QDMA DPDK Reference
Driver

User Guide

& XILINX.



& XILINX.

Notice of Disclaimer

The information disclosed to you here under (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted
by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO ARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss
or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct,
indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx
assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not
reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the
Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx.

© Copyright 2017-2018 Xilinx, Inc.

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 2


www.xilinx.com
http://www.xilinx.com/warranty.htm

& XILINX.

1 Revision History

Date Version Notes

24-Aug-2018 2018.2 QDMA 2018.2 DPDK user guide
19-Sep-2018 2018.2.1 DPDK user guide for QDMA 2018.2 update release
10-Dec-2018 2018.3 Updates for 2018.3 QDMA DPDK driver release

QDMA DPDK Reference Driver User Guide

v2018.3 December 13, 2018

www.xilinx.com



www.xilinx.com

& XILINX.

Table of Contents

1 REVISION HISTOIY ittt 3
2 | 1] 4 goTo [¥ X {0 o I PP PP PRRPPRP PP 6
2.1 DOCUMENT OVEIVIEW ....eiiiitiieeeiitite e e sttt e e ettt e e e sab et e e e sa bt e e e ekt et e e e as ket e e e aa ket e e e ambe e e e e ambe e e e e anbbe e e e anbreeeeanbneeeennes 6
2.2 DOCUMENE REFEIENCES ...ttt ettt e e et e e e e a b et e e e n b et e e e et e e e e e anbneeeennes 6
P B €110 11T o PR PPUPPRRRR 6
3 QDMA DPDK DIIVE ittt ettt et e e e e e e e e e et e e e e et e e e e eaaa e e e e eaaans 7
T Y1 (=] 1 ST =1 (U] TP PR PPTPPP 7
I V71 (0] o1 14 =T 0 | A O PP PP TP PP POPPPPRTPPPPPN 8
3.3 Modifying the driver for your oWn PCIE deVICE ID........uueiiiiiiiieiiiiee ettt 8
3.4 Building the QDMA DPDK SOFIWAIE ......ceiiiiiiiiiiiiiee ittt e et e e e st e e e sbaeeeesbeeeeeaas 8
3.5 Running the DPDK software test appliCation .............oouiiiiiiiiiiiiiii e 12
3.6 Controlling and Configuring the QDMA TP ......coo it 14
G T A |V I 1T 19

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 4


www.xilinx.com

& XILINX.

List of Tables

Table 1-1: DOCUMENT REFEIENCES. ... ... e it e e e e e s sttt e e e e e e s e nbebeeeeeaeeesaannnbaeeeaaaeeas 6
= 10) (I R €1 (011 1 YO O O PO PP PP PP P PUPPPPI 6
Table 2-1: SyStem CONFIQUIATION ........coiiiiiiiiiiie ettt e et e e e s bt e e e st e e e e aabe e e e s anbreeeeannes 7
Table 2-2: DPDK software database CONTENT ...........viiiiiiii et et e e e e 9
Table 2-3: Device arguments supported By DPDK ArIVET ........coiiiiiiiiiiiiieiie st e e e nnrne e e e 16
Table 2-4: gdma_testapp CLI Commands format and USAQE ..........cccurriirieeeiiiiiiiiireee e sesnrnee e e e e e s s srnanneeee e e 17

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 5


www.xilinx.com

& XILINX.

2 Introduction

2.1 Document Overview

The Xilinx PCI Express Multi Queue DMA (QDMA) IP provides high-performance direct memory
access (DMA) via PCI Express. The PCle QDMA can be implemented in UltraScale devices.

Xilinx provides a DPDK software release that incorporates the low-level driver functionality that
runs on a PCI Express root port host PC to interact with the QDMA endpoint IP via PCI Express.
This User Guide provides the setup procedure and software usage instructions.

