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Preface 

The addition of this Solutions Manual to "A Primer for the Mathematics of 
Financial Engineering" offers the reader the opportunity to undertake rig-
orous self—study of the mathematical topics presented in the Math Primer, 
with the goal of achieving a deeper understanding of the financial applications 
therein. 

Every exercise from the Math Primer is solved in detail in the Solutions 
Manual. 

Over 50 new exercises are included, and complete solutions to these supple-
mental exercises are provided. Many of these exercises are quite challenging 
and offer insight that promises to be most useful in further financial engi-
neering studies as well as job interviews. 

Using the Solution Manual as a companion to the Math Primer, the reader 
will be able to not only bridge any gaps in knowledge but will also glean a 
more advanced perspective on financial applications by studying the supple-
mental exercises and their solutions. 

The Solutions Manual will be an important resource for prospective financial 
engineering graduate students. Studying the material from the Math Primer 
in tandem with the Solutions Manual would provide the solid mathematical 
background required for successful graduate studies. 

The author has been the Director of the Baruch College MFE Programs  since 
its inception in 2002. Over 90 percent of the graduates of the Baruch MFE 
Program are currently employed in the financial industry. 

"A Primer for the Mathematics of Financial Engineering" and this Solutions 
Manual are the first books to appear in the Financial Engineering Advanced 
Background Series. Books on Numerical Linear Algebra, on Probability, and 
on Differential Equations for financial engineering applications are forthcom-
ing. 

Dan Stefanica 

New York, 2008 

'Baruch MFE Program web page: http://www.baruch.cuny.edu/math/masters.html  
QuantNetwork student forum web page: http://www.quantnet.org/forum/index.php  

ix 
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Chapter  0 

Mathematical preliminaries. 

0.1 Solutions to Chapter 0 Exercises 

Problem 1: Let f R R be an odd function. 

(i) Show that x f (x) is an even function and x2  f (x) is an odd function. 

(ii) Show that the function g1  R 	R given by gi (x) = f (x2) is an even 
function and that the function g2 R R given by g2(x) = f (x3) is an odd 
function. 

(iii) Let h R 	R be defined as h(x) -=- x' f ( ), where i and j are positive 
integers. When is h(x) an odd function? 

Solution: Since f (x) is an odd function, it follows that 

f (—x) = — f (x), V x E R. 	 (1) 

(i) Let f1 (x) = x f (x) and f2(x) = x 2  f (x). Using (1), we find that 

f1(—x) = —xf(—x) = xf(x) = f 1(x), V x E R; 
	

(2) 
f 2(—x) = (—x)2 f(—x) = 	x 2 f(x) = 	f2(x), V x E R. 	(3) 

We conclude from (2) that fi (x) is an even function, and, from (3), f2(x) is 
an odd function. 

(ii) From (1), it follows that 

	

91( — x) = f ((—x)2) = f (x2) = g1(x), V x E IR; 	 (4) 

g2(—x) = f ((—x)3) = f (—x3) = — f (x3) = — 92(x), V x E R. (5) 

We conclude from (4) that g1(x) is an even function, and, from (5), that g2(x) 
is an odd function. 

(iii) If j is a positive integer, it follows from (1) that 

	

f ((—x)3) = (-1)3  f (x), V x E R. 	 (6) 

1 
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Then, using (6), we find that 

h(—x) =- (—x)i f ((—x)3) = (-1)i ((-1)3  f (x3)) = (-1)i+3  f (x3) 

= (-1)t±3  h(x), V x E R. 

Therefore, if i + j is an even integer, the function h(x) is an even function, 
and, if i + j is an odd integer, the function h(x) is an odd function. ❑ 

Problem 2: Let S(n, 2) = ELI k2 and S(n, 3) = ELI k3. 

(i) Let T(n, 2, x) = >k=1  k2 Xk  ' Use the recursion formula 

T(n, 2, x) = x —1 (T (n, 1, x)), 

and the fact that 

x — 	
(n  i)xn+

)

i nxn+2 
T (n, 1, x) = 

(1 — x 2  

to show that 

 

x + x2 — (n  1)2xn+1 + (2n2  + 2n — i)xn+2 — n2xn+3 
T(n, 2, x) 

 

(1— x)3  

(ii) Note that S(n, 2) = T(n, 2,1). Use l'HOpital's rule to evaluate T(n, 2,1), 
and conclude that S(n, 2) = n(n+1)(2n+1)  

(iii) Compute T (n, 3, x) = 	k3  5k  using the recursion formula 

T(n,3,x) = x 	(T(n,2,x)). 

(iv) Note that S(n, 3) = T(n, 3, 1). Use l'HOpital's rule to evaluate T(n, 3, 1), 
(n(n2+1))  and conclude that S(n, 3) -= 

Solution: (i) The result follows from (7) and (8) by using Quotient Rule to 
differentiate T (n, 1, x). 

(ii) It is easy to see that T(n, 2, 1) = 	k2  = S(n, 2). By using l'HOpital's 
rule we find that T (n, 2, x) is equal to 

x  x2 (n  +  1)2x  n+1  (2n2  n+1 	+ 2n — 1)sn+2 n2xn-1-3 
lim 

(1 — x)3  
1 + 2x — (n + 1)3xn + (2n2  + 2n — 1)(n + 2)xn+1  — n2(n + 3)xn+2  

lim 
x-4 	 —3(1 — x)2 
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( 2 - (n + 1)3nxn-1  + (2n2  + 2n - 1)(n + 2)(n +1)xn 
-n2(n + 3)(n + 2)xn+1  

lim 	  
x.-41 	 6(1 - x) 

( -(n + 1)3n(n - 1)xn-2  + (2n2  + 2n - 1)(n + 2)(n + 1)nxn-1  
-n2(n + 3)(n + 2)(n + 1)xn 

lim 	  
x-4 	 -6 

-(n + 1)3n(n - 1) + (2n2  + 2n - 1)(n + 2)(n + 1)n 
-n2 (n + 3)(n + 2)(n + 1) 

6 
n(n +  1) (-(n + 1)2(n - 1) + (2n2  + 2n - 1)(n + 2) - n(n + 3)(n  + 2)) 

6 
n(n + 1)(2n + 1) 

6 

Therefore, 

S(n, 2) = 
n(n + 1)(2n + 1)  

6 

(iii) Finding the value of T(n, 3, x) requires using Quotient Rule to differen-
tiate T(n, 2, x). 
(iv) The solution follows similarly to that from part (ii), albeit with more 
complicated computations. ❑ 

Problem 3: Compute S(n, 4) = Erkl=i 1c4  using the recursion formula 

1 
S(n,i) = 

i + 	1 
((n +1)i+1  - 1 - 	( t 1 	S(n, j)) 	(9) 

i=0 

for i = 4, given that 

S(n, 0) = n; S(n,1) = 
n(n 1) . 	 n(n  + 1)(2n

6 	
+ 1) .  

2 	S(n, 2) =  

S(n,3) = 
(n(n2+ 1))  2  . 

Solution: For i = 4, the recursion formula (9) becomes 

3 
5 S(n, 	

1 
= 	((n + 1)5  - 1 - 	(  ) S(n, j)) 

o  
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1 
= —

5 
((n + 1)5  — 1 — S(n, 0) — 5S(n, 1) — 10S(n, 2) — 10S(n, 3)) 

n(n + 1)(6n3  +  9n2  + n — 1). 
❑ 

30 

Problem 4: It is easy to see that the sequence (xn)n>1  given by xn  = Erk1=1 k2  
satisfies the recursion 

xn+i = xn  + (n + 1)2, V n > 1, 	 (10) 

with xi = 1. 

(i) By substituting n + 1 for n in (10), obtain that 

xn+2 = xn+i. + (n + 2)2. 

Subtract (10) from (11) to find that 

Xn+2 = 2Xn-F1 Xn+ 2n + 3, V n > 1, 	 (12) 

with x1  = 1 and x2 = 5. 

(ii) Similarly, show that 

xn+3 = 3xn+2 — 3xn+1 + xn  + 2, V n > 1, 	 (13) 

with x1 = 1, x2 = 5, and x3  = 14. 

(iii) Prove that the sequence (xn)n>1 satisfies the linear recursion 

Xn+4 — 4Xn+3 6X71,4-2 — 4xn+1  + xn  = 0, V n > 1. 

Solve this recursion and show that 

n(n  + 1)(2n +  1)
, V n > 1. 

6 

Conclude that 

S(n 2) = E k2 _ n(n + 1)(2n + 1)
, V n > 1. 

k=1 	
6 

Solution: From (11), we obtain that the first terms of the sequence (xn)n>i 
are x1 = 1, x2 = 5, x3 = 14, X4 = 30. 

(i) The recursion (12) follows immediately by subtracting (10) from (11). 
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(ii) We substitute n + 1 for n in (12) and obtain that 

xn+3 = 2x,+2 — xn+i + 2(n + 1) + 3. 	 (14) 

By subtracting (12) from (14), we find that 

Xn+3 = 3Xn+2 3Xn+1 + xn  + 2, V n > 1. 

(iii) We substitute n + 1 for n in (13) and obtain that 

Xn+4 = 3Xrz+1 3Xn+2 + Xn+1 + 2, V n > 1. 	(15) 

By subtracting (13) from (15), we find that 

Xn+4 4xn+3 + 6xn+2 4Xn+1 + xn  = 0, V n > 1. 	(16) 

The characteristic polynomial associated to the recursion (16) is 

P(z) = z4  — 4z3  + 6z2  — 4z +1 = (z — 1)4. 

The polynomial P(z) has root A = 1 with multiplicity 4. We conclude that 
the there exist constants CZ, i = 1 : 4, such that 

xn  = 	C2n + C3n2  + C4n3, V n > 1. 

Since x1 = 1, x2 = 5, x3 = 14, x4 = 30, it follows that C1, C2, C3 and C4 
satisfy the following linear system 

1 1 1 1 Ci 1 
1 2 4 8 C2 5 
1 

( 

3 9 27 

) 

C3 

( 

14 
1 4 16 64 C4 30 

We obtain that C1 = 0, C2 = , C3 = a and C4 = and therefore 

	

n n2  n3 	n(n  + 1)(2n + 1) 

	

xn  = 6 
— 2 3 	 6 

+ — + 	= 	 , V n > 1. ❑ 

Problem 5: Find the general form of the sequence (xn)n>0 satisfying the 
linear recursion 

xn+3  = 2xn±1 + xn, V n > 0, 

with xo  = 1, x1 = —1, and x2 = 1. 

First Solution: By direct computation, we obtain x3  = —1, x4  = 1, x5  = —1, 
x6 = 1. It is natural to conjecture that xn  = (-1)n for any positive integer 
n. This can be easily checked by induction. 
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Second Solution: Alternatively, we note that the sequence (xn)n>0 satisfies 
the linear recursion xn+3 — 2xn+i — xn  = 0, with characteristic polynomial 

P(z) = z3  — 2z +1 = (z +1)(z2  — z — 1). 

The roots of P(z) are 1, 1+15, and 1 - 1̀5-  . Therefore, there exist constants 2 
C1, C2, and C3 such that 

( 

xn  = C1(-1)n  + C2 
1 ±1 

 n + C3 (1 
 2
1n , V n > O. 

2 

By solving the 3 x 3 linear system for C1, C2, and C3 obtained by requiring 
that xo = 1, xi = —1, and x2 = 1 we find that Ci = 1, C2 = 0, and C3 = O. 
We conclude that 

xn  = (-1)n, V n > O. ❑ 

Problem 6: The sequence (xn)n>0 satisfies the recursion 

Xn+1 = 3xn  + 2, V n > 0, 	 (17) 

with xo  = 1. 

(i) Show that the sequence (xn)n>0 satisfies the linear recursion 

Xn+2 = 4xn+1 — 3xn, V n > 0, 

with xo = 1 and xi = 5. 
(ii) Find the general formula for xn, n > 0. 

Solution: (i) Let n = 0 in (17) to find that x1 = 5. By substituting n +1 for 
n in (17), it follows that 

Xn+2 = 3Xn+i + 2. 	 (18) 

We subtract (17) from (18) and obtain that 

xn+2 — 4xn-ki + 3xn  = 0, V n > O. 	 (19) 

(ii) The characteristic polynomial of the linear recursion (19) is 

P(z) = z2  — 4z + 3 = (z — 1)(z — 3), 

which has roots 1 and 3. Thus, 

xn  = Ci + C2371, V n > O. 
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Since xo = 1 and x1  = 5, we obtain that C1  = —1 and C2 = 2 and therefore 

xr, = 2 . 3' — 1, V n > O. ❑ 

Problem 7: The sequence (xn)n>0 satisfies the recursion 

xn+1 = 3xn  + n + 2, V n > 0, 	 (20) 

with xo  = 1. 

(i) Show that the sequence (xn)n>0 satisfies the linear recursion 

Xn+3 = 5xn+2 7Xn+1 3xn) V n > 0, 

with xo  = 1, x1 = 5, and x2 = 18. 

(ii) Find the general formula for xr„ n > 0. 

Solution: (i) The first three terms of the sequence can be computed from 
(20) and are xo = 1, x1 = 5, and x2 = 18. 

By substituting n + 1 for n in (20) we obtain that 

xn+2 = 3xn+1 + n + 3, V n > 0. 	 (21) 

Subtract (20) from (21) to find that 

Xr1+2 = 4xn+1 3xn 1, V n > 0. 	 (22) 

Substitute n + 1 for n in (22) to obtain that 

xr,±3 = 4xn+2 — 3xn+1 + 1, V n > 0. 	 (23) 

Subtract (22) from (23) to find that 

	

xn+3 = 5Xn+2 7xn+1 3xn) V n > 0. 	 (24) 

(ii) The characteristic polynomial of the linear recursion (24) is 

P(x) = z3  — 5z2  + 7z — 3 = (z — 1)2(z — 3). 

Therefore, there exist constants C1, C2, C3 such that 

xn  = Ci3n + C2n + C3, V n > O. 

	

Since xo = 1, x1 = 5, and x2 = 18, we find that= ) - 	4 C9 — 5 C3 = ) 
We conclude that 

n+2 — 
xn — 

3 	

4

2n — 5 
, V n > O. ❑ 
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Problem 8: Let P(z) = 	 o 2  Ek  a.zi be the characteristic polynomial corre- 
sponding sponding to the linear recursion 

E aixri±i = 0, V n > O. 	 (25) 
i=o 

Assume that A is a root of multiplicity 2 of P(z). Show that the sequence 
(yn)„>0  given by 

yri  = CnAn, n > 0, 

where C is an arbitrary constant, satisfies the recursion (25). 

Solution: Note that A is a root of multiplicity 2 of P(z) if and only if P(A) = 0 
and Pi(A) = 0, where 

P'(z) = E 
i=i 

Then, for any n > 0, 

E aiC(n + i)An±i  
i=o 	i=0 

= Cn E 	+ C E icti An+i  
i=0 	 i=0 

= CnAn E aiAi  + CAn+1  Ek  

i=o 	 i=i 
CnAnP(A) + CAn+1P1  ( A) 

= 0 . 

In other words, the sequence (yn)n>o  satisfies the recursion (25). 	❑ 

Problem 9: Let n > 0. Show that 

	

O(xn) + 0(xn) = 0(xn), as x —> 0; 
	

(26) 

	

o(xn) + o(xn) = o(xn), as x —› 0. 	 (27) 

Solution: Let fi (x) = 0(xn) and f2(x) = 0(xn) as x --> 0. Then, 

Eaiyn±i = 

lim sup 
fi (x)  

xn 

 

< oo and lim sup 
x,o 

f2(x)  
xn 

< oo. 
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It is easy to see that 

fi(x) + f2(x)  lirn sup 
xn 

     

< lirn sup 
x-03 

fl 
X 

(x)  
n  

+ lim sup 
x--f0 

f2(x)  
< 00, 

      

and therefore, by definition, fi(x) + f2(x) = 0(e) as x -+ 0. 

	

Let gl (x) = o(xn) and 92(x) = o(xn) as x 	0. Then, 

91(x) 	 2. 	9 (x)  

	

lira= 0 and lim 	= O. 
xn 

We note that 

lira 
x—>0 

Mx) + g2(x)  
xn  

 

< lim 
x•—∎0 

91 ( x )  

xn 

 

+ lim 92(x )  
xn 

= 0, 

         

and therefore, by definition, gi(x) + g2(x) = o(xn) as x 	O. 	❑ 

Problem 10: Prove that 

k2  = 0(n3), as n 	co; 
k=1 

3 

k2  = —11 
3 	

0(n2), as n 	co, 

i.e., show that 

lim sup Ek=l k2  < 00 
n—∎x 	n3  

and that 

lim sup EZ k 2  - -1  < Do. 
n2  

Similarly, prove that 
n 

k3 = 0(n4), as n -+ 00; 

k=1 
4 

k3  = —
n 

4 + 
0(n3), as n co. 

k=1 

Solution: Recall that 

E  n 	

and 
71 

k2 	n(n + 1)(2n + 1) 	E  k3 = n2 (n + 1)2  
6 	 4 k=1 	 k=1 

k=1 
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Then, 

lim 	 k 2  _=
n 

	
n(n  + 1)(2n + 1) 	1 

oo 

	

=lira 	 ; 

ELI k2 	

n—o 	6n3 	3 
3n2  + n 1 	

- n---co 	3 	 K>  

Ern 
n—>cra 	n2 	n—*Do 6n2 

	 = 	00—  < 
2 

v-,rt 
iim  L-4=1. r‘' 	lirn n

2(n + 1)2 	1 

We conclude that 
n 

k2  = 0(n3), as n -> CO; 

k=1 

n3  
k2 = -

3 
+ 0(n2), as n oo; 

k=1 
n 

k3  = 0(n4), as n --> oo; 
k=1 

4 

Ek3  = —
n 
4 + 

0(n3), as n -> oo. ❑ 

n-“:,0 	n4 	n-,00 	47/4  4 < 
CXD; 

Ern Ek=1 k3  1
2n + 1 	1 

n—oo 	n3 	n->oo 4n 
	 = -

2 
< oo. 

k=1 
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0.2 Supplemental Exercises 

1. Let a > 0 be a positive number. Compute 

\/a+Va+Va+... 

2. Let a > 0 be a positive number. Compute 

1 

3. (i) Find x > 0 such that 

= 2. 

(ii) Find the largest possible value of x > 0 with such that there exists 
a number b > 0 with 

xxr 
= b. 

Also, what is the largest possible value of b? 

0.3 Solutions to Supplemental Exercises 

Problem 1: Let a > 0 be a positive number. Compute 

\/a+Va+Va+... 

Solution: If we know that the limit of Va + -Va + 	+ . .. exists, and denote 
that limit by 1, then it follows that / must satisfy 

/ = 1/a+1a+Va+... = 	+1, 	 (28) 

which can be solved for 1 to obtain that 

/ 	
1 +-V1 + 4a 

2 	• 
(29) 
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We now show that, for any a > 0, the limit of \I a+ Va + Va+ ... does 
exist, which is equivalent to proving that the sequence (xn)n>o  is convergent, 
where xo  -= -VT2 and 

xn+i = -Va + xn, V n > O. 

We will how that the sequence (xn)n,0  is bounded from 
increasing. 

Let 1 be given by (29), i.e., let 1 — 	 

(i) The sequence (x„)„>0  is bounded from above by 1. 
Note that xo 	< 1. If we assume that xi, <1, then 

above and is 

      

Xn+1 = Va + xn  

since 1 is the positive solution of (28), 
induction, we find that xn  <1 for all n 

(ii) The sequence (xn)n>0 is increasing. 
It is easy to see that 

< Va +1 = 1, 

and therefore 1 = \/a + 1. Thus, by 
> 0. 

xn  < xn+1 < 	> xn  < 	+ xn < X
2 

— X — a < 0, n 	n 

since xn > 0. Note that 

   

(x7,  1  + -V1  + 4a)  (xn  1 — 	+ 4a) 
2 	 2 

	

= (xn — 1) (xn 
V1 	+ 4a — 1) 

2 
< 0, 

since xn  < 1 and xn  > 0 for all n > 0. We conclude that xn  < xn±i for all 
n > 0. 

We showed that the sequence (xn)n>0  is increasing and bounded from 
above. We conclude that the sequence is convergent. Therefore, the limit 
/ = limn, xn  satisfies the equation 1 = Va +1 and is given by (29), i.e., 

lim x n 
 = 1 + V1  + 4a 

n-+co 	 2 

Problem 2: Let a > 0 be a positive number. Compute 

1 
a+ 	 

a + a+1•..  • 

X
2
n  — Xn  — a = 

(30) 
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Solution: If we know that the continuous fraction (30) has a limit 1, then 1 
must satisfy 

(31) 

a + Va2  ±  4 
/ = 	 (32) 

2 
To show that the continuous fraction (30) does have a limit, we must 

prove that the sequence (x„),>0 is convergent, where xo = a and 

Xn+1 = a+ 1, V n O. 
xn 

The first few terms of the sequence (x,)n>o are 

a2  + 1 	a3  + 2a 	a4 3a2 + 1 
xo = a; x1 = 	; x2  = 	, 	; x3  = 	 . 

a 	a' + 1 	a3  + 2a 

We note that the terms of the sequence are alternatively larger and smaller 
than the value of 1 given by (32), i.e., 

x0 < x2 < 1 < x3 < xi. 

Based on this observation, we conjecture that the subsequence (x2n)n>o 
made of the even terms of the sequence (x„)„>0  is increasing and has limit 
equal to 1, and that the subsequence (x2„±1)„>0  made of the odd terms of 
(x,),>0 is decreasing and has limit equal to 1. 

To show this, let (y„),>0 be the sequence given by the recursion 

1 
= 

(a2 + 	+ a
, V n 0, 	(33) Yn+i = a +  

a + 1 — 	ay, + 1 

with yo = a. Note that y, = x2, for all n > 0. 
Assume that y„ < I, where l is given by (32). Recall from (31) that 

	

/2  — a/ — 1 = 0 	 (34) 

(t  a +  Va2 	+ 4)  (t  a —  \/a2  + 	4) 

Va2 +4  — a) 

and therefore 

1 = a +
1 
 < 	> /2  — al — 1 = 0, 

and that 

t2  — at — 1 

(35) 
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We will show that, for all n > 0, yn±i  > yr, and yr,±1  < 1. 
Note that, by definition (33), yr, > 0 for all n > 0. Then, from (33), it is 

easy to see that 

Yn+1 > Yn < 	> (a2  + 1)yn + a > aYn2  + Yn < 	> a(Yn2  — ayn — 1) < 0. (36) 

From (35), and using the assumption that yr, < 1, it follows that 

Y72.1 —  ayn — 1  = (yn — 1 ) yn + 
\ia2 + 4 — a  

( 2 	
< O. 	(37) 

From (36) and (37), we conclude that, if yn  < 1, then y7,±1  > yn, for any 
n > 0. 

From (33), we also find that 

/ — a 
Yn-Fi < / 	 (a2  + 1)Yn + a < a/yn  + / < 	> Yn < 

a
2 	

— al +1 
1; (38) 

the last equality can be derived as follows: 

1 — a 	 =1 -< 	> 1 a = a21 a/2 + / t 	> a(12  — al — 1) = 0, 
a2  — al +1 

where the last equality is the same as (34). 
We conclude from (38) that, if yr, < 1, then yn±i  < I for all n > 0. 

In other words, we showed by induction that the sequence (yn)n>o  given 
by the recursion (33) with yo  = a is increasing and bounded from above by 
1. Therefore, the sequence (yn)n>o  is convergent. Denote by /1  = y71 

the limit of the sequence (yn)n>o. From (33) and using (35), we obtain that 

(a2  + 1)/
11 
 +a 	 

all + 
/1 = 	> a(1? — all  — 1) = 0 

A/a2  + 4 — a 

	

< 	> a(/1 1) (11+ 	
2 	

= 0. 

Since /1  > 0, it follows that /1  = 1, i.e., that limn  yn  = I. 
Recall that yn  = x27, for all n > 0. We showed that the subsequence made 

of the even terms of (x7,),>0  is increasing and converges to the limit 1 given 
by (32), i.e., that 

lim X2n  = 1. 	 (39) 
n—" 

Similarly, we define the sequence (zr,),>0  by the recursion 

(a2  + 1)zr, + a 

	

Zn+1 = 	 n > 0, 
azn  + 1 
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with zo = a2a+1. It is easy to see that zn  = x271-1-1 for all n > 0. 
As expected, the sequence (zn),>0 is decreasing and has limit equal to 1. 

The proof follows by induction: assuming that zn  > 1, we show that zn+i < zn 
and zn±i > 1. This proof is very similar to that given above for the sequence 
(yn)n>o and is left to the reader as an exercise. We conclude that 

lim X2n+1 = 1. 	 (40) 

From (39) and (40), we find that 

	

a + 	+  4
. CI lim xn  = / = 

n—■Dc 	 2 

Problem 3: (i) Find x > 0 such that 

	

= 2. 	 (41) 

(ii) Find the largest possible value of x > 0 with such that there exists a 
number b > 0 with 

	

xxx  = b. 	 (42) 

Also, what is the largest possible value of b? 

Solution: (i) If there exists x such that (41) holds true, then x2  = 2 and 
therefore x = VI We are left with proving that 

= 2. 

	

Consider the sequence (xn )n>0 with xo 	and satisfying the following 
recursion: 

xn±i  = \/Zn = 	V n > 0. 

It is easy to see by induction that the sequence is increasing and bounded 
from above by 2, since 

/2 > 2x,_1/2 	 
Xn+1 > xn 	> 2x r,  < 	> xn  > Xn-1; 

Xn+i < 2 < 	> 2xn/2  < 2 < 	> xn /2 < 1 < 	> xn  < 2. 

We conclude that the sequence (xn)n>o is convergent. If 1 = 	xn, then 

l=21/2  

which is equivalent to 
11/1 = 21/2. 	 (43) 
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Let f : (0, oo) -- (0, oo) be given by 

f (t)  = tilt  = exp  (1n(tt)) 

Then 
1 — ln(t) 	(111 (0 

f'(t) = 	t2 	exp 
t ) 

Note that the function f(t) is increasing for t < e and decreasing for t > e. 
Therefore, there will be two values of t such that (43) is satisfied, i.e., such 
that tilt = 21/2, one value being equal to 2, and the other one greater than 
e. Since xr, < 2 for all n > 0 and 1 = limn, xn, we conclude that 1 = 2, and 
therefore that x = -V2 is the solution to (41). 

(ii) If there exists a number b > 0 such that 

xx' = b 

for a given x > 0, then xb  = b and therefore x = bl/b. Recall from part (i) 
that the function f(t) = tilt  has an absolute maximum at t = e. We conclude 
that 

x  = bi/b < max ti/t = eve P---1 1.4447, 
t>o 

and that the largest value of b such that the limit (42) exists is b = e. 	❑ 



Chapter 1 

Calculus review. Plain vanilla options. 

1.1 Solutions to Chapter 1 Exercises 

Problem 1: Compute f ln(x) dx. 

Solution: Using integration by parts, we find that 

f ln(x) dx = I (x)' ln(x) dx = xln(x) — f x(ln(x))' dx 

= xln(x) — i 1 dx = xln(x) — x + C. ❑ 

Problem 2: Compute f xln1(s) dx by using the substitution u = ln(x). 

Solution: Let u = ln(x). Then du = ''s  and therefore 

f 	1   
x ln(x) 	

1 
dx = f u du = lnaul) = Ina ln(x)1) + C. El j  

Problem 3: Show that (tan x)' = 11 (cos x)2  and 

f 1 	+1s2  dx = arctan(x) + C. 

Solution: Using the Quotient Rule, we find that 

( sin  x ' 	(sin  x)/  cos x — sin x(cos x)/  
cos x) 	(cos x)2  

(cos x)2  + (sin x)2 	1 
= 	  _= 	 

(cos X)2 	 (cos X)2  

(tan x)' = 

17 
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To prove that f 	dx = arctan(x), we will show that1 

1 
(arctan(x))' = 	 

1 + x2 ' 

Let f(x) = tan x. Then arctan(x) = f -1(x). Recall that 

(f_1(x \\ 	1  
j) 	.r(f 1(x)) 

and note that f(x) = (tan x)' — (co 	cf. (1.1). Therefore, sx)2;  

(arctan(x))' = (cos(f-1(x)))2  = (cos(arctan(x)))2 . 

Let a = arctan(x). Then tan(a) = x. It is easy to see that 

(1.2) 

x2 
 + 1 = (cos(a)) 2' 

since (sin(a))2  (cos(a))2  = 1. Thus, 

(cos(arctan(x)))2  = (cos(a))2  = 

From (1.2) and (1.3), we conclude that 

1 
(arctan(x))' = 	 

x2  +1 

and therefore that 

1 

1 
x2 + 1•  

(1.3) 

f  1  
1 x2  

dx = arctan(x) + C. 
j +  

We note that the antiderivative of a rational function is often computed 
using the substitution x = tan (0 . 

For example, to compute f i+xldx using the substitution x = tan (0, 
note that 

Then 

I 
1  +1x2  

dx 	f 1+ (tan (0)2  2(cos1(0)2  
	 dz 

(cos (0)2  

(sin(a))2  + (cos(a))2  2(cos
1 

f 	

(0)2 
dz 

f 1 	z 

J -
2 

dz = -
2 

= arctan(x) + C. ❑ 

	

dx = d 	
2 

(tan (z)) dz = 
2(cos(0)2

dz. 

	

dz 	) 
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Problem 4: Use l'Hopital's rule to show that the following two Taylor ap-
proximations hold when x is close to 0: 

	

+ x 	1 + 2; 

	

ex 	1 + x + 

In other words, show that the following limits exist and are constant: 

	

lim 	
+ x - (1 + i) 

 and lim ex 
	(1 + x + 4) 

	

x2 	 x->0 	 X3  

Solution: The numerator and denominator of each limit are differentiated 
until a finite limit is computed. L'El6pital's rule can then be applied sequen-
tially to obtain the value of the initial limit: 

1 	1 	 1  
4(1+x)3/2  

	

lim 
\/1  + X - (1 + 0 	 2 	 1 

= lim 2V1d-s 	
= lim 	 - 

x-40 	 X2 	 x-∎0 	2x 	x---,0 	2 	8 

We conclude that 

+ x = 1 + -
x 

2 + 
0(x2), as x -> 0. 

Similarly, 

	

lim ex - (1+x + 4) = 	ex  - (1  + x)
lim 	 = lim 

ex 
	lim = m — = 

	

x3 	 s- ,c) 	3x2 	x-A3 6x 	x-,13 6 	6' 

and therefore 

	

X2) 	 X2 
ex  - (1+x+ 	= 1 + x + —

2 
+ 0(x3) as x 0. ❑ 

Problem 5: Use the definition e 	(1 + 

 

is of e to show that 

1 
e 

x  lim (1 - -1) . 
x 

Solution: Note that 

1 	x - 1 	1 	1 
1 	_     = 	1 x x 	x 	 1  _,_ 	• 

x-1 	' x-i 

X2 

2 



lira firm 
s-,00 

1 

1 

	

(1 j_  1 •\ 	 1 x-1  1 

	

11 	'-1 

lim 
x->co 
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Then, 

since 

and 

1 
lim 1 + 	 
x-400 	x - 1 

= 1 

x-,00 	x - 
hill (1 + 	, 	= lira 

x-,00 
= e. 0 

Problem 6: Let K, T, a-  and r be positive constants, and define the function 
g 

1 	b(x) 
g(x) 	

2 

	

=--  	
e 	

dy
, 

 

T7r  

where b(x) 	 + (r + 1) 	/ (o--M Compute g' (x). 

Solution: Recall that 

d 	

f b(x)  f(Y) dy 	= f (b(x))bl  (x) f (a(x))d (x). dx a(x) 

Therefore, 

1 	_oc.»2 	 (b(x))2 	1  
(x) = 
	 e 2 	bf  (X) —    exp 
47r 	 -/27r 2 ) xa--VT 

2  1 	 (k) + (r + 1) T) 
-=    exp   	❑ 

xo- -V27T 	 2o-2T 

Problem 7: Let f (x) be a continuous function. Show that 

1 	a+h 
2h h -,o 	

f 
—h 
 f (x) dx = f (a), V a E R. 
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Solution: Let F(x) = f f (x) dx be the antiderivative of f (x). From the 
Fundamental Theorem of Calculus, it follows that 

	

f a+h 	 F(a + h) - F(a - h)  
f(x) dx - 

	

2h ja_h 	 21/ 

Using l'Hopital's rule and the fact that P(x) = f (x), we find that 

	

1 	a+h 	 F(a  + h)  -  F(a - h) 

	

urn — 	f (x) dx 	lim 

	

h—+0 2h a—h 	 2h 

lim 
f (a + h) + f (a - h) 

=  
h—■0 	 2 

= f (a), 
since f (x) is a continuous function. 

Note: Let F(t) = fctl  f (x) dx. The central finite difference approximation of 
F'(a) is 

2h 	
+ 0 (h2) , 	(1.4) 

as h 	0 (if F(3) (t) = f"(t) is continuous). Since F'(a) = f (a), formula (1.4) 
can be written as 

1a+h 

2h fa-h 
f (a) = 	f (x) dx + 0(h2). ❑ 

Problem 8: Let f : R R given by 
n 

f(y) = E —yti 
Cie 	, 

i=1 

where ci  and ti, i = 1 : n, are positive constants. Compute f(y) and f"(y). 

Solution: Note that 

(e-ytt)' 	d 
dy 

(e-yt\ ) 	- tie-Yt'; 

(e-yt,\" ) = —
dy 

(-tie-Yt9 = 

Then, 

1(y) = _E citieYti; 
t=i 

f"(y) = 	ciqe-Yt'. ❑ 

F'(a) = F(a + h) - F(a 
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Note: The function f (y) represents the price of a bond with cash flows ci  paid 
at time ti  as a function of the yield y of the bond. When scaled appropriately, 
the first and second derivatives of f (y) with respect to y give the duration 
and convexity of the bond, respectively. 

Problem 9: Let f : R3  R given by f (x) = 2xi — x1x2 + 3x2x3 — x3, where 
x = (xi, X2> X3) .  

(i) Compute the gradient and Hessian of the function f (x) at the point a = 
(1, —1, 0), i.e., compute D f (1, —1, 0) and D2  f (1, —1, 0). 

(ii) Show that 

f(x) = f (a) + D f (a) (x — a) ± —21  (x — a)t  D2  f (a) (x — a). 	(1.5) 

Here, x, a, and x — a are 3 x 1 column vectors, i.e., 

Xi 1 x1  — 1 
X = X2 

( 

; 	a = 
( 

—1 ; 	x — a = x2 + 1 
( 

x3  0 x3  

Note: Formula (1.5) is the quadratic Taylor approximation of f (x) around 
the point a. Since f(x) is a second order polynomial, the quadratic Taylor 
approximation of f (x) is exact. 

Solution: (i) Recall that 

( 1-(x) 	Pl.(x)) 
\axi 	Ox2 	ax J 

D f (x) = 

D2  f (x) 

Then, 

= 

D2  

(4x1  — x2, 

--f(x) ax? 
821  

— x1 + 3x3, 	3x2 — 2x3) 

82f 	82f 

; 

( 	 4 
—1 

0 

1, 	— 3); 

4 —1 	0 
0 	3 ) 

0 	3 —2 

—2 
 

—1 
0 
3 

. 

0 
3 

(1.6) 
(1.7) 

(1.8) 

(x) 	(x) ax2ax, 	ax38x, 
51(x) axiax2  (X) ax2 	ux3,X2 	

) 

f 

Df(a) 

\ axiax3  

f (a) = 
= 

f (a) = 

() 	84 x ) ax 2ax3 	 / 

f (1, —1, 0) 	= 3 
Df(1, —1,0) = 	(5, 	— 

D2  f (1, —1, 0) = 	—1 
( 
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(ii) We substitute the values from (1.6), (1.7) and (1.8) for f (a), D f (a) 
and D2  f (a), respectively, in the expression f (a) + D f (a) (x - a) + ;12  (x -
a)t D2  f (a) (x - a) and obtain that 

f (a) + D f (a) (x - a) + 
1

(x - a)t  D2  f (a) (x - a) 

- 1 
= 3 + (5, -1, -3) x2 + 1 

x3  

4 -1 0 ) 	- 1 1 
+ -

2 
(xi - I, x2 + I, x3) -1 0 3 	x2 + 1 

0 3 -2 	x3 

-= 3 + (5x1 - x2  - 3x3 - 6) 
+ (2xT - 5x1 - xix2 + x2 + 3x2x3 + 3x3  - 4 + 3) 

_=. 9 -x, — x1X2 3x2x3 — x:23  

= f (x). ❑ 

Problem 10: Let 
1 	x2  

	

u(x, t)   e 4t , 
7rt 

for t > 0, x E R. 

Compute c-'; and 0, and show that 

au 
	a2u  

at 	ax2.  
Note: This exercise shows that the function u(x, t) is a solution of the heat 
equation. In fact, u(x, t) is the fundamental solution of the heat equation, 
and is used in the PDE derivation of the Black-Scholes formula for pricing 
European plain vanilla options. 

Also, note that u(x, t) is the same as the density function of a normal 
variable with mean 0 and variance 2t. 

Solution: By direct computation and using the Product Rule, we find that 

au 
at 
	1 3  /2 	1 	x2  

	

V47r 	A/47a 
e  4 	

4 	t2  
	 e  4t 
	 2  ( X2  ( 1 )) 

t 	 . 

- 2tV4irt 
e-1T + —

4t 2 	47rt 
e  4t • 

1 	r2 	X2 	1 	x2 	

(1.9) 

au _ 	1 	.r 2  

2t \/4lrt 
e-  4t 

ax 	
• . 
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a2u 	1 	 x2 	1 =    e--47 
4t2  .V47rt 6 

4t 
axe 	2Wr 4t 

(1.10) 

From (1.9) and (1.10), we conclude that 

(92u 	au 
axe 	at 

Problem 11: Consider a portfolio with the following positions: 
• long one call option with strike K1  = 30; 
• short two call options with strike K2 = 35; 
• long one call option with strike K3 = 40. 

All options are on the same underlying asset and have maturity T. Draw 
the payoff diagram at maturity of the portfolio, i.e., plot the value of the 
portfolio V(T) at maturity as a function of S(T), the price of the underlying 
asset at time T. 

Note: This is a butterfly spread. A trader takes a long position in a butterfly 
spread if the price of the underlying asset at maturity is expected to be in 
the K1 < S(T) < K3 range. 

Solution: A butterfly spread is an options portfolio made of a long position 
in one call option with strike K1 , a long position in a call option with strike 
K3, and a short position in two calls with strike equal to the average of the 
strikes K1  and K3, i.e., with strike K2 = K1+21(3  ; all options have the same 
maturity and have the same underlying asset. 

The payoff at maturity of a butterfly spread is always nonnegative, and 
it is positive if the price of the underlying asset at maturity is between the 
strikes K1 and K3, i.e., if K1  < S(T) < K3. 

For our particular example, the values of the three call options at maturity 
are, respectively, 

C1(T) = max(S(T) — Kl , 0) = max(S(T) — 30, 0); 
C2(T) = max(S(T) — K2, 0) = max(S(T) — 35, 0); 
C3(T) = max(S(T) — K3, 0) = max(S(T) — 40, 0) 

and the value of the portfolio at maturity is 

V(T) = C1(T) — 2C2(T) + C3(T). 

Depending on the values of the spot S(T) of the underlying asset at 
maturity, the value V(T) of the portfolio at time T is given below: 

11 



S(T) < 30 
Vi (T) 
	

0 
30 < S(T) < 35 

S(T) — 30 
35 < S(T) 

5 
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S(T) < 30 30 < S(T) < 35 35 < S(T) < 40 40 < S(T) 
CI. (T) 0 S(T) — 30 S(T)  — 30  	 

S(T) — 35 
S(T) — 30 
S(T) — 35 C2 (T) 0 0 

C3 (T) 0 0 0 S(T) — 40 
V (T) 0 S(T) — 30 40 — S(T) 0 

Problem 12: Draw the payoff diagram at maturity of a bull spread with a 
long position in a call with strike 30 and short a call with strike 35, and of a 
bear spread with long a put of strike 20 and short a put of strike 15. 

Solution: The payoff of the bull spread at maturity T is 

V1(T) = max(S(T) — 30,0) — max(S(T) — 35,0). 

Depending on the value of the spot price S(T), the value of the bull spread 
at maturity T is 

The value of the bear spread at maturity T is 

V2(T) = max(20 — S(T), 0) — max(15 — S(T), 0), 

which can be written in terms of the value of S(T) as 

15 < S T <20 20 < S T 
5 20 — S T 

A trader takes a long position in a bull spread if the underlying asset is 
expected to appreciate in value, and takes a long position in a bear spread if 
the value of the underlying asset is expected to depreciate. ❑ 

Problem 13: Which of the following two portfolios would you rather hold: 
• Portfolio 1: Long one call option with strike K = X — 5 and long one call 
option with strike K = X + 5; 
• Portfolio 2: Long two call options with strike K = X? 

