RS-232 Control Protocol
(EAWC DX1208)

N\
=EAW

COMMERCIAL

)

Rev 1.002 — 31 August 2009

http://www.eaw.com

LOUD Technologies, Inc.

11/19/2009

Revision History

Revision | Date Description
1.002 08/31/09 ¢ Removed (the previous) Appendix F and edited the ‘Handshaking’
section to reflect the fact that message forwarding has been
disabled. Stateless controllers which poll are assumed.
1.001 08/13/09 e Changed ‘library’ to ‘preset’ for clarity and simplicity.
e Added Preset Load example.
1.000 08/11/09 e Initial import from (EAWC DX Family) Bucket Net Spec.

Removed non-RS-232 related messages.
Added RS-232 interfacing-specific sections.

LOUD Technologies, Inc. 11/19/2009

Table of Contents

REVISION HISTORY ...ttt e b bbbtk sb e bt bt nn b e 2
TABLE OF CONTENTS ...ttt b et sr bbbt b et eb ke b e eb e e e e nnennenns 3
OVERVIEWV ...ttt b bbb h bbbt e bt bt bt bt e e et et e s b e eb e e bt e st e e e b e b nne s 5
L LA USROS 5
HANDSHAKING ..ottt ettt sttt e et e ke b bt be bt e st e e e besbesbesbeeneeseeneenteseentas 6
BUCKET NET PROTOGCOL ..ottt sttt sttt sae sttt e e e st et ste et e eneaneestesae e e 7
IMIESSAGE FORMAT ...ttt sttt etttk b bbbt h e b e s bt s bt e sbe ekt e bt eab e ehb e eb e e eb £ e ke e s bt e s beesbesbeesbeesbeenbeenbeenee 7
HEADER FORMAT ...ttt ettt ettt ettt he e bbbt e bt e et e e hb e eb e e b £ e bt e st e e sbeebbesbeesbeesbeenbeenbeenee 8
DATA FORMAT ...ttt sttt etttk h e bbbt e st s e b e s bt skt e She e ke e R bt eabeehb e eb e e eb £ ekt e s ke e s beehbesheesbeesbeenbeenbeanee 8
BUCKET NET MESSAGES ...ttt ettt nb e bttt nesne b e 9
L TN (02 [0) USSR 10
STATUS QUERY (0X0L) 1.iiiiiieiiee i ettt sttt sttt et et e et ettt e s te e s te et e eneeenseese e te e taestaesteanaesneesseesreeneeeneas 10
Y T0 v By (0D) 10
ASSIGN DEVICE INSTANCE (0X06)eveeiieeiieeiieeieeee st e st e ste e e e ae e s teesteeae s e s e snaestaeseesaeesaesneesneesneeneas 11
WHO IS OUT THERE (0X08)...utteuieeiieiieesiee st e steste st e st esteesteetessaestaestaesteestaenseensesssessaestaesseeseaseesneesneesseenss 11
ASSIGN DEVICE LABEL (OXOF) . .cteieiiiteiieieste ettt sttt sttt sb et b e et 12
PING RESPONSE (0X30)cttteteitirteseetesteeste sttt sttt ettt sb bbbttt b ettt bbbt nb s 12
STATUS QUERY RESPONSE (0X31) ...vttiutitirtinietinteieiiste sttt sttt bttt bbbt 13
Hardware INFOrMAtION............oiiiiie et sttt stesre e ereenes 13
Device Dependent INFOrMALION.oiiiiiiiiies bbb 13

DX Family Device Dependent INfOrmation.............ccooovevieiieienie s 13

BOOT STALUS. ...ttt e b et et h R Rt E e E e R R R n e r e nne e 14
€008 EXECULION EFTOFiieitieiiiieete ettt bbbttt bbbt et e e bt sb b b ene s 15
Hardware Serial NUMDET ..o e 17
COMMUNICATION SEATUS ...ttt bt bbbt e et sb e b e bt eb et e b et sbesbesbeeneas 17
FITMWATE VBISIONiiiiiiiiiie et b bbbt e e b s bbbt bt et e e et sb e bbb enes 17
OPEFALIONAL STALUS. ... cveitieetiite ettt bbb bbbt eb e s bt ebese e et e s b e ebe e 18
DEDUG LOG AGUIESS ...ttt ettt bbbtk bbbt b ettt b e b b 18
L2014 =T L TSP 19

TP AGAIESS ...ttt ettt ettt sttt ettt et e es e s et e besee e e e e ReeRees e e st et e ne e b e nReeReeRe e Rt ene et e tenneereeneenean 19
MEMORY READ RESPONSE (0X35)ctiteiiitiiieieite ettt ettt sttt ettt sn et nr et sb e ene e 20
WHO IS OUT THERE RESPONSE (0X38)vcttitiieiiiterieieste ettt sttt st sttt sttt s 20
Y S (0D) S 21
FAT CHANNEL METERS (0X52) ...uvtiuiiitieite ettt st te e ste et e st e st stt e ta e baesteasaesnaestaesaeesteenaeanseensennee e 22
PARAMETER EDIT (0X54) ...uiiitietieie ettt sttt ettt st s bt et e et e et et e st s beesbeeteenteanseeneessaestaesteesreeseens 24
PAAMELEE IDS ...ttt bbbt h e h e bt e bt et b e bbb e bt e Rt e n e nr e nr e e 26
DN Y =0 1= W (0D =) S 27
1= (=] T TP T OO P P UPT PP PSPPI 27

Fat ChannEl MELEIS ...ttt sttt et e testestesteeneene e e e neesaeseeseenneenes 28
Parameter EQITccviieieice ettt n et naenrenreereenes 29
IDENTIFY DEVICE (0X5C)....ut ittt ittt sttt sttt sttt sttt sttt sttt sttt b st e s e b 30
PRESET INFO (0XT7L) 11tttettittieeieete ettt bbbttt b ettt n et en et s 30
PRESET INFO RESPONSE (0X72).....veueittteieetiseeseetesteeeteste ettt et sb et ebe sttt es sttt st s abenteneane s 31
PRESET STORE (0X73) 1.tttttetteutete sttt sttt sttt b bttt et bt bbbt b e st e e et sbeeb e e bt ebe e s e eneebenaenbesbeereenes 31
PRESET LOAD (0X74) ..ttt ettt ettt sttt b ettt e b b sb e e b bt b e s e e e ek sbeeb e e b e ebe e s e eneebesaenbenbeebeans 31
PRESET CLEAR (0X75). ..t utetteuteie sttt sttt sttt b sttt b bbbt b e st et ek sb e e bt e bt ebe e s e e n e e sbesaenbesbeebeenes 32
APPENDIX A = DEVICE FAMILY ..ottt bbbttt et 33

LOUD Technologies, Inc. 11/19/2009

APPENDIX B —DEVICE INSTANCEooo ittt e et e s et ae e s envae e s s ibaeeesanbeeeeans 33
APPENDIX C — CHANNEL/TYPE IDS ...ttt sttt bt b s s te s st sate s st 33
APPENDIX D —EFFECT AND PARAMETER IDS ...ttt 34
= o I | TR 34
PARAMETER IDS (BY EFFECT) ..ttteutitirteitettstetete sttt sb bbbttt bttt 34
R o o = = = o LR 34
A Y/ L = == = = o ST 34
) =y U= = = = =l PR 34
L L O I = = =l LSS RUSSPRRI 35
(SR I == == = = 35
AR 000 V1= S0 = = = =l 36
R N = == = =T 36
R I 1O T = 3 = = =i =03 36
e B TN = = =T 36
A To T o I == = =l TR 36
AR Y N L D I S = I == o TR 37
50 - UNIVERSAL REMOTE EFFECT wuiiiiiiiiiitiiiiie ettt e e ettt et e e e s s ettt et s e e s s s bbb b b e e s e e s s essbbbbesseesssssbbbaeseeeas 37
LN A o LT (ol N =L == = =l TR 37
Il o el (ol @ LU 1 =W gl == = =0 LT 38
(S I Y D = N T = = o TR 38
O = = I = =i = o O RPOPRR 38
A A U (0] Y 1 =1 = = =l o H RSP 38
P €] Mo =Y N I === =l LR 39
R B LU 1Y A == = =l RSP 39
APPENDIX E — DX FAMILY CONFIGURATION FILES.......coooiie et 40
APPENDIX F —EXAMPLESottt ettt ettt e sttt e e sttt e e s et e e s s bt eesseabesessbeneesirbenas 42
- PING 42
A [5) = N 1= B 51V o] =TT 43
3 - STATUS QUERY: HARDWARE INFORMATIONieutiiuiieiiesieesieesieeneeeeeenseaneesseesseesseesseessesssesssessesssesssesnees 43
F R B Y N =0 10 = I |V [= 1 = T P 44
Lo Y, =3 =TT TSRO 45
6 - DATA REQUEST: PARAMETER EDIT ...uutiiiiiiiiiiiiiiiiiie ettt ettt e s esabbbae e s e e s s e saaabane e e e 46
WA o N2y Y | =a =1 S = o] i SRR 47
Rl o] 5] = o 0 7Y o RSP 49

LOUD Technologies, Inc. 11/19/2009

Overview

This document is intended for use in interfacing remote controller hardware with EAWC DX
Family installed sound mixers via the rear RS-232 port. It specifies the details of the physical
interface, the interface protocol (Bucket Net), and the hierarchy of device parameters, as well as
presenting some specific examples of ‘finished’ RS-232 control messages.

The bulk of this document is comprised of reduced specification for the Bucket Net protocol,
tailored to be specific to the needs of RS-232 controller interfacing. DX Family Devices ‘speak’
Bucket Net over RS-232, USB, and Ethernet. The DX Navigator software GUI for use with DX
Family devices can communicate (using Bucket Net) across any (or all) of these communications
channels. RS-232 controllers can similarly interface using Bucket Net messaging.

This document is intended to be generic to the entire DX Family of devices. Interface designers
will need to consult the (parameter) Configuration File specific to the DX Family member their
particular controller is intended to connect to in order to access the specific parameter lists for
that device.