2.2 Document References

Document References

Version

[1] QDMA Subsystem for PCI Express (PG302)

2.0

[2] https://github.com/Xilinx/dma_ip_drivers
QDMA/DPDK/ subdirectory

Table 2-1: Document References

2.3 Glossary
Acronym  Description
[ Term
BDF Bus, Device, Function of a PCle device
C2H Card to Host
CLI Command Line Interface
FPGA Field Programmable Gate Array
H2C Host to Card
IP Intellectual Property
MM Memory Mapped Mode
PF Physical Function
PMD Poll Mode Driver
QDMA Multi Queue Direct Memory Access
ST Streaming Mode
VF Virtual Function
VM Virtual Machine

Table 2-2: Glossary

QDMA DPDK Reference Driver User Guide

v2018.3 December 13, 2018 www.xilinx.com


www.xilinx.com
https://www.xilinx.com/support/documentation/ip_documentation/qdma/v2_0/pg302-qdma.pdf
https://github.com/Xilinx/dma_ip_drivers

& XILINX.

3 QDMA DPDK Driver

This User Guide document describes the following for QDMA DPDK Driver that will be generally
available for customers:

e System Setup
e Compiling and loading the driver and test application
e Sample commands to use the driver and test application

3.1 System Setup
This release was tested with the following system configuration.

Directory ‘ Description

Host System Operating System Ubuntu 16.04.3 LTS

Configuration

Linux Kernel 4.4.0-93-generic
RAM 32GB on local NUMA node
Qemu version QEMU emulator version 2.5.0 (Debian 1:2.5+dfsg-

5ubuntul0.15)

Guest System | Operating System Ubuntu 18.04 LTS

(VM)

Configuration Linux Kernel 4.15.1-20-generic
RAM 4GB
Cores 4

Table 3-1: System Configuration

The following modifications must be made to the /boot/grub/grub.cfg on the Host system:
e Add hugepages for DPDK
o Add following parameter to /etc/default/grub file

GRUB_CMDLINE LINUX="default hugepagesz=1GB hugepagesz=1G
hugepages=20"

The example below adds 20 1GB hugepages, which is required to support 2048
queues, with descriptor ring of 1024 entries and each descriptor buffer length of
4KB.

The number of hugepages required should be changed if the above configuration
(queues, ring size, buffer size) changes.

e Enable IOMMU for VM testing.

o Update /etc/default/grub file as below.

GRUB_CMDLINE LINUX="default hugepagesz=1GB hugepagesz=1G
hugepages=20 iommu=pt intel_ iommu=on"

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 7


www.xilinx.com

& XILINX.

3.2

3.3

3.4

o Execute the following command to modify the /boot/grub/grub.cfg with the configuration
set in the above steps and permanently add them to the kernel command line:

o update-grub

Reboot host after making the above modifications.

Environment

To execute the QDMA DPDK driver and test application on the example design, following system
requirements are to be met:

1. Host System with at least one Gen 3 x16 PCle slot and minimum 32GB RAM on same
CPU node for 2K queues. For VM testing, host system must support virtualization and it
must be enabled in the BIOS.

Execution of the steps mentioned in section 2.1

TULVU9P or VCU1525 FPGA Board

USB digilent cables to connect to the chosen board to the Host System.

Xilinx 2018.3 Vivado tools for programming the FPGA.

ahrwn

Modifying the driver for your own PCle device ID

During the PCle DMA IP customization in Vivado user can specify a PCle Device ID. This Device
ID must be recognized by the driver to properly recognize the PCle QDMA device. The current
driver is designed to recognize the PCle Device IDs that get generated with the PCle example
design when this value has not been modified. If the PCle Device ID is modified during IP
customization, one needs to modify QDMA PMD to recognize this new ID.

User can also remove PCle Device IDs that will not be used by the end solution. To modify the
PCle Device ID in the driver,

Update struct rte pci id gdma pci id tbl[] inside
drivers/net/qgdma/gdma ethdev.c for PF devices.

Update struct rte pci id gdma vf pci id tbl[] inside
drivers/net/qdma/gdma vf ethdev.c for VF devices.

Also add the device IDs in usertools/dpdk-devbind.py in
xilinx gdma pf for PF device and xilinx gdma vf for VF device as
specified in section 3.4.

Once modified, the driver and application must be recompiled.

Building the QDMA DPDK Software

DPDK requires certain packages to be installed on host system. For a full list, refer to the official
DPDK documentation:

https://doc.dpdk.org/guides/linux_gsg/sys_regs.html.

