
  

Infor Homepages Widget SDK 
Developers Guide 
 
 



  

  

Copyright © 2019 Infor  

 

Important Notices 

The material contained in this publication (including any supplementary information) constitutes and 

contains confidential and proprietary information of Infor. 

By gaining access to the attached, you acknowledge and agree that the material (including any 

modification, translation or adaptation of the material) and all copyright, trade secrets and all other 

right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or 

interest in the material (including any modification, translation or adaptation of the material) by virtue 

of your review thereof other than the non-exclusive right to use the material solely in connection with 

and the furtherance of your license and use of software made available to your company from Infor 

pursuant to a separate agreement, the terms of which separate agreement shall govern your use of 

this material and all supplemental related materials ("Purpose"). 

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to 

maintain such material in strict confidence and that your use of such material is limited to the 

Purpose described above. Although Infor has taken due care to ensure that the material included in 

this publication is accurate and complete, Infor cannot warrant that the information contained in this 

publication is complete, does not contain typographical or other errors, or will meet your specific 

requirements. As such, Infor does not assume and hereby disclaims all liability, consequential or 

otherwise, for any loss or damage to any person or entity which is caused by or relates to errors or 

omissions in this publication (including any supplementary information), whether such errors or 

omissions result from negligence, accident or any other cause. 

Without limitation, U.S. export control laws and other applicable export and import laws govern your 

use of this material and you will neither export or re-export, directly or indirectly, this material nor any 

related materials or supplemental information in violation of such laws, or use such materials for any 

purpose prohibited by such laws. 

Trademark Acknowledgements 

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor 

and/or related affiliates and subsidiaries. All rights reserved. All other company, product, trade or 

service names referenced may be registered trademarks or trademarks of their respective owners. 

Publication Information 

Release:  

Publication date: March 12, 2019 

Document code:  

 

 

 

 

 



Contents  

 

Widget SDK Developers Guide | 3 

Contents 

About this guide ................................................................................................................................. 11 

Version log ..................................................................................................................................... 11 

Contacting Infor.............................................................................................................................. 12 

Chapter 1 Introduction .................................................................................................................. 13 

Purpose ................................................................................................................................... 13 

Who Should Read This Document .......................................................................................... 13 

Widget Developer knowledge and responsibilities .................................................................. 13 

Chapter 2 Overview ....................................................................................................................... 14 

Introduction .................................................................................................................................... 14 

Disclaimer ...................................................................................................................................... 15 

AngularJS support removed .......................................................................................................... 15 

Widget SDK Contents .................................................................................................................... 15 

Documentation ........................................................................................................................ 16 

API ..................................................................................................................................... 16 

OpenSourceLicenses .............................................................................................................. 16 

Samples ................................................................................................................................... 16 

Widgets .............................................................................................................................. 16 

Source ..................................................................................................................................... 16 

Technologies .................................................................................................................................. 17 

Enterprise Components for Infor Design System .......................................................................... 17 

Chapter 3 Widgets ......................................................................................................................... 18 

Widget framework .......................................................................................................................... 18 

Widget types .................................................................................................................................. 18 

Inline widget ............................................................................................................................. 18 

jQuery widget .................................................................................................................... 18 

Angular widget ................................................................................................................... 19 



Contents 

4 | Widget SDK Developers Guide  

External widget ........................................................................................................................ 19 

Hybrid widget ........................................................................................................................... 19 

Widget technology choice .............................................................................................................. 19 

Tenant widgets ............................................................................................................................... 20 

Tenant widgets disclaimer ............................................................................................................. 20 

Widget manifest ............................................................................................................................. 21 

Mandatory manifest properties ................................................................................................ 21 

Widget ID ........................................................................................................................... 21 

Type ................................................................................................................................... 21 

Version .............................................................................................................................. 22 

Name ................................................................................................................................. 22 

Title, Description vs Localization ....................................................................................... 22 

Module name ..................................................................................................................... 22 

URL ................................................................................................................................... 23 

Framework......................................................................................................................... 23 

Author ................................................................................................................................ 24 

Optional manifest properties ................................................................................................... 24 

Display version .................................................................................................................. 24 

AOT version....................................................................................................................... 24 

Localization........................................................................................................................ 25 

Category ............................................................................................................................ 27 

Application logical ID ......................................................................................................... 28 

Application version ............................................................................................................ 28 

Shared modules ................................................................................................................ 28 

Help URL ........................................................................................................................... 29 

Settings .............................................................................................................................. 29 

Default size ........................................................................................................................ 30 

Max size ............................................................................................................................ 31 

Enable publish ................................................................................................................... 31 

Enable settings when published ....................................................................................... 31 

Enable title edit .................................................................................................................. 31 

Enable settings .................................................................................................................. 32 

Enable application selector ............................................................................................... 32 

Enable catalog ................................................................................................................... 32 

Enable custom properties ................................................................................................. 32 

Enable refresh ................................................................................................................... 33 

Icon file .............................................................................................................................. 33 

Screen shots for the widget catalog .................................................................................. 34 



Contents  

 

Widget SDK Developers Guide | 5 

Requires config ................................................................................................................. 34 

Empty config ...................................................................................................................... 35 

Target ................................................................................................................................ 35 

Targets .............................................................................................................................. 36 

Banner widget ................................................................................................................................ 36 

Mobile widget ................................................................................................................................. 36 

Enabling content for Infor Go .................................................................................................. 37 

Enabling a widget for Infor Go ................................................................................................. 37 

Widget menu in Infor Go.......................................................................................................... 38 

Developing for mobile .............................................................................................................. 38 

Limitations ......................................................................................................................... 38 

Accessing native features ....................................................................................................... 38 

Inline widget implementation ......................................................................................................... 39 

Widget module ......................................................................................................................... 39 

Widget factory function ............................................................................................................ 39 

Widget context ......................................................................................................................... 40 

Widget instance ....................................................................................................................... 40 

Widget state ............................................................................................................................. 40 

Widget activation ..................................................................................................................... 41 

Identifiers for automated UI (E2E) tests .................................................................................. 41 

Widget settings .............................................................................................................................. 42 

Settings for a published widget ............................................................................................... 42 

User settings for a published widget ................................................................................. 42 

Implicit widget settings ............................................................................................................. 43 

External widget settings........................................................................................................... 43 

Metadata settings UI ................................................................................................................ 43 

Custom settings UI .................................................................................................................. 44 

Accessing settings ................................................................................................................... 44 

Saving settings ........................................................................................................................ 44 

Settings events ........................................................................................................................ 44 

Settings opening ................................................................................................................ 45 

Settings saved ................................................................................................................... 45 

Ad-hoc settings ........................................................................................................................ 45 

Widget context values .................................................................................................................... 45 

Resolving priority ..................................................................................................................... 46 

Qualifying a value .................................................................................................................... 46 

Using widget context values in a URL template ...................................................................... 47 



Contents 

6 | Widget SDK Developers Guide  

Accessing widget context values in code ................................................................................ 47 

Ming.le application settings ..................................................................................................... 47 

Framework values ................................................................................................................... 47 

Using widget context values in the test container ................................................................... 48 

Chapter 4 jQuery widgets.............................................................................................................. 49 

Introduction .................................................................................................................................... 49 

Widget factory function .................................................................................................................. 49 

Performance tips ............................................................................................................................ 50 

Creating a widget package ............................................................................................................ 50 

Chapter 5 Angular widgets ........................................................................................................... 51 

Introduction .................................................................................................................................... 51 

AOT vs JIT ..................................................................................................................................... 51 

AOT documentation ................................................................................................................. 52 

The future of AOT .................................................................................................................... 52 

The future of JIT ...................................................................................................................... 52 

Angular modules and components ................................................................................................ 52 

Module imports ........................................................................................................................ 52 

Module declarations and entry components ........................................................................... 53 

Widget factory function .................................................................................................................. 53 

JIT factory function .................................................................................................................. 53 

AOT factory function ................................................................................................................ 53 

File structure .................................................................................................................................. 54 

Widget context and instance ......................................................................................................... 54 

Constructor injection of widget context and instance ................................................. 55 

Input properties for widget context and instance ........................................................ 55 

Templates ...................................................................................................................................... 56 

Creating a widget package ............................................................................................................ 56 

Chapter 6 External widgets ........................................................................................................... 57 

Introduction .................................................................................................................................... 57 

External widget implementation .............................................................................................. 57 

Creating a widget package ............................................................................................................ 58 

Chapter 7 Localization ................................................................................................................... 59 

Localization .................................................................................................................................... 59 



Contents  

 

Widget SDK Developers Guide | 7 

Localization scripts .................................................................................................................. 60 

LangFromManifestToResx.js ............................................................................................ 60 

LangFromResxToManifests.js .......................................................................................... 61 

Chapter 8 Development environment .......................................................................................... 63 

Introduction .................................................................................................................................... 63 

Prerequisites .................................................................................................................................. 63 

Samples ......................................................................................................................................... 64 

Running the Samples in Visual Studio Code .......................................................................... 65 

Running the Samples on a Node.js server.............................................................................. 65 

Creating a new widget ................................................................................................................... 66 

Testing with multiple widgets ......................................................................................................... 66 

Static code analysis with TSLint .................................................................................................... 67 

Running the linter .................................................................................................................... 67 

Automatically fix problems ....................................................................................................... 67 

Modifying or overriding rules ................................................................................................... 68 

Chapter 9 Packaging ..................................................................................................................... 69 

Files to include ............................................................................................................................... 69 

Mandatory files ........................................................................................................................ 69 

Optional files ............................................................................................................................ 69 

File optimizations ........................................................................................................................... 70 

Homepages command pack script ................................................................................................ 70 

Directory rules.......................................................................................................................... 70 

AOT compilation ...................................................................................................................... 70 

Manifest ............................................................................................................................. 70 

Widget factory files ............................................................................................................ 71 

Prerequisites ............................................................................................................................ 71 

Pack and optimize: .................................................................................................................. 71 

Examples..................................................................................................................... 71 

Output .......................................................................................................................... 72 

Shared modules ...................................................................................................................... 72 

Angular AOT package recommendation ................................................................................. 72 

Manual minification ........................................................................................................................ 73 

Single module widget .............................................................................................................. 73 

Multi-module widget ................................................................................................................. 73 



Contents 

8 | Widget SDK Developers Guide  

Packaging widgets for an on-premise installation ......................................................................... 73 

Widget installation package file ............................................................................................... 74 

Chapter 10 ION API .......................................................................................................................... 75 

Introduction .................................................................................................................................... 75 

Retrieving OAuth access token ..................................................................................................... 75 

Token timeout .......................................................................................................................... 76 

Development environment ............................................................................................................. 76 

Prerequisites ............................................................................................................................ 76 

Acquire an OAuth token string .......................................................................................... 76 

Set up the development configuration .............................................................................. 77 

Developing and debugging ...................................................................................................... 77 

Chapter 11 Homepages Widget Certification ................................................................................ 78 

Certification checklist ..................................................................................................................... 78 

Development checklist ................................................................................................................... 80 

Chapter 12 Resources ..................................................................................................................... 82 

Chapter 13 Appendix Node.js ......................................................................................................... 83 

Node.js ........................................................................................................................................... 83 

Install Node.js .......................................................................................................................... 83 

Verify the Node package manager .......................................................................................... 83 

Verify the Node executable ..................................................................................................... 84 

Chapter 14 Appendix Test............................................................................................................... 85 

Widget Test Scenarios ................................................................................................................... 85 

Scenario 1: Basic features ...................................................................................................... 85 

Pre-requisites .................................................................................................................... 85 

Test .................................................................................................................................... 85 

Scenario 2: Widget sizes ......................................................................................................... 91 

Pre-requisites .................................................................................................................... 91 

Test .................................................................................................................................... 91 

Scenario 3: Publish widget ...................................................................................................... 92 

Pre-requisites .................................................................................................................... 92 

Test .................................................................................................................................... 92 

Scenario 4: Publish the widget with one or more settings enabled ........................................ 95 

Pre-requisites .................................................................................................................... 95 

Test .................................................................................................................................... 95 



Contents  

 

Widget SDK Developers Guide | 9 

Scenario 5: Configure settings on a published page .............................................................. 97 

Pre-requisites .................................................................................................................... 97 

Test .................................................................................................................................... 97 

Scenario 6: Import and Export page with the widget ............................................................ 100 

Pre-requisites .................................................................................................................. 100 

Test .................................................................................................................................. 100 

Scenario 7: Widget Title Logic ............................................................................................... 102 

Pre-requisites......................................................................................................................... 102 

Test .................................................................................................................................. 102 

Scenario 8: Widget Translations ........................................................................................... 106 

Pre-requisites .................................................................................................................. 106 

Test .................................................................................................................................. 106 

Scenario 9: Export and Import page with configured published widget ................................ 107 

Pre-requisites .................................................................................................................. 107 

Test .................................................................................................................................. 107 

Scenario 10: Polling ............................................................................................................... 108 

Pre-requisites .................................................................................................................. 108 

Test .................................................................................................................................. 108 





   

Developers Guide | 11 

About this guide 

Version log 
The version log describes the changes between versions of this document. 

Version Date Changes 

1.0  First version of the document. 

1.1  Added information about Shared Modules as well as its restrictions. 

1.1.1  Added language information, removed internal links and updated 

checklist. 

1.1.2  Added enablePublish, updated checklist. 

1.1.3  Added new widget category, updated with new manifest configuration 

options. 

1.1.4  Banner widget as target. 

1.1.5  Widget Localization. 

1.2  Updated all information to new Angular interfaces and Angular 

component development 

1.2.1  Deprecated sharedWidgetId. Support for widget variants will be 

removed. 

1.2.2  Added AOT support for Angular widgets. Deprecated previous minify 

scripts. Deprecated sub directories in widget zip package files. Added 

homepages command script for build, minify and package.  

1.2.3  Added manifest property maxSize. 

1.2.4  Added manifest property screenshots. 

1.2.5  Removed SoHoXi references and added links to Infor Design System, 

https://design.infor.com/ and the widget design guide, 

https://design.infor.com/resources/mingle-homepage-widget-guidelines .  

1.2.6  Added information about tenant widgets. 

Removed SharedWidgetId, no longer supported in 12.0.32. 

Added information about Mobile. 

https://design.infor.com/
https://design.infor.com/resources/mingle-homepage-widget-guidelines


About this guide 

12 | Widget SDK Developers Guide  

Added empty config information 

   

Contacting Infor 
If you have questions about Infor products, go to the Infor Xtreme Support portal at 

www.infor.com/inforxtreme. 

If we update this document after the product release, we will post the new version on this Web site. 

We recommend that you check this Web site periodically for updated documentation.  

If you have comments about Infor documentation, contact documentation@infor.com.

http://www.infor.com/inforxtreme
mailto:documentation@infor.com


  

Developers Guide | 13 

Chapter 1 Introduction 
 

 

 

1  

 

 

Purpose 

The purpose of this document is to describe how to set up a development environment and build 

widgets using the Widget SDK.  

Who Should Read This Document 

Roles for which this document is primarily intended: 

Role Skills 

Web Application developer JavaScript, TypeScript, Angular, jQuery 

 

Widget Developer knowledge and responsibilities 

The widget developer needs to have a deep understanding and knowledge developing web 

applications. The skills are not only the ones listed above but also how to develop secure web 

applications, which uses all available techniques to protect against different kinds of attacks. The 

developer should have a deep understanding of the OWASP top 10 vulnerabilities and how to avoid 

them.  