RS-232

DX Family devices utilize a standard RS-232 interface, running at 115200 baud, with 8 data bits,
no parity bit, 1 stop bit, and no flow control.

Bucket Net messages are composed of 32-bit words. Those words should be broken down into 4
8-bit words for transmission over RS-232 and sent least significant byte (LSB) first.

http://www.eaw.com

5

LOUD Technologies, Inc. 11/19/2009

Handshaking

DX Family devices do not use flow control to regulate RS-232 communications; there is no
hardware handshaking. Additionally, Bucket Net does not specify any particular software
handshaking protocol. Itis up to developers to insure that they:

e Provide adequate time for each message to be handled and for any responses to be
generated,

e Handle those responses,

¢ Maintain synchronization of parameter data between the controller and device.

There are a number of factors which complicate this task:

e Some Bucket Net messages generate responses, but many do not generate any
acknowledgement at all.

e Some Bucket Net messages can generate multiple responses, and the number of
responses, while consistent for any specific message, may be unpredictable until the first
time the message is sent.

e There is no easy way in Bucket Net to ‘get’ a parameter value in order to verify a ‘set’.

Note that all messages received on a particular communications channel are serialized by the DX
Family device. No valid message directed at the device is dropped, and each message must be
handled in sequence before the next can be handled.

Specific suggestions for dealing with the points above:

e ‘Throttling’ parameter changes so that, for instance, slider pulls, don’'t generate edits
more often than the human eye and/or ear can perceive them (a few Hz), should allow
plenty of time for the device to keep up.

e Waiting for all expected responses to arrive (with a timeout on the order of hundreds of
milliseconds) and checking for errors (comm status, code execution, and/or event log) if
any is not received. (Although note that errors from all communications interfaces are
handled by the same registers.)

e Sending simple messages which generate a response (e.g. Ping, Status Query) can be
used to verify that preceding messages have been received and handled. (Though
watch out for invalid or misdirected messages, which will be ignored.)

e The ‘scratch’ buffer can be used to buffer presets (or potentially other specifically edited
parameters) without changing device state.

o The ‘Dummy’ effect of the Global Type is specifically reserved for host use; its 32
unsigned long global parameters are never touched by the DX Family device, and can be
used to ‘mark’ progress, flag the end of multiple responses, etc.

http://www.eaw.com

6

LOUD Technologies, Inc. 11/19/2009

Bucket Net Protocol

Bucket Net is an extensible messaging protocol intended primarily for use as a control protocol
for digital audio devices. Itis intended to be independent of any particular communications
method, processor, or memory device.

Message Format

Bucket Net messages consist of a series of 32-bit words; they are of variable length. Each
message has a 3 word header segment. Messages may or may not have an additional, message
specific, data segment. The data segment, if present, will have a maximum length of 255 32-bit
words, for a maximum message length of 258 words.

In order to be properly handled, messages should be 32-bit aligned with respect to memory. All
messages should consist of an integral number of 32-bit words; pad bytes should be postpended
as necessary to satisfy this requirement. Unused bytes and pad bytes should be filled with the
hexadecimal value OXFF. (WARNING: While the value OxFF is specified by the current and
previous versions of the Bucket Net Specification, many Bucket Net implementations seem to
expect a fill value of 0x00!)

http://www.eaw.com

7

LOUD Technologies, Inc. 11/19/2009

Header Format

A Bucket Net message header consists of 3 words, divided into 9 fields (some multibyte):

UTOS

LSB MSB
0 1 2 3
0 | SYNC LENGTH DESTINST DESTFAM
1| MSGID LO MSGID HI SRCINST SRCFAM
2 | MSGCHKSUM LO | MSGCHKSUM HI | HDRCHKSUM LO | HDRCHKSUM HiI
3 | (DATABYTE 0) (DATABYTE1) |(...)

= header segment
= data segment

SYNC — The byte OxA5 is used to signify the start of a Bucket Net message.

LENGTH - The length (in 32-bit words) of the data segment.

DESTINST — The 8-bit instance designation of destination device.

DESTFAM — The 8-bit family designation of the destination device.

MSGID — The 16-bit message specific message identifier (ID).

SRCINST — The 8-bit instance designation of the source device.

SRCFAM — The 8-bit family designation of the source device.

MSGCHKSUM — The 16-bit message checksum. This checksum is computed by taking the 1’s
complement of the sum of the bytes in the data segment. (And so has the value OXFFFF if
‘LENGTH’ is 0.)

HDRCHCKSUM - The 16-bit header checksum. This checksum is computed by taking the 1’s
complement of the sum of the other 10 bytes in the header segment (including the message
checksum).

Note that while the family designation of a particular host or device is fixed, the instance
designation may be initialized to OxFE (BUCKETNET_DEVICE_UNINITIALIZED) and assigned
during communications set up.

Note further that the value OxFF (BUCKETNET_DEVICE_GLOBAL) is generally reserved for
broadcast use, and thus should not be assigned to a particular instance (or family). All devices
should handle a broadcast message.

Data Format

Whether a particular message has a data segment, and, if so, the contents of that segment, are
message ID dependent. Details of specific message IDs and their respective data segments’
formats are presented in the next section. Note the general caution (see ‘Message Format’) that
all messages must consist of an integral number of 32-bits words, with pad bytes inserted as
necessary.

http://www.eaw.com

8

LOUD Technologies, Inc.

11/19/2009

Bucket Net Messages

A number of Bucket Net messages (message IDs) have been defined:

Message ID Description

Ping 0x00 Query the device for its firmware version information.

Status Query 0x01 Query the device for specific status information.

Memory Read 0x05 Read 32-bit data from memory.

Assign Device Instance 0x06 Assign a device instance number.

Who Is Out There 0x08 Query the device for its serial number.

Assign Device Label OxO0F Assign a device (ASCII) label.

Ping Response 0x30 | * | Requested firmware version info.

Status Query Response | 0x31 | * | Requested status info.

Memory Read Response | 0x35 | * | Requested 32-bit data from memory.

Who Is Out There 0x38 | * | Requested serial number.

Response

Meters 0x51 | * | Requested meter values.

Fat Channel Meters 0x52 | * | Requested ‘fat channel meter values.

Parameter Edit 0x54 Sets the specified parameter(s).

Data Request 0x5B Request (to set locally) a specified type of data from the
(remote) device (e.g. meters, parameter values).

Identify Device 0x5C Override the front panel LEDs for device ID purposes.

Preset Info 0x71 Request information about a preset.

Preset Info Response 0x72 | * | Requested preset info.

Preset Store 0x73 Store the current state to a preset.

Preset Load 0x74 Load the current state from a preset.

Preset Clear 0x75 Clear a preset..

* DX Family devices generate, but do not handle, this message ID.

http://www.eaw.com

9

LOUD Technologies, Inc. 11/19/2009

Ping (0x00)
Correctly addressed devices should respond with a Ping Response message.

Ping messages have no data segment.

Status Query (0x01)
Correctly addressed devices should respond with a Status Query Response message.

Status Query messages have an optional (16-bit) data segment. If no data segment is present,
the default status code for the device should be handled. (DX Family default: 0x00.):

LSB MSB

0 1 2 3

3 | STATUS_CODE_LO | STATUS_CODE_HI

Status Codes

0x0000 Hardware Information
0x0004 Boot Status

0x0005 Code Execution Error
0x0007 Hardware Serial Number
0x0009 Communication Status
0x000B Firmware Version
0x000D Operational Status
0x0011 Debug Log Address
0x0013 Current Time

0x0015 IP Address

Memory Read (0x05)
Correctly addressed devices should respond with a Memory Read Response message.

Memory Read messages have a 2 word data segment consisting of a control code and the
address of the read (byte addressing is assumed):

LSB MSB

0 1 2 3
3 | CONTROL_CODE_LO | ... CONTROL_CODE_HI
4 | ADDRESS LO ADDRESS HI

While the control codes are technically the same as those used in Memory Write messages, only
the data length field (least significant byte) is applicable to reads.

http://www.eaw.com

10

LOUD Technologies, Inc. 11/19/2009

Assign Device Instance (0x06)
Assign Device Instance messages have a 3 word data segment:

LSB MSB
0 1 2 3
3 | DESTINST DESTFAM
4 | SERIAL 1 SERIAL 2 SERIAL 3 SERIAL 4
5 | SERIAL 5 SERIAL 6 SERIAL 7 SERIAL 8

If the 64-bit serial number contained in the second and third data words matches the device serial
number, or if the serial number OXFFFFFFFFFFFFFFFF is specified, then the device should
update its device family and instance values to match the 8-bit values specified in the first data
word (unless the specified value is OxFF, in which case that field should not be changed).

Example: The device instance value OXFE indicates that the device instance is uninitialized. In
order to reset a device to uninitialized state, a data segment of OXFE, OXFF, fill, fill, OXFFFFFFFF,
OxFFFFFFFF should be sent, overwriting the instance to OxFE, but not changing the family, of
any receiving device.

Who Is Out There (0x08)
Correctly addressed devices should respond with a Who Is Out There Response message.

Who Is Out There messages have no data segment.

http://www.eaw.com

11

LOUD Technologies, Inc.

11/19/2009

Assign Device Label (0OxOF)
Assign Device Label messages have an 8 word data segment, consisting of a single, NULL

terminated, ASCII character string to be used as a device name or label;

LSB MSB
0 1 2 3

3 | LABEL 1 LABEL 2 LABEL_3 LABEL 4
4 | LABEL 5 LABEL_6 LABEL_7 LABEL_8
5 | LABEL 9 LABEL_10 LABEL_11 LABEL_12
6 | LABEL 13 LABEL 14 LABEL 15 LABEL 16
7 | LABEL 17 LABEL_18 LABEL_19 LABEL_20
8 | LABEL 21 LABEL_22 LABEL_23 LABEL_24
9 |LABEL 25 LABEL_26 LABEL_27 LABEL_28
10 | LABEL 29 LABEL_30 LABEL 31 LABEL 32

Ping Response (0x30)

Generated in response to a Ping message. The data segment of a Ping Response consists of
one word:

LSB MSB

0 1 2 3

3 | OS_BUILDNUMBER OS BUILDTYPE OS_VERSION_LO OS_VERSION_HI

OS Build Type

0x00 = Release
0x01 = Development
0x02 = Alpha

0x03 = Beta

Release Type (bits 0-3)

OS Type (bits 4-7) 0x00 = Boot
0x10 = BIST
0x20 = OS

0x30 = Production Test

http://www.eaw.com

12

LOUD Technologies, Inc. 11/19/2009

Status Query Response (0x31)

Generated in response to a Status Query message. The data segment of a Status Query
Response depends on the status code passed in the original message. The first word of the data
segment always echoes this (16-bit) code back; further words are filled based on the code itself:

LSB MSB
0 1 2 3

3 | STATUS _CODE_LO | STATUS CODE_HI

4 | DATA. ..