Note: If the NUMA library is missing, it should be installed. For example:
ubuntu:> sudo apt-get install libnuma-dev

red hat:> sudo yum install numactl-devel

Below Table describes the DPDK software database structure and its contents on the Xilinx
GitHub https://github.com/Xilinx/dma_ip drivers, subdirectory QDMA/DPDK.

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 8


www.xilinx.com
https://doc.dpdk.org/guides/linux_gsg/sys_reqs.html
https://github.com/Xilinx/dma_ip_drivers

& XILINX
A — ®
Directory Description

drivers/net/gdma Xilinx QDMA DPDK Poll mode driver
examples/qdma_testapp Xilinx CLI based test application for QDMA
tools/0001-PKTGEN-3.4.7-Patch-to-add- dpdk-pktgen patch based on dpdk-pktgen
Jumbo-packet-support.patch v3.4.7. This patch extends dpdk-pktgen

application to handle packets with packet sizes
more than 1518 bytes and it disables the
packet size classification logic to remove
application overhead in performance
measurement. This patch is used for
performance testing with dpdk-pktgen
application.

tools/DPDK_qgdma_driver_user_guide.pdf This document (User guide)

RELEASE.txt Release Notes

Table 3-2: DPDK software database content

341 Setup: Download and modifications

The reference driver code requires DPDK version 17.11.1. Follow the steps below to download
the proper version of DPDK and apply driver code and test application supplied in the GitHub.

Extract the DPDK software database from GitHub to the server where VCU1525 is installed.
Henceforth, this area is referred as <dpdk sw_database>.

Create a directory for the DPDK download on the server where the VCU1525 is installed and move
to this directory.

mkdir <server dir>/<dpdk test area>
cd <server dir>/<dpdk test area>

git clone http://dpdk.org/git/dpdk-stable

cd dpdk-stable
git checkout v17.11.1
cp -r <dpdk sw database>/drivers/net/gdma ./drivers/net/

cp -r <dpdk sw database>/examples/gdma testapp ./examples/

Additionally, make below changes to the DPDK 17.11.1 tree to build QDMA driver, support 2K
gueues and populate Xilinx devices for binding.

1. To build QDMA driver
a. Add below linesto . /config/common base in DPDK 17.11.1 tree
#
#Complie Xilinx QDMA PMD driver
#

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 9


www.xilinx.com
http://dpdk.org/git/dpdk-stable

& XILINX.

CONFIG RTE LIBRTE QDMA PMD=y
CONFIG RTE LIBRTE QDMA DEBUG DRIVER=n

To enable driver debug logs, set
CONFIG RTE LIBRTE QDMA DEBUG DRIVER=y

b. Add below lines to drivers/net/Makefile, where PMDs are added
DIRS-$ (CONFIG RTE LIBRTE QDMA PMD) += gdma
c. Add below lines to mk/rte.app.mk, where PMDs are added
_LDLIBS-$ (CONFIG RTE LIBRTE QDMA PMD) += -lrte pmd gdma

2. To add Xilinx devices for device binding, add below lines to . /usertools/dpdk-
devbind.py after cavium pkx class, where PCI base class for devices are listed.
xilinx gdma pf = {'Class': '05', 'Vendor': 'lOee',
'Device’':
'9011,9111,9211,9311,9014,9114,9214,9314,9018,9118,9218,
9318,901f,911£,921f,931f£,9021,9121,9221,9321,9024,9124,9
224,9324,9028,9128,9228,9328,902f,912f,922f,932f,9031, 91
31,9231,9331,9034,9134,9234,9334,9038,9138,9238,9338,903
£f,913f,923f,933£,9041,9141,9241,9341,9044,9144,9244,9344
,9048,9148,9248,9348"',
'SVendor': None, 'SDevice': None}
xilinx gdma vf = {'Class': '05', 'Vendor': 'lOee',
'Device’':
'a0ll,alll,a211,a311,a014,al114,a214,a314,a018,a118,a218,
a318,a0l1f,allf,a21f,al31f,a021,al21,a221,a321,a024,al24,a
224,a324,a028,al28,a228,a328,a02f,al2f,a22f,a32f,a031,al
31,a231,a331,a034,al134,a234,a334,a038,al138,a238,a338,a03
f,al3f,a23f,a33f,a041,al141,a241,a341,a044,al144,a244,a344
,a048,a148,a248,a348",
'SVendor': None, 'SDevice': None}