Although the code is reviewed for inconsistent use of the Homepages API it is up to the widget 

developer to provide a stable and secure widget that does not affect the Homepages application 

negatively. 

The widget developer is responsible for following the guidelines and checklists provided in this 

document. 

  



Overview 

14 | Widget SDK Developers Guide  

Chapter 2 Overview 
 

 

 

2  

 

 

This chapter gives an overview of the Widget SDK. 

Introduction 
The Widget SDK is used to build widgets for Homepages in Infor Ming.le. 

 

A widget can be defined as: 

A small, single-purpose application that provides quick, at-a-glance information or quick 
access to simple interactive functions. Widgets are simpler and faster to access than full 
applications (apps) that may provide more functionality. 

 

Homepages may contain one or many pages and each page may contain one or many 
widgets. Widgets can be added to a page from the Widget Catalog. 

 



Overview 

 

Widget SDK Developers Guide | 15 

Disclaimer 
Please note that only classes and functions documented in the Widget SDK API Documentation are 

publicly available for you to use. Anything that is not documented or explicitly marked with “internal” 

in the API documentation should not be used. Classes and functions that are not intended for public 

use may be removed or changed in future versions without notice. 

AngularJS support removed 
AngularJS support has been completely removed in Homepages version 12.0.32.  

Angular is the name for the Angular of today and tomorrow. AngularJS is the name for all v1.x 

versions of Angular. 

https://angular.io/guide/upgrade 

Widget SDK Contents 
This section describes the contents of the Widget SDK zip file. The folder structure can be seen 

below followed by an overview of each folder. 

- Documentation 

o API 

- OpenSourceLicenses 

- Samples 

o Widgets 

- Source 

o scripts 

▪ lime 

▪ typings 

▪ vendor 

▪ xi 

https://angular.io/guide/upgrade


Overview 

16 | Widget SDK Developers Guide  

Documentation 

Contains the developers guide in PDF format. 

API 

Contains the Widget SDK API documentation in HTML format. Open the index.html file in a browser 

to view the API documentation. 

OpenSourceLicenses 

Contains the license files for open source projects used in the Widget SDK. 

Samples 

Contains node scripts for web server, proxy and widget packaging. Additional npm package 

dependencies specified in package.json will also be installed into this directory. 

Widgets 

Contains all the sample widgets. Each sample widget folder also contains the generated JavaScript 

files with code comments for those that prefer plain JavaScript. This directory also contains 

configuration files for Visual Studio Code (.vscode/). 

Source 

Contains the Widget SDK script files, external dependencies, Enterprise components for Infor 

Design System and TypeScript typings files. 

 



Overview 

 

Widget SDK Developers Guide | 17 

 
 
Technologies 
The Homepages framework is implemented using TypeScript, Angular and the Enterprise 

Components for Infor Design System. A widget may be implemented using these technologies as 

well but TypeScript and Angular are completely optional. Widgets should use the Enterprise 

Components for Infor Design System or follow Infor design guidelines. For widgets with limited 

functionality, use jQuery and the Enterprise Components for Infor Design System. 

Note that AngularJS has been deprecated, see AngularJS deprecated 

Enterprise Components for Infor Design System 
Enterprise Components for Infor Design System provides comprehensive tools for product 

development teams to create user experiences that are: Intuitive, Engaging, Purposeful, Functionally 

Relevant, and Beautiful. 

Enterprise Components for Infor Design System is a framework-independent UI component library 

built in js and css that is pattern-focused, template-driven, touch-enabled, responsive, accessible, 

and themable. 

  

 

  



Widgets 

18 | Widget SDK Developers Guide  

Chapter 3 Widgets 3  

 

 

This chapter describes the different widget types and widget related concepts. 

Widget framework 
The widget framework is responsible for the creation, layout and lifecycle management for all 

widgets. 

The widget framework also owns parts of what an end user would consider to be the widget. The 

widget border, widget title bar and widget menu are owned by the framework and a widget 

implementation is not allowed to directly access these parts of a widget. A widget implementation 

owns the widget body area, which is the area inside the widget border and below the widget title bar. 

Widget types 
There are two major types of widgets in Homepages which we will refer to as inline and external. 

There is also a hybrid type which, technically, is an inline widget with some external content. 

Inline widget 

An inline widget is loaded in the same page (DOM) as the Homepage framework. The widget may 

be implemented in JavaScript or TypeScript and can use the external frameworks supported by the 

Homepages framework such as jQuery and Angular. Since the widget is loaded in the same DOM as 

the framework it is very important that the widget does not interfere with the framework or other 

widgets on the page. The widget files are deployed on the Homepage server. This is the 

recommended widget type. 

jQuery widget 

jQuery widgets introduce the least technical overhead. For more information see chapter 4. 



Widgets 

 

Widget SDK Developers Guide | 19 

Angular widget 

For more information see chapter 5. 

External widget 

An external widget is loaded in an IFrame using a URL that may contain parameters with values 

provided by the framework. The widget files may be deployed on any server that can be reached by 

the client. This widget type should be used with caution, especially if the external widget loads a lot 

of resources as it will impact the browser performance. This is not a recommended widget type. 

For more information see chapter 6. 

Hybrid widget 

A hybrid widget is an inline widget that creates an IFrame to load all or parts of its content. This type 

can be used when a widget requires more integration with the framework than is possible with an 

external widget, but the main widget content will be rendered by an external server. This widget type 

should be used with caution, especially if the external widget loads a lot of resources as it will impact 

the browser performance. This is not a recommended widget type.  

Widget technology choice 
After deciding the type of widget that you would like to develop, it’s time to make the technology 

choice for the framework that you would like to build the widget on, if you have decided to develop a 

hybrid or an inline widget. 

There are a few different choices, TypeScript or JavaScript. Angular or jQuery. Note that no other UI 

frameworks are allowed. 

For widgets with simple functionality and hybrids with for example a custom settings UI, jQuery is a 

good fit with minimal overhead. Pure jQuery widgets will also be faster, include less code as it does 

not need to have a JIT and an AOT bundle file as the Angular widgets do. With jQuery widgets, there 

is no need to deliver new packages as Homepages updates the Angular version which might be the 

case with AOT compiled widgets. 

For complex widgets Angular and TypeScript is a better fit. If Angular is the selected framework, we 

recommend that you use it with TypeScript. 

When it comes to the UI, if you develop in Angular you would use the Angular wrappers for the IDS 

Enterprise components, but if you use jQuery you would use the jQuery versions of the control 

library.  



Widgets 

20 | Widget SDK Developers Guide  

To get familiar with the Angular component library, clone the below GitHub repository and follow the 

readme instructions on how to get the samples running locally. 

 

IDS Enterprise NG – Angular wrappers for the IDS Enterprise components 

https://github.com/infor-design/enterprise-ng 

 

Tenant widgets 
Tenant widgets are widgets developed by partners or customers for the cloud edition of Homepages. 

There is a certification process before a widget can be uploaded into a cloud environment. The 

process is not described in this document. 

The process will result in an artifact that can be uploaded and installed in Homepages. The concept 

of “Tenant widgets” are only applicable for the cloud edition of Homepages. There are some 

limitations and restrictions that applies to tenant widgets, for example the widget id must start with 

‘tenant.’ and the manifest must have an author property specified. 

The sample “tenant.sample.angular.helloworld” is an example of a tenant widget. 

Once you have completed the certification process a tenant widget is deployed by first enabling the 

Tenant Widgets Feature in the Settings area in the Homepages Administration tool. After that feature 

is enabled there will be a new section called Tenant Widgets under the Widgets section. 

Note that only approved and signed packages from Infor can be uploaded. 

Tenant widgets disclaimer 
The web technologies are evolving in a rapid pace. It is not guaranteed that a developed widget will 

continue to work for an unlimited time. Angular and other dependencies that are used by the 

Homepages application continue to be developed and improved and as such they might introduce 

breaking changes that are out of our control. For major upgrades we’ll publish a notice that a 

transition is coming but it is important to know that if you develop tenant widgets then you have an 

obligation to keep up with the technology that Homepages is using and possibly do code changes to 

the widget that needs to go through the certification process again. 

There is therefore no guarantee that a widget will continue to work forever. There might be changes 

required on a yearly basis. 

https://github.com/infor-design/enterprise-ng


Widgets 

 

Widget SDK Developers Guide | 21 

Widget manifest 
The widget manifest is used to define a widget and each widget must have a manifest with all 

mandatory properties set. The manifest is a JSON file called “widget.manifest” that should be placed 

in the root widget folder. 

The data in the manifest is used to create an inline widget or address an external widget. The 

manifest also contains the information about the widget that is displayed in the widget catalog. 

Mandatory manifest properties 

The following manifest properties are mandatory and must be included in each widget manifest. 

Note that some of these properties are only mandatory for specific widget types, which is noted in 

the property descriptions. 

Widget ID 

The unique widget identifier. The ID must be unique among all widgets and should be chosen 

carefully. The ID should be like a package/namespace with lowercase words separated by dots. 

Include abbreviated product suites and product names in the ID to make it unique. 

For widgets developed by partners and customers the widget ID must start with the “tenant.” Prefix. 

This applies to tenant widgets that are installed in the cloud version of Homepages. 

Property name: widgetId 

Max length: 64 

Example: 

"widgetId": "infor.sample.helloworld" 

Example: 

"widgetId": "infor.mingle.actions" 

Type 

The type of widget. The only supported types are inline and external. A hybrid widget should be 

defined as inline. 

Property name: type 

Valid values: inline | external 

Example: 

"type": "inline" 



Widgets 

22 | Widget SDK Developers Guide  

Version 

The widget version number. The version number should consist of a minimum of two and a 

maximum of four positive integers separated by dots. 

The widget version is mainly intended as a technical version number for resolving compatibility with 

application versions. As long as a widget is backwards compatible there is no actual need to change 

the version number and it could remain as “1.0”. 

If you want to include build numbers of other release information you can use the optional 

displayVersion property, see the Optional manifest properties section. 

Property name: version 

Max length: 32 

Example: 

"version": "1.0.0.0" 

Name 

The name of the widget. This name will never be visible for an end user and is mainly intended 

administration purposes. If you are not sure what name to pick use the localized widget title in 

English. 

Property name: name 

Max length: 64 

Example: 

"name": "Hello World" 

Title, Description vs Localization 

Either Title and Description OR a Localization block with "en-US" and "widgetTitle" and 

"widgetDescription" is mandatory. 

If the widget is Localized in different languages it must have a Localization property with at least en-

US with widgetTitle and widgetDescription set. If the widget is not going to be translated (applies to 

customer and partner developed widgets only) then the manifest must have the Title and Description 

property on the Manifest set. It is recommended to set the Name and Title to the same value (in 

English). For non-localized widgets it means that they will have Name, Title and Description set and 

all those are Mandatory. But Title and Description is not mandatory if Localization is used. 

Module name 

The name of the widget AMD module used to load the widget with SystemJS. This property is only 

mandatory if the widget type is inline. This property should be omitted for external widgets. 

The module name does not have to be unique. If necessary, it will be updated to a unique name 

during the mandatory minification step by the included bundle & minification script (See Pack and 



Widgets 

 

Widget SDK Developers Guide | 23 

optimize script). The module name should match the name of a JavaScript file in the widget folder, 

excluding the .js file extension. The example below assumes that there is a file called widget.js in the 

root of the widget folder. 

Property name: moduleName 

Example: 

"moduleName": "widget" 

URL 

The URL or URL template for an external widget. This property is only mandatory if the widget type 

is external. This property should be omitted for inline widgets. 

A URL template may contain replacement variables that will be resolved using Ming.le application 

settings, Homepage properties and Widget settings. More information about this can be found in 

chapter Resolved widget values. The API documentation for the resolveAndReplace function in 

IWidgetContext also contains more information about URL template syntax. 

 

Property name: url 

Example: 

"url": "https://server/path" 

Example: 

"url": "{scheme}://{hostname}:{port}/{context}" 

Framework 

The client framework that the widget is using. Valid values are "angular", "jquery" or "angularjs" 

(during the transition period). This property is only mandatory if the widget type is inline. 

During a transition period to Angular it is ok to have this value blank, which will be defaulted to 

"angularjs". This is to avoid breaking existing widgets. As we move to Framework SDK 2.0, angularjs 

will not be an allowed value and those widgets will stop to work. When Framework SDK 2.0 is out 

the new default will be "angular". This property should be considered a mandatory property and as 

you deliver or update widgets this property should be set in the manifest. 

 

Property name: framework 

Example: 

"framework": "angular" 

Example: 

"framework": "jquery" 



Widgets 

24 | Widget SDK Developers Guide  

Author 

The author of the widget. Note that this is only required for widgets developed by customers and 

partners, so called “tenant widgets”. Infor standard widgets should not have this property set. 

 

Property name: author 

Example: 

"author": "Sample Corporation" 

Optional manifest properties 

The following manifest properties are optional. 

Display version 

The widget display version. If this property is set the value will be displayed in the UI instead of the 

version property. The purpose of the display version is to allow additional information such as build 

numbers and other release information. Since the display version has no technical function it is not 

restricted to just integer and dot characters as the version property is.  

Note that the version property is still mandatory even if the displayVersion property is used. 

The display version can be automatically set by the homepage pack command setting by passing 

the script the extra parameter: 

node homepages pack “infor.sample.helloworld” --addDisplayVersion=true 

It is highly recommended to also include the version value in the display version. All standard 

Homepages widgets, for example, use the following display version format which starts with the 

technical widget version followed by the build date and time: 

<Version>.<yyyyMMdd>-<HHmmss> 

 

Property name: displayVersion 

Max length: 32 

Example: 

"displayVersion": " 1.0.20170316-154339" 

AOT version 

Set this property to an empty string for Angular widgets to enable AOT compilation and bundle using 

the homepages command script. This property will be automatically set by the homepages 

packaging script, using the Angular version used in the Homepages SDK, if the property exists in the 

manifest.  



Widgets 

 

Widget SDK Developers Guide | 25 

Property name: aotVersion 

 

Example: 

"aotVersion": "" 

 

Example after package: 

"aotVersion": "6" 

Localization 

Localized language constants for the widget. The localization object should contain one property for 

each supported language. Standard widgets delivered by Infor should be localized. Perhaps the first 

version is not fully localized, but the goal should be to support all languages that are supported by 

the application the widget corresponds to. 

