




Database Design Manual: using MySQL™ for Windows



Springer
London
Berlin
Heidelberg
New York
Hong Kong
Milan
Paris
Tokyo



Matthew Norman

Database Design Manual:
using MySQL for Windows

1232



Matthew Norman, BSc (Hons)
mysql@coldfusionfast.com

The publisher would like to acknowledge the support of John Cowell, De Monfort University,
Leicester, Series Editor of the Essential series, for which this book was originally proposed.

British Library Cataloguing in Publication Data
Norman, Matthew, 1968-

Database design manual : using MySQL for Windows
1. Database design 2. Relational databases 3. SQL (Computer program language)
I. Title
005.7′565

ISBN 1852337168

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the
Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or
by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in
accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

ISBN 1-85233-716-8 Springer-Verlag London Berlin Heidelberg
A member of BertelsmannSpringer Science �Business Media GmbH

© Springer-Verlag London Limited 2004

MySQL is a trademark of MySQL AB.

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a specific statement,
that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this
book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Typeset by Gray Publishing, Tunbridge Wells, UK
Printed and bound in the United States of America 
34/3830-543210 Printed on acid-free paper SPIN 10901137



To Rowan, Little Roo and Zed.
I know I'd said I wouldn’t write another one



This page intentionally left blank 



Contents

1 MySQL and Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
About This Book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
About MySQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Who Can Use This Book?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Databases and the Internet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
DBMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
MySQL Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Client-server Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Structured Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Installing and Testing MySQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Obtaining MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Installing the MySQL Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Installing the Graphical Client Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
MySQL Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
The Online MySQL Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Starting the MySQL Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
MySQL Configuration Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Connecting to the MySQL Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Connecting with the Graphical Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
MySQLGUI Quick Tour  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 How Shall We Store it? – Datatypes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
The Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Numeric Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Character Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Fixed or Variable Length?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Storing Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
BLOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Date Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Other Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
ENUM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



viii Contents

4 Designing and Creating Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Redundant Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
The Primary Key  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Foreign Keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Redundant or Not?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Referential Integrity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CREATE DATABASE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CREATE TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Identifying Foreign Keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Create from Select Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
CREATE TABLE LIKE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Populating the Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
INSERT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
INSERT – Multiple Rows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
INSERT – All Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INSERT – Columns from a Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Inserting Data with Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Directly Inserting Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Retrieving the Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
SELECT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
SELECT DISTINCT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
WHERE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
MySQL Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Subqueries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Joining Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Information in Multiple Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Cross Joins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Inner Joins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Equi-join  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Equi-joins on More Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Restricting Equi-joins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
INNER JOIN – Another Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Outer Joins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Changing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Altering Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
UPDATE Revisited  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
REPLACE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
CREATE or REPLACE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DUPLICATE KEY UPDATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



9 Deleting our Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Keeping Data Accurate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DELETE FROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DROP TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DROP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10 Aggregate Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Count  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
GROUP BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
MAX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
MIN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
SUM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Using Multiple Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
AVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
HAVING  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11 Working with Dates and Times  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Using Date and Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Working with Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Common Date Queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12 Securing the Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Protecting Valuable Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
The User Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
The tables_priv Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
The Grant Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Restricting Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Other Passwords  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

13 Optimizing MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Tables Get Bigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
How Well Does It Run?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Examining Queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Looking at Cross-joins Again  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Indexing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
CREATE INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
OPTIMIZE TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
CHECK TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
REPAIR TABLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
ANALYZE TABLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

14 Sharing MySQL data with MyODBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
It’s Not Just For MySQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
More Standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Open Database Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Contents ix



Data Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Obtaining MyODBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Installing MyODBC Drivers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Setting Up a Data Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Example Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
MySQL and ASP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
MySQL and ColdFusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Creating a Data Source in ColdFusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Accessing the Data Source in ColdFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

15 MySQL with PHP, Apache and Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
IndigoPerl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A Quick PHP Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Accessing MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Working with Perl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Defining a Perl and HTML Document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Connecting to MySQL with DBI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Generating the Query  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Processing the Query Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Coping with Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Reformatting the Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

16 Making life easier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Other Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
MySQL Control Centre  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
PHPMyAdmin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

x Contents



About This Book

There are many books out there that describe MySQL and PHP. While most of them devote
a lot of space to describing PHP, they only briefly describe MySQL. I wanted to write a book
that was different from this, in that I wanted a book that described MySQL from a web per-
spective with only passing references to PHP. This is that book.

This book will describe the setup and use of a MySQL server and client and how to
access, use and secure this system.

MySQL and PHP originally appeared on the Linux platform, so many books deal with it
from a Linux perspective. This book will teach you about installing and using MySQL on
the Microsoft Windows platform. However, much of the theory behind the software will be
of use whatever platform you are using.

About MySQL

The MySQL website describes MySQL as the “world’s most popular Open Source database.”
Its popularity is no doubt encouraged by the fact that if you need MySQL for non-commer-
cial use, you can download a copy free from the website.

MySQL is nearly always bundled with the PHP web scripting language, and the two
products are often seen mentioned together. Most Linux distributions come with MySQL
and PHP as standard and MySQL has been ported for use to a variety of different platforms.
Due to its bundling with PHP, MySQL is most often used as a database back end to a web-
server.

Who Can Use This Book?

This book should appeal to anyone who needs more insight into how databases work in
relation to the web. If you are completely new to using MySQL then this book will serve as
a good introduction to the software. With an internet connection, you can easily obtain
MySQL and associated tools at no cost.

This book will also be of benefit to someone wanting to learn SQL. While working
through the examples you will get a firm understanding of the concepts behind structured
query language and how you use it to communicate with databases.

MySQL and Databases 1

1



If you are a web designer this book should also appeal if you want to see how the database
can influence your web design. You can see what is going on behind the scenes with a web
database.

If you are a hardened database programmer then this book may have a place in your
library if you want to see what MySQL does specifically, or how it can interface with other
systems.

The book also gives a brief introduction to database design, and shows how an efficiently
designed database can improve the performance of MySQL.

Lots of books about SQL and databases start with a lot of theory. The theory normally
describes the “relational model” and instils terror into all but the most technical reader! I’m
not going to do this here.You do not have to learn about databases by looking at the theory.
I want you to learn how to use MySQL, and by association Structured Query Language
(SQL). You may pick up a bit of the theory on the way.

Databases and the Internet

As a web designer, databases can be of great use. In the early days of the internet, websites
were just static things that required each page to be created manually. This may have been
lucrative on an hourly rate but the more pages the site had the less sustainable they were.
Imagine trying to mount a sales catalogue on the web; you may have had to create a page
for every item in the catalogue. When databases began to get “glued” to websites, it sud-
denly meant that you could create a standard template page, which retrieved the product
detail from the database and created a webpage “on the fly” for each product.

That is not the only use for a web database. As soon as you start to put products on line
your users want to buy them! Another database can be used to log their orders, and even to
process and pick their orders by the warehouse staff and reorder from suppliers.

Even the web itself requires databases to run. Search engines like Google use incredibly
efficient databases that retrieve links to pages for us so simply that we take them for
granted.

DBMS

MySQL is what is known as a Database Management System (DBMS). The management
system decides how the data is stored, sorted and retrieved, as well as controlling user
access to it. Every time a user retrieves data, deletes data, or adds more data, the DBMS deals
with the request. The user cannot access the data files directly, he can only talk to the DBMS.
The management system is a barrier that controls access to the underlying data.

Figure 1.1 illustrates how a request to the database has to go through the DBMS first, and
cannot go directly to the database itself.

MySQL Databases

MySQL can control several databases at once. For instance, when you install MySQL, the
system creates the system database which is named mysql. This database contains all of the

2 Database Design Manual: using MySQL for Windows



data required to define any of the activities that MySQL has to perform. It stores details of
other databases, users and all other files that the system uses to store data. It itself is a col-
lection of data used for a specific purpose. This makes MySQL self-defining, in that the
tables that it stores are used to define other tables that it stores.

When you are creating your own sets of data, create these in another database. In this
book we will be using the mysql database to look at specific system functions, but all of the
other data that we create will be stored in a database called mysqlfast. MySQL can easily
control more than one database, so to prevent your tables being confused with system data,
it is best to separate them by using different databases.

Tables

The database is a container to store your tables in. The table is a collection of data of a sim-
ilar type. For instance, you could store all of the accesses to a website in one table, called log.
You may have seen a log file such as the one shown in Figure 1.2 from an Apache webserver.

Figure 1.2 shows an excerpt from a log file. The file, called access.log, has a new line
added to it every time a request is made to the Apache server. The entire file could be
likened to a table within the database.All of the types of data that represent an access to the
webserver are stored within this one file, or table, which has a name (access.log). In the
same directory that this file is stored in is another file called errors.log. This file stores all of
the errors that the Apache server logs and is really another table.

MySQL could be used to store all of the log entries and all of the error messages gener-
ated by the webserver.

The original database programs allowed you to set up little more than a table. Modern
database systems are classed as relational, although there is much argument in the database
fraternity as to what is relational and what is not. We will not enter this debate in this book.
However, the term relational is useful in describing systems such as MySQL as the DBMS
allows you to relate data in tables to data in other tables. In fact, some tables contain

Chapter 1 • MySQL and Databases 3

DBMS

Data
bases

User
Request

User
Request

User
Request

User
Request

Figure 1.1 DBMS controls access to the underlying data.



nothing more than data on how two or more other tables are related. In relational database
theory, tables are called relations.

Columns

Any table will have a set of attributes, that is, a list of types of items that each table will store.
In this book we will refer to this attribute as a column. In the old-style databases you would
have called this a field.

If you look at Figure 1.2 you will see that each column contains a specific type of data.
The first column contains the IP address of the machine that is accessing the webserver. The
second and third columns appear to store nothing, which is represented as a hyphen char-
acter (-). The fourth column contains the date and time that the access took place. The fifth
contains the HTTP command that was received and the columns continue.

Each column in a table has a unique name within that table, and that is how we refer to
the column. So based on the information that we have from Figure 1.2 we could begin to
define the table as follows:

Log(ip, accesstime, http_command)

Log is the name of the table, and ip, accesstime and http_command are the columns. A
table does not need to have data within it to be classed as a table. A table with no content is
still a table. This description of the database structure without actual data is known as
meta-data. The meta-data also contains details about any restrictions of access to the data-
base as well. You will also notice that each column contains data of a specific type. The first
column is a collection of four numbers separated by stops. The next two could be strings,
and then the last two columns in the figure are numbers.All data in a column must be of the

4 Database Design Manual: using MySQL for Windows

Figure 1.2 An Apache access log file.



same type. When you define the column, you specify the type of data within it. The next
chapter will describe some of the types of data that you can store in each column.

Rows, Records and Tuples

A row, a record and a tuple are all different ways of referring to a line of data within a table.
In this book I will generally use the term row. The tuple is the relational theory term for a
row, and a record is the earlier form of databases term.

In Figure 1.2 the following could be described as a single row or record:

191.168.1.3 - - [07/Nov/2002:09:39:47 +0000] “GET /html/index.php
HTTP/1.1” 302 262

A lot of the data in the log is the same for each row; in fact, in the excerpt we have shown,
the only thing that changes is the time. This is not actually a very efficient way of storing
this information, as so much of it is static. We will deal with storing this in a better way in a
later chapter.

Relations

We have already stated that the relational theory term for a table is a relation. However,
tables in relational databases can have relationships between them. Look again at the last
but one column of the log file in Figure 1.2. It contains the number 302. This column stores
a number that represents the message that the system is logging. For instance, if you request
a page that is not on a webserver, you may be familiar with receiving a 404 error. This num-
ber represents the error condition: Not found. In fact the 302 message represents the condi-
tion: Moved temporarily. Table 1.1 shows some more of these conditions

Table 1.1 Webserver status codes.

Imagine that Table 1.1 was stored as a table in a database. Every time that the webserver
added a row to its log table, it could log the status condition for the log entry by adding the
string “Moved temporarily”, or it could add the numeric code from Table 1.1 to the log
entry instead. Apache uses the latter approach. It includes a code in the log file that can be
used to look up another value in another table. These two tables are therefore related to
each other. They are related in that an entry in one table is a key to an entry in another.

Most databases claim to be relational ones. There is much debate as to what makes a
database relational or not, and many claims that a database system is relational are dis-

Code Condition

200 OK
300 Multiple choices 
302 Moved temporarily 
401 Authorization required 
403 Forbidden
404 Not found

Chapter 1 • MySQL and Databases 5



puted by others. We will not go into this argument here, but if someone points this out to
you, do not be too concerned. Let these debates continue, and just use the software!

Client-server Systems

We have already described how MySQL is a database management system, in that it controls
access to the database as well as how the database is physically ordered on the storage
medium. You probably are very familiar with the concept of a client-server system.
Figure 1.3 shows a simple diagram of one of these. Data is stored on the server, and when
the client needs to access that data, it makes a request to the server. On receiving that
request, the server takes the necessary action, and sends its response back to the client. The
response could be the data, a request for more details, or an error message. One of the most
widespread client-server systems is the internet. A remote client, often in another country
from the server, makes a request for some form of data over the internet, which the server
responds to.

The client and the server do not necessarily have to be on different machines. As you set
up MySQL in the course of reading this book, you will set up the MySQL server software
and the client software on the same machine. The system is still a client-server system even
if it all runs in the same box.

One of the commonest uses of MySQL is as a database behind a website. When it is used
in this way there are lots of client-server requests happening. Figure 1.4 illustrates this.

In Figure 1.4 you can see that first of all a user asks a web browser to look at a webpage.
This request gets sent to the webserver. If that webpage is built using a scripting language
such as PHP, the request gets forwarded to the script processor. If the script processor finds
database commands (SQL) in the script it passes them to the DBMS, that is, the MySQL
server. MySQL processes the SQL, which is sent back to the script processor as text. This
text is used to generate the HTML along with other commands in the scripting language,
and this gets sent back to the user in HTML, which finally gets processed by the web
browser into a webpage. Although this seems like a complex route, it can happen very
quickly, even when the servers are on different machines that the requests and responses
have to be forwarded between. Each server is specifically optimized to do its own task
quickly, so they all work well together.

6 Database Design Manual: using MySQL for Windows

Client

Request

Response

Server

Figure 1.3 Client-server system.



Structured Query Language

As databases became more prominent, some standard method of obtaining information
from them was required. It does not really matter how the DBMS stores data or controls
access to it, as long as you get the information that you want from it back in an acceptable
way. So a standard way of communicating with database servers was needed.

The standard that most modern databases were built to support was ANSI SQL92. ANSI
is the American National Standards Institute which sets the standards for the computer
industry. Unsurprisingly, based on the name, the standard was agreed in 1992. It is tribute
to the work of this organization that the standard has remained current for such a long
time. Only relatively recently have new standards been agreed. SQL-99 or SQL:1999 came
along next and is sometimes known as SQL-3. There is also a new standard called SQL:2003
or SQL:200n which is under development.

Most manuals on SQL servers compare their products with the SQL92 standard. I will
not attempt to do this with MySQL, as this comparison can be found in the MySQL online
manual. However, some of the MySQL commands are in addition to the basic SQL92 com-
mands, and may not be available on other products. Also, because MySQL is an ongoing
project, some SQL92 features are not implemented. A lot of the SQL92 commands are still
present, but the code to make them work has yet to be developed.

You need not worry about this too much though, and you can still use this book to learn
about SQL in general as most of the commands are standard across all SQL platforms. Once
you have worked through this book, you should be able to transfer your knowledge of SQL
to other DBMS quickly.

Queries

The basic way of communicating with the SQL interpreter is with a query.A query is a piece
of text that gets sent to the DBMS which contains instructions that the server can process.
The query can contain commands to ask the server for data, to delete data, to create new
data and new meta-data.Almost all communication with the DBMS is done through an SQL
query. The only real exception to this is when the database server is in such difficulty that it
will not function correctly, in which case other tools may be needed to repair the database.

The following is a basic query:

SELECT * 
FROM log;

Chapter 1 • MySQL and Databases 7

Web
Browser

Web
Server

Script
Processor

DBMS

page
Request

HTML Page

Script
Language

HTML

SQL

Text

Figure 1.4 Client-server requests.



The query is made up of a series of words and values terminated with a semicolon. The
semicolon alerts the DBMS that it has come to the end of the query.You can normally send
multiple queries to the database server by separating each one with a semicolon. In the
basic command line MySQL client, the query is only executed once the semicolon is
entered.

This query when sent to the DBMS, will cause it to examine the log table, work out all of
the rows and columns in that table, and output them to the user, as shown in Figure 1.5.

Figure 1.5 also shows the output from a query. You will notice that the server has neatly
tabulated the output into columns and rows for us, and even given a summary of how long
the query took and how many rows it returned. The output in the figure is purely text based,
as most of the communication between client and server is in this form. You can obtain
graphical clients, however, which give you more control over the output. Where applicable,
most of the examples within this book will be using a graphical client.

8 Database Design Manual: using MySQL for Windows

Figure 1.5 An output from a query.



Obtaining MySQL

The files that you need to run the MySQL server on your Windows machine are available for
download from the following address:

http://www.mysql.com/downloads

The files that you need to download are the current production release of MySQL (this
book uses version 4.1) and the MySQLGUI. Although no longer under development, we use
the MySQLGUI as it is a very simple client to use, and you can use it to display your queries
with little complexity. The output from MySQLGUI is simple and clear and we use it for
most of the figures in this book.

Installing the MySQL Server

You should now have a zip file of the MySQL server on your hard drive. You need to unzip
this file to a temporary directory and run the setup program. Depending on the version of
MySQL you are installing, you will be presented with a standard setup program similar to
that shown in Figure 2.1.

On the following screens, you can leave most of the options at their default. One of note
is the installation directory, which is best to keep as:

C:\mysql

As changing the default directory requires other changes, it is recommended that you let
the program install to the default directory to limit configuration errors in later use. This
book has been written with the Typical installation selected.

Installing the Graphical Client Tool

The MySQLGUI graphical tools are distributed in a zip file in the same way as the main
server. Unzip the MySQLGUI file to a temporary directory. The client tools do not have a

Installing and Testing MySQL 2

9



setup program like the main server. All you need to do to run it is to find the mysqlgui.exe
file and double click when you need to run it.

We can now begin exploring our installation.

MySQL Directory Structure

Figure 2.2 shows the directory structure that the MySQL setup installs.

10 Database Design Manual: using MySQL for Windows

Figure 2.1 Beginning MySQL server setup.

Figure 2.2 The MySQL server directory structure.



Most of these directories are concerned with the function of the server and can be
ignored unless you specifically need to use them. The two directories of interest, however,
are the:

• Docs directory, and the
• bin directory.

The Docs directory contains the manual and other help files for using the server, and the
bin directory contains the executable files that you use to start and administer the server.
We will now explore these directories.

The Online MySQL Manual

If you need quick online reference about MySQL you can use the manual files that are
included in the installation. By default these are installed at:

C:\mysql\Docs

The files of note in this directory are:

• manual_toc.html
• manual.html

The manual_toc.html file is a web document that indexes the main manual.html file.
Searching this usually provides the answer that you are looking for. If not, try searching the
actual manual.html file itself. When this book refers to the online MySQL manual, it is
referring to these files.

Starting the MySQL Service

The default the directory where all of MySQL’s executable files are stored is

C:\mysql\bin

To start the MySQL service, double click on the winmysqladmin.exe file. Momentarily
the screen shown in Figure 2.3 will appear. Whenever the MySQL server is started on your
PC this screen will appear for a few moments and then hide itself. We will return to this
screen later.

The first time it is run the MySQL service will prompt you for some user credentials 
for the administrative user. We need to provide a username and password so use the fol-
lowing:

User: root
Password: sasquatch

Chapter 2 • Installing and Testing MySQL 11



If you are not familiar with Linux, root is the standard administrator account on a Linux
system. You can use other credentials here, but throughout the rest of the section we will
assume that you have used the above. The information that you have typed will be stored in
the MySQL start-up file so you will not have to provide this information in this way again
unless you reinstall the server or otherwise remove the start-up file.

Depending on your operating system and the version of MySQL that you have used, the
preceding process also installs a shortcut to WinMySQLadmin.exe in your start-up group.
This ensures that the MySQL server starts up every time you restart your machine.You can
also register mysql as a win32 service on certain operating systems. This is done by running
the following at the dos prompt:

c:\mysql\bin\mysqld-nt —install

To verify that the server is running, MySQL puts an icon in the system tray. The icon
resembles a traffic control, as shown in Figure 2.4. When the server is active the telltale
shows a green light. When the server is loaded but not running a red light will show.

When you run your mouse over the telltale you are presented with a context menu, as
shown in Figure 2.5. The Show me option will redisplay the screen shown in Figure 2.3 and
is the only way that you can get back to this screen without starting another instance of the
MySQL server.

One other option will be available to you, which will change depending on your operat-
ing system and provides a means of starting and stopping the service.

12 Database Design Manual: using MySQL for Windows

Figure 2.3 The first MySQL admin screen.



MySQL Configuration Files

Before we test the service, we will use WinMySQLadmin to view the configuration file that
it set up for us in the previous section. Run your mouse over the icon in the system tray as
in Figure 2.4 and select Show me. The WinMySQLadmin form will appear again.

The form shown in Figure 2.3 has a series of tabs that give you access to various settings
and information about your MySQL system. Click on the my.ini Setup tab. Figure 2.6 shows
the startup file that was created for us earlier. It is usually stored in the C:\windows direc-
tory if you have chosen a standard installation. Any changes you make to this file can be
saved by clicking the Save Modification button after making the changes.

Notice how the ini file contains various parameters, such as the location of the datastore,
the IP address of the server, and at the end of the file, the username and password that you
just entered.

As everything is now set up and running, we need to test that we can connect to the serv-
ice.

Connecting to the MySQL Service

We will start by connecting to the service in the most basic way, via the command line inter-
face. Start a command box by selecting it from the Start menu or selecting Start/Run and
typing command.com. Once you have this running, type:

cd \mysql\bin

to get you into the directory with the MySQL executables. First we have to run the MySQL
command interpreter. Do this by typing:

mysql

Chapter 2 • Installing and Testing MySQL 13

Figure 2.4 The MySQL system tray telltale icon.

Figure 2.5 The MySQL telltale context menu.



You should now be beginning to see the results as shown in Figure 2.7. The next task is
to connect to a database within MySQL. MySQL has some system databases built in, so we
will use one of these for now. Type:

connect mysql

You should now be connected to the database, and all that remains is to have a look at
one of the tables within the database. Again, there are some built in, and as a final test we
will look at the user table. Type:

describe user;

If you have not forgotten to type the semicolon at the end, you will see the table in
Figure 2.7. DESCRIBE and a table name will generate a description of each of the columns
in the table. The test has worked and you have a running MySQL server!

To come out of the MySQL interpreter, type:

exit

Although this stops the interpreter, the service will still be running, waiting for the next
connection.

14 Database Design Manual: using MySQL for Windows

Figure 2.6 Viewing the my.ini file.



Connecting with the Graphical Tool

The final test of your system will be to connect to the MySQL server with the graphical tool
that we installed earlier. We do this by selecting Run from the Start menu, and typing:

c:\mysql\bin\winmysqlgui.exe

The above assumes that this is where you copied the file to after unzipping it. If you cre-
ated a shortcut to the file on your desktop you can just run it by double clicking on that
instead.

You will see a splash screen for the product closely followed by a password dialogue. The
graphical client assumes that you have already set up the username to log on to the server,
and so only prompts you for the password. As we have not done this yet nothing that we
type into the password box will log us on at the moment, so just press the OK button to
bypass this prompt.

Figure 2.8 shows the main screen of the client. Your version will show an error message
at the bottom as you have not yet connected to the server. To finish configuring the client,

Chapter 2 • Installing and Testing MySQL 15

Figure 2.7 Testing the MySQL connection by command line.



click on the Options button and then on the Client tab. You will see a field on this screen
called username. Type:

root

into this box and click the Save button. From the Manage menu, select the first option,
Connect, to bring the password box up again.You will now be able to log in using the pass-
word:

sasquatch

that we defined earlier. The screen should now look exactly the same as Figure 2.8.
You should now be connected to the database. To verify this, we will repeat the exercise

that we tested the command line interface with. In the first text field on the screen, type:

describe user;

Unlike the command interface, purely pressing Return at the end of this command does not
make it run. To execute the command you need to press the Query button on the button
bar. Press this now.You will be rewarded with the very colourful screen shown in Figure 2.9.

If you compare Figure 2.7 with the output shown in Figure 2.9 you will see that this is
displaying the same results, but in a clearer manner.

16 Database Design Manual: using MySQL for Windows

Figure 2.8 WinMySQLGUI main screen.



MySQLGUI Quick Tour

Throughout this book we will just use the MySQLGUI as a windows-based client to issue
SQL commands and view the results. Most output from the MySQL server is in tabular form
and will be similar to that displayed in Figure 2.9. If there is no tabular output such as error
messages, this appears on the main GUI screen along with status messages such as the
number of rows affected by an update query. Figure 2.10 shows some other useful parts of
the graphical client.

To use the MySQL graphical client:

• Select the required database using the Database Selector. This will only contain the sys-
tem-generated mysql database until you create your own. You can also set the default
database that the client starts in in the options menu.

• Type the query that you wish to execute into the Query Window. You only need to type
a semicolon if you are running more than one query at once.

• Once typed, click on the Execute Query button to run the query.
• If the query does not trigger another output box, check the text in the Status Window. If

you have a syntax error or other problem that stops successful execution it will be
explained here.

Chapter 2 • Installing and Testing MySQL 17

Figure 2.9 The output of the test query.



• If your query has successfully executed it will be stored in the Query History window.
Clicking on a query in the history will copy it back to the query window so you can exe-
cute it again. Sometimes you have to click on several of the queries before it copies it to
the main window.

By default, the client will try to connect to a MySQL server running on the local machine,
localhost. If you are connecting to a server that is not on the same machine as the client then
you can set this up by clicking the options button and replacing localhost with the host
name of the machine with the server installed. You will need to ensure that the username
that you are using has access rights from your machine, which you can read about in
Chapter 12.

18 Database Design Manual: using MySQL for Windows

Figure 2.10 The output of the test query.



The Datatype

All databases store “chunks” of information. The most efficient way of storing those chunks
is to group them into similar chunks that can all be stored in a similar way.

This chapter will describe some of the ways that you can store data. You will need these
methods to define your tables so that you can begin to store data within them.

I will try to provide some examples in this chapter, but as you need information that you
will get later in the book to fully understand what datatypes do, practical examples here are
difficult. If you do not understand some of this chapter come back to it after you have run
a few queries and created a few tables, and it should all make sense.

When you create a table, as well as deciding what you are going to call different groups
of data, you also need to define the type of data that you are going to store within that
group. The datatype (sometimes just called a type) is used to define the data that is being
stored within the group. It also determines the sort of actions that you can do with that type
of data.

There are many datatypes in programming languages, so if you have programmed
before you probably will only need a cursory examination of this chapter (or the tables
within) to familiarize yourself with MySQL datatypes. If you are new to programming and
MySQL, then give this chapter some thought, as storing the data in the correct way will save
you hours of re-design and coding later on in your database project.

This chapter will describe four sets of datatypes:

• numeric
• character
• date and
• other types.

The first three are the basic types that most data can be grouped into. MySQL breaks
these three types down into further datatypes. We will also describe some other types that
have special functions.

When you create a table to store data, when you name each column you also specify the
datatype for that column. You specify the datatype using the keywords that we are about to
describe. This chapter will just review these types; some examples of their use will be
shown when we actually create some tables in the following chapters.

How Shall We Store it? – Datatypes 3

19



Numeric Types

A numeric datatype is used to store numbers. There are normally specific functions that
you can perform on numbers and on most numeric datatypes.

Integers

An integer is an exact whole number. For example, the numbers 1 to 10 are all integers. If we
are creating unique IDs for rows in our database, the ID field is usually an integer, which
starts at 1 and gets bigger by one for each new row added. If you add, subtract and multiply
integers you will get an integer as an answer.

Integers normally range from a negative number, through zero to a positive number.
There are several datatypes that are used to store integers, depending on the range; the
greater the range, the larger the amount of storage that it takes to keep the integer in a table.

Table 3.1, adapted from the online MySQL manual, shows the approximate range that
each of the integer datatypes can represent.

Table 3.1 Integer datatype ranges.

If you look at Table 3.1 you can see that as we move down the table, the range of numbers
becomes vast, with little change in the amount of storage that is required. If you are using
an integer to store a primary key, the standard INT type will probably suffice if you are not
expecting to store more than approximately 2 000 000 000 000 rows!

To use these types when declaring a datatype, they just follow the name of the column,
for example:

columnname TINYINT

or:

columnname BIGINT

Formatting Integers

By specifying a number in brackets after an integer datatype, you can format the way that
that type is returned in queries. For example:

columnname INT(10)

Datatype From To Storage in bytes per row

TINYINT –128 +127 1
SMALLINT –32 thousand +32 thousand 2
MEDIUMINT –8.3 million +8.3 million 3
INT –2 billion (1012) +2 billion 4
BIGINT –9 trillion (1018) +9 trillion 8

20 Database Design Manual: using MySQL for Windows



will specify the number stored padded with up to 10 leading spaces. So if you were to store
the number 42 in an INT(10) datatype, the following would be returned:

••••••••42

Each • in the above represents a space. This is useful when you are outputting your num-
bers in columns, as it will make all of the column line up neatly (unless the number is big-
ger in this case than 999 999 999).A similar keyword, ZEROFILL when appended to the end
of the integer declaration will make the returned number be padded out with zeros instead
of spaces, so this time, the type declaration:

columnname INT(10) ZEROFILL

will produce the following when 42 is retrieved from it:

0000000042

These two variations of the datatype do not actually alter the number that is stored
within the table; it just changes the formatting of the number when it is retrieved.

UNSIGNED

You will remember from Table 3.1 that the integer datatypes ranged from a negative num-
ber to a positive one. If you use the keyword UNSIGNED after declaring an integer, the col-
umn defined will only store numbers as positive integers. The range then goes from zero
through to double the values in the To column of Table 3.1. For instance, in the following
declaration:

columnname BIGINT UNSIGNED

numbers stored can range from 0 to 18 trillion. This is fine for using integers as unique IDs
for rows, but if you start doing arithmetic with signed and unsigned datatypes it can lead
to problems. Consult the online MySQL documentation to find out more about this behav-
iour.

BOOL

A Boolean value is one that can have two states, true or false, on or off, 0 or 1. Because it is
such a simple definition, you only need to use one bit to store it, as a single bit can be either
on or off.

In MySQL, you might expect BOOL to correspond to a Boolean value, that is a value of 0
or 1 (on or off.) Although BOOL can be used to store these values, it actually is the same as
using the TINYINT(1) datatype. If you store a number bigger than 1 in a BOOL, then that
number is stored as long as it is not larger than 127. If it is bigger than 127, then 127 is
stored. If you are expecting this datatype to be a pure Boolean, it is not. If you refer back to
Table 3.1 you will see that TINYINT takes up one byte to store. A byte is 8 bits, so using
TINYINT takes eight times more storage than if BOOL was implemented correctly.

Chapter 3 • How Shall We Store it? – Datatypes 21



You can use the datatype BIT interchangeably with BOOL, they are both the type just
described. If you want to store Boolean values it is best just to use TINYINT, and then
within your code determine what number you need to store for on or off, 0 or 1. Bear in
mind that if you are transferring your MySQL tables to another system that implements
BOOL in a different way, the scripts that you need to write to export the data will need to
create the actions necessary to reflect that difference. Further development of MySQL may
well address this difference in a better way.

DECIMAL

The DECIMAL datatype is used for storing numbers that are not whole numbers, where the
numbers after the decimal point are important. For instance, retailers often advertise prices
that are a couple of cents or pennies less than the dollar or pound, for example, the dish-
washer is $699.95, the computer is £599.99. Although these items cost the best part of $700
and £600 respectively, the fractional part of the number is important. If you stored the dish-
washer price as an integer, rounding down, and sold 1000 of these on your website, your
accounts would be out by $950. If you rounded the price up to $700, you still would have a
discrepancy of $50. The more that you multiply these number, the more the rounding error
costs (or makes!) you. Using an integer is therefore not recommended for storing numbers
where the decimal precision is important, especially currency. An integer would be fine for
storing the number of dishwashers that you have in stock, but not their prices.