A table of status codes is listed under the Status Query message.

Hardware Information

The status code specific data of an SQ: Hardware Information response consists of at least 3
data words, possibly more. The required 3 words encode details of the hardware and software
model and version numbers. Any further data words are device dependent:

LSB MSB

Status Code =0

OS_BUILDNUMBER | OS_BUILDTYPE | OS_VERSION_LO | OS_VERSION_HI

MANUFACTID_LO MANUFACTID_HI

DEVICEMEM_LO DEVICEMEM_HI | DEVICEFAM_LO | DEVICEFAM_HI

~Noo|h~lw

Device dependent...

Device Dependent Information

Model Manufacturer | Device Family | Family Information Description
ID Member

DX1208 0x00000066 | 0x0002 0x0000 Device Label

DX200 0x00000066 | 0x0002 0x0001 Device Label

DX Family Device Dependent Information Description

Device Label (ASCII) 32 bytes of ASCII character data

http://www.eaw.com

13

LOUD Technologies, Inc. 11/19/2009

Boot Status

The status code specific data of an SQ: Boot Status response consists of 2 data words. The first
concatenates the 16-bit boot status with the 16-bit boot time (see Assign Boot Time). The second
indicates the address (in FLASH) of the boot code:

LSB MSB

3 | Status Code =4

4 | BOOT_STATUS LO | BOOT_STATUS HI | BOOT_TIME_LO | BOOT_TIME_HI

5 | BOOT ADDR LO BOOT ADDR HI
Boot Status

0 Boot OK

0x8000 Boot Held Off By Command

0x8001 Boot Held Off By Key

Ox8FFF Boot Held Off By Failure

Boot Address

-1 Address Absent

-2 Address Corrupt

other Boot Address

http://www.eaw.com

14

LOUD Technologies, Inc.

11/19/2009

Code Execution Error

The status code specific data of an SQ: Code Execution response consists a single data word, a
(device specific) code representing the most recent error generated by the device:

LSB MSB
3 | Status Code =5
4 | ERROR _CODE_LO ERROR_CODE_HI

Note that reading the error code also clears the error register.

Error Code

-9 No Error — TCP Connection Refused
-8 No Error — Excess Remotes Ignored
-7 No Error — Preset Load

-6 No Error — Preset Clear

-5 No Error — Preset Store

-4 No Error — Logout

-3 No Error — Login

-2 No Error — Power On

-1 No Error — Reply In Place

0 No Error

1 Unknown Error

2 Out of Memory

3 VDK — Out of Threads

4 Login Disabled

5 Bad Password

6 Insufficient Permission

7 Session Timed Out

8 Bucket Overflow

9 Bucket Timeout

10 BucketNet Error

11 BucketNet — Unimplemented Message
12 BucketNet — Unimplemented Option
13 BucketNet — Unimplemented Status Code
14 BucketNet — Unimplemented Request ID
15 BucketNet — Payload Size Mismatch
16 BucketNet — Payload Underflow

17 BucketNet — Payload Overflow

18 BucketNet — Bad Address

19 BucketNet — Bad Data

20 BucketNet — Bad Flags

21 BucketNet — Bad Format

22 BucketNet — Bad Type

23 BucketNet — Bad Instance

24 BucketNet — Bad Effect

25 BucketNet — Bad Parameter

26 BucketNet — Bad Source

27 BucketNet — Bad Destination

28 BucketNet — Checksum Mismatch

29 BucketNet — Multiblock Format Required

http://www.eaw.com

15

LOUD Technologies, Inc. 11/19/2009

30 FishNet Error

31 FishNet — Unimplemented Message
32 FishNet — Bad Sync

33 FishNet — Bad Source

34 FishNet — Bad Destination
35 FishNet — Bad Length

36 FishNet — Bad ID

37 FishNet — Checksum Mismatch
38 FishNet — NACK Received
39 FishNet — ERROR Received
40 FLASH Erase Error

41 FLASH Write Error

42 FLASH Read Error

43 Invalid FLASH Image

44 SDRAM Error

45 ADI — System Services Init Failure
46 ADI — ISR Init Failure

47 Ethernet Error

48 Ethernet — UDP Error

49 Ethernet — TCP Error

50 Remote Not Responding

51 Remote Dropped

52 RS-485 Transmit Error

53 RS-485 Receive Error

54 RTC Not Ready Error

55 SHARC Not Ready Error

56 SHARC Error

57 S/PDIF Error

58 Transmit Failure

59 UART Error

60 UART RX FIFO Overflow
61 USB RX FIFO Overflow

http://www.eaw.com

16

LOUD Technologies, Inc. 11/19/2009

Hardware Serial Number

The status code specific data of an SQ: Hardware Serial Number response consists of 2 data
words, consisting of the 64-bit device serial number:

LSB MSB
3 | Status Code =7
4 | SERIAL 1 SERIAL 2 SERIAL 3 SERIAL 4
5| SERIAL_5 SERIAL_6 SERIAL 7 SERIAL 8

Communication Status

The status code specific data of an SQ: Communication Status response consists of a single
data word encoding the current status of communications:

LSB MSB

3 | Status Code =9

4 | COMM_STATUS

Note that reading the communications status also clears any communications error.

Communications Status

Bit Description*

0 General Error

1 Buffer Overrun Error
2 Checksum Failure

*A ‘1" in the appropriate bit means the error has occurred; ‘0’ means no error.

Firmware Version

The status code specific data of an SQ: Firmware Version response is of variable length,
depending on the status of the various processors running in the DX Family device:

LSB MSB

3| Status Code =11

4| OS_BUILDNUMBER | OS BUILDTYPE | OS VERSION LO | OS VERSION_HI

5| OS BUILDNUMBER | OS BUILDTYPE | OS VERSION LO | OS VERSION_ Hi

If the device is in boot, only one additional word will be generated, encoding the Blackfin boot
firmware version number.

If the device is not in boot (in its ‘OS’), and the DSP is not ready (due to error), then only one
additional word will be generated, encoding the Blackfin OS firmware version.

If the device is not in boot, and the DSP is ready, then two additional words will be generated,
encoding first the Blackfin OS firmware version, and then the SHARC DSP firmware version.

http://www.eaw.com

17

LOUD Technologies, Inc.

11/19/2009

Operational Status

The status code specific data of an SQ: Operational Status response consists of a single data

word which encodes the operational status of the SHARC DSP:

LSB

MSB

3 | Status Code = 13

4 | OPS_STATUS LO

OPS_STATUS_HI

Note that the response to this status code is extremely device specific.

SHARC DSP Operational Status Bits

0-1 Ready (10 = ready)

2 DXLink Valid (1 = valid)

3 DXLink Locked (1 = locked)

4 Audio Locked (1 = locked)

5 S/PDIF Reset Request (0 = stop, 1 =run)
6-30 Reserved

31 Error (1 = error)

Debug Log Address

The status code specific data of an SQ: Debug Log Address response consists of 4 data words,
in 2 pairs of 2 words. Each pair communicates the base address and length in bytes of one page

of the Event (Debug) Log in FLASH:

LSB MSB
Status_Code = 17
LOGO_ADDR LO LOGO_ADDR_HI

LOGO BYTES LO

LOGO BYTES HI

LOG1 ADDR _LO

LOG1 ADDR_HI

~NoOo bW

LOG1 BYTES_LO

LOG1 BYTES_HI

The DX Family Event Log is used in a ping-pong fashion: once one page fills, the other is erased
and begins to fill, so that there is always one full page of events in the history (once any page has
filled). Each ‘line’ of the Event Log represents a single system event:

Event Line Format

(32-bit) Word

Description

0 Timestamp (see Status Query: Current Time)

1 Firmware Version (see Status Query: Firmware Version)

2 Event Code (see Status Query: Code Execution Error)

3 Event Modifier (Event Code specific)

4-15 Event Desription (48 character NULL-terminated ASCII string)

Uninitialized (erased) FLASH bytes read as OxFF. Note that the value OXFFFFFFFF is not a valid
Blackfin RTC timestamp.

http://www.eaw.com

18

LOUD Technologies, Inc. 11/19/2009

Current Time

The status code specific data of an SQ: Current Time response consists of 2 data words; non-DX
Family devices may use 3, depending on the value of the first word.

LSB MSB
3 | Status Code =19
4 | FLAG 1
5| TIME _LO (0-31) TIME_HI (0-31)
(if 64-bit time)
|6 | TIME_LO (32-63) | ... | ... | TIME_HI (32-63) |
Flag Bits
Bits
0 0 = Below 50kHz (Time Format = 32-bit)
1 = Above 50kHz (Time Format = 64-bit)
1-7 Reserved (set to 0)

DX Family devices use the Blackfin RTC time format:

Blackfin RTC Time Format Bits

0-5 Seconds (0-59)
6-11 Minutes (0-59)
12-16 Hours (0-23)
17-31 Days (0-32767)

NOTE: DX Family device times typically represent elapsed time since unit ‘birth’, counting up
from 0. They are not set to reflect the accurate time of day.

IP Address

The status code specific data of an SQ: IP Address response consists of a single data word, the
current IP address for the device in 32-bit unsigned integer (network) format:

LSB MSB
3 | Status Code = 21
4| 1P_ADDR LO IP_ADDR_HI

Note that reading the IP address of a device which is using dynamic addressing will refresh the
dynamic IP address (update the global parameter to match the current system address).

http://www.eaw.com

19

LOUD Technologies, Inc.

