
CHAPTER 1

INTRODUCTION

1.1 EXERCISES 

Section 1.2: The World of Digital Systems

1.1. What is a digital signal and how does it differ from an analog signal? Give two
everyday examples of digital phenomena (e.g., a window can be open or closed) and
two everyday examples of analog phenomena. 
A digital signal at any time takes on one of a finite number of possible values,
whereas an analog signal can take on one of infinite possible values. Examples of
digital phenomena include a traffic light that is either be red, yellow, or green; a tele-
vision that is on channel 1, 2, 3, ..., or 99; a book that is open to page 1, 2, ..., or 200;
or a clothes hangar that either has something hanging from it or doesn’t. Examples
of analog phenomena include the temperature of a room, the speed of a car, the dis-
tance separating two objects, or the volume of a television set (of course, each ana-
log phenomena could be digitized into a finite number of possible values, with some
accompanying loss of information). 

1.2 Suppose an analog audio signal comes in over a wire, and the voltage on the wire can
range from 0 Volts (V) to 3 V. You want to convert the analog signal to a digital sig-
nal. You decide to encode each sample using two bits, such that 0 V would be
encoded as 00, 1 V as 01, 2 V as 10, and 3 V as 11. You sample the signal every 1
millisecond and detect the following sequence of voltages: 0V 0V 1V 2V 3V 2V 1V.
Show the signal converted to digital as a stream of 0s and 1s.
00 00 01 10 11 10 01

1.3 Assume that 0 V is encoded as 00, 1 V as 01, 2 V as 10, and 3 V as 11. You are
given a digital encoding of an audio signal as follows: 1111101001010000. Plot
1



2 c 1 Introduction
the re-created signal with time on the x-axis and voltage on the y-axis. Assume that
each encoding’s corresponding voltage should be output for 1 millisecond.

1.4 Assume that a signal is encoded using 12 bits. Assume that many of the encodings
turn out to be either 000000000000, 000000000001, or 111111111111. We
thus decide to create compressed encodings by representing 000000000000 as
00, 000000000001 as 01, and 111111111111 as 10. 11 means that an
uncompressed encoding follows. Using this encoding scheme, decompress the fol-
lowing encoded stream:

00 00 01 10 11 010101010101 00 00 10 10
000000000000 000000000000 000000000001 111111111111 010101010101
000000000000 000000000000 111111111111 111111111111

1.5 Using the same encoding scheme as in Exercise 1.4, compress the following unen-
coded stream:

000000000000 000000000001 100000000000 111111111111

00 01 11 100000000000 10

1.6 Encode the following words into bits using the ASCII encoding table in Figure 1.9. 
a. LET
b. RESET!
c. HELLO $1

a) 1001100 1000101 1010100
b) 1010010 1000101 1010011 1000101 1010100 0100001
c) 1001000 1000101 1001100 1001100 1001111 0100000 0100100 0110001 (don’t
forget the encoding 0100000 for the space between the O and the $). 

1.7 Suppose your are building a keybad that has the buttons A through G. A three-bit
output should indicate which button is currently being pressed. 000 represents no
button being pressed. Decide on a 3-bit encoding to represent each button being
pressed. 
One possible set of encodings is: A=001, B=010, C=011, D=100, E=101, F=110,
and G=111. Another possible set is: A=001, B=010, C=100, D=101, E=110, F=111,
G=011. Many other sets of encodings are possible; any set of encodings is fine as
long as each encoding is unique. 

1.8 Convert the following binary numbers to decimal numbers:
a. 100

21 3 4 65 7 8

0
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3
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b. 1011
c. 0000000000001
d. 111111
e. 101010

a) 4
b) 11
c) 1
d) 63
e) 42

1.9 Convert the following binary numbers to decimal numbers:
a. 1010
b. 1000000
c. 11001100
d. 11111
e. 10111011001

a) 10
b) 64
c) 204
d) 31
e) 1497

1.10 Convert the following binary numbers to decimal numbers:
a. 000011
b. 1111
c. 11110
d. 111100
e. 0011010

a) 3
b) 15
c) 30
d) 60
e) 26

1.11 Convert the following decimal numbers to binary numbers using the addition
method:

a. 9
b. 15
c. 32
d. 140

a) 1001
b) 1111
c) 100000
d) 10001100
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1.12 Convert the following decimal numbers to binary numbers using the addition
method:

a. 19
b. 30
c. 64
d. 128

a) 10011
b) 11110
c) 1000000
d) 10000000

1.13 Convert the following decimal numbers to binary numbers using the addition
method:

a. 3
b. 65
c. 90
d. 100

a) 11
b) 1000001
c) 1011010
d) 1100100

1.14 Convert the following decimal numbers to binary numbers using the divide-by-2
method:

a. 9
b. 15
c. 32
d. 140

a) 1001
b) 1111
c) 100000
d) 10001100

1.15 Convert the following decimal numbers to binary numbers using the divide-by-2
method:

a. 19
b. 30
c. 64
d. 128

a) 10011
b) 11110
c) 1000000
d) 10000000
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1.16 Convert the following decimal numbers to binary numbers using the divide-by-2
method:

a. 3
b. 65
c. 90
d. 100

a) 11
b) 1000001
c) 1011010
d) 1100100

1.17 Convert the following decimal numbers to binary numbers using the divide-by-2
method:

a. 23
b. 87
c. 123
d. 101

a) 10111
b) 1010111
c) 1111011
d) 1100101

1.18 Convert the following binary numbers to hexadecimal:
a. 11110000
b. 11111111
c. 01011010
d. 1001101101101

a) F0
b) FF
c) 5A
d) 136D

1.19 Convert the following binary numbers to hexadecimal:
a. 11001101
b. 10100101
c. 11110001
d. 1101101111100

a) CD
b) A5
c) F1
d) 1B7C

1.20 Convert the following binary numbers to hexadecimal:
a. 11100111
b. 11001000
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c. 10100100
d. 011001101101101

a) E7
b) C8
c) A4
d) 336D

1.21 Convert the following hexadecimal numbers to binary:
a. FF
b. F0A2
c. 0F100
d. 100

a) 1111 1111
b) 1111 0000 1010 0010
c) 0000 1111 0001 0000 0000
d) 0001 0000 0000

1.22 Convert the following hexadecimal numbers to binary:
a. 4F5E
b. 3FAD
c. 3E2A
d. DEED

a) 0100 1111 0101 1110
b) 0011 1111 1010 1101
c) 0011 1110 0010 1010
d) 1101 1110 1110 1101

1.23 Convert the following hexadecimal numbers to binary:
a. B0C4
b. 1EF03
c. F002
d. BEEF

a) 1011 0000 1100 0100
b) 0001 1110 1111 0000 0011
c) 1111 0000 0000 0010
d) 1011 1110 1110 1111

1.24 Convert the following hexadecimal numbers to decimal:
a. FF
b. F0A2
c. 0F100
d. 100

a) 255
b) 61602
c) 61696
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d) 256

1.25 Convert the following hexadecimal numbers to decimal:
a. 10
b. 4E3
c. FF0
d. 200

a) 16
b) 1251
c) 4080
d) 512

1.26 Convert the decimal number 128 to the following number systems:
a. binary
b. hexadecimal
c. base three
d. base five
e. base fifteen

a) 10000000
b) 80
c) 11202
d) 1003
e) 88

1.27 Compare the number of digits necessary to represent the following decimal numbers
in binary, octal, decimal, and hexadecimal representations. You need not determine
the actual representations -- just the number of required digits. For example, repre-
senting the decimal number 12 requires four digits in binary (1100 is the actual rep-
resentation), two digits in octal (14), two digits in decimal (12), and one digit in
hexadecimal (C). 

a. 8
b. 60
c. 300
d. 1000
e. 999,999

a) 4 digits in binary, 2 digits in octal, 1 digit in decimal, 1 digit in hexadecimal
b) 6 digits in binary, 2 digits in octal, 2 digits in decimal, 2 digits in hexadecimal
c) 9 digits in binary, 3 digits in octal, 3 digits in decimal, 3 digits in hexadecimal
d) 10 digits in binary, 4 digits in octal, 4 digits in decimal, 3 digits in hexadecimal
e) 20 digits in binary, 7 digits in octal, 6 digits in decimal, 5 digits in hexadecimal

1.28 Determine the decimal number ranges that can be represented in binary, octal, deci-
mal, and hexadecimal using the following numbers of digits. For example, 2 digits
can represent decimal number range 0 through 3 in binary (00 through 11), 0
through 63 in octal (00 through 77), 0 through 99 in decimal (00 through 99), and 0
through 255 in hexadecimal (00 through FF). 
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a. 1
b. 3
c. 6
d. 8

a) 0-1 in binary, 0-7 in octal, 0-9 in decimal, 0-15 in hexadecimal
b) 0-7 in binary, 0-511 in octal, 0-999 in decimal, 0-4,095 in hexadecimal
c) 0-63 in binary, 0-262,143 in octal, 0-999,999 in decimal, 0-16,777,215 in hexa-
decimal
d) 0-255 in binary, 0-16,777,215, 0-99,999,999 in decimal, 0-4,294,967,295 in
hexadecimal

1.29 Rewrite the following bit quantities as byte quantities, using the most appropriate
metric prefix, e.g., 16,000 bits (2,000 bytes) would be rewritten as 2 Kbytes. 

a. 8,000,000
b. 32,000,000,000
c. 1,000,000,000

a) 8,000,000 bits * (1 byte/ 8 bits) = 1,000,000 bytes = 1 Mbyte
b) 32,000,000,000 bits / 8 = 4,000,000,000 = 4 Gbytes
c) 1,000,000,000 bits / 8 = 125,000,000 bytes = 125 Mbytes

Section 1.3: Implementing Digital Systems: Programming Microprocessors versus
Designing Digital Circuits

1.30 Use a microprocessor like that in Figure 1.23 to implement a system that sounds an
alarm whenever there is motion detected at the same time in three different rooms.
Each room’s motion sensor output comes to us on a wire as a bit, 1 meaning motion,
0 meaning no motion. We sound the alarm by setting an output wire “alarm” to 1.
Show the connections to and from the microprocessor, and the C code to execute on
the microprocessor.

void main() {
while (1) {

P0 = I0 && I1 && I2;
}

}

1.31 A security camera company wishes to add a face recognition feature to their cameras
such that the camera only broadcasts video when a human face is detected in the
video. The camera records 30 video frames per second. For each frame, the camera
would execute a face recognition application. The application implemented on a

P0I0

M
icroprocessor

P1
P2
P3
P4
P5
P6
P7

I1
I2
I3
I4
I5
I6
I7

alarmmotion sensor 1
motion sensor 2
motion sensor 3
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microprocessor requires 50 ms. The application implemented as a custom digital cir-
cuit requires 1 ms. Compute the maximum number of frames per second that each
implementation supports, and indicate which implementation is sufficient for 30
frames per second. 
50 ms/frame means 1 frame / 50 ms = 1 frame / 0.05 s = 20 frames / s. 
1 ms/frame means 1 frame / 1 ms = 1 frame / 0.001 s = 1000 frames / s.
Thus, the digital circuit implementation would suffice, but the microprocessor
implementation is too slow. 

1.32 Suppose a particular banking system supports encrypted transactions, and that
decrypting each transaction consists of three sub-tasks A, B, and C. The execution
times of each task on a microprocessor versus a custom digital circuit are 50 ms ver-
sus 1 ms for A, 20 ms versus 2 ms for B, and 20 ms versus 1 ms for C. Partition the
tasks among the microprocessor and custom digital circuitry, such that you mini-
mize the amount of custom digital circuitry, while meeting the constraint of decrypt-
ing at least 40 transactions per second. Assume each task requires the same amount
of digital circuitry. 
40 transactions / second means that decryption should occur at a rate of 1 second /
40 transactions = 0.025 seconds / transaction, or 25ms/transaction. Implementing all
three tasks on the microprocessor would result in 50+20+20 = 90 ms/transaction,
which is too slow. Implementing any one task as a digital circuit is still too slow.
Implementing A as a digital circuit would reduce the time to 1+20+20 = 41 ms.
Implementing A and B as a digital circuit would reduce the time to 1+2+20 = 23 ms.
Implementing A and C as a digital circuit would reduce the time to 1+20+1 = 22 ms.
Thus, either solution suffices. Implementing B and C as a digital circuit would not
suffice, as the time would be 50+2+1 = 53 ms. Implementing all three as a digital
circuit would result in 1+2+1 = 4 ms/transaction, which is plenty fast but uses extra
digital circuitry. Thus, one solution is A and B as digital circuits, C on the micropro-
cessor. Another solution is A and C as digital circuits, B on the microprocessor. 