Update entries in network devices class in . /usertools/dpdk-devbind.py to

add Xilinx devices
network devices = [network class, cavium pkx,
xilinx gdma pf, xilinx gdma vf]

3. To support 2K queues and 256 PCle functions, update below configurations in
./config/common base
CONFIG RTE MAX MEMZONE=7680
CONFIG RTE MAX ETHPORTS=256

CONFIG RTE MAX QUEUES PER PORT=2048

3.4.2 Setup: Huge Pages

DPDK requires that hugepages are setup on the server. Perform steps outlined in section 3.1 to
reserve hugepages.

3.43 Setup: Make Commands
Execute the following to compile the driver:
QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 10


www.xilinx.com

& XILINX.

cd <server dir>/<dpdk test area>/dpdk-stable
make config T=x86_ 64-native-linuxapp-gcc
make

#In the make output, verify that the QDMA files are being
built. Below figure shows the QDMA files that are built as
part of make.

#The following should appear when make completes:
Build complete [x86 64-native-linuxapp-gcc]

#Verify that librte pmd gdma.a is installed in ./build/lib
directory.

Additionally, for memory mapped mode, BRAM size can be configured with make command.
Default BRAM size is set to 512KB in the driver makefile.

make BRAM SIZE=<BRAM size in bytes in decimal>

Change to root user and compile the application:
sudo su
cd examples/gdma_ testapp
make RTE SDK="pwd ' /../.. RTE TARGET=build
#The following should appear when make completes:

INSTALL-MAP gdma_ testapp.map

Additionally, for memory mapped mode, BRAM size can be configured with make command.
Default BRAM size is set to 512KB in the driver makefile.

make BRAM SIZE=<BRAM size in bytes in decimal> RTE SDK="pwd'/../..
RTE TARGET=build

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 11


www.xilinx.com

& XILINX.

#*NOTE: If any of above steps are missed and require code
modifications, perform ‘make clean’ before re-running make.

3.5 Running the DPDK software test application

The below steps describe the step by step procedure to run the DPDK QDMA Test
Application and to interact with the QDMA PCle device.

1. Navigate to examples/gdma_testapp directory.
# cd <server dir>/<dpdk test area>/dpdk-
stable/examples/gdma_testapp

2. Runthe ‘1spci’ command on the console and verify that the PFs are detected as shown
below. Here, ‘81’ is the PCle bus number on which Xilinx QDMA device is installed.
# lspci | grep Xilinx
81:00.0 Memory controller: Xilinx Corporation Device 903f
81:00.1 Memory controller: Xilinx Corporation Device 913f
81:00.2 Memory controller: Xilinx Corporation Device 923f
81:00.3 Memory controller: Xilinx Corporation Device 933f

3. Execute the following commands required for running the DPDK application:
# mkdir /mnt/huge
# mount -t hugetlbfs nodev /mnt/huge
# modprobe uio
# insmod ../../build/kmod/igb uio.ko

4. Bind PF ports to the igh_uio module as shown below:
# ../../usertools/dpdk-devbind.py -b igb uio 81:00.
# ../../usertools/dpdk-devbind.py -b igb uio 81:00.
# ../../usertools/dpdk-devbind.py -b igb uio 81:00.
# ../../usertools/dpdk-devbind.py -b igb uio 81:00.

w NP O

5. The execution of steps 3 and 4 creates a max vfs file entry in
/sys/bus/pci/devices/0000:<bus>:<device>.<function>. Enable VFs for each PF by writing
the number of VFs to enable to this file as shown below. This example adds 8 VFs to each

PF.