11/19/2009

Memory Read Response (0x35)

Generated in response to a Memory Read message. The data segment of a Memory Read
Response consists of one or more words:

LSB MSB
0 2 3
3 | ADDRESS_LO ADDRESS_HI
4 | DATA_LO DATA_HI
| MORE DATA...

The address field should correspond to the address in the originating Memory Read. The count
of (32-bit) data words should correspond to the length specified in the control codes.

NOTE: Memory Reads have limited utility with respect to the DX Family. They are used primarily
to access the Event Log (see Status Query: Debug Log Address). Most system data and
parameters are ‘read’ using either specific Status Query messages or via Data Request
messages.

Who Is Out There Response (0x38)

Generated in response to a Who Is Out There message. The data segment of a Who Is Out
There Response consists of 2 words which can be concatenated to form the 64-bit device serial

number:

LSB MSB

0 1 2 3
3 | SERIAL 1 SERIAL 2 SERIAL 3 SERIAL 4
4 | SERIAL 5 SERIAL 6 SERIAL 7 SERIAL 8

http://www.eaw.com

20

LOUD Technologies, Inc.

11/19/2009

Meters (0x51)

(Usually) generated in response to a Data Request message. The data segment of a Meter
message consists of one or more blocks, each of which in turn consists of at least 2 words.

The first word concatenates the 8-bit Meter Type, the 8-bit Meter Flags, and the 8-bit Instance
and Type IDs indicating the channel type and number of the first meter value. All subsequent
words in the block of data will contain meter values in the format indicated by the flags, beginning
with the indicated device Type and Instance and incrementing the instance by one for each new

value:
LSB MSB
0 1 2 3
3 | METER TYPE METER_FLAGS PARMID INST PARMID TYPE
4 | METER VALUE LO METER VALUE HI
5 | METER VALUE LO METER VALUE HI
MORE VALUES...
METER _TYPE METER FLAGS PARMID INST PARMID TYPE
METER VALUE LO METER VALUE HI
MORE VALUES...

Meter Type Bits

0-3 | Meter Placement
0000 = Pre-DSP (Channel Input)
0001 = Post-DSP (Channel Output)
4-6 | Meter Type
000 = Peak
7 Reserved (= 0)

Meter Flag Bits

0-2 | Meter Data Format
000 = 8-bit signed
001 = 16-bit signed (8.8)
010 = 32-bit float (IEEE float)
3-7 | Meter Words

This field indicates the number of 32-bit words of meter values in
this block. Each word may contain multiple values, depending on
the format specified (e.g. up to 4 in the case of an 8-bit format).

A value of zero in this field indicates that meter values for all
instances of the specified PARMID_TYPE are being supplied.
Otherwise the first value begins from the instance specified by
PARMID_INST.

Example: If PARMID_INST is 0x09, the Meter Data Format
requested is an 8-bit format, and Meter Words is 2, then this block
of the Meter message contains meter data for channels 9 to 16 of
this type.

http://www.eaw.com

21

LOUD Technologies, Inc. 11/19/2009

Fat Channel Meters (0x52)

(Usually) generated in response to a Data Request message. ‘Fat Channel’ meters are the
meters associated with effects (such as gates, automixers, etc.), as opposed to (plain) meters,
which are associated with types (channels). The data segment of a Fat Channel Meter message
consists of one or more blocks, each of which in turn consists of at least 3 words.

The first word concatenates the 8-bit Meter Flags, and the 8-bit Instance, Effect, and Type IDs
indicating the channel type and number, as well as the effect, of the first meter value. The
second word indicates the particular Meter ID (of the specified effect) of the meter values. All
subsequent words in the block of data will contain meter values in the format indicated by the
flags, beginning with the indicated device Type, Effect, Meter ID, and Instance and incrementing
the instance by one for each new value

If Meter ID is wild (OxFF), all Meter IDs of the effect are contained in the message, incrementing
from lowest to highest per value. If values for more than one Instance are also required, then all

meter IDs for the first instance are sent before the first meter ID of the second instance:

LSB MSB
0 1 2 3
3 | METER_FLAGS PARMID_INST PARMID_EFFECT | PARMID TYPE
4 | METERID_LO METERID_HI
5 | METER_VALUE_LO METER_VALUE_HI
6 | METER_VALUE_LO METER_VALUE_HI
.. MORE VALUES...
.. METER_FLAGS PARMID_INST PARMID_EFFECT | PARMID_TYPE
| METERID_LO METERID_HI
.. | METER VALUE LO METER_VALUE_HI
| MORE VALUES...

Meter Flag Bits

0-2 | Meter Data Format
000 = 8-hit signed
001 = 16-bit signed (8.8)
010 = 32-bit float (IEEE float)
3-7 | Meter Words

PARMID_INST.

This field indicates the number of 32-bit words of meter values in
this block. Each word may contain multiple values, depending on
the format specified (e.g. up to 4 in the case of an 8-bit format).

A value of zero in this field indicates that meter values for all
instances of the specified PARMID_TYPE are being supplied.
Otherwise the first value begins from the instance specified by

http://www.eaw.com

22

LOUD Technologies, Inc. 11/19/2009

Example:

Data Request

0x000009a5,

0x0000005b, // data request

0x00000000, // checksum (gets calculated when sent)
BNMESSAGE_ID_FATCHANMETERS, // Fat Meter request

// Type ID Effect Channel Format Meters

// Request ALL Analog Input Comp Input Meters in 32 bit float format

(TYPEID_ANALOG_INPUT << 24)+(EFFECTID_COMP<<16)+ (OxFF<<8)+ 0x02, 1,

Request ALL Analog Input Gate Input Meters in 32 bit float format
(TYPEID_ANALOG_INPUT << 24)+ (EFFECTID_GATE<<16)+(OxFF<<8)+ 0x02, 3;

Request Analog Input Channel 13 Comp Input Meter in 32 bit float format
(TYPEID_ANALOG_INPUT << 24)+(EFFECTID_COMP<<16)+ (0x0OD<<8)+ Ox0A, 1;

Request Analog Input Channel 13-24 Comp Input Meter in 32 bit float format
(TYPEID_ANALOG_INPUT << 24)+(EFFECTID_COMP<<16)+ (0Ox0D<<8)+ 0x02, 1;

Fat Channel Meters

0x000045A5, OxFFFF0052, 0x??7777777

0x0107FFC2, 0x00000001

0xC2B164ED, 0xC2B36C43, OxC2B3FFlE, 0xC2B4953B, OxC2B29F2C, 0xC2B33307,
0xC2B6057B, 0xC2B64BOC, 0xC2B3D613, OXxC2B52BED, OxC2B14BD4, OxC2B2C7AO0,
0xC2B42D05, 0xC2B65D94, 0xC2B47779, OxC2B5C2E7, 0xC3107E90, O0xC3107E90,
0xC3107E90, 0xC3107E90, 0xC2B38563, OxC2B5AC61, 0xC2B38771, OxC2B172A5,
0x0108FFC2, 0x00000003,

0xC2B164ED, 0xC2B36C43, OxC2B3FFlE, OxC2B4953B, OxC2B29F2C, 0xC2B33307,
0xC2B6057B, 0xC2B64BOC, 0xC2B3D613, OxC2B52BED, OxC2B14BD4, OxC2B2C7AO0,
0xC2B42D05, 0xC2B65D94, 0xC2B47779, OxC2B5C2E7, 0xC3107E90, O0xC3107E90,
0xC3107E90, 0xC3107E90, 0xC2B38563, OXxC2B5AC61, OxC2B38771, OxC2B1l72A5,
0x01070D0A, 0x00000001,

0xC2B42D05,

0x01070D62, 0x00000001,

0xC2B42D05, 0xC2B65D94, 0xC2B47779, OxC2B5C2E7, 0xC3107E90, O0xC3107E90,
0xC3107E90, 0xC3107E90, 0xC2B38563, OXxC2B5AC61, OxC2B38771, OxC2B172A5;

http://www.eaw.com

23

LOUD Technologies, Inc. 11/19/2009

Parameter Edit (0x54)

Parameter Edit messages may be generated in response to a Data Request message; they are
also commonly generated directly in response to user input. The data segment of a Parameter
Edit message consists of one or more blocks, each of which in turn consists of at least 3 words.

The first 32-bit data word consist of numerous Flags describing the format of the message and its
contents; depending on these flags the content of subsequent fields may change.

The second 32-bit data word specifies the precise (first) parameter to be edited, using a semi-
hierarchical taxonomy common to all Bucket Net parameters (see below).

Subsequent data words depend heavily on the particular Flags. The example below shows the
typical format of DX Family Parameter Edits, with one parameter value per word, beginning with
the parameter specified in the second word of the block and incrementing thereafter either by
instance or parameter according to the Flags; there are two blocks of edits:

LSB MSB

0 1 2 3
3 FLAGS1 FLAGS2 FLAGS3 FLAGS4
4 PARMID_PARAM PARMID_INST | PARMID_EFFECT | PARMID_TYPE
5 VALUE1_LO VALUE1 HI
6 VALUEZ2_LO " " VALUE2 HI
X-1 VALUEN_LO VALUEN_HI
X FLAGS1 FLAGS2 FLAGS3 FLAGS4
X+1 | PARMID NUMBER | PARMID INST | PARMID_EFFECT | PARMID_TYPE
X+2 | VALUE1l LO VALUE1 HI
X+3 | VALUE2 LO " " VALUE2 HI
X+M | VALUEN LO VALUEN_HI

http://www.eaw.com

24

LOUD Technologies, Inc.

