ARM® Compiler v5.06 for pVision®

Version 5

ARM C and C++ Libraries and Floating-Point Support
User Guide

Confidential - Draft - Beta

ARM

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved.
ARM DUI0378G_02

ARM* Compiler v5.06 for uVision®

ARM® Compiler v5.06 for pVision®
ARM C and C++ Libraries and Floating-Point Support User Guide

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A May 2007 Non-Confidential Release for RVCT v3.1 Release for uVision
B December 2008 Non-Confidential Release for RVCT v4.0 for pVision

C June 2011 Non-Confidential Release for ARM Compiler v4.1 for pVision
D July 2012 Non-Confidential Release for ARM Compiler v5.02 for uVision
E 30 May 2014 Non-Confidential Release for ARM Compiler v5.04 for uVision
F 12 December 2014 Non-Confidential Release for ARM Compiler v5.05 for pVision
G-02 15 August 2015 Confidential - Draft Release for ARM Compiler v5.06 for pVision

Confidential Proprietary Notice

This document is CONFIDENTIAL and any use by you is subject to the terms of the agreement between you and ARM or the
terms of the agreement between you and the party authorised by ARM to disclose this document to you.

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing
technology or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or
patent applications or creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv)
for generating data for publication or disclosure to third parties, which compares the performance or functionality of the ARM
technology described in this document with any other products created by you or a third party, without obtaining ARM’s prior
written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2
reserved.
Confidential - Draft - Beta

ARM* Compiler v5.06 for uVision®

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective

owners. Please follow ARM’s trademark usage guidelines at Attp://www.arm.com/about/trademarks/guidelines/index.php
Copyright © [2007, 2008, 2011, 2012, 2014, 2015], ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Additional Notices

Some material in this document is based on IEEE 754-1985 IEEE Standard for Binary Floating-Point Arithmetic. The IEEE
disclaims any responsibility or liability resulting from the placement and use in the described manner.

Confidentiality Status

This document is Confidential. This document may only be used and distributed in accordance with the terms of the agreement
entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is for a Beta product, that is a product under development.
Web Address

http://'www.arm.com

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3
reserved.
Confidential - Draft - Beta

http://www.arm.com/about/trademarks/guidelines/index.php
http://www.arm.com

Contents

ARM® Compiler v5.06 for pVision® ARM C and C++
Libraries and Floating-Point Support User Guide

Chapter 1

Preface

ADOUL TRIS DOOK ...t eee ettt e e et e e e e e e e e e e 12

The ARM C and C++ Libraries

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

1.11
1.12
1.13
1.14
1.15
1.16

Mandatory linkage with the C libraryccccoiioiiiiiies s 1-16
C and C++ runtime lIDrari€scoocueeeeeiiiiiiesiies ettt 1-17
C and C++ library feaAtUreSooooueiiie e et 1-22
C++ and C libraries and the std NAMESPACEcccveeeeeeecceeeeseieeeeeeeeiiieeeeeesans 1-23
Multithreaded support in ARM C lIBrariescccoueceeisieees e 1-24
Support for building an application with the C libraryccccceeeeveveeeeeeviirennnn. 1-34
Support for building an application without the C libraryccc. woeeovoeeeeenii. 1-40
Tailoring the C library to a new execution environmentccccce vecveevceeeneunen.. 1-47
Assembler macros that tailor locale functions in the C library cccccoveenee. 1-52
Modification of C library functions for error signaling, error handling, and program exit ..
.. 1-61
Stack and heap memory allocation and the ARM C and C++ libraries 1-62
Tailoring input/output functions in the C and C++ [ibrariesccccc.coceveveeennce.. 1-69
Target dependencies on low-level functions in the C and C++ libraries 1-70
The C library printf family of fUNCHONSc..oooiiiiiiiiieeeie e 1-72
The C library scanf family Of FUNCHONSc...cocoviiiiiiiiiiiis e 1-73
Redefining low-level library functions to enable direct use of high-level library functions
JNENE C lIDIAIY oot ettt e e eesaaa e 1-74

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights

reserved.
Confidential - Draft - Beta

1.17 The C library functions fread(), fgets() and gets()ccccouvoemreeeiviicieiiiieeeeeie 1-76
1.18 Re-implementing __backspace() in the C libraryccccoeevoecoveesvcieeineene 1-77
1.19 Re-implementing __backspacewc() in the C librarycccccceveeeeeceeeieaaan 1-78
1.20 Redefining target-dependent system I/O functions in the C library 1-79
1.21 Tailoring non-input/output C library funCtionsccccoccveeicie everieeeiieee e 1-81
1.22 Real-time integer division in the ARM librariesccccccuueeieeeeesciieaeeesiienaenn 1-82
1.23 ISO C library implementation definitionccccccceiiciees weviieeseeeeee e 1-83
1.24 C library functions and @XteNSIONScoiiueeieeieiie e 1-89
1.25 Compiler generated and library-resident helper functionsc... ccocoeveevcneenn. 1-90
1.26 C and C++ library naming CONVENLIONSccceeieeueeieeieiet aeeeeiiiiee e 1-91
1.27 Using macro__ ARM_WCHAR_NQO_IO to disable FILE declaration and wide I/O
FUNCEION PIOTOTYPES ... e 1-94
1.28 Using library functions with execute-only Memoryccccucveersvoieeesciieeaiceeenne. 1-95
Chapter 2 The ARM C Micro-library
2.1 ADBOUE MUCTONID ...t 2-97
2.2 Differences between microlib and the default C librarycccccceev covevveeasceeens 2-98
2.3 Library heap usage requirements of miCrolibcccccoeiiisiiiiiiiieeiiieeeeee 2-100
2.4 ISO C features missing from miCrolibcccccocvoiimiiiisiiiiiiieee e 2-101
2.5 Building an application with microlibccccc.covevieeeeeeieiieciiee e 2-103
2.6 Configuring the stack and heap for use with microlibcccceeveevieeesccnennne. 2-104
2.7 Entering and exiting programs linked with microlibc.c... cocoviiiiiiiinee. 2-105
2.8 Tailoring the microlib input/output fFUNCHONSccccovviiiiiiics e 2-106
Chapter 3 Floating-point Support
3.1 About floating-poiNt SUPPOITeeeeeeeeceieeeeeeeeee s et ee e e e 3-108
3.2 The software floating-point library, folibccceweooeeeciees e 3-109
3.3 Controlling the ARM floating-point environmentccccoeevecrioveieesieieaneees 3-115
3.4 Using C99 signaling NaNs provided by mathlib (_ WANT_SNAN)ccccc.ovvvernn 3-127
3.5 mathlib double and single-precision floating-point functionscccccecvvun. 3-128
3.6 JEEE 754 @rIAMETIC ...t et 3-129
3.7 Using the Vector Floating-Point (VFP) support librariescccccc.ccocvvevecneennnn. 3-137
Chapter 4 The C and C++ Library Functions reference
4.1 _.@€abI_errNO_AAAI() ...ccoeeeeeeee e s 4-140
4.2 E2 ooz T) SR 4-141
4.3 CIOCK() et ettt 4-142
4.4 CIOCK _INIE() e s 4-143
4.5 __default_signal_handler() ..o 4-144
4.6 ©FTTIO e et 4-145
4.7 _FINAIOCAIE() ... e 4-146
4.8 ISAIEY() e e 4-147
4.9 GEL ICONV() et et 4-148
O o1 (= o 1V SR 4-149
4.11 e L= =10 AV 1 SRR 4-150
412 NEAPSIALS() .o s 4-151
413 REAPVANA() ..o s 4-152
4.14 [CONV STUCHUIE ...t e 4-153
O T (ol 1 [= Yoo o 1V SRR 4-155

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights

reserved.
Confidential - Draft - Beta

4.16

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61

_membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(), _membitcpywl(),
_membitcpywb(), _membitmovebl(), _membitmovebb(), _membitmovehl(),

_membitmovehb(), _membitmovewl(), _membitmovewb()ccccceevvreriirrnnnn. 4-156
POSIX_MEMANIGN() ..o e 4-157
#pragma import(_main_redireCtion)cccccoeeeiiiiieece e 4-158
U FAISE() e et 4-159
B £ 12 o SR 4-160
1001 =T SRS 4-161
FENAIME() ettt ettt 4-162
T @IIETY ot ettt 4-163
L= T TR Lo (o (SRS 4-164
T @XIE() e s 4-165
_ 1t fp_StAtUS_@AAI() .o e 4-166
1T REAP_EXIENA() .o s 4-167
L E DD TIE() e 4-168
1t B _SAULAOWN() ... e 4-169
L FAISE() e e 4-170
_1t_StACKNEAP_INIL() .o e 4-171
SEHOCAIE() ...t e 4-172
= Lo PO EUER 4-174
SECASECIMP() et ettt 4-175
SHTICASECITID() et ettt 4-176
B o7 (SR 4-177
1 (o] o) PR SUPSER 4-178
SYS ClOSE() e e 4-179
_SYS_COMMANA_SIIING() +..eeeeeieeeeeee et et 4-180
) = (1T = R 4-181
SIS BXI() e et 4-182
CSYS TIBN() e s 4-183
SYS ISTEY() e e 4-184
B oo L= 1 S 4-185
SYS FEAU() et 4-186
SYS._SCBK() e s 4-187
SYS_HMPNAMI() e 4-188
B I (= S 4-189
SYSIOIMI) et e 4-190
BIMIE() et ottt 4-191
EEYWICH() o e 4-192
USEI_NEaP_EXEENA() ..o e 4-193
_USEI_NEAP_EXIENL() ..o e 4-194
_uSer_setup_StacKREaP()ccueeeeeeeee e 4-195
_vectab_StaCKk_@Nd_I@SEIcccouioiiieiieieie et 4-196
ot oz 1= Yo7 o USSR 4-197
WCSNCASECIMP() ettt e et e e e e et e e e e e e e e e 4-198
WESTOIMIDS() et ettt 4-199
Thread-safe C library fFUNCHIONScccoiiiiiiiiieiiiiees e 4-200
C library functions that are not thread-Safeccccccuevcies cvevciieeieeeee 4-202
Legacy function __user_initial_stackheap()cceeiiioeeeees e 4-204

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights

reserved.
Confidential - Draft - Beta

Chapter 5 Floating-point Support Functions Reference

5.1 ClBAITP() e s 5-206
5.2 CCONELOMD() et et 5-207
5.3 D SEAIUS() e 5-209
5.4 gamma(), GAMIMA_I() ..oeeeeeeeeee et et 5-211
5.5 8BEB_SIALTUS() e 5-212
5.6 JO(), j1(), jn(), Bessel functions of the first Kindcccccooveeessiieeniiiiiiiee 5-215
5.7 significand(), fractional part Of @ NUMBETcccccevieeiiis e 5-216
5.8 B2 LUy o S 5-217
5.9 y0(), y1(), yn(), Bessel functions of the second Kindccccouiiiviiiaeiacinnn. 5-218
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 7
reserved.

Confidential - Draft - Beta

List of Figures
ARM® Compiler v5.06 for pVision® ARM C and C++
Libraries and Floating-Point Support User Guide

Figure 3-1 IEEE 754 single-precision floating-point formatccccuuveveeeeeiiiiiieeeeee e 3-129
Figure 3-2 IEEE 754 double-precision floating-point formatcccooiioieeeoiiiiieeeeeee e 3-130
Figure 5-1 Floating-point Status WOIrd [QYOULcooe ettt 5-209
Figure 5-2 JEEE Status WOI [QYOULooeeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e e s s s snnnnes 5-212
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 8

reserved.
Confidential - Draft - Beta

List of Tables
ARM® Compiler v5.06 for pVision® ARM C and C++
Libraries and Floating-Point Support User Guide

Table 1-1 C lIBrary CAIIOULS ...ttt e e 1-26
Table 1-2 Direct semihosting d@PENAENCIEScc..uueeiieieeee e 1-37
Table 1-3 Indirect semihosting dEPENAENCIESccooeeeeiiieee e 1-38
Table 1-4 PUDBIIShEd AP AEFINITIONS ..ottt ee s 1-38
Table 1-5 Standalone C library fUNCHONSooi ettt a e 1-40
Table 1-6 Default ISO88589-T IOCAIESccooeeeeeeeeee et 1-52
Table 1-7 Default Shift-JIS and UTF-8 I0CAIESccouuiiiiiiieiieeee e 1-53
Table 1-8 Trap and €rror NANAIINGooeee oottt e e e e e e e e e e e e e e e s e s snsnnnneananes 1-61
Table 1-9 INPUL/OUEPUL AEPENTEINCIES ...ttt a e e e e e e e e e e e aeaeaens 1-70
Table 1-10 Signals supported by the signal() FUNCHONccooiiii i 1-84
Table 1-11 PEITO() MESSAYES ..ottt ettt ettt et e e e e e e s 1-86
Table 1-12 Standard C++ library differ€NCEScccoveeeeeeeeeeeee et 1-87
Table 1-13 C lIBrary @XLENSIONSooe ettt e e et e e e e e 1-89
Table 3-1 AFEAMELIC FOULINES ...t 3-110
Table 3-2 Number format CONVErSION FOULINESc.cueiuiieeiie et 3-111
Table 3-3 Floating-point COMPAriSON FOULINESceeeeeeeeeeeeeeeeeeee ettt a e e e e e e e e e e e e esesnes 3-112
Table 3-4 TRIID CO9 FUNCLIONS ...ttt ettt ettt ettt it e e e e e e e e e e e e eaeaeas 3-113
Table 3-5 FE_EX_INTYPE_MASK operand type flagso.ouiiueeeieaiiieee e 3-122
Table 3-6 FE_EX _OUTTYPE_MASK operand type flagscccoueeeeeiecieeieeeeeiieee e 3-122
Table 3-7 FE_EX_FN_MASK operation type flagsccuuweeeeecueeieeeeeeeeee e 3-123
Table 3-8 FE_EX_CMPRET_MASK comparison type flagscuuuueieeeiieee e 3-123
Table 3-9 Sample single-precision floating-point Valuescccccoiieiiiiiiieeeeeee e 3-131
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 9
reserved.

Confidential - Draft - Beta

Table 3-10 Sample double-precision floating-point Valuescccccoueovcoiiioiiiiiiiiesieeee e 3-132
Table 4-1 Functions that are thread-Sarfeccueiioii et 4-200
Table 4-2 Functions that are Not tRread-Sarecccei e e 4-202
Table 5-1 __CONtrolfp @rgumMENt MACIOScoee et e e e e 5-207
Table 5-2 Status word bit MOAIfICALIONoooiiieeeeee e 5-212
Table 5-3 RouNding MOAE CONTIOIeeeiiieee e 5-213
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 10
reserved.

Confidential - Draft - Beta

Preface

This preface introduces the ARM® Compiler v5.06 for uVision® ARM C and C++ Libraries and Floating-
Point Support User Guide.

It contains the following:
* About this book on page 12.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 11
reserved.
Confidential - Draft - Beta

Preface
About this book

About this book

ARM® Compiler for pVision® ARM C and C++ Libraries and Floating-Point Support User Guide. This
manual provides user information for the ARM libraries and floating-point support. It is also available as
a PDF.

Using this book
This book is organized into the following chapters:

Chapter 1 The ARM C and C++ Libraries
Describes the ARM® C and C++ libraries.

Chapter 2 The ARM C Micro-library
Describes microlib, the C micro-library.

Chapter 3 Floating-point Support
Describes ARM support for floating-point computations.

Chapter 4 The C and C++ Library Functions reference
Describes the standard C and C++ library functions that are extensions to the C Standard or that
differ in some way to the standard.

Chapter 5 Floating-point Support Functions Reference
Describes ARM support for floating-point functions.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace 1italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, ©, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS
Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 12
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Preface
About this book

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.

* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

* The title ARM® Compiler v5.06 for uVision® ARM C and C++ Libraries and Floating-Point
Support User Guide.

* The number ARM DUI0378G_02.

» If applicable, the page number(s) to which your comments refer.

* A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

Other information

* ARM Information Center.

* ARM Technical Support Knowledge Articles.
* Support and Maintenance.

* ARM Glossary.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 13
reserved.
Confidential - Draft - Beta

mailto:errata@arm.com
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1

The ARM C and C++ Libraries

Describes the ARM® C and C++ libraries.

It contains the following sections:

1.1 Mandatory linkage with the C library on page 1-16.

1.2 C and C++ runtime libraries on page 1-17.

1.3 C and C++ library features on page 1-22.

1.4 C++ and C libraries and the std namespace on page 1-23.

1.5 Multithreaded support in ARM C libraries on page 1-24.

1.6 Support for building an application with the C library on page 1-34.

1.7 Support for building an application without the C library on page 1-40.

1.8 Tailoring the C library to a new execution environment on page 1-47.

1.9 Assembler macros that tailor locale functions in the C library on page 1-52.

1.10 Modification of C library functions for error signaling, error handling, and program exit
on page 1-61.

1.11 Stack and heap memory allocation and the ARM C and C++ libraries on page 1-62.
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.

1.13 Target dependencies on low-level functions in the C and C++ libraries on page 1-70.
1.14 The C library printf family of functions on page 1-72.

1.15 The C library scanf family of functions on page 1-73.

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the
C library on page 1-74.

1.17 The C library functions fread(), fgets() and gets() on page 1-76.

1.18 Re-implementing _ backspace() in the C library on page 1-77.

1.19 Re-implementing backspacewc() in the C library on page 1-78.

1.20 Redefining target-dependent system 1/O functions in the C library on page 1-79.

1.21 Tailoring non-input/output C library functions on page 1-81.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-14
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries

1.22 Real-time integer division in the ARM libraries on page 1-82.

1.23 ISO C library implementation definition on page 1-83.

1.24 C library functions and extensions on page 1-89.

1.25 Compiler generated and library-resident helper functions on page 1-90.

1.26 C and C++ library naming conventions on page 1-91.

1.27 Using macro ARM _WCHAR NO 1O to disable FILE declaration and wide I/O function
prototypes on page 1-94.

1.28 Using library functions with execute-only memory on page 1-95.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-15
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.1 Mandatory linkage with the C library

1.1 Mandatory linkage with the C library

If you write an application in C, you must link it with the C library, even if it makes no direct use of C
library functions.

This is because the compiler might implicitly generate calls to C library functions to improve your
application, even though calls to such functions might not exist in your source code.

Even if your application does not have a main() function, meaning that the C library is not initialized,
some C library functions are still legitimately available and the compiler might implicitly generate calls
to these functions.

Related concepts
1.2.1 Summary of the C and C++ runtime libraries on page 1-17.
1.6.4 Using the libraries in a nonsemihosting environment on page 1-35.

Related references
1.7.1 Building an application without the C library on page 1-40.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-16
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.2 C and C++ runtime libraries

1.2 C and C++ runtime libraries

ARM provides the C standardlib, C microlib, and C++ runtime libraries to support compiled C and C++.

This section contains the following subsections:

o 1.2.1 Summary of the C and C++ runtime libraries on page 1-17.
o 1.2.2 Compliance with the Application Binary Interface (ABI) for the ARM architecture
on page 1-18.
o 1.2.3 Increasing portability of object files to other CLIBABI implementations on page 1-18.
o [.24 ARM C and C++ library directory structure on page 1-18.
o 1.2.5 Selection of ARM C and C++ library variants based on build options on page 1-19.
e [.2.6 Thumb C libraries on page 1-20.

1.21 Summary of the C and C++ runtime libraries

A summary of the C and C++ runtime libraries provided by ARM.
C standardlib

This is a C library consisting of:

+ All functions defined by the ISO C99 library standard.

+ Target-dependent functions that implement the C library functions in the semihosted
execution environment. You can redefine these functions in your own application.

* Functions called implicitly by the compiler.

* ARM extensions that are not defined by the ISO C library standard, but are included in the
library.

C microlib

C++

This is a C library that can be used as an alternative to C standardlib. It is a micro-library that is

ideally suited for deeply embedded applications that have to fit within small-sized memory. The

C micro-library, microlib, consists of:

* Functions that are highly optimized to achieve the minimum code size.

* Functions that are not compliant with the ISO C library standard.

+ Functions that are not compliant with the 1985 IEEE 754 standard for binary floating-point
arithmetic.

This is a C++ library that can be used with C standardlib. It consists of:
* Functions defined by the ISO C++ library standard.

+ The Rogue Wave Standard C++ library.

* Additional C++ functions not supported by the Rogue Wave library.

The C++ libraries depend on the C library for target-specific support. There are no target
dependencies in the C++ libraries.

Related concepts
1.1 Mandatory linkage with the C library on page 1-16.

Related references

1.7.1 Building an application without the C library on page 1-40.
Chapter 1 The ARM C and C++ Libraries on page 1-14.
Chapter 2 The ARM C Micro-library on page 2-96.

Related information

ISO C library standard.

IEEFE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.
What is Semihosting?.

Rogue Wave Standard C++ Library Documentation.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-17
reserved.
Confidential - Draft - Beta

http://www.iso.org
http://ieeexplore.ieee.org/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/pge1358787045051.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0729-/index.html

1 The ARM C and C++ Libraries
1.2 C and C++ runtime libraries

1.2.2 Compliance with the Application Binary Interface (ABI) for the ARM architecture

The ABI for the ARM Architecture is a family of specifications that describes the processor-specific
aspects of the translation of a source program into object files.

Object files produced by any toolchain that conforms to the relevant aspects of the ABI can be linked
together to produce a final executable image or library.

Each document in the specification covers a specific area of compatibility. For example, the C Library
ABI for the ARM® Architecture (CLIBABI) describes the parts of the C library that are expected to be
common to all conforming implementations.

The ABI documents contain several areas that are marked as platform specific. To define a complete
execution environment these platform-specific details have to be provided. This gives rise to a number of
supplemental specifications, for example the ARM GNU/Linux ABI supplement.

The Base Standard ABI for the ARM® Architecture (BSABI) enables you to use ARM and Thumb®
objects and libraries from different producers that support the ABI for the ARM Architecture. The ARM
compilation tools fully support the BSABI, including support for Debug With Arbitrary Record Format
(DWARF) 3 debug tables (DWARF Debugging Standard Version 3).

The ARM C and C++ libraries conform to the standards described in the BSABI, the CLIBABI, and the
C++ ABI for the ARM Architecture (CPPABI).

Related tasks
1.2.3 Increasing portability of object files to other CLIBABI implementations on page 1-18.

Related information
Application Binary Interface (ABI) for the ARM Architecture.
DWARF Debugging Standard.
1.2.3 Increasing portability of object files to other CLIBABI implementations

You can request full CLIBABI portability to increase the portability of your object files to other
implementations of the CLIBABI.

Note

This reduces the performance of some library operations.

There are a number of methods you can use to request full CLIBABI portability.

Procedure
* Specify #define _AEABI_PORTABILITY_LEVEL 1 before you #include any library headers, such as
<stdlib.h>.

* Specify -D_AEABI_PORTABILITY_LEVEL=1 on the compiler command line.

Related concepts
1.2.2 Compliance with the Application Binary Interface (ABI) for the ARM architecture on page 1-18.

Related information
Application Binary Interface (ABI) for the ARM Architecture.
-Dname[(parm-list)][=def] compiler option.

1.2.4 ARM C and C++ library directory structure
The libraries are installed in the armlib and cpplib subdirectories within install_directory\1lib.
armlib
Contains the variants of the ARM C library, the floating-point arithmetic library (fplib), and the
math library (mathlib).
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-18

reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://dwarfstd.org/
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124909314.html

1 The ARM C and C++ Libraries
1.2 C and C++ runtime libraries

cpplib
Contains the variants of the Rogue Wave C++ library (cpp_*) and supporting ARM C++
functions (cpprt_*), referred to collectively as the ARM C++ Libraries.

The accompanying header files for these libraries are installed in:
install_directory\include

The environment variable ARMCC5LIB must be set to point to the 1ib directory, or if this variable is not
set, ARMLIB.

You must not identify the armlib and cpplib directories separately because this directory structure
might change in future releases. The linker finds them from the location of 1ib.

Note

* The ARM C libraries are supplied in binary form only.

* The ARM libraries must not be modified. If you want to create a new implementation of a library
function, place the new function in an object file, or your own library, and include it when you link
the application. Your version of the function is used instead of the standard library version.

* Normally, only a few functions in the ISO C library require re-implementation to create a target-
dependent application.

* The source for the Rogue Wave Standard C++ Library is not freely distributable. It can be obtained
from Rogue Wave Software Inc., or through ARM, for an additional license fee.

Related information
Rogue Wave Standard C++ Library Documentation.

1.2.5 Selection of ARM C and C++ library variants based on build options

When you build your application, you must make certain choices such as the target architecture,
instruction set, and byte order. You communicate these choices to the compiler using build options. The
linker then selects appropriate C and C++ library variants compatible with these build options.

Choices that influence the ARM C and C++ library variant include the following:

Target Architecture and instruction set
ARM or Thumb instruction sets.
Byte order
Big-endian or little-endian.
Floating-point support
* Software (SoftVFP).
* Hardware (VFP).
* Software or hardware with half-precision or double-precision extensions.
* No floating-point support.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-19
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0729-/index.html

1 The ARM C and C++ Libraries
1.2 C and C++ runtime libraries

Position independence
Different ways to access your data are as follows:

* By absolute address.
* Relative to sb (read/write position-independent).
+ Relative to pc (fpic).

Different ways to access your code are as follows:

* By absolute address when appropriate.
+ Relative to pc (read-only position independent).

The standard C libraries provide variants to support all of these options.

Position-independent C++ code can only be achieved with --apcs=/fpic.
Note

Position independence is not supported in microlib.

When you link your assembler code, C or C++ code, the linker selects appropriate C and C++ library
variants compatible with the build options you specified. There is a variant of the ISO C library for each
combination of major build options.

Related information

Code compatibility between separately compiled and assembled modules.
--apcs=qualifier...qualifier compiler option.
--arm compiler option.

--bigend compiler option.

--fpu=name compiler option.

--littleend compiler option.

--thumb compiler option.

--fpu=name linker option.

--ropi linker option.

--rwpi linker option.

--arm assembler option.

--bigend assembler option.

--fpu assembler option.

--littleend assembler option.

--thumb assembler option.

1.2.6 Thumb C libraries

The linker automatically links in the Thumb C library if the objects to be linked contain Thumb
instructions.

Objects use Thumb instructions if they have been built for:

» Thumb code, either using the - -thumb option or #pragma thumb.

* Interworking, using the --apcs /interwork option on architecture ARMv4T.

* An ARMvV6-M architecture target or processor, for example, Cortex®-M1 or Cortex-MO.
* An ARMvV7-M architecture target or processor, for example, Cortex-M3.

Despite its name, the Thumb C library might not contain exclusively Thumb code. If ARM instructions
are available, the Thumb library might use them to improve the performance of critical functions such as
memcpy (), memset (), and memclr(). The bulk of the Thumb C library, however, is coded in Thumb for
the best code density.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-20
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124198009.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124900125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124902809.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920656.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124930765.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124945944.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075484206.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075559967.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075564983.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0379-/dom1361289818694.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0379-/dom1361289819854.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0379-/dom1361289829592.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0379-/dom1361289833591.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0379-/dom1361289843800.html

For an ARM instruction-only build, compile with the --arm_only option.

Note

e The Thumb C library used for ARMv6-M targets contains only 16-bit Thumb code.
* The Thumb C library used for ARMv7-M targets contains both 16-bit and 32-bit Thumb code.

Related information
Cortex-R series processors.

Cortex-M series processors.

--arm compiler option.

--thumb compiler option.

--arm_only compiler option.

#pragma thumb.

1 The ARM C and C++ Libraries
1.2 C and C++ runtime libraries

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights

reserved.
Confidential - Draft - Beta

1-21

http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexm/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124900125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124945944.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124901592.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124991951.html

1 The ARM C and C++ Libraries
1.3 C and C++ library features

1.3 C and C++ library features

The C library uses the standard ARM semihosted environment to provide facilities such as file input/
output. This environment is supported by the ARM DSTREAM debug and trace unit, the ARM RVI
debug unit, and the Fixed Virtual Platform (FVP) models.

You can re-implement any of the target-dependent functions of the C library as part of your application.
This enables you to tailor the C library and, therefore, the C++ library, to your own execution
environment.

You can also tailor many of the target-independent functions to your own application-specific
requirements. For example:

* The malloc family.
* The ctype family.
* All the locale-specific functions.

Many of the C library functions are independent of any other function and contain no target
dependencies. You can easily exploit these functions from assembler code.

Functions in the C library are responsible for:
* Creating an environment in which a C or C++ program can execute. This includes:
— Creating a stack.
— Creating a heap, if required.
— Initializing the parts of the library the program uses.
» Starting execution by calling main().
* Supporting use of ISO-defined functions by the program.
» Catching runtime errors and signals and, if required, terminating execution on error or program exit.

Related information

What is Semihosting?.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-22
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/pge1358787045051.html

1 The ARM C and C++ Libraries
1.4 C++ and C libraries and the std namespace

1.4 C++ and C libraries and the std namespace

All C++ standard library names, including the C library names, if you include them, are defined in the
namespace std.

Standard library names are defined using the following C++ syntax:

#include <cstdlib> // instead of stdlib.h
This means that you must qualify all the library names using one of the following methods:
* Specify the standard namespace, for example:

std::printf("example\n");
* Use the C++ keyword using to import a name to the global namespace:

using namespace std;
printf("example\n");

» Use the compiler option --using_std.

Note

errno is a macro, so it is not necessary to qualify it with a namespace.

Related information
--using_std, --no_using_std compiler option.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-23
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124948721.html

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

1.5 Multithreaded support in ARM C libraries

Describes the features that are supported by the ARM C libraries for creating multithreaded applications.

This section contains the following subsections:

o [.5.1 ARM C libraries and multithreading on page 1-24.

o 1.5.2 ARM C libraries and reentrant functions on page 1-24.

o 1.5.3 ARM C libraries and thread-safe functions on page 1-25.

o 1.5.4 Use of static data in the C libraries on page 1-25.

o 1.5.5 Use of the __user libspace static data area by the C libraries on page 1-26.

o 1.5.6 C library functions to access subsections of the _user_libspace static data area
on page 1-27.

o 1.5.7 Re-implementation of legacy function __user_libspace() in the C library on page 1-27.

o 1.5.8 Management of locks in multithreaded applications on page 1-28.

* 1.5.9 How to ensure re-implemented mutex functions are called on page 1-30.

o [.5.10 Using the ARM C library in a multithreaded environment on page 1-30.

o 1.5.11 Thread safety in the ARM C library on page 1-31.

o 1.5.12 Thread safety in the ARM C++ library on page 1-31.

o 1.5.13 The floating-point status word in a multithreaded environment on page 1-33.

1.5.1 ARM C libraries and multithreading

The ARM C libraries support multithreading, for example, where you are using a Real-Time Operating
System (RTOS).

In this context, the following definitions are used:

Threads

Mean multiple streams of execution sharing global data between them.
Process

Means a collection of all the threads that share a particular set of global data.

If there are multiple processes on a machine, they can be entirely separate and do not share any data
(except under unusual circumstances). Each process might be a single-threaded process or might be
divided into multiple threads.

Where you have single-threaded processes, there is only one flow of control. In multithreaded
applications, however, several flows of control might try to access the same functions, and the same
resources, concurrently. To protect the integrity of resources, any code you write for multithreaded
applications must be reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application handle
resources.

Related concepts
1.5.2 ARM C libraries and reentrant functions on page 1-24.
1.5.3 ARM C libraries and thread-safe functions on page 1-25.

Related references
1.5.10 Using the ARM C library in a multithreaded environment on page 1-30.

1.5.2 ARM C libraries and reentrant functions
A reentrant function does not hold static data over successive calls, and does not return a pointer to static
data.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-24

reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

For this type of function, the caller provides all the data that the function requires, such as pointers to any
workspace. This means that multiple concurrent invocations of the function do not interfere with each
other.

Note

A reentrant function must not call non-reentrant functions.

Related concepts
1.5.3 ARM C libraries and thread-safe functions on page 1-25.
1.5.1 ARM C libraries and multithreading on page 1-24.

1.5.3 ARM C libraries and thread-safe functions

1.54 Use

A thread-safe function protects shared resources from concurrent access using locks.

Thread safety concerns only how a function is implemented and not its external interface. In C, local
variables are held in processor registers, or if the compiler runs out of registers, are dynamically
allocated on the stack. Therefore, any function that does not use static data, or other shared resources, is
thread-safe.

Related concepts

1.5.2 ARM C libraries and reentrant functions on page 1-24.
1.5.1 ARM C libraries and multithreading on page 1-24.
1.5.11 Thread safety in the ARM C library on page 1-31.
1.5.12 Thread safety in the ARM C++ library on page 1-31.

Related references
1.5.8 Management of locks in multithreaded applications on page 1-28.
1.5.10 Using the ARM C library in a multithreaded environment on page 1-30.

of static data in the C libraries

Static data refers to persistent read/write data that is not stored on the stack or the heap. Callouts from the
C library enable access to static data.

Static data can be external or internal in scope, and is:

* Ata fixed address, when compiled with --apcs /norwpi.

* Ata fixed address relative to the static base, register r9, when compiled with --apcs /rwpi.
« At a fixed address relative to the program counter (pc), when compiled with --apcs /fpic.

Libraries that use static data might be reentrant, but this depends on their use of the __user_libspace

static data area, and on the build options you choose:

* When compiled with --apcs /norwpi, read/write static data is addressed in a position-dependent
fashion. This is the default. Code from these variants is single-threaded because it uses read/write
static data.

* When compiled with --apcs /rwpi, read/write static data is addressed in a position-independent
fashion using offsets from the static base register sb. Code from these variants is reentrant and can be
multithreaded if each thread uses a different static base value.

The following describes how the C libraries use static data:

» The default floating-point arithmetic libraries fz_* and £j_* do not use static data and are always
reentrant. For software floating-point, the f_* and g_* libraries use static data to store the Floating-
Point (FP) status word. For hardware floating-point, the f_* and g_* libraries do not use static data.

» All statically-initialized data in the C libraries is read-only.

» All writable static data is zero-initialized.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-25
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

* Most C library functions use no writable static data and are reentrant whether built with default build
options, --apcs /norwpi or reentrant build options, --apcs /rwpi.

* Some functions have static data implicit in their definitions. You must not use these in a reentrant
application unless you build it with --apcs /rwpi and the callers use different values in sb.

Note

Exactly which functions use static data in their definitions might change in future releases.

Callouts from the C library enable access to static data. C library functions that use static data can be
categorized as:

» Functions that do not use any static data of any kind, for example fprintf().

» Functions that manage a static state, such as malloc(), rand(), and strtok().

» Functions that do not manage a static state, but use static data in a way that is specific to the
implementation in ARM Compiler, for example isalpha().

When the C library does something that requires implicit static data, it uses a callout to a function you
can replace. These functions are shown in the following table. They do not use semihosting.

Table 1-1 C library callouts

Function Description

__rt_errno_addr() Called to get the address of the variable errno

_ rt_fp_status_addr() Called by the floating-point support code to get the address of the floating-point status word

locale functions The function __user_libspace() creates a block of private static data for the library

The default implementation of __user_libspace creates a 96-byte block in the ZI region. Even if your
application does not have a main() function, the __user_libspace() function does not normally have
to be redefined.

Note

Exactly which functions use static data in their definitions might change in future releases.

Related concepts

1.5.7 Re-implementation of legacy function __user _libspace() in the C library on page 1-27.
1.9 Assembler macros that tailor locale functions in the C library on page 1-52.

1.5.1 ARM C libraries and multithreading on page 1-24.

Related references
4.26 _rt fp status_addr() on page 4-166.

Related information
Code compatibility between separately compiled and assembled modules.
--apcs=qualifier...qualifier compiler option.

1.5.5 Use of the __user_libspace static data area by the C libraries

The __user_libspace static data area holds the static data for the C libraries. The C libraries use the
__user_libspace area to store a number of different types of data.

This is a block of 96 bytes of zero-initialized data, supplied by the C library. It is also used as a
temporary stack during C library initialization.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-26
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124198009.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124899798.html

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

The default ARM C libraries use the __user_libspace area to hold:

* errno, used by any function that is capable of setting errno. By default, _ rt_errno_addr() returns
a pointer to errno.

» The Floating-Point (FP) status word for software floating-point (exception flags, rounding mode). It
is unused in hardware floating-point. By default, __rt_fp_status_addr() returns a pointer to the FP
status word.

* A pointer to the base of the heap (that is, the _ Heap_Descriptor), used by all the malloc-related
functions.

» The current locale settings, used by functions such as setlocale(), but also used by all other library
functions that depend on them. For example, the ctype.h functions have to access the LC_CTYPE
setting.

The C++ libraries use the __user_libspace area to hold:
* The new_handler field and ddtor_pointer:

— The new_handler field keeps track of the value passed to std: :set_new_handler().

— The ddtor_pointer, that points to a list of destructions to be performed on program exit. For
example, objects constructed outside function scope exist for the duration of the program, but
require destruction on program exit. The ddtor_pointer is used by _ cxa_atexit() and
__aeabi_atexit().

* C++ exception handling information for functions such as std: :set_terminate() and
std: :set_unexpected().

Note

How the C and C++ libraries use the __user_libspace area might change in future releases.

Related concepts

1.5.6 C library functions to access subsections of the _user libspace static data area on page 1-27.

Related information
_aeabi_atexit() in C++ ABI for the ARM Architecture.

1.5.6 C library functions to access subsections of the __user_libspace static data area

The __user_perproc_libspace() and __user_perthread_libspace() functions return subsections of
the __user_libspace static data area.

__user_perproc_libspace()
Returns a pointer to 96 bytes of 4-byte aligned memory for storing data that is global to an entire
process. This data is shared between all threads.

__user_perthread_libspace()
Returns a pointer to 96 bytes of 4-byte aligned memory for storing data that is local to a
particular thread. This means that __user_perthread_libspace() returns a different address
depending on the thread it is called from.

Related concepts
1.5.7 Re-implementation of legacy function __user _libspace() in the C library on page 1-27.

Related references
1.5.5 Use of the _user_libspace static data area by the C libraries on page 1-26.
1.5.7 Re-implementation of legacy function __user_libspace() in the C library

The __user_libspace() function returns a pointer to a block of private static data for the C library.
This function does not normally have to be redefined.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-27
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041-/index.html

1.5.8 Man

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

If you are writing an operating system or a process switcher, then typically you use the
__user_perproc_libspace() and __user_perthread_libspace() functions (which are always
available) rather than re-implement __user_libspace().

If you have legacy source code that re-implements __user_libspace(), you do not have to change the
re-implementation for single-threaded processes. However, you are likely to be required to do so for
multi-threaded applications. For multi-threaded applications, use either or both of
__user_perproc_libspace() and __user_perthread_libspace(), instead of __user_libspace().

Related concepts
1.5.6 C library functions to access subsections of the __user_libspace static data area on page 1-27.
1.5.4 Use of static data in the C libraries on page 1-25.

Related references

1.5.10 Using the ARM C library in a multithreaded environment on page 1-30.
1.5.5 Use of the __user_libspace static data area by the C libraries on page 1-26.
agement of locks in multithreaded applications

A thread-safe function protects shared resources from concurrent access using locks. There are functions
in the C library that you can re-implement, that enable you to manage the locking mechanisms and so
prevent the corruption of shared data such as the heap.

These functions are mutex functions, where the lifecycle of a mutex is one of initialization, iterative
acquisition and releasing of the mutex as required, and then optionally freeing the mutex when it is never
going to be required again. The mutex functions wrap onto your own Real-Time Operating System
(RTOS) calls, and their function prototypes are:

_mutex_initialize()
int _mutex_initialize(mutex *m);

This function accepts a pointer to a 32-bit word and initializes it as a valid mutex.

By default, _mutex_initialize() returns zero for a nonthreaded application. Therefore, in a
multithreaded application, _mutex_initialize() must return a nonzero value on success so
that at runtime, the library knows that it is being used in a multithreaded environment.

Ensure that _mutex_initialize() initializes the mutex to an unlocked state.
This function must be supplied if you are using mutexes.

_mutex_acquire()
void _mutex_acquire(mutex *m);

This function causes the calling thread to obtain a lock on the supplied mutex.

_mutex_acquire() returns immediately if the mutex has no owner. If the mutex is owned by
another thread, _mutex_acquire() must block until it becomes available.

_mutex_acquire() is not called by the thread that already owns the mutex.
This function must be supplied if you are using mutexes.

_mutex_release()
void _mutex_release(mutex *m);

This function causes the calling thread to release the lock on a mutex acquired by
_mutex_acquire().

The mutex remains in existence, and can be re-locked by a subsequent call to
mutex_acquire().

_mutex_release() assumes that the mutex is owned by the calling thread.

This function must be supplied if you are using mutexes.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-28
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

_mutex_free()
void _mutex_free(mutex *m);

This function causes the calling thread to free the supplied mutex. Any operating system
resources associated with the mutex are freed. The mutex is destroyed and cannot be reused.

_mutex_free() assumes that the mutex is owned by the calling thread.