The languages that Homepages supports are: 

 

af-ZA Afrikaans - South Africa 

ar-SA Arabic - Saudi Arabia 

bg-BG Bulgarian - Bulgaria 

cs-CZ Czech - Czech Republic 

da-DK Danish - Denmark 

de-DE German - Germany 

el-GR Greek - Greece 

En-GB English - UK 

en-US English - United States 

es-AR Spanish - Argentina 

es-ES Spanish - Spain 

et-EE Estonian - Estonia 

fi-FI Finnish - Finland 

fr-CA French - Canada 



Widgets 

26 | Widget SDK Developers Guide  

fr-FR French - France 

he-IL Hebrew - Israel 

hi-IN Hindi - India 

hu-HU Hungarian - Hungary 

it-IT Italian - Italy 

ja-JP Japanese - Japan 

ko-KR Korean - Korea 

lt-LT Lithuanian - Lithuania 

lv-LV Latvian - Latvia 

nb-NO Norwegian (Bokmål) - 
Norway 

nl-NL Dutch - The Netherlands 

pl-PL Polish - Poland 

pt-BR Portuguese - Brazil 

pt-PT Portuguese - Portugal 

ro-RO Romanian - Romania 

ru-RU Russian - Russia 

sk-SK Slovakian - Slovakia 

sl-SI Slovenian - Slovenia 

sv-SE Swedish - Sweden 

th-TH Thai - Thailand 

tr-TR Turkish - Turkey 

uk-UA Ukrainian - Ukraine 

vi-VN Vietnamese - Vietnam 

zh-CN Chinese - China 

zh-TW Chinese - Taiwan 



Widgets 

 

Widget SDK Developers Guide | 27 

 

Each language must contain a widget title and description property named widgetTitle and 

widgetDescription. These texts will be visible in the Widget Catalog. The title will also be used as the 

default widget title if this is not overridden in the widget implementation. It is recommended to have 

the same title and name (in English). 

If the widget is not translated to other languages, then there should be no localization property. The 

title and description should be set in the manifest instead. This means that the manifest in that case 

should have name, title and description.  

A widget may include additional localized language constants that will be available in runtime 

through the widget context. Labels for metadata settings may also be localized using this section. 

Property name: localization 

 

Example: 

"localization": { 

   "en-US": { 

      "widgetTitle": "Hello World", 

      "widgetDescription": "Hello World Sample Widget." 

   } 

} 

A few framework shared language constants will always be available through the widget context, 

without having to include them in the manifest localization. These are: “ok”, “cancel”, “yes”, “no”, 

“refresh”, “add” and “save”. 

Category 

An optional category that the widget belongs to. If a category is not specified, the widget will always 

be visible in the “All” category in the Widget Catalog. A widget that do not specify a category might 

also be assigned to a default category. 

The following categories are currently available:  

- application 

- businessintelligence 

- businessprocess 

- social 

- utilities 

- statisticsusage (since 12.0.10) 

Property name: category 

Example: 

"category": "application" 



Widgets 

28 | Widget SDK Developers Guide  

Application logical ID 

An optional parameter, but if the widget is dependent on a specific application this property must be 

set. The value is the Logical Id prefix for the application the widget is dependent on. By specifying 

this, the widget will have access to the Application configuration in Ming.le for the specified 

application and the widget will only be available to those tenants that has the application.  

Property name: applicationLogicalId 

Example: 

"applicationLogicalId": "lid://infor.m3" 

Application version 

An optional parameter for the version of the related Application. This parameter should only be set if 

ApplicationLogicalId is set, and this is the minimum version of the application that the widget is valid 

for. If the widget is valid for all available versions the ApplicationVersion can be omitted, but when 

changes are introduced in the application that affects the widget, a new version of the widget can be 

created with a specified Application Version in the manifest. 

Property name: applicationVersion 

Example: 

"applicationVersion": "13.4" 

Shared modules 

On optional parameter for adding a shared JavaScript file with application logic. The shared module 

can be used by several widgets and will only be loaded once by the Framework. 

The value of this property is a list of SharedModule Entries that each has a name and a path. The 

path is optional but can be used to specify a different path (including name) of the actual JavaScript 

module being used. The name must be unique, and the included files should be minified. 

Property name: sharedModules 

Example: 

"sharedModules": [ 

    { 

        "name": "m3-common", 

        "path": "m3-common-core/m3-common" 

    } 

] 

In this example, the module will be registered as “m3-common”, using JavaScript module “m3-

common-core/m3-common.js” 

 

NOTE! It is not allowed to include any JavaScript framework such as React, Immutable or any 

other JavaScript framework. Only shared application functions are permitted. 



Widgets 

 

Widget SDK Developers Guide | 29 

Help URL 

An optional URL to documentation. If specified, a link to the documentation will be shown. The link 

supports replacement for application related widgets.  

Property name: helpUrl 

Examples: 

"helpUrl": " https://docs.infor.com/mingle/11.1ce/index.html" 

"helpUrl": "{Scheme}://{Hostname}:{Port}/{TenantId}/MyApp/Help" 

Settings 

The settings property can be used to define a list of settings metadata used for the metadata 

settings UI. Inline widgets may also specify settings in runtime and in this case this property is 

optional. An inline widget may even use a mix where some settings are specified in the manifest and 

some are added or modified in runtime. An external widget must specify settings in the manifest to 

be able to use the metadata settings UI.  

The settings metadata is also as part of the publish process where it is possible to enable specific 

settings in the Edit Publish Configuration dialog, so that one or more of the settings can be changed 

by the user on a published widget (but only for that user).  

It is also possible to completely disable all settings or a specific setting as user settings for a 

published widget. In which case, the setting would not be available in the Edit Publish Configuration 

dialog at all. 

The widgets that implement custom settings UI can still provide metadata if it makes sense to have 

some of the settings as user settings for published content. But it also means that the widget must 

check the current publish configuration when showing the settings UI to know what fields should be 

enabled, visible etc. 

A setting typically has a name, type, default value and a label. The settings property should contain 

an array of settings metadata objects where the following properties are supported. 

- name 

o The name of the setting. 

- type 

o The setting type, one of boolean, object, number, radio, selector or string 

o The default value is “string” 

o Note that the object type is not supported in the metadata settings UI, it requires a 

custom settings UI. 

- defaultValue 

o Optional default value. 

- labelId 

https://docs.infor.com/mingle/11.1ce/index.html


Widgets 

30 | Widget SDK Developers Guide  

o A language constant ID for the setting label. The labelId should be defined in the 

localization property. 

- isHidden 

o Indicates that the setting should be permanently hidden. The default value if false. 

- maxLength 

o The maximum length for a text input field. 

- values 

o An array of value objects used if the type is selector or radio. Each object may 

contain the following properties. Use either the text or the textId property, not both. 

▪ value 

• The item value. 

▪ text 

• The item text. 

▪ textId 

• A language constant for the item text. 

- isEnabledWhenPublished 

o Indicates that the setting should not be configurable as a user setting when 

published. The default value is true. 

- isMandatory 

o Indicates that the setting is mandatory. This property only applies to a setting with 

type selector or string. The default value is false. 

Default size 

The default size of a widget can be specified in the manifest using a property called defaultSize. If a 

default size is specified it will be used when adding the widget from the Widget Catalog.  

The property can be used to specify the number of columns or the number of columns and rows 

separated by comma. Column values can range from 1 - 4 and row values from 1 - 2. The default 

value is "1,1" and there is no need to use the property if this is the desired size. 

Property name: defaultSize 

Examples: 

"defaultSize": "2" 

"defaultSize": "2,2" 

"defaultSize": "1,2" 

"defaultSize": "4,2" 



Widgets 

 

Widget SDK Developers Guide | 31 

Max size 

The max size of a widget can be specified in the manifest using a property called maxSize. If a max 

size is specified it will replace the default max size of 4,2 (four columns and two rows). 

The property can be used to specify the number of columns or the number of columns and rows 

separated by comma. Column values can range from 1 - 4 and row values from 1 - 2. The default 

value is "4,2" and there is no need to use the property if this is the desired size. It’s not allowed to set 

a value higher than this default value. 

Property name: maxSize 

Examples: 

"maxSize": "1" 

"maxSize": "2,2" 

"maxSize": "1,2" 

Enable publish 

A widget may set the enablePublish property to false to prevent the widget from being published. 

The default value is true. Publish must only be turned off if there are no widget specific settings.  

Property name: enablePublish 

Example: 

"enablePublish": false 

Enable settings when published 

A widget may set the enableSettingsWhenPublished property to false to disable user settings for the 

widget when published. The default value is true. The setting should be set to false if no widget 

specific user settings are applicable for a published widget.  

Property name: enableSettingsWhenPublished 

Example: 

"enableSettingsWhenPublished": false 

Enable title edit 

A widget may set the enableTitleEdit property to false to prevent the title from being available in 

Widget Settings. If enableTitleEdit is not specified it defaults to true and it is possible to change the 

widget title on a page. 

Property name: enableTitleEdit 

Example: 

"enableTitleEdit": false 



Widgets 

32 | Widget SDK Developers Guide  

Enable settings 

A widget will have settings if it has settings defined in the definition or if it implements functions for 

generating metadata (see IWidgetSettings in the API Documentation). EnableSettings is defaulted to 

true but can be set to false, which means that no settings will be allowed. This means that the widget 

title can't be changed. To hide the Settings menu on the widget (called Configuration) but still have 

the framework support for settings see IWidgetSettings.enableSettingsMenu in the API 

Documentation. If the value for EnableSettings is false, the framework will return an exception if the 

application tries to trigger save. 

Property name: enableSettings 

Example: 

"enableSettings": false 

Enable application selector 

A widget with an application dependency (applicationLogicalId) combined with Settings section in the 

manifest will have an automatic generated UI. If there are multiple applications in Mingle for the local 

id prefix, a dropdown with the available applications is shown in the automatically generated UI. This 

is for selecting what application instance the widget is for. The ION API only supports one instance 

(root) or the widget needs to support selecting the context root for the ION API call. If the widget has 

an automatic UI but doesn’t need to configure the specific application instance it can hide the 

application selector by setting enableApplicationSelector to false. 

Property name: enableApplicationSelector 

Example: 

"enableApplicationSelector": false 

Enable catalog 

Setting the enableCatalog property to false means that the standard widget will not be displayed in 

the widget catalog. The default value is true. Such a widget can only be added by manually editing a 

JSON for a page, or by using a drillback to Homepages with widget configuration data that will add a 

configured widget directly to a private page. A standard widget with enableCatalog set to false can 

create published widgets that are added to the Widget Catalog. The configuration only applies to the 

standard widget.  

Property name: enableCatalog 

Example: 

"enableCatalog": false 

Enable custom properties 

Setting the enableCustomProperties property to true will allow the widget to resolve any value set as 

Ming.le custom properties. The default value is false. Only applies to widgets that has 



Widgets 

 

Widget SDK Developers Guide | 33 

ApplicationLogicalId. These are extra custom properties that are sent to the Ming.le application as 

URL parameters when launching a parameter. Once enabled these properties are available using 

the IWidgetContext.resolve method or directly in URL templates in external widgets. To be sure the 

value is resolved against the Application and not any of the other sources the "application." prefix 

can be used in templates. 

Property name: enableCustomProperties 

Example: 

"enableCustomProperties": false 

Enable refresh 

The enableRefresh property can be used to get automatic refresh support for external widgets and 

partial refresh support for inline widgets.  

When this property is enabled for an external widget a refresh menu item will be added to the widget 

menu and a refresh button will be added to the widget title bar. When the user activates refresh the 

URL of the IFrame for the external widget will be reloaded.  

When this property is enabled for an inline widget the menu item and button will also be added but 

the widget must manually implement the refresh functionality by using the “refreshed” event function 

in the widget instance, see the IWidgetInstance interface. Inline widgets that already has a primary 

action button in the title bar will only get the refresh menu item. 

The refresh functionality can also be controlled for each widget instance by adding a widget setting 

with the same name as the manifest property, enableRefresh. If the manifest property is set to true 

and the widget setting is set to false it will override the manifest property and disable the refresh 

functionality by removing the menu item and the button. The enableRefresh widget setting will not 

have any effect if the manifest property is set to false, or not set at all. 

There is also a cooldown interval for the refresh functionality to prevent the user from spamming 

refresh requests. The cooldown interval cannot be controlled by the widget. 

Property name: enableRefresh 

Default value: false 

Example: 

" enableRefresh ": true 

Icon file 

A widget may include a custom icon that is shown in the Widget Catalog. By default, the icon in the 

widget catalog is determined by the category. The iconFile property should be set to the name of the 

icon file, including path if the file is not placed in the root of the widget package.  

The file must be a 60 px * 60 px PNG file following the Xi look and feel. It is recommended to call the 

file icon.png and place it in the root of the widget package.  



Widgets 

34 | Widget SDK Developers Guide  

Please note that leading slashes such as "/images/icon.png" are not allowed. For sub paths use 

"images/icon.png". 

Property name: iconFile 

Example: 

"iconFile": "icon.png" 

Screen shots for the widget catalog 

A widget may include up to three png image files that will be shown in the details panel in the Widget 

Catalog. The image will be displayed in a 200 x 200 pixels container and if the image is clicked the 

image is shown in its original size. The max file size is 100 kb even though we recommend keeping 

the file size around 10 kb. The max pixel size is 740 * 760 pixels which represents a two column, two 

rows widget size. The min pixel size is 200 * 200 pixels. 

The manifest property should be set to the number of image files and the image files must be called 

screenshot1.png, screenshot2.png, screenshot3.png. 

Example: 

"screenshots": 2 

The example widget has two screen shots screenshot2.png and screenshot3.png. Setting the value 

to 0 is not allowed. If there are no screenshots, then remove the property. 

Requires config 

Optional property requiresConfig can be used to specify if the widget needs to be configured before 

it can be used. If set to true, the widget content will be hidden until it has been configured and 

replaced by a button which opens the Configure Widget dialog. If the user is not allowed to configure 

the widget, it will be empty. 

If set to true, the widget configuration will be validated when the widget is loaded, reset to default or 

when settings are saved when closing the Configure Widget dialog.  

By default, this validation will be performed by the Framework, and the configuration will be 

interpreted as valid if at least one of the settings has an assigned value. If a custom validation is 

required, a widget may implement the IWidgetInstance.isConfigured function instead, please refer to 

the API Documentation for more information about this. 

When the widget has been configured according to the validation, the overlay UI will be removed, 

and the widget content will display. 

To specify a specific icon and message instead of the default UI. Please see the “Empty Config” 

manifest property. 

Note: requiresConfig shall never be set to true if the widget does not use settings, or if neither 

metadata settings UI nor custom settings UI are used. 

Property name: requiresConfig 



Widgets 

 

Widget SDK Developers Guide | 35 

Example: 

" requiresConfig ": true 

Empty config 

A widget that requires configuration, i.e. requiresConfig is set to true, can specify an icon, title, 

description and action button by configuring the property emptyConfig. The properties that are 

configurable are “icon”, “titleId”, “descriptionId” and “buttonId”. All four properties are optional and 

type string. 

The icons that are available to use in the configuration, defined on the IDS Enterprise site, are the 

following : “generic”, “error-loading” (default), “new-project”, “no-alerts”, “no-
analytics”, “no-budget”, “no-data”, “no-events”, “no-notes”, “no-orders”, 

“no-tasks”. 

To invoke the action button functionality the optional IWidgetInstance function 

emptyConfigClicked() should be implemented. See API documentation for more information. 

 

An example widget for the empty config state is available as infor.sample.angular.emptystate in the 

Widget SDK. The example widget uses the same property values as defined below. 

Property name: emptyConfig 

Example:  

“emptyConfig”: { 

 “icon”: “no-budget”, 

 “titleId”: “emptyStateTitle”, 

 “descriptionId”: “emptyStateDescription”, 

 “buttonId”: “emptyStateButton” 

} 

where “emptyStateTitle”, “emptyStateDescription” and “emptyStateButton” are 

localization constants. See Chapter 7 on Localization for more information on localization constants. 