11/19/2009

FLAGSL1 Bits — General Flags

0 Autoincrement Enable
0 = Disabled (Single Parameter Edit)
1 = Enabled (see Autoincrement Type)

1 Reserved (= 0)

2-3 | Reserved (= 00)

4 Autoincrement Type
0 = Increment Parameter Number
1 = Increment Instance Number

5-6 | Reserved (= 00)

7 Reserved (= 0)

FLAGS? Bits — Data Format

0 Reserved (= 0)

1-5 | Data Element Format

00000 = unsigned long (32-bit)
00001 = signed long (32-bit)
00010 = unsigned short (16-bit)
00011 = signed short (16-bit)
00100 = unsigned char (8-bit)
00101 = signed char (8-bit)
00110 = float (32-bit IEEE float)

01001 = fractional data type (16.16)
01001-11111 = Reserved

00111 = double (64-bit IEEE double precision)
01000 = double long (64-bit signed integer)

6-7 | Reserved (= 00)

FLAGSS3 Bits — Target Buffer

0 Target Buffer (to Edit)
0 = Edit Buffer
1 = Scratch Buffer

1-5 | Reserved (ignored)

6-7 | Reserved (= 00)

FLAGS4 - Block Length

0 Block continues to the end of the message.

1-255 | Block Words - This field indicates the number of 32-bit words of parameters

in this block. Each word may contain multiple values, depending on the
format specified (e.g. up to 4 in the case of an 8-bit format).

http://www.eaw.com

25

LOUD Technologies, Inc. 11/19/2009

Parameter IDs

Parameters in Bucket Net are specified using four values:

TYPE The ‘type’ or ‘channel’, e.g. Analog Input, Global, or Logic Output, etc.
EFFECT E.g. Compressor, Gate, EQ, Fader, Logic Input, Label, Global, Mute, etc.
INSTANCE ‘Types’ are grouped into multiple instances, e.g. Analog Outputs 1-8; this is

the particular instance number. Note that ‘Global’ types have 0 instances.
PARAMETER These are the specific parameters of a particular effect, e.g. Gate Attack,
(NUMBER) Fader Level, Mute Enable, Global Default Preset, etc.

The current state of all parameters is maintained in volatile memory (RAM); this memory buffer is
referred to as the ‘edit’ buffer. Edits to the edit buffer have an immediate effect on device state.
A mirror buffer of the same size is also maintained; this ‘scratch’ buffer can be used to buffer
presets or individual parameter data without affecting the current state.

Examples:

Parameter Edit (Single Block)

0x00000aa5,
0x00000054,
0x00000000,
0x00000c01,
0x01080201,
0x3f800000,
0x430177f8,
0x00000000,
0x42480000,
0xc2700000,
0x3f800000,
0x00000000,
0x00000000

// parameter edit

// checksum (gets calculated when sent)

// format flag (auto increment - parameter, 32 bit float)
// starting PID (analog input, gate effect, channel 2, parameter 1)
// value of PID 0x01080201

// value of PID 0x01080202

// value of PID 0x01080203

// value of PID 0x01080204

// value of PID 0x01080205

// value of PID 0x01080206

// value of PID 0x01080207

// value of PID 0x01080208

Parameter Edit (Multiple Block)

0x000007a5,

0x00000054, /

0x00000000,

0x06000a1l,
0x01010101,
0x05ff0ef8,
0x0000fff3,

0x01000000,
0x01050107,
0x00000001,

/ parameter edit
// checksum (gets calculated when sent)

format flag (auto increment - instance, 8 bit char)

starting PID (analog input, fader, channel 1, parameter 1)

values of PID 0x01010101 (value of f8) to 0x01010401 (value of 05)
values of PID 0x01010501 (value of f3) to 0x01010601 (value of ff)

format flag (auto increment off, ulong 32 bits)
starting PID (analog input, eq, channel 1, band 2 enable)
value of PID 0x01050107

NN NN\
NN NN

http://www.eaw.com

26

LOUD Technologies, Inc. 11/19/2009

Data Request (0x5B)
Correctly addressed devices should respond with the specified message type.

Data Request messages have at least 1 word in their data segment. This first word consists of
an 8-bit Data Request ID describing the type of data requested; the other 24 bits of the first word,
and all subsequent words in the data segment, depend on the data type requested:

LSB MSB
0 1 2 3
3 | DATAREQ ID (FLAGS1) (FLAGS2) (FLAGS3)
4 | DATA...
Data Request Types
Request Type DATAREQ ID FLAGS1
Meters 0x51 (81) N/A
Fat Channel Meters | 0x52 (82) N/A
Parameter Edit 0x54 (84) Source/Destination Buffer

Meters

The Data Request Type specific data of an DR: Meters consists of 1 data word per request; each
request word should generate a new block in the Meters message response. (WARNING:
Requesting more meter data than can be fit into the payload of a single Meters message is
invalid!)

Each data word is formatted exactly as the first data word of a Meters message, except that
PARMID_INST is allowed to be wild (OxFF), requesting all instances of the specified type, and
Meter Flag Bits 3-7 are modified to accommodate wildcarding:

LSB MSB
4 | METER_TYPE METER_FLAGS PARMID_INST PARMID_TYPE
5 | METER_TYPE METER_FLAGS PARMID_INST PARMID_TYPE
MORE REQS...

Meter Flag Bits

3-7 | Meter Words

returned.

If PARMID_INST is wild (OxFF) this field is omitted (set to zero);
meter data for all instances of the specified type should be

Otherwise, this field indicates the number of 32-bit words of meter
values in this block, as usual. Each word may contain multiple
values, depending on the format specified (e.g. up to 4 in the case

of an 8-bit format).

http://www.eaw.com

27

LOUD Technologies, Inc.

11/19/2009

Fat Channel Meters

The Data Request Type specific data of an DR: Fat Channel Meters consists of 2 data words per
request; each request word should generate a new block in the Fat Channel Meters message

response. (WARNING: Requesting more fat channel meter data than can be fit into the payload
of a single Fat Channel Meters message is invalid!)

Each request is formatted exactly as the first two data words of a Fat Channel Meters message,
except that PARMID_INST is allowed to be wild (OxFF), requesting all instances of the specified
type, and Meter Flag Bits 3-7 are modified to accommodate wildcarding. (Meter ID is allowed to
be wild (OxFF) as usual.):

LSB MSB
3 | METER_FLAGS PARMID_INST PARMID_EFFECT | PARMID_TYPE
4 | METERID_LO METERID_HI
5 | METER_FLAGS PARMID_INST PARMID_EFFECT | PARMID_TYPE
6 | METERID_LO METERID_HI
MORE REQS...

Meter Flag Bits

3-7

Meter Words

If PARMID_INST is wild (OxFF) this field is omitted (set to zero);
meter data for all instances of the specified type should be
returned.

Otherwise, this field indicates the number of 32-bit words of meter
values in this block, as usual. Each word may contain multiple
values, depending on the format specified (e.g. up to 4 in the case
of an 8-bit format).

http://www.eaw.com

28

LOUD Technologies, Inc. 11/19/2009

Parameter Edit

The Data Request Type specific data of an DR: Parameter Edit consists of 1 data word; only one
request is allowed per DR: Parameter Edit. Note, however, that a single Data Request of this
type may generate multiple Parameter Edit messages in response, not just one; it is up to the
recipient to decide how to package up the data requested.

It should be stressed that the response to a DR: Parameter Edit is a Parameter Edit. The
FLAGSL field of the Data Request is used to specify the target buffer both for reading the
parameter data on the recipient side and for editing on the requesting side. Requesting to Edit
the edit buffer is effectively the same as a ‘Request to Set’, in that it destructively overwrites the
current parameter value on the requesting side. Requesting to Edit the scratch buffer, however,
can be used to emulate a ‘Get’; the received parameters can be compared to local parameters
without altering current state. (Of course the difficulty in this case is getting the desired state into
the scratch buffer.):

FLAGSI1 - Source/Destination Buffer

0 Edit Buffer
1 Scratch Buffer
2-255 Reserved

The request is formatted exactly as the second data words of a Parameter Edit message, except
that each 8-bit field is allowed to be wild (OxFF), with results as tabulated below:

LSB MSB

|3 [PARMID_PARAM | PARMID INST | PARMID_EFFECT | PARMID TYPE

Wildcard Effects

Parameter ID Field | Effect

TYPE Edits all parameters of the device. (WARNING: This will include any
‘dummy’ global effect used for handshaking!)

EFFECT Edits all parameters of the specified type.

INSTANCE & Edits all parameters of the specified effect.

PARAMETER

INSTANCE Edits all instances of the specified effect parameter.

PARAMETER Edits all parameters of the specified effect instance.

NOTE: Only the ‘most significant’ wildcard will be applied, except in the case of both Instance
and Parameter wildcarding.

http://www.eaw.com

29

LOUD Technologies, Inc. 11/19/2009

Identify Device (0x5C)

Identify Device messages have a 1 word data segment, indicating the desired response of the
front panel I/O LEDs:

LSB MSB
0 1 2 3
3 | LED_CMD_LO LED_CMD_HI

LED Command

-1 (= OXFFFFFFFF) Turn LEDs On (random pattern)

0 Turn LEDs Off

1—-4294967294 (= N) | Turn LEDs On (random pattern) for N ms, then Turn LEDs Off

Preset Info (0x71)
Correctly addressed devices should respond with a Preset Info Response message.

Preset Info messages have a 1 word data segment. The low 16-bits specify the (Data) Index of
the preset to be searched. The 8-bit Library Type field specifies the type of state buffer, which is
fixed to ‘preset’ for DX Family devices. The remaining 8-bit field is used to specify the source or
destination buffer for Preset Load and Store operations; it is ignored for purposes of the Info
message:

LSB MSB

0 1 2 3

3 | DATA INDEX LO | DATA INDEX HI | LIBRARY_TYPE SRC_DEST_BUF

DX Family preset indices begin at O; preset numbers (in DX Navigator) begin at 1. To convert
from index to number, simply add 1 (or subtract 1 if going from number to index).

Library Type
1 Preset
non-1 Reserved

Source/Destination Buffer

0 Edit Buffer
1 Scratch Buffer
2-255 Reserved

NOTE: Current device state is referred to as the ‘edit’ buffer. Loading to the ‘edit’ buffer changes
device state. The ‘scratch’ buffer can be loaded to with affecting device state.

http://www.eaw.com

30

LOUD Technologies, Inc.