This function is optional. If you do not supply this function, the C library does not attempt to
call it.

The mutex data structure type that is used as the parameter to the _mutex_*() functions is not defined in
any of the ARM Compiler toolchain header files, but must be defined elsewhere. Typically, it is defined
as part of RTOS code.

Functions that call _mutex_*() functions create 4 bytes of memory for holding the mutex data structure.
__Heap_Initialize() is one such function.

For the C library, a mutex is specified as a single 32-bit word of memory that can be placed anywhere.
However, if your mutex implementation requires more space than this, or demands that the mutex be in a
special memory area, then you must treat the default mutex as a pointer to a real mutex.

A typical example of a re-implementation framework for _mutex_initialize(), _mutex_acquire(),
and _mutex_release() is as follows, where SEMAPHORE_ID, CreatelLock(), AcquireLock(), and
Releaselock() are defined in the RTOS, and (.. .) implies additional parameters:
int _mutex_initialize(SEMAPHORE_ID *sid)
/* Create a mutex semaphore */
*sid = CreatelLock(...);
return 1;

¥
void _mutex_acquire(SEMAPHORE_ID *sid)

/* Task sleep until get semaphore */
AcquireLock(*sid, ...);

¥
void _mutex_release(SEMAPHORE_ID *sid)

/* Release the semaphore. */
ReleaseLock(*sid);

¥
void _mutex_free(SEMAPHORE_ID *sid)

/* Free the semaphore. */
FreeLock(*sid, ...);

Note

* _mutex_release() releases the lock on the mutex that was acquired by _mutex_acquire(), but the
mutex still exists, and can be re-locked by a subsequent call to _mutex_acquire().

+ It is only when the optional wrapper function _mutex_free() is called that the mutex is destroyed.
After the mutex is destroyed, it cannot be used without first calling _mutex_initialize() to set it
up again.

Related concepts

1.5.9 How to ensure re-implemented mutex functions are called on page 1-30.
1.5.11 Thread safety in the ARM C library on page 1-31.

1.5.12 Thread safety in the ARM C++ library on page 1-31.

Related references
1.5.10 Using the ARM C library in a multithreaded environment on page 1-30.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-29
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

1.5.9 How to ensure re-implemented mutex functions are called

If your re-implemented _mutex_* () functions are within an object that is contained within a library file,
the linker does not automatically include the object.

This can result in the _mutex_*() functions being excluded from the image you have built.

To ensure that your _mutex_*() functions are called, you can either:

* Place your mutex functions in a non-library object file. This helps to ensure that they are resolved at
link time.

* Place your mutex functions in a library object file, and arrange a non-weak reference to something in
the object.

* Place your mutex functions in a library object file, and have the linker explicitly extract the specific
object from the library on the command line by writing Libraryname.a(objectfilename.o) when
you invoke the linker.

Related concepts
1.5.11 Thread safety in the ARM C library on page 1-31.
1.5.12 Thread safety in the ARM C++ library on page 1-31.

Related references
1.5.10 Using the ARM C library in a multithreaded environment on page 1-30.
1.5.8 Management of locks in multithreaded applications on page 1-28.

1.5.10 Using the ARM C library in a multithreaded environment

There are a number of requirements you must fulfill before you can use the ARM C library in a
multithreaded environment.

To use the ARM C library in a multithreaded environment, you must provide:

* Animplementation of __user_perthread_libspace() that returns a different block of memory for
each thread. This can be achieved by either:
— Returning a different address depending on the thread it is called from.
— Having a single __user_perthread_libspace block at a fixed address and swapping its contents
when switching threads.

You can use either approach to suit your environment.

You do not have to re-implement __user_perproc_libspace() unless there is a specific reason to
do so. In the majority of cases, there is no requirement to re-implement this function.
* A way to manage multiple stacks.

A simple way to do this is to use the ARM two-region memory model. Using this means that you
keep the stack that belongs to the primary thread entirely separate from the heap. Then you must
allocate more memory for additional stacks from the heap itself.

* Thread management functions, for example, to create or destroy threads, to handle thread
synchronization, and to retrieve exit codes.

Note

The ARM C libraries supply no thread management functions of their own so you must supply any
that are required.

* A thread-switching mechanism.
Note

The ARM C libraries supply no thread-switching mechanisms of their own. This is because there are
many different ways to do this and the libraries are designed to work with all of them.

You only have to provide implementations of the mutex functions if you require them to be called.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-30
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

In some applications, the mutex functions might not be useful. For example, a co-operatively threaded
program does not have to take steps to ensure data integrity, provided it avoids calling its yield function
during a critical section. However, in other types of application, for example where you are
implementing preemptive scheduling, or in a Symmetric Multi-Processor (SMP) model, these functions
play an important part in handling locks.

If all of these requirements are met, you can use the ARM C library in your multithreaded environment.

The following behavior applies:

» Some functions work independently in each thread.

+ Some functions automatically use the mutex functions to mediate multiple accesses to a shared
resource.

» Some functions are still nonreentrant so a reentrant equivalent is supplied.
» A few functions remain nonreentrant and no alternative is available.

Related concepts

1.5.1 ARM C libraries and multithreading on page 1-24.

1.5.9 How to ensure re-implemented mutex functions are called on page 1-30.
1.5.11 Thread safety in the ARM C library on page 1-31.

1.5.12 Thread safety in the ARM C++ library on page 1-31.

Related references

1.5.8 Management of locks in multithreaded applications on page 1-28.
4.59 Thread-safe C library functions on page 4-200.

4.60 C library functions that are not thread-safe on page 4-202.

1.5.11 Thread safety in the ARM C library

ARM C library functions are either always thread-safe, never thread-safe, or thread-safe in certain
circumstances.

In the ARM C library:

* Some functions are never thread-safe, for example setlocale().

* Some functions are inherently thread-safe, for example memcpy ().

* Some functions, such as malloc(), can be made thread-safe by implementing the _mutex_*
functions.

» Other functions are only thread-safe if you pass the appropriate arguments, for example tmpnam().

Threading problems might occur when your application makes use of the ARM C library in a way that is
hidden, for example, if the compiler implicitly calls functions that you have not explicitly called in your
source code. Familiarity with the thread-safe C library functions and C library functions that are not
thread-safe can help you to avoid this type of threading problem, although in general, it is unlikely to
arise.

Related concepts

1.5.9 How to ensure re-implemented mutex functions are called on page 1-30.
1.5.12 Thread safety in the ARM C++ library on page 1-31.

Related references

1.5.10 Using the ARM C library in a multithreaded environment on page 1-30.
1.5.8 Management of locks in multithreaded applications on page 1-28.

4.59 Thread-safe C library functions on page 4-200.

4.60 C library functions that are not thread-safe on page 4-202.

1.5.12 Thread safety in the ARM C++ library

ARM C++ library functions are either always thread-safe, never thread-safe, or thread-safe in certain
circumstances.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-31
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

The following points summarize thread safety in the C++ library:
» The function std::set_new_handler() is not thread-safe. This means that some forms
of : :operator new and : :operator delete are not thread-safe with respect to
std::set_new_handler():
— The default C++ runtime library implementations of the following use malloc() and free() and
are thread-safe with respect to each other. They are not thread-safe with respect to
std::set_new_handler(). You are permitted to replace them:

::operator new(std::size_t)

::operator new[](std::size_t)

::operator new(std::size_t, const std::nothrow_t&)
::operator new[](std::size_t, const std::nothrow_t)
::operator delete(void*)

::operator delete[](void*)

::operator delete(void*, const std::nothrow_t&)

::operator delete[](void*, const std::nothrow_t&)
— The following placement forms are also thread-safe. You are not permitted to replace them:

::operator new(std::size t, void*)
::operator new[](std::size_t, void*)
::operator delete(void*, void*)

::operator delete[](void*, void*)

» Construction and destruction of global objects are not thread-safe.

» Construction of local static objects can be made thread-safe if you re-implement the functions
__cxa_guard_acquire(), __cxa_guard_release(), __cxa_guard_abort(), _cxa_atexit() and
__aeabi_atexit() appropriately. For example, with appropriate re-implementation, the following
construction of 1sobj can be made thread-safe:

struct T { T();
void f() { statlc T lsobj; }

« Throwing an exception is thread-safe if any user constructors and destructors that get called are also
thread-safe.

e The ARM C++ library uses the ARM C library. To use the ARM C++ library in a multithreaded
environment, you must provide the same functions that you would be required to provide when using
the ARM C library in a multithreaded environment.

Rogue Wave Standard C++ library

The Rogue Wave Standard C++ library is a part of the ARM C++ library. What applies to the ARM C++
library applies to the Rogue Wave Standard C++ library too. In the Rogue Wave Standard C++ library,
specifically:

» All containers and all functions are reentrant, making no use of internal, modifiable static data.

— Except for the std: : random_shuffle function, which uses static data to record the state of the
random number generator.
* The iostream and locale classes are not thread safe.

You must protect shared objects while using the iostream and locale classes, and the

std: :random_shuffle function. To do this, you might use mutex functions, or co-operative threading.
As an example, in a typical case of a pre-emptive multitasking environment, one that uses mutex
functions with containers, this means that:

* Reader threads can safely share a container if no thread writes to it during the reads.

* While a thread writes to a shared container, you must apply locking around the use of the container.
» Writer threads can write to different containers safely.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-32
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.5 Multithreaded support in ARM C libraries

* You must apply locking around the use of random_shuffle.
* Multiple threads cannot use iostream and locale classes safely unless you apply locking around the
use of their objects.

Related concepts
1.5.9 How to ensure re-implemented mutex functions are called on page 1-30.
1.5.11 Thread safety in the ARM C library on page 1-31.

Related references
1.5.10 Using the ARM C library in a multithreaded environment on page 1-30.
1.5.8 Management of locks in multithreaded applications on page 1-28.

Related information
__cxa_* _ aeabi * functions, C++ ABI for the ARM Architecture.
Rogue Wave Standard C++ Library Documentation.

1.5.13 The floating-point status word in a multithreaded environment

Applicable to variants of the software floating-point libraries that require a status word
(--fpmode=ieee_fixed or - -fpmode=ieee_full), the floating-point status word is safe to use in a
multithreaded environment, even with software floating-point.

A status word for each thread is stored in its own __user_perthread_libspace block.

Note

In a hardware floating-point environment, the floating-point status word is stored in a Vector Floating-
Point (VFP) register. In this case, your thread-switching mechanism must keep a separate copy of this
register for each thread.

Related concepts
1.5.11 Thread safety in the ARM C library on page 1-31.

Related information
--fpmode=model compiler option.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-33
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0729a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html

1 The ARM C and C++ Libraries
1.6 Support for building an application with the C library

1.6 Support for building an application with the C library
Describes the ARM Compiler features that are supported when building an application with the C library.

This section contains the following subsections:

o [.6.1 Using the C library with an application on page 1-34.

o 1.6.2 Using the C and C++ libraries with an application in a semihosting environment
on page 1-34.

o 1.6.3 Using $Sub8$ to mix semihosted and nonsemihosted /0O functionality on page 1-35.

* 1.6.4 Using the libraries in a nonsemihosting environment on page 1-35.

e [.6.5 C++ exceptions in a non-semihosting environment on page 1-36.

o 1.6.6 Direct semihosting C library function dependencies on page 1-36.

o 1.6.7 Indirect semihosting C library function dependencies on page 1-37.

o 1.6.8 C library API definitions for targeting a different environment on page 1-38.

1.6.1 Using the C library with an application

Depending on how you use the C and C ++ libraries with your application, you might have to re-
implement particular functions.

You can use the C and C ++ libraries with an application in the following ways:

* Build a semihosting application that can be debugged in a semihosted environment such as with the
ARM DSTREAM debug and trace unit.

* Build a non-hosted application that, for example, can be embedded into ROM.

* Build an application that does not use main() and does not initialize the library. This application has
restricted library functionality, unless you re-implement some functions.

Related concepts
1.6.2 Using the C and C++ libraries with an application in a semihosting environment on page 1-34.

1.6.4 Using the libraries in a nonsemihosting environment on page 1-35.

Related references
1.7.1 Building an application without the C library on page 1-40.

1.6.2 Using the C and C++ libraries with an application in a semihosting environment

If you are developing an application to run in a semihosted environment for debugging, you must have
an execution environment that supports ARM or Thumb semihosting, and that has sufficient memory.
The execution environment can be provided by either:

+ Using the standard semihosting functionality that is present by default in, for example, the ARM
DSTREAM debug and trace unit.
* Implementing your own handler for the semihosting calls.

It is not necessary to write any new functions or include files if you are using the default semihosting
functionality of the C and C++ libraries.

The ARM debug agents support semihosting, but the memory map assumed by the C library might
require tailoring to match the hardware being debugged.

Related references
1.6.3 Using Sub3 to mix semihosted and nonsemihosted I/O functionality on page 1-35.
1.6.6 Direct semihosting C library function dependencies on page 1-36.

Related information
What is Semihosting?.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-34
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/pge1358787045051.html

1 The ARM C and C++ Libraries
1.6 Support for building an application with the C library

1.6.3 Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality
You can use $Sub$$ to provide a mixture of semihosted and nonsemihosted functionality.

For example, given an implementation of fputc() that writes directly to a UART, and a semihosted
implementation of fputc(), you can provide both of these depending on the nature of the FILE * pointer
passed into the function.

Example 1-1 Using $Sub$$ to mix semihosting and nonsemihosting I/O functionality

int $Super$$fputc(int c, FILE *fp);
int $Sub$$fputc(int c, FILE *fp)

if (fp == (FILE *)MAGIC_NUM) // where MAGIC_NUM is a special value that
{ // is different to all normal FILE * pointer
// values.
write_to_UART(c);
return c;

}

else

return $Super$$fputc(c, fp);

Related concepts
1.6.2 Using the C and C++ libraries with an application in a semihosting environment on page 1-34.
1.6.4 Using the libraries in a nonsemihosting environment on page 1-35.

Related information
Use of $Super3$ and $Sub$$ to patch symbol definitions.
ELF for the ARM Architecture.

1.6.4 Using the libraries in a nonsemihosting environment

Some C library functions use semihosting. If you use the libraries in a nonsemihosting environment, you
must ensure that semihosting function calls are dealt with appropriately.

If you do not want to use semihosting, either:

* Remove all calls to semihosting functions.

* Re-implement the lower-level functions, for example, fputc(). You are not required to re-implement
all semihosting functions. You must, however, re-implement the functions you are using in your
application.

You must re-implement functions that the C library uses to isolate itself from target dependencies. For
example, if you use printf() you must re-implement fputc(). If you do not use the higher-level
input/output functions like printf(), you do not have to re-implement the lower-level functions like
fputc().

* Implement a handler for all of the semihosting calls to be handled in your own specific way. One
such example is for the handler to intercept the calls, redirecting them to your own nonsemihosted,
that is, target-specific, functions.

To guarantee that no functions using semihosting are included in your application, use either:

e IMPORT _ use_no_semihosting from armasm assembly language.
e #pragma import(__use_no_semihosting) from C.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-35
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362065967698.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

1 The ARM C and C++ Libraries
1.6 Support for building an application with the C library

Note

IMPORT __use_no_semihosting is only required to be added to a single assembly source file. Similarly,
#pragma import(__use_no_semihosting) is only required to be added to a single C source file. It is
unnecessary to add these inserts to every single source file.

If you include a library function that uses semihosting and also reference __use_no_semihosting, the
library detects the conflicting symbols and the linker reports an error. To determine which objects are
using semihosting:

1. Link with armlink --verbose --list err.txt

2. Search err.txt for occurrences of __Iusesemihosting

For example:

Loading member sys_exit.o from c_4.1.
reference : _ Iusesemihosting
definition: _sys_exit

This shows that the semihosting-using function _sys_exit is linked-in from the C library. To prevent
this, you must provide your own implementation of this function.

There are no target-dependent functions in the C++ library, although some C++ functions use underlying
C library functions that are target-dependent.

Related concepts
1.1 Mandatory linkage with the C library on page 1-16.
1.6.5 C++ exceptions in a non-semihosting environment on page 1-36.

Related references

1.6.3 Using Sub83 to mix semihosted and nonsemihosted 1/O functionality on page 1-35.
1.6.7 Indirect semihosting C library function dependencies on page 1-37.

1.6.8 C library API definitions for targeting a different environment on page 1-38.

Related information
What is Semihosting?.
--list=filename linker option.

--verbose linker option.

1.6.5 C++ exceptions in a non-semihosting environment

The default C++ std: :terminate() handler is required by the C++ Standard to call abort(). The
default C library implementation of abort () uses functions that require semihosting support. Therefore,
if you use exceptions in a non-semihosting environment, you must provide an alternative implementation
of abort().

Related concepts
1.6.4 Using the libraries in a nonsemihosting environment on page 1-35.

1.6.6 Direct semihosting C library function dependencies

A table showing the functions that depend directly on semihosting.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-36
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/pge1358787045051.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075513188.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075621495.html

1 The ARM C and C++ Libraries
1.6 Support for building an application with the C library

Table 1-2 Direct semihosting dependencies

Function Description

__user_setup_stackheap() Sets up and returns the locations of the stack and the heap. You might have to re-implement this
function if you are using a scatter file at the link stage.

_sys_exit() Error signaling, error handling, and program exit.
_ttywrch()
_sys_command_string() Tailoring input/output functions in the C and C++ libraries.

_sys_close()
_sys_iserror()
_sys_istty()
_sys_flen()
_sys_open()
_sys_read()
_sys_seek()
_sys_write()

sys_tmpnam()

clock() Tailoring other C library functions.
_clock_init()

remove ()

rename()

system()

time()
Related concepts
1.6.2 Using the C and C++ libraries with an application in a semihosting environment on page 1-34.
1.8.1 Initialization of the execution environment and execution of the application on page 1-47.
Related references
1.10 Modification of C library functions for error signaling, error handling, and program exit
on page 1-61.
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.
1.6.7 Indirect semihosting C library function dependencies on page 1-37.
1.21 Tailoring non-input/output C library functions on page 1-81.
4.54 _user setup stackheap() on page 4-195.

1.6.7 Indirect semihosting C library function dependencies
A table showing functions that depend indirectly on one or more of the directly dependent functions.
You can use this table as an initial guide, but it is recommended that you use either of the following to
identify any other functions with indirect or direct dependencies on semihosting at link time:
e #pragma import(__use_no_semihosting) in C source code.
* IMPORT __use_no_semihosting in armasm assembly language source code.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-37

reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.6 Support for building an application with the C library

Table 1-3 Indirect semihosting dependencies

Function Usage

__raise() Catching, handling, or diagnosing C library exceptions, without C signal support.
(Tailoring error signaling, error handling, and program exit.)

__default_signal_handler() Catching, handling, or diagnosing C library exceptions, with C signal support.
(Tailoring error signaling, error handling, and program exit.)

__Heap_Initialize() Choosing or redefining memory allocation. Avoiding the heap and heap-using C
library functions supplied by ARM.

ferror(), fputc(), __ stdout Re-implementing the printf family. (Tailoring input/output functions in the C and C+
+ libraries.).

_ backspace(), fgetc(), _ stdin Re-implementing the scanf family. (Tailoring input/output functions in the C and C+
+ libraries.).

fwrite(), fputs(), puts(), fread(), Re-implementing the stream output family. (Tailoring input/output functions in the
fgets(), gets(), ferror() C and C++ libraries.).

Related concepts

1.6.4 Using the libraries in a nonsemihosting environment on page 1-35.

Related references

1.6.6 Direct semihosting C library function dependencies on page 1-36.

1.11.5 Avoiding the heap and heap-using library functions supplied by ARM on page 1-67.
1.10 Modification of C library functions for error signaling, error handling, and program exit
on page 1-61.

1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.

1.21 Tailoring non-input/output C library functions on page 1-81.

1.6.8 C library API definitions for targeting a different environment

In addition to the direct and indirect semihosting dependent functions, there are a number of functions
and files that might be useful when building for a different environment.

The following table shows these functions and files.

Table 1-4 Published API definitions

File or function Description

_main(), _ rt_entry() Initializes the runtime environment and executes the user application

_ rt_1ib_init(), __rt_exit(), Initializes or finalizes the runtime library
__rt_1ib_shutdown()

LC_CTYPE locale Defines the character properties for the local alphabet

rt_sys.h A C header file describing all the functions whose default (semihosted) implementations use
semihosting calls

rt_heap.h A C header file describing the storage management abstract data type

rt_locale.h A C header file describing the five locale category filing systems, and defining some macros
that are useful for describing the contents of locale categories

rt_misc.h A C header file describing miscellaneous unrelated public interfaces to the C library
rt_memory.s An empty, but commented, prototype implementation of the memory model
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-38
reserved.

Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.6 Support for building an application with the C library

If you are re-implementing a function that exists in the standard ARM library, the linker uses an object or
library from your project rather than the standard ARM library.

Caution

Do not replace or delete libraries supplied by ARM. You must not overwrite the supplied library files.
Place your re-implemented functions in separate object files or libraries instead.

Related concepts
1.6.4 Using the libraries in a nonsemihosting environment on page 1-35.

1.9 Assembler macros that tailor locale functions in the C library on page 1-52.

Related information
--list=filename linker option.
--verbose linker option.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-39
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075513188.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075621495.html

1 The ARM C and C++ Libraries
1.7 Support for building an application without the C library

1.7 Support for building an application without the C library

Describes the ARM Compiler features that are supported and not supported when building an application
without the C library.

This section contains the following subsections:

e [.7.1 Building an application without the C library on page 1-40.

* [.7.2 Creating an application as bare machine C without the C library on page 1-42.

o 1.7.3 Integer and floating-point compiler functions and building an application without the C library
on page 1-42.

e [.7.4 Bare machine integer C on page 1-43.

o 1.7.5 Bare machine C with floating-point processing on page 1-43.

o 1.7.6 Customized C library startup code and access to C library functions on page 1-44.

o 1.7.7 Using low-level functions when exploiting the C library on page 1-45.

o [.7.8 Using high-level functions when exploiting the C library on page 1-45.

o [.7.9 Using malloc() when exploiting the C library on page 1-46.

1.71 Building an application without the C library

If your application does not initialize the C library, a number of functions are not available in your
application.

Creating an application that has a main() function causes the C library initialization functions to be
included as part of __rt_1ib_init.

If your application does not have a main() function, the C library is not initialized and the following
functions are not available in your application:

* Low-level stdio functions that have the prefix _sys_.

» Signal-handling functions, signal() and raise() in signal.h.

* Other functions, such as atexit().

The following table shows header files, and the functions they contain, that are available with an
uninitialized library. Some otherwise unavailable functions can be used if the library functions they
depend on are re-implemented.

Table 1-5 Standalone C library functions

Function Description

alloca.h Functions in this file work without any library initialization or function re-implementation. You must know how to
build an application with the C library to use this header file.

assert.h Functions listed in this file require high-level stdio, __rt_raise(), and _sys_exit(). You must be familiar with
tailoring error signaling, error handling, and program exit to use this header file.

ctype.h Functions listed in this file require the locale functions.
errno.h Functions in this file work without the requirement for any library initialization or function re-implementation.
fenv.h Functions in this file work without the requirement for any library initialization and only require the re-implementation

of _rt_raise().

float.h This file does not contain any code. The definitions in the file do not require library initialization or function re-
implementation.

inttypes.h Functions listed in this file require the locale functions.

limits.h Functions in this file work without the requirement for any library initialization or function re-implementation.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-40
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.7 Support for building an application without the C library

Table 1-5 Standalone C library functions (continued)

Function

Description

locale.h

Call setlocale() before calling any function that uses locale functions. For example:
setlocale(LC_ALL, "C");

See the contents of locale. h for more information on the following functions and data structures:

» setlocale() selects the appropriate locale as specified by the category and locale arguments.

* lconv is the structure used by locale functions for formatting numeric quantities according to the rules of the
current locale.

* localeconv() creates an 1conv structure and returns a pointer to it.

* _get_lconv() fills the 1conv structure pointed to by the parameter. This ISO extension removes the requirement
for static data within the library.

locale.h also contains constant declarations used with locale functions.

math.h

For functions in this file to work, you must first call _fp_init() and re-implement __rt_raise().

setjmp.h

Functions in this file work without any library initialization or function re-implementation.

signal.h

Functions listed in this file are not available without library initialization. You must know how to build an application
with the C library to use this header file.

__rt_raise() can be re-implemented for error and exit handling. You must be familiar with tailoring error signaling,
error handling, and program exit.

stdarg.h

Functions listed in this file work without any library initialization or function re-implementation.

stddef.h

This file does not contain any code. The definitions in the file do not require library initialization or function re-
implementation.

stdint.h

This file does not contain any code. The definitions in the file do not require library initialization or function re-
implementation.

stdio.h

The following dependencies or limitations apply to these functions:

* The high-level functions such as printf(), scanf(), puts(), fgets(), fread(), fwrite(), and perror()
depend on lower-level stdio functions fgetc (), fputc(),and __backspace(). You must re-implement these
lower-level functions when using the standalone C library.

However, you cannot re-implement the _sys_ prefixed functions (for example, _sys_read()) when using the
standalone C library because the layer of stdio that calls the _sys_ functions requires library initialization.

You must be familiar with tailoring the input/output functions in the C and C++ libraries.
e The printf() and scanf () family of functions require locale.
* The remove() and rename() functions are system-specific and probably not usable in your application.

stdlib.h

Most functions in this file work without any library initialization or function re-implementation. The following
functions depend on other functions being instantiated correctly:

* ato*() requires locale.

* strto*() requires locale.

* malloc(), calloc(), realloc(), and free() require heap functions.

* atexit() is not available when building an application without the C library.

string.h

Functions in this file work without any library initialization, with the exception of strcoll() and strxfrm(), that
require locale.

time.h

mktime() and localtime() can be used immediately
time() and clock() are system-specific and are probably not usable unless re-implemented

asctime(), ctime(), and strftime() require locale.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. Al rights 1-41

reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.7 Support for building an application without the C library

Table 1-5 Standalone C library functions (continued)

Function Description

wchar.h Wide character library functions added to ISO C by Normative Addendum 1 in 1994.

The following dependencies or limitations apply to these functions:

* The high-level functions such as swprintf(), vswprintf(), swscanf(), and vswscanf() depend on lower-
level stdio functions such as fgetwc () and fputwc (). You must re-implement these lower-level functions when
using the standalone C library. See /.13 Target dependencies on low-level functions in the C and C++ libraries
on page 1-70 for more information.

* The high-level functions such as swprintf(), vswprintf(), swscanf(), and vswscanf() require locale.

* All the conversion functions (for example, btowc, wctob, mbrtowc, and wcrtomb) require locale.

* wcscoll() and wesxfrm() require locale.

wctype.h Wide character library functions added to ISO C by Normative Addendum I in 1994. This requires locale.

Related concepts

1.7.2 Creating an application as bare machine C without the C library on page 1-42.

1.9 Assembler macros that tailor locale functions in the C library on page 1-52.

1.7.3 Integer and floating-point compiler functions and building an application without the C library
on page 1-42.

1.7.8 Using high-level functions when exploiting the C library on page 1-45.

1.7.7 Using low-level functions when exploiting the C library on page 1-45.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.

1.10 Modification of C library functions for error signaling, error handling, and program exit
on page 1-61.

1.7.2 Creating an application as bare machine C without the C library

Bare machine C applications do not automatically use the full C runtime environment provided by the C
library.

Even though you are creating an application without the library, some functions from the library that are
called implicitly by the compiler must be included. There are also many library functions that can be
made available with only minor re-implementations.

Related concepts

1.7.3 Integer and floating-point compiler functions and building an application without the C library
on page 1-42.

1.7.6 Customized C library startup code and access to C library functions on page 1-44.

1.7.7 Using low-level functions when exploiting the C library on page 1-45.

1.7.8 Using high-level functions when exploiting the C library on page 1-45.

1.7.4 Bare machine integer C on page 1-43.

1.7.5 Bare machine C with floating-point processing on page 1-43.

1.7.9 Using malloc() when exploiting the C library on page 1-46.

Related references
1.7.1 Building an application without the C library on page 1-40.

1.7.3 Integer and floating-point compiler functions and building an application without the C
library

There are several compiler helper functions that the compiler uses to handle operations that do not have a
short machine code equivalent. These functions require __rt_raise().

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-42
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.7 Support for building an application without the C library

For example, integer divide uses a function that is implicitly called by the compiler if there is no divide
instruction available in the target instruction set. (ARMv7-R and ARMv7-M architectures use the
instructions SDIV and UDIV in Thumb state. Other versions of the ARM architecture also use compiler
functions that are implicitly invoked.)

Integer divide, and all the floating-point functions if you use a floating-point mode that involves
throwing exceptions, require __rt_raise() to handle math errors. Re-implementing __ rt_raise()
enables all the math functions, and it avoids having to link in all the signal-handling library code.

Related concepts
1.7.2 Creating an application as bare machine C without the C library on page 1-42.
1.25 Compiler generated and library-resident helper functions on page 1-90.

Related references
1.7.1 Building an application without the C library on page 1-40.

Related information
Application Binary Interface (ABI) for the ARM Architecture.

1.7.4 Bare machine integer C

If you are writing a program in C that does not use the library and is to run without any environment
initialization, there are a number of requirements you must meet.

These requirements are:

e Re-implement __rt_raise() if you are using the heap.

* Not define main(), to avoid linking in the library initialization code.

« Write an assembly language veneer that establishes the register state required to run C. This veneer
must branch to the entry function in your application.

* Provide your own RW/ZI initialization code.

* Ensure that your initialization veneer is executed by, for example, placing it in your reset handler.
+ Build your application using - -fpu=none.

When you have met these requirements, link your application normally. The linker uses the appropriate C
library variant to find any required compiler functions that are implicitly called.

Many library facilities require __user_libspace for static data. Even without the initialization code
activated by having a main() function, _ _user_libspace is created automatically and uses 96 bytes in
the ZI segment.

Related concepts
1.7.2 Creating an application as bare machine C without the C library on page 1-42.
1.7.5 Bare machine C with floating-point processing on page 1-43.

Related references
1.7.1 Building an application without the C library on page 1-40.
1.5.5 Use of the _user_libspace static data area by the C libraries on page 1-26.

Related information
--fpu=name compiler option.

1.7.5 Bare machine C with floating-point processing

If you want to use floating-point processing in an application without the C library, there are a number of
requirements you must fulfill.

These requirements are:
* Re-implement __rt_raise() if you are using the heap.
* Not define main(), to avoid linking in the library initialization code.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-43
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920656.html

1 The ARM C and C++ Libraries
1.7 Support for building an application without the C library

+ Write an assembly language veneer that establishes the register state required to run C. This veneer
must branch to the entry function in your application. The register state required to run C primarily
comprises the stack pointer. It also consists of sb, the static base register, if Read/Write Position-
Independent (RWPI) code applies.

* Provide your own RW/ZI initialization code.

» Ensure that your initialization veneer is executed by, for example, placing it in your reset handler.

» Use the appropriate FPU option when you build your application.

e Call _fp_init() to initialize the floating-point status register before performing any floating-point
operations.

Do not build your application with the --fpu=none option.

The floating-point modes --fpmode=ieee_fixed and - -fpmode=ieee_full when used with software
floating-point support require a floating-point status word. In such cases, you can also define the function
__rt_fp_status_addr() to return the address of a writable data word to be used instead of the floating-
point status register. If you rely on the default library definition of __rt_fp_status_addr(), this word
resides in the program data section, unless you define __user_perthread_libspace() (or in the case of
legacy code that does not yet use __user_perthread_libspace(), _ user_libspace()).

Related concepts

1.7.2 Creating an application as bare machine C without the C library on page 1-42.
1.7.4 Bare machine integer C on page 1-43.

1.5.4 Use of static data in the C libraries on page 1-25.

Related references
1.7.1 Building an application without the C library on page 1-40.
1.5.5 Use of the _user_libspace static data area by the C libraries on page 1-26.

1.7.6 Customized C library startup code and access to C library functions

If you build an application with customized startup code, you must either avoid functions that require
initialization or provide the initialization and low-level support functions.

When building an application without the C library, if you create an application that includes a main()
function, the linker automatically includes the initialization code necessary for the execution
environment. There are situations where this is not desirable or possible. For example, a system running
a Real-Time Operating System (RTOS) might have its execution environment configured by the RTOS
startup code.

You can create an application that consists of customized startup code and still use many of the library
functions. You must either:

* Avoid functions that require initialization.
» Provide the initialization and low-level support functions.

The functions you must re-implement depend on how much of the library functionality you require:

» If you want only the compiler support functions for division, structure copy, and floating-point
arithmetic, you must provide __rt_raise(). This also enables very simple library functions such as
those in errno.h, setjmp.h, and most of string.h to work.

» Ifyou call setlocale() explicitly, locale-dependent functions are activated. This enables you to use
the atoi family, sprintf(), sscanf(), and the functions in ctype.h.

* Programs that use floating-point must call _fp_init(). If you select software floating-point in - -
fpmode=ieee_fixed or --fpmode=ieee_full mode, the program must also provide
__rt_fp_status_addr().

+ Implementing high-level input/output support is necessary for functions that use fprintf() or
fputs(). The high-level output functions depend on fputc() and ferror(). The high-level input
functions depend on fgetc() and __ backspace().

Implementing these functions and the heap enables you to use almost the entire library.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-44
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.7 Support for building an application without the C library
Related concepts
1.7.2 Creating an application as bare machine C without the C library on page 1-42.
1.6.1 Using the C library with an application on page 1-34.
1.7.4 Bare machine integer C on page 1-43.
1.7.7 Using low-level functions when exploiting the C library on page 1-45.
1.7.8 Using high-level functions when exploiting the C library on page 1-45.
1.7.9 Using malloc() when exploiting the C library on page 1-46.

Related references

1.7.1 Building an application without the C library on page 1-40.

1.5.5 Use of the __user_libspace static data area by the C libraries on page 1-26.
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.

1.7.7 Using low-level functions when exploiting the C library

If you are using the libraries in an application that does not have a main() function, you must re-
implement some functions in the library.

Caution

__rt_raise() is essential if you are using the heap.

Note

If rand() is called, srand() must be called first. This is done automatically during library initialization
but not when you avoid the library initialization.

Related concepts

1.7.8 Using high-level functions when exploiting the C library on page 1-45.

1.7.2 Creating an application as bare machine C without the C library on page 1-42.
1.7.6 Customized C library startup code and access to C library functions on page 1-44.

Related references
1.7.1 Building an application without the C library on page 1-40.

1.7.8 Using high-level functions when exploiting the C library
High-level I/O functions can be used if the low-level functions are re-implemented.

High-level I/O functions are those such as fprintf(), printf(), scanf(), puts(), fgets(), fread(),
fwrite(), and perror(). Low-level functions are those such as fputc(), fgetc(), and
__backspace(). Most of the formatted output functions also require a call to setlocale().

Anything that uses locale must not be called before first calling setlocale().setlocale() selects the
appropriate locale. For example, setlocale(LC_ALL, "C"), where LC_ALL means that the call to
setlocale() affects all locale categories, and "C" specifies the minimal environment for C translation.
Locale-using functions include the functions in ctype.h and locale.h, the printf() family, the
scanf() family, ato*, strto*, strcoll/strxfrm, and most of time.h.

Related concepts

1.7.7 Using low-level functions when exploiting the C library on page 1-45.

1.7.2 Creating an application as bare machine C without the C library on page 1-42.
1.7.6 Customized C library startup code and access to C library functions on page 1-44.

Related references
1.7.1 Building an application without the C library on page 1-40.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-45
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.7 Support for building an application without the C library

1.7.9 Using malloc() when exploiting the C library

If heap support is required for bare machine C, you must implement _init_alloc() and
__rt_heap_extend().

_init_alloc() must be called first to supply initial heap bounds, and __rt_heap_extend() must be
provided even if it only returns failure. Without __rt_heap_extend(), certain library functionality is
included that causes problems when you are writing bare machine C.

Prototypes for both _init_alloc() and _ rt_heap_extend() are in rt_heap.h.

Related concepts

1.7.2 Creating an application as bare machine C without the C library on page 1-42.
1.7.6 Customized C library startup code and access to C library functions on page 1-44.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-46
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.8 Tailoring the C library to a new execution environment

1.8 Tailoring the C library to a new execution environment

Tailoring the C library to a new execution environment involves re-implementing functions to produce
an application for a new execution environment, for example, embedded in ROM or used with an RTOS.

Functions whose names start with a single or double underscore are used as part of the low-level
implementation. You can re-implement some of these functions. Additional information on these library
functions is available in the rt_heap.h, rt_locale.h, rt_misc.h, and rt_sys.h include files and the
rt_memory.s assembler file.

This section contains the following subsections:

o 1.8.1 Initialization of the execution environment and execution of the application on page 1-47.
e 1.8.2 C++ initialization, construction and destruction on page 1-48.

* 1.8.3 Exceptions system initialization on page 1-48.

* 1.8.4 Emergency buffer memory for exceptions on page 1-49.

* 1.8.5 Library functions called from main() on page 1-50.

* 1.8.6 Program exit and the assert macro on page 1-50.

1.8.1 Initialization of the execution environment and execution of the application
You can customize execution initialization by defining your own __main that branches to __rt_entry.
The entry point of a program is at __main in the C library where library code:

1. Copies non-root (RO and RW) execution regions from their load addresses to their execution
addresses. Also, if any data sections are compressed, they are decompressed from the load address to
the execution address.

2. Zeroes ZI regions.

3. Branchesto __rt_entry.

If you do not want the library to perform these actions, you can define your own __main that branches to
__rt_entry.
IMPORT __ rt_entry
EXPORT __main
ENTRY
__main
B _ rt_entry
END

The library function __rt_entry() runs the program as follows:

1. Sets up the stack and the heap by one of a number of means that include calling
__user_setup_stackheap(), calling __rt_stackheap_init(), or loading the absolute addresses of
scatter-loaded regions.

2. Calls __rt_lib_init() to initialize referenced library functions, initialize the locale and, if
necessary, set up argc and argv for main().

For C++, calls the constructors for any top-level objects by way of __cpp_initialize_ aeabi_.
3. Calls main(), the user-level root of the application.

From main(), your program might call, among other things, library functions.
4. Calls exit() with the value returned by main().

Related concepts
1.8.5 Library functions called from main() on page 1-50.
1.8 Tailoring the C library to a new execution environment on page 1-47.

1.8.2 C++ initialization, construction and destruction on page 1-48.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-47
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.8 Tailoring the C library to a new execution environment
4.23 __rt_entry on page 4-163.
4.28 _rt lib_init() on page 4-168.

1.8.2 C++ initialization, construction and destruction

The C++ Standard places certain requirements on the construction and destruction of objects with static
storage duration, and the ARM C++ compiler uses the .init_array area to achieve this.

The .init_array area is a const data array of self-relative pointers to functions. For example, you
might have the following C++ translation unit, contained in the file test. cpp:

struct T

T();
~T();

} ot
int f()
{
return 4;

}
int i = £();
This translates into the following pseudocode:

AREA ||.text||, CODE, READONLY
int ()
{

return 4;
static void _ sti_ 8 test_cpp

// construct 't' and register its destruction
aeabi_atexit(T::T(&t), &T::~T, & dso_handle);
i=10;

AREA ||.init_array||, DATA, READONLY
DCD _ sti_ 8 test_cpp - {PC}
AREA [|.data|T, DATA

t %4

i %4

This pseudocode is for illustration only. To see the code that is generated, compile the C++ source code
with armcc -c --cpp -S.

The linker collects each .init_array from the various translation units together. It is important that
the .init_array is accumulated in the same order.

The library routine __cpp_initialize_ aeabi_ is called from the C library startup code,
_ rt_1ib_init, before main. _ cpp_initialize_ aeabi_ walks through the .init_array calling
each function in turn. On exit, __rt_1lib_shutdown calls __cxa_finalize.

Usually, there is at most one function call for T: : T(), symbol reference _ZN1TC1Ev, one function call for
T::~T(), symbol reference _ZN1TD1Ev, one _ sti__ function, and four bytes of .init_array for each
translation unit. The symbol reference for the function () is _z1fv. There is no way to determine the
initialization order between translation units.

Function-local static objects with destructors are also handled using __aeabi_atexit.

.init_array sections must be placed contiguously within the same region for their base and limit
symbols to be accessible. If they are not, the linker generates an error.

Related concepts
1.8 Tailoring the C library to a new execution environment on page 1-47.

1.8.3 Exceptions system initialization
The exceptions system can be initialized either on demand (that is, when first used), or before entering
main().

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-48

reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.8 Tailoring the C library to a new execution environment

Initialization on demand has the advantage of not allocating heap memory unless the exceptions system
is used, but has the disadvantage that it becomes impossible to throw any exception (such as
std: :bad_alloc) if the heap is exhausted at the time of first use.

The default behavior is to initialize on demand. To initialize the exceptions system before entering
main(), include the following function in the link:

extern "C" void _ cxa_get globals(void);

extern "C" void __ARM_exceptions_init(void)

{
__cxa_get_globals();

Although you can place the call to __cxa_get_globals() directly in your code, placing it in
__ARM_exceptions_init() ensures that it is called as early as possible. That is, before any global
variables are initialized and before main() is entered.

