numbers.

Statement label constants are written as a string of from one to five decimal digits which are preceded by either a
dollar sign (8) or an ampersand (&). For example, either $11992 or & 11992 may be used as statement labels.

Statement label constants are used only in the argument list of CALL statements to define the statement to return
to in a multiple RETURN statement. (Refer to Chapter 15.)

3.3 SYMBOLIC NAMES

Symbolic names may consist of any alphanumeric combination of from one to six characters. More than six
characters may be given but FORTRAN ignores all but the first six. The first character of a symbolic name must be
an alphabetic character.

The following are examples of legal symbolic names:

A12345
TIAMBIC
ABLE

The following are examples of illegal symbolic names:

#AMBIC (symbol used as first character)
1AB (number used as first character)

Symbolic names are used to identify specific items of a FORTRAN source program; these items, together with an

example of a symbolic name and text reference for each, are listed in Table 3-2.

Table 3-2
Use of Symbolic Names

Symbolic Names For Example For a detailed description
Can Identify See Paragraph
1. A Variable PI, CONST, LIMIT 34
2. An Array TAX 3.5
3. An Array element TAX (NAME,INCOME) 3.5.1
4. Functions MYFUNC, VALFUN 15.2
5. Subroutines CALCSB, SUB2, LOOKUP 15.5
6. External SIN, ATAN, COSH 15.4
7. COMMON Block Names DATAR, COMDAT 6.5

3.4 VARIABLES

A variable is a datum (i.e., storage location) that is identified by a symbolic name and is not an array or an array
element. Variables specify values which are assigned to them by either arithmetic statements (Chapter 8), DATA
statements (Chapter 7), or at run time via I/O references (Chapter 10). Before a variable is assigned a value, it is
termed an undefined variable and should not be referenced except to assign a value to it.

If an undefined variable is referenced, an unknown value is obtained.

3-6

CHAPTER 3 ARRAYS, ARRAY Element Subscripts

The value assigned a variable may be either a constant or the result of a calculation which is performed during the
execution of the object program. For example, the statement IAB=5 assigns the constant 5 to the variable IAB; in
the statement IAB=5+B, however, the value of IAB at a given time will depend on the value of variable B at the time
the statement was last executed.

The type of a variable is the type of the contents of the datum which it identifies. Variables may be

a. integer
b. real
c. logical

d. double precision, or
e. complex.

The type of a variable may be declared using either implicit or explicit type declaration statements (Chapter 6).
However, if type declaration statements are not used, the following convention is assumed by FORTRAN:

a. Variable names which begin with the letters I, J, K, L, M, or N are integer variables.
b. Variable names which begin with any letter other than 1, J, K, L, M, or N are real variables.

Examples of determining the type of a variable according to the foregoing convention are given in the following
table.

Variable Beginning Letter Assumed Data Type
ITEMP I Integer
OTEMP o Real

KA123 K Integer
AABLE A Real

3.5 ARRAYS

An array is an ordered set of data identified by an array name. Array names are symbolic names and must conform
to the rules given in Paragraph 3.3 for writing symbolic names.

Each datum within an array is called an array element. Like variables, array elements may be assigned values; before
an array element is assigned a value it is considered to be undefined and should not be referenced until it has been
assigned a value. If a reference is made to an undefined array element the value of the element will be unknown and
unpredictable.

Each element of an array is named by using the array name together with a subscript that describes the position of
the element within the array.

3.5.1 Array Element Subscripts

The subscript of an array element identifier is given, within parentheses, as either one subscript quantity or a set of
subscript quantities delimited by commas. The parenthesized subscript is written immediately after the array name.
The general form of an array element name is AN (S1, S2,...Sn), where AN is the array name and S1 through Sn
represent n number of subscript quantities. Any number of subscript quantities may be used in an element name;
however, the number used must always equal the number of dimensions (Paragraph 3.5.2) specified for the array.

3-7

CHAPTER 3 Dimensioning Arrays

A subscript can be any compound expression (Chapter 4), for example:

a. Subscript quantities may contain arithmetic expressions that involve addition, subtraction,
multiplication, division, and exponentiation. For example, (A+B,C*5,D/2) and (A**3, (B/4+C) *E,3)
are valid subscripts.

b. Arithmetic expressions used in array subscripts may be of any type but noninteger expressions
(including complex) are converted to integer when the subscript is evaluated.

c. A subscript may contain function references (Chapter 14). For example: TABLE (SIN (A) *B, 2, 3) isa
valid array element identifier.

d. Subscripts may contain array element identifiers nested to any level as subscripts. For example, in the
subscript (I(J(K(L))),A+B,C) the first subscript quantity given is a nested 3-level subscript.

The following are examples of valid array element subscripts:

a. 1AB(1,53)

b. ABLE(A)

c. TABLEI (10/C+K**2,A,B)

d. MAT(A,AB(2*L),.3*TAB(A,M+1,D),55)

3.5.2 Dimensioning Arrays

The size (i.e., number of elements) of an array must be declared in order to enable FORTRAN to reserve the
needed amount of locations in which to store the array. Arrays are stored as a series of sequential storage locations.
Arrays, however, are visualized and referenced as if they were single or multi-dimensional rectilinear matrices,
dimensioned on a row, column, and plane basis. For example, the following figure represents a 3-row, 3-column,
2-plane array.

3 ROWS <

S
\%
&
N\d

3 COLUMNS

10-1058

The size (i.e., number of elements) of an array is specified by an array declarator written as a subscripted array
name. In an array declarator, however, each subscript quantity is a dimension of the array and must be either an
integer, a variable, or an integer constant.

For example, TABLE (I,J,K) and MATRIX (10,7,3,4) are valid array declarators.

The total number of elements which comprise an array is the product of the dimension quantities given in its array
declarator. For example, the array IAB dimensioned as IAB (2,3,4) has 24 elements (2 X 3 X 4 = 24),

3-8

CHAPTER 3 . Dimensioning Arrays,

Order of Stored Array Elements
Arrays are dimensioned only in the specification statements DIMENSION, COMMON, and type declaration (Chapter
6). Subscripted array names appearing in any of the foregoing statements are array declarators; subscripted array
names appearing in any other statements are always array element identifiers. In array declarators the position of a
given subscript quantity determines the particular dimension of the array (e.g., row, column, plane) which it
represents. The first three subscript positions specify the number of rows, columns, and planes which comprise the
named array; each following subscript given then specifies a set comprised of n-number (value of the subscript) of
the previously defined sets. For example:

The Dimension Declarator Specifies the Array(s)

TR

TAB (2,2) 1112

g1 22

TAB (212,2) _,—”’— 1’1’2 lvzsi
Lot | 120 pl2l 222
2)ly1 2,2,1 “’—”‘

TAB(2222) __---7 |LL21}1221 T [Li22]1222
LLIL1] 12,11 2,1.2.1 2’2’,2’,1 1,1,12/1212 2,122 2,23:%
2LLT 220 =77 2012 2203] __---"

NOTE

DECsystem-20 FORTRAN permits any number of dimensions
in an array declarator.

3.5.3 Order of Stored Array Elements

The elements of an array are arranged in storage in ascending order, with the value of the first subscript quantity
varying between its maximum and minimum values most rapidly, and the value of the last given subscript quantity
increasing to its maximum value least rapidly. For example, the elements of the array dimensioned as 1(2,3) are
stored in the following order:

I(1,1) > 1(2,1) ~1(1,2) > (2,2) > (1,3} > (2,3)

The following list describes the order in which the elements of the three-dimensional array (B(3,3,3)) are stored:

B(1,1,1) B(2,1,1) B(3,1,1) -
LsB(121) B(221) BE2D --
L-+B(1,3,1) B(2,3,1) B(33,1) -+
L+B(1,12) B(212) BB -~
CSB(122) B(222) BG22) --
eB(132) B(232) B(332) --
“+B(113) B(13) BGL3) -~
“SB(y 8029 BGaY) -5
“+B(133) B(233) BG333)

39

CHAPTER 4 Arithmetic Expressions

DECsystem-20 FORTRAN extensions to the 1966 ANSI and Operators

standard set are printed in boldface italic type.

CHAPTER 4
EXPRESSIONS

4.1 ARITHMETIC EXPRESSIONS

Arithmetic expressions may be either simple or compound. Simple arithmetic expressions consist of an operand
which may be

a. aconstant

b. avariable

c. an array element

d. afunction reference (see Chapter 14 for description), or

e. an arithmetic or logical expression written within parentheses.
Operands may be of type integer, real, double precision, complex, octal, or literal.

The following are valid examples of simple arithmetic expressions:

105 (integer constant)

IAB (integer variable)

TABLE (3, 4, 5) (array element)

SIN (X) (function reference)

(A+B) (a parenthesized expression)

A compound arithmetic expression consists of two or more operands combined by arithmetic operators. The
arithmetic operations permitted in FORTRAN and the operator recognized for each are given in Table 4-1.

Table 4-1
Arithmetic Operations and Operators

Operation Operator Example
1. Exponentiation ** or b A**B or ATB
2. Multiplication * A*B
3. Division / A/B
4. Addition + A+B
5. Subtraction - A-B

4-1

CHAPTER 4 Rules for Arithmetic
Expressions, Logical Expressions
4.1.1 Rules for Writing Arithmetic Expressions

The following rules must be observed in structuring compound arithmetic expressions:

a. The operands comprising a compound arithmetic expression may be of different types. Table 4-2
illustrates all permitted combinations of data types and the type assigned to the result of each.

NOTE

Only one combination of data types, double precision with
complex, is.prohibited in DECsystem-20 FORTRAN.

b. An expression cannot contain two adjacent and unseparated operators. For example, the expression
A*/B is not permitted.

c. All operators must be included, no operation is implied. For example, the expression A(B) does not
specify multiplication although this is implied in standard algebraic notation. The expression A* (B) is
required to obtain a multiplication of the elements.

d. In using exponentiation the base quantity and its exponent may be of different types. For example, the

expression ABC**13 involves a real base and an integer exponent. The permitted base/exponent type
combination and the type of the result of each combination is given in Table 4-3.

4.2 LOGICAL EXPRESSIONS

Logical expressions may be either simple or compound. Simple Jogical expressions consist of a logical operand which
may be a logical type

a. constant

b. variable

c. array element

d. function reference (see Chapter 15), or

e. another expression written within parentheses.

Compound logical expressions consist of two or more operands combined by logical operators.

The logical operators permitted by DECsystem-20 FORTRAN and a description of the operation each provides are
given in Table 4-4.

42

Table 4-2

Type of the Resultant Obtained
From Mixed Mode Operations

Type of Argument 2

For operators Double
4o % Integer Real Precision Complex Logical Octal Double Octal Literal
1. Type of operation 1. Integer 1. Real 1. Double Precision 1. Complex 1. Integer 1. Integer 1. Integer 1. Integer
used
2. Type associated 2. Integer 2. Real 2. Double Precision 2. Complex 2. Integer 2. Integer 2. Integer 2. Integer
with result
3. Conversion on 3. None 3. From Integer to 3. From Integer to 3. From Integer to 3. None 3. None 3. None 3. None
Integer Argument | Real Double Precision Complex. Value
used as Real part
4. Conversion on 4. None 4. None 4. None 4. None 4. None 4. None 4. High order word 4. High order word
Argument 2 is used directly; is used directly;
low order word further words
is ignored. are ignored.
1. Type of operation 1. Real 1. Real 1. Double Precision 1. Complex 1. Real 1. Real 1. Real 1. Real
used
2. Type associated 2. Real 2. Real 2. Double Precision 2. Complex 2. Real 2. Real 2 Real 2. Real
with result
3. Conversion on 3. None 3. None 3. Used directly as 3. Used directly as 3. None 3. None 3. None 3. None
Real Argument | the high order the Real part:
word; low order imaginary part
word is zero. is zero.
4. Conversion on 4. From Integer to 4. None 4. None 4. None 4. None 4. None 4. High order word 4. High order-word

Argument 2

Real

is used directly:
low order word
is ignored

is used directly;
further words

are ionared

Logical Operation Truth Table

CHAPTER 4
Table 4-5
Logical Operations, Truth Table
The result of When Is:
the expression: Pis: and Q is:
.NOT.P True (Not False
False Applicable) True
P.AND.Q True True True
True False False
False True False
False False False
P.OR.Q True True True
True False True
False True True
False False False
P.XOR.Q True True False
True False True
False True True
False False Faise
P.EQV.Q True True True
True False False
False True False
False False True
Examples
Assume the following variables:
Variable Type
REAL, RUN Real
IJK Integer
DP,D Double Precision
L A B Logical
CPX, C Complex

Examples of valid logical expressions comprised of the foregoing variables are:

L.AND.B
(REAL*I) .XOR. (DP+K)
L.AND. A .OR. .NOT. (I-K)

4-5

CHAPTER 4 Binary Truth Table,
Relational Expressions

Logical functions are performed bit-wise on the full 36-bit binary processor representation of the operands involved.
The result of a logical operation is found by performing the specified function, simultaneously, for each of the
corresponding bits in each operand. For example, consider the expression A=C.OR.D, where C= “456 and D= “201.

The operation performed by the processor and the result is:

Word Bits 01l —24 25 26 27 28 29 30 31 32 33 34 35
OperandC 0 0 — O 0 0 1 0] 0 1 0 1 1 1 0
OperandD 0 0 — 0 0 0 0 1 0 0 0 0 0 0 1
Result A 00— 0 0 0 1 1 0 1 0 1 1 1 1

Table 4-6 is a truth table that illustrates all possible logical combinations of two one-bit binary operands (P and Q)

and gives the result of each combination.

Table 4-6
Binary Logical Operations, Truth Table
The result of When Is:
the expression: Pis: And Q is:
.NOT.P 1 - 0
- 1
P.AND.Q 1 1 1
1 0 0
0 1 0
0 0 0
P.OR.Q 1 1 1
1 0 1
0 1 1
0 0 0
P.XOR.Q 1 1 0
1 0 1
0 1 1
0 0 0
P.EQV.Q 1 1 1
1 0 0
0 1 0
0 0 1

4.2.1 Relational Expressions

Relational expressions are comprised of two expressions combined by a relational operator. The relational operator

permits the programmer to test, quantitatively, the relationship between two arithmetic expressions.

The result of a relational expression is always a logically true or false value.

46

CHAPTER 4 Relational Operators

In FORTRAN, relational operators may be written either as a two-letter mnemonic enclosed within periods (e.g.,
.GT.) or symbolically using the symbols >, <, =and #. Table 4-7 lists both the mnemonic and symbolic forms of the
FORTRAN relational operators and specifies the type of quantitative test performed by each operator.

Table 4-7
Relational Operators and Operations
Operators Relation Tested
Mnemonic Symbolic
.GT. > Greater than
.GE. >= Greater than or equal to
LT, < Less than
.LE. <= Less than or equal to
.EQ. == Equal to
.NE. # Not equal to

Relational expressions are written in the general form A; .OP. A,, where A represents an arithmetic operand and
.OP. is a relational operator.

Arithmetic operands of type integer, real, and double precision may be mixed in relational expressions.

Complex operands may be compared using only the operators .EQ (= =) and .NE. (#). Complex quantities are equal
if the corresponding parts of both words are equal.

Examples

Assume the following variables:

Variables Type
REAL, RON Real
ILJ,K Integer
DP, D Double Precision
L,AB Logical
CPX, C Complex

Examples of valid relational expressions comprised of the foregoing variables are:

(REAL) .GT. 10
C .EQ.CPX
Examples of invalid relational expressions comprised of the foregoing variables are:

(REAL).GT 10 (closing period missing from operator)

C>CPX (complex operands can only be combined by .EQ. and .NE. operators)

4.7

CHAPTER 4 Evaluation of Expressions

Examples of valid expressions in which both logical and relational operators are used to combine the foregoing
variables are:

(1.GT. 10) .AND. (J< =K)

((I*RON) = = (1/3)) .OR. K

(1.AND. K) # ((REAL) .OR. (RON))
C #CPX .OR. RON

4.3 EVALUATION OF EXPRESSIONS
The order of computation of a FORTRAN expression is determined by

a. the use of parentheses
b. an established hierarchy for the execution of arithmetic, relational, and logical operations and
c. thelocation of operators within an expression.

4.3.1 Parenthesized Subexpressions

In an expression all subexpressions written within parentheses are evaluated first. When parenthesized subexpressions
are nested (one contained within another) the most deeply nested subexpression is evaluated first, the next most
deeply nested subexpression is evaluated second and so on, until the value of the final parenthesized expression is
computed. When more than one operator is contained by a parenthesized subexpression, the required computations
are performed according to the hierarchy assigned operators by FORTRAN (Paragraph 4.3.2).

Example:

The separate computations performed in evaluating the expression

A+B/((A/B)y+C)-C are:
a. A/B=RI]

b. RI+C=R2

c. B/R2=R3

d. R3-C=R4

e. A+R4=RS5

NOTE
R1 through RS represent the interim and final results of the
computations performed.

4.3.2 Hierarchy of Operators

The following hierarchy (i.e., order of execution) is assigned to the classes of FORTRAN operators:
first — arithmetic operators

second — relational operators
third — logical operators

48

CHAPTER 4 Hierarchy of Arithmetic,
Relational and Logical Operators,
Mixed Mode Expressions

The precedence assigned to the individual operators of the foregoing classes is specified (from highest to lowest) in
Table 4-8.

With the exception of integer division and exponentiation, all operations on expressions or subexpressions involving
operators of equal precedence are computed in any order that is algebraically correct.

A subexpression of a given expression may be computed in any order. For example, in the expression (F(X) + A*B)
the function reference may be computed either before or after A*B.

Table 4-8
Hierarchy of FORTRAN Operators
Class Level Symbol or Mnemonic
First *k
ARITHMETIC Sec:ond = (unary minus) and + (unary plus)
Third */
Fourth +,-
RELATIONAL Fifth .GT., .GE., .LT,, .LE., .EQ., .NE.
or >,>=<,<===#
Sixth .NOT.
Seventh .AND.
LOGICAL Eighth .OR.
Ninth .EQV., .XOR.

Operations specifying integer division are evaluated from left to right. For example, the expression I/J*K is
evaluated as if it had been written as (I/J)*K.

When a series of exponentiation operations occurs in an expression, they are evaluated in order from right to left.
For example, the expression A**2**B is evaluated in the following order:

first 2**B = R1 (intermediate result)
second A**R1 = R2 (final result).

4.3.3 Mixed Mode Expressions

Mixed mode expressions are evaluated on a subexpression by subexpression basis with the type of the results
obtained converted and combined with other results or terms according to the conversion procedures described in
Table 4-2.

Example

Assume the following:

Variable Type
D Double Precision
X Real
ILJ Integer

49

CHAPTER 4 Mixed Mode Expressions,

Using Logical Operands
The mixed mode expression D+X* (I/J) is evaluated in the following manner:
NOTE

R1, R2, and R3 represent the interim and final results of the

computations performed.
a. (IMH=R1 R1 is integer
b. X*R1=R2 R1 is converted to type real and is multiplied by X to produce R2
c. D+R2=R3 R2 is converted to type double precision and is added to D to produce R3

4.3.4 Use of Logical Operands in Mixed Mode Expressions

When logical operands are used in mixed mode expressions, the value of the logical operand is not converted in any
way to accommodate it to the type of the other operands in the expression. For example, in L*R, where L is type
logical and R is type real, the expression is evaluated without converting L to type real.

4-10

CHAPTER § PROGRAM Statement

DECsystem-20 FORTRAN extensions to the 1966 INCLUDE Statement
ANSI standard set are printed in boldface italic type.

CHAPTER 5
COMPILATION CONTROL STATEMENTS

5.1 INTRODUCTION

Compilation control statements are used to identify DECsystem-20 FORTRAN programs and to specify their termi-
nation. Statements of this type do not affect either the operations performed by the object program or the manner
in which the object program is executed. The three compilation control statements described in this chapter are:
PROGRAM statement, INCLUDE statement, and END statement.

5.2 PROGRAM STATEMENT

This statement allows the user to give the main program a name other than “MAIN.” The general form of a
PROGRAM statement is

PROGRAM name
where

name is a user-formulated symbolic name that begins with an alphabetic character and contains
a maximum of six characters. (Refer to section 3.3 for a description of symbolic names.)

The following rule governs the use of the PROGRAM statement :

The PROGRAM statement must be the first statement in a program unit. (Refer to section 2.4 for a discussion
of the ordering of DECsystem-20 FORTRAN statements.)

5.3 INCLUDE STATEMENT

This statement allows the user to include code segments or predefined declarations in a program unit without having
them reside in the same physical file as the primary program unit. The general form of the INCLUDE statement is

INCLUDE dev:filename.type[proj,prog] INOLIST

where
dev: is a device name. When no device is specified, DSK: is assumed.
filename.trype is the filename and type of the FORTRAN statements that the user wishes to include.
The name of the file is required; the type is optional. If only the filename is specified,
then .FOR (for FORTRAN) is the assumed type.
[proj,prog] is the project-programmer number. The user’s connected directory is assumed if none is

specified. (Refer to Appendix B.)

5-1

END Statement

/NOLIST is an optional switch that indicates that the included statements are not to be included
in the compilation listing.

The following rules govern the use of the INCLUDE statement:

a. The INCLUDEd file may contain any iegal FORTRAN statement except another INCLUDE statement,
or a statement that terminates the current program unit, such as the END, PROGRAM, FUNCTION,
SUBROUTINE, or BLOCK DATA statements.

b. The proper placement of the INCLUDE statement within a program unit depends upon the types of
statements to be INCLUDEd. (Refer to section 2.4 for information on the ordering of DECsystem-20
FORTRAN statements.)

Note that an asterisk (*) is appended to the line numbers of the INCLUDEd statements on the compilation listing.

5.4 END STATEMENT

This statement is used to signal FORTRAN that the physical end of a source program or subprogram has been
reached. END is a nonexecutable statement. The general form of an END statement is

END
The following rules govern the use of the END statement:
a. This statement must be the last physical statement of a source program or subprogram.

b. When used in a main program, the END statement implies a STOP statement operation; in a subprogram,
END implies a RETURN statement operation.

c. An END statement may be labeled.

5-2

CHAPTER 6 DIMENSION Statement

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 6
SPECIFICATION STATEMENT

6.1 INTRODUCTION

Specification statements are used to specify the type characteristics, storage allocations, and data arrangement.
There are seven types of specification statements:

a. DIMENSION

b. Statements which specify, explicitly, type.
c. IMPLICIT

d. COMMON

e. EQUIVALENCE

f. EXTERNAL

g. PARAMETER

Specification statements are nonexecutable and are expected to conform to the ordering guidelines described in
section 2.4,

6.2 DIMENSION STATEMENT
DIMENSION statements provide FORTRAN with information needed to identify and allocate the space required

for source program arrays. Any number of subscripted array names may be specified as array declarators in a
DIMENSION statement. The general form of a DIMENSION statement is

DIMENSION 81, S2,...,Sn
where Si is an array declarator. Array declarators are names of the following form:

name (min:max, min:max, min:max)

where name is the symbolic name of the array and each min:max value represents the lower and upper bounds of an
array dimension.

Each min:max value for an array dimension may be either an integer constant or, if the array is a dummy argument
to a subprogram, an integer variable. The value given the minimum specification for a dimension must not exceed
the value given the maximum specification. Minimum values of 1 with their following colon delimiter may be
omitted from a dimension subscript.

6-1

CHAPTER 6 DIMENSION Statements,
Specifying Adjustable Dimensions

Examples

DIMENSION EDGE (-1:1,4:8),NET(5,10,4),TABLE(567)
DIMENSION TABLE (IAB:J,K,M,10:20)

(where IAB, J, K, and M are of type integer).

Note that a slash may be used in place of a colon as the delimiter between the upper and lower bounds of an array
dimension.

6.2.1 Adjustable Dimensions

When used within a subprogram, an array declarator may use type integer parameters as dimension subscript
quantities. The following rules govern the use of adjustable dimensions in a subprogram:

a. For single entry subprograms, the array name and each subscript variable must be given by the calling
program when the subprogram is called. The subscript variables may also be in COMMON.

b. For multiple entry subprograms in which the array name is a parameter, any subscript variables may be
passed. If all subscript variables are not passed or in COMMON, the value of the subscript as passed for
a previous entry will be used.

c. The type of the array dimension variables cannot be altered within the program.

d. If the value of an array dimension variable is altered within the program, the dimensionality of the array
will not be affected.

e. The original size of the array cannot exceed the array dimensions assigned within a subprogram (i.e., the
size of an array is not dynamically expandable).

Examples

SUBROUTINE SBR (ARRAY,M1,M2,M3,M4)
DIMENSION ARRAY (M1:M2,M3:M4)
DO 27 L=M3 M4
DO 27 K=M1,M2
ARRAY (K,L)=VALUE
27 CONTINUE
END

SUBROUTINE SB1 (ARR1,M,N)
DIMENSION ARR1(M,N)
ARRI(M,N)=VALUE

ENTRY SB2(ARR1,M)

ENTRY SB3(ARR1,N)

ENTRY SB4(ARR1)

In the foregoing example, the first call made to the subroutine must be made to SB1. Assuming that the call is made

at SB1 with the values M=11 and N=13, any succeeding call to SB2 should give M a new value. If a succeeding call is
made to SB4, the last values passed through entries SUB1, SUB2, or SUB3 will be used for M and N.

6-2

CHAPTER 6 Type Specification Statements

Note that for the calling program of the form:

CALL SBI(A,11,13)
M=15
CALL SB3(A,13)

the value of M used in the dimensionality of the array for the execution of SB3 will be 11 (i.e., the last value
passed).

6.3 TYPE SPECIFICATION STATEMENTS

Type specification statements declare explicitly the data type of variable, array, or function symbolic names. An
array name may be given in a type statement either alone (unsubscripted) to declare the type of all its elements or in
a subscripted form to specify both its type and dimensions.

Type specification statements are written in the following form:
type list
where type may be any one of the following declarators:
a. INTEGER
b. REAL
c. DOUBLE PRECISION
d. COMPLEX
e. LOGICAL

NOTE
In order to be compatible with the type statements used by
other manufacturers, the data type size modifier, *n, is
accepted by DECsystem-20 FORTRAN. This size modifier
may be appended to the declarators, causing some to elicit
messages warning users of the form of the variable specified by
DECsystem-20 FORTRAN:

Declarator Form of Variable Specified
INTEGER*2 Full word integer with warning message
INTEGER*4 Full word integer
LOGICAL*1 Full word logical with warning message
LOGICAL*4 Full word logical
REAL*4 Full word real
REAL*8 Double precision real
COMPLEX*8 Complex
COMPLEX*16 Complex with warning message

6-3

CHAPTER 6 Statements, IMPLICIT Statements

NOTE (Cont)
In addition, the data type size modifier may be appended to
individual variables, arrays, or function names. Its effect is to
override, for the particular element, the size modifier (explicit
or implicit) of the primary type. For example,

REAL*4 A, B*8, C*8(10), D

A and D are single precision (full word real), and B and C are
double precision real.

The list consists of any number of variable, array, or function names which are to be declared the specified type. The
names listed must be separated by commas, and can appear in only one type statement within a program unit.

Examples

INTEGER A, B, TABLE, FUNC
REAL R, M, ARRAY (5:10,10:20,5)

NOTE
Variables, arrays, and functions of a source program, which are
not typed either implicitly or explicitly by a specification
statement, are typed by FORTRAN according to the following
conventions:

a. Variable names, array names, and function names which
begin with the letters 1, J, K, L, M, or N are type integer.

b. Variable names, array names, and function names which
begin with any letter other than I, J, K, L, M, or N are type
real.

If a name that is the same as a FORTRAN defined function name appears in a conflicting type statement, it is
assumed that the name refers to a user-defined routine of the given type. Placing a generic FORTRAN defined
function name in an explicit type statement causes it to lose its generic properties.

