
6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 1/21

Fred de Villamil 🤔 Follow
VP Engineering @LedgerHQ. Leadership, Blockchain & Big Data. Speaker. Writer. Compulsive Doer.
Startup advisor. Fluent in Sarcasm & Irony.
Jun 18, 2017 · 25 min read

Designing the Perfect Elasticsearch
Cluster: the (almost) De�nitive Guide

Ever since I started to write about operating Elasticsearch, I have

answered many questions about cluster design. Every one of them we

asked by people who were already running Elasticsearch and ran into

trouble after the �rst users came.

Cluster design is an overlooked part of running Elasticsearch. O�cal

documentation and blog posts focus on the magic of deploying a cluster

in a gi�y, while the �rst problem people face when deploying in

production is memory management issues, aka garbage collection

madness. This guide answers most questions I was asked, and

summarises everything you should know about designing the perfect

Elasticsearch cluster.

That's the moment I'm supposed to stop writing and leave you with a

blank page.

Images haven’t loaded yet. Please exit printing, wait for images to load, and try to print again.

https://thoughts.t37.net/@fdevillamil?source=post_header_lockup
https://thoughts.t37.net/@fdevillamil?source=post_header_lockup
https://thoughts.t37.net/tagged/elasticsearch

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 2/21

There’s no way anyone can tell you how to design a

perfect cluster, and those who claim they do

are liars.

What you'll �nd here is a list of things you need to know and

understand to design the cluster that �ts your needs. And that's already

a lot.

Before we get into the details, there's one thing you need to

understand.

Unless you plan to use Elasticsearch to power the

search of your Wordpress blog or small e-

commerce website, your �rst design will

suck. Always.

You can't design a cluster without knowing what your workload will be,

how much search and writes per second you'll get, how fast your

indexes will grow, and what kind of queries your users will run, against

what type of content. And you can't know about your workload unless

you've ran your cluster in production for a while. You'll most probably

have to iterate 2 or 3 times before you get the design right. I've been

running Elasticsearch in production since mid 2011 and I never got it

right the �rst time.

. . .

Edits

2017–06–25:

Added use cases chapter

Added the event logging infrastructure chapter

2017–06–20:

Added a table of contents

Improved hardware.storage: when to use JBOD / RAID0 /

RAID1(0)?

Added a part about Lucene internals

•

•

•

•

•

. . .

Table of contents

Elasticsearch is elastic, for real

Design for Failure

A few things to know about Lucene

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 3/21

Lucene segments

Lucene delete and updates

Hardware

CPU

Memory

Network

Storage

Software

The Linux (or FreeBSD) kernel

The Java Virtual Machine

The �le system

Designing your indices

Sharding

Replication

Optimising allocation

Troubleshooting and scaling

CPU

Memory

Use cases

An event logging infrastructure

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

. . .

Elasticsearch is elastic, for real
There are 2 basic concepts you need to understand about Elasticsearch.

The �rst one is: "you know, for search". This is the response you get

when you run an empty query on an Elasticsearch cluster, and that's for

a reason.

Elasticsearch is a search engine. Elasticsearch is

not a datastore and it won't replace MySQL.

If you're looking for a distributed data store, close your tab, you've hit

the wrong place.

There's another basic concept that's often poorly understood.

Elasticsearch is elastic, for real.

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 4/21

There's 2 things about elasticity when you design your cluster.

The �rst one is horizontal scaling. You can build a cluster with virtually

an in�nity of hosts, depending on your needs and the bottleneck you

face. Sometimes, running your dataset on a lot of small machines will

provide bette performances than using a few large hosts. Sometimes,

running on medium hosts with lots of disk is better. And sometimes,

you'll need gonzo CPU but storage and memory won't be a problem.

The other one is index sharding. Elasticsearch divides indexes in

physical spaces called shards. They allow you to easily split the data

between hosts, but there's a drawback as the number of shards is

de�ned at index creation. Elasticsearch default is 5 shards per index,

but only your workload will help you to de�ne the right number of

shards. Thankfully, there's a way to scale existing indexes in production

using reindexing and index aliases.

. . .

Design for failure
Unless you're running Elasticsearch on a single node, prepare to design

for failure. Designing for failure means running your cluster in multiple

locations and be ready to lose a whole data center without service

interruption. It's not theoretical thinking here. You WILL lose a whole

data center several times during your cluster's life.