__ARM_exceptions_init() is weakly referenced by the library initialization mechanism, and is called if
it is present as part of __rt_1ib_init().
Note

The exception system is initialized by calls to various library functions, for example,
std::set_terminate(). Therefore, you might not have to initialize before the entry to main().

Related concepts

1.8 Tailoring the C library to a new execution environment on page 1-47.

1.8.4 Emergency buffer memory for exceptions

You can choose whether or not to allocate emergency memory that is to be used for throwing a
std: :bad_alloc exception when the heap is exhausted.

To allocate emergency memory, you must include the symbol __ARM_exceptions_buffer_required in
the link. A call is then made to __ARM_exceptions_buffer_init() as part of the exceptions system
initialization. The symbol is not included by default.

The following routines manage the exceptions emergency buffer:

e extern "C" void *__ ARM_exceptions_buffer_init() Called once during runtime to allocate the
emergency buffer memory. It returns a pointer to the emergency buffer memory, or NULL if no
memory is allocated.

e extern "C" void *__ARM_exceptions_buffer_allocate(void *buffer, size_t size) Called
when an exception is about to be thrown, but there is not enough heap memory available to allocate
the exceptions object. buffer is the value previously returned by
__ARM_exceptions_buffer_init(), or NULL if that routine was not called.
__ARM_exceptions_buffer_allocate() returns a pointer to size bytes of memory that is aligned
on an eight-byte boundary, or NULL if the allocation is not possible.

e extern "C" void *__ARM_exceptions_buffer_free(void *buffer, void *addr) Called to
free memory possibly allocated by _ ARM_exceptions_buffer_allocate(). buffer is the value
previously returned by _ ARM_exceptions_buffer_init(), or NULL if that routine was not called.
The routine determines whether the passed address has been allocated from the emergency memory
buffer, and if so, frees it appropriately, then returns a non-NULL value. If the memory at addr was not
allocated by __ARM_exceptions_buffer_allocate(), the routine must return NULL.

Default definitions of these routines are present in the image, but you can supply your own versions to
override the defaults supplied by the library. The default routines reserve enough space for a single
std: :bad_alloc exceptions object. If you do not require an emergency buffer, it is safe to redefine all
these routines to return only NULL.

Related concepts
1.8 Tailoring the C library to a new execution environment on page 1-47.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-49
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.8 Tailoring the C library to a new execution environment

1.8.5 Library functions called from main()
The function main() can call a number of user-customizable functions in the C library.

The function main() is the user-level root of the application. It requires the execution environment to be
initialized and input/output functions to be capable of being called. While in main() the program might
perform one of the following actions that calls user-customizable functions in the C library:

» Extend the stack or heap.

+ Call library functions that require a callout to a user-defined function, for example
__rt_fp_status_addr() or clock().

+ Call library functions that use locale or CTYPE.

* Perform floating-point calculations that require the floating-point unit or floating-point library.

» Input or output directly through low-level functions, for example putc(), or indirectly through high-
level input/output functions and input/output support functions, for example, fprintf() or
sys_open().

+ Raise an error or other signal, for example ferror.

Related concepts

1.8.1 Initialization of the execution environment and execution of the application on page 1-47.
1.8 Tailoring the C library to a new execution environment on page 1-47.

1.9 Assembler macros that tailor locale functions in the C library on page 1-52.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.
1.21 Tailoring non-input/output C library functions on page 1-81.

1.10 Modification of C library functions for error signaling, error handling, and program exit
on page 1-61.

1.8.6 Program exit and the assert macro

A program can exit normally at the end of main() or it can exit prematurely because of an error. The
behavior of the assert macro depends on a number of conditions:

1. If the NDEBUG macro is defined (on the command line or as part of a source file), the assert macro
has no effect.

2. If the NDEBUG macro is not defined, the assert expression (the expression given to the assert
macro) is evaluated. If the result is TRUE, that is != ©, the assert macro has no more effect.

3. Ifthe assert expression evaluates to FALSE, the assert macro calls the __aeabi_assert() function
if any of the following are true:
* You are compiling with --strict.
* You are using -00 or -01.
e _ ASSERT_MSG is defined.
e AEABI_PORTABILITY_LEVEL is defined and not 0.

4. Ifthe assert expression evaluates to FALSE and the conditions specified in point 3 do not apply, the
assert macro calls abort (). Then:
a. abort() calls __rt_raise().
b. If _ _rt_raise() returns, abort() tries to finalize the library.

If you are creating an application that does not use the library, __aeabi_assert() works if you re-
implement abort () and the stdio functions.

Another solution for retargeting is to re-implement the __aeabi_assert() function itself. The function
prototype is:

void __aeabi_assert(const char *expr, const char *file, int Lline);

where:

* expr points to the string representation of the expression that was not TRUE.
* file and Line identify the source location of the assertion.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-50
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.8 Tailoring the C library to a new execution environment

The behavior for __aeabi_assert() supplied in the ARM C library is to print a message on stderr and
call abort().

Related concepts
1.8 Tailoring the C library to a new execution environment on page 1-47.

Related concepts

1.8.2 C++ initialization, construction and destruction on page 1-48.

1.8.5 Library functions called from main() on page 1-50.

1.8.1 Initialization of the execution environment and execution of the application on page 1-47.
1.8.4 Emergency buffer memory for exceptions on page 1-49.

1.8.6 Program exit and the assert macro on page 1-50.

1.8.3 Exceptions system initialization on page 1-48.

Related references

4.23 _ rt entry on page 4-163.

4.25 _rt_exit() on page 4-165.

4.28 _rt_lib_init() on page 4-168.

4.29 rt lib_shutdown() on page 4-169.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-51
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.9 Assembler macros that tailor locale functions in the C library

1.9 Assembler macros that tailor locale functions in the C library

Applications use locales when they display or process data that depends on the local language or region,
for example, character set, monetary symbols, decimal point, time, and date.

Locale-related functions are declared in the include file, rt_locale.

This section contains the following subsections:

* 1.9.1 Link time selection of the locale subsystem in the C library on page 1-52.
* 1.9.2 Runtime selection of the locale subsystem in the C library on page 1-53.
* 1.9.3 Definition of locale data blocks in the C library on page 1-53.

* 1.94LC CTYPE data block on page 1-55.

e 1.95 LC COLLATE data block on page 1-57.

e 1.9.6 LC MONETARY data block on page 1-58.

o 1.9.7LC NUMERIC data block on page 1-58.

* 1.9.8 LC TIME data block on page 1-59.

1.9.1 Link time selection of the locale subsystem in the C library

The locale subsystem of the C library can be selected at link time or can be extended to be selectable at
runtime.

The following list describes the use of locale categories by the library:

* The default implementation of each locale category is for the C locale. The library also provides an
alternative, ISO8859-1 (Latin-1 alphabet) implementation of each locale category that you can select
at link time.

* Both the C and ISO8859-1 default implementations usually provide one locale for each category to
select at runtime.

* You can replace each locale category individually.

* You can include as many locales in each category as you choose and you can name your locales as
you choose.

* Each locale category uses one word in the private static data of the library.

* The locale category data is read-only and position independent.

* scanf() forces the inclusion of the LC_CTYPE locale category, but in either of the default locales this
adds only 260 bytes of read-only data to several kilobytes of code.

1ISO8859-1 implementation

The default implementation of each locale category is for the C locale. The library also provides an
alternative, ISO8859-1 (Latin-1 alphabet) implementation of each locale category that you can select at
link time.

The following table shows the ISO8859-1 (Latin-1 alphabet) locale categories.

Table 1-6 Default ISO8859-1 locales

Symbol

Description

__use_1s08859 ctype Selects the ISO8859-1 (Latin-1) classification of characters. This is essentially 7-bit ASCII, except that

the character codes 160-255 represent a selection of useful European punctuation characters, letters,
and accented letters.

__use_1iso8859_collate Selects the strcoll/strxfrm collation table appropriate to the Latin-1 alphabet. The default C locale

does not require a collation table.

__use_1iso8859_monetary Selects the Sterling monetary category using Latin-1 coding.

__use_1iso8859_numeric Selects separation of thousands with commas in the printing of numeric values.

__use_1iso8859_locale Selects all the ISO8859-1 selections described in this table.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-52
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.9 Assembler macros that tailor locale functions in the C library

There is no ISO8859-1 version of the LC_TIME category.
Shift-JIS and UTF-8 implementation

The Shift-JIS and UTF-8 locales let you use Japanese and Unicode characters.

The following table shows the Shift-JIS (Japanese characters) or UTF-8 (Unicode characters) locale
categories.

Table 1-7 Default Shift-JIS and UTF-8 locales

Function Description

__use_sjis_ctype Sets the character set to the Shift-JIS multibyte encoding of Japanese characters

__use_utf8_ctype Sets the character set to the UTF-8 multibyte encoding of all Unicode characters

The following list describes the effects of Shift-JIS and UTF-8 encoding:

* The ordinary ctype functions behave correctly on any byte value that is a self-contained character in
Shift-JIS. For example, half-width katakana characters that Shift-JIS encodes as single bytes between
oxA6 and OxDF are treated as alphabetic by isalpha().

UTF-8 encoding uses the same set of self-contained characters as the ASCII character set.

* The multibyte conversion functions such as mbrtowc (), mbsrtowcs(), and wcrtomb(), all convert
between wide strings in Unicode and multibyte character strings in Shift-JIS or UTF-8.

e printf("%1ls") converts a Unicode wide string into Shift-JIS or UTF-8 output, and scanf("%1s")
converts Shift-JIS or UTF-8 input into a Unicode wide string.

Related concepts
Shift-JIS and UTF-8 implementation on page 1-53.

Related references
1SO8859-1 implementation on page 1-52.
1.9.2 Runtime selection of the locale subsystem in the C library

The C library function setlocale() selects a locale at runtime for the locale category, or categories,
specified in its arguments.

It does this by selecting the requested locale separately in each locale category. In effect, each locale
category is a small filing system containing an entry for each locale.

The rt_locale.h and rt_locale.s header files describe what must be implemented and provide some
useful support macros.

Related references
4.32 setlocale() on page 4-172.

1.9.3 Definition of locale data blocks in the C library

Locale data blocks let you customize your own locales.

The locale data blocks are defined using a set of assembly language macros provided in rt_locale.s.
Therefore, the recommended way to define locale blocks is by writing an assembly language source file.
The ARM Compiler toolchain provides a set of macros for each type of locale data block, for example
LC_CTYPE, LC_COLLATE, LC_MONETARY, LC_NUMERIC, and LC_TIME. You define each locale block in the
same way with a _begin macro, some data macros, and an _end macro.

Beginning the definition of a locale block

To begin defining your locale block, call the _begin macro. This macro takes two arguments, a prefix
and the textual name, as follows:

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-53
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.9 Assembler macros that tailor locale functions in the C library

LC_TYPE begin prefix, name

where:
TYPE
is one of the following:
e CTYPE
e COLLATE
* MONETARY
* NUMERIC
e TIME.
prefix
is the prefix for the assembler symbols defined within the locale data
name

is the textual name for the locale data.

Specifying the data for a locale block

To specify the data for your locale block, call the macros for that locale type in the order specified for
that particular locale type. The syntax is as follows:

LC_TYPE_function

Where:
TYPE
is one of the following:
* CTYPE
¢ COLLATE
¢ MONETARY
¢ NUMERIC
¢ TIME.
function

is a specific function, table(), full_wctype(), or multibyte(), related to your locale data.

When specifying locale data, you must call the macro repeatedly for each respective function.

Ending the definition of a locale block

To complete the definition of your locale data block, you call the _end macro. This macro takes no
arguments, as follows:

LC_TYPE_end
where:
TYPE
is one of the following:
* CTYPE
e COLLATE
* MONETARY
¢ NUMERIC
e TIME.

Example of a fixed locale block

To write a fixed function that always returns the same locale, you can use the _start symbol name
defined by the macros. The following shows how this is implemented for the CTYPE locale:

GET rt_locale.s

AREA my_locales, DATA, READONLY

LC_CTYPE_begin my_ctype_locale, "MyLocale"

5 include other LC_CTYPE_xxx macros here

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-54
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.9 Assembler macros that tailor locale functions in the C library

LC_CTYPE_end

AREA my_locale_func, CODE, READONLY
_get_lc_ctype FUNCTION

LDR r@, =my_ctype_locale_start

BX 1r

ENDFUNC

Example of multiple contiguous locale blocks

Contiguous locale blocks suitable for passing to the _findlocale() function must be declared in
sequence. You must call the macro LC_index_end to end the sequence of locale blocks. The following
shows how this is implemented for the CTYPE locale:

GET rt_locale.s
AREA my_locales, DATA, READONLY

my_ctype_locales
LC_CTYPE_begin my_first_ctype_locale, "MyLocalel"

000 5 include other LC_CTYPE_xxx macros here

LC_CTYPE_end

LC_CTYPE_begin my_second_ctype_locale, "MyLocale2"

000 5 include other LC_CTYPE_xxx macros here
LC_CTYPE_end
LC_index_end
AREA my_locale_func, CODE, READONLY
IMPORT _findlocale

_get_lc_ctype FUNCTION
LDR r@, =my_ctype_locales
B _findlocale
ENDFUNC

Related references

1.9.4 LC_CTYPE data block on page 1-55.
1.9.5 LC COLLATE data block on page 1-57.
1.9.6 LC_MONETARY data block on page 1-58.
1.9.7 LC_NUMERIC data block on page 1-58.
1.9.8 LC TIME data block on page 1-59.

1.9.4 LC_CTYPE data block

The LC_CTYPE data block configures character classification and conversion.

When defining a locale data block in the C library, the macros that define an LC_CTYPE data block are as

follows:

1. Call LC_CTYPE_begin with a symbol name and a locale name.

2. Call LC_CTYPE_table repeatedly to specify 256 table entries. LC_CTYPE_table takes a single
argument in quotes. This must be a comma-separated list of table entries. Each table entry describes
one of the 256 possible characters, and can be either an illegal character (IL) or the bitwise OR of one
or more of the following flags:

_S
whitespace characters
_P
punctuation characters
_B
printable space characters
_L
lowercase letters
_Uu
uppercase letters
_N
decimal digits
_C
control characters
_X
hexadecimal digit letters A-F and a-f
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. Al rights 1-55

reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.9 Assembler macros that tailor locale functions in the C library

alphabetic but neither uppercase nor lowercase, such as Japanese katakana.
Note

A printable space character is defined as any character where the result of both isprint() and
isspace() is true.

__A must not be specified for the same character as either __Nor _ X.

3. Ifrequired, call one or both of the following optional macros:

e LC_CTYPE_full_wctype. Calling this macro without arguments causes the C99 wide-character
ctype functions (iswalpha(), iswupper(), ...) to return useful values across the full range of
Unicode when this LC_CTYPE locale is active. If this macro is not specified, the wide ctype
functions treat the first 256 wchar_t values as the same as the 256 char values, and the rest of the
wchar_t range as containing illegal characters.

e LC_CTYPE_multibyte defines this locale to be a multibyte character set. Call this macro with
three arguments. The first two arguments are the names of functions that perform conversion
between the multibyte character set and Unicode wide characters. The last argument is the value
that must be taken by the C macro MB_CUR_MAX for the respective character set. The two function
arguments have the following prototypes:

size_t internal_mbrtowc(wchar_t *pwc, char c, mbstate_t *pstate);
size_t internal_wcrtomb(char *s, wchar_t w, mbstate_t *pstate);

internal_mbrtowc()
takes one byte, c, as input, and updates the mbstate_t pointed to by pstate as a result of
reading that byte. If the byte completes the encoding of a multibyte character, it writes
the corresponding wide character into the location pointed to by pwc, and returns 1 to
indicate that it has done so. If not, it returns -2 to indicate the state change of mbstate_t
and that no character is output. Otherwise, it returns -1 to indicate that the encoded input
is invalid.

internal_wcrtomb()
takes one wide character, w, as input, and writes some number of bytes into the memory
pointed to by s. It returns the number of bytes output, or -1 to indicate that the input
character has no valid representation in the multibyte character set.

4. Call LC_CTYPE_end, without arguments, to finish the locale block definition.

Example LC_CTYPE data block
LC_CTYPE_begin utf8_ctype, "UTF-8"

)
; Single-byte characters in the low half of UTF-8 are exactly
; the same as in the normal "C" locale.
LC_CTYPE_table "_cCc, _C, _C, _C, _C, _C, _C, _C, _C" ; 0x00-0x08
LC_CTYPE table "_c| S, c|_S, _c]_s, c[_s, _c|_s"

; 0x09-0xeD(BS,LF,VT,FF,CR)

LC_CTYPE_table "_C, _C, C, C, _C, _C, _C, _C, _C" ; @x0E-0x16
LC_CTYPE table "_Cc, _C, _C, _C, _C, _C, _C, _C, _C" ; ox17-0x1F
LC_CTYPE_table "__B|__S" ; space

LC_CTYPE table "_P,” _P, P, P, P, P, P, _P" ; I"#3$%&'(

LC_CTYPE table "_P, _P, P, _P, P, P, _P" 5)r+,-./

LC_CTYPE table "_N, _N, _N, _N, _N, N, _N, N, N, N"; @-9
LC_CTYPE table "_P, _ P, P, P, P, _P, _P" 5 :;<=>2@

LC_CTYPE table "__U| X, U|_X, _U[_X, U[_X, _U|_X, _U|l_X"; A-F
LC_CTYPE table "_U, _U, _U, U, U, _U, U, U, _U, _U"; G-P
LC_CTYPE_table "_U, _U, _U, _U, _U, _U, _U, _U, _U, _U"; Q-Z
LC_CTYPE table "_P, _P, P, _P, P, _P" 5 [\]"_

LC_CTYPE_table " L| "X, _L|_X, _L]_X, _L]_X, _L|_X, _L|_Xx"; a-f
LC_CTYPE table "L, _ L, _ L, L, L, L, L, L, L, _L"; gvp
LC_CTYPE table "_ L, _ L, L, L, L, L, L, L, L, L"; g-z
LC_CTYPE table "_P, _P, _P, _P"; {|}~

LC_CTYPE_table "_ C" ; ox7F

)

; Nothing in the top half of UTF-8 is valid on its own as a

; single-byte character, so they are all illegal characters (IL).
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-56
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.9 Assembler macros that tailor locale functions in the C library

LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"

)

5 The UTF-8 ctype locale wants the full version of wctype.
LC_CTYPE_full_wctype

)

UTF-8 is a multibyte locale, so we must specify some
conversion functions. MB_CUR_MAX is 6 for UTF-8 (the lead
bytes OxFC and ©xFD are each followed by five continuation
bytes).

The implementations of the conversion functions are not
provided in this example.

F OV VR

IMPORT utf8_mbrtowc

IMPORT utf8 wcrtomb

LC_CTYPE_multibyte utf8_mbrtowc, utf8_ wcrtomb, 6
LC_CTYPE_end

Related references
1.9.3 Definition of locale data blocks in the C library on page 1-53.

1.9.5 LC_COLLATE data block
The LC_COLLATE data block configures collation of strings.

When defining a locale data block in the C library, the macros that define an LC_COLLATE data block are
as follows:

1. Call LC_COLLATE_begin with a symbol name and a locale name.
2. Call one of the following alternative macros:

» Call LC_COLLATE_table repeatedly to specify 256 table entries. LC_COLLATE_table takes a single
argument in quotes. This must be a comma-separated list of table entries. Each table entry
describes one of the 256 possible characters, and can be a number indicating its position in the
sorting order. For example, if character A is intended to sort before B, then entry 65
(corresponding to A) in the table, must be smaller than entry 66 (corresponding to B).

* Call LC_COLLATE_no_table without arguments. This indicates that the collation order is the same
as the string comparison order. Therefore, strcoll() and strcmp() are identical.

3. Call LC_COLLATE_end, without arguments, to finish the locale block definition.

Example LC_COLLATE data block

LC_COLLATE_begin iso88591 collate, "IS08859-1"

LC_COLLATE_table "0x00, 0x01, 0x02, 0x03, 0x04, Ox05, Ox06, 0x07"
LC_COLLATE_table "0x08, ©x09, ©x0a, 0x0b, 0x0c, 0x0d, Ox0e, Ox0f"
LC_COLLATE_table "ox1@, ox11, ox12, ox13, ox14, ox15, 0x16, Ox17"
LC_COLLATE_table "ox18, ©x19, ©xla, 0xlb, ©xlc, oxld, Oxle, ox1f"
LC_COLLATE_table "©x20, ©x21, ©x22, 0x23, 0x24, 0x25, Ox26, 0x27"
LC_COLLATE_table "ox28, 0x29, ©x2a, 0x2b, Ox2c, 0x2d, Ox2e, Ox2f"
LC_COLLATE_table "0x30, 0x31, 0x32, 0x33, 0x34, 0x35, Ox36, 0x37"
LC_COLLATE_table "©x38, ©x39, ©x3a, 0x3b, 0x3c, 0x3d, Ox3e, Ox3f"
LC_COLLATE_table "ox40, 0x41, 0x49, Ox4a, Ox4c, Ox4d, Ox52, Ox53"
LC_COLLATE_table "oOx54, ©x55, ©x5a, 0x5b, ©x5c, ©x5d, Ox5e, 0x60"
LC_COLLATE_table "Ox67, ©x68, 0Ox69, Ox6a, Ox6b, Ox6¢C, Ox71, Ox72"
LC_COLLATE_table "@x73, 0x74, 0x76, 0x79, Ox7a, Ox7b, 0x7c, 0x7d"
LC_COLLATE_table "ox7e, ©Ox7f, 0x87, 0x88, 0x8a, 0x8b, 0x90, 0x91"
LC_COLLATE_table "©x92, 0x93, 0x98, 0x99, 0x9a, 0x9b, 0Ox9c, 0x9e"
LC_COLLATE_table "oxa5, @xa6, @xa7, Oxa8, Oxaa, Oxab, 0xbo, Oxbl"
LC_COLLATE_table "oxb2, ©xb3, ©xb6, 0xb9, ©xba, ©xbb, Oxbc, oxbd"
LC_COLLATE_table "Oxbe, ©Oxbf, ©xc@, Oxcl, ©xc2, ©xc3, Oxc4, Oxc5"
LC_COLLATE_table "Oxc6, ©xc7, Oxc8, 0xc9, ©Oxca, Oxcb, Oxcc, Oxcd"
LC_COLLATE_table "Oxce, oOxcf, 0xdo, oxdl, oxd2, oxd3, oxd4, oxd5"
LC_COLLATE_table "Oxd6, ©xd7, ©xd8, 0xd9, ©xda, oxdb, Oxdc, ©xdd"
LC_COLLATE_table "oxde, oxdf, Oxe@, Oxel, Oxe2, Oxe3, Oxed, Oxe5"
LC_COLLATE_table "Oxe6, ©xe7, 0Oxe8, Oxe9, Oxea, Oxeb, Oxec, Oxed"
LC_COLLATE_table "Oxee, oxef, oOxf0, oxfl, oxf2, oxf3, oxf4, Oxf5"
LC_COLLATE_table "oxf6, oxf7, oxf8, oxf9, oxfa, oxfb, oxfc, oxfd"
LC_COLLATE_table "ox42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x4b"
LC_COLLATE_table "Ox4e, 0x4f, 0x50, 0x51, 0x56, ©x57, Ox58, 0x59"
LC_COLLATE_table "ox77, Ox5f, 0x61, Ox62, Ox63, Ox64, Ox65, Oxfe"
LC_COLLATE_table "ox66, ©x6d, Ox6e, Ox6f, 0x70, Ox75, Ox78, Oxa9"
LC_COLLATE_table "o0x80, ©x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x89"

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-57
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.9 Assembler macros that tailor locale functions in the C library

LC_COLLATE_table "©x8c, 0x8d, 0Ox8e, 0x8f, 0x94, 0x95, 0Ox96, 0x97"
LC_COLLATE_table "oxb7, ©x9d, ©x9f, 0xa@, ©xal, ©xa2, Oxa3, oOxff"
LC_COLLATE_table "Oxa4, ©xac, ©xad, Oxae, Oxaf, Oxb4, Oxb8, Oxb5"
LC_COLLATE_end

Related references
1.9.3 Definition of locale data blocks in the C library on page 1-53.
1SO8859-1 implementation on page 1-52.

1.9.6 LC_MONETARY data block
The LC_MONETARY data block configures formatting of monetary values.
When defining a locale data block in the C library, the macros that define an LC_MONETARY data block are
as follows:
1. Call LC_MONETARY_begin with a symbol name and a locale name.
2. Call the LC_MONETARY data macros as follows:
a. Call LC_MONETARY_fracdigits with two arguments: frac_digits and int_frac_digits from
the 1conv structure.
b. Call LC_MONETARY_positive with four arguments: p_cs_precedes, p_sep_by_space,
p_sign_posn and positive_sign.
c. Call LC_MONETARY_negative with four arguments: n_cs_precedes, n_sep_by_space,
n_sign_posn and negative_sign.
d. Call LC_MONETARY_currsymbol with two arguments: currency_symbol and int_curr_symbol.
e. Call LC_MONETARY_point with one argument: mon_decimal_point.
f. Call LC_MONETARY_thousands with one argument: mon_thousands_sep.
g. Call LC_MONETARY_grouping with one argument: mon_grouping.
3. Call LC_MONETARY_end, without arguments, to finish the locale block definition.
Example LC_MONETARY data block
LC_MONETARY_begin c_monetary, "C"
LC_MONETARY fracdigits 255, 255
LC_MONETARY_positive 255, 255 255, "*"
LC MONETARY _negative 255, 255, 255, ""
LC_MONETARY_currsymbol " ", "
LC_MONETARY_point ""
LC_MONETARY_thousands ""
LC_MONETARY_grouping ""
LC_MONETARY_end
Related references
1.9.3 Definition of locale data blocks in the C library on page 1-53.
1.9.7 LC_NUMERIC data block
The LC_NUMERIC data block configures formatting of numeric values that are not monetary.
When defining a locale data block in the C library, the macros that define an LC_NUMERIC data block are
as follows:
1. Call LC_NUMERIC_begin with a symbol name and a locale name.
2. Call the LC_NUMERIC data macros as follows:
a. Call LC_NUMERIC_point with one argument: decimal_point from lconv structure.
b. Call LC_NUMERIC_thousands with one argument: thousands_sep.
c. Call LC_NUMERIC_grouping with one argument: grouping.
3. Call LC_NUMERIC_end, without arguments, to finish the locale block definition.
Example LC_NUMERIC data block
LC_NUMERIC_begin c_numeric, "C"
LC_NUMERIC point "."
LC_NUMERIC thousands "
LC_NUMERIC_grouping ""
LC_NUMERIC_end
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-58

reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.9 Assembler macros that tailor locale functions in the C library

Related references
1.9.3 Definition of locale data blocks in the C library on page 1-53.

1.9.8 LC_TIME data block

The LC_TIME data block configures formatting of date and time values.

When defining a locale data block in the C library, the macros that define an LC_TIME data block are as
follows:

1. Call LC_TIME_begin with a symbol name and a locale name.
2. Call the LC_TIME data macros as follows:

a.

b.

Call LC_TIME_week_short seven times to provide the short names for the days of the week.
Sunday being the first day. Then call LC_TIME_week_long and repeat the process for long names.
Call LC_TIME_month_short twelve times to provide the short names for the days of the month.
Then call LC_TIME_month_long and repeat the process for long names.

Call LC_TIME_am_pm with two arguments that are respectively the strings representing morning
and afternoon.

Call LC_TIME_formats with three arguments that are respectively the standard date/time format
used in strftime("%c"), the standard date format strftime("%x"), and the standard time
format strftime("%X"). These strings must define the standard formats in terms of other simpler
strftime primitives. The example below shows that the standard date/time format is permitted to
reference the other two formats.

Call LC_TIME_c99format with a single string that is the standard 12-hour time format used in
strftime("%r") as defined in C99.

3. Call LC_TIME_end, without arguments, to finish the locale block definition.

Example LC_TIME data block

LC_TIME_begin c tlme, "ct
LC_TIME_week_short "Sun"
LC_TIME_week_short "Mon"
LC_TIME_week_short "Tue"
LC_TIME_week_short "Wed"
LC_TIME_week_short "Thu"
LC_TIME_week_short "Fri"
LC_TIME_week_short "Sat"
LC_TIME_week_long "Sunday"
LC_TIME_week_long "Monday"
LC_TIME week_long "Tuesday"
LC_TIME_week_long "Wednesday"
LC_TIME_week_long "Thursday"
LC_TIME_week_long "Friday"
LC_TIME_week_long "Saturday"
LC_TIME_month_short "Jan"
LC_TIME_month_short "Feb"
LC_TIME_month_short "Mar"
LC_TIME_month_short "Apr"
LC_TIME month_short "May"
LC_TIME_month_short "Jun"
LC_TIME_month_short "Jul"
LC_TIME_month_short "Aug"
LC_TIME_month_short "Sep"
LC_TIME_month_short "Oct"
LC_TIME_month_short "Nov"
LC_TIME_month_short "Dec"
LC_TIME_month_long "January
LC_TIME month_long "February"
LC_TIME_month_long "March"
LC_TIME_month_long "April"
LC_TIME_month_long "May"
LC_TIME_month_long "June"
LC_TIME_month_long "July"
LC_TIME_month_long "August"
LC_TIME_month_long "September"
LC_TIME_month_long "October"
LC_TIME month_long "November"
LC_TIME_month_long "December"
LC_TIME_am_pm "AM", "PM"
LC_TIME_formats "%a %b %e %T %Y", "%m/%d/%y", "%H:%M:%S"
LC_TIME_c99format "%I:%M:%S %p"
LC_TIME_end

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-59
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.9 Assembler macros that tailor locale functions in the C library

Related references
1.9.3 Definition of locale data blocks in the C library on page 1-53.

Related references

1.6.8 C library API definitions for targeting a different environment on page 1-38.
1.7.1 Building an application without the C library on page 1-40.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-60
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.10 Modification of C library functions for error signaling, error handling, and program exit

1.10 Modification of C library functions for error signaling, error handling, and

program exit

All trap or error signals raised by the C library go through the __raise() function. You can re-
implement this function or the lower-level functions that it uses.

Caution

The IEEE 754 standard for floating-point processing states that the default response to an exception is to
proceed without a trap. You can modify floating-point error handling by tailoring the functions and
definitions in fenv.h.

The rt_misc.h header file contains more information on error-related functions.

The following table shows the trap and error-handling functions.

Table 1-8 Trap and error handling

Function Description
_sys_exit() Called, eventually, by all exits from the library.
errno [s a static variable used with error handling.

__rt_errno_addr()

Is called to obtain the address of the variable errno.

__raise()

Raises a signal to indicate a runtime anomaly.

__rt_raise()

Raises a signal to indicate a runtime anomaly.

__default_signal_handler()

Displays an error indication to the user.

_ttywrch()

Writes a character to the console. The default implementation of _ttywrch() is semihosted and,
therefore, uses semihosting calls.

__rt_fp_status_addr()

This function is called to obtain the address of the floating-point status word.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

1.6.7 Indirect semihosting C library function dependencies on page 1-37.

1.7.1 Building an application without the C library on page 1-40.
4.41 sys exit() on page 4-182.

4.6 errno on page 4-145.

4.19 raise() on page 4-159.

4.30 _rt raise() on page 4-170.

4.5 default signal handler() on page 4-144.

4.51 ttywrch() on page 4-192.

4.26 __rt fp_status_addr() on page 4-166.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-61
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.11 Stack and heap memory allocation and the ARM C and C++ libraries

1.1 Stack and heap memory allocation and the ARM C and C++ libraries

The ARM C and C++ libraries require you to specify where the stack pointer begins, but specifying the
heap is optional. However, some library functions use the heap, either explicitly (for example malloc) or
implicitly (for example fopen).

If you are providing a heap, you must:

* Understand the heap usage requirements of the ARM C and C++ libraries.
» Configure the size and placement of the heap.
* Consider which heap implementation you want to use.

If you are not providing a heap, you must:
* Understand the heap usage requirements of the ARM C and C++ libraries.
* Understand how to avoid or reimplement the heap-using functions.

This section contains the following subsections:

o [.11.1 Library heap usage requirements of the ARM C and C++ libraries on page 1-62.

o [.11.2 Choosing a heap implementation for memory allocation functions on page 1-63.

e [.11.3 Stack pointer initialization and heap bounds on page 1-64.

o [.11.4 Legacy support for __user_initial_stackheap() on page 1-66.

o [.11.5 Avoiding the heap and heap-using library functions supplied by ARM on page 1-67.

1.11.1 Library heap usage requirements of the ARM C and C++ libraries

Functions such as malloc() and other dynamic memory allocation functions explicitly allocate memory
when used. However, some library functions and mechanisms implicitly allocate memory from the heap.

If heap usage requirements are significant to your code development (for example, you might be
developing code for an embedded system with a tiny memory footprint), you must be aware of both
implicit and explicit heap requirements.

In C standardlib, implicit heap usage occurs as a result of:

+ Calling the library function fopen() and the first time that an I/O operation is applied to the resulting
stream.
* Passing command-line arguments into the main() function.

The size of heap memory allocated for fopen() is 80 bytes for the FILE structure. When the first [/O
operation occurs, and not until the operation occurs, an additional default of 512 bytes of heap memory is
allocated for a buffer associated with the operation. You can reconfigure the size of this buffer using
setvbuf().

When fclose() is called, the default 80 bytes of memory is kept on a freelist for possible re-use. The
512-byte buffer is freed on fclose().

Declaring main() to take arguments requires 256 bytes of implicitly allocated memory from the heap.
This memory is never freed because it is required for the duration of main(). In microlib, main() must
not be declared to take arguments, so this heap usage requirement only applies to standardlib. In the
standardlib context, it only applies if you have a heap.

Note

The memory sizes quoted might change in future releases.

Related concepts
2.3 Library heap usage requirements of microlib on page 2-100.

Related references
1.11.5 Avoiding the heap and heap-using library functions supplied by ARM on page 1-67.

1.11.2 Choosing a heap implementation for memory allocation functions on page 1-63.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-62
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.11 Stack and heap memory allocation and the ARM C and C++ libraries

1.11.2 Choosing a heap implementation for memory allocation functions

malloc(), realloc(), calloc(), and free() are built on a heap abstract data type. You can choose
between Heap1 or Heap2, the two provided heap implementations.

The available heap implementations are:

* Heapl, the default implementation, implements the smallest and simplest heap manager.

* Heap2 provides an implementation with the performance cost of malloc() or free() growing
logarithmically with the number of free blocks.

Note
The default implementations of malloc(), realloc(), and calloc() maintain an eight-byte aligned
heap.
Heap1

Heapl, the default implementation, implements the smallest and simplest heap manager.

The heap is managed as a single-linked list of free blocks held in increasing address order. The allocation
policy is first-fit by address.

This implementation has low overheads, but the performance cost of malloc() or free() grows linearly
with the number of free blocks. The smallest block that can be allocated is four bytes and there is an
additional overhead of four bytes. If you expect more than 100 unallocated blocks it is recommended that
you use Heap?2.

Heap2

Heap2 provides an implementation with the performance cost of malloc() or free() growing
logarithmically with the number of free blocks.

The allocation policy is first-fit by address. The smallest block that can be allocated is 12 bytes and there
is an additional overhead of 4 bytes.

Heap?2 is recommended when you require near constant-time performance in the presence of hundreds of
free blocks. To select the alternative standard implementation, use either of the following:

* IMPORT __use_realtime_heap from assembly language.
e #pragma import(__use_realtime_heap) from C.

The Heap?2 real-time heap implementation must know the maximum address space that the heap can
span. The smaller the address range, the more efficient the algorithm is.

By default, the heap extent is taken to be 16MB starting at the beginning of the heap (defined as the start
of the first chunk of memory given to the heap manager by _ rt_initial_stackheap() or
__rt_heap_extend()).
The heap bounds are given by:
struct _ heap_extent {
unsigned base, range;
_,value_in_r'egs struct _ _heap_extent _ user_heap_extent(
unsigned defaultbase, unsigned defaultsize);

The function prototype for __user_heap_extent() is in rt_misc.h.

(The Heapl algorithm does not require the bounds on the heap extent. Therefore, it never calls this
function.)

You must implement __user_heap_extent() if:

* You require a heap to span more than 16MB of address space.
* Your memory model can supply a block of memory at a lower address than the first one supplied.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-63
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.11 Stack and heap memory allocation and the ARM C and C++ libraries

If you know in advance that the address space bounds of your heap are small, you do not have to
implement __user_heap_extent(), but it does speed up the heap algorithms if you do.

The input parameters are the default values that are used if this routine is not defined. You can, for
example, leave the default base value unchanged and only adjust the size.
Note

The size field returned must be a power of two. The library does not check this and fails in unexpected
ways if this requirement is not met. If you return a size of zero, the extent of the heap is set to 4GB.

Related references
1.11.5 Avoiding the heap and heap-using library functions supplied by ARM on page 1-67.
4.2 alloca() on page 4-141.

1.11.3 Stack pointer initialization and heap bounds

The C library requires you to specify where the stack pointer begins. If you intend to use ARM library
functions that use the heap, for example, malloc(), calloc(), or if you define argc and argv
command-line arguments for main(), the C library also requires you to specify which region of memory
the heap is initially expected to use.

You must always specify where the stack pointer begins. The initial stack pointer must be aligned to a
multiple of eight bytes.

You might have to configure the heap if, for example:

* You intend to use ARM library functions that use the heap, for example, malloc(), calloc().
* You define argc and argv command-line arguments for main()

If you are using the C library's initialization code, use any of the following methods to configure the
stack and heap:

* Use the symbols __initial_sp, heap_base,and _ heap_limit.
+ Use a scatter file to define ARM_LIB_STACKHEAP, ARM_LIB_STACK, or ARM_LIB_HEAP regions.
* Implement __user_setup_stackheap() or __user_initial_stackheap().

Note

The first two methods are the only methods that microlib supports for defining where the stack pointer
starts and for defining the heap bounds.

If you are not using the C library's initialization code (see /.7.1 Building an application without the C

library on page 1-40), use the following method to configure the stack and heap:

+ Set up the stack pointer manually at your application's entry point.

+ Call _init_alloc() to set up an initial heap region, and implement __rt_heap_extend() if you
need to add memory to it later.

Configuring the stack and heap with symbols

Define the symbol __initial_sp to point to the top of the stack.

If using the heap, also define symbols __heap_base and __heap_limit.

You can define these symbols in an assembly language file, or by using the embedded assembler in C.
For example:

__asm void dummy_function(void)

EXPORT __initial_sp

EXPORT __heap_base

EXPORT _ heap_limit
__initial_sp EQU STACK_BASE
__heap_base EQU HEAP_BASE

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-64
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.11 Stack and heap memory allocation and the ARM C and C++ libraries

__heap_limit EQU (HEAP_BASE + HEAP_SIZE)

The constants STACK_BASE, HEAP_BASE and HEAP_SIZE can be defined in a header file, for example
stack.h, as follows:

/* stack.h */

#define HEAP_BASE 0x20100000 /* Example memory addresses */
#define STACK_BASE 0x20200000

#define HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)

#define STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

Note

This method of specifying the initial stack pointer and heap bounds is supported by both the standard C
library (standardlib) and the micro C library (microlib).

Configuring the stack and heap with a scatter file
In a scatter file, either:

* Define ARM_LIB_STACK and ARM_LIB_HEAP regions.

If you do not intend to use the heap, only define an ARM_LIB_STACK region.
* Define an ARM_LIB_STACKHEAP region.

If you define an ARM_LIB_STACKHEAP region, the stack starts at the top of that region. The heap starts
at the bottom.

Configuring the stack and heap with __user_setup_stackheap() or
__user_initial_stackheap()

Implement __user_setup_stackheap() to set up the stack pointer and return the bounds of the initial
heap region.

If you are using legacy code that uses __user_initial_stackheap(), and you do not want to replace
__user_initial_stackheap() with __user_setup_stackheap(), continue to use
__user_initial_stackheap().

Note
ARM recommends that you switch to using __user_setup_stackheap() if you are still using
__user_initial_stackheap(), unless your implementation of __user_initial_stackheap() is:
* Specialized in some way such that it is complex enough to require its own temporary stack to run on
before it has created the proper stack.
* Has some user-specific special requirement that means it has to be implemented in C rather than in
assembly language.

Configuring the heap from bare machine C using _init_alloc and __rt_heap_extend

If you are using a heap implementation from bare machine C (that is an application that does not define

main() and does not initialize the C library) you must define the base and top of the heap as well as

providing a heap extension function.

1. Call _init_alloc(base, top) to define the base and top of the memory you want to manage as a
heap.

Note
The parameters of _init_alloc(base, top) must be eight-byte aligned.

