
Data Migration Tool for
Azure DevOps
Migration Guide

Last updated: April 3, 2019

https://aka.ms/TFSImportData

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of
publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of
Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This guide is for informational purposes only. Microsoft makes no warranties, express or implied, in this document. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in,
or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise),
or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this
document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2016 Microsoft Corporation. All rights reserved.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious.
No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be
inferred. Microsoft, Azure, Visual Studio, Xamarin, Windows, Windows Server, SQL Server, Active Directory, Power BI, Office 365, SharePoint, and
PowerShell are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. The names of
actual companies and products mentioned herein may be the trademarks of their respective owners.

Published: November 2016
Last updated: April 3, 2019

Change history

Date Description of changes

September 2018 Updated to reflect that Visual Studio Team Services
(VSTS) has been rebranded to be Azure DevOps
Services.

November 2017 Updated to reflect the fact that the TFS Database
Import Service is now in GA. Additional updates
cover the changes to the identity import
experience.

October 2017 Updated the guide to reflect that import codes are
no longer required for queuing imports. Several
other sections were updated to cover common
questions.

August 2017 Updated guidance to reflect the new
improvements made to TfsMigrator and changes
to the import specification file. In addition, content
was added to section one to address some
common questions.

April 2017 Removed sections that are no longer needed,
minor text tweaks to make common questions
on scenarios clearer, added additional technical
documentation links, and corrected some broken
links.

April 2016 Initial version of the TFS to Visual Studio Team
Services Migration Guide

November 2016 Initial version of the TFS to Visual Studio Team
Services Migration Guide

Download
the latest
version of
this guide.

https://aka.ms/TFSImportData

https://aka.ms/TFSImportData
https://aka.ms/TFSImportData

Introduction

1Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

Ever since Azure DevOps Services was released to provide a hosted SaaS service for
development teams, Azure DevOps Server (formely Team Foundation Server) customers
have been asking Microsoft to be able to import their Azure DevOps Sever databases to take
advantage of all the great capabilities of Azure DevOps Services. We are happy to say that
the data migration tool for Azure DevOps is now available.

This Migration Guide will walk through the different steps along the way. We have organized
the guide into six phases of the migration timeline. The goal of the migration is to move your
team from on-premises Azure DevOps Server to Azure DevOps Services in the cloud. After
the migration, your team will be able to connect to Azure DevOps Services and keep working
like usual with all of the data, permissions, and customizations from your TFS database.

This guide is not meant to replace the technical documentation for the data migration tool,
but is more of a way for you to easily gather the tasks you will need to perform and the
resources you will need to be successful.

How to give feedback for this guide
If you have any suggestions for how we can make this
guide better, please e-mail us at AzureDevOpsImport@
microsoft.com

Download
the latest
version of
this guide.

https://aka.ms/TFSImportData

https://aka.ms/TFSImportData
mailto:AzureDevOpsImport%40microsoft.com?subject=
mailto:AzureDevOpsImport%40microsoft.com?subject=
https://aka.ms/TFSImportData

Introduction

2 Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

How to find a DevOps Partner to help
We highly recommend finding a trained Microsoft Partner with the DevOps Competency,
Microsoft Consulting Services, or Microsoft Premier Support to help you with your migration
project to Azure DevOps Services. The team at Microsoft has been working very closely
to train the DevOps Partner community so that they can understand the different parts of
migrating to Azure DevOps Services.

Some Microsoft customers may even have help or funding available as part of their Premier
Support Agreement, Enterprise Agreement, or other programs available to assist with getting
help with migrating to Azure DevOps Services and adopting Microsoft Azure. You can contact
your Azure App SSP or Microsoft Reseller to find out more information and if you qualify.

Your Azure App SSP or Microsoft Reseller can help
make recommendations for getting in touch with a
trained Partner to help you with your migration to
Azure DevOps Services. You can also find a list of
trained DevOps parters available at https://aka.ms/
FindDevOpsPartner.

 � Task: Find a DevOps Partner

DevOps Partner Name:

Partner Contact Info:

Find a DevOps
partner.

https://aka.ms/FindDevOpsPartner

https://aka.ms/TFSImportData
https://aka.ms/FindDevOpsPartner
https://aka.ms/FindDevOpsPartner
https://aka.ms/FindDevOpsPartner

Introduction

3Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

How to find your Azure App SSP (Solution Sales Professional)
You may have questions about the different options available for getting access to the
developer tools and services of the Microsoft Cloud including Azure DevOps Services. Your
Azure App SSP or Microsoft Reseller is best equipped to give your team the best guidance
for different types of help available to you. Reach out to your Microsoft Reseller if you
have one, or if you need help with finding your Azure App SSP, you can reach out to us at
FindYourDevSalesRep@microsoft.com.

My Azure App SSP or
Microsoft Reseller:

Contact Info:

How to ask questions about the migration
During your migration, you may have questions that come up. Our first recommendation is to
work with a trained DevOps Partner or Microsoft Consulting Services. If you are not able to
get an answer from them, you can e-mail us at AzureDevOpsImport@microsoft.com.

https://aka.ms/TFSImportData
mailto:FindYourDevSalesRep%40microsoft.com?subject=
mailto:AzureDevOpsImport%40microsoft.com?subject=

1 Get Started

 Data Migration Tool for Azure DevOps Migration Guide

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

1Get Started

5

Task summary

 � Choose datacenter: Choose the datacenter for your Azure
DevOps organization.

 � Download data migration tool: Download the data migration tool
from https://aka.ms/DownloadTFSMigrator.

 � Reserve Azure DevOps Services organization(s): Reserve
Azure DevOps Services organization(s) for each of the desired
final names.

In this first phase, we are going to help you start your Azure DevOps
Services migration project and help you understand why you would want
to migrate from Azure DevOps Server (formely Team Foundation Server)
to Azure DevOps Services.

Note: If you’re currently on Team Foundation Server (TFS), please note
that the product has been rebranded to be Azure DevOps Server with the
2019 release. This guide is still applicable for migrating to Azure DevOps
Server if your organization is using TFS. However, you will still have to
upgrade to one of the supported versions mentioned in chapter 3 of this
guide.

https://aka.ms/TFSImportData
https://aka.ms/DownloadTFSMigrator

1 Get Started

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 20196

Why migrate to Azure DevOps Services?
If you are a on-premises Azure DevOps Server customer, you have already understood
how valuable it is to bring your development team together in one place with traceability
from each aspect of the development life-cycle. Now that Azure DevOps Services has been
launched, many customers who have migrated from Azure DevOps Server have said they did
so because:

Upgraded every three weeks
Since Azure DevOps Services is cloud-
based, Microsoft automatically upgrades
your organization with the latest features
as they are released. You can stay
up to date on new releases at
https://aka.ms/
AzureDevOpsFeatureTimeline.

Azure DevOps
Features
Timeline.

https://aka.ms/
AzureDevOpsFeatureTimeline

Simplified administration
The Microsoft team will monitor your
Azure DevOps Services organization
around the clock to make sure it is
available for your team. You no longer
need to worry about managing the core
TFS infrastructure any longer.

Accessible from anywhere
Your team members will have the
flexibility they need to securely access
your organization from work, home, or
their mobile devices. If you have remote
development teams, you will have a
great solution to collaborate together
from anywhere.

Cloud-first innovation
Microsoft releases features to Azure
DevOps Services ahead of making it
available in updates from Azure DevOps
Server. You’ll be able to make your team
more productive much sooner.

Included with Visual Studio
subscriptions
Visual Studio (formerly MSDN) subscribers
have Azure DevOps Services already
included as one of their subscription
benefits.

Power your Cloud
Modernization initiatives
Adopting Azure DevOps Services will
help your company with modernizing and
driving agility and DevOps practices by
making it easier to deploy your apps to
the cloud and increase delivery of new
business value.

Leverage developer services in
the Microsoft Cloud
Using Azure DevOps Services allows
you to also take advantage of the many
other developer services in the Microsoft
Cloud like Azure, on-demand build &
deployment servers, the Load Testing
Service, Application Insights, HockeyApp,
Xamarin Test Cloud, and many others.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsFeatureTimeline
https://aka.ms/AzureDevOpsFeatureTimeline
https://aka.ms/AzureDevOpsFeatureTimeline
https://aka.ms/AzureDevOpsFeatureTimeline

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

1Get Started

7

Ready for the Enterprise
Azure DevOps Services is ready for teams of any size including development teams in large
enterprises. There are many enterprise customers who have adopted Azure DevOps Services
and empowering their development teams to collaborate more effectively. Microsoft is also
migrating to Azure DevOps Services as its single engineering system to build its commercial,
internal products, and cloud-based services.

Scalable to any team
Supports teams of any size: from tens to thousands. Backed by a 99.9% SLA and monitored
by our 24x7 operations teams.

Secure by design
Core Azure services provide a secure foundation. Multi-layered security and governance
technologies, operational practices, and compliance policies keep your data locked down.