Elasticsearch nodes come under 4 �avors:

(Eligible) master nodes: controls the cluster.

Http nodes: to run your queries to.

Data nodes: the place data is stored, obviously.

Coordinating nodes: see them as smart load balancers.

The minimum requirement for a fault tolerant cluster is:

3 locations to host your nodes. 2 locations to run half of your

cluster, and one for the backup master node.

3 master nodes. You need an odd number of eligible master nodes

to avoid split brains when you lose a whole data center. Put one

master node in each location so you hopefully never lose the

quorum.

2 http nodes, one in each primary data center.

As many data nodes as you need, split evenly between both main

locations.

•

•

•

•

•

•

•

•

https://thoughts.t37.net/resizing-your-elasticsearch-indexes-in-production-d7a0402d137e

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 5/21

Elasticsearch provides an interesting feature called shard allocation

awareness. It allows to split the primary shards and their replica in

separated zones. Allocate nodes within a same data center to a same

zone to limit the odds of having your cluster go red.

cluster.routing.allocation.awareness.attributes: "rack_id"
node.attr.rack_id: "dontsmokecrack"

Using rack_id on the http nodes is interesting too, as Elasticsearch will

run the queries on the closest neighbours. A query sent to the http node

located in the datacenter 1 will more likely run on the same data center

data nodes.

. . .

A few things you need to know
about Lucene
Before you start to think about choosing the right hardware, there are a

few things you need to know about Lucene.

Lucene is the name of the search engine that powers Elasticsearh. It is

an open source project from the Apache Foundation. There’s no need to

interact with Lucene directly, at least most of the time, when running

Elasticsearch. But there’s a few important things to know before

chosing the cluster storage and �le system.

Lucene segments

Each Elasticsearch index is divided into shards. Shards are both logical

and physical division of an index. Each Elasticsearch shard is a Lucene

index. The maximum number of documents you can have in a Lucene

index is 2,147,483,519. The Lucene index is divided into smaller �les

Elasticsearch design for failure

https://www.elastic.co/guide/en/elasticsearch/reference/current/allocation-awareness.html
http://lucene.apache.org/

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 6/21

called segments. A segment is a small Lucene index. Lucene searches in

all segments sequentially.

Lucene creates a segment when a new writer is opened, and when a

writer commits or is closed. It means segments are immutable. When

you add new documents into your Elasticsearch index, Lucene creates a

new segment and writes it. Lucene can also create more segments

when the indexing throughput is important.

From time to time, Lucene merges smaller segments into a larger one.

the merge can also be triggered manually from the Elasticsearch API.

This behavior has a few consequences from an operational point of

view.

The more segments you have, the slower the search. This is because

Lucene has to search through all the segments in sequence, not in

parallel. Having a little number of segments improves search

performances.

Lucene merges have a cost in terms of CPU and I/Os. It means they

might slow your indexing down. When performing a bulk indexing, for

example an initial indexing, it is recommended to disable the merges

completely.

If you plan to host lots of shards and segments on the same host, you

might choose a �lesystem that copes well with lots of small �les and

does not have an important inode limitation. This is something we’ll

deal in details in the part about choosing the right �le system.

Lucene deletes and updates

Lucene performs copy on write when updating and deleting a

document. It means the document is never deleted from the index.

Instead, Lucene marks the document as deleted and creates another

one when an update is triggered.

This copy on write has an operational consequence. As you’ll update or

delete documents, your indices will grow on the disk unless you delete

them completely. One solution to actually remove the marked

documents is to force Lucene segments merges.

During a merge, Lucene takes 2 segments, and moves the content into a

third, new one. Then the old segments are deleted from the disk. It

means Lucene needs enough free space on the disk to create a segment

the size of both segments it needs to merge.

A problem can arise when force merging a huge shard. If the shard size

is > half of the disk size, you provably won’t be able to fully merge it,

unless most of the data is made of deleted documents.

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 7/21

Hardware
If you want to get serious about Elasticsearch, you’ll have to learn about

hardware. It might be an unpopular opinion in 2017, but don’t run

Elasticsearch in the cloud. It has nothing to do with latency or losing

your AWS spot instances because Net�ix has just released a new show,

it has to do with picking up the right hardware for your needs. Cloud

providers such as AWS provides vCPU but there’s no way you know

what you’re going to get.