1.33 How many possible partitionings are there of a set of N tasks where each task can be
implemented either on the microprocessor or as a custom digital circuit? How many
possible partitionings are there of a set of 20 tasks (expressed as a number without
any exponents)?
2n

For 20 tasks, there are 220 or 1,048,576 (over 1 million) possible partitionings. 
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CHAPTER 2

COMBINATIONAL LOGIC 
DESIGN

2.1 EXERCISES 
Any problem noted with an asterisk (*) represents an especially challenging problem.

Section 2.2: Switches

2.1. A microprocessor in 1980 used about 10,000 transistors. How many of those micro-
processors would fit in a modern chip having 3 billion transistors?
3,000,000,000 / 10,000 = 300,000 microprocessors

2.2 The first Pentium microprocessor had about 3 million transistors. How many of
those microprocessors would fit in a modern chip having 3 billion transistors?
3,000,000,000 / 3,000,000 = 1,000 microprocessors

2.3 Describe the concept known as Moore’s Law.
Integrated circuit density doubles approximately every 18 months.

2.4 Assume for a particular year that a particular size chip using state-of-the-art technol-
ogy can contain 1 billion transistors. Assuming Moore’s Law holds, how many tran-
sistors will the same size chip be able to contain in ten years? 
Approximately 100 billion transistors (10 years * 12 months/year / 18 months/dou-
bling = 6.667 doublings. 1 billion * 26.667 = 101.617 billion).

2.5 Assume a cell phone contains 50 million transistors. How big would such a cell
phone be if the phone used vacuum tubes instead of transistors, assuming a vacuum
tube has an volume of 1 cubic inch?
50,000,000 transistors * 1 in3/transistor = 50,000,000 in3 (nearly 30,000 cubic feet -
as large as a house)
13



14 c 2 Combinational Logic Design
2.6 A modern desktop processor may contain 1 billion transistors in a chip area of 100
mm2. If Moore’s Law continues to apply, what would be chip area for those 1 billion
transistors after 9 years? What percentage is that area of the original area? Name a
product into which the smaller chip might fit whereas the original chip would have
been too big.
Doubling chip capacity every 18 months also suggests halving of size every 18
months of the same number of transistors. 9 years / 18 months is 108 months / 18
months = 6 halvings. 100 mm2 * (1/2)6 = 100 mm2 / 64 = 1.56 mm2 . 1.56 mm2 /
100 mm2 = 1.56% of the original area. A product into which such a small chip might
now fit is a hearing aid, for example. 

Section 2.3: The CMOS Transistor

2.7 Describe the behavior of the CMOS transistor
circuit shown in Figure 2.77, clearly indicating
when the transistor circuit conducts.
When x is a logical 0, the top transistor will con-
duct, otherwise the top transistor will not con-
duct. Likewise, when y is a logical 0, the bottom
transistor will conduct and not conduct other-
wise. Thus, the circuit conducts only when x is 0
and y is 0. 

2.8 If we apply a voltage to the gate of a CMOS transistor, why doesn’t the current flow
to the transistor’s source or drain?
An insulator exists between the gate and the source-drain channel, prohibiting cur-
rent from flowing to the transistor’s source or drain.

2.9 Why does applying a positive voltage to the gate of a CMOS transistor cause the
transistor to conduct between source and drain?
The positive voltage at the gate attracts electrons into the channel between source
and drain. Those electrons are enough to change the channel from non-conducting to
conducting. 

Section 2.4: Boolean Logic Gates—Building Blocks for Digital Circuits

2.10 Which Boolean operation, AND, OR or NOT, is appropriate for each of the follow-
ing:

a. Detecting motion in any motion sensor surrounding a house (each motion sen-
sor outputs 1 when motion is detected).

b. Detecting that three buttons are being pressed simultaneously (each button out-
puts 1 when a button is being pressed).

c. Detecting the absence of light from a light sensor (the light sensor outputs 1
when light is sensed). 

a) OR
b) AND
c) NOT

 Figure 2.77

x

y
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2.11 Convert the following English problem statements to Boolean equations. Introduce
Boolean variables as needed. 

a. A flood detector should turn on a pump if water is detected and the system is set
to enabled

b. A house energy monitor should sound an alarm it is night and light is detected
inside a room but motion is not detected.

c. An irrigation system should open the sprinkler’s water valve if the system is
enabled and niether rain nor freezing temperatures are detected.

a) Pump = WaterDetected AND SystemEnabled
b) Alarm = Night AND LightInsideDetected AND NOT MotionDetected
c) WaterValveOpen = SystemEnabled AND NOT (RainDetected OR FreezingTem-
peraturesDetected)

2.12 Evaluate the Boolean equation F = (a AND b) OR c OR d for the given values of
variables a, b, c, and d:

a. a=1, b=1, c=1, d=0
b. a=0, b=1, c=1, d=0
c. a=1, b=1, c=0, d=0
d. a=1, b=0, c=1, d=1

a) F = (1 AND 1) OR 1 OR 0 = 1 OR 1 OR 0 = 1
b) F = (0 AND 1) OR 1 OR 0 = 0 OR 1 OR 0 = 1
c) F = (1 AND 1) OR 0 OR 0 = 1 OR 0 OR 0 = 1
d) F = (1 AND 0) OR 0 OR 0 = 0 OR 0 OR 0 = 0

2.13 Evaluate the Boolean equation F = a AND (b OR c)AND d for the given values of
variables a, b, c, and d:

a. a=1, b=1, c=0, d=1
b. a=0, b=0, c=0, d=1
c. a=1, b=0, c=0, d=0
d. a=1, b=0, c=1, d=1

a) F = 1 AND (1 OR 0) AND 1 = 1 AND 1 AND 1 = 1
b) F = 0 AND (0 OR 0) AND 1 = 0 AND 0 AND 1 = 0
c) F = 1 AND (0 OR 0) AND 0 = 1 AND 0 AND 0 = 0
d) F = 1 AND (0 OR 1) AND 1 = 1 AND 1 AND 1 = 1

2.14 Evaluate the Boolean equation F = a AND (b OR (c AND d)) for the given values
of variables a, b, c, and d:

a. a=1, b=1, c=0, d=1
b. a=0, b=0, c=0, d=1
c. a=1, b=0, c=0, d=0
d. a=1, b=0, c=1, d=1

a) F = 1 AND (1 OR (0 AND 1)) = 1 AND (1 OR 0) = 1 AND 1 = 1
b) F = 0 AND (0 OR (0 AND 1)) = 0 AND (0 OR 0) = 0 AND 0 = 0
c) F = 1 AND (0 OR (0 AND 0)) = 1 AND (0 OR 0) = 1 AND 0 = 0
d) F = 1 AND (0 OR (1 AND 1)) = 1 AND (0 OR 1) = 1 AND 1 = 1
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2.15 Show the conduction paths and output value of the OR gate transistor circuit in Fig-
ure 2.12 when: (a) x = 1 and y = 0, (b) x = 1 and y = 1.

2.16 Show the conduction paths and output value of the AND gate transistor circuit in
Figure 2.14 when: (a) x = 1 and y = 0, (b) x = 1 and y = 1. 

2.17 Convert each of the following equations directly to gate-level circuits:
a.F = ab’ + bc + c’
b.F = ab + b’c’d’
c.F = ((a + b’) * (c’ + d)) + (c + d + e’)

2.18 Convert each of the following equations directly to gate-level circuits:
a.F = a’b’ + b’c

(b)
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b.F = ab + bc + cd + de
c.F = ((ab)’ + (c)) + (d + ef)’

2.19 Convert each of the following equations directly to gate-level circuits:
a.F = abc + a’bc
b.F = a + bcd’ + ae + f’
c.F = (a + b) + (c’ * (d + e + fg))

2.20 Design a system that sounds a buzzer inside a home whenever motion outside is
detected at night. Assume a motion sensor has an output M that indicates whether
motion is detected (M=1 means motion detected) and a light sensor with output L
that indicates if light is detected (L=1 means light is detected). The buzzer inside the
home has a single input B that when 1 sounds the buzzer. Capture the desired system
behavior using an equation, and then convert the equation to a circuit using AND,
OR, and NOT gates.
B = M * L’ 

(b)

(a)

a

Fb
c
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2.21 A DJ (“disc jockey,” meaning someone who plays music at a party) would like a sys-
tem to automatically control a strobe light and disco ball in a dance hall depending
on whether music is playing and people are dancing. Asound sensor has output S
that when 1 indicates that music is playing, and a motion sensor has output M that
when 1 indicates that people are dancing. The strobe light has an input L that when 1
turns the light on, and the disco ball has an input B that when 1 turns the ball on. The
DJ wants the disco ball to turn on only when music is playing and nobody is danc-
ing, and wants the strobe light to turn on only when music is playing and people are
dancing. Create equations describing the desired behavior for B and for L, and then
convert each to a circuit using AND, OR, and NOT gates. 

B = S * M’ L = S * M

2.22 We want to concisely describe the following situation using a Boolean equation. We
want to fire a football coach (by setting F=1) if he is mean (represented by M=1). If
he is not mean, but has a losing season (represented by the Boolean variable L=1),
we want to fire him anyways. Write an equation that translates the situation directly
to a Boolean equation for F, without any simplification.
F = M + (M’ * L)

Section 2.5: Boolean Algebra

2.23 For the function F = a + a’b + acd + c’:
a. List all the variables.
b. List all the literals.
c. List all the product terms.

a) a, b, c, d
b) a, a’, b, a, c, d, c’
c) a, a’b, acd, c’

2.24 For the function F = a’d’ + a’c + b’cd’ + cd:
a. List all the variables.
b. List all the literals.
c. List all the product terms.

a) a, b, c, d
b) a’, d’, a’, c, b’, c, d’, c, d
c) a’d’, a’c, b’cd’, cd

2.25 Let variables T represent being tall, H being heavy, and F being fast. Let’s consider
anyone who is not tall as short, not heavy as light, and not fast as slow. Write a Bool-
ean equation to represent the following: 

a. You may ride a particular amusement park ride only if you are either tall and
light, or short and heavy. 

S
M B

S
M L
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b. You may NOT ride an amusement park ride if you are either tall and light, or
short and heavy. Use algebra to simplify the equation to sum of products. 

c. You are eligible to play on a particular basketball team if you are tall and fast, or
tall and slow. Simplify this equation. 

d. You are NOT eligible to play on a particular football team if you are short and
slow, or if you are light. Simplify to sum of products form.

e. You are eligible to play on both the basketball and football teams above, based
on the above criteria. Hint: combine the two equations into one equation by
ANDing them. 

a) Ride = TH’ + T’H
b) Ride = (TH’ + T’H)’ = (TH’)’(T’H)’ = (T’ + H)(T + H’) = T’H’ + TH
c) Basketball = TF + TF’ = T(F+F’) = T(1) = T
d) Football = (T’F’ + H’)’ = (T’F’)’H = (T + F)H = TH + FH
e) BasketballAndFootball = T(TH + FH) = TTH + TFH = TH + TFH = TH(1+F) =
TH. In other words, only people who are both tall and heavy can play on both teams. 