# echo 8 > /sys/bus/pci/devices/0000\:81\:00.0/max vfs
# echo 8 > /sys/bus/pci/devices/0000\:81\:00.1/max vfs
# echo 8 > /sys/bus/pci/devices/0000\:81\:00.2/max vfs
# echo 8 > /sys/bus/pci/devices/0000\:81\:00.3/max vfs

6. Run the Ispci command on the console and verify that the VFs are listed in the output as
shown below:
# lspci | grep Xilinx
81:00.0 Memory controller: Xilinx Corporation Device 903f

81:00.1 Memory controller: Xilinx Corporation Device 913f
81:00.2 Memory controller: Xilinx Corporation Device 923f
81:00.3 Memory controller: Xilinx Corporation Device 933f
81:00.4 Memory controller: Xilinx Corporation Device a03f
81:00.5 Memory controller: Xilinx Corporation Device a03f
81:00.6 Memory controller: Xilinx Corporation Device a03f
81:00.7 Memory controller: Xilinx Corporation Device a03f
81:01.0 Memory controller: Xilinx Corporation Device a03f
81:01.1 Memory controller: Xilinx Corporation Device a03f

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 12


www.xilinx.com

& XILINX.

81:01.2 Memory controller: Xilinx Corporation Device a03f
81:01.3 Memory controller: Xilinx Corporation Device a03f
81:01.4 Memory controller: Xilinx Corporation Device al3f
81:01.5 Memory controller: Xilinx Corporation Device al3f
81:01.6 Memory controller: Xilinx Corporation Device al3f
81:01.7 Memory controller: Xilinx Corporation Device al3f
81:02.0 Memory controller: Xilinx Corporation Device al3f
81:02.1 Memory controller: Xilinx Corporation Device al3f
81:02.2 Memory controller: Xilinx Corporation Device al3f
81:02.3 Memory controller: Xilinx Corporation Device al3f
81:02.4 Memory controller: Xilinx Corporation Device a23f
81:02.5 Memory controller: Xilinx Corporation Device a23f
81:02.6 Memory controller: Xilinx Corporation Device a23f
81:02.7 Memory controller: Xilinx Corporation Device a23f
81:03.0 Memory controller: Xilinx Corporation Device a23f
81:03.1 Memory controller: Xilinx Corporation Device a23f
81:03.2 Memory controller: Xilinx Corporation Device a23f
81:03.3 Memory controller: Xilinx Corporation Device a23f
81:03.4 Memory controller: Xilinx Corporation Device a33f
81:03.5 Memory controller: Xilinx Corporation Device a33f
81:03.6 Memory controller: Xilinx Corporation Device a33f
81:03.7 Memory controller: Xilinx Corporation Device a33f
81:04.0 Memory controller: Xilinx Corporation Device a33f
81:04.1 Memory controller: Xilinx Corporation Device a33f
81:04.2 Memory controller: Xilinx Corporation Device a33f
81:04.3 Memory controller: Xilinx Corporation Device a33f

In total, 36 ports are serially arranged as shown above, where 81.0.0 represents port O,
81.0.1 represents port 1 and so on. Therefore, 81.04.3 being the last one which represents
port 35.

7. Execute the following commands to bind the VF ports to igh_uio module
# ../../usertools/dpdk-devbind.py -b igb uio 81:00.4
./usertools/dpdk-devbind.py -b igb uio 81:00.
./usertools/dpdk-devbind.py -b igb uio 81:00.
./usertools/dpdk-devbind.py -b igb uio 81:00.
./usertools/dpdk-devbind.py -b igb uio 81:01.
./usertools/dpdk-devbind.py -b igb uio 81:01.
./usertools/dpdk-devbind.py -b igb uio 81:01.
./usertools/dpdk-devbind.py -b igb uio 81:01.
./usertools/dpdk-devbind.py -b igb uio 81:01.
./usertools/dpdk-devbind.py -b igb uio 81:01.
./usertools/dpdk-devbind.py -b igb uio 81:01.
./usertools/dpdk-devbind.py -b igb uio 81:01.
./usertools/dpdk-devbind.py -b igb uio 81:02.
./usertools/dpdk-devbind.py -b igb uio 81:02.
./usertools/dpdk-devbind.py -b igb uio 81:02.
./usertools/dpdk-devbind.py -b igb uio 81:02.
./usertools/dpdk-devbind.py -b igb uio 81:02.
./usertools/dpdk-devbind.py -b igb uio 81:02.
./usertools/dpdk-devbind.py -b igb uio 81:02.
./usertools/dpdk-devbind.py -b igb uio 81:02.
./usertools/dpdk-devbind.py -b igb uio 81:03.
./usertools/dpdk-devbind.py -b igb uio 81:03.
./usertools/dpdk-devbind.py -b igb uio 81:03.
. ./usertools/dpdk-devbind.py -b igb uio 81:03.
./../usertools/dpdk-devbind.py -b igb uio 81:03.