11/19/2009

Preset Info Response (0x72)

Generated in response to a Preset Info message. The data segment of a Preset Info Response
consists of 10 words. The first word copies the data segment of the originating Info message
The second indicates the initialization status of the specified preset. The remaining 8 words
contain a single, NULL terminated, ASCII character string (of up to 32 characters) reflecting the
preset’s name or label (which should be NULL if the buffer is uninitialized):

LSB MSB

0 1 2 3
3 | DATA_INDEX_LO | DATA INDEX _HI | LIBRARY TYPE | SRC_DEST BUF
4 | INIT_STATUS
5 | LABEL 1 LABEL_2 LABEL_3 LABEL 4
6 | LABEL 5 LABEL_6 LABEL_7 LABEL_8
7 | LABEL 9 LABEL_10 LABEL_11 LABEL_12
8 | LABEL 13 LABEL_14 LABEL_15 LABEL_16
9 | LABEL 17 LABEL 18 LABEL 19 LABEL 20
10 | LABEL_21 LABEL 22 LABEL 23 LABEL 24
11 | LABEL_25 LABEL_26 LABEL_27 LABEL_28
12 | LABEL_29 LABEL_30 LABEL_31 LABEL_32

Initialization Status

0

Buffer Uninitialized

non-1

Buffer Initialized

Preset Store (0x73)

Preset Store messages have a 1 word data segment. The low 16-bits specify the (Data) Index of
the (destination) preset to be written to. The 8-bit Library Type field specifies the type of state
buffer. The 8-bit Source Buffer field is used to specify the source buffer to be read from:

LSB MSB
0 1 2 3
3 | DATA INDEX LO | DATA INDEX HI | LIBRARY_TYPE SRC_BUFFER

(See the Preset Info message for further detail.)

Preset Load (0x74)

Preset Load messages have a 1 word data segment. The low 16-bits specify the (Data) Index of
the (source) preset to be read from. The 8-bit Library Type field specifies the type of state buffer.
The 8-bit Destination Buffer field is used to specify the destination buffer to be written to:

LSB MSB

0 1 2 3

3 | DATA INDEX LO | DATA INDEX HI | LIBRARY_TYPE DEST_BUFFER

(See the Preset Info message for further detail.)

http://www.eaw.com

31

LOUD Technologies, Inc. 11/19/2009

Preset Clear (0x75)

Preset Clear messages have a 1 word data segment. The low 16-bits specify the (Data) Index of
the (destination) preset to be cleared. The 8-bit Library Type field specifies the type of state
buffer. The remaining 8-bit field is used to specify the source or destination buffer for Preset
Load and Store operations; it is ignored for purposes of the Clear message:

LSB MSB

0 1 2 3

3 | DATA_INDEX_LO | DATA INDEX_HI | LIBRARY TYPE | SRC DEST BUF

(See the Preset Info message for further detail.)

http://www.eaw.com

32

LOUD Technologies, Inc. 11/19/2009

Appendix A — Device Family

Device ID | Description

OxFF Global Device Family
0x00 PC Host

0x07 Processor (inc. DX Family)

Appendix B — Device Instance

Device ID | Description

OxFF Global Device (Broadcast)

OxFE Uninitialized Device (Default)

Appendix C — Channel/Type IDs

Note also that while most channels can have one or more ‘instances’ (e.g. 8 analog inputs or 4
digital inputs), global ‘types’ have zero instances by convention.

Channel/Type ID | Description

1 Analog Input
2 Digital Input

3 Analog Output
50 Remote

51 Logic Input

53 Logic Output
225 DXLink Input
227 DXLink Output
240 Global

http://www.eaw.com

33

LOUD Technologies, Inc. 11/19/2009

Appendix D — Effect and Parameter IDs

Note that not all types (or channels) support all effects.

Effect IDs

Effect ID Name Comments

1 Fader

2 Mute

4 Setup Mic Pre

5 EQ Parametric EQ

6 Filter High- or Lowpass Filter

7 Compressor Alternatively a Limiter or an AGC
8 Gate Alternatively an Expander

11 Ducker

12 Delay

17 Solo

25 Matrix Level

50 Universal Remote

51 Logic Input

53 Logic Output

69 Matrix Enable

101 Label

224 Automix

240 Global (‘Global’ effect - zero instances)
243 Dummy Host scratchpad (‘Global’ effect - zero instances)

Parameter IDs (by Effect)

1 - Fader Effect

Parameter # Description

1 Fader Level

2 - Mute Effect

Parameter # Description

1 Mute Enable

4 - Setup Effect

Parameter # Description

1 Setup Enable

2 Analog Trim (0, 20, 40, 50, 60 dB)
3 Phantom Power

http://www.eaw.com

34

LOUD Technologies, Inc.

11/19/2009

5 - EQ Effect

Parameter # Description

1 EQ Enable (all bands)

2 EQ Band 1 Enable

3 EQ Band 1 Frequency

4 EQBand 1 Q

5 EQ Band 1 Gain

6 EQ Band 1 Type (see below)

7 EQ Band 2 Enable

8 EQ Band 2 Frequency

9 EQBand 2 Q

10 EQ Band 2 Gain

11 EQ Band 2 Type

12...16 EQ Band 3 Enable, Frequency, Q, Gain, Type
17..21 EQ Band 4 Enable, Frequency, Q, Gain, Type
22...26 EQ Band 5 Enable, Frequency, Q, Gain, Type
27...31 EQ Band 6 Enable, Frequency, Q, Gain, Type
32...36 EQ Band 7 Enable, Frequency, Q, Gain, Type
37..41 EQ Band 8 Enable, Frequency, Q, Gain, Type
EQ Filter Types

0 Low Pass (2" order Butterworth)

1 High Pass (2" order Butterworth)

2 Band Pass (a.k.a. Parametric)

3 Low Shelf (2™ order)

4 High Shelf (2™ order)

5 Low Shelf (1 order)

6 High Shelf (1% order)

6 - Filter Effect

Parameter # Description

Filter Enable (all bands) (constant)

Highpass Filter Enable

Highpass Filter Frequency

Highpass Filter Type (see below)

Highpass Filter Slope (6, 12, 18, or 24 dB)

Lowpass Filter Enable

Lowpass Filter Frequency

Lowpass Filter Type

OO (N0 |R|WIN(F-

Lowpass Filter Slope (6, 12, 18, or 24 dB)

HPF & LPF Filter Types

0 Butterworth

1 Linkwitz-Riley

2 Bessel

http://www.eaw.com

35

LOUD Technologies, Inc.

11/19/2009

7 - Compressor Effect

Parameter #

Description

Compressor Enable

Gain (Makeup)

Attack

Release

Threshold

Ratio

Knee (constant)

Knee Enable (constant)

Stereo Link Enable (constant)

AGC Enable

AGC Threshold

AGC Target

8 - Gate Effect

Parameter #

Description

Gate Enable

Attack

Hold

Release

Threshold

(Expander) Ratio (constant)

(Gate) Range

Mode (Gate -> 0 or Expander -> 1) (constant)

OO |IN|O(O|R|WIN|F-

Stereo Link Enable (constant)

11 - Ducker Effect
NOTE: See also the Global effect for more ducker parameters.

Parameter # Description

1 Ducker Enable
2 Priority

3 Level Detect

12 - Delay Effect

Parameter # Description

1 Delay Enable
2 Delay Time
17 - Solo Effect

Parameter # Description

1 Solo Assign

http://www.eaw.com

36

LOUD Technologies, Inc.

11/19/2009

25 - Matrix Level Effect

Parameter #

Description

1 Matrix Level Out
2 Matrix Level In 1
3 Matrix Level In 2
29 Matrix Level In 28

50 - Universal Remote Effect

Parameter # Description

1 Initialized

2 Present (read only)

3 Enable

4 ID

5 Type

6 1/0 1 LED State (read only)
7 1/0 1 Action

8 1/0 1 Event

9 1/0 1 Select

10 1/0 2 LED State (read only)
11 1/0 2 Action

12 I/O 2 Event

13 1/0 2 Select

14 1/0 3 LED State (read only)
15 1/0 3 Action

16 I/O 3 Event

17 I/0 3 Select

18 1/0 4 LED State (read only)
19 1/0 4 Action

20 I/0 4 Event

21 1/0 4 Select

51 - Logic Input Effect

Parameter #

Description

Logic In Enable

State (read only)

Action

Active

Event

OO |WIN|F-

Select

http://www.eaw.com

37

LOUD Technologies, Inc.

11/19/2009

53 - Logic Output Effect

Parameter #

Description

1

Logic Out Enable

State (read only)

Active

Event

2
3
4
5

Select

69 - Matrix Enable Effect

Parameter #

Description

1 Matrix Enable Out
2 Matrix Enable In 1
3 Matrix Enable In 2
29 Matrix Enable In 28

101 - Label Effect

Parameter #

Description

Characters 0-3

Characters 4-7

Characters 8-11

Characters 12-15

Characters 16-19

Characters 20-23

Characters 24-27

DN IWIN(F

Characters 28-31

224 - Automix Effect

Parameter # Description

1 Automix Enable
2 Response

3 Ratio

4 Assign In 1

5 Assign In 2

31 Assign In 28

http://www.eaw.com

38

LOUD Technologies, Inc.

11/19/2009

240 - Global Effect
NOTE: Global parameters are very device specific!