2.26 Let variables S represent a package being small, H being heavy, and E being expen-
sive. Let’s consider a package that is not small as big, not heavy as light, and not
expensive as inexpensive. Write a Boolean equation to represent the following:

a. Your company specializes in delivering packages that are both small and inex-
pensive (a package must be small AND inexpensive for us to deliver it); you’ll
also deliver packages that are big but only if they are expensive. 

b. A particular truck can be loaded with packages only if the packages are small
and light, small and heavy, or big and light. Simplify the equation. 

c. Your above-mentioned company buys the above-mentioned truck. Write an
equation that describes the packages your company can deliver. Hint: Appropri-
ately combine the equations from the above two parts. 

a) Deliver = SE’ + S’E
b) Load = SH’ + SH + S’H’ = SH’ + SH + SH’ + S’H’ = S + H’
c) Packages = Deliver*Load = (SE’ + S’E)*(S+H’) = SSE’ + SS’E + H’SE’ + H’S’E
= SE’ + 0 + H’SE’ + H’S’E = (1+H’)SE’ + H’S’E = SE’ + S’EH’. In other words,
you can deliver small inexpensive packages, or large expensive light packages. 

2.27 Use algebraic manipulation to convert the following equation to sum-of-products
form: F = a(b + c)(d’) + ac’(b + d)
F = (ab + ac)d’ + ac’b + ac’d
F = abd’ + acd’ + ac’b + ac’d

2.28 Use algebraic manipulation to convert the following equation to sum-of-products
form: F = a’b(c + d’) + a(b’ + c) + a(b + d)c
F = a’bc + a’bd’ + ab’ + ac + (ab + ad)c
F = a’bc + a’bd’ + ab’ + ac + abc + acd
F = a’bc + a’bd’ + ab’ + ac

2.29 Use DeMorgan’s Law to find the inverse of the following equation: F = abc +
a’b. Reduce to sum-of-products form. Hint: Start with F’ = (abc + a’b)’.
F’ = (abc + a’b)’
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F’ = (abc)’(a’b)’
F’ = (a’ + b’ + c’)(a’’ + b’)
F’ = (a’ + b’ + c’)(a + b’)
F’ = a(a’ + b’ + c’) + b’(a’ + b’ + c’)
F’ = 0 + ab’ + ac’ + a’b’ + b’ + b’c’
F’ = (a + a’)b’ + b’ + ac’ + b’c’ (The b’ term makes all other terms with b’ redun-
dant)
F’ = b’ + ac’

2.30 Use DeMorgan’s Law to find the inverse of the following equation: F = ac’ +
abd’ + acd. Reduce to sum-of-products form.
F’ = (ac’ + abd’ + acd)’
F’ = (ac’)’(abd’)’(acd)’
F’ = (a’ + c’’)(a’ + b’ + d’’)(a’ + c’ + d’)
F’ = (a’ + c)(a’ + b’ + d)(a’ + c’ + d’)
F’ = (a’ + a’b’ + a’d + a’c + b’c + cd)(a’ + c’ + d’)
F’ = a’ + a’c’ + a’d’ + a’b’ + a’b’c’ + a’b’d’ + a’d + a’cc’ + a’cd’ + a’b’c + b’cc’ +
b’cd’ + a’cd + cc’d + cdd’ (The a’ term makes all other terms with a’ redundant)
F’ = a’ + b’cd’

Section 2.6: Representations of Boolean Functions

2.31 Convert the following Boolean equations to a digital circuit:
a. F(a,b,c) = a’bc + ab
b. F(a,b,c) = a’b
c. F(a,b,c) = abc + ab + a + b + c
d. F(a,b,c) = c’

2.32 Create a Boolean equation representation of the
digital circuit in Figure 2.78.
F = (ab’ + b)’

(b)
(a)

a

F
bc

F

(c)

a
Fb

a
b
c

F

c

(d)

Figure 2.78

a
b

F
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2.33 Create a Boolean equation representation for the
digital circuit in Figure 2.79.
F = (ab’ + b) + a’c

2.34 Convert each of the Boolean equations in Exer-
cise 2.31 to a truth table.

2.35 Convert each of the following Boolean equations to a truth table:
a. F(a,b,c) = a’ + bc’
b. F(a,b,c) = (ab)’ + ac’ + bc
c. F(a,b,c) = ab + ac + ab’c’ + c’
d.F(a,b,c,d) = a’bc + d’

Figure 2.79

a
b

G
c

Inputs Outputs
a b c F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Inputs Outputs
a b c F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Inputs Outputs
a b c F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Inputs Outputs
a b c F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

(a) (b)

(c) (d)
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2.36 Fill in Table 2.8’s columns for the
equation: F= ab + b’

Inputs Outputs
a b c F
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Inputs Outputs
a b c F
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Inputs Outputs
a b c F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Inputs Outputs
a b c d F
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

(a) (b)

(c)

(d)

Table 2.8
Inputs Output
a b ab b’ ab+b’ F
0 0 0 1 1 1
0 1 0 0 0 0
1 0 0 1 1 1
1 1 1 0 1 1
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2.37 Convert the function F shown in the truth table in
Table 2.9 to an equation. Don’t minimize the equa-
tion.
F = a’b’c + a’bc’ + a’bc + ab’c + abc’ + abc

2.38 Use algebraic manipulation to minimize the equa-
tion obtained in Exercise 2.37
F = a’b’c + a’bc’ + a’bc + ab’c + abc’ + abc
F = a’(b’c + bc’ + bc) + a(b’c + bc’ + bc)
F = a’(b’c + b(c’ + c)) + a(b’c + b(c’ + c))
F = a’(b’c + b) + a(b’c + b)
F = (a’ + a)(b’c + b)
F = b’c + b

2.39 Convert the function F shown in the truth table in
Table 2.10 to an equation. Don’t minimize the
equation.
F = a’b’c’ + a’bc’ + ab’c’ + ab’c + abc’

2.40 Use algebraic manipulation to minimize the equa-
tion obtained in Exercise 2.39
F = a’b’c’ + a’bc’ + ab’c’ + ab’c + abc’
F = a’(b’c’ + bc’) + a(b’c’ + b’c + bc’)
F = a’((b’ + b)c’) + a(b’(c’ + c) + bc’)
F = a’c’ + a(b’ + bc’)

2.41 Convert the function F shown in the truth table in
Table 2.11 to an equation. Don’t minimize the
equation.
F = a’b’c + abc’ + abc

2.42 Use algebraic manipulation to minimize the equa-
tion obtained in Exercise 2.41.
F = a’b’c + abc’ + abc
F = a’b’c + ab(c’ + c)
F = a’b’c + ab

2.43 Create a truth table for the circuit of Figure 2.78

Table 2.9
a b c F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 2.10
a b c F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 2.11
a b c F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
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.

2.44 Create a truth table for the circuit of Figure 2.79.

2.45 Convert the function F shown in the truth table in Table 2.9 to a digital circuit.

2.46 Convert the function F shown in the truth table in Table 2.10 to a digital circuit.

2.47 Convert the function F shown in the truth table in Table 2.11 to a digital circuit.

2.48 Convert the following Boolean equations to canonical sum-of-minterms form:

Inputs Outputs
a b F
0 0 1
0 1 0
1 0 0
1 1 0

Inputs Outputs
a b c ab’ + b a’c F
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 1 0 1
1 0 1 1 0 1
1 1 0 1 0 1
1 1 1 1 0 1

F

b
c

F

a

c

b

F

a

c

b
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a. F(a,b,c) = a’bc + ab
b. F(a,b,c) = a’b
c. F(a,b,c) = abc + ab + a + b + c
d. F(a,b,c) = c’

a) F(a,b,c) = a’bc + abc’ + abc
b) F(a,b,c) = a’bc’ + a’bc
c) F(a,b,c) = a’b’c + a’bc’ + a’bc + ab’c’ + ab’c + abc’ + abc
d) F(a,b,c) = a’b’c’ + a’bc’ + ab’c’ + abc’

2.49 Determine whether the Boolean functions F = (a + b)’*a and G = a + b’
are equivalent, using: (a) algebraic manipulation, and (b) truth tables. 
a) Convert the two functions to canonical sum-of-minterms form:
F = (a + b)’ * a
F = a’b’a
F = 0
G = a + b’
G = ab’ + ab + a’b’
F and G are not equivalent.

2.50 Determine whether the Boolean functions F = ab’ and G = (a’ + ab)’ are
equivalent, using: (a) algebraic manipulation, and (b) truth tables. 
a) Convert the two functions to canonical sum-of-minterms form:
F = ab’
G = (a’ + ab)’
G = (a)(ab)’
G = a(a’ + b’)
G = 0 + ab’
G = ab’
F and G are equivalent.

Inputs Outputs
a b F
0 0 0
0 1 0
1 0 0
1 1 0

Inputs Outputs
a b G
0 0 1
0 1 0
1 0 1
1 1 1

(b)

Inputs Outputs
a b F
0 0 0
0 1 0
1 0 1
1 1 0

Inputs Outputs
a b G
0 0 0
0 1 0
1 0 1
1 1 0

(b)
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2.51 Determine whether the Boolean function G =
a’b’c + ab’c + abc’ + abc is equiva-
lent to the function represented by the circuit in
Figure 2.80.
The circuit can be converted to the equation H =
ab + b’c. That equation can be algebraically
expanded to canonical sum-of-minterms form as
H = ab(c’+c) + (a’+a)b’c = abc’ + abc + a’b’c +
ab’c, which is equivalent to G.

2.52 Determine whether the two cir-
cuits in Figure 2.81 are equiva-
lent circuits using: (a) algebraic
manipulation, and (b) truth
tables.
a) F = ab + cd and G = (1*((ab)’
* (cd)’)’)’
In canonical sum-of-minterms
form, F = a’b’cd + a’bcd + ab’cd + abc’d’ + abc’d + abcd’ + abcd and G = a’b’c’d’
+ a’b’c’d + a’b’cd’+ a’bc’d’ + a’bc’d + a’bcd’ + ab’c’d’ + ab’c’d + ab’cd’. F and G
are not equivalent (F = G’)
b)

Figure 2.80

a
b

H
c

Figure 2.81

a
b

Fc
d

b G
c
d

a 1

Inputs Outputs
a b c d F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

(a)

Inputs Outputs
a b c d F
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

(b)
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2.53 *Figure 2.82 shows two cir-
cuits whose inputs are unla-
beled. 

a. Determine whether the
two circuits are equiva-
lent. Hint: Try all possible
labellings of the inputs
for both circuits.

(No solution provided for challenge problem)
b. How many circuit comparisons would need to be performed to determine if two

circuits with 10 unlabeled inputs are equivalent?
(No solution provided for challenge problem)

Section 2.7: Combinational Logic Design Process

2.54 A museum has three rooms, each with a motion sensor (m0, m1, and m2) that outputs
1 when motion is detected. At night, the only person in the museum is one security
guard who walks from room to room. Create a circuit that sounds an alarm (by set-
ting an output A to 1) if motion is ever detected in more than one room at a time
(i.e., in two or three rooms), meaning there must be one or more intruders in the
museum. Start with a truth table.
Step 1 - Capture the function

Step 2A - Create equations
A = m2’m1m0 + m2m1’m0 + m2m1m0’ + m2m1m0
Step 2B- Implement as a gate-based circuit

Figure 2.82

G

F

Inputs Outputs
m2 m1 m0 A
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

m1 m0m2

A
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2.55 Create a circuit for the museum of Exercise 2.54 that detects whether the guard is
properly patrolling the museum, detected by exactly one motion sensor being 1. (If
no motion sensor is 1, the guard may be sitting, sleeping, or absent). 
Step 1 - Capture the function

Step 2A - Create equations
A = m2’m1’m0 + m2’m1m0’ + m2m1’m0’
Step 2B- Implement as a gate-based circuit

Inputs Outputs
m2 m1 m0 A
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

m1 m0m2

A
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2.56 Consider the museum security alarm function of Exercise 2.54, but for a museum
with 10 rooms. A truth table is not a good starting point (too many rows), nor is an
equation describing when the alarm should sound (too many terms). However, the
inverse of the alarm function can be straightforwardly captured as an equation.
Design the circuit for the 10 room security system, by designing the inverse of the
function, and then just adding an inverter before the circuit’s output. 
Step 1 - Capture the function
The inverse function detects that motion is detected by exactly one motion sensor, or
no motion sensor detecting motion; all the other possibilities are for two or more
sensors detecting motion. Thus, the inverse function can be written as:
A’ =
m9m8’m7’m6’m5’m4’m3’m2’m1’m0’ + m9’m8m7’m6’m5’m4’m3’m2’m1’m0’ +
m9’m8’m7m6’m5’m4’m3’m2’m1’m0’ + m9’m8’m7’m6m5’m4’m3’m2’m1’m0’ +
m9’m8’m7’m6’m5m4’m3’m2’m1’m0’ + m9’m8’m7’m6’m5’m4m3’m2’m1’m0’ +
m9’m8’m7’m6’m5’m4’m3m2’m1’m0’ + m9’m8’m7’m6’m5’m4’m3’m2m1’m0’ +
m9’m8’m7’m6’m5’m4’m3’m2’m1m0’ + m9’m8’m7’m6’m5’m4’m3’m2’m1’m0 +
m9’m8’m7’m6’m5’m4’m3’m2’m1’m0’
The first term is for motion sensor m9 detecting motion and all others detecting no
motion, the second term is for m8, and so on. That last term is for no sensor detect-
ing motion. 
Step 2A - Create equations
Already done. 
Step 2B- Implement as a gate-based circuit

m9
m8
m7
m6
m5
m4
m3
m2
m1
m0

A
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2.57 A network router connects multiple computers together and allows them to send
messages to each other. If two or more computers send messages simultaneously,
the messages “collide” and the messages must be resent. Using the combinational
design process of Table 2.5, create a collision detection circuit for a router that con-
nects 4 computers. The circuit has 4 inputs labeled M0 through M3 that are 1 when
the corresponding computer is sending a message and 0 otherwise. The circuit has
one output labeled C that is 1 when a collision is detected and 0 otherwise.
Step 1 - Capture the function 
A truth table is convenient for this problem. 