Because they have trouble with Java garbage collection, the �rst thing

people ask advice about is memory management. What you should

actually care about is, in no particular order:

CPU

Memory

Network

Storage

CPU

Running complex �ltered queries, intensive indexing, percolation and

queries against non latin charsets have a strong impact on the CPU, so

picking up the right one is critical.

Dive into the CPU specs to understand how they behave with Java. It’s

been more than a decade since I last read Intel specs — I even used to

have them as physical books — but it prove itself critical to pick up the

right hardware.

For example, Xeon E5 v4 provides 60% better performances than the

v3 version when running Java. Xeon D works well when you want to

scale your cluster horizontally as soon as heavy indexing is split evenly

amongst the cluster nodes. Prepare to get into trouble with nodes

popping out of the cluster like popcorn otherwise. So picking up the

right CPU and horizontal design is critical.

Speaking of CPU, Elasticsearch divides the CPU use into thread pools of

various types:

generic: for standard operations such as discovery

index: for indexing

get: for get operations, obviously

bulk: for bulk operations such as bulk indexing

percolate: for percolation

•

•

•

•

•

•

•

•

•

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 8/21

… these are the most important ones you'll have to deal with,

RTFM for everything else

Each pool runs a number of threads, which can be con�gured, and has

a queue, which can be con�gured too. The default number of threads is

de�ned using a system variable called allocated_cpu, which is never

greater than 32, even though you have 48 core and the system variable

available_cpu shows 48.

I wouldn't recommend changing the thread pool size unless you really

know what you do, the defaults settings are quite sensible. You might

want to adapt the queue size though, as �lling the queue size means

the operations will be rejected. You can get a glance of your thread pool

state using the thread_pool API.

GET /_cat/thread_pool/search?
v&h=host,name,active,rejected,completed

A special trick when your cluster is CPU bound and you can support a

replica of your data set on every node: run your cluster behind a

Haproxy and bypass the http nodes to hit the data node. If you have

heterogeneous nodes, give a greater weight to the nodes with the

highest number of cores.

Memory

Elasticsearch runs on Java, and Java is a garbage collected language.

Which means you'll run into memory management problems.

Memory is divided in 2 parts: what you allocate to the Java heap space,

and everything else. Elasticsearch does not rely on Java heap only. For

example, every thread created within the thread pool allocates 256Kb

of o�-heap memory.

The basic thing to understand with heap allocation

is: the more memory you give it, the more time Java

spends garbage collecting.

Elasticsearch comes with Concurrent Mark Sweep as a default garbage

collector. CMS runs multiple concurrent threads to scan the heap for

objects that can be recycled. The main problem with CMS is how it

might enter “stop the world” mode in which the JVM becomes

unresponsive until it is restarted. The main reason for stop the world is

when the application has changed the state of the heap while CMS was

running concurrently, forcing it to restart from scratch until it has all

the objects marked for deletion. Let's put it this way: CMS sucks donkey

balls when the heap is over 4GB, which is almost always the case with

Elasticsearch.

Java 8 brings a brand new garbage collector called Garbage First, or

G1, designed for heaps greater than 4GB. G1 uses background threads

to divide the heap into 1 to 32MB regions, then scan the regions that

contain the most garbage objects �rst. Elasticsearch and Lucene does

not recommend using G1GC for many reasons, one of them being a

nasty bug on 32bits JVM that might lead to data corruption. From an

operational point of view, switching to G1GC was miraculous, leading

to no more stop the world and only a few memory management issues.

•

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms.html
https://bugs.openjdk.java.net/browse/JDK-8038348

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 9/21

That said, choosing the right amount of memory to �ll in the heap is

the most touchy part of designing an Elasticsearch cluster. Whatever

you pick up, never allocate more than 31GB to the heap.

Elasticsearch provides plenty of metrics to understand how the

workload wights on the memory.

GET /_nodes/stats

Elasticsearch uses multiple bu�ers to perform in memory operations,

as well as caches to store the queries results with a system of LRU when

the cache becomes full. When the results are mostly large datasets and

the queries are not repeated often, disabling the caches might be a

good idea.