MySQL provides the DECIMAL datatype to enable you to store precision fractions of
numbers. You declare the DECIMAL datatype as follows:

columnname DECIMAL(precision, decimals)

• precision is the number of digits that are needed to store the complete number. If you
are storing negative numbers the minus sign is included in these digits. If you do not
store a negative number, a positive number can use this space and so the positive num-
ber can be a factor of 10 greater.

• decimals is the number of digits to store after the decimal point.

The precision part of this is especially confusing, so Table 3.2 shows some examples of
the declaration and of what happens when you put different numbers into a column created
with that declaration.

22 Database Design Manual: using MySQL for Windows

Table 3.2 Decimal datatype examples.

Declaration Number inserted Number stored

DECIMAL(5, 2) 3.141 59 3.14
DECIMAL(5, 2) 42 42.00
DECIMAL(5, 2) –23 453.543 –999.99
DECIMAL(5, 2) 4932.32 4932.32
DECIMAL(5, 2) 493 212 343.3423 9999.99
DECIMAL(10, 5) 49 321 234 532.3423 999 999.999 99



The way that you define a decimal datatype may make more sense if you realize that the
number is stored as a string. If you are not aware of what a string is, we will get to that in
the next section. The decimal declaration defines a certain string length, and all numbers
that are stored have to conform within that length, hence the rounding issues when you put
in a number that falls out of range into one of these types.

This all may seem very complicated but DECIMAL is the only way that you can accu-
rately store a number with a fractional part.You probably will only use it to store currency,
but it is the best way of doing this.

Floating Point Numbers

The datatypes that have previously been mentioned are for storing exact values, either
exact whole numbers or exact whole and fractions of numbers. Floating point numbers
enable you to store a very wide range of numbers but with some levels of inaccuracy. The
bigger the number gets, the less detail is stored about it. The whole topic of storing and
dealing with floating point numbers is a large one which this book will not deal with.

I need to warn you now that even though I will not be going into great detail in the fol-
lowing sections, they can get a bit complex. I would not want you to get so confused with
this section that you think that MySQL itself is too hard to learn – it is not – but these
datatypes are! If you do not intend to store very large numbers in your databases you might
just jump ahead to the character types, remembering that this section is here should you
ever need to refer to it in a moment of courage later on!

FLOAT

MySQL supports floating point numbers with the FLOAT datatype.You can specify the pre-
cision of a floating point number as follows:

columnname FLOAT(precision)

precision in this instance is the number of digits that are to be stored. If you store up to
24 you are declaring a single precision number and between 25 to 53 it becomes a double
precision number.

You can also specify a FLOAT with two attributes as follows:

columnname FLOAT(magnitude, decimals)

With this type of declaration the float is forced to be of the single precision type. The
attributes are as follows:

• magnitude is the number of digits used to store the number.
• decimals is the number of decimal digits to be stored.

Table 3.3 shows some examples of numbers that have been stored using the FLOAT(5, 2)
declaration.You will notice that it stores 3.141 59 and the smaller numbers accurately, with
only the number of decimal places being rounded where specified. However, look at the
larger numbers at the bottom of the table; as these have gone out of the precision range

Chapter 3 • How Shall We Store it? – Datatypes 23



specified, the decimal places have just been set to zero, and the less significant part of the
numbers stored is not the same as the number that was entered.

The idea behind this sort of datatype is that when handling very large numbers, the
magnitude of the number is more important than the fine details of the number. For
instance if you had $10 000 026.51, in the bank, the $10 million would be of more impor-
tance to you than the $26.51!

DOUBLE

Another floating point datatype is DOUBLE. This works in exactly the same way as the
FLOAT declaration above when used with the two attributes as follows:

columnname DOUBLE (magnitude, decimals)

This time the number stored will obviously be of the double precision type, but the
attributes are the same as follows:

• magnitude is the number of digits used to store the number.
• decimals is the number of decimal digits to be stored.

In other SQL texts you may see references to REAL and DOUBLE PRECISION datatypes.
You can use these as well in MySQL but they are exactly the same as the DOUBLE datatype.

Character Types

The character datatypes are those used for storing characters and strings. The letters in this
sentence are all characters, and the sentence itself is a string. In fact as I am sitting here typ-
ing this, Microsoft Word is probably thinking that this whole book is just a string of char-
acters, all be it a big one. When specifying a string, you normally surround it with
something, such as quote marks, to highlight to the MySQL server that what is inside the
quotes should be treated differently to what is outside of them. This is something that we
are used to in written text, for instance:

Gandalf spluttered,“Fly, you fools!”

24 Database Design Manual: using MySQL for Windows

Table 3.3 Single precision floats datatype ranges.

Declaration Number inserted Number stored

FLOAT(5, 2) 3.141 59 3.14
FLOAT(5, 2) 42 42.00
FLOAT(5, 2) –23 453.543 –23 453.54
FLOAT(5, 2) 4932.32 4932.32
FLOAT(5, 2) 493 212 343.3423 493 212 352.00
FLOAT(5, 2) 49 321 234 532.3423 493 212 344 432.00



In the above, the narrative is just in straightforward text, but the words that the character is
speaking is surrounded with quote marks, so we can tell the difference between the spoken
word and the story. MySQL needs to tell the difference between strings and the main syn-
tax of queries so that it does not think that there are errors in the query.

CHAR

The CHAR datatype is used to define a string of fixed length as follows:

columnname CHAR(length)

length is the width of the string in characters, which can be between 0 and 253.
Once you declare a column with a CHAR value of fixed length, all of the strings that are

stored in that column become that length. For example, suppose we used the following as a
column declaration:

columnname CHAR(10)

If we were to store the string “Hello, World” in a column created like the one above, the
system would only store “Hello,Wor”, the first 10 characters of the string.All of the remain-
ing characters are lost, and no error message is given. If you are storing a string less than 10
characters long, for instance, “Hello!”, then MySQL will pad out the string with spaces to
make it up to the 10 characters fixed length. So this will be stored as:

Hello!••••

where each • in the above represents a space. This can be an issue if you are searching
CHAR columns. For instance, if you are searching for the word “Hello!” in a CHAR(10) col-
umn, nothing would be found, instead you have to search for “Hello!••••” which is what the
datatype actually stores. Remember that each string has to be the length that the column
declaration requires.We will not deal with this now, but in Chapter 6 there is a way to search
for just the start of a string, which would allow you to find a string of less than the defined
length of the column.

VARCHAR

The CHAR datatype described above only allows fixed length strings.As you will have seen,
this can cause unexpected results in searching if you forget to pad out the search term to the
required length of the column. The VARCHAR datatype gets around this problem by allow-
ing a variable length of string up to 255 characters. You define a VARCHAR column as fol-
lows:

columnname VARCHAR(length)

length is the maximum width of the string in characters, which can be between 0 and 253.
Again, if we were to insert “Hello, World!” into this datatype when defined with a length

of 10, we would get “Hello, Wor” stored. However, if we inserted the string “Hello!” into it, it

Chapter 3 • How Shall We Store it? – Datatypes 25



would store “Hello!” with no extra spaces. Searching the column for “Hello!” would find the
string with no further manipulation needed.

Fixed or Variable Length?

Although variable length datatypes as mentioned above make it easier for searching, using
fixed length types have the advantage that they are faster to search. When you are design-
ing your tables, if you want the searches to be faster you should consider using fixed length
types.

Variable length types also can produce the need to perform maintenance on the table
periodically. If you make lots of changes to a table with variable length rows, over time the
table will become fragmented due to entries and space becoming de-allocated and re-
allocated. MySQL provides some commands to remedy this which you can read about in
Chapter 13 on Optimizing MySQL.

You should consider these issues when choosing the datatypes for your columns.

Storing Text

CHAR and VARCHAR are great for storing strings like people’s names and addresses, but
they have the limit that the string can be a maximum length of 255 characters. If we are
storing things like the comments of a user to a website, or a book review, or other large
blocks of text then this limit is prohibitive. The TEXT datatype gets around this limit by
defining a string that has a much bigger limit.A TEXT column can contain strings that have
a maximum of 65 535 characters. This should cover most things that a webpage user should
type into a webpage! If we take the average word to be 5 characters long, that is still over
13 000 words. You define a TEXT column as follows:

columnname TEXT

It is easy to be tempted to define all columns that are going to contain strings as TEXT.
Although this will stop you from running out of space when storing a string, it does place
much more strain on the MySQL engine when sorting through lots of TEXT columns. It is
much quicker to search through columns of CHAR and VARCHAR for small strings,
because of the way that MySQL stores the TEXT datatype. If you want a fast database server,
getting the datatypes correct is important.

MySQL also supports three other types of TEXT datatype: TINYTEXT, MEDIUMTEXT
and LONGTEXT. Table 3.4 shows the attributes of all of the TEXT datatypes.

Table 3.4 Text datatypes.

Declaration Maximum length of string in characters

columnname TINYTEXT 255
columnname TEXT 65 535
columnname MEDIUMTEXT 16 777 215
columnname LONGTEXT 4 294 967 295

26 Database Design Manual: using MySQL for Windows



You could just about store the entire text of this book in one MEDIUMTEXT database
record!

BLOB

Don’t worry, you are not losing your mind from looking at too many datatypes! A BLOB in
MySQL is a Binary Large Object, and is used for storing data. For instance, you could store
a jpeg image within a BLOB column. BLOBs conform to the same size constraints as the
TEXT columns mentioned in Table 3.4, but are called TINYBLOB, BLOB, MEDIUMBLOB
and LONGBLOB. A BLOB column is essentially the same as the corresponding TEXT col-
umn, but when you are searching or ordering it the BLOB will be case sensitive and the
TEXT will not be.

Both BLOB and TEXT objects are really pointers to areas of storage on the server, and so
are not physically stored within the table. This explains why operations on this type of col-
umn are slower than when searching normal column types.

Date Types

One of the commonest things that you store within tables are dates and times. An example
of this would be a weblog, where every access to a website would have the date and time of
that access stored within a text file or a log table in a database.

DATETIME

DATETIME is the date type that I use the most. This allows you to store the date and the
time in one column. You define a DATETIME column simply as follows:

columnname DATETIME

Please refer to Chapter 11 on working with dates and times for details how to insert val-
ues into this column type.

When you retrieve a DATETIME value, MySQL returns a string of the format “YYYY-
MM-DD HH:MM:SS” irrespective of how you have inserted the date/time in the first place.
If you only insert the date part into such a column the HH:MM:SS are set by default to
00:00:00. If you insert a date that is invalid, such as 40 February 2003, MySQL stores this
date as “0000-00-00 00:00:00” to show that there has been an error somewhere in the date.
You can store values in this datatype for all dates and times between the year 1000 and the
year 9999.

TIMESTAMP

TIMESTAMP works in a similar way to DATETIME, in that it stores both the date and time
in a single column. However, the TIMESTAMP datatype has the added functionality that it
will automatically update itself under certain conditions. This is useful if you want to keep
a record of when a database row was created or last updated. Whenever you create a new

Chapter 3 • How Shall We Store it? – Datatypes 27



row, or change the contents of a row, and do not explicitly change the contents of the first
TIMESTAMP column in that row, this column will be automatically updated with the date
and time of the change.

If, however, you explicitly set the value of the column when you are altering or creating
the row, the TIMESTAMP column will not auto-update because you have specified what you
want to go in it manually.

This can be a very useful column datatype as it will update itself without the need for
you to create code that will update it for you.

You define a TIMESTAMP column with a value, as follows:

columnname TIMESTAMP(length)

length refers to the number of characters that the column will output when retrieving its
value. For instance, of we were to store 28 February 2003, 01:50:59 in a TIMESTAMP(14)
column, we would obtain the following if we were to retrieve this value at a later time:

20030228015059

Table 3.5 shows the other values that would be returned if we were to store the same date
in timestamp columns declared with other lengths.

Table 3.5 TIMESTAMP datatype values.

The length attribute in the TIMESTAMP declaration only alters the size of the string that
you get back when you retrieve the data.A TIMESTAMP row takes exactly the same storage
space irrespective of the length attribute specified when you declare it.

DATE

The DATE datatype is used when you are concerned about storing a date but do not need to
store the time as well. The DATE datatype is defined with no attributes as follows:

Declaration DateTime returned

columnname TIMESTAMP(2) 02
(YY)

columnname TIMESTAMP(4) 0202
(YYMM)

columnname TIMESTAMP(6) 020228
(YYMMDD)

columnname TIMESTAMP(8) 20020228 
(YYYYMMDD)

columnname TIMESTAMP(10) 0202280150
(YYMMDDHHMM)

columnname TIMESTAMP(12) 020228015059
(YYMMDDHHMMSS)

columnname TIMESTAMP(14) 20020228015059
(YYYYMMDDHHMMSS)

28 Database Design Manual: using MySQL for Windows



columnname DATE

You can insert a date into a date column using any of the methods described in Chapter
11, however the DATE datatype does have a limited range. Dates can be stored from 1
January 1000 through to 31 December 9999. That range should be adequate for most of us!

TIME

The TIME datatype is used to store a time value or period. It can range from –838 hours to
838 hours. This enables you not only to store the time of day, but also to store a long length
of time in this column type.

A TIME column is declared without attributes as follows:

columnname TIME

Normally the output of the time column would be “HH:MM:SS”, however when you are
storing an hour value of over 99 hours the format will allow an extra hour digit to allow the
measurement of this longer time period.

YEAR

The YEAR datatype allows you to store a year with very limited storage space.You specify a
year column by using:

columnname YEAR

The YEAR that you store in this type of column can range from 1901 to 2153. The small
range is due to the YEAR being stored in a single byte. The best way of inserting a date into
this column is by specifying a string with 4 digits, for example:

1952
2010
2063

If you only use two digits, MySQL has to make a decision about what year you are refer-
ring to. For more information about how it chooses you can consult the section in the
online MySQL manual. MySQL will always output the contents of the YEAR datatype with
4 digits to avoid confusion.

Other Types

All of the previous datatypes will have been used to store data that you are familiar with,
like dates, times and numbers. MySQL also supports other types that you may be less famil-
iar with. Two of these are described below.

Chapter 3 • How Shall We Store it? – Datatypes 29



SET

A set is a collection of things that are unique, the order of which is not important. For
instance, the following is a set:

• Spoon
• Fork
• Knife

That set is exactly the same as the following set:

• Knife
• Fork
• Spoon

It does not matter if the elements of the set contain the items in a different order; if all of
the elements are the same then the set is the same, irrespective of the order. However, the
following is not a set as it contains a duplicate:

• Knife
• Spoon
• Fork
• Knife

The SET datatype in MySQL is used for storing elements of a set in each row of the table.
The elements of the set are defined at the time that the column is declared and are stored as
strings in the declaration.You can have a maximum of 64 elements in a MySQL set. To store
occurrences of the set above you would use the following:

columnname SET(“Knife”,“Fork”,“Spoon”)

What this datatype actually does, is to allow each row of the column to store the follow-
ing values:

• “”
• “Knife”
• “Fork”
• “Fork,Knife”
• “Spoon,Fork,Knife”
• “Spoon” etc.

The first item on the list above contains no elements, it is referred to as “the empty set”
and it is still a valid element of the defined set. If you try and insert a string that is not
within the set definition, then that is ignored. If you are adding more than one element to a
set, then you should include them all in the same string, separated by commas.

SET is useful for storing the responses from an online questionnaire or anything that
requires selections from a predefined list. This is useful as although when you retrieve

30 Database Design Manual: using MySQL for Windows



entries from a SET column you get them as strings, they are actually stored as numeric val-
ues, thus saving storage space in the database.

ENUM

The MySQL ENUM datatype works in a similar way to the SET type described above. The
ENUM type allows each row of its column to have a value chosen from a set list which you
define at column creation time. Unlike a SET, which can have multiple elements of the set
stored in each row, ENUM allows only one or none at all. SET also has a limit of 64 elements,
but ENUM can have a maximum of 65 535 elements. You define an ENUM datatype as fol-
lows:

columnname ENUM(“Knife”,“Fork”,“Spoon”)

You will notice that this is very similar to the SET declaration. Each of the rows in a col-
umn defined as above could therefore contain only one of the following:

• “”
• “Knife”
• “Fork”
• “Spoon”

Again, this does not actually insert the string into the column, it inserts an index for the
text based on the order that the strings were declared when the column was created. So if
you were to insert “Fork” into a row, then the actual data stored would be 2, as this was the
second element that was in the list when the column was defined. However, if you retrieve
the data, MySQL realizes that the column is an ENUM type and so gives you the string
“Fork” back.

This datatype is especially useful if you are storing the responses from static dropdown
lists on webpages. As long as the contents of the dropdown list does not change, ENUM is
the perfect way to store records of what has been selected.

Chapter 3 • How Shall We Store it? – Datatypes 31



This page intentionally left blank 



Redundant Data

No matter how fast the database server is, it can only work well if it is processing efficiently
organized data. Much of the speed and efficiency of modern database engines relies on the
use of well-designed tables that are quick to process. One of the ways in which modern
DBMS have improved the performance of databases is by eliminating redundant data.

Redundant data is data that is repeated unnecessarily within a table. Figure 4.1 shows a
table that stores a record of accesses to a website. The client host details have been changed
for anonymity.

Look at each column in Figure 4.1. Every column has data in it that is repeated. For
instance, the webpage column has only three unique pages listed in it, and the index.php
page is repeated in this column four times. Now look at the browser column. Not only is the
Mozilla entry repeated three times it is also storing a lot of text for each row. Although lots
of data is repeated, it is not necessarily all redundant.

Data is classed as redundant if it can be removed from a table without loss of informa-
tion. For instance, look at the extract from this table shown in Figure 4.2.

When viewed in isolation from the main table shown in Figure 4.1, the data shown in
Figure 4.2 has more obvious redundancies. You will notice that in the six rows shown, only
three of these rows are unique. When a remote machine accesses a webserver, it does this
via its web browser software, using its IP number which is matched (usually) to its domain
name. While that browser is looking at pages on your site, normally these three pieces of
information remain the same for each page request. Only the page that they are looking at,
the referring page and the time that they made the request would change.

Designing and Creating Tables 4

33

Figure 4.1 Example website log.



Reducing Redundant Data

You may think that with the size and speed of modern hard drives there is little point wor-
rying about storing too much text for each row. To an extent that is right, however it is not
just the size of the database that may become an issue. The bigger the database is the longer
it will take to utilize the data. If you are implementing a page counter on your webpage, and
the whole of the log database is going to be counted every time a webpage is viewed, having
a huge log table may well slow the site down considerably. Each time a page is viewed, the
table gets larger, and so the site gets slower.

With the exception of the datecreated column, all of the other columns could have
redundant data removed. Take for example the webpage column. This will store the name
of the webpage that the log entry refers to. You will note that we immediately have a dupli-
cate entry in the first two rows. Every time that the index page of the website is viewed, the
current table will have the text “index.php” inserted into a new row.

To stop repeatedly storing redundant data, we need to move the text description of the
webpage into another table, and find some way of relating the two entries to each other.
Figure 4.3 shows what could be stored in the second table.

The Primary Key

If you examine Figure 4.3 you will see that we have created a new table which stores infor-
mation about the webpage. We will call this the webpage table. It contains the name of the
page, as well as the title, but it also contains a row of unique numbers, the ID column. This
is known as the primary key. Each row in the webpage table can be identified by using its
key. For example, if we were to see mention of ID 3 of the webpage table, we would know
that it was referring to the links.php script, which is the Links page. This unique reference
to the row in a table greatly reduces the chances of redundant data within your database
tables. Figure 4.4 shows the website log table again, but this time we have changed the first
webpage column.

34 Database Design Manual: using MySQL for Windows

Figure 4.2 Extract from Figure 4.1.

Figure 4.3 Example webpage table.



Foreign Keys

In the example shown in Figure 4.4, instead of inserting a string to determine the webpage
as we did in Figure 4.1, we have inserted the primary key from the webpage table in
Figure 4.3. When you insert a primary key from one table into another, it is known as a for-
eign key. By using the foreign key to look up the row in the webpage table, we can get back
more information about the row we are examining in the website table.We are able to recre-
ate all of the information, without storing anything unnecessarily.

Figure 4.4 still has redundant data, though, so we will follow this example through by
creating a cookie table. The cookie table will store the host information that we get from the
site visitor. This table is shown in Figure 4.5.

You can see now that Figure 4.5 contains the unique information that we got from each
of the visitors that have viewed our webpages, and each of these visitors has a unique num-
ber, which we have conveniently called the cookieID. This is the primary key in the cookie
table. The scripting language that we are using can use this number to set a cookie on the
visitor’s machine as well for future visits. We can now insert the cookieID as a foreign key
into our weblog table, which we show again in Figure 4.6.

You will notice from Figure 4.6 that the table now contains much less redundant data.We
still, however, have retained the ability to recreate that data, by looking up the foreign keys
in the related tables. For instance, the first row of data in Figure 4.6 shows the following
information:

• The date and time the page was viewed (datecreated – 2002-01-01 12:35:02).
• The page that linked to this page (referringpage – index.php).
• The cookie number of the client machine (cookieID – 1).
• The webpage number that was viewed (webpage – 2).

But by matching the foreign keys that we have stored with the rows in their parent tables,
we can also ascertain:

• The browser that the client used (cookie.browser – Gulliver/1.3).

Chapter 4 • Designing and Creating Tables 35

Figure 4.4 Website log with reduced redundant data.

Figure 4.5 Cookie table.



• The client’s host name (cookie.hostname – hb42.noname.com).
• The client’s IP number (cookie.ipnumber – 192.168.200.29).
• The script name of the page viewed (webpage.page – visitor.php).
• The title of the page viewed (webpage.title – VisitorBook).

We refer to columns in external tables by giving the table name followed by a period and
then the column name. So you can see from the above example that we have actually stored
the same amount of information, without actually storing any data unnecessarily.When we
want to recreate all of the stored data across several tables, we use an SQL join command.
This will be explained in a later chapter.

Redundant or Not?

Look at Figure 4.6 again. Is there still redundant data in this table? In the cookie column, the
first line and the third line contain the cookieID of 1. If we were to remove this value, as it is
repeated, we would lose the link to the cookie table, and thus lose some information about
the page view. When a foreign key is repeated within a column, it usually does not signify
redundant data. So there is no redundant data within the cookieID column now.

Of course, you may notice that Figure 4.6 still has some redundant data in it, as there are
still repetitions in the referring page column. However, no other information about the
referring page needs to be stored, so creating another table just to log this may well be an
unnecessary overhead. On this occasion we will leave this data as it is and not store it in
another table.

Referential Integrity

Creating relationships between tables using primary and foreign keys to remove redundant
data is reasonably straightforward. However, when you wish to alter or delete records in
related tables you can come across problems with referential integrity.

For example, look at the two tables shown in Figure 4.7. If we were to remove row 2 from
the weblog table, this would be allowable as no other table in our example makes reference
to this row. The referential integrity of our data is maintained.We are removing some of the
data, but the rest of the database remains sound.

If we were to remove row 2 from the cookie table we have a problem.We would lose some
information about the Mozilla client, but what about the rest of the database? In this case

36 Database Design Manual: using MySQL for Windows

Figure 4.6 Weblog with even less redundant data.



row 2 of the weblog table still refers to row 2 of the cookie table which we have just
removed. If we tried to join the two tables together to get back all of the information stored
between them, the system would not be able to find the reference to the Mozilla cookie, so
the join would fail. Removal of row 2 from the cookie table has compromised the referen-
tial integrity of the rest of the database. The only way that we could remove row 2 of the
cookie table is if we removed every row that contained a reference to it in all related tables.
We have to remove all of the foreign key references to this row first, and then remove the
primary key from the cookie table. There is a specific type of command used for deleting
data while maintaining referential integrity called a CASCADE delete. This will be touched
upon in a later chapter.

Most DBMS will try to maintain and enforce referential integrity, but this will only work
if you have correctly told the system where the relationships between tables are. If you are
using a scripting language such as PHP, it will be possible to enforce referential integrity in
your code, and not with the database. However, this will only work if your code works, and
so it is much better to let the DBMS enforce the rules.

MySQL will only enforce referential integrity if you are using a specific type of table. The
default table on most installations will be of the MyISAM type. This type does not enforce
referential integrity. If you are creating tables which need referential integrity enforced, you
will need to create InnoDB tables. The online MySQL manual contains a section on ensur-
ing that your MySQL server supports these tables.

NULL

Finally, before I show you how to create a table, we need to deal with NULL. A NULL entry
is placed in a column when there is no value stored in that column. The NULL is a special
symbol which signifies that no value has been inserted yet. A NULL is not like the empty
string (“”), because the empty string is a string with no contents. NULL is the absence of
content. Because of this you cannot match a NULL in comparisons.

When creating a table, you can specify that a column cannot contain a NULL by using
NOT NULL after the column type. If you are specifying a column that is a foreign key, the

Chapter 4 • Designing and Creating Tables 37

Figure 4.7 References must remain consistent.



NOT NULL command implies that the row must have a relationship with a row in another
table.

Your primary key column would normally also be specified as NOT NULL, as each value
in this column must be unique.

CREATE DATABASE

Before we create a table we have to create a database. The database is the container in which
we store the tables. You create the database using the following command:

CREATE DATABASE databasename

Once you have created the database you have to indicate to MySQL which database you
will be using. You do this by means of the following:

USE databasename

As has been previously discussed, the default database that MySQL creates to store all of
its system tables is called mysql. It is best if you create a separate database to store the
example tables used in this book. We will call this database MySQLfast. We can select this
database to use by issuing the following commands:

CREATE DATABASE MySQLfast;
USE MySQLfast;

If you create the new database using the graphical client, it does not immediately appear
in the dropdown list of databases. To get it to appear after creating the database, close down
the client and restart it. It should now be selectable from the dropdown list, as shown in
Figure 4.8.

Selecting a database from the dropdown list in the graphical client is exactly the same as
issuing the USE database command.

38 Database Design Manual: using MySQL for Windows

Figure 4.8 Selecting a database from the dropdown list.



CREATE TABLE

After you have designed your database, you need to define the tables in MySQL. The main
way to do this is with the CREATE TABLE command which is used as follows:

CREATE TABLE tablename (columnname type options, 
columnname type options, … otheroptions)

In the above tablename and columnname are self-evident, and type is the datatype of the
column as we described in Chapter 3.

options are various options that you can apply to the column, such as the following:

• NOT NULL which prohibits the use of NULL within the column.
• AUTO_INCREMENT which will add a value to the value of this column in the previously

added row, and insert the new value into this row automatically. This normally defaults to
an increment of 1, and is useful for automatically creating a new, unique primary key value.

• DEFAULT which when followed by a value allows to set the default value that the column
will be created with if not specified when inserting data.

So we will now create a table to store our website’s webpages.We will store the following:

• The ID of the webpage, which we will automatically create, and will be the primary key
and a medium integer.

• The title of the page, which will be the text that we put between the <TITLE></TITLE>
tags in the HTML document. This will be a variable length string of 50 characters max-
imum.

• The actual content of the webpage,which will be inserted between the <BODY></BODY>
tags of the HTML document. We will use the text type for storing this, as it will enable
us to store a large amount of text if needed.

Make sure you are logged into the correct database by typing the following into the
graphical client:

USE MySQLfast

We can now create the webpage table as follows:

CREATE TABLE webpage ( id MEDIUMINT NOT NULL AUTO_INCREMENT, 
Content TEXT, 
Title VARCHAR(50),
PRIMARY KEY (id));

Running the query above creates the table, but does not give you any other feedback
unless you have typed something in wrong. To check that the database is correctly created,
run the following:

DESCRIBE webpage

Chapter 4 • Designing and Creating Tables 39



Figure 4.9 shows the results of this. You can see that the table has been created, and the
ID column is the primary key and there is an auto-increment column.

You will notice that after we defined the list of columns we added the PRIMARY KEY
option, which set the column that we specified as the primary key for this table.You can also
specify a column as a primary key by putting these words directly after the type definition
for a column.

We will demonstrate this by creating another table for the website log as follows:

CREATE TABLE Log ( ID MEDIUMINT 
NOT NULL 
AUTO_INCREMENT 
PRIMARY KEY, 
CookieID MEDIUMINT, 
WebpageID MEDIUMINT, 
Browser VARCHAR(50), 
DateCreated DATETIME, 
IPNumber VARCHAR(15), 
ReferringPage VARCHAR(255) )

At this stage I’ve decided to store the visitor browser information within the log file, and
not as a separate table. We are, however, only storing the IP number of the client machine.
If we need to find the host name we can look it up using a DNS server.

Identifying Foreign Keys

Our webpage table did not have any foreign keys, but our log table does. To define the for-
eign key we have to insert the following into our create table definition:

FOREIGN KEY (column) REFERENCES parenttable (primarycolumn)

In this command:

• column is the name of the column that contains the foreign key in this table.
• primarycolumn is the name of the primary key column that this foreign key references.

40 Database Design Manual: using MySQL for Windows

Figure 4.9 DESCRIBE the newly created table.



• parenttable is the name of the table where the column resides.

We can add this to the CREATE definition for our log table as follows:

CREATE TABLE Log ( ID MEDIUMINT 
NOT NULL 
AUTO_INCREMENT 
PRIMARY KEY, 

CookieID MEDIUMINT, 
WebpageID MEDIUMINT, 
Browser VARCHAR(50), 
DateCreated DATETIME, 
IPNumber VARCHAR(15), 
ReferringPage VARCHAR(255),
FOREIGN KEY (WebpageID ) REFERENCES Webpage (ID),
FOREIGN KEY (CookieID ) REFERENCES Cookies (CookieID) 
)
TYPE = InnoDB

Figure 4.10 shows this table being described.
If you try to create this table after you have run the previous script you will get a Table

already exists error. You can add the words:

IF NOT EXISTS

directly after the:

CREATE TABLE

statement to stop MySQL generating an error; however this does not replace the table, it
just suppresses the error if it already exists, so it is of questionable use. Other versions of

Chapter 4 • Designing and Creating Tables 41

Figure 4.10 DESCRIBE Log table.



SQL allow you to issue the command CREATE OR REPLACE when you are creating a table,
which will replace the existing table if needed. MySQL does not yet support this function.

You will notice that the line:

TYPE = InnoDB

has been added at the end of the table definition. This is the table type that you need to
use if you want MySQL to support referential integrity.

Create from Select Statement

You can also create tables based on the output of a select statement. The format is as follows:

CREATE TABLE tablename AS selectstatement

We will describe the select statement in detail in a later chapter. The select statement
allows you to select some or all of the column and rows in a table. For instance, if we
decided that we wanted to make a different log table with all of the client details removed,
we could do it with the following script:

CREATE TABLE Log2 AS SELECT ID,
CookieID,
WebpageID,
DateCreated,
Referringpage 

FROM log

The select statement that we use here requests those column names that do not contain
client details. After creating this table, describing it gives the results shown in Figure 4.11.

Compare Figure 4.11 with Figure 4.9. You will notice that the new table has fewer
columns, as we expected. The new table has been created purely from the column names
and datatypes of the select statement, and took no notice of the other column options our

42 Database Design Manual: using MySQL for Windows

Figure 4.11 DESCRIBE Log2 table.



original table had, such as the primary key and auto-increment options. If you need to add
these options to an existing table, see the detail on ALTER TABLE in Chapter 8.

CREATE TABLE LIKE

MySQL version 4.1 gives us an extra function that solves the problem of the column attrib-
utes not being copied over when creating a table from a SELECT statement. This is used as
follows:

CREATE TABLE destination LIKE source

This will create a new destination table that is exactly based on the source table’s struc-
ture. Create a log3 table as follows:

CREATE TABLE log3 LIKE log

If you describe this table and compare it with the original log table, you will notice that
all of the column attributes have now been copied over.
We will create some other tables as needed through the course of this book.