(All options are on the same asset and have the same maturity.) 

Solution: Note that being long Portfolio 1 and short Portfolio 2 is equivalent 
to being long a butterfly spread, and therefore will always have positive (or 
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rather nonnegative) payoff at maturity. Therefore, if you are to assume a 
position in either one of the portfolios (not to purchase the portfolios), you 
are better off owning Portfolio 1, since its payoff at maturity will always be 
at least as big as the payoff of Portfolio 2. 

More precisely, note that 

V(T) = V(T)—V2(T) 
= max(S(T) — (X — 5), 0) + max(S(T) — (X + 5), 0) 

— 2 max(S(T) — X, 0). 

The value of the portfolio at time T is detailed below: 

V(T) 
S(T) < X — 5 0 

X — 5 < S(T) < X S(T) — (X — 5) 
X < S(T) < X + 5 (X + 5) — S(T) 

X + 5 < S(T) 0 

Problem 14: Call options with strikes 100, 120, and 130 on the same under-
lying asset and with the same maturity are trading for 8, 5, and 3, respectively 
(there is no bid—ask spread). Is there an arbitrage opportunity present? If 
yes, how can you make a riskless profit? 

Solution: For an arbitrage opportunity to be present, there must be a port-
folio made of the three options with nonnegative payoff at maturity and with 
a negative cost of setting up. 

Let K1  = 100 < K2  = 120 < K3 = 130 be the strikes of the options. 
Denote by x1, x2, x3  the options positions (which can be either negative or 
positive) at time 0. Then, at time 0, the portfolio is worth 

V(0) = xiC1(0) + x2C2(0) + x3C3(0) 

At maturity T, the value of the portfolio will be 

V(T) = xiCi.(T) + x2C2(T) + x3C3 (T) 
= x1  max(S(T) — K1, 0) + x2  max(S(T) — K2, 0) 

+ X3 max(S(T) — K3, 0), 

respectively. 
Depending on the value S(T) of the underlying asset at maturity, the 

value V(T) of the portfolio is as follows: 
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V(T) 
S(T) < Ki  0 

K1 < S(T) < K2 Xi S(T) - X1 K1 
K2 < 8(T) < K3 (xi + x2)S(T) - x1K1 - x2K2 

K3 < S(T) (x1 + x2 + x3)S(T) - X 1 Ki - x2K2 - x3K3 

Note that V(T) is nonnegative when S(T) < K2 only if a long position is 
taken in the option with strike K1, i.e., if xi  > 0. The payoff V(T) decreases 
when K2 < S(T) < K3, accounting for the short position in the two call 
options with strike K2, and then increases when S(T) > K3. 

We conclude that V(T) > 0 for any value of S(T) if and only if x1  > 0, 
if the value of the portfolio when S(T) = K3 is nonnegative, i.e., if (xi + 
x2)K3 — xiKi — x2K2 > 0, and if xi + x2 + x3 > 0. 

Thus, an arbitrage exists if and only if the values C1(0), C2(0), C3(0) are 
such that we can find xi, x2, and x3 with the following properties: 

xi Ci (0) + x2C2(0) + x3C3(0) < 0; 

xi > 0; 
(x1 + X2)K3 - X 1 Ki - x2K2 > 0; 

Xi ± X2 ± X3 > 0. 

For C1(0) = 8, C2(0) = 5, C3(0) = 3 and K1 = 100, K2 = 120, K3 = 130, 
the problem becomes finding x1 > 0, and x2 and x3  such that 

8x1  + 5x2  + 3x3 < 0; (1.11) 
30x1 + 10x2 > 0; (1.12) 

xi + x2 + x3 > 0. (1.13) 

(For these option prices, arbitrage will be possible since the middle option is 
overpriced relative to the other two options.) 

The easiest way to find values of xi, x2, and x3  satisfying the constraints 
above is to note that arbitrage can occur for a portfolio with long positions in 
the options with lowest and highest strikes, and with a short position in the 
option with middle strike (note the similarity to butterfly spreads). Then, 
choosing x3  = —x1  — x2 would be optimal; cf. (1.13). The constraints (1.11) 
and (1.12) become 

5x1 + 2x2 < 0; 
3x1 + x2 > 0. 

These constraints are satisfied, e.g., for x1 	1 and x2 = —3, which 
corresponds to x3 = 2. 
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Buying one option with strike 100, selling three options with strike 120, 
and buying two options with strike 130 will generate a positive cash flow of 
$1, and will result in a portfolio that will not lose money, regardless of the 
value of the underlying asset at the maturity of the options. ❑ 

Problem 15: A stock with spot price 40 pays dividends continuously at a 
rate of 3%. The four months at-the-money put and call options on this asset 
are trading at $2 and $4, respectively. The risk-free rate is constant and 
equal to 5% for all times. Show that the Put-Call parity is not satisfied and 
explain how would you take advantage of this arbitrage opportunity. 

Solution: The following values are given: S = 40; K = 40; T = 1/3; r = 0.05; 
q = 0.03; P = 2; C = 4. 

The Put-Call parity is not satisfied, since 

P + Se-qT  - C = 39.5821 > 39.3389 = Ke'T  . 	(1.14) 

Therefore, a riskless profit can be obtained by "buying low and selling 
high", i.e., by selling the portfolio on the left hand side of (1.14) and buying 
the portfolio on the right hand side of (1.14) (which is cash only). The riskless 
profit at maturity will be the future value at time T of the mispricing from 
the Put-Call parity, i.e., 

(39.5821 - 39.3389)erT  = 0.2473. 	 (1.15) 

To show this, start with no money and sell one put option, short e-qT  
shares, and buy one call option. This will generate the following cash amount: 

P + Se-qT  - C = 39.5821, 

since shorting the shares means that e-qT  shares are borrowed and sold on the 
market for cash. (The short will be closed at maturity T by buying shares on 
the market and returning them to the borrower; see below for more details.) 

At time 0, the portfolio consists of the following positions: 
• short one put option with strike K and maturity T; 
• short e-qT  shares; 
• long one call option with strike K and maturity T; 
• cash: +$39.5821. 

The initial value of the portfolio is zero, since no money were invested: 

V(0) = - P(0) - 3(0)e-qT  + C(0) + 39.5821 = 0. 

Note that by shorting the shares you are responsible for paying the accrued 
dividends. Assume that the dividend payments are financed by shorting 
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more shares of the underlying asset and using the cash proceeds to make the 
dividend payments. Then, the short position in e-qT shares at time 0 will 
become a short position in one sharer  at time T. 

The value of the portfolio at maturity is 

V(T) = - P(T) - S(T) + C(T) + 39.5821erT. 

Recall from the proof of the Put-Call parity that 

P(T)+S(T)-C(T) = max(K -S(T),0)+ S(T)-max(S(T)-K, 0) = K, 

regardless of the value S(T) of the underlying asset at maturity. 
Therefore, 

V(T) 	-(P(T) + S(T) - C(T)) + 39.5821erT  

= -K + 39.5821erT  = - 40 + 40.2473 = 0.2473. 

This value represents the risk-free profit made by exploiting the discrep-
ancy from the Put-Call parity, and is the same as the future value at time T 
of the mispricing from the Put-Call parity; cf. (1.15). ❑ 

Problem 16: The bid and ask prices for a six months European call option 
with strike 40 on a non-dividend-paying stock with spot price 42 are $5 
and $5.5, respectively. The bid and ask prices for a six months European 
put option with strike 40 on the same underlying asset are $2.75 and $3.25, 
respectively. Assume that the risk free rate is equal to 0. Is there an arbitrage 
opportunity present? 

Solution: For r = 0, the Put-Call parity becomes P + S - C = K, which in 
this case can be written as C - P = 2. 

Thus, an arbitrage occurs if C - P can be "bought" for less than $2 (i.e., 
if a call option is bought and a put option is sold for less than $2), or if C - P 
can be "sold" for more than $2 (i.e., if a call option can be sold and a put 
option can be bought for more than $2). 

From the bid and ask prices, we find that the call can be bought for $5.5 
and the put can be sold for $2.75. Then, C - P can be "bought" for $5.5-
$2.75=$2.75, which is more than $2. Therefore, no risk-free profit can be 
achieved this way. 

Also, a call can be sold for $5 and a put can be bought for $3.25. There-
fore, C - P can be "sold" for $5-$3.25=$1.75;  which is less than $2. Again, 
no risk-free profit can be achieved. ❑ 

1This is similar to converting a long position in e 9T shares at time 0 into a long position 
in one share at time T. through continuous purchases of (fractions of) shares using the 
dividend payments, which is a more intuitive process. 
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Problem 17: You expect that an asset with spot price $35 will trade in 
the $40-$45 range in one year. One year at-the-money calls on the asset 
can be bought for $4. To act on the expected stock price appreciation, you 
decide to either buy the asset, or to buy ATM calls. Which strategy is better, 
depending on where the asset price will be in a year? 

Solution: For every $1000 invested, the payoff in one year of the first strategy, 
i.e., of buying the asset, is 

VI  (T) = 1000  —35  S(T), 

where S(T) is the spot price of the asset in one year. 
For every $1000 invested, the payoff in one year of the second strategy, 

i.e., of investing everything in buying call options, is 

1000 	 1°°°(S(T) - 35), if S(T) > 35; V2(T) = 	4 max(S(T) - 35, 0) = { 	4  
0, 	if S(T) < 35. 

It is easy to see that, if S(T) is less than $35, than the calls expire worth-
less and the speculative strategy of investing everything in call options will 
lose all the money invested in it, while the first strategy of buying the asset 
will not lose all its value. However, investing everything in the call options 
is very profitable if the asset appreciates in value, i.e., is S(T) is significantly 
larger than $35. The breakeven point of the two strategies, i.e., the spot price 
at maturity of the underlying asset where both strategies have the same payoff 
is $39.5161, since 

100

35 	
1 000  °S(T) = 	(S(T) - 35) -‹ 	> S(T) = 39.5161. 

4 

If the price of the asset will, indeed, be in the $40-$45 range in one year, 
then buying the call options is the more profitable strategy. ❑ 

Problem 18: The risk free rate is 8% compounded continuously and the 
dividend yield of a stock index is 3%. The index is at 12,000 and the futures 
price of a contract deliverable in three months is 12,100. Is there an arbitrage 
opportunity, and how do you take advantage of it? 

Solution: The arbitrage-free futures price of the futures contract is 

12000e' q)T  = 12000e(0.08-0.03)/4 = 12150.94 > 12100. 

Therefore, the futures contract is underpriced and should be bought while 
hedged statically by shorting e-qT  = 0.9925 units of index for each futures 
contract that is sold. 
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At maturity, the asset is bought for 12100 and the short is closed (the 
dividends paid on the short position increase the size of the short position 
to 1 unit of the index). The realized gain is the interest accrued on the cash 
resulting from the short position minus 12100, i.e., 

e0.08/4 (e-0.03/412000) — 12100 = 150.94. ❑ 
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1.2 Supplemental Exercises 

1. Compute 

2. Compute 

3. Compute 

4. Show that 

J xn ln(x) dx. 

I xnex dx. 

f (1n(x))71  dx, 

(1 + 
1 
 )x  < e < (1 + —1) x+1  V x > 1. 

5. Let 
1 	(x 	it)2) 

crA/27 	( 	20-2  ) 
f (x) = 	exp 

Assume that g : R —› R is a continuous function which is uniformly 
bounded, i.e., there exists a constant C such that Ig(x)1 < C for all 
x E R. Then, show that 

00 
lim 1 f (x)g(x) dx = g(p). 
0\o _co  

6. Let 
n 

Ci  
9(y) = 

177: (1  + y)  
Compute g' (y), 

7. A derivative security pays a cash amount c if the spot price of the 
underlying asset at maturity is between K1  and K2, where 0 < K1 < K2) 
and expires worthless otherwise. How do you synthesize this derivative 
security (i.e., how do you recreate its payoff almost exactly) using plain 
vanilla call options? 
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8. Create a portfolio with the following payoff at time T: 

{28(T), 	if 0 < S(T) < 20; 
60 V(T) = 	— S(T), if 20 < S(T) < 40; 
S(T) — 20, if 40 < S(T), 

where S(T) is the spot price at time T of a given asset. Use plain 
vanilla options with maturity T as well as cash positions and positions 
in the asset itself. Assume, for simplicity, that the asset does not pay 
dividends and that interest rates are zero. 

9. Call options on the same underlying asset and with the same maturity, 
with strikes K1 < K2 < K3, are trading for C1, C2 and C3, respectively 
(no Bid—Ask spread), with C1 > C2 > C3. Find necessary and sufficient 
conditions on the prices C1, C2 and C3 such that no—arbitrage exists 
corresponding to a portfolio made of positions in the three options. 

10. Denote by Cbid and Cask, and by Pbid and Pask,  respectively, the bid 
and ask prices for a plain vanilla European call and for a plain vanilla 
European put option, both with the same strike K and maturity T, and 
on the same underlying asset with spot price S and paying dividends 
continuously at rate q. Assume that the risk—free interest rates are con-
stant equal to r. Find necessary and sufficient no—arbitrage conditions 
for Cbid) Cask, -Rid) and Pask. 

1.3 Solutions to Supplemental Exercises 

Problem 1: Compute 

J 
eln(x) dx. 

Solution: If n # —1, we use integration by parts and find that 
xn+i 

xn+1  ln(x) 	xn+1  
n + 1 	(n + 1)2 + 

C. 

For n = —1, we obtain that 

J 
ln(x)  

dx = (ln(x))2  + C. ❑ 

X 

f xn ln(x) dx = 	
1  .1 	1 

n+ 
1  ln(x) 

n + 1 
xn+1 , _x dx 
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Problem 2: Compute 

f xnex dx. 

Solution: For every integer n > 0, define the function fn(x) as 

fn(x) = f xnex dx. 

By using integration by parts, it is easy to see that 

fn(x) f xnex dx  = xnex - n x72-1  ex dx = xnex n fri_i (x), V n > 1. 

Since fo(x) = es, the following general formula can be obtained by induction: 

( f xnex dx = f n(x) = n! 	171-(-1)"" ex + C, V n > 1. ❑ 

k= 

Problem 3: Compute 

f (1n(x))n  dx. 

Solution: For every integer n > 0, let 

fn(x) = f (1n(x))71  dx. 

By using integration by parts, it is easy to see that, for any n > 1, 

f (1n(x))n dx = x(In(x))n - n f (1n(x))n-1  dx, 

and therefore 

fn(x) = x(ln(x))n - nfr,_1(x), V n > 1. 

Since fo(x) = x, the following general formula can be obtained by induction: 

f (1n(X))n dx = fn(x) = xE(-1)72-kn! 	k , 	n( x)) + C, V n > 1. ❑ 

k=0 	ICI 
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Problem 4: Show that 

(1± _ly 	 1 +1 

x 
< e < (1 + —

x 	
, V x > 1. 

Solution: Note that (1.16) is equivalent to 

1 
x + 1 
	 < 141+-

1) 
< —

1
, Vx> 1. 	(1.17) 

x 	x 

Let 

x
1 	 1 	1  

	

f(x) -= — — ln (1 + —1) ; g(x) = ln (1 + 	
x 	x + 1.  

Then, 

1 	1 	 1 
fl(x) 

= 
x2 

+ 	=   < 0; 
x(x + 1) 	x2(x + 1) 

1 	1 1  
g' (x) = 	 0 

x(x + 1) + (x + 1)2 	x(x + 1)2  < 

We conclude that both f (x) and g(x) are decreasing functions. Since 

lim f (x) = lim g(x) = 0, 
x—, DC 	 X -. OC 

it follows that f(x) > 0 and g(x) > 0 for all x > 0, and therefore 

1 	 1 
—
x 

> 141+—
x
1 
 ) > 

x+1' 
V x > 0, 

which is what we wanted to show; cf. (1.17). ❑ 

Problem 5: Let 

f (x) = 	 exp 
( 	2a-2  ) 

Assume that g : R R is a continuous function which is uniformly bounded2, 
i.e., there exists a constant C such that I g(x)1 < C for all x E R. Then, show 
that 

lim f  f (x)g(x) dx = g(p)• 

(1.16) 

2The uniform boundedness condition was chosen for simplicity, and it can be relaxed;  
e.g., to functions which have polynomial growth at infinity. 
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Solution: Using the change of variables y = Q , we find that 

co 
f oa f(x)g(x) dx = af271- r  1: g(x) exp 	142) dx 20-2  

112,7r f 	ay)dy. 	(1.18) 

1 f °  
r  j_00 

 e
- 1.  dy = 1, 	 (1.19) 

since, e.g., the function Zee-  is the probability density function of the 
standard normal variable. From (1.18) and (1.19) we obtain that 

	

1 	' 
g(A) - f f(x)g(x) dx = T7r f — 	(g(p,) g(iL + o-y)) 	dy. 

-co 	 .V, 

Our goal is to show that the right hand side of (1.20) goes to 0 as a \ 0. 
Since g(x) is a continuous function, it follows that, for any E > 0, there 

exists (51(€) > 0 such that 

I9(A) - g(x)I < e, V x — µ I < .51(E). 	 (1.21) 

Using the fact that the integral (1.19) exists and is finite, we obtain that, 
for any € > 0, there exists (52(€) > 0 such that 

1f -62(0 	dy 	
\71-271- 	

dY < 	

(1.22) 
1 	co 	”2 

f2Tr J_. 

Since Ig(x)1 < C for ralls2x: R, it follows from (1.22) that 

4,-7  Lc  19(i-t) - XII + aY)i e-'Y2  dy 

fc° 
+ 1  1  f Ig(0) - g(A+ ay)1 e4  dy < 2C€. 	(1.23) 

v 27 82(6) 

It is easy to see that, if a < s51(e) , then 

IYI  
(1/ + ay) - PI = crly1 < (51(6) j2() 	81(6), V 	[-82(6), 82(6)]. 

Then, from (1.21) and (1.24) we find that 

I9(u) - g(p+ 0'01 < 6, V y E [---62(6), (52(6)17 

Recall that 

(1.20) 

(1.24) 

(1.25) 



n 
Citi 

g'(y) = 4 (1 	+ y)ti+1' 
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and therefore 

1. 	[

52(6)  

62(') 

T7r i- 
Ig(1.1) — g(it 	ay)1 	dy < 6. 	(1.26) 

N/ -   

From (1.20), (1.23), and (1.26), it follows that, for any E > 0, there exist 

(Si( €) > 0 and S2(6) > 0 such that, if a < 	then 

1.9(0) 	goi  ay)(  1  
g(p) — f:f(x)g(x) dx 	 e 2  ay 

< (2C + 1)6. 

We conclude, by definition, that 

lim I f(x)g(x) dx = g(p). ❑ 

crNO 

Problem 6: Let 
n 

Ci 
g(Y) = 

(1  + Y)t  

Compute g'(y). 

Solution: 

Problem 7: A derivative security pays a cash amount c if the spot price 
of the underlying asset at maturity is between Ki. and K2, where 0 < Ki < 
K2, and expires worthless otherwise. How do you synthesize this derivative 
security (i.e., how do you recreate its payoff almost exactly) using plain vanilla 
call options? 

Solution: The payoff of the derivative security is 

{0, if S(T) < Kl ; 
V(T) = 	c, if Ki < S(T) < K2; 

0, if K2 < S(T). 

Since V(T) is discontinuous, it cannot be replicated exactly using call options, 
whose payoffs are continuous. 



38 CHAPTER 1. CALCULUS REVIEW. PLAIN VANILLA OPTIONS. 

We approximate the payoff V(T) of the derivative security by the following 
payoff 

0, 	if S(T) < Ki — c; 
c(S(T) — (K1 — e))/e, if Ki — E < S(T) < Ki ; 

V,(T) = 	 c, 	if K1  < S(T) < K2; 	(1.27) 
c — c(S(T) — K2)/E, if K2 < S(T) < K2 ± E; 

0, 	if K2 + e < S(T). 

Note that V(T) = VE(T) unless the value S(T) of the underlying asset at 
maturity is either between Ki. — c and K1, or between K2 and K2 + E. 

The payoff VE(T) can be realized by going long c/c bull spreads with 
strikes Ki. — c and K1, and shorting c/c bull spreads with strikes K2 and 
K2 + E. In other words, the payoff V(T) of the given derivative security can 
be synthesized by taking the following positions: 

• long c/c calls with strike Ki. — 6; 

• short c/c calls with strike K1; 

• short c/c calls with strike K2; 

• long c/c calls with strike K2 + E. 
It is easy to see that the payoff VE (T) is the same as in (1.27): 

Ve(T) 
S(T) < Ki — E 0 

Ki.  - E < S(T) < Ki (S(T) — (Ki.  — €)) 
Ki  < S(T) < K2 - (S(T) - (K1 - 6)) - (S(T) - KO) = C 

K2 < S(T) < K2 + c c— (S(T) — K2) 
K2 ± E < S(T) c — (S(T) — K2) + (S(T)— (K2 + 6)) = 0 

Problem 8: Create a portfolio with the following payoff at time T: 

{28(T), 	if 0 < S(T) < 20; 
60 V(T) = 	— S(T), if 20 < S(T) < 40; 	(1.28) 
S(T) — 20, if 40 < S(T), 

where S(T) is the spot price at time T of a given asset. Use plain vanilla 
options with maturity T as well as cash positions and positions in the asset 
itself. Assume, for simplicity, that the asset does not pay dividends and that 
interest rates are zero. 

Solution: Using plain vanilla options, cash, and the underlying asset the 
payoff V(T) can be replicated in different ways. 
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One way is to use the underlying asset, calls with strike 20, and calls with 
strike 40. 

First of all, a portfolio with a long position in two units of the underlying 
asset has value 2S(T) at maturity, when S(T) < 20. 

To replicate the payoff 60 — S(T) of the portfolio when 20 < S(T) < 40, 
note that 

60 — S(T) = 2S(T) + 60 — 3S(T) = 2S(T) — 3(S(T) — 20). 

This is equivalent to a long position in two units of the underlying asset and 
a short position in three calls with strike 20. 

To replicate the payoff S(T) — 20 of the portfolio when 40 < S(T), note 
that 

S(T)-20 = 60—S(T) + 2S(T)-80 = 2S(T) — 3(S(T)-20) + 2(S(T)-40). 

This is equivalent to a long position in two units of the underlying asset, a 
short position in three calls with strike 20, and a long position in two calls 
with strike 40. 

Summarizing, the replicating portfolio is made of 

• long two units of the asset; 
• short 3 call options with strike K = 20 on the asset; 
• long 2 call options with strike K = 40 on the asset. 

We check that the payoff of this portfolio at maturity, i.e., 

Vl  (T) = 28(T) — 3 max(S(T) — 20, 0) + 2 max(S(T) — 40, 0) 	(1.29) 

is the same as the payoff from (1.28): 

Vi (T) 
S(T) < 20 28(T) 

20 < S(T) < 40 28(T) — 3(S(T) — 20) = 60 — S(T) 
40 < S(T) 60 — S(T) + 2(S(T) — 40) = S(T) — 20 

As a consequence of the Put—Call parity, it follows that the payoff V(T) 
from (1.28) can also be synthesized using put options. If the asset does not 
pay dividends and if interest rates are zero, then, from the Put—Call parity, 
it follows that 

C = P + S — K. 

Denote by C20 and P20 i  and by C40 and P40, the values of the call and put 
options with strikes 20 and 40, respectively. 

Then, the replicating portfolio with payoff at maturity given by (1.29) 
can be written as 

V = 2S — 3C20 + 2C40. 	 (1.30) 
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To synthesize a short position in three calls with strike 20, note that 

—3C20 = — 3P20 — 3S + 60, 	 (1.31) 

which is equivalent to taking a short position in three units of the underlying 
asset, taking a short position in three put options with strike 20, and being 
a long $60. 

Similarly, to synthesize a long position in two calls with strike 40, note 
that 

2C40 = 2P40 + 2S — 80, 	 (1.32) 

which is equivalent to a borrowing $80, taking a long position in two units 
of the underlying asset, and taking a long position in two put options with 
strike 40. 

Using (1.31) and (1.32), we obtain that the payoff at maturity given by 
(1.29) can be replicated using the following portfolio consisting of put options, 
cash, and the underlying asset: 

V = 2S — 3C20 + 2C40 
= 2S — 3P2o — 3S + 60 + 2P40 + 2S — 80 

= S — 3P20 + 2P40 — 20. 	 (1.33) 

The positions of the replicating portfolio (1.33) can be summarized as follows: 

• long one unit of the asset; 
• short $20 cash; 
• short 3 put options with strike K = 20 on the asset; 
• long 2 put options with strike K = 40 on the asset. 

We check that the payoff of this portfolio at maturity, i.e., 

V2(T) = S(T) — 20 — 3 max(20 — S(T), 0) + 2 max(40 — S(T),0) 

is the same as the payoff from (1.28): 

VI  (T) 
S(T) < 20 S(T) — 20 — 3(20 — 8(T)) + 2(40 — S(T)) = 28(T) 

20 < S(T) < 40 S(T) — 20 + 2(40 — S(T)) = 60 — S(T) 
40 < S(T) S(T) — 20 

If the asset pays dividends continuously at rate q and if interest rates are 
constant and equal to r, in order to obtain the same payoffs at maturity, the 
asset positions in the two portfolios must be adjusted as follows: 

The first replicating portfolio will be made of the following positions: 
• long 26-0' units of the asset; 
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• short 3 call options with strike K = 20 on the asset; 
• long 2 call options with strike K = 40 on the asset. 

The second replicating portfolio will be made of the following positions: 
• long e-4T  units of the asset; 
• short $20e-rT  cash; 
• short 3 put options with strike K = 20 on the asset; 
• long 2 put options with strike K = 40 on the asset. 

Note that any piecewise linear payoff of a single asset can be synthesized, 
in theory, by using plain vanilla options, cash and asset positions. 	❑ 

Problem 9: Call options on the same underlying asset and with the same 
maturity, with strikes Ki < K2 < K3, are trading for C1, C2 and C3, re-
spectively (no Bid-Ask spread), with Ci > C2 > C3. Find necessary and 
sufficient conditions on the prices C1, C2 and C3 such that no-arbitrage ex-
ists corresponding to a portfolio made of positions in the three options. 

Solution: An arbitrage exists if and only if a no-cost portfolio can be set up 
with non-negative payoff at maturity regardless of the price of the underlying 
asset at maturity, and such that the probability of a strictly positive payoff 
is greater than 0. 

Consider a portfolio made of positions in the three options with value 0 
at inception, and let xi > 0 be the size of the portfolio position in the option 
with strike K3, for i = 1 : 3. Let S = S(T) be the value of the underlying 
asset at maturity. For no-arbitrage to occur, there are three possibilities: 

Portfolio 1: Long the K1-option, short the K2-option, long the K3-option. 

Arbitrage exists if we can find xi  > 0, i = 1 : 3, such that 

- x2C2 + x3C3 = 0; 	 (1.34) 

xi (S - Ki) - x2(S - K2) + x3(S K3) > 0, V S > O. 	(1.35) 

We note that (1.35) holds if and only if the following two conditions are 
satisfied: 

	

xl - X2 ± X3 > 0; 
	

(1.36) 

xi(K3  - 	- x2(K3 - K2) > 0. 	 (1.37) 

We solve (1.34) for x3  and obtain 

C2 
X3 = X27,- - xl, . 	 (1.38) 

Cs 	C3 

Since we assumed that x3  > 0, the following condition must also be satisfied: 

X2 
> -

C2
. 	 (1.39) 

xi 
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Recall that C1 > C2 > C3. Using the value of x3 from (1.38), it follows 
that (1.36) and (1.37) hold true if and only if 

X1 	C2 - C3 

X2
> 	

- C3 	
(1.40) 

X2 	K3  - 
(1.41) 

Xi 	K3 - K2 

Also, note that if (1.40) holds true, then (1.39) is satisfied as well, since 

C1-  C3 	Cl 

C2 - C3 > C2 

We conclude that arbitrage happens if and only if we can find x1  > 0 and 
x2 > 0 such that (1.40) and (1.41) are simultaneously satisfied. Therefore, 
no—arbitrage exists if and only if 

K3 - K1 	Cl - C3 

	

K3 - -2 < -2 - -3' 
	 (1.42) 

Portfolio 2:  Long the Ki—option, short the K2—option, short the K3—option. 

Arbitrage exists if we can find xi  > 0, i = 1 : 3, such that 

X1 C1 - X2C2 X3 C3 = 0; 
	

(1.43) 

xi (S — K1) — x2(.5 — K2) — x3(S — K3) > 0, V S > 0. 	(1.44) 

The inequality (1.44) holds if and only if the following two conditions are 
satisfied: 

	

Xi - X2 - X3 > 0; 	 (1.45) 

xi  (K3  — K1) — x2(K3 — K2) > 0. (1.46) 

However, (1.43) and (1.45) cannot be simultaneously satisfied. Since C1  > 
C2 > C3, it is easy to see that 

C C 
Xi = X20

2 
 - X3 

3
- < X2 ± X3. 

In other words, no arbitrage can be obtained by being long the option 
with strike K1 and short the options with strikes K2 and K3. 

Portfolio 3:  Long the Ki—option, long the K2—option, short the K3—option. 

Arbitrage exists if we can find xi  > 0, i = 1 : 3, such that 

X1C1 X2C2 - X3 C3 = 0; 
	

(1.47) 
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xi (S - 	+ x2(S - K2 ) - x3(S - K3) > 0, V S > O. 	(1.48) 

The inequality (1.48) holds if and only if 

xi + x2  - x3 > 0. 	 (1.49) 

It is easy to see that (1.47) and (1.49) cannot be simultaneously satisfied: 

X3 = Xi r.— 	X2 
C2  
Z7

3 
> C3 

since C1  > C2 > C3. 
Therefore, no arbitrage can be obtained by being long the options with 

strikes K1 and K2 and short the option with strike K3. 

We conclude that (1.42), i.e., 

K3 — KI 	CI — C3 
K3 — n2 < C2 — C3 

is the only condition required for no-arbitrage. 

Problem 10: Denote by Cbid and Cask, and by Pbid and Pass, respectively, 
the bid and ask prices for a plain vanilla European call and for a plain vanilla 
European put option, both with the same strike K and maturity T, and on the 
same underlying asset with spot price S and paying dividends continuously 
at rate q. Assume that the risk-free interest rates are constant equal to r. 
Find necessary and sufficient no-arbitrage conditions for Cbid, Cask, Pbid, and 
Pask• 

Solution: Recall the Put-Call parity 

C - P = Se—qT  — Ke—rT 

where the right hand represents the value of a forward contract on the un-
derlying asset with strike K. 

An arbitrage would exist 

• either if the purchase price of a long call short put portfolio, i.e., Cask — Pbid 
were less than the value Se-gT  - Ke-rT of the forward contract, i.e., if 

Cask — Pbid 

• or if the selling price of a long call short put portfolio, i.e., Cbid — Pask were 
greater than the value Se-qT  - Ke-rT of the forward contract, i.e., if 

> se qT Ke-rT .  
Cbid Pask 

We conclude that there is no-arbitrage directly following from the Put-
Call parity if and only if 

Cask — Pbid < Se-qT  - K e'T  < Cbid Pask. ❑ 

X1 + x2, 

< se —qT Ke—rT 





Chapter 2 

Improper integrals. Numerical integration. 
Interest rates. Bonds. 

2.1 Solutions to Chapter 2 Exercises 

Problem 1: Compute the integral of the function f(x, y) = x2  — 2y on the 
region bounded by the parabola y = (x + 1)2  and the line y = 5x — 1. 

Solution: We first identify the integration domain D. Note that (x + 1)2  = 
5x —1 if and only if x = 1 and x = 2, and that (x + 1)2  < 5x — 1 if 1 < x < 2. 
Therefore, 

D = {(x,y) 1 < x < 2 and (x +1)2  < y < 5x — 11. 

Then, 

, 

f(x y)dxdy 	
f 2 f 5s-1 

I V(s+1)2(x2 — 
2y)dy) dx 

= 

	2 
(x2y — Y 2)15(:+11)2) dx  

=  f
2 

x 2(5x —1— (x + 1)2) - ((5x — 1)2  — (x +1)4)dx 

2 
= 	(5x — 1 — (x + 1)2)(x2  — (5x — 1 (x + 1)2 )) dx 

=  f
2 
(-X2  ± 3x — 2)(-7x) dx = — 47  . 0 

1 

Problem 2: Let f : (0, co) —p R denote the Gamma function, i.e., let 

c  
f (a) = 	e' dx. 

fo 

45 



46 	 CHAPTER 2. NUMERICAL INTEGRATION. BONDS. 

(i) Show that f (a) is well defined for any a > 0, i.e., show that both 

foi 
xa-1 	dx = Hrn f x"-1  e' dx 

t\o 

and 0.0 
e-x dx 	lirn  f x"-1  e-x dx 

t-,00 

exist and are finite. 

(ii) Prove, using integration by parts, that f (a) = (a - 1) f (a - 1) for any 
a > 1. Show that f (1) =1 and conclude that, for any n > 1 positive integer, 
f (n) = (n - 1)!. 

Solution: 
(i) Let a > 0. Intuitively, note that, as x 	0, the function x'-le-x is on 
the order of xa-1, since limx \o e' = 1. Since 

 

1 

 

Jim f xa-1  dx = lim 
t\o t 	 t\o a 

it follows that 

1 	 1 
lim (1 - La) = 

a t\o 

  

l  fo  x'-1  f
t

i  
e-x dx = two 	e' dx 

t\o  

exists and is finite. 
In a similar intuitive way, note that, as x 	oo, the function xa-le' 

is on the order of e-x, since the exponential function dominates any power 
function at infinity. Since 

lim f e-x dx = lim(1 - e-t) = 1, 
t,c0 1 	 t-,00 

it follows that 

	

xa-1  e-x dx = lim 	xa-1  e' dx 

	

t-.co 	
(2.1) 

exists and is finite. 
Making these intuitive arguments precise is somewhat more subtle. We 

include a mathematically rigorous arguments for, e.g., showing that the in-
tegral in (2.1) exists and is finite. 

By definition, we need to prove that, for any e > 0, there exists n(e) > 0 
such that 

E, V s > n(e). 	 (2.2) 1. 
co 

xa-1 e-x dx  < 
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Note that there exists N > 0 such that 
xa-1 e-x < e-x/2, V x > N, 	 (2.3) 

since 
lim xa-1  e-x/2  = 0. 
x-vx 

Also, since lim,oc  e-x/2  = 0, it follows that, for any E > 0, there exists 
m(E) > 0 such that 

2e-m(E)/2  < E. 	 (2.4) 

Choose n(e) = max(m(E, N)). From (2.3) and (2.4) we obtain that 

xa-1 e-x < e-x/2, v x  > n(e); 	 (2.5) 

2e-n(E)/2  < E. 	 (2.6) 

We can then use (2.5) and (2.6) to show that, for any s > n(E), 

f
s 

t 
e-1  e-x dx = lim xa-1  e' dx 

t-,DC  
t 

< lim f e-x/2  dx = lim (-2e-t/2  + 2e-5/2) 
t-+x s 	 t-+x 

= 2e-s/2  < 2e-n(') /2  < E, 

which is what we wanted to show; cf. (2.2). 

(ii) It is easy to see that 

f(1) = 

 

t / x 

 e' dx = lim f e-x dx 	lim (-e-t  + 1) = 1. 
o 	 t-,x 0 	t-x 

Assume that a > 1. By integration by parts, we find that 

r 

 

fo 
pc t 

f(a) = 

 

e-1  e' dx = lim x'-1  e-x dx t-,Dc o 
f t 

lim [( -xa-1  e-x ) xx=ot  + (a - 1) 	xa-2  e-x dx] t-,pc \ 
t 

= (a -1) lim f xa-2  e-x dx t-,x 0  
= (a - 1) f(a - 1) , 

lim xa-i e-x = lim x'-1  = 0, for a > 1; 
xv 	 x\„o 

lim to-1  e-t  = lim 	4  t-, 	 t* DC e,  

since 

to-1  
= 0. 
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For any positive integer n > 1, we find that f (n) = (n— 1)f(n— 1). Since 
f (1) = 1, it follows by induction that f (n) = (n — 1)! ❑ 

Problem 3: Compute an approximate value of fi.3  fi e-Tdx using the Mid-
point rule, the Trapezoidal rule, and Simpson's rule. Start with n = 4 inter-
vals, and double the number of intervals until two consecutive approximations 
are within 10-6  of each other. 

Solution: The approximate values of the integral found using the Midpoint, 
Trapezoidal, and Simpson's rules can be found in the table below: 

No. Intervals Midpoint Rule Trapezoidal Rule Simpson's Rule 
4 0.40715731 0.41075744 0.40835735 
8 0.40807542 0.40895737 0.40836940 

16 0.40829709 0.40851639 0.40837019 
32 0.40835199 0.40840674 0.40837024 
64 0.40836569 0.40837937 0.40837024 

128 0.40836911 0.40837253 
256 0.40836996 0.40837082 
512 0.40837018 0.40837039 

1024 0.40837023 0.40837028 

The approximate value of the integral is 0.408370, and is obtained for a 
256 intervals partition using the Midpoint rule, for a 512 intervals partition 
using the Trapezoidal rule, and for a 16 intervals partition using Simpson's 
rule. ❑ 

Problem 4: Let f : lik. -- R given by gx) = ix+51:2. 
(i) Use Midpoint rule with to/ = 10-6  to compute an approximation of 

I 
 = f

1 
f(x) dx = fo

l X5/2 

0 	 1 + x2  . 

(ii) Show that f (4) (x) is not bounded on the interval (0,1). 
(iii) Apply Simpson's rule with n = 2k, k = 2 : 8, intervals to compute the 
integral I. Conclude that Simpson's rule converges. 

Solution: 
(i) The approximate value of the integral is 0.179171, and is obtained for a 
partition of the interval [0, 1] using 512 intervals: 
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No. Intervals Midpoint Rule 
4 0.17715737 
8 0.17867774 
16 0.17904866 
32 0.17914062 
64 0.17916354 

128 0.17916926 
256 0.17917070 
512 0.17917105 

(ii) Without computing f(4)(x), note that the denominator 1 + x2  of f (x) 
is bounded away from 0, and that the fourth derivative of the numerator of 
f (x) is on the order of x-312, which is not defined at 0, and is unbounded in 
the limit as x \ 0. 
(iii) Using Simpson's rule, the following approximate values of the integral 
are obtained: 

No. Intervals Simpson's Rule 
4 0.179155099725056 
8 0.179169815603871 

16 0.179171055067087 
32 0.179171162051226 
64 0.179171171372681 

128 0.179171172188741 
256 0.179171172260393 

The approximate value of the integral is 0.17917117, and is obtained for 

	

a partition of the interval [0, 1] using 64 intervals. 	❑ 

Problem 5: Let K, T, a and r be positive constants. Define the function 
g :118—÷R as 

1 	fb(s)  _2.2_ 
g(x) = 	 e 2  dy, 

-V27 -Dc 

where b(x) = (ln (i) + (r + 5) T) / (ail). Compute g'(x). 

Solution: Recall that 

d b(t) 

Clt ( f f (x) dx) = f (b(t))bi(t). 
„  
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Therefore, 

g/(x) = 
1, 	cbc.»2  

V27
b (x) e 2 

1-  

1 	 (ln (k) + 	+ (4)  T)2) 
 . ❑ 

o- V x27T exP 	 2o-2T 

Problem 6: Let h(x) be a continuous function such that f7,3 1xh(x)1dx 
exists. Define g(t) by 

g(t) = ft °°  (x — t)h(x) dx, 

and show that 
g"(t) = h(t). ❑ 

Solution: Recall that, if a(t) and b(t) are differentiable functions and if f (x, t) 
is a continuous function such that 4(x, t) exists and is continuous, then 

d 	

f (t) 	
f b (t) 	 N 

(t)O at 
 f (x, t) dx 	= f 	t) dx 	f (b(t), t)I1 (t) — f (a(t), 	(t). 

dt 	a  

A similar result can be derived for improper integrals, i.e., 

dt ( l
am  f (x, t) dx 	

(t) 
= f 	(x, t) dx — f (a(t), 	(t) . 	(2.7) 

a  ut 

co a f 

For our problem, 

a(t) = t and f (x, t) = (x — t)h(x), 	 (2.8) 

where h(x) is continuous. Then, 4(x, t) = -h(x) is continuous. Note that 

	

f(a(t),t) = f(t,t) = (t — t)h(t) = 0. 	 (2.9) 

From (2.7-2.9), we conclude that 

g/(t) = 	ft c°  (x — t)h(x) dx I = 	jit  h(x) dx. 

1( 	f (x) dx) 	— f (a(t)) (t), 
Since 



2.1. SOLUTIONS TO CHAPTER 2 EXERCISES 	 51 

it follows that 
g"(t) = h(t), 

which is what we wanted to show. 