6.4 IMPLICIT STATEMENTS

IMPLICIT statements declare the data type of variables and functions according to the first letter of each variable
name. IMPLICIT statements are written in the following form:

IMPLICIT type(Al,A2,. . .,An),type(B1,B2,. . .,.Bn),. . ..type.

As shown in the foregoing form statement, an IMPLICIT statement is comprised of one or more type declarators
separated by commas. Each type declarator has the form

type(Al1,A2,. . ., An)

where type represents one of the declarators listed in section 6.3, and the parenthesized list represents a list of
different letters.

Each letter in a type declarator list specifies that each source program variable (not declared in an explicit type
specification statement) which starts with that letter is assigned the data type named in the declarator. For example,
the IMPLICIT type declarator REAL (R,M,N,0) declares that all names which begin with the letters R, M, N, or O
are type REAL names, unless declared otherwise in an explicit type statement.

64

CHAPTER 6 COMMON Statement

NOTE
Type declarations given in an explicit type specification
override those also given in an IMPLICIT statement. IMPLICIT
declarations do not affect the DECsystem-20 FORTRAN
supplied functions.

A range of letters within the alphabet may be specified by writing the first and last letters of the desired range
separated by a dash (e.g., A—F for A,B,C,D,E). For example, the statement IMPLICIT INTEGER (I,L—P) declares
that all variables which begin with the letters I.L MN,O, and P are INTEGER variables.

More than one IMPLICIT statement may be used, but they must appear before any other declaration statement in
the program unit. Refer to section 2.4 for a discussion on ordering DECsystem-20 FORTRAN statements.

6.5 COMMON STATEMENT

The COMMON statement enables the user to establish storage which may be shared by two or more programs and/or
subprograms and to name the variables and arrays which are to occupy the common storage. The use of common
storage conserves storage and provides a means to implicitly transfer arguments between a calling program and a
subprogram. COMMON statements are written in the following form:

COMMON/A1/V1,V2,.. ., Vn.../An/V1, V2, . . Vn

where the enclosed letters /A1/, /A2/, and /An/ represent optional name constructs (referred to as common block
names when used).

The list (i.e., V1,V2...,Vn) appearing after each name construct lists the names of the variables and arrays that are
to occupy the common area identified by the construct. The items specified for a common area are ordered within
the storage area as they are listed in the COMMON statement.

COMMON storage area may be either labeled or blank (unlabeled). If the common area is to be labeled, a symbolic
name must be given within slashes immediately before the list of items that are to occupy the names area. For
example, the statement

COMMON/AREA1/A,B,C/AREA2/TAB(13,3,3)

establishes two labeled common areas (i.e., AREA1 and AREA2). Common block names bear no relation to internal
variables or arrays which have the same name.

If a common area is to be declared but is to be unlabeled (i.e., blank) either nothing or two sequential slashes (//) is
given immediately before the list of items that are to occupy blank common. For example, the statement

COMMON/AREA1/A,B,C//TAB(3,3,3)
establishes one labeled (AREA1) and one unlabeled (i.e., blank) common area.

A given labeled common name may appear more than once in the same COMMON statement and in more than one
COMMON statement within the same program or subprogram.

Each labeled common area is treated as a separate, specific storage area. The contents of a common area (i.e.,
variables and array) may be assigned initial values by DATA statements in BLOCK DATA subprograms. Declarations
of a given common area in different subprograms must contain the same number, size, and order of variable and
array name as the referenced area.

CHAPTER 6 Dimensioning Arrays In COMMON,
EQUIVALENCE Statement

Items to be placed in a blank common area may also be given in COMMON statements throughout the source
program.

During compilation of a source program, DECsystem-20 FORTRAN strings together all items listed for each labeled
common arca and for blank common in the order in which they appear in the source program statements. For
example, the series of source program statements

COMMON/ST1 /A,B,C/ST2/TAB(2,2)//C,D,E
COMMON/ST1/TST(3,4)//M,N

COMMON/ST2/X,Y,Z//0,P,Q
have the same effect as the single statement
COMMON/ST1/A,B,C,TST(3,4)/ST2/TAB(2,2),X,Y,Z//C,D,E,M,N,0,P,Q

All items specified for blank common are placed into one area. Items within blank common are ordered as they are
given throughout the source program. Common block names must be unique with respect to all subroutine,
function, and entry point names.

The largest definition of a given common area must be loaded first.

6.5.1 Dimensioning Arrays in COMMON Statements

Subscripted array names may be given in COMMON statements as array dimension declarators. However, variables
cannot be used as subscript quantities in a declarator appearing in a COMMON statement; variable dimensioning is
not permitted in COMMON.

Each array name given in a COMMON statement must be dimensioned either by the COMMON statement or by
another dimensioning statement within the program or subprogram which contains the COMMON statement.

Example

COMMON /A/B(100), C(10,10)
COMMON X(5,15),Y(5)

6.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement enables the user to control the allocation of shared storage within a program or
subprogram. This statement causes specific storage locations to be shared by two or more variables of either the
same or different types. The EQUIVALENCE statement is written in the following form:

EQUIVALENCE(V1,V2,.. .Vn),(WI,W2,. . .Wn),(X1,X2,...)

where each parenthesized list contains the names of variables and array elements which are to share the same storage
locations. For example, the statements

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE(1))

specify that the variables named A, B, and C are to share the same storage location and the the variable LOC and
array element SHARE(1) are to share the same location.

6-6

CHAPTER 6 EQUIVALENCE Statement,
EXTERNAL Statement

The relationship of equivalence is transitive; for example, the two following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

Array elements, when used in EQUIVALENCE statements, must have either as many subscript quantities as
dimensions of the array or only one subscript quantity. In either of the foregoing cases, the subscripts must be
integer constants. Note that the single case treats the array as a one-dimensional array of the given type.

The items given in an EQUIVALENCE list may appear in both the EQUIVALENCE statement and in a COMMON
statement providing the following rules are observed:

a. No two quantities declared in a COMMON statement can be set equivalent to one another.

b. Quantities placed in a common area by means of an EQUIVALENCE statement are permitted to extend
the end of the common area forwards. For example, the statements

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE (A,Y)

cause the common block R to extend from Z to A(4) arranged as follows:

X
Y A(1) (shared location)
Z A(2) (shared location)
AQ3)
A@4)

c. EQUIVALENCE statements that cause the start of a common block to be extended backwards are not
allowed. For example, the invalid sequence '

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(X,A(3))

would require A(1) and A(2) to extend the starting location of block R in a backwards direction as
illustrated by the following diagram:

A(1)

A2)
X AG3)
Y A(4)
VA

6.7 EXTERNAL STATEMENT

Any subprogram name to be used as an argument to another subprogram must appear in an EXTERNAL statement
in the calling subprogram. The EXTERNAL statement declares names to be subprogram names to distinguish them
from other variable or array names. The EXTERNAL statement is written in the following form:

EXTERNAL namel,name2,. . .,namen

6-7

EXTERNAL Statement
CHAPTER 6 PARAMETER Statement

where each name listed is declared to be a subprogram name. If desired, these subprogram names may be
DECsystem-20 FORTRAN defined functions.

It is also possible to utilize DECsystem-20 FORTRAN defined function names for user subprograms by prefixing the
names by an asterisk (*) or an ampersand (&) within an EXTERNAL statement. For example,

EXTERNAL *SIN, &COS

declares SIN and COS to be user subprograms. (If a prefixed name is not a DECsystem-20 FORTRAN defined
function, then the prefix is ignored.)

Note that specifying a DECsystem-20 FORTRAN defined function in an EXTERNAL statement without a prefix
(i.e., EXTERNAL SIN) has no effect upon the usage of the function name outside of actual argument lists. If the
name has generic properties, they are retained outside of the actual argument list. (The name has no generic

propeties within an argument list.)

The names declared in a program EXTERNAL statement are reserved throughout the compilation of the program
and cannot be used in any other declarator statement, with the exception of a type statement.

6.8 PARAMETER STATEMENT
The PARAMETER statement allows users to define constants symbolically during compilation.

The general form of the PARAMETER Statement is as follows:
PARAMETER P1=C1,P2=C2,....
where
Pi is a standard user-defined identifier (referred to in this section as a parameter name)

Ci is any type of constant (including literals) except a label or complex constant. (Refer to Chapter 3
for a description of FORTRAN constants.)

During compilation the parameter names are replaced by their associated constants provided the following rules are
observed:

a. Parameter names appear only within the statement field of an initial or continuation line type, i.e., not
within a comment line or literal text.

b. Parameter names are placed only where FORTRAN constants are acceptable.

c. Parameter name references appear after the PARAMETER statement definition.
d. Parameter names are unique with respect to all other names in the program unit.
e. Parameter names are not redefined in subsequent PARAMETER statements.

f. Parameter names are not used as part of some larger syntactical construct (such as a Hollerith constant
count, or a data type size modifier).

6-8

CHAPTER 7 DATA Statement

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 7
DATA STATEMENT

7.1 INTRODUCTION

DATA statements are used to supply the initial values of variables, arrays, array elements, and labeled common.’
DATA statements are written in the following form:

DATA List 1/Data 1/,List 2/Data 2/,. . .,List n/Data n/

where the List portion of each List/Data/ pair identifies a set of items to be initialized and the /Data/ portion
contains the list of values to be assigned the items in the List. For example, the statement

DATA 1A/5/,1B/10/,IC/15/

initializes variable 1A as the value 5, variable IB as the value 10 and the variable IC as the value 15. The number of
storage locations specified in the list of variables must be less than or equal to the number of storage locations
specified in its associated list of values. If the list of variables is larger (specifies more storage locations) than its
associated value list, a warning message is output. When the value list specifies more storage locations than the
variable list the excess values are ignored.

The List portion of each List/Data/ set may contain the names of one or more variables, arrays, array elements, or
labeled common variables. An entire array (unsubscripted array name) or a portion of an array may be specified in a
DATA statement List as an implied DO loop construct (see Paragraph 10.3.4.1 for a description of implied DO
loops). For example, the statement

DATA (NARY (1), I=1,5)/1,2,3,4,5/

initializes the first five elements of array NARY as NARY(1)=1, NARY(2)=2, NARY(3)=3, NARY(4)=4,
NARY(5)=5.

When an implied DO loop is used in a DATA statement, the loop index variable must be of type INTEGER and the
loop Initial, Terminal, and Increment parameters must also be of type INTEGER. In a DATA statement, references
to an array element must be integer expressions in which all terms are either integer constants or indices of
embracing implied DO loops. Integer expressions of the foregoing types cannot include the exponentiation operator.

! Refer to Paragraph 6.5 for a description of labeled common.

7-1

CHAPTER 7 DATA Statement

The /Data/ portion of each List/Data/ set may contain one or more numeric, logical, literal, or octal constants
and/or alphanumeric strings.

Octal constants must be identified as octal by preceding them with a double quote (*') symbol (e.g., “777).

Literal data may be specified as either a Hollerith specification (e.g., SHABCDE), or a string enclosed in single
quotes (e.g., ‘“ABCDE’). Each ASCII datum is stored left-justified and is padded with blanks up to the right boundary
of the variable being initialized.

When the same value is to be assigned to more than one item in List, a repeat specification may be used. The repeat
specification is written as N*D where N is an integer that specifies how many times the value of item D is to be used.
For example, a /Data/ specification of /3*20/ specifies that the value 20 is to be assigned to the first three items
named in the preceding list. The statement

DATA M,N,L/3*20/
assigns the value 20 to the variables M, N, L.

In instances where the type of the data specified is not the same as that of the variable to which it is assigned,
DECsystem-20 FORTRAN converts the datum to the type of the variable. The type conversion is performed using
the rules given for type conversion in arithmetic assignments (refer to Chapter 8, Table 8-1). Octal, logical, and
literal constants are not converted.

Sample Statement Use

DATA PRINT,L,O/‘TEST’,30,“77/,TAB(J), J=1,30/30*%5 The first 30 elements of array TAB are
initialized as 5.0.

DATA ((A(1,J),I=1,5),J=1,6)/30%1.0/ No conversion required.

DATA ((A(1,3),I=5,10),J=6,15)/60%2.0/ No conversion required.
When a literal string is specified which is longer than one variable can hold, the string will be stored left-justified
across as many variables as are needed to hold it. If necessary, the last variable used will be padded with blanks up to

its right boundary.

Example

Assuming that X, Y, and Z are single precision, the statement
DATA X)Y,Z/ABCDEFGHIJKL’/
will cause
X to be initialized to ‘ABCDE’
Y to be initialized to ‘FGHI)’
Z to be initialized to ‘KLYBY’

When a literal string is to be stored in double precision and/or complex variables and the specified string is only one
word long, the second word of the variable is padded with blanks.

CHAPTER 7 DATA Statement

Example

Assuming that the variable C is complex, the statement
DATA C/‘ABCDE’,’FGHIJ’/

will cause the first word of C to be initialized to ‘“ABCDE’ and its second word to be initialized to YB¥pY’. The
string ‘FGHIJ’ is ignored.

7-3

CHAPTER 8 Arithmetic Assignment Statements

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 8
ASSIGNMENT STATEMENTS

8.1 INTRODUCTION

Assignment statements are used to assign a specific value to one or more program variables. There are three kinds of
assignment statements:

a. Arithmetic assignment statements
b. Logical assignment statements

c. Statement Label assignment (ASSIGN) statements.

8.2 ARITHMETIC ASSIGNMENT STATEMENT

Statements of this type are used to assign specific numeric values to variables and/or array elements. Arithmetic
assignment statements are written in the form

v=e

where v is the name of the variable or array element which is to receive the specified value and e is a simple or
compound arithmetic expression.

In assignment statements the equals symbol (=) does not imply equality as it would in algebraic expressions; it
implies replacement. For example, the expression v=e is correctly interpreted as ‘“‘the current contents of the
location identified as v are to be replaced by the final value of expression e; the current contents of v are lost.”

When the type of the specified variable or array element name differs from that of its assigned value, FORTRAN

converts the value of the type of its assigned variable or array element. The type conversion operations performed by
FORTRAN for each possible combination of variable and value types are described in Table 8-1.

8-1

CHAPTER 8 Mixed Mode Conversion Table
Table 8-1

Rules for Conversion in Mixed Mode Assignments
Expression Type (e) Variable Type (v)

Real Integer Complex Double Precision Logical
REAL D C R,I H,L D
INTEGER C D R,C,I H,C,L D
COMPLEX R C,R D R
DOUBLE H CH,L D H
PRECISION
LOGICAL D D R,1 H,L D,H
OCTAL D D R,I H,C,L D
LITERAL D,H*** C H**x* D** D** D***
DOUBLE H H D *x* D H
OCTAL*

Legend

D = Direct replacement

C = Conversion between integer and floating-point with truncation
R = Real part only

I = Set imaginary part to O

H = High order only

L = Set low order part to O

Notes
* Octal numbers comprised of from 13 to 24 digits are termed double octal. Double octals require
two storage locations. They are stored right-justified and are padded with zeroes to fill the

locations.

** Use the first two words of the literal. If the literal is only one word long, the second word is
padded with blanks.

**% Use the first word of the literal.

**x* To convert double octal numbers to complex, the low order octal digits are assumed to be the
imaginary part and the high order digits are assumed to be the real part of the complex value.

8-2

CHAPTER 8 Logical Assignment Statements,
ASSIGN Statements

8.3 LOGICAL ASSIGNMENT STATEMENTS

This type of assignment statement is used to assign values to variables and array elements of type logical. The logical
assignment statement is written in the form

v=e
where v is one or more variables and/or array element names and e is a logical expression.

Examples

Assuming that the variables L, F, M, and G are of type logical, the following statements are valid:

Sample Statement
L=.TRUE. The contents of L are replaced by logical truth.

F=NOT.G The contents of L are replaced by the logical complement of
the contents of G.

M=A>T If A is greater than T, the contents of M are replaced by logical
truth; if A is less than or equal to T, the contents of M are
replaced by logical false.

L=((1.GT.H).AND.(J <=K)) The contents of L is replaced by either the true or false
. resultant of the expression.

8.4 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

The ASSIGN statement is used to assign a statement label constant (i.e., a 1- to 5-digit statement number) to a
variable name. The ASSIGN statement is written in the following form

ASSIGNn TO1
where n represents the statement number and I is a variable name. For example, the statement
ASSIGN 2000 TO LABEL
specifies that the variable LABEL represents the statement number 2000.
With the exception of complex and double precision, any type of variable may be used in an ASSIGN statement.

Once a variable has been assigned a statement number, FORTRAN considers it a label variable. If a label variable is
used in an arithmetic statement, the results are unpredictable.

The ASSIGN statement is used in conjunction with assigned GO TO control statements (Chapter 9); it sets up
statement label variables which are then referenced in subsequent GO TO control statements. The following
sequence illustrates the use of the ASSIGN statement:

CHAPTER 8 ASSIGN Statement

555 TAX=(A+B+C)*.05
ASSIGN 555 TO LABEL

GO TO LABEL

84

CHAPTER 9 GO TO Statements

DEC-system-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 9
CONTROL STATEMENTS

9.1 INTRODUCTION

DECsystem-20 FORTRAN object programs are normally executed statement-by-statement in the order in which
they were presented to the compiler. The following source program control statements, however, enable the user to
alter the normal sequence of statement execution:

a. GOTO

b. IF

c. DO

d. CONTINUE
e. STOP

f. PAUSE

9.2 GO TO CONTROL STATEMENTS
There are three kinds of GO TO statements:
a. Unconditional
b. Computed
c. Assigned.

A GO TO control statement causes the statement which it identifies to be executed next, regardless of its position
within the program. Each type of GO TO statement is described in the following paragraphs.

9-1

CHAPTER 9 Unconditional, Computed and
Assigned GO TO Statements

9.2.1 Unconditional GO TO Statements
GO TO statements of this type are written in the form

GOTOn

where n is the label (i.e., statement number) of an executable statement (e.g., GO TO 555). When executed, an
unconditional GO TO statement causes control of the program to be transferred to the statement which it specifies.

An unconditional GO TO statement may be positioned anywhere in the source program except as the terminating
statement of a DO loop.

9.2.2 Computed GO TO Statements
GO TO statements of this type are written in the form

GO TO (N1,N2,. . ,NK)E

where the parenthesized list is a list of statement numbers and E is an arithmetic expression. Any number of
statement numbers may be included in the list of this type of GO TO statement; however, each number given must
be used as a label within the program or subprogram containing the GO TO statement.

NOTE
A comma may optionally follow the parenthesized list.

The value of the expression E must be reducible to an integer value that is greater than O and less than or equal to
the number of statement numbers given in the statement’s list. If E does not compute within the foregoing range,
the next statement is executed.

When a computed GO TO statement is executed, the value of its expression (i.e., E) is computed first. The value of E
specifies the position within the given list of statement numbers, of the number which identifies the statement to be
executed next. For example, in the statement sequence

GO TO (20, 10, 5)K
CALL XRANGE(K)

the variable K acts as a switch causing a transfer to statement 20 if K=1, to statement 10 if K=2, or to statement 5 if
K=3. The subprogram XRANGE is called if K is less than 1 or greater than 3.

9.2.3 Assigned GO TO Statements

GO TO statements of this type may be written in either of the following forms:

GOTOK
GO TOK, (L1,L2,...Ln)

where K is a variable name and the parenthesized list of the second form contains a list of statement labels (i.e.,

statement numbers). The statement numbers given must be within the program or subprogram containing the GO
TO statement.

9-2

CHAPTER 9 Arithmetic IF Statements

Assigned GO TO statements of either of the foregoing forms must be logically preceded by an ASSIGN statement
that assigns a statement label to the variable name represented by K. The value of the assigned label variable must be
in the same program unit as the GO TO statement in which it is used. In statements written in the form

GO TOK, (L1,L2,. . .,Ln)

if K is not assigned one of the statement numbers given in the statement’s list, then the next sequential statement is
executed.

Examples

GO TO STATI
GO TO STATI, (177,207,777)

9.3 IF STATEMENTS

There are three kinds of IF statements: arithmetic, logical, and logical two-branch.

9.3.1 Arithmetic IF Statements

IF statements of this type are written in the form
IF(E) L1, L2,L3

where (E) is an expression enclosed within parenthesis and L1, L2, L3 are the labels (i.e., statement numbers) of
three executable statements.

This type of IF statement causes control of the program to be transferred to one of the given statements, according
to the computed value of the given expressions. If the value of the expression is:

a. less than 0, control is transferred to the statement identified by L1;
b. equal to 0, control is transferred to the statement identified by L2;
c. greater than 0, control is transferred to the statement identified by L3.

All three statement numbers must be given in arithmetic IF statements; the expression given may not compute to a
complex value.

Examples
Sample Statement
IF (ETA) 4,7, 12 Transfer control to statement 4 if ETA is negative, to
statement 7 if ETA is O and to statement 12 if ETA is greater
than 0.
IF (KAPPA — 1(10)) 20, 14, 14 Transfer control to statement 20 if KAPPA is less than the

10th element of array L and to statement 14 if KAPPA is
greater than or equal to the 10th element of array L.

9-3

Logical and Logical Two-Branch
CHAPTER 9 IF Statements, DO Statements

9.3.2 Logical IF Statements

IF statements of this type are written in the form
IF(E)S
where E is any expression enclosed in parentheses and S is a complete executable statement.

Logical IF statements cause control of the program to be transferred either to the next sequential executable
statement or the statement given in the IF statement (i.e., S) according to the computed logical value of the given
expression. If the value of the given logical expression is true (negative), control is given to the executable statement
within the IF statement. If the value of the expression is false (positive or zero), control is transferred to the next
sequential executable program statement.

The statement given in a logical IF statement may be any DECsystem-20 FORTRAN executable statement except
a DO statement or another logical IF statement.

Examples

Sample Statement
IF(TORS) X=Y +1 An arithmetic replacement operation is performed if the

result of IF is true.

IF (Z.GT.X(K)) CALL SWITCH (S,Y) A subprogram transfer is performed if the result of IF is
true.

IF (K.EQ.INDEX) GO TO 15 An unconditional transfer is performed if the result of
IF is true.

9.3.3 Logical Two-Branch IF Statements

IF statements of this type are written in the form
IF (E) NI, N2

where E is any expression enclosed in parentheses and N1 and N2 are statement labels defined within the program
unit.

Logical two-branch IF statements cause control of the program to be transferred to either statement NI or N2
depending on the computed value of the given expression. If the value of the given logical expression is true
(negative), control is transferred to statement N1. If the value of the expression is false (positive or zero), control is
transferred to statement N2.

Note that the statement immediately following the logical two-branch IF must be numbered so that control can later
be transferred to the portion of code that was skipped.

Examples
Sample Statement
IF (LOGI) 10,20 Transfer control to statement 10 if LOGI is negative;
otherwise transfer control to statement 20.
IF (A.LT.B.AND.A.LT.C) 31, 32 Transfer control to statement 31 if A is less than both B and

C; transfer control to statement 32 if A is greater than or equal
to either B or C.

94

CHAPTER 9 DO Statement Parameters, Nested DO’s

9.4 DO STATEMENT

DO statements simplify the coding of iterative procedures; they are written in the following form:

Indexing Parameters

——A—
DO N1=MI,M2,M3

Terminal Increment
Statement Parameter
Label Terminal
Index Parameter
Variable y
Initial
Parameter

where

a. Terminal Statement Label N is the statement number of the last statement of the DO statement range.
The range of a DO statement is defined as the series of statements which follows the DO statement up to
and including its specified terminal statement.

b. Index Variable I is an unsubscripted variable, the value of which is defined at the start of the DO
statement operations. The index variable is available for use throughout each execution of the range of
the DO statement but its value should not be altered within this range. It is also made available for use in
the program when

1. control is transferred outside the range of the DO loop by a GO TO, IF, or RETURN statement
located within the DO range,

2. a CALL is executed from within the DO statement range which uses the index variable as an
argument, and

3. if an Input—Output statement with either or both the options END= or ERR= (Chapter 10)
appear within the DO statement range.

c. Initial Parameter M1 assigns the index variable, V, its initial value. This parameter may be any variable,
array element, or expression.

d. Terminal Parameter M2 provides the value which determines how many repetitions of the DO statement
range are performed.

e. Increment Parameter M3 specifies the value to be added to the initial parameter (M1) on completion of
each cycle of the DO loop.

An indexing parameter may be any arithmetic expression which should result in either a positive or negative value.
The values of the indexing parameters are calculated only once, at the start of each DO-loop operation. The number

of times that a DO loop will be executed is specified by the formula:

(M2-M1)/M3+1

9-5

CHAPTER 9 DO Statement, Nested DO’s

Since the count is computed at the start of a DO loop operation, changing the value of the loop index variable
within the loop cannot affect the number of times that the loop is executed. At the start of a DO loop operation,
the index value is set to the value of the initial parameter (M1) and a count variable (generated by the compiler) is
set to the negative of the calculated count. At the end of each DO loop cycle the value of the increment parameter
(M3) is added to the index variable and the count variable is incremented. If the number of specified iterations have
not been performed, another cycle of the loop is initiated.

One execution of a DO loop range is always performed regardless of the initial values of the index variable and the
indexing parameters.

Exit from a DO loop operation on completion of the number of iterations specified by the loop count is referred to
as a normal exit. In a normal exit, control is passed to the first executable statement after the DO loop range
terminal statement and the value of the DO statement index variable is considered undefined.

Exit from a DO loop may also be accomplished by a transfer of control by a statement within the DO loop range to
a statement outside the range of the DO statement (Paragraph 9.4.3).

9.4.1 Nested DO Statements

One or more DO statements may be contained (i.e., nested) within the range of another DO statement. The
following rules govern the nesting of DO statements.

a. The range of each nested DO statement must be entirely within the range of the containing DO

statement.
Example
Valid Invalid
DO 1 DO 1
DO 2 DO 2 The range of
l: [DO 2 is outside

| that of DO 1.

b. The ranges of nested DO statements cannot overlap.

Example
Valid Invalid
DO 1 DO 1
DO 2 DO 2

1

The ranges of
loop DO 2 and
DO 3 DO 3 DO 3 overlap.

=

i

9-6

CHAPTER 9 DO Statement, Extended Range and
Transfer Operations

c. More than one DO loop within a nest of DO loops may end on the same statement. When this occurs,
the terminal statement is considered to belong to the innermost DO statement that ends on that
statement. The statement label 4 of the shared terminal statement cannot be used in any GO TO or
arithmetic IF statement that occurs anywhere but within the range of the DO statement to which it

belongs.
Example
DO 4
All the DO statements
DO 4 share the same terminal
. statement, however, it
DO 4 belongs to DO 4.

DO 4

9.4.2 Extend Range

The extended range of a DO statement is defined as the set of statements that are executed between the transfers
out of the innermost DO statement of a set of nested DO’s and the transfer back into the range of this innermost DO
statement. The extended range of a nested DO statement is illustrated as follows:

DO 1
DO 2

DO 3
—»—— (out)

——— (in)

r

Extended Range

9-7

CHAPTER 9 DO Statement Transfers,
CONTINUE Statement

The following rules govern the use of a DO statement extended range:

a. The transfer out statement for an extended range operation must be contained by the most deeply
nested DO statement that contains the location to which the return transfer is to be made.

b. Atransfer into the range of a DO statement is permitted only if the transfer is made from the extended
range of that DO statement.

c. The extended range of a DO statement must not contain another DO statement.

d. The extended range of a DO statement cannot change the index variable or indexing parameters of the
DO statement.

e. The use of and return from a subprogram from within an extended range is permitted.

9.4.3 Permitted Transfer Operations

The transfer of program control from within a DO statement range or the ranges of nested DO statements is
governed by the following rules:

a. A transfer out of the range of any DO loop is permitted at any time. When such a transfer is executed
the value of the controlling DO statement’s index variable is defined as the current value.

b. A transfer into the range of a DO statement is permitted if it is made from the extended range of the DO
statement.

c. The use of and return from a subprogram from within the range of any DO loop, nested DO loop, or
extended range is permitted.