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 13

S o S o SR o e e b o S S o e Sk ok SR o e e e ok ok o
N N N N N N N N N S
S WNDPRPOJourd WNhEFPOJdJ0Ooh i WDNEFE O Jo0y Ol


www.xilinx.com

& XILINX.

../usertools/dpdk-devbind.py -b igb uio 81:03.
../usertools/dpdk-devbind.py -b igb uio 81:03.
../usertools/dpdk-devbind.py -b igb uio 81:03.
../usertools/dpdk-devbind.py -b igb uio 81:04.
../usertools/dpdk-devbind.py -b igb uio 81:04.
../usertools/dpdk-devbind.py -b igb uio 81:04.
./usertools/dpdk-devbind.py -b igb uio 81:04.

.
N N
WN RO Jo Ul

8. Run the gdma_testapp using the following command:
#./build/app/gdma_testapp -c Oxf -n 4

“-c” is for processor mask

“-n” for number memory channels.

3.6 Controlling and Configuring the QDMA IP
3.6.1 Supported Device arguments (module parameters)

Device specific parameters can be passed to a device by using the ‘-w’ EAL option. Xilinx supports
following device arguments to configure PCle device.

Devargs options ‘ Description

gueue_base Absolute base queue id to use for the given PCle
function. User needs to make sure that the queue
belonging to different PCle functions do not share same
absolute queue id. Default value of queue base is 0.

Example usage:

./build/app/gqdma_testapp -c¢ O0x1f -n 4 -w
81:00.0,queue_base=0 -w
81:00.1,queue_base=64

In this example, the device "81:00.0" uses absolute
queue id starting from 0, and the device "81:00.1" uses
absolute queue id starting from 64.

config_bar Specifies the PCle BAR number where QDMA
configuration register space is mapped. Valid values are
0to 5. Default is set to 0 i.e. BAR 0 in the driver.

Example usage:

./build/app/qgdma_testapp -c¢ O0x1f -n 4 -w
81:00.0,queue base=0,config bar=2 -w
81:00.1,queue base=64,config bar=4

This example configures BAR 2 as QDMA configuration
BAR for device "81:00.0" and BAR 4 as QDMA
configuration BAR for device "81:00.1".

desc_prefetch Enable or disable descriptor prefetch on C2H streaming
(ST-mode) queues. Default is prefetch disabled.

Example usage:

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 14


www.xilinx.com

& XILINX
A — ®
Devargs options ‘ Description

./build/app/gdma_testapp -c O0x1f -n 4 -w
81:00.0,queue _base=0,desc prefetch=1 -w
81:00.1,queue base=64,desc_prefetch=0

This example enables descriptor prefetch on all the
streaming C2H queues of the device "81:00.0", and
disables descriptor prefetch on all the streaming C2H
queues of the device "81:00.1".

cmpt_desc_len Sets the completion entry length of the completion
queue. Valid lengths are 8, 16 and 32 bytes. Default
length is 8 bytes.

Example usage:

./build/app/gdma_testapp -c O0x1lf -n 4 -w
81:00.0,queue_base=0,cmpt desc len=8 -w
81:00.1,queue base=64,cmpt desc len=32

This example sets completion entry length to 8 bytes on
all the completion queues of the device "81:00.0", and to
32 bytes on all the completion queues of the device
"81:00.1".

trigger_mode Sets the trigger mode for completion. Possible values
for trigger_mode is:

0 - DISABLE

1 - Trigger on EVERY event

2 — Trigger when USER_COUNT threshold is reached
3 — Trigger when USER defined event is reached

4 - Trigger when USER_TIMER threshold is reached

5 - Trigger when either of USER_TIMER or COUNT is
reached.

Default value configured in the driver is 5.
Example usage:

./build/app/qgdma_testapp -c¢ 0x1f -n 4 -w
81:00.0,queue base=0, trigger mode=1

This example sets the trigger mode to every event for all
the completion queues of the device “81:00.0".

wb_acc_int Sets the interval at which completions are generated for
for MM or H2C stream queues running in non-bypass
mode.