Compliant
Azure DevOps Services is built on Azure and has the compliance certifications many
enterprises need including ISO 27001 and SOC 1 and SOC 2 compliance which demonstrate
our commitment. More information is available in Phase 2 of this guide.

Azure Active Directory integration
Integration with Azure AD makes it easy to manage entire organizations. Use a common
identity to access both cloud and on-premises resources. Establish and enforce password
lifetime and complexity controls. Enable additional security features like multi-factor
authentication.

Choice of data location
Teams can choose to host their data in different locations around the world including Europe,
Australia, Brazil, India, and the United States.

https://aka.ms/TFSImportData
https://www.visualstudio.com/team-services/case-studies/
https://engineering.microsoft.com/
https://engineering.microsoft.com/

1 Get Started

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 20198

Fundamental differences between TFS and Azure DevOps

Authentication
With Azure DevOps Server, you typically connect to a server on your on-premises network
and authenticate with Windows Authentication and Active Directory. With Azure DevOps
Services, you’ll authenticate with Azure Active Directory organization credentials. To provide
additional security, you can also require multi-factor authentication, IP address restrictions,
conditional access, and more. In Phase 2 of this guide, you will go through the steps of
setting up Azure Active Directory if your company has not implemented Azure Active
Directory.

Reporting
Both Azure DevOps Server and Azure DevOps Services have a variety of tools to give your
teams insight into the progress as well as the quality of your software projects. These include:

 y Dashboards and lightweight charts
 y Excel reports, SQL Server Reporting Services reports, and SharePoint dashboards are
available only in Team Foundation Server and not in Azure DevOps Services. These
powerful options have been more complicated to use.

 y A Power BI connector is available only in Azure DevOps Services which provides a nice
combination of simplicity and power.

 y REST APIs are also available for getting live data from Azure DevOps Services
programmatically

Note: Process Customization is now possible in Azure DevOps
Services. If your team projects in Azure DevOps Server includes
process template customizations, you will validate them to make sure
existing customizations are supported during Phase 4 of this migration
guide. Once validated, the data migration tool will import your
database including your process customizations.

https://aka.ms/TFSImportData
https://msdn.microsoft.com/Library/vs/alm/Report/dashboards
https://msdn.microsoft.com/Library/vs/alm/Report/charts
https://aka.ms/vstspowerbi
https://www.visualstudio.com/en-us/docs/integrate/api/overview

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

1Get Started

9

Data Migrated
Since each collection maps to one database in Azure DevOps Server, and the migration
process works by importing an entire collection, all databases in the collection will be
brought over to Azure DevOps Services. More specifically, this means that all of your work
items, work item history, TFVC changesets, TFVC changeset history, Git data, build definitions,
build history, and other data stored in the collection will be migrated over. Furthermore, the
work item, TFVC changeset, and Git commit numbers/IDs will be retained and won’t change
as part of the migration. It’s important to note that some data isn’t brought along during the
migration. Any data that resides in a separate database outside the collection database won’t
be imported. Prime examples of this scenario include reporting and SharePoint data. There
are also a few other instances where data won’t be brought over:

 y Extensions - Extensions will need to be reinstalled post import. Local extensions will need
to be published to the Marketplace as private extensions and shared with the account
post import to be installed. We’re working on adding Extensions to the migrations as
soon as possible.

 y Service Hooks - Service Hooks data currently isn’t included in the migration process.
Hooks will need to be reconfigured after import.

 y Load Test - Load test data will not be brought over as part of import. You will have to
reconfigure load test after import.

 y Mentions - Mentions of users in work item discussions will remain but reference the
on-premise identity and not the new AAD identity. Hovering on the user name will not
display a contact card. Mentions of pull requests and other work items will have an invalid
hyper-link.

 y Project Server Integrations - Project Server Integration does not exist for Azure DevOps
Services.

Some Azure DevOps Server features can be in preview for import to Azure DevOps
Services. You can elect to include preview features with your import. If a feature isn’t listed
above or in a preview, then the data will be included in your import every time you run
one. You can learn more about what features are in preview by visiting https://aka.ms/
AzureDevOpsImportPreviewFeatures.

https://aka.ms/TFSImportData

1 Get Started

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201910

Process Customizations
Azure DevOps Services supports two different process models:

 y Inherited
 y Hosted XML

By default, Hosted XML is turned off in Azure DevOps Services. Only if you have customized
a project in Azure DevOps Server, we will turn on the Hosted XML process model during
import. Once your project is on Hosted XML, there is a path to upgrade it to inherited post
import: https://aka.ms/XMLtoInherited
When importing into Azure DevOps Services, there are limitations and key principles that we
want to make you aware of:

 y Azure DevOps Services is English only - Azure DevOps Server supports multiple
languages, however today, Azure DevOps Services only supports English. If your collection
uses the non-English language, you can’t use the Import Service. This is also true if your
collection has been non-English in the past, and you have converted the language to
English during a TFS upgrade.

 y Inheritance - A project which was created from the Agile, Scrum or CMMI process
template and was never customized, will be on the Inheritance process model after the
import.

 y Hosted XML - Any project with customizations will use the Hosted XML process model.
 y Process per customized project - Although Azure DevOps Services allows projects
to share a process, the data migration tool will create a Hosted XML process for each
customized team project. For example, if you have 30 customized projects, you will have
30 Hosted XML processes to manage. If you want to further customize your Hosted XML
process all your projects, you will need to update each Hosted XML process separately.

 y Consolidate Processes - Azure DevOps Services currently does not support
consolidating projects to use a shared process.

 y Process validation - The process validation of the data migration tool will detect the
target process model for each project. Before you can migrate, you need to fix any
process validation errors for the Hosted XML projects. You might want to consider
updating the process of your projects to match one of our processes (Agile, Scrum or
CMMI) to take benefit of the Inheritance process model. Learn more on the process

https://aka.ms/TFSImportData
https://docs.microsoft.com/en-us/vsts/organizations/settings/work/customize-process?view=vsts&tabs=new-nav
https://aka.ms/XMLtoInherited
https://docs.microsoft.com/en-us/vsts/articles/migration-processtemplates?view=vsts#process-validation-types

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

1Get Started

11

validation types in our documentation.

New Work Item Form
Work items in Azure DevOps Services have been given a face lift. This is the same modern
experience that appears in TFS 2017 for on-premises customers. If you’re already using the
new modern work item experience then this section can be skipped. The new user experience
provides the building blocks for:

 y Improved readability and usability
 y Richer, interactive experiences within the work item including discussion, code viewing
and more

 y Extensibility support
When a collection is imported, the form definitions for all work item types (WITs) defined
in your project collection undergo an automated transformation to the new layout. This
is a best-effort transformation meant to maintain the field groupings and layout of your
customized WIT definitions. You can manually opt-in to the new experience on-premises
before migrating to the cloud.
Reviewing and optimizing the transformed web layout will allow you to adjust this new
layout to your own needs. Even though these changes can also be done once the import is
completed we recommend you to do them beforehand to prepare for the change.

https://aka.ms/TFSImportData
https://docs.microsoft.com/en-us/vsts/articles/migration-processtemplates?view=vsts#process-validation-types
https://docs.microsoft.com/en-us/vsts/reference/manage-new-form-rollout?view=tfs-2018&viewFallbackFrom=vsts#best-effort-transformation

1 Get Started

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201912

Relationship between Azure DevOps Server databases and
Azure DevOps organizations
Before diving too deeply into planning your migration, it’s important to understand at a high-
level how the database import process functions. Imports operate on two main concepts:

Team Project Collection
Collections in Azure DevOps Server are a physical container for team projects and their
artifacts. Each collection equates to a single SQL database and are the source of import
for migrations to Azure DevOps Services.

Azure DevOps Services organization
Organizations are the management unit in the cloud-hosted service. Logically they
map 1:1 to the concept of a team project collection in Azure DevOps Server. Therefore,
organizations are the destination of imports for migrations to Azure DevOps Services.
Azure DevOps Services organizations are represented as https://dev.azure.com/contoso
where contoso represents the name of the Azure DevOps Services organization.

Each time you import a team project collection SQL database, the data migration tool will
create a brand new Azure DevOps organization with a name that you provide. This means
that you cannot import a collection database into an existing Azure DevOps Services
organization or consolidate multiple collection databases into a single Azure DevOps Services
organization. It is a one-to-one mapping between team project collections and Azure
DevOps Services organizations.

A

B

C

https://aka.ms/TFSImportData
https://dev.azure.com/contoso

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

1Get Started

13

Team project collection mapping worksheet
Collection
name:

 Azure DevOps
organization
name:

Collection
name:

 Azure DevOps
organization
name:

Collection
name:

 Azure DevOps
organization
name:

Collection
name:

 Azure DevOps
organization
name:

Collection
name:

 Azure DevOps
organization
name:

Datacenter location
You have options for the location of your Azure DevOps Services organization data. You
will need to select a region where your data will be imported and mark down that region’s
shorthand code. Later on in the import process you will use that shorthand code. You can
find supported regions for import at https://aka.ms/AzureDevOpsImportPreviewFeatures.