2. Define the function unsigned __ rt_heap_extend(unsigned size, void **block) to handle calls
to extend the heap when it becomes full.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-65
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.11 Stack and heap memory allocation and the ARM C and C++ libraries

Stack and heap collision detection

By default, if memory allocated for the heap is destined to overlap with memory that lies in close
proximity with the stack, the potential collision of heap and stack is automatically detected and the
requested heap allocation fails. If you do not require this automatic collision detection, you can save a
small amount of code size by disabling it with #pragma import _ use_two_region_memory.

Note

The memory allocation functions (malloc(), realloc(), calloc(), posix_memalign()) attempt to
detect allocations that collide with the current stack pointer. Such detection cannot be guaranteed to
always be successful.

Although it is possible to automatically detect expansion of the heap into the stack, it is not possible to
automatically detect expansion of the stack into heap memory.

For legacy purposes, it is possible for you to bypass all of these methods and behavior. You can do this
by defining the following functions to perform your own stack and heap memory management:

__rt_stackheap_init()
__rt_heap_extend()

Extending heap size at runtime

To enable the heap to extend into areas of memory other than the region of memory that is specified
when the program starts, you can redefine the function __user_heap_extend().

__user_heap_extend() returns blocks of memory for heap usage in extending the size of the heap.

Related concepts
1.11.4 Legacy support for __user_initial_stackheap() on page 1-66.

Related references
4.52 _user_heap_extend() on page 4-193.

4.53 _user heap extent() on page 4-194.

4.61 Legacy function __user_initial_stackheap() on page 4-204.
4.27 _rt _heap extend() on page 4-167.

4.31 _rt stackheap init() on page 4-171.

4.54 __user_setup stackheap() on page 4-195.

4.55 vectab_stack and reset on page 4-196.

4.54 __user setup stackheap() on page 4-195.

Related information
Specifying stack and heap using the scatter file.

1.11.4 Legacy support for __user_initial_stackheap()

Defined in rt_misc.h, __user_initial_stackheap() is supported for backwards compatibility with
earlier versions of the ARM C and C++ libraries.

Note

ARM recommends that you use __user_setup_stackheap() in preference to
__user_initial_stackheap().

The differences between __user_initial_stackheap() and __user_setup_stackheap() are:

__user_initial_stackheap() receives the stack pointer (containing the same value it had on entry
to __main()) in rl, and is expected to return the new stack base in ri.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-66
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362065977713.html

1 The ARM C and C++ Libraries
1.11 Stack and heap memory allocation and the ARM C and C++ libraries

__user_setup_stackheap() receives the stack pointer in sp, and returns the stack base in sp.

e _ user_initial_stackheap() is provided with a small temporary stack to run on. This temporary
stack enables __user_initial_stackheap() to be implemented in C, providing that it uses no more
than 88 bytes of stack space.

__user_setup_stackheap() has no temporary stack and cannot usually be implemented in C.

Using __user_setup_stackheap() instead of _ user_initial_stackheap() reduces code size,
because __user_setup_stackheap() has no requirement for a temporary stack.

In the following circumstances you cannot use the provided __user_setup_stackheap() function, but
you can use the __user_initial_stackheap() function:

* Your implementation is sufficiently complex that it warrants the use of a temporary stack when
setting up the initial heap and stack.

* You have a requirement to implement the heap and stack creation code in C rather than in assembly
language.

Related concepts
1.11.3 Stack pointer initialization and heap bounds on page 1-64.

Related references
4.61 Legacy function __user_initial stackheap() on page 4-204.
4.54 __user setup stackheap() on page 4-195.

1.11.5 Avoiding the heap and heap-using library functions supplied by ARM

If you are developing embedded systems that have limited RAM or that provide their own heap

management (for example, an operating system), you might require a system that does not define a heap
area.

To avoid using the heap you can either:

* Re-implement the functions in your own application.
« Write the application so that it does not call any heap-using function.

You can reference the __use_no_heap or __use_no_heap_region symbols in your code to guarantee
that no heap-using functions are linked in from the ARM library. You are only required to import these
symbols once in your application, for example, using either:

e IMPORT __use_no_heap from assembly language.

e #pragma import(__use_no_heap) from C.

If you include a heap-using function and also reference __use_no_heap or __use_no_heap_region, the
linker reports an error. For example, the following sample code results in the linker error shown:

#include <stdio.h>

#include <stdlib.h>

#pragma import(__use_no_heap)
void main()

char *p = malloc(256);
}

Error: L6915E: Library reports error: __use_no_heap was requested, but malloc was referenced

To find out which objects are using the heap, link with --verbose --list=out.txt, search the output
for the relevant symbol (in this case malloc), and find out what object referenced it.

__use_no_heap guards against the use of malloc(), realloc(), free(), and any function that uses
those functions. For example, calloc() and other stdio functions.

__use_no_heap_region has the same properties as __use_no_heap, but in addition, guards against other
things that use the heap memory region. For example, if you declare main() as a function taking
arguments, the heap region is used for collecting argc and argv.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-67
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.11 Stack and heap memory allocation and the ARM C and C++ libraries

Related references
1.6.7 Indirect semihosting C library function dependencies on page 1-37.
1.11.2 Choosing a heap implementation for memory allocation functions on page 1-63.

Related information
--list=filename linker option.

--verbose linker option.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-68
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075513188.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075621495.html

1 The ARM C and C++ Libraries
1.12 Tailoring input/output functions in the C and C++ libraries

1.12 Tailoring input/output functions in the C and C++ libraries

The input/output library functions, such as the high-level fscanf() and fprintf(), and the low-level
fputc() and ferror(), and the C++ object std: : cout, are not target-dependent. However, the high-
level library functions perform input/output by calling the low-level ones. These low-level functions call
system /O functions that are target-dependent.

To retarget input/output, you can:

* Avoid the high-level library functions.

* Redefine the low-level library functions.
* Redefine the system I/O functions.

Whether redefining the low-level library functions or redefining the system I/O functions is a better
solution depends on your use. For example, UARTSs write a single character at a time and the default
fputc() uses buffering, so redefining this function without a buffer might suit a UART. However, where
buffer operations are possible, redefining the system I/O functions would probably be more appropriate.

Related concepts

1.14 The C library printf family of functions on page 1-72.

1.15 The C library scanf family of functions on page 1-73.

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 1-74.

1.17 The C library functions fread(), fgets() and gets() on page 1-76.

1.18 Re-implementing __backspace() in the C library on page 1-77.

1.19 Re-implementing __backspacewc() in the C library on page 1-78.

1.20 Redefining target-dependent system I/O functions in the C library on page 1-79.

Related references

1.6.6 Direct semihosting C library function dependencies on page 1-36.
1.6.7 Indirect semihosting C library function dependencies on page 1-37.
1.7.1 Building an application without the C library on page 1-40.

1.13 Target dependencies on low-level functions in the C and C++ libraries on page 1-70.
4.38 sys_close() on page 4-179.

4.39 sys_command_string() on page 4-180.

4.40 sys ensure() on page 4-181.

4.42 sys_flen() on page 4-183.

4.43 sys_istty() on page 4-184.

4.44 sys open() on page 4-185.

4.45 sys_read() on page 4-186.

4.46 sys_seek() on page 4-187.

4.47 sys tmpnam() on page 4-188.

4.48 sys_write() on page 4-189.

4.8 fisatty() on page 4-147.

4.43 sys_istty() on page 4-184.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-69
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.13 Target dependencies on low-level functions in the C and C++ libraries

1.13 Target dependencies on low-level functions in the C and C++ libraries

Higher-level C and C++ library input/output functions are built upon lower-level functions. If you define
your own versions of the lower-level functions, you can use the library versions of the higher-level
functions directly.

The following table shows the dependencies of the higher-level functions on lower-level functions.
fgetc() uses _ FILE, but fputc() uses _ FILE and ferror().

Note

You must provide definitions of __stdin and __stdout if you use any of their associated high-level
functions. This applies even if your re-implementations of other functions, such as fgetc() and
fputc(), do not reference any data stored in __stdin and __stdout.

Table key:

1. _ FILE, the file structure.

2. _ stdin, the standard input object of type _ FILE.

3. __stdout, the standard output object of type _ FILE.

4. fputc(), outputs a character to a file.

5. ferror(), returns the error status accumulated during file 1/0.
6. fgetc(), gets a character from a file.

7. fgetwc()

8. fputwc()

9. _ backspace(), moves the file pointer to the previous character.
10. __backspacewc().

Table 1-9 Input/output dependencies

High-level function Low-level object

12345678910

fgets X - - - XX - - - -
fgetws X - - - - - X - - -
fprintf X - - X X - - - - -
fputs X = - X - - - - - -
fputws X = = = = - - X - -
fread X - = = = X - - - -
fscanf X - - - = X - - X -
fwprintf X - - = X - - X - -
fwrite X - = X = - = - - -
fwscanf X - - - - - X - - X
getchar X X - - - X - - - -
gets X X - - X X - - - -
getwchar X X - - - - X - - -
perror X - X X - - - - - -
printf X - X X X - - - - -
putchar X - X X - - - - - -
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-70

reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.13 Target dependencies on low-level functions in the C and C++ libraries

Table 1-9 Input/output dependencies (continued)

High-level function Low-level object

123456738910

puts X - X X - - - - - -
putwchar X - X - - - - X - -
scanf X X - - - X - - X -
vfprintf X - - X X - - - - -
vfscanf X - - - = X - - X -
vfwprintf X - - -X- - X - -
vfwscanf X - - - - - X - - X
vprintf X - X X X - - - - -
vscanf X X - - - X - - X -
vwprintf X - X - X - - X - -
vwscanf X X - - - - X - - X
wprintf X - X - X - - X - -
wscanf X X - - - - X - - X

Note

If you choose to re-implement fgetc(), fputc(), and _ backspace(), be aware that fopen() and
related functions use the ARM layout for the _ FILE structure. You might also have to re-implement
fopen() and related functions if you define your own version of __ FILE.

Related concepts

1.14 The C library printf family of functions on page 1-72.

1.15 The C library scanf family of functions on page 1-73.

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 1-74.

1.17 The C library functions fread(), fgets() and gets() on page 1-76.

1.18 Re-implementing __backspace() in the C library on page 1-77.

1.19 Re-implementing backspacewc() in the C library on page 1-78.

1.20 Redefining target-dependent system I/O functions in the C library on page 1-79.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.

Related information
ISO C Reference.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-71
reserved.
Confidential - Draft - Beta

http://www.open-std.org/

1 The ARM C and C++ Libraries
1.14 The C library printf family of functions

1.14 The C library printf family of functions

The printf family consists of _printf(), printf(), _fprintf(), fprintf(), vprintf(), and
vfprintf().

All these functions use __FILE opaquely and depend only on the functions fputc() and ferror(). The
functions _printf() and _fprintf() are identical to printf() and fprintf() except that they cannot
format floating-point values.

The standard output functions of the form _printf(...) are equivalent to:
fprintf(& __stdout, ...)

where __stdout has type _ FILE.

Related concepts

1.15 The C library scanf family of functions on page 1-73.

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 1-74.

1.17 The C library functions fread(), fgets() and gets() on page 1-76.

1.18 Re-implementing __backspace() in the C library on page 1-77.

1.19 Re-implementing backspacewc() in the C library on page 1-78.

1.20 Redefining target-dependent system I/O functions in the C library on page 1-79.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.
1.13 Target dependencies on low-level functions in the C and C++ libraries on page 1-70.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-72
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.15 The C library scanf family of functions

1.15 The C library scanf family of functions

The scanf() family consists of scanf() and fscanf().
These functions depend only on the functions fgetc(), _ FILE, and _ backspace().
The standard input function of the form scanf(...) is equivalent to:

fscanf(& __stdin, ...)

where __stdin is of type _ FILE.

Related concepts

1.14 The C library printf family of functions on page 1-72.

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 1-74.

1.17 The C library functions fread(), fgets() and gets() on page 1-76.

1.18 Re-implementing __backspace() in the C library on page 1-77.

1.19 Re-implementing __backspacewc() in the C library on page 1-78.

1.20 Redefining target-dependent system 1/O functions in the C library on page 1-79.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.
1.13 Target dependencies on low-level functions in the C and C++ libraries on page 1-70.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-73
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C library

1.16 Redefining low-level library functions to enable direct use of high-level
library functions in the C library
If you define your own version of __FILE, your own fputc() and ferror() functions, and the __ stdout

object, you can use all of the printf() family, fwrite(), fputs(), puts() and the C++ object
std: : cout unchanged from the library.

These examples show you how to do this. However, consider modifying the system I/O functions instead
of these low-level library functions if you require real file handling.

You are not required to re-implement every function shown in these examples. Only re-implement the
functions that are used in your application.

Retargeting printf()

#include <stdio.h>
struct _ FILE

int handle;
/* Whatever you require here. If the only file you are using is */
/* standard output using printf() for debugging, no file handling */
/* is required. */

¥

/* FILE is typedef’d in stdio.h. */

FILE _ stdout;

int fputc(int ch, FILE *f)

/* Your implementation of fputc(). */
return ch;

¥
int ferror(FILE *f)

/* Your implementation of ferror(). */
return 0;

void test(void)

printf("Hello world\n");

Note

Be aware of endianness with fputc(). fputc() takes an int parameter, but contains only a character.
Whether the character is in the first or the last byte of the integer variable depends on the endianness.
The following code sample avoids problems with endianness:

extern void sendchar(char *ch);
int fputc(int ch, FILE *f)

/* example: write a character to an LCD */

char tempch = ch; // temp char avoids endianness issue
sendchar(&tempch); // sendchar(&ch) would not work everywhere
return ch;

Retargeting cout
File 1: Re-implement any functions that require re-implementation.

#include <stdio.h>
namespace std {
struct _ FILE

int handle;

/* Whatever you require here. If the only file you are using is */
/* standard output using printf() for debugging, no file handling */
/* is required. */

¥

FILE _ stdout;
FILE _ stdin;

FILE __ stderr;

int fgetc(FILE *f)

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-74
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C library

/* Your implementation of fgetc(). */
return 0;

%at fputc(int c, FILE *stream)

/* Your implementation of fputc(). */
int ferror(FILE *stream)

/* Your implementation of ferror(). */
%ong int ftell(FILE *stream)

/* Your implementation of ftell(). */
%nt fclose(FILE *f)

/* Your implementation of fclose(). */
return 0;

¥
int fseek(FILE *f, long nPos, int nMode)

/* Your implementation of fseek(). */
return 0;

}
int fflush(FILE *f)

/* Your implementation of fflush(). */
return 0;

}

File 2: Print "Hello world" using your re-implemented functions.

#include <stdio.h>
#include <iostream>
using namespace std;
int main()

cout << "Hello world\n";
return 0;

By default, fread() and fwrite() call fast block input/output functions that are part of the ARM stream
implementation. If you define your own __FILE structure instead of using the ARM stream
implementation, fread() and fwrite() call fgetc() instead of calling the block input/output functions.

Related concepts
1.14 The C library printf family of functions on page 1-72.
1.15 The C library scanf family of functions on page 1-73.

1.17 The C library functions fread(), fgets() and gets() on page 1-76.
1.18 Re-implementing backspace() in the C library on page 1-77.
1.19 Re-implementing __backspacewc() in the C library on page 1-78.

1.20 Redefining target-dependent system 1/O functions in the C library on page 1-79.

Related references

1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.

1.13 Target dependencies on low-level functions in the C and C++ libraries on page 1-70.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights

reserved.
Confidential - Draft - Beta

1-75

1 The ARM C and C++ Libraries
1.17 The C library functions fread(), fgets() and gets()

1.17 The C library functions fread(), fgets() and gets()

The functions fread(), fgets(), and gets() are implemented as fast block input/output functions
where possible.

These fast implementations are part of the ARM stream implementation and they bypass fgetc().
Where the fast implementation is not possible, they are implemented as a loop over fgetc() and
ferror(). Each uses the FILE argument opaquely.

If you provide your own implementation of _ FILE, _ stdin (for gets()), fgetc(), and ferror(), you
can use these functions, and the C++ object std: : cin directly from the library.

Related concepts

1.14 The C library printf family of functions on page 1-72.

1.15 The C library scanf family of functions on page 1-73.

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 1-74.

1.18 Re-implementing __backspace() in the C library on page 1-77.

1.19 Re-implementing __backspacewc() in the C library on page 1-78.

1.20 Redefining target-dependent system 1/O functions in the C library on page 1-79.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.
1.13 Target dependencies on low-level functions in the C and C++ libraries on page 1-70.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-76
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.18 Re-implementing __backspace() in the C library

1.18 Re-implementing __backspace() in the C library

The function __backspace() is used by the scanf family of functions, and must be re-implemented if
you retarget the stdio arrangements at the fgetc() level.

Note

Normally, you are not required to call __backspace() directly, unless you are implementing your own
scanf-like function.

The syntax is:
int _ backspace(FILE *stream);

__backspace(stream) must only be called after reading a character from the stream. You must not call
it after a write, a seek, or immediately after opening the file, for example. It returns to the stream the last
character that was read from the stream, so that the same character can be read from the stream again by
the next read operation. This means that a character that was read from the stream by scanf but that is
not required (that is, it terminates the scanf operation) is read correctly by the next function that reads
from the stream.

__backspace is separate from ungetc(). This is to guarantee that a single character can be pushed back
after the scanf family of functions has finished.

The value returned by __backspace() is either @ (success) or EOF (failure). It returns EOF only if used
incorrectly, for example, if no characters have been read from the stream. When used correctly,
__backspace() must always return @, because the scanf family of functions do not check the error
return.

The interaction between __backspace() and ungetc() is:

+ Ifyouapply _ backspace() to a stream and then ungetc() a character into the same stream,
subsequent calls to fgetc () must return first the character returned by ungetc(), and then the
character returned by __backspace().

» Ifyouungetc() a character back to a stream, then read it with fgetc(), and then backspace it, the
next character read by fgetc () must be the same character that was returned to the stream. That is
the _ backspace() operation must cancel the effect of the fgetc() operation. However, another call
to ungetc() after the call to __backspace() is not required to succeed.

» The situation where you ungetc() a character into a stream and then __backspace() another one
immediately, with no intervening read, never arises. __backspace() must only be called after
fgetc(), so this sequence of calls is illegal. If you are writing __backspace() implementations, you
can assume that the ungetc () of a character into a stream followed immediately by a __backspace()
with no intervening read, never occurs.

Related concepts

1.14 The C library printf family of functions on page 1-72.

1.15 The C library scanf family of functions on page 1-73.

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 1-74.

1.17 The C library functions fread(), fgets() and gets() on page 1-76.

1.19 Re-implementing __backspacewc() in the C library on page 1-78.

1.20 Redefining target-dependent system I/O functions in the C library on page 1-79.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.
1.13 Target dependencies on low-level functions in the C and C++ libraries on page 1-70.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-77
reserved.
Confidential - Draft - Beta

1.19 Re-

1 The ARM C and C++ Libraries
1.19 Re-implementing __backspacewc() in the C library

implementing __backspacewc() in the C library
__backspacewc() is the wide-character equivalent of __backspace().

__backspacewc() behaves in the same way as __backspace() except that it pushes back the last wide
character instead of a narrow character.

Related concepts
1.14 The C library printf family of functions on page 1-72.
1.15 The C library scanf family of functions on page 1-73.

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 1-74.

1.17 The C library functions fread(), fgets() and gets() on page 1-76.
1.18 Re-implementing __backspace() in the C library on page 1-77.
1.20 Redefining target-dependent system I/O functions in the C library on page 1-79.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.
1.13 Target dependencies on low-level functions in the C and C++ libraries on page 1-70.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-78
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries

1.20 Redefining target-dependent system I/O functions in the C library

Redefining target-dependent system I/O functions in the C library

The default target-dependent 1/O functions use semihosting. If any of these functions are redefined, then

they must all be redefined.

The function prototypes are contained in rt_sys.h. These functions are called by the C standard I/O
library functions. For example, _sys_open() is called by fopen() and freopen(). _sys_open() uses
the strings __stdin_name, __stdout_name, and __stderr_name during C library initialization to
identify which standard I/O device handle to return. You can leave their values as the default (:tt) if

_sys_open() does not use them.

The following example shows you how to redefine the required functions for a device that supports

writing but not reading.

Example of retargeting the system 1/O functions

/

These names are used during library initialization as the

As we define _sys_open() to always return the same file handle,

*
*
* file names opened for stdin, stdout, and stderr.
*
*

these can be left as their default values.

*/

const char __stdin_name[] = ":tt";
const char __stdout_name[] = ":tt";
const char __stderr_name[] = ":tt";

FILEHANDLE _sys_open(const char *name, int openmode)
return 1; /* everything goes to the same output */

¥

int _sys_close(FILEHANDLE fh)

{

return 0;

int _sys_write(FILEHANDLE fh, const unsigned char *buf,

unsigned len, int mode)

your_device_write(buf, len);
return 0;

}
int _sys_read(FILEHANDLE fh, unsigned char *buf,
unsigned len, int mode)

return -1; /* not supported */
¥
void _ttywrch(int ch)
{

char ¢ = ch;
your_device_write(&c, 1);

%nt _sys_istty(FILEHANDLE fh)
return @; /* buffered output */

{nt _sys_seek(FILEHANDLE fh, long pos)
return -1; /* not supported */

iong _sys_flen(FILEHANDLE fh)

return -1; /* not supported */

}

rt_sys.h defines the type FILEHANDLE. The value of FILEHANDLE is returned by _sys_open() and

identifies an open file on the host system.

If the system I/O functions are redefined, both normal character I/O and wide character I/O work. That
is, you are not required to do anything extra with these functions for wide character 1/0 to work.

Related concepts
1.14 The C library printf family of functions on page 1-72.
1.15 The C library scanf family of functions on page 1-73.

ARM DUI0378G_02

reserved.
Confidential - Draft - Beta

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. Al rights

1-79

1 The ARM C and C++ Libraries
1.20 Redefining target-dependent system I/O functions in the C library

1.16 Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 1-74.

1.17 The C library functions fread(), fgets() and gets() on page 1-76.

1.18 Re-implementing __backspace() in the C library on page 1-77.

1.19 Re-implementing backspacewc() in the C library on page 1-78.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.
1.13 Target dependencies on low-level functions in the C and C++ libraries on page 1-70.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-80
reserved.
Confidential - Draft - Beta

1.21 Tail

1 The ARM C and C++ Libraries
1.21 Tailoring non-input/output C library functions

oring non-input/output C library functions

In addition to tailoring input/output C library functions, many C library functions that are not input/
output functions can also be tailored.

Implementation of these ISO standard functions depends entirely on the target operating system.

The default implementation of these functions is semihosted. That is, each function uses semihosting.

Related references

1.6.6 Direct semihosting C library function dependencies on page 1-36.
1.6.7 Indirect semihosting C library function dependencies on page 1-37.
4.3 clock() on page 4-142.

4.4 clock init() on page 4-143.

4.50 time() on page 4-191.

4.21 remove() on page 4-161.

4.22 rename() on page 4-162.

4.49 system() on page 4-190.

4.10 getenv() on page 4-149.

4.11 getenv_init() on page 4-150.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-81
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.22 Real-time integer division in the ARM libraries

1.22 Real-time integer division in the ARM libraries

The ARM library provides a real-time division routine and a standard division routine.

The standard division routine supplied with the ARM libraries provides good overall performance.
However, the amount of time required to perform a division depends on the input values. For example, a
division that generates a four-bit quotient might require only 12 cycles while a 32-bit quotient might
require 96 cycles. Depending on your target, some applications require a faster worst-case cycle count at
the expense of lower average performance. For this reason, the ARM library provides two divide
routines.

The real-time routine:

+ Always executes in fewer than 45 cycles.

» Is faster than the standard division routine for larger quotients.

» Is slower than the standard division routine for typical quotients.
* Returns the same results.

* Does not require any change in the surrounding code.

Note

Real-time division is not available in the libraries for Cortex-M1 or Cortex-MO.

Note

The Cortex-R4 and Cortex-M3 processors support hardware floating-point divide, so they do not require
the library divide routines.

Select the real-time divide routine using either of the following methods:
e IMPORT _ use_realtime_division from assembly language.
e #pragma import(__use_realtime_division) from C.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-82
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.23 ISO C library implementation definition

1.23 ISO C library implementation definition

Describes how the libraries fulfill the requirements of the ISO specification.

This section contains the following subsections:

o 1.23.1 How the ARM C library fulfills ISO C specification requirements on page 1-83.

o [.23.2 mathlib error handling on page 1-84.

o 1.23.3 ISO-compliant implementation of signals supported by the signal() function in the C library
and additional type arguments on page 1-84.

o 1.23.4 ISO-compliant C library input/output characteristics on page 1-85.

o 1.23.5 Standard C++ library implementation definition on page 1-87.

1.23.1 How the ARM C library fulfills ISO C specification requirements

The ISO specification leaves some features to implementors, but requires that implementation choices be
documented.

The implementation of the generic ARM C library in this respect is as follows:

* The macro NULL expands to the integer constant .

» If a program redefines a reserved external identifier, an error might occur when the program is linked
with the standard libraries. If it is not linked with standard libraries, no error is diagnosed.

* The __aeabi_assert() function prints information on the failing diagnostic on stderr and then
calls the abort () function:

*** assertion failed: expression, file name, line number

Note

The behavior of the assert macro depends on the conditions in operation at the most recent
occurrence of #include <assert.h>. See /.8.6 Program exit and the assert macro on page 1-50 for
more information about the behavior of the assert macro.

* The following functions test for character values in the range EOF (-1) to 255 inclusive:
— isalnum()
— isalpha()
— iscntrl()
— islower()
— isprint()
— isupper()
— ispunct()

* The fully POSIX-compliant functions remquo(), remquof() and remquol() return the remainder of
the division of x by y and store the quotient of the division in the pointer *quo. An implementation-
defined integer value defines the number of bits of the quotient that are stored. In the ARM C library,
this value is set to 4.

* (99 behavior, with respect to mathlib error handling, is enabled by default.

Related concepts
1.23.4 ISO-compliant C library input/output characteristics on page 1-85.
1.8.6 Program exit and the assert macro on page 1-50.

Related references
1.23.2 mathlib error handling on page 1-84.

1.23.3 ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 1-84.

1.23.5 Standard C++ library implementation definition on page 1-87.
1.26 C and C++ library naming conventions on page 1-91.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-83
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.23 ISO C library implementation definition

1.23.2 mathlib error handling

The error handling of mathematical functions is consistent with Annex F of the ISO/IEC C99 standard.

Related concepts
1.23.4 ISO-compliant C library input/output characteristics on page 1-85.
1.23.1 How the ARM C library fulfills ISO C specification requirements on page 1-83.

Related references

1.23.3 ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 1-84.

1.23.5 Standard C++ library implementation definition on page 1-87.

1.23.3 ISO-compliant implementation of signals supported by the signal() function in the C library
and additional type arguments

The signal() function supports a number of signals.

The following table shows the signals supported by the signal() function. It also shows which signals
use an additional argument to give more information about the circumstance in which the signal was
raised. The additional argument is given in the type parameter of _ raise(). For example, division by
floating-point zero results in a SIGFPE signal with a corresponding additional argument of
FE_EX_DIVBYZERO.

Table 1-10 Signals supported by the signal() function

Signal Number Description Additional argument

SIGABRT 1 Returned when the abort () function is called. None
The abort () function is triggered when there is an
untrapped C++ exception, or when an assertion fails.

SIGFPE 2 Signals any arithmetic exception, for example, division by A set of bits from FE_EX_INEXACT,
zero. Used by hard and soft floating-point and by integer FE_EX_UNDERFLOW, FE_EX_OVERFLOW,
division. FE_EX_DIVBYZERO, FE_EX_INVALID,

DIVBYZERO ?

SIGILL 3 Illegal instruction. None

SIGINT ® 4 Attention request from user. None

SIGSEGV?® 5 Bad memory access. None

SIGTERM " 6 Termination request. None

SIGSTAK 7 Obsolete. None

SIGRTRED 8 Redirection failed on a runtime library input/output stream. Name of file or device being re-opened to

redirect a standard stream

SIGRTMEM 9 Out of heap space during initialization or after corruption. Size of failed request

SIGUSR1 10 User-defined. User-defined

SIGUSR2 11 User-defined. User-defined

SIGPVFN 12 A pure virtual function was called from C++. -

SIGCPPL 13 Not normally used. -

4 These constants are defined in fenv.h. FE_EX_DIVBYZERO is for floating-point division while DIVBYZERO is for integer division.

b

The library never generates this signal. It is available for you to raise manually, if required.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-84
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.23 ISO C library implementation definition

Table 1-10 Signals supported by the signal() function (continued)

Signal Number Description Additional argument
reserved 15-31 Reserved. Reserved
other >31 User-defined. User-defined

Although SIGSTAK exists in signal. h, this signal is not generated by the C library and is considered
obsolete.

A signal number greater than SIGUSR2 can be passed through _ raise() and caught by the default
signal handler, but it cannot be caught by a handler registered using signal().

signal() returns an error code if you try to register a handler for a signal number greater than
SIGUSR2.

The default handling of all recognized signals is to print a diagnostic message and call exit(). This
default behavior applies at program startup and until you change it.

Caution

The IEEE 754 standard for floating-point processing states that the default action to an exception is to
proceed without a trap. A raised exception in floating-point calculations does not, by default, generate
SIGFPE. You can modify floating-point error handling by tailoring the functions and definitions in
fenv.h. However, you must compile these functions with a non-default FP model, such as - -
fpmode=ieee_fixed and upwards.

For all the signals in the above table, when a signal occurs, if the handler points to a function, the
equivalent of signal(sig, SIG_DFL) is executed before the call to the handler.

If the SIGILL signal is received by a handler specified to by the signal() function, the default handling
is reset.

Related concepts

1.23.4 ISO-compliant C library input/output characteristics on page 1-85.

1.23.1 How the ARM C library fulfills ISO C specification requirements on page 1-83.
3.6.8 Exception types recognized by the ARM floating-point environment on page 3-134.

Related references

1.23.2 mathlib error handling on page 1-84.

1.23.5 Standard C++ library implementation definition on page 1-87.

1.10 Modification of C library functions for error signaling, error handling, and program exit
on page 1-61.

4.19 raise() on page 4-159.

4.30 __rt raise() on page 4-170.

Related information

--fpmode=model compiler option.

--exceptions, --no_exceptions compiler option.

IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.
1.23.4 ISO-compliant C library input/output characteristics

The generic ARM C library has defined input/output characteristics.

These input/output characteristics are as follows:

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-85
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124917660.html
http://ieeexplore.ieee.org/

1 The ARM C and C++ Libraries
1.23 ISO C library implementation definition

* The last line of a text stream does not require a terminating newline character.

* Space characters written out to a text stream immediately before a newline character do appear when
read back in.

* No NUL characters are appended to a binary output stream.

» The file position indicator of an append mode stream is initially placed at the end of the file.

* A write to a text stream causes the associated file to be truncated beyond the point where the write
occurred if this is the behavior of the device category of the file.

» If semihosting is used, the maximum number of open files is limited by the available target memory.

* A zero-length file exists, that is, where no characters have been written by an output stream.

* A file can be opened many times for reading, but only once for writing or updating. A file cannot
simultaneously be open for reading on one stream, and open for writing or updating on another.

* localtime() is implemented and returns the local time. gmtime () is not implemented and returns
NULL. Therefore converting between time-zones is not supported.

» The status returned by exit() is the same value that was passed to it. For definitions of
EXIT_SUCCESS and EXIT_FAILURE, see the header file stdlib.h. Semihosting, however, does not
pass the status back to the execution environment.

* The error messages returned by the strerror() function are identical to those given by the perror()
function.

» Ifthe size of area requested is zero, calloc() and realloc() return NULL.

+ If the size of area requested is zero, malloc () returns a pointer to a zero-size block.

» abort() closes all open files and deletes all temporary files.

* fprintf() prints %p arguments in lowercase hexadecimal format as if a precision of 8 had been
specified. If the variant form (%#p) is used, the number is preceded by the character @.

* fscanf() treats %p arguments exactly the same as %x arguments.

* fscanf() always treats the character "-" ina%...[...] argument as a literal character.

e ftell(), fsetpos() and fgetpos() set errno to the value of EDOM on failure.

* perror() generates the messages shown in the following table.

Table 1-11 perror() messages

Error Message

0 No error (errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number

Others Unknown error

The following characteristics are unspecified in the ARM C library. They must be specified in an ISO-
compliant implementation:

* The validity of a filename.

* Whether remove() can remove an open file.

* The effect of calling the rename() function when the new name already exists.

* The effect of calling getenv() (the default is to return NULL, no value available).

* The effect of calling system().

* The value returned by clock().

Related concepts
1.23.1 How the ARM C library fulfills ISO C specification requirements on page 1-83.

Related references
1.23.2 mathlib error handling on page 1-84.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-86
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.23 ISO C library implementation definition

1.23.3 ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 1-84.

1.23.5 Standard C++ library implementation definition on page 1-87.

1.23.5

Standard C++ library implementation definition

The ARM C++ library provides all of the library defined in the ISO/IEC 14882 :1998(E) C++ Standard,
aside from some limitations.

For information on implementation-defined behavior that is defined in the Rogue Wave C++ library, see
the Rogue Wave HTML documentation.

The Standard C++ library is distributed in binary form only.

The following table describes the most important features missing from the current release.

Table 1-12 Standard C++ library differences

Standard Implementation differences

locale

The locale message facet is not supported. It fails to open catalogs at runtime because the ARM C library does not support

catopen() and catclose() through nl_types.h. One of two locale definitions can be selected at link time. Other

locales can be created by user-redefinable functions.

Timezone Not supported by the ARM C library.

Thread safety

The following points summarize thread safety in the Rogue Wave C++ library:

* The function std:
:operator new and :
:set_new_handler():

of :
std:

:set_new_handler() is not thread-safe. This means that some forms
:operator delete are not thread-safe with respect to

— The default C++ runtime library implementations of the following use malloc() and free() and
are thread-safe with respect to each other. They are not thread-safe with respect to

std:
:toperator
::operator
::operator
::operator
::operator
:toperator
::operator

::operator

:set_new_handler(). You are permitted to replace them:

new(std::size_t)

new[](std::size_t)

new(std::size_t, const std::nothrow_t&)
new[](std::size_t, const std::nothrow_t)
delete(void*)

delete[](void*)

delete(void*, const std::nothrow_t&)

delete[](void*, const std::nothrow_t&)

— The following placement forms are also thread-safe. You are not permitted to replace them:

::operator
. :operator
:toperator

::operator

new(std::size_t, void*)

new[](std::size_t, void*)
delete(void*, void*)

delete[](void*, void*)

» Construction and destruction of global objects are not thread-safe.
» Construction of local static objects can be made thread-safe if you re-implement the functions

__cxa_guard_acquire(), __

cxa_guard_release(), __cxa_guard_abort(), _cxa_atexit() and

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. Al rights

1-87
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.23 ISO C library implementation definition

__aeabi_atexit() appropriately. For example, with appropriate re-implementation, the following
construction of 1sobj can be made thread-safe:

struct T { T(); };

void f() { static T 1lsobj; }

» Throwing an exception is thread-safe if any user constructors and destructors that get called are also
thread-safe.

* The ARM C++ library uses the ARM C library. To use the ARM C++ library in a multithreaded
environment, you must provide the same functions that you would be required to provide when using
the ARM C library in a multithreaded environment.

Related information
Rogue Wave Standard C++ Library Documentation.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-88
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0729a/index.html

1.24 C library functions and extensions

1 The ARM C and C++ Libraries
1.24 C library functions and extensions

The ARM C library is fully compliant with the ISO C99 library standard and provides a number of GNU,
POSIX, BSD-derived, and ARM Compiler-specific extensions.

The following table describes these extensions.

Table 1-13 C library extensions

Function Header file definition Extension

wcscasecmp() wchar.h GNU extension with ARM library support
wcsncasecmp() wchar.h GNU extension with ARM library support
wcstombs () stdlib.h POSIX extended functionality

posix_memalign() stdlib.h

POSIX extended functionality

alloca() alloca.h Common nonstandard extension to many C libraries
strlcpy() string.h Common BSD-derived extension to many C libraries
strlcat() string.h Common BSD-derived extension to many C libraries
strcasecmp() string.h Standardized by POSIX

strncasecmp() string.h Standardized by POSIX

_fisatty() stdio.h Specific to ARM Compiler

__heapstats() stdlib.h

Specific to ARM Compiler

__heapvalid() stdlib.h

Specific to ARM Compiler

Related references

4.56 wescasecmp() on page 4-197.
4.57 wesncasecmp() on page 4-198.
4.58 westombs() on page 4-199.
4.2 alloca() on page 4-141.

4.36 strlcat() on page 4-177.

4.37 strlcpy() on page 4-178.

4.34 strcasecmp() on page 4-175.
4.35 strncasecmp() on page 4-176.
4.8 fisatty() on page 4-147.

4.12 _ heapstats() on page 4-151.
4.13 _ heapvalid() on page 4-152.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-89
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.25 Compiler generated and library-resident helper functions

1.25 Compiler generated and library-resident helper functions

Compiler support or helper functions specific to the compilation tools are typically used when the
compiler cannot easily produce a suitable code sequence itself.

In RVCT 5.06 and later, the ARM Compiler options --common_functions and
--no_common_functions control whether the compiler generates and embeds helper functions in the
resulting object files, or whether the helper functions reside in libraries.

In RVCT v4.0 and later, the compiler generates and embeds helper functions in the resulting object files.

In RVCT v3.1 and earlier, the helper functions reside in libraries. Because these libraries are specific to
the ARM Compiler, they are intended to be redistributed as necessary with your own code. For example,
if you are distributing a library to a third party, they might also require the appropriate helper library to
link their final application successfully. Be aware of redistribution rights of the libraries, as specified in
your End User License Agreement.

Related references
1.26 C and C++ library naming conventions on page 1-91.

Related information

--common_functions, --no_common_functions compiler option.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-90
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/sam1435746567059.html

1 The ARM C and C++ Libraries
1.26 C and C++ library naming conventions

1.26 C and C++ library naming conventions

The library filename identifies how the variant was built.

Note

The library naming convention described in this documentation applies to the current release of the ARM
compilation tools. Do not rely on C and C++ library names. They might change in future releases.

Normally, you do not have to list any of the C and C++ libraries explicitly on the linker command line.
The ARM linker automatically selects the correct C or C++ libraries to use, and it might use several,
based on the accumulation of the object attributes.

The values for the fields of the filename, and the relevant build options are:

root/prefix_arch[fpu][entrant][enum][wchar].endian

root

cpplib

prefix

cpp

cpprt

J

fz

mc

mf

arch

An ARM C++ library.

ISO C and C++ basic runtime support.
Rogue Wave C++ library.
The ARM C++ runtime libraries.

--fpmode=ieee_fixed.

IEEE-compliant library with a fixed rounding mode (round to nearest) and no inexact
exceptions.

--fpmode=ieee_no_fenv.

IEEE-compliant library with a fixed rounding mode (round to nearest) and no
exceptions.

--fpmode=fast or --fpmode=std.
Behaves like the fj library, but additionally flushes denormals and infinities to zero.

This library behaves like the ARM VFP in Fast mode. This is the default.

--fpmode=ieee_full.

IEEE-compliant library with configurable rounding mode and all IEEE exceptions.
Compiler support (helper function) library.

Transcendental math functions.

Non ISO C-compliant ISO C micro-library basic runtime support.

Non IEEE 754 floating-point compliant micro-library support.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-91

reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.26 C and C++ library naming conventions

4
An ARM only library for use with ARMv4.
t
An ARM/Thumb interworking library for use with ARMv4T.
5
An ARM/Thumb interworking library for use with ARMvVST and later.
W
A Thumb only library for use with ARMv6-M.
p
A Thumb only library for use with ARMv7-M.
2
A combined ARM and Thumb library for use with Cortex-R series processors. You can
prevent this library being selected using the linker option --no_thumb2_library.
fpu
m
A variant of the library for processors that have single-precision hardware floating-
point only, such as Cortex-M4.
\"
Uses VFP instruction set.
s
Soft VFP.
Note
If none of v, m, or s are present in a library name, the library provides no floating-point
support.
entrant
e
Position-independent access to static data.
.F
FPIC addressing is enabled.
Note
If neither e nor f is present in a library name, the library either:
» Uses position-dependent access to static data. This is the case for the main C
libraries with prefixes ¢ or mc.
* Does not access static data, or does so only with the help of the main C library. This
is the case for fplib and mathlib libraries with prefixes fz, 3, f, g, mf, or m.
enum
n
Compatible with the compiler option, --enum_is_int.
wchar
u
Indicates the size of wchar_t.When present, the library is compatible with the compiler
option, --wchar32. Otherwise, it is compatible with - -wchar16.
endian
1
Little-endian.
b
Big-endian.
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-92

reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.26 C and C++ library naming conventions

For example:

armlib/c_4.b
cpplib/cpprt_5f.1
Note

Not all variant/name combinations are valid. See the armlib and cpplib directories for the libraries that
are supplied with the ARM Compiler.

The linker command-line option --info libraries provides information on every library that is
automatically selected for the link stage.

Related concepts
1.25 Compiler generated and library-resident helper functions on page 1-90.