The following examples illustrate the transfer operations permitted from within the ranges of nested DO statements.

Valid Transfers

D1

D2

—_—

2
v

extended range

<@

—

Invalid Transfers

CHAPTER 9 STOP Statement

9.5 CONTINUE STATEMENT

CONTINUE statements may be placed anywhere in the source program without affecting the program sequence of
execution. CONTINUE statements are commonly used as the last statement of a DO statement range in order to
avoid ending with a GO TO, PAUSE, STOP, RETURN, arithmetic IF, another DO statement, or a logical IF
statement containing any of the foregoing statements. This statement is written as

12 CONTINUE

Example

In the following sequence the labeled CONTINUE statement provides a legal termination for the range of the DO
loop.

DO 45 ITEM=1,1000

STOCK=NVNTRY (ITEM)

CALL UPDATE (STOCK,TALLY)

IF (ITEM.EQ.LAST) GO TO 77
45 CONTINUE

77 PRINT 20, HEADNG,PAGE NO

9.6 STOP STATEMENT

When executed, the STOP statement causes the execution of the object program to be terminated and the user
returned to command level. A descriptive message may, optionally, be included in the STOP statement to be out-
put to the user’s I/O terminal immediately before program execution is terminated. This statement may be written
as

STOP
STOP ‘N’

or

STOP n
where ‘N’ is a string of ASCII characters enclosed by single quotes and n is an octal string up to 12 digits. The string
N or the value n is printed at the user’s I/O terminal when the STOP statement is executed; it may be of any length,

continuation lines may be used for large messages.

Examples

STOP ‘Termination of the Program’
or

STOP 7777

CHAPTER 9 PAUSE Statement, TRACE Option

9.7 PAUSE STATEMENT

When executed, a PAUSE statement causes a suspension of the execution of the object program and gives the user
the option to:

a. Continue execution of the program
b. Exit

c. Initiate a TRACE operation (Paragraph 9.7.1).

The permitted forms of the PAUSE statement are:
a. PAUSE
b. PAUSE ‘literal string’
c. PAUSE n, where n is an octal string up to 12 digits.
The execution of a PAUSE statement of any of the foregoing forms causes the standard instruction:
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

to be printed at the user’s terminal. If the form of the PAUSE statement contains either a literal string or an integer
constant, the string or constant is printed on a line preceding the standard message. For example, the statement

PAUSE ‘TEST POINT A’
causes the following to be printed at the user’s terminal:

TEST POINT A
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

The statement
PAUSE 1

causes the following to be printed at the user’s terminal:

PAUSE 000001
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

9.7.1 T (TRACE) Option
The entry of the character T in response to the message output by the execution of a PAUSE statement starts a
TRACE routine. This routine causes the printing, at the user’s terminal, of a complete history of all subroutine calls
made during the execution of the program, up to the execution of the PAUSE statement. The history printed by the
TRACE routine consists of:

a. The names of all subroutines called, arranged in the reverse order of their call;

b. The absolute location (written within parentheses) of the called subroutine;

c. The name of the calling subroutine plus an offset factor and the absolute location (written within
parentheses) of the statement within the routine which initiated the call;

9-10

CHAPTER 9 PAUSE Statement, TRACE Option

d. The number of arguments involved (written within angle brackets);

e. An alphabetic code (written within square brackets) that specifies the type of each argument involved.
The alphabetic codes used and the meaning of each are:

Code Character Type Specified
U Undefined type; the use of the argument will determine its type.
L Logical
I INTEGER
F Single precision REAL
o Octal
S Statement Number
D Double precision REAL
C COMPLEX
K A literal or constant

Example

The following printout illustrates the execution of the PAUSE statement “PAUSE ‘TEST POINT A’”, the entry of a
T character to initiate the TRACE routine, the resulting trace printout, and the entry of the character G to continue
the execution of the program.

TEST POINT A
TYPE @ TO CONTINUE, X To EXIT, T TO TRACE.

*T

NAME (LOC) <<=-== CALLER (LOC) <#ARGS> [ARG TYPES]
TRACE, (411653) <<==- MAIN.+612 (1@32) <#l> (U]
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE.

*G

In addition to its use with the PAUSE statement, the TRACE routine may be called directly, using the form
CALL TRACE
or as a function, using the form
X =TRACE (x)
Execution of the foregoing statements starts the TRACE routine which causes the printing of the history of all
subprogram calls made during the execution of the program, up to the execution of the CALL statement, or up to

the execution of the function, respectively. The history printed by the TRACE routine under these circumstances is
exactly the same as described in the preceding paragraph.

CHAPTER 10 Data Transfer Operations and Modes

DEC-system-20 FORTRAN extension to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 10
I/0 STATEMENTS

10.1 DATA TRANSFER OPERATIONS

FORTRAN 1/O statements permit data to be transferred between processor storage (memory) and peripheral devices
and/or between storage locations. Data in the form of logical records may be transferred using an a) sequential, b)

random access, or c) append transfer mode. The areas in core from which data is to be taken during output (write)

operations and into which data is stored during input (read) operations are specified by

a. a list in the I/O statement which initiated the transfer
b. alist defined by a NAMELIST statement, or
c. between a specified FORMAT statement and the external medium.

The type and arrangement of transferred data may be specified by format specifications located in either a
FORMAT statement or an array (formatted I/O) or by the contents of an I/O list (i.e., list-directed 1/0).

The transfer modes, I/O lists, type conversion and arrangement of data, and the statements required to initiate I/O
transfer operations are described in the following paragraphs.

10.2 TRANSFER MODES

The characteristics and requirements of the a) sequential, b) random access, and c) append data modes are described
in the following paragraphs.

10.2.1 Sequential Mode

Records are transferred during a sequential mode of operation in the same order as they appear in the external data
file. Each I/O statement executed in a sequential mode transfers the record immediately following the last record
transferred from the accessed source file.

10.2.2 Random Access Mode

This mode permits records to be accessed and transferred from a file in any desired order. Random access transfers,
however, may be made only to (or from) a device that permits random-type data addressing operations (i.e., disk)
and to files that have previously been set up for random access transfer operation. Files for random access must
contain a specified number of identically sized records that may be accessed, individually, by a record number.

10-1

CHAPTER 10 Append Mode, I/0 Statements
Form and Components

The OPEN statement or a subroutine call to DEFINE FILE may be used to set up random access
files.

The OPEN statement is used to establish a random access mode to permit the execution of random access data
transfer operations. The OPEN statement should logically precede the first I/O statement for the specified logical
unit in the user source program.

10.2.3 Append Mode

This mode is a special version of the sequential transfer mode: it may be used only for sequential output (write)
operations. The append mode permits the user to write a record immediately after the last logical record of the
accessed file. During an append transfer, the records already in the accessed file remain unchanged, the only function
performed is the appending of the transferred records to the end of the file.

An OPEN statement (Chapter 12) must be used to establish an append mode before append I/O operations can be
executed.

10.3 1/0 STATEMENTS, BASIC FORMATS AND COMPONENTS

The majority of the I/O statements described in this chapter are written in one of the following basic forms, or in
some modification of these forms:

Basic Statement Forms Use

Keyword (u,f)list Formatted I/O Transfer

Keyword (u#R,f)list Random Access Formatted I/O Transfer
Keyword (u,*)list List-Directed I/O Transfer

Keyword (u,N) NAMELIST-Controlled 1/0O Transfer
Keyword (u)list Binary I/O Transfer

Keyword (u#R)list Random Access Binary I1/O Transfer

where

Keyword = the statement name (i.e., READ or WRITE)

u = logical unit number

f = FORMAT statement number or the name of an array that contains the desired format
specifications

list = /0 list

#R = the delimiter # followed by the number of a record in an established random-access file

* = symbol specifying a list-directed I/O transfer.

N = the name of an 1/0 list defined by a NAMELIST statement.

Details of the foregoing statement components are given in the following paragraphs.

10-2

CHAPTER 10 1/0 Statements Key Word, Logical
Unit Numbers and FORMAT References

10.3.1 1/0O Statement Keywords
The keywords (i.c., names) of the DECsystem-20 FORTRAN I/O statements described in this chapter are:

a. READ
b. REREAD
¢. WRITE

d. ACCEPT

e. PRINT

£ TYPE

¢ FIND

h. ENCODE
i, DECODE
i DECODE

10.3.2 Logical Unit Numbers

The physical devices used for most FORTRAN /O operations are identified by decimal numbers. During
compilation, the compiler assigns default logical unit numbers for the REREAD, READ, ACCEPT, PRINT,
and TYPE statements. Default unit numbers are negatively signed decimal numbers that are inaccessible to the
user.

The logical device assignments may be made by the user at run time or the standard assignments contained by the
FORTRAN Object Time System (FOROTS) may be used. The standard logical device assignments are listed in
Table 10-1. It is recommended that the user specify the device explicitly in the OPEN statement.

10.3.3 FORMAT Statement References

A FORMAT statement contains a set of format specifications which define the structure of a record and the form of
the data fields which comprise the record. Format specifications may also be stored in an array rather than in a
FORMAT statement. (Refer to Chapter 13 for a complete description of the FORMAT statement.)

The execution of an I/O statement that includes either a FORMAT statement number or the name of an array which
contains format specifications causes the structure and data of the transferred record to assume the form specified in
the referenced statement or array. Records transferred under the control of a format specification are referred to as
“formatted” records. Conversely, records transferred by I/O statements that do not reference a format specification
are referred to as ‘“‘unformatted” records. During unformatted transfers, data is transferred on a one-to-one
correspondence between internal (processor) and external (device) locations, with no conversion or formatting
operations.

Unformatted files are binary files divided into records by DECsystem-20 FORTRAN embedded control words;
the control words are invisible to the user. Files of this type cannot be prepared by the user without utilizing
FOROTS. Unformatted files are intended to be used only within the DECsystem-20 FORTRAN environment.

10-3

CHAPTER 10 Table of Logical Device Assignments

Table 10-1
DECsystem-20 FORTRAN Logical Device Assignments
Device/Function Default Filename FORTRAN Logical Unit Number Use
Standard Devices*
0 FORxx.DAT 00 ILLEGAL
DSK «— Ty DISK
CDR 02 Card Reader
LPT 03 Line Printer
CcTY 04 Console Terminal
TTY 05 User’s Terminal
06 through 15 Not Valid
MTAO 16 Magnetic Tape
MTAl 17
MTA2 18
FORTR 19 Assignable Device
DSK 20 DISK
DSK 21
DSK 22
DSK 23
DSK 24
DEV1 25 Assignable Devices
DEV2 26
DEV3 27
DEV4 28
DEVS 29
! v
DEV63 FORG65.DAT 63 DISK
Default Devices (inaccessible to the user) l
REREAD Current file -6 REREAD statement
CDR FORCDR.DAT -5 READ statement
TTY FORTTY.DAT -4 ACCEPT statement
LPT FORLPT.DAT -3 PRINT statement
-2 Not Valid
1TY FORTTY.DAT -1 TYPE statement

*The total number of standard devices permitted is on installation parameter.

104

CHAPTER 10 1/0 Lists, Implied DO Constructs

10.3.4 1/0 List

An 1/O list specifies the names of variables, arrays, and array elements to which input data is to be assigned or from
which data is to be output. Implied DO constructs (Paragraph 10.3.4.1), which specify specific sets of array
elements, may also be included in I/O lists. The number of items in a statement’s list determines the amount of data
to be transferred during each execution of the statement.

10.3.4.1 Implied DO Constructs — When an array name is given in an I/O list all elements of the array are
transferred in the order described in Chapter 3 (Paragraph 3.5.3). If only a specific set of array elements is involved,

they may be specified in the I/O list either individually or in the form of an implied DO construct.

Implied DO’s are written within parentheses in a format similar to that of DO statements. They may contain one or
more variable, array, and/or array element names, delimited by commas and followed by indexing parameters that
are defined as for DO statements.

The general form of an implied DO is

(name(SL),I=M1,M2,M3)

where
name = an array name
SL = the subscript list of an array name or an array element identifier
I = the index control variable that represents a subscript appearing in a preceding subscript
list
MIM2M3 = the indexing parameters that specify, respectively, the initial, terminal, and increment
values that control the range of I. If M3 is omitted (with its preceding comma), a value
of 1 is assumed.
Examples
(A(S),S=1,5) Specifies the first five elements of the one-dimension array A (i.e., A(1),
A(2), AG3), A4), A(5)).
(A(2,5),8=1,10,2) Specifies the elements A(2,1), A(2,3), A(2,5), A(2,7), A(2,9) of array A.

As stated previously, implied DO constructs may also contain one or more variable names.

Example

I, J, B, and C must be integer variables.

((A(B,C),B=1,10),C=1,10),1,J Specifies a 10 X 10 set of elements of array A, the location identified
by I and the location identified by J.

Implied DO constructs may also be nested. Nested implied DO’s may share one or more sets of indexing parameters.

Example

((A(J,K),J=1,5),D(K),K=1,10) Specifies a S X 10 set of elements of array A and the first 10
elements of array D.

10-5

CHAPTER 10 Records For Random Access,

List-Directed 1/0
When an array or set of array elements are specified as either a storage or transmitting area for 1/O purposes, the
array elements involved are accessed in ascending order with the value of the first subscript quantity varying most
rapidly and the value of the last given subscript increasing to its maximum value least rapidly. For example, the
elements of an array dimensional as TAB(2,3) are accessed in the order:

TAB(1,1)
TAB(2,1)
TAB(1,2)
TAB(2,2)
TAB(1,3)
TAB(2,3)

10.3.5 The Specification of Records for Random Access

Records to be transferred in a random access mode must be identified in an I/O statement by an integer expression
or variable preceded by a ’ delimiter (e.g., '101).

NOTE
A number sign (#) may be used in place of the ‘delimiter (e.g., both
#101 and ’101 are accepted by DECsystem-20 FORTRAN).

10.3.6 List-Directed I/O

The use of an asterisk in an I/O statement in place of a FORMAT statement number causes the specified transfer
operation to be “list-directed.” In a list-directed transfer, the data to be transferred and the type of each transferred
datum are specified by the contents of an I/0 list included in the I/O command used. The transfer of data in this
mode is performed without regard for column, card, or line boundaries. The list-directed mode is specified by the
substitution of an asterisk (*) for the FORMAT statement reference (i.e., f) of an I/O statement. The general form
of a list-directed I/ O statement is

keyword (u,*)list

Example
READ (5,%)IIABM,L

List-directed transfers may be used to input data from any acceptable input device including an input keyboard
terminal.

NOTE
Device positioning commands, such as BACKSPACE, SKIP
RECORD, etc., should not be used in conjunction with
list-directed /O operations. If such a combination is used, the
results will be unpredictable.

Data for list-directed transfers should consist of alternate constants and delimiters. The constants used should have
the following characteristics:

a. Input constants must be of a type acceptable to DECsystem-20 FORTRAN. Octal constants, although
acceptable, are not permitted in list-directed I/0 operations.

b. Literal constants must be enclosed within single quotes (e.g., ‘ABLE’).

10-6

CHAPTER 10 List-Directed 1/0

C.

d.

Blanks serve as delimiters; therefore, they are not permitted in any but literal constants.

Decimal points may be omitted from real constants which do not have a fractional part. FORTRAN
assumes that the decimal point follows the right-most digit of a real constant.

Delimiters in data for list-directed input must comply with the following:

a.

b.

Delimiters may be either commas or blanks.

Delimiters may be either preceded by or followed by any number of blanks, carriage return/line feed
characters, tabs, or line terminators; any such combination is considered by FORTRAN as being only
a single delimiter.

A null, the complete absence of a datum, is represented by two consecutive commas which have no
intervening constant(s). Any number of blanks, tabs, carriage return/line feed characters, or end-of-input
conditions may be placed between the commas of a null. Each time a null item is specified in the input
data, its corresponding list element is skipped (i.e., unchanged). The following illustrates the effect of a
null input:

INPUT Items 101, ‘A’, tab, ‘NOI’,

2 I A
Corresponding A , LIT,IAB,NUMBER
1/0 List Items l l l l
Resulting 101. A un- NOI
Contents of changed
List Items IAB

Slashes (/) cause the current input operation to be terminated even if all the items of the directing list
are not filled. The contents of items of the directing I/0 list which either are skipped (by null inputs) or
have not received an input datum before the transfer is terminated remain unchanged. Once the I/0 list
of the controlling I/O statement is satisfied, the use of the / delimiter is optional.

Once the I/0O list has been satisfied (transfers have been made to each item of the list) any items
remaining in the input record are skipped.

Constants or nulls in data for list-directed input may be assigned a repetition factor to cause an item to be repeated.

The repetition of a constant is written as

r*K

where r is an integer constant that specifies the number of times the constant represented by K is to be repeated.

The repetition of a null is written as an integer followed by an asterisk.

Examples
10*5 represents 5,5,5,5,5,5,5,5,5,5
3*ABLE’ represents ‘ABLE’,'ABLE’,'ABLE"
3* represents null,null,null

10-7

CHAPTER 10 NAMELIST 1/0

10.3.7 NAMELISTI/O Lists

One or more lists may be defined by a NAMELIST statement (Chapter 11). Each I/O list defined in a NAMELIST
statement is identified by a unique (within the routine) 1 to 6 character name that may be referenced by one or
more READ or WRITE statements. The first character of each I/O list name must be alphabetic. Referencing a
NAMELIST-defined I/0 list enables any of the foregoing statements to be written without an I/0 list and permits
the same list to be used by more than one statement.

1/O statements which reference a NAMELIST-defined I/O list cannot contain either a FORMAT statement reference
or an I/0 list. NAMELIST-controlled 1/O operation cannot be used to transfer octal numbers or literal strings.

Records for NAMELIST-controlled input operations must be formatted in the following manner:
SNAME D1,D2,D3. . .Dn3
where

a. 3 symbols delimit the beginning and end of the record. The first $ must be in column 2 of the input
record; column 1 must be blank.

b. NAME is the name of a NAMELIST-defined input list. The named list identifies the processor storage
locations that are to receive the data items read from the accessed record.

c. D1 through Dn are values of the items of data contained by the record; these items cannot be octal
numbers or literal strings.

Only NAMELIST-controlled READ statements may be used to input records formatted in the foregoing manner.
NAMELIST-controlled WRITE statements will output records in the foregoing format.

NOTE
Device positioning commands such as BACKSPACE, SKIP
RECORD, etc., should not be used in conjunction with
NAMELIST-controlled I/O operations. If such a combination
is used, the results are unpredictable.

10.4 OPTIONAL READ/WRITE ERROR EXIT AND END-OF-FILE ARGUMENTS

Either or both an error exit or an end-of-file argument may, optionally, be added to the parenthesized portion of
most forms of the READ and WRITE I/O statements.

The error exit argument is written as ERR=c where c is a statement number. The use of this argument causes the
current I/O operation to be terminated and program control transferred to the statement identified by the argument
if a device error is detected. For example, the detection of an error during the execution of

READ(10,77,ERR=101)TABLE,IM,J

terminates the input operation and transfers program control to statement 101.

10-8

CHAPTER 10 Sequential Formatted
READ Statements

The end-of-file argument is written as END=d where d is a statement number. The use of this argument causes the
current I/O operation to be terminated and program control to be transferred to the statement identified by the
argument when an end-of-file condition is detected. For example, the detection of an end-of-file condition during
the execution of

READ(10,77,END=50)TABLE IM,J
transfers program control to statement 50.

If the END= argument is not present and an end of file (EOF) condition is detected, the file is closed, program
execution is terminated, and the user is returned to command level.

10.5 READ STATEMENTS

READ statements transfer data from peripheral devices into specified processor storage locations. The permitted
forms of this type of input statement permit READ statements to be used on both sequential and random access
transfer modes for formatted, unformatted, list-directed, and NAMELIST-controlled data transfers.

10.5.1 Sequential Formatted READ Transfers
Descriptions of the READ statements that may be used for the sequential transfer of formatted data follow:

a. Form: READ (u,flist

Use: Input data from logical unit u, formatted according to the specifications given in f, into
the processor storage locations identified in input list.

Example: READ (10,555)TABLE(10,20),ABLE,BAKER,CHARL
b. Form: READ (u,H)

Use: Input the data from logical unit u directly into either a Hollerith (H) field descriptor or a
literal field descriptor given within the format specifications of the referenced FORMAT
statement. If the referenced FORMAT statement does not contain either of the foregoing
types of format field descriptors, the input record is skipped. If a required field descriptor
is present, its contents are replaced by the input data.

Example: READ(15,101)
c. Form: READ f

Use: Input the data from the READ default device (card reader) directly into either a Hollerith
(H) field descriptor or a literal field descriptor given within the format specifications of
the referenced FORMAT statement. If the referenced FORMAT statement does not
contain either of the foregoing types of format field descriptors, the input record is
skipped. If a required field descriptor is present, its contents are replaced by the input
data.

Example: READ 66

10-9

CHAPTER 10 Sequential Binary and
List-Directed READ Statements

d. Form: READ f, list

Use: Input the data from the READ default device (card reader) into the processor storage
locations identified in the input list. The input data is formatted according to the
specifications given in f.

Example: READ 15, ARRAY (20,30)

10.5.2 Sequential Unformatted Binary READ Transfers

Only the following form of the READ statement may be used for the scquential transfer of unformatted input
FORTRAN binary data:

Form: READ (u)list

Use: Input one logical record of data from logical unit u into processor storage as the value of
the location identified in list. Only binary files that have been output by a DECsystem-20
FORTRAN unformatted WRITE statement may be read by this type of READ
statement.

NOTE
If the form READ (u) is used, it will cause one unformatted
input record to be skipped.

Example: READ (10) BINFIL (10,20,30)

10.5.3 Sequential List-Directed READ Transfers

The following forms of the READ statements may be used to control a sequential, list-directed input transfer:
a. Form: READ (u,*)list
Use: Input data from logical device u into processor storage or the value of the locations
identified in list. Each input datum is converted, if necessary, to the type of its assigned
list variable.
Example: READ (10,*) IARY (20,20), A,BM
b. Form: READ *, list
Use: Input the data from the READ default device (card reader, CDR) into the processor
storage locations identified in the input list. Each input datum is converted, if necessary,

to the type of its assigned list variable.

Example: READ *, ABEL(10,20),1,J K

10-10

CHAPTER 10

NAMELIST—Controlled and
Random Access READ Statements

10.5.4 Sequential NAMELIST-Controlled READ Transfers
Only the following form of the READ statement may be used to initiate a sequential NAMELIST-controlled input

transfer:
Form:

Use:

READ (u,n)

Input data from logical unit u into processor storage as the value of the location
identified by the NAMELIST input list specified by the name n. The input data is
converted to the type of assigned variable if type conflicts occur. Only input files that
contain records formatted and identified for NAMELIST operations (Paragraph 10.3.7)
may be read by READ statements of this form.

10.5.5 Random Access Formatted READ Transfers

Only the following form of the READ statement may be used to initiate a random access formatted input transfer:

Form:

Use:

READ (u#R f)list

Input data from record R of logical unit u. Format each input datum according to the
format specifications of f and place into processor storage as values of the locations
identified in list. Only disk files that have been set up by either an OPEN or DEFINE
FILE statement may be accessed by a READ statement of this form. (If record R has
not been written, a fatal error results.)

10.5.6 Random Access Unformatted READ Transfers

Only the following form of the READ statement may be used to initiate a random-access unformatted input

transfer:

Form:

Use:

Example:

READ {u#R)list

Input data from record R of logical unit u. Place the input data into processor storage as
the value of the locations identified in list. Only binary files that have been output by an
unformatted random-access WRITE statement may be accessed by a READ statement of
this form. (If record R has not been written, a fatal error results.)

READ (1#20) BINFIL
Read record number 20 into array BINFIL.
NOTE

If the form READ (u#R) is used, it will cause one logical input
record to be skipped.

10.6 SUMMARY OF READ STATEMENTS

The various forms of the READ statements are summarized in Table 10-2.

10-11

CHAPTER 10

Summary Of READ Statements
and REREAD Statement

Table 10-2
Summary of Read Statements

Type of Transfer Transfer Mode
Sequential Random Access

Formatted READ (u,f)list READ (u#R,f)list
READ (u,f)
READ flist
READ f

Unformatted READ (u)list READ (u#R)list
READ (u) READ (u#R)

List-Directed READ (u,*)list
READ * list

NAMELIST READ (u,N)

Note: The ERR=c and END=d arguments may be included in any
of the above READ statements. When included, the
foregoing arguments must be last, e.g., READ
(10,20,END=101,ERR=500) ARRAY (50,100).

10.7 REREAD STATEMENT

The REREAD statement causes the last record read from the last active input device to again be accessed and

processed.

The REREAD feature of DECsystem-20 FORTRAN cannot be used until an input (READ) transfer from a file has
been accomplished. If REREAD is used prematurely, an error message will be output by DECsystem-20 FORTRAN

at execution time.

Once a record has been accessed by a formatted READ statement the record transferred may be reread as many
times as desired. In a formatted transfer, the same or new format specification may be used by each successive

REREAD statement.

The REREAD statement may be used for sequential formatted data transfers only. The form of the REREAD

statement is:

Form:

Use:

REREAD f list
Reread the last record read during the last initiated READ operation and input the data

contained by the record into the processor storage locations specified in the input list.
Format the data read according to the format specifications given in statement f.

10-12

CHAPTER 10 Sequential Formatted WRITE Statements

Example: DIMENSION ARRAY(10,10),FORMA(10,10),FORMB(10,10),FORMC(10,10)
90 READ(16,100)ARRAY

100 FORMAT(_-._.____-._)

110 REREAD 100,FORMA
115 REREAD 150,FORMB
120 REREAD 160,FORMC

150 FORMAT(_ _______)
160 FORMAT(._______)

In the above sequence, statement 90 inputs data formatted according to statement 100 into the array ARRAY.
Statement 110 reads the record read by statement 90 and inputs the data formatted as in the initial READ operation
into the array FORMA.

Statement 115 reads the record read by statements 90 and inputs the data formatted according to statement 150
into the array FORMB.

Statement 120 reads the record read by statement 90 and inputs the data formatted according to statement 160 into
the array FORMC.

10.8 WRITE STATEMENTS

WRITE statements transfer data from specified processor storage locations to peripheral devices. The various forms
of the WRITE statement enable it to be used in sequential, append and random access transfer modes for formatted,
unformatted, list-directed and NAMELIST-controlled data transfers.

10.8.1 Sequential Formatted WRITE Transfers
The following forms of the WRITE statement may be used for the sequential transfer of formatted data:

a. Form: WRITE (u,f) list

Use: Output the values of the processor storage locations identified in list, into the file
associated with logical unit u. Convert and arrange the output data according to the
specifications given in statement or array f.
Example: WRITE(06,500)0UT(10,20),A,B
b. Form: WRITE flist

Use: Output the values of the processor storage locations identified in list to the default device
(i.e., line printer, LPT). Convert and arrange the output data according to the
specifications given in f.

Example: WRITE 10, SEND(5,10),A,B,C

10-13

Sequential, NAMELIST—Controlled
and Random Access WRITE Statements

CHAPTER 10

c. Form: WRITE f

Use: Output the contents of any Hollerith (H) or literal () field descriptor(s) contained by f
to the default device (i.e., line printer, LPT). If neither of the foregoing types of field
specifications are found in f, no output transfer is performed.

Example: WRITE 10

10.8.2 Sequential Unformatted WRITE Transfer
The following form of the WRITE statements may be used for the sequential transfer of unformatted data:

Form: WRITE (u) list

Use: Output the values of the processor storage locations identified in list into the file
associated with logical unit . No conversion or arrangement of output data is performed.