 � Task: Choose the datacenter for your Azure DevOps Services
organization.

Selected region’s shorthand code:

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsImportPreviewFeatures

1 Get Started

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201914

Purchases needed for Azure DevOps Services
Another question that typically comes up is what type of licensing will a company need to
adopt Azure DevOps Services? The good news is that you are likely to have all of the licenses
you already need. We have created a simplified worksheet below that you can walk through
that should cover most cases. If you have any specific questions about your situation, be sure
to reach out to your Developer Solution Sales Specialist or Microsoft Reseller.

User licenses worksheet
1 Number of team members

2 Number of stakeholders

3 Subtract Line (2) from Line (1)

4 Number of Visual Studio Subscribers
(formerly known as MSDN Subscribers)

5 Subtract Line (4) from Line (3)

6 Subtract 5 from Line (5)

 Stakeholders are free.
 Visual Studio Subscribers have Azure DevOps Services included as a benefit of the
subscription.
 Each Azure DevOps Services organization gets five free users.

You have no charge for an unlimited number of stakeholders to be able to access your Azure
DevOps Services organizations without needing a user license. You also do not have a charge
for any Visual Studio (formerly known as MSDN) subscribers since Azure DevOps Services is
included as a benefit of the subscription. Each Azure DevOps Services organization includes
no charge for access to the core features of Azure DevOps Services for the first five users.

This leaves you with the total number of Azure DevOps Services user licenses that you will
need to purchase to cover your team also represented by Line 6 in the worksheet above.

You will ultimately purchase any needed Azure DevOps Services user licenses through
the Visual Studio Marketplace or the Azure portal. We will discuss this more in Phase 5 of
this guide.

You can find out more about pricing for Azure DevOps Services at
https://aka.ms/AzureDevOpsPricing and leveraging the Azure Pricing Calculator. There
are additional services that you could take advantage of like hosted load testing services,
Test Manager extensions, and more that would have additional costs. If you have any questions
about your specific situation, you can reach out to your DevOps Partner, Microsoft Reseller, or
your Microsoft Developer Solutions Sales Specialist.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsPricing

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

1Get Started

15

Download the Data Migration Tool
The bulk of the work throughout the migration to Azure DevOps Services is handled by a new
tool available from Microsoft called the data migartion tool for Azure DevOps; or migrator
tool for short. The migrator tool will be used throughout this guide with the following high-
level steps:

 y Validating a team project collection
 y Prepare and generate the files used to customize the import
 y Queuing an import of an Azure DevOps Server database to Azure DevOps Services

You will want to download the latest version of the migrator tool and then you will run it from
a Windows PC. The user who runs this tool must have:

1. The TFSEXECROLE role in SQL Server, and
2. Permissions to connect to both the TFS configuration and collection databases

 � Task: Download the TFS Migrator tool from
https://aka.ms/DownloadTFSMigrator.

Tip: The migrator tool will be continually updated based on feedback
and our learnings from importing many customer databases. Be sure
to download the latest version of the migrator tool each week to keep
up to date.

https://aka.ms/TFSImportData

1 Get Started

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201916

Reserve your Azure DevOps Services organization name(s)
Since the migration project make take some
time to complete, you may want to “reserve”
the name of your Azure DevOps Services
organization so that the name can be available
for your final import. For example, if you are
from Contoso company and want a Azure
DevOps organization that matches your
company name like https://dev.azure.com/
contoso, you can create an organization with that
name now.

However, we mentioned above that you can only import into a brand-new Azure DevOps
Services organization. That is okay, because you when you are ready to start the final import,
you could import into a Azure DevOps Services organization named https://dev.azure.com/
contoso-temporary and then rename it to the desired name of https://dev.azure.com/contoso
after deleting the originally reserved organization or changing its name to something else.

Tip: If the desired name is already taken, we can help facilitate passing
your contact information to the current owner of the organization.
They can then choose to reach out to you if they want to transfer
ownership or rename their existing organization so that you can
create a new organization with the desired name.

 � Task: Reserve Azure DevOps Services organization(s) for each of the
desired final names.

Project Limits
Customers with a large numbers of projects in a collection should note that Azure DevOps
Services has a limit of 300 projects per organization. Above 300 projects certain experiences,
such as connecting to the organization from Visual Studio, start to degrade. If your collection
has more than 300 projects then you will either need to split the collection or delete older
projects to get below the limit.

Download the TFS
Migration Tool

https://aka.ms/DownloadTFSMigrator

https://aka.ms/TFSImportData
https://aka.ms/DownloadTFSMigrator

2 Cloud
Prerequisites

Data migration tool for Azure DevOps Migration Guide

2 Cloud Prerequisites

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201918

Task summary

 � Implement Azure Active Directory: Make sure your team has
a working Azure Active Directory tenant by implementing
Azure Active Directory to synchronize with your on-premises
Active Directory environment.

In the second phase of your migration to Azure DevOps Services, we
want to help you focus on some of the prerequisites for migrating their
data to the cloud that many organizations have faced. Some of these
may pertain to you and you will find the resources in the section helpful
to your organization. There are other organizations who already have
each of these prerequisites in place and will be able to bypass the second
phase completely.

Note: Team Foundation Server (TFS) became Azure DevOps Server with
the 2019 release of the on-premises product. If you’re on an older version
with the name TFS then you can still import using the data migration tool.
You will just need to upgrade to a supported version of Azure DevOps
Server. Therefore references to Azure DevOps Server can be freely
interchanged with TFS if you’re still using a version named TFS.

https://aka.ms/TFSImportData

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

2Cloud Prerequisites

19

Compliance
Azure DevOps Services is built on all the great reliability, scalability, and standards
compliance that Microsoft Azure has come to be known for. In addition to the bedrock
foundation that Azure provides, Azure DevOps Services has taken the extra steps of getting
certification for individual compliance standards that customers need for their cloud-based
software development services. To date, Azure DevOps Services has the following compliance
certifications:

1. ISO 27001:2013
2. SOC 1 Type 2
3. SOC 2 Type 2
4. HIPAA BAA (Business Associate Agreement)
5. EU Model Clauses

The SOC audit for Azure DevOps Services covers
controls for data security, availability, processing
integrity, and confidentiality.

Some of our customers who have migrated from Team Foundation Server to Azure DevOps
Services have needed to go through internal security reviews before adopting Azure DevOps
Services. We have found that the following resources were important in helping internal
security teams feel comfortable with their company adopting Azure DevOps Services.

Our internal data protection and security whitepaper
Microsoft strives for transparency about how
we protect your data through multi-layered
security and governance technologies,
operational practices, and compliance policies.
The team has documented its data protection
and security practices in a whitepaper. You can
learn more by reading that whitepaper at
https://aka.ms/AzureDevOpsSecurity.

Compliance audit report
requests
The compliance audit reports are available upon request for companies who have Non-
Disclosure Agreements in place with Microsoft. These audit reports were performed by
our auditor, Deloitte. If you would like a copy of these reports, you can send us an e-mail
at AzureDevOpsImport@microsoft.com or you can reach out to your Developer Solution
Specialist.

Data protection
and security
compliance policies
whitepaper.

https://aka.ms/AzureDevOpsSecurity

https://aka.ms/TFSImportData
http://azure.microsoft.com/support/trust-center/
https://aka.ms/AzureDevOpsSecurity
mailto:VSTSDataImport%40microsoft.com?subject=Request%20for%20Compliance%20Audit%20Reports
https://aka.ms/VSTSSecurity

2 Cloud Prerequisites

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201920

Azure Active Directory
The main task for Phase 2 is to make sure your team has a working Azure Active Directory
tenant that will be used for authenticating your team members in your Azure DevOps
Services organization.

 � Task: Implement Azure Active Directory to synchronize with your
on-premises Active Directory environment.

User authentication in Azure DevOps Server is handled on-premises by using
Active Directory. With Azure DevOps Services,
users are authenticated through an Azure Active
Directory tenant which works very similarly to
Active Directory on-premises. In Phase 5, you
will be verifying an identity map log file that will
show how your on-premises Active Directory
organizations will match to your Azure Active
Directory organizations. This will allow each of
your team members to see their individual history,
preserve security permissions, and make sure
they have access to all of their personal settings
including favorites, personal queries, etc.

Many companies who leverage services from the
Microsoft Cloud including Office 365 and Azure, already have an Azure Active Directory
tenant setup that is synchronizing user organizations and groups from Active Directory on-
premises. Our recommendation is to not setup a separate Azure AD tenant for your Azure
DevOps Services implementation. You will want to use the same Azure Active Directory
tenant as other Microsoft Cloud services at your company.

If your company already has Azure Active Directory available, then you can skip this step in
this guide and move forward.