The default UI for an empty widget, i.e. if requiresConfig is set to true but no emptyConfig is set, will 

consist of the default icon “error-loading”, button text “Configure Widget” and no title or 

description. 

Target 

The optional property target is used to define the widget as a Banner widget. To make the widget a 

Banner widget - set target to "banner". To make the widget a Mobile widget – set target to “mobile”. If 

the parameter is skipped the widget will become a regular widget. This property can only be used 

when there is only one target. 

Property name: target 

https://design.infor.com/code/ids-enterprise/latest/demo/components/icons/example-empty-widgets?


Widgets 

36 | Widget SDK Developers Guide  

Example (banner only): 

"target": "banner" 

Example (mobile only): 

"target": "mobile" 

Targets 

This optional property is used to define the supported targets for the widget. If the widget is possible 

to add both as a regular widget and a banner widget, both targets are specified. It is also possible to 

include mobile in the targets. 

Property name: targets 

Example (banner widget example that can also be added as a regular widget): 

"targets": ["banner", "default"] 

Example (mobile widget example that can also be added as a regular widget): 

"targets": ["mobile", "default"] 

Example (mobile widget only, not available as a regular widget (except for admins that will still see 

the mobile widget): 

"targets": ["mobile"] 

Banner widget 
A Banner widget is a special widget that is added to the banner container. The banner container is 

located at the top of the page directly below the page header, and always spans the entire first row. 

It holds between one and four banner widgets and has a background color based on the color of the 

page (default is blue).  

When developing a Banner widget, it is important to make sure that it works with all colored 

background (blue, turquoise, purple, green, orange, grey and black) and that it responds well to 

different widths, since its size will depend on the user’s screen (or browser) width. A Banner widget 

is created by setting the target or targets property in the manifest. 

Mobile widget 
A Mobile widget is a widget that is built for the Infor Go mobile application for Android and IOS. 

When running on a mobile device the widget can access native device features like GPS information 

and camera. 

Infor Go is a mobile application that hosts different Infor applications suites for example HCM and 

Homepages. It acts like Ming.le for Mobile and allows easy access to your most used functions and 



Widgets 

 

Widget SDK Developers Guide | 37 

options to add favorites for easy access to widgets, homepages and other screens in Infor 

applications. 

The Infor Go mobile application has support for viewing the Homepages pages and for viewing an 

individual widget in a stand-alone mode, giving maximum screen estate to the content view of the 

widget, a “widget only view”. In the “widget only view” the title bar of the widget is not displayed, only 

the widget content. This is a great view for building a mobile application through the Homepages 

framework. The widget can be added as a favorite in the mobile application for easy access. 

There are two options to specify the targets that the widget supports in the manifest. There is a 

target and a targets property. The targets for the default mode that is implicit if no target is defined is 

“default”. To add support for Infor Go and mobile, use the target “mobile”. 

Once a widget has support for mobile an extra option will be available when the configuration of a 

standard widget is published to a published widget. The option that will appear in the Publish 

Configuration dialog is “Enable for mobile devices”. Checking this check box means that the 

published widget will be available in the widget menu in Infor Go. 

Enabling content for Infor Go 

To enable pages and widgets in Infor Go there are two settings in the Homepages administration 

tool that needs to be enabled.  

• “View and Publish widgets for Infor Go”  

• “View pages in Infor Go” 

These settings will enable widgets and pages in Infor Go, respectively. It’s not supported to add 

more pages from the Widget catalog. Only the user’s current pages will be displayed if the pages are 

enabled in Infor Go setting is enabled. 

If the Infor Go application does not show any content, please verify that these settings are enabled 

and that the user have pages in My Pages / added pages when accessing Homepages in Ming.le. 

Enabling a widget for Infor Go 

In the manifest, if you have entered a value for the target property, remove that property and use 

targets instead. 

In the targets property add “mobile”. 

Example (mobile widget example that can also be added as a regular widget): 

"targets": ["mobile", "default"] 

If the standard widget requires configuration before it can load data you must add 
requiresConfig=true to the manifest. 



Widgets 

38 | Widget SDK Developers Guide  

Widget menu in Infor Go 

The Homepages menu in Infor Go has a quick list of widgets that supports mobile devices. These 

are a combination of: 

• Standard widgets that have the target mobile and requiresConfig=false in the manifest. 

• Published variants of mobile standard widgets with the option: ”Enable for mobile devices 

enabled”. 

The standard widgets that requires configuration are filtered out from the list since it’s not supported 

to edit configuration of a widget in the mobile application. The mobile support is focused on viewing 

and using pages and widgets, not on their configuration. 

Developing for mobile 

When developing for mobile the development container does not support the IDevice interface which 

means that it will be complicated to fully test in a device unless it’s possible to deploy this in an on-

prem environment. 

If your widget support both default and mobile use the IDevice to check in which device the widget is 

currently running to enable different features. Always launch links and drillbacks through the 

IWidgetContext.launch, it will automatically open a new browser on a mobile device. 

For information on how to use the IDevice please see the infor.sample.mobile. 

Limitations 

There are several limitations to the Infor Go view of the widget to consider. The limitations are: 

• The widget is not allowed to be configured when running in mobile. 

• The screen resolution is different depending on mobile device so a responsive user interface 

is extremely important 

• The widget title bar is not available, nor the configure menu so any actions needs to be made 

available through the content area on the widget. If a widget supports both default and 

mobile, then it needs to be able to adapt to showing for example the primary action in the title 

bar when in normal mode. 

Accessing native features 

The access to the native functions is available through the IDevice available from 

IWidgetContext.getDevice(). The IDevice interface contains and API for accessing the following 

native services: 

• Location 



Widgets 

 

Widget SDK Developers Guide | 39 

• Image 

• Video 

• Audio 

• Motion Sensors 

• Network 

• Read QR Code 

• Show map 

Inline widget implementation 
This section describes the basic steps required when implementing an inline widget. Refer to the 

sample widgets for code examples. 

For jQuery widgets refer to chapter 4 and for Angular widgets refer to chapter 5 for more details. 

Widget module 

An inline widget should be implemented as a module on a supported format that can be loaded 

using the module loader. The supported module formats are UMD and AMD. 

It is not allowed to explicitly use the module loader to load additional code.  

The widget module must export a widget factory function, see next section. 

Widget factory function 

The widget factory function is responsible for creating a widget instance. The widget factory function 

should be called “widgetFactory” and it should be exported from the widget module. 

The factory function must have the following signature which is also documented in the 

IWidgetModule2 interface. 

widgetFactory(context: IWidgetContext): IWidgetInstance; 

 

The widget factory function should return a widget instance object if it succeeds in creating the 
widget. If the widget cannot be created the function may return null, undefined or throw an exception. 

 



Widgets 

40 | Widget SDK Developers Guide  

For examples and more details see chapter 4 for jQuery widgets and chapter 5 for Angular widgets. 
The widget context and widget instance are described in the following sections. 

Widget context 

The widget context is provided by the framework to the widget factory function for each widget that is 

instantiated. The context is specific to each widget instance and not shared. The context contains, 

among other things, the widget data, widget settings, the DOM element and various functions for 

interacting with the framework. 

See the IWidgetContext interface in the API documentation for more information. 

Widget instance 

The widget instance represents the runtime widget. Its main purpose is to let the framework notify 

the widget of different events such as when a widget is activated or deactivated, when settings are 

saved etc.  

All functions and properties defined in the IWidgetInstance interface are optional, so a widget factory 

function may return an empty object if none of the callbacks are used for example. 

See the IWidgetInstance interface in the API documentation for more information. For examples and 

more details see chapter 4 for jQuery widgets and chapter 5 for Angular widgets. 

Widget state 

A widget can have different states but using the widget state is optional. The different widget states 

are defined in the WidgetState class. The default widget state is “running”. The getState and 

setState functions on the widget context (IWidgetContext) can be used to check and set the widget 

state. 

A widget may set the state to “busy” when it is busy making a server request for example. When the 

widget is no longer busy it should set the state back to “running”. The framework may show busy 

indicator for widgets in the busy state. 

A widget may also set the state to “error” if it is missing settings or if backend service is not 

responding for example. If the issue is resolved the widget should set the state back to “running”. 

The framework may show some kind error indicator for widgets in the error state. 



Widgets 

 

Widget SDK Developers Guide | 41 

Widget activation 

A widget can be activated or deactivated by the framework for different reasons, such as a change in 

visibility when user navigates to a new page. A widget is notified about activations through the 

activated and deactivated event functions on the widget instance (IWidgetInstance). The different 

types of activations are defined in the WidgetActivationType class. 

A widget that makes polling requests to a backend service or does any kind of periodic processing 

must handle activation. Widgets that do not use polling and don’t have any other periodic processing 

may choose to ignore activation notifications. 

A common scenario, as mentioned above, is a change in visibility. If a user navigates from one page 

to another all widgets that has defined the deactivated function would get a call with an activation 

object where the type is set to visibility. All widgets on the next page would get a similar call but on 

the activated function. Another example is when the settings dialog is opened and closed in which 

case the widget will also be deactivated and activated. 

When a widget is deactivated it should no longer make any server requests or do any other kind of 

processing. When a widget is activated again it may resume any suspended operations. The main 

reason for this is to prevent unnecessary load on both the client, network and backend servers when 

the user cannot see or interact with the widget content. 

Identifiers for automated UI (E2E) tests 

A widget cannot have any HTML id-attributes, except in a custom settings UI, since several widgets 

can be added to a page, making their IDs non-unique. 

If you want to add identifiers for the sole purpose of facilitating automated UI testing, add the 

following data attribute to elements: 

data-lm-tst-{applicationShortName}=”my-identifier” 

Example 

<div class="field"> 

<label soho-label data-lm-tst-smp="prd-src-lbl"> 

Product search  

<label> 

 <input soho-autocomplete 

data-lm-tst-smp="prd-src-ipt" 

  [(ngModel)]="searchText" 

placeholder="Type to search..."/> 

</div> 



Widgets 

42 | Widget SDK Developers Guide  

Widget settings 
A widget may have settings, but it is not required. If a widget has settings, it may use a metadata 

driven settings UI managed by the framework or use a custom settings UI implemented by the 

widget. Note that a custom settings UI is only supported for inline widgets. 

The widget settings are opened when the user clicks the Configure menu item in the widget menu. 

When the metadata settings UI is used, it is the framework that opens the settings dialog. When the 

custom settings UI is used, it might be the framework or the widget that opens the settings dialog. 

Please note that the settings data size should be kept to a minimum. It should basically be key-value 

pairs. There is a max size limitation per page that will prevent the user from saving the page if the 

widgets are storing too much data. 

If the settings UI depends on a lot of data, consider storing it in the browser local storage. 

Settings for a published widget 

A published widget or a widget on a published page will in most cases be configured in a way that 

affects settings. The default for a published widget is to disable settings completely. In this case, the 

Configure menu will not be available. For widgets that provide settings metadata it is also possible to 

enable/disable individual settings or show/hide individual settings. The person that publishes the 

widget or the page will decide which settings that should be available. 

For widgets that only defines settings metadata in the manifest and relies on the metadata settings 

UI everything is handled automatically by the framework. The metadata settings UI will disable 

settings that are disabled and hide settings that are hidden etc. 

Widgets that use a custom settings UI or that dynamically provides or modifies settings metadata 

must consider publish configurations made related to settings. When settings are disabled the 

Configure menu will not be available but if the widget exposes other ways to access settings the 

implementation must check if settings are disabled and act accordingly. The same is true for 

individual settings if metadata settings are used. The widget should check if individual settings are 

disabled if it creates a custom UI or if it is possible to change the setting from other places than the 

widget settings dialog. The IWidgetSettings2 interface contains functions for checking if settings are 

enabled/disabled or if individual settings are enabled/disabled or visible/hidden. Use the getSettings 

function in the IWidgetContext interface to get the IWidgetSettings2. 

User settings for a published widget 

Settings for a widget are normally stored as part of the page. For a published widget, things get a bit 

more complicated. When settings are disabled for a published widget or a widget on a published 

page, the settings are stored on the published widget or on the published page. If some settings are 

enabled a user can change those settings but these values are stored for that user only (on the page 

connection). This makes it possible to have a published widget with some settings that are disabled 

or hidden but some that are enabled and can be changed by the user. If the published widget is 



Widgets 

 

Widget SDK Developers Guide | 43 

updated the user will receive new values for the disabled settings but the user will retain the values 

that were enabled. 

If the publisher of a widget wants to have full control of the widget settings, it is recommended to 

always disable settings (which is the default). In this case, all users will have received all updated 

settings when the widget is republished. 

Implicit widget settings 

There are some implicit widget settings such as the widget title that is handled by the framework. 

The framework automatically generates the UI for implicit settings when metadata settings are used. 

When a custom settings UI is used, it is up to the widget to support the implicit settings. If a widget 

with a custom settings UI wants to support editing of the title is must provide support for that in the 

custom UI. 

Note that title editing can be disabled for a published widget. This can be checked using the 

isTitleEditEnabled function on the IWidgetContext. 

External widget settings 

An external widget may use the metadata settings UI described below and let the framework store 

the settings. The widget may also handle all settings on its own. 

If the framework should handle the settings, the widget must define all settings in the manifest. 

There is no ad-hoc setting support for external widgets. The settings values can be used with 

replacement variables in the URL for the external widget. When the user changes the widget 

settings in the settings dialog the framework will reload the external widget using a URL with the new 

settings values. 

Metadata settings UI 

The metadata settings UI is generated automatically by the framework using settings metadata 

defined in the widget manifest or in runtime. The settings definitions contain the name, type, label etc 

for each setting. The metadata settings UI is limited to what the framework supports but the benefit 

is that the widget can declaratively define the settings UI and no implementation is necessary. For 

complex settings, the custom settings UI should be used instead. 

The metadata settings UI supports the following types: boolean, number, radio, selector and string. 

The object type is not supported in the metadata settings UI, a custom settings UI is required. 



Widgets 

44 | Widget SDK Developers Guide  

Custom settings UI 

When the custom settings UI is used the content of the settings dialog is managed by the widget. To 

enable the custom settings UI the widget must set the widgetSettingsFactory function on the widget 

instance (IWidgetInstance). This function will be called when the settings dialog is displayed. 

Where to store the actual settings values is up to the widget. The custom settings values may be 

saved as part of the widget or using some external service. If the data should be saved as part of the 

widget it must be stored using the widget settings object. If the data is stored as part of the widget 

the save function on the widget context should be called to notify that framework that the widget 

settings have been changed. 

A widget may also choose to completely override the settings dialog. In this case the widget must 

handle everything related to the settings UI, including any dialogs etc. To prevent the framework 

from showing the settings dialog the widget must set the settingsOpening function on the 

IWidgetInstance and also set the cancel property to true on the function argument. The framework 

will call the settingsOpening function when the settings dialog is about to be displayed but if this is 

cancelled by the widget, no dialog will be opened. 

Accessing settings 

Settings are made available to an inline widget through the getSettings function on the widget 

context (IWidgetContext). External widgets will get settings on the URL if the URL is a template with 

settings replacement variables. 

When a widget is first added to the page the settings will contain default values for widgets that use 

metadata settings. If a widget does not define default values, do not have any settings, use ad-hoc 

or custom settings, the settings object might be empty. A widget should never assume that a settings 

value is available, and it should always check that settings values are correct before using them. 