Example: WRITE(12)ITAB(20,20),SUMS(10,5,2)

10.8.3 Sequential List-Directed WRITE Transfers
The following form of the WRITE statement may be used to initiate a sequential list-directed output transfer.

Form: WRITE (u, *)list

Use: Output the values of the processor storage locations identified in list into the file
associated with logical unit u. The conversion of each datum from internal to external
form is performed according to the type of the list variable from which the datum is read.

Example: WRITE(12,*)C,X,Y ITAB(10,10)

10.8.4 Sequential NAMELIST-Controlled WRITE Transfers
Only the following form of the WRITE statement may be used to initiate a sequential NAMELIST output transfer.

Form: WRITE(u,N)

Use: Output the values of the processor storage locations identified by the contents of the
NAMELIST-defined list specified by name N.

Example: WRITE(12,NMLST)

10.8.5 Random Access Formatted WRITE Transfers
Only the following form of the WRITE statement may be used to initiate a random access type formatted output
transfer:

Form: WRITE(u#R,f)list

Use: Output the values of the processor storage locations identified by the contents of list to
record R of logical device u. Only disk files which have been set up by either an OPEN or
a DEFINE FILFE statement may be accessed by a WRITE transfer of this form. The data
transferred will be formatted according to the specifications given in statement or array f
Only those records which have been specifically written are available to be read.

10-14

CHAPTER 10 Random Access WRITE Statements,
Summary of WRITE Statements,
ACCEPT Statement

10.8.6 Random Access Unformatted WRITE Transfers

Only the following form of the WRITE statement may be used to initiate a random access unformatted output
transfer:

Form: WRITE (u#R)list

Use: Output the values of the processor storage locations identified by the contents of list to
record R of the logical device unit u. Only disk files which have been set up by either an
OPEN or a call to the DEFINE FILE subroutine may be accessed by a WRITE transfer of

this form. Only those records which have been specifically written are available to be read.

10.9 SUMMARY OF WRITE STATEMENTS

The various forms of the WRITE statements are summarized in Table 10-3.

Table 10-3
Summary of WRITE Statements
Type of Transfer Transfer Mode
Sequential Random Access
Formatted WRITE(u,Nlist WRITE(u#R,f)list
WRITE flist
WRITE f
Unformatted WRITE(u)list WRITE(u#R)list
List-Directed WRITE (u,*)list
NAMELIST-controlled WRITE(u,N)

Note: The ERR=c and END=d arguments may be included in any
WRITE statement,; however, they must be last.

10.10 ACCEPT STATEMENT

The ACCEPT statement enables the user to input data via either a terminal keyboard or a Batch control file directly
into specified processor storage locations. This statement is used only in the sequential transfer mode for the
formatted transfer of inputs from the user’s terminal keyboard during program execution. The permitted forms of
the ACCEPT statement are described in the following paragraphs.

10.10.1 Formatted ACCEPT Transfers
The following forms of the ACCEPT statement are used for the sequential transfer of formatted data.

a. Form: ACCEPT flist

Use: Input data character-by-character into the processor storage locations identified by the
contents of list. Format the input data according to the format specifications given in f.

Example: ACCEPT 101,LINE(73)

10-15

CHAPTER 10
b. Form:
Use:
Example:

ACCEPT and PRINT Statements

ACCEPT *list

Input data character-by-character into the processor storage locations identified by the
contents of list. Convert the input characters, where necessary, to the type of its assigned
list variable.

ACCEPT *,IAB, ABE, KAB, MAR

10.10.2 ACCEPT Transfers Into FORMAT Statement

The following form of the ACCEPT statement may be used to input data from the user’s terminal keyboard directly
into a specified FORMAT statement if the FORMAT statement has either or both a Hollerith (H) or literal ('s’) field
descriptor. If the referenced statement has neither of the foregoing field descriptors, the input record is skipped.

Form:

Use:

Example:

ACCEPT f

Replace the contents of the appropriate fields of statement f with the data entered at the
user’s terminal keyboard.

ACCEPT 101

10.11 PRINT STATEMENT

The PRINT statement causes data from specified processor storage locations to be output on the standard output
device (i.e., line printer, LPT, Table 10-1). This statement may be used only for sequential formatted data transfer
operation and may be written in either of the three following forms:

a. Form:

Use:

Example:
b. Form:

Use:

Example:
c. Form:

Use:

Example:

PRINT flist

Outpui the values of the processor storage locations identified by the contents of list to
the line printer. The values output are to be formatted and arranged according to the
format specifications given in statement f.

PRINT 55,TABLE(10,20),1,J K

PRINT * list

Output the values of the processor storage locations identified by the contents of list to
the line printer. The conversion of each datum from internal to external form is
performed according to the type of the list variable from which the datum is read.

PRINT *,C,X,Y,ITAB(10,10)

PRINT f

Output the contents of the FORMAT statement Hollerith (H) or literal field descriptors
to the line printer. If neither an H nor a literal field descriptor is present in the referenced

FORMAT statement, no operation is performed.

PRINT 55

10-16

CHAPTER 10

PUNCH Statement

The second form of the PRINT statement is particularly useful when employed with ACCEPT f statements to cause
desired data (i.e., comments or headings) to be inserted into reports at program execution time.

Example

The sequence

55 FORMAT (‘BENDPOFYROUTINE’)

PRINT 55

results in the printing of the phrase END OF ROUTINE on the line printer.

10.12 TYPE STATEMENT

The TYPE statement causes data from specified processor storage locations to be output to the user’s (control)
terminal printing or display device (see Table 10-1 for device assignment for TYPE). This statement may be used
only for sequential formatted data transfers and may be written in one of the following forms:

a. Form:

Use:

Example:
b. Form:

Use:

Example:

c. Form:

Use:

Example:

TYPE flist

Output the values of the processor storage locations identified by the contents of list to
the user’s terminal printing or display device. The values output are to be formatted
according to the format specifications given in statement f.

TYPE 101,TABLE(10,20)I.J K

TYPE f

Output the contents of the referenced FORMAT statement Hollerith (H) or literal field
descriptors to the user’s terminal printing or display device. If the referenced FORMAT

statement does not contain either an H or a literal field descriptor, no operation is
performed.

TYPE 101

TYPE *list

Output the values of the processor storage locations identified by the contents of list to
the printing or display device of the user’s terminal. The conversion of each datum from
internal to external form is performed according to the type of the list variable from

which the datum is read.

TYPE *IAB(1,5),A,B

10.13 FIND STATEMENT

The FIND statement does not initiate a data transfer operation; it is used during random access read operations to
locate the next record to be read while the current record is being input. The main program does not have access to
the “found’ record until the next READ statement is executed.

10-17

CHAPTER 10 TYPE and FIND Statements

The form of the FIND statement is
FIND (u#R)

Example

In the sequence

READ (01#90)
FIND (01#101)

READ (01#101)

the FIND statement will locate record #101 on device 01 after record 90 has been retrieved. Record #101 is not
actually processed until the second READ statement in the sequence is executed.

10.14 ENCODE AND DECODE STATEMENTS

The ENCODE and DECODE statements are used to perform sequential formatted data transfer between two defined
areas of processor storage (i.e., an I/O list and a user-defined buffer); no peripheral I/O device is involved in the
operations performed by these statements.

The ENCODE statement transfers data from the variables of a specified I/O list into a specified user storage area.
ENCODE operations are similar to those performed by a WRITE statement.

The DECODE statement transfers data from a specified user storage area into the processor storage locations
identified by the variables of an I/O list. DECODE operations are similar to those performed by a READ statement.

The ENCODE and DECODE statements are written in the following forms:

ENCODE c,fs)list
DECODE(c,fs)list

where

¢ specifies the number of characters to be in each internal storage area. This argument may be an integer, an
integer expression, or either a real or double precision expression that is converted to an integer form.

NOTE
Characters are stored in the buffer five characters per storage
location without regard to the type of variable given as the
starting location.

f specifies either a FORMAT statement or an array that contains format specifications.
s specifies the address of the first storage location that is to be used in the transfer operations. When multiple
records are specified by the format being used, the succeeding records follow each other in order of increasing

storage addresses.

list specifies an I/0 list of the standard form (Paragraph 10.3.4).

10-18

CHAPTER 10

ENCODE Statement

When multiple records are stored by ENCODE, each new record is started on a new boundary rather than there
being a carriage return, line feed inserted between records.

10.14.1 ENCODE Statement
A description of the form and use of the ENCODE statement follows:

Form:

Use:

Example:

ENCODE(c,f s)list

The values of the processor storage locations identified by the contents of list are
converted to ASCII character strings according to the format specifications contained by
f. The converted characters are then written into the destination area starting at location
s. If more characters are to be transferred than the specified area can contain, the excess
characters are ignored; they are not written into any following records.

If fewer characters are to be transferred than specified for the record size, the empty
character locations are filled with blanks.

ENCODE(500,101,START)TABLE

10.14.2 DECODE Statement
A description of the form and use of the DECODE statement follows:

Form:

Use:

Example:

DECODE(c f,s)list

The character strings stored in the internal reference and are read starting at location s,
converted (decoded) according to the format specifications contained by f, and stored as
the values of the locations identified in list.

If the format specification requires more characters from a record than are specified by c,
the extra characters are assumed to be blanks. If fewer characters are required from a

record than are specified by c, the extra characters are ignored.

DECODE(50,50,START)GET(5,10)

10.14.3 Example of ENCODE/DECODE Operations
The following program illustrates the use of both the ENCODE and DECODE statements:

Example

Assume the contents of the variables to be as follows:

A(l) contains the floating point binary number 300.45
A(2) contains the floating point binary number 3.0

J is an integer variable

B isa four-word array of indeterminate contents

C contains the ASCII string 12345

DO2J=12

ENCODE(16,10,B) J, A(J)
10 FORMAT (1X,2HA(,I1,4H)b=H,F8.2)

TYPE 11,B

10-19

CHAPTER 10 DECODE Statement and
ENCODE/DECODE Operations

11 FORMAT (445)
2 CONTINUE
DECODE (4, 12,C) B
12 FORMAT (3F1.0,1X,F1.0)
TYPE 13,B
13 FORMAT (4F5.2)
END

Array B can contain twenty ASCII characters. The result of the ENCODE statement after the first iteration of the
DO loop is:

B(1) A(l) Typed as
B(2) =

B(3) 300.4 A(1)=300.45
B(4) 5

The result after the second iteration is:

B(1) A(2) Typed as
B(2) =
B(3) 30 A(2)=3.0
B(4)

The DECODE statement

a. extracts the digits 1, 2, and 3 from C

b. converts them to floating point binary value

c. stores them in B(1), B(2), and B(3)

d. skips the next character

e extracts the digit 5 from C

f. converts it to a floating point binary value, and,
g stores it in B(4).

10.15 SUMMARY OF I/O STATEMENTS
A summary of all permitted forms of the DECsystem-20 FORTRAN I/O statement is given in Table 10-4.

10-20

CHAPTER 10 Table—Summary of I/O Statements
Table 10-4
Summary of DECsystem-20 FORTRAN I/0O Statements
1/0 Statements Transfer Format Control
Formatted Unformatted Namelist List-Directed
READ
Sequential READ(u,flist READ(u)list READ(u,n) READ(u,*)list
READ flist READ * list
READ f
Random READ(u#R, f)list READ(u#R)list
WRITE
Sequential or WRITE(u,Nlist WRITE(u)list WRITE(u,n) WRITE (u, *)list
Append’ WRITE f list
WRITE f
Random* WRITE (u#R f)list WRITE (u#R)list
REREAD
Sequential REREAD f list
FIND
Random-only FIND(u#R) FIND(u#R)
ACCEPT
Sequential only ACCEPT f list ACCEPT * list
or ACCEPT f
PRINT
Sequential only PRINT f list PRINT *list
or PRINT f
TYPE
Sequential only TYPE f list TYPE * list
or TYPE f
ENCODE
Sequential only ENCODE(c.fs)list
DECODE
Sequential only DECODE(c,f s)list
Legend:
u logical unit number * symbol used to specify list-directed 1/O
f statement number of FORMAT operator
statement or name of array #R variable which specifies logical record
containing format information position
list I/0 list c number of characters per internal record
n name of specific NAMELIST s address of the first storage location to

1/0 list be used

;An OPEN statement must be used to set up an append mode.
Either the OPEN statement or a call to the DEFINE FILE subroutine must be used to set up a random access mode.

10-21

CHAPTER 11 NAMELIST Statement

DECsystem-20 FORTRAN extensions to the 1966 ANSI
standard set are printed in boldface italic type.

CHAPTER 11
NAMELIST STATEMENTS

11.1 INTRODUCTION

The NAMELIST statement is used to define I/O lists similar to those described in Chapter 10 (Paragraph 10.3.4).
Defined NAMELIST I/O lists are referenced in special forms of the READ and WRITE statements to provide a
method of transferring and converting data without referencing format specifications or specifying an I/0 list in the
1/O statement.

11.2 NAMELIST STATEMENT
NAMELIST statements are written in the following form:

NAMELIST/N1/A1,A2,. . .,An/N2/B1,B2,. ..,Bn/Nn/. ..

where
[N/ through [Nn/ represents names of individual lists; the names are always written enclosed by
slashes {/N/)
Al through An are the items of the lists identified, respectively, by names N1 and N2. A list may
and contain one or more variable, array, or array element names. The items of a list are
BI through Bn delimited by commas. Fach list of a NAMELIST statement is identified (and
referenced to) by the name immediately preceding the list.
Example

NAMELIST/TABLE/A,B,C/SUMS/TOTAL

In the foregoing example, the name TABLE identifies the list A,B,C(2,4) and the name SUMS identifies the list
comprised of the array TOTAL.

Once a list has been defined in a NAMELIST statement, its name may be referenced by one or more I/O statements.

11-1

CHAPTER 11 Structuring NAMELIST Statements,
NAMELIST Input Transfers

The rules for structuring a NAMELIST statement are:

a. A NAMELIST name may not be longer than six characters; it must start with an alphabetic character; it
must be enclosed in slashes; it must precede the list of entries to which it refers; and it must be unique
within the program.

b. A NAMELIST name may be defined only once and must be defined by a NAMELIST statement. Once
defined, a name may appear only in READ or WRITE statements. The NAMELIST name must be
defined in advance of the I/O statement in which it is used.

c. A variable used in a NAMELIST statement cannot be used as a dummy argument in a SUBROUTINE
definition.

d. Any dimensioned variable contained in a NAMELIST statement must have been defined in a preceding
array declaration statement.

11.2.1 NAMELIST-Controlled Input Transfers

During input (read) transfer operations in which a NAMELIST-defined name is referenced, the record accessed is
scanned until the symbol $ followed by the referenced name is found. Once the proper symbol-name combination is
found, the data items following it are transferred on a one-to-one basis to the processor storage locations identified
by the contents of the referenced list. The input data is always converted to the type of the list varible when there is
a conflict of types. The input operation continues until another $ symbol is detected. If variables appear in the
NAMELIST record that do not appear in the NAMELIST list, an error condition will occur. Data items of records to
be input (read) using NAMELIST-defined lists must be separated by commas and may be of the following form:

V=K1,K2, ..Kn
where
a. V may be a variable, array, or array element name.

b. K1 through Kn are constants of type integer, real, double precision, complex (written as (A,B) where A
and B are real), or logical (written as T for true or F for false). A series of identical constants may be
represented as a single constant preceded by a repetition factor (e.g., 5*5 represents 5,5,5,5,5).

In transfers of this type, logical and complex constants must be equated to variables of their own type. Other type
constants (real, double precision, and integer) may be equated to any other type of variable (except logical or
complex), and will be converted to the variable type. For example, assume A is a 2-dimensional real array, B is a
I-dimensional integer array, C is an integer variable, and that the input data is as follows:

SFRED A(7,2)=4, B=3,6%2.8, C=3.32%
A READ statement referring to the NAMELIST defined name FRED will result in the following: the integer 4 will
be converted to floating point and placed in A(7,2). The integer 3 will be placed in B(1) and the integer 2

(converted) will be placed in B(2),B(3),...,B(7). The floating point number 3.32 will be converted to the integer 3
and placed in C.

11-2

CHAPTER 11 NAMELIST Output Transfers

11.2.2 NAMELIST-Controlled Output Transfers

When a WRITE statement refers to a NAMELIST-defined name, all variables and arrays and their values belonging to
the named list are written out, each according to its type. Arrays are written out by columns. Output data is written

so that:

a. The fields for the data will be large enough to contain all the significant digits.
b. The output can be read by an input statement referencing a NAMELIST-defined list.
For example, if JOE is a 2 X 3 array, the statement

NAMELIST/NAMI1/JOE,K1,ALPHA
WRITE (u,NAM1)

generates the following form of output:

Column
¥
SNAM1
JOE= -6.75 .234E-04, 680,
-17.8, 0.0 -.197E+07,
K1 =73.1, ALPHA=3.3

11-3

CHAPTER 12 OPEN and CLOSE Statements

DECsystem-20 FORTRAN extensions to the 1966 ANSI
standard set are printed in boldface italic type.

CHAPTER 12
FILE CONTROL STATEMENTS

12.1 INTRODUCTION

File control statements are used to set up files and establish parameters for I/O operations and to terminate I/O
operations.

The OPEN and CLOSE statements are described in this chapter.

12.2 OPEN AND CLOSE STATEMENTS
Both the OPEN and CLOSE statements use the same format and have the same options and arguments.

The OPEN statement enables the user to define, explicitly, all of the important aspects of each desired data transfer
operation; they provide an extensive list of required and optional arguments which define in detail:

a. the name and location of the data file

b. the type of access required

c the data format within the file

d. the protection code to be assigned an output data file

e. the disposition of the data file

f. data file record, block and file sizes

g adata file version identifier
In addition, a DIALOG argument is provided which permits the user to establish a dialogue mode of operation when
the OPEN statement containing it is executed. In a dialogue mode, interactive user terminal/program communication

is established. This enables the user, during program execution, to define, redefine, or defer the values of the
optional arguments contained by the current OPEN statement.

12-1

CHAPTER 12

The general form of the OPEN statement is:

OPEN(Argl Arg2,. . .,Argn)

OPEN and CLOSE Statement Options

The CLOSE statement is used in the termination of an I/O operation to dissociate the I/O device being used from
the active file and file-related information, and to restore the core occupied by I/O buffers and other transfer-related
operations. All required device dependent termination functions are also performed on the execution of a CLOSE
statement, including reloading the unit. Note that the CLOSE statement can change the name, and disposition of
the file being closed.
Once a CLOSE statement has been executed, another OPEN statement is required to regain access to the closed file.

The general form of the CLOSE statement is:

CLOSE(Argl.,Arg2.,. .~.,Argn)

12.2.1 Options for OPEN and CLOSE Statements
The options and their arguments, which may be used in both the OPEN and CLOSE statements, are:

a.

b.

C.

UNIT

DEVICE

ACCESS

This option is required; it defines the FORTRAN I/O unit number to
be used. FORTRAN devices are identified by assigned decimal numbers
within the range 1—-63; however, UNIT may be assigned an integer
variable or constant. The general form of this argument is:

UNIT = An integer variable or constant

DECsystem-20 FORTRAN standard logical unit assignments
are described in Chapter 10 (Table 10-1). The range for the
possible UNIT numbers is an installation defined parameter.

This option may specify either the physical or the logical name of the
I/O device involved. (A logical name always takes precedence over a
physical name.) The DEVICE arguments may specify I/O devices
located at remote stations, as well as logical devices. The general form
of the DEVICE argument is:

DEVICE = A literal constant or variable

If this option is omitted, the first logical name u (where u is the decimal
unit number) is tried; if this is not successful, the standard (default)
device is attempted.

A required option, ACCESS describes the type of input and/or output
statements and the file access mode to be used in a specified data
transfer operation. ACCESS may be assigned any one of six possible
names, each of which specifies a specific type of I/O operation. The
assignable names and the operations specified are:

12-2

CHAPTER 12

d.

MODE

1. SEQIN

2. SEQoUT

3. SEQINOUT

4. RANDOM

5. RANDIN

6. APPEND

MODE Option

The specified data file is to be read in sequential
access mode.

The specified data file is to be written in a sequential
access mode.

The specified data file may be first read then written
(READ/WRITE sequence) record-by-record in a
sequential access mode. When SEQINOUT is
specified, a WRITE/READ sequence is illegal unless
the file has been removed.

The specified data file may be either read or written
into, one record at a time. In a random access mode
of operation, the relative position of each record is
independent of the previous READ or WRITE
statement; all records accessed must have a fixed
logical record length. This argument is required for
random access operations. A disk device must be
specified when the random argument is used.

This argument enables the user to establish a special,
read-only random access mode with a named file.
During a RANDIN mode, the user may read the
named file simultaneously with other users who have
also established a RANDIN mode and with the owner
of the file. The use of RANDIN enables a data base to
be shared by more than one user at the same time.

The record specified by a corresponding WRITE
statement is to be added to the logical end of a
named file. The modified file must be closed then
reopened in order to permit it to be read.

The general form of the ACCESS argument is:

ACCESS =

‘SEQIN’

SEQOUT’
‘SEQINOUT’
‘RANDOM’
‘RANDIN’

‘APPEND’

variable (set to literal)

This option defines the character set of an external file or record. The
use of this argument is optional; if it is not given, one of the following

is assumed:

ASCII for a formatted I/0O file transfer
Binary for an unformarted I/0 file transfer

12-3

CHAPTER 12

e.

DISPOSE

DISPOSE Option

One of the following character set specifications must be used with the
MODE argument:

Literal Action Indicated

‘ASCII’ Specifies an ASCII character set.
‘BINARY’ Specifies data formatted as a FORTRAN binary data file.

‘IMAGE’ Specifies an image (I) mode data transfer for the associated
READ or WRITE statements. IMAGE is an unformatted
binary mode.

The general form of the MODE argument is:

‘AScCIr

‘BINARY’

‘IMAGE’

variable (set to literal)

MODE =

This option specifies an action to be taken regarding a file at close time.
When used, DISPOSE must be either an ASCII variable or one of the
following literals:

Literal Action Indicated

‘SAVE’ Leave the file on the device.

‘DELETE’ If the device involved is disk, remove the file;
otherwise, take no action.

‘PRINT’ If the file is on disk, queue it for printing; otherwise,
take no action.

‘LIST’ If the file is on disk, queue it for printing and delete
the file; otherwise take no action.

‘RENAME’ Change filename. (This is redundant if a new filename
is given.)

If the DISPOSE argument is not given, the argument DISPOSE = SAVE
is assumed. The general form of the DISPOSE argument is:

‘SAVE’
‘DELETE’
DISPOSE = ‘PRINT’
‘LIST’
‘RENAME’
variable (set to literal)

124

CHAPTER 12
f FILE
g PROTECTION
h. DIRECTORY

L

BUFFER COUNT

FILE, PROTECTION, DIRECTORY Options

This option specifies the name of the file involved in the data transfer
operation. FILE must be either an ASCII literal, double precision,
complex, or single precision variable. Single precision variables are
assumed to contain a 1 to 5 character file specification; double
precision variables, permit 10-character file specification. The format is
a 1 to 6 character filename optionally followed by a period and a 0 to 3
character file type. Any excess characters in either the name or file type
are ignored. If the period and file type are omitted, the file type .DAT

66 9 .

is assumed; if just the file type is omitted, a *".”’ is assumed.

If a file name is not specified or is zero, a default name is generated
which has the form

FORxx.DAT

where xx is the FORTRAN logical unit number (decimal) or is the
logical unit name for the default statements ACCEPT, PRINT, READ,
or TYPE. The general form of a FILE argument is:

FILE = An ASCII literal or variable (set to literal)

This option specifies a protection code to be assigned the data file being
transferred. The protection code determines the level of access to the
file that three possible classes of users (i.e., owner, member, or other)
will have. PROTECTION may be a 3-digit octal literal or a variable; if
the argument is assigned a zero value or is not given, the default
protection code established for the DECsystem-20 installation is used.
The general form of the PROTECTION argument is:

PROTECTION = 3-digit octal or integer variable

This option is used for disk files only. It specifies the location of the
user file directory which contains the file specified in the OPEN state-
ment. A directory identifier may consist of the user’s project-program-
mer number for example, [10,7]. (Refer to Appendix B.)

The general form of a DIRECTORY argument is:

DIRECTORY= Lttefal or variable cor?t.aini.rzg UFD name
or directory path specification

This option enables the user to specify the number of I/O buffers to be
assigned to a particular device. If this argument is not given or is
assigned a value of zero, the Monitor default is assumed. The general
form of this argument is:

BUFFER COUNT = An integer constant or variable

12-5

CHAPTER 12

J.

k.

A

m,

n.

FILE SIZE

VERSION

BLOCK SIZE

RECORD SIZE

ASSOCIATE VARIABLE

FILE SIZE, VERSION, BLOCK SIZE, RECORD
SIZE, ASSOCIATE VARIABLE Options

This option is used for disk operations only; it enables the user to
estimate the number of words that an output file is going to contain.
The use of FILE SIZE enables the user to ensure at the start of a
program that enough space is available for its execution. If the size
specified is found to be too small during program executions, the
Monitor allocates additional space according to the normal Monitor
algorithms. The value assigned to the FILE SIZE arguments may be an
integer constant or variable. The general form of this argument is:

FILE SIZE = An integer constant or variable

This option is used for disk operations only; it enables the user to assign
a 12-digit octal version number to a file when it is output. The quantity
assigned to the VERSION argument may be either an octal constant or
variable. The general form of the argument is:

VERSION = An octal constant or integer variable

This option can be used for all storage media except disk. It enables
the user to specify a physical storage block size for devices other than
disk. The value assigned the BLOCK SIZE arguments may be an integer
constant or variable. The size specified must be greater than or equal
to 3 and less than or equal to 4095. The general form of this argu-
ment is:

BLOCK SIZE = An integer constant or variable

This option enables the user to force all logical records to be a specified
length. If a logical record exceeds the specified length, it is truncated; if
a logical record is less than the specified size, nulls are added to pad the
record to its full size. The RECORD SIZE argument is required
whenever a random access mode is specified. The value assigned to this
argument may be either an integer constant or variable, and may be
expressed as the numbers of words or characters depending on the
mode of the file being described. The general form of this argument is:

RECORD SIZE = An integer constant or variable

This option is for disk random access operations only. It provides
storage for the number of the record to be accessed next if the program
being executed were to continue to access records one after another
from the specified random access file. The general form of this
argument is:

ASSOCIATE VARIABLE = Integer variable

12-6

CHAPTER 12

0.

D.

q.

PARITY

DENSITY

DIALOG

PARITY, DENSITY, DIALOG Options

This option is for magnetic tape operations only; it permits the user to
specify the type of parity to be observed (odd or even) during the
transfer of data. The general form of this option is:

PARITY = ‘ODD’
‘EVEN’
variable (set to literal)

This option is for magnetic tape operations only; it permits the user to
specify any of three possible bit-per-inch (bpi) tape density parameters
for magnetic tape transfer operations. The general form of this option
is:

200°

556°

DENSITY = ‘800°
‘1600’
variable (set to literal)

The use of this option in an OPEN statement enables the user to
supersede or defer, at execution time, the values previously assigned to
the arguments of the statement. There are two forms of this argument.
The first is:

DIALOG
This form establishes a dialogue with the user’s terminal when the
OPEN statement is executed. FOROTS outputs the following messages
at the user’s terminal.

ENTER FILE SPECIFICATIONS FOR LOGICAL UNIT XX

(FOROTS then types the existing file specifications defined by the
current OPEN statement.)

Once the message and defined file specification are output the user may
enter any desired changes. Only the arguments that are to be changed
need to be entered.

The second form of the argument is:

DIALOG = Literal or array

The value assigned to DIALOG may be a literal or array containing a
file specification with the desired information.