Step 2A - Create equation
We note that there are more 1s in the output column than there are 0s. Thus, we
choose to create an equation for the inverse of the function, and we’ll then add an
inverter at the output. The problem could also be solved by creating a (longer) equa-
tion for the function itself rather than the inverse. 
C’ = M3’M2’M1’M0’ + M3’M2’M1’M0 + M3’M2’M1M0’ + M3’M2M1’M0’ +
M3M2’M1’M0’

Inputs Outputs
M3 M2 M1 M0 C
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1
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Step 2B- Implement as a gate-based circuit

2.58 Using the combinational design process of Table 2.5, create a 4-bit prime number
detector. The circuit has four inputs, N3, N2, N1, and N0 that correspond to a 4-bit
number (N3 is the most significant bit) and one output P that is 1 when the input is a
prime number and that is 0 otherwise.
Step 1 - Capture the function
The prime numbers in the range 0-15 are 2, 3, 5, 7, 11, and 13. Rows whose input
binary number correspond to those numbers have P set to a 1; the other rows get 0. 

Step 2A - Create equations
P = N3’N2’N1N0’ + N3’N2’N1N0 + N3’N2N1’N0 + N3’N2N1N0 + N3N2’N1N0
+ N3N2N1’N0

M3
M2
M1
M0

C

Inputs Outputs
N3 N2 N1 N0 P
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0
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Step 2B - Implement as a gate-based circuit

2.59 A car has a fuel-level detector that outputs the current fuel-level as a 3-bit binary
number, with 000 meaning empty and 111 meaning full. Create a circuit that illu-
minates a “low fuel” indicator light (by setting an output L to 1) when the fuel level
drops below level 3. 
Step 1 - Capture the function

Step 2A -Create equations
L = F2’F1’F0’ + F2’F1’F0 + F2’F1F0’
Step 2B- Implement as a gate-based circuit

2.60 A car has a low-tire-pressure sensor that outputs the current tire pressure as a 5-bit
binary number. Create a circuit that illuminates a “low tire pressure” indicator light
(by setting an output T to 1) when the tire pressure drops below 16. Hint: you might
find it easier to create a circuit that detects the inverse function. You can then just
append an inverter to the output of that circuit. 
Step 1 - Capture the function

N3
N2
N1
N0

P

Inputs Outputs
F2 F1 F0 L
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

F2
F1
F0

L
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The inverse function outputs 1 if the input is 16 or greater. For a 5-bit number, we
know that any number 16 or greater has a 1 in the leftmost bit, which we’ll name P4.
Any number less than 16 will have a 0 in P4. Thus, an equation that detects 16 or
greater is just: 
T’ = P4
Step 2A - Create equations
Already done
3 - Implement as a gate-based circuit

Section 2.8: More Gates

2.61 Show the conduction paths and output value of the NAND gate transistor circuit in
Figure 2.54 when: (a) x = 1 and y = 0, (b) x = 1 and y = 1. 

2.62 Show the conduction paths and output value of the NOR gate transistor circuit in
Figure 2.54 when: (a) x = 1 and y = 0, (b) x = 0 and y = 0. 

2.63 Show the conduction paths and output value of the AND gate transistor circuit in
Figure 2.55 when: (a) x = 1 and y = 1, (b) x = 0 and y = 1. 

P4 T

x
F

1

0
y

y

x

x
F

1

0
y

y

x

(a) (b)

1 0

(a) (b)

0x
F

1

0

y

y

x

1x
F

1

0

y

y

x

(a) (b)

01F

1

0

x
1

0
y

y

x F

1

0

x
1

0
y

y

x
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2.64 Two people, denoted using variables A and B, want to ride with you on your motor-
cycle. Write a Boolean equation that indicates that exactly one of the two people can
come (A=1 means A can come, A=0 means A can’t come). Then use XOR to sim-
plify your equation.
F = A’B + AB’
F = A XOR B

2.65 Simplify the following equation by using XOR wherever possible: F = a’b +
ab’ + cd’ + c’d + ac.
F = (a XOR b) + (c XOR d) + ac

2.66 Use 2-input XOR gates to create a circuit that outputs a 1 when the number of 1s on
inputs a, b, c, d is odd.

2.67 Use 2-input XOR or XNOR gates to create a circuit that detects if an even number of
the inputs a, b, c, d are 1s.

Section 2.9: Decoders and Muxes

2.68 Design a 3x8 decoder using AND, OR and NOT gates.

2.69 Design a 4x16 decoder using AND, OR and NOT gates.

F

a
b
c
d

F

a
b
c
d

i2
i1
i0

d7 d6 d5 d4 d3 d2 d1 d0

i2
i1
i0

d9 d8 d7 d6 d5 d4 d3 d2 d1 d0d15 d14 d13 d12 d11 d10

i3
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2.70 Design a 3x8 decoder with enable using AND, OR and NOT gates.

2.71 Design an 8x1 multiplexer using AND, OR and NOT gates.

2.72 Design a 16x1 multiplexer using AND, OR and NOT gates.

i2
i1
i0

d7 d6 d5 d4 d3 d2 d1 d0

e

s2
s1
s0

d

i7 i6 i5 i4 i3 i2 i1 i0

i2
i1
i0

i9 i8 i7 i6 i5 i4 i3 i2 i1 i0i15 i14 i13 i12 i11 i10

i3

d
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2.73 Design a 4-bit 4x1 multiplexer using four 4x1 multiplexors.

2.74 A house has four external doors each with a sensor that outputs 1 if its door is open.
Inside the house is a single LED that a homeowner wishes to use to indicate whether
a door is open or closed. Because the LED can only show the status of one sensor,
the homeowner buys a switch that can be set to 0, 1, 2, or 3 and that has a 2-bit out-
put representing the switch position in binary. Create a circuit to connect the four
sensors, the switch, and the LED. Use at least one mux (a single mux or an N-bit
mux) or decoder. Use block symbols with a clearly defined function, such as “2x1
mux,” “8-bit 2x1 mux,” or “3x8 decoder”; do not show the internal design of a mux
or decoder..

i3 i2 i1 i0

s1
s0

d

s1
s0

d

s1
s0

d

s1
s0

d

s1
s0

i3[3]
i2[3]

i1[3]
i0[3]

i3 i2 i1 i0

i3[2]
i2[2]

i1[2]
i0[2]

i3 i2 i1 i0

i3[1]
i2[1]

i1[1]
i0[1]

i3 i2 i1 i0

i3[0]
i2[0]

i1[0]
i0[0]

d3 d2 d1 d0

LED

d3 d2

i3 i2

d
s1

4x1 MuxSwitch 

s0

d1 d0

i1 i0

(0, 1, 
2, or 3
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2.75 A video system can accept video from one of two video sources, but can only display
one source at a given time. Each source outputs a stream of digitized video on its
own 8-bit output. A switch with a single bit output chooses which of the two 8-bit
streams will be passed on a display’s single 8-bit input. Create a circuit to connect
the two video sources, the switch, and the display. Use at least one mux (a single
mux or an N-bit mux) or decoder. Use block symbols with a clearly defined func-
tion, such as “2x1 mux,” “8-bit 2x1 mux,” or “3x8 decoder”; do not show the inter-
nal design of a mux or decoder.

2.76 A store owner wishes to be able to indicate to customers that the items in one of the
store’s eight aisles are temporarily discounted (“on sale”). The store owner thus
mounts a light above each aisle, and each light has a single bit input that turns on the
light when 1. The store owner has a switch that can be set to 0, 1, 2, 3, 4, 5, 6, or 7,
and that has a 3-bit output representing the switch position in binary. A second
switch can be set up or down and has a single bit output that is 1 when the switch is
up; the store owner can set this switch down if no aisles are currently discounted.
Use at least one mux (a single mux or an N-bit mux) or decoder. Use block symbols
each with a clearly defined function, such as “2x1 mux,” “8-bit 2x1 mux,” or “3x8
decoder”; do not show the internal design of a mux or decoder.

to display

Source B Source A

i1 i0

d

8-bit
2x1 Muxs0Switch

8

8 8

e

i2
Switch 
(0 to 7)

Switch 
(up or
down)

i1
i0

d7
d6
d5
d4
d3
d2
d1
d0

3x8 decoder
(with enable)

to aisle7

to aisle0
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Section 2.10: Additional Considerations

2.77 Determine the critical path of the specified circuit. Assume that each AND and OR
gate has a delay of 1 ns, each NOT gate has a delay of 0.75 ns, and each wire has a
delay of 0.5 ns. 

a. The circuit of Figure 2.37.
The path from input c to output F has a delay of 0.5 + 0.75 + 0.5 + 1 + 0.5 = 3.25 ns.
The path from input h to output F has a delay of 0.5 + 1 + 0.5 + 1 + 0.5 = 3.5 ns
The path from input p to output F has a delay of 0.5 + 1 + 0.5 + 1 + 0.5 = 3.5 ns.
The longest path is 3.5 ns. Thus, the circuit’s critical path is 3.5 ns. 

b. The circuit of Figure 2.41.
The path from input a to output F has a delay of 0.5 + 1 + 0.5 + 0.75 + 0.5 + 1 + 0.5
= 4.75 ns. 
The path from input b to output F is identical to that from input a: 4.75 ns. 
The path from input c to output F has a delay of 0.5 + 0.75 + 0.5 + 1 + 0.5 = 3.25 ns.
The longest path is 4.75 ns. Thus, the circuit’s critical path is 4.75 ns. 