Problem 7: The continuously compounded 6-month, 12-month, 18-month, 
and 24-month zero rates are 5%, 5.25%, 5.35%, and 5.5%, respectively. Find 
the price of a two year semiannual coupon bond with coupon rate 5%. 

Solution: The value B of the semiannual coupon bond is 

B= 
2 

100 e-r(0.0.5)0.5 • 

C 

+ 2 
	

r(C14)  + -
2 

100 e-  100 e- 	 r(0.1.5)1.5 — 

+ (100 + — 100) e-r(0,2)2, 

2 

where C = 0.05, and r(0,0.5) = 0.05, r(0,1) = 0.0525, r(0,1.5) = 0.0535, 
r(0, 2) = 0.055. 

The data below refers to the pseudocode from Table 2.5 of [2] for com-
puting the bond price given the zero rate curve. 
Input: n = 4 

t_cash_flow = [0.5 1 1.5 2] ; v_cash_flow = [2.5 2.5 2.5 102.5] . 

The discount factors are 

disc = [0.97530991 0.94885432 0.92288560 0.89583414], 

and the price of the bond is B = 98.940623. ❑ 

Problem 8: The continuously compounded 6-month, 12-month, 18-month, 
and 24-month zero rates are 5%, 5.25%, 5.35%, and 5.5%, respectively. What 
is the par yield for a 2-year semiannual coupon bond? 

Solution: Par yield is the coupon rate C that makes the value of the bond 
equal to its face value. For a 2-year semiannual coupon bond, the par yield 
can be found by solving 

C 	
2 

100 = 
C 
— 100 e-r(c).")" + —

2 
100 e-r(°:1)  + — 100 e-r0.1:5)1:5  

2  

+ 1100 + 
C 
— 100 e-r(°:2)2. 
2 

Thus, 
2(1 — e-r(°,2)2) 

C = 	  e-r(0.0.5)0.5 	e-r(0.1) 	e-r(04.5)1.5 	e-r(0.2)2' 
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For the zero rates given in this problem, the corresponding value of the par 
yield is C = 0.05566075, i.e., 5.566075%. 	❑ 

Problem 9: Assume that the continuously compounded instantaneous in-
terest rate curve has the form 

r(t) = 0.05 + 0.0051n(1 + t), V t > 0. 

(i) Find the corresponding zero rate curve; 
(ii) Compute the 6-month, 12-month, 18-month, and 24-month discount fac-
tors; 
(iii) Find the price of a two year semiannual coupon bond with coupon rate 
5%, 

Solution: 
(i) Recall that the zero rate curve r(0, t) can be obtained from the instanta-
neous interest rate curve r(t) as follows: 

f t 

t 
r(0,t) = - 	r(r) dr, V t > 0. 

Then, 

r(0,t) = 	f t  0.05 + 0.0051n(1 +r) dr 
0 

1 
-
t 

(0.05t + 0.005 ( (1 + t) ln(1 + t) - t ) 

= 0.045 + 0.005(1 + t)
ln(l

t
+ t)  

(ii) The 6-month, 12-month, 18-month, and 24-month discount factors are, 
respectively, 

disc(1) = e-r(0,0.5)0.5 = 0.97478242; 

disc(2) = e-r(0'1)  = 0.94939392; 

disc(3) = e-r(°'1.5)1.5 = 0.92408277; 

disc(4) = e-r(o,2)2 = 0.89899376. 

(iii) The price of the two year semiannual coupon bond with 5% coupon rate 
is 

0.05 	 0.05 	 0.05 
B -= 	 100 e-r(0,0.5)0.5   100 e-r(0,1) + 	 100 e-r(C)'1' 5)1'5  

2 	 2 	 2 
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+ (100 
+0.05  100) e-r(0.2)2 

2 
= 2.5 disc(1) + 2.5 disc(2) + 2.5 disc(3) + 102.5 disc(4) 
= 99.267508. ❑ 

Problem 10: The yield of a semiannual coupon bond with 6% coupon rate 
and 30 months to maturity is 9%. What are the price, duration and convexity 
of the bond? 

Solution: The price, duration, and convexity of the bond can be obtained 
from the yield y of the bond as follows: 

4 

B = E 3 exp (--
2
y) + 103 exp(  —

2
-5y) ; 

i 1 	3i ( ' 
D = 	

x. 2_, exp
(

-2y) + 103 exp Hy)) ; 

1 	9i 	i \ 
exP

+ 103 4exp (- y)) 

i=1 

The data below refers to the pseudocode from Table 2.7 of [2] for computing 
the price, duration and convexity of a bond given the yield of the bond. 
Input: n = 5; y = 0.09; 

t_cash_flow = [0.5 1 1.5 2 2.5] ; v_cash_flow = [3 3 3 3 103] . 

Output: bond price B = 92.983915, bond duration D = 2.352418, and bond 
convexity C = 5.736739. ❑ 

Problem 11: The yield of a 14 months quarterly coupon bond with 8% 
coupon rate is 7%. Compute the price, duration, and convexity of the bond. 

Solution: The quarterly bond will pay a cash flow of 1.75 in 2, 5, 8, and 11 
months, and will pay 101.75 at maturity in 14 months. The formulas for the 
price, duration, and convexity of the bond in terms of the yield y of the bond 
are similar to those from (2.10-2.12). For example, the price of the bond can 
be computed as follows: 

B = 1.75 exp (--
2 

12
y) + 1.75 exp (--

5 
12

y) + 1.75 exp (--8  y) 
12 

+1.75 exp (—L
l

u 	
14 

+ 101.75 exp ky) . 
12-) 
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The data below refers to the pseudocode from Table 2.7 of [2] for computing 
the price, duration and convexity of a bond given the yield of the bond. 
Input: n = 5; y = 0.07; 

12 12 12 12 12 ' 
t_cash_flow = 2 5 8 11 14 v_cash_flow = [2 2 2 2 102] . 

Output: bond price B = 101.704888, bond duration D = 1.118911, and bond 
convexity C = 1.285705. ❑ 

Problem 12: Compute the price, duration and convexity of a two year 
semiannual coupon bond with face value 100 and coupon rate 8%, if the zero 
rate curve is given by r(0, t) = 0.05 + 0.011n (1 + 1). 

Solution: The data below refers to the pseudocode from Table 2.5 of [2] for 
computing the price of a bond given the zero rate curve. 
Input: n = 4; zero rate r(0, t) = 0.05 + 0.011n (1 + 1); 

t_cash_flow = [0.5 1 1.5 2] ; v_cash_flow =- [4 4 4 104] . 

Discount factors: 

disc = [0.97422235 0.94738033 0.91998838 0.89238025]. 

Output: Bond price B = 104.173911. 

Note: To compute the duration and convexity of the bond, the yield would 
have to be known. The yield can be computed, e.g., by using Newton's 
method, which is discussed in Chapter 8. We obtain that the yield of the 
bond is 0.056792, i.e., 5.6792%, and the duration and convexity of the bond 
are D = 1.8901 and C = 3.6895, respectively. ❑ 

Problem 13: If the coupon rate of a bond goes up, what can be said about 
the value of the bond and its duration? Give a financial argument. Check 
your answer mathematically, i.e., by computing PZ,- and F,-, and showing that 
these functions are either always positive or always negative. 

Solution: If the coupon rate goes up, the coupon payments increase and 
therefore the value of the bond increases. 

The duration of the bond is the time weighted average of the cash flows, 
discounted with respect to the yield of the bond. If the coupon rate increases, 
the duration of the bond decreases. This is due to the fact that the earlier 
cash flows equal to the coupon payments become a higher fraction of the 
payment made at maturity, which is equal to the face value of the bond plus 
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a coupon payment, i.e., 	increases as c increases, where c is one coupon 
payment. ❑ 

Problem 14: By how much would the price of a ten year zero-coupon bond 
change if the yield increases by ten basis points? (One percentage point is 
equal to 100 basis points. Thus, 10 basis points is equal to 0.001.) 

Solution: The duration of a zero—coupon bond is equal to the maturity of the 
bond, i.e., D = T = 10. For small changes Ay in the yield, the percentage 
change in the value of a bond can be estimated as follows: 

AB 
— Ay D = — 0.001 • 10 = — 0.01. 

Problem 15: A five year bond with duration 32 years is worth 102. Find 
an approximate price of the bond if the yield decreases by fifty basis points. 

Solution: Note that, since the yield of the bond decreases, the value of the 
bond must increase. 

Recall that the percentage change in the price of the bond can be approx-
imated by the duration of the bond multiplied by the parallel shift in the 
yield curve, with opposite sign, i.e., 

AB 
— Ay D. 

For B = 102, D = 3.5 and Ay = —0.005 (since 1% = 100 bp), we find that 

AB 	— Ay D B = 1.785. 

The new value of the bond is 

B,„ = B AB = 103.75. I=1 

Problem 16: Establish the following relationship between duration and 
convexity: 

c D2 
ap 

 

Solution: Recall that 

1 aB 	 1 82B 
D =   and C = 

B ay 	 B aye 

B 
We conclude that the price of the bond decreases by 1%. ❑ 

ay 
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8B 
— — DB. 	 (2.13) 

ay 

Using Product Rule to differentiate (2.13) with respect to y, we find that 

82BaD 	0B 	aD 
	 = ,- B — D 77— = — w i  B 1 3 — D(—DB) 
aye 	0Y 	ay 

= — B ± B D2  = B (D2  — w) 
ay 
ap 	 aD 

We conclude that 

1 32B 	8D 
C = 	= D2  — 

ay
. ❑ Bat 

56 

Therefore, 
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2.2 Supplemental Exercises 

1. Assume that the continuously compounded instantaneous rate curve 
r(t) is given by 

r(t) = 
0.05 

 

1 + exp(—(1 + t)2) •  

(i) Use Simpson's Rule to compute the 1—year and 2—year discount fac-
tors with six decimal digits accuracy, and compute the 3—year discount 
factor with eight decimal digits accuracy. 

(ii) Find the value of a three year yearly coupon bond with coupon rate 
5% (and face value 100). 

2. Consider a six months plain vanilla European put option with strike 50 
on a lognormally distributed underlying asset paying dividends contin-
uously at 2%. Assume that interest rates are constant at 4%. 

Use risk—neutral valuation to write the value of the put as an integral 
over a finite interval. Find the value of the put option with six decimal 
digits accuracy using the Midpoint Rule and using Simpson's Rule. 
Also, compute the Black—Scholes value PBS of the put and report the 
approximation errors of the numerical integration approximations at 
each step. 

3. The prices of three call options with strikes 45, 50, and 55, on the 
same underlying asset and with the same maturity, are $4, $6, and $9, 
respectively. Create a butterfly spread by going long a 45—call and a 
55—call, and shorting two 50—calls What are the payoff and the P&L 
at maturity of the butterfly spread? When would the butterfly spread 
be profitable? Assume, for simplicity, that interest rates are zero. 

4. Dollar duration is defined as 

aB 
D5 = ay 

and measures by how much the value of a bond portfolio changes for a 
small parallel shift in the yield curve. 

Similarly, dollar convexity is defined as 

azi3 
C$= ay2  . 
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Note that, unlike classical duration and convexity, which can only be 
computed for individual bonds, dollar duration and dollar convexity can 
be estimated for any bond portfolio, assuming all bond yields change 
by the same amount. In particular, for a bond with value B, duration 
D, and convexity C, the dollar duration and the dollar convexity can 
be computed as 

D$ = BD and Cs = BC. 

You invest $1 million in a bond with duration 3.2 and convexity 16 and 
$2.5 million in a bond with duration 4 and convexity 24. 

(i) What are the dollar duration and dollar convexity of your portfolio? 

(ii) If the yield goes up by ten basis points, find new approximate values 
for each of the bonds. What is the new value of the portfolio? 

(iii) You can buy or sell two other bonds, one with duration 1.6 and 
convexity 12 and another one with duration 3.2 and convexity 20. What 
positions could you take in these bonds to immunize your portfolio (i.e., 
to obtain a portfolio with zero dollar duration and dollar convexity)? 

2.3 Solutions to Supplemental Exercises 

Problem 1: Assume that the continuously compounded instantaneous rate 
curve r(t) is given by 

r(t) = 1 + exp(—(1 + t)2) 

Use Simpson's Rule to compute the 1—year and 2—year discount factors with 
six decimal digits accuracy, and compute the 3—year discount factor with 
eight decimal digits accuracy. 

(ii) Find the value of a three year yearly coupon bond with coupon rate 5% 
(and face value 100). 

Solution: (i) Recall that the discount factor corresponding to time t is 
t 

exp (— f r(r) dr) . 
o 

Using Simpson's Rule, we obtain that the 1—year, 2—year, and 3—year discount 
factors are 

disc(1) = 0.956595; disc(2) = 0.910128; disc(3) = 0.86574100. 

0.05 
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(ii) The value of the three year yearly coupon bond is 

B = 5 disc(1) + 5 disc(2) + 105 disc(3) = 100.236424. ❑ 

Problem 2: Consider a six months plain vanilla European put option with 
strike 50 on a lognormally distributed underlying asset paying dividends con-
tinuously at 2%. Assume that interest rates are constant at 4%. 

Use risk-neutral valuation to write the value of the put as an integral 
over a finite interval. Find the value of the put option with six decimal digits 
accuracy using the Midpoint Rule and using Simpson's Rule. Also, compute 
the Black-Scholes value PBS of the put and report the approximation errors 
of the numerical integration approximations at each step. 

Solution: If the underlying asset follows a lognormal distribution, the value 
S(T) of the underlying asset at maturity is a lognormal variable given by 

0.2 
ln(S(T)) = ln(S(0)) + ( 	—2  r - q - )T + 

where o is the volatility of the underlying asset. Then, the probability density 
function h(y) of S(T) is 

h(y) = 

2 

1 	 (ln y - ln(S(0)) - - q - 2.0 
   exp   , (2.14) 

yo- N/27rT 	 2o-2T 

if y > 0, and h(y) = 0 if y < O. 
Using risk-neutral valuation, we find that the value of the put is given by 

P 	e-rT 	[max(K - S(T), 0)] 

= e-rT  f (K YAW ClY 
	

(2.15) 

where h(y) is given by (2.14). 
The Black-Scholes value of the put is PBS = 4.863603. To compute a 

numerical approximation of the integral (2.15), we start with a partition 
of the interval [0, K] into 4 intervals, and double the numbers of intervals 
up to 8192 intervals. We report the Midpoint Rule and Simpson's Rule 
approximations to (2.15) and the corresponding approximation errors to the 
Black-Scholes value PBS in the table below: 

We first note that the approximation error does not go below 6 • 10-6. 
This is due to the fact that the Black-Scholes value of the put, which is given 
by 

PBS = Ke-r(T-t)Ar 
 

111( d2) — Se-q(T-t)N( 
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No. Intervals Midpoint Rule Error Simpson's Rule Error 
4 5.075832 0.212228 4.855908 0.007696 
8 4.922961 0.059357 4.863955 0.000351 
16 4.878220 0.014616 4.863631 0.000027 
32 4.867248 0.003644 4.863611 0.000007 
64 4.864518 0.000914 4.863610 0.000006 

128 4.863837 0.000233 4.863610 0.000006 
256 4.863666 0.000020 4.863609 0.000006 
512 4.863624 0.000009 4.863609 0.000006 

1024 4.863613 0.000006 4.863609 0.000006 
2048 4.863610 0.000006 4.863609 0.000006 
4096 4.863610 0.000006 4.863609 0.000006 
8192 4.863610 0.000006 4.863609 0.000006 

is computed using numerical approximations to estimate the terms N(-dl) 
and N(-d2). The approximation error of these approximations is on the 
order of 10-7. Using numerical integration, the real value of the put option 
is computed, but the error of the Black-Scholes value will propagate to the 
approximation errors of the numerical integration. 

If we consider that convergence is achieved when the error is less than 
10-5, then convergence is achieved for 512 intervals for the Midpoint Rule 
and for 32 intervals for Simpson's Rule. This was to be expected given the 
quadratic convergence of the Midpoint Rule and the fourth order convergence 
of Simpson's Rule. ❑ 

Problem 3: The prices of three call options with strikes 45, 50, and 55, on 
the same underlying asset and with the same maturity, are $4, $6, and $9, 
respectively. Create a butterfly spread by going long a 45-call and a 55-call, 
and shorting two 50-calls. What are the payoff and the P&L at maturity 
of the butterfly spread? When would the butterfly spread be profitable? 
Assume, for simplicity, that interest rates are zero. 

Solution: The payoff V(T) of the butterfly spread at maturity is 

0, 	if S(T) < 45; 

V(T) .= 
S(T) - 45, 	if 45 
55 - S(T), 	if 50 

< 
< 

S(T) 
S(T) 

< 
< 

50; 
55; 

0, 	if 	55 < S(T). 

The cost to set up the butterfly spread is 

$4 - $12 + $9 = $1. 
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The P&L at maturity is equal to the payoff V(T) minus the future value of 
$1, the setup cost. Since interest rates are zero, the future value of $1 is $1, 
and we conclude that 

P&L(T) = 

/ 	—1, 
S(T) — 46, 
54 — S(T), 

—1, 

if S(T) 
if 45 < 
if 50 < 
if 55 < 

< 45; 
S(T) 
S(T) 
S(T). 

< 
< 

50; 
55; 

The butterfly spread will be profitable if 46 < S(T) < 54, i.e., if the spot 
price at maturity of the underlying asset will be between $46 and $54. 

If r 0, it follows similarly that the butterfly spread is profitable if 

45 ± erT  < S(T) < 55 — erT  0 

Problem 4: You invest $1 million in a bond with duration 3.2 and convexity 
16 and $2.5 million in a bond with duration 4 and convexity 24. 

(i) What are the dollar duration and dollar convexity of your portfolio? 

(ii) If the yield goes up by ten basis points, find new approximate values for 
each of the bonds. What is the new value of the portfolio? 

(iii) You can buy or sell two other bonds, one with duration 1.6 and convexity 
12 and another one with duration 3.2 and convexity 20. What positions could 
you take in these bonds to immunize your portfolio (i.e., to obtain a portfolio 
with zero dollar duration and dollar convexity)? 

Solution: Recall that the dollar duration and the dollar convexity of a position 
of size B in a bond with duration D and convexity C are 

Ds = BD and Cs = BC. 

(i) The value, duration and convexity of the two bond positions are 

B1  = 1, 000, 000; D1 = 3.2; C1 = 16; 

B2 = 2,500,000; D2 = 4; C1  = 24. 

Denote by B = B1  + B2 the value of the bond portfolio. The dollar 
duration and dollar convexity of the portfolio are 

_aB _ 8B1 	aB2  Ds  = 
ay 	ay 	ay 

= B1 D1  + B2D2 = $13,200,000. 
82B 	a2B  . a2 B  

Cs  = 
_ 

aye 	± ay2 

= Bic, + B2C2  = $76,000,000. 
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(ii) Using dollar duration and dollar convexity, the approximate formula 

AB 	 1 
DAy 	—

2
C(Ay)2. 

for the change in the value of a bond can be written as 

1 
AB 	DsAy + 2Cs(Ay)2. 

Formula (2.16) also holds for bond portfolios, since the dollar duration and 
the dollar convexity of a bond portfolio are equal to the sum of the dollar 
durations and of the dollar convexities of the bonds making up the portfolio, 
respectively. 

Using (2.16), we find that the new value of the bond portfolio is 

Bnew = B ABP.--1 $3,500,000 — $13, 200 + $38 -= $3,486,838. 

(iii) Let B3 and B4 be the value of the positions taken in the bond with 
duration D3 = 1.6 and convexity C3 = 12 and in the bond with duration 
D4 = 3.2 and convexity C4 = 20, respectively. 

If II = B B3 + B4 denotes the value of the new portfolio, then 

DWI) = D$(B) + Ds(B3) + Ds(B4) 
= $13.2mil + D3B3 + D4-134; 

Cs(II) = Ds(B) + Ds(B3) + Ds(B4) 
= $76mil + C3B3 + C4B4. 

Then, D$(II) = 0 and Cs(II) = 0 if and only if 

$13.2mil + 1.6B3 + 3.2B4 = 0; (2.17) $76mi1 + 12B3 + 20B4 = 0, 

The system (2.17) has solution B3 = $3.25mi1 and B4 = —5.75mi1. 
We conclude that, to immunize your portfolio, one should buy $3.25 mil-

lion worth of the bond with duration 1.6 and convexity 12 and sell $5.75 
million worth of the bond with duration 3.2 and convexity 20. ❑ 

(2.16) 



Chapter 3 

Probability concepts. Black—Scholes formula. 
Greeks and Hedging. 

3.1 Solutions to Chapter 3 Exercises 

Problem 1: Let k be a positive integer with 2 < k < 12. You throw two 
fair dice. If the sum of the dice is k, you win w(k), or lose 1 otherwise. Find 
the smallest value of w(k) thats makes the game worth playing. 

Solution: Consider the probability space S of all possible outcomes of throw-
ing of the two dice, i.e., 

S -= {(x,Y) x = 1 : 6, y = 1 : 6}. 

Here, x and y denote the outcomes of the first and second die, respectively. 
Since the dice are assumed to be fair and the tosses are assumed to be inde-
pendent of each other, every outcome (x, y) has probability A of occurring. 
Formally, the discrete probability function P : S [0, 1] is 

P(x,y) = —
36' V (x,  y) E S. 

Let k be a fixed positive integer with 2 < k < 12. The value X of your 
winning (or losses) is the random variable X : S —> JR given by 

w(k), if x + y = k; X(x,y) = —1, else. 

If 2 < k < 7, then x + y = k if and only if 

(x,y) E {(1, k — 1), (2,k — 2),..., (k —1,1)1. 

In other words, x + y = k for exactly k — 1 of the total of 36 outcomes from 
S. Then, 

1 
E[X] = E p(x,y)x(x,y) = 	> X(x,y) 

(x.y)ES 	 (x,y)ES 

63 
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k — 1 
 w(k) + 

36 — (k — 1)
( 1) = 

w(k)(k — 1) — 37 + k
(3.1) =  

36 	 36 	 36 

The game is worth playing if E[X] > 0. From (3.1), it follows that the 
game should be played if 

37 —  
w(k) > 	

— 1k ' 
for 2 < k < 7. 

k  

If 8 < k < 12, then x + y = k if and only if 

(x,y) e {(6,k — 6), (5, k — 5), ... , (k — 6,6)1. 

In other words, x + y = k exactly 13 — k times. Then, 

36 — (13 — k) 
 ( 1) E[X] = —

3
1
6 

E X (x, y) = 
13

3-6 
k
w(k) + 

36 
(x,y)ES 

w(k)(13 — k) — 23 — k 

From (3.2), it follows that the game is worth playing if E[X] > 0, i.e., if 

w(k) > 
23 + k

for 8 < k < 12. 
13 — k' 

The values of w(k) for k = 2 : 12 are as follows: 

w(2) = w(12) = 35; w(3) = w(11) = 17; w(4) = w(10) = 11; 

w(5) = w(9) = 8; w(6) = w(8) = 6.2; w(7) = 5. ❑ 

Problem 2: A coin lands heads with probability p and tails with probability 
1 — p. Let X be the number of times you must flip the coin until it lands 
heads. What are E[X] and var(X)? 

Solution: If the first coin toss is heads (which happens with probability p), 
then X = 1. If the first coin toss is tails (which happens with probability 
1 — p), then the coin tossing process resets and the number of steps before 
the coin lands heads will be 1 plus the expected number of coin tosses until 
the coin lands heads. In other words, 

E[X] = p • 1 + (1 — p) • (1 + E[X]) = 1 + (1 — p)E[X]. 

We conclude that 

= 
36 

(3.2) 

E[X] = 1 —. 
P 
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Another way of computing E[X] is as follows: The coin will first land 
heads in the k-th toss, which corresponds to X = k, for a coin toss sequence 
of T T T. ..T H, i.e., the first k - 1 tosses are tails, followed by heads once. 
This coin toss sequence occurs with probability P(T)k-1P(H) = (1 -Ak-rp. 

Then, 

oc 

E[X] 	E k (1 - p)k-1p - 
1 

P 	
p 	

E k(1 - p)k . 	(3.3) 
—  

k=1 	 k=1 

Recall that 

T(n,l,x) = E kxk 
k=1 

X - (n + 1)xn+1  + nxn+2  
(3.4) 

 

(1 - x)2  

By letting x = 1- p in (3.4), we find that 

ko_ p)k 	- p (n + 1)(1 - prn(1 A +1 n n+2 
p2 	 p2 	

P2 	
• 

k=1 

From (3.3) and (3.5) and since 0 < 1 - p < 1, we conclude that 

(3.5) 

E[X] = 	lim 	k(1. p)k 	P 	 1
- p 	1 
	 = 

1 p slim  k=i 	 1 p p2  

Similarly, 

x 	 n 

E[X 2 ] = E k2 (1 _ p)k-1p =  P  H. E k2(1 - p)k. 
1 - p n--∎ x 

k=1 	 k=1 

Since 

T(n, 2, x) = E k2 Xk  

k=1 
(n  1)2xn+1 	 1)xn+2 n2xn+3 x + x 2  - 	+ (2n2  + 2n - _= 

(1 - x)3  

we find that 
n 

E[X2] =  P   lim E k2(1 p)k  = P   lira T(n
" 
2 1 - p) 

1-7)11-' x  k=1 	
1 — p n—>oc  

p 1 - p + (1 - p)2  _ 2 - p 
1 - p 	p3 	 p2 ' 
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Therefore, 

- 	1 	- 
var(X) = E[X2 ] - (EIXD2  = 2 pe p  p2 	

1 
	pe p .  ❑ 

Problem 3: Over each of three consecutive time intervals of length 'r = 1/12, 
the price of a stock with spot price So = 40 at time t = 0 will either go up 
by a factor u = 1.05 with probability p = 0.6, or down by a factor d = 0.96 
with probability 1 - p = 0.4. Compute the expected value and the variance 
of the stock price at time T = 37, i.e., compute E[ST] and var(ST). 

Solution: The probability space S is the set of all different paths that the 
stock could follow three consecutive time intervals, i.e., 

S = {UUU, UU D, U DU, UDD, DUU, DUD, DDU, DDD}, 

where U represents an "up" move and D represents a "down" move. 
The value ST of the stock at time T is a random variable defined on S, 

and is given by 

ST(UUU) = Sou3; 	ST(DDD) = Sod3; 
ST (UUD) = ST(U DU) = ST (DUU) = Sou2d; 
ST(UDD) = ST(DUD) = ST(DDU) = Soud2. 

Note that 

P(UUU) = p3; 	P(DDD) =- (1 - p)3; 
P(UUD) = P(UDU) = P(DUU) = p2(1 - p); 
P(UDD) = P(DUD) = P(DDU) = p(1 - p)2 . 

We conclude that 

E[ST] = Sou3  .133  + 3Sou2d • p2(1 — p) + 3Soud2  • p(1 	p)2  
+ Sod' 	(1 — 13) 3  

= 41.7036; 

E[(ST)2] = (Sou3)2  • p3  + 3(Sou2d)2  • p2(1 — p) + 3(Soud2)2  • p(1 — p)2  
+ (Sod3)2  • (1 — p)3 	= 	1749.0762; 

var(ST) = E[(ST)2 ] 	(E[ST])2 	= 9.8835. 	❑ 

Problem 4: The density function of the exponential random variable X 
with parameter a > 0 is 

f (x) = 
{

a e-  a , if x > 0; 
0, if x < 0. 
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(i) Show that the function f(x) is indeed a density function. It is clear 
that f (x) > 0, for any x E R. Prove that 

L 

fx  
f (x) dx = 1. 

. 

(ii) Show that the expected value and the variance of the exponential 
random variable X are E[X] = a and var(X) -= 

(iii) Show that the cumulative density of X is 

F(x) -= 
{ 1 - e-", if x > 0 

0, 	otherwise 

(iv) Show that 

ftP(X > t) = 	f (x) dx = e-at, V t > 0. 

Note: this result is used to show that the exponential variable is memoryless, 
i.e., P(X >t+s X> t) = P(X > s). 

Solution: (i) It is easy to see that 

f x 

L f (x) dx = 

	

	e' dx = lim f e-as dx 
. 	0 	 0  

= lim -e-ax) x=t 
lim (1 - e't) = 1. I x=0 	t-,0c 

(ii) By integration by parts we find that 

xe' 1 f 	 xe-ax e-ax 
f xe-ax dx = 	+ 	e-'x dx = 	 

a 	a 	 a 	a2 

x2e-ax 2 
x 2e' dx = 	+ 	xe-' dx 

x2e-ax 2xe's 2e-'s 

a 	a2 	a3 

Then, 

f. 
f (x) dx = a /

x 
 xe-"x dx = lim f xe-ax  dx 

t-,x 0  

xe -ax 

a 	

ee-ack: 	 t -at  Cat 	1 

0 = 
lim 

 a2 
= lim 

	) 

E[X] = 

a 
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E[X2] 	x2  f(x) 

= 	a li
t-“x) 

= a lirn 
t- >D0 

dx = a f 	x2e-ax dx = 
0 

x2e-ax 	2xe-ax 	2e-ax 

a lim f x2e-ax dx 
t_>00 	0 

t 

0 

2  

cd) 

lira 
 a 

t2 e-at 
a2 

2te-'t  
a3 

2e «t 

a a2 a3 
2 

a2 . 

Therefore, 
2 

var(X) = E[X 2] - (E[X])2  = (7  - a2 

(iii) If x < 0, then F(x) = f x0,3  f(s) ds = 0. 
If x > 0, then 

F(x) = f x  f (s) ds = 
fo

x a e' ds = (-e-as)Io = 1 - e'. 

(iv) If t > 0, then 

P(X >t) = 1- P(X < t) = 1 - f f(x) dx 

= 1- f a e'rx dx = 1- (-e-as) to  

-at = e . 

Recall that the conditional probability of A given B is 

P(An B) 
P(A1.13) = 	p(B)   . 

Let 8, t > 0. Then, from (3.6) and (3.7), we find that 

P((X > t + s) n (X > t)) 

(3.6) 

(3.7) 

P(X > t + .9)  
P(X > t) 

P(X>t+sIX>t) = 
P(X > t) 

e-a(t+s) 
	 = e' = P(X > s). e-at  

Problem 5: Show that 

fab 

	 b 

f(x)g(x) dx 	(fa  f2(X) dx 1 2 (f g2(x) dx) , 
a 
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for any two continuous functions f, g : R R. 

Solution: Let a E R be an arbitrary real number. Note that 

f
b (f (x) + ag(x))2dx 
	I 

b 
(f 2(x)+ 2a f (x)g(x) + a2g2(x)) dx 

b 	 b 	 b = 
a2  f g2(x)dx + 2a I f (x)g(x)dx + f f 2  (x)dx 

a 	 a 	 a 
> 0, V a E IR. 

Recall that a quadratic polynomial P(x) = Axe  + Bx + C is nonnegative 
for all real values of x if and only if P(x) has at most one real double root, 
which happens if and only if B2  — 4AC < 0. 

For our problem, it follows that 

	

a2 I

b 	 b 	 b 
g2(x) dx + 2a f f(x)g(x) dx + I f 2(x) dx >_ 0, VaER 

	

a 	 a 	 a 

if and only if 

b 	2 

	

(2 
	b 

  f   f ( x ) g ( x ) dx )  	
b _ 	) 

—   4   (f   f 2(x)   dx)   (fa    g2(x) dx  < 0, 
a  	a 

which is equivalent to 

f ib 	 b 	1 	b 	1 
f(x)g(x) dx < (fa  f2(X) dx) (f g2(x) dx) 	0 

a 

Problem 6: Use the Black-Scholes formula to price both a put and a call 
option with strike 45 expiring in six months on an underlying asset with spot 
price 50 and volatility 20% paying dividends continuously at 2%, if interest 
rates are constant at 6%. 

Solution: Input for the Black-Scholes formula: 

S = 50; K = 45; T — t = 0.5; a = 0.2; q = 0.02; r = 0.06. 

The Black-Scholes price of the call is C = 6.508363 and the price of the put 
is P = 0.675920. 0 

Problem 7: What is the value of a European Put option with strike K = 0? 
What is the value of a European Call option with strike K = 0? How do you 
hedge a short position in such a call option? 
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Solution: A put option with strike 0 will never be exercised, since it would 
mean selling the underlying asset for the price K = 0. The price of the put 
option is 0. 

A call with strike 0 will always be exercised, since it gives the right to 
buy one unit of the underlying asset at zero cost. The value of the call at 
maturity is V(T) = S(T), and therefore V(0) = e-qTS(0). This can be seen 
by building a portfolio with a long position on the call option and a short 
position of e-qT  shares, or by using risk-neutral pricing: 

	

V(0) = e-rTERiv[s(T)] = e-rT e(r-e)Ts(0) 	e-4Ts(0).  

A short position in the call option is hedged (statically) by buying one 
share of the underlying asset. ❑ 

Problem 8: Use formula p(C) = K(T - t)e- r T-t 	72 \ ) for p(C) and the 
Put-Call parity to show that 

p(P) = - K(T - t)e-r(T-t) N(-d2). 

Solution: Recall that 

a 	—ap 
 p(C) = 	 

c and p(P) = 
ar 	 ar 

By differentiating the Put-Call parity formula 

P 	se-q(T-t) C = Ke-r(T-t)  

with respect to r, we find that 

p(P) - p(C) = - K(T _ oe-r(T-t).  

Therefore, 

p(P) = p(C) - K(T - t)e-r(T-t)  

= K(T - t)e-r(T-t)N(d2) 	K(T - t)e-r(T-t)  
= -K(T-t)e-:(Titt))  N(1H-dN2)(:/2)) (2_,  

-K(T - t)e- 

since 1 - N(d2) = N(-d2). ❑ 

Problem 9: The sensitivity of the vega of a portfolio with respect to volatil- 
ity and to the price of the underlying asset are often important to estimate, 
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e.g., for pricing volatility swaps. These two Greeks are called volga and vanna 
and are defined as follows: 

volga(V) = 
a(vega(V))

and vanna(V) = 
a(

v
ega(V))

.  
aa- 	 as 

It is easy to see that 

	

a2 v 	 02v  
volga(V) = 	 and vanna(V) = 8 .2 	 &sac.  

The name volga is the short for "volatility gamma" . Also, vanna can be 
interpreted as the rate of change of the Delta with respect to the volatility 
of the underlying asset, i.e., 

vanna(V) = 
a(ACV))

. ao- 

(i) Compute the volga and vanna for a plain vanilla European call option on 
an asset paying dividends continuously at the rate q. 

(ii) Use the Put-Call parity to compute the volga and vanna for a plain 
vanilla European put option. 

Solution: (i) Recall that 

A 
vega(C) = Se-q(T-tYT t 

 1  

21r -
e 2 

; 

A(C) = e-q(T-t)N(di ), 

where 

d1 = 
o-VT - t 

ln (tsc') + (r - q)(T - t) 	a--VT - t .--  
o-VT - t 	

+ 	
2 

Then, 

	

a(vega(C))  _   1 , 4 ad, 
volga(C) = 	ao. 	Se-q(T-t)VT t 	 al  e 2  - ; 

	

V 2 Tr 	ao- 

	

a(A(0)  — e_q(T _t) N, (di)  ad, 	(T -t) 	 

	

= e-g 	1 _ 21 ad 
vanna(C) = 

ao- 	 aa- 	. 0 Tr 6 

<1  awl
. 

ln (i) + (r - q + I) (T - t) 
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Note that 

	

ln (14) + (r q)(T t) 	-t 
o-2-VT - t 	+ 2 

In(x) + (r-q- 2) (T - t) 

o-2VT - t 
d2  
0 

We conclude that 

	

A d 	id2  volga(C) = Se-q(T-t)-VT 
	 1 

t 	e- 	• 

	

- V Tr r 	c 
_ 4 d2  

vanna(C) -= - e-q(T-t) 	
1 e  2 - 

	

4 Tr 	a 

(ii) By differentiating the Put-Call parity P + Se-q(T-t) - C = Ke-r(T-t) 
with respect to a, we find that 

oPac 

	

vega(P) = 	= 	= vega(C). 

Therefore, 

a(vega(P)) 	a(vega(C))  
volga(P) = 	 volga(C); 

	

au 	au 
a(vega(P)) 	a(veg

s
a(C))  

vanna(P) = 	 vanna(C), 

	

as 	a 
where volga(C) and vanna(C) are given by (3.8) and (3.9), respectively. ❑ 

Problem 10: Show that an ATM call on an underlying asset paying divi-
dends continuously at rate q is worth more than an ATM put with the same 
maturity if and only if q < r, where r is the constant risk free rate. Use the 
Put-Call parity, and then use the Black-Scholes formula to prove this result. 

Solution: For at-the-money options, i.e., with S = K, the Put-Call parity 
can be written as 

C - P = Se-q(T-t)  - Ke-r(T-t) = Ke-q(T-t)  Ke-r(T-t)  
= Ke-r(T-t) (e(r-q)(T-t) 1) 

ad, 
au 

(3.8) 

(3.9) 

Therefore, C > P if and only if e(r-q)(T-t)  > 1, which is equivalent to r > q. 
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Alternatively, the Black-Scholes formulas for at-the-money options can 
be written as 

C = Ke-q(T-t) N(di) - Ke-r(T-t) N(d2); 

P = Ke-r(T-t) N(-d2) - Ke-q(T-t)  

where 

	

di = Cr  q  + 
2 
 -VT 	

2 
t and d2  = (r q a) VT - t. 

Then 

	

C > P < 	> e-q(T-ON(di) - r(T  e- -0N(d2) > e-r(T-oN(_d2) - e-qp--0N(_d1) 

 	 e-q(T-t)  (N(di) N(-d1)) > e-r(T-t)(N' '2‘  + N(-d2)) 
	 e-q(T-t) > e-r(T-t) 

	

< 	> r> q, 

since N(d1) + N(-d1) = N(d2) + N(-d2) = 1. ❑ 

Problem 11: (i) Show that the Theta of a plain vanilla European call option 
on a non-dividend-paying asset is always negative. 

(ii) For long dated (i.e., with T - t large) ATM calls on an underlying asset 
paying dividends continuously at a rate equal to the constant risk-free rate, 
i.e., with q = r, show that the Theta may be positive. 

Solution: (i) Recall that 

SCIe-q(T-t)  

	

O(C) = 	 gse-q(T-o N(di ) 	rKe-r(T-oN(d2).  
2 N/271-(T - t) 

For a non-dividend-paying asset, i.e., for q = 0, we find that 

(C) = 	Sa   	- rKe-r(T-t)N(d2) < 0. 
2 -V27(T - t) 

(ii) If q = r, the Theta of an ATM call (i.e., with S = K) is 

Ko.e-r(T-t) e a?  
O(C) =  	+ rKe-r(T-t) N (di) — rKe-r(T-t) N(d2) 2V27(T - 

d2 a 	 
) 

Ke-r(T-i) (r(N(d0 	e  2 - N(d2)) 	2,07(T - t) 
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where 

	

= 	 d
o-\/T 	

and d 

	

T - t 	
2 = 

o-VT - t 
2 	 2 

Note that 
lim dl  = oo and 	lim d2 = —0°. 

(T—t)—,Do 	 (T—t)—+co 

Then, 
lim N(di) = 1 and 	lim N(d2) = 0 

	

(T—t)--K:o 	 (T—t)—)oo 

and therefore 

lim (r(N(di) - N(d2)) 
(T-t)--,00 

a  

2 V27r(T - t) 
e 2  = 00. 

We conclude that, for T - t large enough, 

O(C) = Ke-r(T-t)  r(N(di) - N(d2)) (    4) 
2- /27(T - t)e  

will be positive. We note that the positive value of e(C) is nonetheless small, 
since lim(T_t),,, e(C) = 0. ❑ 

Problem 12: Show that the price of a plain vanilla European call option is 
a convex function of the strike of the option, i.e., show that 

a2c  

Solution: Recall that 

Se-q(T-t) 	= Ke-r(T-t)  N'(d2). 

By differentiating the Black-Scholes formula 

C = Se-q(T-t) N(d j.) - Ke-r(T-t)N(d2) 

with respect to K, we obtain that 

>  
aK2 — 

0. 
 

ac 
arc 

, 	,ad2  ad, 
- Ke-r(T-t)N (a 2)0K 

= Se-q(T-t)N/(d1) e-r(T-t)N(d2) 

_ se_q(T_t) ad, 
(8K ad2 aK 

= -e-r(T-t)N(d2), 

e—r(T—t)N(d2) 

(3.10) 



a2c 	1 
o-K V27(T - t) 

e-r(T-t) e2  > 0. 0 8K2 
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since d1 =- d2 + aN/T - t and therefore 

ad1 	ad, 
aK 	aK .  