Microsoft Organizations
(or MSAs) are available to
use for authentication with
Azure DevOps Services but
not available for mapping
when you are importing
a Team Foundation
Server database using the
Database Import Service.

https://aka.ms/TFSImportData

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

2Cloud Prerequisites

21

Synchronizing identities and groups with Azure AD Connect
By synchronizing your on-premises Active Directory with Azure Active Directory, your team
members will be able to use the same credentials to authenticate and your Azure DevOps
Services administrators will be able to leverage your Active Directory groups for setting
permissions within your Azure DevOps Services organization.

To setup the synchronization, you will want to use the Azure AD Connect technology. You will
likely want to work with your IT department, your DevOps Partner, Microsoft Premier Support,
or Microsoft Consulting Services to help set up Azure AD Connect with your on-premises
environment.

The documentation for setting up Azure AD Connect is available at https://aka.ms/
AzureADConnect.

Note: DirSync was a predecessor technology to Azure AD Connect.
You will want to upgrade to Azure AD Connect if you are using DirSync.

To read more about how Azure DevOps Services can be set up to use Azure Active Directory,
you can visit: https://aka.ms/AzureDevOpsAADOrganization. Since you will be importing
your TFS database, you will not be following the steps exactly in that article but it is good
reference information for how it works. The data migration tool will set up the link to your
Azure Active Directory tenant when your Azure DevOps Services organization is created as
part of the beginning of the import process.

https://aka.ms/TFSImportData
https://aka.ms/AzureADConnect
https://aka.ms/AzureADConnect
https://aka.ms/AzureDevOpsAADOrganization

2 Cloud Prerequisites

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201922

Additional security for Cloud authentication
Once you have Azure Active Directory setup, we have seen many customers take additional
steps that are available natively with Azure Active Directory to provide additional security
measures for access to development team data as well as other data in Microsoft Cloud
services like Office 365 and Azure. The next sections cover optional additional steps you can
take to further secure your Azure DevOps Services organization.

Multi-Factor Authentication
One of the main additional security mechanisms that our customers have added is taking
advantage of Multi-Factor Authentication (MFA) requirements as part of getting access to
the data stored in a Azure DevOps Services organizations. Two-step verification is a method
of authentication that requires more than one verification method and adds a critical second
layer of security to user sign-ins and transactions. It works by requiring any two or more of
the following verification methods:

 y Something you know (typically a password)
 y Something you have (a trusted device that is not easily duplicated, like a phone)
 y Something you are (biometrics)

You can learn more about setting up Multi-Factor Authentication requirements with Azure
Active Directory here: https://aka.ms/AzureADMFA

Conditional Access
The other common security practice we see with teams adopting Azure DevOps Services is
to set conditional access rules in Azure Active Directory that provide for additional security
mechanisms based on which applications they are signing into and from what location they
are signing-in from. For example, you may want to specify that accessing Azure DevOps
Services always requires MFA or that MFA is only required if your team member is accessing
Azure DevOps Services from outside of the office (i.e., when they are at home, from their
phone, or traveling).

Conditional Access capabilities allow for powerful combinations of security policies based on
your organization’s needs. You can find more information about setting up Azure Conditional
Access here: https://aka.ms/AzureConditionalAccess

https://aka.ms/TFSImportData
https://aka.ms/AzureADMFA
https://aka.ms/AzureConditionalAccess

3 Upgrade

Data migrationg tool for Azure DevOps Migration Guide

3 Upgrade TFS

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201924

Task summary

 � Upgrade your Azure DevOps Server or Team Foundation Server:
Upgrade your Team Foundation Server or Azure DevOps Server to
one of the supported versions.

 � Run “Configuration Features”: Run the “Configure
Features” wizard on every team project in each of your
team project collections.

One of the major prerequisites for migrating your collection database is to
get your database schema version as close as possible to what is currently
deployed in Azure DevOps Services. In Phase 3 of your migration project,
you will work on upgrading your Team Foundation Server or Azure
DevOps Server to one of the supported versions for the data migration
tool for Azure DevOps.

Note: Team Foundation Server (TFS) became Azure DevOps Server with
the 2019 release of the on-premises product. If you’re on an older version
with the name TFS then you can still import using the data migration tool.
You will just need to upgrade to a supported version of Azure DevOps
Server. Therefore references to Azure DevOps Server can be freely
interchanged with TFS if you’re still using a version named TFS.

https://aka.ms/TFSImportData

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

3Upgrade TFS

25

Timeline of support for Azure DevOps Server versions
It is important to note that the data migration tool for Azure DevOps does not support all
versions of Azure DevOps Server/TFS databases. At any given time, the data migraton tool
will support the current version of Azure DevOps Server and the previous version. Updates
are included in the timeline for supported versions.

We have included a visual representation of how long individual releases will be supported
as soon as new versions come out. We do not currently have release dates for future Azure
DevOps server updates so we have added sample release dates as examples to help you
understand the impact on the supported database versions timeline.

See which versions of Azure DevOps Server are currently supported here: https://aka.ms/
AzureDevOpsImportSupportedVersions

Sample release schedule
Server 2019
Update 2

Server 2019
RTM

Server 2019
Update 1

NOV DEC MARJAN APRFEB MAY JUN JUL

TFS 2018 Update 3 Support

Azure DevOps Server 2019 Up-
date 2 Support

~6 month support window (varies)

Azure DevOps Server 2019 Sup-
port

Azure DevOps Server 2019 Up-
date 1 Support

Sample release schedule—dates are examples and not actual.

Note: It is important to look ahead in the entire migration process. If
you need to upgrade, we suggest that you upgrade to the latest version
of Azure DevOps Server at any given time since you may have a longer
migration project cycle than other customers.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsImportSupportedVersions
https://aka.ms/AzureDevOpsImportSupportedVersions

3 Upgrade TFS

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201926

Tip: It’s required that you complete at least one “dry run” import per
database you want to import. You should include padding in your
migration timeline for at least one “dry run” database import attempt
to test out the dry run imported Azure DevOps Services organization.
We will cover that in Phase 5 and Phase 6 of this guide but it is good
to understand this now so that you can plan accordingly for upgrading
your TFS server and then migrating to Azure DevOps Services before
you will need to upgrade your server again.

Upgrade paths
Microsoft has been releasing Azure DevOps Server and Team Foundation Server for over 10
years now so many customers are on various versions. Your goal will be to get to the latest
version of Azure DevOps Server as mentioned in the previous section. Depending on which
version of TFS you currently have in production, you have a few different paths to get you to
the latest version. We have summarized each of the upgrade paths in the diagram below from
which TFS version you currently have installed.

See the illustration above for our recommended steps.

https://aka.ms/TFSImportData

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

3Upgrade TFS

27

Tip: Azure DevOps Server updates are self-contained as of TFS 2012.
As such, there is no need to upgrade to an RTM version of TFS and
then apply the update – just upgrade to the update version directly.
See Azure DevOps Server System Requirements for Dependencies.

One thing to remember as you plan for upgrades for your Azure DevOps Server environment
are the underlying system requirements of the dependencies of Azure DevOps Server at
different Azure DevOps Server versions. Azure DevOps Server has several dependencies that
you will need to verify are still supported along your upgrade path:

 y Operating System
 y SQL Server
 y SharePoint

 y Project Server
 y Visual Studio IDE

 y Office
 y Build Agent

There is a full list of system requirements for every version of Azure DevOps Server available
for your reference at https://aka.ms/TFSSystemRequirements.

Upgrading Team Foundation Server or Azure DevOps Server
Now that you know what your upgrade path looks like for your Azure DevOps Server
environment, you can start the steps of upgrading. This is when you will likely want to work
with your selected DevOps Partner, Microsoft Consulting Services, or Microsoft Premier
Support to help you with planning out the upgrade portion of your Azure DevOps Services
migration project. Each of these partners are well trained in the steps necessary to upgrade
your Team Foundation Server environment.

 � Task: Upgrade your Team Foundation Server or Azure DevOps Server.

Upgrade resources
For your convenience, we are including each of the Upgrade Guides for the different Team
Foundation Server and Azure DevOps Server upgrades you may need to perform given the
upgrade paths above.

 y Azure DevOps Server Upgrade Guide: https://aka.ms/AzureDevOpsServer2019Upgrade
 y TFS 2018 Upgrade Guide: https://aka.ms/TFS2018Upgrade
 y TFS 2017 Upgrade Guide: https://aka.ms/TFS2017Upgrade
 y TFS 2013 Update 5 Upgrade Guide: https://aka.ms/TFS2013Upgrade
 y TFS 2012 Update 3 Upgrade Guide: https://aka.ms/TFS2012Upgrade
 y TFS 2010 Upgrade Guide: https://aka.ms/TFS2010Upgrade

https://aka.ms/TFSImportData
https://aka.ms/TFSSystemRequirements
https://aka.ms/AzureDevOpsServer2019Upgrade
https://aka.ms/TFS2018Upgrade
https://aka.ms/TFS2017Upgrade
https://aka.ms/TFS2013Upgrade
https://aka.ms/TFS2013Upgrade
https://aka.ms/TFS2010Upgrade

3 Upgrade TFS

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201928

Post-upgrade steps
Now that you have upgraded your Team Foundation Server to Azure DevOps Server 2019,
there are some additional post-upgrade tasks that we highly suggest taking before you move
to the next phase of your Azure DevOps Services migration project.