2.78 Design a 1x4 demultiplexer using AND, OR and NOT gates.

s1
s0

d3

i

d2 d1 d0
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2.79 Design an 8x3 encoder using AND, OR and NOT gates. Assume that only one input
will be asserted at any given time.

e2 = I7 + I6 + I5 + I4
e1 = I7 + I6 + I3 + I2
e0 = I7 + I5 + I3 + I1

Inputs Outputs
i7 i6 i5 i4 i3 i2 i1 i0 e2 e1 e0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

i7
i6
i5
i4
i3
i2
i1

e2 e1 e0
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2.80 Design a 4x2 priority encoder using AND, OR and NOT gates. If every input is 0,
the output should be “00”.

e1 = i3 + i2
e0 = i3 + i2’i1

Inputs Outputs
i3 i2 i1 i0 e1 e0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 0 1
0 1 0 0 1 0
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 1 1 0
1 0 0 0 1 1
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1

i3
i2

i1

e1

e0



CHAPTER 3

SEQUENTIAL LOGIC 
DESIGN -- CONTROLLERS

3.1 EXERCISES
Any problem noted with an asterisk (*) represents an especially challenging problem.

Section 3.2: Storing One Bit—Flip-Flops

3.1. Compute the clock period for the following clock frequencies.
a. 50 kHz (early computers)
b. 300 MHz (Sony Playstation 2 processor)
c. 3.4 GHz (Intel Pentium 4 processor)
d. 10 GHz (PCs of the early 2010s)
e. 1 THz (1 terahertz) (PCs of the future?)

a) 1/50,000 = 0.00002 s = 20 us
b) 1/300,000,000 = 3.33 ns
c) 1/3,400,000,000 = 294 ps = 0.294 ns
d) 1/10,000,000,000 = 100 ps = 0.1 ns
e) 1/1,000,000,000,000 = 1 ps

3.2 Compute the clock period for the following clock frequencies.
a. 32.768 kHz
b. 100 MHz
c. 1.5 GHz 
d. 2.4 GHz

a) 1/32768 = 30.5 us
b) 1/100,000,000 = 10 ns
c) 1/1,500,000,000 = 0.66 ns = 667 ps
d) 1/ 2,400,000,000 = 0.416 ns = 416 ps
41
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3.3 Compute the clock frequency for the following clock periods.
a. 1 s
b. 1 ms
c. 20 ns 
d. 1 ns
e. 1.5 ps

a) 1/1s = 1 Hz
b) 1/.001 = 1000 Hz = 1 kHz
c) 1/20ns = 50,000,000 Hz = 50 MHz
d) 1 /1ns = 1,000,000,000 = 1 GHz
e) 1/1.5ps = 666 GHz

3.4 Compute the clock frequency for the following clock periods.
a. 500 ms
b. 400 ns
c. 4 ns 
d. 20 ps

a) 1/500ms = 2 Hz
b) 1/400 ns = 2,500,000 Hz = 2.5 MHz
c) 1/4ns = 250,000,000 Hz = 250 MHz
d) 1/20ps = 50,000,000,000 Hz = 50 GHz

3.5 Trace the behavior of an SR latch for the following situation: Q, S, and R have been
0 for a long time, then S changes to 1 and stays 1 for a long time, then S changes
back to 0. Using a timing diagram, show the values that appear on wires S, R, t, and
Q. Assume logic gates have a tiny nonzero delay..

S

R

1
0
1
0

t 1
0

Q 1
0
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3.6 Repeat Exercise 3.5, but assume that S was changed to 1 just long enough for the sig-
nal to propagate through one logic gate, after which S was changed back to 0 -- in
other words, S did not satisfy the hold time of the latch.

3.7 Trace the behavior of a level-sensitive SR latch (see Figure 3.16) for the input pat-
tern in Figure 3.92. Assume S1, R1, and Q are initially 0. Complete the timing dia-
gram, assuming logic gates have a tiny but non-zero delay. 

3.8 Trace the behavior of a level-sensitive SR latch (see Figure 3.16) for the input pat-
tern in Figure 3.93. Assume S1, R1, and Q are initially 0. Complete the timing dia-
gram, assuming logic gates have a tiny but non-zero delay. 

S

R

1
0
1
0

t 1
0

Q 1
0

Figure 3.92

S
C

R
S1
R1
Q

Figure 3.93

S
C

R
S1
R1
Q
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3.9 Trace the behavior of a level-sensitive SR latch (see Figure 3.16) for the input pat-
tern in Figure 3.94. Assume S1, R1, and Q are initially 0. Complete the timing dia-
gram, assuming logic gates have a tiny but non-zero delay..

3.10 Trace the behavior of a D latch (see Figure 3.19) for the input pattern in Figure 3.95.
Assume Q is initially 0. Complete the timing diagram, assuming logic gates have a
tiny but non-zero delay. 

3.11 Trace the behavior of a D latch (see Figure 3.19) for the input pattern in Figure 3.96.
Assume Q is initially 0. Complete the timing diagram, assuming logic gates have a
tiny but non-zero delay. 

Figure 3.94

S
C

R
S1
R1
Q metastable

Figure 3.95

D
C

S
R
Q

Figure 3.96

D
C

S
R
Q
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3.12 Trace the behavior of an edge-triggered D flip-flop using a master-servant design
(see Figure 3.25) for the input pattern in Figure 3.97. Assume each internal latch ini-
tially stores a 0. Complete the timing diagram, assuming logic gates have a tiny but
non-zero delay. 

3.13 Trace the behavior of an edge-triggered D flip-flop using the master-servant design
(see Figure 3.25) for the input pattern in Figure 3.98. Assume each internal latch ini-
tially stores a 0. Complete the timing diagram, assuming logic gates have a tiny but
non-zero delay. 

3.14 Compare the behavior of D latch and D flip-flop devices by completing the timing
diagram in Figure 3.99. Provide a brief explanation of the behavior of each device.
Assume each device initially stores a 0.

As long as the C (clock) input is 1, the D latch will store the value of D (after a short
gate delay). The D flip-flop will only store the value of D on the rising edge of C
(after a short gate delay).

Figure 3.97

D/Dm
C

Cm
Qm/Ds

Cs
Qs

Figure 3.98

D/Dm
C

Cm
Qm/Ds

Cs
Qs

Figure 3.99

Q(latch)

Q(FF)

D
C
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3.15 Compare the behavior of D latch and D flip-flop devices by completing the timing
diagram in Figure 3.100. Assume each device initially stores a 0. Provide a brief
explanation of the behavior of each device.

As long as the C (clock) input is 1, the D latch will store the value of D (after a short
gate delay). The D flip-flop will only store the value of D on the rising edge of C
(after a short gate delay).

3.16 Create a circuit of three level-sensitive D latches connected in series (the output of
one is connected to the input of the next). Use a timing diagram to show how a clock
with a long high-time can cause the value at the input of the first D latch to trickle
through more than one latch during the same clock cycle.

3.17 Repeat Exercise 3.16 using edge-triggered D flip-flops, and use a timing diagram to
show how the input of the first D flip-flop does not trickle through to the next flip-
flop no matter how long the clock signal is high.

Figure 3.100

D
C

Q(latch)

Q(FF)

Clk
D1

D2/Q1
D3/Q2

Q3

D Q Q1 D2D1 D Q Q2 D3 D Q Q3

Clk

C C C

Clk
D1

D2/Q1
D3/Q2

Q3

D Q Q1 D2D1 D Q Q2 D3 D Q Q3

Clk
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3.18 A circuit has an input X that is connected to the input of a D flip-flop. Using addi-
tional D flip-flops, complete the circuit so that an output Y equals the output of X’s
flip-flop but delayed by two clock cycles. 

3.19 Using four registers, design a circuit that stores the four values present at an 8-bit
input D during the previous four clock cycles. The circuit should have a single 8-bit
output that can be configured using two inputs s1 and s0 to output any one of the
four registers. (Hint: use an 8-bit 4x1 mux.)

3.20 Consider three 4-bit registers connected as in Figure 3.101. Assume the initial values
in the registers are unknown. Trace the behavior of the registers by completing the
timing diagram of Figure 3.102.

X

Clock

QD YQD QD

D QD D Q

Clk

D Q D Q

s0
s1

0 1 2 3

8 8 8 8

8

8
out

s0
s1

8-bit 4x1 mux

Figure 3.102

a3..a0

b3..b0
c3..c0
d3..d0

C

11 14 8 1 5 9 15 3 3 9 14 0 0 0 7 2 7

14 5 15 9 0 2

5

5

15

15 9

9

0

0

???

???

???

???

???

14

14
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3.21 Consider three 4-bit registers connected as in Figure 3.103. Assume the initial values
in the registers are unknown. Trace the behavior of the registers by completing the
timing diagram of Figure 3.104. 

Section 3.3: Finite-State Machines (FSMs)

3.22 Draw a timing diagram (showing inputs, state, and outputs) for the flight-attendant
call-button FSM of Figure 3.53 for the following scenario. Both inputs Call and
Cncl are initially 0. Call becomes 1 for 2 cycles. Both inputs are 0 for 2 more cycles,
then Cncl becomes 1 for 1 cycle. Both inputs are 0 for 2 more cycles, then both
inputs Call and Cncl become 1 for 2 cycles. Both inputs become 0 for 1 last cycle.
Assume any input changes occur halfway between two clock edges. 

3.23 Draw a timing diagram (showing inputs, state, and outputs) for the code-detector
FSM of Figure 3.58 for the following scenario. (Recall that when a button (or but-
tons) is pressed, a becomes 1 for exactly 1 clock cycle, no matter how long the but-
ton (or buttons) is pressed). Initially no button is pressed. The user then presses
buttons in the following order: red, green, blue, red. Noticing the final state of the
system, can you suggest an improvement to the system to better handle such incor-
rect code sequences?
Do not assign this exercise. The exercise refers to an earlier version of the figure,
which was changed when creating the second edition, and thus the exercise
description is not consistent with the figure. 

Figure 3.104

a3..a0

b3..b0
c3..c0
d3..d0

C

11 14 8 1 5 9 15 15 3 3 9 14 0 0 0 7 2 7

14

14
14

5

5
5

15

15

15
9

9

9

0

0

2???

???

??? ???

???

???

Clk
Call
Cncl
State

L
LightOff LightOn LightOff LightOn
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3.24 Draw a state diagram for an FSM that has an input X and an output Y. Whenever X
changes from 0 to 1, Y should become 1 for two clock cycles and then return to 0 --
even if X is still 1. (Assume for this problem and all other FSM problems that an
implicit rising clock is ANDed with every FSM transition condition.)

3.25 Draw a state diagram for an FSM with no inputs and three outputs x, y, and z. xyz
should always exhibit the following sequence: 000, 001, 010, 100, repeat. The out-
put should change only on a rising clock edge. Make 000 the initial state.

3.26 Do Exercise 3.25, but add an input I that can stop the sequence when set to 0. When
input I returns to 1, the sequence resumes from where it left off.

Inputs: X, Outputs: Y

A

Y=0

B
Y=1

C

Y=1X’

X

D
Y=0

X’

X
X

X’

Inputs: None, Outputs: x,y,z

xyz = 001

xyz = 010

xyz = 100

xyz = 000

A
B

C

D

Inputs: I, Outputs: x,y,z

xyz = 001 xyz = 010

xyz = 100

xyz = 000

A

B

C

D

I I

II
I’

I’

I’

I’
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3.27 Do Exercise 3.25, but add an input I that can stop the sequence when set to 0. When
I returns to 1, the sequence starts from 000 again..

3.28 A wristwatch display can show one of four items: the time, the alarm, the stopwatch,
or the date, controlled by two signals s1 and s0 (00 displays the time, 01 the alarm,
10 the stopwatch, and 11 the date—assume s1s0 control an N-bit mux that passes
through the appropriate register). Pressing a button B (which sets B  =  1) sequences
the display to the next item. For example, if the presently displayed item is the date,
the next item is the current time. Create a state diagram for an FSM describing this
sequencing behavior, having an input bit B, and two output bits s1 and s0. Be sure to
only sequence forward by one item each time the button is pressed, regardless of
how long the button is pressed—in other words, be sure to wait for the button to be
released after sequencing forward one item. Use short but descriptive names for
each state. Make displaying the time be the initial state.

Inputs: I, Outputs: x,y,z

xyz = 001 xyz = 010

xyz = 100

xyz = 000

A

B

C

D

I

II
I’

I

I’xyz = 001

B2

I’

I

xyz = 010

C2
I’

xyz = 100

D2

I’

I’
I

I’

I

Inputs: B, Outputs: s1,s0

Time

Alarm

s1s0=00

s1s0=01

Stopwatch

s1s0=10

Date

s1s0=11

Alarm2

s1s0=01

Stopwatch2

s1s0=10

Date2

s1s0=11

Time2

s1s0=00
B’

BB’
B

B’
B’

B
B

B’

B’B
B

B’

B’
B

B
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3.29 Extend the state diagram created in Exercise 3.28 by adding an input R. R=1 forces
the FSM to return to the state that displays the time.