By differentiating (3.10) with respect to K, we find that 

a2c 	
aK 
	 1 	ad, e-r(T-t) NI(d2) 	 e-r(T-t) 

aK 	 aK 	V271- e 2  aK.  
Note that 

	

ln(K) + 	- q - 	(T - t) 
d2 

o-VT - t 

	

ln(K) 	ln(S) + (r - q - 1)(T - t) 

	

a-VT - t 	 o-VT - t 

Then 	 ad,1 

	

aK 	d.x-vT —t' 
and, from (3.11) and (3.12), we conclude that 

(3.11) 

(3.12) 

Problem 13: Compute the Gamma of ATM call options with maturities of 
fifteen days, three months, and one year, respectively, on a non-dividend-
paying underlying asset with spot price 50 and volatility 30%. Assume that 
interest rates are constant at 5%. What can you infer about the hedging of 
ATM options with different maturities? 

Solution: The input in the Black-Scholes formula for the Gamma of the call 
is S = K = 50, o = 0.3, r = 0.05, q = 0. For T = 1/24 (assuming a 30 days 
per month count), T = 1/4, and T = 1, the following values of the Gamma 
of the ATM call are obtained: 

F(15days) = 0.057664; F(3months) = 0.052530; F(lyear) = 0.025296. 

We note that Gamma decreases as the maturity of the options increases. 
This can be seen by plotting the Delta of a call option as a function of spot 
price, and noticing that the slope of the Delta around the at-the-money point 
is steeper for shorter maturities. The cost of Delta-hedging ATM options 
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may be higher for short dated options, since small changes in the price of 
the underlying asset lead to higher changes in the Delta of the option, and 
therefore may require more often hedge rebalancing. ❑ 

Problem 14: (i) The vega of a plain vanilla European call or put is positive, 
since 

  

1 _A 	e  2 

V-27 

 

vega(C) = vega(P) = Se-q(T-t) T t (3.13) 

Can you give a financial explanation for this? 

(ii) Compute the vega of ATM Call options with maturities of fifteen days, 
three months, and one year, respectively, on a non-dividend-paying under-
lying asset with spot price 50 and volatility 30%. For simplicity, assume zero 
interest rates, i.e., r = 0. 

(iii) If r = q = 0, the vega of ATM call and put options is 

vega(C) = vega(P) = S VT t 

where d1 = 2 	 Compute the dependence of vega(C) on time to maturity 
T - t, i.e., 

a  (vega(C))  

8(T — t) 

and explain the results from part (ii) of the problem. 

Solution: (i) The fact the vega of a plain vanilla European call or put is 
positive means that, all other things being equal, options on underlying assets 
with higher volatility are more valuable (or more expensive, depending on 
whether you have a long or short options position). This could be understood 
as follows: the higher the volatility of the underlying asset, the higher the 
risk associated with writing options on the asset. Therefore, the premium 
charged for selling the option will be higher. 

If you have a long position in either put or call options you are essentially 
"long volatility" . 

(ii) The input in the Black-Scholes formula for the Gamma of the call is 
S = K = 50, a = 0.3, r = q =- 0. For T = 1/24, T 1/4, and T = 1, the 
following values of the vega of the ATM call are obtained: 

vega(15days) = 4.069779; 
vega(3months) = 9.945546; 

vega(lyear) = 19.723967. 

1 	_5I.1 

2 
e 2 , 
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(iii) For clarity, let T = T - t. For r = q = 0, we obtain from (3.13) that 

vega(C) -= 
SVFSvIF  

e  2 = 	e 8  , 
27r 	\/27r 

since, for an ATM option with r = q = 0, 

	

ln (i) + (7- - q + 1-2,_ ) T 	0.,\F-r  

	

d1 = 	  = 	 a,\FT 	 2 

By direct computation, we find that 

a (vega(C)) S 	_,2, 	a2S0-- _a2, 
= 	e 8   	e 8  

	

ar 	2.\/271-7- 	8\/27r 

= 	
S  ( 	a2 T 	02  T 

-   1 - - - ) e- e 
2-V2irr 	4 

For a = 0.3 and for time to maturity less than one year, i.e., for T < 1, 
we find that 

4 

2  

T  > 0.9775, 

and therefore 
a  (vega(C)) 

> O. 
aT 	— 

We conclude that, for options with moderately large time to maturity, the 
vega is increasing as time to maturity increases. Therefore we expect that 

vega(lyear) > vega(3months) > vega(15days), 

which is what we previously obtained by direct computation. ❑ 

Problem 15: Assume that interest rates are constant and equal to r. Show 
that, unless the price C of a call option with strike K and maturity T on a 
non-dividend paying asset with spot price S satisfies the inequality 

	

S -qT  - Ke-rT  < C < Se-qT  , 	 (3.14) 

arbitrage opportunities arise. 
Show that the value P of the corresponding put option must satisfy the 

following no-arbitrage condition: 

	

K e-rT Se-qT  < P < Ke-rT 
	

(3.15) 

1- 
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Solution: One way to prove these bounds on the prices of European options 
is by using the Put-Call parity, i.e, P + Se-qT  - C = Ke-rT. 

To establish the bounds (3.14) on the price of the call, note that 

C = Se-qT  - Ke-rT  + P. 	 (3.16) 

The payoff of the put at time T is max(K - S(T), 0) which is less than the 
strike K. The value P of the put at time 0 cannot be more than Ke-rT, the 
present value at time 0 of K at time T. Also, the value P of the put option 
must be greater than 0. Thus, 

0 < P < Ke-rT, 	 (3.17) 

and, from (3.16) and (3.17), we obtain that 

se-qT Ke-rT < se-qT Ke-rT 	p 	c < se-qT 

To establish the bounds (3.15) on the price of the put, note that 

P = Ke'T  - Se-qT  + C. 	 (3.18) 

The payoff of the call at time T is max(S(T) - K, 0) which is less than S(T). 
The value C of the call at time 0 cannot be more than Se-qT, the present 
value at time 0 of one unit of the underlying asset at time T, if the dividends 
paid by the asset at rate q are continuously reinvested in the asset. Also, the 
value C of the call option must be greater than 0. Thus, 

0 < C < Se-qT . 	 (3.19) 

From (3.18) and (3.19) it follows that 

Ke-rT se-qT < P < Ke-rT 

A more insightful way to prove these bounds is to use arbitrage arguments 
and the Law of One Price. 

Consider a portfolio made of a short position in one call option with strike 
K and maturity T and a long position in e-qT units of the underlying asset. 
The value of at time 0 of this portfolio is 

V(0) = Se-qT  - C. 

If the dividends received on the long asset position are invested continuously 
in buying more units of the underlying asset, the size of the asset position at 
time T will be 1 unit of the asset. Thus, 

V(T) = S(T) - C(T) = S(T) - max(S(T) - K, 0) < K, 
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since, if S(T) > K, then V(T) = S(T)- (S(T)- K) = K, and, if S(T) < K, 
then V(T) = S(T) < K. 

From the Generalized Law of One Price we conclude that 

V(0) = Se-qT  — C < Ke-''T , 

and therefore Se-qT KerT < C, which is the left inequality from (3.14). 
All the other inequalities can be proved similarly: 

• To establish that C < Se-qT , show that the payoff at maturity T of a 
portfolio made of a long position in e-qT  units of the underlying asset at time 
0 and a short position in the call option is nonnegative for any possible values 
of S(T); 

• To establish that Ke-''T  - Se-qT < P, show that the payoff at maturity T 
of a portfolio made of a long position in e-qT  units of the underlying asset 
at time 0 and a long position in the put option is greater than K for any 
possible values of S(T); 

• To establish that P < Ke-''T , show that the payoff at maturity T of a 
portfolio made of a short position in the put option and a long cash position 
of Ke-rT at time 0 is nonnegative for any possible values of S(T). ❑ 

Problem 16: A portfolio containing derivative securities on only one asset 
has Delta 5000 and Gamma -200. A call on the asset with A(C) = 0.4 
and F(C) = 0.05, and a put on the same asset, with A(P) = -0.5 and 
F(P) = 0.07 are currently traded. How do you make the portfolio Delta-
neutral and Gamma-neutral? 

Solution: Take positions of size x1  and x2, respectively, in the call and put 
options specified above. The value H of the new portfolio is H = V + x1C + 
x2P, where V is the value of the original portfolio. This portfolio will be 
Delta- and Gamma-neutral, provided that xi and x2  are chosen such that 

A(1-1) = A(V) + x10(C) + x2A(P) = 5000 + 0.4x1 - 0.5x2 = 0; 
r(n) = F(V) + xiF(C) + x2P(P) = - 200 + 0.05x1  + 0.07x2 = 0. 

The solution of this linear system is 

250, 000 
= -4716.98 and 	

000 
xi = 	 x2 = 330' 	= 6226.42. 

53 	 53 
To make the initial portfolio as close to Delta- and Gamma-neutral as 

possible by only trading in the given call and put options, 4717 calls must 
be sold and 6226 put options must be bought. The Delta and Gamma of the 
new portfolio are 

0(1-1) = A(V) 4717A(C) + 6226A(P) = 0.2; 
r(n) = F(V) + 4717F(C) + 6226P(P) = - 0.03. 
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To understand how well balanced the hedged portfolio H is, recall that the 
initial portfolio had A(V) = 5000 and F(V) = -200. ❑ 

Problem 17: You are long 1000 call options with strike 90 and three months 
to maturity. Assume that the underlying asset has a lognormal distribution 
with drift µ = 0.08 and volatility cr = 0.2, and that the spot price of the 
asset is 92. The risk-free rate is r = 0.05. What Delta-hedging position do 
you need to take? 

Solution: A long call position is Delta-hedged by a short position in the 
underlying asset. Delta-hedging the long position in 1000 calls is done by 
shorting 

Problem 18: You buy 1000 six months ATM Call options on a non-
dividend-paying asset with spot price 100, following a lognormal process 
with volatility 30%. Assume the interest rates are constant at 5%. 

(i) How much money do you pay for the options? 

(ii) What Delta-hedging position do you have to take? 

(iii) On the next trading day, the asset opens at 98. What is the value of 
your position (the option and shares position)? 

(iv) Had you not Delta-hedged, how much would you have lost due to the 
increase in the price of the asset? 

Solution: (i) Using the Black-Scholes formula with input S1 = K = 100, 
T = 1/2, a-  = 0.3, r = 0.05, q = 0, we find that the value of one call option 
is C1 = 9.634870. Therefore, $9,634.87 must be paid for 1000 calls. 

(ii) The Delta-hedging position for long 1000 calls is short 

10000(C) = 1000e-4TN(d1) = 588.59 

units of the underlying. Therefore, 589 units of the underlying must be 
shorted. 

1000A(C) = 1000e-qTN(d1) = 653.50 

units of the underlying asset, where 

ln 	+ (r - q +1) T 
dl = 	  

o-  N IT 
with S = 92, K -= 90, T = 1/4, -= 0.2, r = 0.05, q = O. 

Note that, for Delta-hedging purposes, it is not necessary to know the 
driftµ of the underlying asset, since A(C) does not depend on pt. ❑ 
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(iii) The new spot price and maturity of the option are S2 = 98 and T2 = 
125/252 (there are 252 trading days in one year). The value of the call option 
is $8.453134 and the value of the portfolio is 

1000C2 — 589S2 = — 49268.87. 

(iv) If the long call position is not Delta-hedged, the loss incurred due to the 
decrease in the spot price of the underlying asset is 

1000(C2 — C1) = — $1181.74. 

For the Delta-hedged portfolio, the loss incurred is 

(1000C2 — 589S2) — (1000C1 — 589S1) = — $3.74. 

As expected, this loss is much smaller than the loss incurred if the options 
positions is not hedged ("naked"). 	0 
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3.2 Supplemental Exercises 

1. What is the expected number of coin tosses of a fair coin in order to 
get two heads in a row? What if the coin is biased and the probability 
of getting heads is p? 

2. What is the expected number of tosses in order to get k heads in a row 
for a biased coin with probability of getting heads equal to p? 

3. Calculate the mean and variance of the uniform distribution on the 
interval [a,b]. 

4. Let X be a normally distributed random variable with meanµ and 
standard deviation a > 0. Compute E[ IX( ] and E[X2]. 

5. Compute the expected value and variance of the Poisson distribution, 
i.e., of a random variable X taking only positive integer values with 
probabilities 

e-')k 
P(X -= k) — 	

k! 
 , V k > 0, 

where A > 0 is a fixed positive number. 

6. Show that the values of a plain vanilla put option and of a plain vanilla 
call option with the same maturity and strike, and on the same under-
lying asset, are equal if and only if the strike is equal to the forward 
price. 

7. You hold a portfolio made of a long position in 1000 put options with 
strike price 25 and maturity of six months, on a non-dividend-paying 
stock with lognormal distribution with volatility 30%, a long position 
in 400 shares of the same stock, which has spot price $20, and $10,000 
in cash. Assume that the risk-free rate is constant at 4%. 

(i) How much is the portfolio worth? 

(ii) How do you adjust the stock position to make the portfolio Delta-
neutral? 

(iii) A month later, the spot price of the underlying asset is $24. What 
is new value of your portfolio, and how do you adjust the stock position 
to make the portfolio Delta-neutral? 
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8. You hold a portfolio with O(II) = 300, F(II) = 100, and vega(II) = 89. 
You can trade in the underlying asset, in a call option with 

A(C) = 0.2; F(C) = 0.1; vega(C) = 0.1, 

and in a put option with 

A(P) = —0.8; F(P) = 0.3; vega(P) = 0.2. 

What trades do you make to obtain a A—, r-, and vega—neutral port-
folio? 

3.3 Solutions to Supplemental Exercises 

Problem 1: What is the expected number of coin tosses of a fair coin in 
order to get two heads in a row? What if the coin is biased and the probability 
of getting heads is p? 

Solution: If p is the probability of the coin toss resulting in heads, then the 
probability of the coin toss resulting in tails is 1 — p. 

The outcomes of the first two tosses are as follows: 

• If the first toss is tails, which happens with probability 1 — p, then the 
process resets and the expected number of tosses increases by 1. 

• If the first toss is heads, and if the second toss is also heads, which hap-
pens with probability p2, then two consecutive heads were obtained after two 
tosses. 

• If the first toss is heads, and if the second toss is tails, which happens 
with probability p(1 — p) , then the process resets and the expected number 
of tosses increases by 2. 

If E[X] denotes the expected number of tosses in order to get two heads 
in a row, we conclude that 

E[X] = (1 — p)(1 + E[X]) + 2p2  + p(1 — p)(2 + E[X]). 	(3.20) 

We solve (3.20) for E[X) and obtain that 

E[X] = 
1 + p 

 p2 

For an unbiased coin, i.e., for p = .-, we find that E[X] -= 6, and therefore 
the expected number of coin tosses to obtain two heads in a row is 6. ❑ 
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Problem 2: What is the expected number of tosses in order to get n heads 
in a row for a biased coin with probability of getting heads equal to p? 

Solution: The probability that the first n throws are all heads is pm. If the 
first k throws are heads and the (k + 1)-th throw is tails, which happens 
with probability pk(1 -p), then the process resets after the k + 1 steps; here, 
k = 0 : (n - 1). Then, if x(n) denotes the expected number of tosses in order 
to get n heads in a row, it follows that 

n-1 

x(n) = npn + Epk(1-p)(k+ 1 + x(n)) 
k=0 

n-1 	n-1 	 n-1 

= 71pn  + (1 — p) (Epk  + Ekpk) + x(n)(1 - p) Epk. 
k=0 	k=1 	 k=0 

Recall that 

n-1 	 n-1 

Epk = 1 — pn .  Ekpk  = p _ npn ± (n  _ 472+1 

k=0 
1- p 	

k=1 
' 	 (1 _ 0 

Then, we find that 

x(n) = np
n 

+ 
1 - (n + 1)pn ± Thpn+1 

1 - p 
1 - pn 

=1 - 
	 + x(n)(1 - In), 

and therefore 
1 - pn 

x(n) = 	 
IP (1  - p).  

We conclude that the expected number of tosses in order to get n heads in 
a row for a biased coin with probability of getting heads equal to p is  1-1P  P"(1-P)' 
If the coin were unbiased, i.e., for p = -., the expected number of tosses in 
order to get n heads in a row is 2n+1  — 2. ❑ 

Problem 3: Calculate the mean and variance of the uniform distribution on 
the interval [a,b]. 

Solution: The probability density function of the uniform distribution U on 
the interval [a, b] is the constant function f (x) = t4- 7,,, for all x E [a, b]. Then, 

b 	 b 

E[U] = i x f(x) dx = 	
1 

- f 	x dx = 
a 	 b - a a  

+ x(n)(1 - pn) 

b + a 
  • 
2 ' 



1 	CC 	2 

e-T dz 
1  f A/a  _Z 

e 2  dy = 
-V27 

N (1 , 
a 57r 
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var(U) = E [(U - E[U])2] = E [(U b  + 2  2  a)1 

dx 
1 	f b 

b - a Ja 	
b 2 

2 ) 

(b  - a)2 
❑ 

12 	• 

1  1 b+aV  
b - a 3 	2 ) 

x=b 

x=a 

Problem 4: Let X be a normally distributed random variable with mean p, 
and standard deviation a > 0. Compute E[ IXI] and E[X2]. 

Solution: We compute E[ IXI ] in terms of the cumulative distribution 

2  

N(t) = 	1  ft 	dx 

of the standard normal variable Z. 
Note that X = p + aZ. Then, 

E[ IX 1] = 	1 f ± azi e-4  dz 
.477r _„ 

12 
1-121' 	 1 	foc. 

(,u + az) 	2 dz +  	(ft + az) 
- .\

- 

/7r 	 27r 

1 f-to, , 	a 	— IVcr 	2 

.N/Tir 	
e- 2 dz - 	 

J_Dc 
ze-T dz 

1 	2 	 a 	oc 

+ 277 _Iv, 	
.477 w  e 2  dz 	 o. ze 2  dz. 

2 

e-  2  dz 

It is easy to see that 

1 	-A/a 
e-T dz = N 	= 1 - N (11 ; 

a 	 o- 
z=-A/0- 

z—oc 
- exp 	; 

27r 
i 2 

ze-7  dz 

f-A/Q 

_2. 
ze 2  a 

, 
Z 

Z DC 

= exp 	 
2a2) • 
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We conclude that 

E[ IX! ]= - ii (1 - N (L)) + 
vr

o- 
exp ( 	)

27 
	2:2  

+ µN 
(Q) 
 + va27r exp (- /2142) 

2 
ii (2N (L-1) — 1) ± \/±2  exp ( A 	) a 	 27r 	20.2 /  

One way to compute E[X 2] would be to compute the following integral: 

	

2  E[X2] = E[(µ + 0-Z)2] = 	1 	 f CC  (it + az)2  e-T dz. 
\/27r _cc, 

While this would provide the correct result, an easier way is to recall that 

var(X) = E[X2] - (E[X])2 . 

Since E[X] = u and var(X) = cr2, we conclude that 

E[X2] = var(X) + (E[X])2  = /12 + 0.2 .  

Problem 5: Compute the expected value and variance of the Poisson distri-
bution, i.e., of a random variable X taking only positive integer values with 
probabilities 

CA Ak  
P(X = k) =  kA 	, V k > 0, 

where A > 0 is a fixed positive number. 

Solution: We show that E[X] = A and var(X) -= A. 
By definition, 

co cc e-AAk 	 C°  Ak -1 

	

E[X] = E P(X = k) • k = E 	k = e-AAE 	 
k=0 	 k=1 k! 	 k=1 (k - 1)r 

Recall that the Taylor expansion of the function ex is 

cc k 
et = V" t  

L-• k!k=0 	.  

(3.21) 



E[X 2] = E P(X = k) k 2  = E  k!  k2 = 
k=0 	 k=1 =1 

(k - 1)! 
k 

kAk  E 

= e 
k=2 	 k=1 

A2 ± 

—AA2 	
(k - 2)! 	

eAA 	
(k - 1)! 

k-2 	 x 	k-1 A 
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Then, it follows that 

Ak-1 

(k - 1)! 
k=1 

DC 	Ak-2 

E (k - 2)! 

= e • 

= eA  . 

(3.22) 

(3.23) 

From (3.21) and (3.22), we find that E[X] = A. 

Similarly, 

pc 	xle 

+ CA 	- 
k=1 	 k=1 

(k - 1)! 
e 

(k -  1)Ak  
(k - 1)! 

where (3.22) and (3.23) were used for the last equality. 
We conclude that 

var(X) = E[X2] - (E[X])2  = A. ❑ 

Problem 6: Show that the values of a plain vanilla put option and of a 
plain vanilla call option with the same maturity and strike, and on the same 
underlying asset, are equal if and only if the strike is equal to the forward 
price. 

Solution: Recall that the forward price is F = Se-(r-q)T . 
From the Put-Call parity, we know that 

C - P = Se-qT  - Ke-rT 
	

(3.24) 

If a call and a put with the same strike K have the same value, i.e., if C = P 
in (3.24), then Se-qT = Ke-rT. Thus, 

K = Se-(r-q)T , 

i.e., the strike of the options is equal to the forward price. 	❑ 
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Problem 7: You hold a portfolio made of a long position in 1000 put options 
with strike price 25 and maturity of six months, on a non—dividend—paying 
stock with lognormal distribution with volatility 30%, a long position in 400 
shares of the same stock, which has spot price $20, and $10,000 in cash. 
Assume that the risk-free rate is constant at 4%. 

(i) How much is the portfolio worth? 

(ii) How do you adjust the stock position to make the portfolio Delta—neutral? 

(iii) A month later, the spot price of the underlying asset is $24. What is new 
value of your portfolio, and how do you adjust the stock position to make the 
portfolio Delta—neutral? 

Solution: (i) The value of the portfolio is 

1000P(0) + 4008(0) + 10000 = 22927, 

where S(0) = 20 is the spot price of the underlying asset and the value 
P(0) = 4.9273 of the put option is obtained using the Black—Scholes formula. 

(ii) The Delta of the put option position is —1000N(—d1) = —803. (Here 
and in the rest of the problem, the values of Delta are rounded to the nearest 
integer.) The Delta of the portfolio is 

—803 + 400 =- — 403. 

To obtain a Delta—neutral portfolio, 403 shares must be purchased for $8,060. 
The Delta—neutral portfolio will be made of a long position in 1000 put op-
tions a long position in 803 shares of the underlying stock, and $1,940 in 
cash. 

(iii) A month later, the spot price of the underlying asset is S (12) = 24 and 
the put options have five months left until maturity. The Black—Scholes value 
of the put option is P (T.1 ) = 2.1818. The cash position has accrued interest 

oio24 

	

and its current value is 1940 exp ( ) 

2 

	=

\

1946. The portfolio is worth 

	

1 	 1 
1000P 	+ 8033 (

12
) + 1946 = 23400. 

The new Delta of the portfolio is 

—1000N(—d1) + 803 = 292. 

To make the portfolio Delta—neutral, you should sell 292 shares. ❑ 

Problem 8: You hold a portfolio with A(1-1) .= 300, r(11) = 100 and 
vega(H) = 89. You can trade in the underlying asset, in a call option with 

A(C) = 0.2; r(c) = 0.1; vega(C) = 0.1, 
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and in a put option with 

A(P) -= -0.8; F(P) = 0.3; vega(P) = 0.2. 

What trades do you make to obtain a A-, F-, and vega-neutral portfolio? 

Solution: You can make the portfolio F— and vega- neutral by taking posi-
tions in the call and put option, respectively. By trading in the underlying 
asset, the F and vega of the portfolio would not change, and the portfolio 
can be made A-neutral. 

Formally, let x1, x2, and x3 be the positions in the underlying asset, the 
call option, and the put option, respectively. The value of the new portfolio 
is nnew 

A(IInetv) = A(H) + x1 + x2A(0) + x3A(P); 
r(IInew) = r(11) + x2F(C) + x3F(P); 

vega(IIne„) = vega(11) + x2vega(C) + x3vega(P). 

Then, A(I-Inew) = F(II„,) = vega(Ffne„) = 0 if and only if 

H + xiS+ x2C + x 3P and therefore 

{

xi  + 0.2x2 - 0.8x3 
0.1x2+0.3x3 
0.1x2 + 0.2x3 

= -300; 
= -100; 
= -89. 

The solution (rounded to the nearest integer) is x1 = -254, x2 = -670, 
x3  = -110. In other words, to make the portfolio A-, F— and vega- neutral, 
one must short 254 units of the underlying asset and sell 670 call options and 
110 put options. ❑ 





Chapter 4 

Lognormal random variables. Risk—neutral 
pricing. 

4.1 Solutions to Chapter 4 Exercises 

Problem 1: Let X1 = Z and X2 = — Z be two independent random vari-
ables, where Z is the standard normal variable. Show that X1  + X2 is a 
normal variable of mean 0 and variance 2, i.e., X1  + X2 = N/2Z 

Solution: Recall that if X1 and X2 are independent normal random variables 
with mean and variance pi  and a?, and t2  and 4, respectively, then X1+ X2 
is a normal variable with mean pi + p2 and variance a + 4, and 

X1  + X2 = 01 + ,u2 + \/a? + Z. 

For X1 = Z and X2 = — Z , it follows that pi = 112 = 0 and al  = a2  = 1. We 
conclude that 

E[X] = pi + p2 = 0 and var(X) = + =2, 

and therefore 
X = X1  + X2  = N/2Z. ❑ 

Problem 2: Assume that the normal random variables X1, X2, • • • , Xn 
of mean it and variance a2  are uncorrelated, i.e, cov(Xi, = 0, for all 
1 < i j < n. (This happens, e.g., if X1, X2 , . Xn  are independent.) If 
Sri  => 1 Xi  is the average of the variables Xi, i = 1 : n, show that 

E[Sn] = i and var(Sn) = 
a2 

Solution: Recall that, for ci  E R, 

E 

 [

11 

E cixi] = E ciE[X j]; 
i=i 	 i=1 

91 
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var 
 (

E ciXi) = E c,2var(Xi) + 2 E cicicov(xi, Xi). 
i=1 i=1 1<i<j<n 

Therefore, 

E[Sn] = 

var(Sn) = 

1 n  
E 	xi] 

i=i 

1 n  
var(— E Xi 

n 
 

) 

n1 E E[Xi] = —n 
nit 

i=1 

= —
n2 

E var(Xi) ± —
2 
n2 

= 

1<i< j<n 

cov(Xi, 

772-  E var(Xi) 
i=1 

1a-
= 	• ncr 2 = 

77 

2 

since cov(Xi, Xj) = 0 for all 1 < i 4  j < n. ❑ 

Problem 3: Assume we have a one period binomial model for the evolution 
of the price of an underlying asset between time t and time t + St: 
If S(t) is the price of the asset at time t, then the price S(t + St) of the asset 
at time t +St will be either S(t)u, with (risk—neutral) probability p, or S(t)d, 
with probability 1 — p. Assume that u > 1 and d < 1. 

Show that 

ERN [S(t + St)] = (pu + (1 — p)d) S(t); 
	

(4.1) 
ERN [S2(t St)] = (pu2  + (1 — p)d2) S2(t). 	(4.2) 

Solution: We can regard S(t + St) as a random variable over the probability 
space {U, D} of the possible moves of the price of the asset from time t to time 
t + St endowed with the risk—neutral probability function P : {U, D} [0, 1] 
with P(U) = p and P(D) = 1 — p. Then S(t St) is given by 

S(t + St)(U) = S(t)u; S(t + St)(D) = S(t)d. 

Then, by definition, 

ERN[S(t + St)] = 

ERN[S2(t + St)] =. 

P(U) • S(t + St)(U) + P(D) • S(t + St)(D) 
(pu + (1 — p)d) S(t); 
P(U) • (S(t + St)(U))2  + P(D) • (S(t + St)(D))2  
(pu2  + (1 — Ad2) S2(t). ❑ 
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Problem 4: If the price S(t) of a non—dividend paying asset has lognormal 
distribution with drift r and volatility o, show that 

ERN[S(t + St)] = er8tS(t); 	 (4.3) 

E RN[S2  (t Si)] = e(2rd-o2)(St s2 (t) 	 (4.4) 

Solution 1: If the price S(t) of the non—dividend paying asset has lognormal 
distribution with drift r and volatility o, then s(strtts) t)  is a lognormal variable 
given by 

t + 	(r  
In 	 a 2 —  

(S( 	
) St + affiZ. 

S(t) 
St)\  

) 

Recall that, if ln(Y) = ft + az is a lognormal random variable with 
parameters it and a, the expected value and variance of Y are 

E[Y] = exp + -T) ; 

var(Y) = exp (2/..t + 6:2) (e(12  — 1) . 

If Y = s(Vt) , then µ = — 	St and a- = o-Agi and therefore 

E 
IS(t + St)] 

exp (r a2) St + (O-1(5)2 	= er6t ; 	(4.5) L s(t) 	 2 	2 

(S(t + (5t)  
S(t) ) 

Note that, 

0.2 
= exp (2 (r — -y) St + (o-18i)2) (e(' 18i)2  — 1)(4.6) 

e2rot (ea2f5t 	1) (4.7) 

var 

E  rS(t + St)] 
	Sit)  E[S(t + St)] 

S(t) j  

var 
(S(t 
 S(t)  

+ St) 
 ) 	S2(t) 

1 
	 var (S(t + St)) . 

From (4.5) and (4.8), and from (4.7) and (4.9), respectively, we conclude that 

E[S(t + St)] = er5tS(t); 

var (8(1 + St)) = ezrst (eu2st — 1) S2(t). 	(4.10) 

(4.8) 

(4.9) 
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Note that 

var (S(t + (5t)) = E[S2(t + St)] - (E[S(t + 8t)])2  
= E[S2(t + St)] - e2r6ts2(t). 	 (4.11) 

From (4.10) and (4.11) it follows that 

E[S2(t + St)] = var (S(t + St)) e2r6ts2(t)  = e2rbt+o-26ts2(t),  

which is what we wanted to show. 

Solution 2: Note that S(t + St) can be written as a function of the standard 
normal variable Z as follows: 

0-2)

S(t St) = S(t) exp ((r  - -2- St + o--VKZ) . 

Then, 

E[S(t + (5t)] = 1   fw  S(t) exp 	- 	St + 	x) 	dx 

a2  St 
= S(t) f271.  r  roo exp (rSt 	2  + (nick x - X;) dx 

S(t)e
rot 1 p. 

J_ 	
0-0i)2) 

.exP 	
(x - 

 2 
	dx 

S(t)er6t  1  	f 	dy 
27r J-00 

S(t)er6t , 

where we used the substitution y = x - affi and the fact that 

1 	W
e_4 dy  = 

[2771-1_,„ 

1 - since -,-/rr e 2 Y1  is the density function of the standard normal variable. 
Similarly, we obtain that 

E[S2(t + (St)] =  1   fcc  S2(t) exp (2 (r - -y°- ) St +2cr■fift x) e-4 dx 
r -00 

= 
 1  rs2

(t) exp (2rbt - o-28t +2o- f6t x - x2) d x 
x 



ud = 1. 

Show that the solution can be written as 

er8t  - d 
P = 	; u — d 

u = A + V A2  - 1; d = A - V A2  - 1, 
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= S2(t) 	1   x  
2 

f 
..VTr _. 

= s2 (t)e(2r+a2)St 

= S2  (t)e(2r+a2)"  

= S2  (t)e(2r+a2)"  ; 

exp2rbt + o-28t 	
(x - 2

2  
a--ai)2)  

dx ( 

g-  J 
1 fp. exp  ( (x - 2o-Vrt)2) 

-Dc 	 2 
dx 

1 
i.r - 

pc  f e-4  ds 
-■ ,x 

the substitution s = x - 2o-N/Tt was used above. ❑ 

Problem 5: The results of the previous two exercises can be used to calibrate 
a binomial tree model to a lognormally distributed process. This means 
finding the up and down factors u and d, and the risk-neutral probability p 
(of going up) such that the values of E RN[S (t + 80] and ERN[S2  (t ± St)] given 
by (4.1) and (4.2) coincide with the values (4.3) and (4.4) for the lognormal 
model. 

In other words, we are looking for u, d, and p such that 

pu + (1 - p)d = erst; 	 (4.12) 
pu2 + (1 p)d2 = e(2r+o-2 )(5t 	 (4.13) 

Since there are two constraints and three unknowns, the solution will not be 
unique. 

(i) Show that (4.12-4.13) are equivalent to 

er5t - d 
P = u — d ' 

(erst - d) (u - erst) 	e2rdt (ecT26t — 1). 

(ii) Derive the Cox-Ross-Rubinstein parametrization for a binomial tree, by 
solving (4.14-4.15) with the additional condition that 

(4.14) 

(4.15) 

where 
A = 1- ( e —rat + e(r+02)st 

2 	 j • (4.16) 



96 	 CHAPTER 4. LOGNORMAL VARIABLES. RN PRICING. 

Solution: (i) Formula (4.14) can be obtained by solving the linear equation 
(4.12) for p. 

To obtain (4.15), we first square formula (4.12) to obtain 

p2u2 2p(1 — p)ud + (1 — 23)2d2 =  e2rot 

and subtract this from (4.13). We find that 

	

p(1 — p)u2  — 2p(1 — p)ud + p(1 — p)d2 	e(2r+a2)5t e2r6t ,  

which can be written as 

	

p(1  — p)(u d)2 = e2r6t (eo26t 	1).  

Using formula (4.14) for p, it is easy to see that 

P(1  — 1)) 
= (er5t — 	(u — er6t) 

(u — d)2  

From (4.17) and (4.18), we conclude that 

(er"— d) (u — est) = e2r6t (eo 25t 1).  

(ii) By multiplying out (4.15) and using the fact that ud -= 1, we obtain that 

	

uer5t  — 1_ e2rSt derdt = e(2r+o-2 )St 	e2r8t 	 (4.19) 

After canceling out the term —521*, we divide (4.19) by er6t and obtain 

u  d — e—r6t = e(r+c2 )8t,  

which can be written as 

u + — (e—rst e(r+o-2)6t) = U + —1 
— 2A = 0; 

cf. (4.16) for the definition of A. 
In other words, u is a solution of the quadratic equation 

	

u2  — 2Au + 1 = 0, 	 (4.20) 

which has two solutions, A +./A2  — 1 and A — ./A2  — 1. Since u > 1, we 
conclude that 

u A + VA2  — 1; 

(4.17) 

(4.18) 
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the other solution of the quadratic equation (4.20) corresponds to the value 
of d, since 

1 	1 
d = — =  	

u A + VA2  — 1 

   

= A — ✓A2  — 1. ❑ 

Problem 6: Show that the series EkDe. 1  tie  is convergent, while the series 
1  Ekpc=i  and E°c 2 kln(k) are divergent, i.e., equal to oo. 

Note: It is known that 

	

1 	7/.2 
= 

2  

	

k=1 
k 	6  

liM 
( En —1 — ln(n) 

n—*x 
 

k=1 

where -y 0.57721 is called Euler's constant. 

Solution: Since all the terms of the series 
to show that the partial sums 

Dc 	1 \--,  
k2  are positive, it is enough 

n 
\--. i 

Z—•  k2  
k=1 

are uniformly bounded, in order to conclude that the series is convergent. 
This can be seen as follows: 

1 	 1 	 1 	1 
n 	 n 

Z--1  k2  — 1  + 	k2 	1 ± Ek(k — 1) 	,--, k — 1 k 
	 = 1 + 

k=1 	 k=2 	 k=2 	 k=2 

= 1 + (1 — —
1
) < 2, V n > 2. 

To show that the series EL -1kt is divergent, we will prove that 

	

ln(n) + —
1 

< E 
k 
_ < ln(n) + 1, V n > 1. 	(4.21) 

	

n 	k=1  

The integral of the function f(x) = 	over the interval [1, n] can be 
approximated from above and below as follows: Note that 

71
-
1 

dx = E 
n-1 f k+i 1  

— dx. 
k-1 

x 	 k 	X 

and 

=7, 
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Since f (x) =1 is a decreasing function, it is easy to see that 

1 	 1 
k +1 

< f (x) < 
, 

V x E (k, k +1). 

Then, 

n 
—
1 

dx 
1 x 

= E — dx > 
n-1 f  k+1 1  n-1 f k+1 1  

	 dx 
k=1 k X 	 k=1 

A k+ 1 

n-1 	
1  
, 	 n i , v-. 

k + 1 	 k 
= 

1  + Z-d 
k=1 	 k=-1 

(4.22) 

k+1 1 	n-1 k+1 1 
In  l 	

n-1 

— dx dx = E 	— dx < Ef —k  dx 
J k 	X k=1 	 k=1 k  

n-1 
1 	1 	1 

k = n + 

The inequality (4.21) follows from (4.22) and (4.23), since 

n 1 i  —x  dx = ln(n). 

In a similar fashion, by considering the integral of sin(x)  over the interval 
[2, n], we can show that 

1 	 1  
ln(ln(n)) — ln(ln(2)) 

+ nln(n) < E k ln(k)' 
k=2 

n 

k  

< ln(ln(n)) ln(ln(2)) + 	 E k ln
1 
 (k) 	 21n(2)' 

=2 

and conclude that the series Eke k 	in1(k)  is divergent. 
For example, (4.24) can be proved as follows: 

V n > 2; 	(4.24) 

V n > 2, 	(4.25) 

	

n 	1 	 1 n-1 f  k+1 

	

i 	 n-1  f k+1 	1 	n-1 
1 

A xln(x) dx  = E k  x ln(x)
dx <

E j
1
k kln(k)

dx =
E kln(k)' 

which is equivalent to 
n 

fn 	1 	 1 	 1  

12 x ln(x) dx  + n ln(n) < K kln(k) •  

k=1 
k 

k=1 

(4.23) 

(4.26) 
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Since 
f n 1 

dx  = 
ln(ln(n)) — ln(ln(2)), 

2 xln(x)  

we conclude from (4.26) and (4.27) that 

1 	 1  
ln(ln(n)) — ln(ln(2)) + 	 

nln(n) < 	kln(k)' 
k=2 

which is the same as (4.24). ❑ 

Problem 7: Find the radius of convergence R of the power series 
c>o 

X 

kln(k)' 
k=2 

and investigate what happens at the points x where Ix' = R. 

Solution: It is easy to see that 
oo 

X k  

k ln(k) 
k=2 

E akxk , 
k=2 

(4.28) 

with ak = k ln(k) ' k > 2. Note that 

k---,00 
liM I ak

li.fic = 
k-40.0 V chi(k) 
lim ( 

 1  )1/k 
= 1. 	(4.29) 

Recall that, if limk_,colakillk  exists, the radius of convergence of the series 

k-2 akxk  

(4.30) 

From (4.29) and (4.30) the radius of convergence of the series (4.28) is R =1 
We conclude that the series is convergent if Ixl < 1, and not convergent if 
ixi > 1. 

-1,11):) • Since the terms (-1)k  have ln() k=1 	(  If x = —1, the series becomes EaD 

alternating signs and decrease in absolute value to 0, the series is convergent. 
If x = 1, the series becomes Ekt1 k 	lni(k) which was shown to be divergent 

in Problem 6 of this chapter. ❑ 

99 

(4.27) 

is given by 

R= 
	1 

Problem 8: Consider a put option with strike 55 and maturity 4 months 
on a non-dividend paying asset with spot price 60 which follows a lognormal 
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model with drift pt = 0.1 and volatility o = 0.3. Assume that the risk-free 
rate is constant equal to 0.05. 

(i) Find the probability that the put will expire in the money. 

(ii) Find the risk-neutral probability that the put will expire in the money. 

(iii) Compute N(-d2). 
Solution: (i) The probability that the put option will expire in the money 
is equal to the probability that the spot price at maturity is lower than the 
strike price, i.e., to P(S(T) < K). Recall that 

2 

ln (S(T)
) 	

(p,-  q -Tu  )T + a✓TZ. 
S(0) 

Then, 

P 
(S(T)  < 	

P  (in  (S(  (°)) < in  ( ZOO) 
P(S(T) < K) = 

S(0) 	S(0) ) 

P ((tt, - q - ‘- 
rr

) T + o-  VT Z < In (40) 
= p  z  < In (4) ) (it - q - c)T 

( 
off' 

= N 

For S = 60, K = 55, T = 1/3, A = 0.1, q = 0, o-  = 0.3, and r = 0.05, we 
obtain that the probability that the put will expire in the money is 0.271525, 
i.e., 27.1525%. 

(ii) The risk-neutral probability that the put option will expire in the money 
is obtained just like the probability that the put expires in the money, by 
substituting the risk-free rate r for it, i.e., 

P 
z  < ln (*) - (r - q - 2-0T ( 

a-V7' 

= 0.304331 = 30.43%. 	 (4.31) 

(iii) Recall that 

PRN(S(T) < K) = 

(4.32) 



4.1. SOLUTIONS TO CHAPTER 4 EXERCISES 	 101 

Then, d2  = 0.511983, and 

N(-d2) = 0.304331, 

which is the same as the risk-neutral probability that the put option will 
expire in the money; cf. (4.31). 

To understand this result, note that 

(

PRN(S(T) < K) = P Z < 

cf. (4.31) and (4.32). 	❑ 

ln (54) + (r - q - 4)T) 
N(-d2); 

Problem 9: (i) Consider an at-the-money call on a non-dividend paying 
asset; assume the Black-Scholes framework. Show that the Delta of the option 
is always greater than 0.5. 