Configure Features wizard
 � Task: Run the “Configure Features” wizard on every team project in
each of your team project collections.

The process used by your team projects does not get upgraded along with your collection
databases. Instead, you’ll need to run the Configure Features wizard to incorporate process
changes that enable new functionality like agile planning tools and code reviews. This step
is an important part of migrating to Azure DevOps Services, since it helps to ensure that the
processes used in your team projects conform to the requirements of the Database Import
Service. To find out more about how to use the “Configure Features” wizard, you can find the
documentation article at https://aka.ms/TFSConfigureFeatures.

https://aka.ms/TFSImportData
https://aka.ms/TFSConfigureFeatures

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

3Upgrade TFS

29

Applying process template updates manually
If you have heavily customized your process or have used third party process templates,
the “Configure Features” wizard may not be able to automatically configure features
for your team projects. In these cases, you will need to configure features manually.
See the section in the documentation article titled “Apply updates manually” in
https://aka.ms/TFSConfigureFeatures for more information. If you find yourself in this
situation, we highly recommend working with a trained DevOps Partner, Microsoft
Consulting Services, or Microsoft Premier Support.

https://aka.ms/TFSImportData
https://aka.ms/TFSConfigureFeatures

4 Validate Your
Server

Data migration tool for Azure DevOps Migration Guide

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

4Validate Your TFS Server

31

Task summary

 � Run validations with migration tool: Run the validation of each
team project collection database with the migrator tool.

 � Review logs and fix errors: Review the logs and fix any errors that
were found.

 � Repeat validation checks: Repeat the validation and error fixing
process until there are no more errors remaining in the logs.

Now that you have your Azure DevOps Server environment upgraded to
the latest version, you will start the work of ensuring that it is ready to
import. The focus of Phase 4 is using the migrator tool to run verification
steps to discover any errors. This section of the guide will also help you
troubleshoot some common errors that may come up as well as what to
do to fix them.

If you have not downloaded the latest version of the migrator tool, refer
to Phase 1 of this guide for where to download it.

https://aka.ms/TFSImportData

4 Validate Your TFS Server

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201932

Validating a team project collection
Since each team project collection is its own SQL database, you will run the validation process
on each team project collection in your environment. Validation will examine a variety of
aspects of your collection, including:

 y Size of your collection database
 y Collation of the SQL database
 y Identities of users in the collection
 y Analyze process template customizations

 � Task: Run the validation of each team project collection database with
the migrator tool.

You begin a validation by using the migrator tool. We recommend that you run the migrator
tool from one of the application tier (AT) servers for your Azure DevOps Server environment.
You can find out more about the specific command-line options by requesting the help text
with the command below.

Migrator validate /help

The most common way to start a validation is to specify the URL of the team project
collection with the command below.

Migrator validate /collection:http://localhost:8080/tfs/DefaultCollection

There is additional technical documentation available for the validation phase available at
https://aka.ms/AzureDevOpsImportValidate.

Review validation warnings and errors
Once the migrator tool is finished, there will be a set of log files and a set of results printed to
the command prompt
screen.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsImportValidate

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

4Validate Your TFS Server

33

If there were no errors and all the validation checks have passed, then your team project
collection is ready and you can move on to the next phase. If it does not say that all of the
validation checks have passed, then you will need to look through the log files to find any
errors and fix them.

 � Task: Review the logs and fix any errors that were found.
There are a set of logs that are generated during the validation phase. The main log that
you will want to focus on is the Migrator.log file which contains the main details on the
validation checks that were run. The other files exist to contain only the errors in the section
of the validation checks that match their file name.

The TryMatchOobProcesses.log contains the list of errors that would block your projects
from landing in the inherited process model post import. TfsMigrator will look at your
projects and determine if a project is using an Out-of-Box (OOB) process such as Agile,
Scrum, or CMMI. If it is, and it does not contain any customizations, that project will be
brought into the inherited model. Errors in this file will not prevent you from doing an import.
If you have customizations that you want to keep during import then this log can be ignored.
Instead you should focus on the errors in the Migrator.log file.

Learn more about how processes are imported at https://aka.ms/ImportProcesses

There are several types of errors that could show up in the logs from the validation checks.
Solutions for many of the errors are documented in our troubleshooting guide at https://
aka.ms/AzureDevOpsImportTroubleshooting. You should also leverage your trained DevOps
Partner, Microsoft Consulting Services, or Microsoft Premier Support to help you with
solutions for each of the errors you encounter.

https://aka.ms/TFSImportData
https://aka.ms/ImportProcesses
https://aka.ms/AzureDevOpsImportTroubleshooting
https://aka.ms/AzureDevOpsImportTroubleshooting

4 Validate Your TFS Server

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201934

Process template errors
The most common types of errors that we have seen have been process template errors that
are either because the latest features of Azure DevOps Server have not been added to older
team projects or there are customizations that Azure DevOps Services does not support now.
There are many customizations that Azure DevOps Services does support so the validation
checks only look for customizations that need to be fixed before migrating to Azure DevOps
Services.

A list of supported process customizations is available at
https://aka.ms/SupportedProcessCustomizations

At the end of Phase 3, you ran the “Configure Features” wizard on each of the team projects
in your collections so you should not have any errors related to missing process template
items from newer features of TFS.

For the remaining types of process errors, you will use the witadmin.exe command-line tool
that is included with installations of Visual Studio. There is deeper technical documentation
for addressing many of the process errors that show up in the validation logs at https://aka.
ms/ImportProcesses.

There are a few tips for tools you can use to help you with addressing process errors in
addition to witadmin.exe.

To help with troubleshooting process template errors, you may want to automate exporting
the process templates for each of the team projects in your team project collection. There is
an undocumented command for the migrator tool that will help you out. You can add this
option at the end of the validate command to generate zip files of each of the process
templates used by each of the team projects.

Migrator validate /collection:http://localhost:8080/tfs/DefaultCollection
-SaveProcessZips

Another tool that many TFS administrators find helpful in this scenario is the TFS Team Project
Manager available on GitHub at https://aka.ms/TeamProjectManager. One of the most useful
features of this tool is the ability to compare each team project with known process templates
(like the out of the box process templates). You can then look at the comparison details for
the work item types and project process configuration settings to see what is different.

https://aka.ms/TFSImportData
https://aka.ms/SupportedProcessCustomizations
https://aka.ms/witadmin
https://aka.ms/ImportProcesses
https://aka.ms/ImportProcesses
https://aka.ms/witadmin
https://aka.ms/TeamProjectManager

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

4Validate Your TFS Server

35

Collection size
The data migration tool for Azure DevOps can import very large databases, but once a
database reaches a certain size it will have to be imported using a method other than the
DACPAC method discussed heavily in the latter part of this guide. The migrator tool will
let you know if you need to use the alternative method of setting up a SQL Azure VM to
complete an import. If you don’t see any collection size warnings then you can continue with
the DACPAC method. Details on proceeding with both methods are discussed in Phase 6. This
includes links to deeper technical documentation for configuring a SQL Azure VM should you
need to go that route.

SQL Database collation
There are only two collations natively supported by the TFS Database Import Service and
Azure DevOps Services. Those two collations are:

 y SQL_Latin1_General_CP1_CI_AS
 y Latin1_General_CI_AS

If you have a different collation, it’s still possible to import. See the following page for more
details: https://aka.ms/AzureDevOpsImportCollations

Repeating the validation checks
There will be a few iterations where you will resolve some errors and then repeat running
the validation checks to see if the error is no longer detected in the validation log files.
You will want to repeat this process until there are no more errors and you see the success
confirmation that all collection validation checks have passed.

 � Task: Repeat this validation and error fixing process until there are no
more errors remaining in the logs.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsImportCollations

5 Get Ready
for Import

Data migration tool for Azure DevOps Migration Guide

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

5Get Ready for Import

37

Task summary

 � Assign, activate, and map Azure DevOps Services subscriptions:
Ensure that each of the Visual Studio (formerly MSDN)
subscriptions are assigned, activated, and mapped to each
subscriber’s Azure Active Directory organization.

 � Generate import settings: Generate import settings and related
files using the Migrator prepare command.

 � Provide the configurable settings: Provide the configurable
settings in the Import Specification file.

 � Review the Identity Map log file

 � Task: Create an Azure Storage Container in the same datacenter
as the final Azure DevOps Services organization.