12-7

CHAPTER 12

12.2.2 Summary of OPEN/CLOSE Statement Options
The options permitted and required in the OPEN and CLOSE statements and the type of value required by each are

summarized in Table 12-1,

Summary of Options

Table 12-1
OPEN/CLOSE Statement Arguments
Argument Values Required
UNIT = Integer variable or constant
MODE = Literal constant or variable
DIRECTORY = Literal or variable
FILE SIZE = Integer constant or variable

BUFFER COUNT =
ASSOCIATE VARIABLE =
ACCESS =

FILE =

DIALOG =

BLOCK SIZE =
VERSION =
DEVICE =
PROTECTION =
DISPOSE =
RECORD SIZE =
PARITY =
DENSITY =

Integer constant or variable
Integer variable

‘SEQIN’, ‘SEQOUT’, ‘SEQINOUT’, ‘RANDIN’, ‘ RANDOM’, ‘APPEND’, or variable

Literal constant or variable
Literal or array

Integer constant or variable
Octal constant or variable
Literal constant or variable

An octal constant or integer variable

Literal constant or variable

Integer constant or integer variable

Literal constant or variable
Literal constant or variable

12-8

CHAPTER 13 FORMAT Statement, General Form

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 13
FORMAT STATEMENT

13.1 INTRODUCTION

FORMAT statements may appear almost anywhere in a FORTRAN source program. The only placement restric-
operations. The FORMAT statements contain field descriptors which, together with the list items of associated I/O
statements, specify the forms of the data and data fields which comprise each record.

FORMAT statements may appear almost anywhere in a FORTRAN source program. The only placement restric-
tions are that they follow PROGRAM, FUNCTION, SUBPROGRAM, or BLOCK DATA statements, and that they

precede the END statement. (Refer to Section 2.4.)
FORMAT statements must be labeled so that they can be referenced by I/O statements.

13.1.1 FORMAT Statement, General Form
The general form of a FORMAT statement follows:

k FORMAT(SA1,SA2,. . ,SAn/SB1,SB2,. . .,SBn/. . .)
where
k = the required statement label (which can only be referenced by 1/0 statements).
SA1 through SAn = individual field descriptor sets
and

SB1 through SBn

In the foregoing statement form the individual field descriptors are delimited by commas (,) field descriptor sets and
records are delimited by slashes (/). For example, a FORMAT statement of the form:

FORMAT(SA1,SA2/SB1,SB2/SC1,SC2)

contains format specifications for three records with each record comprised of two field descriptor sets.

13-1

CHAPTER 13 FORMAT Statement, Format Descriptors

Adjacent slashes (//) in a FORMAT statement specify that a record is to be skipped during input or is to consist of
an empty record on output. For example, a FORMAT statement of the form:

FORMAT(SA1,SA2///SB1,SB2)
specifies four records are to be processed; however, the second and third records are to be skipped.
Repeated field descriptors or groups of field descriptors may be represented using a repeat form. The repetition of a
single field descriptor is written by preceding the descriptor with an integer constant which specifies how many
times the descriptor is to be repeated. For example, a FORMAT statement of the form
FORMAT(SA1,SA2,SA3,S41,SA2,SA3,S41,SA2,SA3)
may be written as
FORMAT(3(SA1,SA2,SA3))
The repeat forms of field descriptor may be nested to any depth. For example, a FORMAT statement of the form
FORMAT(SA1,SA2,SA2,SA3,SA1,SA2,SA2,SA3)
may also be written in the form

FORMAT(2(SA1,2SA2,SA3))

The manner in which the foregoing statement forms may be used and the effect each has on the data involved are
discussed in the following paragraphs.

13.2 FORMAT DESCRIPTORS

FORMAT statement descriptors describe the record structure of the data, the format of the fields within the record,
and the conversion, scaling, and editing of data within specific fields. The following descriptors can be used with
DECsystem-20 FORTRAN:

Descriptors Comments
rFw.d
rEw.d Floating point numeric field descript
Dw.d ating point numeric fi scriptors
Gw.d
rlw Integer field descriptor
rLw Logical field descriptor
’AW} Alph ic data field descript
Rw phanumeric data field descriptor
kHs . . .
“oxt’ Alphanumeric data in a FORMAT statement field descriptor
X Field formatting descript
Tw ield formatting descriptors

13-2

CHAPTER 13

where

FORTRAN Conversion Codes

Descriptors Comments
nP Numerical scale factor descriptor
/ Record delimiter
$ Carriage return suppression for terminal
rOw Octal field descriptor

an optional unsigned integer that represents a repeat count. This option enables a field descriptor
to be repeated r times.

an optional integer constant which represents the width (total number of characters contained) of
the external form of the field being described. All characters including digits, decimal points, signs,
and blanks that are to comprise the external form of the field must be included in the value of w.
an optional unsigned integer that specifies the number of fractional digits which are to appear in
the external representation of the field being described. Note that w must be specified if .d is

included in the descriptor.

An unsigned integer that specifies the number of characters to be processed during the transfer of
alphanumeric data.

represents a string of ASCII (alphanumeric) characters.

a signed integer constant (plus signs are optional).

The characters A, D, E, F, G, H, I, L, O, P, and R indicate the manner of conversion and editing to be performed
between the internal (processor) and external representations of the data within a specific field; these characters are
referred to as conversion codes. The DECsystem-20 FORTRAN conversion codes and a brief description of the
function of each are given in Table 13-1.

Table 13-1
DECsystem-20 FORTRAN Conversion Codes

Code Function

Transfer alphanumeric data

Transfer real data with a D exponent’
Transfer real data with an E exponent’
Transfer real data without an exponent
Transfer integer, real, complex, or logical data
Transfer literal data

Transfer integer data

Transfer logical data

Transfer octal data

Numerical scaling Factor

Transfer alphanumeric data

TUWQrHrT I OmMmO >

' An exponent of 0 is assumed if none is given.

13-3

CHAPTER 13 FORMAT Statement,
Numeric Field Descriptors

The use of commas to delineate format descriptors within a format specification is optional as long as no ambiguity
exists. For example,

FORMAT (3X,A2)
can be written as
FORMAT (3XA2)
Since interpretation of a format specification is left associative, the specification
FORMAT (122,15)
can be written as
FORMAT (122I5)
However, a comma is required when the user wishes to specify
FORMAT (12,21I5)

Detailed descriptions of the various types of format descriptors, the manner in which they are written and employed
and their use in FORMAT statements are given in the following paragraphs.

13.2.1 Numeric Field Descriptors

The forms of the field descriptors used to specify the format and conversion of numeric data follow.

Description Type of Data Used For

Dw.d Double precision real data with a D exponent

Ew.d Real data with an E exponent

Ew.d,Ew.d For the real and imaginary parts of a complex datum

Fw.d Real data without an exponent

Fw.d,Fw.d For the real and imaginary parts of a complex datum

Iw Integer data

Ow Octal data

Gw.d Real or double precision data

Gw For integer (or logical) data

Gw.d,Gw.d For the real and imaginary parts of a complex datum

NOTE

The G conversion code may be used for all but octal numeric
data types.

Examples

Consider the following program segment:

INTEGER 11, 12
REAL R1, R2, R3
DOUBLE PRECISION D1, D2

I1 =506
12=38
R1=1506.0
R2=18.1

R3 =506001.0
D1=18.0

D2 =-504.0

13-4

CHAPTER 13

Field Descriptors, Action of

The actions performed by several types of formatted WRITE statements on the data given in the foregoing program
segment are described in Table 13-2.

Table 13-2
Action of Field Descriptors On Sample Data
Item Descriptor Sample WRITE Statement External Form of External Appearance
Form Descriptor | Using the Sample Sample Field of Sample Data
Descriptor Described
1 Dw.d D8.2 WRITE (-,-) D1 Z.nnD#nn 0.18D+02
2 Ew.d E8.2 WRITE (-,-) R1 ZnnE+nn 0.51E+03
3 Fw.d F5.2 WRITE (--) R2 aannE+nn 18.10
4 Iw I5 WRITE (-,-) 1 aaaan B®506
5 Iw 12 WRITE (-,-) I1 an *E
6 Ow 0s WRITE (-,-) I2 nnnnn 00010
7 Gw.d G8.2 WRITE (-,-) D2 Z.nnD#nn -.50D+02
8 Gw.d G8.2 WRITE (-,-) R3 Z.nnE+nn 0.51E+06
9 Gw.d G8.2 WRITE (-,-) R2 aa.nn 18.10
10 Gw GS WRITE (-,-) I1 aaaan BB506
where: a. nrepresents a numeric character
b. Z represents either a - or O (Note that if n-d > 6, a negative number cannot be output.)
c. arepresents a digit, leading blank (¥) or a minus sign depending on the numeric output.
Notes:

1

2.

. In Item 1, the value D1 has only 2 significant digits and d=2, so no rounding will occur on input.

In Item 2, since R1 has 3 significant digits, it is rounded to fit into the specified field.

. In Item S, the width (w) part of a format descriptor specifies an exact field which permits no rounding of
its contents. If the w specification is too small for the datum to be transferred, asterisks are output to
indicate that the transfer was not made.

. In Item 6, Integer 8 = Octal 10.

. In Items 8 and 9, the relationship between G and fixed and floating real data is discussed in Paragraph

13.2.3.

. Initems 1,2, 3,7, and 8 the D and E exponent prefixes are optional in the external form of the floating point

constants. For example, 1.1E+3 may be written as 1.1+3.

The internal and external forms of the data specified by the numeric format conversion code are summarized in

Tabl

e 13-3.

13-5

CHAPTER 13 Numeric Field Codes, Interaction of
Field Descriptors With List Variables

Table 13-3
Numeric Field Codes
Internal Form Conversion Code External Form
Binary floating point D Decimal floating point with D exponent
double precision
Binary floating point E Decimal floating point with E exponent
Binary floating point F Decimal fixed point
Binary integer I Decimal integer
Binary word o Octal value
One of the following: G Single precision decimal floating point integer,
single precision, logical (T or F), or complex (two decimal
binary floating point, floating point numbers), depending upon the
binary integer, binary internal form
logical, or binary
complex

Complex quantities are transferred as two independent real quantities. The format specification for complex
quantities consists of either two successive real field descriptors or one repeated real field descriptor. For example,
the statement

FORMAT(2E15.4,2(F8.3,F8.5))

may transfer up to three complex quantities.

The equivalent of the foregoing statement is
FORMAT(E15.4,E15.4,F8.3,F8.5,F8.3,F8.5)

13.2.2 Interaction of Field Descriptors With I/O List Variables During Transfer

The execution of an 1/O statement that specifies a formatted data transfer operation initiates format control. The
actions performed by format control depend on information provided by the elements of the I/O statement’s list of
variables and the field descriptors which comprise the referenced FORMAT statement’s format specifications.

In processing each FORMAT controlled I/O statement which has an 1/O list, FORTRAN scans the contents of
the list and the format specifications in step. Each time another variable or array element name is obtained from the
list, the next field specification is obtained from the format specification. If the end of the format specification is
reached and more items remain in the list, a new line or record is established and the scan process is restarted, either
at the first item in the format specification or, if parenthesized sets of format specifications exist within the format
specification, with the last set within the format specification.

When the I/O list is exhausted, control proceeds to the next statement in the program, but not before the FORMAT

statement is scanned either to its end or to the next variable transfer format descriptor. (That is, the FORMAT
statement is scanned past slashes, literal constants, and spacing descriptors, but not past data field descriptors.)

13-6

CHAPTER 13 G Conversion Code, Scale Factors
A record is terminated by one of the following:

a. aslash in the FORMAT specification

b. the delimiting right parentheses,), of the FORMAT statement
c. alack of items in the I/O list

d. alack of Hollerith field descriptors in the FORMAT statement

On input, an additional record is read only when a single slash, /, is encountered in the FORMAT statement. A
record is skipped when two slashes, //, are encountered or a slash is followed by the end of the FORMAT state-
ment. If the FORMAT statement finishes a record by a slash or the end of the FORMAT statement, then any data
left in the input record is ignored. If the input record is exhausted before the data transfers are completed, the re-
mainder of the transfer is completed as if the record were extended with blanks.

On output, an additional record is written only when a slash, /, is encountered in the FORMAT statement. If two
consecutive slashes, //, or a single slash followed by the end of the FORMAT statement, is encountered, then an
empty record is written.

13.2.3 G, General Numeric Conversion Code

The G conversion code may be used in field descriptors for the format control of real, double precision, integer,
logical, or complex data.

With the exception of real and double precision data, the type of conversion performed by a G type field descriptor
depends on the type of its corresponding I/O list variable. In the case of real and double precision data, the kind of
conversion performed is a function of the external magnitude of the datum being transferred. Table 13-4 illustrates
the conversions performed for various ranges of magnitude (external form) of real and double-precision data.

13.2.4 Numeric Fields with Scale Factors

Scale factors may be added to D,E,F, and G conversion codes in field descriptors. The scale factor has the form
nP

where n is a signed integer (+ is optional) and P identifies the operation. When used, a scale factor is added as a
prefix to field descriptors.

Examples

-2PF10.5
1PES8.2

When added to an F type field descriptor (or G type if the external field is a fixed point decimal) a scale factor
specifies a power of 10 so that

External Form of Number = (Internal Form)*10 (scale factor)

For example, assuming the data involved to be the real number 26.451, the field descriptor
F8.3

produces the external field

B$26.451
13-7

CHAPTER 13

Table 13-4

Descriptor Conversion of Real and Double Precision Data
According to Magnitude

Conversion of Real and Double

Precision Data, Scale Factors

Magnitude of Data in its
External Form (M)

Equivalent Method of
Conversion Performed

0.1sM<1
1<M<10

109-2 < pr < 109-1
104-1<pr< 104
ALL OTHERS

F(w-4).d,4X
F(w-4).(d-1),4X

F(w-4).1,4X
F(w-4).04X
Ew.d

Note: In all numeric field conversions the field width
(w) specified should be large enough to include
the decimal point, sign, and exponent character
in addition to the number of digits. If the
specified width is too small to accommodate the
converted number, the field will be filled with
asterisks (*). If the number converted occupies
fewer character positions than specified by w, it
will be right-justified in the field and leading
blanks will be used to fill the field.

The addition of the scale factor of - 1P
-1PF8.3
produces the external field

By$2.645

When added to D, E, and G (external field not a decimal fixed point) type field descriptors, the scale factor
multiplies the number by the specified power of ten and the exponent is changed accordingly.

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the only ones

affected by scale factors.

When no scale factor is specified, it is understood to be zero. Once a scale factor is specified, however, it holds for all
subsequent D, E, F, and G type field descriptors within the same format specification unless another scale factor is
specified. A scale factor is reset to zero by specifying a scale factor of zero. Scale factors have no effect on I and O

type field descriptors.

13-8

CHAPTER 13 Logical Descriptors,
Variable Field Widths

13.2.5 Logical Field Descriptors

Logical data may be transferred under format control in a manner similar to numeric data transfer by use of the field
descriptor

Lw

where L is the control character and w is an integer specifying the field width. The data is transmitted as the value of
a corresponding logical variable in the associated input/output list.

On input, the first non-blank character in the logical data field must be T or F, the value of the logical variable is
stored in the list variable as true or false, respectively. If the entire input data field is blank or empty, a value of false
is stored.

On output, w minus 1 blanks followed by T or F will be output if the value of the logical variable is true or false,
respectively.

13.2.6 Variable Numeric Field Widths

Several of the conversion codes are acceptable in FORMAT statements without field width specifications (i.e., the
w.d portion of the specification is omitted').

On input, the conversion codes D, E, F, G, I, L, and O are acceptable without field width specifications. The field
begins with the first non-blank character encountered and ends with the first illegal character in the given field.
(Blanks and tabs also terminate a field.) Note that for conversion code L (logical data) all consecutive alphabetics
following a T (true) or an F (false) are considered part of the field and are ignored. In succeeding fields the input
stream is scanned until a non-blank character is encountered. If the character is a comma (,) the next field is
skipped and the following input field begins with the character following the comma. Any character other than a
comma is assumed to be the first character in the next input field. Null fields are denoted by successive commas,
optionally separated by blanks or tahs. A null field is equivalent to a fixed-field input of blanks. For example, the
source code

READ 1,X,Y,Z,L,1,J
1 FORMAT (3F, L, 1, A3)

with data as follows
,1.0E+5, TRUEXXX1¥444HABC

results in

0.0
1.0E+5
= 00
TRUE
=1

= ‘ABC’

=N X

Note that if a comma is included in the input data after the XXX1 and before the blanks, i.e., the data is
,1.0E+5 ,, TRUEXXX1,B44Y4ABC

then J = ‘Byy’

'If qis given, then w must also be specified.

139

Alphanumeric Field Descriptors,
A Descriptor

On output, the format codes A, D, E, F, G, I, L, O, and R are acceptable without field width specifications. The
following defaults are assumed:

Format Code Assumed Default
A single precision A5
A double precision ‘Al10
D D25.18
E E15.7
F F15.7
G single precision G15.7
G double precision G25.18
I 115
L L15
(0] 015
R single precision RS
R double precision R10

13.2.7 Alphanumeric Field Descriptors

The formatted transfer of alphanumeric data may be accomplished in a manner similar to the formatted transfer of
numeric data by use of the field descriptors Aw and Rw, where A and R are the control characters and w is the
number of characters in the field.

The A and R descriptors both transfer alphanumeric data into or from a variable in an input/output list depending
on the I/O operation. A list variable may be of any type. For example,

READ (6,5) V
5 FORMAT (A4)

causes four alphanumeric characters to be read from the card reader and stored in the variable V.

The A descriptor deals with variables containing left-justified, blank-filled characters, and the R descriptor deals with
variables containing right-justified, zero-filled characters. The following paragraphs summarize the result of
alphanumeric data transfer (both internal and external representations) using the A and R descriptors. These

paragraphs assume that w represents the field width and m represents the total number of characters possible in the
variable. Double precision variables contain 10 characters (i.e., m=10); and all other variables contain 5 (i.e., m=5).

A Descriptor

a. INPUT, where w 2 m — The rightmost m characters of the field are read in and stored left-justified and
blank-filled in the associated variable.

b. INPUT, where w < m — All w characters are read in and stored left-justified and blank-filled in the
associated variable.

c. OUTPUT, where w2 m — m characters are output and right-justified in the field. The remainder of the
field is blank-filled.

d. OUTPUT, where w <m — The left-most w characters of the associated variable are output.

13-10

R Descriptor,
Transferring Alphanumeric Data

R Descriptor

a. INPUT, where w 2 m — The right-most m characters of the field are read in and stored right-justified,
zero-filled in the associated variable.

b. INPUT, where w<m — All w characters are read in and stored right-justified, zero-filled in the associated
variable.

c. OUTPUT, where w > m — m characters are output and right-justified in the field. The remainder of the
field is blank filled.

d. OUTPUT, where w < m — The right-most w characters of the associated variable are output.

13.2.8 Transferring Alphanumeric Data Directly Into or From FORMAT Statements

Alphanumeric data may be transmitted directly into or from the FORMAT statement by two different
methods: H-conversion, or the use of single quotes (i.e., a literal field descriptor).

In H-conversion, the alphanumeric string is specified in the form nH, where H is the control character and » is the
total number of characters (including blanks) in the string. For example, the following statement sequence may be
used to print the words PROGRAM COMPLETE on the device LPT:

PRINT 101
101 FORMAT (17HPPROGRAMBCOMPLETE)

Read and write operations of this type are initiated by I/O statements which reference a format statement and a
logical device but do not contain an I/O list (see preceding example).

Write transfers from a FORMAT statement cause the contents of the statement field descriptor to be output to a
specified logical device. The contents of the field descriptor, however, remain unchanged.

Read transfers with a FORMAT statement cause the contents of the field descriptors involved to be replaced by the
characters input from the specified logical device.

Alphanumeric data is stored in a field descriptor left justified. If the data input into a field has fewer characters
than the field, trailing blanks are added to fill the field. If the data input is larger than the field of the descriptor,

the excess right most characters are lost.

Examples

WRITE (1,101)
101 FORMAT (17HSPROGRAMBCOMPLETE)

cause the string PROGRAM COMPLETE to be output to the file on device 1.

13-11

CHAPTER 13 Mixed Fields

Assuming the string START on device 1, the sequence

READ (1,101)
101 FORMAT (17H$PROGRAMBCOMPLETE)

would change the contents of statement 101 to
101 FORMAT (17HSTARTBYYYBBBBBHBY)

The foregoing functions may also be accomplished by a literal field descriptor consisting of the desired character
string enclosed within apostrophes (i.e., ‘string’). For example, the descriptors

101 FORMAT (17HPPROGRAMBCOMPLETE)
and

101 FORMAT (‘BPROGRAMPCOMPLETE’)
may be used in the same manner.

The result of literal conversion is the same as H-conversion; on input, the characters between the apostrophes are
replaced by input characters and, on output, the characters between the apostrophes (including blanks) are written
as part of the output data.

An apostrophe character within a literal field should be represented by two successive apostrophe marks; otherwise,
the statement containing the field will not compile. For example, the statement sequence

50 FORMAT (‘DON’’T’)
PRINT 50

will compile and will cause thé word DON'T to be output on the line printer. The statement
50 FORMAT (‘DON’T’)
however, will cause a compile error.

13.2.9 Mixed Numeric and Alphanumeric Fields

An alphanumeric field descriptor may be placed among other fields of the format. For example, the statement:
FORMAT (14,7HYFORCE=F10.5)

may be used to output the line:
BB22BFORCE=pY17.68901

The separating comma may be omitted after an alphanumeric format field, as shown in the foregoing statement.

When a comma delimiter is omitted from a format specification, format control associates as much information as
possible with the leftmost of the two field descriptors.

13-12

CHAPTER 13 Multiple Record Specifications

13.2.10 Multiple Record Specifications

To handle a group of input/output records where different records have different field descriptors, a slash is used to
indicate a new record. For example, the statement

FORMAT (308/15,2F8.4)
is equivalent to

FORMAT (308)
for the first record, and

FORMAT (I5,2F8.4)
for the second record.
Separating commas may be omitted when a slash is used. When n slashes appear at the end or beginning of a format,
n blank records will be written on output or skipped on input. When n slashes appear in the middle of a format, n-1
blank records are written on output or n-1 records skipped on input.
Both the slash and the closing parenthesis at the end of the format indicate the termination of a record. If the list of
an input/output statement dictates that the transmission of data is to continue after the closing parenthesis of the
format is reached, the format is repeated starting with that group repeat specification terminated by the last right
parenthesis of level one or level zero if no level one group exists.
Thus, the statement

FORMAT (F7.2,(2(Ei5.5E15.4),17)) *

level O level O
level 1 level 1

causes the format
2(E15.5,E15.4),17

to be used on the first record.

As a further example, consider the statement
FORMAT (F7.2/(2(E15.5,E15.4),17))
The first record has the format
F7.2
and successive records have the format

2(E15.5E15.4),17

13-13

CHAPTER 13 Record Formatting Descriptors

13.2.11 Record Formatting Field Descriptors

Two field descriptors, Tw and nX, may be used to position data within a record.

The field descriptor Tw may be used to specify the character position (external form) in which a record begins. In
the Tw field descriptor the letter T is the control character and w is an unsigned integer constant which specifies the
character position, in a DECsystem-20 FORTRAN record, where the transfer of data is to begin. When the output is
printed, w corresponds to the (w-1)th print position since the first character of the output buffer is a forms control
character and is not printed. It is recommended that the first field specification of the output format be IX, except
where a forms control character is used.

NOTE
Two successive T field specifications will result in the second
field overwriting the first field.

Examples

The statement sequence

PRINT 2
2 FORMAT (T50,'BLACK’T30,'WHITE’)

causes the following line to be printed
WHITE BLACK
(print position 29) (print position 49)
The statement sequence

1 FORMAT (T35,'MONTH’)
READ (2,1)

causes the first 34 characters of the input data associated with logical unit 2 to be skipped, and the next five
characters to replace the characters M,O,N,T, and H in storage. If an input record containing

ABCbbbXYZ
is read with the format specification
10 FORMAT (T7,A3,T1,A3)

then the characters XYZ and ABC are read, in that order.

The field descriptor nX may be used to introduce blanks into output records or to skip characters of input records.
The letter X specifies the operation and # is a positive integer that specifies the number of character positions to be
either made blanks (output) or skipped (input).

Example

The statement
FORMAT (5HYSTEP15,10X2HY=F7.3)
may be used to print the line

STEPY BB 28BBBYBBYYBBY=b-3.872

13-14

CHAPTER 13 Print Control Characters

13.3 CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS

The first character of an ASCII record may be used to control the spacing operations of the line printer or terminal
printer unit on which the record is being printed. The control character desired is specified by beginning the
FORMAT field specification for the ASCII record to the output with IHA ... where a is the desired control
character. The control characters permitted in DECsystem-20 FORTRAN and the effect each has on the printing
device are described in Table 13-5.

Table 13-5
FORTRAN Print Control Characters

FORTRAN Character Printer Character Octal Value Effect
space LF 012 Skip to next line
with form feed after
60 lines
0 zero LF,LF 012 Skip a line
1 one FF 014 Form feed — go to
top of next page
+ plus Suppress skipping —
overprint the line
* asterisk DC3 023 Skip to next line
with no form feed
- minus LF,LF,LF 012 Skip two lines
2 two DLE 020 Space 1/2 of a page
3 three VT 013 Space 1/3 of a page
| slash DC4 024 Space 1/6 of a page
period DC2 022 Triple space with a

form feed after every
20 lines printed

, comma DC1 021 Double space with a
form feed after every
30 lines printed

Note: Printer control characters DLE, DC1, DC2, DC3, and DC4 affect only the line printer.

In order to print these control characters users must specify the switch /FILE:FORTRAN when giving the PRINT
command,

13-15

CHAPTER 14 Device Control Statements, Introduction

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 14
DEVICE CONTROL STATEMENTS

14.1 INTRODUCTION

The following device control statements may be used in FORTRAN source programs:
1. REWIND
2. UNLOAD
3. BACKSPACE!
4. ENDFILE
5. SKIPRECORD'
6. SKIPFILE, and
7. BACKFILE

The general form of the foregoing device control statements is

keyword u
keyword (u)
where
keyword is the statement name
u is the FORTRAN logical device number (Chapter 10, Table 10-1)

The operations performed by the device control statement are normally used only for magnetic tape device (MTA).
In DECsystem-20 FORTRAN, however, the device control operations are simulated for disk devices.

! The results of these commands are unpredictable when used on list-directed and NAMELIST-controlled data.

14-1

CHAPTER 14 REWIND, UNLOAD, BACKSPACE

ENDFILE
14.2 REWIND STATEMENT
Descriptions of the form and use of the REWIND statement follow:
Form: REWIND u
Use: Move the file contained by device u to its initial (load) point. If the medium is already at

its load point, this statement has no effect. Subsequent READ or WRITE statements that
reference device u will transfer data to or from the first record located on the medium
mounted on device u.

Example: REWIND 16

14.3 UNLOAD STATEMENT
Descriptions of the form and use of the UNLOAD statement follow:

Form: UNLOAD u

Use: Move the medium contained on device u past its load point until it has been completely
rewound onto the source reel.

Example: UNLOAD 16

14.4 BACKSPACE STATEMENT
Descriptions of the form and use of the BACKSPACE statement follow:

Form: BACKSPACE u

Use: Move the mcdium contained on device u to the start of the record that precedes the
current record. If the preceding record prior to execution of this statement was an endfile
record, the endfile record becomes the next record after execution. If the current record
is the first record of the file, this statement has no effect.

NOTE
This statement cannot be used for files set up for random
access or NAMELIST-controlled 1/O operations.

Example: BACKSPACE 16

14.5 END FILE STATEMENT
Descriptions of the form and use of the END FILE statement follow:

Form: END FILE u
Use: Write an endfile record in the file located on device u. The endfile record defines the end
of the file which contains it. If an endfile record is reached during an I/O operation

initiated by a statement that does not contain an END= option, the operation of the
current program is terminated.