3.30 Draw a state diagram for an FSM with an input gcnt and three outputs, x, y and z.
The xyz outputs generate a sequence called a Gray code in which exactly one of the
three outputs changes from 0 to 1 or from 1 to 0. The Gray code sequence that the
FSM should output is 000, 010, 011, 001, 101, 111, 110, 100, repeat. The output
should change only on a rising clock edge when the input gcnt = 1. Make the ini-
tial state 000.

3.31 Trace through the execution of the FSM created in Exercise 3.30 by completing the
timing diagram in Figure 3.107, where C is the clock input. Assume the initial state
is the state that sets xyz to 000.  

Inputs: B,R, Outputs: s1,s0

Time

Alarm

s1s0=00

s1s0=01

Stopwatch

s1s0=10

Date

s1s0=11

Alarm2

s1s0=01

Stopwatch2

s1s0=10

Date2

s1s0=11

Time2

s1s0=00
R+B’

R’BR+B’
R’B

R’B’ R’B’

R’B
R’B

R’B’

R’B’R’B
R’B

R’B’

R’B’
R’B

R’B

R

R
R

R

R

R

Inputs: gcnt
Outputs: x, y, z

A

B C
D

E

FG

H

gcnt’

gcnt

gcnt gcnt

gcnt

gcnt

gcnt
gcnt

gcnt
xyz=000 xyz=010 xyz=011

xyz=001

xyz=101
xyz=111xyz=110

xyz=100

gcnt’

gcnt’

gcnt’
gcnt’

gcnt’

gcnt’

gcnt’

Figure 3.105

gcnt

x
y
z

C
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3.32 Draw a timing diagram for the FSM in Figure 3.108with the FSM starting in state
Wait. Choose input values such that the FSM reaches state EN, and returns to Wait. 

3.33 For FSMs with the following numbers of states, indicate the smallest possible num-
ber of bits for a state register representing those states:

a. 4
b. 8
c. 9
d. 23
e. 900

a) 2 bits
b) 3 bits
c) 4 bits
d) 5 bits
e) 10 bits

3.34 How many possible states can be represented by a 16-bit register?
216 = 65,536 possible states

3.35 If an FSM has N states, what is the maximum number of possible transitions that
could exist in the FSM? Assume that no pair of states has more than one transition in
the same direction, and that no state has a transition point back to itself. Assuming
there are a large number of inputs, meaning the number of transitions is not limited
by the number of inputs? Hint: try for small N, and then generalize.
For two states A and B, there are only 2 possible transitions: A->B and B->A. For
three states A, B, and C, possible transitions are A->B, A->C, B->A, B->C, C->A,
and C->B, for 6 possible transitions. For each of N states, there can be up to N-1
transitions pointing to other states. Thus, the maximum possible is N*(N-1). 

3.36 *Assuming one input and one output, how many possible four-state FSMs exist?
The complete solution to this challenge problem is not provided.The solution
involves determining a way to enumerate all possible transitions from each state,
and all possible actions in a state. 

C
State Wait

s
r
a

en

Start C1 C2 C3 C4 EN Wait



3.1 Exercises b 53
3.37 *Suppose you are given two FSMs that execute concurrently. Describe an approach
for merging those two FSMs into a single FSM with identical functionality as the
two separate FSMs, and provide an example. If the first FSM has N states and the
second has M states, how many states will the merged FSM have?
The complete solution to this challenge problem is not provided. The solution
involves creating the “cross product” of the two FSMs. If the first FSM has states n0
and n1, and the second has states m0, m1, and m2, then the cross product is an FSM
having 2*3=6 states, which we might call n0m0, n0m1, n0m2, n1m0, n1m1, and
n1m2. In each state, the actions of the two states from which that state is composed
must all be included. Transitions must be combined also so that the transitions of the
original FSMs are obeyed in the new FSM. 

3.38 *Sometimes dividing a large FSM into two smaller FSMs results in simpler circuitry.
Divide the FSM shown in Figure 3.111 into two FSMs, one containing G0-G3, the
other containing G4-G7. You may add additional states, transitions, and inputs or
outputs between the two FSMs, as required. Hint: you will need to introduce signals
between the FSMs for one FSM to tell the other FSM to go to some state. 
The solution idea involves the first FSM going to some new “idle” state rather than
going to G4. Upon going to that idle state, the first FSM should tell the second FSM
to go to G4. Meanwhile, the second FSM should be waiting in some new state until
instructed to go to G4. Likewise, the second FSM should tell the first FSM when to
go from its idle state to G0. 

Section 3.4: Controller Design

3.39 Using the process for designing a controller, convert the FSM of Figure 3.109 to a
controller, implementing the controller using a state register and logic gates.

Step 1 - Capture the FSM
The appropriate FSM is given above.

Figure 3.107

Inputs: a
Outputs: y

A

B C

D

a

a’

a’
a

y=0

y=1 y=1

y=0
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Step 2A - Set up the architecture

Step 2B - Encode the states
A straightforward encoding is A=00, B=01, C=10, D=11.

Step 2C - Fill in the truth table

Step 2D - Implement the combinational logic
n1 = s1’s0a + s1s0’a’ + s1s0’a = s1’s0a + s1s0’
n0 = s1’s0’a’ + s1’s0a’ + s1s0’a’ + s1s0’a = s1’a’ + s1s0’
y = s1’s0a’ + s1’s0a + s1s0’a’ + s1s0’a = s1’s0 + s1s0’ = s1 xor s0

Combinational
Logic

a y

State Register

s1 s0

n1
n0

Inputs Outputs
s1 s0 a n1 n0 y
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 1 0 0 0

a

y

State Register

s1 s0

n1

n0
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3.40 Using the process for designing a controller, convert the FSM of Figure 3.110 to a
controller, implementing the controller using a state register and logic gates.

Step 1 - Capture the FSM
The appropriate FSM is given above.

Step 2A - Set up the architecture

Step 2B - Encode the states
A straightforward encoding is A=00, B=01, C=10, D=11.

Figure 3.108

Inputs: a,b
Outputs: y

A

B C

D

a

a’b

a’
a

y=0

y=1 y=1

y=0
a’b’

b’

b

Combinational
Logic

a y

State Register

s1 s0

n1
n0

b
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Step 2C - Fill in the truth table

Step 2D - Implement the combinational logic
n1 = s1’s0’a’b’ + s1’s0a + s1s0’
n0 = s1’s0’a’b + s1’s0a’ + s1s0’b
y = s1’s0 + s1s0’
Note: The above equations can be minimized further.

3.41 Using the process for designing a controller, convert the FSM you created for Exer-
cise 3.24 to a controller, implementing the controller using a state register and logic
gates.
Step 1 - Capture the FSM

The FSM was created during Exercise 3.25.

Inputs Outputs
s1 s0 a b n1 n0 y
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 1 1
0 1 0 1 0 1 1
0 1 1 0 1 0 1
0 1 1 1 1 0 1
1 0 0 0 1 0 1
1 0 0 1 1 1 1
1 0 1 0 1 0 1
1 0 1 1 1 1 1
1 1 0 0 0 0 0
1 1 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0

Inputs: None, Outputs: x,y,z

xyz = 001

xyz = 010

xyz = 100

xyz = 000

A
B

C

D
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Step 2A - Set up the architecture

Step 2B - Encode the states
A straightforward encoding is A=00, B=01, C=10, D=11.

Step 2C - Fill in the truth table

Step 2D - Implement the combinational logic
n1 = s1’s0 + s1s0’ = s1 XOR s0
n0 = s1’s0’ + s1s0’ = s0’
x = s1s0
y = s1s0’
z = s1’s0

Combinational
Logic

z

State Register

s1 s0

n1
n0

s2

y
x

Inputs Outputs
s1 s0 n1 n0 x y z
0 0 0 1 0 0 0
0 1 1 0 0 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 0
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3.42 Using the process for designing a controller, convert the FSM you created for Exer-
cise 3.28 to a controller, implementing the controller using a state register and logic
gates.
Step 1 - Capture the FSM

The FSM was created during Exercise 3.28.

Step 2A - Set up the architecture

Step 2B - Encode the states
A straightforward encoding is Time2=000, Alarm=001, Alarm2=010, Stop-
watch=011, Stopwatch2=100, Date=101, Date2=110, Time=111.

Inputs: B, Outputs: s1,s0

Time

Alarm

s1s0=00

s1s0=01

Stopwatch

s1s0=10

Date

s1s0=11

Alarm2

s1s0=01

Stopwatch2

s1s0=10

Date2

s1s0=11

Time2

s1s0=00
B’

BB’
B

B’
B’

B
B

B’

B’B
B

B’

B’
B

B

Combinational
Logic

B

State Register

s1 s0

n1
n0

s2

n2

s0
s1
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Step 2C - Fill in the truth table

Step 2D - Implement the combinational logic
n2 = s2’s1s0B’ + s2s1’ + s2s0’ + s2B
n1 = s1s0’ + s1B + s2s0B + s2’s1’s0B’
n0 = s0’B + s2’B + s1B + s2s1’s0B’
s1 = s2s0’ + s2s1’ + s2’s1s0
s0 = s1 XOR s0

3.43 Using the process for designing a controller, convert the FSM you created for Exer-
cise 3.30 to a controller, implementing the controller using a state register and logic
gates.
Step 1 - Capture the FSM

The FSM was created during Exercise 3.30.

Inputs Outputs
s2 s1 s0 B n2 n1 n0 s1 s0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1
0 0 1 1 0 0 1 0 1
0 1 0 0 0 1 0 0 1
0 1 0 1 0 1 1 0 1
0 1 1 0 1 0 0 1 0
0 1 1 1 0 1 1 1 0
1 0 0 0 1 0 0 1 0
1 0 0 1 1 0 1 1 0
1 0 1 0 1 0 1 1 1
1 0 1 1 1 1 0 1 1
1 1 0 0 1 1 0 1 1
1 1 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0

Inputs: gcnt
Outputs: x, y, z

A

B C
D

E

FG

H

gcnt’

gcnt

gcnt gcnt

gcnt

gcnt

gcnt
gcnt

gcnt
xyz=000 xyz=010 xyz=011

xyz=001

xyz=101
xyz=111xyz=110

xyz=100

gcnt’

gcnt’

gcnt’
gcnt’

gcnt’

gcnt’

gcnt’
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Step 2A - Set up the architecture

Step 2B - Encode the states
A straightforward encoding is A=000, B=001, C=010, D=011, E=100, F=101,
G=110, H=111.

Step 2C - Fill in the truth table

Step 2D - Implement the combinational logic
n2 = s2’s1s0gcnt + s2s1’ + s2s1s0’ + s2s1s0gcnt’
n1 = s2’s1’s0gcnt + s2’s1s0’ + s2’s1s0gcnt’ + s2s1’s0gcnt + s2s1s0’ + s2s1s0gcnt’
n0 = s2’s1’s0’gcnt + s2’s1’s0gcnt’ + s2’s1s0’gcnt + s2’s1s0gcnt’ + s2s1’s0’gcnt +
s2s1’s0gcnt’ + s2s1s0’gcnt + s2s1s0gcnt’
x = s2
y = s2’s1’s0 + s2’s1s0’ + s2s1’s0 + s2s1s0’
z = s2’s1 + s2s1’
Note: The above equations can be minimized further.

Combinational
Logic

gcnt

z

State Register

s1 s0

n1
n0

s2

n2

y
x

Inputs Outputs
s2 s1 s0 gcnt n2 n1 n0 x y z

A
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0

B
0 0 1 0 0 0 1 0 1 0
0 0 1 1 0 1 0 0 1 0

C
0 1 0 0 0 1 0 0 1 1
0 1 0 1 0 1 1 0 1 1

D
0 1 1 0 0 1 1 0 0 1
0 1 1 1 1 0 0 0 0 1

E
1 0 0 0 1 0 0 1 0 1
1 0 0 1 1 0 1 1 0 1

F
1 0 1 0 1 0 1 1 1 1
1 0 1 1 1 1 0 1 1 1

G
1 1 0 0 1 1 0 1 1 0
1 1 0 1 1 1 1 1 1 0

H
1 1 1 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1 0 0



3.1 Exercises b 61
3.44 Using the process for designing a controller, convert the FSM in Figure 3.111 to a
controller, stopping once you have created the truth table. Note: your truth table will
be quite large, having 32 rows -- you might therefore want to use a computer tool,
like a word processor or spreadsheet, to draw the table.