Parameter # Description

1 Ducker Attack

2 Ducker Release

3 Ducker Threshold

4 Ducker Hold

5 Ducker Priority 1 Enable

6 Ducker Priority 1 Depth

7 Ducker Priority 2 Enable

8 Ducker Priority 2 Depth

9 Ducker Priority 3 Enable

10 Ducker Priority 3 Depth

11 Ducker Priority 4 Enable

12 Ducker Priority 4 Depth

13 Global Initialized (system maintained)

14 Preset Initialized (system maintained)

15 Default Preset

16 Login Enable

17 Admin Password Characters 0-3 (write only)
18 Admin Password Characters 4-7 (write only)
19 Admin Password Characters 8-11 (write only)
20 Admin Password Characters 12-15 (write only)
21 User Password Characters 0-3 (write only)
22 User Password Characters 4-7 (write only)
23 User Password Characters 8-11 (write only)
24 User Password Characters 12-15 (write only)
25 Static IP Enable

26 Static IP Address

27 Static IP Subnet Mask

28 Static IP Subnet Gateway

29 DXLink Master

30 DXLink Valid (read only)

31 DXLink Locked (read only)

32 Audio Locked (read only)

33 SHARC Ready (read only)

34 SHARC Error (read only)

35 Dynamic IP Address (read only)

243 - Dummy Effect

Parameter # Description
1 Dummy 1
2 Dummy 2
32 Dummy 32

http://www.eaw.com

39

LOUD Technologies, Inc. 11/19/2009

Appendix E — DX Family Configuration Files

Each DX Family member (DX1208, DX200) has its own device-specific Configuration
spreadsheet. This spreadsheet enumerates all device parameters in tabular format along with
important statistics pertaining to each parameter and to various parameter groupings. This
section is intended as a ‘key’ to deciphering a DX Family Configuration file.

There is a single identifying label at the beginning of a DX Family Configuration, listing the device
type and the date of the last file update. The rest of the file consists of a table of parameter
information, with one parameter per row. There are twelve columns per row; most parameters
have values in only a subset of the columns, as the file is laid out in a hierarchical format, per the
Bucket Net Parameter ID hierarchy (see Parameter 1Ds).

Column Heading | Description

TYPE Type IDs for each device Type (or channel).
INSTANCES The number of instances of the specified Type.
(‘Global’ effects have 0 instances by convention.)
TAPS The number of meter placements available for the specified Type.
(See Meters.)
EFFECT Effect IDs for each Effect of the specified Type.
Note the same effect can be used on multiple Types.
WORDS This data is relevant for DSP interfacing only — it has no effect on external
communications.
FAT The number of fat channel meter IDs available for the specified Effect.

(See Fat Channel Meters.)

For most effects there are two meter IDs — one for the input signal level and
the other for output signal level. However, the Automix effect takes input
signals from each input channel, and it thus has many more IDs.

PARAMETER Parameter IDs (or numbers) for each Parameter of the specified Effect.
All Parameter ID values start at 1 and increment by 1 per parameter.
SEGMENT The memory segment in which the value of the specified parameter is stored.
(See below.)
FORMAT The native format of the specified parameter.

This is generally either Boolean, unsigned long integer, or 32-bit floating
point, as DX Family device processors are 32-bit processors. (Note that 32-
bit Boolean values are representing using 32-bit unsigned long integers, so
there are really only two formats.)

MIN The minimum value of the specified parameter.
INIT The initial (or default) value of the specified parameter.
MAX The maximum value of the specified parameter.

*All IDs are represented by #defined labels (which decode to the integral values specified in
Appendices C & D) for readability.

The first line of the parameter information specifies a type, its first effect, and the effect’s first
parameter. Subsequent lines step through the rest of the effect parameters, one per line (with no
gaps — constant parameters are used as placeholders for consecutive parameters which are not
implemented or not user configurable on a particular device), until all effect parameters are
specified. The next effect begins the next line, continuing until all effects of the type have been
specified. The next type then begins the next line, until all types are specified and all device
parameters have been accounted for. Note that while the effects and types need not be specified
in any particular order, there can only be one occurrence of a particular type per device and only
one occurrence of an effect per type.

http://www.eaw.com

40

LOUD Technologies, Inc. 11/19/2009

Memory Segments

SEGMENT | Access Description

0 constant Constant or unused (placeholder) parameters.

Edits to these parameters will be ignored; requests will return their
default value.

1 read-only | Read only system state — not backed up to FLASH.

Edits to these parameters will be ignored; requests will return their
current value.

NOTE: Read-only parameters are generally allowed to change
without notice — they must be polled or requested in order to
maintain synchronization.

2 write-only | Write only password data.

Edits to these parameters will succeed; requests, however, will
ALWAYS return their default value, even if they have been changed.

NOTE: All write-only parameters are also global.

3 global Read- and writeable global control parameters.

Edits to these parameters will affect the current system state, are
immediately backed up to FLASH, and persist across power cycles.

4 preset Read- and writeable preset specific parameters.

Edits to these parameters will affect the current system state; unless
the system state is backed up to FLASH using a Preset Store
message the edits will not survive a power cycle.

For user editable parameters (segments 2-4), the last four columns of the parameter information
describe the format and limits of the parameter value. Attempts to set a parameter value to below
its minimum or above its maximum will fail, causing the entire Parameter Edit message containing
the change to be invalidated, and generating an error (see Status Query: Debug Log Address).

Note that issuing a Preset Load specifying an uninitialized preset will effectively reset current
device state to the default values of all (non-global) parameters.

Finally, while the format column specifies the ‘native’ format of each parameter, some format
conversion is built in to Bucket Net messaging. In particular, 32-bit floating format is commonly
used as a sort of ‘interchange’ format for the purpose of generating autoincrement parameter
Parameter Edit messages (possibly is response to a Data Request). When an entire effect
instance is being specified using a single autoincrement parameter message, and the formats of
the effect parameters are not all the same, it is expedient to avoid the use of multiblock edits by
simply converting all the non-floating point parameter values (which are unsigned long integers
on DX Family devices) into 32-bit floating point values. (WARNING: This conversion is not
always possible without loss of precision or distortion of the parameter value!) DX Family devices
may generate such Parameter Edit messages in response to Data Requests; DX Family
Parameter Edit handlers will attempt to ‘deconvert’ received floating-point formatted data into its
native format.

http://www.eaw.com

41

LOUD Technologies, Inc. 11/19/2009

Appendix F — Examples

This section is intended to navigate the reader step by step through the process of creating
hexadecimal strings suitable for use in RS-232 interfacing for several basic messages.

1 - Ping
Ping messages have no data segment, so creating one involves only filling in the proper header
fields:

Header Field Value

SYNC 0xA5

LENGTH 0x00 (no data segment)
DESTINST A

The instance designation of the destination, if known and/or assigned.
OxFF will here will ‘broadcast’ to all instances; OXFE will specify all
uninitialized instances. It is typical to use Assign Device Instance to set
the instance number of an uninitialized device instance.

DESTFAM 0x07 (DX Family)

MSGID (16-bit) 0x0000 (Ping message 1D)

SRCINST 0x01 (or whatever instance you'd like to be)
SRCFAM 0x00 (PC Host — We're pretending to be a PC!)

MSGCHKSUM (16-bit) | OxFFFF (1’s complement of 0x0000, as there is no data segment)

HDRCHKSUM (16-bit) | B

This will depend on the value of A, and is computed by taking the 1’s
complement of the sum of the (other) header bytes: 0xA5 + 0x00 + A +
0x07 + 0x00 + 0x00 + 0x01 + 0x00 + OxFF + OxFF.

Thus, the finished Ping message, transmitted left to right, is:
0xA5, 0x00, A, 0x07, 0x00, 0x00, 0x01, 0x00, OxFF, OxFF, B (lo), B (hi)

A DX Family device receiving this message should reply with a Ping Response message.

http://www.eaw.com

42

LOUD Technologies, Inc. 11/19/2009

2 - Identify Device

Identify Device messages do not generate a response; they do, on the other hand, generate
visual feedback from the front panel of the connected device. The header of an Identify Device
message is composed as shown for the Ping message, with two important differences: message
ID and (data segment) length:

Header Field Value
LENGTH 0x01
MSGID (16-bit) 0x005C (ldentify Device message ID)

MSGCHKSUM (16-bit) | C

This will depend on the value of the bytes in the data segment.

HDRCHKSUM (16-bit) | B

This will depend on the values of A and C, and is computed by taking
the 1’s complement of the sum of the (other) header bytes: 0xA5 +
0x00 + A + 0x07 + 0x00 + 0x5C + 0x01 + 0x00 + C (lo) + C (hi).

Identify Device messages have a single data word, specifying the time (in ms) to take control of
the front panel LEDs. For purposes of this example, let's choose 3000 ms (0xBB8), yielding the
following message string:

OxAB5, 0x01, A, 0x07, 0x5C, 0x00, 0x01, 0x00, C (lo), C (hi), B (l0), B (hi),
0xB8, 0x0B, 0x00, 0x00

3 - Status Query: Hardware Information

Status Query messages are used to ascertain all sorts of (non-parameter) system state. There
are numerous status codes which can be sent; the response to each code depends on the code
itself. The most basic Status Query it the default query, requesting Hardware Information:

Header Field Value
LENGTH 0x01
MSGID (16-bit) 0x0001 (Status Query message ID)

Status Queries have an optional data word. If no data segment is present, the default code is
assumed. While the default code is Hardware Information, this example will specify the code
explicitly anyway, in order to show the ‘full’ format. The code for Hardware Information is 0x0000:

OxAB5, 0x01, A, 0x07, 0x01, 0x00, 0x01, 0x00, C (o), C (hi), B (I0), B (hi),
0x00, 0x00, 0X00 or OXFF, 0x00 or OxFF

Status codes are 16-bit, but all data segments must be 32-bit aligned. Thus the last two data
bytes, should, technically, be ill’ bytes (OxFF). Some Bucket Net capable systems do not appear
to be able to handle fill bytes correctly; DX Family devices should. A Status Query Response
should be generated in reply to this message.

http://www.eaw.com

43

LOUD Technologies, Inc. 11/19/2009

4 - Data Request: Meters

Data Request messages come in several flavors: Meters, Fat Channel Meters, and Parameter
Edit. As Device Requests are heavily used in interfacing with DX Family devices, examples of
both meter and parameter requests are given.