The widget settings object (IWidgetSettings) defines some getter functions which have optional 

parameters for default values. It is also possible to use the values dictionary directly using the values 

property. See the API documentation for more information. 

Saving settings 

Settings are automatically saved by the framework when the metadata settings UI is used. It is 

possible to manually save settings using the save function on the widget context (IWidgetContext). 

This function should be used if the widget modifies settings internally or for widgets with a custom 

settings UI. 

Settings events 

The framework can notify a widget when settings are opening and when settings are saved. 



Widgets 

 

Widget SDK Developers Guide | 45 

Settings opening 

The settingsOpening function on the widget instance will be called by the framework (if it is defined) 

when the user opens the widget settings. An object (IWidgetSettingsArg) is provided to the function 

with the settings metadata and values.  

A widget that uses the metadata settings UI and ad-hoc properties may choose to modify the 

settings metadata. The framework will open the settings dialog after this function returns and it will 

use any modified settings metadata or settings values. 

A widget that wants to completely override the default settings dialog should set the cancel property 

to true on the function argument when this function is called. 

Settings saved 

The settingsSaved function on the widget instance will be called by the framework (if it is defined) 

when settings are saved. An options object (IWidgetSettingsArg) is provided to the function with the 

settings metadata and values.  

Settings may be saved when the user closes the widget settings dialog or if the save function on the 

widget context has been called. An options object (IWidgetSettingsArg) is provided to the function 

with the settings values. 

Ad-hoc settings 

Ad-hoc settings can be used by inline widgets with a metadata settings UI. The ad-hoc settings 

metadata and values can be added or modified before the widget settings dialog is opened. The 

widget manifest does not need to contain any settings metadata in this scenario. A mix is also 

possible with some settings defined in the manifest and some ad-hoc settings defined in runtime. 

The settingsOpening function on the widget instance should be set so that the widget is notified 

when the settings dialog is opened. See the Settings events section above. 

Widget context values 
A widget context value is a value that has been resolved using a hierarchy of sources. The values 

can be used in URL templates or accessed from code using an API. The following three sources are 

supported. 

- Ming.le application settings 

o These are only available to widgets that specify a logical ID prefix using the 

applicationLogicalId property in the manifest. 

- Homepages properties 



Widgets 

46 | Widget SDK Developers Guide  

o These properties are configured using the Homepages administration tool. 

- Widget settings 

- Framework values 

o These values must be qualified with the framework prefix 

 

Resolving priority 

Value are resolved with a specific priority order for each source. If a value cannot be found in the 

first source there is a fallback to next. The priority is Ming.le application settings, Homepage 

properties, Widget settings. 

Qualifying a value 

It is possible to qualify the key for a resolved value to override the default resolving priority and only 

check a specific source. This can be used if there is a naming conflict for the keys. If a widget 

specifies a setting with the same name as a Ming.le application setting the key can be prefixed to 

ensure that the value is retrieved from the widget settings for example. 

The following prefixes are supported: 

- application 

o Ming.le application setting 

- property 

o Homepage property 

- widget 

o Widget setting 

- framework 

o Framework values 

 

Example: 

{widget.port} 



Widgets 

 

Widget SDK Developers Guide | 47 

Using widget context values in a URL template 

One scenario where context widget values can be used is in the URL template for an external 

widget. The keys are place within curly brackets in the template.  

Note that there is some special handling of the port key. If a port is not configured the port variable 

and the preceding colon will be removed when resolving the template. 

Example: 

{scheme}://{hostname}:{port}/{context} 

Accessing widget context values in code 

The IWidgetContext interface contains functions for resolving values. The resolve function can 

resolve a single value. The resolveAndReplace function can be used to manually resolve a URL 

template in code. 

Ming.le application settings 

The following Ming.le application settings are available for a widget that belongs to an existing 

Ming.le application. 

- version 

- productName 

- logicalIdPrefix 

- logicalId 

- hostname 

- context 

- port 

- useHttps 

Framework values 

The following framework values can be accessed in runtime. These values must always be qualified 

with the framework prefix. 

- pageid 

o The generated ID of the current page. 



Widgets 

48 | Widget SDK Developers Guide  

- widgetid 

o The ID of the current widget. 

- standardwidgetid 

o The standard ID of the current widget. 

- widgetinstanceid 

o The generated ID of the current widget. 

- containerurl 

o The URL of the container the hosts Homepages (usually Ming.le) or the URL to 

Homepages if used stand-alone or in development mode. 

- random 

o A random string with 16 characters. 

Example: 

{scheme}://{hostname}:{port}/{context}/path/?pageid={framework.pageid} 
 

Using widget context values in the test container 

When developing a widget that uses resolved values it is possible to specify those values in a 

configuration file when using the test container. The file should be located in the Widgets folder. The 

file will only be used if the devConfiguration attribute is set. See example below: 

 

<lm-app devWidget="infor.mingle.custommenu" devConfiguration="configuration.json"></lm-app> 

The sample solution contains an example of the configuration.json file. 

  



jQuery widgets 

 

Widget SDK Developers Guide | 49 

Chapter 4 jQuery widgets 4  

 

 

This chapter describes how to implement inline widgets using jQuery.  

Introduction 
The jQuery widgets introduce the least possible overhead.  

Widget factory function 
The widget factory function receives an IWidgetContext context and must return an IWidgetInstance 

instance. 

The Widget instance needs to implement at least one of the functions in the IWidgetInstance 

interface if TypeScript is used. This example is TypeScript and that is what we recommend as the 

homepage command scripts supports packaging of TypeScript files into a minified bundle file. 

Example: 

class HelloWorld implements IWidgetInstance { 

  private root: JQuery; 

  constructor(private widgetContext: IWidgetContext) { 

    this.root = widgetContext.getElement(); 

    this.root.html("<h1 class='lm-padding-md' > Hello jQuery world </h1>"); 

} 

activated(arg: IWidgetActivationArg): void { 

} 

export const widgetFactory = (context: IWidgetContext): IWidgetInstance => { 

     return new HelloWorld(context); 

}; 



jQuery widgets 

50 | Widget SDK Developers Guide  

Performance tips 
Search for and apply any performance tips that are available for jQuery. For example: 

- Prefer simple selection first using ID first (and then by tag name) using a relative scope of 

the widget top element 

- Cache the jQuery objects as much as possible 

- Don’t use $.each(), use a for loop instead. 

- DOM manipulations should be minimized and preferably done in large chunks instead of 

small updates. Operations like prepend(), append() and after() are time consuming. Build a 

large chunk of html and use html to set the content. 

Creating a widget package 
jQuery widgets can be minified and packaged using the homepages command script. See chapter 9 

for more information. 

 

 

  



Angular widgets 

 

Widget SDK Developers Guide | 51 

Chapter 5 Angular widgets 5  

 

 

This chapter describes how to implement inline widgets using Angular. 

Introduction 
An Angular widget is a widget implemented using the Angular framework. See the following page for 

documentation and general information about Angular. 

https://angular.io/ 

 

Refer to the widget samples for code examples of the concepts discussed in this chapter. 

AOT vs JIT 
An Angular widget can run in two different modes, JIT (Just in time) or AOT (Ahead of time). In JIT 

mode, the widget templates are compiled in runtime which is slow. In AOT mode, the widget 

templates are compiled during development to avoid the slow JIT compilation in runtime. 

One downside of using AOT is that the compiled factory script code (AOT factories) for the widget 

templates are only guaranteed to be compatible within one major Angular release. When a new 

major Angular version is released the AOT factories may no longer be compatible. To handle this 

scenario the Homepages framework supports a fallback to JIT if there are breaking changes in a 

newer Angular version. This will ensure that the widgets keep working but with reduced loading 

performance. 

The performance hit when using JIT depends on the size and complexity of the widget templates. 

When the widget templates are really small it might be OK to support JIT only, but in this case the 

widget could probably be implemented in jQuery instead. In most cases an Angular widget should 

support both JIT and AOT. The homepages command script that is part of the SDK makes it 

possible to build a widget package that supports both JIT and AOT. 

Widgets that support AOT must be verified with Homepages version 12.0.23 or later. 

https://angular.io/


Angular widgets 

52 | Widget SDK Developers Guide  

AOT documentation 

For those who are interested in more details about AOT see the following Angular page. 

https://angular.io/guide/aot-compiler 

To avoid some pitfalls for AOT compared to JIT check the do’s and don’ts in the following page. 

https://github.com/rangle/angular-2-aot-sandbox#aot-dos-and-donts 

The future of AOT 

The Angular team is working on an improved AOT compiler that might be released for Angular 7. 

When / If Homepages switches to the new AOT compiler the widgets will need to be re-packaged to 

include factories for the newer version of AOT. This should not require any code changes in the 

widgets, but it will require compilation with the new Angular version. 

The future of JIT 

The Angular team has hinted that JIT support in runtime might be removed in favor of AOT for 

performance reasons. If this happens in future versions of Angular, it will be mandatory for widgets 

to support AOT. 

Angular modules and components 
An Angular widget must contain at least one Angular module decorated with @NgModule and one 

Angular component decorated with @Component. The widget may contain additional components 

but there must be one main widget component. The module and the main widget component are the 

main entry point for the widget and they must be returned by the widget factory function, see the 

following section. Both the module and the component classes should be exported. 

Module imports 

The widget module should import the CommonModule and any other modules that it requires such 

as the FormsModule.  

When using angular components for the Infor Design System it is recommended to import specific 

modules instead of the entire module. Use SohoButtonModule instead of SohoComponentsModule if 

you just need a button and so on. This will reduce the size of the generated factories when using 

AOT. 

https://angular.io/guide/aot-compiler
https://github.com/rangle/angular-2-aot-sandbox#aot-dos-and-donts


Angular widgets 

 

Widget SDK Developers Guide | 53 

Module declarations and entry components 

Add the widget components to the declarations and entryComponents arrays on the @NgModule 

declaration. In some cases, the widget may work without this but make sure to verify this in both JIT 

and AOT mode before omitting them. 

Widget factory function 
The widget factory function of an Angular widget is different compared to a jQuery widget. The 

widget instance that is returned from the factory function must contain a property called 

angularConfig that contains a configuration object specific to Angular. 

Angular widgets that support both JIT and AOT will have two different factory functions, one for JIT 

and one for AOT. The two factory functions must be placed in two different files. 

JIT factory function 

The JIT factory function should return a widget instance with the angularConfig property set. The 

angularConfig object should have the moduleType and componentType properties set. The 

moduleType is the widget Angular module class annotated with @NgModule. The componentType is 

the main widget component annotated with @Component. 

 

Example: 

export const widgetFactory = (context: IWidgetContext): IWidgetInstance => { 

   return { 

      angularConfig: { 

         moduleType: MyWidgetModule, 

         componentType: MyWidgetComponent 

      } 

   }; 

}; 

AOT factory function 

The main difference between the AOT factory function and the JIT factory function is that the AOT 

factory function should set the moduleFactory property instead of the moduleType. The module 

factory is a class generated by the AOT compiler and it will have the same name as the module 

class with the suffix “NgFactory”. 



Angular widgets 

54 | Widget SDK Developers Guide  

The AOT factory function should return a widget instance with the angularConfig property set. The 

angularConfig object should have the moduleFactory and componentType properties set. The 

moduleFactory is the widget Angular module factory class annotated. The componentType is the 

main widget component annotated with @Component. 

 

Example: 

export const widgetFactory = (context: IWidgetContext): IWidgetInstance => { 

   return { 

      angularConfig: { 

         moduleFactory: MyWidgetModuleNgFactory, 

         componentType: MyWidgetComponent 

      } 

   }; 

}; 

File structure 
The file structure of an Angular widget project will be different depending on if the widget only 

supports JIT or if it supports both JIT and AOT. A JIT widget may contain a single script file while a 

JIT+AOT widget will contain at least three script files. 

A JIT widget may have the widget factory function and the widget code in the same file. An AOT 

widget requires one file with the common widget code and two factory files, one for JIT and one for 

AOT. The reason for having two factory files is to be able to package two versions of the same 

widget, one for JIT mode and one for AOT mode. 

Note that the widget factory file for AOT must be named the same as the widget module name with 

the suffix “-aot”. 

JIT widget example: 

widget.ts 

AOT widget example: 

main.ts 

widget.ts 

widget-aot.ts 

Refer to the Angular sample widgets for more details. 

Widget context and instance 
Most Angular Widget components needs access to the widget context and widget instance objects 

and there are two different options on how to achieve this. One option is to have the widget context 



Angular widgets 

 

Widget SDK Developers Guide | 55 

and widget instance injected into the constructor of the component. The other option is to declare 

two input properties on the component. 

Constructor injection of widget context and instance 

This option is preferred if the widget needs to access either the widget context or the widget instance 

in the constructor. Since the widget context and instance are just interfaces it is necessary to use 

Angular InjectionToken objects declared in the lime module. See examples of the import statements 

and usage in a component constructor below. Additional examples can be found in the sample 

widgets. 

Import example: 

import {  

   widgetContextInjectionToken,  

   widgetInstanceInjectionToken, 

   IWidgetContext, 

   IWidgetInstance 

} from "lime"; 

 

Constructor example: 

constructor( 

   @Inject(widgetContextInjectionToken) 

   private readonly widgetContext: IWidgetContext, 

   @Inject(widgetInstanceInjectionToken) 

   private readonly widgetInstance: IWidgetInstance) { 

} 

It is recommended to always name the properties widgetContext and widgetInstance. If the 

properties are given different names the framework will automatically add properties with the 

standard names after the component has been created. This is for compatibility reasons since the 

injection support was added after the support for @Input properties. The IWidgetComponent 

interface should not be used in combination with constructor injection if the properties are declared 

private, which can be common in this scenario. 

Input properties for widget context and instance 

Widgets that do not need access to the widget context or widget instance in the constructor may 

declare two input properties that will be set by the framework after the component has been created. 

The properties should be named widgetContext and widgetInstance. Both properties should be 

annotated with @Input. The component may implement the IWidgetComponent interface where 

these two properties are declared.  

Example: 

export class MyComponent implements IWidgetComponent { 

   @Input() widgetContext: IWidgetContext; 

   @Input() widgetInstance: IWidgetInstance; 



Angular widgets 

56 | Widget SDK Developers Guide  

 

It is important to know that the input properties will not be available in the constructor; inputs are 

available in the ngOnInit method. Therefore, any code that depends on the widget context or the 

widget instance needs to be in the ngOnInit function (or later). Consider using constructor injection if 

this is an issue. 

Templates 
All Angular widgets will contain at least one component template. A component template is defined 

in HTML. The template syntax is documented in the following page. 

https://angular.io/guide/template-syntax 

Widgets must currently use only inline template files to be able to support both JIT and AOT. 

External template files might be supported in future versions of the Homepages SDK. 

Note that all component properties and functions that are referenced from the template must be 

public. Private members will work in JIT, but it will break in AOT so make sure to not reference 

anything that is declared as private. 

Our recommendation is to reduce the complexity of the templates as much as possible. Use 

dedicated properties or functions in the widget component instead of creating complex expressions 

in the templates. Avoid using the safe navigation operator ( ?. ). Create objects in the constructor or 

use empty objects instead. The reason for these recommendations is that is reduces the size and 

complexity of the generated AOT factories. If a complex expression is used multiple times in a 

template it will be duplicated multiple times in the generated factory. It is better to create a function in 

the widget component that can be used from the template. Debugging is also simplified if there are 

no complex expressions in the templates. 