Chapter 4 • Designing and Creating Tables 43



This page intentionally left blank 



INSERT

The main method of putting data into our table is by using the SQL INSERT command. The
most commonly used format of this command is as follows:

INSERT INTO tablename (columnname, columnname, …) 
VALUES (value, value, …);

The insert command adds a new record to the table, putting the date given into the fields
specified. You must ensure that all of the column names specified after the tablename have
corresponding entries in the VALUES section. The values must be of the same datatype as
the column they are going to be inserted into.

Any columns that are not specified in the statement are left at their default value if you
specified it, or set to NULL.

To demonstrate, we will begin to add some data into the database that we described earlier. To
start with we will add data to the webpage table, which will store the title and content of our web-
site.All websites have a home page so we will start by inserting a home page.Start up the graphical
tools and log in.Type the following to ensure that we are connected to the correct database:

USE MySQLfast

You can also ensure that you are connected to the MySQLfast database by checking that the
client says MySQLfast next to the word Connected on the second row of controls on the
client. If it says mysql you are in the wrong database, so pull down the menu by clicking on
the square next to mysql and select MySQLfast. Once you are connected to the correct data-
base you can type the following in the query box:

INSERT INTO webpage (Title) 
VALUES (“Home”)

Click onto the Execute Query button to run the query. Unless there is an error there will
not be any output to show you what you have just done. If you do have an error message it
is likely that you have not connected to the database, or you have not yet created the web-
page table as described in the previous chapter. If the latter is the case, please review the
create table section in Chapter 4.

Populating the Database 5

45



46 Database Design Manual: using MySQL for Windows

Figure 5.1 The webpage table.

To view the contents of the database, type the following and click on Execute Query:

SELECT * FROM webpage

We will review the SELECT command in great depth in the next chapter, but for now all
this query is saying is “give me everything from the table called webpage”. The results are
shown in Figure 5.1.

If you look at Figure 5.1 you will see that although we only inserted the word Home,
MySQL has auto-generated the value 1 for the ID column.We also did not specify a value for
the content column so this has been set to NULL as it contains nothing at the moment.

If you remember our example database that we described in the previous chapter we had
a table for storing the entries in a visitor’s book for our website. This implies that there
would be a page to view or add entries to a visitor’s book, so let’s add an entry for that page
by executing the following:

INSERT INTO webpage (Title, Content) 
VALUES (“Visitorbook”,“Please add a comment to my visitor book”)

Notice that on this occasion we have chosen to add some content for a page. Again, if you
want to see the results of this, execute:

SELECT * FROM webpage

INSERT – Multiple Rows

We could carry on inserting various names for pages using the above commands, but if you
have many rows to add to a table you can speed up the process by adding multiple rows
after the VALUES keyword as follows:

INSERT INTO webpage (Title) 
VALUES (“Links”),

(“Resume”),
(“My Hobbies”)



When you are inserting multiple rows into a database you place each row inside paren-
theses and separate rows with a comma. Select all of the rows from your webpage table
again. It should look like Figure 5.2.

INSERT – All Columns

An alternative form of the INSERT statement misses out the column name list as follows:

INSERT INTO tablename 
VALUES (value, value, …);

In this case you must specify a value for each of the columns in the table in the VALUES
section, in the order which you originally created the table.

You have less control over the inserting of data using this method, and it can have prob-
lems associated with it. For example, if you have a column that is auto-generating
(AUTO_INCREMENT) to provide your row with a unique primary key, inserting a number
over this may well cause the table to have a duplicate primary key, which is not allowed. It
may work, but may lead to errors in the processing of your data later on. If we look at
Figure 5.2 again, we can see that we can safely add a row with the ID number 6 as there is
not another row with this ID. The following will add a row with that ID:

INSERT INTO webpage VALUES (6, “”,”How to Contact Me”)

This should have successfully added another row into your table. As a further demonstra-
tion of how hard-coding an auto-generating field can lead to errors, run the above query a
second time. Figure 5.3 shows the results of this.

Notice how the last line of Figure 5.3 has the error message:

Duplicate entry ‘6’ for key 1.

Chapter 5 • Populating the Database 47

Figure 5.2 The webpage table.



48 Database Design Manual: using MySQL for Windows

When you tried to add another row to the webpage table that had an ID of 6, MySQL real-
ized that the ID column is the primary key of the database and so wouldn’t allow you to
insert a key with that value a second time.

INSERT – Columns from a Query

You can also insert rows that are output from another table. The command takes the fol-
lowing format:

INSERT INTO tablename 
SELECT rows
FROM anothertablename
WHERE condition;

To demonstrate the above command, we will copy our table to another one. First we need
to create a new table with the same columns as the webpage table:

CREATE TABLE webpage2 (ID MEDIUMINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
Content text, Title text)

Now we will copy the data from webpage to webpage2 by executing the following:

INSERT INTO webpage2 
SELECT * from webpage

Figure 5.3 Error caused by duplicate primary key.



When using the above command, the table that you are selecting from must have the
same number of columns  as the table that you are inserting into. For instance, if you try the
following:

INSERT INTO webpage2 
SELECT title FROM webpage

you will get the error:

Column count does not match value count at row 1.

To ensure that your columns match, you can specify a column list after the first table
name as follows:

INSERT INTO webpage2 (title, content)
SELECT title,content FROM webpage

As long as you have the same number of columns in the SELECT statement as you do in
the table you are inserting into, you can use just about any code for the SELECT statement.
The following will search for rows that have the word Home in the title field and insert them
into the webpage2 table:

INSERT INTO webpage2 (title, content)
SELECT title,content FROM webpage WHERE title = ‘Home’

To view the contents of this new table, execute the following:

SELECT * FROM webpage2

Figure 5.4 shows the current content of our webpage2 table.
If you look at Figure 5.4, you will see that we have a unique primary key for each row of

the table.You can also see that the content column sometimes has NULL in it, where no data
was specified in the content string, an empty string as in row 6, and text data as in row 2.All
are equally valid entries. You can also see that in the title column we now have duplicate
page entries. This is acceptable in our demonstration database but would probably have lit-
tle use if we were going to use this table to power a website. We will remove this temporary
table in Chapter 9.

Inserting Data with Scripts

Another way to get data into our database is to run a script. A script is just a collection of
SQL queries separated by colons and stored in a text file.

Chapter 5 • Populating the Database 49



For example, the following file is a collection of commands that creates a table called
Cookies and fills it with some sample data:

USE mysqlfast;
CREATE TABLE Cookies (CookieID MEDIUMINT 

NOT NULL 
AUTO_INCREMENT 
PRIMARY KEY, 

DateCreated DATETIME);
INSERT INTO Cookies (DateCreated) VALUES (“2002-01-01”);
INSERT INTO Cookies (DateCreated) VALUES (“2002-01-02”);
INSERT INTO Cookies (DateCreated) VALUES (“2002-01-04”);
INSERT INTO Cookies (DateCreated) VALUES (“2002-01-07”);
INSERT INTO Cookies (DateCreated) VALUES (“2002-01-13”);
INSERT INTO Cookies (DateCreated) VALUES (“2002-01-22”);
SELECT * FROM Cookies;

Unfortunately, WinMySQLGUI does not support the running of script files, so we need
to use the mysql command line to execute the script. Type the above script into a text editor
such as Notepad and save it as scriptimport.sql in the directory:

C:\mysql\bin

The file needs to be saved within that directory as it is hard to select files from directo-

50 Database Design Manual: using MySQL for Windows

Figure 5.4 The webpage2 table populated from another table.



ries other than the one that MySQL us running from. Start up a command prompt, by
selecting Start/Run and typing command. Then type:

cd \mysql\bin

to get to the binary directory and then type:

mysql

to run the client. Once the client is running you can then run the script. You do this by
using the command source and giving the command a filename as follows:

source scriptimport.sql

This will run the script and the output can be seen in Figure 5.5.
You will notice from the last line of our script that we added:

SELECT * FROM Cookies

at the end of the script. Because of this we have a sample output at the end of the query.
You can clearly see that 6 rows have been created, the dates have been inserted and the auto-
generated cookieIDs have been created. To prove that MySQL is a multi-user system, load

Chapter 5 • Populating the Database 51

Figure 5.5 Running a script from the command line.



the graphical tools, connect to the mysqlfast database and run the query again. Figure 5.6
shows the results which compared with Figure 5.5 are identical.

Directly Inserting Data

Another way that we can insert data into tables is by using the MySQL command LOAD
DATA. This file loads data into a specified table from a text file. The basic format is as fol-
lows:

LOAD DATA INFILE ‘filename’
INTO TABLE tablename (Column1, Column2, …)

Filename is the name of the text file with the data that you want to import. Tablename is
the table to insert the data into. The columns are the columns that you want to insert, in the
order that they appear within your text file. For example, the following is a heavily edited
section of a weblog file:

ID,DateCreated,Browser,IPNumber,CookierID,WebPageID,ReferringPage
1,2002-01-01,Mozilla/4.0,192.168.1.10,2,1,Typed
2,2002-01-01,Mozilla/4.0,192.168.1.10,2,2,http://minbar.homeip.net/
3,2002-01-01,Mozilla/4.0,192.168.1.10,2,3,http://www.google.com
4,2002-01-01,Mozilla/4.0,192.168.1.10,2,1,http://www.easyrew.com
5,2002-01-01,Mozilla/4.0,192.168.1.10,2,1,http://www.kli.org

If we wanted to import that file into our log table, we would need to save the above as a
text file. Call the file log.sql and save it in:

C:\mysql\data\mysqlfast

52 Database Design Manual: using MySQL for Windows

Figure 5.6 The cookie table viewed in the graphical tools.



By default, LOAD DATA expects the file to be on the same machine as the MySQL server,
within the directory that contains the information about the current database, in our case,
mysqlfast. If we were running the client and server on separate machines, and wanted the
file to be on the client machine, we would need to insert the word LOCAL before INFILE to
specify that it is on the local machine. We do not need to do this in our example.

If we look at the text file again, we can see that the first line is a list of the column names
in the order of the file. This is useful information to us but not to the LOAD DATA com-
mand. We could delete that first row but that would mean changing the contents of our log
file which may be needed by another program, so we need to add the line:

IGNORE 1 LINES

at the end of our query to get the command to bypass the first line.
You will notice that our file has commas separating the columns. This is one standard of

representing data in text files, called a “csv” or Comma Separated Variable file. By default,
though, the LOAD DATA command looks for a tab to separate columns. We therefore have
to tell LOAD DATA to view the separators as commas. This is done by adding the following
to the query:

FIELDS TERMINATED BY ‘,’

As you may expect, as there is a FIELDS TERMINATED command there is also a
RECORDS TERMINATED command for setting the way that the record’s end is repre-
sented. As LOAD DATA’s default setting for a record’s end is the newline, the same as our
text file, we don’t have to specify this.

If you remember when we created the Log table in the previous chapter, we used the fol-
lowing command:

CREATE TABLE Log ( ID MEDIUMINT 
NOT NULL 
AUTO_INCREMENT 
PRIMARY KEY, 

CookieID MEDIUMINT, 
WebpageID MEDIUMINT, 
Browser TEXT, 
DateCreated DATETIME, 
IPNumber TEXT, 
ReferringPage TEXT )

By default, LOAD DATA expects the columns in the text file to be in the same order as
when the table was created. If you compare this with the text file you will see that the col-
umn order is different. LOAD DATA allows you to specify the order of columns to import by
just giving it a list of the rows.

We now have enough information to insert our log file into the Log table. The command
that we will use to do this is as follows:

Chapter 5 • Populating the Database 53



LOAD DATA INFILE ‘log.csv’ 
INTO TABLE Log 
FIELDS TERMINATED BY ‘,’ 
IGNORE 1 LINES

(ID,
DateCreated,
Browser,
IPNumber,
CookieID,
WebPageID,
ReferringPage )

Figure 5.7 shows the results of the above query, when we select everything from the Log
table.

The above process can seem like a lot of effort to put 5 rows in a table; we have had to
manipulate the load command and probably could have inserted that many rows in the
same time by using INSERT statements. The effort, however, would have been much more
worth if we were inserting a full log file into our database. The file that the above example
file was taken from had over 38 000 rows, which could be inserted into our database with the
same effort as we have expended in the above example. This is where the power of LOAD
DATA comes into its own.

We may also have been importing the data from another database system, such as Oracle
or SQL Server. If this was the case it would be easier to output the data from that DBMS in
a format that the LOAD DATA command instantly recognizes as default; for instance using
tabs as column separators and making the order of the columns the same as our create table
command. The more you can manipulate your data into a standard format, the easier it is
to import into other systems.
Now that we have some data in our database we can begin to see the techniques involved in
retrieving the data.

54 Database Design Manual: using MySQL for Windows

Figure 5.7 The Log table populated by LOAD DATA.



SELECT

We have spent quite a while over the last few chapters thinking about, designing and popu-
lating our database. Now we have got some data in there, we need to get it back in a con-
trolled way.

Probably the most commonly used SQL command is the SELECT statement which
returns data from the database. The SELECT statement has various different formats, which
we will describe one by one in this chapter with examples.

The simplest form of the select statement is as follows:

SELECT * 
FROM tablename

The above statement will return everything from your table. The asterisk in this context
means all columns. So the query means: “Give me all of the columns and all of the rows of
the table tablename”.

For example, to run this query on the webpage table would require the following code:

SELECT * 
FROM webpage

Figure 6.1 shows the results of running this query.
With the data that is currently within our webpage table, the SELECT * results fit neatly

into the results shown in Figure 6.1. In practice, however, we rarely have this limited
amount of data. For example, our weblog table will quickly become populated by data that
will fill many screens.We can see an example of this already if we run the same query on the
log table:

SELECT *
FROM log

Figure 6.2 shows the results of this simple query.
All of the data in the log table has been returned, as can be seen by scrolling across the

results. However, if we want to find out on which dates certain pages were viewed, scrolling

Retrieving the Data 6

55



across is slow and could possibly lead to errors in reading the results if we slipped our eyes
to the wrong line while scrolling. It is much better to get exactly the data that we want. The
SELECT command allows you to specify the columns that you want returned as in the fol-
lowing example:

SELECT webpageid,datecreated
FROM log

You will notice that the above query has the table names separated by commas. If we run
this query we get the results shown in Figure 6.3, which give us just the data that we want.

When you use the SELECT statement to return columns it divides your table vertically,
retrieving only the specific columns that answer your query. You can specify any of your
columns with the SELECT statement, including all of them, but the asterisk means less typ-
ing. You can also select the same column more than one time, as well as selecting columns
from different tables. You may not yet see why you would want to use the latter two meth-
ods, but we will return to them later.

56 Database Design Manual: using MySQL for Windows

Figure 6.1 Select * from webpage.

Figure 6.2 A wide set of results from the log table.



SELECT DISTINCT

SELECT DISTINCT is a method of returning a unique set of data from your table. It is best
to only apply this SELECT to a specific column in your table. The format of this query is as
follows:

SELECT DISTINCT columnname
FROM tablename

For example, you may remember that one of the pages that we have on our website was
our resume. If you refer back to Figure 6.1 you can see that this was page ID 4. We can use
SELECT DISTINCT to give us a list of the pages that have been viewed in our weblog table.
We don’t need the quantity or number of times each page has been viewed, that can come
later, but we just need a list of pages that have been viewed. The following query will give us
such a list:

SELECT DISTINCT webpageid
FROM log

The results of the above query are shown in Figure 6.4.

Chapter 6 • Retrieving the Data 57

Figure 6.3 Two columns returned by the SELECT command.

Figure 6.4 SELECT DISTINCT on the Log table.



If you examine Figure 6.4 you will see that although the Log table contained more than
three rows, the SELECT DISTINCT query has returned only three, and all of them contain
a unique page ID. Unfortunately, none of these rows contain the page ID 4, so no one has
viewed the resume webpage yet. It looks like I will not be changing jobs in the near future.
In a later chapter we will see how to count specific hits per page, but you can see from the
above how the simple addition of the DISTINCT command can instantly present our data
in a manner that is much easier to use. You will also realize that if our website had thou-
sands of hits in the log, this query would still produce a few rows that were easy to under-
stand.

WHERE

We have seen how to select specific columns of data using the SELECT columnname query.
This slices the table vertically. The next command will slice the table horizontally, selecting
specific rows. This is done by matching the data within a record with a set condition that is
specified in the WHERE clause, as follows:

SELECT items
FROM tablename
WHERE condition

The WHERE clause isn’t only used with select statements; it can be used on any occasion
where we wish to limit a query to only apply to certain matching rows.

To illustrate the WHERE clause, the following query should tell us all the times that the
Home page (ID = 1) has been viewed in our weblog:

SELECT * 
FROM log
WHERE webpageid = 1

Figure 6.5 show the results of this query. The query is saying: “Give me all of the rows
that contain a 1 (the ID of the Home page) in the webpageid column.” Compare this with

58 Database Design Manual: using MySQL for Windows

Figure 6.5 WHERE returns columns that match a criteria.



Figure 6.6 which is the results of the SELECT statement when the WHERE clause is omit-
ted.

The condition in the WHERE clause can check for one condition or many, and can com-
prise many different formats. For example, if we were searching for a text string we would
put the string within quote marks as follows:

SELECT * 
FROM webpage
WHERE title = “Home”

The current version of MySQL will accept strings within quote marks (“”) or apostrophes
(‘’). This may change in future versions but whichever you decide to use make sure that you
consistently use the same throughout all of your queries.

MySQL Operators

As well as =, MySQL supports other operators. Some of these are shown in Table 6.1.

Table 6.1 Some MySQL Operators.

Operator Meaning

= equal
<> not equal
!= not equal
<= less than or equal
< less than
>= greater than or equal
> greater than
<=> null safe equal

Chapter 6 • Retrieving the Data 59

Figure 6.6 Without the WHERE clause.



LIKE

When you are searching for a string using the equals sign (=), SQL only searches for the
exact string. If you need to search for a string that began with Home, you need to use the
LIKE operator and pattern matching. To test this, we will add another row to our webpage
table which will point to a webpage that contains happy memories of where we grew up.
Add the row with the following query:

INSERT INTO webpage (Title, Content) 
VALUES (“Home is where the Heart is”,

“This page contains happy memories from my childhood”)

Select everything from the webpage table after running the query above just to check
that the new row has been added.You should now see several rows that have a Title column
that begin with the word Home. We will now try and retrieve all of those columns.

If you have programmed before, the temptation is to try the following query:

SELECT * 
FROM webpage 
WHERE Title = “Home*”

Figure 6.7 shows that when you run this query it doesn’t produce what you would expect.
All that is given is the error message that the query produced no results.

To get that query working the way that we want, we need to use the LIKE operator in the
condition as follows:

SELECT * 
FROM webpage 
WHERE Title LIKE “Home%”

Figure 6.8 shows the results of running this query.

60 Database Design Manual: using MySQL for Windows

Figure 6.7 Equals will not work with fuzzy matching.



You will have noticed that we did not use the asterisk as the match all characters as you
may be familiar with from other languages. SQL uses the percent sign (%) to signify that
any number of characters can be matched. Putting the percent sign at the end of the string
we are looking for makes SQL match anything that begins with the string. To match any-
thing with Home at the end we would use:

SELECT * 
FROM webpage 
WHERE Title LIKE “%Home”

And if we were looking for a string with the word Home somewhere in it, we would put
the percent sign at both ends of the string as follows:

SELECT * 
FROM webpage 
WHERE Title LIKE “%Home%”

Before you run the query above, try and work out what it will select from our table. Why
do you think it works the way it does?

As well as using the percent sign to match multiple characters, you can also use the
underscore (_) to match single characters as follows:

SELECT * 
FROM log 
WHERE browser LIKE “Mozilla/_._%”

This will match any version of the Mozilla browser, no matter what  browser description
follows.

SELECT AS (aliases)

On occasions, you may need to select the same column twice in a query. An example of an
application of this will occur in the chapter on aggregate functions. The simplest way to
select a column twice is by quoting it twice in the column list as follows:

Chapter 6 • Retrieving the Data 61

Figure 6.8 Use LIKE to fuzzy match.



SELECT id,id 
FROM webpage

As you will expect, the above query produces a result as shown in Figure 6.9.
However, it may be that later in the query we need to perform some calculation on one

of those columns. How are we to tell the difference between the two? As both columns are
called id that would be difficult. To solve this problem SQL allows the use of aliases, that is,
the renaming of a column by use of the AS keyword.

To use this we would modify the above code as follows:

SELECT id,id AS pageid
FROM webpage

You can compare the different results of the two queries by examining Figures 6.9 and 6.10.

62 Database Design Manual: using MySQL for Windows

Figure 6.9 Selecting the same column twice.

Figure 6.10 Selecting the same column twice with an alias.



You can see that the names of the columns are now different. There are many more uses
of the AS keyword. We use it to great extent with aggregate functions. It also will appear a
few times in the rest of this chapter.

BETWEEN

The BETWEEN keyword is used when you need to get data back from your query that
matches a range of values. For instance, you may want to see how many webpages were
viewed last week (between two dates), or that have been viewed at least ten but not more
than fifty times each.

BETWEEN is followed with the first value in the range, the AND keyword and the second
value, as follows:

SELECT columns
FROM tables
WHERE column BETWEEN firstvalue AND secondvalue

For example, every new visitor to our website generates a new cookie. We store these
cookies in our cookie table. However, we know that the first four cookies that were created
were just for testing purposes. So we need a query to look for cookies within a range. This
can be achieved as follows:

SELECT cookieid
FROM cookies
WHERE cookieid BETWEEN 5 AND 10

Figure 6.11 shows the results of the above query. You will note that the query has only
produced two rows with the IDs 5 and 6.

Although this is a very simple example, the BETWEEN keyword is very powerful as we
will see later on when we look at processing dates.

NOT

The NOT keyword when applied to a condition will give the opposite answer.All conditions
give a true or false result, and NOT changes the result to the opposite. To demonstrate this
we will apply this to the query we just discussed which returned all rows with the ID
between 5 and 10. Add NOT to the query as follows:

SELECT cookieid
FROM cookies
WHERE cookieid NOT BETWEEN 5 AND 10

Figure 6.11 showed that the first query picked the IDs 5 and 6. Compare this with
Figure 6.12 which shows the results when NOT is applied. A different set of rows has been
selected this time.

Chapter 6 • Retrieving the Data 63



As another example, we will look at what happens if you select a single row from a table.
We will use the cookie table again, so select a single row as follows:

SELECT *
FROM cookies
WHERE cookieid = 3

This will definitely select a single row as we are selecting from the primary key column,
so there will be no other rows with the ID of 3. Run the query and notice what is returned.
Now add a NOT to the condition as follows:

SELECT *
FROM cookies
WHERE NOT (cookieid = 3)

You need to add the parentheses to ensure that the NOT works with the whole condition.
With this change, what will the query now select? Figure 6.13 shows the results.

Notice how the NOT has radically changed the results of the query; instead of returning
a single row, it now returns everything in the table apart from the specified row.

64 Database Design Manual: using MySQL for Windows

Figure 6.11 BETWEEN selects from a range.

Figure 6.12 NOT applied to the BETWEEN query.



Why do we need the parentheses in the above script? Can you work out what would hap-
pen without them and then edit your query and test your theory? Why do you think this
happens?

CONCAT

CONCAT allows you to customize your queries output any way you wish. Normally if you
execute a SELECT tablename all that you will get back are the unprocessed contents of these
records. This will not always be exactly what you need, so you can alter the output with
CONCAT. To demonstrate this we will add a table for logging visitor book entries to our
website. We will have to run a few scripts to set this up.

First we will add an entry for the visitor’s page in our webpage table:

INSERT INTO webpage (Title, Content) 
VALUES (“Visitor book”,

“Please sign my visitor’s book by filling in the details
on this page”)

Now we will create a visitorbook table and add some fictitious entries:

CREATE TABLE visitorbook 
(EntryID MEDIUMINT AUTO_INCREMENT NOT NULL PRIMARY KEY, 
CookieID MEDIUMINT, 
EntryDate DATETIME, 
EntryText TEXT, 
FirstName TEXT, 
MiddleName TEXT, 
LastName TEXT) ;

Chapter 6 • Retrieving the Data 65

Figure 6.13 NOT applied to a single row query.



INSERT INTO visitorbook 
(CookieID,EntryDate,FirstName,MiddleName,LastName,EntryText)
VALUES (1, “2002-01-22”,“Rowan”,“”,“Norman”,“Just testing!”),
(1, “2002-02-01”,“Reuben”,“”,“Norman”,“I dont know what to type”),
(1, “2002-02-01”,“Pat”,“”,“Shah”,“Thought I would leave a message”),
(1, “2002-02-05”,“Lucy”,“”,“Garrett”,“Where has Princess gone?”),
(1, “2002-02-15”,“Zephen”,“”,“”,“I like the site but what about graphics”),
(1, “2002-02-16”,“Matthew”,“”,“Norman”,“Just testing!”);

You may notice that, for speed, we have used the TEXT datatype for most of the columns.
This is not very efficient but we will remedy this in a later chapter. Just create the table as it
is for now. Once you have populated the visitorbook table, check your work with:

SELECT * 
FROM visitorbook

This should give you six rows if you have copied the script in correctly. Now we will use
CONCAT to merge the firstname and lastname tables into one column. Execute the follow-
ing:

SELECT CONCAT(FirstName, “ “ , LastName) 
FROM visitorbook

This query says: “Give me the firstname, a space, and the lastname all in one column, for
every row in the visitorbook.” Each element inside the CONCAT parentheses is separated
by commas. If you have to include a string, such as the space character, then you need to
surround it with quotation marks. Figure 6.14 shows the results of this query; all names are
displayed neatly in a single column, with a space in between.

If you don’t have results as shown in Figure 6.14, it is probably because you have put a
space in between the CONCAT keyword and the parentheses. CONCAT is a function, and all

66 Database Design Manual: using MySQL for Windows

Figure 6.14 CONCAT formats your results.



function keywords that are followed by parentheses should have them directly after the
keyword, without a space.

Notice also the name of the column at the top of Figure 6.14. This name is the CONCAT
function we issued within the query.Although this name makes it obvious what the column
is, if we had to continually refer to this within other queries or php code it would soon
become tedious. So here is a good example of using the AS keyword to give the results a dif-
ferent name:

SELECT CONCAT(FirstName, “ “ , LastName) AS fullnames 
FROM visitorbook

Figure 6.15 shows the results of just adding AS fullnames to our query. Our column now
has a meaningful name.

We can demonstrate this one step further. On our website we will eventually show visi-
tors all of the visitor book entries. We will probably have to format the data we get back
from the query extensively to make it fit for presentation on a webpage. This might require
much formatting within the scripting language that the page is written in. So we will use
the CONCAT function of SQL to do some of the formatting for us, saving some time and
work later on. Here is a sample script:

SELECT CONCAT(“In our visitor book, “, 
FirstName, 
“ “ , 
LastName,
“ says: “, 
Entrytext ) 

AS entries 
FROM visitorbook

As the CONCAT has multiple elements here, I have over-formatted the script so you can
see what is happening. There are lots of commas and speech marks that can get quite con-

Chapter 6 • Retrieving the Data 67

Figure 6.15 CONCAT and AS for readable results.



fusing, so have a look at the results in Figure 6.16 to see what it does. Now that you’ve
viewed the results, the script should make more sense.

So you can see how you can use CONCAT to format your query’s output, getting SQL to
do the work for you to save scripting time later on.You can put multiple elements inside the
CONCAT function. Also remember that you are not limited to using just a CONCAT func-
tion in a select statement, you can also use other column names at the same time, for exam-
ple:

SELECT CONCAT(FirstName, “ “ , LastName) AS names, EntryID, Entrytext
FROM visitorbook

Before running this script, see if you can work out what results it will produce.

ORDER BY

One of the things that you often wish to do with databases is sort the results. MySQL sorts
tables using the ORDER BY clause in the following format:

SELECT columnnames
FROM visitorbook
ORDER BY columnnames

For example, to sort all of our visitorbook entries by last name we would run:

SELECT entryid, lastname
FROM visitorbook
ORDER BY lastname

Figure 6.17 shows the results of this query. Notice how the rows have been returned in a
different order to which they were created.

68 Database Design Manual: using MySQL for Windows

Figure 6.16 CONCAT supports complex formatting.



By default, ORDER BY sorts in ascending order. You can also specify this by adding the
keyword ASC after the clause. To get the sort to go in descending order we add the keyword
DESC instead, as follows:

SELECT entryid, lastname
FROM visitorbook
ORDER BY lastname DESC

Figure 6.18 shows the results in descending order. You are not limited to just sorting by
one column, and you do not even have to return the column you are sorting from the query.
Here is an example of this which sorts by the lastname but only returns the entryID and
firstname:

SELECT entryid, firstname
FROM visitorbook
ORDER BY lastname, firstname

Compare Figure 6.19 with Figure 6.17. The list is now sorted first on the lastname col-
umn irrespective of whether it is returned or not. After that it is sorted by the firstname
column. This still leaves the three Normans together in the middle of the query, but then
sorts their first names alphabetically as well.

As we have just been discussing the ORDER BY clause, this might seem like a good place
to discuss the GROUP BY clause. However, as much as the two clauses sound similar the
GROUP BY clause has a totally different use and so will be discussed in Chapter 10.

IN

Often in a query you have to search for a specific match, or a match that is less, or more,
than a set value. However, sometimes you may need to search for values that don’t easily fit

Chapter 6 • Retrieving the Data 69

Figure 6.17 ORDER BY sorts columns in ascending order.



into a simple clause.When this is needed, you can use the IN keyword to search against a set
of criteria. This command works as follows:

SELECT columns
FROM tablename
WHERE column IN (values)

In the above query, values is a comma-separated set of values. As an example of this we
will again select all of the webpages that begin with the word Home from our webpage
table. Using LIKE this command is:

SELECT id, title
FROM webpage
WHERE title LIKE “Home%”

70 Database Design Manual: using MySQL for Windows

Figure 6.18 ORDER BY …  DESC reverses the sort order.

Figure 6.19 ORDER BY on a different column than that returned.



Figure 6.20 shows the above script in action. It also shows the three different IDs that
begin with Home; 1, 2 and 7. We will now use those IDs to select the rows:

SELECT id, title
FROM webpage
WHERE id IN (1,2,7)

Running the above query will produce the same results as shown in Figure 6.20 but they
have been selected in a completely different way. We can select the rows that are not in that
ID set by adding a NOT to the clause as follows:

SELECT id, title
FROM webpage
WHERE id NOT IN (1,2,7)

This will return the complementary set of rows. Note where the NOT keyword appears in
the clause. As different positions cause different result sets, it is always a good idea to run
the query through an SQL client before you use it in a website so that you can ensure that
you are going to get the results that you expect.

Subqueries

Version 4.1 of MySQL now includes the ability to perform subqueries.A subquery is a query
that is run to derive a value that is fed into the main query. For instance, the following query
was used to extract the three rows shown in Figure 6.20:

SELECT id, title
FROM webpage
WHERE title LIKE “Home%”

Chapter 6 • Retrieving the Data 71

Figure 6.20 Selecting the Home pages.



We can modify this so that it will only extract the id of these rows as follows:

SELECT id
FROM webpage
WHERE title LIKE “Home%”

This will produce a value set of (1, 5, 7). To extract all of the log entries using this value
set we can use the following:

SELECT *
FROM log
WHERE webpageid IN (1,2,7)

However, in the above we are hard coding the value set that we are searching for. We are
manually entering the values that we got for the first query into the second. If we were to
change the value that we are searching for within the first query, then the value set returned
may differ, and the results in the second query will be invalid unless we re-write the second
query with the new values.

To automate the passing of values between these queries, we use the output of one query
as a subquery in another query as follows:

SELECT *
FROM log
WHERE webpageid IN (SELECT id FROM webpage WHERE title LIKE “Home%”)

The subquery must be contained in brackets and must return values that can be used by
the parent query.