The caches you need to monitore are:

the query cache: de�ned per node, with a default of 10% of the

heap.

the shard request cache: used to compute the result of queries ran

on multiple shards.

the �elddata cache: limited to 30% of the total heap.

Since version 5, Elasticsearch bu�ers were simpli�ed, and there are

only 2 bu�ers to monitor:

the indexing bu�er: it is used to bu�er data during the indexing

process.

the bu�er_pools.

Elasticsearch is not idiotproof and won't tell you if you allocate more

than 100% of the heap to the multiple bu�ers and caches, unless you

try to �ll them all at the same time. Then you'll get an out of memory

error.

I said earlier that too much memory might lead to management issues.

Actually, the more memory the better when you play outside of the

heap. The o� heap memory is used to manage threads and for the

�lesystem to cache the data.

Elasticsearch �le system storage has an important impact on the cluster

performances. After trying both ElasticSearch default_fs and mmapfs,

I’ve picked up niofs for �le system storage.

The NIO FS type stores the shard index on the �le

system (maps to Lucene NIOFSDirectory) using

NIO. It allows multiple threads to read from the

same �le concurrently.

Niofs lets the kernel manage the �le system cache instead of relying on

the broken, out of memory error generator mmapfs.

You might also want to commit the exact amount of memory you want

to allocate to the heap at startup. This prevents the node from

swapping when trying to allocate the memory it needs because no

more memory is available.

•

•

•

•

•

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-cache.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-fielddata.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indexing-buffer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-store.html

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 10/21

boostrap.memory_lock (previously bootstrap.mlockall)

Network

Let's put it this way: you never have too much bandwidth. 1GB is good,

10GB is better, and a low latency is even better. Elasticsearch performs

lots of network consuming operations, from transferring data during

queries to reallocating shards, so networking matters.

The multicast discovery plugin was removed from Elasticsearch 5, so

discovery is done either using unicast or a cloud plugin, but you won't

run Elasticsearch in the cloud, will you?

If your hosting provider allows it, activate the Jumbo frames on your

network interfaces. Jumbo frames might reduces the network latency

by about 15% which is noticeable when transferring large amount of

data.

ifconfig eth0 mtu 9000

Elasticsearch comes with some interesting network related settings,

which are low by default and won't go over 2Gb/s, notably the recovery

transfer which is limited to 40mb/s

indices.recovery.max_bytes_per_sec: 2g

Raise this value only if your storage can handle it while serving queries,

indexing, and performing administrative tasks such as merges.

Storage

After memory, storage is often the bottleneck of an Elasticsearch

cluster. Unless you have a good reason to do it, don't use spinning disks.

Large SSD drives are now a�ordable with a decent life expectancy, and

you'll need fast IOs. Also, prefer local storage to anything else to reduce

the reads and writes latency. Consider your data nodes as disposable

when possible.

A question that comes often about storage design is: should I go with
RAID0, RAID1(0) or JBOD?

RAID0 o�ers the best cost / speed / storage space ratio. It �ts perfectly

in large clusters where losing a node is not a problem. RAID0 o�ers the

maximum storage space on a single �le system, which is convenient

when managing large shards. Without enough available storage on a

single node, operations like index optimisation won't be possible.

RAID0 also o�ers the maximum number of axes, without the RAID1(0)

replication overhead, useful for intensive indexing.

On the other hand, losing a single disk means losing a whole data node,

so choosing RAID0 implies to have enough spare data nodes to store

the whole dataset in case of crash.

JBOD o�ers the best cost / storage / security ratio. Each disk is a�ected

to a mountpoint, and the mountpoints are listed in Elasticsearch

con�guration. JBOD is a good choice when you can't a�ord to lose a

whole data node, but losing a whole disk is OK, but provides less read

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 11/21

and write performances. Running large shards on JBOD can also be a

problem to perform administrative tasks like index optimisation.

Depending on how many data nodes you can a�ord to lose, running

many hosts with software RAID0 is the best speed / storage space / cost

setup. Otherwise, use JBOD to reduce the I/Os involved by RAID 1 and

RAID10 replication.

RAID1(0) is the option for people who run Elasticsearch on a single

node. It provides the maximum security for the data availability as

losing a disk is possible, but at the cost of space and performances.

RAID1(0) implies to use half of the storage for the RAID replication,

and the replication overhead is something to take into account.