Refer to the Angular sample widgets for examples of component templates. 

Creating a widget package 
Angular widgets can be minified and packaged using the homepages command script. See chapter 

9 for more information.  

https://angular.io/guide/template-syntax


External widgets 

 

Widget SDK Developers Guide | 57 

 

 

Chapter 6 External widgets 6  

 

 

This chapter describes how to implement the external widget type. 

Introduction 
An external widget is loaded in an IFrame using a URL that may contain parameters with values 

provided by the framework. The widget files may be deployed on any server that can be reached by 

the client. This widget type should be used with caution, especially if the external widget loads a lot 

of resources as it will impact the browser performance. This is not a recommended widget type. 

External widget implementation 

This section describes the basic steps required when implementing an external widget. 

An external widget is basically an external web page intended to be rendered in an IFrame and 

addressed using an URL with parameters. The URL may be absolute, but it is more likely that the 

URL is a template with replacement variables for server names and port numbers for the current 

environment. 

The URL parameters for the external widget may be hardcoded in the URL or they can be 

replacement variables for widget settings or profile settings. The replacement variables are 

described in section Widget context values. 

The framework can provide an external widget with settings through URL parameters and a 

metadata settings UI but there is no other interaction between an external widget and the framework.  

See the Widget settings section for more information about settings and the metadata settings UI. 



External widgets 

58 | Widget SDK Developers Guide  

Creating a widget package 
Use the homepages command script to package the manifest into a zip file. It’s also possible to add 

an image for the widget catalog by setting the icon property in the manifest. See chapter 9 for more 

information. 

 

 

 

 

  



Localization 

 

Widget SDK Developers Guide | 59 

 

 

 

 

Chapter 7 Localization 7  

 

 

This chapter describes how to support localization of a widget. 

Localization 
Widgets can be localized using the Localization section in the manifest to specify constants and their 

values. The samples contain widgets that have localizations and include information on how to use 

the language object both in templates and in code. See for example the quicknote sample. 

All Infor provided widgets should be localized but as the localization cycle is a bit delayed it is 

possible that not all widgets are translated to all languages available in the corresponding Infor 

application. E.g. all M3 widgets should be translated to all the languages that M3 support. It is up to 

each product team to translate the constants in the manifest. If you are missing a translation or there 

is anything wrong with the translation, please report to support so that we can prioritize the 

requested languages. 

As a developer, you are responsible for providing a full set of constants in each language. That 

means that if you add a new constant in en-US, but you have a translation block in the widget 

manifest with other languages as well you need to add the new constants in English to each 

language section. There is no fallback to English within the manifest, each constant must exist in 

each language section. 

The localization block in the manifest must always have an en-US section. 

The overall process for the translation is as follows: 

1. Add constants to the localization section in the manifest. 

a. Add widgetTitle and widgetDescription. 

b. When a new constant is added, and you already have translations in place, note that 

you must add the constant for all languages, with the default English text as a 

temporary fallback. 



Localization 

60 | Widget SDK Developers Guide  

2. Start using the Language service and object in code and in templates. 

3. Extract language constants to a format that works well with translations tools or simply ask 

translators to update the manifest with their translations. 

a. For examples of localization script see below. Internally we use Node scripts to read 

the manifest file and then copy all constants to an .resx file which is a Microsoft XML 

file for translations. 

Please note that when dealing with localized content you need to consider an 30% increase in labels 

and text so please make sure to test in other languages as well. 

Localization scripts 

There are two scripts in the SDK that shows how to extract translations from widgets to resource 

files and vice versa. These are located in the Samples folder. 

LangFromManifestToResx.js 

This script will go through widget manifests and create a resource (.resx) file with all translations in 

the specified language. The output file can then be sent for translation to more languages. There are 

also two example resource files in Samples\Translations. 

Usage: 

node LangFromManifestToResx.js <languageCode> <pathToOutputLocation> 

<checkSubdirectories> <widgetFolderNames> 

- languageCode 

o Language code of translations to extract. 

- pathToOutputLocation 

o Where the output file should be placed, relative to the script location. 

- checkSubdirectories 

o If true, the script assumes that each specified folder in <widgetFolderNames> 

contains one or more widget folders. 

o  If false, the script assumes that each folder specified in <widgetFolderNames> is a 

widget folder. 

- widgetFolderNames 

o One or more paths to folders containing widget folders, or, one or more direct paths 

to widget folders. 

Example: 

node .\LangFromManifestToResx.js en-US .\ true .\Widgets 



Localization 

 

Widget SDK Developers Guide | 61 

or 

node .\LangFromManifestToResx.js en-US .\ false .\Widgets\infor.sample.angular.helloworld 

.\Widgets\infor.sample.angular.example 

LangFromResxToManifests.js 

This script will go through .resx files and copy translations to the localization object of specified 

widgets. 

Usage: 

node .\LangFromResxToManifests.js <baseLineResx> <pathToResxFiles> true 

<widgetFolderNames> 

- baseLineResx 

o File used as the baseline for translations. Should be the file that was sent for 

translation (usually en-US). 

- pathToResxFiles 

o Path to a folder containing .resx-files. Filename should be <languageCode>-

Widgets.resx. 

Example: en-US-Widgets.resx 

- checkSubdirectories 

o If true, the script assumes that each specified folder in <widgetFolderNames> 

contains one or more widget folders. 

o  If false, the script assumes that each folder specified in <widgetFolderNames> is a 

widget folder. 

- widgetFolderNames 

o One or more paths to folders containing widget folders, or, one or more direct paths 

to widget folders. 

  



Localization 

62 | Widget SDK Developers Guide  

Example: 

node .\LangFromResxToManifests.js \Translations\en-US-Widgets.resx \Translations true \Widgets 

or 

node .\LangFromResxToManifests.js \Translations\en-US-Widgets.resx \Translations false 

\Widgets\infor.sample.angular.helloworld 

 

 

 

  



Development environment 

 

Widget SDK Developers Guide | 63 

 

 

 

 

Chapter 8 Development 

environment 
8  

 

 

This chapter describes how to setup the Widget SDK development environment. 

Introduction 
The Widget SDK contains a development version of the Homepages application that can be used 

when developing and testing a widget. In the development environment, the Homepages application 

will not have access to a server and all data will be stored in the browser local storage. 

It is important to note that there are a lot of functions that will not be available in the development 

mode. The development mode supports testing one or more widgets at a time. The same widget can 

be added multiple times and on multiple pages. 

When developing inline widgets that makes server API calls the widget and server will need to 

support CORS or use a local proxy. If CORS is not supported, the local proxy must be replaced by 

making the server API calls via the ION API server to avoid cross domain calls. The Homepages 

application server will not act as a proxy. 

Prerequisites 
To be able to develop and test widgets you will need an editor for the source files and some kind of 

web server for serving the files. There are many different options depending on your preferences 

and the operating system used for development. This chapter will mention a couple of options but 

feel free to use your preferred tools. 

Some development tools such as Visual Studio contains all the functionality you need such as a 

source code editor, debugger and a built-in web server. Other tools may just have a source code 



Development environment 

64 | Widget SDK Developers Guide  

editor and support for running command line tools. The minimal approach would be some kind of 

text editor and a Node.js web server, which is included in the SDK. 

Here is a list with a selection of the tools that you could use for widget development: 

- Visual Studio Code (Recommended) 

o Visual Studio Code is free and runs on Windows, macOS and Linux.  

o The SDK comes with preconfigured VS Code tasks for running the web server and 

TypeScript compilation in watch mode 

- Visual Studio Professional or Enterprise 

o Requires a license 

o Minimum version is Visual Studio 2013 with update 4 

- Visual Studio Community 

o Free version of Visual Studio with limited functionality 

- Sublime Text + Node.js web server 

o Sublime Text is cross-platform source code editor 

 

The samples can be run in different ways for example using Visual Studio or using a Node.js server. 

To use a Node.js server follow the instruction in the Appendix on Node.js and NPM and make sure 

they are correctly installed before trying to run the samples. 

Samples 
The samples are in the Samples/Widgets folder. Widgets are loaded from the file structure, using the 

information in the widget.manifest file. Inline widgets will also contain a script file that is loaded with 

the current module loader. External widgets will only contain a manifest. 

The index.html file contains a list of different widgets contained in an lm-app Angular component. 



Development environment 

 

Widget SDK Developers Guide | 65 

 

Uncomment the one you want to test and comment-out the others. Make sure there is only one lm-

app on the page. 

You should not edit any files except for changing the dev-path that is located in the index.html file. 

The files will change in coming versions.  

Running the Samples in Visual Studio Code 

1. Make sure the prerequisites described earlier in this chapter have been met. 

2. Open the ./Samples/Widgets folder in VS Code. 

3. Start the web server by running the build task “Start Server” (Windows: ctrl+shift+b) 

4. Start TypeScript compilation in watch mode by running the build task “Typescript Watch” 

(Windows: ctrl+shift+b) 

5. Open http://localhost:8080 in your preferred browser 

6. Debug the project with F5 or run with Ctrl+F5. The Homepages application will be opened 

and the widget specified in index.html will be displayed. This requires the Debugger for 

Chrome extension for VS Code, which can be installed by navigating to the Extensions tab. 

Running the Samples on a Node.js server 

1. Make sure the prerequisites described earlier in this chapter have been completed. 

2. Open a command prompt in the Samples folder 

3. In the command prompt: npm install 

4. In the command prompt: node server 

5. If the default port (8080) is available, the web server will be started. If the port is not available 

try to start the server on another port, for example: "node server 4000" 

6. Open a browser and navigate to http://localhost:8080 

If the server does not start check that the port is available or supply a port number. If there are other 

issues with the install check that NPM and Node.js is installed, according to the information in the 

Appendix. 

http://localhost:8080/


Development environment 

66 | Widget SDK Developers Guide  

Creating a new widget 
These instructions describe how to create a new widget in the Sample project. 

1. Create a widget by adding a folder with a lowercase widgetId name to the Widgets folder. 

Check the manifest documentation section for more information regarding naming rules. 

2. In the folder create a widget.manifest and (optional) script file. 

a. For Angular AOT widgets create three script files: 

i. main.ts (suggestion name only. This file has the main widget code) 

ii. widget.ts (widget factory file for JIT) 

iii. widget-aot.ts (widget factory file for AOT) 

b. If creating an inline widget, make sure you implement the factory method in the script 

file. 

i. If creating an AOT Angular widget make sure to follow the factory files 

samples in chapter 5, Angular widgets. 

3. In index.html update the active lm-app element and set the devWidget attribute to the id of 

your widget. 

4. Run the project in Visual Studio or using Node.js and a local web server. 

Testing with multiple widgets 
It is possible to test with multiple widgets by adding multiple values separated by semi colon to the 

following attributes on the lm-app element: devWidget, devSettings and devCustom. Note that the 

devConfiguration attribute only supports a single value. 

When multiple attributes are used they must contain the same number of values separated by semi 

colon. Blank values are allowed however so you can just add a semi colon if a value is not needed 

for one of the widgets. The values for each attribute must be in the same order. 

 

Example with two widgets: 

<lm-app 
   devWidget="infor.sample.angular.helloworld;infor.sample.angular.cardlist"> 
</lm-app> 

 

Example with two widgets and settings for the second one only: 

<lm-app 
   devWidget="infor.sample.angular.cardlist;infor.sample.angular.helloworld" 
   devSettings="infor.sample.helloworld/settings.json"> 
</lm-app> 



Development environment 

 

Widget SDK Developers Guide | 67 

Static code analysis with TSLint 
TSLint is included in the project to make it easier to avoid common mistakes and to keep a 
consistent code style. Most modern text editors and IDE:s can integrate with TSLint either out of the 
box or through extensions (See https://palantir.github.io/tslint/usage/third-party-tools/). There are two 
different tslint configurations in the Widgets directory: 

tslint.json 

This configuration is based on the recommended settings from the TSLint team, with some rules 
turned off. This one should be enough to detect many of the common mistakes that developers 
make, and to keep the code style consistent without being too pedantic. 

tslint-strict.json 

This configuration is used to lint all the provided samples, and we recommend that you use it for 
your widgets as well. It enforces some best practices in regard to keeping code maintainable and 
type-safe. You can configure Visual Studio Code to use this configuration by modifying the 
“tslint.configFile” property in the Workspace Settings file (Widgets/.vscode/settings.json). 

Running the linter 

The easiest way to lint your code is through your text editor or IDE. It can show errors and warnings 
next to the affected lines/symbols, and automatically fix them. Configuration depends on the 
editor/extension. If TSLint is not supported by your editor, you can always run it from the command 
line: 

Using the provided npm scripts (Samples/package.json): 

npm run lint   # Lint using the standard config 

npm run lint:strict # Lint using the strict config 

Using the tslint executable (from the Widgets directory): 

npx tslint -c tslint-strict.json -p . # Local installation, npm>=5.2.0 

tslint -c tslint-strict.json -p . # Globally installed tslint 

../node_modules/tslint/bin/tslint ... # Local installation 

Automatically fix problems 

Some linting rules can be fixed automatically. It is highly recommended to configure your text editor 
to do this for you, since some problems can be tedious to fix manually. However, this can also be 
done with the CLI by adding the --fix option. Note that doing this will modify your source files. 

Example: 

tslint -c path/to/Widgets/tslint-strict.json -p path/to/Widgets –fix 

https://palantir.github.io/tslint/usage/third-party-tools/


Development environment 

68 | Widget SDK Developers Guide  

Modifying or overriding rules 

If there is some rule that contradict your preferred code standard, you can either modify the provided 
configuration files, or create a new configuration for your widget: 

Example 

// Widgets/my.example.widget/tslint.json 
{ 
  “extends”: “../tslint-strict.json”, 
  “rules”: { 
    “indent”: [true, “spaces”, 4],  // Change a rule 
    “max-line-length”: false        // Disable a rule 
  } 
}   



Packaging 

 

Widget SDK Developers Guide | 69 

 

 

 

Chapter 9 Packaging 9  

 

This chapter describes how to package a widget. The widget package can then be registered and 
deployed in the Ming.le Cloud Console for cloud environments or uploaded in the Administration tool 
for on-premise installations. 

Files to include 
A widget package should only include the files that are required in runtime. Any files that are not 

used in runtime such as source files or build artifacts should be excluded from the widget package. 

The widget packages are synchronized over networks and stored in databases and should be as 

small as possible. 

Mandatory files 

Which files are mandatory depends on the widget type. 

- Widget manifest 
o A widget manifest file called widget.manifest is required for all type of widgets. 

- Widget module file 
o A widget module file is required for inline widgets. 
o Example: widget.js 

Optional files 

Optional files could be image files. 



Packaging 

70 | Widget SDK Developers Guide  

File optimizations 
It is mandatory to optimize content by combining script files to a single file that is minified. All files 

that can be combined and minified should be. This will be a requirement for cloud deployed widgets. 

Please note that directories in the widget package is not allowed. Source code can be in directories 

and there can be multiple files and modules, but they need to be bundled into one file. 

Angular components must use inline templates. 

Homepages command pack script 
The Widget SDK includes a Node.js script that can be used to build and package all types of 
widgets. It will compile and bundle all TypeScript files used in the widget into a single JavaScript file 
(except any shared modules). 