(ii) If the underlying asset pays dividends at the continuous rate q, when is 
the Delta of an at-the-money call less than 0.5? 
Note: For most cases, the Delta of an at-the-money call option is close to 0.5. 

Solution: (i) Recall that the Delta of a call option is given by 

ln (12-s?')+ (r - q + 2-;) T) 

a-VT 

For an at-the-money call on a non-dividend paying asset, i.e., for K = S 
and q = 0, we find that 

	

A(C) = N(d1) = N (  
(r + 

 "c19 
	

> N(0) = 0.5. 

(ii) If the underlying asset pays dividends at the continuous rate q, the Delta 
of an ATM call is 

- q + VT) 

	

A(C) = e-gT  N(di) = e-gT  N 	  

(

A(C) = e-qT N(d1) = e-gT  N 

For a fixed risk-free rate r and fixed maturity T, we conclude that A(C) < 0.5 
if and only if the dividend yield q and the volatility a of the underlying asset 



satisfy the following condition: 

(r - q + c) -VT)  
a 

N < 0.5 OT. 
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This happens, for example, if r = q and T is large enough, since 

lim N (7\11'  = 1 and Tim .5 egg'  = oo. ❑ 
T—+oc 	2 	 T-,00 

Problem 10: Use risk-neutral pricing to price a supershare, i.e., an option 
that pays (max(S(T) - K, 0))2  at the maturity of the option. In other words, 
compute 

V(0) = e—rT 
ERN [(max(S(T) - K, 0))2], 

where the expected value is computed with respect to the risk-neutral dis-
tribution of the price S(T) of the underlying asset at maturity T, which is 
assumed to follow a lognormal process with drift r and volatility a. Assume 
that the underlying asset pays no dividends, i.e., q = 0. 

Solution: Recall that 

0.2 
S(T) = S(0) exp ((r - —

2
) T + aN/77) 

and note that 

In 	- (r - 

	

S(T) > K < 	> Z > 	
o-VT 	

- - d2. 

Then, 

V(0) = 2771.  f d2  (S(0)exp ((r 	-
2
2  T + a-V71x) - K) 2  

1 	
e-T dx 

K2e —rT  1   f 3c  
—d2 

e- 2  dx 

J pc 	
(( — 2K S(0) 

e-rT 

V 27 —d2  
)VT  ix - -2-) dx exp r  - 

2 
T +a  

+ 82(0) 	 
e  —rT f oc 

exp ((2r - a2)T + 2o- 	
2 

VT'x - —
x

) dx 	(4.33) 
—d2  
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When pricing a plain vanilla call using risk-neutrality, we proved that 

p rT co 	 a2 
Cgs(0) = S(0) 	f exp (7.  - L-9  T + aV-77x - '12-) dx 

21-  -d2  

- Ke-rT 	f 
e 

1 	c° 	dx 
27 -d2  

= S(0)N(dl ) - K e-rT  N(d2). 

In other words, we showed that 

e rT  1   lc  
e 

2  dx = e'T  N(d2); 
2-Ir -d2 

e-rT f f o e 	 x2 
I7r d2  exp (r - -2-) T + 	x - -2-) 	= N (di) 

From (4.33), (4.34), and (4.35), we conclude that 

V(0) = K2  e'T  N (d2) - 2K S (0)N (di) 
rT Do 	 x2 e  

+82(0) 	I exp ((2r - a2 )T + 2a-V7x - —
2

) dx. (4.36) 
27r -d2 

The integral from (4.36) is computed by completing the square as follows: 

e-rT oo 	 x 2 
S2  (0) 	f exp ((2r - a2 )T + 2afi"x - —

2
) dx 

v27 -(12  
p  -rT f 

exp 
co 	(x — 2o-.V7)2  

= S2(0) -/-- 	( 	 + (2r + o-2)T dx 
27r _d2 	 2 

s2(0)e(r+,72)T 	 1   /cc' exp 	(x — 20-4)2) 

-411-  - d2 
= 	 dx 

2 

s2 (0) e(r + a-2)T  1   lc.°  = 
4T -(d2+20-0") exp (-2) 

Y 	dy 
2 

= S2(0)e(r+a2)TN(d2 + 20- V1 ); 

we used the substitution y = x - 2a-V7 and the fact that 

 2 	a  
	

2
I i:exp y ) dy 	f 	

(— y 
 dy = N (a). 47r 	2 	

V271- 	
y 

(4.34) 

(4.35) 

(4.37) 

From (4.36) and (4.37), we conclude that 

V(0) = K2  CrT  N (d2) - 2K S (0)N (di) + S2  (0)e(r 4-'2)T  N (d2 + 2a-V-7). ❑ 
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Problem 11: If the price of an asset follows a normal process, i.e., dS 
pdt + cdX, then 

S(t2) = S(ti) + ii(t2 - ti) + 0'02 - ti Z, V 0 < ti < t2. 

Assume that the risk free rate is constant and equal to r. 

(i) Use risk neutrality to find the value of a call option with strike K and 
maturity T. 
(ii) Use the Put-Call parity to find the value of a put option with strike K 
and maturity T, if the underlying asset follows a normal process as above. 

Solution: (i) Using risk-neutral pricing, it follows that 

C(0) = e- 
 rT ERN [max(S (T) - K, 0)], 

where the expected value is computed with respect to S(T) given by 

S(T) = S(0) + rT + o--VT Z. 	 (4.38) 

Note that 

K - S(0)  - rT 

	

S(T) > K if Z >
crVT 	

= d. 

Then, 

x2  

C(0) = e—rT  1 

	

27r  f: 	 cIN/T (S(0) + rT + 	x - K) 6—  T dx 

1 	 f DC  x2 	 ,7,  1 fpC  

	

(S(0) rT)e-rT 	e-T dx 	Ke' 	2 dx 
IT d 	 fgr d 

e-rTo-VT x 	.2 

xe-Tdx. 
fgr 

Note that 

f
X 	2 

xe - dx 
d 	'2 

lim 
t---■ac 

f t 	.2 

xe-Tdx 
d 

= 
.2 ) 

lim (-CT 
t— ■ oc 

t 

d 
= 	e 	452  -; 

1  f x  x2 	 1 

L 

id 
e-Tdx = 1 	 e-Tdx = 1- N(d) = N(-d), 

fg-  d 	 -47r o, 

where N(t) is the cumulative distribution of the standard normal variable. 
We conclude that 

C(0) = (S(0)+rT)e-rT N(-d) - Ke-rT N(-d) + e
-rT  a-VT 

e 
 _d2 

T. (4.39) 
-47'r 
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(ii) Regardless of the model used for describing the evolution of the price of 
the underlying asset, the Put-Call parity says that a portfolio made of a long 
position in a plain vanilla European call option and a short position in a plain 
vanilla European put option on the same asset and with the same strike and 
maturity as the call option has the same payoff at maturity as a long position 
in a unit of the underlying asset and a short cash position equal to the strike 
of the options. Using risk-neutral pricing, this can be written as 

C(0) - P(0) = e-rT  ERN[S(T) - K] = e'T  (S(0) + rT - K), (4.40) 

since ERN[S(T)] = S(0) + rT; cf. (4.38). 
From (4.39) and (4.40), we obtain that 

P(0) = C(0) - (8(0) + rT)e-rT 	Ke-TT 

K e-rT  (1 - N(-d)) - (S(0) + rT)e-rT  (1 - N(-d)) 
e-rT a ff ,  d2 
	e_  

= Ke'T  N(d) - (S(0) + rT)e-rT  N(d) + 
e-rTo-ff  

- 	r  e 

since 1 - N(-d) = N(d). ❑ 
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4.2 Supplemental Exercises 

1. Show that the sequence 
n 

xn  = 	
k 	

— ln(n) 
k=1 

is convergent to a limit between 0 and 1. 

Note: The limit of this sequence is -yR.,- 0.57721, the Euler's constant. 

2. Assume that an asset with spot price 50 paying dividends continuously 
at rate q = 0.02 has lognormal distribution with mean p, = 0.08 and 
volatility a = 0.3. Assume that the risk—free rates are constant and 
equal to r = 0.05. 

(i) Find 95% and 99% confidence intervals for the spot price of the asset 
in 15 days, 1 month, 2 months, 6 months, and 1 year. 

(ii) Find 95% and 99% risk—neutral confidence intervals for the spot 
price of the asset in 15 days, 1 month, 2 months, 6 months, and 1 year, 
i.e., assuming that the drift of the asset is equal to the risk—free rate. 

3. If you play (American)1  

roulette 100 times, betting $100 on black each time, what is the prob-
ability of winning at least $1000, and what is the probability of losing 
at least $1000? 

4. Use risk—neutral pricing to find the value of an option on a non-
dividend—paying asset with lognormal distribution if the payoff of the 
option at maturity is equal to max((S(T))a — K, 0). Here, a > 0 is a 
fixed constant. 

5. Find a binomial tree parametrization for a risk—neutral probability (of 
going up or down) equal to 1. In other words, find the up and down 
factors u and d such that 

pu + (1 — p)d = erbt., 
put + (1 p)d2 = e(2r+cr2 )5t 

if p = 2. 
'American roulette has 18 red slots. 18 black slots, and two green slots (correspond-

ing to 0 and 00). European roulette. also called French roulette;  has only one green slot 
corresponding to 0. 
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4.3 Solutions to Supplemental Exercises 

Problem 1: Show that the sequence 

xn = (n 

k=1 
—
1
) — ln(n) 

is convergent to a limit between 0 and 1. 

Solution: Recall from (4.21) that 

1 
ln(n) + —n  < 	—k  < ln(n) + 1, V n > 1, 

k=1 

which can be written as 

1 
—
rt 

< xn  < 1, V n > 1. 

It is easy to see that 

1 
Xrt+1 Xn = 	 ln(n + 1) + ln(n). 

n + 1 

xr, if and only if 

n + 1 < ln(n + 1) ln(n) = ln 
(n + 11 

n ) 

1  

Therefore, xn+1 < 

This is equivalent to 1 < (n + 1) In (V), and therefore to 

(n + 1)n+1 	(
1 + —

1
) 

n+1 
 e < 

n ) 

which holds for any n > 1, from the definition of e. 
We showed that the sequence (xn)n=1;,„ is decreasing and bounded from 

below by 0 and from above by 1, The sequence is therefore convergent to a 
limit between 0 and 1. ❑ 

Problem 2: Assume that an asset with spot price 50 paying dividends 
continuously at rate q = 0.02 has lognormal distribution with mean p, = 0.08 
and volatility a-  = 0.3. Assume that the risk—free rates are constant and equal 
to r = 0.05. 

(i) Find 95% and 99% confidence intervals for the spot price of the asset in 
15 days, 1 month, 2 months, 6 months, and 1 year. 
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(ii) Find 95% and 99% risk-neutral confidence intervals for the spot price of 
the asset in 15 days, 1 month, 2 months, 6 months, and 1 year, i.e., assuming 
that the drift of the asset is equal to the risk-free rate. 

Solution: If the asset has lognormal distribution, then 
0.2 

S(t) = S(0) exp (/2 - q - --2-) t + o-ViZ) 	(4.41) 

= 50 exp(0.015t + 0.3ViZ). 

Recall that the 95% and 99% confidence intervals for the standard normal 
distribution Z are [-1.95996, 1.95996] and [-2.57583, 2.57583], i.e., 

P(-1.95996 < Z < 1.95996) = 0.95; P(-2.57583 < Z < 2.57583) = 0.99. 

Therefore, the 95% and 99% confidence intervals for S(t) are 

[50 exp(0.015t - 03-Vi • 1.95996), 50 exp(0.015t 0.3-Vi • 1.95996)]; 

[50 exp(0.015t - 0.3-Vi • 2.57583), 50 exp(0.015t + 0.3fi • 2.57583)], 

respectively. 
The risk-neutral confidence intervals for the spot price of the asset are 

found by substituting the risk-free rate r for /2 in (4.41) to obtain 

SRN(t) = 50 exp(-0.015t + 

Therefore, the 95% and 99% confidence intervals of SRN(t) are 

[50 exp(-0.015t - 0.3 Nfi • 1.95996), 50 exp(-0.015t 0.3-Vt • 1.95996)] 

[50 exp(-0.015t - 0.3 	• 2.57583), 50 exp(-0.015t + 0.3\fi • 2.57583)], 

respectively. 
For t E {A, 	we obtain the following confidence intervals: 

t 95% CI S(t) 99% CI S(t) 95% CI SRN(t) 99% CI SRN(t) 
15 days 43.36, 57.76 [41.45, 60.43.  43.28, 57.66 [41.36, 60.30 
1 month 42.25, 59.32 [40.05, 62.57 42.14, 59.18 39.96, 64.41 
2 months 39.43, 63.72 36.56, 68.70 39.23, 63.41 36.36, 68.37 
6 months 32.25, 75.35 29.17, 86.99.  32.74, 75.21 [28.73, 85.70 

1 year 28.20, 91.38 [23.44,109.90] 27.36, 88.68 [22.75,106.65] 

Problem 3: If you play (American) roulette 100 times, betting $100 on 
black each time, what is the probability of winning at least $1000, and what 
is the probability of losing at least $1000? 
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Solution: Recall that an American roulette has 18 red slots, 18 black slots, 
and two green slots. Therefore, every time you bet on black, you win $100 
with probability A and lose $100 with probability E. In other words, if Wi  
is the value of the winnings in the i—th round of playing, then 

f —100, with probability E;  
Wz 	100, with probability 

= 

Note that 

1 
µE[W] = —

10 
(-100) + —

9
100 = — 	

00. 
19 	19 	19 

o = std(Wi) = E[(Wi)2] — (E[WiD2  = 
6000Th 

19  

Let W = Eroi  Wi  be the total value of the winnings after betting 100 
times. Since every bet is independent of any other bet, it follows that W is 
the sum of 100 independent identically distributed random variables. From 
the Central Limit Theorem we find that 

10000  6000 10 
W 100p + 10aZ =  — 	 Z. 

19 	19 

The probability of winning at least $1000 can be approximated as follows: 

0T  
P(W > 1000) 	P 	

10000 6000 	
Z > 1000) 

19 	19 

= P(Z > 1.5284) = 0.0632. 

The probability of losing at least $1000 can be approximated as follows: 

1N  
P(W < —1000) 	P 	

0000 
19   + 

6000 /TO
Z < —1000 

	

19 	 ) 

= P(Z < —0.4743) = 0.3176. 

We conclude that the probability of winning at least $1000 is approximately 
6%, and the probability of losing at least $1000 is approximately 32%. ❑ 

Problem 4: Use risk—neutral pricing to find the value of an option on a 
non—dividend—paying asset with lognormal distribution if the payoff of the 
option at maturity is equal to max((S(T))a — K, 0). Here, a > 0 is a fixed 
constant. 
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Solution: Using risk-neutral pricing, we find that the value of the option is 

V(0) = CrT  ERN[MaX((5 (T))a  — K,0)], 

where 	

S(T) 	
2

2 

S(0)exp 	- 	+ o-  VT 	. 	(4.42) 

Note that (S(T))a > K is equivalent to S(T) > K11'. Using (4.42), we find 
that 

S(T) > K11a 

Then, 

In (V) - (r - '4) T 
Z >  	- a. 

o-,5" 

e-r T fc 	 0.2 	 2 
V(0) =  	((S(0))aexp (a - —

2
) T+ cto- A/Tx) - K) 	dx. 

f2-Tr -a 

Recall from (4.34) that 

e-rTr x 2 
= e-rTN(a).  27r 	dx 

Therefore, 

ev0.

2 

 2 x2  
V(0) = (S(0)) 	exp exp ((a 1)rT 	T + ao- ✓tx - 	dx 

11g-T -a  

- Ke-rT  N (a). 

By completing the square for the argument of the exponential function 
under the integral sign we obtain that 

1  r 
exp ((a 1)rT 	T + ao- ftx - 	dx 

(10.2 	 X2 

7I -a 	 2 

(   	 2    22 ) 	: 	( 	 -P2  
= exp (a-1)rT- a—T+ aa T 	 exp x -ac ) 

dx 
2 	

2 	/,r f  
2 

= exp ((a - 1) (r + a
2
(7-2 ) T) 	1  f 	° G 	 Y exp (--) d 

Nig _(,±a,,m 	2 dy 

a0.2 	1 f  a+a0VT 
= exp ((a - 1) (7. + —) T  

	
2 exp (--0 dy 

2 	) -‘/Yr  j, 
(10.2 

exp ((a - 1) Cr + 	2  ) T) N(a + ao-ft); 
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note that the change of variables y = x — ao- ff" was used above. 
We conclude that 

(10. 2 
V(0) = (S(0))aeXp ((a — 1) + --2—)T) N(a + ao-VT) — Ke'T  N(a), 

where 

a = 
In s(°) ) + (r — 2 ) Klio  

 

o /T 

Problem 5: Find a binomial tree parametrization for a risk—neutral proba-
bility (of going up) equal to Z. In other words, find the up and down factors 
u and d such that 

Pu + (1 — p)(1 = en5t 

pu2 + (1 —Ad2  = e(2r+cr2 )(5t 

if p= 2. 

Solution: It is easy to see that, if p = 1, then 

u + d = 2er5t; 
u2 	d2 = 2e(2r+cr2)bt ,  

and therefore 

ud = 
(u + d)2  — (u2  + d2) = 2e2r5t e(2r+o 2  )(5t 

2 

Note that u and d are the solutions of z2  — + d)z + ud = 0, which is 
the same as 

z2  — 2er5t z + 2e2r8t  — e(2'+ 7̀2)6t  = 0. 	 (4.43) 

We solve (4.43) and find that 

u --= er8t  (1 + ✓ea26t — 1) ; 

d = erbt (1 — V eu26t — 1) , 

since d < u. ❑ 





Chapter 5 

Taylor's formula and Taylor series. ATM 
approximation of Black—Scholes formulas. 

5.1 Solutions to Chapter 5 Exercises 

Problem 1: Show that the cubic Taylor approximation of \/1 + x around 0 
is 

X 	X2 	X3 

-V-1+x 	1 + 	— 	+ 
2 	8 	16' 

Solution: Recall that the cubic Taylor approximation of the function f (x) 
around the point a = 0 is 

(x 	a)2 
	

(x 1"(a) f(3)(a) 

(5.1) 

(5.2) 

f(x) 	f(a) + (x 	a)l 	
2 

(a) 

= 1(0) + xf(0) + 1-/"(0) + f(3) (0). 

f (3)  (x) = 
' 

. 	f(3)(0
) 

 

4' 

6 

3 

For f (x) = 11 	x, we find that 

11 
f(x) = 	 f" (x) = 2-V1 + x

; 	 4(1 	x)32  

and therefore 
f„(0)  

1(0) = 1; 1/(0) = 2
; 

8(1 

3.  
8 

+ x )5/2' 

From (5.1) and (5.2) we conclude that 

X 	X2 	X3  
A/1+X 	1 + 	— 

2 	8 + 16' 
L 

 

Problem 2: Use the Taylor series expansion of the function e2' to find the 
value of e0.25  with six decimal digits accuracy. 
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Solution: Recall that the Taylor series expansion of the function f(x) = ex 

around 0 converges to ex at all points x E R, i.e., 

v■
X k 

k=0 k!' 

For x = 0.25 we find that 

E (0.25)k  e0.25 = E  
k=0 

0.25 En  (0.25)k  e 	= 	Xn, where xn  = 	 v n > O. 
n-•Qc 	 k! 

k=0 

Note that the sequence {x,}n=0,,c  is increasing. It is then enough to 
compute xo, xi, x2, ... , until the first seven decimal digits of these terms are 
the same, in order to find the first six decimal digits of 60.25. We find that 

xo = 1; 	xi = 1.25; 	x2  = 1.28125; 
x3 = 1.28385417; x4 = 1.28401698; x5 = 1.28402507; 
x6  = 1.28402540; x7  = 1.28402541, 

and conclude that 
0.25 e 	Re, 1.284025. ❑ 

Problem 3: Find the Taylor series expansion of the functions 

	

ln(1 — x2) and 	
1 

 
1 — x2  

around the point 0, using the Taylor series expansions of ln(1 — x) and 1. 1 . 

Solution: Recall that 

ex = V x E R. 

k! 

\--", X k 	X2 	X3 	X4 
,VXE1-1, 1); 

k=1 
DO 

= E xk  =1±X±X2 ±X 3 +...,e X E(-11). 
k=0 

By substituting x2  for x in the Taylor expansions above, where Ix' < 1, we 
find that 

2 	
x T 2k 2 X4 X6 X8 

1.11 — X) = — 	= - x - 2 — 
3 

— —
4 

— 	, V x E (-1, 1); 
k=1 
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1 	E x2k = ± x2 ± x4 ± x6 ± 	, d x E 	1). ❑ 

k=0 

Problem 4: Let 

T(x) 
	co (_i)k+1 xk 

k=1 
be the Taylor series expansion of f (x) = In (1 + x). Our goal is to show that 
T(x) = f (x) for all x such that Ix! < 1. 

Let 

E 
(_i)k+1 xk 

Pn(X)  = E 	k 
k=1 

be the Taylor polynomial of degree n corresponding to f (x). Since T(x) = 
limn,,, Pi,(x), it follows that f (x) = T(x) for all Ix! < 1 if and only if 

	

n-+ 
lim I f (x) — Pn(x)I = 0, V Ix! < 1. 	 (5.3) 

oo 

(i) Show that, for any x, 

f (x) — Pr,(x) = 
A 	( 

(-1)n±2  (x — 	dt  
1 + on+1 	

dt. 
 

(ii) Show that, for any 0 < x < 1, 

I f (x) — P9,(x)I < xn ln(1 + x) 

and prove that (5.3) holds for all x such that 0 < x < 1. 

(iii) Assume that —1 < x < 0. Show that 

f (x) — Pn(x)I < (— 	ln(1 + x)! 

and conclude that (5.3) holds true for all x such that —1 < x < 0. 

Solution: (i) From the integral formula for the Taylor approximation error 
we know that 

Jo 	n! 

Since f(x) = In (1 + x), we obtain by induction that the derivatives of 
f(x) are 

(5.5) 

1 — x2  

f(x) — Pn(x) = 
(x — 
	 f

(n+i)
(t) dt. (5.4) 

fuo (x) 	(-1)k+1  (k — 1)! 
(1 + x)k 	

V k > 1. 
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From (5.4) and (5.5) it follows that 

f (x) — Pri(x) 	jo 	77,1 	(-1 	dt 
x (x — on 

(  

s (-1)71+2(x 	
) 

 

	

=- 
fo 	(1 + tr+1- 	

dt
. 
	 (5.6) 

(ii) Let x E [0, 1). By taking absolute values in (5.6) and using the fact that 

x — t 
1 + t 

we obtain that 
f x 1  

	

I f (x) — Pri(x) = 	x 	tVi 	1 '11p 	d-t) i+t 	5-  xn io 	dt  
xn ln(1 + x), V 0 < x < 1. 

We conclude that 

lim If(x) — Pn(x)I = 0, V x E [0, 1). 	 (5.7) 

(iii) Assume that x E (-1, 0) and let s = —x. From (5.6), it follows that 

f (x) — Pn(x) = 
f (()1+2 7:10n dt 	fs (-1(

1+

2(t._):+-1  t)n, 
' dt 

fo-s (1)127t()811-1  tr  
	 dt = fo-s  (s++t)T1  dt. 

Using the substitution t = —z, we obtain that 

s (s — z)n 
(1 	z).1  dz. f (x) — Pri(x) 	— f  

By taking absolute values and using the fact that 

s Z 
	<8 V0<Z<S<1, 
1— z 

we find that 

s  Sn  

	

if (x) Prt(X)I 	f 
(is 
itzz) Tr+  dz < f 1_ z  dz — 

= sn  (— ln(1 — z))1:Z 
—sn ln(1 — s) = Sn l ln(1 — s)i 
(—x)niln(1 +x)1; 

< x, V0<t<X<1, 
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recall that, by definition s = -x. 
Note that, for any x E (-1,0), 

lien (-x)nl ln(1 + x)1 = 0. 
n—∎co 

We conclude that 

lim If (x) - Pii(x)I = 0, V x e (-1,0). 	(5.8) 
n-■co 

From (5.7) and (5.8) we obtain that 

lim f (x) - Pii(x)1 = 0, V x E (-1, 1), 
n—co 

and conclude that the Taylor series expansion of the function f (x) = ln(1+x) 
converges to f(x) for any x with Ix' < 1. ❑ 

Problem 5: In the Cox-Ross-Rubinstein parametrization for a binomial tree, 
the up and down factors u and d, and the risk-neutral probability p of the 
price going up during one time step are 

u = A + VA2  - 1; 

d = A - A2  - 1; 
en:St 	d 

P = u - d 

where 
A  = 

2 
(e—rSt e(r+cr2)6t) 

Use Taylor expansions to show that, for a small time step St, u, d and p may 
be approximated by 

u = e(7t; 

d = e-cr /̀6 ; 
1 	1 

P = 2 + 2 
(Li
u2

) St. 

(5.12) 

(5.13) 

(5.14) 

In other words, write the Taylor expansion for (5.9-5.11) and for (5.12-5.14) 
and show that they are identical if all the terms of order 0(6.0 and smaller 
are neglected. 

Solution: We will show that the Taylor expansion for (5.9-5.11) and for 
(5.12-5.14) are identical if all the terms of order 0(003/2) and smaller are 

(5.9) 

(5.10) 

(5.11) 
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neglected. In other words, we will show that 

u 	ea 	.t  + 0(003/2); 

d 	-= 	e—cr` at + 0(003/2). 

p = —
1 	2 
2 
 + —

1
(r —

(7 

2
)1fii + 0(00312), 

2a  

(5.15) 
(5.16) 

(5.17) 

Recall the following Taylor approximations: 

ex 

= 

= 

1 

1 

1 

x2  
x + 	0(x3), 

+ -
2 

+ 0(x2), 	as x 

- -
x 

+ 0(x2), 
2 	

a,s x 

as x 	0; 

0; 

O. 

+ x 

\/1 - x 

In particular, note that 

+ 	= 1+ -(5t  + 0(002). 

Then, 

1 

	

A 	2  (e-rst 	e(r+,72)6t) 

1 
= -

2 
(1 -7-St + 0(002) + 1 + (r + o-2).5t + 0(002)) 

= 1 + 
a28t 

+ 0(002); 
2 

2 
A2  — 1 = (1 + (1.2-51  + 0(002)) — 1 

= o-28t + 0(002 ; 

	

VA2  - 1 	-Va28t + 0(002) = uffi 	+ 0(80 

Q . Vbt (1 + 0(I25t)  + 0((.502)) 

= aVh+ 0(003 /2) 

and 

u = A + 'VA2  - 1 

= 1 + 
0-28t 

+ 0(002) + Q bt + 0(003/2) 
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= 1 + cr5t + c126t  + 0(0.03/2); 
2 

d = A- 

= 1- 1 

Since 

ea f 5̀7  = 

A2  -1 
o-

2  
28t 

0((803/2). a+ 2  + 	+ 

1 	(a'V t)2  0((o-V303) +o--\/(± 	+ 
2 

o-2  8t 
1 	 0(003/2); = + a-N/7R + 2 	+ 

e-cr` = 
0-2ot 

1 	 0((503/2), a.fh 	+ 
2 

we conclude that 

u = 	0(003/2); 

d = e-° 7̀6  + 0(003/2). 

Therefore, (5.15) and (5.16) are established. 
Finally, 

er5t 	d  

u - d 

(1+ rot + 0((rS02)) - (1 

(1 + o- -\/K + a2 t + 0((50312)) - 

o-VK  + (r - c)8t + 0((80312) 
2o--Va + 0(003/2) 

2 
-
1 

+ 1(r - 2 	+ 0(0.03/2), 
2o-   

which is what we wanted to show; cf. (5.17) . ❑ 

Problem 6: (i) What is the approximate value Papprox,r=0,q=0 of an at-the-
money put option on a non-dividend-paying underlying asset with spot price 
S =- 60, volatility o-  = 0.25, and maturity T =1 year, if the constant risk-free 
interest rate is r = 0? 

(ii) Compute the Black-Scholes value Pas,r=o,q=0  of the put option, and esti-
mate the relative approximate error 

PBS,r=0,q=0 	Papprox,r=0,q=01  

PBS,r=0,q=0 

P = 

_coi+q+0((803/2)) 

(1 - c,in+ q+0((803/2)) 

c+ (r - c)fdi + 000  
2o-  + 000 
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(iii) Assume that r = 0.06 and q = 0.03. Compute the approximate value 
Papprox,r=0.06.q=0.03 of an ATM put option and estimate the relative approxi- 
mate error 	

IPBS,r=0.06,q=0.03 	Papprox,r=0.06,q=0.031  

PBS,r=0.06,q=0.03 

where PBS,r=0,06,q=0.03  is the Black—Scholes value of the put option. 

Solution: (i) Using the approximate formula 

\I , T 
Papprox,r=0,q=0 = CIO —, 

27r 

we obtain that 
Papprox.r=o,q=0 = 5.984134. 

(ii) From the Black—Scholes formula, we find that 

PBs.r=o.q..-0 = 5.968592, 

and therefore 

PBS,r=0,q=0 Pappros,r=04=01  = 0.002604 = 0.26%. 
PBS,r=0,q=0 

(iii) Using the approximate formula 

	

T 	(r q)n 	(r — q)T 
Papprox,r0.00 = 	\ 

	1 — 

 

	

2 	) 	2 	S' 

we obtain that 
Papprox.r=0.06.q=0.03 = 4.814848. 

From the Black—Scholes formula, we find that 

PBS,r=0.06,q=0.03 = 4.886985, 

and therefore 

IPBS.r=0.06,q=0.03 	Papprox,r=0.06,q=0.031 
0.014761 = 1.4761%. ❑ 

PBS,r=0.06,q=0.03 

Problem 7: It is interesting to note that the approximate formulas 

(r + q)T 
 ) + 

(r — q)T  C -- o-S  I 
T  
—2ir (1 

	

2 	 2 	S;  

P co 
, T 

1  (r ± q)T 	(r — q)T s  -- \I —27 ( 

	

2 ) 	2 

(5.18) 
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for ATM call and put options do not satisfy the Put-Call parity: 

	

P + Se—qT  — C = S (e—qT (r - <1.)T) 	se—rT = Ke—rT .  

	

Based on the linear Taylor expansion e-x 	1 - x, new approximation 
formulas for the price of ATM options which satisfy the Put-Call parity can 
be obtained by replacing rT and qT by 1 - e-rT  and 1 - e-qT, respectively. 
The resulting formulas are 

T e—qT e—rT 

27r 	2 

	S (e-qT - e—rT) 
C aS  

2 
	 • 

T  e-qT e—rT 	S (e—qT e—rT) 

(i) Show that the Put-Call parity is satisfied by the approximations (5.19) 
and (5.20). 

(ii) Estimate how good the new approximation (5.20) is, for an ATM put 
with S = 60, q = 0.03, o = 0.25, and T = 1, if r = 0.06, by computing 
the corresponding relative approximate error. Compare this error with the 
relative approximate error (5.18) found in the previous exercise. 

Solution: (i) From (5.19) and (5.20), it is easy to see that 

Q (n —qT e—rT) 

	

P - C + Se-qT  = 	
2 

2 L' 	  se-qT = se-rT = Ke-rT,  

since K = S for ATM options. 

(ii) Using the new approximation formula (5.20), we obtain that 

approx_new,r=0.06,q=0.03 = 4.861031. 

The Black-Scholes value of the put option is P - BS,r=0.06,q=0.03 = 4.886985, and 
therefore 

	

I PBS,r=0.06,q=0.03 	Papprox_new,r=0.06,q=0 03 
= 0.005311 = 0.5311%. 

PBS,r-=.0.06,q=0.03 

Recall from Problem 7 that the approximation error corresponding to 
the original approximation formula is 1.4761%. We conclude that, for this 
particular example, the new approximation formula is more accurate. ❑ 

P 	o-S 
27r 	2 	 2 

(5.19) 

(5.20) 

Problem 8: Consider an ATM put option with strike 40 on a non-dividend 
paying asset with volatility 30%, and assume zero interest rates. 
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Compute the relative approximation error of the approximation P 

2 if the put option expires in 1, 3, 5, 10, and 20 years. 

Solution: We expect the precision of the approximation formula for ATM 
options to decrease as the maturity of the option increases. This is, indeed, 
the case: 

T Papprox PBS Approximation Error 
1 4.787307 4.769417 0.38% 
3 8.291860 8.199509 1.13% 
5 10.704745 10.507368 1.88% 

10 15.138795 14.589748 3.76% 
20 21.409489 19.906608 7.55% 

Here, the Approximation Error is the relative approximation error defined as 

I PBS — Papproxl  

PBS,r=0,q--=0 
	O 

Problem 9: A five year bond worth 101 has duration 1.5 years and convexity 
equal to 2.5. Use both the formula 

AB 	
— DAy, 

which does not include any convexity adjustment, and the formula 

AB  
— DAy + 2C(Ay)2, 

to find the price of the bond if the yield increases by ten basis points (i.e., 
0.001), fifty basis points, one percent, and two percent, respectively. 

Solution: Denote by Bnew,D the approximate value given by formula (5.21) for 
the value of the bond corresponding to the new yield. Then, AB = B fle„.D —B 
and, from (5.21), it follows that 

Bnew.D = B (1 — DAY)• 	 (5.23) 

Similarly, let B„wo.c the approximate value for the value of the bond 
given by formula (5.22). We obtain that 

Bnew,D,C = B (1 — DAy + (6,y)2) 
	

(5.24) 

(5.21) 

(5.22) 
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Note that B = 101, D = 1.5, and C = 2.5 in (5.23) and (5.24). 
The following approximate values are obtained for 

Ay E {0.001, 0.005, 0.01, 0.02}: 

Ay Bnew,D Bnew,D,C 

0.0010 100.8485 100.8486 0.0001% 
0.0050 100.2425 100.2457 0.0031% 
0.01 99.4850 99.4976 0.0127% 
0.02 97.9700 98.0205 0.0515% 

The last column of the table represents the percent difference between the 
approximate value using duration alone, and the approximate value using 
both duration and convexity, i.e., 

Bnew,D,C — Bnew,D 

Bnew,D 
0 
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5.2 Supplemental Exercises 

1. (i) Let g(x) be an infinitely differentiable function. Find the linear and 
quadratic Taylor approximations of e9(x) around the point 0. 

(ii) Use the result above to compute the quadratic Taylor approximation 
around 0 of e(x+1)2 . 

(iii) Compute the quadratic Taylor approximation around 0 of e(x+1)2  
by using Taylor approximations of ex and eX2 . 

2. Show that 
e-x 1 

= 0(x2), as x —* 0. 

 

1+x 

3. Compute the Taylor series expansion of 

ln
(1 + x  

1 — x 

around the point 0, and find its radius of convergence. 

4. Recall that 

(1 + —1) x  < e < (1 + —1) x+1  , V x 1. 

Prove that 

1+ 	

1 2 12x 

X 

x+ 
< e < (1 + =.)

1  
2  , V X ? 1. 

X 

5. (i) Find the radius of convergence of the series 

x4 
l++++ ...  (5.25) 

(ii) Show that the series from (5.25) is the Taylor series expansion of 
the function 

es2  +e-x2  

2 
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6. The goal of this exercise is to compute 

fo
i ln(1 — x) ln(x) dx. 	 (5.26) 

(i) Show that 

lim (ln(1 — x) ln(x)) = lim (1n(1 — x) ln(x)) = 0, 

	

x\o 	 x/1 

and conclude that the integral (5.26) can be regarded as a definite 
integral. 

(ii) Use the Taylor series expansion of ln(1 — x) for Ix( <1 to show that 

	

1 	 co 1 f  1 
ln(1 — x)ln(x) dx = — E — 	xn ln(x) dx. 

n=1 
n 0 

(iii) Prove that 

foi 
ln(1 — x) ln(x) dx = 

(iv) Use that fact that 

co 
-, 	1 

Z--in,(n + 1)2 ' 
k=1 

00 , , 	72 

E W = 6 
k=1 

to obtain that 
1 7r 

ln(1 — x) ln(x) dx = 2 — w  

7. Consider an ATM put option with strike 40 on an asset with volatility 
30% and paying 2% dividends continuously. Assume that the interest 
rates are constant at 4.5%. Compute the relative approximation error 
to the Black—Scholes value of the option of the approximate value 

	

U
S T ( (r + q)n 	(r — q)T  s  

Papprox,r0,q00 = 0-0 \il y-7.1_ 	1 

	

2 ) 	2 

if the put option expires in 1, 3, 5, 10, and 20 years. 

io 

f . 
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5.3 Solutions to Supplemental Exercises 

Problem 1: (1) Let g(x) be an infinitely differentiable function. Find the 
linear and quadratic Taylor approximations of e9(x) around the point 0. 

(ii) Use the result above to compute the quadratic Taylor approximation 
around 0 of e(x+1)2 . 

(iii) Compute the quadratic Taylor approximation around 0 of e(x+1)2  by using 
Taylor approximations of ex and eX2  

Solution: (i) Let f(x) = e9(x). Then 

(x) = g'(x)eg( x)  and f" (x) = (g"(x) + (g' (x))2)eg( x) . 

The linear Taylor approximation 

f (x) = f (0) + x (0) + 0(x 2), as x 	0, 

can be written as 

e9(x) _= eg(o) 	xe9(o)g/(0) + 0(x 2), as x --> 0. 

The quadratic Taylor approximation 

f (x) = f (0) + x (0) + 2- f"(0) + 0(x 3), as x 	0, 

becomes 

e9( x) 	+ xe9Mg' (0) + x2e9(°) 9ll(0) +
2
(9i(13))2  + 0(x3), 	(5.27) 

as x 	0. 
(ii) By letting g(x) 	(x + 1)2  in (5.27), we find that 

e(x+1)2 = e + 2ex + 3ex2  + 0(x3), as x 	0. 

(iii) Using the quadratic Taylor approximations 

e2x 	1 + 2x + (2x
2

)2  0(x3) 	
—> 

, 
1 + 2x + (2x)2  + 0(x3), as x 	0; 

 2 
ex2  = 1 + x2  + 0(x4), 

it follows that 

e(x+1)2  = e e2x ex2 	e(1 + 2x + 2x2)(1 + x2) + 0(x3) 
= e + 2ex + 3ex2  + 0(x3), as x 0. ❑ 

as x 	0, 



co 

	

i)k+1"' 
7--  X — 	+ 	- 

X2 X3 X4 

2 	3 	4 
+ 	, V x E 	11; 

k=1 

	

cc)  Xk 	 X 2 	X3 	X4 

	

-E-k 	 , VxE[-1, 1), 
k=1 
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Problem 2: Show that 

= 0(x2), as x 	0. 

Solution: The quadratic Taylor approximations of e-x and 1. _11  are 

x2 
e-x = 1 - x + 	+ 0(x3), as x 0; 

1 	
= 1 - x X2  + 0(x3), as x 0. 

Therefore, 

x2 

	

e—x 
1 + x 	2 

0(x3) = 0(x2), as x -> 0. 

Note that we implicitly proved that 

	

1 	x 2  

	

e- 	
1 + x 

x 	 = - 
2
— + 0(x 3), as x - 30. 1=1 

Problem 3: Compute the Taylor series expansion of 

(1 + x) 
1 - x 

around the point 0, and find its radius of convergence. 

Solution: Note that the function 

ln 
(1 + x) 

= ln(1 + x) - ln(1 - x) 
1 - x 

is not defined for x = -1 or x =- 1. Therefore, the largest possible radius of 
convergence of its Taylor series expansion around 0 is 1. 

The Taylor series expansions of the functions ln(1 + x) and ln(1 - x) are 

e-x 
	1 

1 + x 

1 + x 

In 
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and have radius of convergence equal to 1. 
We conclude that the Taylor series expansion of In (N) is 

In 
(1 + x) 

1 — x 
ln(1 + x) — ln(1 — x) 

t ((_1)1c.+1Xk 	Xk ) 	x' 2x2,1+1  =  
' 	k + Tc 	—.., 2j + 1 

22 22 
= 2x + T  + —5— + ... , V x E (-1,1), 

and has radius of convergence equal to 1. ❑ 

(5.28) 

Problem 4: Prove that 

x '2 
1 

12  
1 
 .r 	 X+ 

< e < (1 + -11  
2  , V X 	1. 	(5.29) 

Solution: Recall from (5.28) that 

2y 	2y5  
In (1+Y

y
) = 2y+-

3
+-

5
+... , V y E 	 (5.30) 

— 

For any x > 1, substitute y = 22+1  in (5.30) and obtain that 

ln (1 +
1 	2 

 + 	 2 
	

+ 	
2 

= 	 +...  , V x > 1, 
2x + 1 3(2x + 1)3  5(2x + 1)5  

which can also be written as 

(x + 
2  
—1) ln (1 + —) = 1+

3(2x+1)2+ 5(2x + 1)4
+... , V x > 1. (5.31) 

From (5.31), we find that 

1 < (x+ 	ln (1 + I") , V x > 1, 

which is equivalent to 

1)  x+i 
e < (1+ —

x 	
, V x > 1. 