Supported values are 0 to 7. Completions are generated
4 * 2 ~ (configured wb_acc_int) number of descriptors
are available. Default value configured in the driver is 4
i.e. 64 descriptors.

Example usage:

./build/app/qgdma_testapp -c¢ 0x1f -n 4 -w
81:00.0,queue_base=0, wb_acc_int=5

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 15


www.xilinx.com

& XILINX
A — ®
Devargs options ‘ Description

This example sets the completion interval to 128
descriptors for all the MM or H2C stream queues of the
device “81:00.0".

c2h_byp_mode Sets the C2H stream mode. Valid values are 0 (Bypass
disabled), 1 (Cache bypass mode) and 2 (Simple
bypass mode). Default is internal mode i.e. bypass
disabled.

Example usage:

./build/app/gdma_testapp -c 0x1f -n 4 -w
81:00.0,c2h byp mode=2

This example sets simple bypass mode on all the C2H
queues belonging to the PCle device "81:00.0".

h2c_byp _mode Sets the H2C bypass mode. Valid values are 0 (Bypass
disabled) and 1 (Bypass enabled). Default is Bypass
disabled.

Example usage:

./build/app/qdma_testapp -c¢ O0x1f -n 4 -w
81:00.0,h2c_byp mode=1

This example sets bypass mode on all the H2C queues
belonging to the PCle device "81:00.0".

Table 3-3: Device arguments supported by DPDK driver

3.6.2 CLI support in gdma_testapp

After running the gdma_testapp as described in section 3.5, command line prompt appears on the
console like below:

#./build/app/gdma testapp -c Oxf -n 4

QDMA testapp rte eal init...

EAL: Detected 8 lcore(s)

EAL: Probing VFIO support...

EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: probe driver: 10ee:903f net gdma

EAL: PCI device 0000:01:00.1 on NUMA socket -1
EAL: probe driver: 10ee:913f net gdma
Ethernet Device Count: 1

Logical Core Count: 4

Setting up port :0.

xilinx-app>

Commands supported by the gqdma_testapp CLI:

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 16


www.xilinx.com

& XILINX.

xilinx-app> help

Command ‘ Format Description
port_init <port-id> <base-queue-id> Port initialization, queue allocation
<num-queues> <num-st- and programming
gueues> <ring-depth> <pkt-
buff-size>
port_close <port-id> Port close, queue clear and
deallocation
reg_read <port-id> <bar-num> Reads specified register
<address>
reg_write <port-id> <bar-num> Writes specified register

<address> <value>

dma_to_device

<port-id> <num-queues>
<input-filename> <dst_addr>
<size> <iterations>

Transfer data to the queues

dma_from_device

<port-id> <num-queues>
<output-filename> <src_addr>
<size> <iterations>

Receive data from queues

reg_dump

<portid>

Dumps all valid registers

queue_dump

<port-id> <queue-id>

Dumps queue-context of the
specified queue number

desc_dump <port-id> <queue-id> Dumps descriptor fields of the
specified queue number

load_cmds <file_name> Executes the list of commands from
the file

help Help menu

Ctrl-D Quit the command line interface and

application

Table 3-4: gdma_testapp CLI Commands format and usage

3.6.2.1

3.6.21.1 port_init command

Example usage of the commands

This command is used to allocate the required memory and configure all the queues associated
with the port. It accepts the following parameters:

port_init <port-id> <base-queue-id> <num-queues> <num-st-queues> <ring-depth> <pkt-buff-

size>

port-id: Port number. Port number represents a logical numbering for PCle functions in the
order they are bind to igb_uio driver. The first PCle function that is bound will have port number

as 0.

base-queue-id: The hardware queue-id from where the assignment of the queues to the port

<port-id> starts

num-queues: Total number of queues to be assigned to port <port-id>
QDMA DPDK Reference Driver User Guide

v2018.3 December 13, 2018

www.xilinx.com

17



www.xilinx.com

& XILINX.