72 Database Design Manual: using MySQL for Windows



Information in Multiple Tables

We spent a lot of time while we were designing our tables removing redundant or duplicate
data from our database. Instead of inserting multiple instances of text into a table, we put
the text once into another table, and then inserted the primary key pointing to that data
into the table that would have contained the duplicates. This leads to very efficiently stored
data, but means that we have to join the tables to get the data back from them in a readable
form.

For instance, Figure 7.1 shows all the data that is stored in our log table. Notice that the
second and third columns contain foreign keys from the cookie and webpage tables. It may
be easy to remember that webpageID one is the Home page but what about the other IDs?
Also what is so special about cookieID two? It seems that they are the only person that has
looked at the website, so did they enter their name in the visitor book as well? We can
answer these sort of questions by joining tables together.

There are two basic types of joins in SQL:

• the inner join, and
• the outer join.

Joining Tables 7

73

Figure 7.1 The Log table contents.



Cross Joins

The simplest way of joining two or more tables together is by specifying more than one
table after the FROM keyword as follows:

SELECT columns
FROM table1, table2, etc

However, that seldom produces the effect that you might expect. Try joining the Log table
to the webpage table as follows:

SELECT *
FROM log, webpage

Figure 7.2 shows the results of this join, called the cross join.
Can you see what this join has done? It is probably easier if you look at this on the screen

as it is difficult to show all of the rows in the figure. Look at how many rows the query has
returned. By selecting two tables, containing five and seven rows respectively, the query has
generated 35 rows as a result. This is because the cross join links every row in the Log table
with every row in the webpage table (5 × 7 = 35). If you scroll along the results you will see
that the contents of the rows of both tables are represented in each row of these results.

Now scroll across and look at all the columns that the query has returned. You will see
that each record has returned a row that has every column of every table specified in it.You

74 Database Design Manual: using MySQL for Windows

Figure 7.2 The cross join.



might think that you can restrict this by specifying only certain column names in the select
statement. This works to an extent, as you can see if you run the following query:

SELECT cookieid
FROM log,webpage

Even though the results now contain only one column, the query has still returned 35
rows, as can be seen in Figure 7.3.

Be careful when using cross joins; they are of little use and can cause incredible per-
formance hits on your database system if you join big tables together. Try cross joining your
webpage, log, cookies and visitorbook tables together and you will see how quickly this can
get out of hand. Joining a few little tables produces a huge result set.

Inner Joins

The cross join as described above is an inner join. Simply put, inner joins require a match
between both tables that are being joined. If no match is specified then all rows are matched
such as in the cross join.

Equi-join

An inner join that is more useful than the cross join is the equi-join. In an equi-join you
specify something to match between the tables being joined, which results in a much more
controlled join. The basic format of such a join is as follows:

SELECT columns
FROM table1, table2, etc
WHERE condition

Chapter 7 • Joining Tables 75

Figure 7.3 A cross join restricted to a single column.



In this case the condition will check for a matching piece of data in a column that
appears in the tables to be joined. Most likely this will be matching a foreign key in one
table with a primary key in another.

The last paragraph may seem a bit confusing, but as ever with SQL its much easier to
demonstrate by example, so we will turn the previous cross join into an equi-join by adding
a WHERE clause as follows:

SELECT *
FROM log, webpage
WHERE webpage.id = log.webpageid

Figure 7.4 shows the results of the above query. Notice how the WHERE clause restricted
the number of rows of the query to 5, and got all and more of the data that we want on each
row.

Notice that in the WHERE clause we specified the table name as well as the column name
for the match. It is not always necessary to do this but if you get into the habit of doing so it
can save you a lot of time debugging later. For instance, in our example, if we had just spec-
ified the ID column without the table name, we could have been referring to the ID column
in either the webpage table or the log table, as there are two with the same name.

If you cast your mind back to the start of this chapter you will remember we were trying
to get more information from the log table so that we could see the title of the page that we
were looking for as opposed to only its ID. We needed to join the pages together to find this
out. We can now tidy up this equi-join by restricting the columns we return as follows:

SELECT webpage.title, log.*
FROM log, webpage
WHERE webpage.id = log.webpageid

Figure 7.5 shows the results of this equi-join. What the join has done is take every row
from the log table, which contains the foreign key pointing to the entry in the webpage
table. It then has included the relevant column from the webpage table (title) which
matches that foreign key.

76 Database Design Manual: using MySQL for Windows

Figure 7.4 A basic equi-join.



If you look at the query again after the SELECT keyword, you will see that we have spec-
ified what we want from each table. The entry,

log.*

is selecting everything from the log table, whereas,

webpage.title

will just select the single column title from the webpage table. On a previous query we
selected all columns from all tables using the asterisk.You can see that using the asterisk to
select everything would be the same as using,

log.*, webpage.*

We will do one more thing to make our results tidier. If you look at Figure 7.5 again you
will see that by selecting everything from the log table we also select the foreign key
webpageID. As we already have the title of the webpage which is more useful, we do not
need to return that foreign key as well. Unfortunately, this means that we will have to spec-
ify all of the other columns in the log table instead of just using the asterisk. We will shuffle
the order of the columns slightly and use an alias as well so as to make the output look more
like the log table. Our final script will now read as follows:

SELECT log.id as logid,
log.cookieid,
webpage.title AS pagetitle,
log.browser,
log.datecreated,
log.ipnumber,
log.referringpage

FROM log, webpage
WHERE webpage.id = log.webpageid

Figure 7.6 shows the results of our completed query. We’ve given the log’s id column the
alias logid in the output to save it getting confused with any other id columns elsewhere.We

Chapter 7 • Joining Tables 77

Figure 7.5 An equi-join with selected columns.



have done the same with the webpage’s title column so that what we are referring to
becomes clearer.

You will also notice that we do not have to return a column that we use in the match con-
ditions. In our example, we used webpage.id in the match query but filtered that column out
of the actual results by not specifying it in our output column list after the SELECT key-
word.

Equi-joins on More Tables

To demonstrate further, you can use an equi-join to inner join more than one table. We will
now join the results we obtained above with the cookie table, so that we can get the date that
the person viewing the page first looked at our site. This will show if they are visiting for the
first time or have come back to look again. To do this we will take the above query and add
another column match clause to the WHERE statement, and rename a few columns for clar-
ity:

SELECT log.id as logid, 
webpage.title AS pagetitle, 
log.browser, 
log.datecreated AS logdate, 
log.ipnumber, 
log.referringpage, 
cookies.datecreated AS cookiecreated

FROM log, webpage, cookies 
WHERE webpage.id = log.webpageid 

AND cookies.cookieid=log.cookieid

Figure 7.7 shows this query working. By comparing the datestamp of the log column,
alias logdate, with the cookie creation date, alias cookiecreated, we can now see if the viewer
is looking at the site for the first time or returning.

78 Database Design Manual: using MySQL for Windows

Figure 7.6 The completed equi-join query.



Restricting Equi-joins

However, our log table still only has a few rows. In this situation it is easy to look through the
result set. What if we had hundreds of rows returned by this query? If this was the case we
can just further filter the rows by adding another condition to the end of the WHERE clause:

SELECT log.id AS logid, 
webpage.title AS pagetitle, 
log.browser, 
log.datecreated AS logdate, 
log.ipnumber, 
log.referringpage, 
cookies.datecreated AS cookiecreated 

FROM log, webpage, cookies 
WHERE webpage.id = log.webpageid 

AND cookies.cookieid=log.cookieid 
AND log.webpageid=1

Figure 7.8 shows this query running. We have restricted the whole output by looking for
the ID of 1 (the main Home page) in the results. In our example this has reduced five rows
to only three rows, but we could continue adding clauses to reduce the number further. For
instance, we could also restrict by browser or referring page to see the characteristics of
people viewing our websites from different links.

INNER JOIN – Another Format

Look again at the end of the last query:

WHERE webpage.id = log.webpageid 
AND cookies.cookieid=log.cookieid 
AND log.webpageid=1

Chapter 7 • Joining Tables 79

Figure 7.7 An equi-join query with three rows.



You will notice that really there are two different meanings to the three different clauses
used. The first two,

webpage.id = log.webpageid 
AND cookies.cookieid=log.cookieid

are used by the two joins to match primary and foreign keys in different tables, whereas the
last,

log.webpageid=1

is just a standard restriction that would work on a normal SELECT statement that did not
contain a join. Sometimes this can get confusing so it is useful to know of another format
of the inner join that works as follows:

SELECT log.*, webpage.title 
FROM webpage 

INNER JOIN log ON 
webpage.id = log.webpageid

This query will produce the same results as displayed in Figure 7.3. If we wanted to
restrict the rows that we were getting back from the query, in this instance we should not
append another clause on the end of the ON condition, we would need to add a WHERE
clause as follows:

SELECT log.*, webpage.title 
FROM webpage 

INNER JOIN log ON 
webpage.id = log.webpageid

WHERE log.webpageid = 1

Using this format clearly sets a distinction between a restriction WHERE condition and
a JOIN condition and so can lead to queries that are easier to read.

On some database systems it is advisable to use the INNER JOIN format rather than the
one shown previously, as the DBMS has special code for performing the INNER JOIN that

80 Database Design Manual: using MySQL for Windows

Figure 7.8 An equi-join with restricted rows returned.



it only uses if in this format. This may result in your join queries running faster. If nothing
else, it save a lot of confusing WHERE clauses!

Outer Joins

The inner join allows you to join two tables which have matching data in certain rows. In an
outer join, the whole of one table is returned, along with the matching rows in another
table. The first table is returned regardless of whether anything matches with it in the sec-
ond table. If that sounds confusing to you then don’t worry too much. As usual a few exam-
ples will make it clearer.

LEFT JOIN

The LEFT JOIN is an outer join that uses the format that we just introduced in the section
on INNER JOIN as follows:

SELECT columns 
FROM firsttable 

LEFT JOIN secondtable ON 
firsttable.column = secondtable.column

To demonstrate the left join, we have to examine the results from the following query:

SELECT webpage.title, log.datecreated
FROM log, webpage
WHERE webpage.id = log.webpageid

You should now recognize the above as an equi-join. Figure 7.9 shows the results.
What we are trying to display is a list of all of the webpages that we have on our site and

a relevant log entry for each page. However, if we look at Figure 7.9 we can see that we have

Chapter 7 • Joining Tables 81

Figure 7.9 An equi-join fails to show all web pages.



the Home page listed four times and the Links page once. We are only displaying the page
title for rows in our log table: the rows that match. Figure 7.10 will remind you of all of the
entries in the log table.

So we need to convert this equi-join into a left join to get the desired results. Execute the
following query:

SELECT webpage.title, log.datecreated 
FROM webpage 

LEFT JOIN log ON 
webpage.id = log.webpageid

Look at the results in Figure 7.11. You will see that we still have all of the rows that
appeared in Figure 7.9, with the addition of the extra rows in the webpage table. As there is
no corresponding entry in the last four rows, the MySQL server has returned a NULL for
the value in the datecreated column.

If we look at the query again, we can see why we call it a left join:

SELECT webpage.title, log.datecreated FROM webpage LEFT JOIN log ON ….

This has been formatted in a different way so that you can see that the webpage table is
on the left of the log table as it is written. All of the rows in the left table – the webpage table
– will be returned with the matching rows in the rightmost table. This is a good way to
remember which column does which in a left join. The leftmost column in the query will
return all its rows irrespective of matches in the right column.

Let us now swap the two columns around in the query, so that we make the log table the
leftmost:

SELECT webpage.title, log.datecreated 
FROM log 

LEFT JOIN webpage ON 
webpage.id = log.webpageid

82 Database Design Manual: using MySQL for Windows

Figure 7.10 All of the entries in the webpages table.



This time this query is saying: “Show me every title in the webpage table that matches a
row in the log table, and all of the rest of the datecreated entries in the log table”. Figure 7.12
shows this query running. It actually gives the same result set as the equi-join that we ran
at the start of this chapter, but it has been executed as a left join. As every row in the log
table must match a row in the webpage table, to maintain referential integrity, no NULLs
will appear.

RIGHT JOIN

As we have a left join, it follows that we will also have a right join. The format of a right join
is similar to that of a left join, as below:

SELECT columns 
FROM firsttable 

RIGHT JOIN secondtable ON 
firsttable.column = secondtable.column

This query is saying: “Show me every column in the first table that matches a column in
the second table, and all of the rest of the second table entries”. We’ll run this with our pre-
vious example again:

SELECT webpage.title, log.datecreated 
FROM log 

RIGHT JOIN webpage ON 
webpage.id = log.webpageid

If you have still got the script on the screen, just change the LEFT keyword to RIGHT and
run it again.

Chapter 7 • Joining Tables 83

Figure 7.11 A left join.



Again by formatting the query in a line we can see how it works in a clearer way:

SELECT webpage.title, log.datecreated FROM log RIGHT JOIN webpage ON ….

This time it is the rightmost table, webpage, which has all of its rows returned, with only
the matching rows in the left table, log, in the result set.

If you have just worked through the previous examples, you will notice that running this
query produces the same result as the left join shown in Figure 7.11 when the table order is
reversed.

This shows an interesting function of the outer join. The following two scripts will pro-
duce identical result sets:

SELECT columns 
FROM firsttable 

RIGHT JOIN secondtable ON 
firsttable.column = secondtable.column

SELECT columns 
FROM secondtable 

LEFT JOIN firsttable ON 
firsttable.column = secondtable.column

If you understand this, you will realize that there is not actually a need for a system to
implement both the left and right join, as you can accomplish both by the re-ordering of
table order within the query. MySQL implements both of these joins but some other SQL
systems only implement one of them. Though not necessary, the two types of join make
query building easier when joining more than two tables with outer joins.

84 Database Design Manual: using MySQL for Windows

Figure 7.12 Left join swapping the tables’ positions.



UNION

The UNION keyword allows you to join two result sets together. The result sets must have
similar column names. The UNION function is used as follows:

SELECT columns
FROM tables
WHERE condition
UNION 
SELECT similarcolumns
FROM tables
WHERE condition

We can demonstrate this quickly by combining a query that selects all log IDs less than
3 from the log table with another that selects all log IDs that refer to the Home page as fol-
lows:

SELECT * FROM log WHERE ID < 3
UNION
SELECT * FROM log WHERE webpageID = 1

Figure 7.13 shows the results of that query. MySQL has taken the results of both of the
queries and joined them into one table, removing the duplicate row. (The two individual
queries would both have returned row ID = 1.)

But that quick example does not illustrate the full potential of using the UNION key-
word. You may realize that the above query could be re-written with a conventional
WHERE clause as follows:

SELECT * 
FROM log 
WHERE ID < 3 OR 

webpageID = 1

Chapter 7 • Joining Tables 85

Figure 7.13 Joining two queries with UNION.



The above can be re-written as it is selecting data from the same table. The beauty of the
UNION command is that it can join data from different tables, as long as the columns you
are choosing have similar datatypes. For example, both the cookies table and the log table
have ID fields and date fields. How would we combine the ID and the dates from both tables
into one results set? You could attempt it using a join as follows:

SELECT log.ID, log.datecreated, cookies.cookieid, cookies.datecreated
FROM log,cookies

However, the above will produce a large result set, as it is an unrestricted join, every row
in the log table returned with a row from the cookies table producing 30 rows as a result.We
just want the results with the rows from both of the two tables. We will try this query using
a union:

SELECT ID, datecreated
FROM log
UNION
SELECT cookieid, datecreated
FROM cookies

This produces a UNION of the two different tables on the ID and datecreated columns.
The results are shown in Figure 7.14.

If you have been working through all of the examples in this book, your cookie table
should contain 6 rows and your log table 5 rows. However, the result set, shown in the fig-
ure, only contains 10 rows. This is because the datecreated and the ID fields for both tables
are the same for ID = 1. MySQL has therefore treated this as duplicate entry and removed
one of the duplicates in the result set. As we have never specified the time when creating
these fields, MySQL always defaults to 00:00:00. If our examples had used more accurate
date/time fields, the difference in the time columns would have stopped this being treated
as a duplicate row.

86 Database Design Manual: using MySQL for Windows

Figure 7.14 Two different tables joined with UNION.



Altering Data

Once you have populated your tables with data, that is seldom the end of the process.
Although most websites accumulate much data that does not change over time, such as
page access logs and cookie tables, other data changes. On a website that allows users to log
on, for example, users may wish to change their password or their email address. On a data-
base-driven website, changes to the contents of the pages will require changes to the under-
lying database that contains the pages.

SQL therefore has various commands that allow you to change the data that you have
previously stored in your tables. This chapter contains some common commands that are
used for this purpose:

• UPDATE allows you to change the contents of data within a table.
• ALTER allows you to make changes to the table structure once you have created it.
• REPLACE prevents errors when creating things that may already exist.

We will now describe these commands.

UPDATE

UPDATE allows you to change the contents of parts of a table without altering its structure.
The basic format of the UPDATE command is as follows:

UPDATE tablename 
SET columnname=numericvalue,

columnname=”textvalue”
WHERE condition

As you work through the book you might have found it frustrating that our webpage
table contains hardly any content, just the name of each page. Select everything from the
webpage table to remind yourself of its limited contents. Figure 8.1 shows the table.

You will notice from Figure 8.1 that the content column is largely filled with NULLs. We
will use the UPDATE keyword to remedy this and give it some more relevant data. The fol-
lowing script will add some text to the content column:

Changing Data 8

87



UPDATE webpage 
SET content = “My email is someone@nowhere.com”

The result of running the above is shown in Figure 8.2. You will notice that the UPDATE
command does not give you the normal results grid, as the command changes data but
does not return it. The only feedback that you get is in the status bar at the bottom of the
box.

You will see in Figure 8.2 that for the above query it has matched and changed six rows.
This could be a problem as we only wanted to change the one row for the Contact Me page.
This example has been used to show how dangerous the UPDATE query can be without the
WHERE clause. Select everything from the webpage table again and you will see the results
of the unrestricted UPDATE, as in Figure 8.3. All of the content column cells have been
replaced with our email address.

88 Database Design Manual: using MySQL for Windows

Figure 8.1 Our content lacking webpage table.

Figure 8.2 When updating, feedback appears on the last line.



Thankfully, our example database only has six rows, only one of which had some mean-
ingful data, so we will not have to do much work to fix this problem. Imagine, however, the
amount of work that would be involved if we had used a similar query on a commercial
website with hundreds or thousands of pages! This example shows that it is best to get into
the habit of always using a WHERE clause with the UPDATE query. Try to think of the
query as UPDATE, SET, WHERE as opposed to UPDATE, SET and it may save you a lot of
work. I hope this is the last time you will see this happen and you will not make this mis-
take when it matters!

To fix this, we will first clear out the wrong data by using the UPDATE without the
WHERE for one last time:

UPDATE webpage 
SET content = “”

The above query sets all of the cells in the content column to the empty string. Now we
will re-run the UPDATE query for row 6 but this time use the WHERE clause:

UPDATE webpage 
SET content = “My email is someone@nowhere.com”
WHERE ID = 6

After running the query above, select everything from the webpage table and you should
have the more satisfactory results as shown in Figure 8.4.We have still lost the data that was
in row 2 but we will remedy that next. Notice that by using the WHERE clause to match the
primary key field (ID) of the table we were able to restrict our update to exactly the row that
we wished to change.

Now that we have successfully changed the data in one column, we can add some content
to all of the rows in the webpage table one by one. The following script will do this for you:

Chapter 8 • Changing Data 89

Figure 8.3 The damage caused by omitting the WHERE.



UPDATE webpage 
SET content = “Welcome to my MySQL based website”
WHERE ID = 1;

UPDATE webpage 
SET content = “Please add a comment to my visitor book”
WHERE ID = 2;

UPDATE webpage 
SET content = “Here are some links you may find of use”
WHERE ID = 3;

UPDATE webpage 
SET content = “Here is what I have done with my work life up till now”
WHERE ID = 4;

UPDATE wbpage 
SET content = “My hobbies are, web programming, anorak spotting and 

fish collecting “
WHERE ID = 5;

Figure 8.5 shows what the webpage table will look like after you have selected everything
from it again. Our website’s database now has some content.

ALTER

The ALTER command is a strange command to have in SQL as it can be argued that it is not
needed. This command allows you to change the structure of a table after it has been cre-
ated. The argument is that if you have correctly completed the analysis and design of your
database, you should not need to alter its structure at a later time. However, the real world
is seldom like this, we make mistakes, and goals and requirements change, so it is a good

90 Database Design Manual: using MySQL for Windows

Figure 8.4 Fixing our unconstrained UPDATE.



thing that we have the ALTER command. The general format of an ALTER query is as fol-
lows:

ALTER TABLE tablename 
commandtype columnname parameters

The ALTER TABLE command can do several things, depending on what you type in the
commandtype position. Commandtype can be one of the following:

• ADD adds a new property or column to the table.
• RENAME changes the name of the table.
• CHANGE changes the name of a column and its datatype.
• MODIFY, changes the datatype of a column.
• DROP removes the column from the table completely.

The next few sections will demonstrate these different types of ALTER query with our
visitorbook table. To remind ourselves of this table, run the following:

DESCRIBE visitorbook

Figure 8.6 shows the current format of the visitorbook table. As we created this in a rush
and not in our chapter on the design of databases, we made a few mistakes. We will change
some of the columns and add an extra one using ALTER.

As a final reminder, Figure 8.7 shows the current content of the table, after selecting
everything from it.

ALTER TABLE ADD

The ALTER TABLE ADD query has the following basic format:

ALTER TABLE tablename 
ADD columnname datatype

Chapter 8 • Changing Data 91

Figure 8.5 The correctly updated webpage table.



On our visitorbook page on the website, it would be nice to ask the visitor to give us
some idea of where they are based geographically. We will store this in a location column.
We will also allow them to rate our site with a score between 1 and 20. For the location col-
umn, we need to store a string. It is hard to guess the length of this directly but let us say this
would be no more than 50 characters long. Therefore we use the following to add a location
column to the table:

ALTER TABLE visitorbook 
ADD location VARCHAR(50)

For the score column, we will only be storing a limited range of numbers, so we can just
use a SMALLINT datatype to store the score. We add the extra column as follows:

ALTER TABLE visitorbook 
ADD score SMALLINT

92 Database Design Manual: using MySQL for Windows

Figure 8.6 The current format of the visitorbook table.

Figure 8.7 The current content of the visitorbook table.



You may notice from the above that the format to add a table follows the same format as
when we were creating a table. We can add other parameters to the command, should they
be needed, that allow the column to become a foreign key, or allow nulls. For our examples
we do not need to specify any additional parameters. Have a look at the chapter on creating
databases to remind you of these extra parameters if you need to. Describe the webpage
table again and you will see the results shown in Figure 8.8.

You will see from Figure 8.8 that the visitorbook table now contains the two new rows.
The ADD keyword can also be used to add other things to the table, such as primary

keys, as well as indexes. To add a primary key to a table that does not already have one, use:

ALTER TABLE tablename 
ADD PRIMARY KEY columnname

Of course, the column that you are setting the primary key for must have unique data in
each field for the column to be specified as such. To add an index to a column use:

ALTER TABLE tablename 
ADD INDEX indexname (columnname)

ALTER TABLE RENAME

The ALTER TABLE RENAME query allows you to change the name of a table. It has the fol-
lowing basic format:

ALTER TABLE tablename 
RENAME newtablename

Chapter 8 • Changing Data 93

Figure 8.8 The two new columns in the visitorbook table.



Therefore, to rename the visitorbook table to visitorsbook, we would execute the follow-
ing query:

ALTER TABLE visitorbook 
RENAME visitorsbook

And to change it back:

ALTER TABLE visitorsbook 
RENAME visitorbook

RENAME only allows you to change the name of the whole table. One way that you can
change the name of a column is by using CHANGE

ALTER TABLE CHANGE

The ALTER TABLE CHANGE query allows you to change the name of a column as well as
its datatype. It has the following basic format:

ALTER TABLE tablename 
CHANGE oldcolumnname newcolumnname datatype

CHANGE requires you to specify the old and new column names even if you are not
changing the name of the column, in which case they can both be the same. Likewise, it
requires you to specify the datatype even if you are not changing it.

For example, our column lastname could be confusing to some cultures, so we will
change it to familyname instead. To do this, run the following query:

ALTER TABLE visitorbook 
CHANGE lastname familyname TEXT

Notice how we still have to specify the datatype even though we are not changing it.
While we are looking at that column though, do you see a problem with the datatype? We
are using a TEXT field, which can contain strings of varying length, to store a string that in
all probability is only tens of characters long. Let us make the arbitrary decision that a fam-
ily name will never be longer than 40 characters, so change the type to a VARCHAR using
the following script:

ALTER TABLE visitorbook 
CHANGE familyname familyname VARCHAR(40)

The CHANGE command allows you to change the column name and datatype at the
same time as well by specifying the two different column names and the new datatype.

You could change the firstname column to a VARCHAR as well with the following:

94 Database Design Manual: using MySQL for Windows



ALTER TABLE visitorbook 
CHANGE firstname firstname VARCHAR(40)

However, the next command shows an easier way to change the datatype if that is the
only change you wish to make to the column.

ALTER TABLE MODIFY

MySQL has given us the ALTER TABLE MODIFY query that saves us a bit of typing if we are
only going to change the datatype. This has the following basic format:

ALTER TABLE tablename 
MODIFY columnname datatype

To use MODIFY to change the datatype of a column we no longer have to type the col-
umn name twice, so to change the firstname column we can use:

ALTER TABLE visitorbook 
MODIFY firstname VARCHAR(40)

We have not looked at the format of our table for a while, so Figure 8.9 shows our
changes to date with a describe visitorbook query.

ALTER TABLE DROP

The ALTER TABLE DROP query has the following basic format:

ALTER TABLE tablename 
DROP columnname, columnname

You can delete one column or several by separating the column names with commas.
Looking at Figure 8.9 may make you wonder why we did not change the datatype of the

middlename column. This column is awaiting a worse fate! If you turn back to Figure 8.7
you will notice that there is no data being stored at all in the middlename column, and with
hindsight, we have no real need to obtain that information from our website visitors.
Currently that will be just wasting space within our database. We can remove the middle-
name column by using the following script:

ALTER TABLE visitorbook 
DROP middlename

If you run that script you may be startled by how quickly it drops the column. Bear in
mind that when you remove columns it is not like a modern interface which happily asks

Chapter 8 • Changing Data 95



you if you are sure that you want to delete something. There are no second chances, all of
the column’s data will be destroyed when you drop it as soon as you issue the command.

You can also use the ALTER TABLE DROP query to remove an index or a primary key
from a table. To remove the primary key use:

ALTER TABLE tablename 
DROP PRIMARY KEY

This does not remove the actual column, but removes the primary key flag from that col-
umn.

To remove an index use:

ALTER TABLE tablename 
DROP INDEX indexname

Dropping the primary key or the index on a table is not as dangerous as dropping a
whole column, as when you do this you will not lose any data, and the index or primary key
can be added back on again afterwards if you need to.

Get it Right the First Time!

You may have noticed a lot of disk activity when you were running some of these ALTER
TABLE commands. This is because it is very hard for the database system to change a table
that has already been created. The way that it gets around this problem can be very proces-
sor intensive, as the server creates a new table with the changed column, copies the data
from the old table to the new one, deletes the old table and finally renames the new table to
the same name as the old one! On a big table, running an ALTER command may take a long

96 Database Design Manual: using MySQL for Windows

Figure 8.9 Our ALTERed visitorbook table.



time, all the more reason why you should endeavour to create the table accurately in the
first instance.

Many of these commands are also a MySQL addition to the original ANSI SQL92 defini-
tion, so may not work on other database management systems that are only compliant with
this standard.

UPDATE Revisited

I previously warned of the dangers of doing an unrestricted update, that is, an UPDATE
without the WHERE clause. However, I will now show you a time when such an update is
useful. When we were adding columns to our visitorbook table we added a score column. It
would be useful to add some data to that column for use later on.We could just set all of the
columns to the same value, but instead we will use the data stored in one column to ‘seed’
the data in the score column. Again, we could just copy from one column to the next but we
will change it slightly by multiplying the source column to get the new one. This sounds
complex, so run the following script:

UPDATE visitorbook 
SET score=entryID * 2

For each row, this query will take the value of the entryID field, multiply it by 2, and store
it in the score field of that same row. To view the results, run the following:

SELECT entryID, score 
FROM visitorbook

Figure 8.10 shows the results of our update.
Looking at Figure 8.10, you can see that we now have a different score in each row of the

table, and each score is twice the value of the entryID. We just used the entryID as a chang-
ing number to seed the score column, to show that an unrestrained UPDATE does not nec-
essarily have to result in all the updated fields having the same value.

Chapter 8 • Changing Data 97

Figure 8.10 UPDATE calculating values for each row.



Although we are using this example to ‘fix’ the score of our website, this type of update
can be useful if we realize that we have accumulated a lot of data that needs changing. For
instance, in an e-commerce system, you may have been storing the total cost for each order
without sales tax, and then decide that it should be with tax. It would be easy enough to
change your PHP code to store the total value plus the tax, but what about the data already
in the table? You can create a new column in the table for the new total, use an unrestricted
update to multiply the old total column by the tax amount and place the data in the new col-
umn. You then drop the old column, rename the new one and your data is now stored cor-
rectly.

REPLACE

REPLACE will insert data into a table, but if you supply a primary key that is the same as
one that is already in the table, then REPLACE will replace that row. It has the same format
as the INSERT query, and also can be used in a similar way to the UPDATE query, but with-
out the WHERE clause. The first format for REPLACE is as follows:

REPLACE table ( column, column …)
VALUES value, value …

If one of the columns that you specify is the primary key for the table, and the value of
that field does not match a key that is already in that table, then the above works exactly as
a standard INSERT query. If, however, the primary key matches one that already exists, it
will delete that row, and replace it with the data that you have just provided. To demon-
strate, we will add a new row to the visitorbook table using REPLACE, and then change that
row using REPLACE a second time. Run the following:

REPLACE visitorbook ( entryid,
cookieid,
firstname,
familyname,
entrytext,
score,
location) 

VALUES (7,
1,
‘Paul’,
‘Davis’,
‘How should I know?’,
15,
‘Dusseldorf’)

Now select everything from the visitorbook table. The results are shown in Figure 8.11.
Before adding this row the last row’s primary key was 6, so specifying 7 for this row has
done exactly the same as an INSERT would have.

98 Database Design Manual: using MySQL for Windows



You may notice that we missed out the date on the last entry. If you have used the
UPDATE query, the temptation would be to run the following to add a date to the row:

REPLACE visitorbook (entryid, entrydate) 
VALUES (7, ‘2002-02-20’)

However, Figure 8.12 shows the results of this. Notice that instead of replacing the entry-
date field in the row, it has replaced the whole row, but only added the entrydate to the new
row that it has inserted. This shows the difference between UPDATE and REPLACE.
UPDATE can selectively change a field within a row, whereas REPLACE will delete the row
that it is replacing, and create a new row with only the fields that you specify.

So to add the date to the row we just added with REPLACE, we need to essentially run the
whole query again as follows:

REPLACE visitorbook ( entryid,
entrydate,
cookieid,
firstname,
familyname,
entrytext,
score,
location) 

VALUES (7,
‘2002-02-20’,
1,
‘Paul’,
‘Davis’,
‘How should I know?’,
15,
‘Dusseldorf’)

Chapter 8 • Changing Data 99

Figure 8.12 REPLACE removes unspecified fields.



Figure 8.13 shows the results of running the above query. We now have a row that has all
of the fields populated.

We can also run the REPLACE query with the alternative format:

REPLACE table 
SET column=value,

column=value

I personally prefer using this format of the command as it saves you having to spend
time ensuring that your column list is in the same order as your value list.

CREATE or REPLACE

You can also use the REPLACE command when you are creating a table, function or
datatype. When you are creating one of these objects, if you use:

CREATE OR REPLACE object parameters

instead of just CREATE, the command will delete an existing object before creating a
new one. This stops an error if the object already exists, and also stops you having to delete
the object first if you do want to replace it.

DUPLICATE KEY UPDATE

When you are inserting data into a table with a primary key, you can have problems if you
insert a key that already exists. For example, if we were inserting a new row into our visitor
book shown in Figure 8.13, we could use the following:

100 Database Design Manual: using MySQL for Windows

Figure 8.13 Replacing a row with REPLACE.