The script will create named modules based on the widget ID and you can have multiple source files 
as modules which will be automatically bundled. 

Shared modules need to have the TypeScript file copied to each widget directory prior to executing 
the pack command. 

Directory rules 

All widgets must adhere to the following guidelines: 

- The widget directory must have the same name as the widget ID. 
- Sub directories are only allowed for source code. 
- Sub directories are not allowed for resources such as images. 

AOT compilation 

To enable AOT compilation there are three actions you need to take: 

1. Add the aotVersion property with a blank value in manifest 

2. Make sure widget directory rules are followed 

3. Make sure there are two widget factory files created, one for AOT and one for JIT 

Manifest 

To enable AOT compilation for Angular widgets the manifest needs to contain the aotVersion 
property. Add the following to the manifest for Angular widgets: 



Packaging 

 

Widget SDK Developers Guide | 71 

“aotVersion”: “” 

Widget factory files 

Be sure to have created two factory files for the widget module. One that is used for AOT and one 
that is used for JIT. 

o Source code in main.ts 
o AOT factory function in widget-aot.ts 
o JIT factory function in widget.ts 

Prerequisites 

- Ensure that you have installed Node.js 

o Can be verified with the command node -v 

- Ensure that you have installed the node package dependencies 

o Change to the directory /Infor_HomepagesWidgetSDK/Samples 

o Execute npm install 

- Ensure that the directory that contains the widget has the exact name as the widget ID. 

Pack and optimize: 

A widget can be minified and zipped for production by following below steps: 

1. Open a command window in directory \Infor_HomepagesWidgetSDK\Samples 
2. Execute command: 

node homepages pack “folder_name” 

Where “widget_id” corresponds to your widget folder. 

Example: node homepages “widget_id” 

 

The homepages command file has a help function that will print out the different commands and 
parameters that are available. Please check the help information for more information. 

Examples 

node homepages help 

node homepages pack "infor.sample.angular.helloworld" 



Packaging 

72 | Widget SDK Developers Guide  

node homepages pack --

widgets="infor.sample.angular.helloworld,infor.sample.angular.quicknote" 

 

node homepages pack --widget "Widgets/infor.sample.angular.helloworld" --

outputPath "C:\Builds" 

node homepages pack --widget 

"C:\Source\Widgets\infor.sample.angular.helloworld" --outputPath "C:\Builds" 

–zip=false 

The default output location with be in a Builds directory relative to the script location unless the 

outputPath parameter is provided. 

 

Output 

The name of the zip file will include the name and version of the widget, as well as the current date 
and time. If the addDisplayVersion parameter is set the script will update the manifest with a 
displayVersion property. 

 

The output directory will contain the widget package zip, for example: 

infor.sample.angular.helloworld-1.0.20180323-114907.zip 

Shared modules 

Shared modules are supported like before. It is however important that the TypeScript file for the 

shared module is available in the same directory as the widget. It can be copied by a script prior to 

building the widget. 

Angular AOT package recommendation 

Make sure that the package script is run throughout development as it will discover issues related to 

template validation.  

You can also use a stricter validation by setting the fullTemplateTypeCheck parameter to true. 

Example: 

node homepages pack "Widgets/infor.sample.angular.helloworld" -- 

fullTemplateTypeCheck=true 

Try to fix any issues related to the widget code. If there are remaining issues that cannot be 

addressed, you must build the widget package without full template type checks. There could for 

example be issues in one of the Infor Design System components used by the widget. 



Packaging 

 

Widget SDK Developers Guide | 73 

Manual minification 
If packaging the widget using other methods than the included homepages script, a few things must 

be considered to ensure that the widget will work properly and not break other widgets or Framework 

modules. It’s recommended to use the homepages script for all builds. 

Single module widget   

If your widget only consists of one TypeScript file, i.e. there is only one module, the minification is 

straight-forward. If there is a single AMD module it can be anonymous, it’s not allowed to have a 

common name, such as “widget”, that might conflict with other modules when the widget is loaded 

by the Framework. A named module must be prefixed with the widgetID. The main module can have 

the widget ID as name and other should have it prefixed with the widgetID. 

Once minified, it can be packed manually together with the manifest and any additional resources. 

Multi-module widget 

If your widget consists of two or more TypeScript files (not shared modules), they must be combined 

into a single out-file when compiled for production. When combining several modules into one, the 

AMD modules in the resulting JavaScript will be named the same as the corresponding TypeScript 

file they originated from. For instance, the module from widget.ts will be named “widget”.  

Any named AMD modules must be unique, since the Framework will load the main widget module 

by its name in the multi-module scenario. The JavaScript modules must manually be updated to be 

prefixed with the widget id. And, any module importing another must update its import array to match 

the new name. The widget manifest “moduleName” property must be updated to reflect the new 

name for the main module, as well as the JavaScript file.  

After this, the JavaScript file can be minified and packed manually together with the manifest and 

any additional resources. 

The homepages command script supports multi module out of the box and will create UMD named 

modules using the folder name that must be set to the widget ID. 

Packaging widgets for an on-premise installation 
Widgets can be installed manually by a customer in an on-premise installation of Homepages. This 

is different compared to a cloud installation of Homepages where the widgets are automatically 

synchronized from the Infor Registry. The zip file for the Infor Registry is the format described in the 

previous section, e.g. one zip one widget. 



Packaging 

74 | Widget SDK Developers Guide  

The widgets should be packaged with the homepages command script in the same way as  

There are two options for installing Standard widgets in an on-premise installation. Note that they 

use different zip formats. The widget installation package file (see below) is a zip that may contain 

multiple widgets and it can only be uploaded on the management pages for the Homepages server 

in the ION Grid. 

A simpler way to upload a widget is to use the new import functionality within the Homepages 

application itself. Open Homepages Administration and go to the Standard widgets section. There is 

an ‘import’ action available above the list of Standard widgets. 

In this tool, it is important to upload a zip that has just one widget and the widget.manifest directly in 

the root of the zip. Note that the zip should not have any directories. 

Refer to the Homepages administration guide for more information on how to import widgets in an 

on-premise installation. 

Widget installation package file 

There are two different installation formats for installing widgets. One is a zip file as described below. 

Such a file can only be installed in the Management pages for the Homepages application in the ION 

Grid. 

To upload a single widget zip file, use the Homepages Administration tool accessible from the 

Homepages menu within the Homepages application. 

A widget installation package file is simply a zip file that may contain one or more widget zip files. 

Even when installing a single widget, it must still be packaged into a widget installation package file. 

These are the basic steps for creating a widget installation package file: 

- Create zip files for each widget as described above (1-n) 

- Create a new zip file and add the widget zip files to it. 

 

Widget installation package file example: 

- Widgets.zip 

o infor.examplewidget1.zip 

o infor.example.widget2.zip 

o … 

o infor.example.widgetn.zip 

  



ION API 

 

Widget SDK Developers Guide | 75 

 

 

Chapter 10 ION API 10  

 

 

This chapter describes how call the ION APIs from an inline Homepage widget. 

Introduction 
The Widget SDK contains an API for retrieving the OAuth token that can be used when accessing 

the ION APIs. OAuth essentially allows access tokens to be issued to third-party clients by an 

authorization server, with the approval of the resource owner. The client then uses the access token 

to access the protected resources hosted by the resource server. ION APIs uses OAuth and before 

starting with Homepages development using the ION API there are some prerequisites that are 

required.  

1. Application API deployed in ION API Server for a specific environment 

2. Access to Ming.le and Homepages in that environment 

Retrieving OAuth access token 
The OAuth access token must be set as a request header. This means that all access to URL must 

be done in code and even if there are IDS components that takes an URL you must use another 

approach to be able to manually update the header before making the request. Homepages provides 

a consistent way to access a token that is shared among all widgets. 

IIonApiContext contains functions for retrieving the base URL to the ION API Server as well as the 

token and the header name and header. 

 



ION API 

76 | Widget SDK Developers Guide  

Token timeout 

It is the responsibility of the Widget developer to handle authentication errors and retry any API call 

with a newly refreshed token. A new token can be requested by setting refresh to true. Note that this 

should only be done if the token is expired. 

Another important note is that you should not store the token in a variable for later use but always 

get it from the context. This means that if any other widget has requested a new token you will 

always get the latest one. 

Development environment 
There is an ION API widget sample. It shows how to connect to a M3 API but can be used as 

reference on how to set the required header and how to enter configuration for the ION API Base 

path. Please note that the example is not a complete solution but only a starting point. 

Prerequisites 

The following are the prerequisites for running the ION API sample but can be applied to any ION 

API usage. 

- Acquire the server and port number for the ION API server to test with. 

- Configure and start a localhost proxy with the ION API server and port number. 

Example: node proxy.js 8083 "server.infor.com" 443 

Example: \Samples\StartIonApiProxy.cmd 

Acquire an OAuth token string 

1. Log on to Ming.le  

example: https://server/tenant 

a. Locate the server that Homepages is running on within Ming.le. You will need to 

check the server and port for Homepages and apply it to the template below. Use the 

browser developer tools to locate the URL for the IFrame in which Homepages is 

running. 

i. Open the browser developer tools (how depends on browser) 

ii. Use the element inspector tool and click the top bar in Homepages. Look for 

an Iframe element with a context root called /lime 

2. Open a new tab in the same browser and navigate to the Grid SAML Session Provider 

OAuth resource. 



ION API 

 

Widget SDK Developers Guide | 77 

a. The Grid must be version 2.0 or later with a SAML Session Provider configured for 

the same IFS as Ming.le (these conditions are true for the Homepages Grid) 

Template: https://{homepagesserver}:{homepagesport}/grid/rest/security/sessions/oauth 

3. Copy the OAuth token string from the browser window 

 

If there are issues you can verify if your user has access to the grid by navigating to the Grid user 

page. Note that you must be logged on to Ming.le before doing this.  

Example: https://{homepagesserver}:{homepagesport}/grid/user 

 

Set up the development configuration 

Set the ionApiToken property in the configuration.json file to the OAuth token string. 

Example: "ionApiToken": "V9k5niTDR1kq6RuYlEq3N3HxGq8u" 

 

Set the devConfiguration attribute on the lm-app to the name of the configuration.json file 

Example: <lm-app devWidget="infor.sample.ionapi.m3" devConfiguration="configuration.json"></lm-

app> 

Developing and debugging 

A widget using the ION API can be developed and debugged like any other widget. Just remember 

to start the proxy and configure the configuration.json file. The OAuth token will time out and when 

that happens you must acquire a new token and update the configuration.json file. 

The OAuth token might time out in production as well. If not using the executeIonApiAsync() API 

method, which handles this automatically, all API calls must be wrapped with a retry that is done 

after forcing a new token if a request results in a 401 HTTP response code.  

To force a refresh of the access token call getIonApiContextAsync with refresh set to true. 

Example: 

widgetContext.getIonApiContextAsync({refresh:true}).then(…..) 

Note this should only be done when a call has resulted in an unauthorized response. 

 

 



Homepages Widget Certification 

78 | Widget SDK Developers Guide  

Chapter 11 Homepages 

Widget Certification 
11  

 

To be delivered as a standard Homepages widget the widget needs to be reviewed and certified by 
the User Platform / Homepages team. The reason we have a certification is that your widgets 
behavior may affect other widgets since it is not running in a sandboxed environment. It is also 
important that all recommendations in the developer’s guide have been followed. This chapter 
contains the certification checklist as well as a developer checklist with some things to consider 
when developing and testing your widget. 
 
Please note that the checklist is a short summary. Once ready for review contact Fredrik Eriksson, 
fredrik.eriksson@infor.com. The review process is Infor internal. 

Certification checklist 
Packaging 

• The manifest must be correct, e.g. unique widget id and correct information 

• Script files must be minified and combined into one single script file. It should be an 
anonymous script module or a named module with a unique name – for example the widget 
id. Use the homepages pack script to make sure the bundle result is correct. 

• Angular templates shall be inline and not result in an extra request to load them. 

• The widget package shall only contain a manifest, a script file and optional images. The 
package shall not contain map files or TypeScript files. If you have a shared JavaScript 
module the package may contain two script files. The total package size will also be 
considered. 

• It is not allowed to include JavaScript libraries as sharedModules. Only application logic is 
allowed as a shared module. 

Verify package 

• Use the lime-zipv tool to verify that the widget package zip is correct. Download the tool 
from GitHub, unzip and follow the read me instructions: 
https://github.com/infor-cloud/homepages-widget-sdk 

Development 

• The widget shall be translated to all languages that your backend application supports. 

• The widget shall always be backwards compatible if possible. It should never break with its 
previous configuration. 

• A widget that has settings must support publishing. 
o If settings are used the widget must respect the publish configuration that specifies 

which settings are enabled and visible etc. If you have actions available in the Widget 
Title bar or inline configuration that depends on settings, you need to read the API 
documentation carefully.  

o This also applies to a widget that is not published but has publish information on a 
published page 

mailto:fredrik.eriksson@infor.com
https://github.com/infor-cloud/homepages-widget-sdk


Homepages Widget Certification 

 

Widget SDK Developers Guide | 79 

o If the widget does not respect the publish configuration, user settings must be turned 
off when published. In that scenario, set enableSettingsWhenPublished to false in 
the manifest. 

• Don’t store too much data as settings. Basically, only store key-value pairs. The page size 
must be kept to a minimum. There is a max size per page that will prevent the page from 
being saved if it is too big. 

• Avoid polling for data updates 
o We don’t recommend polling. Implement the refresh action in the Widget Title bar 

instead.  
o If polling must be used, then make sure to use long intervals e.g. default interval 15 

min and minimum 5 minutes. 
o If you implement polling, you must use the activated and deactivated event on the 

IWidgetInstance so that the widget isn’t requesting new data unless it is visible and 
active on a Page. 

• The UI shall follow the Infor Design System guide. 

• A widget shall be a small application that provide quick access to information or functionality. 
Avoid making the widget too complex, it shall not be a complete application. 

• Don’t use global variables. 

• Only access public documented homepages APIs. 

• A widget is only allowed to make changes to the widget DOM element and its children. There 
must be no side effects affecting other parts of the DOM. 

• Show inline messages for errors instead of showing dialogs. 

• HTML ID attributes must include the unique widgetInstanceId from IWidgetContext. 

• Don’t include any third-party libraries 

• If using ::ng-deep as part of a CSS selector, it must be scoped, ex. :host ::ng-deep. 
• Never load data that isn’t directly visible in the UI. E.g. if you have tabs with different data, 

only load the first tab. All data should be lazy loaded and loaded only when the data is 
displayed in the view. 

• Never use anything global. 

• It’s not allowed to add any JavaScript libraries. 

• It’s not allowed to link in CSS files as it would affect all widgets. 

• It’s not allowed to include <script> tags in the widget. 

• Don’t call save() unless the configuration is actually saved.  

• Don’t store recent state in the widget settings. Data such as recent documents, recent 
queries etc. should preferably be stored in the browser local storage. 

• Don’t use the “?” safe operator in Angular templates. 

• If the widget belongs to an application, dependency needs to be set in the manifest 
(applicationLogicalId). 

• Don’t use hardcoded strings in html templates or messages, only localized values. 

• Always handle request errors (show informative inline message and use Log class to log 
error). 