Elasticsearch comes with 2 storage related throttling protection. The

�rst one limits the bandwidth of the storage you can use, and is as low

as 10mb/s. You can change it in the nodes settings:

indices.store.throttle.max_bytes_per_sec: 2g

The second one prevents too many merges from happening, which

slows down your indexing process. If you run bulk indexing or don't

care about search speed, you can disable merge throttling entirely.

indices.store.throttle.type: "none"

. . .

Software
Once done with the hardware, there's a few things you should have a

look at on the software level before you install Elasticsearch.

The Linux (or FreeBSD) kernel

The Linux kernel version you run on is important. Prefer the 4.9.x

version as it provides many interesting �xes and performances

improvements, and comes with a great tracing framework you can rely

on when troubleshooting performances. Take the time to read the

Kernel CHANGELOG every time a new release is out, it and don't mind

upgrading often if it's worth it. For example, Linux 4.9.25 (or 4.9.0.0-

BPO3 on Debian) �xed many regressions on XFS introduced with the

4.9.13 that screwed up the �lesystem performances.

The Java Virtual Machine

The JVM you pick up is critical too, and you need to read and

understand their speci�cations to get the best of your cluster.

Elasticsearch runs best on Java 1.8, which provides G1GC, and does not

support the unreleased Java 1.9 yet, but it supports various �avors of

the Java virtual machine, so chose wisely. I usually run the Oracle JVM,

but OpenJDK is cool too. Once again, don't mind upgrading your Java

version often if a release �xes bugs of improve performances.

Elasticsearch is not MySQL, and rebooting often is OK. Read the

CHANGELOG to stay up to date.

The �lesystem

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 12/21

Last but not least, choosing the �lesystem is a critical part of designing

an Elasticsearch cluster. With small datasets on your disks, Ext4 is a

fast, reliable option that does not need tuning. If you plan to store lots

of indexes and more than 1TB of data per node, prefer a well tuned XFS

for better performances.

. . .

Designing your indices
Designing indices is the worst part of the cluster, because if you screw

up, all you have left is to scratch and reindex. This part won't deal

about designing a mapping, it's way beyond the cluster design. We'll

talk about 2 things: sharding and replication.

Sharding

Sharding is one of the reasons Elasticsearch is elastic. Elasticsearch

divides the data in logical parts, so he can allocate them on all the

cluster data nodes. The bad news is: sharding is de�ned when you

create the index. Once done, the only way to change the number of

shards is to delete your indices, create them again, and reindex. I've

written a comprehensive post about resizing your Elasticsearch clusters

in production which might help.

Choosing the right number of shards is complicated because you never

know how many documents you'll get before you start. When I know

more or less the future size of an index, I do the following:

less 3M documents: 1 shard

between 3M and 5M documents with an expected growth over

5M: 2 shards.

More than 5M: int (number of expected documents / 5M +1)

Having lots of shards can be both good and terrible for a cluster. Indices

and shards management can overload the master node, which might

become unresponsive, leading to some strange and nasty behaviour.

Allocate your master nodes enough resources to cope with the cluster

size. I try not to run more than 10.000 open indices and 50.000

primary shards on the same cluster.

If you plan to use Elasticsearch routing, don't create more shards than

you need, otherwise you'll end up having lots of empty shards that just

add useless pressure on the data and master nodes.

On the other hand, having lots of shards on huge indices is good too,

specially when you have a large cluster (20 data nodes and more).

Multiple shards allow a better allocation between nodes.

Small shards on multiple nodes make the cluster recovery much

faster when you lose a data node or shutdown the cluster.

Spreading smaller shards on lots of nodes might solve your

memory management problems when running queries on a large

data set.

Large shards makes indices optimization harder, specially when

you run force_merge with max_num_segments=1 since you need

twice the shard size in free space.

There's one more thing about sharding. Lucene, the search engine that

powers Elasticsearch, creates many �les to manage parallel indexing on

the same shard. These �les are called segments, and depending on your

•

•

•

•

•

•

•

https://thoughts.t37.net/resizing-your-elasticsearch-indexes-in-production-d7a0402d137e
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-routing-field.html

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 13/21

indexing workload, Lucene can create and open thousands of them at

the same time. That's why it's important to run Elasticsearch with

max_open_�les at 32.000, if not more.