Step 1 - Capture the FSM
The FSM is given in Figure 3.111.

Step 2A - Set up the architecture

Step 2B - Encode the states
A straightforward encoding is G0=000, G1=001, G2=010, G3=011, G4=100,
G5=101, G6=110, G7=111.

Figure 3.111

G0

G1

G2 G3 G4 G5

Inputs: g,r
Outputs: x,y,z

G6
xyz=110

G7

xyz=000

xyz=100

xyz=010 xyz=011 xyz=111 xyz=101 xyz=001

gr’

gr’

gr’
gr’ gr’ gr’ gr’

r
r r r r r

g

g’+r

g’r’ g’r’ g’r’ g’r’ g’r’ g’

g’r’

Combinational
Logic

g

z

State Register

s1 s0

n1
n0

s2

n2

y
x

r
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Step 2C - Fill in the truth table

Inputs Outputs
s3 s2 s1 g r n2 n1 n0 x y z

G0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0

G1

0 0 1 0 0 0 0 1 1 0 0
0 0 1 0 1 0 0 0 1 0 0
0 0 1 1 0 0 1 0 1 0 0
0 0 1 1 1 0 0 0 1 0 0

G2

0 1 0 0 0 0 1 0 1 1 0
0 1 0 0 1 0 0 0 1 1 0
0 1 0 1 0 0 1 1 1 1 0
0 1 0 1 1 0 0 0 1 1 0

G3

0 1 1 0 0 0 1 1 0 1 0
0 1 1 0 1 0 0 0 0 1 0
0 1 1 1 0 1 0 0 0 1 0
0 1 1 1 1 0 0 0 0 1 0

G4

1 0 0 0 0 1 0 0 0 1 1
1 0 0 0 1 0 0 0 0 1 1
1 0 0 1 0 1 0 1 0 1 1
1 0 0 1 1 0 0 0 0 1 1

G5

1 0 1 0 0 1 0 1 1 1 1
1 0 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 1 0 1 1 1
1 0 1 1 1 0 0 0 1 1 1

G6

1 1 0 0 0 1 1 0 1 0 1
1 1 0 0 1 0 0 0 1 0 1
1 1 0 1 0 1 1 1 1 0 1
1 1 0 1 1 0 0 0 1 0 1

G7

1 1 1 0 0 1 1 1 0 0 1
1 1 1 0 1 1 1 1 0 0 1
1 1 1 1 0 0 0 0 0 0 1
1 1 1 1 1 0 0 0 0 0 1
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3.45 Create an FSM that has an input X and an output Y. Whenever X changes from 0 to 1,
Y should become 1 for five clock cycles and then return to 0 -- even if X is still 1.
Using the process for designing a controller, convert the FSM to a controller, stop-
ping once you have created the truth table. 
Step 1 - Capture the FSM

Step 2A - Set up the architecture

Step 2B - Encode the states
A straightforward encoding is Wait=000, Y1=001, Y2=010, Y3=011, Y4=100,
Y5=101, Wait2=110.

Inputs: X
Outputs: Y

Wait

x’

y=0

Y1
x

Y2
Y3

Y4
Y5Wait2

x
x’

y=0 y=1

y=1 y=1

y=1

y=1

Combinational
Logic

X

State Register

s1 s0

n1
n0

s2

n2

Y
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Step 2C - Create the state table

Step 2D - Implement the combinational logic
n2 = s2s1’ + s2’s1s0 + s2s0’X’
n1 = s1’s0 + s2’s1s0’ + s1s0’X’
n0 = s2s1’s0’ + s2’s1s0’ + s2’s0’X
Y = (s2 xor s1) + s2’s0

Inputs Outputs
s2 s1 s0 X n2 n1 n0 Y

Wait
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0

Y1
0 0 1 0 0 1 0 1
0 0 1 1 0 1 0 1

Y2
0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 1

Y3
0 1 1 0 1 0 0 1
0 1 1 1 1 0 0 1

Y4
1 0 0 0 1 0 1 1
1 0 0 1 1 0 1 1

Y5
1 0 1 0 1 1 0 1
1 0 1 1 1 1 0 1

Wait2
1 1 0 0 1 1 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
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3.46 The FSM in Figure 3.112 has two problems: one state has non-exclusive transitions,
and another state has incomplete transitions. By ORing and ANDing the conditions
for each state’s transitions, prove that these problems exist. Then, fix these problems
by refining the FSM, taking your best guess as to what was the FSM creator’s intent. 

If we AND each pair of transitions with each other in state A, we get:
a * a’b = 0*b = 0
a’b * b’ = a’*0 = 0
a*b’ = ab’, which is not equal to 0. 
State A’s transitions are thus not exclusive, i.e., both a and b’ could be simultane-
ously true. 

ORing state B’s transitions yields:
a+a’ = 1
ORing state C’s transitions yields:
b
Clearly, state C’s transitions are not completely specified, because their ORing
doesn’t result in 1. If b is 0, the FSM doesn’t indicate what to do from state C. 

We can address both of these problems with the following changes. The designer
likely wanted to stay in state A when a is true, and go to B on a’b and go to C on
a’b’. The designer likely wanted to stay in state C when b is 0. 

Figure 3.112

Inputs: a,b
Outputs: y

A

B C

D

a

a’b

a’
a

y=0

y=1 y=1

y=0
b’

b

Inputs: a,b
Outputs: y

A

B C

D

a

a’b

a’
a

y=0

y=1 y=1

y=0
a’b’

b

b’
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3.47 Reverse engineer the poorly-designed three-cycles high circuit in Figure 3.41 to an
FSM. Explain why the behavior of the circuit, as described by the FSM, is undesir-
able.
Step 2D was already completed, so we’ll begin with Step 2C:

Step 2C - Fill in the truth table
Note that this circuit does not have the standard structure of a controller. However,
we could say that the three flip-flops represent a 3-bit state register (so the leftmost
flip-flop’s value is the s2 signal, the middle flip-flop’s value is the s1 signal, and the
rightmost flip-flop’s value is the s0 signal. Similarly, the input to the leftmost flip-
flop, b, is n2, the signal from the output of the leftmost flip-flop to the input of the
middle flip-flop is n1, and the signal from the output of the middle flip-flop is n0).

n2 = b; n1 = s2; n0 = s1; x = s2 + s1 + s0

Step 2B - Encode the states
A straightforward encoding is A=000, B=001, C=010, D=011, E=100, F=101,
G=110, H=111

Step 2A - Set up the architecture

Inputs Outputs
s2 s1 s0 b n2 n1 n0 x
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1
0 0 1 1 1 0 0 1
0 1 0 0 0 0 1 1
0 1 0 1 1 0 1 1
0 1 1 0 0 0 1 1
0 1 1 1 1 0 1 1
1 0 0 0 0 1 0 1
1 0 0 1 1 1 0 1
1 0 1 0 0 1 0 1
1 0 1 1 1 1 0 1
1 1 0 0 0 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1



3.1 Exercises b 67
Step 1: Capture the FSM

The behavior of this circuit is undesirable because if, after transitioning from A and
before transitioning back to A, the user presses the button again, the output will stay
on for more than three cycles.

State register

Combinational logic 

s1s2

n0
n1

FSM
outputs

in
pu

ts

b
x

FS
M

clk
s0

n2

Inputs: b, Outputs: x

A

x=0 B

x=1

C

x=1

D

x=1

H

x=1

G

x=1

F

x=1E

x=1

b’

b

b’

b

b’

b’

b
b

b’

b

b

b’

b

b’
b’

b
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3.48 Reverse engineer the behavior of the sequential circuit shown in Figure 3.113.

For this problem, we carry out the controller design process in reverse. We already
have step 2D completed above, so we will begin with step 2C.

Step 2C - Fill in the truth table

Step 2B - Encode the states
We will name the encodings as states as follows: 00=A, 01=B, 10=C, and 11=D.

Step 2A- Set up the architecture
The architecture has already been defined

Figure 3.113

State register

Combinational logic 

s0s1

n0

n1
FSM

outputs

in
pu

ts

a
y

FS
M

clk

Inputs Outputs
s1 s0 a n1 n0 y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 0 0 1
1 0 1 1 0 1
1 1 0 0 0 0
1 1 1 0 0 0
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Step 1 - Capture the FSM

Section 3.5: More on Flip-Flops and Controllers

3.49 Use a timing diagram to illustrate how metastability can yield incorrect output for
the secure car key controller of Figure 3.69. Use a second timing diagram to show
how the synchronizer flip-flop introduced in Figure 3.84 may reduce the likelihood
of such incorrect output. 
Without Synchronizer:

With Synchronizer:

Note that in this case, even though metastability caused the Synchronizer flip-flop to
end in zero (which caused us to miss the pulse on “a”), at least our state register did
not go metastable, and as a result we did not experience incorrect output.

Inputs: a
Outputs: y

A B

D C

y=0 y=0

y=1y=0

a’ a

a’

a

a

a’

Clk

s2

r

s1
s0

a

Clk

s2

r

s1
s0

a

Synchronizer
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3.50 Design a controller with a 4-bit state register that gets synchronously initialized to
state 1010 when an input reset is set to 1. 

3.51 Redraw the laser-timer controller timing diagram of Figure 3.63 for the case of the
output being registered as in Figure 3.88.

One more clock pulse has been added to show that the change of x is delayed by 1 pulse. 

D Q

S

State

D Q

R

D Q

S

D Q

R

s3 s2 s1 s0

Register
reset

Controller

combinational logic

n0
n1
n2
n3

Clk
b

x
State Off Off On1 On2
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3.52 Draw a timing diagram for three clock cycles of the sequence generator controller of
Figure 3.68 assuming that AND gates have a delay of 2 ns and inverters (including
inversion bubbles) have a delay of 1 ns. The timing diagram should show the incor-
rect outputs that appear temporarily due to glitching. Then, introduce registered out-
puts to the controller using flip-flops at the outputs, and show a new timing diagram,
which should no longer have glitches (but the output may be shifted in time). 
Let’s assume the delay of an XOR gate is the same as for an AND gate.
Unregistered Output:

Registered Output:

Note that we do not register the n1 or n0 outputs -- they are inputs to the state regis-
ter.
Also note that the glitch here is not a temporary spurious ouput value on one control
line, but a temporary spurious value on (wxyz) due to the varying delays for each of
w, x, y, and z.

Clk

x

s1s0 00 01 10 11

w

y
z

n1
n0

Clk

x

s1s0 00 01 10 11

w

y
z

n1
n0
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CHAPTER

4

DATAPATH COMPONENTS

4.1 EXCERCISES
Exercises marked with an asterisk (*) represent especially challenging problems. 

For exercises relating to datapath components, each problem indicates whether the
problem emphasizes the component’s internal design or the component’s use. 

Section 4.2: Registers

4.1. Trace the behavior of an 8-bit parallel load register with 8-bit input I, 8-bit output Q,
and load control input ld by completing the timing diagram in Figure 4.95.

I
ld

clk

5 124 92 01 65 0 21

Q ??? 124 65 92 0

Figure 4.95
67



68 c 4 Datapath Components
4.2 Trace the behavior of an 8-bit parallel load register with 8-bit input I, 8-bit output Q,
load control input ld, and synchronous clear input clr by completing the timing dia-
gram in Figure 4.96.

4.3 Design a 4-bit register with 2 control inputs s1 and s0, 4 data inputs I3, I2, I1 and I0,
and 4 data outputs Q3, Q2, Q1 and Q0. When s1s0=00, the register maintains its
value. When s1s0=01, the register loads I3..I0. When s1s0=10, the register clears
itself to 0000. When s1s0=11, the register complements itself, so for example 0000
would become 1111, and 1010 would become 0101. (Component design problem).

4.4 Repeat the previous problem, but when s1s0=11, the register reverses its bits, so
1110 would become 0111, and 1010 would become 0101. (Component design prob-
lem).