Related information
--enum_is_int compiler option.
--wcharl6 compiler option.
--wchar32 compiler option.
--info=topic/,topic,...] linker option.
--thumb?2_library linker option.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-93
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124917192.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124951825.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124952075.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075490033.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075607215.html

1 The ARM C and C++ Libraries
1.27 Using macro__ ARM_WCHAR_NO_]O to disable FILE declaration and wide I/O function prototypes

1.27 Using macro__ ARM_WCHAR_NO_IO to disable FILE declaration and wide 1/O
function prototypes

In strict C/C++ mode, the header files wchar.h and cwchar do not declare the FILE type. You can also
define the macro __ ARM_WCHAR_NO_IO to cause these header files not to declare FILE or the wide I/O
function prototypes.

Declaring the FILE type can lead to better consistency in debug information.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-94
reserved.
Confidential - Draft - Beta

1 The ARM C and C++ Libraries
1.28 Using library functions with execute-only memory

1.28 Using library functions with execute-only memory

The ARM Compiler lets you build applications for execute-only memory. However, the ARM C and
C++ libraries are not execute-only compliant.

If your application calls library functions, the library objects included in the image are not execute-only
compliant. You must ensure these objects are not assigned to an execute-only memory region.

Note

ARM does not provide libraries that are built without literal pools. The libraries still use literal pools,
even when you use the various --no_*_literal_pools options.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 1-95
reserved.
Confidential - Draft - Beta

Chapter 2

The AR

M C Micro-library

Describes microlib, the C micro-library.

It contains the following sections:
» 2.1 About microlib on page 2-97.

* 2.2 Differences between microlib and the default C library on page 2-98.

» 2.3 Library heap usage requirements of microlib on page 2-100.

* 2.4 150 C features missing from microlib on page 2-101.

* 2.5 Building an application with microlib on page 2-103.

* 2.6 Configuring the stack and heap for use with microlib on page 2-104.
o 2.7 Entering and exiting programs linked with microlib on page 2-105.
» 2.8 Tailoring the microlib input/output functions on page 2-106.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights
reserved.
Confidential - Draft - Beta

2-96

2 The ARM C Micro-library
2.1 About microlib

21 About microlib

Microlib is an alternative library to the default C library. It is intended for use with deeply embedded
applications that must fit into extremely small memory footprints.

These applications do not run under an operating system.

Note
Microlib does not attempt to be an ISO C-compliant library.

Microlib is highly optimized for small code size. It has less functionality than the default C library and
some ISO C features are completely missing. Some library functions are also slower.

Functions in microlib are responsible for:
* Creating an environment that a C program can execute in. This includes:

— Creating a stack.

— Creating a heap, if required.

— Initializing the parts of the library the program uses.
» Starting execution by calling main().

Related concepts

2.2 Differences between microlib and the default C library on page 2-98.
2.3 Library heap usage requirements of microlib on page 2-100.

2.4 IS0 C features missing from microlib on page 2-101.

2.5 Building an application with microlib on page 2-103.

2.7 Entering and exiting programs linked with microlib on page 2-105.

Related tasks
2.6 Configuring the stack and heap for use with microlib on page 2-104.

Related references
2.8 Tailoring the microlib input/output functions on page 2-106.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-97
reserved.
Confidential - Draft - Beta

2 The ARM C Micro-library
2.2 Differences between microlib and the default C library

2.2 Differences between microlib and the default C library

There are a number of differences between microlib and the default C library.

The main differences are:

Microlib is not compliant with the ISO C library standard. Some ISO features are not supported and
others have less functionality.

Microlib is not compliant with the IEEE 754 standard for binary floating-point arithmetic.

Microlib is highly optimized for small code size.

Locales are not configurable. The default C locale is the only one available.

main() must not be declared to take arguments and must not return. In main, argc and argv
parameters are undefined and cannot be used to access command-line arguments.

Microlib provides limited support for C99 functions. Specifically, microlib does not support the
following C99 functions:

— <fenv.h> functions:

feclearexcept fegetenv fegetexceptflag
fegetround feholdexcept feraiseexcept
fesetenv fesetexceptflag fesetround
fetestexcept feupdateenv

— Wide characters in general:
btowc fgetwc fgetws fputwc
fputws fwide fwprintf fwscanf
getwc getwchar iswalnum iswalpha
iswblank iswcntrl iswctype iswdigit
iswgraph iswlower iswprint iswpunct
iswspace iswupper iswxdigit mblen
mbrlen mbsinit mbsrtowcs mbstowcs
mbtowc putwc putwchar swprintf
swscanf towctrans towlower towupper
ungetwc vfwprintf vfwscanf vswprintf
vswscanf vwprintf vwscanf wcscat
wcschr wcscmp wcscoll wcscspn
wcsftime wcslen wcsncat wcsncmp
wcsncpy wcspbrk wcsrchr wcsrtombs
wcsspn wcsstr wcstod wcstof
wcstoimax wcstok wcstol wcstold
wcstoll wcstombs wcstoul wcstoull
wcstoumax wesxfrm wctob wctomb
wctrans wctype wmemchr wmemcmp
wmemcpy wmemmove wmemset wprintf
wscanf

— Auxiliary <math.h> functions:
ilogb ilogbf ilogbl
lgamma lgammaf lgammal
logb logbf logbl
nextafter nextafterft nextafterl
nexttoward nexttowardf nexttowardl

— Functions relating to program startup and shutdown and other OS interaction:

_Exit
system

Microlib does not support C++.

atexit

time

Microlib does not support operating system functions.

Microlib does not support position-independent code.

Microlib does not provide mutex locks to guard against code that is not thread safe.

Microlib does not support wide characters or multibyte strings.

Microlib does not support selectable one or two region memory models as the standard library
(stdlib) does. Microlib provides only the two region memory model with separate stack and heap

regions.

Microlib does not support the bit-aligned memory functions _membitcpy[b|h|w][b|1]() and
membitmove[b|h|w][b]|1]().
Microlib can be used with either - -fpmode=std or - -fpmode=fast.

The level of ANSI C stdio support that is provided can be controlled with #pragma
import(__use_full_stdio).

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-98

reserved.
Confidential - Draft - Beta

2 The ARM C Micro-library
2.2 Differences between microlib and the default C library

* #pragma import(__use_smaller_memcpy) selects a smaller, but slower, version of memcpy ().
* setvbuf() and setbuf() always fail because all streams are unbuffered.
* feof() and ferror() always return @ because the error and EOF indicators are not supported.

Related concepts

2.1 About microlib on page 2-97.

2.3 Library heap usage requirements of microlib on page 2-100.

2.4 1SO C features missing from microlib on page 2-101.

2.5 Building an application with microlib on page 2-103.

2.7 Entering and exiting programs linked with microlib on page 2-105.

Related tasks
2.6 Configuring the stack and heap for use with microlib on page 2-104.

Related references
2.8 Tailoring the microlib input/output functions on page 2-106.

Related information

--fpmode=model compiler option.
#pragma import(__use_full stdio).
#pragma import(__use_smaller_memcpy).

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-99
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124987988.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124988222.html

2 The ARM C Micro-library
2.3 Library heap usage requirements of microlib

2.3 Library heap usage requirements of microlib
Library heap usage requirements for microlib differ to those of standardlib.
The differences are:

* The size of heap memory allocated for fopen() is 20 bytes for the FILE structure.
* No buffer is ever allocated.

You must not declare main() to take arguments if you are using microlib.
Note

The size of heap memory allocated for fopen() might change in future releases.

Related concepts

1.11.1 Library heap usage requirements of the ARM C and C++ libraries on page 1-62.
2.1 About microlib on page 2-97.

2.2 Differences between microlib and the default C library on page 2-98.

2.4 1SO C features missing from microlib on page 2-101.

2.5 Building an application with microlib on page 2-103.

2.7 Entering and exiting programs linked with microlib on page 2-105.

Related tasks
2.6 Configuring the stack and heap for use with microlib on page 2-104.

Related references
2.8 Tailoring the microlib input/output functions on page 2-106.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-100
reserved.
Confidential - Draft - Beta

2 The ARM C Micro-library
2.4 ISO C features missing from microlib

24 ISO C features missing from microlib
Microlib does not support all ISO C90 features.
Major ISO C90 features not supported by microlib are:

Wide character and multibyte support
All functions dealing with wide characters or multibyte strings are not supported by microlib. A
link error is generated if these are used. For example, mbtowc (), wctomb (), mbstowcs() and
wecstombs (). All functions defined in Normative Addendum 1 are not supported by microlib.

Operating system interaction
Almost all functions that interact with an operating system are not supported by microlib. For
example, abort(), exit(), atexit(), assert(), time(), system() and getenv(). An
exception is clock(). A minimal implementation of clock() has been provided, which returns
only —1, not the elapsed time. You may reimplement clock() (and _clock_init(), which it
needs), if required.

File I/O
By default, all the stdio functions that interact with a file pointer return an error if called. The
only exceptions to this are the three standard streams stdin, stdout and stderr.
You can change this behavior using #pragma import(__use_full_stdio). Use of this pragma
provides a microlib version of stdio that supports ANSI C, with only the following exceptions:
* The error and EOF indicators are not supported, so feof () and ferror() return e.
* All streams are unbuffered, so setvbuf() and setbuf() fail.

Configurable locale
The default C locale is the only one available.
Signals
The functions signal() and raise() are provided but microlib does not generate signals. The
only exception to this is if the program explicitly calls raise().
Floating-point support
Floating-point support diverges from IEEE 754 in the following ways, but uses the same data
formats and matches IEEE 754 in operations involving only normalized numbers:
* Operations involving NaNs, infinities or input denormals produce indeterminate results.
Operations that produce a result that is nonzero but very small in value, return zero.
+ IEEE exceptions cannot be flagged by microlib, and there is no fp_status() register in
microlib.
« The sign of zero is not treated as significant by microlib, and zeroes that are output from
microlib floating-point arithmetic have an unknown sign bit.
e Only the default rounding mode is supported.

Position independent and thread safe code
Microlib has no reentrant variant. Microlib does not provide mutex locks to guard against code
that is not thread safe. Use of microlib is not compatible with FPIC or RWPI compilation
modes, and although ROPI code can be linked with microlib, the resulting binary is not ROPI-
compliant overall.

Command-line arguments
In main, argc and argv parameters are undefined and cannot be used to access command-line
arguments.

Related concepts

2.1 About microlib on page 2-97.

2.2 Differences between microlib and the default C library on page 2-98.
2.3 Library heap usage requirements of microlib on page 2-100.

2.5 Building an application with microlib on page 2-103.

2.7 Entering and exiting programs linked with microlib on page 2-105.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-101
reserved.
Confidential - Draft - Beta

2 The ARM C Micro-library
2.4 ISO C features missing from microlib
Related tasks
2.6 Configuring the stack and heap for use with microlib on page 2-104.

Related references

2.8 Tailoring the microlib input/output functions on page 2-106.

1.6.8 C library API definitions for targeting a different environment on page 1-38.
1.7.1 Building an application without the C library on page 1-40.

4.3 clock() on page 4-142.

4.4 clock_init() on page 4-143.

Related information
#pragma import(__use_full stdio).

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-102
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124987988.html

2 The ARM C Micro-library
2.5 Building an application with microlib

2.5 Building an application with microlib

To build a program using microlib, you must use the command-line option --1library_type=microlib.
This option can be used by the compiler, assembler or linker.

Use --library_type=microlib with the linker to override all other options.

Compiler option

armcc --library_type=microlib -c main.c
armcc -c extra.c
armlink -o image.axf main.o extra.o

Specifying --1ibrary_type=microlib when compiling main. c results in an object file containing an
attribute that asks the linker to use microlib. Compiling extra.c with --1library_type=microlib is
unnecessary, because the request to link against microlib exists in the object file generated by compiling
main.c.

Assembler option

armcc -c main.c

armcc -c extra.c

armasm --library type=microlib more.s
armlink -o image.axf main.o extra.o more.o

The request to the linker to use microlib is made as a result of assembling more. s with --
library_type=microlib.

Linker option

armcc -c main.c
armcc -c extra.c
armlink --library_type=microlib -o image.axf main.o extra.o

Neither object file contains the attribute requesting that the linker link against microlib, so the linker
selects microlib as a result of being explicitly asked to do so on the command line.

Related concepts

2.1 About microlib on page 2-97.

2.2 Differences between microlib and the default C library on page 2-98.
2.3 Library heap usage requirements of microlib on page 2-100.

2.4 1SO C features missing from microlib on page 2-101.

2.7 Entering and exiting programs linked with microlib on page 2-105.

Related tasks
2.6 Configuring the stack and heap for use with microlib on page 2-104.

Related references
2.8 Tailoring the microlib input/output functions on page 2-106.

Related information

--library type=lib compiler option.
--library_type=lIib assembler option.
input-file-list linker option.

--library type=lib linker option.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-103
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124929205.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0379-/dom1361289832162.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075495205.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362075508314.html

2 The ARM C Micro-library
2.6 Configuring the stack and heap for use with microlib

2.6 Configuring the stack and heap for use with microlib

To use microlib, you must specify an initial pointer for the stack. You can specify the initial pointer in a
scatter file or using the __initial_sp symbol.

To use the heap functions, for example, malloc(), calloc(), realloc() and free(), you must specify
the location and size of the heap region.

To configure the stack and heap for use with microlib, use either of the following methods:
* Define the symbol __initial_sp to point to the top of the stack. If using the heap, also define
symbols __heap_base and __heap_limit.

__initial_sp must be aligned to a multiple of eight bytes.

__heap_limit must point to the byte beyond the last byte in the heap region.
e In a scatter file, either:

— Define ARM_LIB_STACK and ARM_LIB_HEAP regions.

If you do not intend to use the heap, only define an ARM_LIB_STACK region.
— Define an ARM_LIB_STACKHEAP region.

If you define an ARM_LIB_STACKHEAP region, the stack starts at the top of that region. The heap
starts at the bottom.

Examples
To set up the initial stack and heap pointers using armasm assembly language:

EXPORT initial_sp

__initial_sp EQU 0x100000 ; top of the stack
EXPORT __heap_base

__heap_base EQU 0x400000 ; start of the heap
EXPORT __ heap_limit

_ _heap_limit EQU ©x800000 ; end of the heap

To set up the initial stack and heap pointers using embedded assembler in C:

__asm void dummy_function(void)

EXPORT __initial_sp

__initial_sp EQU ©x100000 ; top of the stack
EXPORT __heap_base

__heap_base EQU 0x400000 ; start of the heap
EXPORT _ heap_limit

__heap_limit EQU 0©x800000 ; end of the heap

}

Related concepts

2.1 About microlib on page 2-97.

2.2 Differences between microlib and the default C library on page 2-98.
2.3 Library heap usage requirements of microlib on page 2-100.

2.4 IS0 C features missing from microlib on page 2-101.

2.5 Building an application with microlib on page 2-103.

2.7 Entering and exiting programs linked with microlib on page 2-105.
1.11.3 Stack pointer initialization and heap bounds on page 1-64.

Related references
2.8 Tailoring the microlib input/output functions on page 2-106.

Related information
About scatter-loading.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-104
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362065969526.html

2 The ARM C Micro-library
2.7 Entering and exiting programs linked with microlib

2.7 Entering and exiting programs linked with microlib
Microlib requires a main() function that takes no arguments and never returns.

Use main() to begin your program. Do not declare main() to take arguments. Microlib does not support
command-line arguments from an operating system.

Your program must not return from main(). This is because microlib does not contain any code to handle
exit from main(). Microlib does not support programs that call exit().

You can ensure that your main() function does not return, by inserting an endless loop at the end of the
function. For example:

void main()

\;lHJ:.le (1); // endless loop to prevent return from main()

Related concepts

2.1 About microlib on page 2-97.

2.2 Differences between microlib and the default C library on page 2-98.
2.3 Library heap usage requirements of microlib on page 2-100.

2.4 1SO C features missing from microlib on page 2-101.

2.5 Building an application with microlib on page 2-103.

Related tasks
2.6 Configuring the stack and heap for use with microlib on page 2-104.

Related references
2.8 Tailoring the microlib input/output functions on page 2-106.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-105
reserved.
Confidential - Draft - Beta

2 The ARM C Micro-library
2.8 Tailoring the microlib input/output functions

2.8 Tailoring the microlib input/output functions

Microlib provides a limited stdio subsystem. To use high-level I/O functions you must reimplement the
base I/O functions.

Microlib provides a limited stdio subsystem that supports unbuffered stdin, stdout and stderr only.
This enables you to use printf() for displaying diagnostic messages from your application.

To use high-level I/O functions you must provide your own implementation of the following base
functions so that they work with your own I/O device.

fputc()
Implement this base function for all output functions. For example, fprintf(), printf(),
fwrite(), fputs(), puts(), putc() and putchar().

fgetc()
Implement this base function for all input functions. For example, fscanf(), scanf(),
fread(), read(), fgets(), gets(), getc() and getchar().

__backspace()
Implement this base function if your input functions use scanf() or fscanf().

Note

Conversions that are not supported in microlib are %1c, %1s and %a.

Related concepts

2.1 About microlib on page 2-97.

2.2 Differences between microlib and the default C library on page 2-98.
2.3 Library heap usage requirements of microlib on page 2-100.

2.4 ISO C features missing from microlib on page 2-101.

2.5 Building an application with microlib on page 2-103.

2.7 Entering and exiting programs linked with microlib on page 2-105.
1.18 Re-implementing _ backspace() in the C library on page 1-77.

Related tasks
2.6 Configuring the stack and heap for use with microlib on page 2-104.

Related references
1.12 Tailoring input/output functions in the C and C++ libraries on page 1-69.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 2-106
reserved.
Confidential - Draft - Beta

Chapter 3
Floating-point Support

Describes ARM support for floating-point computations.

It contains the following sections:

» 3.1 About floating-point support on page 3-108.

* 3.2 The software floating-point library, fplib on page 3-109.

* 3.3 Controlling the ARM floating-point environment on page 3-115.

» 3.4 Using C99 signaling NaNs provided by mathlib (WANT SNAN) on page 3-127.
* 3.5 mathlib double and single-precision floating-point functions on page 3-128.

* 3.6 IEEE 754 arithmetic on page 3-129.

* 3.7 Using the Vector Floating-Point (VFP) support libraries on page 3-137.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-107
reserved.
Confidential - Draft - Beta

3 Floating-point Support
3.1 About floating-point support

3.1 About floating-point support

The ARM floating-point environment is an implementation of the IEEE 754-1985 standard for binary
floating-point arithmetic.

An ARM system might have:

* A VFP coprocessor.
* No floating-point hardware.

If you compile for a system with a hardware VFP coprocessor, the ARM compiler makes use of it. If you
compile for a system without a coprocessor, the compiler implements the computations in software. For
example, the compiler option - -fpu=vfp selects a hardware VFP coprocessor and the option

- -fpu=softvfp specifies that arithmetic operations are to be performed in software, without the use of
any coprocessor instructions.

Related concepts
3.2 The sofitware floating-point library, fplib on page 3-109.
3.6 IEEE 754 arithmetic on page 3-129.

Related information
--fpu=name compiler option.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-108
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920656.html

3 Floating-point Support
3.2 The software floating-point library, fplib

3.2 The software floating-point library, fplib

The software floating-point library, fplib, provides software implementations of floating-point
operations.

When programs are compiled to use a floating-point coprocessor, they perform basic floating-point
arithmetic by means of floating-point machine instructions for the target coprocessor.

When programs are compiled to use software floating-point, there is no floating-point instruction set
available, so the ARM libraries provide a set of procedure calls to do floating-point arithmetic.

These procedures are in the software floating-point library, fplib.

This section contains the following subsections:

o 3.2.1 Calling fplib routines on page 3-109.

o 3.2.2 fplib arithmetic on numbers in a particular format on page 3-110.

o 3.2.3 fplib conversions between floats, long longs, doubles, and ints on page 3-111.
o 3.2.4 fplib comparisons between floats and doubles on page 3-112.

o 3.2.5 fplib C99 functions on page 3-113.

3.21 Calling fplib routines

Floating-point routines have names like __aeabi_dadd (add two doubles) and __aeabi_fdiv (divide
two floats). User programs can call these routines directly.

Even in environments with a coprocessor, the routines are provided. They are typically only a few
instructions long because all they do is execute the appropriate coprocessor instruction.

All the fplib routines are called using a software floating-point variant of the calling standard. This
means that floating-point arguments are passed and returned in integer registers. By contrast, if the
program is compiled for a coprocessor, floating-point data is passed in its floating-point registers.

So, for example, __aeabi_dadd takes a double in registers r@ and ri, and another double in registers r2
and r3, and returns the sum in r@ and ri.

Note

For a double in registers r@ and ri, the register that holds the high 32 bits of the double depends on
whether your program is little-endian or big-endian.

Software floating-point library routines are declared in one of two header files:

* A small number of fplib routines that implement C99 functionality are declared in the standard
header file math.h.

* All other fplib routines are declared in the header file rt_fp.h. You can include this file if you want
to call an fplib routine directly.

To call a function from assembler, the software floating-point function is named fn. For example, to call
the nextafter() function, implement the following code:

IMPORT nextafter
BL nextafter

Related concepts
3.2 The software floating-point library, fplib on page 3-109.

Related references

3.2.2 fplib arithmetic on numbers in a particular format on page 3-110.

3.2.3 fplib conversions between floats, long longs, doubles, and ints on page 3-111.
3.2.4 fplib comparisons between floats and doubles on page 3-112.

3.2.5 fplib C99 functions on page 3-113.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-109
reserved.
Confidential - Draft - Beta

3 Floating-point Support
3.2 The software floating-point library, fplib

Related information
Application Binary Interface (ABI) for the ARM Architecture.
Compiler support for floating-point computations and linkage.
3.2.2 fplib arithmetic on numbers in a particular format
fplib provides a number of routines to perform arithmetic on numbers in a particular format.

The following table describes these routines. Arguments and return types are always in the same format.

Table 3-1 Arithmetic routines

Function Argument types Return type Operation

__aeabi_fadd 2 float float Return x plus y

__aeabi_fsub 2 float float Return X minus y

__aeabi_frsub 2 float float Return y minus x

__aeabi_fmul 2 float float Return x times y

__aeabi_fdiv 2 float float Return x divided by y

_frdiv 2 float float Return y divided by x

_frem 2 float float Return remainder of x by y (see note a)
_frnd float float Return x rounded to an integer (see note b)
_fsqrt float float Return square root of x

__aeabi_dadd 2 double double Return x plus y

__aeabi_dsub 2 double double Return x minus y

__aeabi_drsub 2 double double Return y minus x

__aeabi_dmul 2 double double Return x times y

__aeabi_ddiv 2 double double Return x divided by y

_drdiv 2 double double Return y divided by x

_drem 2 double double Return remainder of x by y (see notes a and ¢)“©
_drnd double double Return x rounded to an integer (see note b)d
_dsgrt double double Return square root of x

Related concepts
3.2 The software floating-point library, fplib on page 3-109.
3.2.1 Calling fplib routines on page 3-1009.

Related references

3.2.3 fplib conversions between floats, long longs, doubles, and ints on page 3-111.
3.2.4 fplib comparisons between floats and doubles on page 3-112.

3.2.5 fplib C99 functions on page 3-113.

Functions that perform the IEEE 754 remainder operation. This is defined to take two numbers, x and y, and return a number z so that z = x — ny, where n is an
integer. To return an exactly correct result, z is chosen so that z is no bigger than half of x (so that z might be negative even if both x and y are positive). The IEEE
754 remainder function is not the same as the operation performed by the C library function fmod, where z always has the same sign as x. Where the IEEE 754
specification gives two acceptable choices of n, the even one is chosen. This behavior occurs independently of the current rounding mode.

Functions that perform the IEEE 754 round-to-integer operation. This takes a number and rounds it to an integer (in accordance with the current rounding mode),
but returns that integer in the floating-point number format rather than as a C int variable. To convert a number to an int variable, you must use the _ffix
routines.

€ The IEEE 754 remainder () function is a synonym for _drem. remainder () is defined in math.h.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-110
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124233705.html

3 Floating-point Support
3.2 The software floating-point library, fplib

Related information
Application Binary Interface (ABI) for the ARM Architecture.

3.2.3 fplib conversions between floats, long longs, doubles, and ints
fplib provides a number of routines to perform conversions between number formats.

The following table describes these routines.

Table 3-2 Number format conversion routines

Function Argument types Return type
__aeabi_f2d float double

__aeabi_d2f double float

_fflt int float

_ffltu unsigned int float

_dflt int double

_dfltu unsigned int double

_ffix float int

_ffix_r float int

_ffixu float unsigned intf
_ffixu_r float unsigned int

_dfix double intf

_dfix_r double int

_dfixu double unsigned int f
_dfixu_r double unsigned int
_11_sto_f long long float

11 uto_f unsigned long long float

_11_sto_d long long double

11 uto d unsigned long long double

_11 sfrom_f float long long
_11_sfrom_f_r float long long

_11 ufrom_f float unsigned long long f
_11_ufrom_f_r float unsigned long long
_11 sfrom_d double long longf

_11 sfrom_d_r double long long

_11 ufrom_d double unsigned long long f
_11_ufrom_d_r double unsigned long long

f Rounded toward zero, independently of the current rounding mode. This is because the C standard requires implicit conversions to integers to round this way, so it is

convenient not to have to change the rounding mode to do so. Each function has a corresponding function with _r on the end of its name, that performs the same
operation but rounds according to the current mode.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-111
reserved.

Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

Related concepts

3 Floating-point Support
3.2 The software floating-point library, fplib

3.2 The software floating-point library, fplib on page 3-109.

3.2.1 Calling fplib routines on page 3-1009.

Related references

3.2.2 fplib arithmetic on numbers in a particular format on page 3-110.

3.2.4 fplib comparisons between floats and doubles on page 3-112.

3.2.5 fplib C99 functions on page 3-113.

Related information

Application Binary Interface (ABI) for the ARM Architecture.

3.24 fplib comparisons between floats and doubles

fplib provides a number of routines to perform comparisons between floating-point numbers.

The following table describes these routines.

Table 3-3 Floating-point comparison routines

Function Argument types Return type Condition tested Notes
_fcmpeq 2 float Flags, EQ/NE x equal toy a
_fcmpge 2 float Flags, HS/LO x greater than or equaltoy a,b
_fcmple 2 float Flags, HI/LS x less than or equal to y a,b
_feq 2 float Boolean xequaltoy -
_fneq 2 float Boolean X not equal to 'y -
_fgeq 2 float Boolean x greater than or equal toy b
_fgr 2 float Boolean x greater than y b
_fleq 2 float Boolean x less than or equal to y b
_fls 2 float Boolean x less than y b
_dcmpeq 2 double Flags, EQ/NE x equaltoy a
_dcmpge 2 double Flags, HS/LO x greater than or equaltoy a, b
_dcmple 2 double Flags, HI/LS x less than or equal to y a,b
_deq 2 double Boolean x equal to y -
_dneq 2 double Boolean x not equal to y -
_dgeq 2 double Boolean x greater than or equal toy b
_dgr 2 double Boolean x greater than y b
_dleq 2 double Boolean x less than or equal to y b
_dls 2 double Boolean x less than y b
_fcmp4 2 float Flags, VFP x less than or equal to y c
_fcmpde 2 float Flags, VFP x less than or equal to y b, c
_fdcmp4 float, double Flags, VFP x less than or equal to y c
_fdcmpde float,double Flags, VFP x less than or equal to y b, c
_dcmp4 2 double Flags, VFP x less than or equal to y c
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 201(21, 2014, 2015 ARM. All rights 3-112
reserved.

Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

3 Floating-point Support
3.2 The software floating-point library, fplib

Table 3-3 Floating-point comparison routines (continued)

Function Argument types Return type Condition tested Notes

_dcmpde 2 double Flags, VFP x less than or equal to 'y b, c

_dfcmp4 double, float Flags, VFP xless than or equal to y c

_dfcmp4de double, float Flags, VFP X less than or equal to y b, c

Notes on floating-point comparison routines

a
Returns results in the ARM condition flags. This is efficient in assembly language, because you
can directly follow a call to the function with a conditional instruction, but it means there is no
way to use this function from C. This function is not declared in rt_fp.h.

Causes an Invalid Operation exception if either argument is a NaN, even a quiet NaN. Other
functions only cause Invalid Operation if an argument is an SNaN. QNaNs return not equal
when compared to anything, including other QNaNs (so comparing a QNaN to the same QNaN
still returns not equal).

Returns VFP-type status flags in the PSR. Also returns VFP-type status flags in the top four bits
of re, meaning that it is possible to use this function from C. This function is declared in
rt_fp.h.

Related concepts
3.2 The software floating-point library, fplib on page 3-109.
3.2.1 Calling fplib routines on page 3-109.

Related references
3.2.2 fplib arithmetic on numbers in a particular format on page 3-110.
3.2.3 fplib conversions between floats, long longs, doubles, and ints on page 3-111.
3.2.5 fplib C99 functions on page 3-113.
3.25 fplib C99 functions

fplib provides a number of routines that implement C99 functionality.

The following table describes these functions.

Table 3-4 fplib C99 functions

Function Argument types Return type Returns section Standard
ilogb double int Exponent of argument x 7.12.6.5
ilogbf float int Exponent of argument x 7.12.6.5
ilogbl long double int Exponent of argument x 7.12.6.5
logb double double Exponent of argument x 7.12.6.11
logbf float float Exponent of argument x 7.12.6.11
logbl long double long double Exponent of argument x 7.12.6.11
scalbn double, int double x * (FLT_RADIX ** n) 7.12.6.13
scalbnf float, int float X * (FLT_RADIX ** n) 7.12.6.13
scalbnl long double, int long double x * (FLT_RADIX ** n) 7.12.6.13
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-113
reserved.

Confidential - Draft - Beta

3 Floating-point Support
3.2 The software floating-point library, fplib

Table 3-4 fplib C99 functions (continued)

Function Argument types Return type Returns section Standard
scalbln double, long int double x * (FLT_RADIX ** n) 7.12.6.13
scalblnf float, long int float x * (FLT_RADIX ** n) 7.12.6.13
scalblnl long double, long int long double x * (FLT_RADIX ** n) 7.12.6.13
nextafter 2 double double Next representable value after x towardsy 7.12.11.3
nextafterf 2 float float Next representable value after x towardsy 7.12.11.3
nextafterl 2 long double long double Next representable value after x towardsy 7.12.11.3
nexttoward double, long double double Next representable value after x towardsy 7.12.11.4
nexttowardf float, long double float Next representable value after x towardsy 7.12.11.4
nexttowardl 2 long double long double Next representable value after x towardsy 7.12.11.4

Related concepts
3.2 The software floating-point library, fplib on page 3-109.
3.2.1 Calling fplib routines on page 3-1009.

Related references

3.2.2 fplib arithmetic on numbers in a particular format on page 3-110.

3.2.3 fplib conversions between floats, long longs, doubles, and ints on page 3-111.
3.2.4 fplib comparisons between floats and doubles on page 3-112.

Related concepts
3.2.1 Calling fplib routines on page 3-109.

Related references

3.2.2 fplib arithmetic on numbers in a particular format on page 3-110.

3.2.3 fplib conversions between floats, long longs, doubles, and ints on page 3-111.
3.2.4 fplib comparisons between floats and doubles on page 3-112.

3.2.5 fplib C99 functions on page 3-113.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-114
reserved.
Confidential - Draft - Beta

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

3.3 Controlling the ARM floating-point environment

The ARM compilation tools supply several different interfaces to the floating-point environment, for
compatibility and porting ease.

These interfaces enable you to change the rounding mode, enable and disable trapping of exceptions, and
install your own custom exception trap handlers.

This section contains the following subsections:

* 3.3.1 Floating-point functions for compatibility with Microsoft products on page 3-115.

o 3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.
o 3.3.3 C99 rounding mode and floating-point exception macros on page 3-116.

* 3.3.4 Exception flag handling on page 3-116.

o 3.3.5 Functions for handling rounding modes on page 3-117.

* 3.3.6 Functions for saving and restoring the whole floating-point environment on page 3-118.
* 3.3.7 Functions for temporarily disabling exceptions on page 3-118.

o 3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.

o 3.3.9 Writing a custom exception trap handler on page 3-120.

o 3.3.10 Example of a custom exception handler on page 3-124.

e 3.3.11 Exception trap handling by signals on page 3-125.

3.31 Floating-point functions for compatibility with Microsoft products

Functions defined in float.h give compatibility with Microsoft products to ease porting of floating-
point code to the ARM architecture.

These functions require you to select a floating-point model that supports exceptions. For example,

--fpmode=ieee_full or --fpmode=ieee_fixed.

Related concepts
3.3 Controlling the ARM floating-point environment on page 3-115.

Related references

5.1 clearfp() on page 5-206.
5.2 controlfp() on page 5-207.
5.8 statusfp() on page 5-217.

3.3.2 C99-compatible functions for controlling the ARM floating-point environment
The compiler supports all functions defined in the C99 standard, and functions that are not C99-standard.

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

The C99-compatible functions are the only interface that enables you to install custom exception trap
handlers with the ability to define your own return value. All the function prototypes, data types, and
macros for this functionality are defined in fenv.h.

C99 defines two data types, fenv_t and fexcept_t. The C99 standard does not give information about
these types, so for portable code you must treat them as opaque. The compiler defines them to be
structure types.

The type fenv_t is defined to hold all the information about the current floating-point environment. This
comprises:

* The rounding mode.

* The exception sticky flags.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-115
reserved.
Confidential - Draft - Beta

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

* Whether each exception is masked.
* What handlers are installed, if any.

The type fexcept_t is defined to hold all the information relevant to a given set of exceptions.

Related concepts

3.3 Controlling the ARM floating-point environment on page 3-115.

3.3.4 Exception flag handling on page 3-116.

3.3.5 Functions for handling rounding modes on page 3-117.

3.3.6 Functions for saving and restoring the whole floating-point environment on page 3-118.
3.3.7 Functions for temporarily disabling exceptions on page 3-118.

Related references
3.3.3 C99 rounding mode and floating-point exception macros on page 3-116.
3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.

Related information
--fpmode=model compiler option.

3.3.3 C99 rounding mode and floating-point exception macros
C99 defines a macro for each rounding mode and each exception

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

The C99 rounding mode and exception macros are:
¢ FE_DIVBYZERO
¢ FE_INEXACT

¢ FE_INVALID

* FE_OVERFLOW

¢ FE_UNDERFLOW
« FE_ALL_EXCEPT
¢ FE_DOWNWARD

¢ FE_TONEAREST
* FE_TOWARDZERO
¢ FE_UPWARD

The exception macros are bit fields. The macro FE_ALL_EXCEPT is the bitwise OR of all of them.

Related concepts
3.3.5 Functions for handling rounding modes on page 3-117.

Related references
3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.

Related information
--fpmode=model compiler option.
--fpmode=model compiler option.

3.34 Exception flag handling

The feclearexcept(), fetestexcept(), and feraiseexcept() functions let you clear, test and raise
exceptions. The fegetexceptflag() and fesetexceptflag() functions let you save and restore
information about a given exception.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-116
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

C99 defines these functions as follows:
void feclearexcept(int excepts);
int fetestexcept(int excepts);

void feraiseexcept(int excepts);

The feclearexcept() function clears the sticky flags for the given exceptions. The fetestexcept()
function returns the bitwise OR of the sticky flags for the given exceptions, so that if the Overflow flag
was set but the Underflow flag was not, then calling fetestexcept (FE_OVERFLOW | FE_UNDERFLOW)
would return FE_OVERFLOW.

The feraiseexcept() function raises the given exceptions, in unspecified order. If an exception trap is
enabled for an exception raised this way, it is called.

C99 also provides functions to save and restore all information about a given exception. This includes
the sticky flag, whether the exception is trapped, and the address of the trap handler, if any. These
functions are:

void fegetexceptflag(fexcept_t *flagp, int excepts);
void fesetexceptflag(const fexcept_t *flagp, int excepts);

The fegetexceptflag() function copies all the information relating to the given exceptions into the
fexcept_t variable provided. The fesetexceptflag() function copies all the information relating to
the given exceptions from the fexcept_t variable into the current floating-point environment.

Note

You can use fesetexceptflag() to set the sticky flag of a trapped exception to 1 without calling the
trap handler, whereas feraiseexcept() calls the trap handler for any trapped exception.

Related references
3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.

Related information
--fpmode=model compiler option.

--fpmode=model compiler option.

3.35 Functions for handling rounding modes
The fegetround() and fesetround functions let you get and set the current rounding mode.

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

C99 defines these functions as follows:
int fegetround(void);
int fesetround(int round);

The fegetround() function returns the current rounding mode. The current rounding mode has a value
equal to one of the C99 rounding mode macros or exceptions.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-117
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

The fesetround() function sets the current rounding mode to the value provided. fesetround() returns
zero for success, or nonzero if its argument is not a valid rounding mode.

Related references
3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.
3.3.3 C99 rounding mode and floating-point exception macros on page 3-116.

Related information
--fpmode=model compiler option.
--fpmode=model compiler option.
3.3.6 Functions for saving and restoring the whole floating-point environment

The fegetenv and fesetenv functions let you save and restore the entire floating-point environment.

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

C99 defines these functions as follows:
void fegetenv(fenv_t *envp);
void fesetenv(const fenv_t *envp);

The fegetenv () function stores the current state of the floating-point environment into the fenv_t
variable provided. The fesetenv () function restores the environment from the variable provided.

Like fesetexceptflag(), fesetenv() does not call trap handlers when it sets the sticky flags for
trapped exceptions.

Related references
3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.

Related information
--fpmode=model compiler option.

--fpmode=model compiler option.

3.3.7 Functions for temporarily disabling exceptions
The feholdexcept and feupdateenv functions let you temporarily disable exception trapping.

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

These functions let you avoid risking exception traps when executing code that might cause exceptions.
This is useful when, for example, trapped exceptions are using the ARM default behavior. The default is
to cause SIGFPE and terminate the application.

int feholdexcept(fenv_t *envp);
void feupdateenv(const fenv_t *envp);

The feholdexcept() function saves the current floating-point environment in the fenv_t variable
provided, sets all exceptions to be untrapped, and clears all the exception sticky flags. You can then
execute code that might cause unwanted exceptions, and make sure the sticky flags for those exceptions
are cleared. Then you can call feupdateenv(). This restores any exception traps and calls them if

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-118
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

necessary. For example, suppose you have a function, frob(), that might cause the Underflow or Invalid
Operation exceptions (assuming both exceptions are trapped). You are not interested in Underflow, but
you want to know if an invalid operation is attempted. You can implement the following code to do this:

fenv_t env;

feholdexcept(&env);

frob();

feclearexcept(FE_UNDERFLOW);
feupdateenv(&env);

Then, if the frob() function raises Underflow, it is cleared again by feclearexcept(), so no trap occurs
when feupdateenv() is called. However, if frob() raises Invalid Operation, the sticky flag is set when
feupdateenv() is called, so the trap handler is invoked.

This mechanism is provided by C99 because C99 specifies no way to change exception trapping for
individual exceptions. A better method is to use __ieee_status() to disable the Underflow trap while
leaving the Invalid Operation trap enabled. This has the advantage that the Invalid Operation trap handler
is provided with all the information about the invalid operation (that is, what operation was being
performed, and on what data), and can invent a result for the operation. Using the C99 method, the
Invalid Operation trap handler is called after the fact, receives no information about the cause of the
exception, and is called too late to provide a substitute result.

Related references
3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.
5.5 _ieee status() on page 5-212.

Related information
--fpmode=model compiler option.

--fpmode=model compiler option.

3.3.8 ARM floating-point compiler extensions to the C99 interface

The ARM C library provides some extensions to the C99 interface to enable it to do everything that the
ARM floating-point environment is capable of. This includes trapping and untrapping individual
exception types, and installing custom trap handlers.

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

The types fenv_t and fexcept_t are not defined by C99 to be anything in particular. The ARM
compiler defines them both to be the same structure type.

fenv_t and fexcept_t have the following structure:

typedef struct{
unsigned _ statusword;
__ieee_handler_t _ invalid_handler;
__ieee_handler_t _ divbyzero_handler;
__ieee_handler_t _ overflow_handler;
__ieee_handler_t __underflow_handler;
__ieee_handler_t __ inexact_handler;

} fenv_t, fexcept_t;

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-119
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

The members of this structure are:

e _ statusword, the same status variable that the function __ieee_status() sees, laid out in the same
format.

» Five function pointers giving the address of the trap handler for each exception. By default, each is
NULL. This means that if the exception is trapped, the default exception trap action happens. The
default is to cause a SIGFPE signal.

typedef struct{
unsigned __ statusword;
} fenv_t, fexcept_t;

Related concepts

3.3 Controlling the ARM floating-point environment on page 3-115.
3.3.9 Writing a custom exception trap handler on page 3-120.
3.3.10 Example of a custom exception handler on page 3-124.

Related references
3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.
5.5 ieee status() on page 5-212.

Related information
--fpmode=model compiler option.

--fpmode=model compiler option.