Replication

Elasticsearch has a built in replication system. Data is replicated

amongst the data nodes so losing one of them won't mean a data loss.

Elasticsearch default replication factor is 1, but it might be interesting

to have a higher replication factor.

Before you start playing with replication, you might want to

understand Elasticsearch replication consistency formula:

int((primary + number_of_replicas) / 2) + 1

Going beyond the factor 1 can be extremely useful when you have a

small dataset and a huge amount of queries. By allocating the whole

data set to every node, you can leverage the search thread pools to run

much more queries in parallel. I once went to a replication factor of 51,

on 52 nodes, with the whole dataset in memory.

Optimising allocation

Once you use rack awareness, it might be interesting to optimise shard

allocations using elasticsearch zones.

For example, if you have indices that are accessed more frequently than

others, you might want to allocate more data nodes to those indices

while the less frequently accessed indices have less resources allocated.

This is extremely e�cient with timestamped indices.

Let's say you have 20 data nodes, and 30 indices, you can create 3

zones. Allocate your 30 nodes to these zones according to the needed

resources:

new: 15 nodes

general: 10 nodes

old: 5 nodes

Every day, run a crontab to reallocate your indices to their new zone.

For example, move a less accessed index into the "general" zone:

PUT /index/_settings
{
 "transient": {
 "cluster.routing.allocation.include._zone" :
"general",
 "cluster.routing.allocation.exclude._zone" :
"new,old"
 }
}

•

•

•

. . .

Troubleshooting and scaling
Troubleshooting and scaling your cluster requires lots of investigation

and understanding of your workload and cluster behaviour. Here's

what you should care about:

https://www.elastic.co/guide/en/elasticsearch/reference/current/allocation-awareness.html

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 14/21

Bu�ers

Cache (both �lling, hit & miss, and eviction)

CPU use and load average

OOM errors

CPU

If you're CPU bound, there's a few things you need to pay attention to:

CPU consumption: > 90% you'll get into trouble. Your data node

need to perform frequent administrative tasks such as getting the

cluster state, sending information to the master or merging.

Load average: a high load average might imply an IO issue, a

context switching problem, some nasty Java or kernel bugs…

The state of your thread pools, especially the state of rejected

threads. And raising the queue size is never the right solution on

the long term.

The number of search / writes per second

The average time taken by your queries

A good way to know which queries take the more time is by using

Elasticsearch slow queries logs.

PUT /index/_settings
{
 "index.search.slowlog.threshold.query.warn: 1s",
 "index.search.slowlog.threshold.query.info: 500ms",
 "index.search.slowlog.threshold.query.debug: 1500ms",
 "index.search.slowlog.threshold.query.trace: 300ms",
 "index.search.slowlog.threshold.fetch.warn: 500ms",
 "index.search.slowlog.threshold.fetch.info: 400ms",
 "index.search.slowlog.threshold.fetch.debug: 300ms",
 "index.search.slowlog.threshold.fetch.trace: 200ms"
}

If you can't optimize your queries, then you'll have to add more

resources or rewrite everything to better use Elasticsearch, or

something else.

Memory

•

•

•

•

•

•

•

•

•

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 15/21

Memory management issues used to be my worst nightmare.

Thankfully it's not anymore. There are many tools to investigate the

content of Elasticsearch memory, either in real time or after a crash. My

favourite is Yourkit Java Pro�ler, which has a free trial version.

If you experience multiple memory related crashes, make sure

Elasticsearch dumps its memory when crashing. If you allocate 31GB to

the heap you'll get 31GB dumps, so expand your �lesystem accordingly,

and activate memory dumps.

-XX:+HeapDumpOnOutOfMemoryError -
XX:HeapDumpPath=/srv/elasticsearch/heapdump.hprof

That's all for tonight folks, I hope I didn't forget anything. If so, I'll edit

the article and add the missing parts every once in a while. I hope

reading this was useful and you liked it as much as I liked writing it.

See you soon!

. . .

Use cases

Design for an event logging infrastructure

Elasticsearch has made a blast in the event analysis world thanks — or

because of — the famous Elasticsearch / Logstash / Kibana (ELK)

trinity. In this speci�c use cas, Elasticsearch acts as a hot storage that

makes normalized events searchable.