Example: END FILE 16

14-2

CHAPTER 14 SKIP RECORD, SKIP FILE,
BACKFILE Statements, Summary

14.6 SKIP RECORD STATEMENT
Descriptions of the form and use of the SKIP RECORD statement follow:

Form: SKIP RECORD u

Use: In accessing the file located on device u, skip the record immediately following the
current (last accessed) record. The repeat option may be used to cause any desired
number of records to be skipped.

Example: SKIP RECORD 16

14.7 SKIP FILE STATEMENT
Descriptions of the form and use of the SKIP FILE statement follow:

Form: SKIP FILE u

Use: In accessing the medium located on unit u, skip the file immediately following the
current (last accessed) file. If the number of SKIP FILE operations specified exceeds the
number of following files available, an error will occur.

Example: SKIP FILE 01

14.8 BACKFILE STATEMENT
Descriptions of the form and use of the BACKFILE statement follow:

Form: BACKFILE u
Use: Move the medium mounted on device u to the start of the file which precedes the current
(last accessed) file.

If the number of BACKFILE operations performed exceeds the number of preceding
files, completion of the last operation will move the medium to the start of the first file
on the medium,

Example: BACKFILE 20

14.9 SUMMARY OF DEVICE CONTROL STATEMENTS
The form and use of the DECsystem-20 FOTRAN device control statements are summarized in Table 14-1.

Table 14-1

Summary of DECsystem-20 FORTRAN Device Control Statements
Statement Form Use
REWIND u Rewind medium to its load point
UNLOAD u Rewind medium onto its source reel
END FILE u Write an endfile record in to the current file
SKIP RECORD u Skip the next record
SKIP FILE u Skip the next file
BACKFILE u Move medium backwards 1 file
BACKSPACE u Move medium back one record

14-3

CHAPTER 15 Types of Subroutine

DECsystem-20 FORTRAN extensions to the 1966 Statements and Arguments
ANSI standard set are printed in boldface italic type.

CHAPTER 15
SUBPROGRAM STATEMENTS

15.1 INTRODUCTION

Procedures that are used repeatedly by a program may be written once and then referenced each time the procedure
is required. Procedures that may be referenced are either internal (written and contained within the program in
which they are referenced) or external (self-contained executable procedures that may be compiled separately). The
kinds of FORTRAN procedures that may be referenced are:

a. statement functions

b. intrinsic functions (DECsystem-20 FORTRAN defined functions)
c. external functions, and

d. subroutines

The first three of the foregoing categories are referred to, collectively, as either functions or function procedures;
procedures of the last category are referred to as either subroutines or subroutine procedures.

15.1.1 Dummy and Actual Arguments

Since subprograms may be referenced at more than one point throughout a program, many of the values used by the
subprogram may be changed each time it is used. Dummy arguments in subprograms represent the actual values to
be used which are passed to the subprogram when it is called.

Functions and subroutines use dummy arguments to indicate the type of the actual arguments which they represent
and whether the actual arguments are variables, array elements, arrays, subroutine names or the names of external
functions. Each dummy argument must be used within a function or subroutine as if it were a variable, array, array
element, subroutine, or external function identifier. Dummy arguments are given in an argument list associated with
the identifier assigned to the subprogram; actual arguments are normally given in an argument list associated with a
call made to the desired subprogram. (Examples of argument lists are given in the following paragraphs.)

The position, number, and type of each dummy argument in a subprogram list must agree with the positio’
number, and type of each actual argument given in the argument list of the subprogram reference.

15-1

CHAPTER 15 Dummy Arguments

Dummy arguments may be

a.

variables

array names
subroutine identifiers
function identifiers, or

statement label identifiers which are denoted by the symbol *, $, or &.

When a subprogram is referenced, its dummy arguments are replaced by the corresponding actual arguments supplied
in the reference. All appearances of a dummy argument within a function or subroutine are related to the given
actual arguments. Except for subroutine identifiers and literal constants, a valid association between dummy and
actual arguments occurs only if both are of the same type; otherwise, the results of the subprogram computations
will be unpredictable. Argument association may be carried through more than one level of subprogram reference if
a valid association is maintained through each level. The dummy/actual argument associations established when a
subprogram is referenced are terminated when the desired subprogram operations are completed.

The following rules govern the use and form of dummy arguments:

The number and type of the dummy arguments of a procedure must be the same as the number and type
of the actual arguments given each time the procedure is referenced.

Dummy argument names may not appear in EQUIVALENCE, DATA, or COMMON statements.

A variable dummy argument should have a variable, an array element identifier, an expression, or a
constant as its corresponding actual argument.

An array dummy argument should have either an array name or an array element identifier as its
corresponding actual argument. If the actual argument is an array, the length of the dummy array should
be less than or equal to that of the actual array. Each element of a dummy array is associated directly
with the corresponding elements of the actual array.

A dummy argument representing a subroutine identifier should have a subroutine name as its actual
argument.

A dummy argument representing an external function must have an external function as its actual
argument.

A dummy argument may be defined or redefined in a referenced subprogram only if its corresponding
actual argument is a variable. If dummy arguments are array names, then elements of the array may be
redefined.

Additional information regarding the use of dummy and actual arguments is given in the description of how
subprograms are defined and referenced.

15-2

CHAPTER 15 Statement and Intrinsic Functions

15.2 STATEMENT FUNCTIONS

Statement functions define an internal subprogram in a single statement. The general form of a statement function
is:

name (argl ,arg2,. . .,argn)=E

where
name is a user-formulated name comprised of from 1 to 6 characters. The name used must
conform to the rules for symbolic names given in Paragraph 3.3.
The type of a statement function is determined either by the first character of its
name or by being declared in an explicit or implicit type statement.
(argl. . .argn) represents a list of dummy arguments.
E is an arbitrary expression.

The expression E of a statement function may be any legitimate arithmetic expression which uses the given dummy
arguments and indicates how they are combined to obtain the desired value. The dummy arguments may be used as
variables or indirect function references; but they cannot be used as arrays. The dummy argument names bear no
relation to their use outside the context of the statement function except for their data type. The expression may
reference DECsystem-20 FORTRAN defined functions (Paragraph 15.3) or any other defined statement function,
or call an external function. It may not reference any function that directly or indirectly references the given
statement function or any subprogram in the chain of references. That is, recursive references are not allowed.
Statement functions produce only one value, the result of the expression which it contains. A statement function
cannot reference itself.

All statement functions within a program unit must be defined before the first executable statement of the program
unit. When used, the statement function name must be followed by an actual argument list enclosed within
parentheses and may appear in any arithmetic or logical expression.

Examples

SSQR(K)=(K *(K+1)*2*K+1)/6
ACOSH(X)=(EXP(X/A)+EXP(-X/A))/2.0

15.3 INTRINSIC FUNCTIONS (DECsystem-20 FORTRAN DEFINED FUNCTIONS)

Intrinsic functions are subprograms that are defined and supplied by DECsystem-20 FORTRAN. An intrinsic
function is referenced by using its assigned name as an operand in an arithmetic or logical expression. The names of
the DECsystem-20 FORTRAN intrinsic functions, the type of the arguments which each accepts, and the function
it performs are described in Table 15-1. These names always refer to the intrinsic function unless they are preceded
by an asterisk (*) or ampersand (&) in an EXTERNAL statement, declared in a conflicting explicit type statement,
or are specified as a routine dummy parameter.

15-3

CHAPTER 15 Table of Intrinsic Functions

Table 15-1
Intrinsic Functions (DECsystem-20 FORTRAN Defined Functions)

Function Mnemonic Definition Number of Type of
Arguments Argument Function

Absolute value:

Real ABS* arg 1 Real Real

Integer TABS* arg 1 Integer Integer

Double precision | DABS* arg 1 Double Double

Complex to real CABS c=(x2+y?)1/ 2 1 Complex Real
Conversion:

Integer to real FLOAT* 1 Integer Real

Real to integer IFIX* Sign of arg * 1 Real Integer

largest integer
< |arg|

Double to real SNGL 1 Double Real

Real to double DBLE* 1 Real Double

Integer to double | DFLOAT 1 Integer Double

Complex to real REAL* 1 Complex Real

(obtain real part)

Complex to real AIMAG 1 Complex Real

(obtain imaginary

part)

Real to complex CMPLX* c=Arg, +i*Arg, 2 Real Complex
Truncation:)

Real to real AINT Sign of arg * 1 Real Real

largest integer

Real to integer INT* < larg| 1 Real Integer

Double to integer | IDINT 1 Double Integer
Remaindering:

Real AMOD The remainder 2 Real Real

Integer MOD* when Arg 1 is 2 Integer Integer

Double precision | DMOD

AMAXO0 =2 Integer Real
AMAX1* =2 Real Real

divided by Arg 2 2 Double Double

Maximum value:

MAXO0* Max(Arg, ,Args . . .) =2 Integer Integer
MAXI1 =2 Real Integer
DMAX1 =2 Double Double
Minimum Value:
AMINO =2 Integer Real
AMIN1* =2 Real Real
MINO* Min(Arg, ,Arg,,. . .) =2 Integer Integer
MIN1 =2 Real Integer

DMINI1 =2 Double Double

*In line functions.

154

CHAPTER 15 Table of Intrinsic Functions
External Functions

Table 15-1 (Cont)
Intrinsic Function (DECsystem-20 FORTRAN Defined Functions)

Function Mnemonic Definition Number of Type of
Arguments Argument Function

Transfer of Sign:

Real SIGN* 2 Real Real

Integer ISIGN Sgn(Arg,)*|Arg; | 2 Integer Integer

Double precision | DSIGN 2 Double Double
Positive Difference:

Real DIM* Arg, -Min(Arg, ,Arg,)} 2 Real Real

Integer IDIM 2 Integer Integer

*In line functions.

15.4 EXTERNAL FUNCTIONS

External functions are function subprograms that consist of a FUNCTION statement followed by a sequence of
FORTRAN statements that define one or more desired operations; subprograms of this type may contain one or
more RETURN statements and must be terminated by an END statement. Function subprograms are independent
programs that may be referenced by other programs.

The FUNCTION statement that identifies an external function has the form

type FUNCTION name (argl ,arg2,. . .,argn)

where

type is an optional type specification as described in section 6.3. These include INTEGER,
REAL, DOUBLE PRECISION, COMPLEX or LOGICAL (plus the optional size
modifier, *n, for compatibility with other manufacturers.)

name is the name assigned to the function. The name may consist of from 1 to 6 characters,
the first of which must be alphabetic. The optional size modifier (*n) may be included
with the name if the type is specified. (Refer to section 6.3.)

(argl,. . .,argn) is a list of dummy arguments.

If type is not given in the FUNCTION statement, the type of the function may be assigned, by default, according to
the first character of its name, or may be specified by an IMPLICIT statement or by an explicit statement given
within the subprogram itself.

Note that if a user wants to use the same name for a user-defined function as the name of a FORTRAN defined
function (library basic external function), the desired name must be declared in an EXTERNAL statement and
prefixed by an asterisk (*) or ampersand (&) in the referencing routine. (Refer to section 6.7 for a description of the
EXTERNAL statement.)

15-5

Rules For FUNCTION Statements,
Basic External Functions
CHAPTER 15 Generic Function Names

The following rules govern the structuring of a FUNCTION subprogram:

a. The symbolic name assigned a FUNCTION subprogram must also be used as a variable name in the
subprogram. During each execution of the subprogram this variable must be defined and, once defined,
may be referenced as redefined. The value of the variable at the time of execution on any RETURN
statement is the value of the subprogram.

NOTE
A RETURN statement returns control to the calling statement
that initiated the execution of the subprogram. See Paragraph
15.4.1 for a description of this statement.

b. The symbolic name of a FUNCTION subprogram must not be used in any nonexecutable statement in
the subprogram except in the initial FUNCTION statement or a type statement.

c. Dummy argument names may not appear in any EQUIVALENCE, COMMON, or DATA statement used
within the subprogram.

d. The function subprogram may define or redefine one or more of its arguments so as to effectively return
results in addition to the value of the function.

e. The function subprogram may contain any FORTRAN statement except BLOCK DATA,
SUBROUTINE PROGRAM, another FUNCTION statement or any statement that directly or indirectly
references the function being defined or any subprogram in the chain of subprograms leading to this
function.

f. The function subprogram should contain at least one RETURN statement and must be terminated by an
END statement. The RETURN statement signifies a logical conclusion of the computation made by the
subprogram and returns the computed function value and control to the calling program. A subprogram
may have more than one RETURN statement.

The END statement specifies the physical end of the subprogram and implies a return.

15.4.1 Basic External Functions (DECsystem-20 FORTRAN Defined Functions)

DECsystem-20 FORTRAN contains a group of predefined external functions which are referred to as a basic func-
tions. Table 15-2 describes each basic function, its name, and its use. These names always refer to the basic external
functions unless declared in an EXTERNAL or conflicting explicit type statement.

15.4.2 Generic Function Names

The compiler generates a call to the proper DECsystem-20 FORTRAN defined function, depending on the type of
the arguments, for the following generic function names:

15-6

CHAPTER 15 Generic Function Names
SUBROUTINE Statement
ABS
AMAX1
AMIN1
ATAN
ATAN2
COos
INT
MOD
SIGN
SIN
SQRT
EXP
ALOG
ALOGI10

In the following example
K=ABS (I)

the type of I determines which function is called. If I is an integer, the compiler generates a call to the function
IABS. If I is real, the compiler generates a call to the function ABS. If [is double precision, the compiler generates a
call to the function DABS.

The function name loses its generic properties if it appears in an explicit type statement, if it is specified as a dummy
routine parameter, or if it is prefixed by “*” or “&” in an EXTERNAL statement. When a generic function name,
which was specified unprefixed in an EXTERNAL statement, is used as a routine parameter, it is assumed to
reference a DECsystem-20 FORTRAN defined function of the same name. or if none exist, a user-defined function.
Note that IMPLICIT statements have no effect upon the data type of generic function names unless the name has
been removed from its class using an EXTERNAL statement.

15.5 SUBROUTINE SUBPROGRAMS

A subroutine is an external computational procedure which is identified by a SUBROUTINE statement and may or
may not return values to the calling program. The SUBROUTINE statement used to identify a subprogram of this
type has the form:

SUBROUTINE name(argl ,arg2,. . .,argn)

where

name is the symbolic name of the subroutine to be defined.
(argl,. . .,argn) is an optional list of dummy arguments.

15-7

CHAPTER 15 Table of Basic External Functions
Table 15-2
Basic External Functions (DECsystem-20 FORTRAN Defined Functions)
Function Mnemonic Definition Number of Type of
Arguments | Argument Function
Exponential:
Real EXP JArg 1 Real Real
Double DEXP 1 Double Double
Complex CEXP 1 Complex Complex
Logarithm:
Real ALOG log,(Arg) 1 Real Real
ALOG10 log; o (Arg) 1 Real Real
Double DLOG log (Arg) 1 Double Double
DLOGI10 log, o (Arg) 1 Double Double
Complex CLOG log,(Arg) 1 Complex Complex
Square Root:
Real SQRT* (Arg)1/2 1 Real Real
Double DSQRT (Arg)!/2 1 Double Double
Complex CSQRT (Arg)ll 2 1 Complex Complex
Sine:
Real (radians) SIN* 1 Real Real
Real (degrees) SIND . 1 Real Real
Double (radians) DSIN sin(Arg) 1 Double Double
Complex CSIN 1 Complex Complex
Cosine:
Real (radians) COS* 1 Real Real
Real (degrees) COSD os(Arg) 1 Real Real
Double (radians) DCOS costarg 1 Double Double
Complex CCOS 1 Complex Complex
Hyperbolic:
Sine SINH sinh(Arg) 1 Real Real
Cosine COSH cosh(Arg) 1 Real Real
Tangent TANH tanh(Arg) 1 Real Real
Arc sine ASIN asin(Arg) 1 Real Real
Arc cosine ACOS acos(Arg) 1 Real Real
Arc tangent
Real ATAN* atan(Arg) 1 Real Real
Double DATAN datan(Arg) 1 Double Double
Two REAL arguments ATAN?2* atan(Arg, /Arg,) 2 Real Real
Two DOUBLE arguments | DATAN2 atan(Arg, /Arg,) 2 Double Double

*Generic Functions.

15-8

CHAPTER 15 CALL Statement
Table 15-2 (Cont)
Basic External Functions (DECsystem-20 FORTRAN Defined Functions)
Function Mnemonic Definition Number of Type of
Arguments | Argument Function
Complex Conjugate CONJG Arg=X+iY ,CONJG=X-iY 1 Complex Complex
Random Number RAN Result is a random Integer, Real
number in the range 1 Dummy | Real,
Of 0to 1.0. Argument Double,
or
Complex

The following rules control the structuring of a subroutine subprogram:

The symbolic name of the subprogram must not appear in any statement within the defined subprogram
except the SUBROUTINE statement itself.

The given dummy arguments may not appear in an EQUIVALENCE, COMMON, or DATA statement
within the subprogram.

The subroutine subprogram may define or redefine one or more of its arguments so as to effectively
return results.

The subroutine subprogram may contain any FORTRAN statement except BLOCK DATA,
FUNCTION, another SUBROUTINE statement, or any statement that either directly or indirectly
references the subroutine being defined or any of the subprograms in the chain of subprogram references
leading to this subroutine.

Dummy arguments that represent statement labels may be either an *, §, or &.
The subprogram should contain at least one RETURN statement and must be terminated by an END

statement. The RETURN statements indicate the logical end of a computational routine; the END
statement signifies the physical end of the subroutine.

Subroutine subprograms may have as many entry points as desired (see description of ENTRY statement
given in Paragraph 15.4.1).

15.5.1 Referencing Subroutines (CALL Statement)

Subroutine subprograms must be referenced using a CALL statement of the following form:

CALL name(argl ,arg2,. . .,argn)

where

name

(argl,

is the symbolic name of the desired subroutine subprogram.

...,argn) is an optional list of actual arguments. If the list is inciuded, the given actual

arguments must agree in order, number, and type with the corresponding dummy
arguments given in the defining SUBROUTINE statement.

159

CHAPTER 15 CALL Statement Arguments,
FORTRAN Subroutines, RETURN Statement
Multiple Returns
The use of literal constants is an exception to the rule requiring agreement of type between dummy and actual
arguments. An actual argument in a CALL statement may be:
a. a constant
b. avariable name
c. an array element identifier
d. an array name
e. an cxpression

f. the name of an external subroutine, or

g a statement label.

Example

The subroutine

SUBROUTINE MATRIX(I,J,K.M, *)

END
may be referenced by
CALL MATRIX(10,20,30,40,3101)

15.5.2 DECsystem-20 FORTRAN Supplied Subroutines

DECsystem-20 FORTRAN provides the user with an extensive group of predefined subroutines. The descriptions
and names of these predefined subroutines are given in Table 15-3.

15.6 RETURN STATEMENT AND MULTIPLE RETURNS

The RETURN statement causes control to be returned from a subprogram to the calling program unit. This
statement has the form

RETURN (standard return)
or
RETURN e (multiple returns)
where e represents an integer constant, variable, or expression. The execution of this statement in the first of the

foregoing forms (i.e., standard return) causes control to be returned to the statement of the calling program which
follows the statement that called the subprogram.

15-10

CHAPTER 15 Multiple Returns

The multiple returns form of this statement (i.e., RETURN e) enables the user to select any labeled statement of the
calling program as a return point. When the multiple returns form of this statement is executed, the assigned or
calculated value of e specifies that the return is to be made to the eth statement label in the argument list of the
calling statement. The value of e should be a positive integer which is equal to or less than the number of statement
labels given in the argument list of the calling statement. If e is less than 1 or is larger than the number of available
statement labels, a standard return operation is performed.

NOTE
A dummy argument for a statement label must be either a ¥,
3, or & symbol.

Any number of RETURN (standard return) statements may be used in any subprogram. The use of the multiple
returns form of the RETURN statement, however, is restricted to SUBROUTINE subprograms. The execution of a
RETURN statement in a main program will terminate the program.

Example

Assume the following statement sequence in a main program:

CALL EXAMP(1,$10,K,$15.M,$20)
GO TO 101

Assume the following statement sequence in the called SUBROUTINE subprogram:

SUBROUTINE EXAMP (L,* M,* N,*)
i{ETURN

i{ETURN

RETURN(C/D)

END

15-11

CHAPTER 15 Referencing External FUNCTION Subprograms

Each occurrence of RETURN returns control to the statement GO TO 101 in the calling program.

If, on the execution of the RETURN(C/D) statement, the value of (C/D) is:

Less than or equal to: The following is performed:
0 a standard return to the GO TO 101 statement is made
1 the return is made to statement 10
2 the return is made to statement 15
3 the return is made to statement 20
Greater than or equal to: The following is performed:
4 a standard return to the GO TO 101 statement is made.

15.6.1 Referencing External FUNCTION Subprograms

An external function subprogram is referenced by using its assigned name as an operand in an arithmetic or logical
expression in the calling program unit. The name must be followed by an actual argument list. The actual arguments
in an external function reference may be:

a. avariable name

b. an array element identifier

C. an array name

d. an expression

e. astatement number
f. the name of another external procedure (FUNCTION or SUBROUTINE).
NOTE
Any subprogram name to be used as an argument to another

subprogram must first appear in an EXTERNAL statement
(Chapter 6) in the calling program unit.

Example
The subprogram defined as:

INTEGER FUNCTION ICALC(X,Y,Z)

RETURN
END

may be referenced in the following manner:

TOTAL = ICALC(IAA,IAB,IAC)+500

15-12

CHAPTER 15 ENTRY Statement,
Multiple Entry Points

15.7 MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT)

DECsystem-20 FORTRAN provides an ENTRY statement which enables the user to specify additional entry points
into an external subprogram. This starement used in conjunction with a RETURN statement enables the user to
employ only one computational routine of a subprogram which contains several such routines. The form of the
ENTRY sratement is:

ENTRY name(argl.arg2,. . .,argn)
where
name is the symbolic name to be assigned the desired entry point
(argl,. . .,argn) is an optional list of dummy arguments. This list may contain
a. variable names
b. array declarators
c. the name of an external procedure (SUBROUTINE or FUNCTION), or
d. anaddress constant denoted by either a *, $, or & symbol
The rules for the use of an ENTRY statment follow.
a. The ENTRY statement allows entry into a subprogram at a place other than that defined by the
subroutine or function statement. Any number of ENTRY statements may be included in an external
subprogram.

b. Execution is begun at the first executable statement following the ENTRY statement.

c. Appearance of an ENTRY statement in a subprogram does not preclude the rule that statement
functions in subprograms must precede the first executable statement.

d. Entry statements are nonexecutable and do not affect the execution flow of a subprogram.

e. An ENTRY statement may not appear in a main program, nor may a subprogram reference itself
through its entry points.

f. An ENTRY statement may not appear in the range of a DO or an extended DO statement construction.
g The dummy arguments in the ENTRY statement need not agree in order, number, or type with the
dummy arguments in SUBROUTINE or FUNCTION statements or any other ENTRY statement in the
subprogram. However, the arguments for each call or function reference must agree with the dummy

arguments in the SUBROUTINE, FUNCTION, or ENTRY statement that is referenced.

h. Entry into a subprogram initializes the dummy arguments of the referenced ENTRY statement, all
appearances of these arguments in the entire subprogram are initialized.

i A dummy argument may not be referenced unless it appears in the dummy list of an ENTRY,
SUBROUTINE, or FUNCTION statement by which the subprogram is entered.

15-13

CHAPTER 15 Entry Points

J. The source subprogram must be ordered such that references to dummy arguments in executable
statements must follow the appearance of the dummy argument in the dummy list of a SUBROUTINE,
FUNCTION, or ENTRY statement.

k. Dummy arguments that were defined for a subprogram by some previous reference to the subprogram
are undefined for subsequent entry into the subprogram.

L The value of the function must be returned by using the current entry name.

15-14

CHAPTER 15 Table of Library Subroutines

Table 15-3
DECsystem-20 FORTRAN Library Subroutines

Subroutine Name Effect

DATE Places today’s date as left-justified ASCII characters into a dimensioned
2-word array.

CALL DATE (array)
where array is the 2-word array. The date is in the form
dd-mmm-yy

where dd is a 2-digit day (if the first digit is O, it is converted to a blank),
mmm is a 3-digit month (e.g., Mar), and yy is a 2-digit year. The data is
stored in ASCII code, left-justified, in the two words.

DEFINE FILE A DEFINE FILE call can be used to establish and define the structure of each
file to be used for random access I/O operations.

NOTE
The OPEN statement may be used to perform the same
functions as DEFINE FILE.

The format of a DEFINE FILE call may be
CALL DEFINE FILE (u,s,v,f,proj,prog)

where

DEFINE FILE u = logical FORTRAN device numbers.

(cont)

s = the size of the records which comprise the file being defined. The
argument s may be an integer constant or variable.

v = an associated variable. The associated variable is an integer
variable that is set to a value that points to the record that
immediately follows the last record transferred. This variable is
used by the FIND statement (Chapter 10). At the end of each
FIND operation the variable is set to a value that points to the
record found. The variable v cannot appear in the I/O list of any
I/O statement that accesses the file set up by the DEFINE FILE
statement.

f = filename to be given the file being defined.'

proj user’s project number.

prog = user’s programmer’s number.

1Refer to Appendix B for detailed information on how to specify a directory for the DECsystem-20,

15-15

CHAPTER 15 Table of Library Subroutines

Table 15-3 (Cont)
DECsystem-20 FORTRAN Library Subroutines

Subroutine Name Effect

Example

The statement
CALL DEFINE FILE (1,10,ASCVAR,'FORTFL.DAT’,0,0)

establishes a file named FORTFL.DAT on device 01 (i.e., disk) which
contains word records. The associated variable is ASCVAR, and the

file is in the user’s area.

DUMP Causes particular portions of core to be dumped and is referred to in the
following form:

CALL DUMP (L,,U,,F,,. . ,L U F)

where L1 and U, are the variable names which give the limits of core memory
to be dumped. Either L, or U; may be upper or lower limits. F; is a number
indicating the format in which the dump is to be performed: 0 = octal, 1 =
real, 2 = integer, and 3 = ASCIL.

If Fisnot 0, 1, 2, 3, the dump is in octal. If F is missing, the last section is
dumped in octal. If U and F are missing, an octal dump is made from L to
the end of the job area. If L , U , and F are missing, the entire job area is
dumped in octal.

The dump is terminated by a call to EXIT.

ERRSET Allows the user to control the typeout of execution-time arithmetic error
messages, ERRSET is called with one argument in integer mode.

CALL ERRSET(N)

Typeout of each type of error message is suppressed after N occurrences of
that error message. If ERRSET is not called, the default value of N is 2.

EXIT Returns control to the Monitor and, therefore, terminates the execution of
the program.

ILL Sets the ILLEG flag. If the flag is set and an illegal character is encountered in
floating point/double precision input, the corresponding word is set to zero.

15-16

CHAPTER 15 Table of Library Subroutines

Table 15-3 (Cont)
DECsystem-20 FORTRAN Library Subroutines

Subroutine Name Effect
CALLILL
LEGAL Clears the ILLEG flag. If the flag is set and an illegal character is encountered
in the floating point/double precision input, the corresponding word is set to
zero.
CALL LEGAL
PDUMP CALLPDUMP(L,,U; Fy,.. ,.L U _,F)

The arguments are the same as those for DUMP. PDUMP is the same as DUMP
except that control returns to the calling program after the dump has been
executed.

RELEAS CALL RELEAS(unit*)

Closes out 1/0 on a device initialized by the FORTRAN Operating System
and returns it to the uninitialized state.