The right inequality of (5.29) is therefore established. 

(5.32) 
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From (5.31), we also find that 

+ -1)141 
2 

+ -1) 
x 

< 1+ 
1 	 1 

 
3(2x + 1)2  E (2x + 1)2k 

k=0 

1 	1 1 
-= 1 + = 1 + 

3(2x + 1)2 	1 12x(x + 1)' (2x+1 1)2 

and therefore that 

(

1
x+2 

 + -
1 x±i 
x 

' < e 375-T 1), V x > 1. 	 (5.33) 

Recall that 
ly+1  

e < (1 + -
x 

Using (5.34), we find from (5.33) that 

V x > 1. 	 (5.34) 

x-Fl  
(1+ =-) 2  < 

X 

and we conclude that 

1 

( 	
1) 12' 

< e 1 + 	, V x > 1, 

71  + 1 x+1-11x 

< e, V x > 1. 

The left inequality of (5.29) is therefore established. 	❑ 

Problem 5: (i) Find the radius of convergence of the series 

X4 x8 X12 

1+2i + z +7, -
!

+... (5.35) 

(ii) Show that the series from (5.35) is the Taylor series expansion of the 
function 	

ex2  e-x2  

2 

Solution: (i) The series (5.35) can be written as a power series as follows: 

T(x) = 
03 

a4PX4 ' 
p=1 

with a4p = 
1  

(2p)!' V  P 
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From Stirling's formula we know that 

Fun 	
k! 
	 = 1. 

k—' Dc  -11\k  VI  271-k e 

It is then easy to see that 

( 011k 1 
lim 	 = — 

	

k—>x k 	e  

and therefore that 
2p 

lim 	 =  ( (20)1/2p 	e (5.36) 

Using (5.36), we find that 

lm la4p1114P  
p—■DC 

1 2p 	)1/ 2 	, 
lim 	 lim 	 

p--40c ((2p)!)1/4P 	p_,,e  (((20)1/2p 	(20/2 

e1/2 	
VVP = O. 

Therefore, the radius of convergence of the power series T(x) is 

R — 	
1 

lim supk„ I aklific 

1 
-= co, 

limp ocI a4p 11/4P  

which means that the series (5.35) is convergent for all x E R. 

(ii) Using the Taylor series expansion 

k X 

Ls  ! 
k=0 

k  

it is easy to see that 

ex2 	e_x2 

2 
1 N-(• (X2)k 	 DG  (—X2) k  = 
2 (L--1 k! + E 

k=0 	 k=0 	
k!  

1 	x2k ± (_i)k x2k 	x 	4j 
= 

2 E 	k! 

	
— 

v. x 
6' (2j)! k=o 	 3=o 

X4 x8 x12 
= 1 + 

2! 
+ —

4! 
+ —

6! 
+ ... , 

e" 
 V x E R, 

which is the same as the series (5.35). 	❑ 
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Problem 6: The goal of this exercise is to compute 

f1  o  ln(1 — x) ln(x) dx. (5.37) 

(i) Show that 

lira (ln(1 — x) ln(x)) = lim (ln(1 — x) ln(x)) =- 0, 

	

x\o 	 x/1 

and conclude that the integral (5.37) can be regarded as a definite integral. 

(ii) Use the Taylor series expansion of ln(1 — x) for Ix( < 1 to show that 

	

1 	 ec 1 f l  

	

ln(1 — x) ln(x) dx = — E — 	xn ln(x) dx. 
n=1 'a o 

(iii) Prove that 

Li 	 00 	
1 

ln(1 — x) ln(x) dx = E n(n + 1)2.  
k=1 

(iv) Use that fact that 
oo 

1 	71'2 

2 = 
6 

k=1 n  
to obtain that 

io 
1 	 72 

ln(1 — x)ln(x) dx = 2 — w. 

Solution: (i) First of all, note that 

lim (ln(1 — x) ln(x)) -= lim (ln(1 — x) ln(x)) . 
x\o 	 x/1 

(5.38) 

We compute the left hand side limit of (5.38) by changing it to a limit to 
infinity corresponding to y = 1 as follows: 

lim (ln(1 — x) ln(x)) 	lim In (1 — —1
) 

lu (-1) 
x\o 	 Y—,00 	Y 	Y 

v  lim (ln ( (1 — — Y  ) ) • Y ) (— ln(y)) 
Y—'00   

im In = — 	
)v) ln(y).  

l 	(( l. — 1 — 	 (5.39) 
y—>co 	Y) ) 	Y 
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Recall that 

lim (1 — —
1) =. 1 -- — 

Y—Qc 	y 	e 

y—,x 	y 
lim In ( (1 — -I--Y) = — 1. 	 (5.40) 

From (5.39) and (5.40) it follows that 

urn 	
ln(y) 

(ln(1 — x) 	= lim  	O. 
x \O 	 y—' 	y 

We conclude that 

Ern (ln(1 — x) ln(x)) = him (ln(1 — x) ln(x)) = 0. 
x\o 	 x/1 

The integral (5.37) is equal to the definite integral between 0 and 1 of the 
continuous function g : [0, 1] -- IR given by 

g(0) --= g(1) -= 0; g(x) = ln(1 — x)ln(x), V 0 < x < 1. 

(ii) The Taylor series expansion of ln(1 — x), i.e., 

x  xk 
ln(1 — x) = —E T  V x E (-1,1), 

k=1 
is absolutely convergent to ln(1 — x). 

fJ0

1  

o  ln(1 — x)ln(x) dx = 

Then, 

1:1  (
t xn 

ln(x) 
 dx 

n=1 
x1 

= — E-Iii x" ln(x) 
n 	0  n=1 

(iii) Using integration by parts, it is easy to see that 

X n+1 

xnln(x) dx =
xn+11n(x) 

dx. 

+ C. 

1 

0  

1n(x)) 

(5.41) 

(5.42) 

J 
	

n + 1 	(n + 1)2 

Then, 

(xn+1 1n(x) 	xn+1 
ln(x) dx /1  x" 

n+ 1 	(n+ 1)2 ) 
1 	1  

= 	
1; 

(n + 1)2 	n + 1 ;ri
.c, (xn+1  

1 = 	 V 	> 1. n 
— (n+ 1)2 

and therefore 
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From (5.41) and (5.42), it follows that 

foi 
ln(1 - x) ln(x) dx -= En=i  n(n + 1)2 ' 

CO 	

1 
(5.43) 

(iv) Note that 
11 	1  

n(n+ 1) = n n+1.  
Then, it is easy to see that 

1 	 1 	1 	1 	1 	 = 	 

  

n(n + 1) n + 1 	n(n + 1) 
1 	1 	1 

n n+1 (n+ 1)2.  

 

   

Therefore, 

n(n + 1)2  (n + 1)2  

00 

r.,=1  n(n + 1)2 	(n 1) - 2-• 2n n=1 	 n=2 

= 1 —  (-7
6

2  — 1) = 2 - '762
. 	

(5.44) 

Here, we used the fact that 
00 1 72 

2 = T 
k=1 n  

and the telescoping series 

00 	 N 
\---,  

(1 

	1  ) = lim x--, (1 	1  ) 
=-  lim 1 	 

N-400 	N +1 = 1,  n=1 Z-i n n + 1 	N-,00 Zn 1 -, n n n+1 = 

From (5.43) and (5.44), we conclude that 
i 	 72 

w  ln(1 - x)ln(x) dx = 2 - . ❑ 

Problem 7: Consider an ATM put option with strike 40 on an asset with 
volatility 30% and paying 2% dividends continuously. Assume that the in-
terest rates are constant at 4.5%. Compute the relative approximation error 
of the approximation 

	

, T ( (r + q)n 	(r -  OT 
 Papprox,r0,00 = Cr ,D \I ,Tr 	1 

	

2 ) 	2 

fo 
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if the put option expires in 1, 3, 5, 10, and 20 years. 

Solution: The approximate option values and the corresponding approxima-
tion errors are given below: 

T Papprox PBS Error 
1 4.1317 4.1491 0.42% 
3 5.9834 6.1577 2.83% 
5 6.4652 6.9714 7.26% 

10 5.2187 7.3398 28.90% 
20 -2.5067 6.0595 N/A 

While the approximation formula is still within 3% of the Black—Scholes 
value when the maturity is three years or less, it deteriorates for long dated 
options, and even produces a negative value for the 20—years option. U 



Chapter 6 

Finite Differences. Black—Scholes PDE. 

6.1 Solutions to Chapter 6 Exercises 

Problem 1: A butterfly spread is made of a long position in a call option 
with strike K — x, a long position in a call option with strike K + x, and 
a short position in two calls with strike K. The options are on the same 
underlying asset and have the same maturities. 

(i) Show that the value of the butterfly spread is 

C(K + x) — 2C(K) + C(K — x), 

where, e.g., C(K + x) denotes the price of the call with strike K + x. 
(ii) Show that, in the limiting case when x goes to 0, the value of a position in 

butterfly spreads as above converges to the second order partial derivative 
Of the value of the option, C, with respect to strike K, i.e., show that 

C (K + x) — 2C (K) 	+ C(K — x) 
lim 	

- a2c 
 

aK2
(K 

x 	
). 

\o 	 x2  

(iii) Show that, in the limiting case when x —> 0, the payoff at maturity of 
a position in i butterfly spreads as above is going to approximate the payoff 
of a derivative security that pays 1 if the underlying asset expires at K, and 
0 otherwise. 
Note: A security that pays 1 in a certain state and 0 in any other state is called 
an Arrow-Debreu security, and its price is called the Arrow-Debreu price of 
that state. A position in 1 butterfly spreads as above, with x small, is a 
synthetic way to construct an Arrow-Debreu security for the state S(T) = K. 

Solution: (i) The value of a butterfly spread, i.e., of a long position in a call 
option with strike K — x and value C(K — x), a long position in a call option 
with strike K + x and value C(K + x), and a short position in two calls with 
strike K and value —2C(K) is 

C(K + x) — 2C(K) + C(K — x). 

135 
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(ii) The value of a position in 	butterfly spreads is 

1 
-ix  (C(K + x) - 2C(K) + C(K - x)). (6.1) 

The value of a call option as a function of the strike of the option is infinitely 
many times differentiable (for any fixed point in time except at maturity). 
Therefore the expression from (6.1) represents the central finite difference 
approximation of g2,4 (K) and we know that 

C(K + x) -  2C(K) + C(K - x) 	2c 
x2 	

= 0  
8

K2 (K) + 0(x2). 

Then, in the limit as x goes to 0, we obtain that 

lim 
C(K + x) - 2C(K)  + C(K - x)02C ( re.\  

x\o 	 x2 	 ar-c2IL ). 

(iii) The payoff at maturity of the butterfly spread is 

max(S - (K - x), 0) - 2 max(S - K, 0) + 
0, 	if S < K - x; 

=_ 	S - (K - x), if K - x < S < K; 
K + x - S, if K < S < K + x; 

0, 	if K + x < S. 

Denote by fx (S) the payoff at maturity of a position in 1 butterfly spreads. 
Then, 

	

{0, 	if S < K - x; 
S-(K-x)  , if K - x < S < K; 

fx(S) - 	K-Fxs-s   if K<S<K+x; 

	

0, 	if K + x < S. 

Note that fx(K) = 1 for any x # 0, and therefore 

lim
\o f

x  (K) = 1. 	 (6.2) x 

Let S # K be a fixed value of the spot price of the underlying asset. Then 
fx(S) = 0 for any x such that 0 < x < 1K - SI, and therefore 

lim 
\o  f

x(S) = 0, V S K. 	 (6.3) x 

From (6.2) and (6.3), we conclude that, in the limiting case when x -.> 0, 
the payoff at maturity of a position in I- butterfly spreads as above is 1 if the 
underlying asset expires at K, and 0 otherwise. ❑ 

max(S - (K + x),0) 
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Problem 2: A bull spread is made of a long position in a call option with 
strike K and a short position in a call option with strike K + x, both options 
being on the same underlying asset and having the same maturities. Let 
C(K) and C(K + x) be the values (at time t) of the call options with strikes 
K and K + x, respectively. 

K)-C(K+x)  (i) The value of a position in bull spreads is C( 	In the limiting 
case when x goes to 0, show that 

lim 
C(K) — C(K + x) 	ac  (K). 

8K 

(ii) Show that, in the limiting case when x 	0, the payoff at maturity of 
a position in bull spreads as above is going to approximate the payoff of a 
derivative security that pays 1 if the price of the underlying asset at expiry 
is above K, and 0 otherwise. 
Note: A position in bull spreads as above, with x small, is a synthetic way 
to construct a cash—or—nothing call maturing at time T. 

Solution: (i) Since the value C(K) of a call option as a function of the strike 
K of the option is infinitely many times differentiable, the first order forward 
finite difference approximation of E(K) is 

ax 
ac  (K) = C(K + x) — C(K)  

+ o(x), 

as x 0. We conclude that 

lim 
C(K)— C(K + x) 	ac  (K). 

x\o 	 ax 

(ii) The payoff at maturity of the bull spread is 

	

{0, 	if S < K; 
S 

	

max(S — K, 0) — max(S — (K + x), 0) = 	— K, if K < S < K + x; 

	

x, 	if K + x < S. 

If gx(S) denotes the payoff at maturity of a position in bull spreads, then 

0, if S < K; 
gx(S) = 	if K < S < K + x; 

1, 

{  

if K + x < S. 

If S < K, then gx(S) = 0 for any x > 0 and therefore 

lim gx(S) = 0, V S < K. 
x\o 

(6.4) 
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If S > K, then gm (S) = 1 for any x such that 0 < x < S – K, and 
therefore 

lim gx(S) = 1, V S > K 	 (6.5) 
x\o 

From (6.4) and (6.5), we conclude that, in the limiting case when x –÷ 0, 
the payoff at maturity of a position in bull spreads as above is 1 if the 
underlying asset expires above K, and 0 otherwise. ❑ 

Problem 3: Find a second order finite difference approximation for f'(a) 
using f (a), f (a + h), and f (a + 2h). 
Note: This type of approximation is needed, e.g., when discretizing a PDE 
with boundary conditions involving derivatives of the solution (also called 
Robin boundary conditions). For example, for Asian Options (continuous 
computed average rate call, to be more precise), this type of finite difference 
approximation is used to discretize the boundary condition -5§ + = 0, for 
R = 0. 

Solution: To obtain a finite difference approximation for f'(a) in terms of 
f (a), f (a + h), and f (a + 2h) we use the cubic Taylor approximation of f (x) 
around the point x = a, i.e., 

–  
f(x) = f (a) + (x – a)[ (a) + 

(x 	 (x a)3  (3)  –
2

a)2
f u(a) + 	6 	f (a) 

+ O ((x – a)4) , 	 (6.6) 

as x –+ a. By letting x = a + la and x = a + 2h in (6.6), we obtain that 

f (a + h) = f (a) + 	(a) + —
h2 

f n  (a) + 
6  f

(3)  (a) + 0 (h4) ; 	(6.7) 
2  

f (a + 2h) = f (a) + 2h t (a) + 2h2  f ll  (a) + 
4h3 

 f (3)  (a) + 0 (h4) , (6.8) 

as h –+ 0. 
We multiply (6.7) by 4 and subtracting the result from (6.8) to obtain 

f (a + 2h) – 4f (a + h) = – 3f (a) – 2h f'(a) + —
2h3 

f (3)  (a) + 0 (h4) , (6.9) 
3 

as h 	0. By solving (6.9) for [ (a), we obtain the following second order 
finite difference approximation of (a): 

[ 
– f (a  + 2h) + 	4f (a + h) – 3,f(a) 	h2  f  (3) (a) = 	 ) + 0 (h3) 

2h 	 3 
–  f (a + 2h) + 4f (a + h) – 3f (a)  

+ 0 (h2) , 
2h 
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as h 	0. ❑ 

Problem 4: Find a central finite difference approximation for the fourth 
derivative of f at a, i.e., for f (4)  (a), using f (a — 2h), f (a — h), 1 (a), f (a+ h), 
and f (a + 2h). What is the order of this finite difference approximation? 

Solution: We will use the following Taylor approximation of f (x) around the 
point x = a: 

	

— 	 — 

	

f (x) = f (a) + (x — a) f' (a) + 
(x  a)2  

2 	f "(a) + 
(x  a)3(3)  

6 	f (a) 

+ (x 
 — a)4 

f (4) (a) + (x 
120 	\ ' 
— ar  f  (5)(a) + (x — ar  f  (6) (a) 

24 	(a)  ' 	 720 	\ ' 
+ 0 ((x — a)7) , 	 (6.10) 

as x —› a. 
For symmetry reasons, and keeping in mind the form of the central dif-

ference approximation for f " (a), we use (6.10) to compute 

f (a + h) + f (a — h) = 2f (a) + h2  f" (a) + 
h 
—

4 	h6 
12 f (4) (a)  + W f (6) (a)  

+ 0 (hi  ) , as h —› 0;4 	 6  

	

f(4)(a)  + 	

(6.11) 

84h5 f(6)(a)  
f(a + 2h) + f(a — 2h) = 2f (a) + 4h2  f u  (a) 

+ _43h 
 

+ 0 (hi) , 	 (6.12) 

as h —> 0. We multiply (6.11) by 4 and subtract the result from (6.12). 
We solve for f (4) (a) and obtain the following second order finite difference 
approximation: 

f  (4) (a) = f (a + 2h) — 4f (a + h) + 6f (a) — 4f (a — h) + f (a — 2h)  +0 (h2), 
h4  

as h —> 0. ❑ 

Problem 5: The goal of this exercise is to emphasize the importance of sym-
metry in finite difference approximations. Recall that the central difference 
approximations for the first and second order derivatives are 

f' (a) = 
f(a + h) — f(a — h) 

+ 0 (h
2
) ; 

2h 

f'' (a) = 
f(a + h) — 2f (a) + f(a — h) 

+ 0 (h2) , 
h2 
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as h 0. In other words, f'(a) and f " (a) are approximated to second order 
accuracy by using the value of f at the point a and at the points a — h and 
a + h that are symmetric with respect to a. 

We investigate what happens if symmetry is not required. 

(i) Find a second order finite difference approximation of fl(a) using f (a), 
f (a — h) and f (a + 2h). 
(ii) Find a first order finite difference approximation of f " (a) using f (a), 
f (a — h) and f (a + 2h). Note that, in general, a second order finite difference 
approximation of f" (a) using f (a), f (a — h) and f (a + 2h) does not exist. 

Let /3 < a < 7 such that a — 	C(-y — a), where C is a constant. 

(iii) Find a finite difference approximation of f'(a) using f (a), AO), and 
f (7) which is second order in terms of 17 — al, i.e., where the residual term 
is 0 (1-y — a12). 
(iv) Find a finite difference approximation of no) using f (a), AO), and 
f (7) which is first order in terms of 17 — al. Show that, in general, a second 
order finite difference approximation of f" (a) using f (a), f (0) and f (y) is 
not possible, unless a = P+2 7, i.e., unless /3 and -y are symmetric with respect 
to a. 

Solution: (i) and (ii). We use the cubic Taylor approximation of f (x) around 
the point x = a, i.e., 

f (x) = f (a) + (x — a) f'(a) + (x  2  a)2  f" (a) + (x 
6 

a)3  f (3) (a) 
 

+ 0 ((x a)4) , as x te a. 	 (6.13) 

By letting x = a — h and x = a + 2h in (6.13), we obtain that 

h 	h3  
f (a — h) = f (a) — h f'(a) +  —2  f " (a) — —6  f (3)  (a) + 0 (h4) ; (6.14) 

 
f (a + 2h) = f (a) + 2h f'(a) + 2h2  f u  (a) + 

433
f `31  (a) + 0 (h4) , (6.15) 

as h —> 0. 
We eliminate the terms containing f" (a) by multiplying (6.14) by 4 and 

subtracting the result from (6.15). By solving for f'(a), we obtain the fol-
lowing second order finite difference approximation of f (a): 

f(a) = 
f (a + 2h) + 3f (a) —  4f (a — h) 	h2 

f (3) (a) + 0 (h3) 
6h 	 3 

f (a + 2h) + 3f 	(a) — 4f (a — h) -= 	 + O(h2) 
6h 

as h —> 0. 
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Similarly, we eliminate the terms containing f'(a) by multiplying (6.14) 
by 2 and adding the result to (6.15). By solving for 7(a), we obtain the 
following first order finite difference approximation of f "(a): 

f" (a) — 	
h 	 3 

h f (a + 2h) — 3f (a) + 2 f (a — h) 	/3\ 
f"(a) + 0 (h2) 

3 2  
f (a + 2h)  — 3f (a) + 	2f (a —  h) = 	 + O(h) 

3h2  
as h —> 0. 

(iii) and (iv). Denote 1/ — a by h, i.e., let h = 7 — a. Then, a — 0 = Ch. 
We write the cubic Taylor approximation (6.13) of 1(x) around the point 

a for x = 7 = a + h and for x = (3 = a — Ch and obtain 

h 	h 
f (-y) = f (a) + h f' (a) + 

2  
-T  f" (a) + 

3  
T f (3)  (a) + 0 (h4) ; 	(6.16) 

f (0) = f (a) — Ch f' (a) + C
2  
2h2 f " (a) 

C6 3 
 f(3) (a) + 0 (h4) , (6.17) 

as h --- 0. 
By eliminating from (6.16) and (6.17) the terms containing f" (a) and 

solving for f'(a) we obtain the following finite difference approximation: 

f r(a)  = C2  f (7) - (c2  - 1)f (a) - f (0)  + 0 (h2)  . 
c(c + 1)h 	

(6.18) 

Similarly, we eliminate from (6.16) and (6.17) the terms containing f'(a) 
and solve for fll(a) to obtain the following finite difference approximation: 

fn (a) — 2Cf (7) — (C + 1)f (a) + f (0)  + 0 (h)  . 
C (C + 1)h2 	

(6.19) 

Note that, in general, the finite difference approximation (6.18) of f'(a) is 
second order, while the finite difference approximation (6.19) of f"(a) is first 
order. The finite difference approximation (6.19) of r(a) would be second 
order, e.g., if C = 1 or if f (3)(a) = 0. 

Also, note that, for C = 1, i.e., if p = a — h and 7 = a + h are symmetric 
with respect to the point a, then (6.18) becomes the central finite difference 
approximation of f'(a), i.e., 

f'(a) = 
f (a + h) — f (a — h) 

+ 0 (h
2
) . 

2h 

The same would not be true for (6.19), which becomes 

f "(a) = 
f (a + h) —  2f  (a) + f (a  —  h) 

h2 	
+ 0 (h) , 	(6.20) 
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instead of the central finite difference approximation 

f
„ (a) = f (a + h) —  2f (a) + f (a  — h) 	

0 (h
2
) 

h2  

of f"(a). This is due to the fact that, for C = 1, the coefficient of h from 
O (h) from (6.20) cancels out and the next term of order 0 (h2) becomes 
relevant. ❑ 

Problem 6: Consider the following first order ODE: 

y/(x) = y(x), V x E [0,1]; 
y(0) = 1. 

(i) Discretize the interval [0,1] using the nodes xi  = ih, i = 0 : n, where 
h = 1. Use forward finite differences to obtain the following finite difference rz 
discretization of the ODE: 

yi±i  = (1 + h)yi, V i = 0 : (n — 1), 

with yo  = 1. Show that 

yi = (1 + h)i, V = 0 : n. 

(ii) Note that y(x) = ex is the exact solution of the ODE. Let 

ei = yi Y(xi) = (1 + h)i  — eih  

be the approximation error of the finite difference solution at the node xi , 
i = 0 : n. Show that this finite difference discretization is convergent, i.e., 
that 

lim max lei  I = 0. 
i=0:n 

Solution: (i) Recall that yo = 1 and yi±i = (1 + h)yi, for all i = 0 : (n — 1). 
It is easy to see by induction that yi  = (1 + h)i, for all i = 0 : n: 

Initial condition: for i = 0, we know that yo = 1 = (1 + h)°. 

Induction step: assume that yi  = (1 + h)i. Then, 

Yi+i = (1 + h)yi  = (1 + h)i+1, 

which is what we wanted to show. 

(ii) Let y(x) = ex be the exact solution of the ODE. It is easy to see that the 
approximation error ei can also be written as 

ei = yi — y(xi) = (1 + h)i eih = ei ln(l+h) — eih 
 

= eih (ei(ln(l+h)—h) 	1 ) 
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Using the Taylor approximation In (1 + x) = x - z  + 0(x3) we find that 

i (1n(1 + h) - h) = ((h - Th2  + 0(h3)) 	h) 

h2 
+ i0(h3) = -

h2 
+ 0(h2), 

2 	 2 

since ih < 1, for all i = 0 : n. Note that the estimate i0(h3) = 0(h2) is 
sharp, since, for i = n, the product ih is equal to ih = nh = 1. 

From the Taylor approximation ex = 1 + x + 0(x2), it now follows that 

ei [1n(1+h)-hl 	1 h2  
—
2 

+ 0(h2)) = exp (-i 	- 1 

h2 	 2 

= 1 + (-i-y 0(h2)) + 0 ((-i 2  + 0(h2)) - 1 
2 

=
h2 

+

• 

 0(h2), 
2 

since ih < 1 for all i = 0 : n, and therefore 

0 
 ((

h2  
-i-

2 
+ 0(h2)) 	= 0 	+ 0(h2)) 	= 0(h2). 

Since eh  < e for all i = 0 : n, we obtain that 

(eiono.+N-h) _ 1) max lei ( 	max eih  
i=0:n 	i=0:n 

< e max ei (In(1-Fh)-h) - 1  
i=0:n 

h2  
< e max -i + 0(h2) 

	

i=0:n 	z 

< e -
2 

+ 0(h2) 

= 0(h) = 0 (-1) 

We conclude that 
lim max led =- 0, 

n->co i=0:n 

and therefore that the finite difference discretization scheme of the ODE is 
convergent. 
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Note that we actually showed that the finite difference discretization is 
first order convergent, i.e., 

max 	= 0  (+ 11 • 11  i=0:n 	 n  

Problem 7: Consider the following second order ODE: 

3x2y"(x) — xy' (x) + y(x) = 0, V x E [0,1]; 
	

(6.21) 

y(0) = 1; 	y(1) = 1. 	 (6.22) 

(i) Partition the interval [0,1] into n equal intervals, corresponding to nodes 
xi  = ih, i = 0 : n, where h 	Write the finite difference discretization 
of the ODE at each node xi, i = 1 : (n — 1), using central finite difference 
approximations for both yi (x) and y"(x). 

(ii) If n = 6, we find, from the boundary conditions, that yo  = 1 and y6  = 
The finite difference discretization scheme presented above will have five 

equations can be written as a 5 x 5 linear system AY = b. Find A and b. 

Solution: (i) Let xi  = ih, i = 0 : n, where h = 	We look for yo, yi, • • • , Yn 
such that yi  is an approximate value of y(xi), for all i = 0 : n. 

By writing the ODE (6.21) at each interior node xi  = ih, i = 1 : (n — 1), 
we obtain 

3x2y"(xi) — xiy/(xi) + y(xi) = 0, V i = 1 : (n — 1). 	(6.23) 

We substitute the second order central difference approximations for y"(xi) 
and y/(xi), respectively, i.e., 

y"(xi) = 
y(xj+i) — 2y(xi) + y(xi-i) 	0(h2);  

h2  

y'(x,) = 
y(xi+i)  — 	0(h2),  

2h 

into (6.23), use the approximate values yi for the exact values y(xi), for 
i = 0 n, and ignore the 0(h2) term. The following second order finite 
difference discretization of (6.21) is obtained: 

3i2h2 Yi+i — 2yi + Yi-1 	ih 	— yi-1  

h2 	 2h 
since xi  = ih, which can be written as 

(3i2 + 2) yi_i — (67:2-1)yi 	(3i2 — 	yi±i = 0, V i = 1 : (n-1). (6.24) 

+ yi = 0, 
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From the boundary conditions (6.22), we find that yo = 1 and yr, = Z. 
(ii) For n = 6, the finite difference discretization (6.24) of the ODE (6.21) 
can be written in matrix form as 

A Y = b, 

where A is a tridiagonal 5 x 5 matrix given by 

A(i, i) 	= —(6i2  — 1), V i = 1 : 5; 
A(i, — 1) = 3i2 +2, 	V i = 2 : 5; 
A(i, i + 1) = 3i2  — 2 , 	V i = 1 : 4, 

i.e., 
—5 2.5 	0 	0 	0 \ 
13 —23 11 	0 	0 

A = 	0 28.5 —53 25.5 	0 
0 	0 	50 —95 46 

\ 0 	0 	0 77.5 —149 

and Y and b are the following column vectors: 

( Y1 \ 
Y2 

Y = y3 
Y4 

\y5 /  

/ —3.5  \ 
0 

; b = 	0 	. ❑ 

0 
\ —36.25 / 

Problem 8: Show that the ODE 

y"(x) — 2y'(x) + x 2y(x) = 0 

Y'(x) = f(x,Y(x)), 

Y(x) = (y(x) y/(x)) and f(x,Y(x)) = 	22 	Y(x) 

Solution: Note that y"(x) = 2y'(x) — x2y(x). Then, 

Y'(x) = yY/11((xx)) 	2y/(x '—(xx)2y(x) 

02 2) 	(x) ) 

_ 	02 
2  ) Y(x). ❑ 

can be written as 

where 
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Problem 9: Consider a six months plain vanilla European call option with 
strike 18 on a non—dividend—paying underlying asset with spot price 20. As-
sume that the asset has lognormal distribution with volatility 20% and that 
interest rates are constant at 5%. 

(i) Compute the Greeks of the call option, i.e, A, F, p, vega, and O. 

Use finite differences to find approximate values for the Greeks. Recall that 

ac 	a2c 	ac 	ac 	ac  

	

=A — 	• F 	
3,52' 

 p = 	• vega = 	• 8 = as' 	 ar ' 	ao-' 	aT .  
Denote by C(S, K, T, o, r) the value of the call option obtained from the 

Black—Scholes formula. 

(ii) The forward and central difference approximations Af and A, for 0, and 
the central difference approximation F, for F are 

C(S  + dS, K,T, a, r) — C (S, K , T, a, r) .  
Of = 

dS 

C(S  + dS, K , T, a, r) — C(S — dS,K,T,a,r) 
Ac =  

2dS 	 , 

F, — 
C(S + dS, K,T, a, r) — 2C (S , K,T, c, r)+C(S — dS, K , T, a, r)  

(dS)2 
 

Compute the approximation errors for the following values of dS: 

dS Of Ac  F, IA — Af l IA — Acl Ir — rcl 
0.1 
0.01 
0.001 

0.0001 
0.00001 

0.000001 

(iii) Let do- = 0.0001, dr = 0.0001, and dT = 252 , i.e., one day. Find the 
following forward difference approximations for vega, p, and 8: 

C(S, K,T, a + do-, r) — C(S, K,T, a-, r) 
do- 

C (S, K , T, a, r + dr) — C (S, K,T, c,r) 
Pt 	 , dr 

C(S, K, T + dT, a, r) — C(S, K, T, a, r) 
dT 

vegaf  

Of  

(6.25) 

(6.26) 

(6.27) 



Ivega - vegaf 	
0.000213; 

vega 
P.fl  = 0.000035; 
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Solution: (i) Using the formulas for the Greeks of a plain vanilla call option 
derived from the Black-Scholes formula, we find that 

A = 0.839523; P = 0.086191; p = 7.045377; 

vega = 0.01501; 8 = -1.394068. 

(ii) The Black-Scholes value of the call option is C = 2.699703. The corre-
sponding forward and central difference approximation errors for the Delta 
and Gamma of the option are: 

dS Of Ac rc IA - Afl IA -AEI Ir - rcl 
0.1 0.843774 0.839464 0.086199 0.00425158 0.00005840 0.0000081! 

0.01 0.839952 0.839521 0.086196 0.00042959 0.00000138 0.0000042: 
0.001 0.839565 0.839522 0.086195 0.00004228 0.00000082 0.00000421 

0.0001 0.839526 0.839522 0.086196 0.00000349 0.00000081 0.0000042' 
0.00001 0.839522 0.839522 0.086207 0.00000037 0.00000081 0.0000153 
0.000001 0.839522 0.839522 0.090594 0.00000076 0.00000081 0.0044029 

(iii) The finite difference approximations of vega, p and 8 given by (6.25-6.27) 
are 

vegaf  = 3.448385; pf = 7.045624; 81 = - 1.392998. 

The corresponding relative approximation errors are 

le - ef I  - 0.000767. ❑ 
Iel 

Problem 10: Show that the value of a plain vanilla European call option 
satisfies the Black-Scholes PDE. In other words, show that 

ac + 52c 
 + (r os

ac  
rC = 0, 

at 	2 	352 	as 
where C = C(S, t) is given by the Black-Scholes formula. 

Solution: Although direct computation can be used to show this result, we 
will use the version of the Black-Scholes PDE involving the Greeks, i.e., 

e + 1a2s2r + (r - q)SA - rC = 0, 
2 



Solution: It is easy to see that 

o f 
qSe-q(T-t)  - rKe-r(T-0. at 
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substitute for A, F and 8 the values 

,—q(T—t) 	_La2 
0 =  e-q(T-t)N(di); r= 

	 e  2 • 

SoV271-(T - t) 

8 = qSe-97-0N(di ) - rKe-''(T-t)N(d2) 	
S e—q(T—t) 
	e  2 , 

2 V27 (T - t) 

and substitute for C the value given by the Black-Scholes formula, i.e., 

C = Se-q(T-t) N(di ) - Ke-r(T-t)N(d2). 

Then, 

e + 2cr2S2r + (r - q)SA - rC 

o-Se-t)-t)  
= qS q(T -t)  N (di ) 	rKe-t)-t)N(d2) 	e  2 

2 V271-  (T - 

0.252 	e-q(T-t) 	A 
 	2 

2 S0.V27(T - t)
e 

 

+ (r - q)Se-q(T-t)N(di ) - r (Se-q(T-t) N(di) - Ke-r(T-t)N(d2)) 

= O. ❑ 

Problem 11: The value at time t of a forward contract struck at K and 
maturing at time T, on an underlying asset with spot price S paying dividends 
continuously at the rate q, is 

f (S, t) = Se-q(T-t) 	Ke-r(T-t). 

Show that f (S, t) satisfies the Black-Scholes PDE, i.e., show that 

a f + 10"
2,52

as  
1  at 	2

f + (r - q)Sas 
  
- rf = O. 

of  = e—q(T—t), 82!  = — 0 
as 882  

Then, 

—a f + -1 0-2s2a2f  + (r - q)S —
a f - rf at 	2 	as2 	as 
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= qSe-q(T-t)  - rKe-r(T-t)  + 0
) 
 + (r - q)Se-q(T-t )  

r (se-q(T-t )  - K e-r (T-0 

= 0. ❑ 



(ii) If q = 0 but r # 0, show that 

1 + v.252 F(C) 
2 8(C) 
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6.2 Supplemental Exercises 

1. Let f (x) = X 3ex  — 65x. Show that the central difference approximation 
for f'(x) around the point 0 is a fourth order approximation. 

f(5) = 
C(K + x,T) — 2C(K,T)  +  C(K — x,T) 

x2  
where, e.g., C (K , T) denotes the value of a plain vanilla call option 
with strike K and maturity T on an underlying asset with spot price 
S following a lognormal distribution. Show that, for any continuous 
function g : R —4 R, 

pc 
lim I f(S)g(S) dS = g(K). 
xNo _oc  

3. (i) Show that the approximate formula 
0.282 r  

1 +  	,---,-,, 0 
2 8 

connecting the F and the 8 of plain vanilla European options is exact if 
the underlying asset pays no dividends and if the risk—free interest rates 
are zero. In other words, for, e.g., call options, show that, if r = q = 0, 
then 

= 0. 

1 
1  + 	a 	Ni(d2) •  

27.07-  N(d2) 

(iii) Consider a six months plain vanilla European call option on an 
underlying asset with spot price 50 and volatility 30%. Assume that 
the interest rates are constant at 4%. If the asset pays no dividends, 
compute 

2. Let 

1 + 0.252 F(C)  

2 8(C) 

1 + 
2 O(C) 

if the options are at—the—money, 10%, 20%, 30%, and 50% in—the-
money, and 10%, 20%, 30%, and 50% out—of—the—money, respectively. 

What happens if the asset pays dividends continuously at a 3% rate? 

a252 F(C) 
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4. Consider a six months 5% in-the-money plain vanilla European call 
option with strike 30 on an underlying asset with volatility 20%, paying 
dividends continuously at a 2% rate. Assume that the interest rates are 
constant at 5%. 

(i) Use central differences to compute the finite difference approxima-
tions A, and F, for A and F, respectively, i.e., 

C(S  + dS) -C(S-dS).  
2dS 

C(S + dS) - 2C(S) + C(S - dS) 
(dS)2  

for dS = 10-i with i = 1 : 12, where, e.g., C(S + dS) = C(S + 
r) denotes the Black-Scholes value of the call option corre-

sponding to a spot price S + dS of the underlying asset. 

(ii) Compute the Delta and Gamma of the call using the Black-Scholes 
formula, and the approximation errors IA, - AI and Ire — rl. Note 
that these approximation errors stop improving, or even worsen, as dS 
becomes too small. How do you explain this? 

6.3 Solutions to Supplemental Exercises 

Problem 1: Let f(x) = x3ex - 6ex. Show that the central difference ap-
proximation for f'(x) around the point 0 is a fourth order approximation. 

Solution: Recall that, in general, the central difference approximation of the 
first derivative is a second order approximation, i.e., 

	

(h) f 	(-h) 
	

+ 0 (h2) , as h 	0. 	(6.28) 

To see why, for the function f (x) = x3ex - 6ex, the central difference 
approximation for f'(x) around the point 0 is a fourth order approximation, 
we investigate how the approximation (6.28) is derived. 

The Taylor approximation of f(x) around the point 0 for n = 5 is 

f (x) = f (0) + xf(0)+ —
x2 
2 	6 

f"(0) + —
x3 

f (3)  (0) + 
24 
—
x4 

f(4)(0) + 
120  f

(5)  (0) 

+ 0 (x6) , as x 	0. 	 (6.29) 

A, = 
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We let x = h and x = —h in (6.29) and sum up the two resulting formulas. 
After solving for /(0) we obtain 

t(0) = 
f (h) — f (—h) 	h2 

f (3)  (0) — 
h4 

f (5)  (0) + 0 (h5) , 	(6.30) 
2h 	6 	120 

as h —› 0. 
For f (x) = x3  ex — 6ex, we find that f (3) (x) = (x3  + 9x2 +18x)ex, and thus 

that f (3) (0) = 0. Also, f (5)(0) = 54 0 and (6.30) becomes 

f(h) — f(—h) 	9h4 	
2h 

f 	(h) — f (—h)  
f(0) 	

2h 	20 + 
0 (h5) = 	 + 0 (h4) , 

as h —> 0. In other words, the central difference approximation for f'(x) 
around the point 0 is a fourth order approximation. ❑ 

Problem 2: Let 

f (S) = 
C(K + x,T)-2C(K,T)+C(K — x,T) 

x 2 

where, e.g., C(K, T) denotes the value of a plain vanilla call option with 
strike K and maturity T on an underlying asset with spot price S following 
a lognormal distribution. Show that, for any continuous function g : R —> R, 

lim f f(S)g(S) dS = g(K). 	 (6.31) 
s\,,o _pc  

Solution: From the definition of f (S), it is easy to see that 

f (S) = 
1

(max(S — (K — x), 0) — 2 max(S — K, 0) + max(S — (K + x), 0)) 

0, 	if 0 < S < K — x; 
S-(K-x)  if K — x < S < K; 

x 	
ifK<S<K+x; 

0, 	ifK+x<S. 

Then, 

Too T IC  S - (K — x) 
	g(S)dS + Li 

 f±x K + x — S g , ,„ 

	

j_ Dc f (S)g(S)dS =   (5 )dS 
hf-s 	X2 	 X 
1 x 	 1 	x  = I zg(K — x + z)dz + f wg(K + x — w)dw, 
x 0 	 X 0 
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where we used the substitutions z = S — (K — x) and w = K + x — S for the 
two integrals above, respectively. 

Let z = xy and w = xt. Then dz = x dy, dw = x dt, and we find that 
00 

f(S)g(S) dS = J yg(K — x+ xy) dy + f tg(K +x — xt) dt. (6.32) 
00 	 0 

We let x 	0 in (6.32). Since the function g : 1l —4 R is continuous, we 
obtain that 

00 
lim f f(S)g(S) dS = g(K) I y dy + g(K) f t dt = g(K), (6.33) 
x\o _co  

which is what we wanted to show; cf. (6.31). 
For the sake of completeness, we provide rigorous proof of the fact that 

(6.32) becomes (6.33) when x \ 0. To do so, it is enough to show that 

1 	 1 
lim I yg(K — x + xy) dy = g(K) f y dy. 
x\o o 

Let E > 0 arbitrary. Since g is continuous, it follows that there exists S > 0 
such that Ig(K) — g(r)1 < E for all 7 such that 1K — 71 < 6. Let x E (0,8) 
and y E (0, 1). Then (K — (K — x + xy)1= x(1 — y) < 6 and therefore 

1g(K) — g(K — x + xy)I < 6, V < X < 0 < y < 1. 