Now that you have confirmed that your Azure DevOps Server collection
database is validated, your team can start to prepare for your dry run and
final imports. This section of the guide is dedicated to preparing your
team and generating the files that are needed by the data migration tool
in Azure DevOps Services.

https://aka.ms/TFSImportData

5 Get Ready for Import

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201938

Subscriptions
You may remember from Phase 1 of this guide that Visual Studio (formerly MSDN)
subscribers include access to Azure DevOps Services as a benefit of their subscription.
Taking advantage of that benefit requires that each subscription is assigned, activated, and
mapped to the Azure Active Directory organization for the subscriber if the subscription is
not assigned to the Azure Active Directory organization from the beginning. This will likely
take some time since each of your team members will potentially have action items and you
will want to work with your company’s designated Visual Studio Subscriptions Administrator
(formerly MSDN Administrator).

 � Task: Ensure that each of the Visual Studio (formerly MSDN)
subscriptions are assigned, activated, and mapped to each
subscriber’s Azure Active Directory organization.

The high-level set of steps for each subscription your team owns are:
1. The Visual Studio Subscriptions Administrator logs into the Administrator’s Portal and

assigns a subscription to each of the team members. The recommended approach for
this step is to assign the subscription to the Azure Active Directory organization of
the subscriber.

2. The subscriber then goes to the subscriber portal and logs in with the same e-mail
address to activate the subscription.

3. If the subscription was activated using a Microsoft Organization (MSA), then
the subscriber will need to link their Azure Active Directory organization to their
subscription so that Azure DevOps Services will recognize the subscriber’s benefit when
they login to Azure DevOps Services with their Azure Active Directory organization.

Assign subscription
In the first step, the Subscriptions Administrator for your company will log in to the
Administrator’s Portal (https://aka.ms/VSSubscriptionAdminPortal) and assign each of the
available subscriptions to the relevant team members.

The new portal supports assigning a subscription to an Azure Active Directory organization,
so we highly recommend that the administrator assigns the subscription to the Azure Active
Directory organization for the subscriber (i.e., johndoe@contoso.com) instead of assigning to
a personal Microsoft Organization (johndoe@outlook.com).

https://aka.ms/TFSImportData
https://aka.ms/VSSubscriptionAdminPortal

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

5Get Ready for Import

39

Activate subscription
Each subscriber will then login to the Visual Studio Subscriptions Portal at https://
my.visualstudio.com with the organization that was assigned. If the administrator assigned the
subscription to the subscriber’s Azure Active Directory organization, then they need to sign-in
with their Azure Active Directory organization.

Link subscription to Azure Active Directory organization
Many legacy subscribers will find that their subscription was assigned to and activated
with a Microsoft Organization. The last step for each subscriber to take is to link the
Visual Studio Subscription to their Azure Active Directory organization. There are a
few different methods for doing this step which are documented at https://aka.ms/
LinkVSSubscriptionToAADOrganization.

Note: This is a very important step for each subscriber to complete
before the final production import of your TFS database.

https://aka.ms/TFSImportData
https://my.visualstudio.com/
https://my.visualstudio.com/
https://aka.ms/LinkVSSubscriptionToAADAccount
https://aka.ms/LinkVSSubscriptionToAADAccount

5 Get Ready for Import

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201940

Help with subscriptions
If your team needs any help with activating the benefits of your subscriptions, you can
reach out to the Support team at https://aka.ms/VSSubscriptionHelp. When creating a new
support case, choose “Organization, Subscription, and Billing Support” and then “Activate my
subscription benefits” to get started.

Generate import files with prepare step in TfsMigrator
You are ready to generate the import specification and related files you will need to queue an
import of your collection database. This section will cover the different files that are produced
but first you will need to run the prepare command to generate them.

Migrator prepare /collection:http://localhost:8080/tfs/DefaultCollection/
tenantDomainName:contoso.com /Region:CUS

The tenant domain name option is the name of your company’s Azure Active Directory
tenant. The prepare command will contact your Azure Active Directory tenant so it will
prompt you to login with a user from the tenant with permissions to read information about
all of the users in the Azure Active Directory tenant. It is important to understand that the
prepare command needs to have access to the Internet for this step. If your Azure DevOps
Server does not have access to the Internet, then you will need to run this command from
a different computer.

Organization region refers to the location you plan to import your TFS collection into Azure
DevOps Services. In Phase 1 you selected a region and recorded its shorthand code to be
used in the prepare command. Just in case, a list of supported regions can be discovered on
the following page https://aka.ms/ImportSupportedRegion.

More information about the prepare command is available at
https://aka.ms/TfsMigratorPrepare.

https://aka.ms/TFSImportData
https://aka.ms/VSSubscriptionHelp
https://aka.ms/ImportSupportedRegion
https://aka.ms/TfsMigratorPrepare

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

5Get Ready for Import

41

 � Task: Generate import settings and related files using the Migrator
prepare command.

Import specification file
The import specification file is a JSON file that will instruct the data migration tool how
to configure your imported Azure DevOps Services organization, specify the source file
locations, and customize the import.

 � Task: Provide the configurable settings in the Import Specification file.

https://aka.ms/TFSImportData

5 Get Ready for Import

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201942

Several of the fields are auto-populated during the prepare step but some will need to be
configured by you. The fields that you will need to provide are:

 y Organization Name: the name of the Azure DevOps Services organization that you want
to be created for importing your data.

 y Location: a backup of your database and import files will be uploaded to an Azure
storage container. This field specifies the SAS key that will be used by the TFS Database
Import Service to securely connect to and read the source files from the Azure storage
container. Creating the storage container will be covered later in Phase 5 and generating
a SAS key will be covered in Phase 6 before you queue a new import.

 y Dacpac: a file that packages up your collection’s SQL database.
 y Import Type: The type of import: DryRun or ProductionRun

More information about the import specification file can be found at
https://aka.ms/AzureDevOpsImportSpecification.

Note: Each import specification file is meant for a single collection.
If you try to use an import specification file generated for another
collection the import won’t start. You will need to run prepare for
each collection you wish to import and use the generated import
specification file to queue the import.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsImportSpecification

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

5Get Ready for Import

43

Identity Map Log
Arguably the identity map log is of equal importance to the actual data that you will be
migrating to Azure DevOps Services. When reviewing the log file it’s important to understand
how identity import operates and what the potential results could entail. When importing an
identity, they could either end up becoming active or historical. The difference between active
and historical identities is that active identities can log into Azure DevOps Services whereas
historical identities cannot. It’s important to note that once imported as a historical identity,
there is no way to move that identity to become active.

For a detailed explanation of the identity map log file see the following page: https://aka.ms/
AzureDevOpsIdentityMapLog

 � Task: Review the Identity Map log file

Historical vs. active identities
When importing an identity, the Import service will decide whether the identity will become
active or historical.

Note: It is important to note that once an identity is imported as a
historical identity, there is no way to transition that identity to become
active again in the future.

Active identities

Identities that will be active users in Azure DevOps Services after imported. Active identities
will have a license and show up as a user in the organization after migration. Active identities
are included in the mapping file. If you want an identity to be active post-migration, make
sure to include a correct mapping in the identity mapping file.

Historical identities

Identities that are not specified in the identity mapping file or the identity mapping line
is not completely filled out. Historical identities do not have access to the Azure DevOps
Services organization post-migration, do not have licenses, and do not show up as a user in
the organization. They will be included in the history of data like version control, work items,
builds, and other places where they have contributed in the past. Historical identities are
recommended for users that are no longer at the company or will not ever be needing access
to the Azure DevOps Services organization again. Historical identities cannot be converted to
an active identity in the future.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsIdentityMapLog
https://aka.ms/AzureDevOpsIdentityMapLog

5 Get Ready for Import

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201944

Licenses
During import, licenses are assigned automatically for all users displayed as ‘active’ in the
“Expected Import Status” column of identity map log. If automatic license assignment is
incorrect, don’t worry all license assignments can be changed via the Azure DevOps Services
User Hub by editing the “access level” of the user(s) after import is complete. We realize that
our assignment may not always be perfect, so you will have until the 1st of the following
month to reassign licenses as needed. If by the 1st of the next month you haven’t linked a
subscription to your organization and purchased the correct number of licenses, all of your
grace period licenses will be revoked. Alternatively, if auto assignment assigned more licenses
than you purchased for next month, then you will not be charged for the extra licenses, but all
unpaid licenses will be revoked. To avoid losing access, we recommend you link a subscription
and purchase needed licenses before the 1st of the month. For all dry runs, licenses are free
for as long as the organization is active.

Azure DevOps Subscriptions

 � Task: Verify and update licenses in the identity map
Visual Studio Subscriptions (formerly known as MSDN benefits) aren’t assigned by default for
imports. Instead, users with Visual Studio Subscriptions will be automatically upgraded to use
that license. As long as a user’s work organization is linked correctly, Azure DevOps Services
will automatically apply their Visual Studio subscription benefits on their first login post
import.