SAVRAN SAVRAN is called with one argument in integer mode. SAVRAN sets its
argument to the last random number (interpreted as an integer) that has been
generated by the function RAN.

SETABL CALL SETABL(LJ)

Specifies a character set where I is an integer which gives the number of the
desired character set. If a character set has been defined by I, the value of J is
set to O; if not, J is set to —1. The standard ASCII character set is defined as
1.

SETRAN SETRAN has one argument which must be a non-negative integer < 23!. The
starting value of the function RAN is set to one value of this argument, unless
the argument is zero. In this case, RAN uses its normal starting value.

15-17

CHAPTER 15

Table of Library Subroutines

Table 15-3 (Cont)
DECsystem-20 FORTRAN Library Subroutines

Subroutine Name

Effect

TIME

Returns the current time in its argument(s) in left-justified ASCII characters.
If TIME is called with one argument,

CALL TIME(X)
the time is in the form
hh:mm

where hh is the hours (24-hour time) and mm is the minutes. If a second
argument is requested,

CALL TIME(X,Y)
the first argument is returned as before and the second has the form
bss.t

where ss is the seconds, t is the tenths of a second, and b is a blank.

15-18

CHAPTER 16 BLOCK DATA Statement

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 16
BLOCK DATA SUBPROGRAMS

16.1 INTRODUCTION

Block data subprograms are used to initialize data to be stored in any common areas. Only specification and DATA
statements are permitted (i.e., DATA, COMMON, DIMENSION, EQUIVALENCE, and TYPE) in block subprograms.
A subprogram of this type must start with a BLOCK DATA statement.

If any entry of a labeled common block is initialized by a BLOCK DATA subprogram, the entire block must be
included even though some of the elements of the block do not appear in DATA statements.

Initial values may be entered into more than one labeled common block in a single subprogram of this type.
An executable program may contain more than one block data subprogram.

16.2 BLOCK DATA STATEMENT
The form of the BLOCK DATA statement is

BLOCK DATA name
where

name is a symbolic name given to identify the subprogram.

16-1

APPENDIX A

ASCII-1968 CHARACTER CODE SET

The character code set defined in the X3.4-1968 Version of the American National Standard for Information
Interchange (ASCII) is given in the following matrix.

Ist 2 Last octal digit
octal 0 1 2 3 4 5 6 7
digits
00x NUL SOH STX ETX EOT ENQ ACK BEL
01x BS HT LF VT FF CR SO SI Graphic
02x DLE DCl1 DC2 DC3 DC4 NAK SYN ETB subsets
03x CAN EM SUB ESC FS GS RS us 64 95
04x B ! » # $ % & ’ f F
05x () * + , - . /
06x 0 1 2 3 4 5 6 7
07x 8 9 : ; < = > ?
10x @ A B C D E F G
11x H I J K L M N 0]
12x P Q R S T U \% w
Bx | X Y z | \] A o | L
14x grave a b c d e f g
15x h i j k 1 m n 0
16x p q r S t u v w
17x X y 2 { | } ~(ESC) DEL - A
Characters inside parentheses are ASCII-1963 Standard.
NUL Null DLE Data Link Escape
SOH Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EOT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK Negative Acknowledge
ACK Acknowledge SYN Synchronous Idle
BEL Bell ETB End of Transmission Block
BS Backspace CAN Cancel
HT Horizontal Tabulation EM End of Medium
LF Line Feed SUB Substitute
VT Vertical Tabulation ESC Escape
FF Form Feed FS File Separator
CR Carriage Return GS Group Separator
SO Shifi Cut RS Record Separator
SI Shift In uUs Unit Separator
DEL Delete (Rubout)

A-1

APPENDIX B
SPECIFYING DIRECTORY AREAS

DECsystem-20 FORTRAN has two ways in which the user can access another user’s directory. The first way is via a
logical name in place of the device name; the second way is via a project-programmer number instead of a directory
name. Either method can be used with FORTRAN; however, use of a logical name is recommended.

NOTE
When the user sees a_project-programmer number (i.e., a
number similar to [4,204]) in this manual or in an error
message, he can use the TRANSL program to find out its
corresponding directory name. Refer to Section B.1.1.

For more information about referencing other user’s files, refer to the DECsystem-20 USER’S GUIDE.

B.1 USING LOGICAL NAMES

To use a logical name in accessing another user’s directory, the user:

1. Gives the DEFINE system command to define a logical name (of no more than six characters) as the
other user’s directory name.

2. Uses the logical name in place of the device name when typing the file specification.

B.1.1 Giving The DEFINE Command
To give the DEFINE command, the user:

1. Types DEFINE and presses the ESC key; the system prints (LOGICAL NAME).
@DEFINE (LOGICAL NAME)

2. Types the logical name (ending it with a colon is optional) and presses the ESC key. The system prints
(AS).

@DEFINE (LOGICAL NAME) BAK: (AS)

3. Types the directory name (enclosed in angle brackets) and presses the RETURN key. The system prints
an @,

@DEFINE (LOGICAL NAME) BAK: (AS) <BAKER>
To check the logical name, the user can give the INFORMATION (ABOUT) LOGICAL-NAMES system command.
@INFORMATION (ABOUT) LOGICAL-NAMES

BAK => <BAKER>
@

B.1.2 Using The Logical Name

The user can the:: include the logical name in with FORTRAN by typing the logical name in place of a device
name.

The following example shows how the user would output a log file to the directory named <BAKER>. (Remember
he has already defined the logical name BAK: as <BAKER>.)

@FORTRA
*BAK:TEST

B.2 USING PROJECT-PROGRAMMER NUMBERS

To use a project-programmer number in accessing another user’s directory, the user:

1. Runs the TRANSL program to find the corresponding project-programmer number for the desired
directory name.

2. Includes the project-programmer number after the file type.

The user does not have to definc a logical name when he uses a project-programmer number; however,
project-programmer numbers may not remain constant over time. Logical names should be used whenever possible.

B.2.1 Running The TRANSL Program
To run the TRANSL program, the user:

1. Types TRANSL and presses the RETURN key. The system prints TRANSLATE (DIRECTORY).

@TRANSL
TRANSLATE (DIRECTORY)

2. Types the directory name and presses the RETURN key. The system prints the corresponding
project-programmer number.

@TRANSL

TRANSLATE (DIRECTORY) BAKER
<BAKER> IS [4,204]

@

The user can also usc the TRANSL program to verify that a project-programmer number is correct. He simply
replaces the directory name with the project-programmer number.

@TRANSL
TRANSLATE (DIRECTORY) [4,204]
[4,204] 1S <BAKER>

@
B.2.2 Using The Project-Programmer Number

The user can use the project-programmer number with FORTRAN by typing the project-programmer number after
the file type.

The following example shows how the user compiles a FORTRAN program from the directory named BAKER,
using a project-programmer number. (Remember he has already translated the directory name.)

@FORTRA
*TEST.REL,TEST.LST = TEST.FOR [4,204]

B-2

APPENDIX C
USING THE COMPILER

This appendix explains how to access DECsystem-20 FORTRAN and how to make use of the information it
provides. The reader should be familiar with the FORTRAN language and the DECsystem-20 operating system.

C.1 RUNNING THE COMPILER
The command to run FORTRAN is

@FORTRA

The compiler responds with an asterisk (*) and is then ready to accept a command string. A command is of the
general form

object filename, listing filename=source filename(s)
The following options are given to the user:

1. The user may specify more than one input file in the compilation command string. These files will be
logically concatenated by the compiler and treated as one source file.

2. Program units need not be terminated at file boundaries and may consist of more than one file.
3. If no object filename is specified, no relocatable binary file is generated.
4. Ifnolisting filename is specified, no listing is generated.

5. If no type is given, the defaults are .LST (listing), .REL (relocatable binary), and .FOR (source) for their
respective files.
C.1.1 Switches Available with DECsystem-20 FORTRAN

Switches to DECsystem-20 FORTRAN are accepted anywhere in the command string. They are totally position and
file independent. The switches are shown in Table C-1.

Table C-1
FORTRAN Compiler Switches

Switch Meaning Defaults
CROSSREF Generate a file that can be input to the CREF program. OFF
DEBUG See Section C.1.1.1. OFF
EXPAND Include the octal-formatted version of the object file in OFF

the listing.
INCLUDE Compile a D in card column 1 as a space. OFF
MACROCODE Add the mnemonics translation of the object code to the OFF
listing file.
NOERRORS Do not print error messages on the terminal. OFF
NOWARNINGS Do not output wamning messages. OFF
OPTIMIZE Perform global optimization. OFF
SYNTAX Perform syntax check only. OFF

Each switch must be preceded by a slash (/). Switches need consist of only those letters that are required to make
the switch unique. But users are encouraged to use at least three letters to prevent conflict with switches in future
implementations.

Example

@FORTRA
*OFILE,LFILE=SFILE/MAC,S2FILE

The /MAC switch will cause the MACRO code equivalent of SFILE and S2FILE to appear in LFILE.LST.

C.1.1.1 The /DEBUG Switch — Using the /DEBUG switch tells FORTRAN to compile a series of debugging
features into the user program. Several of these features are specifically designed to be used with FORDDT. Refer to
Appendix F for more information. By adding the modifiers listed in Table C-2, the user is able to include specific
debugging features.

C-2

Table C-2
Modifiers to /DEBUG Switch

Modifiers Meaning
:DIMENSIONS Generates dimension information in .REL file for FORDDT.
:TRACE Generates references to FORDDT required for its trace features (automatically

activates :LABELS).

:LABELS Generates a label for each statement of the form “line-number L.” (This option

may be used without FORDDT.)

:INDEX Forces DO LOOP indices to be stored at the beginning of each iteration rather

than held in a register for the duration of the loop.

:BOUNDS Generates the bounds checking code for all array references. Bounds violations

will produce run-time error messages. Note that the technique of specifying
dimensions of 1 for subroutine arrays will cause bounds check errors. (This
option may be used without FORDDT.)

The format of the /DEBUG switch and its modifiers is as follows:

/DEBUG:modifier

or

/DEBUG: (modifier list)

Options available with the /DEBUG modifiers are:

1.

2.

No debug features — Either do not specify the /DEBUG switch or include /DEBUG:NONE.
All debug features — Either /DEBUG or /DEBUG:ALL.
Selected features — Either a series of modified switches; i.e.,
/DEBUG:BOU /DEBUG:LAB
or a list of modifiers
/DEBUG:(BOU,LAB,. . .)
Exclusion of features (if the user wishes all but one or two modifiers and does not wish to list them all,
he may use the prefix “NO” before the switch he wishes to exclude). The exclusion of one or more

features implicitly includes all the others, i.e., /DEBUG:NOBOU is the same as
/DEBUG:(DIM,TRA,LAB,IND).

C3

If more than one statement is included on a single line, only the first statement will receive a label
(/DEBUG:LABELS) or FORDDT reference (/DEBUG:TRACE). (The /DEBUG option and the /OPTIMIZE option
cannot be used at the same time.)

NOTE
If a source file contains line sequence numbers that occur
more than once in the same subprogram, the /DEBUG option
cannot be used.

The following formulas may be used to determine the increases in program size that will occur due to the addition of
various [DEBUG options.

DIMENSIONS: For each array, have 3+3*N words where N is the number of dimensions, and up to 3
constants for each dimension.

TRACE: One instruction per executable statement.

LABELS: No increase.

INDEX: One instruction per inner loop plus one instruction for some of the references to the

index of the loop.
BOUNDS: For each array, the formula is the same as DIMENSIONS:.

For each reference to an array element, use 5S+N words where N is the number of
dimensions in the array. If BOUNDS: was not specified, approximately 1+3*(N-1)
words would be used.

C.1.2 LOAD-Class Commands

FORTRAN can also be invoked by using one of the LOAD-class commands. These commands cause the system to
interpret the command and construct new command strings for the system program actually processing the
command.

COMPILE
LOAD

EXECUTE
DEBUG

Example
@EXECUTE(FROM)ROTOR

The compiler switches OPT, CREF, and DEBUG may be specified directly in LOAD-class commands and may be
used globally or locally.

Example
@EXECUTE(FROM)/CREFP1.FOR,P2.FOR/DEBUG:NOBOU

The other compiler switches must be passed in parentheses for each specific source file.

C4

Refer to the DECsystem-20 User’s Guide for further information.

C.2 READING A DECsystem-20 FORTRAN LISTING

When a user requests a listing from the FORTRAN compiler, it contains the following information:

1.

9.

A printout of the source program plus an internal sequence number assigned to each line by the
compiler. This internal sequence number is referenced in any error or waming messages generated during
the compilation. If the input file is line sequenced, the number from the file is used. If code is added via
the INCLUDE statement, all INCLUDEA lines will have an asterisk (*) appended to their line sequence
number.

A summary of the names and relative program locations (in octal) of scalars and arrays in the source
program plus compiler generated variables.

All COMMON areas and the relative locations (in octal) of the variables in each COMMON area.
A listing of all equivalenced variables or arrays and their relative locations.

A listing of the subprograms referenced (both user defined and DECsystem-20 FORTRAN defined
library functions).

A summary of temporary locations generated by the compiler.

A heading on each page of the listing containing the program unit name (MAIN., program, subroutine or
function, principal entry), the input filename, the list of compiler switches, and the date and time of
compilation.

If the /MACRO switch was used, a mnemonic printout of the generated code is appended to the listing.
This section has four fields:

LINE: This column contains the intemal sequence number of the line corresponding to the
mnemonic code. It appears on the first of the code sequence associated with that internal sequence
number. An asterisk indicates a compiler inserted line.

LOC: The relative location in the object program of the instruction.

LABEL: Any program or compiler generated label. Program labels have the letter “P”” appended.
Labels generated by the compiler are followed by the letter “M”. Labels generated by the compiler
and associated with the /DEBUG:LABELS switch consist of the internal sequence number
followed by an “L”’.

GENERATED CODE: The MACRO mnemonic code.
A list of all argument areas generated by the compiler. A zero argument appears first followed by

argument blocks for subroutine calls and function references (in order of their appearance in the
program). Argument blocks for all I/O operations follow this.

10. Format statement listings.

11.

A summary of errors detected or warning messages issued during compilation.

C.2.1 Compiler Generated Variables

In certain situations the compiler will generate internal variables. Knowing what these variables represent can help in
reading the macro expansion. The variables are of the form:

Jetter digit digit digit digit

i.e., .S0001

where:

Letter

S

o

F

R

Function of Variable
Result of the DO LOOP step size expression of computed iteration count for a loop.
Result of a common subexpression or constant computation.

Result of a DO LOOP initial value expression or parameters of an adjustably dimensioned
array.

Arithmetic statement function formal parameters.

Result of reduced operator strength expression (D.2.1.2).

The user may find these variables on the listing under SCALARS and ARRAYS.

The following example shows a listing where all these features are pointed out.

C-6

LD

Name of Program Name of Source File MACRO code equivalent

MATIN 1im1 ot UK FURLIKAGN v.4AL317) /Ki/MW Zzo=Jdhiv=lo 15:51 PAGE 1
(VIVA RVIV] IMPLICLIT IwlEGEK (A=Z)

QU200 UVIMENSLUN ALIUU,Z200).B(100,200)

0030G Sumli=u

004u0 SUMZ=0

00500 D 10ov J=1,200

OoeLoC VU 100 1=1,100

00700 KL = 1 % J

ousGU L (Rl JLle HU0 J0ORe K1 .Gle 1500) KLI=U

00900 AC1.J)=K1

U1000 KZ=1+d

01100 IF(RZ BVU. 100 J0URe K2 .EO. 200 JUKR. KR2.£0.300) K2=K2+1
01200 Bll.,d)=K2

01300 SuMl=suml +R1

V1400 SUMZ=SUMZ2+K2

0150u 100 CUNTINUE

010C0 c

01700 LYPE 1U,SUML,SUM?

v1ls00 10 FURMAL(/H SUpsil= .19,10H sum2= .19)

01900 kv

SUBPRUGRAMS CaLbLbD
The relative address of all variables is given.
SCALAKRS AinD ARRAYS L "%" wU BXPLICLT DEFINITIUN = "3%" NOLI REFERENCED

*K1 1 B 2 *J 47042 A 47043 «.SU0U1 116103 .50000 116104
¥oUMZ Tlolun *1 11bllGb *n2 llolu/ *5UmM1L 116110

T»——Compiler generated
variables

80

Internal sequence number on first instruction that goes with that line

l f octal displacement of instruction.
Llwk LJC LAUFKL GhivERAaTED CUDE
0 JECL 0.0
1 JSk 1o, KESkK 1.
z 0.y
300 3 oe 14 72 .5UMt
400 4 MU Vi 72.5UM2
500 5 MUV E 2.0777470000001 1}
b HiKewm 7..50000
7 23
HRRZM 2.4
600 10 3
MUVE 2.07776340000011)
700 11 4032
MUV E 3.J
12 Imull 3.0(2)
13 MUVEM 3.K1
L AVXV] 14 CAlLlL 3.764
19 CALuE 3.2734
lo JdRST 0.0oM
1/ JKS1 0.5M
800 20 bl - compiler generated label
SELLE 4,11
900 21 Swms o
MUVEL 3.144
22 lisub 300
/23 AvU L 2.0L2)
24 MUV E 4.K1
25 MUVEM 4,A=145(3)
1000 20 MUV E 3.4
21 ALDI 3.u(2)
3U MU vk 3.K2
11vu 31 mUVE S.Kn2
32 CAle 5.144
33 CA1N H.310
34 JKST O.8M
35 9z

CAlw 5.1454

60

f1uv

1z0v

1300
1400
1500

170u

1Yvu

AGumbsia

FURMA L

l8uu

mAliia

30 e
AUS 3.82
37 IR
MUVEL 3.144
40 1MUL 3.d
41 AUD1L 3.0(2)
47 MUVE Y.K2
43 MUvVEM 5.8=145(3)
44 ADDM 4.S5UMI
45 ADD®M 5.5UM2
46 luoir: -
AUBJN 2.4M
47 AUS 7.d
50 AUSGE 0. 50000
51 JdiroT 0.3M
52 MuUVEL 16,10M
53 PUSHU 17,0U7%.
54 MUVEL 16, 11M
95 rLSHJ 17,10LST.
Y ¢) MmOVl 16,1
h7 ruosnd 17.6X171.
BLUCAD: -
ol) (VIFRPRY]
bl 12 Ue s U
b2 T1i1713.,.0
n3 10me Ve 1170707
o4 U.00
[o%e) 0..0
b 340U, .1 CGF
o7 UeoT
AV} U..0
I 11eds 1100, .,5UM1
12 1100, ,Sul?
/3 EYVAVAVIPRN V)

SlatedbeawtrsS (In Luw SEGVENT) @

Liovlli lur:
11l
i1tells
lioll4
1lolld
ltollo
lLitbi/

L

K1

(/b o
Uml=
LY,
OH

SUMZ
= ,19
)

ERRUKDS DELTECTED)

program label

argument blocks

C.3 ERROR REPORTING

If an error occurs during the initial pass of the compiler (while the actual source code is being read and processed),
an error message is printed on the listing immediately following the line in which the error occurred. Each error
references the internal sequence number of the incorrect line. The error messages along with the statement in error
are output to the user terminal. For example:

@EXECUTE(FROM)DAY.FOR
FORTRAN: DAY

01300 K1

?FTNNRC LINE:01300 STATEMENT NOT RECOGNIZED

01500 100 CONTINE

?FTNMSP LINE:01500 STATEMENT NAME MISSPELLED

01600 ?

?FTNICL LINE:01600 ILLEGAL CHARACTER C IN LABEL FIELD
?FTNFTL MAIN. 3 FATAL ERRORS AND NO WARNINGS

LINK: LOADING
[LNKNSA NO START ADDRESS]

EXIT

@

If errors are detected after the initial pass of the compiler, they appear in the list file after the end of the source
listing. They are output to the user terminal without the statement in error but they do reference its internal
sequence number.

C.3.1 Fatal Errors and Warning Messages

There are two levels of messages, wamning and fatal error. Warning messages are preceded by “%” and indicate a
possible problem. The compilation will continue, and the object program will probably be correct. Fatal errors are
preceded by a “?”. If a fatal error is encountered in any pass of the compiler, the remaining passes will not be called.
Additional errors that would be detected in later compiler passes may not become apparent until the first errors are
corrected. As the word fatal denotes, it is not possible to generate a correct object program for a source program
containing a fatal error.

The format of messages is

PFTNXXX LINE:n text

or
%FTNXXX LINE:n text
where:
? . = fatal
% = warning
FTN = FORTRAN mnemonic
XXX = 3-letter mnemonic for the error message
LINE:n = line number where error occurred

text explanation of error

C-10

The printing of fatal errors and warning messages on the user’s terminal can be suppressed by the use of the
/NOERRORS switch; however, messages will still appear on the listing. The /NOWARNINGS switch will suppress
warning messages on both user terminal and listing.

C.3.2 Message Summary

At the end of the listing file and on the terminal, a message summary is printed after each program unit is compiled.
This message has two forms:

1. when one or more messages were issued

PFTNFTL l
%FTNWRN | n

ame NO/number FATAL ERRORS AND NO/number WARNINGS
or
2. when no messages were issued

name [NO ERRORS DETECTED]

where name is the program or subprogram name. ([NO ERRORS DETECTED] appears on the listing only.) For a
complete list of fatal errors and warning messages, see Appendix G.

C.4 CREATING A REENTRANT FORTRAN PROGRAM WITH LINK
To produce a sharable program, load the object file into memory and give the SAVE command as follows:

@LOAD (FROM) MAIN.REL
LINK:loading

@SAVE

MAIN.EXEI SAVED

@

Users can then run the program using the run command

@RUN MAIN

C-11

APPENDIX D
WRITING USER PROGRAMS

This appendix is a guide for writing effective user programs with FORTRAN. It contains techniques for
optimization, interaction with non-FORTRAN programs, and other useful programming hints.

D.1 GENERAL PROGRAMMING CONSIDERATIONS

Programming considerations that should be observed when preparing a FORTRAN program to be compiled by
DECsystem-20 FORTRAN are described in the following paragraphs.

D.1.1 Accuracy and Range of Double Precision Numbers

Floating point and real numbers may consist of up to 16 digits in a double precision mode. Their range is specified in
Chapter 3, Section 3.2 of this manual. Care must be taken when testing the value of a number within the specified
range since, although numbers up to 10°® may be represented, DECsystem-20 FORTRAN can only test numbers of
up to eight significant digits (REAL precision) and 16 significant digits (DOUBLE precision).

Care must also be taken when testing the floating point computation for a result of 0. In most cases the anticipated
result (i.e., 0) will be obtained; however, in some cases the result may be a very small number that approximates 0.
Such an approximation of 0 would cause tests within statements (i.e., an arithmetic 1F) to fail.

D.1.2 Writing FORTRAN Programs for Execution on Non-DEC Machines

If a program is to be prepared to run on both a DECsystem-20 computer and a non-DEC machine, the user should
1. avoid using the non-ANSI Standard features of DECsystem-20 FORTRAN, and
2. consider the accuracy and size of the numbers that the non-DEC machine is capable of handling.

D.1.3 Using Floating Point DO Loops

DECsystem-20 FORTRAN permits the user to employ non-integer single or double precision numbers as the
parameter variables in a DO statement. The primary advantage of the foregoing is to enable the user to generate a
wider range of values for the DO loop index variables which may, in turn, be used inside the loop for computations.
Care should be taken in considering the loss of precision that may occur in this context.

D.1.4 Computation of DO Loop Iterations

The number of times through a DO loop is computed outside the loop and is not affected by any changes to the DO
index parameters within the loop. The formula for the number of times a DO loop is executed is

DO 10 I=m1,m2, ms3

-m, +
MAX (l,m_Z_Tl_m.)= Number of cycles
ms

The values of the parameters (i.e., m;, m,, m3) may be of any type; however, proper consideration must be given to
the foregoing formula, particularly when using logicals. One iteration of each DO loop is always performed even if
the result of the foregoing calculation is less than or equal to zero.

D.1.5 Subroutines — Programming Considerations

The following items must be considered when preparing and executing subroutines:

1.

2.

During execution, no check is made to see if the proper number of parameters were passed.

If the number of actual arguments passed to a subroutine are less than the number of dummy arguments
specified, the values of the unspecified arguments are undefined.

If the number of actual arguments passed to a subroutine is greater than the number of dummy
arguments given, the excess arguments are ignored.

If an actual parameter is a constant and its corresponding dummy argument is set to another value, all
references made to the constant in the calling program may be changed to the value of the dummy
argument.

No check is made to see if the parameters passed are of the same type as the dummy parameters. If an
actual parameter is a constant and the corresponding dummy is of type real, be sure to include the
decimal point with the constant. If the dummy is double precision, be sure to specify the constant with
a “D?,,

Examples

If the function F(A) is called by inputting F(2) and A is type real, F interprets the integer 2 as an
unnormalized floating point number. In this instance, F(A) should be called with F(2.0).

Similarly, if the function F1(D) is called by inputting F1(2.5) and D is double precision, F1 assumes that
its parameters have been specified with two words of precision and picks up whatever follows the
constant 2.5 in core. The proper method is to use F1(2.5D00).

NOTE
No notice is given to the user if any of the situations
described in items 1, 2, 3,4, and 5 occur.

D.1.6 Reordering of Computations

Computations that are not enclosed within parentheses may be reordered by the compiler. Sometimes it is necessary
to use parentheses to prevent improper results from being obtained from a specific computation.

For example, assuming that

1.

RL1 represents a large number such that RL1*RL2 will cause an overflow condition, and

D-2

2. RS1is a very small number (i.e., less than 1) the program sequence

A =RS1*RL1*RL2
B = RS2*RL2*RL1

will not produce an overflow when evaluated left to right since the first computation in each expression
(i.e., RS1*RL1 and RS2*RL2) will produce an interim result that is smaller than either large number
(RL1 or RL2).

However, the compiler will recognize RL1*RL2 as a common subexpression and generate the following sequence:

temp = RL1*RL2
A = RSI1*temp
B = RS2*temp

The computation of temp will cause an overflow.

The program sequence should be written in the following manner to ensure that the desired results are obtained:

A= (RSI1*RL1)*RL2
B = (RS2*RL2)*RL1

Computations may be reordered even when global optimization is not selected.

D.1.7 Dimensioning of Formal Arrays

When an array is specified as a formal parameter to a subprogram unit, it is necessary to indicate to the compiler that
the parameter is an array. The user must dimension the array in a specification statement. This is the only way the
compiler is able to distinguish a reference to such an array from a function reference. Designating the array with a
dimension of 1 has become a common practice among users.

Example

SUBROUTINE SUB1(A,B)
DIMENSION A(1)

There are disadvantages to using the above technique because the dimension information provided is not adequate in
some cases, specifically

D-3

1. Reading or writing the array by name.

DIMENSION ARRAY (10)
READ (1) ARRAY

This is a binary read that will read 10 words into ARRAY.

SUBROUTINE SUBI(A)
DIMENSION A(1)
READ(1)A

This binary read will cause 1 word to be read into A.
2. Reading the array as a format

SUBROUTINE SUB2 (FMT)
DIMENSION FMT(1)
READ (1,FMT)

This will cause 1 word of the array FMT to be written over with the characters read from the record on
unit 1.

When using the /DEBUG:BOUNDS compilation switch, the dimension information used is that which is specified in
the array declaration.

SUBROUTINE DO IT(A)
DIMENSION A(1)
A(2)=0

The reference to A(2) will cause the out-of-bounds warning message to be generated.

D.2 DECsystem-20 FORTRAN GLOBAL OPTIMIZATION

The user has the option of invoking a global optimizer during compilation. This optimizer treats groups of
statements in the source program as a single entity. The purpose of the global optimizer is to prepare a more
efficient object program that produces the same results as the original unoptimized program but takes significantly
less execution time. The output of the lexical and syntax analysis phase of the compiler is developed into an
optimized source program equivalent (in results) to the original. The optimized program is then processed by the
standard compiler code generation phase.