Meters requests should generate Meters messages in response. Each data word of a Data
Request: Meters will add one block to the response. Let’s create a request for all analog and
digital input meter data at the inputs, plus the meters for analog outputs 3 & 4 (at the outputs);
this request requires three data words (in addition to the word specifying the type of Data

Request):

Header Field Value

LENGTH 0x04

MSGID (16-bit) 0x005B (Data Request message ID)

Data | Name Value

Byte

0 Data Request ID | 0x51 (Meters)

1 N/A 0x00 or OxFF

2 N/A 0x00 or OxFF

3 N/A 0x00 or OxFF

4 Meter Type 0x00 (pre-DSP, peak)

5 Meter Flags 0x02 (32-bit floating point — native meter format for DX Family)

6 Instance ID OxFF (all)

7 Type ID 0x01 (Analog Input)

8 Meter Type 0x00 (pre-DSP, peak)

9 Meter Flags 0x02 (32-bit floating point — native meter format for DX Family)

10 Instance ID OxFF (all)

11 Type ID 0x02 (Digital Input)

12 Meter Type 0x01 (post-DSP, peak)

13 Meter Flags 0x12 (32-bit floating point — native meter format for DX Family 0x02
OR’d with two meter words only 0x10)

14 Instance ID 0x03 (beginning with instance 3)

15 Type ID 0x03 (Analog Output)

Here’s the resulting message string:

OxAB, 0x04, A, 0x07, 0x5B, 0x00, 0x01, 0x00, C (l0), C (hi), B (l0), B (hi),
0x51, 0x00 or OXFF, 0x00 or OXFF, 0x00 or OxFF,

0x00, 0x02, OXFF, 0x01,

0x00, 0x02, OXFF, 0x02,

0x01, 0x12, 0x03, 0x03

The response message will be examined in the next example.

http://www.eaw.com

44

LOUD Technologies, Inc. 11/19/2009

5 - Meters

Meters messages are not usually generated, as it is not possible to write audio levels directly.
However, it is quite common to request meter data, and thus important to be able to parse and
handle Meters messages.

In the previous example we created a Data Request for all analog and digital input meter data (at
the inputs), plus the meter data for (just) analog outputs 3 & 4 (at the outputs). After sending that
message, a response like this should be received (suppressing the ‘0x’ prefixes indicating
hexadecimal to save space, and using a fixed font for alignment):

HEADER: A5 11 01 00 51 00 FE 07 98 D8 82 FC
BLOCK1: 00 42 01 01
56 13 A5 C2 08 6F AA C2 59 9B A8 C2 AB CF A2 C2
30 A8 60 CO 5A B3 A5 C2 6C 51 A9 C2 69 79 A6 C2
BLOCK2: 00 22 01 02
E3 E9 F6 C2 E3 E9 F6 C2 E3 E9 F6 C2 E3 E9 F6 C2
BLOCK3: 01 12 03 03
E3 E9 F6 C2 E3 E9 F6 C2

The first line of the message is its header. Of note: The length of the data segment is 17 words,
and this is a Meters message (ID 0x51). (Note also that the sender’s device instance is
uninitialized — OXFE.)

The data segment of the message consists of three blocks, each beginning with a data word
describing the meter values that follow. The data values themselves are in 32-bit floating point
format, and, if decoded, show that not much is plugged in to the inputs of this device (just analog
input 5); the output is also in digital silence. As expected, we see blocks of 8 values (analog
inputs), 4 values (digital inputs), and 2 values (analog outputs 3 & 4).

Decoding the block headers:

Block 1 Value | Description

Meter Type | 0x00 pre-DSP, peak

Meter Flags | Ox42 32-bit floating point (0x02) OR’d with 8 words (0x40)
Instance ID | 0x01 Beginning with the first instance...

Type ID 0x01 Analog Input

Block 2 Value | Description

Meter Type | 0x00 pre-DSP, peak

Meter Flags | Ox22 32-bit floating point (0x02) OR’d with 4 words (0x20)
Instance ID | 0x01 Beginning with the first instance...

Type ID 0x02 Digital Input

Block 3 Value | Description

Meter Type | 0x01 post-DSP, peak

Meter Flags | 0x12 32-bit floating point (0x02) OR’d with 2 words (0x10)
Instance ID | 0x03 Beginning with the third instance...

Type ID 0x03 Analog Output

http://www.eaw.com

45

LOUD Technologies, Inc.

11/19/2009

6 - Data Request: Parameter Edit

Having generated a meter request in a previous example, now let's generate a Data Request for
parameter data, namely all the parameters of the Gate effect on Analog Input 5:

Header Field Value

LENGTH 0x02

MSGID (16-bit) 0x005B (Data Request message ID)
Data | Name Value

Byte

0 Data Request ID | 0x54 (Parameter Edit)
1 Flags 1 0x00 (edit buffer)

2 N/A 0x00 or OxFF

3 N/A 0x00 or OxFF

4 Parameter ID OXFF (all)

5 Instance ID 0x05 (instance 5)

6 Effect ID 0x08 (Gate)

7 Type ID 0x01 (Analog Input)

Here’s the resulting message string:

0xAb5, 0x02, A, 0x07, 0x5B, 0x00, 0x01, 0x00, C (lo), C (hi), B (lo), B (hi),
0x5C, 0x00, 0x00 or OxFF, 0x00 or OxFF,
OxFF, 0x05, 0x08, 0x01

The Parameter Edit message received in response will be examined in the next example.

http://www.eaw.com

46

LOUD Technologies, Inc. 11/19/2009

7 - Parameter Edit

In this example we will both examine the result of the Data Request: Parameter Edit from the
previous example and generate a separate Parameter Edit message.

In the previous example, we requested all of the parameter data for the Gate effect on Analog
Input 5. The following message was received in reply:

HEADER: A5 OB 01 00 54 00 FE 07 10 FB EA FC

FLAGS: 01 Oc 00 09

IDS: 01 05 08 01

VALUES: 00 00 00 OO 00 00 AO 41 00 00 48 43 00 00 48 43
00 00 20 c2 00 00 80 3F 00 00 70 c2 00 00 00 OO
00 00 00 00

The first line of the message is its header. Of note: The length of the data segment is 11 words,
and this is a Parameter Edit message (ID 0x54). (Note also that the sender’s device instance is
uninitialized — OXFE.)

Next, the flags:

Flag Value | Description

General Flags | 0x01 Autoincrement (Parameter)

Data Format 0x0C | 32-bit floating point

Target Buffer | 0x00 Edit Buffer (current state)

Block Length | 0x09 9 words

Finally, the Parameter IDs specify the first parameter in the of the data values — parameter 1
(Ox01) of instance 5 (0x05) of effect 8 (Gate) of type 1 (Analog Input). Each parameter value
after the first increments the parameter number, per the flags.

The remaining data words are the values of the Gate parameters, from 1 to 9, in floating point
format.

Two things about this message require special note:

Firstly, it is an edit message, and, while we may have requested it, there is no way to tell this
particular Parameter Edit from another which the DX Family device may have generated in
response to some other (remote) edit. This is not a ‘get’; it is a ‘request to set’.

Secondly, the format, as specified in the flags, of ALL of the parameter data in the message is 32-
bit floating point. Assuming that the connected device is a DX1208, and examining the DX1208
Configuration file, we can see the formats of the Gate parameters. Parameters 1 (Enable), 8
(Mode), and 9 (Stereo Link Enable) are not natively floating point! The DX1208 has converted
these values from integer format to floating point format in order to avoid using a multiblock
Parameter Edit (or multiple edits) in response to the original Data Request. The local receiver will
need to either handle these values as floating point, or to ‘deconvert’ them back to their native
format(s).

http://www.eaw.com

47

LOUD Technologies, Inc. 11/19/2009

Next, let's create a Parameter Edit to a single, global parameter. Let’s enable static IP
addressing:

Header Field Value

LENGTH 0x03

MSGID (16-bit) 0x0054 (Parameter Edit message ID)
Data | Name Value

Byte

0 General Flags 0x00 (Autoincrement Disabled)

1 Data Format 0x00 (unsigned long integer)

2 Target Buffer 0x00 (Edit Buffer)

3 Block Length 0x00 (block extends to the end of the message)
4 Parameter ID 0x19 (Static IP Enable)

5 Instance ID 0x00 (‘Global’ Type — no instances)
6 Effect ID 0xFO (Global)

7 Type ID 0xFO (Global)

We’re turning on static addressing, so we’ll need to change the (Boolean) value from 0x00000000
to 0x00000001.

Here’s the resulting message string:

O0xAb5, 0x03, A, 0x07, 0x54, 0x00, 0x01, 0x00, C (lo), C (hi), B (lo), B (hi),
0x00, 0x00, 0x00, 0x00,
0x19, 0x00, OxFO0, 0xFO,
0x01, 0x00, 0x00, 0x00

There is no response to this edit. (Nothing happened? You must be logged in to use a
Parameter Edit over communications channels other than RS-232. Are you using RS-2327)

http://www.eaw.com

48

LOUD Technologies, Inc. 11/19/2009

8 - Preset Load

Once a connection is established, the majority of controller/device messaging is likely to consist
of just a few message IDs: Data Requests, Parameter Edits, possibly Meters and/or Fat Channel
Meters, and Preset Loads. This example shows how to create the last of these ‘basic’ messages:
a Preset Load message.

Preset Load messages have a single data word, which specifies both the preset index to load and
the buffer to be loaded. RS-232 controllers are unlikely to want to use the ‘scratch’ buffer, which
is mostly used for transferring data in and out of the device; in general they want to change
device state by loading to the ‘edit’ buffer. For this example, let’s instruct the device to load its
current state from preset number 5:

Data | Name Value

Byte

0 Preset Index (lo) 0x04 (Preset Index = Preset Number — 1)

1 Preset Index (hi) 0x00 (always, as no DX Family device has this many presets)
2 Library Type 0x01 (always — this just means ‘preset’)

3 Destination Buffer | 0x00 (Edit Buffer — Change current device state!)

As with all preset related messaging, see the Preset Info message for further details of the data
segment fields.

The resulting message string:

OxAB5, 0x01, A, 0x07, 0x74, 0x00, 0x01, 0x00, C (o), C (hi), B (I0), B (hi),
0x04, 0x00, 0x01, 0X00

Preset Load messages do not generate a response.

http://www.eaw.com

49