INSERT into visitorbook (entryid, entrydate, cookieid, firstname,
familyname, entrytext, score, location)  

VALUES (7,’2002-02-20’,1,’Paul’,’Davis’,’How should I
know?’,15,’Dusseldorf’)

However, you will notice that we already have a row with the primary key of 7, so this
insert will stop with an error as follows:

Duplicate entry ‘7’ for key 1

There is a new clause in MySQL version 4.1 that allows the insert to update the duplicate key
if the primary key already exists. To use this we re-write the query as follows:

INSERT into visitorbook (entryid, entrydate, cookieid, firstname,
familyname, entrytext, score, location)  

VALUES (7,’2002-02-20’,1,’Paul’,’Davis’,’How should I
know?’,15,’Dusseldorf’)

ON DUPLICATE KEY UPDATE entryid = entryid + 1

In this case, the INSERT will run without an error, and the row that used to have a pri-
mary key of 7 will have been replaced with a primary key of 8. This works in this example
because before the insert a row with the primary key of 8 did not exist. If there was such a
row then a similar error would be generated for row 8.

Chapter 8 • Changing Data 101



This page intentionally left blank 



Keeping Data Accurate

After spending so much time designing our databases and putting data into them, it seems
a pity to discuss deleting them, but deleting records and tables is still an important part of
using MySQL. If we are trying to keep our data valid and accurate we will have to remove
data from time to time. This chapter will show you how to remove rows from tables, and
then how to remove whole tables.

You may remember back in Chapter 5 we created the webpage2 table by inserting data
from the webpage table. If for some reason you no longer have the webpage2 table in your
database, you can create it again quickly by running the following:

CREATE TABLE webpage2 (ID MEDIUMINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
Content text, Title text)

Now copy the data into this table by executing the following:

INSERT INTO webpage2 
SELECT * from webpage

Select everything from webpage2 and you will see the sacrificial table in Figure 9.1.

DELETE FROM

To DELETE rows from a table, you use the following query:

DELETE FROM tablename
WHERE condition

As we demonstrated earlier, this command will quickly and unsympathetically remove
everything from a table without a WHERE clause, so be careful when you are using it. For
instance, if we wanted to delete the visitorbook row from our webpage2 table we would use
the following:

Deleting our Data 9

103



DELETE FROM webpage2
WHERE id=2

As you see from Figure 9.2, this has cleanly removed the row. As we were referring to a
row specifically by using its primary key, it was safe enough to delete it as we did.

The problem comes when you want to delete a few rows using some pattern matching.
You must be sure that you know what you are about to remove. One of the ways to ensure
that you are deleting the right rows is to try and select them with the same criteria first. For
instance, if we wanted to delete the How to contact me row with pattern matching, test the
match first with a SELECT as follows:

SELECT *
FROM webpage2
WHERE title LIKE ‘Ho%’

104 Database Design Manual: using MySQL for Windows

Figure 9.1 The webpage2 table.

Figure 9.2 The webpage2 table after removing a row.



You will notice from Figure 9.3 that if we were to have deleted using this match we would
have removed two rows. Was this what you wanted to do with the match? A simple deletion
of a row may have resulted in our removing the Home page of our website.

Finally, you can use DELETE to completely clear all of the rows from a table as follows:

DELETE FROM webpage2

Run the above and then try to select everything from the table. You will just receive a
message saying that your query produced no results. Describing webpage2 shows that the
table is still there, but it no longer has any data in it.

DROP TABLE

There comes a time when you not only need to delete the contents of a table but you need
to remove the table as well. To do this, use the DROP command as follows:

DROP TABLE tablename

So to finally remove all traces of webpage2, execute the following query:

DROP TABLE webpage2

If you now try and select anything from webpage2, you will get the error shown in
Figure 9.4.

You can DROP multiple tables by specifying a list of them as follows:

DROP TABLE table1, table2, table3, etc

If you are using a MySQL table type that checks for referential integrity, the DROP
TABLE command may generate errors if other tables make reference to rows in the table
being dropped. To drop a table and all others that reference it, you would use:

DROP TABLE tablename CASCADE

Chapter 9 • Deleting our Data 105

Figure 9.3 The webpage2 table after deleting rows using pattern matching.



The CASCADE does not function in the current version of MySQL but if you are using
this book to learn SQL for other systems it is useful to know about. Newer versions of
MySQL may well implement this function.

DROP

The DROP command also can be used to delete entire databases. To do this you omit the
TABLE keyword as follows:

DROP databasename

We will not demonstrate this command because we want to use our database for the rest
of the book!

106 Database Design Manual: using MySQL for Windows

Figure 9.4 The webpage2 table has been dropped.



Count

Aggregate functions in MySQL allow you to calculate a summary of values from a column
and from groups of values within a column. As usual, the best way to demonstrate this con-
cept is with an example.

Count in MySQL is a function that allows you to count the number of specified items in
a table. One way that you can use count is as follows:

SELECT count(columnname) 
FROM tablename

We can use the above statement to count the number of rows within a table by using the
following script:

SELECT count(*) 
FROM visitorbook

If you execute that query you will get the very simple results shown in Figure 10.1.
You may wonder why you would bother performing a query like this when you can just

look at the top row of the output to tell you how many rows came from your query.
However, when you are accessing these functions from within a script language, like PHP,
then it is more useful. For instance, the following script counts all of the hits in our log
table, thus producing a counter for the whole of the website:

Aggregate Functions 10

107

Figure 10.1 Counting rows in a table.



SELECT count(*) as PageHits
FROM log

Figure 10.2 shows the result of that query. Notice that we used an alias to make the out-
put a little bit more meaningful than the column title that the first query showed in
Figure 10.1. If you were to write a script to execute that query on the first page of your web-
site, then it would be a wonderful way of implementing a website page counter. That query
will show all of the hits on all of the pages of our site, as long as you have remembered to
make each page log a hit to it in the database!

If you wanted to implement a page counter for each individual page, then we can use the
same script but this time restrict the search with a WHERE clause like this:

SELECT count(*) as PageHits
FROM log
WHERE webpageID=2

For instance, in our webpage table, the webpageID of the visitorbook page is 2, so the
script above will count the number of times that an entry has been put in the database for
that page. Executing that query on each page where we want a counter to appear will enable
the same table, log, to be used to generate counters for every page on the site.

Now we have encountered our first aggregate function, it’s time to show you something
that makes it even more powerful, the GROUP BY clause.

GROUP BY

GROUP BY is a clause that is added after a select statement that allows you to get extra
functionality from an aggregate function. The GROUP BY clause has to be placed after a
where clause if you include one. You use the GROUP BY clause as follows:

SELECT aggregatefunction(columnname), columns 
FROM tablename
GROUP BY columnname

108 Database Design Manual: using MySQL for Windows

Figure 10.2 Counting all the hits on our website.



On its own, the GROUP BY clause does not do much. Consider the results of the follow-
ing query shown in Figure 10.3:

SELECT familyname
FROM visitorbook
GROUP BY familyname

If this query stops with an error it is probably because you have not followed scripts in
Chapter 8, where we renamed the lastname column to familyname.

At first glance Figure 10.3 looks as if the GROUP BY has done little more than a SELECT
DISTINCT, in that it has picked the unique list of last names from the visitor book. If you
remember from the last time that we looked at that table there were three Normans, a
Garrett, a Davis, a Shah and someone with no last name. The query has just picked one
instance of each of them. The power of the GROUP BY clause comes when we attach it to a
query with an aggregate function. For example, take the following:

SELECT familyname, count(familyname) as familynamecount
FROM visitorbook
GROUP BY familyname

Figure 10.4 shows the results of that query. GROUP BY has done more than just select the
unique entries of the familyname column, it has grouped each similar entry into a set of
values that the aggregate functions can work with.

To demonstrate further, if we wanted to apply the GROUP BY clause to the query that
counted website hits, we can use:

SELECT id, count(*) 
FROM log 
GROUP BY webpageid

Chapter 10 • Aggregate Functions 109

Figure 10.3 GROUP BY without an aggregate.



Figure 10.5 shows the results. Notice that on this occasion we have not grouped by the
clause that we are counting, but that does not matter, the count is really just counting rows,
not columns. So the query is saying: “Give me the number rows of the table that refer to
each specific webpage”.

Now this is getting powerful; the simple query has shown that our Home page has had
three hits, and our visitorbook and links page have each received one hit. Imagine how use-
ful this data would be for a table that contained tens of thousands of hits on hundreds of
webpages. If we were performing such a query and wanted to restrict the results to the first
10 pages, then we would add a WHERE clause as follows:

SELECT id, count(*) 
FROM log 
WHERE webpageid <=10
GROUP BY webpageid

Notice the position of the WHERE clause. If you put it after the GROUP BY you get an
error message.

110 Database Design Manual: using MySQL for Windows

Figure 10.4 Counting groups with GROUP BY.

Figure 10.5 Counting groups with GROUP BY.



Of course, the results in Figure 10.5 are not very user friendly. To get a more readable
output, try the following query:

SELECT webpage.title, count(*) as numberofhits
FROM log LEFT JOIN webpage 

ON log.webpageid=webpage.id
GROUP BY log.webpageid

Figure 10.6 shows what happens when we use the aggregate GROUP BY along with a
LEFT JOIN to get the webpage names and an alias to get a meaningful column name.

We have now confirmed the results that we had guessed at in Figure 10.5, by making our
output more readable and meaningful. We could use the output of this query with little
reformatting on a webpage that showed the full statistics for our website.

MAX

The MAX function calculates the maximum value from a set of numeric values. One way of
using this function is:

SELECT MAX(score) 
FROM visitorbook

This will find the highest value of score that someone has entered into the visitor book.
You can see the result of running this query in Figure 10.7.

If you have a column that uses AUTONUMBER to create its ID as a primary key, you can
use a function to tell which row was the last added, by selecting the highest ID as follows:

SELECT MAX(cookieID) 
FROM cookies

If for some reason you want to manually add a key to the table without using AUTON-
UMBER, you can modify the above query as follows:

Chapter 10 • Aggregate Functions 111

Figure 10.6 A count, GROUP BY, alias and LEFT JOIN.



SELECT MAX(cookieID) +1
FROM cookies

This will add one to the highest primary key that there is, and you can insert the results
straight into the table as the new primary key.

MIN

The MIN function is the opposite of MAX in that it calculates the minimum value from a
set of numeric values. So to find the lowest score that our visitors gave our website we would
use:

SELECT MIN(score) 
FROM visitorbook

The results are shown in Figure 10.8. The minimum score that any of our visitors has
given the website yet is 2 out of 20.

112 Database Design Manual: using MySQL for Windows

Figure 10.7 Finding the maximum of a set of values.

Figure 10.8 Finding the minimum of a set of values.



SUM

SUM finds the total value by adding together a set of numeric values. To add up all of the
scores that our visitors gave our website we would use:

SELECT SUM(score) 
FROM visitorbook

The results are shown in Figure 10.9.

Using Multiple Aggregates

You are not limited to just using one aggregate in a query. For instance, if we wanted to cal-
culate the average score given by a visitor, we can use an aggregate to sum the score divided
by a count of the scores given, as follows:

SELECT SUM(score) / COUNT(score) AS average
FROM visitorbook

Have a look at Figure 10.10 to see the average score for our site based on the data that was
in the tables.

Chapter 10 • Aggregate Functions 113

Figure 10.9 The sum of the scores on the visitorbook.

Figure 10.10 The average of the scores on the visitorbook.



We can even use the following to find the average score given by people of the same fam-
ily name:

SELECT familyname, SUM(score) / COUNT(score) AS average
FROM visitorbook
GROUP BY familyname

Figure 10.11 shows the query above in action. It gives the name and works out the aver-
age score for each name. It also shows that my family are not showing favouritism by giving
me top marks! You may notice from the query that the select statement asks for a standard
column name, familyname, and a number derived from aggregate statements. Although it
is quite acceptable to ask for multiple aggregates, as follows:

SELECT SUM(score) AS sum, 
COUNT(score) AS count, 
max(score) AS max

FROM visitorbook

you are not allowed to mix column names and aggregates in the same selection set with-
out using GROUP BY. For instance, the following script will generate the error shown in
Figure 10.12:

SELECT familyname, SUM(score) / COUNT(score) AS average
FROM visitorbook

The full error states, “Mixing of GROUP columns (MIN(),MAX(),COUNT()…) with no
GROUP columns is illegal if there is no GROUP BY clause.”

So although you can use multiple aggregates together in a SELECT statement, if you are
mixing them with column names you must remember to include a GROUP BY clause to get
the query to work.

114 Database Design Manual: using MySQL for Windows

Figure 10.11 The average of the scores for each family.



AVG

Although we calculated the average manually in the previous section, it is such a useful tool
that there is a built-in function in MySQL. The AVG function calculates the average value of
a set of numeric values. So to find the average that our visitors gave our website we would
use:

SELECT AVG(score) 
FROM visitorbook

This query will give similar results to those shown in Figure 10.10, although to a higher
precision than the manual calculation.

HAVING

When using the WHERE clause in an aggregate query, we have already mentioned that it
has to be placed before the GROUP BY clause as it restricts the query before it has been
sorted into groups. The HAVING clause is placed after the GROUP BY clause, and allows
you to restrict after the group and by an aggregate. Examine the following query:

SELECT familyname, AVG(score) AS goodaverage
FROM visitorbook
GROUP BY familyname
HAVING AVG(score) >= 8

Similar to the previous query, this one calculates and displays the average score for each
family, but then restricts the results, using the HAVING clause, to groups whose average is

Chapter 10 • Aggregate Functions 115

Figure 10.12 Columns mixed with aggregates must use GROUP BY.



greater than or equal to 8. These results are shown in Figure 10.13, and you can compare
these with the results of the query without the HAVING clause that are shown in
Figure 10.11.

116 Database Design Manual: using MySQL for Windows

Figure 10.13 The average of the scores for each family.



Using Date and Time

Putting a date and time column in a database is a simple task. Populating a row with the
current date and time is even easier in many scripting languages. However, getting the date
and time back, although sometimes confusing, can be an extremely powerful way of
analysing your data, and getting more from your tables.

NOW

To obtain the current date and time, use the NOW() function. The function requires the
open and close brackets even though you are not passing any value to it. To quickly obtain
the current date and time you can use a SELECT as follows:

SELECT NOW()

This will produce the output shown in Figure 11.1.
When we created the Log table, we manually filled it with sample data. When the Log

table is in use on the system, we will want the date and time to be automatically added into
the table, so we can use the following to accomplish this:

INSERT INTO Log ( DateCreated,
Browser,
IPNumber,
CookieID,
WebPageID)

VALUES ( NOW(),
‘Mozilla/4.0’,
‘192.168.1.10’,
2,
1)

The above will use the NOW() function to insert the current system date and time into
the newly created row. If you have been keeping up with the examples, this should have cre-
ated a row with the auto-ID of 6, so to view this row we can issue the following query:

Working with Dates and Times 11

117



SELECT id, datecreated 
FROM log 
WHERE ID= 6

Figure 11.2 shows the results, yours will show a different date and time!

CURRENT_DATE

CURRENT_DATE gives you the system date for today. It differs from NOW() in that it does
not require the brackets and only outputs the date.You can use the following to find the cur-
rent date quickly:

SELECT CURRENT_DATE

Figure 11.3 shows the way that CURRENT_DATE is output in a query.

CURRENT_TIME

CURRENT_TIME returns the system time. Again it differs from NOW() in that it does not
require the brackets and only outputs the time.You can use the following to find the current
time quickly:

SELECT CURRENT_TIME

118 Database Design Manual: using MySQL for Windows

Figure 11.1 SELECT NOW().

Figure 11.2 An inserted NOW().



Figure 11.3 shows the way that CURRENT_TIME is output in a query.You can insert the
current time into a table using a similar technique to that which we demonstrated with the
NOW() function.

YEAR

YEAR() allows you to extract the year from a given date. You need to pass a date to the
YEAR function as follows:

YEAR(aDate)

aDate is any object that contains a date part. So we could use the following to output the
current year in a select statement:

SELECT YEAR( NOW() ) 
AS This_year_is

Figure 11.4 shows this query along with the next function. We have passed NOW() in as
the date, which will actually pass in the date and time, but the YEAR() function ignores the
extra data and works with just the date portion of the NOW() output.

MONTH

MONTH() works in the same way as YEAR() but outputs the numerical value correspon-
ding to the month of the date given. The function takes the following format:

MONTH(aDate)

aDate is any object that contains a date part. So we could use the following to output the
current month number in a select statement:

SELECT MONTH( NOW() ) 
AS The_month_is

Chapter 11 • Working with Dates and Times 119

Figure 11.3 Selecting the current date and time.



As previously, we have combined this query with the results from the YEAR function
which are shown in Figure 11.4.

MONTHNAME

Using MONTH() to find the month number as shown above is fine if you are wanting to
perform some month calculations, but if we are presenting this to the user we may wish to
output the month name in words.We do this by using the MONTHNAME() function, which
takes the following format:

MONTHNAME(aDate)

As usual, aDate is any object that contains a valid date.We will demonstrate this by a dif-
ferent query this time. The following query will show the months of all the entries in the log
table:

SELECT MONTHNAME(datecreated) 
FROM Log

Figure 11.5 shows our log table with the month, as opposed to the exact date and time,
that each entry was created. Notice how on this occasion we inserted the current row’s
DateCreated field into the function as the date. The query has processed the function for
each row in the table. Depending on how closely you have followed the INSERT statements
in this book, your table may have more or fewer rows.

DAYNAME

DAYNAME() will return the day that a given date falls on. You need to pass the function a
date as follows:

SELECT DAYNAME( NOW() )

Figure 11.6 shows the results when combined with the next two examples. You will see
from the figure that I am writing this on 23 December 2002, which is a Monday.

120 Database Design Manual: using MySQL for Windows

Figure 11.4 Selecting the current year and month.



DAYOFWEEK

DAYOFWEEK() will return a number based on the day that the current date falls on from
Table 11.1.

Table 11.1 DAYOFWEEK returned values.

DAYOFWEEK needs you to pass it an object with a date component, as with other date
functions that we have discussed previously. To obtain the numeric day of the week for
today, you would issue the following query:

SELECT DAYOFWEEK( NOW() )

Figure 11.6 shows the results from that query.You can see that the day is Monday and its
DAYOFWEEK value is therefore 2.

WEEKDAY

WEEKDAY() works in a similar way as DAYOFWEEK() except it indexes the day names in
a different way. It returns values for the day of the week based on the values in Table 11.2.

Day Value returned

Sunday 1
Monday 2
Tuesday 3
Wednesday 4
Thursday 5
Friday 6
Saturday 7

Chapter 11 • Working with Dates and Times 121

Figure 11.5 MONTHNAME() outputting the log table.



Table 11.2 WEEKDAY returned values.

To obtain the numeric weekday for today, you would issue the following query:

SELECT WEEKDAY( NOW() )

Figure 11.6 shows the results from that query.You can see that the day is Monday and its
WEEKDAY VALUE is therefore 0.

DAYOFMONTH

The DAYOFMONTH() function returns the day number of a given month.We use the func-
tion as follows:

DAYOFMONTH( aDate )

By passing the output of the NOW() function into DAYOFMONTH, you can obtain the
current day number. Figure 11.7 shows this at the time of writing, which is 23 December.

DAYOFYEAR

The DAYOFYEAR() function returns a count of the number of days since 1 January for a
given date. We use the function as follows:

DAYOFYEAR( aDate )

Day Value returned

Monday 0
Tuesday 1
Wednesday 2
Thursday 3
Friday 4
Saturday 5
Sunday 6

122 Database Design Manual: using MySQL for Windows

Figure 11.6 DAYNAME(), DAYOFWEEK() and WEEKDAY().



aDate is any object that contains a date part. By passing the output of the NOW() func-
tion into DAYOFYEAR, you can obtain the number of days since the start of the year for a
given date. Figure 11.7 shows the output of the DAYOFYEAR() function when used in a
SELECT statement. DAYOFYEAR() is useful when calculating with dates, as it provides a
numerical version of the date to work with. You can use functions like this to calculate
things like ages, although there are other functions that make this easier.

WEEK

WEEK() returns the number of weeks since the start of the year for a given date. As usual,
all that it requires as a parameter is an object with a date part as follows:

WEEK( aDate )

So, to find the current week number we would use:

SELECT WEEK( NOW() )

Figure 11.8 shows the WEEK() function in action. You can see that it is nearly the last
week of the year at time of writing.

Incidentally, depending on the day that the year starts on, it is possible to have the begin-
nings of a week 53, so if 53 is returned from the WEEK() function, it is not an error.

Using the above format, WEEK() calculates the week number using the assumption that
the first day of the week is Sunday. If you want the calculation to be based on a Monday, you
use the amended format:

WEEK( aDate, 1 )

There are other peculiarities when the week falls around the year end; is it the first week
of this year or the last week of last year? Have a look at the Date and Time Functions sec-
tion of the MySQL online manual for further details.

YEARWEEK

YEARWEEK() returns the year and the week number as one big number. You use the func-
tion by passing it a value which has a date component as follows:

Chapter 11 • Working with Dates and Times 123

Figure 11.7 DAYOFMONTH() and DAYOFYEAR().



YEARWEEK( aDate )

Figure 11.8 shows this function working in week 51 of 2002. I am sure that this function
is of use to someone; however, I have yet to find a use for it myself. It would be interesting
to find out what others are using it for.

QUARTER

QUARTER() returns a number ranging between 1 and 4 depending on the part of the year
that it is given. The number returned is based on Table 11.3.

Table 11.3 QUARTER returned values.

QUARTER() works like other date functions in that you supply it an object with a date
part as follows:

QUARTER( aDate )

Figure 11.8 shows the function working in the fourth quarter of 2002.

HOUR

HOUR() returns the hour for a given time object, based on the 24-hour clock. You pass the
time value to it as follows:

HOUR( aTime )

To obtain the current hour, we can use the following:

SELECT MINUTE( NOW() )

Between: And: Value returned

1 January 31 March 1
1 April 30 June 2
1 July 30 September 3
1 October 31 December 4

124 Database Design Manual: using MySQL for Windows

Figure 11.8 WEEK(),YEARWEEK() and QUARTER().



Figure 11.9 shows this function running along with some other time functions.

MINUTE

MINUTE() returns the minutes past the hour for a given time object. You pass the time
value to it as follows:

MINUTE( aTime )

To obtain the current minute past the hour, we can use the following:

SELECT MINUTE( NOW() )

Figure 11.9 shows this query in action.

SECOND

SECOND() returns the seconds in the minute of a given time object.You pass the time value
to it as follows:

SECOND( aTime )

To obtain the seconds part of the current time, we can use the following:

SELECT SECOND( NOW() )

Figure 11.9 shows the results for this at the time of writing.

DATE_ADD

There is no real need to add dates together, however adding a period of time to a date is use-
ful. The DATE_ADD() function allows you to add a time period to a date. The format of
DATE_ADD() is as follows:

DATE_ADD( aDate, INTERVAL timeperiod )

Chapter 11 • Working with Dates and Times 125

Figure 11.9 HOUR(), MINUTE() and SECOND().



The timeperiod will be a value, followed by the type of time period. This sounds com-
plex, so as usual we will demonstrate by example. To find out what date it will be on this day
next week, we can add 7 days to the current date with the following:

DATE_ADD(‘2002-12-23’, INTERVAL 7 DAY )

You will note that we have typed the date here, instead of using NOW() to show you an
alternative way of entering the date. Figure 11.10 shows this running, with the column
name of nextweek. So the date this time next week will be 30 December.

You can also add other time periods. For instance, the following will return the date that
it will be three months from today:

DATE_ADD(‘2002-12-23’, INTERVAL 3 MONTH )

The above is shown in the threemonths column of Figure 11.10; three months from today
will be 23 March 2003. The complete script to generate Figure 11.10 is as follows:

SELECT ‘2002-12-23’ AS TodaysDate, 
DATE_ADD(‘2002-12-23’, INTERVAL 7 DAY ) AS NextWeek,
DATE_ADD(‘2002-12-23’, INTERVAL 3 MONTH ) AS ThreeMonths

As well as adding day, month and year periods to a date, you can also add time periods
as well. For instance, to add six hours to the current date we would use:

DATE_ADD(‘2002-12-23’, INTERVAL 6 HOUR )

You can see this in Figure 11.11, under the 6hrs column. Notice though that because we
only specified a date in the creation string, it has taken the default value of 00:00:00, mid-
night, as the time, and added six hours to that. The 6fromnow column shows the results
when we use the NOW() function to generate a date that also has a time part. This time,
adding six hours gives us a date and time for tomorrow. Again, to recreate the results of
Figure 11.11, you can use the following:

SELECT ‘2002-12-23’ AS TodaysDate, 
DATE_ADD(‘2002-12-23’, INTERVAL 6 HOUR ) AS 6Hrs,
DATE_ADD(NOW(), INTERVAL 6 HOUR ) AS 6fromnow

126 Database Design Manual: using MySQL for Windows

Figure 11.10 DATE_ADD() adds day periods to given dates.



Table 11.4 shows some of the period types that you can use with DATE_ADD() and other
related functions to specify your time period.

Table 11.4 Some time period types.

A full listing of these types is in the MySQL online documentation.

ADDDATE

The ADDDATE() function works exactly the same as the DATE_ADD() function just
described. The format is therefore:

ADDDATE( aDate, INTERVAL timeperiod )

Please refer to the DATE_ADD section above for further information.

DATE_SUB

The DATE_SUB() function works similarly to the DATE_ADD() function, but it subtracts
the time period instead. The format is:

DATE_SUB( aDate, INTERVAL timeperiod )

Type Value format Timeperiod example

SECOND numeric INTERVAL 5 SECOND
MINUTE numeric INTERVAL 5 MINUTE
HOUR numeric INTERVAL 5 HOUR
DAY numeric INTERVAL 5 DAY
MONTH numeric INTERVAL 5 MONTH
YEAR numeric INTERVAL 5 YEAR
HOURSECOND “hours:minutes:seconds” INTERVAL “05:10:00” HOURSECOND
HOURMINUTE “hours:minutes” INTERVAL “05:10” HOURMINUTE
DAYHOUR “days hours” INTERVAL “5 12” DAYHOUR

Chapter 11 • Working with Dates and Times 127

Figure 11.11 DATE_ADD() adds time periods to given dates.



The timeperiod will be a value, followed by the type of time period from Table 11.4. For
example, to find out what the date was this time last week, we can use:

DATE_SUB(‘2002-12-23’, INTERVAL 7 DAY )

And we can take time away from a date as follows:

DATE_SUB(‘2002-12-23’, INTERVAL 1 SECOND )

Figure 11.12 shows these two functions running, using the following script:

SELECT ‘2002-12-23’ AS TodaysDate, 
DATE_SUB(‘2002-12-23’, INTERVAL 7 DAY ) AS lastweek,
DATE_SUB(‘2002-12-23’, INTERVAL 1 SECOND ) AS yesterday

SUBDATE

The SUBDATE() function works exactly the same as the DATE_SUB() function just
described. The format is therefore:

SUBDATE( aDate, INTERVAL timeperiod )

Please refer to the DATE_SUB section above for further information.

TO_DAYS

The TO_DAYS() function converts a date into the number of days since year 0.You pass the
function a date as follows:

TO_DAYS(aDate)

So to convert today’s date into days we can use:

TO_DAYS(‘2002-12-23’) as ToDays

128 Database Design Manual: using MySQL for Windows

Figure 11.12 DATE_SUB() subtracts time periods from given dates.



Figure 11.13 shows this function running within a SELECT query.
Again, this can be useful when you need to perform some calculation using dates. For

instance, our cookie table contains the date that the cookie was created, which is the first
day that the user would have accessed the site. The following query could be used to ascer-
tain how many days have passed since that first access:

SELECT NOW() AS todaysdate, 
TO_DAYS(NOW())-TO_DAYS (datecreated) AS dayssince

FROM cookies

Figure 11.14 shows the query running. You’ll notice that it has been nearly a year since
the creation of most of the cookies.

On a webpage, you would probably want to restrict that query to a single row by select-
ing the ID of the user’s cookie with a WHERE statement, for instance:

SELECT NOW() AS todaysdate, 
TO_DAYS(NOW())-TO_DAYS (datecreated) AS dayssince

FROM cookies
WHERE ID=1

Chapter 11 • Working with Dates and Times 129

Figure 11.13 The number of days since year 0.

Figure 11.14 TO_DAYS() used for date calculation.



FROM_DAYS

FROM_DAYS() is the complementary function to TO_DAYS() in that it converts a given
number of days back into a date since year 0. You pass the function a date as follows:

FROM_DAYS(Days)

Days is the number of days that you want the function to use. So we could use the fol-
lowing to find out which date was 300 000 days after the start of year 0:

SELECT ‘2002-12-23’ AS TodaysDate, 
FROM_DAYS(300000) AS FromDays

Figure 11.15 shows that it was 16 May 821 – quite a long time ago!
Again, you can use this function in day calculations. For instance, we can re-write one of

our previous DATE_ADD() examples as follows:

SELECT ‘2002-12-23’ AS TodaysDate, 
FROM_DAYS(TO_DAYS( NOW() )+7) AS NextWeek

So this query:

• Calculates the current date using NOW().
• Converts the current date into days since year 0 with TO_DAYS().
• Adds 7 to this figure, to get to next week.
• And then converts the total back into a date.

Of course, the DATE_ADD() function does this more efficiently, however you can see
how these two functions can be used when you are calculating with dates.

TIME_FORMAT

TIME_FORMAT() allows you to change the way that a given time is displayed. The format
of the statement is:

TIME_FORMAT(aDate,format)

130 Database Design Manual: using MySQL for Windows

Figure 11.15 300 000 days from year 0!



aDate is any object that contains a time part.
format is a string that contains the required parts of the date, using the following sym-

bols:

• %H – the hour, in the 24-hour clock format, with a leading zero
• %k – the hour, in the 24-hour clock format, without a leading zero
• %l – the hour, between 1 and 12

• %h – the hour, between 1 and 12, with a leading zero
• %i – the minutes
• %r – the full time, in the 12-hour clock (hh:mm:ss) with AM/PM shown
• %T – the full time in the 24-hour clock (hh:mm:ss)
• %S – the seconds
• %p – AM or PM

So an alternative format for the CURRENT_TIME function would be:

TIME_FORMAT(NOW(),“The time is: %T”)

If you like the time to be output that way, but prefer to use hyphens instead of colons, you
could use:

TIME_FORMAT(NOW(),”My Time:%H-%i-%S”)

In the first example, we have just used the symbol %T, which has output one of the stan-
dard forms of the time format. Compare this with the second example, where, to get more
flexibility, we have used three symbols to refer to each part of the time specifically. We can
then easily insert any other characters (such as our hyphens) at any point in the format
string. We have also added other text within the format string, to give us a readable output
from the function. Figure 11.16 shows these functions working.

DATE_FORMAT

DATE_FORMAT() allows you to change the way that a given date and time is displayed. The
format of the statement is:

DATE_FORMAT(aDate,format)

Chapter 11 • Working with Dates and Times 131

Figure 11.16 Formatting the output of time.



aDate is any date object or string that can be converted into a date.
format is a string that contains the required parts of the date, using all of the previously
mentioned time symbols with the addition of the following:

• %M – full text of month name
• %W – day of the week, written in full
• %D – day of the month with added text (i.e. 1st, 2nd, 3rd)
• %Y – the year, using 4 digits
• %y – the year, using 2 digits
• %a – abbreviated day of the week
• %d – day of the month with leading zero
• %e – standard day of the month
• %m – month number with leading zero
• %c – standard month number
• %b – month name abbreviated to three characters
• %j – day of year
• %w – day of the week in numbers, starting with Sunday = 0

We can demonstrate most of these in one query as follows:

SELECT CURRENT_DATE AS currentdate,
DATE_FORMAT( NOW(),

“%W, %D %M, %Y. DayNumber: %j. %a %d-%m-%y”)

I could have included time parts in that query as well, but then the results may have not
fitted in Figure 11.17. The query has used different date parts, punctuation spacing and
text, to format the date in our chosen way. Although it is quite hard to remember all of the
symbols for formatting dates and time – and there are more described in the on-line man-
ual – one way is as follows. D, M and Y are easily remembered as Day, Month and Year. If
they are written in capitals then it is the full un-abbreviated version of the date part. If you
write them in lower case, d, m and y, you get the shortened format for the part. Don’t forget
to include the percent sign (%) in front of any of the symbols.