Therefore, it is easy to see that, for any 0 < x < 

< 	ylg(K)— g(K — x + xy)Idy 131  yg(K — x + xy)dy — g(K) I ydy 

< 
 e f

1 

y dy = —
2

. 

In other words, for any € > 0 there exists d > 0 such that 
i 	 i fo  
yg(K — x + xy) dy — g(K) f y dy 

o 

Then, by definition, 
11 

urn f yg(K — x + xy) dy — g(K) f y dy 
x\,0 

Problem 3: (i) Show that the approximate formula 

0.282 r  
1 +  	0 

2 

= O. 1=1 

< 2' V 0 < x < 6. 
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connecting the F and the 8 of plain vanilla European options is exact if the 
underlying asset pays no dividends and if the risk-free interest rates are zero. 
In other words, for, e.g., call options', 

2 a2s r(c)  

1 +     = O. 
2 8(C) 

(ii) If q = 0 and r 0, show that 

	

1 + 
o-2S2  F(C) 	1  

2 	8(C) 	1 +  cr   N'(d2)  • 
2rfT N(d2) 

(iii) Consider a six months plain vanilla European call option on an underlying 
asset with spot price 50 and volatility 30%. Assume that the interest rates 
are constant at 4%. If the asset pays no dividends, compute 

0.2s2 F(C) 

if the options are at-the-money, 10%, 20%, 30%, and 50% in-the-money, 
and 10%, 20%, 30%, and 50% out-of-the-money, respectively. 

What happens if the asset pays dividends continuously at a 3% rate? 

Solution: Recall that the F and the 8 of a plain vanilla European option are 

F(C) = 

8(C) = 

e-gT 	d2 
	e  2 • 	 (6.34) 

o-Sf27rT 
S e-qT _ 
	e 2  + 17Se—qTN(d1) 	rKe-TTN(d2), (6.35) 

2,/21-T 

where d1  = (ln 	+ (r +1) / (oVT) and d2 = d1  - °VT. 

(i) For r = q = 0, we obtain from (6.34) and (6.35) that 

1 	_,11 	 v5 _‘11 
F(C) = 	e ; 8(C) = 	e  2 

USV27rT 	 2-/27T 

Then, 

v.252 ( 

	
2  ) = 0. 1+ 

0-282 F(C) 
 = 1 + 2 	e(C) 	2 	o- 2S2  

'Note that;  if r = q = 0, then F(P) = r(c) and e(P) = e(C). 

1 + 
2 8(C) 
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(ii) For q = 0, we obtain from (6.34) and (6.35) that 

1  
r(c) = 	e_ 2  

aSA/21-T 

	

crS 	 
e(C) 	e_ 

2 - rKe-rTN(d2). 
2-V27T 

Then, 

o-282 r(c)  
1+ 	 

 
2 e(C) 

0.s  p - 

1 2V277-T- =  d2  
2krT e--21- 	rKe-rTN(d2) 

rKe-rT N(d2) 

	

crs 	64 	rKe—rTN(d2) 

1 

	

1 + 	S 	1 0-1212  

27-VT Ke-rT N(d2) 

1 
(6.36) 

1 ± 	 2rff 
SI\P(di )  

Ke-'2'N(d2) 

V-27r 
t2 

since N'(t) = -1-e-  T for all t E R. 
Recall that the "magic" of Greek computations is due to the following 

result: 
S 	-= Ke-rT  N'(d2); 

cf. Lemma 3.15 of [2] for q = 0. Then, (6.36) becomes 

1+ 
v.252  F(C) 	1  

2 e(c) 	1+ 	 
2 r -  a 

(iii) Let S = 50 , T = 0.5, a = 0.3, and r = 0.04. The table below records 
the values of ,252 r(c)  

1 + 
2 O(C) 

(denoted by "Value") both for q = 0, and for q = 0.03, for the following 
values of the moneyness of the option: 

s 
= {1,1.1,1.2,1.3,1.5, 0.9, 0.8, 0.7, 0.5}, 

corresponding to call options that are at-the-money, 10%, 20%, 30%, and 
50% in-the-money, and 10%, 20%, 30%, and 50% out-of-the-money, respec-
tively: 
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S/K Value for q = 0 Value for q = 0.03 
1 0.1897 0.0238 

1.1 0.2582 0.0233 
1.2 0.3518 0.0144 
1.3 0.4711 -0.0187 
1.5 0.7361 -0.5503 
0.9 0.1412 0.0214 
0.8 0.1068 0.0184 
0.7 0.0822 0.0155 
0.5 0.0505 0.0107 

We note that the approximation 

0.2 s2 r  

1+  	:,---, 0 
2 8 

is better for deep out-of-the-money options (corresponding to small values 
of S/K) and is worse for deep in-the-money options (corresponding to large 
values of S/K). Also, for this particular case, the approximation is more 
accurate if the underlying asset pays dividends. ❑ 

Problem 4: Consider a six months 5% in-the-money plain vanilla European 
call option with strike 30 on an underlying asset with spot price 20 and 
volatility 20%, paying dividends continuously at a 2% rate. Assume that the 
interest rates are constant at 5%. 

(i) Use central differences to compute the finite difference approximations A, 
and r, for A and F, respectively, i.e., 

2dS 

F, 
C(S + 	dS) - 2C(S) + C(S - dS) 

= 
(dS)2  

for dS = 10-' with i = 1 : 12, where, e.g., C(S + dS) = C(S + dS, K, T, o, r) 
denotes the Black-Scholes value of the call option corresponding to a spot 
price S + dS of the underlying asset. 

(ii) Compute the Delta and Gamma of the call using the Black-Scholes for-
mula, and the approximation errors IA, - AI and I Fc - F. Note that these 
approximation errors stop improving, or even worsen, as dS becomes too 
small. How do you explain this? 

A, = 
C(S + dS) - C(S - dS).  
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Solution: The spot price S = 31.5 corresponds to a 5% ITM call with K = 30. 
We find that A = 0.692130579727 and r = 0.077379043990. 

The central finite difference approximations A, and the approximation 
errors IA, - AI are recorded in the table below: 

dS Ac iAc - AI 
0.1 0.692112731743 0.000017847983 

0.01 0.692131730564 0.000001150838 
0.001 0.692131920566 0.000001340839 

0.0001 0.692131922513 0.000001342786 
10-' 0.692131922087 0.000001342360 
10-6  0.692131918000 0.000001338274 
10-7  0.692131916226 0.000001336498 
10-8  0.692131862934 0.000001283207 
10-9  0.692132573477 0.000001993750 
10-10  0.692104151767 0.000026427960 
10-11  0.691890988946 0.000239590780 
10-12  0.687450096848 0.004680482879 

The approximations became more precise when dS decreased, until dS = 
10-8; the best approximation was within about 10-6  of A. However, for values 
of dS smaller than 10-9, the finite difference approximations deteriorated very 
quickly. 

To explain this phenomenon, denote the exact value2  of Delta by A -exact • 

Note that the value of A is given by the Black-Scholes formula, i.e., 

A = ABS -= e-gT  N (di). 

This value is computed using a numerical approximation of N(di) that is 
accurate within 7.5 • 10-7; cf. [1], page 932. In other words, we only know 
that 

IBS - exact' < 10-6. 	 (6.37) 

When computing the finite difference approximation Ac, we use a nu-
merical estimation of the Black-Scholes formula to compute C(S dS) and 
C(S - dS) which once again involves the numerical approximation of the 
cumulative density of the standard normal variable. In other words, 

CBs(S  + dS) - CBs(S - dS) 
A, =  	(6.38) 

2dS 
2Note that Aexact  is a theoretical value, and is not the 0 from the table above. 
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Denote by Cexact(S  +dS) and Cexact(S - dS) the exact values of the options. 
Since the central finite difference is a second order approximation, it follows 
that, for exact values of Delta and of the call options, 

Aexact - 	

2dS Cexact(S + dSexact(S - dS) + 0 ((dS)2) , 	(6.39) 

as dS -± 0. 
Since CBS(S) = Se-gT N(di) - Ke-rT N(d2), and since N(di) and N(d2) 

are computed numerically within 10-6  of their exact value, it follows that 

Cexact(S + IC B 	 (7 CBs(S + dS) -  
Cexact(S dS)1 < 

a10-6; 
(7 ICBs(S - dS) - 	(S - dS)1 < a10-6, 

where a is a constant proportional to the values of S and K, 
Using (6.38) and(6.39) we find that 

Ac - ABS = (Ac — Aexact) + (Aexact - ABS) 
CBS(S + dS) - Cexact(S  + dS) 

(6.40) 
(6.41) 

= 
2dS 

CBs(S - dS) - Cexact(S - dS)  
2dS 

+ Aexact - ABS + 0 ((dS)2) , 	 (6.42) 

as dS -4 0. 
The only estimate we can find using (6.37), (6.40), (6.41), and (6.42) for 

the approximation of ABS  by Ac  as dS —> 0 is 

CBS(S + dS) - Cexact(S exact(S + dS)I 
iAc - ABSI 

2dS 

+ 	
0 ICBs(S - dS) - Cexact(S - dS)I 

2dS 
+ IAexact — ABS' + 0 ((dS)2) 

a10-6  
< 	  

dS 
+ 10-6  + 0 ((dS)2) , 

-  
(6.43) 

as dS -- 0. 
While the approximation error IA, - Al  may be better in practice, the 

bound (6.43) provides the intuition behind the fact that, for dS too small, the 
numerical approximation error IA, - Al = lAc - ABSI deteriorates as alN6  
becomes large. 

The central finite difference approximations Pc  and the approximation 
errors lc, - 11 are recorded in the table below: 
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dS r, IF, - ri 
0.1 0.077370009586 0.000009034404 

0.01 0.077371495486 0.000007548504 
0.001 0.077371502982 0.000007541008 

0.0001 0.077371709040 0.000007334951 
10-5  0.077271522514 0.000107521476 
10' 0.074606987255 0.002772056735 
10-7  -0.355271367880 0.432650411870 
10' 71.054273576010 70.976894532020 

For dS < 10-9, the values of 1 increased dramatically, reaching 109  for 
dS = 10-12, and were no longer recorded. The finite difference approxima-
tions of F became more precise while dS decreased to 10-4, but were much 
worse after that; the best approximation was within 10-5  of F. The reason 
for this is similar to the one explained above for the finite difference approx-
imations of A. ❑ 





Chapter 7 

Multivariable calculus: chain rule, integration 
by substitution, extremum points. Barrier 
options. Optimality of early exercise. 

7.1 Solutions to Chapter 7 Exercises 

Problem 1: For q = 0, the formula for the Gamma of a plain vanilla Euro-
pean call option reduces to 

	

r =  	
Scr-V27T 

exp 	(d1(2S))2)  (7.1) 

where 

(S) = 	 (7.2) 
crA/T 

Show that, as a function of S > 0, the Gamma of the call option is first 
increasing until it reaches a maximum point and then decreases. Also, show 
that 

lim r(S) = 0 and lim F(S) = 0. 	 (7.3) 
s\o 	 s-.00 

Solution: From (7.1) we find that F can be written as 

F(S) 
(i(2S ))2  

—  	
c/

ln(S)) , 	(7.4) 
oV 
	exp  
27T  

where di (S) is given by (7.2). 
Since F(S) > 0, it follows that the functions F(S) and ln(F(S)) have the 

same monotonicity intervals. Let f : (0, oo) 	l given by 

f(S) = ln(F(S)) -= 	
(di  (S ))2 

 ln(S) ln(o- ✓271-T). 
2 

161 
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Then, 

	

f'(S) = —cli(S)
a(di(s)) 	1dl(S)

as 	S 	so--vT 
 f 	cii (s)  

- - - 

 

— S  
1  ± a, ) • 

Recall from (7.2) that 

ln (i) + (r + '20 T 
dl (S) =- 	  

o-V7' 

It is easy to see that dl  (S) is an increasing function of S and that 

lim di (S) = —co; Ern di(S) = co. 
S \O 	 S-*x 

(7.6) 

From (7.5) we find that f(S) has one critical point, denoted by S*, with 
di (S*) = —af ft From (7.5) and (7.6) it follows that f'(S) > 0 if 0 < S < S* 
and f'(S) < 0 if S* < S. 

In other words, the function f(S) = ln(F(S)) is increasing when 0 < S < 
S* and is decreasing when 5* < S. We conclude that F(S) is also increasing 
when 0 < S < S* and decreasing when S* < S. 

We now compute lims\o F(S) and lims,,G  F(S). 
Note that lims,c/i(S) = oo. Therefore, 

exp  ( (d1(S))2  
lim F(S) = lim 	1    ln(S)) = 0. 

s--40c 	S--,x o--V27rT 	 2 

From (7.2), and using the fact that lims\o ln(S) = —co, it follows  that 

2  (d,(s)2  ln(S) 	(ln(S) — ln(K) + (r + 1) T) 	1  
2 	= 

S
m

O 	—(1n(S))2 	s
m

o 	2o 2T(ln(S))2 
	  +

ln(S) 

 

1 
2o-2T •  

Since lims\o (exp (—(1n(S))2)) = 0, we obtain that 

1 
S 

(7.5) 

= 

—((S))2  
lim exp (

c/i 
2 s\n  

ln(S)) = 0. 
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to 

from (7.4), we conclude that 

2  lim c(S) = l sirn 
0-V2

1 
 7T 	2

exp ( 
(di  (S)) 	ln(S)) = O. 11 

s\o 	\o  

Problem 2: Let D be the domain bounded by the x—axis, the y—axis, and 
the line x + y = 1. Compute 

	

f f D xxy  
y dxdy. 	 (7.7) 

Solution: Note that 

D = {(x,y) x > 0,y > 0,x +y < 1}. 

We use the change of variables s = x + y and t = x — y, which is equivalent 

s + t 	s — t 
	; Y = 	 2 	 2 

It is easy to see that (x, y) E D if and only if (s, t) E S2, where 

= {(s, t) 0 < 8 < 1,-8 < t < 8}. 

The Jacobian of the change of variable (x, y) E D --+ (s, t) E C2 is 

ax ay 	ax ay 	1 
dsdt, 

	

dxdy = 	 dsdt 	
2 as at 	at as 	= — 

 
and therefore 

t I fp  xx 	Yy  dxdy = f f _t 1  dsdt = f
1 
 (f — dt) ds 

2 	o 	2s 

= 	—1 	t dt) ds = 0. 
2 0  s 

The integral (7.7) can also be estimated directly as follows: 
( 	y  dx  _ x y 

fp 
 — 
x+y dxdy = 

	

Jo Vo x + 	) 
dy 

= fo  ((x — 2y ln(x + Y))is11Y  dy) 

= f 1— y + 2y ln(y) dy 

=1 
Y2  ± Y2  in(Y)) ly

y
=0 

= 0, 
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since limy\ o  y2  ln(y) = 0. ❑ 

Problem 3: Use the change of variables to polar coordinates to show that 
the area of a circle of radius R is 7rR2, i.e., prove that 

I ID(O,R) 
1 dxdy = 7R2. 

Solution: We use the polar coordinates change of variables 

(x, y) =- (r cos 0, r sin 0) with (r, 0) E S2 = [0, R] x [0, 2r). 

Recall that dxdy = rdOdr. Then, 

I ID(O,R) 

R f 
&ki 

27 
1 dxdy = 	r 	r = 	f rdr = irR2 , 

o 

which is equal to the area of a circle of radius R. ❑ 

Problem 4: Let V(S, t) = exp(—ax — bT)u(x, 7), where 

	

( S 	
(T —t)a2 

	

r —  q  1 	(r — q 	2 2q 
x = In 	T 	

2 
	a=  = 	b = 

	

K 	 a2 	2 , 	u_ 2 +2  2+ a2.  

This is the change of variables that reduces the Black—Scholes PDE for V(S, t) 
to the heat equation for u(x,r). 

(i) Show that the boundary condition V(S,T) = max(S — K, 0) for the Eu-
ropean call option becomes the following boundary condition for u(x, r) at 
time T = 0: 

u(x,0) = K exp(ax) max(ex — 1,0). 

(ii) Show that the boundary condition V(S,T) = max(K — S, 0) for the 
European put option becomes 

u(x, 0) = K exp(ax) max(1 — ex, 0). 

Solution: Note that t = T if and only if r = 0. Then, 

V(S,T) = exp(—ax)u(x, 0). 	 (7.8) 

Here, x = In (i), which can also be written as S = Kex. 
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(i) For a call option, V(S,T) = max(S — K, 0). From (7.8), we find that 

u(x, 0) = exp(ax)V(S, T) = exp(ax) max(S — K, 0) 
= exp(ax) max(Kex — K, 0) = Kexp(ax) max(ex — 1, 0). 

(ii) For a put option, V(S,T) = max(K — S, 0). From (7.8), we find that 

u(x, 0) = exp(ax)V(S, T) = exp(ax) max(K — S, 0) 
= exp(ax) max(K — ice, 0) = Kexp(ax) max(1 — ex, 0). ❑ 

Problem 5: Solve for a and b the following system of equations: 

{2a + 1 	2(r--2.q) 
=

0;  

b+a2+a(1 	2(r-
2
q))  	2r 	0.- (72 ,  

Solution: From the first equation, it is easy to see that 

r — q 1 
a = 0-2 
	2 

Using (7.9), we note that the second equation can be written as 

r — q))  2r 
b = —a2  - a 1 

2(
0-2 	+ (7-2 

(r — q  1)2 	(r 	— q  1) 2  (1 r — q) 	2r = 	 + 
a2 	2 	 u2 a2 	2 	2 	o-2  

(r — q  1)2 	
q 	

2r 
= 	 + 2 ( 

	

 1 

2 ) 

\ 2 

r  a2  a2 	2 	 + 0-2 

(7.9) 

(r — q  1)2 Zr = 
0-2 	2 +02  

(r — q  1\
)  2 

 2(r — q) 2r 

0-2 + 2 
= a2 ± u2 

(r — q  1)2  2q = 
a2 + 2 	+ -c;---2 ' ❑ 

Problem 6: Assume that the function V(S, I, t) satisfies the following PDE: 

av 	av 	1 2 2a2v 	av w  + swi -. + -2-0- 5 ' 85,2  + rSy-s- — rV = 0. 	(7.10) 
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Consider the following change of variables: 

V(S,I,t) = S H(R,t), where R = —
s

. 	(7.11) 

Show that H(R, t) satisfies the following PDE: 

8H 1 	a2H 	ax 
at + 2 Q 

8R2aR2 
+ (1 — rR) 	= 0. aR (7.12) 

Note: An Asian call option pays the maximum between the spot price S(T) 
of the underlying asset at maturity T and the average price of the underlying 
asset over the entire life of the option, i.e., 

T  max (S(T) — 7,1  I Ser) dr) . 

Thus, the value V(S, I, t) of an Asian option depends not only on the spot 
price S of the underlying asset and on the time t, but also on the following 
random variable: 

I(t) 	f S(T) dr. 

It can be shown that V(S, I, t) satisfies the PDE (7.10). Similarity solutions 
of the type (7.11) are good candidates for solving the PDE (7.10). The PDE 
(7.12) satisfied by H(R,T) can be solved numerically, e.g., by using finite 
differences. 

Solution: Let V(S, I, t) = S H(R, t), with R = S. Using Chain Rule, we find 
that 

av 	aH 
= S at ' at'.  at  

avax aR an 
al- = S an al- 	an' 
av

= H+S 	= 
ax an 	an 

C- 
 I 	u  I an 

as 	aR as H+s  aRs2) 	11  s an 
an- 

= H — R 
aR" 

a2vax  aR aR an 	82H aR 
R 	R 

 182H = 	 = as2 	aR as 	as aR 	aR2 as 	s2 aR2 
R2 a2n 
S aR2' 
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By substituting into (7.10), it follows that 

0  = ay 	_ay + i a,s2a2v 	ay 
+ rS— — rV 

at + '5  al 	2 	as2 	as 

at 
	pH 	1 	R2 52.11 

S — + s 	 + 2s2 	 + rS (H — R P---II ) — rSH at 	aR 	2 	s DR2 	 aR 
pH 	1

0- 	52 
=  	

1-1 	ail S 	+ -2sR2 
aR2 + S(1 — rR) 

at 	2 	 aR• 
By dividing by S, we conclude that H(R, t) satisfies the PDE 

	

pH 	1 	a2H 	ail 
at ± ia2R2  DR2 + 

(1-rR) —
aR 

= 0, 

	

which is the same as (7.12). 	❑ 

Problem 7: The price of a non-dividend-paying asset is lognormally dis-
tributed. Assume that the spot price is 40, the volatility is 30%, and the 
interest rates are constant at 5%. Find the Black—Scholes values of the ITM 
put options on the asset with strikes 45, 48 and 51, and maturities 3 months 
and 6 months. 

For which of these options is the intrinsic value max(K — S, 0) larger 
than the Black—Scholes value of the option (in which case the corresponding 
American put is guaranteed to be worth more than the European put)? 

Solution: The values of the out options are summarized in the table below: 

Option Type Strike Maturity Value K — S 
Put 45 6 months 5.8196 5 
Put 45 3 months 5.3403 5 
Put 48 6 months 8.0325 8 
Put 48 3 months 7.8234 8 
Put 51 6 months 10.4862 11 
Put 51 3 months 10.5476 11 

In general, the values of deep—in—the money European put options are 
lower than the premium K — S. This feature was observed for the options 
priced here: the values of the 51—puts and of the three months 48—put are 
below their intrinsic value K — S. 

Also, note that for the 51—puts (i.e., for deep in the money puts), the 
values of the short dated options are higher than the values of the long dated 
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options. This is to be expected; for example, if the spot price is 0, the value 
of a European put is Ke-rT, in which case longer dated puts are worth less 
than short dated ones. ❑ 

Problem 8: Show that the premiums  of the Black-Scholes value of a Euro-
pean call option over its intrinsic value max(S - K, 0) is largest at the money. 
In other words, show that the maximum value of 

CBS(S) — max(S - K, 0) 

is obtained for S = K, where CBS(S) is the Black-Scholes value of the plain 
vanilla European call option with strike K and spot price S. 

Solution: Let f (S) = CBS(S) - max(S - K, 0). It is easy to see that 

f (S)
CBs(S), 	if S < K; 

CBS(S) - S + K, if S > K. 

Note that f(S) is a continuous function, but it is not differentiable at S = K. 
For S < K, the function f(S) is the value of a call with strike K, and 

therefore is increasing. 
For S > K, we find that 

f'(S) = .(CBs) - 

and therefore the function f (S) is decreasing. 
We conclude that f (S) has an absolute maximum point at S = K. ❑ 

Problem 9: Use the formula 

B  2a  
V(S,K,t) = C(S,K,t) - (—

S 	

c 
K ,t) , 	(7.13) 

where a = a2a -1, to find the value of a six months down-and-out call on a 
non-dividend-paying asset with price following a lognormal distribution with 
30% volatility and spot price 40. The barrier is B = 35 and the strike for the 
call is K = 40. The risk-free interest rate is constant at 5%. 

Solution: The value of the down-and-out call is $3.398883. ❑ 

Problem 10: Show that the value of a down-and-out call with barrier B 
less than the strike K of the call, i.e., B < K, converges to the value of a 

'This premium is also called the time value of the option. 

1 = e-9T N(d1) - 1 < N(di) - 1 = -N(-d1) < 0, 



and d2 = 
a--\5" 	• 

in ( sec) _ 
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plain vanilla call with strike K when B 	0. For simplicity, assume that the 
underlying asset does not pay dividends and that interest rates are zero. 

Solution: Let t = 0 in formula (7.13). For r = q = 0, we find that a = 
Therefore, the value of the down—and—out call is 

V(S) = C(S) — S  C 
"Be 

	

 
B 	S ) 

B 
S B2  N(d  

= C(S) — — 	1) KN(d2)) 
S 

= C(S) — BN(di) + 
SK

N(d2), 	 (7.14) 

where C(S) is the value of the plain vanilla call with strike K and 

In ('s4 + 4T 
(7\5., 

Note that 0 < N(di) < 1. Then, 

urn BN(di) = 0. 
.B\o 

Using l'HOpital's rule, we obtain that 

N(d2) 
 = SK a

d
B

2 
lim 

SK 
 N(d2) = SK lim  B  

B\c) B 	
Bli\MoN1(d2)

a 

1 
exp  ( 

4■ 	2 
2/r 	2 ) Baff 

	

= S K Bli\mo 	 

d2  2SK 	exp 	— ln(B)) 
0- /-27T B 	 2  

As B 	0, the term 	— ln(B) is on the order of —(ln(B))2, and therefore 

d2  
lim 	— ln(B)) = — oo. 	 (7.17) 
B\O 	2 

From (7.16) and (7.17) we find that 

lim 
SK

N(d2) = 0, 	 (7.18) 
B\o 

and, from (7.14), (7.15), and (7.18), we conclude that 

SK 
Br V(S) = lim (C(S) — BN(cli) + —

B 
N(d2)) = C(S). ❑ 

B\O 	 /3\0 

(7.15) 

(7.16) 
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Problem 11: Compute the Delta and Gamma of a down-and-out call with 
B < K. 

Solution: We rewrite formula (7.13) to emphasize the dependence of the value 
V(S) of the down-and-out call on the spot price S of the underlying asset 
as follows: 

(7.19) 

2aB2a 	(B2  \ 
A(V) 	(CBs)(S) 	s2ad-i CBS  S 

	 p(CBs) (Bs2) 
B2a+2 

S2a+2 

where A(CBs)(x) = e-qT N(di(x)), with 

ln (k) + (7. q + 2) T 
dl  (x) = 	  

o- VT 

Similarly, 

a + 1  r(v) = r(cBs)(s) 	2a(2
S2a+2

)B2a 
CBS 

(B2) 
 

 

(4a + 2)B2a+2  (B2 ) 	B2a+4 

A(CBS) 	
S2a+4 r(CBS) 

where 

S2a+3 

r(CBs) ( x) 

with di  (x) given by (7.20). 

e —gT 

xcr-/2T-T 
exp 

cli (2x)2)  

B2a 	B2 
V(S) = CBS(S) 	

( 
CBS -,75T • 

By differentiating (7.19) with respect to S, we obtain that 

(7.20) 
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7.2 Supplemental Exercises 

1. Compute 

I fox dxdy, 

where 

D = {(x,y) ER2  I x > 0, 1 < xy < 2, 1 < y < 2}. 
x — 

Hint: The change of variables s = xy and t = ! maps the domain D 
into the rectangle [1,2] x [1,2]. 

2. Which number is larger, elr or Ire? 

3. Let u, v : [0, oo) —4 [0, oo) be two continuous functions with positive 
values. Assume that there exists a constant M > 0 such that 

x 
u(x) < M + f u(t)v(t) dt, V x > 0. 

o 

Show that 

u(x) < M exp (f v(t) dt) , V x > O. 
o 

Hint: Investigate the monotonicity of the function 

x 	 x 
(M + f u(t)v(t) dt) exp (— f v(t) dt) . 

o 	 o 

Note: This is a version of Gronwall's inequality, and it is needed, e.g., 
to prove the uniqueness of the solution of an initial value problem for 
ordinary differential equations. 

4. What does the boundary condition V(B,t) = R for a down—and—out 
call with barrier B and rebate R > 0 correspond to for the function 
u(x,r) defined as follows: V(S,t) = exp(—ax — br)u(x,T), where 

x = ln 
K 

/ S 

C —) 7  = 

(T — t)a2  
2 

	

r — q 1 
0- 	

r — q  1) 2 2q 
a = 	b = ( 	+ +—. 

	

2 	2, 	0.2 	2 	a2 
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5. Assume that the function V(S, I, t) satisfies the PDE 

av + n av 	1 2 2a2v 	av 
In 	 + 	s 	+ 	— rV = 0. 	(7.21) 

at 
Consider the following change of variables: 

V(S, I, t) = F(y,t), where y 
= I + (T — t)inS 

 
T 

Show that F(y, t) satisfies the following PDE: 
aF 	0.2(T 	,92F 

	C
r 

T 	—  t aF 

	

r 	 rF = 0. 
at + '2T2 ay2 	2 	T ay 

Note: The values of Asian options with continuously sampled geometric 
average satisfy the PDE (7.21). 

6. One way to see that American calls on non—dividend—paying assets are 
never optimal to exercise is to note that the Black—Scholes value of the 
European call is always greater than the intrinsic premium S — K, for 
S > K. 
Show that this argument does not work for dividend—paying assets. In 
other words, prove that the Black—Scholes value of the European call 
is smaller than S — K for S large enough, if the underlying asset pays 
dividends continuously at the rate q > 0 (and regardless of how small 
q is). 

7. For the same maturity, options with different strikes are traded simul-
taneously. The goal of this problem is to compute the rate of change of 
the implied volatility as a function of the strike of the options. 

In other words, assume that S, T, q and r are given, and let C(K) be 
the (known) value of a call option with maturity T and strike K. As-
sume that options with all strikes K exist. Define the implied volatility 
az,p(K) as the unique solution to 

C(K) = CBs(K,o-imp(K)), 

where CBS(K, uimp(K)) = CBS(S, K, T, crimp(K), r, q) represents the 
Black—Scholes value of a call option with strike K on an underlying 
asset following a lognormal model with volatility 72,,,p(K). Find an 
implicit differential equation satisfied by uznip(K), i.e., find 

acrimp(K) 
ax 

as a function of aimp(K). 



dxdy, = 

2 	3s 2 1 

— 6
. o 

3 

f2 f2e 
2t  

 
d dt 

A. 	t 	8  

(12  N/79 d8) (f2 
t  1 
 dt) 
it- 

1 (23 2  ( 2 2  
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7.3 Solutions to Supplemental Exercises 

Problem 1: Compute 

I fox dxdy 

where 
{(x,E  

x — 

Solution: The change of variables s = xy and t = is equivalent to 

X =- 
t 

and y = 

when x > 0 and y > 0. This change of variables maps the domain D into 
the rectangle S2 = [1,2] x [1, 2]. It is easy to see that 

ax ay ax ay 
as at at as 

1 	 (     dsdt 

1 	
2t-vi) 2.\/75 

= 2t 
 dsdt. 

Then, 

II 

Problem 2: Which number is larger, e or re? 

Solution: We show that 776  < e. 
By taking the natural logarithm, it is easy to see that 

1n(r) 
Ire <   eln(7r) < 7r < 	>- 	

< 1 = ln(e) 
 . 	(7.22) 

7r 	e 	e 

dxdy dsdt 
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Let f(x) =-- 11x 1  with f : (0, oo) —> R. Then 1(x) = 1-x2(x) . The function 
f (x) has one critical point corresponding to x = e, is increasing on the interval 
(0, e) and is decreasing on the interval (e, oo). 

We conclude that f (x) has a global maximum point at x = e, i.e., f (x) < 
f(e) = e for all x > 0 with x e, and therefore 

f(7) = 
ln(7r) < 1

, 

	

7r 	e 

	

which is equivalent to Ire < er; cf. (7.22). 	❑ 

Problem 3: Let u, v : [0, oo) —› [0, oo) be two continuous functions with 
positive values. Assume that there exists a constant M > 0 such that 

u(x) < M + f u(t)v(t) dt, V x > 0. 	 (7.23) 

Show that 

u(x) 5 M exp (f v(t) dt) , V x 0. 	(7.24) 

Solution: Define the function w : [0, oo) 	[0, oo) as 

w(x) = (M + fo x  u(t)v(t) dt) exp (— I v(t) dt) . 	(7.25) 

Recall that 

CJfo
x 

u(t)v(t) dt) 	u(x)v(x); 	(f v(t) dt )/ = v(x), 
0 

where the derivative is computed with respect to x. 
Using the Product Rule, we find that 

w'(x) 	u(x)v(x) exp (— fo x  v(t) dt) 

+ (M + fo x  u(t)v(t) dt) (—v(x) exp (— fo x  v(t) dt)) 

v(x) (u(x) — M— fo x  u(t)v(t) dt) exp (— fo x  v(t)dt) (7.26) 

Using (7.23) and the fact that v(x) > 0 for all x > 0, we conclude from (7.26) 
that 

w'(x) < 0, V x > O. 
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In other words, w(x) is a decreasing function on the interval [0, oo) and 
therefore w(0) > w(x) for all x > 0. Since w(0) = M, and using (7.23), it 
follows that 

M > (M + f u(t)v(t) dt) exp (— f x  v(t) dt) 

> u(x) exp (— f v(t) dt) 	x > 0, 

which is equivalent to (7.24). 	❑ 

Problem 4: What does the boundary condition V(B,t) = R for a down-
and—out call with barrier B and rebate R> 0 correspond to for the function 
u(x,r) defined as follows: V(S, t) = exp(—ax — br)u(x, r), where 

S 	(T  t)a2  

r — q 1 	r — q 112 2q 
x = ln 	T 

	
a = 	 b = 	+2 

 +22 u2 	2> 	u2 

Solution: Note that S = B corresponds to x = In (f) and 0 < t < T 
corresponds to 0 < T < 74' Since 

u(x, r) = exp(ax + br)V(S, t), 

the boundary condition corresponding to V(B, t) = R for all 0 < t < T is 

u (ln (B) ,r) = exp (a In (-kB  + br) V (B ,t) 

	

= (—BY ebr  R, V 0 < <T2 	
K 	 2 

Problem 5: Assume that the function V(S, I, t) satisfies the PDE 

ay 	, ay 	2 _2 (92v 	_ay 
+ mS ai  + 2a 35,2  + 	— rV = 0. 

Consider the following change of variables: 

(7.27) 

V(S, /,t) = F(y,t), where y = /±(T—t)lnS  
T 

Show that F(y, t) satisfies the following PDE: 

OF 	0-2(T — t)2  a2F 	( 	0-2 T— t OF 

at + 	2T2  a + 	) T ay 	
rF = 0. 
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Solution: Using chain rule, it is easy to see that 

av —  aF  ln s aF.  _ 
at 	at 	T ay' 
av _ i. aF 
al- Tay   ' 
av 1 T - t aF 
as 	S T ay ;  

a2v1 RT — t)2 a2F T - tan 
352 	52 	T2 ay2 	T ay ) • 

Then, the PDE (7.27) for V(S,/,t) becomes the following PDE for F(y,t): 

av 	av 1 , a2v 	av 
0 = .-, 	+ 1nS-,   + r.5...s, - rV 

id/ + 2 a2'-'2 aS2  
1 aF OF In s aF 

=   
at 	T ay + In 5

T ay 

	

1 2  ((T - t)2 82F T - t aF) 	T - t aF 
+ (7- 	T2 ay2 	T ay 

± r
T 	

rF 
ay 

a F 	02 
 2  
(T — t)2 02 F 	( 	6,2

) 
 T - t OF 

at ± — = 	
2T a + 	2 	T ay 

 	rF. ❑ 
y2   

Problem 6: One way to see that American calls on non-dividend-paying 
assets are never optimal to exercise is to note that the Black-Scholes value 
of the European call is always greater than the intrinsic premium S - K, for 
S > K. 

Show that this argument does not work for dividend-paying assets. In 
other words, prove that the Black-Scholes value of the European call is 
smaller than S - K for S large enough, if the underlying asset pays divi-
dends continuously at the rate q > 0 (and regardless of how small q is). 

Solution: We want to show that, if the dividend rate of the underlying asset 
is q > 0, then CBS(S, K) < S - K for S large enough. 

Note that 

CBs(S,K) = Se-qT N(di) - Ke'T  N(d2) < Se-4T , 

since N(d1) < 1 and N(d2) > 0. 
If Se-qT < S - K, which is equivalent to S > 1 1,47-7-, > 0 since q > 0, it 

follows that CBS(S, K) < S - K. We conclude that 

CBS(S, K) < S - K, V S > 	 
K 

 
1- e-qT  ' 
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which is what we wanted to show. ❑ 

Problem 7: For the same maturity, options with different strikes are traded 
simultaneously. The goal of this problem is to compute the rate of change of 
the implied volatility as a function of the strike of the options. 

In other words, assume that S, T, q and r are given, and let C(K) be the 
(known) value of a call option with maturity T and strike K. Assume that 
options with all strikes K exist. Define the implied volatility crimp(K) as the 
unique solution to 

C(K) = CBs(K, aimp(K)), 

where cgs (K , tiimp(K)) = CBs(S, K, T, o-imp(K), r, q) represents the Black-
Scholes value of a call option with strike K on an underlying asset following a 
lognormal model with volatility aimp(K).  Find an implicit differential equa-
tion satisfied by climp(K), i.e., find 

ao-imp(K) 
ax 

as a function of crimp(K). 

Solution: We first find the partial derivative of the Black-Scholes value 
CBS(K) of a call option with respect to its strike K. Recall that 

CBS(S, K) = Se-qT  N (di) - Ke-rT  N(d2). 

Then, 

ad, 8CBS 	 ad, 
(7.28) = Se-qT N' (di )  	e-rT  N (d2) 	K CrT  Ni  (d2) aK. ( 

OK 	 aK 
Also, recall that 

(ad, acBs 	e_rT N , -2 ) (ot 	Ke'T  (d2) ax-  ax ). ax 

Since di. = d2 + c•-VT, it follows that 

ad, 	a(d2  + °VT)  _ ad, 
ax 	ax 	aK .  

We conclude from (7.30) that 

aCss = - e-rT N(d2). 
OK 

Se-gT  Ni (di) = K e'T  (d2); 

cf. Lemma 3.15 of [2]. From (7.28) and (7.29), we find that 

(7.29) 

(7.30) 

(7.31) 
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We now differentiate with respect to K the formula 

C(K) = CBs(K,a,mp(K)) 

which is the definition of crimp(K). Note that C(K) is assumed to be known 
for all K, as it the market prices. Using Chain Rule and (7.31) we find that 

acacBs 	acBs  ao-imp(K)  
ax 	ax- 	ao- 	ax 

= —e'TN(d2) + vega(CBs)
acri, (

aKP
K)  

(7.32) 

where 

aCBs  vega(CBs) = a°.  = Se-4T  
T 

e  2 

27r 
= .VT'Se-qT N/(di ) 

= 	Ke-rT  (d2) = K 

cf. (7.29). We conclude that the implied differential equation (7.32) can be 
written as 

T _4 aorimp(K) 	ac 	_ T e  2  	 e= 	r  N(d2),aK  27r 	ax 

In (Tsc-) + (r  - q)T a-imp(K)VT  
d2 

crimp(K).VT 	2 	
❑ 

Ke' 

with 



Chapter 8 

Lagrange multipliers. N— dimensional 
Newton's method. Implied volatility. 
Bootstrapping. 

8.1 Solutions to Chapter 8 Exercises 

Problem 1: Find the maximum and minimum of the function f (xi , x2, x3) = 
4x2  — 2x3 subject to the constraints 2xi — x2 — x3 = 0 and 4 + 4 = 13. 

Solution: We reformulate the problem as a constrained optimization problem. 
Let f : R3  —± R and g : R3  —* 1(8 be defined as follows: 

2x1  - X2 - X3 f (x) = 4x2  — 2x3; g(x) = 4 + 4 — 13 ) ' 

where x -= (x1, x2, x3). We want to find the maximum and minimum of f (x) 
on 1183  subject to the constraint g(x) = 0. 

We first check that rank(Vg(x)) = 1 for any x such that g(x) = 0. Note 
that 

Vg(x) = 	22 
—1 —1

x, 2x2 	) 

It is easy to see that rank(Vg(x)) = 2, unless x1 = x2 = 0, in which case 
g(x) 	O. 

The Lagrangian associated to this problem is 

F(x, 	= 4x2  — 2x3  + 	(2x1 — x2 — x3) + A2(x1 + 4 - 13), 	(8.1) 

where A = 	A2)t  E R2  is the Lagrange multiplier. 
We now find the critical points of F(x, A). Let xo  = (x0,1, x0,2 , x0,3) and 
= (A0,1, Ao 2) • From (8.1) it follows that V(x,),)F(xo , A0) = 0 is equivalent 

179 



180 CHAPTER 8. LAGRANGE MULTIPLIERS. NEWTON'S METHOD. 

to the following system: 

24,1 + 24,2xo,1 
4 — A0,1 + 24,24,2 

—2 — Ao,i 
2x0,1 — X0,2 - X0,3 

.A.,04 

= 0; 
= 0; 
= 0; 
= 0; 
= 13. 

This system has two solutions: 

xo,1 = 2; x0,2 = —3; X0,3 = 7; A0,1 = —2; A0,2 = 1 	 (8.2) 

and 

2 0 0 
D2F0(x) 

= (  
0 2 0 	, 
0 0 0 

which is (semi)positive definite for any x E R3. This allows us to conclude 
directly that the point (2, —3, 7) is a minimum point for f(x). Note that 
f (2, —3, 7) = —26. 