You don’t need to repeat a dry run import if users don’t automatically get upgraded to use
their Visual Studio Subscription in Azure DevOps Services. Visual Studio Subscription linking is
something that happens outside of the scope of an import. As long as the work organization
gets linked correctly before or after the import then the user will automatically have their
license upgraded on the next sign in. Once they’ve been upgraded successfully, next time you
import the user will be upgraded automatically on the first sign in to the organization. See
earlier in Phase 5 for details on setting up this link.

https://aka.ms/TFSImportData
https://docs.microsoft.com/en-us/visualstudio/subscriptions/vs-alternate-identity?utm_source=ms&utm_medium=guide&utm_campaign=vstsdataimportguide&view=vsts

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

5Get Ready for Import

45

Create an Azure Storage Container in chosen datacenter
Using the data migration tool for Azure DevOps requires having an Azure Storage container
in the same Azure datacenter as the final Azure DevOps Services organization. For example,
if you intend for your Azure DevOps Services organization to be created in the Central United
States datacenter, then you will want to create the Azure Storage container in that same
datacenter. This will drastically speed up the time that it takes to import the SQL database
since the transfer will occur within the same datacenter.

 � Task: Create an Azure Storage Container in the same datacenter as
the final Azure DevOps Services organization.

You can find out more about creating storage containers at https://aka.ms/
CreateAzureStorageContainer.

Worksheet

Azure Storage
Container
Name:

Datacenter
Location:

Set up Azure subscription for billing
A grace period is placed on the newly imported Azure DevOps Services organization to
allow your team to finish any steps it needs and correct license assignments. If you anticipate
needing to purchase any additional user plans, build/deployment pipelines, hosted build
services, hosted load test services, or other developer services, we highly recommend making
sure that you have an Azure Subscription ready for linking to your imported Azure DevOps
Services organization once the import has completed. The grace period ends on the first day
of the following month after you have completed your import.

We will remind you again in Phase 6 for when you will need to do the linking. This
preparation step is more about making sure that you know which Azure Subscription you will
use in that later step. You can find out more about setting up an Azure Subscription for Azure
DevOps Services billing at https://aka.ms/AzureDevOpsSetupBilling.

https://aka.ms/TFSImportData
https://aka.ms/CreateAzureStorageContainer
https://aka.ms/CreateAzureStorageContainer
https://aka.ms/AzureDevOpsSetupBilling

6 Import

Data migration tool for Azure DevOps Migration Guide

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

6Import

47

Task summary

 � Dry run of end-to-end import: Complete a dry run of the end-to-
end import before scheduling your production import.

 � Detach the team project collection: Detach the team project
collection in the Administration Console.

 � Create portable backup: Create portable backup of the Team
Project Collection SQL database.

 � Upload SQL database backup: Upload SQL database backup and
identity map to Azure Storage Container.

 � Generate SAS key: Generate a SAS key for the Azure Storage
container and modify your import settings file to include the
SAS Key.

 � Delete previous dry run organizations: Delete any previous dry
run Azure DevOps Services organizations.

 � Rename imported organization: Rename the imported Azure
DevOps Services organization to the desired name that was
reserved in Phase 1.

 � Set up billing: Set up the billing for the Azure DevOps Services
Organization with the Azure subscription identified in Phase 5.

 � Reconnect to new organization: Reconnect on-premises
build servers to the newly-imported Azure DevOps Services
organization.

https://aka.ms/TFSImportData

6 Import

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201948

The great news is that your team is now ready to begin the process of
starting a dry run of your import and then finally a full production import
run. In this phase of the guide, we will walk through the final steps to
queue an import as well as discuss the other topics that typically come up
at the end of the migration project to get you prepared.

 � Task: Complete a dry run of the end to end import before scheduling
your production import.

Considerations for roll back planning
A common concern that teams have for the final production run is to think through what the
rollback plan will be if the import failures. This is also why we highly recommend doing a dry
run to make sure you are able to import into Azure DevOps Services successfully and that
everything is as you expected it to be post import.

Rollback for the final production run is fairly simple. Before you queue the import, you will
be detaching the team project collection from Team Foundation Server which will make it
unavailable to your team members. If for any reason, you need to roll back the production
run and have Team Foundation Server come back online for your team members, you can
simply attach the team project collection on-premises again and inform your team that
they will continue to work as normal while your team regroups to understand any potential
failures.

You can then reach out to Azure DevOps Services customer support for assistance with
understanding the cause of the failure. Customer support tickets can be opened from the
following page https://aka.ms/AzureDevOpsImportSupport. It’s important to note that if the
issue requires product group engineers to engage that those cases will be handled during
regular business hours.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsImportSupport

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

6Import

49

Timing worksheet
One thing that is very helpful is to keep track of the timing for each of the steps during the
dry run import so that you can start to plan out your final production import timeframe. The
worksheet below will help you keep track of the different steps to time for your dry run(s) and
production import.

Time for each step

Dry Run Import #1 Dry Run Import #2 Production Import

Detach Collection

Generate Backup
of SQL Database

Upload Backup
and Identity Map
to Azure Storage

Queue Import

Final UAT
Verification of
Imported Azure
DevOps Services
Organization

https://aka.ms/TFSImportData

6 Import

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201950

Detach your team project collection from Azure
DevOps Server to prepare it for import
Before generating a backup of your SQL database, the data migration tool requires the
collection to be completely detached from Azure DevOps Server (not SQL). The detach
process in Azure DevOps Server transfers user identity information that is stored outside of
the collection database and makes it portable to move to a new TFS server or in this case, to
Azure DevOps Services.

 � Task: Detach the team project collection in Administration Console.
Detaching a collection is easily done from the Azure DevOps Server Administration Console
on your Azure DevOps Server instance. There is a walk-through for detaching the team
project collection at https://aka.ms/DetachTFSCollection.

Generate database backup
If Migrator didn’t produce any warnings about your collection’s size, the data migration tool
is able to import from a specific SQL backup format: DACPAC. You can find the command-line
tool necessary for generating DACPAC files in the SQL Server Data Tools. Here is a sample
command-line entry for generating a DACPAC backup file.

SqlPackage.exe /sourceconnectionstring:”Data Source=localhost;Initial
Catalog=Tfs_Foo;Integrated Security=True” /targetFile:C:\DACPAC\
Tfs_Foo.dacpac /action:extract /p:ExtractAllTableData=true
/p:IgnoreUserLoginMappings=true /p:IgnorePermissions=true
/p:Storage=Memory

There is more information about generating DACPAC backup files and where to find SQL
Server Data Tools available at https://aka.ms/CreateTFSBackupDACPAC.

 � Task: Create portable backup of the team project collection
SQL database.

https://aka.ms/TFSImportData
https://aka.ms/DetachTFSCollection
https://aka.ms/CreateTFSBackupDACPAC

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

6Import

51

Alternate method: importing large collection databases
If Migrator warned that your collection was too big, you will not want to generate a DACPAC
backup of your SQL database. There is an alternate method that you will need to take which
is setting up your own SQL Server in the same Azure datacenter, restoring the database there,
and updating your import settings with a connection string to your database for the data
migration tool to use to create a direct connection for importing your database.

You can find out more about the alternate method of importing if you have a large collection
at https://aka.ms/AzureDevOpsImportLargeCollection.

Dry run only: attach team project collection again
If this is your dry run import, once the SQL database backup of the fully detached team
project collection has fully completed, you can attach the team project collection again to
make it available to your team members while you continue the rest of the import steps.

If this is your production import, we do not recommend attaching your collection to Azure
DevOps Server again unless you need to rollback your final import attempt and have TFS
available for your team members to continue working.

Upload backup to Azure Storage Container
Once you have your DACPAC backup file ready, you can upload it to the Azure Storage
container that you created in Phase 5 of this guide. The time to copy can vary depending on
your Internet speed and the size of your backup file. If you’re providing your collection data
via the alternate SQL Azure VM method then you don’t need to upload anything to a storage
container - it’s not required.

One of the best methods for copying to an Azure Storage container is by using the AzCopy
tool. You can find out more how to use it at https://aka.ms/StorageAzCopy.

 � Task: Upload SQL database backup and identity map to Azure
Storage Container

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsImportLargeCollection
https://aka.ms/StorageAzCopy

6 Import

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201952

Generate SAS key for the Azure Storage Container
The last setting in the import settings file that you will need to update is the SAS key for the
Azure Storage Container so that the data migration tool can securely connect to the storage
container to give the Import Service the minimal set of permissions needed to access your
team’s data. The SAS key can even be time limited to cut off access after a desired time
period. It is strongly recommended that you time limit the key to be enabled for at least a
minimum of seven days.

Note: It is important to treat the SAS key as a secret. Do not leave the
key in an insecure location as it grants read and list access to any data
that you have stored in the container.

You can find out how to generate a SAS key at https://aka.ms/GenerateSASKey.

 � Task: Generate a SAS key for the Azure Storage container and modify
your import settings file to include the SAS key.

Delete previous dry run import Azure DevOps Services
organizations
Before you can run a second dry run import or the final production import, you will
need to make sure you delete any previous Azure DevOps Services organizations
that were created in a previous dry run. You can follow the steps at https://aka.ms/
AzureDevOpsDeleteOrganization.