132 Database Design Manual: using MySQL for Windows

Figure 11.17 Formatting the date function.



Working with Dates

Dates can be very problematic in computer systems. For instance, depending on your loca-
tion, the date may be formatted in different ways, the date may be stored in different ways –
which prompted all the worry about the year 2000 bug, and dates may be incorrectly under-
stood, for example:

01-02-01

could be understood as:

• 1 February 2001

• 1 February 1 (year 1)
• 2 January 2001

• 2 January 1, etc.

So when using dates you need to make a decision about how you want to store them and
then stay with it, to save errors being built into your data by the use of wrongly understood
data. One colleague of mine always stores dates as a number of days from year 0, using
something like TO_DAYS() to calculate this.You can then use other functions to format the
output of the date to whatever you want and avoid any problems.

Another issue is the input of dates on webpages. Again a user can enter a date in many
different ways. One way I have seen to avoid this is to have a series of dropdown boxes for
the day, month and year, as shown in Figure 11.18. This prevents the user from entering the
wrong data but will not stop them entering dates such as 31 February, which does not exist.

JavaScript functions are available to pick dates from calendars and personally I have
found these to be most successful for avoiding input errors. An example of one is shown in
Figure 11.19. Instead of clicking directly on a date field, this is marked read only and you
have to click on an icon that invokes the calendar popup. Once you select the date the popup
vanishes and the date is stored as you want it to be in the read-only field.

Chapter 11 • Working with Dates and Times 133

Figure 11.18 Entering dates through dropdowns.



Common Date Queries

Date queries can be very complicated to create, and if you are struggling with one, get help!
A brief search on the internet can reveal that someone has already written a query that if
not of immediate use may well put you on the correct path again.

Also, remember the on-line MySQL manual that installed along with MySQL. This con-
tains more examples of common queries which can be very useful. One of note is a method
to calculate ages, which is not reproduced again here, but can be found under the Date and
Time Functions section of the manual (Section 6.3.4 in the MySQL 4.11 alpha manual).

134 Database Design Manual: using MySQL for Windows

Figure 11.19 Selecting dates from a calendar.



Protecting Valuable Data

So far in this book we have been using our database as a single user. We are logging in as a
root user with no restrictions on what we do to our data.We can create tables and databases
whenever we want, and we can delete data and whole tables and databases just as quickly,
with no restrictions. This is fine for a single user who takes responsibility for his actions,
but what if many people are using the data?

MySQL is a multi-user system, so many people can access the data at one time. If you
have ever used any multi-user system where everyone has the highest level of access then
you will know that even when there is no malicious activity, files disappear, mistakes are
made, and data and time are lost. When you give someone access to your data, you should
therefore restrict them to the minimum level of access that is possible for them to perform
their task. That way any damage that they may cause is limited.

So MySQL provides a method of creating and maintaining user accounts, and then
granting specific levels of access to these users. This chapter will describe some of the
methods of creating users so that the data will be protected.

To create a user within MySQL you GRANT them access to a resource. At that time you
provide a string to identify that user to the system (the username) and a string to authen-
ticate that user.

The User Table

Users are actually stored within a table within MySQL. To look at the table, make sure that
you are in the mysql database (the rest of the chapters use the mysqlfast database) by select-
ing it from the database dropdown or typing:

use mysql

The mysql database contains the system tables which MySQL needs to function. The user
table is one table within this database. We created all of the other tables in this book in a
separate database so that we could clearly distinguish our tables and system tables from
each other. You can view the user table by executing the following query:

describe user

Securing the Database 12

135



Figure 12.1 shows the format of this table. Note that there are rows for the username and
password, as well as rows for specific access privileges.

The content of the table is revealed by the following:

SELECT * 
FROM USER

Figure 12.2 shows some of the contents of the table. You will see that during the produc-
tion of this book there has only really been one user created, with other root users that are
system generated.

You will also see that the root user in this instance does not have a password and the
password for the user called mafiu is not the one that you may have been typing in through-
out the book. For security, MySQL encrypts a password before it gets stored within a table.
You can see the benefit of this when other users can access the user table and view each
other’s passwords.

When you grant a privilege to a user, if the user does not already exist it will create an
entry in the user table. If they already exist then the privilege will be added to the existing
user.

136 Database Design Manual: using MySQL for Windows

Figure 12.1 Format of the user system table.



Creating a User

To create a new user then, and give them the greatest possible access, we would use:

GRANT ALL PRIVILEGES 
ON *.* TO Mary@localhost
IDENTIFIED by “yeti”

That does not immediately produce any results, but if you select everything from the
USER table again you will see the results in Figure 12.3. Notice that we now have a Mary
entry in the table, with a scrambled password.

Chapter 12 • Securing the Database 137

Figure 12.2 Content of the user system table.

Figure 12.3 The new user in the user table.



Connecting as a Different User

Because we are using the GUI logged in as root, we will use the command line MySQL mon-
itor to log in as this user. Open up a dos box, and type the following:

c:
cd \mysql\bin

to get you into the directory with the MySQL executables.
Normally, to run the MySQL monitor you would just type mysql. However, this logs in as

the root user with full access.We need to tell the monitor to log in as our new Mary user. Do
this by typing:

mysql —user=Mary —password=yeti

Now we need to connect to a database within MySQL. Type:

connect mysql

You should now be connected to the database, and all that remains is to have a look at
one of the tables within the database. Type the following to view the user table:

SELECT * FROM user;

Remember that when you are in the MySQL monitor you need to add the semicolon at
the end of the line to make the query execute.We may have got out of the habit of this while
using the graphical client. If you forget to add the semicolon you can just add it to the new
line to trigger the query that you typed on the previous line. Figure 12.4 shows all of the
above in action including a forgotten semicolon.

The table output in Figure 12.4 is a bit messy which is why you may be glad that we nor-
mally use the graphical client. You can, however, see that we have now logged in with our
new user and examined a table. We will now deny the Mary user access to this table using
the graphical client again. Switch back to this, but leave the dos box open so that we can
return to it in a few moments.

Restricting a User’s Access

In the graphical client, logged in as root, type:

REVOKE ALL PRIVILEGES ON *.* 
FROM Mary@localhost

There is no point in selectively denying access to a table when the user has access to
everything, so the above removes the access anything privilege on the account.

Back at the command prompt, if you select everything from the user table you will still
get the table returned. This is because the REVOKE command just issued is a global com-
mand; it is saying revoke Mary’s access to everything. Changes to global privileges only

138 Database Design Manual: using MySQL for Windows



come into effect when a user logs in. As Mary was logged in when we changed her privi-
leges, she still can access everything. To log out, at the command prompt type:

exit

and then type:

mysql —user=Mary —password=yeti

to log in again. Now change to the mysql database and select everything from the user
table again as follows:

use mysql;
SELECT * from user;

Chapter 12 • Securing the Database 139

Figure 12.4 Logging in to the monitor with our new user.



Figure 12.5 shows that Mary no longer has the access that she once had. Instead of
returning the table, MySQL just returns:

Error 1142: select command denied to user: ‘Mary@127.0.0.1’ for table
‘user’

If you are wondering about the number 127.0.0.1, this is just the IP (Internet Protocol)
number that has been allocated for localhost.

Even though the user table has encrypted passwords, it is best not to give normal users
access to it. When given sample passwords and user accounts, it is possible to use software
tools to obtain the password. As you already know the passwords in this table and book
there is little point in trying to hide them, so we will give Mary access to view the contents
of that table again. In the graphical client, type:

GRANT SELECT ON mysql.user 
TO Mary@localhost

Back on the MySQL monitor, try to select from the user table again. This time you should
get the whole table back. Notice that because this is a table-level privilege, this time changes
to the user’s access became effective immediately. Now let’s be more malicious. On Mary’s
login, type the following:

DELETE FROM user WHERE user =’mafiu’;

Mary will get the error message:

ERROR 1142: delete command denied to user: ‘Mary@127.0.0.1’ for table
‘user’

This is where the GRANT function becomes very useful. If Mary still had all privileges,
she would have just deleted a user. As we had only given her access to the user table for
SELECTing, a DELETE query threw an error, saving the day. The safest rule is to give a user
the minimal access required for them to complete their tasks.

140 Database Design Manual: using MySQL for Windows

Figure 12.5 Mary now has no access to the user table.



To see what has happened to the user system table after these GRANT and REVOKE
commands, issue the following query in the graphical client:

SELECT * 
FROM user 
WHERE user = ‘Mary’

Notice that although the user table is a system table, it is still a table that you can apply
any query to, as long as you have the access rights. Although we revoked the ALL PRIVI-
LEGES right, there is still an entry for Mary in the user table, as we can see by looking at
Figure 12.6.

You will see from the small selection of privilege columns in Figure 12.6 that these
columns have now all been set to N. If you have this on your screen, scroll across and you
will see that all of the other columns have been set to N as well. Mary has therefore lost her
global rights to everything. If this is the case, how does the system know that she has access
to the user table to do SELECT queries?

The tables_priv Table

Access rights to a specific table are stored within the tables_priv table. This table has slightly
different properties from the user table. Figure 12.7 describes this table, which you may like
to compare with the user table shown in Figure 12.1.

You will notice that instead of having columns specifically for each privilege, this table
has a column where you can explicitly set which keywords will work on the specified table:
tables_priv. If we SELECT everything from this table now, the results are as shown in
Figure 12.8. Notice that Mary has an entry that allows her to view (SELECT) the user table.
It also shows you who granted that access, in the grantor column, useful when you are
tracking down a problem with access.

What will happen if we allow Mary some further access to the user table, say allowing her
to insert a new user? The following script will allow this:

GRANT INSERT on mysql.user 
TO Mary@localhost

Chapter 12 • Securing the Database 141

Figure 12.6 Mary’s new entry in the user table.



Figure 12.9 shows what happens if we view the tables_priv table after running the
GRANT query above. If you compare it with Figure 12.8 you will see that instead of adding
another row for the INSERT privilege it has appended the first entry. The tables_priv col-
umn now reads Select and Insert.

The Grant Tables

The user and tables_priv tables are known as the grant tables. These tables control every-
one’s access to your MySQL server. There are five grant tables in all, as shown in Table 12.1.

All of these tables are stored within the mysql database, so you can refer to them directly
when using GRANT or REVOKE by adding mysql. to the front of the table name, i.e.
mysql.db, mysql.tables_priv, mysql.columns_priv, etc.

Generally, you do not need to know what is going on within all of these tables, as long as
you understand how the GRANT and REVOKE queries work. However, it is useful to real-
ize that MySQL uses its own tables to store the privileges in, and you can access these using
the normal query mechanisms.

142 Database Design Manual: using MySQL for Windows

Figure 12.7 DESCRIBE tables_priv.

Figure 12.8 Mary’s entry in the tables_priv table.



Chapter 12 • Securing the Database 143

Table 12.1 The MySQL grant tables.

Table name Uses

user Stores the global privileges for the whole server (examined in Figure 12.1).
db Stores the privileges for a specific database on the server (examined in Figure 12.10).
host Stores database-specific privileges for the specified host.
tables_priv Stores the privileges for access to a given table within a specific database (examined in

Figure 12.7).
columns_priv Stores the privileges for access to a given column within a specific table within a database.

Figure 12.9 Mary’s amended entry in tables_priv.

Figure 12.10 The db table.



FLUSH PRIVILEGES

There is one point that you need to bear in mind though. When you use the GRANT and
REVOKE queries, the system realizes what you are doing and so makes any access changes
immediately. Some changes, such as global privileges, will take effect the next time the user
connects to the server. However, if you use normal SQL queries to change a user’s privi-
leges, the system just treats these as normal database queries. The user’s access rights how-
ever do not change immediately. To make the server realize that you have just committed
some privilege changes, you have to type the following:

FLUSH PRIVILEGES

This alerts the MySQL server to a privilege change and makes it reload the grant tables.

GRANT

GRANT is used to give a privilege to a user. If details of that user do not exist in any of the
grant tables then a new user is created. GRANT can therefore be used to create users.
GRANT takes the following format:

GRANT privilege ON systemobject 
TO username 

IDENTIFIED BY ‘password’

In the above:

• username and password are the credentials that the user needs to connect to the data-
base. Note that you need the quote marks around the password string. The IDENTIFIED
BY clause is optional, but can be used to change the password of a user that already
exists. If this is omitted when GRANTing a privilege to a user that doesn’t exist, the user
is created without a password.

• privilege is the action that you are going to allow the user to perform. Table 12.2 shows
some of the privileges that are available.

• systemobject is what the user will be performing that access on. It is usually used with
the following format:

database.table

so *.* refers to all tables in all databases on this server.

REVOKE

REVOKE is used to remove a given a privilege from a user. REVOKE will fail if the user has
not been previously granted the privilege. REVOKE takes the following format:

REVOKE privilege ON systemobject 
FROM username

144 Database Design Manual: using MySQL for Windows



In the code:

• privilege is the action that you are revoking from the user and uses Table 12.2 in the
same way as the GRANT command.

• systemobject is what the user is being denied access to.

If you revoke a privilege successfully you get no feedback from the MySQL server.
However, if you revoke a privilege that a user does not have, for example:

REVOKE SELECT ON mysql.tables_priv 
FROM Mary@localhost

you will get the error:

There is no such grant defined for user ‘Mary’ on host ‘localhost’ on
table ‘user’

If you REVOKE all privileges that have been previously given to a user, this does not
delete that user from the user table, but they will have no further access to the system until
GRANTed more privileges. The user will stay valid until they are explicitly deleted from the
user table.

Restricting Users

Bear in mind that users of your MySQL database will very probably be different from any
users that authenticate to a web system that you are building. Your MySQL table will prob-

Chapter 12 • Securing the Database 145

Table 12.2 Some privileges to use with GRANT.

Privilege Allows the user to:

ALL PRIVILEGES Use all privileges available on the given object
ALTER Change table data structures with ALTER TABLE 
CREATE Create tables 
CREATE TEMPORARY TABLES Create temporary tables 
DELETE Remove rows from tables with DELETE
DROP Remove tables with DROP 
EXECUTE Run a stored procedure, however stored procedures are not implemented in the 

current version of MySQL 
FILE Read and write files
INDEX Create and remove indexes 
INSERT Insert data into tables 
LOCK TABLES LOCK tables that they have the SELECT privilege on 
RELOAD Use the FLUSH command 
SELECT Retrieve data from tables using SELECT
SHUTDOWN Shut down the MySQL server 
UPDATE Change the contents of tables with UPDATE 



ably have your administrative user, root, which is used for creating your tables and any
manual administrative tasks, and a general web user, say, web_anonymous, that is used by
the webserver to access the tables. Depending on what your web system does, you will give
the anonymous user limited privileges, such as:

GRANT SELECT 
ON mysqlfast.webpage
TO web_anonymous@localhost;

GRANT INSERT 
ON mysqlfast.log 
TO web_anonymous@localhost;

GRANT INSERT,SELECT 
ON mysqlfast.cookies 
TO web_anonymous@localhost;

GRANT INSERT,SELECT 
ON mysqlfast.visitorbook 
TO web_anonymous@localhost;

These queries will allow the webserver to:

• retrieve the contents of webpages,
• add entries to the log table when a page is viewed,
• check the existence of a cookie and create a new one if necessary, and
• create new visitorbook entries and view existing ones.

You will see from the chapters that follow the way that you embed the user credentials
into the scripting language that you are using to access MySQL and build the webpages
with. If you only allow the web_anonymous user these limited privileges, there is little that
the webserver can do to damage your data. For instance, with the set of privileges above, it
would be impossible for that user to remove a webpage, i.e.

DELETE FROM webpage 
WHERE title = ‘Home’

as the user does not have DELETE access on the webpage table. Unless you wrote a section
of the website to edit and delete webpages, you would have to log in as root and manually
delete the page using SQL to remove the home page if required.

Other Passwords

Although the examples we have been using in this book have referred to a fictional website,
many sites use databases to authenticate users. For instance, search engines like Yahoo
allow you not just to search, but also to log into them to gain more facilities. It is likely that

146 Database Design Manual: using MySQL for Windows



your username, password and many other things that you enter into the site are being
stored behind the scenes in a database. If you are designing such a system you should give
some thought to how you are going to store your passwords. The temptation is to store
them as plain text strings, but that is not the safest way of doing it. If you look back at
Figure 12.6 you will remember that SQL automatically encrypted the password so that it
was not stored in an obvious way within the user table.

So if you are creating your own user table for your website, MySQL has provided an
encrypt function that allows you to code your passwords before you store them in the table.
This function is called PASSWORD(), and is used as follows:

PASSWORD(‘password_string’)

The function will return an encrypted version of the password string, which can then be
inserted into your database table. For example, the following insert statement would insert
an encrypted password into a table containing your web users:

INSERT INTO webuser (username, 
password, 
email)

VALUES ( ‘mountainman’,
PASSWORD(‘bigfoot’),
’someone@nowhere.com’)

In reality, of course, instead of running the query as above, you would have inserted vari-
ables obtained from web form fields into the table, and you would have encrypted the vari-
able using PASSWORD, not just the typed text.

Interestingly, there is no DECRYPT function. This is to stop you doing:

SELECT user, 
DECRYPT(password) FROM mysql.user

This obviously would be a huge security risk. So how do you check to see if someone has
entered the same password that is in the database? Well, everytime that you encrypt the
same text string with PASSWORD, it always produces the same encrypted string. For
instance, run the following query:

SELECT PASSWORD(‘yeti’), password 
FROM user

This query will encrypt the word yeti, and output it along with all of the password
strings stored in the user table. Figure 12.11 shows the results.

You may remember when we GRANTed some rights to the Mary user, we identified her
by the password yeti. Look at the results in Figure 12.11 and you should see that the 6th row
down contains the same string in both columns. So you can compare encrypted strings to
see if they match. If an existing user typed his password into a webpage, we can encrypt it
and use it in a where clause to check that the password typed is the same as the one stored.
For example, the following:

Chapter 12 • Securing the Database 147



SELECT * 
FROM mysql.user 
WHERE user=”Mary” and password=PASSWORD(‘yeti’)

will give the results shown in Figure 12.12, returning one row, proving that the user and
password are correct. However, if you ran the following:

SELECT * 
FROM mysql.user 
WHERE user=”Mary” and password=PASSWORD(‘abominable’)

the query would produce no results, as the Mary user’s password is not abominable, the
encrypted version is not the same as the stored encrypted version, they therefore do not
match and so the password is proved to be incorrect. To check for a valid username and
password combination in your scripting language, simply check if you have more than 0
records returned from the query. Again, if this was being used on a webpage we would be

148 Database Design Manual: using MySQL for Windows

Figure 12.11 Password encryption.

Figure 12.12 Matching encrypted passwords.



passing form variables into the SQL statement as opposed to hard coding them as we have
in the queries above.

In the above example we used the mysql.user table to demonstrate encrypted password
checking. On a production system, however, it would be best to implement a separate table
in a separate database to store your user credentials.

This is a very simple way of securing your stored passwords, but is not the only security
consideration that you may need to take when authenticating users to webpages. If your
application needs to be secure, then consider implementing a secure web connection as
well as the encrypted passwords, as in our example the password would be sent in plain text
from the web form to the MySQL server. Once it is there and encrypted it is safer, but if
intercepted on the way will still cause a breach of your security system.

Chapter 12 • Securing the Database 149



This page intentionally left blank 



Optimizing MySQL 13

151

Tables Get Bigger

All of the tables that we have created during the course of this book have had less than 10
rows. We have already talked about how MySQL is a very fast way of handling data, but
when we are using such small amounts of data there is little opportunity to test its speed.
However, if we were storing the log of a very popular website in database tables, the 30 000
hits that site may receive in a day would soon gather a huge amount of data. As soon as we
need to process large amounts of data we can introduce delays into our systems. To mini-
mize these delays and to make our query processing as fast as possible, we need to give
thought to how well our queries are written and what we can do to improve their speed.

How Well Does It Run?

In Chapter 7, we dealt with joining tables together. This can be a complex process that can
be very processor intensive on large tables. You may remember that we looked at the fol-
lowing script:

SELECT log.id as logid, 
webpage.title AS pagetitle, 
log.browser, 
log.datecreated AS logdate, 
log.ipnumber, 
log.referringpage, 
cookies.datecreated AS cookiecreated

FROM log, webpage, cookies 
WHERE webpage.id = log.webpageid 

AND cookies.cookieid=log.cookieid

If you remember that chapter, this script looked at each entry in the log table, showed the
name of the page they were looking at, and showed the first date that that cookie user
viewed the site. Figure 13.1 shows that query in action. With the limited number of rows
that we have in the tables involved, the query produces seven rows of results.

Look back at the script that generated the results in Figure 13.1. Although the results are
quite small, the script is reasonably complex. But what is actually going on behind the



scenes? If we were to run the same script with a log table that contained 1 000 000 rows,
would that script run quickly or could we make it run more efficiently?

Examining Queries

If you have just entered the above query into the MySQL client, click the cursor to the start
of the query and type the word EXPLAIN in front of the query, as shown in Figure 13.2.

EXPLAIN can be run on a table or on a query. Running it on a table, as follows:

EXPLAIN tablename

152 Database Design Manual: using MySQL for Windows

Figure 13.1 The output from a join of three tables.

Figure 13.2 Explaining a query.



gives the same results as describing a table as follows:

DESCRIBE tablename

EXPLAIN comes into its own when you apply it to a query as we have done in Figure
13.2. Simply add the keyword EXPLAIN in front of the query that you wish to analyse.
When we EXPLAIN our three table join query we get the results shown in Figure 13.3.

When you EXPLAIN a query, the MySQL server does not actually run the query, but
gives an approximation of what it would have to do were you to run it. This means that if
you were about to run a query on a huge amount of data, you could EXPLAIN the query first
to make sure that it would run in the best way.

The first column of the EXPLAIN, table, shows the tables that the query will have to ref-
erence to show the results. In this case it is three tables, webpage, log and cookies. Of course
we do not actually need to use EXPLAIN to tell us this, but the rest of the columns are of
more use!

The second column, type, signifies the type of join that MySQL will have to do to process
the row. The log table will use the ALL join, and the webpage and cookies tables will use the
eq_ref join. The full set of joins that can appear here are shown in Table 13.1. This table runs
from the slowest and most process-intensive join to the fastest, most efficient one.

The third column in the EXPLAIN output, possible_keys, shows the keys that MySQL
hopes to use to execute the query. This column is called possible because the query might

Chapter 13 • Optimizing MySQL 153

Figure 13.3 Sample explain results.

Table 13.1 Join types used by the EXPLAIN facility.

Join type Explanation

ALL The query will have to scan all rows of the table to complete this query.
index The index of this table is used to complete this query.
range An index is used to select a range of rows from this table for scanning by the query.
ref If the join cannot match one unique row, a set of rows from this table is read for every set of rows that 

match the join condition of the other tables.
eq_ref One row from this table is read for every set of rows from the other tables when a single row can be 

matched by the join. 
const If the table only has one row, it is only read from once. 
system If the table only has one row and is read from once and is also a system table, this join type is noted by 

the EXPLAIN.



not actually use all of the keys in the search. The keys are independent of the order of the
tables, so some keys may never actually be processed. If one of these columns is NULL, you
may be able to optimize the query further by adding an index to the table. We will do that
later in the section on indexes.

The fourth column in the EXPLAIN output, key, shows the key that MySQL actually used
to perform the query. If no key is used then the entry is NULL. If there is a PRIMARY entry
for a column in the possible_keys column which is NULL in this column then there may be
a way of optimizing the query further. The optimize table section will show how to do this.

The fifth column in the EXPLAIN output, key_len, gives us the length of the key that was
used.You can use this column to see if MySQL is using more than one column when a mul-
tiple column key exists.

The sixth column in the EXPLAIN output, ref, shows which columns were used by the
key join.You will notice from Figure 13.3 that the log row contains a NULL for this column,
showing that no key was used for this part of the join.

The seventh column in the EXPLAIN output, rows, shows the estimated number of rows
that the query will use to fulfil the join. This is not necessarily the number of rows that the
query will return, but the number that the query will need to look at to execute. If you mul-
tiply all of the row values together, you get an estimate of the total number of rows exam-
ined by the query. The next section will examine this further.

The last column in the EXPLAIN output, extra, gives you any extra information about
how the join will be carried out. Table 13.2 shows what you might find in this column.

Table 13.2 Possible entries in the extra column.

Looking at Cross-joins Again

You may remember that in Chapter 7 we talked about performing a cross join which pro-
duced a lot of rows from tables with only a few rows. We can demonstrate this by running
the following:

SELECT *
FROM log, cookies, webpage, visitorbook

Entry Explanation

Distinct As soon as the first match is found no more searching will be done within this table.
Not exists An optimized LEFT JOIN will be used and as soon as a matching column is found no

more rows will be examined in the table.
Range checked for each record MySQL tries to find an index for each row in the set of rows from the preceding tables

and uses this index if available to obtain the rows.
Using filesort This takes two passes as it has to sort the rows to retrieve them in the second pass but

needs to work out how to sort these rows out in the first pass.
Using index The index alone is used to retreive the required join data without any of the rows being

scanned.
Using temporary The query needs to create a temporary table to hold the results while processing. If you

do a GROUP BY on a different set of columns than an ORDER BY this will occur.
Using where A where clause is used to select the rows required by the query.

154 Database Design Manual: using MySQL for Windows



Figure 13.4 shows the output of cross joining the log, cookies, webpage and visitorbook
tables together. If you are performing a cross join without knowledge of the number of rows
in your tables, it is useful to use EXPLAIN and view the rows column to estimate the num-
ber of rows you may get returned. Figure 13.5 shows the EXPLAIN running on this query as
follows:

EXPLAIN SELECT *
FROM log, cookies, webpage, visitorbook

All of rows column values multiplied together (7 × 6 × 6 × 7) comes to 1764, which is the
same as the number of rows returned in Figure 13.4.

We have already discussed how cross joins are inefficient; to demonstrate, we will run the
query above with a WHERE clause to restrict the data that we are obtaining from the query
as follows:

SELECT * 
FROM webpage, log, cookies, visitorbook
WHERE cookies.cookieid > 3

Chapter 13 • Optimizing MySQL 155

Figure 13.4 An inefficient cross join.

Figure 13.5 EXPLAIN on the cross join.



If you run the above script, you will get approximately 800 rows back. You would there-
fore assume that adding the WHERE clause made the query more efficient. However, run-
ning EXPLAIN on the query gives the results shown in Figure 13.6.

You will notice that although the actual query only returned around 800 rows, running
the EXPLAIN shows that 1764 rows need to be examined in order to execute the query, so it
is just as inefficient as the cross join before the WHERE restriction.

Section 3.2.1 of the online MySQL manual that comes with the product gives a thorough
walk-through of using EXPLAIN to optimize a complex query.

Indexing

When we looked at the possible_keys column of the EXPLAIN output, I said that if we had
a NULL in this column the query could be made more efficient by using an index. An index
is a data structure that will speed up the retrieval of rows when applied to a certain search
criterion. In other words, if you are searching for something in a table, the search will gen-
erally be quicker if an index exists for the column that the data is contained in.

For instance, say you have a log database full of tens of thousands of records which con-
tains data for a whole year of web accesses. The data is stored in a sorted form, as data is
inserted into the table in chronological order; so all of the dates are ascending. If you need
to search for all of the page hits in June, the server has to sequentially examine all of the
rows for the proceeding months until it finds the entries for June. It probably needs to check
all of the rows created in the months after June as well if it does not realize that the data is
stored in date order.

If we were to add an index to the date column in this table, when searching for June, the
MySQL server would examine the index and find that the table is sorted and realize that it
can start the retrieval approximately 60 000 records into the table. This might actually be
half-way through May, but this means that much fewer rows need to be examined before
finding the June entries. Then, as soon as the server comes across a July entry the search can
stop, because if the dates are sorted, no more June entries can occur once the July ones
begin. If the table contains approximately 10 000 rows per month, the index will have saved
the server from looking at over 100 000 rows, that is, the January to May rows and the July
to December ones.

156 Database Design Manual: using MySQL for Windows

Figure 13.6 EXPLAIN on a restricted cross join.



CREATE INDEX

The above is an extremely simple explanation of an index, and there are many types of
indexes. If you want to understand these more then you should obtain one of the many
database theory books that are available. However, if you want to quickly add an index to a
table, you can do it without much thought by using the following:

CREATE INDEX indexname 
ON tablename (columnname)

If you are creating an index on a PRIMARY KEY column, where all of the data in the col-
umn will be unique, you can create a unique index as follows:

CREATE UNIQUE INDEX indexname 
ON tablename (columnname)

You can also use the ALTER command to add an index to a table as follows:

ALTER TABLE tablename 
ADD INDEX indexname (columnname)

On all three of the scripts above, the columnname can actually refer to one or more
columns, separated by commas, as you can have an index that refers to multiple columns.

One of the EXPLAIN commands that we issued earlier showed that the join command
would not use a primary key as a possible key for the join on the log table. This would mean
that we could speed the query up by using an index on the log table. If we will be running
this query often, we can optimize it by adding the index. The query will be using the web-
pageid column to join, so we will add an index to the table as follows:

ALTER TABLE log 
ADD INDEX logindex (webpageid)

We need to EXPLAIN the query again to see if the new index has made any difference to
the query, so run it again as follows:

EXPLAIN SELECT log.id as logid, 
webpage.title AS pagetitle, 
log.browser, 
log.datecreated AS logdate, 
log.ipnumber, 
log.referringpage, 
cookies.datecreated AS cookiecreated

FROM log, webpage, cookies 
WHERE webpage.id = log.webpageid 

AND cookies.cookieid=log.cookieid

Chapter 13 • Optimizing MySQL 157



If you compare the results from this EXPLAIN shown in Figure 13.7, with the results
from the previous EXPLAIN in Figure 13.3, you will notice that the log row now has the
index entry in the possible_keys column instead of NULL. So if we were running this query
on a huge set of data, the index would optimize this query, and make it run better.

Indexes not only make a difference to a join, in fact they can also make a difference to
any retrieval of rows where you are restricting the output by values in a column. If the index
refers to a column that is being used by the query, then the retrieval will be quicker.

OPTIMIZE TABLE

As mentioned when discussing datatypes, the constant insertion and deletion of records in
variable length column types causes the table to become fragmented due to entries and
space becoming de-allocated and re-allocated. This fragmentation can cause query opera-
tions on the table to be slower than expected. To remedy this, use the following:

OPTIMIZE TABLE tablename

You can optimize more than one table at once by separating the table names with com-
mas. OPTIMIZE TABLE will defragment the table’s datafile and recover any wasted space.
It first repairs any split or deleted rows if it finds them, then sorts the index pages if they are
out of order, and then updates the table’s statistics if the index sort did not complete the
repair. Because optimizing a table can involve moving large parts of the table around,
MySQL stops other processes from changing the table while it is running. The complex data
manipulation could be hindered by another user trying to insert something into the table
during the operation.

For some reason, the graphical MySQL client does not run the OPTIMIZE TABLE com-
mand, so the output when run in the MySQL monitor is shown in Figure 13.8. You will
notice from the figure that if the table is already optimized, MySQL does not attempt to
optimize it again, as we can see from the second time that we run the command in the
figure. If this is the case, it lets the user know that the table is up to date. The insertion or
deletion of a row in the table will allow you to run the OPTIMIZE TABLE command again
should you require it. However, there is little need to run this command immediately after
you have just run it.

158 Database Design Manual: using MySQL for Windows

Figure 13.7 Optimizing a query by adding an index.