Similarly, for the second solution (8.3), we find that 

Fo(x) = 	— x2 — 4x1  + 6x2 + 13 

and 
( —2 0 0 

D2F0(x) = 	0 —2 0 , 
0 0 0 

which is (semi)negative definite for any x E R3. We conclude that the point 
(-2,3, —7) is a maximum point for f (x). Note that f (-2, 3, —7) = 26. ❑ 

Problem 2: Assume that you can trade four assets (and that it is also 
possible to short the assets). The expected values, standard deviations, and 
correlations of the rates of return of the assets are: 

= 0.08; 01  = 0.25; P1,2 = 	0.25; 
it2 = 0.12; 02  = 0.25; P2,3 = 	0.25; 
it3 = 0.16; 03  = 0.30; p 1 3 = 0.25; 
/24 = 0.05; 04 = 0.20; pi,4 = 0, 	V i = 1 : 	3. 

X0,1 = —2; x0.2 = 3; X0,3 = —7; Ao.1 = —2; A0.2 = -1. 	(8.3) 

For the first solution (8.2), we compute the Hessian D2F0(x) of Fo(x) = 
f (x) + Atog(x), i.e., of 

Fo(x) = 4x2 — 2x3 — 2 (2xi — x2 — x3) + 4 + 4 — 13 = + 4 — 4xi + 6x2 — 13 

and obtain 
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(i) Find the asset allocation for a minimal variance portfolio with 12% ex-
pected rate of return; 

(ii) Find the asset allocation for a maximum expected return portfolio with 
standard deviation of the rate of return equal to 24%. 

Solution: For i = 1 : 4, denote by wi  the weight of asset i in the portfolio. 
Recall that the expected value and the variance of the rate of return of a 
portfolio made of the four assets given above are, respectively, 

	

E[R] = w1µ1 + W2A2 + W3/13 + W4114; 	 (8.4) 

	

var(R) = w?a? + tv3c4 + w3o-3 + w4a4 	 (8.5) 

+2 (wiw2cia2P1,2 + W2W30-20-3P2,3 wiw3rig3P1,3), 

since pi,4  = 0 for i = 1 : 3. 
We do not require the weights wi  to be positive, i.e., we allow taking 

short positions on each one of the assets. However, the following relationship 
between the weights must hold true: 

	

wl + w2 + w3 + w4 = 	1. 	 (8.6) 

(i) We are looking for a portfolio with given expected rate of return E[R] 
0.12 and minimal variance of the rate of return. Using (8.4-8.6), we obtain 
that this problem can be written as the following constrained optimization 
problem: find wo  such that 

g(
mM  

no 
f(w) = f(wo), 	 (8.7) 

w)= 

where w = (wi)j=1:4, and f : liti  -4 R and g :R4  -> R2  are defined as 

f (w) = 0.0625w? + 0.062574 + 0.09w3 + 0.04w4 
- 0.03125w1w2 - 0.0375w2w3  + 0.0375w1w3; 

wi+w2+w3+w4 -1  
g(w) 	0.08w1  + 0.12w2  + 0.16w3  + 0.05W4 - 0.12 ) • 

(8.8) 

(8.9) 

It is easy to see that rank(Vg(w)) = 2 for any w E R4, since 

1 	1 	1 	1 
Vg(w) 	( 0.08 0.12 0.16 0.05 ) • 

The Lagrange multipliers method can therefore be used to find the minimum 
variance portfolio. 



0.08w1 + 0.12w2  + 0.16W3 + 0.05w4 - 0.12 / 

To find the critical points of F(w, A), we solve V(w,A) F(w, A) = 0, which can 
be written as a linear system as follows: 

V(w.A) F(w, A) = 

/ 0.125w1 
0.125w2 

0.18w3 

- 0.03125w2 + 0.0375w3 + Al + 0.08A2 
- 0.03125w1 - 0.0375w3 + Al + 0.12A2 
+ 0.0375w1 - 0.0375w2 + Al + 0.16A2 

0.08w4 + Al  + 0.05A2 
wl + w2 + W3 + W4 - 1 

t  
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Denote by Al and A2 the Lagrange multipliers. From (8.8) and (8.9), we 
obtain that the Lagrangian associated to this problem is 

F(w, A) = 0.0625w? + 0.0625/4 + 0.09/4 + 0.04/4 	(8.10) 
- 0.03125w1w2 - 0.0375w2w3  + 0.0375w1w3 
+ Al (w/ + w2 + W3 ± W4 - 1) 

+ A2 (0.08w1 0.12w2 + 0.16w3 + 0.05w4 - 0.12). 

The gradient of the Lagrangian is the following (row) vector: 

/ 	0.125 -0.03125 0.0375 0 1 0.08 / w1 	/ 	0 
-0.03125 0.125 -0.0375 0 1 0.12 w2 0 

0.0375 -0.0375 0.18 0 1 0.16 w3 0 
0 0 0 0.08 1 0.05 w4 0 
1 1 1 1 0 0 Al 1 

\ 	0.08 0.12 0.16 0.05 0 0 	/ \ A2 / \ 0.12 / 

The solution of the linear system (8.11) is 

(

0.1586 
0.4143 
0.3295 
0.0976 

Let Fo(w) = F(w, A0.1, A0.2), i.e., 

Fo(w) = 0.0625w? + 0.0625/4 + 0.09/4 + 0.04w4 
- 0.03125w1w2 - 0.0375w2w3 + 0.0375w1w3 
+ 0.0112 ( ■w/ + w2 + w3 + w4 - 1) 
- 0.3810 (0.08w1  + 0.12w2  + 0.16w3 + 0.05w4 - 0.12), 

and compute its Hessian 

0.125 	-0.03125 	0.0375 	0 

D2F0(w) 

	

-0.03125 	0.125 	-0.0375 	0 

	

0.0375 	-0.0375 	0.18 	0 • 
0 	0 	0 	0.08 

WO = = 0.0112; A0.2 = -0.3810. 

(8.11) 
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Note that the D2F0(w) is equal to twice the covariance matrix of the rates 
of return of the four assets, i.e., 

D2F0(w) = 2 

/ 	al
2  

al 0-2P1,2 

0-10-3P1,3 
0 

0-1 Cr2P1,2 
„.2 
'2 

(720 3P2,3 
0 

U10'3191,3 

0'20'3P2,3 
„.2 ,..,3 

0 

0 \ 
0 

0 
cri i 

We conclude that D2F0(w) is a positive definite matrix. 
Therefore, the associated quadratic form q(v) = vtD2Fo(wo)v is positive 

definite, and so will be the reduced quadratic form corresponding to the linear 
constraints Vg(wo) v = 0. 

We conclude that the point w0  = (0.1586 0.4143 0.3295 0.0976) is a con-
strained minimum for f (w) given the constraints g(w) = 0. The portfolio 
with 12% expected rate of return and minimal variance is invested 15.86% 
in the first asset, 41.43% in the second asset, 32.95% in the third asset, and 
9.76% in the fourth asset. 

The minimal variance portfolio has a standard deviation of the expected 
rate of return equal to 13.13%. 

(ii) Denote by 

( 	CT? 	a10-2P1,2 Cr103P1,3 0 \ 
,.,.2 

M = 	0-10-2P1,2 	'2 	0-2g3P2,3 0  
2 

al a3P1,3 0-20-3P2,3 	0'3 	0 

0 	0 	02 
a4 j 

the covariance matrix of the rates of return of the four assets. 
Let o-p = 0.24 be the required standard deviation of the rate of return of 

the portfolio. If wi  denotes the weight of the asset i in the portfolio, i = 1 : 4, 
it follows from (8.4) and (8.5) that 

E[R] = ittw; 	 (8.12) 

var(R) = wtMw, 	 (8.13) 

where 
Pl 

1-12 
= I-t3 

Pt4 
is the vector of the expected values of the rates of return of the four assets. 

The problem of finding a portfolio with maximum expected rate of return 
and standard deviation of the rate of return equal to ap can be formulated 
as a constrained optimization problem as follows: find w0  such that 

min f(w) = f(w0), 	 (8.14) 
g(w)=0 
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where w = (wi),=1, 4, and f : R4 	R and g : 1184 	R2  are defined as 

where 

f (w) 

g(w) 

ittw  

_ 	itw- 1 
wtMw ,72p 

1 = 	I  

) 

(8.15) 

(8.16) 

Recall that, if the function h : R71 	R is given by h(x) = xtAx, where A 
is an rt x n symmetric square matrix, then the gradient of h(x) is 

Dh(x) = 	 
/

matrix, 

 aaxhri) 	
2(Ax)t. 	 (8.17) 

Using (8.17), it is easy to see that 

i

t 
Vg(w) 

= 2(mitot 

In order to use the Lagrange multipliers method for solving problem (8.14), 
we first show that the matrix Vg(w) has rank 2 for any w such that g(w) = 0. 

Note that rank(Vg(w)) = 1 if and only if there exists a constant C e R 
such that 2Mw = Cl. Using the fact that the covariance matrix M of the 
assets considered here is nonsingular, we obtain that 

W = c 
2 

(8.18) 

From (8.16) it follows that, if g(w) = 0, then ltw = 1 and wtMw = cr2p. 
Using (8.18), we find that 

	

ltw = 1 < 	> 1 = —
c 

ltM-11; 
2 

2  Ct 	C t 	C 

	

wtMw = cr2p < 	
a P  = 	= 

From (8.19) and (8.20), we find that, if there exists w E R4  such that g(w) = 0 
and rank(Vg(w)) = 1, then 

itm-i = 2 = 1  
C 	. 7.f • 

(8.19) 

(8.20) 
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However, it is easy to see that 

1 
ltM-11 = 80.01 	17.36 = 

o-r, 

We can now proceed with finding the portfolio with maximum expected 
return using the Lagrange multipliers method. Denote by Al  and A2 the 
Lagrange multipliers. From (8.15) and (8.16), we obtain that the Lagrangian 
associated to this problem is 

F(w, A) = litw + Ai(itw — 1) + A2(wtMw — 4). 	(8.21) 

The gradient of the Lagrangian is 

(it + all + 2A2Mw t  
V (w,A)  F(w, A) = 	ltw — 1 

wt Mw — a2p  

To find the critical points of F(w, A), we must solve 

G(w, A1, A2) = V(,,,,,A) F(w, A) = 0, 

where G :R6  —> R6  is given by 

G(w, Ai, A2) = 
(tz + Ail + 2A2Mw 

ltw — 1 	. 
wt Mw — cr2p  

This is done using a six dimensional Newton's method; note that the gradient 
of G(w, A1, A2) is the following 6 x 6 matrix: 

. 

We find that the Lagrangian (8.21) has exactly one critical point given by 

V(w,),) G(w, Ai , A2) = 
(2A2M 	1 

1t 	0 
2(Mw)t 0 

2Mw 
0 
0 

wo 

(

0.0107 
0.6450 ) . 
0.6946 	' 

—0.3503 

A0,1 = —0.0738; A0,2 = —0.8510. 

Let Fo(w) = F(w, A0,1, A0.2), i.e., 

Fo(w) = [ttw — 0.0738(1tw — 1) — 0.8510(wtMw — 4). 
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The Hessian of Fo(w) is 

D2F0(w) 	— 0.8510 • 2M = — 1.7019M. 

Since the covariance matrix M of the rates of return of the four assets is a 
positive definite matrix, it follows that D2F0(w) is a negative definite matrix 
for any w. 

Therefore, the associated quadratic form q(v) = vtD2Fo(wo)v is negative 
definite, and so will be the reduced quadratic form corresponding to the linear 
constraints Vg(wo) v = 0. 

We conclude that the point wo = (0.0107 0.6450 0.6946 — 0.3503) is a 
constrained maximum for f (w) given the constraints g(w) = 0. 

The portfolio with 24% standard deviation of the rate of return and max-
imal expected return 1.07% in the first asset, 64.50% in the second asset, 
69.46% in the third asset, while shorting an amount of asset four equal to 
35.03% of the value of the portfolio. For example, if the value of the port-
folio is $1,000,000, then $350,285 of asset 4 is shorted (borrowed and sold 
for cash), $10,715 is invested in asset 1, $644,965 is invested in asset 2, and 
$694,604 is invested in asset 3. 

This portfolio has an expected rate of return equal to 17.19%. ❑ 

Problem 3: Use Newton's method to find the yield of a five year semian-
nual coupon bond with 3.375% coupon rate and price 100 h. What are the 
duration and convexity of the bond? 

Solution: Nine $1.6875 coupon payments are made every six months, and a 
final payment of $101.6875 is made after 5 years. By writing the value of the 
bond in terms of its yield, we obtain that 

9 
1 

100 + -
32 

= E 1.6875 exp ( 	
2 

—y 	+ 101.6875 exp(-5y). 	(8.22) 
i=1 

We solve the nonlinear equation (8.22) for y using Newton's method. With 
initial guess xo = 0.1, Newton's method converges in four iterations to the 
solution y = 0.033401. We conclude that the yield of the bond is 3.3401%. 

The duration and convexity of the bond are given by 

D= 	
2 

(E 1.6875—i  exp x (
Y 

— 	+ 101.6875 . 5 exp(-5y)) 

C 
 = 	(

E 1.687571  exp I —y —
2) 
	101.6875 • 25 exp(-5y)) 

i=i 
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where B = 100 + th and y = 0.033401. We obtain that the duration of the 
bond is 4.642735 and the convexity of the bond is 22.573118. ❑ 

Problem 4: Recall that finding the implied volatility from the given price of 
a call option is equivalent to solving the nonlinear problem f(x) = 0, where 

f(x) = Se-qT N(di(x)) — Ke-rTN(d2(x)) — C 

and di  (x) 
ln(K) + (r—q+)T 

, d2(x) = 
10) + (r—q—)T 

xl/T 	 x./T 

(i) Show that lim,„ (x) = oo and lima. d2(x) = —oo, and conclude that 

lim f(x) = Se —qT  — C. 
x—■co 

(ii) Show that 

—oo, if Se(r-OT  < K; 
= limd2(x) = 	0, if Se(r-q)T = K; 

ess,,o 	x\„o oo, if Se(r-q)T  > K. 

(Recall that F = Se(r-q)
T  is the forward price.) 

Conclude that 

—C, 	if Se(r-q)/' < K; 
lim f (x) = 
x\O 	 Se 	— K e —rT 	if se  (r—q)T > K.  

(iii) Show that f (x) is a strictly increasing function and 

—C < f(x) < Se-qT  — C, if Se(r-q)T  < K; 

Se-qT  — Ke-rT  — C < f(x) < Se-qT  — C, if Se(r-q)T  > K. 

(iv) For what range of call option values does the problem f (x) = 0 have a 
positive solution? Compare your result to the range 

Se —qT  — Ke—rT  < C < Se—qT  

required for obtaining a positive implied volatility for a value C of the call 
option. 

Solution: (i) Note that 

In (*) + (r — q)T 

	

di(x) = 	 + 

In  (*) + (r — q)T 

	

d2(x) = 	x-VT 

x N/T 
2 

xV  
2 

(8.23) 

(8.24) 
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It is easy to see that 

lim di(x) = oo and lim d2(x) = -oo, 
x.,0c 

and therefore 

lim N(di(x)) = 1 and lira N(d2(x)) = 0. 
x-,x 

We conclude that 
lim f (x) = Se-qT  - C. 
X--∎ DC 

(ii) Let F = Se(r-q)T  be the forward price. From (8.23) and (8.24) it follows 
that di(x) and d2(x) can be written as 

ln 	 n 
di(x) = xvt 	

x \if" 
+ 	2  ' d2(x) 	

l 

x N- 	

x-VT 

2 • 

• If F < K, then ln (ifc) < 0 and 

lim (x) = lim d2(x) = -co. 
x\o 	x\o 

Therefore limx  N(di (x)) = limx N(d2(x)) = 0 and 

lim f(x) = -C. 
x\o 

• If F = K, then di(x) = x4" and d2(x) = -x47-7 , and therefore 

lim dl  (x) = lim d2(x) = 0. 
x\o 	x\o 

Thus, lims\o N(di(x)) = limx N(d2(x)) = a and 

lim f(x) = 
1 
-
2 

(Se-qT  - Ke-rT) - C = 
x\O 

= -C. 

• If F > K, then ln 	> 0 and 

lim dl (x) = lim d2(x) = oo. 
x\o 	x\o 

Therefore limx  \ N(di(x)) = limx N(d2(x)) = 1 and 

o f (x) = Se-qT  - K e-rT  - C. 
s\ 

e-rT 
2  (F - K) - C 
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(iii) Differentiating f(x) with respect to x is the same as computing the 
derivative of the Black-Scholes value of a European call option with respect 
to the volatility o-, which is equal to the vega of the call. In other words, 

f'(x) = vega(C) = Se-qT /7"  1
T  e

-`41  

1n04) + (r+)T 
where d1  = di(x) = 	  

Thus, f'(x) > 0, V x > 0, and f(x) is strictly increasing. 
Recall that lima„, f (x) = Se - C and 

lim f(x) = 
x\o 

—C, 
se-qT Ke-rT 

if F < K; 
if F > K. 

Since f(x) is strictly increasing, we conclude that 

-C < f(x) < Se-gT  - C, if F < K; 
Se-9T  — Ke-rT  — C < f (X) < Se-qT  — C, if F > K. 

(iv) If F < K, the problem f (x) = 0 has a solution x > 0 if and only if 

0 < C < Se
-9T 
	 (8.25) 

If F > K, the problem f (x) = 0 has a solution x > 0 if and only if 

se-qT - K e-rT < C < se-qT 	 (8.26) 

Note that 

se-qT K e-rT = e-rT (se(r-q)T K) 	e-rT (F K).  

From (8.25) and (8.26), we conclude that the problem f (x) = 0 has a positive 
solution if and only if C belongs to the following range of values: 

max (Se-qT  - Ke-rT  , 0) < C < 

Problem 5: A three months at-the-money call on an underlying asset with 
spot price 30 paying dividends continuously at a 2% rate is worth $2.5. As-
sume that the risk free interest rate is constant at 6%. 
(i) Compute the implied volatility with six decimal digits accuracy, using the 
bisection method on the interval [0.0001, 1], the secant method with initial 
guess 0.5, and Newton's method with initial guess 0.5. 
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(ii) Let crimp  be the implied volatility previously computed using Newton's 
method. Use the formula 

0-imp: approx 
.N/ 7-7r C 2q)T  S 

S15"  1 (r+g)T • 
2 

(8.27) 

to compute an approximate value azinp.app„x  for the implied volatility, and 
compute the relative error 

1°-imP,aPProx  — wimp  

Crimp 

Solution: (i) Both the secant method with x_1  = 0.6 and xo = 0.5 and 
Newton's method with initial guess xo = 0.5 converge in three iterations to 
an implied volatility of 39.7048%. The approximate values obtained at each 
iteration are given below: 

k Secant Method Newton's Method 
0 0.5 0.5 
1 0.3969005134 0.3969152615 
2 0.3970483533 0.3970481867 
3 0.3970481868 0.3970481868 

The bisection method on the interval [0.0001, 1] converges in 30 iterations 
to the same implied volatility of 39.7048%. The first five iterations generate 
the following intervals: 

[0.250075, 0.5]; 	[0.375063, 0.5]; 	[0.375063, 0.437556]; 

[0.375063, 0.406309]; 	[0.390686, 0.406309]; 

(ii) The approximate value for the implied volatility given by (8.27) is 

Crirrip.approx = 0.3966718145 = 39.6672%. 

If crimp  = 0.3970481868 is the implied volatility obtained using Newton's 
method, then 

lain1P' aPPr°x aimPi  = 0.000948 = 0.0948%. ❑ 
Crimp 

Problem 6: Let F : R3  R3  given by 

2xix2 	— x2x3 ± 9 
F(x) = 

	

	2xi + 2x14 + 4x3 — 4x3— 2 
x1x2x3  + xi — x3 — xlx2 — 4 
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The approximate gradient AcF(x) =- (A, jFi(x))ij=1, 7., of F(x) is com-
puted using central difference approximations, i.e., 

	

A 	
Fi(x + hey) - Fi(x - hey) 

	= 1 : c 	=  
2h 

where ei  is a vector with all entries equal to 0 with the exception of the j-th 
entry, which is equal to 1. 

(i) Solve F(x) = 0 using the approximate Newton's algorithm obtained by 
substituting AcF(xo/d)  for AF(xo/d). Use h = 10-6, tol_consec = 10-6, and 
tol_approx = 10-9, and two different initial guesses: xo = (1 2 3)t and xo = 
(2 2 2)t. 

(ii) Compare these results to those corresponding to the approximate New-
ton's method with forward finite difference approximations for AF(x). 

Solution: We use Newton's method and the approximate Newton's method 
both with forward difference approximations and with central difference ap-
proximations with tol_consec = 10-6  and tol_approx = 10-9. The parameter 
h is chosen to be equal to tol_consec, i.e., h = 10-6. 

All algorithms converged to the same solutions, 

( -1.6905507599 ) 	 1 

	

1.9831072429 	for xo = 	2 

	

-0.8845580785 	 3 

and 
-1 	 2 

x* = ( 
3  ) 

for x0 = 	2 ) . 
2 

(  

The iteration counts are given in the table below: 

x0 Iteration Count 
Newton's Method 

Iteration Count 
Approximate Newton 
Forward Differences 

Iteration Count 
Approximate Newton 

Central Differences 

1  2 3  9 9 9 

2 
2 40 
2 

65 43 

x* = 

We note that using central finite differences approximates the gradient 
DF(x) of F(x) more accurately than if forward finite differences are used, 
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resulting in algorithms with iteration counts closer to the iteration counts for 
Newton's method. ❑ 

Problem 7: (i) Use bootstrapping to obtain a zero rate curve from the 
following prices of Treasury instruments with semiannual coupon payments: 

3 - Month T-bill 
6 - Month T-bill 
2 - Year T-bond 
3 - Year T-bond 
5 - Year T-bond 

10 - Year T-bond 

Coupon Rate Price 
0 	98.7 
0 	97.5 

	

4.875 	100a 

	

4.875 	100-7, 

	

4.625 	99-22-  32 

	

4.875 	101k 

Assume that interest is continuously compounded. 

(ii) How would the zero rate curves obtained by bootstrapping from the bond 
prices above, one corresponding to semi-annually compounded interest, and 
the other one corresponding to continuously computed interest, compare? In 
other words, will one of the two curves be higher or lower than the other one, 
and why? 

Solution: (i) For the Treasury bills, the zero rates can be computed directly: 

100 
r(0, 0.25) = 41n V

8.7
) = 0.052341 = 5.2341%; 

100 
r(0, 0.5) = 21n V

7.5
) = 0.050636 = 5.0636%. 

Bootstrapping is needed to obtain the 2-year, 3-year, 5-year and 10-year 
zero rates. 

For example, for the two year bond, if the zero rate curve is assumed to 
be linear between six months and two years, then 

(2 - t)r(0, 0.5) + (t  - 0.5)r(0,2) 
 V t E [0.5 , 2]. r(0,t) = 	 (8.28) 

.5 

If we let x = r(0, 2), we find from (8.28) that 

r(0 1) = r(0, 0.5) + 0.5x
. r(0 1.5) = 

0.5r(0, 0.5) + x 
, 

1.5 	 1.5 

Recall that the price of the two year bond is the discounted present value of 
all the future cash flows of the bond. Then, 

5

2  
100 + 

3
— = 2.4375 e-o.5r(o.o.5)  + 2.4375 e-r(°'1) 



8.1. SOLUTIONS TO CHAPTER 8 EXERCISES 
	

193 

+ 2.4375 e-1.5r(°'1.5)  + 102.4375 e-2r(o,2)  
r(0, 0.5) +0.5x1 = 	 2.4375 e-0.5r(0,0.5) + 2.4375 exp 

1.5 
0.5r(0, 0.5)  + x) 

+2.4375 exp (-1.5 	 + 102.4375 e-2x. 
1.5  

Using Newton's method to solve the nonlinear equation above for x, we obtain 
that x = 0.047289, and therefore 

r(0, 2) = 4.7289%. 

We proceed by assuming that the zero rate curve is linear between two 
years and three years. We note that r(0, 0.5), r(0, 1), r(0, 1.5), and r(0, 2) are 
known. If we let x = r(0, 3), the price of the three year bond can be written 
as 

= 2.4375 e-ur(".5)  + 2.4375 e-r(o°1)  + 2.4375 e-1'5r(13'1.5)  

+ 2.4375 e-2r(°'2)  + 2.4375 exp (-2.5 r(
0, 2) + xl 

2 
+ 102.4375 exp (-2x) 

Using Newton's method to solve the nonlinear problem above, we obtain that 
x = 0.047582. Therefore 

r(0, 3) = 4.7582%. 

Using bootstrapping, we obtain similarly that 

r(0, 5) = 4.6303% and r(0, 10) =- 4.6772%. 

Thus, we found the following zero rates corresponding to the maturities 
of the four given bonds, i.e., 3 months, 6 months, 2 years, 3 years, 5 years, 
and 10 years: 

r(0, 0.25) = 5.2341%; r(0, 0.5) = 5.0636%; r(0, 2) = 4.7289%; 
r(0, 3) = 4.7582%; r(0, 5) = 4.6303%; r (0, 10) = 4.6772%. 

Since we assumed that the zero rate curve is linear between any two consecu-
tive bond maturities, the zero rate r(0, t) is known for any time between the 
shortest and longest bond maturities, i.e., for any t E [0.25, 10]. 

(ii) Denote by re(0, t) and r2(0, t) the zero rate curves corresponding to identi- 
cal discount factors, with r,(0, t) corresponding to continuously compounded 

100 + 
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interest, and with r2(0, t) corresponding to semi-annually compounded inter-
est. Then, 

2t 
e-tr,(04) 	(1  Jr_  r2(0,  L.))  

2 
, V t > O. 	 (8.29) 

By solving for r,(0, t) in (8.29), we find that 

2 
r,(0, t) = In I 1 + r20, 	) 

2) 

= r2(0, t) In ( (1 + r2(° t)) '2(21 

2/r2(0.t) 

= r2 (0, t) In ( (1 + 	 
2/r2(0,t)) 

< r2(0, t); 

for the last inequality we used the fact that 

(1 + —1)x  < e, Vx > 0, 

for x = 2/r2(0, t). In other words the semi-annually compounded zero rate 
curve is higher than the continuously compounded zero rate curve if both 
curves have the same discount factors. 

While a rigorous proof is much more technical, the same happens if the 
two curves are obtained by bootstrapping from the same set of bonds, i.e., 
the zero rates corresponding to each bond maturity are higher if interest 
is compounded semi-annually than if interest is compounded continuously. 
This is done sequentially, beginning with the zero rates corresponding to the 
shortest bond maturity and moving to the zero rates corresponding to the 
longest bond maturity one bond maturity at a time. ❑ 

Problem 8: Use bootstrapping to obtain a continuously compounded zero 
rate curve given the prices of the following semiannual coupon bonds: 

Maturity Coupon Rate Price 
6 months 0 97.5 
1 year 5 100 
20 months 6 103 
40 months 5 102 
5 years 4 103 
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Assume that the overnight rate is 5% and that the zero rate curve is linear 
on the following time intervals: 

[0, 0.5] ; 	[0.5, 1] ; 	[1, 	; 	
[35 1301 ; 	r1O 

51 • 

Solution: We know that r(0, 0) = 0.05. The six months zero rate can be 
computed from the price of the 6-months zero coupon bond as 

r(0, 0.5) = 21n (1
00

97.5
) = 0.050636 = 5.0636%. 	(8.30) 

Using (8.30), we can solve for the zero rate r(0, 1) from the formula given 
the price of the one year bond, i.e., 

100 = 2.5 e-a5r".5)  + 102.5 e-r(")  

and obtain that 
r(0, 1) = 0.049370 = 4.9370%. 

The third bond pays coupons in 2, 8, 14, and 20 months, when it also 
pays the face value of the bond. Then, 

103 = 3 exp (-i2y (0) i.-22-)) + 3 exp (-u8  r (0, l)) 

+ 3 exp  (_,71427, (0,  i_142)) 	 2102))
(8.31) 103 exp 

12r  (0,  

Since we assumed that the zero rate curve is linear on the intervals [0, 0.5] 
and [0.5, 1], the zero rates r(0, and r(0, A) are known and can be obtained 
by linear interpolation as follows: 

r (0 12 
	 6 

= 4r(0, 0) + 2r(0, 0.5) 

	

0.050212; 	(8.32) 

4r(0, 0.5) + 2r(0, 1) 
r 0, 	= 	  =- 0.050214. 	(8.33) 8 

12/ 	 6 

Let x = r (0, ;A). Since r(0, t) is linear on the interval [1, N] , we find that 

14) 	6r(0, 1) + 2x 	
(8.34) r (0, —

12 
=-  

8 

From (8.34), it follows that the formula (8.31) can be written as 

2 	 2 ( 8 )) 
103 = 3 exp 	1 /0, T2-)) + 3 exp (--dr 0, u  

+ 3 exp 6  
6r(0, 1) + 2x) 

+ 103 exp (--
5
3
x) , (8.35) • 

8 
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where r (0, i?) and r (0, A) are given by (8.32) and (8.33), respectively. Using 
Newton's method to solve for x in (8.35), we find that x = 0.052983, and 
therefore 

T (
0,  2102) 

Bootstrapping for the fourth and fifth bonds proceed similarly. For exam-
ple, the fourth bond makes coupon payments in 4, 10, 16, 22, 28, 34, and 40 
months. The zero rates corresponding to coupon dates less than 20 months, 
i.e., to the coupon dates 4, 10 and 16 months, can be obtained from the 
part of the zero curve that was already determined. By setting x = r (0, 11) 
and assuming that the zero rate curve is linear between 20 months and 40 
months, the zero rates corresponding to 22, 28, 34, and 40 months can be 
written in terms of x. Thus, the pricing formula for the fourth bond becomes 
a nonlinear equation in x which can be solved using Newton's method. The 
zero rate r (0, il) is then determined. 

Using bootstrapping and Newton's method we obtain that 

/,, 40 
r v, u)  = 4.5326%; r(0, 5) = 3.2119%. 

Summarizing, the zero rate curve obtained by bootstrapping is given by 

2 
r(0, 0) = 0.05; r (0, i .) = 0.050212; r (0, 8 ) = 0.050214; 

20 	 40) 
r (0

' 
—
12

) = 0.052983; r (0
' 

—
12 	

= 0.045326; r(0, 5) = 0.032119, 

and is linear on the intervals 

[0,0.5] ; 	[0.5,1] ; 	[1, 31 ; 	[5
3 
 1°1 • 

' 	
[10  5 

' 3 	3 ' 1 • 	
Ti

1 

= 5.2983%. 
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8.2 Supplemental Exercises 

1. (i) If the current zero rate curve is 

ri  (0 	
1 

, t) = 0.025 + —exp (- 
100 	100) 	100(t + 1)' 

find the yield of a four year semiannual coupon bond with coupon rate 
6%. Assume that interest is compounded continuously and that the 
face value of the bond is 100. 

(ii) If the zero rates have a parallel shift up by 10, 20, 50, 100, and 200 
basis points, respectively, i.e., if the zero rate curve changes from ri  (0, t) 
to r2(0, t) = ri (0, t)+dr, with dr = {0.001,0.002,0.005,0.01, 0.02}, find 
out by how much does the yield of the bond increase in each case. 

Note: In general, a small parallel shift in the zero rate curves results in 
a shift of similar size and direction for the yield of most bonds (possibly 
with the exception of bonds with long maturity). This assumption will 
be tested for the bond considered here for parallel shifts ranging from 
small shifts (ten basis points) to large shifts (two percent). 

2. Consider a six months at-the-money call on an underlying asset follow-
ing a lognormal distribution with volatility 30% and paying dividends 
continuously at rate q. Assume that the interest rates are constant 
at 4%. Show that there is a unique positive value of q such that 
A(C) = 0.5, and find that value using Newton's method. How does 
this value of q compare to r + 2  ? 

3. The following prices of the Treasury instruments are given: 

Coupon Rate Price 
6 - Month T-bill 0 99.4565 

12 - Month T-bill 0 98.6196 
2 - Year T-bond 2 10117.5 

3 - Year T-bond 4.5 10711  
5 - Year T-bond 3.125 1021 

10 - Year T-bond 4 1032 

The Treasury bonds pay semiannual coupons. Assume that interest is 
continuously compounded. 

(i) Use bootstrapping to obtain a zero rate curve from the prices of the 
6-months and 12-months Treasury bills, and of the 2-year, 5-year and 
10-year Treasury bonds; 
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(ii) Find the relative pricing error corresponding to the 3—year Treasury 
bond if the zero rate curve obtained at part (i) is used. In other words, 
price a 3—year semiannual coupon bond with 4.5 coupon rate and find 
its relative error to the price 1074 of the 3—year Treasury bond. 

8.3 Solutions to Supplemental Exercises 

Problem 1: (i) If the current zero rate curve is 

1 	t 
	+  

ri  (0, t) = 0.025 + --100exp (— 
100) 1-  100(t + 1)' 

find the yield of a four year semiannual coupon bond with coupon rate 6%. 
Assume that interest is compounded continuously and that the face value of 
the bond is 100. 

(ii) If the zero rates have a parallel shift up by 10, 20, 50, 100, and 200 
basis points, respectively, i.e., if the zero rate curve changes from ri  (0, t) to 
r2(0, t) = ri (0, t) + dr, with dr = {0.001,0.002,0.005,0.01, 0.02}, find out by 
how much does the yield of the bond increase in each case. 

Solution: (i) The bond provides coupon payments equal to 3 every six months 
until 3.5 years from now, and a final cash flow of 103 in four years. By 
discounting this cash flows to the present using the zero rate curve ri (0, t), 
we find that the value of the bond is 

7 
E3 exp (-7.1  CO, 

2) 
) 

2  
—i  ) + 103 exp(-4r1(0, 4)) 

i:=1 
= 106.1995. 

The yield of the bond is found by solving the formula for the price of the 
bond in terms of its yield, i.e, by solving 

7 

B1 = E 3 exp (—y 
2
) + 103 exp(-4y) 

i 

for y, where B1  is given by (8.36), i.e., B1  = 106.1995. Using Newton's 
method, we obtain that the yield of the bond is 

y = 0.042511 = 4.2511%. 

131 = 

(8.36) 

(8.37) 
i=1 
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(ii) If the zero rates increase, the value of the bond decreases, and therefore 
the yield of the bond will increase. Our goal here is to investigate whether a 
parallel shift of the zero curve up by dr results in an increase of the yield of 
the bond also equal to dr. 

When the zero rates increase from ri  (0, t) to r2(0, t) = ri (0, t) + dr, the 
value of the bond decreases from B1 given by (8.36) to 

7 

B2 = E 3 exp (-r2 CO, 0 0 + 103 exp(-4r2(0, 4)). 
i=i 

The new yield of the bond, denoted by y2, will be larger than the initial yield 
y, and is obtained by solving 

7 
B2 = E 3 exp (-y2 

i2 
+ 103 exp(-4y2) 	(8.38) 

i=i 

for y2, where B2 is given by (8.38). 
For parallel shifts equal to dr = {0.001, 0.002, 0.005, 0.01, 0.02}, we obtain 

the following bond prices and yields: 

Zero rate shift 
dr 

New bond price 
B2 

New yield 
P2 

Yield increase 
Y2 - Y 

10bp -= 0.001 105.8150 0.043511 0.00099979 
20bp = 0.002 105.4319 0.044510 0.00199957 
50bp = 0.005 104.2915 0.047510 0.00499893 
100bp = 0.01 102.4199 0.052509 0.00999784 
200bp = 0.02 98.7829 0.062506 0.01999562 

As expected, the increase of the yield of the bond is slightly smaller, but 
very close to, the parallel shift of the zero rate curve, i.e., y2  - y dr. 	❑ 

Problem 2: Consider a six months at-the-money call on an underlying asset 
following a lognormal distribution with volatility 30% and paying dividends 
continuously at rate q. Assume that the interest rates are constant at 4%. 
Show that there is a unique positive value of q such that A(C) = 0.5, and 
find that value using Newton's method. How does this value of q compare to 
r+ c? 

Solution: Recall that the Delta of a plain vanilla call option on an underlying 
asset paying dividends continuously at rate q is 

A(C) = e-qT  N(di), 	 (8.39) 
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where 

d1 - 
o- NiT 

For an at-the-money option, i.e., for S = K, we find that 

(r - q).\ff + a  -VT 
a 	2 

(8.40) 

From (8.39) and (8.40), we find that 

A(C) = e-qTN(d1) = e-qT  N (
(r - q)f -T-  ±a -VT 

(8.41) 
a 	2 	) . 

It is easy to see that 6,(C) is a decreasing function of the dividend rate 
q, since 

OA 	 ad1  
= —Te-qT N(do + e-qT ir (di ) 	 

aq 	 aq  

( 	 ) = —Te-qT N(di ) + e—qT 	
1 A. 

e- 2 — 
VT 
— 

A/T7i 	 a  

< 0. 

When q = 0, we find that 

A(C) 	N  (r-VT'  +a-f77) 
Q 	2 

> N(0) = 0.5 

Also, since 0 < N(d1) < 1, it follows that 

lim A(C) = lim (e-qT N(di)) = 0. 
q—,  oc 	 q--oc 

We conclude that A(C) is a decreasing function of q and that, for q > 0, 
the values of A(C) decrease from N(0) > 0.5 to 0. Therefore, there exists 
a unique value q > 0 such that A(C) = 0.5. From (8.41), it follows that 
this value can be obtained by solving for x the nonlinear equation f (x) = 0, 
where 

f (x)  = e-xT N  ((r - x)07  + aft)  - 0.5. 

	

Q 	2 

Using Newton's method, we obtain that q = x = 0.066906. 

ln (K) + (7- - q + 2) T 
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In other words, if the interest rates are flat at 4%, the Delta of a six 
months at-the-money call option on an underlying asset with volatility 30% 
is equal to 0.5 if the underlying asset pays 6.69% dividends continuously. 

If q = r + -c, we find from (8.40) and (8.41) that di. = 0 and 

A(C) = e-9TN(0) = 0.5e-qT  < 0.5. 

Since A(C) is a decreasing function of q, we obtain that the value of q such 
that A(C) = 0.5 must be lower than r + 1. Indeed, the value previously 
obtained for q satisfies this condition, i.e., 

0. 

' 

2 

2 
q = 0.066906 < 0.085 = r + 	❑ 

Problem 3: The following prices of the Treasury instruments are given: 

Coupon Rate Price 
6 - Month T-bill 0 99.4565 

12 - Month T-bill 0 98.6196 
2 - Year T-bond 2 1011  ,4,2 
3 - Year T-bond 4.5 107 
5 - Year T-bond 3.125 1028  

10 - Year T-bond 4 103- 5  32 

The Treasury bonds pay semiannual coupons. Assume that interest is con-
tinuously compounded. 

(i) Use bootstrapping to obtain a zero rate curve from the prices of the 6-
months and 12-months Treasury bills, and of the 2-year, 5-year and 10-year 
Treasury bonds; 

(ii) Find the relative pricing error corresponding to the 3-year Treasury bond 
if the zero rate curve obtained at part (i) is used. In other words, price a 
3-year semiannual coupon bond with 4.5 coupon rate and find its relative 
error to the price 1074 of the 3-year Treasury bond. 

Solution: (i) The 6-months and 12-months zero rates can be obtained di-
rectly from the prices of the Treasury bills, i.e., 

r(0,0.5) 

r(0 , 1) 

= 

= 

65
) 

= 

= 

1.09%; 

1.39%. 

214
99

10

.45

0  

In 	
0) 

(98.16196 
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Using bootstrapping, we obtain the following 2-year, 5-year and 10-year 
zero rates: 

r(0, 2) = 1.2099%; 
r(0, 5) -= 2.6824%; 

r(0, 10) = 3.7371%. 

(ii) The zero rates computed above correspond to the following zero rate 
curve which is piecewise linear between consecutive bond maturities: 

{ (2t - 1) r(0,1) + 2(1 - t) r(0, 0.5), if 0.5 < t < 1; 
(t - 1) r(0, 2) + (2 - t) r(O, 1), 	if 1 < t < 2; 
y r(0, 5) + 1=1  r(0, 2) 

' 	
if 2 < t < 5; 

y- r(0, 10) +0 r(0, 5), if 5 < t < 10. io-t  

With this zero rate curve, the value of the 3-year semiannual coupon bond 
with 4.5 coupon rate is 

5 

B = E 2.25 exp (-r (0, ) 	+ 102.25 exp(-3r(0, 3)) 
i=i 

= 108.1930. 

The price of the 3-year Treasury bond was given to be 107.5625. There-
fore, the relative pricing error given by the bootstrapped zero rate curve 
which does not include the 3-year bond is 

107.5625 	
= 0.005862 = 0.59%. ❑ 

r (0, t) 

1107.5625 - 108.19301 
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