3.3.9 Writing a custom exception trap handler

Custom exception trap handlers let you override the default exception handling behavior. For example,
when converting Fortran code you might want to override the division by zero exception to return 1
rather than an invalid operation exception.

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

If you want to install a custom exception trap handler, declare it as a function like this:
__softfp __ieee_value_t myhandler(__ieee_value_t op1l,

__ieee_value_t op2,
__ieee_edata_t edata);

The value returned from this function is of type __ieee_value_t and is used as the result of the
operation that caused the exception.

The function must be declared __softfp in order to be usable as a handler.

The parameters to this function are:

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-120
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

opl, op2

These specify the operands, or the intermediate result, for the operation that caused the

exception:

+ For the Invalid Operation and Divide by Zero exceptions, the original operands are supplied.

* For the Inexact Result exception, all that is supplied is the ordinary result that would have
been returned anyway. This is provided in op1.

* For the Overflow exception, an intermediate result is provided. This result is calculated by
working out what the operation would have returned if the exponent range had been big
enough, and then adjusting the exponent so that it fits in the format. The exponent is adjusted
by 192 (exC®) in single-precision, and by 1536 (0x600) in double-precision.

If Overflow happens when converting a double to a float, the result is supplied in double
format, rounded to single-precision, with the exponent biased by 192.

* For the Underflow exception, a similar intermediate result is produced, but the bias value is
added to the exponent instead of being subtracted. The edata parameter also contains a flag
to show whether the intermediate result has had to be rounded up, down, or not at all.

The type __ieee_value_t is defined as a union of all the possible types that an operand can be

passed as:

typedef union{
float __ f;
float __s;
double _ d;
short _ h;
unsigned short __uh;
int _ i;

unsigned int _ ui;
long long _ 1;
unsigned long long _ ul;

/* __STRICT_ANSI__ */
struct { int __wordl, _ word2; } _ str;
} __ieee_value_t; /* in and out values passed to traps */

Note

If you do not compile with --strict, and you have code that used the older definition of
__ieee_value_t which named the fields differently, your older code still works. See the file
fenv. h for more information.

edata
This contains flags that give information about the exception that occurred, and what operation
was being performed. (The type _ieee_edata_t is a synonym for unsigned int.)

edata flags for exception trap handler
The flags contained in edata are:

edata & FE_EX_RDIR
This is nonzero if the intermediate result in Underflow was rounded down, and 0 if it was
rounded up or not rounded. (The difference between the last two is given in the Inexact Result
bit.) This bit is meaningless for any other type of exception.
edata & FE_EX_exception
This is nonzero if the given exception (INVALID, DIVBYZERO, OVERFLOW, UNDERFLOW, or
INEXACT) occurred. This enables you to:
» Use the same handler function for more than one exception type (the function can test these
bits to tell what exception it is supposed to handle).
* Determine whether Overflow and Underflow intermediate results have been rounded or are
exact.

Because the FE_EX_INEXACT bit can be set in combination with either FE_EX_OVERFLOW or
FE_EX_UNDERFLOW, you must determine the type of exception that actually occurred by testing
Overflow and Underflow before testing Inexact.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-121
reserved.
Confidential - Draft - Beta

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

edata & FE_EX_FLUSHZERO
This is nonzero if the FZ bit was set when the operation was performed.

edata & FE_EX_ROUND_MASK
This gives the rounding mode that applies to the operation. This is normally the same as the
current rounding mode, unless the operation that caused the exception was a routine such as
_ffix, that always rounds toward zero. The available rounding mode values are
FE_EX_ROUND_NEAREST, FE_EX_ROUND_PLUSINF, FE_EX_ROUND_MINUSINF and
FE_EX_ROUND_ZERO.

edata & FE_EX_INTYPE_MASK
This gives the type of the operands to the function, as one of the type values shown in the
following table.

Table 3-5 FE_EX_INTYPE_MASK operand type flags

Flag Operand type

FE_EX_INTYPE_FLOAT float

FE_EX_INTYPE_DOUBLE double

FE_EX_INTYPE_FD float double
FE_EX_INTYPE_DF double float
FE_EX_INTYPE_HALF short
FE_EX_INTYPE_INT int
FE_EX_INTYPE_UINT unsigned int

FE_EX_INTYPE_LONGLONG long long

FE_EX_INTYPE_ULONGLONG unsigned long long

edata & FE_EX_OUTTYPE_MASK
This gives the type of the operands to the function, as one of the type values shown in the

following table.
Table 3-6 FE_EX_OUTTYPE_MASK operand type flags

Flag Operand type
FE_EX_OUTTYPE_FLOAT float
FE_EX_OUTTYPE_DOUBLE double
FE_EX_OUTTYPE_HALF short
FE_EX_OUTTYPE_INT int
FE_EX_OUTTYPE_UINT unsigned int
FE_EX_OUTTYPE_LONGLONG 1long long
FE_EX_OUTTYPE_ULONGLONG unsigned long long

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-122

reserved.
Confidential - Draft - Beta

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

edata & FE_EX_FN_MASK
This gives the nature of the operation that caused the exception, as one of the operation codes
shown in the following table.

Table 3-7 FE_EX_FN_MASK operation type flags

Flag Operation type
FE_EX_FN_ADD Addition.
FE_EX_FN_SUB Subtraction.
FE_EX_FN_MUL Multiplication.
FE_EX_FN_DIV Division.
FE_EX_FN_REM Remainder.
FE_EX_FN_RND Round to integer.
FE_EX_FN_SQRT Square root.
FE_EX_FN_CMP Compare.
FE_EX_FN_CVT Convert between formats.
FE_EX_FN_LOGB Exponent fetching.

FE_EX_FN_SCALBN Scaling.

Note

The FE_EX_INTYPE_MASK flag only specifies the type of the first operand. The second operand is always
an int.

FE_EX_FN_NEXTAFTER Next representable number.
Note

Both operands are the same type. Calls to nexttoward cause the value of the second operand to change to
a value that is of the same type as the first operand. This does not affect the result.

FE_EX_FN_RAISE The exception was raised explicitly, by feraiseexcept() or feupdateenv(). In this case, almost
nothing in the edata word is valid.

When the operation is a comparison, the result must be returned as if it were an int, and must
be one of the four values shown in the following table.

Input and output types are the same for all operations except Compare and Convert.

Table 3-8 FE_EX_CMPRET_MASK comparison type flags

Flag Comparison
FE_EX_CMPRET_LESS opl is less than op2
FE_EX_CMPRET_EQUAL opl is equal to op2

FE_EX_CMPRET_GREATER opl is greater than op2

FE_EX_CMPRET_UNORDERED opl and op2 are not comparable

Related concepts
3.3.10 Example of a custom exception handler on page 3-124.
3.3.11 Exception trap handling by signals on page 3-125.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-123
reserved.
Confidential - Draft - Beta

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.
3.3 Controlling the ARM floating-point environment on page 3-115.

Related references

3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.

3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.

3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.
4.30 _rt raise() on page 4-170.

5.5 ieee_status() on page 5-212.

Related information
--fpmode=model compiler option.

--strict, --no_strict compiler option.

3.3.10 Example of a custom exception handler

This example exception trap handler overrides the division by zero exception to return 1 rather than an
invalid operation exception.

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

Suppose you are converting some Fortran code into C. The Fortran numerical standard requires 0 divided
by 0 to be 1, whereas IEEE 754 defines 0 divided by 0 to be an Invalid Operation and so by default it
returns a quiet NaN. The Fortran code is likely to rely on this behavior, and rather than modifying the
code, it is probably easier to make 0 divided by 0 return 1.

After the handler is installed, dividing 0.0 by 0.0 returns 1.0.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-124
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124945180.html

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

Custom exception handler

#include <fenv.h>

#include <signal.h>

#include <stdio.h>

__softfp _ ieee_value_t myhandler(__ieee_value_t opl, _ ieee_value_t op2,
__ieee_edata_t edata)

{

__ieee_value_t ret;
if ((edata & FE_EX_FN_MASK) == FE_EX_FN_DIV)

if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_FLOAT)
if (opl.f == 0.0 && op2.f == 0.0)
{
ret.f = 1.0;
return ret;
}
if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_DOUBLE)
if (opl.d == 0.0 && op2.d == 0.0)

ret.d = 1.90;
return ret;

}

/* For all other invalid operations, raise SIGFPE as usual */
raise(SIGFPE);

int main(void)

float i, j, k;

fenv_t env;

fegetenv(&env);

env.statusword |= FE_IEEE_MASK_INVALID;
env.invalid_handler = myhandler;
fesetenv(&env);

i=20.0;
j =0.0;
k =1

/3;
printf("k is %f\n", k);

Related concepts

3.3.9 Writing a custom exception trap handler on page 3-120.

3.3.11 Exception trap handling by signals on page 3-125.

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.
3.3 Controlling the ARM floating-point environment on page 3-115.

Related references

3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.

3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.

3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.
4.30 _ rt raise() on page 4-170.

Related information
--fpmode=model compiler option.
3.3.11 Exception trap handling by signals
You can use the SIGFPE signal to handle exceptions.

Note

The following functionality requires you to select a floating-point model that supports exceptions, such
as --fpmode=ieee_full or --fpmode=ieee_fixed.

If an exception is trapped but the trap handler address is set to NULL, a default trap handler is used.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-125
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html

3 Floating-point Support
3.3 Controlling the ARM floating-point environment

The default trap handler raises a SIGFPE signal. The default handler for SIGFPE prints an error
message and terminates the program.

If you trap SIGFPE, you can declare your signal handler function to have a second parameter that tells
you the type of floating-point exception that occurred. This feature is provided for compatibility with
Microsoft products. The values are _FPE_INVALID, FPE_ZERODIVIDE, FPE_OVERFLOW,
_FPE_UNDERFLOW and _FPE_INEXACT. They are defined in float.h. For example:

void sigfpe(int sig, int etype){

printf("SIGFPE (%s)\n",
etype == _FPE_INVALID ? "Invalid Operation"” :

etype == _FPE_ZERODIVIDE ? "Divide by Zero" :
etype == _FPE_OVERFLOW ? "Overflow" :

etype == _FPE_UNDERFLOW ? "Underflow" :
etype == _FPE_INEXACT ? "Inexact Result" :
"Unknown");

¥
signal(SIGFPE, (void(*)(int))sigfpe);

To generate your own SIGFPE signals with this extra information, you can call the function
__rt_raise() instead of the ISO function raise(). For example:

__rt_raise(SIGFPE, _FPE_INVALID);

__rt_raise() is declared in rt_misc.h.

Related concepts

3.3.9 Writing a custom exception trap handler on page 3-120.

3.3.10 Example of a custom exception handler on page 3-124.

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.
3.3 Controlling the ARM floating-point environment on page 3-115.

Related references

3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.

3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.
4.30 _ rt raise() on page 4-170.

Related information
--fpmode=model compiler option.

Related concepts
3.3.1 Floating-point functions for compatibility with Microsoft products on page 3-115.

Related references

3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.
3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.

5.5 ieee status() on page 5-212.

5.3 fp status() on page 5-209.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-126
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124920125.html

3 Floating-point Support
3.4 Using C99 signaling NaNs provided by mathlib (_ WANT_SNAN)

3.4 Using C99 signaling NaNs provided by mathlib (_ WANT_SNAN)

If you want to use signaling NaNs, you must indicate this to the compiler by defining the macro
_WANT_SNAN in your application.

This macro must be defined before you include any standard C headers. If your application is comprised
of two or more translation units, either all or none of them must define _WANT_SNAN. That is, the
definition must be consistent for any given application.

You must also use the relevant command-line option when you compile your source code. This is
associated with the predefined macro _ SUPPORT_SNAN__.

Related information
Predefined macros.
WG14 - C N965, Optional support for Signaling NaNs.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-127
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359125007083.html
http://www.open-std.org/

3 Floating-point Support
3.5 mathlib double and single-precision floating-point functions

3.5 mathlib double and single-precision floating-point functions
The math library, mathlib, provides double and single-precision functions for mathematical calculations.
For example, to calculate a cube root, you can use cbrt() (double-precision) or cbrtf() (single-
precision).

ISO/IEC 14882 specifies that in addition to the double versions of the math functions in <cmath>, C++
adds float (and long double) overloaded versions of these functions. The ARM implementation

extends this in scope to include the additional math functions that do not exist in C90, but that do exist in
C99.

In C++, std: :cbrt() on a float argument selects the single-precision version of the function, and the
same type of selection applies to other floating-point functions in C++.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-128
reserved.
Confidential - Draft - Beta

3 Floating-point Support
3.6 IEEE 754 arithmetic

3.6 IEEE 754 arithmetic

3.6.1 Bas

The ARM floating-point environment is an implementation of the IEEE 754 standard for binary floating-
point arithmetic.

This section contains the following subsections:

* 3.6.1 Basic data types for IEEE 754 arithmetic on page 3-129.

o 3.6.2 Single precision data type for IEEE 754 arithmetic on page 3-129.

* 3.6.3 Double precision data type for IEEE 754 arithmetic on page 3-130.

o 3.6.4 Sample single precision floating-point values for IEEE 754 arithmetic on page 3-131.
o 3.6.5 Sample double precision floating-point values for IEEE 754 arithmetic on page 3-132.
* 3.6.6 IEEE 754 arithmetic and rounding on page 3-133.

* 3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.

o 3.6.8 Exception types recognized by the ARM floating-point environment on page 3-134.

ic data types for IEEE 754 arithmetic

ARM floating-point values are stored in one of two data types, single-precision and double-precision. In
this documentation, they are called float and double, these being the corresponding C data types.

Related concepts

3.6 IEEE 754 arithmetic on page 3-129.

3.6.2 Single precision data type for IEEE 754 arithmetic on page 3-1209.

3.6.3 Double precision data type for IEEE 754 arithmetic on page 3-130.

3.6.6 IEEE 754 arithmetic and rounding on page 3-133.

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.

Related references
3.6.4 Sample single precision floating-point values for IEEE 754 arithmetic on page 3-131.
3.6.5 Sample double precision floating-point values for IEEE 754 arithmetic on page 3-132.

Related information
IEEFE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.

3.6.2 Single precision data type for IEEE 754 arithmetic

A float value is 32 bits wide.
The structure is:

31 30 23 22 0

S Exp Frac

Figure 3-1 IEEE 754 single-precision floating-point format
The s field gives the sign of the number. It is O for positive, or 1 for negative.

The Exp field gives the exponent of the number, as a power of two. It is biased by 0x7F (127), so that
very small numbers have exponents near zero and very large numbers have exponents near @xFF (255).

For example:

* If Exp = @x7D (125), the number is between 0.25 and 0.5 (not including 0.5).
» If Exp = ©x7E (126), the number is between 0.5 and 1.0 (not including 1.0).
o If Exp = @x7F (127), the number is between 1.0 and 2.0 (not including 2.0).
» If Exp = 0x80 (128), the number is between 2.0 and 4.0 (not including 4.0).
o If Exp = 0x81 (129), the number is between 4.0 and 8.0 (not including 8.0).

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-129
reserved.
Confidential - Draft - Beta

http://ieeexplore.ieee.org/

3 Floating-point Support
3.6 IEEE 754 arithmetic

The Frac field gives the fractional part of the number. It usually has an implicit 1 bit on the front that is
not stored to save space.

For example, if Exp is Ox7F:

* If Frac = 00000000000000000000000 (binary), the number is 1.0.
+ If Frac = 10000000000000000000000 (binary), the number is 1.5.
* If Frac = 01000000000000000000000 (binary), the number is 1.25.
* If Frac = 11000000000000000000000 (binary), the number is 1.75.

In general, the numeric value of a bit pattern in this format is given by the formula:
(—I)S * 2(Exp—0x7F) * (1 + Frac * 2723)
Numbers stored in this form are called normalized numbers.

The maximum and minimum exponent values, 0 and 255, are special cases. Exponent 255 can represent
infinity and store Not a Number (NaN) values. Infinity can occur as a result of dividing by zero, or as a
result of computing a value that is too large to store in this format. NaN values are used for special
purposes. Infinity is stored by setting Exp to 255 and Frac to all zeros. If Exp is 255 and Frac is nonzero,
the bit pattern represents a NaN.

Exponent 0 can represent very small numbers in a special way. If Exp is zero, then the Frac field has no
implicit 1 on the front. This means that the format can store 0.0, by setting both Exp and Frac to all 0
bits. It also means that numbers that are too small to store using Exp >= 1 are stored with less precision
than the ordinary 23 bits. These are called denormals.

Related concepts

3.6 IEEE 754 arithmetic on page 3-1209.

3.6.3 Double precision data type for IEEE 754 arithmetic on page 3-130.

3.6.6 IEEE 754 arithmetic and rounding on page 3-133.

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.

Related references

3.6.1 Basic data types for IEEE 754 arithmetic on page 3-129.

3.6.4 Sample single precision floating-point values for IEEE 754 arithmetic on page 3-131.
3.6.5 Sample double precision floating-point values for IEEE 754 arithmetic on page 3-132.

Related information

IEEFE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.
3.6.3 Double precision data type for IEEE 754 arithmetic

A double value is 64 bits wide.

The structure is:

63 62 52 51 0

S Exp Frac

Figure 3-2 IEEE 754 double-precision floating-point format

As with single-precision float data types, S is the sign, Exp the exponent, and Frac the fraction. Most of

the detail of float values remains true for double values, except that:

» The Exp field is biased by @x3FF (1023) instead of @x7F, so numbers between 1.0 and 2.0 have an Exp
field of @x3FF.

* The Exp value representing infinity and NaNs is @x7FF (2047) instead of @xFF.

Related concepts
3.6 IEEE 754 arithmetic on page 3-129.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-130
reserved.
Confidential - Draft - Beta

http://ieeexplore.ieee.org/

3 Floating-point Support
3.6 IEEE 754 arithmetic

3.6.2 Single precision data type for IEEE 754 arithmetic on page 3-129.

3.6.6 IEEE 754 arithmetic and rounding on page 3-133.
3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.

Related references

3.6.1 Basic data types for IEEE 754 arithmetic on page 3-129.

3.6.4 Sample single precision floating-point values for IEEE 754 arithmetic on page 3-131.
3.6.5 Sample double precision floating-point values for IEEE 754 arithmetic on page 3-132.

Related information
IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.

3.64 Sample single precision floating-point values for IEEE 754 arithmetic
Sample float bit patterns, together with their mathematical values.
Table 3-9 Sample single-precision floating-point values
Float value S Exp Frac Mathematical value
Ox3F800000 © Ox7F 000...000 1.0
OxBF800000 1 Ox7F 0©00...000 -1.0
Ox3F800001¢ © OXx7F 0©00...001 1.000 000 119
Ox3F400000 © Ox7E 100...000 0.75
0x00800000" 0 ©0x01 000...000 1.18*10738
0x00000001 © 0x00 000...001 1.40*10°4°
Ox7F7FFFFFl @ OxFE 111...111 3.40*103%
OXx7F800000 © OxFF ©00...000 Plus infinity
OxFF800000 1 OxFF 000...000 Minus infinity
0x00000000F 0 ©0x00 000...000 0.0
Ox7F800001 0O OxFF 000...001 Signaling NaN
Ox7FC00000! @ OxFF 100...000 Quiet NaN
Related concepts
3.6 IEEE 754 arithmetic on page 3-129.
3.6.2 Single precision data type for IEEE 754 arithmetic on page 3-129.
3.6.3 Double precision data type for IEEE 754 arithmetic on page 3-130.
3.6.6 IEEE 754 arithmetic and rounding on page 3-133.
3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.
€ The smallest representable number that can be seen to be greater than 1.0. The amount that it differs from 1.0 is known as the machine epsilon. This is 0.000 000
119 in float, and 0.000 000 000 000 000 222 in double. The machine epsilon gives a rough idea of the number of significant figures the format can keep track of.
float can do six or seven places. double can do fifteen or sixteen.
b The smallest value that can be represented as a normalized number in each format. Numbers smaller than this can be stored as denormals, but are not held with as
. much precision.
! The smallest positive number that can be distinguished from zero. This is the absolute lower limit of the format.
J The largest finite number that can be stored. Attempting to increase this number by addition or multiplication causes overflow and generates infinity (in general).
K Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1, minus zero, is treated differently by some operations, although the comparison operations (for
example == and ! =) report that the two types of zero are equal.
I There are two types of NaNs, signaling NaNs and quiet NaNs. Quiet NaNs have a 1 in the first bit of Frac, and signaling NaNs have a zero there. The difference is
that signaling NaNs cause an exception when used, whereas quiet NaNs do not.
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-131

reserved.
Confidential - Draft - Beta

http://ieeexplore.ieee.org/

3.6.5

3 Floating-point Support
3.6 IEEE 754 arithmetic

Related references
3.6.1 Basic data types for IEEE 754 arithmetic on page 3-129.
3.6.5 Sample double precision floating-point values for IEEE 754 arithmetic on page 3-132.

Related information
IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.

Sample double precision floating-point values for IEEE 754 arithmetic

Sample double bit patterns, together with their mathematical values.

Table 3-10 Sample double-precision floating-point values

Double value S Exp Frac Mathematical value

Ox3FF0000000000000 0O Ox3FF 000...000 1.0

OXBFF0000000000000 1 Ox3FF 000...000 -1.0

0x3FF0000000000001™ © Ox3FF 000...001 1.000 000 000 000 000 222

Ox3FE8000000000000 0O Ox3FE 100...000 0.75

0x0010000000000000" O 0x001 000...000 2.23%19°308

0x0000000000000001° 0x000 000...001 4.94*107324

0
OX7FEFFFFFFFFFFFFFP © Ox7FE 111...111 1.80%*103%8
0

0x7FF0000000000000 OX7FF 000...000 Plus infinity

OxXFFF0000000000000 1 Ox7FF 000...000 Minus infinity

0x00000000000000009 © 0x000 000...000 0.0

Ox7FF0000000000001 O Ox7FF 000...001 Signaling NaN

Ox7FF8000000000000" © OX7FF 100...000 Quict NaN

Related concepts

3.6 IEEE 754 arithmetic on page 3-129.

3.6.2 Single precision data type for IEEE 754 arithmetic on page 3-1209.

3.6.3 Double precision data type for IEEE 754 arithmetic on page 3-130.

3.6.6 IEEE 754 arithmetic and rounding on page 3-133.

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.

Related references
3.6.1 Basic data types for IEEE 754 arithmetic on page 3-129.
3.6.4 Sample single precision floating-point values for IEEE 754 arithmetic on page 3-131.

Related information
IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.

The smallest representable number that can be seen to be greater than 1.0. The amount that it differs from 1.0 is known as the machine epsilon. This is 0.000 000
119 in float, and 0.000 000 000 000 000 222 in double. The machine epsilon gives a rough idea of the number of significant figures the format can keep track of.
float can do six or seven places. double can do fifteen or sixteen.

The smallest value that can be represented as a normalized number in each format. Numbers smaller than this can be stored as denormals, but are not held with as
much precision.

The smallest positive number that can be distinguished from zero. This is the absolute lower limit of the format.

The largest finite number that can be stored. Attempting to increase this number by addition or multiplication causes overflow and generates infinity (in general).
Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1, minus zero, is treated differently by some operations, although the comparison operations (for
example == and ! =) report that the two types of zero are equal.

There are two types of NaNs, signaling NaNs and quiet NaNs. Quiet NaNs have a 1 in the first bit of Frac, and signaling NaNs have a zero there. The difference is
that signaling NaNs cause an exception when used, whereas quiet NaNs do not.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-132

reserved.
Confidential - Draft - Beta

http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/

3 Floating-point Support
3.6 IEEE 754 arithmetic

3.6.6 IEEE 754 arithmetic and rounding
IEEE 754 defines different rounding rules to use when calculating arithmetic results.

Arithmetic is generally performed by computing the result of an operation as if it were stored exactly (to
infinite precision), and then rounding it to fit in the format. Apart from operations whose result already
fits exactly into the format (such as adding 1.0 to 1.0), the correct answer is generally somewhere
between two representable numbers in the format. The system then chooses one of these two numbers as
the rounded result. It uses one of the following methods:

Round to nearest
The system chooses the nearer of the two possible outputs. If the correct answer is exactly
halfway between the two, the system chooses the output where the least significant bit of Frac is
zero. This behavior (round-to-even) prevents various undesirable effects.

This is the default mode when an application starts up. It is the only mode supported by the
ordinary floating-point libraries. Hardware floating-point environments and the enhanced
floating-point libraries support all four rounding modes.

Round up, or round toward plus infinity
The system chooses the larger of the two possible outputs (that is, the one further from zero if
they are positive, and the one closer to zero if they are negative).

Round down, or round toward minus infinity
The system chooses the smaller of the two possible outputs (that is, the one closer to zero if they
are positive, and the one further from zero if they are negative).

Round toward zero, or chop, or truncate
The system chooses the output that is closer to zero, in all cases.

Related concepts

3.6 IEEE 754 arithmetic on page 3-129.

3.6.2 Single precision data type for IEEE 754 arithmetic on page 3-1209.

3.6.3 Double precision data type for IEEE 754 arithmetic on page 3-130.

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.

Related references

3.6.1 Basic data types for IEEE 754 arithmetic on page 3-129.

3.6.4 Sample single precision floating-point values for IEEE 754 arithmetic on page 3-131.
3.6.5 Sample double precision floating-point values for IEEE 754 arithmetic on page 3-132.

Related information
IEEFE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic

Floating-point arithmetic operations can run into various problems. These are known as exceptions,
because they indicate unusual or exceptional situations.

For example, the result computed might be either too big or too small to fit into the format, or there
might be no way to calculate the result (as in trying to take the square root of a negative number, or
trying to divide zero by zero).

The ARM floating-point environment can handle an exception by inventing a plausible result for the

operation and returning that result, or by trapping the exception.

For example, the square root of a negative number can produce a NaN, and trying to compute a value too
big to fit in the format can produce infinity. If an exception occurs and is ignored, a flag is set in the
floating-point status word to tell you that something went wrong at some time in the past.

When an exception occurs, a piece of code called a trap handler is run. The system provides a default
trap handler that prints an error message and terminates the application. However, you can supply your

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-133
reserved.
Confidential - Draft - Beta

http://ieeexplore.ieee.org/

3 Floating-point Support
3.6 IEEE 754 arithmetic

own trap handlers to clean up the exceptional condition in whatever way you choose. Trap handlers can
even supply a result to be returned from the operation.

For example, if you had an algorithm where it was convenient to assume that 0 divided by 0 was 1, you
could supply a custom trap handler for the Invalid Operation exception to identify that particular case
and substitute the answer you required.

Related concepts

3.3.9 Writing a custom exception trap handler on page 3-120.

3.3.10 Example of a custom exception handler on page 3-124.

3.3.11 Exception trap handling by signals on page 3-125.

3.3 Controlling the ARM floating-point environment on page 3-115.

3.6 IEEE 754 arithmetic on page 3-129.

3.6.2 Single precision data type for IEEE 754 arithmetic on page 3-1209.
3.6.3 Double precision data type for IEEE 754 arithmetic on page 3-130.
3.6.6 IEEE 754 arithmetic and rounding on page 3-133.

Related references

3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.

3.3.2 C99-compatible functions for controlling the ARM floating-point environment on page 3-115.
4.30 _ rt raise() on page 4-170.

3.6.1 Basic data types for IEEE 754 arithmetic on page 3-129.

3.6.4 Sample single precision floating-point values for IEEE 754 arithmetic on page 3-131.

3.6.5 Sample double precision floating-point values for IEEE 754 arithmetic on page 3-132.

Related information
IEEFE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.

3.6.8 Exception types recognized by the ARM floating-point environment
The ARM floating-point environment recognizes a number of different types of exception.
The following types of exception are recognized:

Invalid Operation exception
This occurs when there is no sensible result for an operation. This can happen for any of the
following reasons:
* Performing any operation on a signaling NaN, except the simplest operations (copying and
changing the sign).
* Adding plus infinity to minus infinity, or subtracting an infinity from itself.
* Multiplying infinity by zero.
+ Dividing 0 by 0, or dividing infinity by infinity.
+ Taking the remainder from dividing anything by 0, or infinity by anything.
+ Taking the square root of a negative number (not including minus zero).
+ Converting a floating-point number to an integer if the result does not fit.
* Comparing two numbers if one of them is a NaN.

If the Invalid Operation exception is not trapped, these operations return a quiet NaN. The
exception is conversion to an integer. This returns zero because there are no quiet NaNs in
integers.

Divide by Zero exception
This occurs if you divide a finite nonzero number by zero. Be aware that:
+ Dividing zero by zero gives an Invalid Operation exception.
+ Dividing infinity by zero is valid and returns infinity.

If Divide by Zero is not trapped, the operation returns infinity.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-134
reserved.
Confidential - Draft - Beta

http://ieeexplore.ieee.org/

3 Floating-point Support
3.6 IEEE 754 arithmetic

Overflow exception
This occurs when the result of an operation is too big to fit into the format. This happens, for
example, if you add the largest representable number to itself. The largest float value is
Ox7F7FFFFF.

If Overflow is not trapped, the operation returns infinity, or the largest finite number, depending
on the rounding mode.

Underflow exception

This can occur when the result of an operation is too small to be represented as a normalized

number (with Exp at least 1).

The situations that cause Underflow depend on whether it is trapped or not:

+ If Underflow is trapped, it occurs whenever a result is too small to be represented as a
normalized number.

+ If Underflow is not trapped, it only occurs if the result requires rounding. So, for example,
dividing the float number 0x00800000 by 2 does not signal Underflow, because the result
0x00400000 is exact. However, trying to multiply the float number ©x00000001 by 1.5 does
signal Underflow.

Note
For readers familiar with the IEEE 754 specification, the chosen implementation options in

the ARM compiler are to detect tininess before rounding, and to detect loss of accuracy as an
inexact result.

If Underflow is not trapped, the result is rounded to one of the two nearest representable
denormal numbers, according to the current rounding mode. The loss of precision is ignored
and the system returns the best result it can.

+ The Inexact Result exception happens whenever the result of an operation requires rounding.
This would cause significant loss of speed if it had to be detected on every operation in
software, so the ordinary floating-point libraries do not support the Inexact Result exception.
The enhanced floating-point libraries, and hardware floating-point systems, all support
Inexact Result.

If Inexact Result is not trapped, the system rounds the result in the usual way.

The flag for Inexact Result is also set by Overflow and Underflow if either one of those is
not trapped.

All exceptions are untrapped by default.

Related concepts

3.3.9 Writing a custom exception trap handler on page 3-120.

3.3.4 Exception flag handling on page 3-116.

3.3.10 Example of a custom exception handler on page 3-124.

3.3.11 Exception trap handling by signals on page 3-125.

3.6 IEEE 754 arithmetic on page 3-129.

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.

Related references

1.23.3 ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 1-84.

3.6.4 Sample single precision floating-point values for IEEE 754 arithmetic on page 3-131.

Related information
IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-135
reserved.
Confidential - Draft - Beta

http://ieeexplore.ieee.org/

3 Floating-point Support
3.6 IEEE 754 arithmetic

Related concepts

3.6.2 Single precision data type for IEEE 754 arithmetic on page 3-129.

3.6.3 Double precision data type for IEEE 754 arithmetic on page 3-130.

3.6.6 IEEE 754 arithmetic and rounding on page 3-133.

3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.

Related references

3.6.1 Basic data types for IEEE 754 arithmetic on page 3-129.

3.6.4 Sample single precision floating-point values for IEEE 754 arithmetic on page 3-131.
3.6.5 Sample double precision floating-point values for IEEE 754 arithmetic on page 3-132.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-136
reserved.
Confidential - Draft - Beta

3 Floating-point Support
3.7 Using the Vector Floating-Point (VFP) support libraries

3.7 Using the Vector Floating-Point (VFP) support libraries

The VFP support libraries are used by the VFP Support Code. The VFP Support Code is executed from
an undefined instruction trap that is triggered when an exceptional floating-point condition occurs.

Related information

Limitations on hardware handling of floating-point arithmetic.
Implementation of Vector Floating-Point (VFP) support code.
Using VFP with RVDS, Application Note 133.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 3-137
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124232160.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359124232426.html
http://infocenter.arm.com/help/topic/com.arm.doc.dai0133-/index.html

Chapter 4
The C and C++ Library Functions reference

Describes the standard C and C++ library functions that are extensions to the C Standard or that differ in
some way to the standard.

Some of the standard functions interact with the ARM retargetable semihosting environment. Such
functions are also documented.

It contains the following sections:

* 4.1 aeabi errno_addr() on page 4-140.

* 4.2 alloca() on page 4-141.

* 4.3 clock() on page 4-142.

* 4.4 clock init() on page 4-143.

* 4.5 default signal handler() on page 4-144.

* 4.6 errno on page 4-145.

* 4.7 findlocale() on page 4-146.

* 4.8 fisatty() on page 4-147.

* 4.9 get lconv() on page 4-148.

* 4.10 getenv() on page 4-149.

* 4.11 getenv_init() on page 4-150.

o 4.12 heapstats() on page 4-151.

* 4.13 _ heapvalid() on page 4-152.

* 4.14 lconv structure on page 4-153.

* 4.15 localeconv() on page 4-155.

* 4.16 _membitcpybl(), membitcpybb(), membitcpyhl(), membitcpyhb(), membitcpywl(),
_membitcpywb(), _membitmovebl(), membitmovebb(), membitmovehl(), membitmovehb(),
_membitmovewl(), membitmovewb() on page 4-156.

* 4.17 posix_memalign() on page 4-157.

» 4.18 #pragma import(_main_redirection) on page 4-158.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-138
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference

* 4.19 raise() on page 4-159.

* 4.20 rand r() on page 4-160.

* 4.2] remove() on page 4-161.

* 4.22 rename() on page 4-162.

* 4.23 _rt_entry on page 4-163.

e 4.24 rt errno_addr() on page 4-164.

* 425 rt exit() on page 4-165.

* 426 _rt fp_status_addr() on page 4-166.

e 4.27 _rt_heap_extend() on page 4-167.

e 428 _rt lib_init() on page 4-168.

o 429 rt lib shutdown() on page 4-169.

e 430 _rt raise() on page 4-170.

e 431 _rt stackheap init() on page 4-171.

o 4.32 setlocale() on page 4-172.

* 4.33 srand_r() on page 4-174.

* 4.34 strcasecmp() on page 4-175.

* 4.35 strncasecmp() on page 4-176.

* 4.36 stricat() on page 4-177.

* 4.37 strlcpy() on page 4-178.

e 438 sys _close() on page 4-179.

* 439 sys command_string() on page 4-180.

* 4.40 sys_ensure() on page 4-181.

e 441 sys exit() on page 4-182.

o 442 sys flen() on page 4-183.

o 443 sys_istty() on page 4-184.

* 4.44 sys open() on page 4-185.

* 445 sys read() on page 4-186.

* 446 sys_seek() on page 4-187.

o 447 sys_tmpnam() on page 4-188.

o 448 sys write() on page 4-189.

* 4.49 system() on page 4-190.

e 4.50 time() on page 4-191.

e 4.51 ttywrch() on page 4-192.

* 452 user_heap extend() on page 4-193.

* 453 _user_heap extent() on page 4-194.

o 454 _user setup stackheap() on page 4-195.
* 455 vectab_stack and reset on page 4-196.
* 4.56 wescasecmp() on page 4-197.

o 4.57 wesncasecmp() on page 4-198.

o 4.58 westombs() on page 4-199.

* 4.59 Thread-safe C library functions on page 4-200.
* 4.60 C library functions that are not thread-safe on page 4-202.
* 4.61 Legacy function __user _initial_stackheap() on page 4-204.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-139
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.1 __aeabi_errno_addr()

4.1 __aeabi_errno_addr()

The __aeabi_errno_addr() returns the address of the C library errno variable when the C library
attempts to read or write errno.

Syntax

volatile int *__aeabi_errno_addr(void);

Usage

The library provides a default implementation. It is unlikely that you have to re-implement this function.
This function is not part of the C library standard, but the ARM C library supports it as an extension.
Related references

4.6 errno on page 4-145.
4.24 _rt_errno_addr() on page 4-164.

Related information
C Library ABI for the ARM Architecture.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-140
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0039-/index.html

4 The C and C++ Library Functions reference
4.2 alloca()

4.2 alloca()

Defined in alloca.h, the alloca() function allocates local storage in a function. It returns a pointer to
the number of bytes of memory allocated.
Syntax

void *alloca(size_t size);

Usage
The default implementation returns an eight-byte aligned block of memory on the stack.
Memory returned from alloca() must never be passed to free(). Instead, the memory is de-allocated
automatically when the function that called alloca() returns.
Note

alloca() must not be called through a function pointer. You must take care when using alloca() and
setjmp() in the same function, because memory allocated by alloca() between calling setjmp() and
longjmp() is de-allocated by the call to longjmp().

This function is a common nonstandard extension to many C libraries.

Returns

Returns in size a pointer to the number of bytes of memory allocated.

Related concepts
1.5.3 ARM C libraries and thread-safe functions on page 1-25.

Related references
1.7.1 Building an application without the C library on page 1-40.
4.59 Thread-safe C library functions on page 4-200.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-141
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.3 clock()

4.3 clock()

This is the standard C library clock function from time.h.

Syntax

clock_t clock(void);

Usage
The default implementation of this function uses semihosting.

If the units of clock_t differ from the default of centiseconds, you must define _ CLK_TCK on the
compiler command line or in your own header file. The value in the definition is used for CLK_TCK and
CLOCKS_PER_SEC. The default value is 100 for centiseconds.

Note

If you re-implement clock() you must also re-implement _clock_init().

Returns

The returned value is an unsigned integer.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-142
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.4 _clock_init()

4.4 _clock_init()

Defined in rt_misc.h, the _clock_init() function is an initialization function for clock().

It is not part of the C library standard, but the ARM C library supports it as an extension.

Syntax

void _clock_init(void);

Usage
This is a function that you can re-implement in an implementation-specific way. It is called from the
library initialization code, so you do not have to call it from your application code.

Note

You must re-implement this function if you re-implement clock().

The initialization that _clock_init() applies enables clock() to return the time that has elapsed since
the program was started.

An example of how you might re-implement _clock_init() might be to set the timer to zero. However,
if your implementation of clock() relies on a system timer that cannot be reset, then _clock_init()
could instead read the time at startup (when called from the library initialization code), with clock()
subsequently subtracting the time that was read at initialization, from the current value of the timer. In
both cases, some form of initialization is required of _clock_init().

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-143
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.5 __default_signal_handler()

4.5 __default_signal_handler()

Defined in rt_misc.h, the __default_signal_handler() function handles a raised signal. The default
action is to print an error message and exit.

This function is not part of the C library standard, but the ARM C library supports it as an extension.

Syntax

int _ default_signal_handler(int signal, int type);

Usage

The default signal handler returns a nonzero value to indicate that the caller has to arrange for the
program to exit. You can replace the default signal handler by defining:

int _ default_signal_handler(int signal, int type);

The interface is the same as __raise(), but this function is only called after the C signal handling
mechanism has declined to process the signal.

A complete list of the defined signals is in signal.h.
Note
The signals used by the libraries might change in future releases of ARM Compiler.

Related references

1.23.3 ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 1-84.

1.6.7 Indirect semihosting C library function dependencies on page 1-37.

4.19 raise() on page 4-159.

4.51 ttywrch() on page 4-192.

4.41 sys_exit() on page 4-182.

4.30 _ rt raise() on page 4-170.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-144
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.6 errno

4.6 errno

The C library errno variable is defined in the implicit static data area of the library.
This area is identified by __user_libspace(). The function that returns the address of errno is:
(*(volatile int *) _ aeabi_errno_addr())

You can define __aeabi_errno_addr() if you want to place errno at a user-defined location instead of
the default location identified by __user_libspace().

Note

Legacy versions of errno.h might define errno in terms of __rt_errno_addr() rather than
__aeabi_errno_addr(). The function name __rt_errno_addr() is a legacy from pre-ABI versions of
the tools, and is still supported to ensure that object files generated with those tools link successfully.

Returns

The return value is a pointer to a variable of type int, containing the currently applicable instance of
errno.

Related concepts
1.5.4 Use of static data in the C libraries on page 1-25.

Related references

4.1 __aeabi_errno_addr() on page 4-140.

4.24 _rt errno_addr() on page 4-164.

1.5.5 Use of the _user_libspace static data area by the C libraries on page 1-26.

Related information
Application Binary Interface for the ARM Architecture.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-145
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html

4 The C and C++ Library Functions reference
4.7 _findlocale()

4.7 _findlocale()

Defined in rt_locale.h, findlocale() searches a set of contiguous locale data blocks for the
requested locale, and returns a pointer to that locale.

This function is not part of the C library standard, but the ARM C library supports it as an extension.

Syntax
void const *_findlocale(void const *index, const char *name);
Where:

index
is a pointer to a set of locale data blocks that are contiguous in memory and that end with a
terminating value (set by the LC_index_end macro).

name
is the name of the locale to find.

Usage
You can use _findlocale() as an optional helper function when defining your own locale setup.