• Set widget state to busy when performing asynchronous operations such as loading data, 
IWidgetContext setState. Set state back to running when completed. 



Homepages Widget Certification 

80 | Widget SDK Developers Guide  

• Error messages shown to the end user shall be localized, not raw server responses. Avoid 
using “Error” in the message and make sure it’s informative. It’s for the end user. 

• Do not pass sensitive information in API requests, nor store it in widget settings. 

• Do not use the console directly for logging, use the Log class from lime with a log prefix (ex. 
widget name). 

• Make sure any parameters in API request URLs are correctly encoded if necessary. 

• Any message handlers need to be unregistered when the widget is deactivated (ex. 
“inforBusinessContext”). 

• Companyon client message handlers must include a unique namespace since the client is 
shared among other content. Namespace is used both when registering and unregistering 
the message handler through the companyon client. 

Development checklist 
Please complete the Certification Checklist before submitting a widget for review. Below is a short 

checklist of scenarios that you should consider when developing / testing.  

You should also complete the more detailed scenarios described in Chapter 14 Appendix Test. 

• Use multiple widgets on the same page. They should be self-contained and not affect each 

other (or other widgets). 

• Use widgets on multiple pages. Use Fiddler to check that there are is no polling when your 

widget isn’t visible or if the widget settings is edited. 

• Test the widget in multiple browsers. For the complete list check which Ming.le currently 

support. 

• Publish your widget and test different publish scenarios. If you have settings test and publish 

your widget with different configurations. You should consider the following: 

o Disable settings 

o Enabling settings but only some of the values 

o Enable settings but only in read-only etc. 

o These different scenarios must also be tested by a user that has view only access to 

the published widget or the published page. 

• Use browser dev tools and check the log output. 

o Also check all requests and make sure you check the amount of data that store in 

settings. 

• Test in different languages. 

• Make sure you have proper error handling. 



Homepages Widget Certification 

 

Widget SDK Developers Guide | 81 

• Make sure you have checked and tested the OWASP to 10 vulnerabilities and have taken 

actions to prevent different types of attacks. 

  



Resources 

82 | Widget SDK Developers Guide  

 
 

 

Chapter 12 Resources 12  

 

 

The Infor Design System 

https://design.infor.com/ 

 

IDS Enterprise components 

https://github.com/infor-design/enterprise 

 

IDS Enterprise NG - Angular wrappers for IDS Enterprise components 

https://github.com/infor-design/enterprise-ng 

 

Widget Design Guidelines 

https://design.infor.com/resources/mingle-homepage-widget-guidelines 

 

TypeScript  

http://www.typescriptlang.org 

 

Angular 

https://angular.io/ 

https://angular.io/guide/upgrade 

https://angular.io/guide/template-syntax  

 

Node.js 

http://nodejs.org/ 

 

  

https://design.infor.com/
https://github.com/infor-design/enterprise
https://github.com/infor-design/enterprise-ng
https://design.infor.com/resources/mingle-homepage-widget-guidelines
http://www.typescriptlang.org/
https://angular.io/
https://angular.io/guide/upgrade
https://angular.io/guide/template-syntax
http://nodejs.org/


Appendix Node.js 

 

Widget SDK Developers Guide | 83 

Chapter 13 Appendix Node.js 13  

 

Node.js 
A Node.js installation is required if you want to use the web server that are part of the SDK samples. 

The web server can be used for testing the widget samples or for widget development. If you already 

have a working Node.js installation or if you don’t intend to use the web server, you can skip this 

section. 

Install Node.js 

Download and install Node.js from http://nodejs.org/ 

When the installation is complete you can follow the steps in the next two sections to verify that 

installations works. Note that the instructions are for Microsoft Windows operating systems only. 

Refer to the Node.js documentation for other operating systems. 

Verify the Node package manager 

Follow these steps to verify that the Node package manager works. 

• Verify that the following folder exists and create it manually if not. 

o C:\Users\<userid>\AppData\Roaming\npm 

o You need to show Hidden items in Windows Explorer to be able to see the AppData 

folder. 

• Open a Windows Command Prompt window. 

• Run the following command  

o npm -version 

• Verify that a version number is printed, such as 1.4.21 

o If the command fails verify that the npm directory has been created, see previous 

step, and create it if necessary. 

http://nodejs.org/


Appendix Node.js 

84 | Widget SDK Developers Guide  

o When the directory has been created retry the "npm -version" command. 

o On some operating systems the command might complete even if the npm folder is 

missing. In these cases, the installation of the node packages will fail. This can be 

solved by manually creating the npm folder. 

o On some operating systems you might have to restart the computer after adding the 

npm folder. 

  

Verify the Node executable 

Follow these steps to verify that Node executable works. 

• Open a Windows Command Prompt window. 

• Run the following command  

o node -v 

• Verify that a version number is printed, such as v0.10.30 

o If the command fails it could be that the node directory is not on the Windows path. 

o Add the following directory to the Windows System Path 

▪ C:\Program Files\nodejs 

o Close the command Window, start a new one and test node -v again 

▪ The command should succeed this time. 

o To apply the new Windows path the computer might have to be restarted. 

  



Appendix Test 

 

Widget SDK Developers Guide | 85 

Chapter 14 Appendix Test 14  

 

Widget Test Scenarios 
This appendix contains a list of different scenarios that you should use as part of your testing. Not all 

features might apply to your widget, but it is important to understand the different usage scenarios 

for your widget especially if you have widget settings. The scenarios should be tested in a proper 

environment, not the local development test container. 

Scenario 1: Basic features 

The purpose of this scenario is to verify that: 

- The widget can be added to a page 
- The widget can be duplicate 
- The widget title can be edited 

- The widget is still visible when using it on a page set as homepage 

Pre-requisites 

None. 

Test 

1. Add a new page. 



Appendix Test 

86 | Widget SDK Developers Guide  

 

 

2. Find and add your widget to the page. 

 

  



Appendix Test 

 

Widget SDK Developers Guide | 87 

3. Verify that the widget is added to the page. 

 

 

4.  Open the “Configure” dialog and click the padlock to make the widget title editable. Update 
the title and save the changes. Verify that the widget has the new title.  

 

  



Appendix Test 

88 | Widget SDK Developers Guide  

5. Duplicate the widget. 

 

 

6. Verify that the duplicate has the same title as the original widget.  

 

 

  



Appendix Test 

 

Widget SDK Developers Guide | 89 

7. Open Edit Page Layout. 

 

 

8. Remove one of the widgets by clicking the X icon. Save the changes. 

 

 

  



Appendix Test 

90 | Widget SDK Developers Guide  

9. Verify that only one widget is displayed on the page. 

 

 

10. Refresh Homepages and verify that there’s still only one widget displayed on the page.  

 

 

  



Appendix Test 

 

Widget SDK Developers Guide | 91 

Scenario 2: Widget sizes 

The purpose of this scenario is to verify that: 

- The widget can be resized to all supported sizes  
- The widget content is correctly displayed and accessible in all supported sizes 

Pre-requisites 

A page with the widget exists. 

The widget has been configured so that content is displayed in the widget. 

Test 

1. Open Edit Page Layout. 

2. Hover the widget and resize it by dragging the handle. Save the changes. 

 

 

3. Verify that the widget content is responsive and correctly displayed in its new size.  

4. Repeat step 1-3, resizing the widget to all supported sizes (if maxSize has been set in the 
manifest, it can only be resized up to and including max size). 

 



Appendix Test 

92 | Widget SDK Developers Guide  

Scenario 3: Publish widget 

The purpose of this scenario is to verify that: 

- The widget can be published and made available to other users in the Widget Catalog 
- Users, other than the owner, can add the widget 

Pre-requisites 

Two users are available. 

A page with the widget exists. 

The widget has been configured so that content is displayed in the widget. 

Test 

1. Open Publish Widget mode via the “Publish” menu item in the widget menu. 

 

  



Appendix Test 

 

Widget SDK Developers Guide | 93 

 

2. Enter a description and apply the changes.  

 

 

3. Publish the widget by clicking “Publish”.  

 

 

4. Log in to Homepages as another user. 

5. Add a new page. Open Widget Catalog and verify that the widget is available. 



Appendix Test 

94 | Widget SDK Developers Guide  

 

 

6. Click the title of the published widget. Verify that the details are correct. 

 

 

7. Add the widget and close Widget Catalog. Verify that the widget is displayed correctly.  

 

  



Appendix Test 

 

Widget SDK Developers Guide | 95 

Scenario 4: Publish the widget with one or more settings enabled 

Note: If your widget does not have any settings metadata, or if user settings are force disabled for 

published versions of the widget (“enableSettingsWhenPublished” set to false in the manifest), this 

scenario can be skipped. 

The purpose of this scenario is to verify that: 

- The widget can be published with one or more settings enabled 
- An end user can edit the enabled settings but cannot edit the disabled settings of the 

published widget 

Pre-requisites 

A page with the widget exists. 

The widget has been configured so that content is displayed in the widget. 

Test 

1. Open Publish Widget mode via the “Publish” menu item in the widget menu. 

2. Enter a description.  

3. Click the “Settings” tab and check the “Enable settings” checkbox. Verify that the individual 
setting checkboxes below no longer are disabled.  

 

 

4. Enable one or more of the settings and apply the changes. Publish the widget.  



Appendix Test 

96 | Widget SDK Developers Guide  

 

 

5. Open the “Configure” dialog and verify that the enabled setting can be changed, and that the 
disabled settings are read-only or not visible.  

 

 

6. Repeat step 1-5 until all the settings have been verified.  

 

  



Appendix Test 

 

Widget SDK Developers Guide | 97 

Scenario 5: Configure settings on a published page 

Note: If your widget does not have any settings metadata, or if user settings are force disabled for 

published versions of the widget (“enableSettingsWhenPublished” set to false in the manifest), this 

scenario can be skipped. 

The purpose of this scenario is to verify that: 

- The publish configuration for your widget works as designed on a published page 
- An end user can edit the enabled settings but cannot edit the disabled settings of the widget 

on a published page 
 

Pre-requisites 

A page with the widget (not published) exists. 

The widget has been configured so that content is displayed in the widget. 

Test 

1. Open Publish Page mode via the “Publish” menu item in the page menu. 

 

 

2. Click “Apply” in the “Edit Publish Configuration” dialog. 

3. Open the “Edit Publish Configuration” dialog for the widget via the widget menu.  



Appendix Test 

98 | Widget SDK Developers Guide  

 

 

4. Enter a description and enable one or more settings. Apply the changes.  

 

 

5. Click “Publish” to publish the page to the Page Catalog.  

 

  



Appendix Test 

 

Widget SDK Developers Guide | 99 

6. Open the “Configure” dialog and verify that the enabled settings can be changed, and that the 
disabled settings are read-only or not visible. 

 

7. Log in to Homepages as another user and add the published page via the Page Catalog.  

 

 

8. Open the “Configure” dialog and verify that the enabled settings can be changed, and that the 
disabled settings are read-only or not visible. 

 

 



Appendix Test 

100 | Widget SDK Developers Guide  

Scenario 6: Import and Export page with the widget 

The purpose of this scenario is to verify that: 

- The widget is working as expected when exporting/importing a page where the widget exists  

Pre-requisites 

A private page with the widget exists. 

The widget has been configured so that content is displayed in the widget. 

Test 

1. Export the page. 

 

 

2. Remove the page. 

 



Appendix Test 

 

Widget SDK Developers Guide | 101 

3. Open the Import Page dialog via the page menu and import the exported page. 

 

 

 

4. Verify that the widget is working correctly.  

 

 

  



Appendix Test 

102 | Widget SDK Developers Guide  

Scenario 7: Widget Title Logic 

NOTE: If you have disabled title edit for your widget (“enableTitleEdit” set to false in the manifest), 

this scenario can be skipped. 

The purpose of this scenario is to verify that: 

- The widget title can be changed 
- The widget title is locked when checking the “Use Widget Catalog title as widget title” option 

during publishing 

Pre-requisites 

A page with the widget exists. 

Test 

1. Open the “Configure” dialog and click the padlock. Verify that the title becomes editable. 
Change the title and save the changes. 

 

  



Appendix Test 

 

Widget SDK Developers Guide | 103 

2. Open Publish Widget mode via the “Publish” menu item in the widget advanced menu. 
 

3. Enter a description and a new title. Check “Use Widget Catalog title as widget title” 

 

 

4. Apply the changes and publish the widget. 

 
5. Verify that the widget title is now the same title as the one set in step 3.  

 

  



Appendix Test 

104 | Widget SDK Developers Guide  

6. Open Republish Widget mode via the “Edit Published” menu item in the widget advanced 
menu and click “Edit Publishing Configuration”.  

 

7. Go to the Settings tab and check ”Enable settings” and ”Enabled” below “Title”. Apply the 
changes and republish the widget.   

 

 

8. Open the “Configure” dialog and verify that the title cannot be edited.  

 

 

9. Reopen Republish Widget mode, change the title, apply the changes and republish the 
widget.  



Appendix Test 

 

Widget SDK Developers Guide | 105 

 

10. Open the “Configure” dialog and verify that the title has changed but cannot be edited, just 
as in Step 8. 

 

11. Reopen Republish Widget mode and uncheck the “Use Widget Catalog title as widget title”.  
Apply the changes and republish the widget.  

 

12. Open the “Configure” dialog and verify that the title can be changed.  

 

 

 

  



Appendix Test 

106 | Widget SDK Developers Guide  

Scenario 8: Widget Translations 

The purpose of this scenario is to verify that: 

- The widget is correctly translated 

Pre-requisites 

A page with the widget exists. 

The widget has been configured so that content is displayed in the widget. 

Test 

1. Change the browser language to a language that the widget supports.  

2. Verify that the widget is translated. 

3. Open Widget Catalog and verify that the title and description is translated. 

4. Repeat step 1-3 using all the supported languages.  

  



Appendix Test 

 

Widget SDK Developers Guide | 107 

Scenario 9: Export and Import page with configured published 

widget 

The purpose of this scenario is to verify that: 

- A configured published instance of the widget is working as expected before and after 
importing/exporting a page. 

- User settings set to a published widget before a page export are not applied when importing 
the page 

Pre-requisites 

The widget has been configured and published with one or more settings enabled.  

A page has been published with that published widget.  

Test 

1. Log in to Homepages as a regular Homepages user that hasn’t the permissions granted by 
the HOMEPAGES-Administrator and/or HOMEPAGES-ContentAdministrator IFS-roles. 

2. Add the published page with the published widget. Change the enabled setting. 

3. Verify that the changes are applied. 

4. Export the page.  

5. Remove the page and import it. 

6. Verify that the changes you made in step 3 are not applied.  

 

  



Appendix Test 

108 | Widget SDK Developers Guide  

Scenario 10: Polling 

This scenario is only applicable if the widget is polling. The purpose of this scenario is to verify 
that: 

- The widget is not polling when the widget is not visible to the user, e.g. when browsing 
another homepage. 

Pre-requisites 

Two pages have been added. 

The widget has been added to one of the pages. 

Test 

1. Navigate to the page with the widget. 

2. Open Fiddler. 

3. Navigate to another page. Wait until the polling interval has been exceeded. Verify in Fiddler 
that no request has been sent.  

4. Navigate back to the page with the widget. Wait until the polling interval has been exceeded. 
Verify in Fiddler that the request has been sent. 