D.2.1 Optimization Techniques
D.2.1.1 Elimination of Redundant Computations — Often the same subexpression will appear in more than one

computation throughout a program. If the values of the operands of such a common expression are not changed
between computations, the subexpression may be written as a separate arithmetic expression, and the variable

representing its resultant may then be substituted where the subexpression appears. This eliminates unnecessary
recomputation of the subexpression. For example, the instruction sequence

A =B*C+E*F

H=A+G-B*C

IF((B*C)-H) 10,20,30

contains the subexpression B*C three times when it really needs to be computed only once. Rewriting the foregoing
sequence as

T=B*C
A=T+E*F
H= A+G-T

IF((T)-H) 10,20,30
eliminates two computations of the subexpression B*C from the overall sequence.

Decreasing the number of arithmetic operations performed in a source program by the elimination of common
subexpressions shortens the execution time of the resulting object program.

D.2.1.2 Reduction of Operator Strength — The time required to execute arithmetic operations will vary according
to the operator(s) involved. The hierarchy of arithmetic operations according to the amount of execution time
required is

MOST TIME OPERATOR
sk
/
*
LEAST TIME +,-

During program optimization, the global optimizer replaces, where possible,' some arithmetic operations that
require the most time with operations that require less time. For example, consider the following DO loop that is
used to create a table for the conversion of from 1 to 20 miles to their equivalents in feet.

DO 10 MILES = 1,20
10 IFEET(MILES) = 5280*MILES

INumerical analysis considerations severely limit the number of cases where it is possible.

D-5

The execution time of the foregoing loop would be shorter if the time consuming multiply operation (i.e.,
5280*MILES) could be replaced by a faster operation. Since the variable MILES is incremented by 1 on each
iteration of the loop, the multiply operation may be replaced by an add and total operation.

In its optimized form, the foregoing loop would be replaced by a sequence equivalent to

K=5280
DO 10 MILES = 1,20
IFEET(MILES) = K
10 K=K+5280

In the optimized form of the loop, the value of K is set to 5280 for the first iteration of the loop and is increased by
5280 for each succeeding iteration of the loop.

The foregoing situation occurs frequently in subscript calculations which implicitly contain multiplications whenever
the dimensionality is two or greater.

D.2.1.3 Removal of Constant Computation From Loops — The speed with which a given algorithm may be
executed can be increased if instructions and/or computations are moved out of frequently traversed program
sequences into less frequently traversed program sequences. Movement of code is possible only if none of the
arguments in the items to be moved are redefined within the code sequences from which they are to be taken.
Computations within a loop comprised of variables or constants that are not changed in value within the loop may
be moved outside the loop. Decreasing the number of computations made within a loop will greatly decrease the
execution time required by the loop.

For example, in the sequence

DO 101=1,100
10 F=2.0*Q*A(I)}+F

the value of the computation 2.0*¥Q, once calculated on the first iterations, will remain unchanged during the
remaining 99 iterations of the loop. Reforming the foregoing sequence to:

QQ=12.0*Q
DO 10 I=1,100
10 F=QQ*A(I)+F

moves the calculation 2.0*Q outside of the scope of the loop. This movement of code eliminates 99 multiply
operations.

In addition it is possible to remove entire assignment statements from loops. This action can be easily detected from

the macro expanded listings. The internal sequence number remains with the statement and appears out of order in
the leftmost column of the macro expanded listing (LINE).

D-6

D.2.1.4 Constant Folding and Propagation — In this method of optimization, expressions containing determinate
constant values are detected and the constants are replaced, at compile time, by their defined or calculated value.
For example, assume that the constant Pl is defined and used in the following manner:

PI=3.14159

X = 2*¥PI*Y

At compile time, the optimizer will have used the defined value of PI to calculate the value of the subexpression
2*PI. The optimized sequence would then be

PI=3.14159

X =6.28318*Y

thereby eliminating a multiply operation from the object code program.

The computation of determinate constant values at compile time is termed “folding”; the use of the defined value of
a constant for replacement purposes throughout a program sequence is termed “propagation of the constants”. The
execution time saved by the foregoing type of compile time optimization is particularly important when the
modified instruction occurs in a loop.

D.2.1.5 Removal of Inaccessible Code — The optimizer detects and eliminates any code within the source program
that cannot be accessed. In general, the foregoing condition will not exist since programmers will not normally
include such code in their programs; however, inaccessible code may appear in a program during the debugging
process. The removal of inaccessible code by the optimizer will reduce the size of the optimized object program. A
warning message is generated for each inaccessible line removed.

D.2.1.6 Global Register Allocation — During the compilation of a source program the optimizer controls the
allocation of registers to minimize computation time in the optimized object program. The intent of the allocation
process is to minimize the number of MOVE and MOVEM machine instructions that will appear in the most
frequently executed portions of the code.

D.2.1.7 1/O Optimization — Every effort is made to minimize the number of calls required into the FOROTS
system. This is done primarily through extensive analysis of implied DO loop constructs on READ, WRITE,
ENCODE, DECODE and REREAD statements. The formats of these special blocks are described in Appendix E.
These optimizations reduce the size of the program (argument code plus argument block size is reduced) and greatly
improve the performance of programs that use implied DO loop I/O statements.

D7

D.2.1.8 Uninitialized Variable Detection — A warning message is generated when a scalar variable is referenced
before it could possibly have received a value.

D.2.1.9 Test Replacement — If the only use of a DO loop index is to reduce operator strength (D.2.1.2) and the
loop does not contain exits (GO TO’s out of the loop), the DO loop index is not needed and can be replaced by the
reduced variable. This actually occurs quite often in double precision array subscript computations.

For example:

DO 101=1,10
K=K+7*I
10 CONTINUE

Reduction of operator strength and test replacement together transform this loop into

DO 10 1=7,70,7
K=K+I
10 CONTINUE

Although this particular example is trivial, the actual situation occurs frequently in subscript computation.

D.2.2 Improper Function References

The ANSI FORTRAN standard prohibits the use of a function’s reference that has side effects that will influence the
statement in which the function is referenced (such as defining or redefining other elements in the statement). The
compiler depends on strict adherence to the foregoing rule. The generated object program may not yield the desired
results if this rule is violated.

D.2.3 Programming Techniques for Effective Optimization

The following recommendations, when observed during the coding of a FORTRAN source program, improve the
effectiveness of the optimizer:

1. DO loops with an extended range should not be used.

2. Specify label lists when using assigned GO TO’s.

3. Nestloops so that the innermost index is the one with the largest range of values.
4. Avoid the use of associated input/output variables.

5. Avoid unnecessary use of COMMON and EQUIVALENCE.

D.3 INTERACTING WITH NON-DECsystem-20 FORTRAN PROGRAMS AND FILES

WARNING
FOROTS assumes it has complete control of the object time
environment. Executing monitor calls in a MACRO subroutine
may produce unexpected results. The following guidelines
must be observed:

1. Do not manipulate any file FOROTS has OPEN.
This includes implicit manipulation by such calls
as RESET, CLOSF, CLZFF, RLJFN etc.

2. Do not change the state of the software interrupt

system. Do not use the following monitor calls

SIR, EIR, DIR, AIC, IIC, DIC, SIRCM, DEBRK,

ATI, DTI, and CIS.

Do not generate any software interrupts.

4. Do not attempt to create processes.

w

D.3.1 Calling Sequences

The standard procedures for writing subroutine calls for the DECsystem-20 are described in the following
paragraphs.

1. Procedure

a. The calling program must load the right half of accumulator (AC) 16 with the address of the first
argument in the argument list.

b. The left half of AC 16 must be set to zero.
c. The subroutine is then called by a PUSHJ instruction to AC 17.
d. The returns will be made to the instruction immediately after the PUSHJ 17 instruction.

e. If the /DEBUG:BOUNDS option of the FOROTS trace facility is being used, the calling sequence
must be

MOVEI 16,AP
PUSHJ 17,F

where AP is the pointer to the argument list. If the trace facility is to be used, the word preceding
the first word of an entry point should have its name in sixbit.

2. Restrictions
a. Skip returns are not permitted.

b. The contents of the pushdown stack located before the address specified by AC 17 belongs to the
calling program; it cannot be read by the called subprogram.

c. FOROTS assumes that it has control of the stack; therefore, the user must not create his own
stack. The FOROTS stack is initialized by

JSP 16,RESET.
or the library routine

CALL RESET.

D-9

D.3.2 Accumulator Usage

The specific functions performed by accumulators (AC) 17,16,0 and 1 are as follows:

1.

Pushdown Pointer — AC 17 is always maintained as a pushdown pointer. Its right half points to the last
location in use on the stack and its left half contains the negative of the number of (words-1) allocated
to the unused remainder of the stack (a trap occurs when something is pushed into the next to last

location. A positive left half is not permitted.

Argument List Pointer — AC 16 is used as the argument pointer. The called subprogram does not need to
preserve its contents. The calling program cannot depend on getting back the address of the argument
list passed to the callee. AC 16 cannot point to the AC’s or to the stack.

Temporary and Value Return Registers — AC 0 and 1 are used as temporary registers and for returning
values. The called subprogram does not need to preserve the contents of AC 0 or 1 (even if not returning
a value). The calling program must never depend on getting back the original contents of the data passed
to the called subprogram,

Returning Values — At the option of the designer of a called subprogram, a subroutine may pass back
results by modifying the arguments, returning a single precision value in AC O or a double precision or
complex value in AC 0 and 1. A combination of the above may be used. However, two single precision
values cannot be returned in AC 0 and 1 since FORTRAN would not be able to handle it.

Preserved AC’s — DECsystem-20 FORTRAN FUNCTION subprograms preserve AC’s 2—15; subroutine
subprograms do not.

The design of the called subprogram cannot depend on the contents of any of the AC’s being set up by
the calling subprogram, except for AC’s 16 and 17. Passing information must be done explicitly by the
argument list mechanism. Otherwise, the called subprograms cannot be written in either DECsystem-20
FORTRAN or COBOL.

D.3.3 Argument Lists

The format of the argument list is as follows:

arg count word

arg list addr. — — — first arg entry

second arg entry

last arg entry

The format of the arg count word is:

bits 0—17 These contain -n, where n is the number of arg entries.
bits 18—-35 These are reserved and must be 0.

D-10

The format of an arg entry is as follows (each entry is a single word):

bits 0—8 Reserved for future DEC development (set to O for now).
bits 9—-12 Arg type code.

bit 13 Indirect bit if desired.

bits 14—-17 Index field, must be O for present.

bits 18—35 Address of the argument.

The following restrictions should be observed:

1. Neither the argument lists nor the arguments themselves can be on the stack. This restriction is imposed
so that the stack can be moved. The same restriction applies to any indirect argument pointers.

2. The called program may not modify the argument list itself. The argument list may be in a
write-protected segment.

Note that the arg count word is at position -1 with respect to the contents of AC16. This word is always
required even if the subroutine does not handle a variable number of arguments. A subroutine that has
no arguments must still provide an argument list consisting of two words (i.e., the argument count word
with a 0 in it and a zero argument word).

Example
MOVEI 16, AP ;SET UP ARG POINTER
PUSHJ 17,SUB ;CALL SUBROUTINE
;RETURN HERE

;ARGUMENT LIST
-3,,0

AP: A
B
C

;SUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS

SUB; MOVE T,@0(16) ;GET FIRST ARG
ADD T,@1(16) :ADD SECOND ARG
MOVEM T,@2(16) ;SET THIRD ARG
POPJ 17, :RETURN TO CALLER

D.3.4 Argument Types

Table D-1
Argument Types and Type Codes
Type Code Description
FORTRAN Use COBOL Use

0 Unspecified Unspecified

1 FORTRAN Logical Not applicable

2 Integer 1-word COMP

3 Reserved Reserved

4 Real COMP-1

5 Reserved Reserved

6 Reserved Reserved

7 Label Procedure address
10 Double real Not applicable
11 Not applicable 2-word COMP
12 Reserved Reserved
13 Reserved Reserved
14 Complex Not applicable
15 Not applicable Byte string descriptor
16 Reserved Reserved
17 ASCIZ string Not applicable

Literal arguments are permitted, but they must reside in a writable segment. This is because the FORTRAN compiler
makes a local of all non-array elements and copies all formals back to the caller’s arguments. All unused type codes
are reserved for future Digital development.

D.3.5 Description of Arguments
The types of the arguments that may be passed are:

1. Type 0 — Unspecified

The calling program has not specified the type. The called subprogram should assume that the argument
is of the correct type if it is checking types. If several types are possible, the called subprogram should
assume a default as part of its specification. If none of the above conditions are true, the called
subprogram should handle the argument as an integer (type 2).

2. Type 1 — FORTRAN logical
A 36-bit binary value containing O or positive to specify .FALSE. and negative to specify .TRUE..

3. Type 2 — Integer and 1-word-COMP
A 36-bit 2’s complement signed binary integer.

4. Type 4 — Real and COMP-1
A 36-bit DECsystem-10 format floating point number.

bit 0 sign

bits 1-8 excess 128 exponent
bits 9-35 mantissa

D-12

5. Type 6 — Label and procedure address
A 36-bit unsigned binary value.

6. Type 7 — Label and procedure address
A 23-bit memory address.

bits 0—12 always O
bit 13 indirect flag
bits 14—17 0

bits 18—35 the address

7. Type 10 — Double real

A double precision floating point number.

8. Type 11 — 2-word COMP
A 2-word (72-bit) 2’s complement signed binary integer.

word 1, bit 0 sign

word 1, bits 1-35 high order

word 2, bit 0 same as word 1, bit 0
word 2, bits 1-35 low order

9. Type 12 — Double octal
A 72-bit unsigned binary value.

10. Type 14 — Complex

A complex number represented as an ordered pair of 36-bit floating point numbers. The first of which
represents the real part and the second of which represents the imaginary part.

11. Type 15 — Byte String Descriptor
The format of the byte string descriptor is

word 1: ILDB-type pointer (i.e., aimed at the byte preceding the first byte of the string)
word 2: EXP byte count

The byte descriptor may not be modified by the called program. The byte string itself must consist of a
string of contiguous bytes of a uniform size. The byte size may be any number of bits from 1 to 36. The

byte count must be large enough to encompass 256K words of storage, i.e., 24 bits for 1-bit bytes.
(Refer to the COBOL Reference Manual.)

12. Type 17 — ASCIZ string

A string of contiguous 7-bit ASCII bytes left justified on the word boundary of the first word and
terminated by a null byte in the last word. The length of the string may be from 1 to 256K words.

D.3.6 Converting Existing MACRO Libraries for Use with DECsystem-20 FORTRAN
The following simple example illustrates the FORTRAN calling sequence.

D-13

148 ¢!

MALiv. EAL FURKITRAIN Vo4A(317) /KI/M 2o=JdAi=To 11:09 PAGE 1

00100 C AM EXAMPLE UF A CALL TO A SUBRUUILINE wLlIH A VARLETY OF
00200

00300 Dulbut PRECLSLOUN DP

00400 bimeEensIun B(10)

0USG0O c IHE ARGUMENTS AKK:

00000 c 1. REAL VARLABLE

0v700 c 2. ARKAY NAME

00800 c 3. ARRAY ELEMENT REFERENCE

(FVCTVAV) ot 4. INTEGER ELEMENT

01000 c 5. pUUBLE PRECISIuUN VARLIABLE

01100 c b. UCTAL CUNSTANT

01200 c 1le LITERAL

01300

V1400 CALL SUBL1(A,B,B(I)Y,K,DP,"777,"ABC")
01500

01000 LD

SUBPRUGRAMS ChLLED

SUB1

SCALARS AND ARRAYS ["*" NU EXPLICILIT DEFINITlUN = "%" NOT REFERENCED
bp 1 K 3 b 4 A 16 *]
TEMPORARIES

00000 20

ARGUMEWNTS

1

sid

Llue LoC LAbEL GENEKATED CUOLE

0 JECL 0.0

1 Job 16, RESET.
2 0.0

1400 3 MUVE 2.1
4 MUVEL 2.B=1(2)
5 MUVENM 2..00000
6 MUVEL 16.2M
7 PUSHJ 17.5UB1

& 10 MUVEL 16,1M
11 PUSHJU 17,EXLT.

ARGUMENT BLUCKS:

12 0,,0

13 1m: 0.,0

14 7777171..0

15 2M:2 200, ,A

lob 200, .,b

17 2740, ,.0G0000

20 100, .,k

21 400V, .LP

27 0,, (0000000007771
23 740, ,14060503201001)

MAL. [U BrRRUKS DELECTIRED

91d

SUb1 EX1 FURTRAN ve4AL317) /K1I/M 20=JdAlN=T0o 11:0v PAGE 2

00100 SUbKUUTINE SUbl(REALL,ARYNAM,AKYELM, INT1,0BLPRC,UCT.LLT)
00200 vouBLe PRECiSlun DuLPRC

00300 DIMENSIUN ARYNAM(10)

004uU0 c

((TVEYVIV) c THIS SUpbrRuUllive TLLUSTRATES Tk USE AND MUDIFLICATIUN UE
00buUU c SUME UF THE ARGUMENT TYPES

00/00 c

oo8v0 REALI=ARYELM

00900 U=ARYNAM(INTL)

01000 uCi="711

01100 RKeElURN

(VR W AVEV] EnD

SUBPRUGRAMS CALULED

SCALARS AND ARRAYS ["#4" nU EXPLICLIT DEFINITIUN = "%" NUT REFERENCED)

sLLY *uCr 1 ¥0 2 *ARYELW 3 ZDbLPRC ¥*REAL1
¥l 5 AKYNAM b

TEMPURAKLES

L1-d

Ll

10v

80v

90v

1000

1200

C

C

~OoO U N = Cw

13
14
15
lb
17
20
21

22
23
24
40

ARGUMENT BLUCKS:

SUB I

20
21
L

C LABEL GhnERALELD CUDE
036542,,210000
11z

MUVE 0.00(106)
MUVEM 0.REAL1
MUVEL 0.@1(106)
MOVEM 0.ARYNAM
MOVE 0.@2(106)
MUVEM 0.AKYELM
MUVE 1.83(16)
MUVEM 1.INT1
MUVE 2.85(16)
MUGVEM 2.0CT

3me
MUVEDN 0.REALL
IO 2.INTH
ALD 2 .ARYNAM
MUVE 2.777711702)
MUVEM 2.0
MUVEL 2.7171
MUVEM 2.UCT

2M3
MUVE O0.REALL
MUV EM 0.00(16)
AUVE 0.uCT
MUVEM O.,eb(10)
rurd 17.,U
Us,0U

1M O.,0

HU ERKUKS UDELTECTEL

D.3.7 Interaction with COBOL
The FORTRAN programmer may call COBOL programs as subprograms and, conversely, the COBOL programmers
may call FORTRAN programs as subprograms.

In either of the foregoing cases, I/O operation must not be performed in the called subprogram.
D.3.7.1 Calling FORTRAN Subprograms from COBOL Programs — COBOL programmers may write subprograms

in FORTRAN to utilize the conveniences and facilities provided by this language. The COBOL verb ENTER is used
to call FORTRAN subroutines. The form of ENTER is as follows:

identifier-1 identifier-2
ENTER FORTRAN program name [USING 1{ literal-1 , { literal-2
procedure name-1 procedure-2

The USING clause of the foregoing forms moves the data within the COBOL program which is to be passed to the
called FORTRAN subprogram. The passed data must be in a form acceptable to FORTRAN.

The calling sequence used by COBOL in calling a FORTRAN subprogram is:

MOVEI 16, address of first entry in argument list
PUSHJ 17, subprogram address

If the USING clause appears in the ENTER statement, an argument list is created which contains an entry for each
identifier or literal in the order of appearance in the USING clause. It is preceded by a word containing, in its left
half, the negative number of the number of entries in the list. If no USING clause is present, the argument list
contains an empty word and the preceding word is set to 0. Each entry in the list is one 36-bit word at the form:

0 819 12 113 35

0 type address

Bits 0—8 are always 0.
Bits 9--12 contain a type code that indicates the USAGE of the argument.

Bits 13—35 contain the address of the argument or the first word of the argument; the address can be indexed
or indirect.

The types, their codes, how the codes appear in the argument list, and the locations specified by the addresses are
described as follows:

a. For 1-word COMPUTATIONAL items

CODE: 2
IN ARGUMENT LIST: XWD 100, address
ADDRESS: that of the argument itself

b. For 2-word COMPUTATIONAL items

CODE: 11
IN ARGUMENT LIST: XWD 440, address
ADDRESS: that of the high-order word of the argument

c. For COMPUTATIONAL-1 items

CODE: 4
IN ARGUMENT LIST: XWD 200, address
ADDRESS: that of the argument itself

D-18

d. For DISPLAY-6 and DISPLAY-7 items

CODE: 15

IN ARGUMENT LIST: XWD 640, address

ADDRESS: that of a 2-word descriptor for the argument
WORDI: a byte pointer to the identifier or literal
WORD2: bit 0 is 1 if the item is numeric

bit 1 is 1 if the item is signed

bit 2 is 1 if the item is a figurative constant (including ALL)

bit 3 is 1 if the item is a literal

bits 4 through 11 are reserved for expansion

bit 12 is 1 if the item has a PICTURE with one or more Ps just before
the decimal point (e.g., 99PPV)

bits 13 through 17 are the number of decimal places. If bit 12 is 1, this
is the number of Ps.

bits 18 through 35 contain the size of the item in bytes.

e. For procedure names (which cannot be used for calls to COBOL subprograms)
CODE: 7
IN ARGUMENT LIST: XWD 340, address
ADDRESS: that of the procedure

The return from a subprogram is POPJ17 statement after call.

D.3.7.2 Calling COBOL Subroutines from FORTRAN Programs — To call COBOL subroutines use the standard
subroutine calling Mechanism:

CALL COBOLS (args. . .) subroutine call
X=COBOLS (args. . .) function call

The COBOL subroutine must have been compiled using the COBOL compiler described in the COBOL
Reference Manual.

D-19

APPENDIX E
FOROTS

This appendix describes the facilities FOROTS provides for the FORTRAN user. FOROTS implements all standard
FORTRAN I/O operations as set forth in the “American National Standard FORTRAN, ANSI X3.9-1966.” In
addition it provides the user with capabilities and programming features beyond those defined in the ANSI standard.

The primarv function of FOROTS is to act as a direct interface between user object programs and the
DECsystem-20 monitor during input and output operations. Other capabilities include

Job initialization

Channel and memory management
Error handling and reporting

File management

Formatting of data

Mathematical library

User library (non-mathematical)
Specialized applications packages
Overlay facilities

0V 0Nk W

E.1 FEATURES OF FOROTS

Many specific user features are described briefly in the following list; more detailed information concerning the
implementation of these features is given later in this appendix.

1. A user program may run in either batch or timesharing mode without changing the program. All
differences between batch mode and timesharing mode operations are resolved by FOROTS.

2. User programs may access both directory and non-directory devices in the same manner.
3. FOROTS helps provide complete data file compatibility between all DECsystem-20 devices.

4. FOROTS does not require line-blocking (a requirement that each output buffer must contain only an
integral number of lines).

5. Up to 15 data files may be accessed simultaneously. Any number or all of the open data files may be
accessed randomly.

6. FOROTS treats devices located at remote stations similarly to local devices.

7. Programs written for magnetic tape operations will run correctly on disk under FOROTS supervision.
FOROTS simulates the commands needed for magnetic tape operations.

8. Object program device and file specifications may be changed or specified via a FOROTS interactive
dialogue mode.

9. Non-FORTRAN binary data files may be read in image mode by FOROTS.

10. FOROTS provides interactive program/operating system error processing routines. These routines permit
the user to route the execution of the program to specific error processing routines whenever designated
types of errors are detected.

11. An error traceback facility for fatal errors provides a history of all subprogram calls made back to the
main program together with the address of the point at which the error occurred.

12. FOROTS provides a trap handling system for arithmetic functions, including default values and error
reports.

13. ASCII and binary records may be mixed in the same file and both may be accessed in either sequential
or random access mode.

14. FOROTS permits the user program to switch from READ to WRITE on the same I/O device without
loss of data or buffering.

15. Although primarily designed for use with the DECsystem-20 FORTRAN compiler, FOROTS may also
be used as an independent I/O system. FOROTS may be used as an I/O system for MACRO object
programs as well as for FORTRAN.

E.2 ERROR PROCESSING

Whenever a run-time error is detected, the FOROTS error processing system takes control of program execution.
This system determines the class of the error and either outputs an appropriate message at the controlling user
terminal or branches the program to a predesignated processing routine.

E.3 INPUT/OUTPUT FACILITIES

I/O data channel and access modes are individually described in the following paragraphs.

E.3.1 Input/Output Channels Used Internally by FOROTS

Fifteen software channels (1—15) are available in-I/O operations. Software channel O is reserved for the following
system functions:

1. The printing of error messages, and
2. Theloading and initialization of FOROTS

Software channels 1 through 15 are available for user program data transfer operations. When a request is made for a
data channel, a table is scanned until a free channel is found. The first free channel is assigned to the requesting
program; on completion of the assigned transfer, control of the software channel is returned to FOROTS.

E.3.2 File Access Modes

Data may be transferred between processor storage and peripheral devices in two major modes — sequential, and
random,

E.3.2.1 Sequential Transfer Mode — In sequential data transfer operations, the records involved are transferred in

the same order as they appear in the source file. Each I/O statement executed in this mode transfers the record
immediately following the last record transferred from the accessed source file. A special version of the sequential

E-2

mode (referred to as Append) is available for output (write) operations. The special Append mode permits the user
to write a record immediately after the last logical record of the accessed file. During the Append operation, the
records already in the accessed file remain unchanged; the only function performed is the appending of the
transferred records to the end of the file.

Transfer modes (other than SEQINOUT) must be specified by setting the ACCESS option of a FORTRAN OPEN
statement to one of several possible arguments. For the sequential mode, the arguments are

ACCESS = ‘SEQIN’ (sequcntial read-oniy mode)

ACCESS = ‘SEQOUT" (sequential write-only mode)

ACCESS = ‘SEQINOUT" (sequential read followed by a sequential write)
ACCESS = ‘APPEND’ (sequential Append mode)

E.3.2.2 Random Access Mode — This transfer mode permits records to be accessed and transferred from a source
file in any desired order. Random access transfers must be made between processor memory and a device that
permits random addressing operations (i.e., disk) to files that have been set up for random access. Files for random
access must contain a specified number of identically-sized records which may be individually accessed by a record
number.

Random access transfers may be carried out in either a read/write mode or a special read-only mode. Random
transfer modes must be specified by setting the ACCESS option of an OPEN statement to one of several possible
arguments.

ACCESS = ‘RANDOM’ (random read/write mode)
ACCESS = ‘RANDIN’ (random special read-only mode)

E.4 ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS
The types of data files that are acceptable to FOROTS are individually described in the following paragraphs.

E.4.1 ASCII Data Files

Each record within an ASCII data file consists of a set of contiguous 7-bit characters; each set is terminated by a
vertical paper-motion character (i.e., Form Feed, Vertical Tab, or Line Feed). All ASCII records start on a word
boundary; the last word in a record is padded with nulls, if necessary, to ensure that the record also ends on a word
boundary. Logical records may be split across 128-word blocks. There is no implied maximum length for logical
records.

. NOTE
On sequential input, FOROTS does not require conformation
to word boundaries; it reads what it sees; therefore, any file
that is written by FOROTS will conform to the foregoing
format requirements.

E.4.2 FORTRAN Binary Data Files

Each logical record in a FORTRAN binary data file contains data that may be referred to by either a READ or
WRITE statement in the program being executed. A logical record is preceded by a control word and may have one
or more control words embedded within it. In FORTRAN binary data files, there is n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>