The _get_lc_*() functions, for example, _get_lc_ctype(), are expected to return a pointer to a locale
definition created using the assembler macros. If you only want to write one locale definition, you can
write an implementation of _get_1c_ctype() that always returns the same pointer. However, if you
want to use different locale definitions at runtime, then the _get_1c_*() functions have to be able to
return a different data block depending on the name passed to them as an argument. _findlocale()
provides an easy way to do this.

Returns

Returns a pointer to the requested data block.

Related concepts
1.9 Assembler macros that tailor locale functions in the C library on page 1-52.
1.9.2 Runtime selection of the locale subsystem in the C library on page 1-53.

Related references

1.9.1 Link time selection of the locale subsystem in the C library on page 1-52.
1.9.3 Definition of locale data blocks in the C library on page 1-53.

4.14 Iconv structure on page 4-153.

4.9 get lconv() on page 4-148.

4.15 localeconv() on page 4-155.

4.32 setlocale() on page 4-172.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-146
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.8 _fisatty()

4.8 _fisatty()

Defined in stdio.h, the _fisatty() function determines whether the given stdio stream is attached to
a terminal device or a normal file.

It calls the _sys_istty() low-level function on the underlying file handle.
This function is not part of the C library standard, but the ARM C library supports it as an extension.
Syntax

int _fisatty(FILE *stream);

The return value indicates the stream destination:

0

A file.
1

A terminal.
Negative

An error.

Related references
4.43 sys_istty() on page 4-184.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-147
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.9 _get _Iconv()

4.9 _get_lcony()

Defined in locale.h, _get_lconv() performs the same function as the standard C library function,
localeconv(), except that it delivers the result in user-provided memory instead of an internal static
variable.

_get_lconv() sets the components of an 1conv structure with values appropriate for the formatting of
numeric quantities.

Syntax

void _get_lconv(struct lconv *Lc);

Usage

This extension to the ISO C library does not use any static data. If you are building an application that
must conform strictly to the ISO C standard, use localeconv() instead.

Returns

The existing 1conv structure Lc is filled with formatting data.

Related references

4.7 findlocale() on page 4-146.
4.14 lconv structure on page 4-153.
4.15 localeconv() on page 4-155.
4.32 setlocale() on page 4-172.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-148
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.10 getenv()

410 getenv()

This is the standard C library getenv() function from stdlib.h. It gets the value of a specified
environment variable.

Syntax

char *getenv(const char *name);

Usage
The default implementation returns NULL, indicating that no environment information is available.

If you re-implement getenv(), ARM recommends that you re-implement it in such a way that it
searches some form of environment list for the input string, name. The set of environment names and the
method for altering the environment list are implementation-defined. getenv() does not depend on any
other function, and no other function depends on getenv ().

A function closely associated with getenv() is _getenv_init()._getenv_init() is called during
startup if it is defined, to enable a user re-implementation of getenv() to initialize itself.

Returns

The return value is a pointer to a string associated with the matched list member. The array pointed to
must not be modified by the program, but might be overwritten by a subsequent call to getenv().

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-149
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.11 _getenv_init()

4.11 _getenv_init()

Defined in rt_misc.h, the _getenv_init() function enables a user version of getenv() to initialize
itself.

This function is not part of the C library standard, but the ARM C library supports it as an extension.

Syntax

void _getenv_init(void);

Usage

If this function is defined, the C library initialization code calls it when the library is initialized, that is,
before main() is entered.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-150
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.12 __heapstats()

412 __heapstats|()

Defined in stdlib.h, the _ heapstats() function displays statistics on the state of the storage
allocation heap.

Syntax

void _ heapstats(int (*dprint)(void *param, char const *format,...), void *param);

Usage

The default implementation in the compiler gives information on how many free blocks exist, and
estimates their size ranges.

The __heapstats() function generates output as follows:

32272 bytes in 2 free blocks (avge size 16136)
1 blocks 2712+1 to 2”13
1 blocks 2713+1 to 2”14

Line 1 of the output displays the total number of bytes, the number of free blocks, and the average size.
The following lines give an estimate of the size of each block in bytes, expressed as a range.
__heapstats() does not give information on the number of used blocks.

The function outputs its results by calling the output function dprint(), that must work like fprintf().
The first parameter passed to dprint() is the supplied pointer param. You can pass fprintf() itself,
provided you cast it to the right function pointer type. This type is defined as a typedef for convenience.
It is called __heapprt. For example:

__heapstats((__heapprt)fprintf, stderr);

Note

If you call fprintf() on a stream that you have not already sent output to, the library calls malloc()
internally to create a buffer for the stream. If this happens in the middle of a call to __heapstats(), the
heap might be corrupted. Therefore, you must ensure you have already sent some output to stderr.

If you are using the default one-region memory model, heap memory is allocated only as it is required.
This means that the amount of free heap changes as you allocate and deallocate memory. For example,
the sequence:

int *ip;

__heapstats((__heapprt)fprintf,stderr); // print initial free heap size
ip = malloc(200000);

free(ip);

__heapstats((__heapprt)fprintf,stderr); // print heap size after freeing

gives output such as:

4076 bytes in 1 free blocks (avge size 4076)

1 blocks 2710+1 to 2”11

2008180 bytes in 1 free blocks (avge size 2008180)
1 blocks 2719+1 to 2720

This function is not part of the C library standard, but the ARM C library supports it as an extension.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-151
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.13 __heapvalid()

413 __heapvalid()

Defined in stdlib.h, the _ heapvalid() function performs a consistency check on the heap.

Syntax

int _ heapvalid(int (*dprint)(void *param, char const *format,...), void *param, int
verbose);

Usage

__heapvalid() outputs full information about every free block if the verbose parameter is nonzero.
Otherwise, it only outputs errors.

The function outputs its results by calling the output function dprint (), that must work like fprintf().
The first parameter passed to dprint() is the supplied pointer param. You can pass fprintf() itself,
provided you cast it to the right function pointer type. This type is defined as a typedef for convenience.
It is called __heapprt. For example:

__heapvalid((__heapprt) fprintf, stderr, 0);

Note

If you call fprintf() on a stream that you have not already sent output to, the library calls malloc()
internally to create a buffer for the stream. If this happens in the middle of a call to __heapvalid(), the
heap might be corrupted. You must therefore ensure you have already sent some output to stderr. The
example code fails if you have not already written to the stream.

This function is not part of the C library standard, but the ARM C library supports it as an extension.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-152
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference

414 Ilconv structure

Defined in locale.h, the 1conv structure contains numeric formatting information

The structure is filled by the functions _get_lconv() and localeconv().

The definition of 1conv from locale.h is as follows.

struct

}s

char

char

char

char

char
char

char

char

char

char

char

char

char

char

char

char

char

char

lconv {

*decimal_point;

/* The decimal point character used to format non monetary quantities
*thousands_sep;

/* The character used to separate groups of digits to the left of the
/* decimal point character in formatted non monetary quantities.
*grouping;

/* A string whose elements indicate the size of each group of digits
/* in formatted non monetary quantities. See below for more details.
*int_curr_symbol;

/* The international currency symbol applicable to the current locale.

/* The first three characters contain the alphabetic international
/* currency symbol in accordance with those specified in ISO 4217.
/* Codes for the representation of Currency and Funds. The fourth
/* character (immediately preceding the null character) is the

/* character used to separate the international currency symbol from
/* the monetary quantity.

*currency_symbol;

/* The local currency symbol applicable to the current locale.
*mon_decimal_point;

/* The decimal point used to format monetary quantities.
*mon_thousands_sep;

*/

*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/

/* The separator for groups of digits to the left of the decimal p01nt*/
*/

/* in formatted monetary quantities.

*mon_grouping;

/* A string whose elements indicate the size of each group of digits
/* in formatted monetary quantities. See below for more details.
*positive_sign;

/* The string used to indicate a non negative-valued formatted

/* monetary quantity.

*negative_sign;

/* The string used to indicate a negative-valued formatted monetary
/* quantity.

int_frac_digits;

/* The number of fractional digits (those to the right of the

/* decimal point) to be displayed in an internationally formatted
/* monetary quantities.

frac_digits;

/* The number of fractional digits (those to the right of the

/* decimal point) to be displayed in a formatted monetary quantity.
p_cs_precedes;

/* Set to 1 or @ if the currency_symbol respectively precedes or

/* succeeds the value for a non negative formatted monetary quantity.
p_sep_by_space;

/* Set to 1 or @ if the currency_symbol respectively is or is not
/* separated by a space from the value for a non negative formatted
/* monetary quantity.

n_cs_precedes;

/* Set to 1 or @ if the currency_symbol respectively precedes or

/* succeeds the value for a negative formatted monetary quantity.
n_sep_by_space;

/* Set to 1 or @ if the currency_symbol respectively is or is not
/* separated by a space from the value for a negative formatted

/* monetary quantity.

p_sign_posn;

/* Set to a value indicating the position of the positive_sign for a

*/
*/

*
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

4.14 Iconv structure

/* non negative formatted monetary quantity. See below for more details*/

n_sign_posn;
/* Set to a value indicating the position of the negative_sign for a
/* negative formatted monetary quantity. */

The elements of grouping and mon_grouping are interpreted as follows:

CHAR_MAX

0

No additional grouping is to be performed.

The previous element is repeated for the remainder of the digits.

*/

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights
reserved.
Confidential - Draft - Beta

4-153

4 The C and C++ Library Functions reference
4.14 Iconv structure

other
The value is the number of digits that comprise the current group. The next element is examined
to determine the size of the next group of digits to the left of the current group.

The value of p_sign_posn and n_sign_posn are interpreted as follows:

° Parentheses surround the quantity and currency symbol.

' The sign string precedes the quantity and currency symbol.
: The sign string is after the quantity and currency symbol.

’ The sign string immediately precedes the currency symbol.
4

The sign string immediately succeeds the currency symbol.

Related references

4.7 findlocale() on page 4-146.
4.9 get Iconv() on page 4-148.

4.15 localeconv() on page 4-155.
4.32 setlocale() on page 4-172.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-154
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.15 localeconv()

4.15 localeconv()

Defined in stdlib.h, localeconv() creates and sets the components of an lconv structure with values
appropriate for the formatting of numeric quantities according to the rules of the current locale.

Syntax

struct lconv *localeconv(void);

Usage

The members of the structure with type char * are strings. Any of these, except for decimal_point, can
point to an empty string, "", to indicate that the value is not available in the current locale or is of zero
length.

The members with type char are non-negative numbers. Any of the members can be CHAR_MAX to
indicate that the value is not available in the current locale.

This function is not thread-safe, because it uses an internal static buffer. _get_lconv() provides a
thread-safe alternative.

Returns

The function returns a pointer to the filled-in object. The structure pointed to by the return value is not
modified by the program, but might be overwritten by a subsequent call to the localeconv() function.
In addition, calls to the setlocale() function with categories LC_ALL, LC_MONETARY, or LC_NUMERIC
might overwrite the contents of the structure.

Related references

4.7 findlocale() on page 4-146.
4.14 Iconv structure on page 4-153.
4.9 get Iconv() on page 4-148.
4.32 setlocale() on page 4-172.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-155
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.16 _membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(), _membitcpywl(), _membitcpywb(), _membitmovebl(),
_membitmovebb(), _membitmovehl(), _membitmovehb(), _membitmovewl(), _membitmovewb()

4.16 _membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(),
_membitcpywl(), _membitcpywb(), _membitmovebl(), _membitmovebb(),
_membitmovehl(), _membitmovehb(), _membitmovewl(), _membitmovewb()

Similar to the standard C library memcpy () and memmove() functions, these nonstandard C library
functions provide bit-aligned memory operations.

They are defined in string.h.

Syntax

void _membitcpy[b|h|w][b|1](void *dest, const void *src, int dest_offset, int
src_offset, size_t nbits);

void _membitmove[b|h|w][b|1](void *dest, const void *src, int dest_offset, int
src_offset, size_t nbits);

Usage

The number of contiguous bits specified by nbits is copied, or moved (depending on the function being
used), from a memory location starting src_offset bits after (or before if a negative offset) the address
pointed to by src, to a location starting dest_offset bits after (or before if a negative offset) the address
pointed to by dest.

To define a contiguous sequence of bits, a form of ordering is required. The variants of each function

define this order, as follows:

» Functions whose second-last character is b, for example _membitcpybl(), are byte-oriented. Byte-
oriented functions consider all of the bits in one byte to come before the bits in the next byte.

* Functions whose second-last character is h are halfword-oriented.

* Functions whose second-last character is w are word-oriented.

Within each byte, halfword, or word, the bits can be considered to go in different order depending on the
endianness. Functions ending in b, for example _membitmovewb (), are bitwise big-endian. This means
that the Most Significant Bit (MSB) of each byte, halfword, or word (as appropriate) is considered to be
the first bit in the word, and the Least Significant Bit (LSB) is considered to be the last. Functions ending
in 1 are bitwise little-endian. They consider the LSB to come first and the MSB to come last.

As with memcpy () and memmove (), the bitwise memory copying functions copy as fast as they can in
their assumption that source and destination memory regions do not overlap, whereas the bitwise
memory move functions ensure that source data in overlapping regions is copied before being
overwritten.

On a little-endian platform, the bitwise big-endian functions are distinct, but the bitwise little-endian
functions use the same bit ordering, so they are synonymous symbols that refer to the same function. On
a big-endian platform, the bitwise big-endian functions are all effectively the same, but the bitwise little-
endian functions are distinct.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-156
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.17 posix_memalign()

417 posix_memalign()

Defined in stdlib.h, the posix_memalign() function provides aligned memory allocation.

This function is fully POSIX-compliant.

Syntax

int posix_memalign(void **memptr, size_t alignment, size_t size);

Usage
This function allocates size bytes of memory at an address that is a multiple of alignment.
The value of alignment must be a power of two and a multiple of sizeof(void *).

You can free memory allocated by posix_memalign() using the standard C library free() function.

Returns
The returned address is written to the void * variable pointed to by memptr.
The integer return value from the function is zero on success, or an error code on failure.

If no block of memory can be found with the requested size and alignment, the function returns ENOMEM
and the value of *memptr is undefined.

Related information
The Open Group Base Specifications, IEEE Std 1003.1.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-157
reserved.
Confidential - Draft - Beta

http://www.opengroup.org

4 The C and C++ Library Functions reference
4.18 #pragma import(_main_redirection)

418 #pragma import(_main_redirection)
This pragma enables automatic command-line redirection.

Defining this pragma lets you use the < and > command-line operators to redirect the standard input,
output, and error streams at program startup.

If you do not define this pragma and attempt to use redirection operators on the command-line, the
redirection operators and associated filenames are passed to the program as ordinary argument strings.

Syntax

#pragma import(_main_redirection)

Related information

Environment.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-158
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/chr1359125032933.html

4 The C and C++ Library Functions reference
4.19 __raise()

4.19 __raise()

Defined in rt_misc.h, the _ raise() function raises a signal to indicate a runtime anomaly.

It is not part of the C library standard, but the ARM C library supports it as an extension.

Syntax

int _ raise(int signal, int type);
where:

signal

is an integer that holds the signal number.

type
is an integer, string constant or variable that provides additional information about the
circumstances that the signal was raised in, for some kinds of signal.

Usage

If the user has configured the handling of the signal by calling signal() then _ raise() takes the action
specified by the user. That is, either to ignore the signal or to call the user-provided handler function.
Otherwise, __raise() calls __default_signal_handler(), which provides the default signal handling
behavior.

You can replace the __raise() function by defining:
int _ raise(int signal, int type);

This enables you to bypass the C signal mechanism and its data-consuming signal handler vector, but
otherwise gives essentially the same interface as:

int _ default_signal_handler(int signal, int type);

The default signal handler of the library uses the type parameter of __raise() to vary the messages it
outputs.

Returns
There are three possibilities for a __raise() return condition:

no return
The handler performs a long jump or restart.
0
The signal was handled.
nonzero
The calling code must pass that return value to the exit code. The default library implementation
calls _sys_exit(rc) if __raise() returns a nonzero return code rc.

Related concepts
1.5.11 Thread safety in the ARM C library on page 1-31.

Related references

1.23.3 ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 1-84.

1.6.7 Indirect semihosting C library function dependencies on page 1-37.
4.5 default signal handler() on page 4-144.

4.51 ttywrch() on page 4-192.

4.41 sys_exit() on page 4-182.

4.30 _rt raise() on page 4-170.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-159
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.20 _rand_r()

4.20 _rand_r()

Defined in stdlib.h, the _rand_r() function is a reentrant version of the rand() function.

Syntax
int _rand_r(struct _rand_state * buffer);

where:

buffer

is a pointer to a user-supplied buffer storing the state of the random number generator.

Usage
This function enables you to explicitly supply your own buffer in thread-local storage.
Related references

4.33 srand r() on page 4-174.
4.60 C library functions that are not thread-safe on page 4-202.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-160
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.21 remove()

4.21 remove()

This is the standard C library remove() function from stdio.h.

Syntax

int remove(const char *filename);

Usage
The default implementation of this function uses semihosting.

remove () causes the file whose name is the string pointed to by filename to be removed. Subsequent
attempts to open the file result in failure, unless it is created again. If the file is open, the behavior of the
remove () function is implementation-defined.

Returns

Returns zero if the operation succeeds or nonzero if it fails.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-161
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.22 rename()

4.22 rename()

This is the standard C library rename() function from stdio.h.

Syntax

int rename(const char *old, const char *new);

Usage
The default implementation of this function uses semihosting.

rename () causes the file whose name is the string pointed to by old to be subsequently known by the
name given by the string pointed to by new. The file named old is effectively removed. If a file named by
the string pointed to by new exists prior to the call of the rename() function, the behavior is
implementation-defined.

Returns

Returns zero if the operation succeeds or nonzero if it fails. If the operation returns nonzero and the file
existed previously it is still known by its original name.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-162
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.23 __rt entry

4.23 __rt_entry
The symbol __rt_entry is the starting point for a program using the ARM C library.

Control passes to __rt_entry after all scatter-loaded regions have been relocated to their execution
addresses.

Usage
The default implementation of __rt_entry:

1. Sets up the heap and stack.

2. Initializes the C library by calling __rt_lib_init.

3. Calls main().

4. Shuts down the C library, by calling __rt_lib_shutdown.
5. Exits.

__rt_entry must end with a call to one of the following functions:

exit()
Calls atexit()-registered functions and shuts down the library.
__rt_exit()
Shuts down the library but does not call atexit() functions.
_sys_exit()
Exits directly to the execution environment. It does not shut down the library and does not call
atexit() functions.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-163
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.24 __rt errno_addr()

4.24 __rt_errno_addr()

The __rt_errno_addr() function is called to get the address of the C library errno variable when the C
library attempts to read or write errno.

Syntax

volatile int *__rt_errno_addr(void);

Usage
The library provides a default implementation. It is unlikely that you have to reimplement this function.

This function is not part of the C library standard, but the ARM C library supports it as an extension.
Note

This function is associated with pre-ABI versions of the compilation tools. However, it remains

supported to ensure that object files compiled with those tools link successfully. Unless you are working

with object files compiled with pre-ABI versions of the tools, use __aeabi_errno_addr() instead of
__rt_errno_addr().

Related references
4.1 aeabi errno_addr() on page 4-140.
4.6 errno on page 4-145.

Related information
Application Binary Interface for the ARM Architecture.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-164
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html

4 The C and C++ Library Functions reference
4.25 __rt _exit()

425 _ rt_exit()

Defined in rt_misc.h, the _ rt_exit() function shuts down the library but does not call functions
registered with atexit().

atexit()-registered functions are called by exit().

The __rt_exit() function is not part of the C library standard, but the ARM C library supports it as an
extension.

Syntax
void _ rt_exit(int code);
Where code is not used by the standard function.

Usage

Shuts down the C library by calling __rt_1ib_shutdown(), and then calls _sys_exit() to terminate the
application. Reimplement _sys_exit() rather than __ rt_exit().

Returns

This function does not return.

Related references
4.41 sys_exit() on page 4-182.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-165
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.26 __rt fp_status_addr()

4.26 __rt_fp_status_addr()

Defined in rt_fp.h,the _ rt_fp_status_addr() function returns the address of the floating-point
status word.

By default, the floating-point status word resides in __user_libspace.

This function is not part of the C library standard, but the ARM C library supports it as an extension.

Syntax

unsigned *_ rt_fp_status_addr(void);

Usage

If __rt_fp_status_addr() is not defined, the default implementation from the C library is used. The
value is initialized when __rt_1ib_init() calls _fp_init(). The constants for the status word are
listed in fenv.h. The default floating-point status is .

Returns

The address of the floating-point status word.

Related concepts
1.5.11 Thread safety in the ARM C library on page 1-31.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-166
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.27 __rt_heap_extend()

4.27 __rt_heap_extend()

Defined in rt_heap.h, the _ rt_heap_extend() function returns a new eight-byte aligned block of
memory to add to the heap, if possible.

If you reimplement __rt_stackheap_init(), you must reimplement this function. An incomplete
prototype implementation is in rt_memory.s.

This function is not part of the C library standard, but the ARM C library supports it as an extension.

Syntax

extern unsigned _ rt_heap_extend(unsigned size, void **block);

Usage

The calling convention is ordinary AAPCS. On entry, ro is the minimum size of the block to add, and r1
holds a pointer to a location to store the base address.

The default implementation has the following characteristics:
* The returned size must be either:

— A multiple of eight bytes of at least the requested size.
— 0, denoting that the request cannot be honored.
* The returned base address is aligned on an eight-byte boundary.
» Size is measured in bytes.
+ The function is subject only to ARM Architecture Procedure Call Standard (AAPCS) constraints.

Returns

The default implementation extends the heap if there is sufficient free heap memory. If it cannot, it calls
__user_heap_extend() if it is implemented. On exit, re is the size of the block acquired, or 0 if
nothing could be obtained, and the memory location r1 pointed to on entry contains the base address of
the block.

Related concepts
1.11.3 Stack pointer initialization and heap bounds on page 1-64.

Related references

4.31 _rt stackheap init() on page 4-171.
4.52 _ user_heap_extend() on page 4-193.
4.53 user heap_extent() on page 4-194.
4.54 _user setup_stackheap() on page 4-195.

Related information
Procedure Call Standard for the ARM Architecture.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-167
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html

4 The C and C++ Library Functions reference
4.28 __rt_lib_init()

428 _ rt_lib_init()

Defined in rt_misc.h, this is the library initialization function and is the companion to
__rt_1ib_shutdown().

Syntax

extern value_in_regs struct _ argc_argv _ rt_lib_init(unsigned heapbase, unsigned
heaptop);

where:

heapbase

is the start of the heap memory block.
heaptop

is the end of the heap memory block.

Usage

This function is called immediately after _ rt_stackheap_init() and is passed an initial chunk of
memory to use as a heap. This function is the standard ARM C library initialization function and it must
not be reimplemented.

Returns

This function returns argc and argv ready to be passed to main(). The structure is returned in the
registers as:

struct __argc_argv
{ int argc;

char **argv;

int r2, r3; // optional extra arguments that on entry to main() are
}s // found in registers R2 and R3.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-168
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.29 __rt lib_shutdown()

429 _ rt_lib_shutdown()

Defined in rt_misc.h, _ rt_lib_shutdown() is the library shutdown function and is the companion to
__rt_1ib_init().

Syntax

void _ rt_1lib_shutdown(void);

Usage

This function is provided in case a user must call it directly. This is the standard ARM C library
shutdown function and it must not be reimplemented.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-169
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.30 __rt _raise()

4.30 __rt_raise()
Defined in rt_misc.h, the _ rt_raise() function raises a signal to indicate a runtime anomaly.

This function is not part of the C library standard, but the ARM C library supports it as an extension.

Syntax
void _ rt_raise(int signal, int type);
where:

signal
is an integer that holds the signal number.

type
is an integer, string constant or variable that provides additional information about the
circumstances that the signal was raised in, for some kinds of signal.

Usage

Redefine this function to replace the entire signal handling mechanism for the library. The default
implementation calls __raise().

Depending on the value returned from __raise():

no return
The handler performed a long jump or restart and __rt_raise() does not regain control.
0
The signal was handled and __rt_raise() exits.
nonzero
The default library implementation calls _sys_exit(rc) if __raise() returns a nonzero return
code rc.

Related references

1.23.3 ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 1-84.

4.5 default signal handler() on page 4-144.
4.19 raise() on page 4-159.

4.51 ttywrch() on page 4-192.

4.41 sys_exit() on page 4-182.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-170
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.31 __rt_stackheap_init()

4.31 __rt_stackheap_init()

Defined in rt_misc.h, the _ rt_stackheap_init() function sets up the stack pointer and returns a
region of memory for use as the initial heap.

It is called from the library initialization code.

On return from this function, SP must point to the top of the stack region, ré must point to the base of
the heap region, and r1 must point to the limit of the heap region.

A user-defined memory model (that is, __ rt_stackheap_init() and _ rt_heap_extend()) is allocated
16 bytes of storage from the __user_perproc_libspace area if wanted. It accesses this storage by
calling _ rt_stackheap_storage() to return a pointer to its 16-byte region.

This function is not part of the C library standard, but the ARM C library supports it as an extension.

Related concepts
1.11.3 Stack pointer initialization and heap bounds on page 1-64.

Related references

4.27 1t _heap extend() on page 4-167.

4.52 _user heap_extend() on page 4-193.
4.53 user heap extent() on page 4-194.
4.54 _user setup_stackheap() on page 4-195.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-171
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.32 setlocale()

4.32 setlocale()

Defined in locale.h, the setlocale() function selects the appropriate locale as specified by the
category and Locale arguments.

Syntax

char *setlocale(int category, const char *locale);

Usage

Use the setlocale() function to change or query part or all of the current locale. The effect of the
category argument for each value is:

LC_COLLATE
Affects the behavior of strcoll().
LC_CTYPE
Affects the behavior of the character handling functions.
LC_MONETARY
Affects the monetary formatting information returned by localeconv().
LC_NUMERIC
Affects the decimal-point character for the formatted input/output functions and the string
conversion functions and the numeric formatting information returned by localeconv().
LC_TIME
Can affect the behavior of strftime(). For currently supported locales, the option has no effect.
LC_ALL
Affects all locale categories. This is the bitwise OR of all the locale categories.

A value of "C" for Locale specifies the minimal environment for C translation. An empty string, "", for
Locale specifies the implementation-defined native environment. At program startup, the equivalent of
setlocale(LC_ALL, "C") is executed.

Valid Locale values depend on which __use_X_ctype symbol is imported (__use_iso8859_ctype,
__use_sjis_ctype, or __use_utf8_ctype), and on user-defined locales.
Note

Only one __use_X_ctype symbol can be imported.

Returns

If a pointer to a string is given for locale and the selection is valid, the string associated with the
specified category for the new locale is returned. If the selection cannot be honored, a null pointer is
returned and the locale is not changed.

A null pointer for locale causes the string associated with the category for the current locale to be
returned and the locale is not changed.

If category is LC_ALL and the most recent successful locale-setting call uses a category other than
LC_ALL, a composite string might be returned. The string returned when used in a subsequent call with its
associated category restores that part of the program locale. The string returned is not modified by the
program, but might be overwritten by a subsequent call to setlocale().

Related concepts
Shift-JIS and UTF-8 implementation on page 1-53.

Related references
ISO8859-1 implementation on page 1-52.
1.9.3 Definition of locale data blocks in the C library on page 1-53.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-172
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.32 setlocale()

4.7 findlocale() on page 4-146.
4.14 Iconv structure on page 4-153.
4.9 get Iconv() on page 4-148.
4.15 localeconv() on page 4-155.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-173
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.33 _srand_r()

4.33 _srand_r()

Defined in stdlib.h, this is a reentrant version of the srand() function.

Syntax
int _srand_r(struct _rand_state * buffer, unsigned int seed);

where:

buffer
is a pointer to a user-supplied buffer storing the state of the random number generator.

seed
is a seed for a new sequence of pseudo-random numbers to be returned by subsequent calls to
_rand_r().

Usage

This function enables you to explicitly supply your own buffer that can be used for thread-local storage.

If _srand_r() is repeatedly called with the same seed value, the same sequence of pseudo-random
numbers is repeated. If _rand_r() is called before any calls to _srand_r() have been made with the
same buffer, undefined behavior occurs because the buffer is not initialized.

Related references
4.20 rand r() on page 4-160.
4.60 C library functions that are not thread-safe on page 4-202.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-174
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.34 strcasecmp()

4.34 strcasecmp()

Defined in string.h, the strcasecmp() function performs a case-insensitive string comparison test.
Syntax
extern _ARMABI int strcasecmp(const char *si, const char *s2);

Related information
Application Binary Interface for the ARM Architecture.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-175
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html

4 The C and C++ Library Functions reference
4.35 strncasecmp()

4.35 strncasecmp()

Defined in string.h, the strncasecmp() function performs a case-insensitive string comparison test of
not more than a specified number of characters.

Syntax
extern _ARMABI int strncasecmp(const char *s1, const char *s2, size t n);

Related information
Application Binary Interface for the ARM Architecture.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-176
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html

4 The C and C++ Library Functions reference
4.36 stricat()

4.36 stricat()

Defined in string.h, the strlcat() function concatenates two strings.

Syntax

extern size t strlcat(char *dst, const char *src, size_t size);

Usage

strlcat() appends up to size-strlen(dst)-1 bytes from the NUL-terminated string src to the end of
dst. It takes the full size of the buffer, not only the length, and terminates the result with NUL as long as
size is greater than 0. Include a byte for the NUL in your size value.

The strlcat() function returns the total length of the string that would have been created if there was
unlimited space. This might or might not be equal to the length of the string actually created, depending
on whether there was enough space. This means that you can call strlcat() once to find out how much
space is required, then allocate it if you do not have enough, and finally call strlcat() a second time to
create the required string.

This function is a common BSD-derived extension to many C libraries.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-177
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.37 stricpy()

4.37 stricpy()

Defined in string.h, the strlcpy() function copies up to size-1 characters from the NUL-terminated
string src to dst.
Syntax

extern size t strlcpy(char *dst, const char *src, size t size);

Usage

strlcpy() takes the full size of the buffer, not only the length, and terminates the result with NUL as long
as size is greater than 0. Include a byte for the NUL in your size value.

The strlcpy() function returns the total length of the string that would have been copied if there was
unlimited space. This might or might not be equal to the length of the string actually copied, depending
on whether there was enough space. This means that you can call strlcpy() once to find out how much
space is required, then allocate it if you do not have enough, and finally call strlcpy() a second time to
do the required copy.

This function is a common BSD-derived extension to many C libraries.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-178
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.38 _sys_close()

4.38 _sys_close()

Defined in rt_sys.h, the _sys_close() function closes a file previously opened with _sys_open().

Syntax
int _sys_close(FILEHANDLE fh);

Usage

This function must be defined if any input/output function is to be used.

Returns

The return value is 0 if successful. A nonzero value indicates an error.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-179
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.39 _sys_command_string()

4.39 _sys_command_string()

Defined in rt_sys.h, the _sys_command_string() function retrieves the command line that invoked the
current application from the environment that called the application.

Syntax
char *_sys command_string(char *cmd, int Len);

where:

cmd
is a pointer to a buffer that can store the command line. It is not required that the command line
is stored in cmd.

Len
is the length of the buffer.

Usage
This function is called by the library startup code to set up argv and argc to pass to main().
Note
You must not assume that the C library is fully initialized when this function is called. For example, you

must not call malloc() from within this function. This is because the C library startup sequence calls this
function before the heap is fully configured.

Returns
The function must return either:

* A pointer to the command line, if successful. This can be either a pointer to the cmd buffer if it is
used, or a pointer to wherever else the command line is stored.
e NULL, if not successful.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-180
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.40 _sys_ensure()

4.40 _sys_ensure()

This function is deprecated. It is never called by any other library function, and you are not required to
re-implement it if you are retargeting standard I/O (stdio).

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-181
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.41 _sys_exit()

4.41 _sys_exit()

Defined in rt_sys.h, this is the library exit function. All exits from the library eventually call
_sys_exit().

Syntax

void _sys_exit(int return_code);

Usage

This function must not return. You can intercept application exit at a higher level by either:

* Implementing the C library function exit() as part of your application. You lose atexit()
processing and library shutdown if you do this.

* Implementing the function __rt_exit(int n) as part of your application. You lose library shutdown
if you do this, but atexit() processing is still performed when exit() is called or main() returns.

Returns

The return code is advisory. An implementation might attempt to pass it to the execution environment.

Related references

1.6.6 Direct semihosting C library function dependencies on page 1-36.
4.5 default signal handler() on page 4-144.

4.19 raise() on page 4-159.

4.51 ttywrch() on page 4-192.

4.30 _ rt raise() on page 4-170.

4.25 rt exit() on page 4-165.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-182
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.42 _sys_flen()

4.42 _sys_flen()

Defined in rt_sys.h, the _sys_flen() function returns the current length of a file.

Syntax

long _sys_flen(FILEHANDLE fh);

Usage

This function is used by _sys_seek() to convert an offset relative to the end of a file into an offset
relative to the beginning of the file.

You do not have to define _sys_flen() if you do not intend to use fseek().

If you retarget at system _sys_*() level, you must supply _sys_flen(), even if the underlying system
directly supports seeking relative to the end of a file.

Returns

This function returns the current length of the file fh, or a negative error indicator.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-183
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.43 _sys_istty()

4.43 _sys_istty()

Defined in rt_sys.h, the _sys_istty() function determines if a file handle identifies a terminal.

Syntax

int _sys_istty(FILEHANDLE fh);

Usage

When a file is connected to a terminal device, this function provides unbuffered behavior by default (in
the absence of a call to set(v)buf) and prohibits seeking.

Returns

The return value is one of the following values:

0

There is no interactive device.
1

There is an interactive device.
other

An error occurred.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.
4.8 fisatty() on page 4-147.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-184
reserved.
Confidential - Draft - Beta

444 sy

4 The C and C++ Library Functions reference
4.44 _sys open()

s_open()

Defined in rt_sys.h, the _sys_open() function opens a file.

Syntax

FILEHANDLE _sys_open(const char *name, int openmode);

Usage

The _sys_open() function is required by fopen() and freopen(). These functions in turn are required
if any file input/output function is to be used.

The openmode parameter is a bitmap whose bits mostly correspond directly to the ISO mode
specification. Target-dependent extensions are possible, but freopen() must also be extended.

Returns

The return value is -1 if an error occurs.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-185
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.45 _sys_read()

4.45 _sys_read()

Defined in rt_sys.h, the _sys_read() function reads the contents of a file into a buffer.

Syntax

int _sys_read(FILEHANDLE fh, unsigned char *buf, unsigned Len, int mode);

Note

The mode parameter is here for historical reasons. It contains nothing useful and must be ignored.

Returns
The return value is one of the following:

* The number of bytes not read (that is, Len minus the number of bytes that were read).
* An error indication.
* An EOF indicator. The EOF indication involves the setting of 9x80000000 in the normal result.

Reading up to and including the last byte of data does not turn on the EOF indicator. The EOF indicator is

only reached when an attempt is made to read beyond the last byte of data. The target-independent code

is capable of handling:

* The EOF indicator being returned in the same read as the remaining bytes of data that precede the
EOF.

» The EOF indicator being returned on its own after the remaining bytes of data have been returned in a
previous read.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-186
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.46 _sys_seek()

4.46 _sys_seek()

Defined in rt_sys.h, the _sys_seek() function puts the file pointer at offset pos from the beginning of
the file.

Syntax

int _sys_seek(FILEHANDLE fh, long pos);

Usage

This function sets the current read or write position to the new location pos relative to the start of the
current file fh.

Returns
The result is:

* Negative if an error occurs.
* Non-negative if no error occurs.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-187
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.47 _sys_tmpnam()

4.47 _sys_tmpnam()

Defined in rt_sys.h, the _sys_tmpnam() function converts the file number fileno for a temporary file
to a unique filename, for example, tmpoeo1.

Syntax

void _sys_tmpnam(char *name, int fileno, unsigned maxlength);
Usage
The function must be defined if tmpnam() or tmpfile() is used.
Returns

Returns the filename in name.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-188
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.48 _sys_write()

4.48 _sys_write()

Defined in rt_sys.h, the _sys_write() function writes the contents of a buffer to a file previously
opened with _sys_open().
Syntax

int _sys_write(FILEHANDLE fh, const unsigned char *buf, unsigned Llen, int mode);

Note

The mode parameter is here for historical reasons. It contains nothing useful and must be ignored.

Returns
The return value is either:

* A positive number representing the number of characters not written (so any nonzero return value
denotes a failure of some sort).
* A negative number indicating an error.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-189
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.49 system()

4.49 system()

This is the standard C library system() function from stdlib.h.

Syntax

int system(const char *string);

Usage
The default implementation of this function uses semihosting.

system() passes the string pointed to by string to the host environment to be executed by a command
processor in an implementation-defined manner. A null pointer can be used for string, to inquire
whether a command processor exists.

Returns

If the argument is a NULL pointer, the system function returns nonzero only if a command processor is
available.

If the argument is not a NULL pointer, the system() function returns an implementation-defined value.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-190
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.50 time()

4.50 time()
This is the standard C library time() function from time.h.
The default implementation of this function uses semihosting.
Syntax
time_t time(time_t *timer);
The return value is an approximation of the current calendar time.
Returns

The value -1 is returned if the calendar time is not available. If timer is not a NULL pointer, the return
value is also stored in timer.

Related references
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-191
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.51 _ttywrch()

4.51 _ttywrch()

Defined in rt_sys.h, the _ttywrch() function writes a character to the console.

The console might have been redirected. You can use this function as a last resort error handling routine.

Syntax

void _ttywrch(int ch);

Usage
The default implementation of this function uses semihosting.

You can redefine this function, or __raise(), even if there is no other input/output. For example, it
might write an error message to a log kept in nonvolatile memory.

Related references

1.6.6 Direct semihosting C library function dependencies on page 1-36.
4.5 default signal handler() on page 4-144.

4.19 _ raise() on page 4-159.

4.41 sys_exit() on page 4-182.

4.30 _ rt raise() on page 4-170.

Related information
What is Semihosting?.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-192
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375-/pge1358787045051.html

4 The C and C++ Library Functions reference
4.52 __user_heap_extend()

4.52 __user_heap_extend()

Defined in rt_misc.h, the __user_heap_extend() function can be defined to return extra blocks of
memory, separate from the initial one, to be used by the heap.

If defined, this function must return the size and base address of an eight-byte aligned heap extension
block.

Syntax

extern unsigned _ user_heap_extend(int varéd, void **base, unsigned requested_size);

Usage

There is no default implementation of this function. If you define this function, it must have the
following characteristics:

» The returned size must be either:

— A multiple of eight bytes of at least the requested size.
— 0, denoting that the request cannot be honored.
* The returned base address is aligned on an eight-byte boundary.
* Size is measured in bytes.
* The function is subject only to ARM Architecture Procedure Call Standard (AAPCS) constraints.
* The first argument is always zero on entry and can be ignored. The base is returned in the register
holding this argument.

Returns

This function places a pointer to a block of at least the requested size in *base and returns the size of the
block. @ is returned if no such block can be returned, in which case the value stored at *base is never
used.

Related concepts
1.11.3 Stack pointer initialization and heap bounds on page 1-64.

Related references

4.27 _rt_heap_extend() on page 4-167.

4.31 _rt stackheap init() on page 4-171.
4.53 __user_heap_extent() on page 4-194.
4.54 __user_setup_stackheap() on page 4-195.

Related information
Procedure Call Standard for the ARM Architecture.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-193
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html

4 The C and C++ Library Functions reference
4.53 __user_heap_extent()

4.53 __user_heap_extent()

If defined, the __user_heap_extent() function returns the bounds of the memory available to the
Heap?2 allocator.

See rt_misc.h.

Syntax

extern _ value_in_regs struct _ heap_extent _ user_heap_extent(unsigned ignorel,
unsigned ignore2);

Usage

The parameters ignorel and ignore?2 are the default values for the base address and size of the heap.
They are for information only and can be ignored.

You only need to implement this function if you are using the Heap2 allocator, which is also part of the C
library. This function has no default implementation. The Heap?2 allocator calls it during heap
initialization to determine the maximum address range that the heap can occupy. The function returns the
base address of the heap and the total number of bytes available to the heap, rounded up to the next
power of two.

For example, if you want to specify that all your heap allocations will come from address 0x80000000
and above, and that the heap has a total maximum size of 3MiB, __user_heap_extent() should return
base=0x80000000 and range=0x400000, which is 3MiB rounded up to the next power of two.

Related concepts
1.11.3 Stack pointer initialization and heap bounds on page 1-64.

Related references

1.11.2 Choosing a heap implementation for memory allocation functions on page 1-63.
4.27 _rt _heap_extend() on page 4-167.

4.31 _ rt stackheap init() on page 4-171.

4.52 _user_heap_extend() on page 4-193.

4.54 __user setup stackheap() on page 4-195.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-194
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.54 __user_setup_stackheap()

4.54 __user_setup_stackheap()
__user_setup_stackheap() sets up and returns the locations of the initial stack and heap.
If you define this function, it is called by the C library during program start-up.