The usual topology of an event analysis infrastructure is more or less

the same whatever the technical stack.

Heterogeneous events are pushed from various location into a

queue. Queuing has 2 purposes: make sure the data processing

won’t act as a bottleneck in case of unexpected spike, and make

sure no event is lost if the data processing stack crashes.

A data processing tool normalises the events. You have 0 chance to

have homogeneous events in an event analysis infrastructure.

Events can be logs, metrics, or whatever you can think about, and

they need to be normalised to be searchable.

The data processing tool forwards the events to a hot storage

where they can be searched. Here, the hot storage is, indeed,

Elasticsearch.

1.

2.

3.

https://www.yourkit.com/java/profiler/features/

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 16/21

Event analysis is the typical use case where you can start small, with a

single node cluster, and scale when needed. Most of the times, you

won’t collect all the events you want to analyse from day 1, so it’s OK

not to over engineer things.

The event logging infrastructure is the typical tricky use case that

might have you pull your hair for some times saying Elasticsearch is the

worst software ever. It's both extremely heavy on writes, with only a

few search query.

Writes can easily become the bottleneck of the infrastructure, either

from a CPU or storage point of view, one more reason to chose the

software prior to Elasticsearch wisely to avoid losing events.

Searches are performed on such an amount of data that one of them

might trigger an out of memory error on the Java heap space, or an

in�nite garbage collection.

Before you start, there’s a few things you need to think about. Since we

focus on designing an Elasticsearch cluster, we’ll start from the

moment events are normalised and pushed into Elasticsearch.

Throughput: how many events per second (eps) are you going to
collect?

This is not a question you can answer out of the box unless you already

have a central events collection platform. It’s an important one though,

as it will de�ne most of your hardware requirements. Events logging

varies a lot according to your platform activity, so I'd recommend

tracking them for a week or more before you start building your

Elasticsearch cluster.

One important things to know is: do you need realtime indexing, or can

you accept some lag. If the latter is an option, then you can let the lag

being indexed after a spike of events happen, so you don't need to build

for the maximum amount of events you can get.

Retention: how long do you want to keep your data, hot and cold?

Simple event logging infrastructure

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 17/21

Hot data is data you can access immediately, while cold data is what

can be accessed within a reasonable amount of time. Retention

depends both on your needs and national regulation. For example, in

France, we're supposed to keep our access logs during a full year,

�nancial transactions need to be kept for 3 to 5 years, etc.

On Elasticsearch, hot data means opened, accessible indexes. Cold data

means closed indexes, or backups of an index snapshot you can easily

and quickly transfer and reopen.

Size: what is the average size of a collected event?

This metric is important as well. Knowing about throughput * retention

period * events size will help you de�ne the amount and type of storage

you need, hence the cost of your events logging platform.

Storage = throughput * events size * retention

period.

Hot data is made of opened, searchable indices. They are the one you’ll

search into on a regular basis, for debugging or statistics purpose.

Fault tolerance: can you a�ord losing your indexed data?

Most of the time, losing your search backend is an option. Lots of

people use the ELK stack to store application logs so they are easier to

debug, and they are not a critical part of their infrastructure. Logs are

also stored somewhere else, for example on a central syslog server so

they are still searchable using some shell skills.

When you can lose your search backend for a few hours, or don't want

to invest in a full cluster, then a single Elasticsearch server is enough,

provided your throughput allows it.

The host minimal con�guration is then:

master: true
data: true
index.number_of_replicas: 0

If you start combining events analysis with alerting, or if you need your

events to be searchable in realtime without downtime, then things get a

bit more expensive. For example, you might want to correlate your

whole platform auth.log to look for intrusion attempts or port

scanning, so you can deploy new �rewall rules accordingly. Then you'll

have to start with a 3 nodes cluster. 3 nodes is a minimum since you

need 2 active master nodes to avoid a split brain.

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 18/21

Here, the minimal hosts con�guration for the master / http node is:

master: true
data: false
index.number_of_replicas: 1

And for the data nodes:

master: true
data: true
index.number_of_replicas: 1

If you decide to go cheap and combine the master

and data nodes in a 3 hosts cluster, never use bulk

indexing.

Bulk indexing can put lots of pressure on the server memory, leading

the master to exit the cluster. If you plan to run bulk indexing, then add

one or 2 dedicated http node.