CHECK TABLE

The CHECK TABLE command allows you to check one or a series of your tables for errors.
The command is used as follows:

CHECK TABLE tablename, tablename, tablename, … options

Use as many tablenames as you like separated with commas.
options can be one of the following:

• QUICK does not check for wrong links.
• FAST just checks tables which have not been closed in the correct way.
• CHANGED checks rows as above and tables that have changed since the last time that

CHECK TABLE was run.
• MEDIUM checks the rows in the table for correct deleted links, generates a checksum

for the rows and verifies this from the key checksums.
• EXTENDED ensures that the table is 100% correct and can take some time to run.

The CHECK TABLE command will return a table with the results of the check in it. A
sample output for some of the tables we have used in this book is shown in Figure 13.9.

You will notice that the output provides the name of the table, the operation, which is
always check, a message type and the text of the message.

The message type can be either:

• status
• error
• info, or
• warning.

Chapter 13 • Optimizing MySQL 159

Figure 13.8 Optimizing a table.



The last row for each table name should always be a status message reading OK. If it does
not then there may be some problems with the table, and so you should run a REPAIR
TABLE to try and remedy this fault.

REPAIR TABLE

As we have just explained, after running a CHECK TABLE you may well have some errors
in the output. Also if the MySQL server has been performing strangely, or unexpectedly
been crashing, this may be due to errors somewhere in the table’s data. If this is the case,
after checking your table, you may need to run REPAIR TABLE on it to correct any prob-
lems. You do this using the following command:

REPAIR TABLE tablename, tablename, tablename, … options

As you can get many rows of feedback from a table repair, it is best to only repair one
table at a time.
The options can be:

• QUICK only tries to repair the index tree of the table.
• EXTENDED creates the indexes row by row.
• USE_FRM recreates the table from the .frm file in the tables directory.

You will get a similar table of results from REPAIR TABLE as you did with CHECK
TABLE. If the last row of results does not show an OK message, you need to try and repair
MySQL from the command line, not through the monitor. To do this, start a dos session,
change the directory to the directory where your database is stored, i.e.

cd \mysql\data\mysqlfast

160 Database Design Manual: using MySQL for Windows

Figure 13.9 Checking tables.



and then type:

c:\mysql\data\bin\myisamchk –o tablename

tablename is the name of the table that you are trying to repair. This process and the
results can be seen in Figure 13.10.

ANALYZE TABLE

The ANALYZE TABLE command is another tool to allow you to optimize your MySQL
tables, which is used as follows:

ANALYZE TABLE tablename, tablename, tablename, …

ANALYZE TABLE will examine the key distribution within the table and store the results.
These keys are used when you are joining the table with others, and if the key distribution
is stored this way, it will make some joins run quicker.

Again, this will generate a table of results similar to those shown in Figure 13.9.

Chapter 13 • Optimizing MySQL 161

Figure 13.10 Repairing a table with myisamchk -o.



This page intentionally left blank 



It’s Not Just For MySQL

As you probably realized before you bought this book, databases are immensely useful
things. They can provide real-time statistics of webservers, store the whole contents of a
website or product catalogue for easy updating, provide management information, produce
mail shots to clients, and the list goes on.

Just because all of your data is stored in MySQL does not mean that that is where it has to
stay. One of the beauties of MySQL is that you can share the data between not just multiple
users but multiple applications as well.A common use of MySQL is to power database-driven
PHP websites, but that is not the end of the matter. Although PHP and MySQL are often seen
working together, do not think that you are confined to using just PHP for MySQL websites.
MySQL have provided standard database drivers which allow you to use MySQL data with any
program that can talk to these drivers.While your MySQL database is serving your webserver,
there is nothing to stop it also providing data obtained from your website to populate mail-
shots in Microsoft Word, or driving other web application tools like ASP and ColdFusion.

More Standards

If you have been in the computing industry for some time, you may remember the prob-
lems that used to occur when you were setting printers up. Before Windows, every person
who wrote software had to customize their software to make it compatible with their pro-
grams. Buying a printer could often mean hours of configuring and guessing to get it to
work with your program. This changed when printer drivers started to be used. You then
made your software talk to a virtual printer device, and it would print without having to
make any real changes to your software. All the printer manufacturers would need to do is
to produce drivers to make their printer work with the virtual drivers, as opposed to driv-
ers for every piece of software that needed to print.

The same concept of drivers has been applied to many aspects of computing, and on
Windows systems, databases can be used by other programs by means of ODBC drivers.

Open Database Connectivity

Open Database Connectivity (or ODBC) is a method of sharing data between databases and
other applications. This is done by means of ODBC drivers which have been written by the

Sharing MySQL data with MyODBC 14

163



database vendors, and the ability to communicate with that driver in SQL by the software
that needs to use the database.

As well as being used on Linux and with PHP, MySQL is able to interface to other systems
using ODBC. ODBC is a method of allowing a program to talk to a database. All the pro-
gram has to do is talk to the ODBC driver, which handles any specific requirements of the
database server. No matter what the DBMS, as long as the correct ODBC driver exists for it
then the application can talk to it.

Data Sources

The ODBC connection between your specific database and the software that is talking to it
is called a data source. You will usually refer to that data source by its name. All database
queries are sent to the data source, which uses the ODBC driver to talk to the database
server. Data obtained from the request is then passed back to the client software.

You can have many data sources on the client machine, and some of the sources can
point to database servers on remote machines. To differentiate though, they must all have
unique names.

Obtaining MyODBC

The ODBC driver that MySQL uses is called MyODBC. This can be obtained from the down-
loads section of the www.MySQL.com website which can currently be found at the follow-
ing link:

http://www.mysql.com/downloads/index.html

Figure 14.1 shows the page at the above URL. If you scroll down you will see the link to
MyODBC under the Official APIs section. There are usually three types of releases under
this section, a current working release, an old release and a release that is being tested. It is
usually best to go for the current, stable release which in the figure is production release
3.51. Click on the Connector/ODBC 3.51 link and your web browser will take you to another
page which allows you to select the operating system that you will be using MyODBC with
and finally download the driver.

Installing MyODBC Drivers

After downloading, double click on the MyODBC .exe file that you just obtained to start
installation. You will be presented with a screen as shown in Figure 14.2.

After reading the messages, click on Next on the screen shown in Figure 14.2. There are
no other options to choose in this setup so you can just click Next on the following screens
unless you want to read the other messages that you are given. When you get to the screen
shown in Figure 14.3, you have completed installing the MyODBC drivers.

164 Database Design Manual: using MySQL for Windows



Chapter 14 • Sharing MySQL data with MyODBC 165

Figure 14.1 Downloading MyODBC.

Figure 14.2 Installing MyODBC.



Setting Up a Data Source

The next step in using MyODBC is setting up your data source. This can be done directly in
Windows by using the data source control in control panels. Select Control Panel from your
start menu. Depending on your version of Windows, you may see the Data Sources or
ODBC control straight away. In Windows XP you first need to open up the Administrative
Tools section of the control panel to find the correct icon. The icon is shown in Figure 14.4.

Double click on the data source or ODBC icon in your control panel. The data source
control is shown in Figure 14.5.

You will notice that there may already be some data sources set up.You can have two dif-
ferent types of data source, a user data source and a system data source. The user data
source is only available to the current user who is logged in, whereas the system data source
is available to anyone who is using the machine. Although there are some security issues
with using a system data source, this is the type that we will be using for our example. Click
on the System DSN tab and click on Add.

You will then be presented with a list of drivers, as shown in Figure 14.6, which will vary
depending on what software you have previously installed on your machine. Scroll down
until you find the MySQL entry that corresponds to the drivers you have just installed and
click on it. Next, click on the Finish button. This does not actually finish the data source
setup but takes you to the options for the new data source as shown in Figure 14.7. If you
are using an earlier version of MyODBC, this may well look different.

Fill in the fields in this control as shown in the figure, referring to the following:

• The Data Source Name will be the name that you refer to the data source with within
your code.

166 Database Design Manual: using MySQL for Windows

Figure 14.3 Successful installation of MyODBC.



Chapter 14 • Sharing MySQL data with MyODBC 167

Figure 14.4 Running ODBC setup.

Figure 14.5 The data source control panel.



• The Description field is not used within your code, so it is not that important; however,
if you are setting up this data source on a system that has other data sources, give it a
meaningful description.

• The Host/Server Name field needs to contain the name of the machine that your MySQL
server is running on. If you just have this on your local machine, you can use localhost.

168 Database Design Manual: using MySQL for Windows

Figure 14.6 Selecting the MyODBC driver.

Figure 14.7 MyODBC data source options.



If you are connecting to a remote machine with the server on then specify it using its
domain name, i.e. mysql.domain.com. You can also use the IP number of the machine,
i.e. 192.168.1.100

• The Database Name field is used to select the MySql database that you are connecting
to. For this example we will use the system mysql database. This is safe if you are just
using your MySQL database to run through the examples in this book, but if you are on
a live server with other users I would recommend creating a new database to connect
your data source to for security reasons.

• The User and Password fields are the user credentials that MyODBC uses to connect to
the MySQL server.You can use any valid username and password, but again for the same
reasons as above it may be better to use a user that has been specifically created for
ODBC MySQL access. It would be a bad idea to use your root account, as this means that
the datasource, if it could connect to the system mysql database, could have full access
to view and change all of your MySQL data.

• Unless you have changed it from the default settings, leave the Port field at the default
setting of 3306.

• The SQL command on connect field is used to automatically run a command as soon as
the data source makes a connection to the MySQL server. Leave this blank for our exam-
ple.

If you are using the ODBC source to connect to a server on another machine, the user
must have rights to connect from this machine in the host column of the user table. For
instance, if the machine with the MyODBC connection had the IP number 192.168.1.1, and
the MySQL server had the number 192.168.1.100, the following would apply:

• A user created with the following commands would not be able to connect:

GRANT SELECT ON mysql.* TO remoteuser@192.168.1.100;

GRANT SELECT ON mysql.* TO remoteuser@localhost;

• A user created with the following commands would be able to connect:

GRANT SELECT ON mysql.* TO remoteuser@*;

GRANT SELECT ON mysql.* TO remoteuser@192.168.1.1;

If you are using a dedicated webserver and dedicated MySQL server for your website on
separate boxes, it is best to clearly define the data source user so that it can only connect
from the specific webservers that require it by specifying the server name or IP address and
not using wildcards for the host entries. This would secure your setup to stop remote users
connecting to your MySQL server from other computers. Remember that if the data source
is being used by a webserver, and a user on another computer, say 192.168.1.200, connects
to that webserver, the data source connection to the MySQL server will come from the web-
server, not the machine 192.168.1.200.

On version 3.3.1 of MyODBC you also have a button that allows you to test your connec-
tion to the data source. It is easier to test the connection now, at this control, rather than try-

Chapter 14 • Sharing MySQL data with MyODBC 169



ing to debug connection problems in the program that is accessing the data source.
Figure 14.8 shows three of the possible responses from clicking on the Test Data Source
button.

The first error in Figure 14.8 shows the type of error that you may get if you have speci-
fied the host name of the MySQL server incorrectly. The last error shown in the figure can
occur if the username or password is incorrect, or if the user does not have access rights
from the machine where the data source is trying to connect from.

Once your data source has tested correctly, you will be able to refer to it and use it in
other programs that can communicate with data sources.

Example Connections

To demonstrate how to use the MyODBC data source from other programs, we will show
examples of its use with ASP and with ColdFusion.

ASP, or Active Server Pages is a technology that allows you to create dynamic webpages
by means of scripts that run on a server. ASP was first implemented by Microsoft when it
came built in to its webserver, IIS which comes bundled as part of many of Microsoft’s
modern operating systems.

ColdFusion was originally produced by Allaire Corporation who have now merged with
Macromedia, Inc. ColdFusion again is a server side scripting language which allows the cre-
ation of dynamic webpages on your server by means of tags that you insert into HTML
code.

The following two examples will show how you can use MyODBC to connect these two
products back to your MySQL server to utilize your data.

170 Database Design Manual: using MySQL for Windows

Figure 14.8 Some MyODBC data source errors.



It should be mentioned at this point that I am simply going to show how to connect to
the data source and process some of the data that is returned. These examples will barely
scratch the surface of using ASP and ColdFusion which are immensely powerful products
in their own right. If you wish to investigate these further, they are covered in other books
published by Springer.

MySQL and ASP

There are several ways in which you can connect your ASP script to a MyODBC data source.
This section will show one way using the MyTestDataSource data source that we created
earlier in this chapter using VBSCRIPT.

A webpage that is going to be processed by ASP will reside somewhere in your web space
of your webserver and have the extension .asp, for example:

c:\inetpub\wwwroot\myexample.asp

To send this file to the ASP interpreter, it has to be requested through the webserver
using an internet browser by going to the following location:

http://localhost/myexample.asp

The .asp file is a collection of ASP code and HTML tags. Some of the ASP code will itself
output HTML code.

The following code, when executed through an ASP server, will connect to our data
source and output some of its data:

<% @LANGUAGE=”VBSCRIPT” %>

<HTML>
<TITLE>Asp MySQL MyODBC connection</TITLE>
<BODY>

<%
set MyODBCConnection = Server.CreateObject(“ADODB.Connection”) 
set MyRecordSet = Server.CreateObject(“ADODB.Recordset”)

MyODBCConnection.Open “DSN=MyTestDataSource” 
MyRecordSet.ActiveConnection = MyODBCConnection 
MyRecordSet.Open “SELECT * FROM user WHERE user=’mafiu’”
%>

<TABLE border=1>

<%
while not MyRecordSet.EOF 
response.write “<TR><TD>” & MyRecordSet.fields(0) & “</TD><TD>” &
MyRecordSet.fields(1) & “</TD></TR>” 
MyRecordSet.MoveNext 

Chapter 14 • Sharing MySQL data with MyODBC 171



wend 
%>

</TABLE>
<BR>
<TABLE border=1>

<%
MyRecordSet.Close
MyRecordSet.Open “SELECT * FROM user WHERE user !=’mafiu’”
while not MyRecordSet.EOF 
response.write “<TR><TD>” & MyRecordSet(“Host”) & “</TD><TD>” &
MyRecordSet(“User”) & “</TD></TR>” 
MyRecordSet.MoveNext 
wend 
%>

</TABLE>
</HTML>

The output of this code is shown in Figure 14.9. Let us examine this code briefly to see
what each part does and how it is used.

To begin, we have to tell ASP which scripting language we will be using to define our
page; this is done with the following command:

<% @LANGUAGE=”VBSCRIPT” %>

This lets the server know that we will be using VBSCRIPT within this page. All text
within the <% … %> tags is processed by ASP, all other text within the file is output as
straight HTML to the browser. Therefore we can start by setting up a basic HTML page with
the following:

172 Database Design Manual: using MySQL for Windows

Figure 14.9 ASP accessing the MySQL user table.



<HTML>
<TITLE>Asp MySQL MyODBC connection</TITLE>
<BODY>

This just defines the page as HTML for the browser and sets the page title to be dis-
played. Now for some ASP, as signified by the <%:

<%
set MyODBCConnection = Server.CreateObject(“ADODB.Connection”)

This creates an object that allows for a connection to a database and calls it
MyODBCConnection. This object can be used elsewhere by sending it commands by
appending them to the name of the object. We see this in use further down the page. Next
we define another object that handles sets of records using the following:

set MyRecordSet = Server.CreateObject(“ADODB.Recordset”)

This time we have called the object MyRecordSet. Now we have created two objects
needed for the connection to the database, we can start sending commands to them. The
first of these commands connects to the MyTestDataSource by sending the open command
to the MyODBCConnection object:

MyODBCConnection.Open “DSN=MyTestDataSource”

Now that this is open, we can connect our RecordSet object to the open data source:

MyRecordSet.ActiveConnection = MyODBCConnection

Then finally in this part of the ASP script, we can actually send an SQL command to the
data source with:

MyRecordSet.Open “SELECT * FROM user WHERE user=’mafiu’”
%>

This page will create a table that has a row for every row returned from the query. We do
this by looping through the rows returned by the record set in ASP. However, we only want
the loop to run on the rows of the table itself, so the actual definition of the table is outside
the loop, in standard HTML as follows:

<TABLE border=1>

Now for the loop. For each row of the table we want to output an HTML table row as fol-
lows:

<TR><TD>Host column</TD><TD>User column</TD></TR>

Chapter 14 • Sharing MySQL data with MyODBC 173



The RecordSet object has a command that returns a true if you have reached the end of
the record set. Switching to ASP again, we set up a while loop that will keep going until the
end of the record set is reached:

<%
while not MyRecordSet.EOF

To output HTML from within the ASP script, we use the response.write command. You
use this command by sending a string to it in quotes, or a function or object that returns a
string. As the next line needs a string made up of both text and the output of the query, we
can turn them all into one string by using the & operator. The script continues:

response.write “<TR><TD>” & MyRecordSet.fields(0) & “</TD><TD>” &
MyRecordSet.fields(1) & “</TD></TR>”

There are several ways of accessing the columns that are returned by the query. On this
occasion we send the fields command to the record set, with the number of the field speci-
fied by using:

MyRecordSet.fields(0)

This selects the first column returned by the query, which in this example is the host col-
umn. Field 2 is the user column. On this occasion the fields that are returned are in the
order which they were created, as we used the wildcard (*) in the select query to obtain
them. However, if we had sent the query:

SELECT user,host 
FROM user;

then the columns would be returned in the select order. Bear this in mind when you are
using the fields command with the record set, as you may get unexpected results from not
specifying the exact column name.

Now that we have output the table row for this row of the record set, we can move to the
next record in the set by using the following:

MyRecordSet.MoveNext

This does not end the while loop, just moves to the next record. To trigger the end of the
while loop we use:

wend 
%>

This will return to the top of the while loop and if the end of the record set has not been
reached repeat the processing for the next row in the set. If we are at the end of the set, the

174 Database Design Manual: using MySQL for Windows



%> shows we have finished processing the ASP for the moment, so we can complete the
table by closing the table tag:

</TABLE>

Next we will perform another query which will select a different set of records, but we
will access the fields specifically as opposed to using their number as above. First we add a
line break and then open a table tag again. Then we can start a new batch of ASP code:

<BR>
<TABLE border=1>

<%

Before we can send a new query to the record set, we have to close the existing record set
with the following:

MyRecordSet.Close

Then we send the new query and start a new while loop:

MyRecordSet.Open “SELECT * FROM user WHERE user !=’mafiu’”
while not MyRecordSet.EOF

Again, we output the table data. This time, however, we specify the column name of the
query directly by using MyRecordSet(“columnname”) as follows:

response.write “<TR><TD>” & MyRecordSet(“Host”) & “</TD><TD>” &
MyRecordSet(“User”) & “</TD></TR>”

We move to the next record and end the loop in the same way as before:

MyRecordSet.MoveNext 
wend 
%>

And finally, we send the closing tags for the HTML script.

</TABLE>
</HTML>

This section may have left you rather confused, as we are really describing a program-
ming language to which a whole book should be dedicated. This will have given you a taster
of how to use ASP with the MyODBC source. If you have access to a webserver with ASP, you

Chapter 14 • Sharing MySQL data with MyODBC 175



may wish to try and use this file to access other data or queries to give yourself more expe-
rience.

In summary, you connect to a data source in ASP by:

• Defining an ODBC Connection object.
• Defining a Record Set object.
• Opening the data source through the ODBC Connection Object.
• Linking the Record Set to the ODBC Connection.
• Sending the query to the database through the record set.
• Processing the record set in a loop, outputting columns by name or by their index.
• If you need to send a new query to the same connection, close the recordset and re-open

it with the new query.
• ASP script is defined within an .asp file by surrounding it with <% … %>.Any other text

within the file is output directly as HTML.

The connection details described in this section are not specific to MySQL and
MyODBC; as long as you have the correct data source name and the same tables, this will
work with an ODBC data source from any database vendor.

MySQL and ColdFusion

Connecting to a data source in ColdFusion is done by using ColdFusion Markup Language
tags (CMFL) embedded within HTML code.When the ColdFusion server encounters CMFL
tags it processes the results and returns them as text to be send back to the webserver.

ColdFusion allows you to set up a data source remotely by using its remote administra-
tor website. Although we have already set up a data source using the Microsoft Control
Panel, we will demonstrate how you can do this through ColdFusion. The next section will
use ColdFusionMX running on localhost as a demonstration.

Creating a Data Source in ColdFusion

The ColdFusionMX administrator is accessed by pointing an internet browser at the fol-
lowing location:

http://localhost/CFIDE/Administrator

After entering your password, you are presented with a menu which has a Data Sources
link. Clicking on this will give you access to the data source setup page. Part of this page is
shown in Figure 14.10.

Type in the name of the data source you wish to create on the page shown in Figure
14.10. Then select the MySQL driver from the driver menu. Once selected, click the Add
button to take you to the page shown in Figure 14.11.

Figure 14.11 shows the dialogue that allows you to specify the details for the MyODBC
connection. You can fill this out using the same details and warnings that we used in the
section on setting up the data source with the Microsoft ODBC control panel. Once you
submit this form, the source is immediately tested by ColdFusion. If you get a page such as

176 Database Design Manual: using MySQL for Windows



Chapter 14 • Sharing MySQL data with MyODBC 177

Figure 14.10 Adding a data source in ColdFusionMX.

Figure 14.11 Specifying the data source in ColdFusionMX.



the one shown in Figure 14.12, you have an error in your settings, so use the Back button on
your browser and check that you have entered everything correctly and that the user has
the correct access from the machine that the ColdFusion server is running on.

If all is working correctly with the data source then you will see a page similar to
Figure 14.13. If this is the only data source on the system, you should see the OK after your
data source name to show that it is verified. If you have other data sources installed, you
may have to hunt around a bit for it.

Accessing the Data Source in ColdFusion

A webpage that is going to be processed by ColdFusion will reside somewhere in your web
space of your webserver and have the extension .cfm, for example:

c:\inetpub\wwwroot\index.cfm

This file is often referred to as a ColdFusion template file. To send this file to the
ColdFusion server it has to be requested through the webserver using an internet browser
by going to the following location:

http://localhost/index.cfm

178 Database Design Manual: using MySQL for Windows

Figure 14.12 A data source connection error.



The template file is a collection of CFML code and HTML tags. The CFML tags control
sending of data to the data source and control the output of the HTML code.

The following template, when executed through a ColdFusion server, will send a query
to our data source and output some of the results:

<HTML>
<TITLE>Testing MySQL ODBC Connection</TITLE>

<BODY>
<CFQUERY name=”getusers” datasource=”MyTestDataSource”>

SELECT *
FROM user

</CFQUERY>
<CFOUTPUT query=”getusers”>

#USER#@#HOST#<BR>
</CFOUTPUT>

</BODY>
</HTML>

The result of running this template is shown in Figure 14.14.
We will examine the contents of this template to show what is happening. The template

begins with standard HTML which is passed straight back to the webserver:

<HTML>
<TITLE>Testing MySQL ODBC Connection</TITLE>

<BODY>

This defines the file as HTML and sets the title of the page. Then comes the first CFML
tag:

<CFQUERY name=”getusers” datasource=”MyTestDataSource”>
SELECT *
FROM user

</CFQUERY>

Chapter 14 • Sharing MySQL data with MyODBC 179

Figure 14.13 A verified data source.



This is the CFQUERY tag. Each query needs a name, as you can use many queries within
a template. The query also needs the name of the data source that it is to connect to. The
text inside the tag is the actual SQL query. Unlike our ASP example earlier, all of the code
for connecting to the data source and sending the query is hidden from the web developer.

To access the results of the query, we use the <CFOUTPUT> tag with a query attribute
that refers to the name specified in the <CFQUERY> earlier:

<CFOUTPUT query=”getusers”>

<CFOUTPUT> in this form will loop through the code inside it for every row of the
query results. If there are no rows returned, processing continues from after the </CFOUT-
PUT> tag. Inside our tag we use the following:

#USER#@#HOST#<BR>

180 Database Design Manual: using MySQL for Windows

Figure 14.14 Downloading MyODBC.

Figure 14.15 Downloading MyODBC.



ColdFusion identifies column names and variables within its tags by surrounding them
with hashes. So for each row in the query, the line above will output the user column value,
an @ sign, the host column value and a line break HTML tag. We then close the <CFOUT-
PUT> tag and complete the rest of the HTML page:

</CFOUTPUT>
</BODY>
</HTML>

As this is a lot easier to follow than the ASP example, due to the simplicity of the tags, we
will re-write the template so that the output is tabulated better. This template will then read
as follows:

<HTML>
<TITLE>Testing MySQL ODBC Table</TITLE>

<BODY>
<CFQUERY name=”getusers” datasource=”MyTestDataSource”>

SELECT *
FROM user

</CFQUERY>

<TABLE>
<TR><TD>Username</TD><TD>Host</TD></TR>
<CFOUTPUT query=”getusers”>
<TR><TD>#USER#</TD><TD>#HOST#</TD></TR>
</CFOUTPUT>

<TABLE>
</BODY>
</HTML>

The results of the above are shown in Figure 14.15. You will notice how, as when we
looked at ASP, we created the HTML outside of the loop, and then looped through each row
of the table using the CFOUTPUT associated with the query.

In summary, to connect and use MyODBC data within ColdFusion you:

• Send the SQL query to the data source by wrapping it in a <CFQUERY> tag which you
name.

• Use the results by wrapping the column names you wish to use in hashes, and using
these names and other HTML tags within a <CFOUTPUT> tag that refers to the query
name.

As with ASP, this demonstration can be used to connect ColdFusion to a MyODBC data
source on its server, or to any other ODBC data source that is available. It is not MyODBC
specific.

Chapter 14 • Sharing MySQL data with MyODBC 181



This page intentionally left blank 



IndigoPerl

As you probably realize by now, MySQL is a powerful product which will take a long time to
explain and master. At this stage in the book I hope you will be some way to understanding
how to use SQL and MySQL. MySQL shows its true power when combined with other pro-
grams such as PHP and the Apache webserver. One very common use of this combination
is PHP-Nuke, which is shown in Figure 15.1.

PHP-Nuke is a system utilizing PHP and MySQL that enables you to set up a powerful,
multi-user, content managed website very easily. Of course, if you wish to customize these

MySQL with PHP, Apache and Perl 15

183

Figure 15.1 PHP-Nuke in use on their own website.



open source programs you need to know a little about the software that is running behind
the scenes.

The PHP scripting language, Perl and the Apache webserver are similarly complex prod-
ucts, and I could devote a book to each of them. Even detailing their setup would be too
much for a single chapter of this book. To enable me to demonstrate how to use MySQL
with these products, I was happy to discover a system called IndigoPerl from IndigoStar
software. This can be downloaded from:

http://www.indigostar.com/indigoperl.htm

IndigoPerl combines PHP, Apache and their version of Perl as a single preconfigured
product for windows.

Figure 15.2 shows the download page for IndigoPerl. You will need to download the zip
file to use the examples in this chapter.

Unzip your downloaded file to a temporary directory, then run the setup.bat file which
will run in a dos box as shown in Figure 15.3. After selecting the default option for the pro-
gram location, the software will take several minutes to install itself.

After installation you will be prompted to reboot. After reboot you will see the new tell-
tale, shown in Figure 15.4, in the system tray to let you know that the Apache webserver is
installed.

184 Database Design Manual: using MySQL for Windows

Figure 15.2 Obtaining IndigoPerl.



If the icon shows a green arrow then Apache is running. If it shows a red square then the
webserver is currently stopped. To start the webserver, double click on the icon and click
the start button in the dialogue box that appears.

Finally, to verify that your Apache server is set up correctly, open up a web browser and
go to the following location:

http://localhost

Figure 15.5 shows the default webpage that Apache installs to let you know that all is
well.

The nice thing about IndigoPerl is that it will seamlessly integrate with the MySQL
installation that you have used in the rest of this book. To verify this, you will notice that at
the bottom of the page are several test scripts. The last script allows you to test a connec-
tion to MySQL, so click on this and you should be rewarded with the screen in Figure 15.6.

This script creates a test MySQL table and inserts a couple of rows, which it then
retrieves.Although this proves that it works, it does not really show how to use MySQL from
PHP so we will now write our own PHP script to access our database.

Chapter 15 • MySQL with PHP, Apache and Perl 185

Figure 15.3 IndigoPerl setup running.

Figure 15.4 Apache webserver icon.



A Quick PHP Script

PHP is a scripting language that you can embed into HTML documents. The HTML docu-
ment is saved with the extension .php to indicate to the webserver that it needs to pass the
file to the PHP server. Save the following to a text file:

<HTML>
<TITLE>Test PHP script</TITLE>
<BODY>
<?PHP 

print “It works.” ; 
?>
</BODY>
</HTML>

186 Database Design Manual: using MySQL for Windows

Figure 15.5 Apache server default webpage.



Copy the above file into the Apache root directory, which in this installation will be:

c:\indigoperl\apache\htdocs

Once it is there rename it to the following:

test.php

You can now view this in a browser, which will need to be pointed at:

http://localhost/test.php

You should see a webpage with the words It works on it, and nothing else. If you see the
PHP code and the previous tests worked, then you may not be looking at the file through
the webserver, or you may have incorrectly named the file.

Inside a PHP document, all HTML tags are processed as normal, but anything sur-
rounded by <?PHP … ?> is classed as PHP code and passed to the PHP server. The print
command simply outputs the string that you provide. All PHP commands are terminated
with a semicolon.

Accessing MySQL

MySQL is accessed in PHP through a series of functions whose results are stored in vari-
ables. You need to go through the following stages to access your data:

• Connect to the database
• Run the query
• Deal with the results
• Clear the results
• Close the connection to the database.

Chapter 15 • MySQL with PHP, Apache and Perl 187

Figure 15.6 Result of testing connection to MySQL.



Connecting to the Database

To connect to the database you use the mysql_connect function as follows:

$connectionname = mysql_connect(“server”,“username”,“password”);

$connectionname is a variable that holds the MySQL connection. When you wish to
access this database later on in the script, you will use this variable to reference it.

server is the host name of the server.
username and password are the credentials for accessing the MySQL server.You can see

why it was previously suggested that you have a separate user defined for accessing your
data via the web. You would not want to have to embed your administrator credentials in
every webpage that you created. To quickly set up a user to gain access to MySQL from PHP
on your local machine, open up the MySQLGUI and run the following:

GRANT SELECT ON mysqlfast.* 
TO phpuser@localhost 
IDENTIFIED BY “abominable”

This will create a specific user to use PHP and give them access from localhost to the
mysqlfast database. They will have SELECT access only, so will not be able to change any-
thing. This is by far the safest way of granting web access to a database; only give the user
the minimum access to complete the task that they need to perform. You can follow this
command with the or keyword that then allows you to execute code if the command fails.
We won’t demonstrate this here but on production pages it is always best to check for error
conditions when you are scripting to make your webpages more resilient.

In our PHP script we can then use the following to connect to the MySQL server:

$myConnection = mysql_connect(“localhost”,“phpuser”,“abominable”);

Selecting the Database

Once you have connected to the server, PHP gives you a command that allows you to select
the data, mysql_select_db. This command is used as follows:

mysql_select_db(“databasename”,connection);

databasename is the name of the database that we will be using. Your user must have
rights to access the database.

connection is the variable that you assigned the connection to in the previous task. If
you are only using one connection you can omit this attribute as PHP will default to the last
connection made.

Sending a Query

With the connection ready, we can now send the query to the connection. PHP uses the
function mysql_query as follows:

188 Database Design Manual: using MySQL for Windows



$results=mysql_query(“query”);

query is a string containing the query we wish to execute.
$results is a variable that stores the results set that the function returns.
So to send a query that selects everything from our log table, we would issue the com-

mand:

$myResults=mysql_query(“SELECT webpageid,browser,ipnumber FROM LOG”);

The above works fine if you are using a static query, such as the one above, because it is
easy to insert the query string into the function. However, if you were executing a dynamic
query, such as searching for a word that was stored in a variable that had been typed in
from a webpage, it is best to store the query in a string, which you can build up as required
first, and then insert this query string into the function as follows:

$searchterm = “Mozilla”;

$query = “SELECT * FROM Log WHERE Browser LIKE ‘$searchterm%’”;
$myResults=mysql_query($query);

Now the results of the query have successfully been stored in a results set, we can begin
to process these results. If you were running an INSERT query you would send it using
mysql_query and not have to worry about processing the results.