3.6.2.1.2

3.6.2.1.3

num-st-queues: Number of queues to be configured in streaming mode.
ring-depth: Length of the C2H and H2C queues
pkt-buff-size: Size of the packet that a single C2H or H2C descriptor can support

The number of queues that are configured in memory mapped mode are (num-queues - st-
gueues)

For example:
e port init 0 0 32 32 1024 4096
o Initializes PF-0 with 32 queues in ST-mode, in queue-range 0-to-31

e port init 1 32 32 16 1024 4096
o Initializes PF-1 with First 16-queues in ST-mode and remaining 16-queues
configured in MM-mode, in queue-range 32-t0-63

dma_to_device command
This command is used to transmit the data to DMA. This command accepts following parameters:
dma_to_device <port-id> <num-queues> <input-flename> <dst-addr> <size> <iterations>
port-id: Port Number to transmit the data.
num-queues: Number of queues to use for transmitting the data.
input-filename: Valid existing input file, with proper size.

dst-addr: Destination address (in offset) of the BRAM. (This parameter is ignored for streaming
mode)

size: size of data to be transferred from the above input-file.

iterations: number of loops, to repeat the same transfer.

For example:

e dma to device 0 2048 mm datafile 1IMB.bin 0 524288 0
o Segments the 524288 bytes from the mm_datafile_1MB.bin file equally to 2048
gueues and transmits the segmented data on each queue starting at destination
BRAM offset 0 for 1t queue, offset 1*524288/2048 for 2" queue, and so on.

dma_from_device command
This command is used to receive data from DMA. This command accepts following parameters:
dma_from_device <port-id> <num-queues> <output-filename> <src-addr> <size> <iterations>
port-id: Port Number to receive the data from
num-queues: Number of queues used to receive the data
output-filename: Output file to dump the received data
src-addr: Source address of the BRAM. (This parameter is ignored for streaming mode)
size: size of data to be received

iterations: number of loops, to re-peat the same transfer.

e dma from device 0 2048 port0 gcount2048 size524288.bin 0 524288 O

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 18


www.xilinx.com

& XILINX.

3.6.2.14

3.7

o Receives the 524288 bytes from 2048 queues and writes to
port0_gcount2048_size524288.bin file. 15t queue receives data from BRAM offset
0, 2™ gueue receives data from BRAM offset 1*524288/2048, and so on.

port_close command

This command frees up all the allocated memory and de-configures the queues associated with
the port. This command accepts following parameters:

port_close <port-id>
port-id: Port number
For example:

e port close 0
o closes the PF-0.

VM Testing

This section assumes that the VM image has been created with the Guest system configuration
outlined in Table 3-1: System Configuration.

Follow below steps to execute and test qdma_testapp on VMs

1. Enable the VFs on host system by writing the number of VFs to enable to ‘max_vfs’ file
under /sys/bus/pci/devices/0000:<bus>:<device>.<function>.
# echo 8 > /sys/bus/pci/devices/0000\:81\:00.0/max vfs

Ispci should show new entries for VFs.

81:00.4 Memory controller: Xilinx Corporation Device a03f

81:00.5 Memory controller: Xilinx Corporation Device a0O3f
81:00.6 Memory controller: Xilinx Corporation Device a03f
81:00.7 Memory controller: Xilinx Corporation Device a03f
81:01.0 Memory controller: Xilinx Corporation Device a03f
81:01.1 Memory controller: Xilinx Corporation Device a03f
81:01.2 Memory controller: Xilinx Corporation Device a0O3f
81:01.3 Memory controller: Xilinx Corporation Device a03f

2. Start the VM using below command by attaching the VF (81:00.4 in this example)

gemu-system-x86 64 -cpu host -enable-kvm -m 4096 -object
memory-backend-file, id=mem, size=4096M, mem—

path=/mnt/huge, share=on -numa node,memdev=mem -mem-prealloc
-smp sockets=2,cores=4 -hda <vm_image.gcow2> -device pci-
assign,host=81:00.4

3. Bind all the PFs for the VFs being tested on VM with the igb_uio driver and start
gdma_testapp application on the host system.

4. Once the VM is launched, repeat steps in section 3.3 to build the DPDK on VM.
5. Bind the VF device in VM to igb_uio driver and execute gdma_testapp in VM as per

Section 3.5 and 3.6. Make sure to use the queue_base such that none of the queues
assigned to a function overlaps with other function.

QDMA DPDK Reference Driver User Guide
v2018.3 December 13, 2018 www.xilinx.com 19


www.xilinx.com