 � Task: Delete any previous dry run Azure DevOps Services
organizations.

https://aka.ms/TFSImportData
https://aka.ms/GenerateSASKey
https://aka.ms/AzureDevOpsDeleteOrganization
https://aka.ms/AzureDevOpsDeleteOrganization

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

6Import

53

Queue the import
You are now ready to queue the import with the data migration tool. Ensure that the import
specification file has been completed. Then you can simply queue the import with the
following command.

Migrator import /importFile:C:\TFSDataImportFiles\import.json

This will begin the import and the user that queued the import will own the imported
organization. They will also receive an e-mail whenever the import has failed or succeeded.
If you receive an email that your import failed please reach out to Azure DevOps Services
customer support for assistance at https://aka.ms/AzureDevOpsImportSupport.

Post-import steps
A success e-mail will be sent to the organization owner as soon as the import has successfully
completed. At this point, anyone with access will be able to login to the newly imported
Azure DevOps Services organization. There are a few remaining items that you may want
to perform but for the most part, the Azure DevOps Services organization is ready for your
team members to use.

We have captured some of the common steps here but you can find an updated list of
post-import topics at https://aka.ms/AzureDevOpsPostImport.

Rename final imported organization to desired name
In Phase 1 of this guide, you may have preemptively created organizations with the final
Azure DevOps Services organization names that you want to use. If this is your final import,
you can rename your newly imported Azure DevOps Services organization to that desired
name. The steps to take at a high-level are:

1. Rename placeholder organization to a different name. For example, from dev.azure.
com/contoso to dev.azure.com/contoso-old

2. Wait for approximately 1 hour for the desired name to become available again
3. Rename the newly imported organization to the desired name. For example, from dev.

azure.com/contoso-import to dev.azure.com/contoso

You can rename a Azure DevOps Services organization by following the directions at https://
aka.ms/AzureDevOpsRenameOrganization.

 � Task: Rename the imported Azure DevOps Services organization to
the desired name that was reserved in Phase 1.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsImportSupport
https://aka.ms/AzureDevOpsPostImport
https://aka.ms/AzureDevOpsRenameOrganization
https://aka.ms/AzureDevOpsRenameOrganization

6 Import

Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 201954

Set up billing
Now that the Azure DevOps Services Organization is created, you can complete the final
steps of linking the Azure subscription identified in Phase 5 of this guide so that billing is now
linked correctly.

Note: If you are not needing to purchase any additional licenses or
needing any additional services like builds, deployments, load testing,
marketplace extensions, etc. then you can skip this step.

As a reminder, the final steps of setting up billing with an Azure subscription are detailed at
https://aka.ms/AzureDevOpsSetupBilling.

 � Task: Setup the billing for the Azure DevOps Services Organization
with the Azure subscription identified in Phase 5.

Configure build agents
If you were using automated build or deployment servers in your Azure DevOps Server
environment, you can now connect them to your Azure DevOps Services organization. As
part of the import, all of your build definitions have been brought over, but agents and pools
need to be reconfigured against the new Azure DevOps Services organization.

You can find the additional steps needed at https://aka.ms/AzureDevOpsPostImportBuilds.

 � Task: Reconnect on-premises build servers to the newly imported
Azure DevOps Services organization.

Hosted build and deployment pipelines
Your team can also explore taking advantage of the hosted build servers available now that
your team has adopted Azure DevOps Services. Many customers who have transitioned from
Azure DevOps Server to Azure DevOps Services have told us that they were able to retire
some of their custom build hardware by leveraging the hosted build & deployment services
available in Azure DevOps Services.

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsSetupBilling
https://aka.ms/AzureDevOpsPostImportBuilds

Summary

55Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

Congratulations! Your team is now in Azure DevOps Services and you do
not need to worry about upgrading your instance again. Now that you
are in Azure DevOps Services you will receive new updates frequently and
have many opportunities to implement tools and processes that will help
your team to be more effective in building quality software.

Roadmap and release notes for Azure DevOps Services
New releases are deployed approximately every three weeks and we want to make sure you
and your team have the information you need to stay up to date with everything that is new.
At the same time, we want to make sure you know where we are investing in helping your
development teams.

You can find both our roadmap and a detailed set of release notes for each deployment at
https://aka.ms/AzureDevOpsFeatureTimeline.

Deployment
roadmap and
release notes.

https://aka.ms/
AzureDevOpsFeatureTimeline

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsFeatureTimeline
https://aka.ms/AzureDevOpsFeatureTimeline
https://aka.ms/AzureDevOpsFeatureTimeline

Summary

56 Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

Find new extensions in the Azure DevOps Services
Marketplace
The Azure DevOps Services Marketplace is one of the major benefits of adopting Azure
DevOps Services because each of the extensions are extremely easy to install and configure
with your Azure DevOps Services Organization. There are many extensions that will add new
build/deployment tasks, integrations with many third-party services, and add incredible value
for your teams to get more out of the information & functionality in Azure DevOps Services.

Some of the first extensions you should immediately install are:
 y Code Search
 y Package Management
 y HockeyApp
 y Microsoft Teams Integration
 y Test & Feedback
 y Application Insights

https://aka.ms/TFSImportData
https://aka.ms/AzureDevOpsMarketplace

Summary

57Introduction | 1. Get Started | 2. Prerequisites | 3. Upgrade | 4. Validate | 5. Get Ready | 6. Import | Summary
Last updated: April 3, 2019

You can find the Azure DevOps Services Marketplace at https://aka.ms/Azure DevOps
ServicesMarketplace.

Move forward with other developer services from the
Microsoft Cloud
Working in Azure DevOps Services means that it is much easier to take advantage of the
many other services available for development teams. Be sure to look at these additional
services in the Microsoft Cloud.

 y Microsoft Azure
 y SQL Server and SQL Azure
 y Application Insights
 y HockeyApp
 y Xamarin Test Cloud
 y Development/Test Labs in Microsoft Azure
 y Office 365
 y Dynamics

Stay connected and involved
As your teams start to leverage more of the many solutions available in Azure DevOps
Services, please be sure to stay connected and involved with helping us know what you think
we should be building to make Azure DevOps Services even better. We have a User Voice
site where you can suggest new features and vote on other developer’s feature requests to
help us prioritize our future investments. You can find that User Voice site at https://aka.ms/
AzureDevOpsUserVoice.

https://aka.ms/TFSImportData
https://aka.ms/VSTSMarketplace
https://aka.ms/VSTSMarketplace
https://aka.ms/AzureDevOpsUserVoice
https://aka.ms/AzureDevOpsUserVoice

© 2016 Microsoft Corporation.

	_GoBack
	_GoBack
	_GoBack
	_GoBack

	Text Field 40:
	Text Field 5:
	Check Box 51: Off
	Text Field 3:
	Text Field 2:
	Check Box 2: Off
	Check Box 52: Off
	Check Box 53: Off
	Check Box 54: Off
	Check Box 4: Off
	Check Box 5: Off
	Text Field 6:
	Text Field 11:
	Text Field 7:
	Text Field 12:
	Text Field 8:
	Text Field 13:
	Text Field 9:
	Text Field 14:
	Text Field 10:
	Text Field 15:
	Text Field 16:
	Check Box 55: Off
	Text Field 17:
	Text Field 18:
	Text Field 19:
	Text Field 20:
	Text Field 21:
	Text Field 22:
	Check Box 8: Off
	Check Box 7: Off
	Check Box 9: Off
	Check Box 10: Off
	Check Box 11: Off
	Check Box 12: Off
	Check Box 13: Off
	Check Box 14: Off
	Check Box 15: Off
	Check Box 16: Off
	Check Box 17: Off
	Check Box 18: Off
	Check Box 19: Off
	Check Box 20: Off
	Check Box 21: Off
	Check Box 22: Off
	Check Box 23: Off
	Check Box 24: Off
	Check Box 25: Off
	Check Box 26: Off
	Check Box 27: Off
	Check Box 28: Off
	Check Box 29: Off
	Check Box 30: Off
	Check Box 31: Off
	Text Field 23:
	Text Field 24:
	Check Box 32: Off
	Check Box 33: Off
	Check Box 34: Off
	Check Box 35: Off
	Check Box 36: Off
	Check Box 37: Off
	Check Box 38: Off
	Check Box 39: Off
	Check Box 40: Off
	Check Box 41: Off
	Check Box 42: Off
	Text Field 25:
	Text Field 30:
	Text Field 35:
	Text Field 26:
	Text Field 31:
	Text Field 36:
	Text Field 27:
	Text Field 32:
	Text Field 37:
	Text Field 28:
	Text Field 33:
	Text Field 38:
	Text Field 29:
	Text Field 34:
	Text Field 39:
	Check Box 43: Off
	Check Box 44: Off
	Check Box 45: Off
	Check Box 46: Off
	Check Box 47: Off
	Check Box 48: Off
	Check Box 49: Off
	Check Box 50: Off