Accessing the Records

We have now stored the records in a record set variable. There are several ways in which you
can obtain the results from this set. We will use mysql_fetch_row as follows:

$variable=mysql_fetch_row($resultsSet)

The variable that this function returns is an indexed array, starting at 0, for every cell in
the current row of the results set. If we were to run the following on our results:

$row=mysql_fetch_row($resultsSet);

The following would output all of the columns in the current row:

print “Row: $row[0], $row[1], $row[3]<BR>”;

The index order in the array corresponds to the order of the columns as specified in the
query, or the creation order of the columns in the CREATE TABLE command if * was used.

If mysql_fetch_row is used a second time on the same results set, it will return the next
row in the set, or FALSE if there are no more rows. Ideally, in use you will want to program
some control structure around the output to handle more than one row. The following will
output all of the results in the record set in a table using a do...while loop:

Chapter 15 • MySQL with PHP, Apache and Perl 189



print “<TABLE border=1>
<TR><TD>WebPageID</TD><TD>Browser</TD><TD>IPNumber</TD></TR>”;

do {
$row = mysql_fetch_row($myResults);
print “<TR><TD>$row[0]</TD><TD>$row[1]</TD><TD>$row[2]</TD></TR>”;
} while ($row);

print “</TABLE>”;

Clearing the Record Set

After we have finished with the record set we need to do some housekeeping. The record set
may contain hundreds of rows if accessing a large database, which may hang around tying
up system resources if you leave them there. This could have major implications if lots of
people were looking at the webpage at one time. When you have finished processing your
record set you can use mysql_free_result as follows:

mysql_free_result($resultsSet);

Closing the Connection

Finally, we have to close the connection to the database. Although this happens automati-
cally once the script finishes processing, closing it earlier will free the resources that it holds
for use by other processes. To close the connection use:

mysql_close($myConnection);

Testing the Script

We now have all that we need to connect to the database, execute the query and process the
results. Here are all of the parts put together:

<HTML>
<TITLE>Connecting PHP to MySQL</TITLE>
<BODY>

<?PHP 
$myConnection = mysql_connect(“localhost”, “phpuser”, “abominable”)

or die(“Could not connect”);
mysql_select_db(“mysqlfast”) or die(“Could not select database”);
$query = “SELECT webpageid,browser,ipnumber FROM Log”;
$myResults=mysql_query(“$query”)or die(“Invalid query: “ . 
mysql_error());
print “<TABLE border=1>
<TR><TD>WebPageID</TD><TD>Browser</TD><TD>IPNumber</TD></TR>”;

190 Database Design Manual: using MySQL for Windows



do {
$row = mysql_fetch_row($myResults);
print “<TR><TD>$row[0]</TD><TD>$row[1]</TD><TD>$row[2]</TD></TR>”;} 

while ($row);
print “</TABLE>”;
mysql_free_result($resultsSet);
mysql_close($myConnection);

?>
</BODY>
</HTML>

I have put a little error trapping in the script so that if you want to try a few different
queries you can do so and get some feedback if there are any problems. This script can be
seen running in Figure 15.7.

Working with Perl

Perl is an interpreted programming language that you can use to write CGI scripts. Like
some of the other applications we have just discussed, Perl accesses databases through a set
of driver functions that are known as DBI (Database Interface). Perl scripts reside in a cgi-
bin directory of your webserver, so in our example installation ours are stored at:

C:\indigoperl\apache\cgi-bin

Figure 15.6 has already shown one of the scripts in this directory running when we
pointed the browser at:

http://localhost/cgi-bin/mysqlsamp2.pl

Chapter 15 • MySQL with PHP, Apache and Perl 191

Figure 15.7 The working PHP script.



You would normally need to install the DBI drivers for MySQL to get Perl working with
MySQL, but the IndigoPerl installation has already done this for us.

As we have done previously, we will now create a Perl file in the cgi-bin directory above
and show the various steps needed to connect to your database in Perl. Perl files are identi-
fied with the .pl extension. Create a blank text file in the cgi directory as follows:

C:\indigoperl\apache\cgi-bin\mytest.pl

You can then drop this file into Notepad and begin to build up the Perl script.

Defining a Perl and HTML Document

Although the .pl extension and the position of the file in the web root indicates to Apache
that the file is to be handled by the Perl and CGI system, we have to let the CGI processor
know that the script it is using is Perl. This is indicated by the following line at the start of
the file:

#!perl

The hash symbol in Perl can be used to insert comments into a script, or to temporarily
disable code for testing. In this occasion, however, this command will work even though it
looks as if it is commented out.

As already mentioned, Perl uses a DBI to connect to a database. We need to let Perl know
that we will be using this interface with the command:

use DBI;

Some texts say that this command can be omitted, and the DBI will be invoked automat-
ically as it is used later in the script. However, in this particular implementation, you do
have to let ActivePerl know that it will be using the DBI in advance.You will also notice that
this command is followed by a semicolon. This is the standard termination for a command
in Perl. We can now begin to get Perl to set up output to an HTML page, and begin building
this page. We do this with the following:

print “Content-type: text/html\n\n”;
print “<html><TITLE>mytest.pl</TITLE><body>\n”;

You will notice that we have used the command print. This command will output what
follows it to an output stream.As this is being called by a web browser the stream should be
back to Apache. In other applications we have used in this book we have just started the
webpage with “<HTML><TITLE>...”, however the CGI processor needs to know the MIME
type of the document we are creating, so the Content-type line is necessary. If you omit this
line you will generate a 500 Internal Server Error on your page view. You will get a similar
error if you omit a semicolon from the end of a command in your script.

192 Database Design Manual: using MySQL for Windows



Connecting to MySQL with DBI

After defining our parameters for Perl and the webpage, we can now connect to the data-
base, which we do with the following:

DBI->connect(‘DBI:mysqlPP:mysqlfast:host=localhost’,phpuser,abominable);

This function connects to the database, using the mysqlPP driver in the DBI. You will
notice that the first string within the query contains the host details of where the MySQL
server is. The second and third values in the function are the username and password of the
MySQL account that we used in our PHP test earlier. The whole command above will return
a database handle to the connected data source if successful, and this needs to be stored for
later use, so we cannot just issue the code above on its own. Instead we insert the output
into a variable as follows:

my $dbh =DBI->connect( 
‘DBI:mysqlPP:mysqlfast:host=localhost’, phpuser, abominable );

Before we use a variable in Perl we usually should define it with the my command as fol-
lows:

my $myvariable;

We can then assign a value to this variable as required. However, we can cut corners a lit-
tle by defining it at the same time as assigning the value by following the my statement with
equals and providing a value to assign as above.

Generating the Query

Finally, we are at the point where we can use a query. As we have used simple queries with
previous systems, our final example will complicate matters slightly with a join query as fol-
lows:

SELECT title, datecreated, ipnumber 
FROM webpage, log 
WHERE log.webpageid=webpage.id

With the Perl DBI, we need to get the query ready before actually running it. We do this
as follows:

my $sth = $dbh->prepare( ‘SELECT title, datecreated, ipnumber 
FROM webpage, log 
WHERE log.webpageid=webpage.id’);

Chapter 15 • MySQL with PHP, Apache and Perl 193



This time we send the prepare function with the query to the database handler, and store
the results in a set handler variable. If there are any errors in the query, this function will
terminate before the query is actually executed

Finally, we can execute the query by sending the execute function to the set handler:

$sth->execute() || quit();

Processing the Query Results

After successful execution of the query, the set handler variable will contain a set of records
that we can process. As with PHP there are many ways in which you can do this with Perl.
We will use a function similar to our PHP example, which returns the current row of the
record set as an indexed array. This is called fetchrow_array() and is sent to the set handler
as follows:

myarray = $sth->fetchrow_array()

When we have a row inside the array, we use an index number to retrieve the value of
that index. It is useful for us to store this value in a more meaningful variable that we can
use while printing, so we can use the following to do this:

my $pagetitle = $myarray[0];

The two commands above on their own will only get the information from one row, so to
use this on a multiple-row query we need to wrap it up in a control structure as follows:

while (@myarray = $sth->fetchrow_array()) {
my $pagetitle = $myarray[0];
my $ipnumber = $myarray[1];
my $datecreated = $myarray[2];
print “$datecreated $pagetitle $ipnumber<BR>\n”;
}

This will loop through each row of the record set, retrieving, processing and printing the
row each time. It will stop once the last row has been processed.

All that remains is to finish off the HTML file as follows:

print”<HR>Ok”;
print”</BODY></HTML>\n”;

I have included the OK line to indicate that the script has got to the end without error. If
an error occurs anywhere on the script, you can often get just a blank document or a half-
completed webpage returned. If you are writing a Perl script incrementally and testing each
part, it is often useful to put an indicator like this on the last line so that you can see whether
your last piece of code has executed successfully or not.

194 Database Design Manual: using MySQL for Windows



So here is the complete script which can be seen running in Figure 15.8:

#!perl
use DBI;

print “Content-type: text/html\n\n”;
print “<HTML><TITLE>mytest.pl</TITLE><body>\n”;

my $dbh = DBI->connect(‘DBI:mysqlPP:mysqlfast:host=localhost’, 
phpuser,abominable);

my $sth = $dbh->prepare(‘SELECT title, datecreated, ipnumber from webpage, log 
WHERE log.webpageid=webpage.id’);

$sth->execute() || quit();
while (@myarray = $sth->fetchrow_array()) {

my $pagetitle = $myarray[0];
my $ipnumber = $myarray[1];
my $datecreated = $myarray[2];
print “$datecreated $pagetitle $ipnumber<BR>\n”;
}

print”<HR>Ok”;
print”</BODY></HTML>\n”;

Coping with Errors

If you have typed the script in and tested it, you will hopefully see the screen shown in
Figure 15.8. If you have made a typing error, you may have a screen as shown in Figure 15.9.
If your code is working correctly but you want to try and break the code, try changing the
password in the connect string and trying again.

Chapter 15 • MySQL with PHP, Apache and Perl 195

Figure 15.8 Perl has successfully retrieved MySQL data.



All that you can tell from the screen in Figure 15.9 is that something has gone wrong. Perl
itself is not as easy to use when errors occur as some of the other systems we have used in
this book, and so to get some feedback we have to do some work as a programmer. First we
have to redirect any errors that may be generated back to the standard output stream as fol-
lows:

BEGIN {
$| = 1;
open (STDERR, “>&STDOUT”);
}

Next we have to output an error after a command that may contain an error has exe-
cuted. The DBI has an option to do this by using the following code after the connect()
function before the semicolon:

or die “\n\nConnect Error: “ . $dbh->errstr;

This forces the processing of the script to stop if an error is encountered.You can send a
message to the error stream at this time and include the actual error message using the
errstr command.

Reformatting the Output

While we are modifying this script we will tidy up the output of the query slightly by put-
ting the results in a table as follows:

print “<TABLE border=1>”;
print “<TR><TD>Date Accessed</TD><TD>Page Title:</TD><TD>IP
Number</TD></TR>”;
while (@myarray = $sth->fetchrow_array()) {

my $pagetitle = $myarray[0];

196 Database Design Manual: using MySQL for Windows

Figure 15.9 An error has occurred.



my $ipnumber = $myarray[1];
my $datecreated = $myarray[2];
print”<TR><TD>$datecreated</TD><TD>$pagetitle</TD>

<TD>$ipnumber</TD></TR>”;
}

print “</TABLE>”;

The above also puts the column names in a header row. Notice that the row definition
and column names are outside of the loop, and the recurring rows are on the inside.

Here is the whole modified script with the error handling and reformatting included:

#!perl
BEGIN {
$| = 1;
open (STDERR, “>&STDOUT”);
}

use DBI;
print “Content-type: text/html\n\n”;
print “<html><TITLE>mytest2.pl</TITLE><body>\n”;
my $dbh = 
DBI->connect(‘DBI:mysqlPP:mysqlfast:host=localhost’,phpuser,abominable) or
die “\n\nConnect Error: “ . $dbh->errstr;
my $sth = $dbh->prepare(‘SELECT title, datecreated, ipnumber from webpage,
log
WHERE log.webpageid=webpage.id’) or die “\n\nPrepare Error: “ . $dbh-
>errstr;
$sth->execute() || quit();

print “<TABLE border=1>”;
print “<TR><TD>Date Accessed</TD><TD>Page Title:</TD><TD>IP
Number</TD></TR>”;
while (@myarray = $sth->fetchrow_array()) {

my $pagetitle = $myarray[0];
my $ipnumber = $myarray[1];
my $datecreated = $myarray[2];
print”<TR><TD>$datecreated</TD><TD>$pagetitle</TD>

<TD>$ipnumber</TD></TR>”;
}

print “</TABLE>”;
print”<HR>Ok”;
print”</BODY></HTML>\n”;

If you run this you will see the results shown in Figure 15.10.
However, if you made a typing error while entering your script, you may have got differ-

ent results. Hopefully, the results will give you an indication of what the error was.

Chapter 15 • MySQL with PHP, Apache and Perl 197



Figure 15.11 shows how our error-handling code has given us a meaningful error when
the password was incorrect on the connect string. Although this does not exactly pinpoint
the problem, the diagnostics given are close enough for you to establish whereabouts the
error occurred and some clue as to correcting it.

198 Database Design Manual: using MySQL for Windows

Figure 15.10 More error checking and neater formatting.

Figure 15.11 Error checking at work.



Other Tools

In the final chapter of this book I thought I would introduce you to two more tools that can
make using MySQL easier. I did not mention these earlier because by using these tools from
the start you would not have been able to learn as much of the basic SQL that is required to
really use MySQL well. These programs are:

• MySQL Control Centre, the new graphical console for MySQL from the developers.
• PHPMyAdmin, a web-based interface to Administer MySQL functions.

MySQL Control Centre

MySQL Control Centre can be downloaded free from the Graphical clients section of the
MySQL.com downloads area:

http://www.mysql.com/downloads/

The control centre is distributed as a zip file which when uncompressed gives you a
setup program to run. The setup is reasonably standard but also installs various language
packs that you may wish to deselect to save space if not needed.

Once installed and running, you will see the screen shown in Figure 16.1. The left side
has a standard menu tree where you can select any of the MySQL objects. The currently
selected object in the figure is the Log table.When you select a table, the panel on the right-
hand side of the screen will give you some information about that table, similar to if you
had executed a DESCRIBE LOG command. This screen gives you a quick overview of the
whole system.

The control centre shows its power when you right click on an object. Figure 16.2 shows
the context menu that appears when you right click on the Log table. Here you are given a
menu which allows you to use the Log table to great extent.

Selecting the Edit Table option from the context menu reveals the screen shown in
Figure 16.3. Here you can change the design of your table with the graphical interface. You
will note that in the figure the Insert Row icon is just about to be selected. This allows you
to add a new column to the existing table without having to remember the ALTER TABLE
syntax. In this case the new column would be added before the Browser column.

Making life easier 16

199



Below the list of column names are the properties for the object selected. In the figure we
have just selected the Table Properties. This outlines the attributes of the table and even
allows you to change table types from a dropdown list. Each individual column has proper-
ties that you can also change if required.

Under these options is a status window that gives you any messages that the MySQL
server sends while you are navigating your database.

Figure 16.4 shows the screen you are taken to if you select one of the Open Table options
from the context menu. This time you have a screen that shows the results of the query. In
the figure, we have just pressed the SQL button which has opened a window that contains
the select query that the Control Centre used to generate the results set. A WHERE clause
was then added to the select statement and the Execute Query button (the exclamation

200 Database Design Manual: using MySQL for Windows

Figure 16.1 The main MySQL Control Centre screen.

Figure 16.2 A table's context menu.



Chapter 16 • Making Life Easier 201

Figure 16.3 Altering the design of your table.

Figure 16.4 Lots of information about your running query.



mark) clicked. The query then runs and the results pane is updated. You can see in the fig-
ure that the status window contains the rows returned for the first and second queries that
were run, and other tabs on this window allow you to return to previous queries and even
EXPLAIN the query as it runs.

We used the MySQLGUI in this book because its table output was clear and uncluttered.
Although the Control Centre screen presents us with a lot more information, it also has one
hidden function that the GUI did not have. If you click on one of the cells in the results
pane, and the cell contains a single column value, you can edit the contents of the cell. This
allows you to change your data without using INSERT or UPDATE queries, although this is
what the MySQL server does in the background. It is quite common to use a select state-
ment to match a primary key in the Control Centre interface, and then edit some of the
other columns by clicking in the results pane. If the cell to be changed is a large column
type, like a text type, you will get the value appearing in another window to edit.

You will also see why introducing you to this earlier may have stopped you from learn-
ing SQL, as this tool simplifies database access considerably. However, you still need to use
your knowledge of SQL to get the most from this sort of tool. You will also realize that you
still need SQL skills to embed it correctly inside scripting languages.

The MySQL Control Centre is a much superior product to the GUI, which explains why
development of the latter has ceased. The Control Centre is also similar to the Graphical
tools that are provided with Oracle, Microsoft SQL server and others, and really proves that
MySQL has now come of age and can compete with these products.

202 Database Design Manual: using MySQL for Windows

Figure 16.5 PHPMyAdmin main page.



PHPMyAdmin

PHPMyAdmin is a series of scripts that you can use in conjunction with Apache and PHP
to administer your webserver. As we have already set these programs up with IndigoPerl,
the PHPMyAdmin setup is very simple. This can currently be obtained as a download from:

http://www.phpmyadmin.net

You may also find the collection by doing a Google search.
Once downloaded and unzipped, you need to copy the files to the following directory in

your web root directory:

c:\indigoperl\apache\htdocs\phpmyadmin

You can then immediately access this tool by pointing your web browser at the following
address:

http://localhost/phpmyadmin/index.php

Figure 16.5 shows the front page of the admin website.
Because this tool is web based, it means that if your MySQL installation is web enabled,

you can access it from any machine with a web browser and internet connection.You do not

Chapter 16 • Making Life Easier 203

Figure 16.6 Listing the tables in a database.



need a specific client running to enable you to administer your databases. This freedom
obviously comes with some problems such as security issues. The README file included
with the package explains how to password protect PHPMyAdmin to begin to secure your
installation.

You can see from the screen shown in Figure 16.5 that you can select a database to work
with or create a new one.You can also see that our mysqlfast database that we created in this
book is in the list of databases. Selecting this database gives the complex screen shown in
Figure 16.6.

This screen lists all of the tables that are in my mysqlfast database. You can access all
parts of your MySQL data from this interface. One useful part is the SQL tab. Clicking on
this will allow you to enter a SQL query directly into the web interface. Figure 16.7 shows
the results of the following query:

SELECT * 
FROM Log;

You will see that Figure 16.7 shows the results of the query, as well as giving you the
options to go and edit some of the data that has been returned.

PHPMyAdmin is a great tool that I was very pleased to discover. As long as you consider
the possible security implications of using it, you will find it another invaluable aid in your
use of MySQL.

204 Database Design Manual: using MySQL for Windows

Figure 16.7 Query results via the web.



302 error 5
404 error 5

A
access barrier 2
access rights 18
ADD 91, 93
ADDDATE() 127
adding a user 137
Administrative Tools 166
aggregate functions

avg() 115
count 107
max() 111
min() 112
sum() 113

Aliases 61
ALL PRIVILEGES 141
ALTER TABLE 90
ALTER TABLE ADD 91
ALTER TABLE CHANGE 94
ALTER TABLE DROP 95
ALTER TABLE MODIFY 95
ALTER TABLE RENAME 93
ANALYZE TABLE 161
AND 63
ANSI SQL92 7, 97
Apache 183
Apache logs 3
AS 42, 62, 113
ASC 69
ASP 170, 171
ASP MyODBC example 171
attributes 4
auto update date datatype 27
auto-generated 46
auto-generating 47
AUTONUMBER 111
AUTO_INCREMENT 39, 47
avg() 115

B
basic joins 73
BETWEEN 63
BIGINT datatype 20
Binary Large Objects 27
BIT datatype 22
BLOB datatype 27
BOOL datatype 21
boolean 21

C
cascade delete 37
CFOUTPUT 180
CFQUERY 180
CGI 192
CHANGE 94
CHAR datatype 25
CHECK TABLE 159
checking passwords 147
clear a column's cells 89
client server 6
Close 175
CMFL 176
ColdFusion 170, 176
ColdFusion MyODBC example 178
columns 4
CONCAT 65
condition 58
conditions 59
connecting to the service 13
Connector/ODBC 164
content managed 183
context menu 12
control access 2, 6
control panel 166
controlling access 138, 145
cookie table 35, 36
cookies 63
count() 107
CREATE DATABASE 38
Create from Select Statement 42
CREATE INDEX 157

Index 3

205



CREATE OR REPLACE 42, 100
CREATE TABLE 39, 103
CREATE UNIQUE INDEX 157
creating a user 137
credentials 11, 12, 144, 149, 169, 188
cross join 74
CURRENT_DATE 118
CURRENT_TIME 118, 131

D
data

import 49
importing 52
restricting 58

data source 164, 176
database efficiency 33
database list 38
Database Management System 2
datatype

TIME 29
YEAR 29

datatypes
BIGINT 20
BIT 22
BLOB 27
BOOLEAN 21
CHAR 25
DATE 28
DATETIME 27
DECIMAL 22
definition 19
DOUBLE (PRECISION) 24
enum 31
fixed length 26
FLOAT 23
INT 20
LONGBLOB 27
LONGTEXT 26
MEDIUMBLOB 27
MEDIUMINT 20
MEDIUMTEXT 26
REAL 24
SMALLINT 20
TEXT 26
TINYBLOB 27
TINYINT 20
TINYTEXT 26
VARCHAR 25
variable length 26

DATE datatype 28
DATE datatypes 27
dates

auto updating 27
DATETIME datatype 27
DATE_ADD() 125

DATE_FORMAT() 131
DATE_SUB() 127
DAYNAME() 120
DAYOFMONTH() 122
DAYOFWEEK() 121
DAYOFYEAR() 122
DBI 191
DBMS 2, 6
DECIMAL datatype 22
DECRYPT 147
DEFAULT 39
DELETE 140
DELETE FROM 103, 105
DESC 69
describe 14, 39, 91, 135, 199
die 196
differentiating columns 62
DISTINCT 57
Docs directory 11
DOUBLE (PRECISION) datatype 24
DROP 95
DROP TABLE 105
DUPLICATE KEY UPDATE  100

E
encryption 147
enforce referential integrity 37
ENUM 31
equals 58, 60
equi-join 75, 81
errstr 196
execute query 16, 45
execute() 194
EXPLAIN 152, 156
EXTENDED 160
extra 154

F
fetchrow_array() 194
FIELDS TERMINATED 53
FLOAT datatype 23
floating point numbers 23
FLUSH PRIVILEGES 144
foreign key 35, 40
form data

dropdown 31
lists 30
select 30

formatting integers 20
formatting output 67
fragmented tables 26, 158
FROM 55
FROM_DAYS() 130
fuzzy matching 60

206 Database Design Manual: using MySQL for Windows



G
GRANT 135, 141, 144
GRANT examples 146, 169
GRANT SELECT 140, 169
grant tables 142
GROUP BY 108

H
HAVING 115
help files 11
HOUR() 124
HTML form data

dropdown 31
lists 30

I
identifying redundant data 36
IF NOT EXISTS 41
IGNORE ... LINES 53
import data 49
IN 70
index 96
indexing 156
INFILE 52
inner join 75, 79
InnoDB 37
INSERT 45, 202

from query 48
from script 49

INSERT <#208> All Columns 47
INSERT <#208> Multiple Rows 46
INT datatype 20
integer datatype ranges 20
integers 20

J
join

three tables 151
joining multiple tables 73
joins

cross 74
equi- 75, 81
examining 151
inner 75, 79
left 81
ON 80
outer 81
restricting equi-joins 79
right 83
UNION 85

K
key 154
key_len 154

L
LEFT JOIN 81, 111
LIKE 43, 60
list

dropdown 31
LOAD DATA 52
LOCAL 53
localhost 18, 140, 169, 176, 185
log table 40
login details 11
LONGBLOB datatype 27
LONGTEXT datatype 26

M
manual files location 11
manual_toc.html 11
max() 111
MEDIUMBLOB datatype 27
MEDIUMINT datatype 20
MEDIUMTEXT datatype 26
merge results 66
meta data 7
meta-data 4
Microsoft ODBC 176
min() 112
MINUTE() 125
MODIFY 95
MONTH() 119
MONTHNAME() 120
moved temporarily 5
MoveNext 174
Mozilla 33
multiple aggregates 113
my 193
my.ini 13
MyISAM 37
myisamchk 161
MyODBC 164
MyODBC examples 170
MySQL

configuration file 13
connecting to the service 13
default directory 9
directory structure 10
Docs directory 11
downloading 9
installing 9
interpreter 13
online manual 11
service 11
start-up file 12
table types 37

MySQL Control Centre 199
mysqlbin 11
mysqlfast 204

Index 207



mysqlfast database 3
MySQLGUI 9, 202

first time log on 15
quick tour 17

mysqlPP 193
mysql_close 190
mysql_connect 188
mysql_fetch_row 189
mysql_query 188
mysql_select_db 188

N
NOT 63
NOT BETWEEN 63
NOT IN 71
NOT NULL 39
NOW() 117
NULL 37

O
ODBC 163, 176
ON 80, 144
ON DUPLICATE KEY UPDATE  100
online MySQL manual 11
Open Database Connectivity 163
operators 59
OPTIMIZE TABLE 158
or 188
ORDER BY 68
outer join 81

P
password 15, 138, 144
password handling 146
PASSWORD() 147
pattern matching 60
percent sign 61
Perl 184, 191
PHP 6, 98, 183, 186
PHP-Nuke 183
PHPMyAdmin 203
possible_keys 153, 156, 158
precision 22
prepare() 193
primary key 34, 40, 47, 93, 96

duplicates 47
unique 49

privilege 144
protecting data 135

Q
QUARTER() 124
queries

examining 152

query 7
QUICK 160

R
REAL datatype 24
record 5
record set 190
RECORDS TERMINATED 53
RecordSet 174
recreate information 35
redundant data 33
ref 154
REFERENCES 40
referential integrity 36, 42, 83
relational theory 4, 5
relations 5
relationships 5
RENAME 93
REPAIR TABLE 160
REPLACE 87, 98
response.write 174
restricting access 135, 138
restricting users 145
REVOKE 138, 141, 144
RIGHT JOIN 83
root 12
row 5
rows 154

S
script processor 6
SECOND() 125
SELECT

* 55
to build new table 49

SELECT * 55
SELECT AS 61
SELECT columnnames 56
SELECT DISTINCT 57, 109
SELECT WHERE 58
self-defining 3
semicolon 8
set

definition 30
storing 30

SET datatype 30
Setting up a data source 166
Show me 12
SMALLINT 92
SMALLINT datatype 20
source 51
SQL 7
SQL standards 7
SQL91 7
start-up file 12

208 Database Design Manual: using MySQL for Windows



Index 209

storing currency 22
storing decimal numbers 22
storing information 19
storing integers 20
storing large numbers 23
Storing large objects 27
storing text 26
string truncation 25
strings 24, 25
Structured Query Language 7
SUBDATE() 128
subquery 71
sum() 113
System DSN 166
system tray 12

T
table already exists 41
table maintenance 26
tables

cookies 50
log 53
visitorbook 65
webpage 45
webpage2 48

tables_priv table 141
telltale 12
Test Connection 169
TEXT 94
TEXT datatype 26
three table join 151
TIME datatype 29
TIMESTAMP datatype 27
TIME_FORMAT() 130
TINYBLOB datatype 27
TINYINT datatype 20
TINYTEXT datatype 26
TO_DAYS() 128, 133

tuple 5
TYPE 42

U
underscore 61
UNION 85
unique primary key 49
UNSIGNED 21
UPDATE 87, 97, 99, 202
USE 38
user 137
user credentials 11, 146
user table 14, 135, 149
USE_FRM 160

V
VALUES 45
VARCHAR 94
VARCHAR datatype 25
VBSCRIPT 172
visitorbook table 92

W
web databases 2
webpage table 39
webserver status codes 5
website log 33
WEEK() 123
WEEKDAY() 121
WHERE 58, 79, 103. See See
wildcards 60
winmysqladmin.exe 11
winmysqlgui.exe 15

Y
YEAR datatype 29
YEAR() 119
YEARWEEK() 123


	TeamLiB
	Cover
	Contents
	1 MySQL and Databases
	About This Book
	About MySQL
	Who Can Use This Book?
	Databases and the Internet
	DBMS
	MySQL Databases
	Tables
	Client-server Systems
	Structured Query Language

	2 Installing and Testing MySQL
	Obtaining MySQL
	Installing the MySQL Server
	Installing the Graphical Client Tool
	MySQL Directory Structure
	The Online MySQL Manual
	Starting the MySQL Service
	MySQL Configuration Files
	Connecting to the MySQL Service
	Connecting with the Graphical Tool
	MySQLGUI Quick Tour

	3 How Shall We Store it? – Datatypes
	The Datatype
	Numeric Types
	Character Types
	Fixed or Variable Length?
	Storing Text
	BLOB
	Date Types
	Other Types
	SET
	ENUM

	4 Designing and Creating Tables
	Redundant Data
	The Primary Key
	Foreign Keys
	Redundant or Not?
	Referential Integrity
	NULL
	CREATE DATABASE
	CREATE TABLE
	Identifying Foreign Keys
	Create from Select Statement
	CREATE TABLE LIKE

	5 Populating the Database
	INSERT
	INSERT – Multiple Rows
	INSERT – All Columns
	INSERT – Columns from a Query
	Inserting Data with Scripts
	Directly Inserting Data

	6 Retrieving the Data
	SELECT
	SELECT DISTINCT
	WHERE
	MySQL Operators
	Subqueries

	7 Joining Tables
	Information in Multiple Tables
	Cross Joins
	Inner Joins
	Equi-join
	Equi-joins on More Tables
	Restricting Equi-joins
	INNER JOIN – Another Format
	Outer Joins

	8 Changing Data
	Altering Data
	UPDATE Revisited
	REPLACE
	CREATE or REPLACE
	DUPLICATE KEY UPDATE

	9 Deleting our Data
	Keeping Data Accurate
	DELETE FROM
	DROP TABLE
	DROP

	10 Aggregate Functions
	Count
	GROUP BY
	MAX
	MIN
	SUM
	Using Multiple Aggregates
	AVG
	HAVING

	11 Working with Dates and Times
	Using Date and Time
	Working with Dates
	Common Date Queries

	12 Securing the Database
	Protecting Valuable Data
	The User Table
	The tables_priv Table
	The Grant Tables
	Restricting Users
	Other Passwords

	13 Optimizing MySQL
	Tables Get Bigger
	How Well Does It Run?
	Examining Queries
	Looking at Cross-joins Again
	Indexing
	CREATE INDEX
	OPTIMIZE TABLE
	CHECK TABLE
	REPAIR TABLE
	ANALYZE TABLE

	14 Sharing MySQL data with MyODBC
	It's Not Just For MySQL
	More Standards
	Open Database Connectivity
	Data Sources
	Obtaining MyODBC
	Installing MyODBC Drivers
	Setting Up a Data Source
	Example Connections
	MySQL and ASP
	MySQL and ColdFusion
	Creating a Data Source in ColdFusion
	Accessing the Data Source in ColdFusion

	15 MySQL with PHP, Apache and Perl
	IndigoPerl
	A Quick PHP Script
	Accessing MySQL
	Working with Perl
	Defining a Perl and HTML Document
	Connecting to MySQL with DBI
	Generating the Query
	Processing the Query Results
	Coping with Errors
	Reformatting the Output

	16 Making life easier
	Other Tools
	MySQL Control Centre
	PHPMyAdmin

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y