The same applies to highly memory consuming queries. If you plan to

run such queries, then move your master nodes out of the data nodes.

Queries

The last thing you need to know about is the type of queries that are

going to be ran against your Elasticsearch cluster. If you need to run

simple queries, like looking for an error message, then memory

pressure won't be a real problem, even against large data. Things get

more interested when you need to perform complex �ltered queries, or

aggregations against a large set of data. Then you'll put lots of pressure

on the cluster memory.

Which hardware do I need?

Once you've gathered all your prerequisites, it's time for hardware

selection.

Minimum cluster design

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 19/21

Unless you're using ZFS as a �lesystem to pro�t from compression and

snapshots, you should not need more than 64GB RAM. ZFS is popular

both to manage extremely large �le systems and for its feature, but is

greedy on memory.

Chose the CPU depending on both your throughput and your

�lesystem. ZFS is more greedy than ext4, for example. Elasticsearch

index thread pool is equal to the number of available processors + 1,

with a default queue of 200. So if you have a 24 core host, Elasticsearch

will be able to mange 25 indexing at once, with a queue of 200.

Everything else will be rejected.

You can choose to use bulk indexing, which will allow you to index

more events at the same time. The default thread pool and queue size

are the same as the index thread pool.

The storage part will usually be your bottleneck.

Indeed, local storage and SSD are preferred, but lots of people will

chose spinning disks or an external storage with �berchannel to have

more space.

Whatever you chose, the more disks, the better. More disks provide you

more axis, hence a faster indexing. If you go with some RAID10, then

chose smaller disks, as very large disks such as 4TB+ spinning disks

will take ages to rebuild.

On a single node infrastructure, my favorite setup for a huge host is a

RAID10 with as many 3.8TB SSD disks possible. Some servers can host

up to 36 of them, which makes 18 available axes for more or less 55TB

of usable space.

On a multiple node infrastructure, I prefer to multiply the smaller hosts

with a RAID0 and 8TB to 10TB space. This works great with 8 data

nodes and more since rebuilding takes lots of time.

How to design my indices?

As usual, it depends on your needs, but this is the time to play with

aliases and timestamped indexes. For example, if you're storing the

output of your infrastructure auth.log, your indices can be:

auth-$(date +%Y-%m-%d)

You'll probably want to have 1 index for each type of event you want to

index, so you can build various, more adapted mappings. Event

collection for syslog does not require the same index topology as an

application event tracing, or even some temperature metrics you might

want to put in a TSDB.

While doing it, remember that too many indexes and too many shards

might put lots of pressure on a single host. Constant writing create lots

of Lucene segments, so make sure Elasticsearch won't have "too many

open �les" issues.

What about some tuning?

Here starts the fun part.

Depending on your throughput, you might need a large indexing

bu�er. The indexing bu�er is a bunch of memory that stores the data to

index. It di�ers from the index and bulk thread pools which manage

the operations.

https://www.elastic.co/guide/en/elasticsearch/reference/current/indexing-buffer.html

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 20/21

Elasticsearch default index bu�er is 10% of the memory allocated to

the heap. But for heavy indexing operations, you might want to raise it

to 30%, if not 40%.

indices.memory.index_buffer_size: 40%

Elasticsearch provides a per node query cache. Let's put it this way: you

don't need caching on an event logging infrastructure. There's a way to

disable it completely and that's what we want.

indices.query.cache.enabled: false

You will also have a look at the indexing thread pool. I don't

recommend changing the thread pool size, but depending on your

throughput, changing the queue size might be a good idea in case of

indexing spike.

thread_pool.bulk.queue_size: 3000
thread_pool.index.queue_size: 3000

Finally, you will want to disable the store throttle if you're running on

enough fast disks.

store.throttle.type: 'none'

One more thing: when you don't need data in realtime, but can a�ord

waiting a bit, you can cut your cluster a little slack by raising the indices

refresh interval.

index.refresh_interval: "1m"

. . .

If you found this article helpful please tap or click “♥ ”, follow me on Twitter

or subscribe to my Engineering Weekly newsletter.

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-cache.html
https://twitter.com/fdevillamil
https://tinyletter.com/fdevillamil

6/30/2018 Designing the Perfect Elasticsearch Cluster: the (almost) Definitive Guide

https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87 21/21