When __user_setup_stackheap() is called, sp has the same value it had on entry to the application. If
this was set to a valid value before calling the C library initialization code, it can be left at this value. If
sp is not valid, __user_setup_stackheap() must change this value before using any stack and before
returning.

__user_setup_stackheap() returns the:

* Heap base in re (if the program uses the heap).
» Stack base in sp.
* Heap limit in r2 (if the program uses the heap and uses two-region memory).

If this function is re-implemented, it must:
* Not corrupt registers other than re to r3, ip and sp.
* Maintain eight-byte alignment of the heap by ensuring that the heap base is a multiple of eight.

To create a version of __user_setup_stackheap() that inherits sp from the execution environment and
does not have a heap, set re and r2 to zero and return.

There is no limit to the size of the stack. However, if the heap region grows into the stack, malloc()
attempts to detect the overlapping memory and fails the new memory allocation request.
Note

Any re-implementation of __user_setup_stackheap () must be in assembler.

Related concepts

1.11.3 Stack pointer initialization and heap bounds on page 1-64.
1.11.3 Stack pointer initialization and heap bounds on page 1-64.
1.11.4 Legacy support for __user_initial_stackheap() on page 1-66.

Related references

1.6.6 Direct semihosting C library function dependencies on page 1-36.
4.61 Legacy function _ user initial stackheap() on page 4-204.

4.27 _rt _heap extend() on page 4-167.

4.31 _rt stackheap init() on page 4-171.

4.52 user heap_extend() on page 4-193.

4.53 __user_heap extent() on page 4-194.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-195
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.55 __vectab_stack_and_reset

4.55 __vectab_stack_and_reset

__vectab_stack_and_reset is a library section that provides a way for the initial values of sp and pc
to be placed in the vector table, starting at address @ for M-profile processors, such as Cortex-M1 and
Cortex-M3 embedded applications.

__vectab_stack_and_reset requires the existence of a main() function in your source code. Without a
main() function, if you place the _ vectab_stack_and_reset section in a scatter file, an error is
generated to the following effect:

Error: L6236E: No section matches selector - no section to be FIRST/LAST

If the normal start-up code is bypassed, that is, if there is intentionally no main() function, you are
responsible for setting up the vector table without __vectab_stack_and_reset.

The following segment is part of a scatter file. It includes a minimal vector table illustrating the use of
__vectab_stack_and_reset to place the initial sp and pc values at addresses ©x@ and 0x4 in the vector
table:

55 Maximum of 256 exceptions (256*4 bytes == 0x400)

VECTORS 0Ox0 0x400

{

First two entries provided by library

Remaining entries provided by the user in exceptions.c
(:gdef:__vectab_stack_and_reset, +FIRST)
(exceptions_area)

¥ Kwe we

¥
CODE ©x400 FIXED

* (+RO)
Related concepts
1.11.3 Stack pointer initialization and heap bounds on page 1-64.

Related information

About scatter-loading.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-196
reserved.
Confidential - Draft - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362065969526.html

4 The C and C++ Library Functions reference
4.56 wescasecmp()

4.56 wcscasecmp()

Defined in wchar. h, the wescasecmp () function performs a case-insensitive string comparison test on
wide characters.

This function is a GNU extension to the libraries. It is not POSIX-standardized.

Syntax

int wcscasecmp(const wchar_t * _ restrict s1, const wchar_t * _ restrict s2);

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-197
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.57 wesncasecmp()

4.57 wcsncasecmp()

Defined in wchar. h, the wesncasecmp () function performs a case-insensitive string comparison test of
not more than a specified number of wide characters.

This function is a GNU extension to the libraries. It is not POSIX-standardized.

Syntax

int wcsncasecmp(const wchar_t * _ restrict s1, const wchar_t * _ restrict s2, size_t n);

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-198
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.58 westombs()

4.58 wcstombs|()

Defined in wchar. h, the wcstombs () function works as described in the ISO C standard, with extended
functionality as specified by POSIX.

That is, if s is a NULL pointer, wcstombs () returns the length required to convert the entire array
regardless of the value of n, but no values are stored.

Syntax

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-199
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.59 Thread-safe C library functions

4.59 Thread-safe C library functions
The following table shows the C library functions that are thread-safe.
Table 4-1 Functions that are thread-safe
Functions Description

calloc(), free(), malloc(),
realloc()

The heap functions are thread-safe if the _mutex_* functions are implemented.

All threads share a single heap and use mutexes to avoid data corruption when there is
concurrent access. Each heap implementation is responsible for doing its own locking. If
you supply your own allocator, it must also do its own locking. This enables it to do fine-
grained locking if required, rather than protecting the entire heap with a single mutex
(coarse-grained locking).

alloca()

alloca() is thread-safe because it allocates memory on the stack.

abort(), raise(), signal(),
fenv.h

The ARM signal handling functions and floating-point exception traps are thread-safe.

The settings for signal handlers and floating-point traps are global across the entire process
and are protected by locks. Data corruption does not occur if multiple threads call
signal() or an fenv.h function at the same time. However, be aware that the effects of
the call act on all threads and not only on the calling thread.

clearerr(), fclose(),
feof(),ferror(), fflush(),
fgetc(),fgetpos(), fgets(),
fopen(),fputc(), fputs(),
fread(),freopen(), fseek(),
fsetpos(),ftell(), fwrite(),
getc(),getchar(), gets(),
perror(),putc(), putchar(),
puts(),rewind(), setbuf(),
setvbuf(),tmpfile(), tmpnam(),
ungetc()

The stdio library is thread-safe if the _mutex_* functions are implemented.

Each individual stream is protected by a lock, so two threads can each open their own
stdio stream and use it, without interfering with one another.

If two threads both want to read or write the same stream, locking at the fgetc () and
fputc () level prevents data corruption, but it is possible that the individual characters
output by each thread might be interleaved in a confusing way.

Note

tmpnam() also contains a static buffer but this is only used if the argument is NULL. To
ensure that your use of tmpnam() is thread-safe, supply your own buffer space.

fprintf(), printf(),
vfprintf(), vprintf(),
fscanf(), scanf()

When using these functions:

» The standard C printf() and scanf() functions use stdio so they are thread-safe.

* The standard C printf() function is susceptible to changes in the locale settings if
called in a multithreaded program.

clock()

clock() contains static data that is written once at program startup and then only ever
read. Therefore, clock () is thread-safe provided no extra threads are already running at
the time that the library is initialized.

errno

errno is thread-safe.

Each thread has its own errno stored ina __user_perthread_libspace block. This
means that each thread can call errno-setting functions independently and then check
errno afterwards without interference from other threads.

atexit()

The list of exit functions maintained by atexit() is process-global and protected by a
lock.

In the worst case, if more than one thread calls atexit (), the order that exit functions are
called cannot be guaranteed.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. Al rights

4-200
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.59 Thread-safe C library functions

Table 4-1 Functions that are thread-safe (continued)

Functions

Description

abs(), acos(), asin(),atan(),
atan2(), atof(),atol(), atoi(),
bsearch(),ceil(), cos(),
cosh(),difftime(), div(),
exp(),fabs(), floor(),
fmod(),frexp(), labs(),
ldexp(),1div(), log(),
log1@(),memchr(), memcmp(),
memcpy () ,memmove(), memset(),
mktime(),modf(), pow(),
gsort(),sin(), sinh(),
sqrt(),strcat(), strchr(),
strcmp(),strcpy(), strcspn(),
strlcat(),strlcpy(), strlen(),
strncat(),strncmp(), strncpy(),
strpbrk(),strrchr(), strspn(),
strstr(),strxfrm(), tan(),
tanh()

These functions are inherently thread-safe.

longjmp(), setjmp()

Although setjmp() and longjmp() keep data in __user_libspace, they call the

__alloca_* functions, that are thread-safe.

remove(), rename(), time()

These functions use interrupts that communicate with the ARM debugging environments.

Typically, you have to reimplement these for a real-world application.

snprintf(), sprintf(),
vsnprintf(),vsprintf(),
sscanf(), isalnum(),isalpha(),
iscntrl(), isdigit(),isgraph(),
islower(), isprint(),ispunct(),
isspace(),
isupper(),isxdigit(),
tolower(), toupper(),strcoll(),
strtod(), strtol(),strtoul(),
strftime()

When using these functions, the string-based functions read the locale settings. Typically,

they are thread-safe. However, if you change locale in mid-session, you must ensure that

these functions are not affected.

The string-based functions, such as sprintf() and sscanf (), do not depend on the

stdio library.

stdin, stdout, stderr

These functions are thread-safe.

Related concepts

1.5.11 Thread safety in the ARM C library on page 1-31.

Related references

4.2 alloca() on page 4-141.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. Al rights

reserved.
Confidential - Draft - Beta

4-201

4 The C and C++ Library Functions reference
4.60 C library functions that are not thread-safe

4.60 C library functions that are not thread-safe
The following table shows the C library functions that are not thread-safe.
Table 4-2 Functions that are not thread-safe
Functions Description

asctime(),
localtime(),

These functions are all thread-unsafe. Each contains a static buffer that might be overwritten by another thread
between a call to the function and the subsequent use of its return value.

strtok() ARM supplies reentrant versions, _asctime_r(), _localtime_r(), and _strtok_r(). ARM recommends

that you use these functions instead to ensure safety.
Note

These reentrant versions take additional parameters. _asctime_r() takes an additional parameter that is a
pointer to a buffer that the output string is written into. _localtime_r() takes an additional parameter that is a
pointer to a struct tm, that the result is written into. _strtok_r() takes an additional parameter that is a
pointer to a char pointer to the next token.

exit() Do not call exit() in a multithreaded program even if you have provided an implementation of the underlying
_sys_exit() that actually terminates all threads.
In this case, exit () cleans up before calling _sys_exit() so disrupts other threads.

gamma(), These extended mathlib functions use a global variable, _signgam, so are not thread-safe.

lgamma(),

lgammaf(),

l1gammal() S

mbrlen(),
mbsrtowcs(),
mbrtowc(),
wcrtomb(),
wcsrtombs ()

The C90 multibyte conversion functions (defined in std1lib. h) are not thread-safe, for example mblen() and
mbtowc (), because they contain internal static state that is shared between all threads without locking.

However, the extended restartable versions (defined in wchar . h) are thread-safe, for example mbrtowc () and
wcrtomb (), provided you pass in a pointer to your own mbstate_t object. You must exclusively use these
functions with non-NULL mbstate_t * parameters if you want to ensure thread-safety when handling
multibyte strings.

S If migrating from RVCT, be aware that gamma () is deprecated in ARM Compiler 4.1 and later.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-202
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.60 C library functions that are not thread-safe

Table 4-2 Functions that are not thread-safe (continued)

Functions Description
rand(), These functions keep internal state that is both global and unprotected. This means that calls to rand () are
srand() never thread-safe.

ARM recommends that you do one of the following:

* Use the reentrant versions _rand_r() and _srand_r() supplied by ARM. These use user-provided buffers
instead of static data within the C library.

» Use your own locking to ensure that only one thread ever calls rand() at a time, for example, by defining
$Sub%$$rand() if you want to avoid changing your code.

* Arrange that only one thread ever needs to generate random numbers.

* Supply your own random number generator that can have multiple independent instances.

Note

_rand_r() and _srand_r() both take an additional parameter that is a pointer to a buffer storing the state of
the random number generator.

setlocale(), setlocale() is used for setting and reading locale settings. The locale settings are global across all threads,

localeconv() and are not protected by a lock. If two threads call setlocale() to simultaneously modify the locale settings,
or if one thread reads the settings while another thread is modifying them, data corruption might occur. Also,
many other functions, for example strtod() and sprintf(), read the current locale settings. Therefore, if one
thread calls setlocale() concurrently with another thread calling such a function, there might be unexpected
results.

Multiple threads reading the settings simultaneously is thread-safe in simple cases and if no other thread is
simultaneously modifying those settings, but where internally an intermediate buffer is required for more
complicated returned results, unexpected results can occur unless you use a reentrant version of setlocale().

ARM recommends that you either:

» Choose the locale you want and call setlocale() once to initialize it. Do this before creating any
additional threads in your program so that any number of threads can read the locale settings concurrently
without interfering with one another.

* Use the reentrant version _setlocale_r() supplied by ARM. This returns a string that is either a pointer
to a constant string, or a pointer to a string stored in a user-supplied buffer that can be used for thread-local
storage, rather than using memory within the C library. The buffer must be at least
_SETLOCALE_R_BUFSIZE bytes long, including space for a trailing NUL.

Be aware that _setlocale_r() is not fully thread-safe when accessed concurrently to change locale settings.
This access is not lock-protected.

Also, be aware that localeconv() is not thread-safe. Call the ARM function _get_1lconv () with a pointer to
a user-supplied buffer instead.

Related concepts
1.5.11 Thread safety in the ARM C library on page 1-31.

Related references
4.20 rand r() on page 4-160.
4.33 srand r() on page 4-174.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-203
reserved.
Confidential - Draft - Beta

4 The C and C++ Library Functions reference
4.61 Legacy function __user_initial_stackheap()

4.61 Legacy function __user_initial_stackheap()

If you have legacy source code you might see __user_initial_stackheap(), from rt_misc.h. This is
an old function that is only supported for backwards compatibility with legacy source code.

The modern equivalent is __user_setup_stackheap().

Syntax

extern _ value_in_regs struct _ initial_stackheap _ user_initial_stackheap(unsigned RO,
unsigned SP, unsigned R2, unsigned SL);

Usage
__user_initial_stackheap() returns the:

* Heap base in re.
« Stack base in ri1, that is, the highest address in the stack region.
* Heap limit in r2.

If this function is reimplemented, it must:

* Use no more than 88 bytes of stack.
* Not corrupt registers other than r12 (ip).
+ Maintain eight-byte alignment of the heap.

The value of sp (r13) at the time __main() is called is passed as an argument in r1. The default
implementation of __user_initial_stackheap(), using the semihosting SYS_HEAPINFO, is given by
the library in module sys_stackheap.o.

To create a version of __user_initial_stackheap() that inherits sp from the execution environment
and does not have a heap, set re and r2 to the value of r1 and return.

There is no limit to the size of the stack. However, if the heap region grows into the stack, malloc()
attempts to detect the overlapping memory and fails the new memory allocation request.

The definition of __initial_stackheap in rt_misc.his:

struct __initial_stackheap {
unsigned heap_base; /* low-address end of initial heap */
unsigned stack_base; /* high-address end of initial stack */
unsigned heap_limit; /* high-address end of initial heap */
unsigned stack_limit; /* unused */

1
Note

The value of stack_base is @x1 greater than the highest address used by the stack because a full-
descending stack is used.

Related concepts
1.11.3 Stack pointer initialization and heap bounds on page 1-64.
1.11.4 Legacy support for __user_initial _stackheap() on page 1-66.

Related references
4.54 _user setup stackheap() on page 4-195.
1.6.6 Direct semihosting C library function dependencies on page 1-36.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 4-204
reserved.
Confidential - Draft - Beta

Chapter 5
Floating-point Support Functions Reference

Describes ARM support for floating-point functions.

It contains the following sections:

* 5.1 clearfp() on page 5-206.

* 5.2 controlfp() on page 5-207.

* 5.3 fp status() on page 5-209.

* 5.4 gamma(), gamma_r() on page 5-211.

* 5.5 ieee status() on page 5-212.

* 5.6j0(),j1(), jn(), Bessel functions of the first kind on page 5-215.

» 5.7 significand(), fractional part of a number on page 5-216.

* 5.8 statusfp() on page 5-217.

o 5.9y0(), yI(), yn(), Bessel functions of the second kind on page 5-218.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-205
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.1 _clearfp()

5.1 _clearfp()

Defined in float.h, the _clearfp() function is provided for compatibility with Microsoft products.

_clearfp() clears all five exception sticky flags and returns their previous values. You can use the
_controlfp() argument macros, for example _EM_INVALID and _EM_ZERODIVIDE, to test bits of the
returned result.

The function prototype for _clearfp() is:
unsigned _clearfp(void);

Note

This function requires you to select a floating-point model that supports exceptions. For example,
--fpmode=ieee_full or --fpmode=ieee_fixed.

Related concepts
3.3.1 Floating-point functions for compatibility with Microsoft products on page 3-115.

Related references
5.2 _controlfp() on page 5-207.
5.8 statusfp() on page 5-217.

ARM DUI0378G_02

Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-206
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.2 _controlfp()

5.2 _controlfp()

Defined in float.h, the _controlfp() function is provided for compatibility with Microsoft products. It
enables you to control exception traps and rounding modes.

The function prototype for _controlfp() is:

unsigned int _controlfp(unsigned int new, unsigned int mask);

Note

This function requires you to select a floating-point model that supports exceptions. For example, - -
fpmode=ieee_full or --fpmode=ieee_fixed.

_controlfp() also modifies a control word using a mask to isolate the bits to modify. For every bit of
mask that is zero, the corresponding control word bit is unchanged. For every bit of mask that is nonzero,
the corresponding control word bit is set to the value of the corresponding bit of new. The return value is
the previous state of the control word.

Note

This is different behavior to that of __ieee_status() or _ fp_status(), where you can toggle a bit by
setting a zero in the mask word and a one in the flags word.

The following table describes the macros you can use to form the arguments to _controlfp().

Table 5-1 _controlfp argument macros

Macro Description

_MCW_EM Mask containing all exception bits

_EM_INVALID Bit describing the Invalid Operation exception

_EM_ZERODIVIDE Bit describing the Divide by Zero exception

_EM_OVERFLOW Bit describing the Overflow exception

_EM_UNDERFLOW Bit describing the Underflow exception

_EM_INEXACT Bit describing the Inexact Result exception

_MCW_RC Mask for the rounding mode field

_RC_CHoP Rounding mode value describing Round Toward Zero
_RC_UP Rounding mode value describing Round Up
_RC_DOWN Rounding mode value describing Round Down
_RC_NEAR Rounding mode value describing Round To Nearest

Note

The values of these macros are not guaranteed to remain the same in future versions of ARM products.
To ensure that your code continues to work if the value changes in future releases, use the macro rather
than its value.

For example, to set the rounding mode to round down, call:

_controlfp(_RC_DOWN, _MCW_RC);

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-207
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.2 _controlfp()

To trap the Invalid Operation exception and untrap all other exceptions:

_controlfp(_EM_INVALID, _MCW_EM);

To untrap the Inexact Result exception:

_controlfp(@, _EM_INEXACT);

Related concepts
3.3.1 Floating-point functions for compatibility with Microsoft products on page 3-115.

Related references

5.1 clearfp() on page 5-206.

5.8 statusfp() on page 5-217.

5.5 _ieee status() on page 5-212.
5.3 fp_status() on page 5-2009.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-208
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.3 __fp_status()

5.3 __fp_status()

The ARM Compiler toolchain supports an interface to the status word in the floating-point environment.
Some older versions of the ARM libraries implemented a function called _ fp_status() to provide this
interface.

_ fp_status() is the same as __ieee_status() but it uses an older style of status word layout. The
compiler still supports the _ fp_status() function for backwards compatibility. _ fp_status() is
defined in stdlib.h.

The function prototype for _ fp_status() is:

unsigned int _ fp_status(unsigned int mask, unsigned int flags);

Note

This function requires you to select a floating-point model that supports exceptions. For example, - -
fpmode=ieee_full or --fpmode=ieee_fixed.

The layout of the status word as seen by __fp_status() is as follows:

31 24 23 21 20 16 15 13 12 8 7 5 4 0

System ID R Masks R FPA only R Sticky

Figure 5-1 Floating-point status word layout

The fields in the status word are as follows:

* Bits 0 to 4 (values 0x1 to 0x10, respectively) are the sticky flags, or cumulative flags, for each
exception. The sticky flag for an exception is set to 1 whenever that exception happens and is not
trapped. Sticky flags are never cleared by the system, only by the user. The mapping of exceptions to
bits is:

— Bit 0 (exe1) is for the Invalid Operation exception
— Bit 1 (0x02) is for the Divide by Zero exception.
— Bit 2 (exe4) is for the Overflow exception.

— Bit 3 (exe8) is for the Underflow exception.

— Bit 4 (ox10) is for the Inexact Result exception.

+ Bits 8 to 12 (values 0x100 to ©x1000) control various aspects of the Floating-Point Architecture
(FPA). The FPA is obsolete and the ARM compilation tools do not support it. Any attempt to write to
these bits is ignored.

* Bits 16 to 20 (values 9x10000 to 8x100000) are the exception masks. These control whether each
exception is trapped or not. If a bit is set to 1, the corresponding exception is trapped. If a bit is set to
0, the corresponding exception sets its sticky flag and returns a plausible result.

* Bits 24 to 31 contain the system ID that cannot be changed. It is set to @x4e for software floating-
point, to @x80 or above for hardware floating-point, and to @ or 1 if a hardware floating-point
environment is being faked by an emulator.

* Bits marked R are reserved. They cannot be written to by the __ fp_status() call, and you must
ignore anything you find in them.

The rounding mode cannot be changed with the __ fp_status() call.

In addition to defining the _ fp_status() call itself, std1lib.h also defines the following constants to
be used for the arguments:

#define _ fpsr_IXE ©x100000
#tdefine _ fpsr_UFE 0x80000
#tdefine _ fpsr_OFE 0x40000
#define _ fpsr_DZE ©0x20000
#tdefine _ fpsr_IOE 0x10000
#tdefine _ fpsr_IXC ©ox10
#tdefine _ fpsr_UFC ©0x8

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-209
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.3 __fp_status()

#define _ fpsr_OFC ©ox4
#define __ fpsr_DZC ©ox2
#define _ fpsr_IOC ox1

For example, to trap the Invalid Operation exception and untrap all other exceptions, you would call
__fp_status() with the following input parameters:

__fp_status(_fpsr_IXE | _fpsr UFE | _fpsr_OFE |
_fpsr_DZE | _fpsr_IOE, _fpsr_IOE);

To untrap the Inexact Result exception:
__ fp_status(_fpsr_IXE, 0);
To clear the Underflow sticky flag:

__fp_status(_fpsr_UFC, 9);

Related concepts
3.3 Controlling the ARM floating-point environment on page 3-115.

Related references
5.5 _ieee status() on page 5-212.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-210
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.4 gamma(), gamma_r()

5.4 gamma(), gamma_r()

The gamma() and gamma_r() functions both compute the logarithm of the gamma function. They are
synonyms for 1gamma and 1gamma_r.

double gamma(double x);
double gamma_r(double x, int *);
Note

Despite their names, these functions compute the logarithm of the gamma function, not the gamma
function itself. To compute the gamma function itself, use tgamma().

Note

These functions are deprecated in ARM Compiler 4.1 and later.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-211
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.5 __ieee_status()

5.5 __ieee_status()

The ARM Compiler toolchain supports an interface to the status word in the floating-point environment.
This interface is provided as function __ieee_status() and it is generally the most efficient function to
use for modifying the status word for VFP.

__ieee_status() is defined in fenv.h.
The function prototype for __ieee_status() is:
unsigned int _ ieee_status(unsigned int mask, unsigned int flags);

Note

This function requires you to select a floating-point model that supports exceptions. For example, - -
fpmode=ieee_full or --fpmode=ieee_fixed.

__ieee_status() modifies the writable parts of the status word according to the parameters, and returns
the previous value of the whole word.

The writable bits are modified by setting them to:
new = (old & ~mask) ~ flags;

Four different operations can be performed on each bit of the status word, depending on the
corresponding bits in mask and flags.

Table 5-2 Status word bit modification

Bit of mask Bit of flags Effect

0 0 Leave alone
0 1 Toggle
1 0 Set to 0
1 1 Setto 1

The layout of the status word as seen by __ieee_status() is as follows:

31 28 27 26 25 24 23 22 21 20 19 18 16 15 13 12 8 7 5 4 0

R QC R FZ | RM VFP R VFP R Masks R Sticky

Figure 5-2 IEEE status word layout

The fields in the status word are as follows:

» Bits 0 to 4 (values 0x1 to 0x10, respectively) are the sticky flags, or cumulative flags, for each
exception. The sticky flag for an exception is set to 1 whenever that exception happens and is not
trapped. Sticky flags are never cleared by the system, only by the user. The mapping of exceptions to
bits is:

— Bit 0 (exe1) is for the Invalid Operation exception
— Bit 1 (x@2) is for the Divide by Zero exception.
— Bit 2 (exe4) is for the Overflow exception.

— Bit 3 (exe8) is for the Underflow exception.

— Bit 4 (ox10) is for the Inexact Result exception.

+ Bits 8 to 12 (values 0x100 to 0x1000) are the exception masks. These control whether each exception
is trapped or not. If a bit is set to 1, the corresponding exception is trapped. If a bit is set to 0, the
corresponding exception sets its sticky flag and returns a plausible result.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-212
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.5 __ieee_status()

» Bits 16 to 18, and bits 20 and 21, are used by VFP hardware to control the VFP vector capability. The
_ ieee_status() call does not let you modify these bits.
* Bits 22 and 23 control the rounding mode. See the following table.

Table 5-3 Rounding mode control

Bits Rounding mode

00 Round to nearest

01 Roundup

10 Round down

11 Round toward zero

Note

The fz*, fj* and £* library variants support only the round-to-nearest rounding mode. If you
require support for the other rounding modes, you must use the full IEEE g* libraries. (The relevant
compiler options are - -fpmode=std, - -fpmode=ieee_no_fenv and --fpmode=ieee_fixed.)

* Bit 24 enables FZ (Flush to Zero) mode if it is set. In FZ mode, denormals are forced to zero to speed
up processing because denormals can be difficult to work with and slow down floating-point systems.
Setting this bit reduces accuracy but might increase speed.

Note

— The FZ bit in the IEEE status word is not supported by any of the fplib variants. This means that
switching between flushing to zero and not flushing to zero is not possible with any variant of
fplib at runtime. However, flushing to zero or not flushing to zero can be set at compile time as a
result of the library you choose to build with.

— Some functions are not provided in hardware. They exist only in the software floating-point
libraries. So these functions cannot support the FZ mode, even when you are compiling for a
hardware VFP architecture. As a result, behavior of the floating-point libraries is not consistent
across all functions when you change the FZ mode dynamically.

» Bit 27 indicates that saturation has occurred in an advanced SIMD saturating integer operation. This
is accessible through the __ieee_status() call.

* Bits marked R are reserved. They cannot be written to by the __ieee_status() call, and you must
ignore anything you find in them.

In addition to defining the __ieee_status() call itself, fenv.h also defines the following constants to
be used for the arguments:

#define FE_IEEE_FLUSHZERO (0x01000000)
#define FE_IEEE_ROUND_TONEAREST (0x00000000)
#define FE_IEEE_ROUND_UPWARD (0x00400000)
#define FE_IEEE_ROUND_DOWNWARD (0x00800000)
#define FE_IEEE_ROUND_TOWARDZERO (@x00C00000)
#define FE_IEEE_ROUND_MASK (0x00CRR00)
#define FE_IEEE_MASK_INVALID (0x00000100)
#define FE_IEEE_MASK_DIVBYZERO (0x00000200)
#define FE_IEEE_MASK_OVERFLOW (0x00000400)
#define FE_IEEE_MASK_UNDERFLOW (0x00000800)
#define FE_IEEE_MASK_INEXACT (0x00001000)
#define FE_IEEE_MASK_ALL_EXCEPT (0Xx00RR1F00)
#define FE_IEEE_INVALID (0x00000001)
#define FE_IEEE_DIVBYZERO (0x00000002)
#define FE_IEEE_OVERFLOW (0x00000004)
#define FE_IEEE_UNDERFLOW (0x00000008)
#define FE_IEEE_INEXACT (0x00000010)
#define FE_IEEE_ALL_EXCEPT (0Xx000RRO1F)
ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-213
reserved.

Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.5 __ieee_status()

For example, to set the rounding mode to round down, you would call:
_ ieee_status(FE_IEEE_ROUND_MASK, FE_IEEE_ROUND_DOWNWARD);
To trap the Invalid Operation exception and untrap all other exceptions:

__ieee_status(FE_TEEE_MASK_ALL_EXCEPT, FE_IEEE_MASK_INVALID);

To untrap the Inexact Result exception:

__ieee_status(FE_IEEE_MASK_INEXACT, ©);

To clear the Underflow sticky flag:

__ieee_status(FE_IEEE_UNDERFLOW, ©);

Related concepts
3.3 Controlling the ARM floating-point environment on page 3-115.
3.6.7 Exceptions arising from IEEE 754 floating-point arithmetic on page 3-133.

Related references

3.3.8 ARM floating-point compiler extensions to the C99 interface on page 3-119.
5.3 fp status() on page 5-2009.

1.26 C and C++ library naming conventions on page 1-91.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-214
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.6 jO(), j1(), jn(), Bessel functions of the first kind

5.6 j0(), j10), in(), Bessel functions of the first kind

These functions compute Bessel functions of the first kind.
j@ and j1 compute the functions of order 0 and 1 respectively. jn computes the function of order n.

double jo(double x);
double ji(double x);
double jn(int n, double x);

If the absolute value of x exceeds pi times 252, these functions return an ERANGE error, denoting total
loss of significance in the result.
Note

These functions are deprecated in ARM Compiler 4.1 and later.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-215
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.7 significand(), fractional part of a number

5.7 significand(), fractional part of a number

The significand() function returns the fraction part of x, as a number between 1.0 and 2.0 (not
including 2.0).

double significand(double x);

Note
This functions is deprecated in ARM Compiler 4.1 and later.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-216
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.8 _statusfp()

5.8 _statusfp()

Defined in float.h, the _statusfp() function is provided for compatibility with Microsoft products. It
returns the current value of the exception sticky flags.

You can use the _controlfp() argument macros, for example _EM_INVALID and _EM_ZERODIVIDE, to
test bits of the returned result.

The function prototype for _statusfp() is:
unsigned _statusfp(void);

Note

This function requires you to select a floating-point model that supports exceptions. For example,
--fpmode=ieee_full or --fpmode=ieee_fixed.

Related concepts
3.3.1 Floating-point functions for compatibility with Microsoft products on page 3-115.

Related references
5.1 clearfp() on page 5-206.
5.2 _controlfp() on page 5-207.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-217
reserved.
Confidential - Draft - Beta

5 Floating-point Support Functions Reference
5.9 y0(), y1(), yn(), Bessel functions of the second kind

5.9 y0(), y1(), yn(), Bessel functions of the second kind
These functions compute Bessel functions of the second kind.
y@ and y1 compute the functions of order 0 and 1 respectively. yn computes the function of order n.

double yo(double x);
double yi(double x);
double yn(int, double);

If x is positive and exceeds pi times 252, these functions return an ERANGE error, denoting total loss of
significance in the result.
Note

These functions are deprecated in ARM Compiler 4.1 and later.

ARM DUI0378G_02 Copyright © 2007, 2008, 2011, 2012, 2014, 2015 ARM. All rights 5-218
reserved.
Confidential - Draft - Beta

	ARM® Compiler v5.06 for µVision® ARM C and C++ Libraries and Floating-Point Support User Guide
	Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : The ARM C and C++ Libraries
	1.1 : Mandatory linkage with the C library
	1.2 : C and C++ runtime libraries
	1.2.1 : Summary of the C and C++ runtime libraries
	1.2.2 : Compliance with the Application Binary Interface (ABI) for the ARM architecture
	1.2.3 : Increasing portability of object files to other CLIBABI implementations
	1.2.4 : ARM C and C++ library directory structure
	1.2.5 : Selection of ARM C and C++ library variants based on build options
	1.2.6 : Thumb C libraries

	1.3 : C and C++ library features
	1.4 : C++ and C libraries and the std namespace
	1.5 : Multithreaded support in ARM C libraries
	1.5.1 : ARM C libraries and multithreading
	1.5.2 : ARM C libraries and reentrant functions
	1.5.3 : ARM C libraries and thread-safe functions
	1.5.4 : Use of static data in the C libraries
	1.5.5 : Use of the __user_libspace static data area by the C libraries
	1.5.6 : C library functions to access subsections of the __user_libspace static data area
	1.5.7 : Re-implementation of legacy function __user_libspace() in the C library
	1.5.8 : Management of locks in multithreaded applications
	1.5.9 : How to ensure re-implemented mutex functions are called
	1.5.10 : Using the ARM C library in a multithreaded environment
	1.5.11 : Thread safety in the ARM C library
	1.5.12 : Thread safety in the ARM C++ library
	1.5.13 : The floating-point status word in a multithreaded environment

	1.6 : Support for building an application with the C library
	1.6.1 : Using the C library with an application
	1.6.2 : Using the C and C++ libraries with an application in a semihosting environment
	1.6.3 : Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality
	1.6.4 : Using the libraries in a nonsemihosting environment
	1.6.5 : C++ exceptions in a non-semihosting environment
	1.6.6 : Direct semihosting C library function dependencies
	1.6.7 : Indirect semihosting C library function dependencies
	1.6.8 : C library API definitions for targeting a different environment

	1.7 : Support for building an application without the C library
	1.7.1 : Building an application without the C library
	1.7.2 : Creating an application as bare machine C without the C library
	1.7.3 : Integer and floating-point compiler functions and building an application without the C library
	1.7.4 : Bare machine integer C
	1.7.5 : Bare machine C with floating-point processing
	1.7.6 : Customized C library startup code and access to C library functions
	1.7.7 : Using low-level functions when exploiting the C library
	1.7.8 : Using high-level functions when exploiting the C library
	1.7.9 : Using malloc() when exploiting the C library

	1.8 : Tailoring the C library to a new execution environment
	1.8.1 : Initialization of the execution environment and execution of the application
	1.8.2 : C++ initialization, construction and destruction
	1.8.3 : Exceptions system initialization
	1.8.4 : Emergency buffer memory for exceptions
	1.8.5 : Library functions called from main()
	1.8.6 : Program exit and the assert macro

	1.9 : Assembler macros that tailor locale functions in the C library
	1.9.1 : Link time selection of the locale subsystem in the C library
	ISO8859-1 implementation
	Shift-JIS and UTF-8 implementation

	1.9.2 : Runtime selection of the locale subsystem in the C library
	1.9.3 : Definition of locale data blocks in the C library
	1.9.4 : LC_CTYPE data block
	1.9.5 : LC_COLLATE data block
	1.9.6 : LC_MONETARY data block
	1.9.7 : LC_NUMERIC data block
	1.9.8 : LC_TIME data block

	1.10 : Modification of C library functions for error signaling, error handling, and program exit
	1.11 : Stack and heap memory allocation and the ARM C and C++ libraries
	1.11.1 : Library heap usage requirements of the ARM C and C++ libraries
	1.11.2 : Choosing a heap implementation for memory allocation functions
	1.11.3 : Stack pointer initialization and heap bounds
	1.11.4 : Legacy support for __user_initial_stackheap()
	1.11.5 : Avoiding the heap and heap-using library functions supplied by ARM

	1.12 : Tailoring input/output functions in the C and C++ libraries
	1.13 : Target dependencies on low-level functions in the C and C++ libraries
	1.14 : The C library printf family of functions
	1.15 : The C library scanf family of functions
	1.16 : Redefining low-level library functions to enable direct use of high-level library functions in the C library
	1.17 : The C library functions fread(), fgets() and gets()
	1.18 : Re-implementing __backspace() in the C library
	1.19 : Re-implementing __backspacewc() in the C library
	1.20 : Redefining target-dependent system I/O functions in the C library
	1.21 : Tailoring non-input/output C library functions
	1.22 : Real-time integer division in the ARM libraries
	1.23 : ISO C library implementation definition
	1.23.1 : How the ARM C library fulfills ISO C specification requirements
	1.23.2 : mathlib error handling
	1.23.3 : ISO-compliant implementation of signals supported by the signal() function in the C library and additional type arguments
	1.23.4 : ISO-compliant C library input/output characteristics
	1.23.5 : Standard C++ library implementation definition

	1.24 : C library functions and extensions
	1.25 : Compiler generated and library-resident helper functions
	1.26 : C and C++ library naming conventions
	1.27 : Using macro__ARM_WCHAR_NO_IO to disable FILE declaration and wide I/O function prototypes
	1.28 : Using library functions with execute-only memory

	2 : The ARM C Micro-library
	2.1 : About microlib
	2.2 : Differences between microlib and the default C library
	2.3 : Library heap usage requirements of microlib
	2.4 : ISO C features missing from microlib
	2.5 : Building an application with microlib
	2.6 : Configuring the stack and heap for use with microlib
	2.7 : Entering and exiting programs linked with microlib
	2.8 : Tailoring the microlib input/output functions

	3 : Floating-point Support
	3.1 : About floating-point support
	3.2 : The software floating-point library, fplib
	3.2.1 : Calling fplib routines
	3.2.2 : fplib arithmetic on numbers in a particular format
	3.2.3 : fplib conversions between floats, long longs, doubles, and ints
	3.2.4 : fplib comparisons between floats and doubles
	3.2.5 : fplib C99 functions

	3.3 : Controlling the ARM floating-point environment
	3.3.1 : Floating-point functions for compatibility with Microsoft products
	3.3.2 : C99-compatible functions for controlling the ARM floating-point environment
	3.3.3 : C99 rounding mode and floating-point exception macros
	3.3.4 : Exception flag handling
	3.3.5 : Functions for handling rounding modes
	3.3.6 : Functions for saving and restoring the whole floating-point environment
	3.3.7 : Functions for temporarily disabling exceptions
	3.3.8 : ARM floating-point compiler extensions to the C99 interface
	3.3.9 : Writing a custom exception trap handler
	3.3.10 : Example of a custom exception handler
	3.3.11 : Exception trap handling by signals

	3.4 : Using C99 signaling NaNs provided by mathlib (_WANT_SNAN)
	3.5 : mathlib double and single-precision floating-point functions
	3.6 : IEEE 754 arithmetic
	3.6.1 : Basic data types for IEEE 754 arithmetic
	3.6.2 : Single precision data type for IEEE 754 arithmetic
	3.6.3 : Double precision data type for IEEE 754 arithmetic
	3.6.4 : Sample single precision floating-point values for IEEE 754 arithmetic
	3.6.5 : Sample double precision floating-point values for IEEE 754 arithmetic
	3.6.6 : IEEE 754 arithmetic and rounding
	3.6.7 : Exceptions arising from IEEE 754 floating-point arithmetic
	3.6.8 : Exception types recognized by the ARM floating-point environment

	3.7 : Using the Vector Floating-Point (VFP) support libraries

	4 : The C and C++ Library Functions reference
	4.1 : __aeabi_errno_addr()
	4.2 : alloca()
	4.3 : clock()
	4.4 : _clock_init()
	4.5 : __default_signal_handler()
	4.6 : errno
	4.7 : _findlocale()
	4.8 : _fisatty()
	4.9 : _get_lconv()
	4.10 : getenv()
	4.11 : _getenv_init()
	4.12 : __heapstats()
	4.13 : __heapvalid()
	4.14 : lconv structure
	4.15 : localeconv()
	4.16 : _membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(), _membitcpywl(), _membitcpywb(), _membitmovebl(), _membitmovebb(), _membitmovehl(), _membitmovehb(), _membitmovewl(), _membitmovewb()
	4.17 : posix_memalign()
	4.18 : #pragma import(_main_redirection)
	4.19 : __raise()
	4.20 : _rand_r()
	4.21 : remove()
	4.22 : rename()
	4.23 : __rt_entry
	4.24 : __rt_errno_addr()
	4.25 : __rt_exit()
	4.26 : __rt_fp_status_addr()
	4.27 : __rt_heap_extend()
	4.28 : __rt_lib_init()
	4.29 : __rt_lib_shutdown()
	4.30 : __rt_raise()
	4.31 : __rt_stackheap_init()
	4.32 : setlocale()
	4.33 : _srand_r()
	4.34 : strcasecmp()
	4.35 : strncasecmp()
	4.36 : strlcat()
	4.37 : strlcpy()
	4.38 : _sys_close()
	4.39 : _sys_command_string()
	4.40 : _sys_ensure()
	4.41 : _sys_exit()
	4.42 : _sys_flen()
	4.43 : _sys_istty()
	4.44 : _sys_open()
	4.45 : _sys_read()
	4.46 : _sys_seek()
	4.47 : _sys_tmpnam()
	4.48 : _sys_write()
	4.49 : system()
	4.50 : time()
	4.51 : _ttywrch()
	4.52 : __user_heap_extend()
	4.53 : __user_heap_extent()
	4.54 : __user_setup_stackheap()
	4.55 : __vectab_stack_and_reset
	4.56 : wcscasecmp()
	4.57 : wcsncasecmp()
	4.58 : wcstombs()
	4.59 : Thread-safe C library functions
	4.60 : C library functions that are not thread-safe
	4.61 : Legacy function __user_initial_stackheap()

	5 : Floating-point Support Functions Reference
	5.1 : _clearfp()
	5.2 : _controlfp()
	5.3 : __fp_status()
	5.4 : gamma(), gamma_r()
	5.5 : __ieee_status()
	5.6 : j0(), j1(), jn(), Bessel functions of the first kind
	5.7 : significand(), fractional part of a number
	5.8 : _statusfp()
	5.9 : y0(), y1(), yn(), Bessel functions of the second kind