I
ld

clk

5 124 92 01 65 0 21

Q

clr

??? 124 0 01

Figure 4.96

Q

D
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s0

3 2 1 0
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Q

D

s1
s0

3 2 1 0

0

Q

D

s1
s0

3 2 1 0

0

Q

D

s1
s0

3 2 1 0

0

I3 I2 I1 I0

Q3 Q2 Q1 Q0

s1
s0

Q

D

s1
s0

3 2 1 0

0

Q

D

s1
s0

3 2 1 0

0

Q

D

s1
s0

3 2 1 0

0

Q

D

s1
s0

3 2 1 0

0

I3 I2 I1 I0

Q3 Q2 Q1 Q0

s1
s0
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4.5 Design an 8-bit register with 2 control inputs s1 and s0, 8 data inputs I7..I0, and 8
data outputs Q7..Q0. s1s0=00 means maintain the present value, s1s0=01 means
load, and s1s0=10 means clear. s1s0=11 means to swap the high nibble with the low
nibble (a nibble is 4 bits), so 11110000 would become 00001111, and 11000101
would become 01011100. (Component design problem).

4.6 The radar gun used by a police officer outputs a radar signal and measures the speed
of the cars as they pass. However, when the officer wants to ticket an individual for
speeding, he must save the measured speed of the car on the radar unit. Build a sys-
tem to implement a speed save feature for the radar gun. The system has an 8-bit
speed input S, an input B from the save button on the radar gun, and an 8-bit output
D that will be sent to the radar gun’s speed display. (Component use problem).

s1
s0

Q

D

s1
s0

3 2 10

Q

D

s1
s0

3 2 10

Q

D

s1
s0

3 2 10

Q

D

s1
s0

3 2 10

Q

D

s1
s0

3 2 10

Q

D

s1
s0

3 2 10

Q

D

s1
s0

3 2 10

Q

D

s1
s0

3 2 10

00000000

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

I6 I5 I4 I3 I2 I1I7 I0

ld

Q7 Q6 Q5 Q2 Q1 Q0Q4 Q3

I7 I6 I5 I2 I1 I0I4 I3

S7 S6 S4 S3 S2 S1 S0S5

D7 D6 D4 D3 D2 D1 D0D5

B
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4.7 Design a system with an 8-bit input I that can be stored in 8-bit registers A, B, and/or
C when input La, Lb, and/or Lc is 1, respectively. So if inputs La and Lb are 1, then
registers A and B will be loaded with input I, but register C will keep its current
value. Furthermore, if input R is 1, then the register values swap such that A=B,
B=C, and C=A. Input R has priority over the L inputs. The system has one clock
input also. (Component use problem.)

Section 4.3: Adders

4.8 Trace the values appearing at the outputs of a 3-bit carry-ripple adder for every one-
full-adder-delay time period when adding 111 with 011. Assume all inputs were pre-
viously 0 for a long time.

ld
Q

I

A (8 bits)

i0 i1
s

d

ld
Q

I

B (8 bits) ld
Q

I

C (8 bits)

I

8-bit mux
i0 i1

s
d

8-bit mux
i0 i1

s
d

8-bit mux

R

La

Lb

Lc

a b ci

sco

a b ci

sco

a b

sco

1 1 10 1 1

0010

a b ci

sco

a b ci

sco

a b

sco

1 1 10 1 1

0101

a b ci

sco

a b ci

sco

a b

sco

1 1 10 1 1

0101

Second DelayFirst Delay

Third Delay

11 11

11
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4.9 Assuming all gates have a delay of 1 ns, compute the longest time required to add
two numbers using an 8-bit carry-ripple adder.
An 8-bit carry-ripple adder contains 7 full adders and 1 half adder. Each full adder
has 2 gate delays and the half adder has 1 gate delay. Therefore a minimum of (7 FA
* 2 gate delay/FA * + 1 HA * 1 gate delay/HA) * 1ns/gate delay = 15 ns is required
to ensure that the carry-ripple adder’s sum is correct.

4.10 Assuming AND gates have a delay of 2 ns, OR gates have a delay of 1 ns, and XOR
gates have a delay of 3 ns, compute the longest time required to add two numbers
using an 8-bit carry-ripple adder.

From the illustration above, we see that both the FA and HA have a maximum gate
delay of 3 ns. Therefore, 8 adders * 3 ns/adder = 24 ns is required for an 8-bit carry-
ripple adder to ensure a correct sum is on the adder’s output.

An answer of 23 ns is also acceptable since the carry out of a half-adder will be cor-
rect after 2 ns, not 3 ns, and a half-adder may be used for adding the first pair of bits
(least significant bits) if the 8-bit adder has no carry-in.

4.11 Design a 10-bit carry-ripple adder using 4-bit carry-ripple adders. (Component use
problem).

a b ci

co s

a b

co s

2 3
3

1

222

Full Adder Half Adder

co
s2 s1s3

a3 a2 a1 b2 b1 b0a0 b3

a3 a2 a0 b3 b2 b1 b0a1

s3 s2 s1 s0

ci
s0

co
s2 s1s3

a3 a2 a1 b2 b1 b0a0 b3

a7 a6 a4 b7 b6 b5 b4a5

s7 s6 s5 s4

ci
s0

co
s2 s1s3

a3 a2 a1 b2 b1 b0a0 b3

0 0
a8

0 0
b9 b8a9

co s9 s8

ci
s0

04-bit adder 4-bit adder 4-bit adder
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4.12 Design a system that computes the sum of three 8-bit numbers using 8-bit carry-rip-
ple adders. (Component use problem).

4.13 Design an adder that computes the sum of four 8-bit numbers, using 8-bit carry-rip-
ple adders. (Component use problem).

Another correct solution would add C+D, and then add the results to the result of
A+B. That solution also uses just three adders, but actually has less delay. 

co
s2 s1s3

b7 b6 b5 b2 b1 b0b4 b3

b7 b6 b4 b3 b2 b1 b0b5

ci
s0

0

a7 a6 a5 a2 a1 a0a4 a3

a7 a6 a4 a3 a2 a1 a0a5

s6 s5s7 s4

c7 c6 c4 c3 c2 c1 c0c5

co
s2 s1s3

b7 b6 b5 b2 b1 b0b4 b3

ci
s0

a7 a6 a5 a2 a1 a0a4 a3

s6 s5s7 s4

co s7 s6 s5 s1s3 s2 s0s4

8-bit adder

8-bit adder

co
s2 s1s3

ci
s0

0

a6 a5 a2 a1 a0a4

a7 a6 a4 a3 a2 a1 a0a5

s6 s5s7 s4
8-bit adder

a3a7 b6 b5 b2 b1 b0b4

b7 b6 b4 b3 b2 b1 b0b5

b3b7

co
s2 s1s3

ci
s0

a6 a5 a2 a1 a0a4

s6 s5s7 s4
8-bit adder

a3a7 b6 b5 b2 b1 b0b4 b3b7

c7 c6 c4 c3 c2 c1 c0c5d7 d6 d4 d3 d2 d1 d0d5

co
s2 s1s3

ci
s0

a6 a5 a2 a1 a0a4

s6 s5s7 s4
8-bit adder

a3a7 b6 b5 b2 b1 b0b4 b3b7

co s7 s6 s5 s1s3 s2 s0s4
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4.14 Design a digital thermometer system that can compensate for errors in the tempera-
ture sensing device’s output T, which is an 8-bit input to the system. The compensa-
tion amount can be positive only and comes to the system as a 3-bit binary number
c, b, and a (a is the least significant bit), which come from a 3-pin DIP switch. The
system should output the compensated temperature on an 8-bit output U. (Compo-
nent use problem).

co
s2 s1s3

b7 b6 b5 b2 b1 b0b4 b3

0 0 0 0
a

0

ci
s0

0

a7 a6 a5 a2 a1 a0a4 a3

T7 T6 T4 T3 T2 T1 T0T5

s6 s5s7 s4

U7 U6 U5 U1U3 U2 U0U4

DIP Switches

bc

from Temperature Sensor

8-bit adder
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4.15 We can add three 8-bit numbers by chaining one 8-bit carry-ripple adder to the out-
put of another 8-bit carry-ripple adder. Assuming every gate has a delay of 1 time-
unit, compute the longest delay of this three 8-bit number adder. Hint: you may have
to look carefully inside the carry-ripple adders, even inside the full-adders, to cor-
rectly compute the longest delay (Component use problem).

The above shows two 8-bit adders chained together to form a three 8-bit number
adder. Each adder is made from eight full adders, whose configuration is shown at
the bottom left. The bottom right shows the internal design of a full adder. Thus, the
carry out of each stage requires 2 time units (following the problem’s assumption of
1 time unit per gate), and the sum output requires 1 time unit. 

The longest delay in a full adder is 2 time units, from carry-in to carry-out. Since
only 1 of the 8 full-adders in the top 8-bit adder has its carry-out unconnected (for a
delay of 1 time unit), the delay from the top adder is 7*2 + 1 = 15 time units. The
lower adder has its carry-out connected, however, giving the lower adder a delay of
8*2 = 16 time units. Thus, our adder has a total delay of 15 + 16 = 31 time units.
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b7 b6 b5 b2 b1 b0b4 b3
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co s7 s6 s5 s1s3 s2 s0s4
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Section 4.4: Comparators

4.16 Trace through the execution of the 4-bit magnitude comparator shown in Figure 4.45
when a=15 and b=12. Be sure to show how the comparisons propagate thought the
individual comparators.

4.17 Design a system that determines if three 4-bit numbers are equal, by connecting 4-bit
magnitude comparators together and using additional components if necessary.
(Component use problem).

4.18 Design a 4-bit carry-ripple style magnitude comparator that has two outputs, a
greater-than or equal-to output gte, and a less-than or equal-to output lte. Be sure to
clearly show the equations used in developing the individual 1-bit comparators and
how they are connected to form the 4-bit circuit. (Component design problem).
For each 1-bit comparator, assuming gte means “a >= b” and lte means “a <= b”, gt
= igt+((a XNOR b)*a*b’), lt = ilt+((a XNOR b)*a’*b), e = ie*(a XNOR b). Recall
that XNOR detects equality. a*b’ detects a>b. a’*b detects a<b. 
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4.19 Design a circuit that outputs 1 if the circuit’s 8-bit input equals 99: (a) using an
equality comparator, (b) using gates only. Hint: In the case of (b), you need only 1
AND gate and some inverters. (Component use problem).

4.20 Use magnitude comparators and logic to design a circuit that computes the minimum
of three 8-bit numbers. (Component use problem).

4.21 Use magnitude comparators and logic to design a circuit that computes the maxi-
mum of two 16-bit numbers. (Component use problem). 
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4.22 Use magnitude comparators and logic to design a circuit that outputs 1 when an 8-bit
input a is between 75 and 100, inclusive. (Component use problem).

4.23 Design a human body temperature indicator system for a hospital bed. Your system
takes an 8-bit input representing the temperature, which can range from 0 to 255. If
the measured temperature is 95 or less, set output A to 1. If the temperature is 96 to
104, set output B to 1. If the temperature is 105 or above, set output C to 1. Use 8-bit
magnitude comparators and additional logic as required. (Component use problem). 
A being 95 or less is the same as being less than 96. B should be 1 if the input is
equal or greater than 96, AND if the input is less than 105. C is 1 if the input is equal
to 105 OR if the output is greater than 105. 
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4.24 You are working as a weight guesser in an amusement park. Your job is to try to
guess the weight of an individual before they step on a scale. If your guess is not
within ten pounds of the individual’s actual weight (higher or lower), the individual
wins a prize. So if you guess 85 and the actual weight is 95, the person does not win;
if you’d guessed 84, the person wins. Build a weight guess analyzer system that out-
puts whether the guess was within ten pounds. The weight guess analyzer has an 8-
bit guess input G, an 8-bit input from the scale W with the correct weight, and a bit
output C that is 1 if the guessed weight was within the defined limits of the game.
Use 8-bit magnitude comparators and additional logic and components as required.
(Component use problem.)
The solution checks if the guess plus 10 is greater than or equal to the actual weight,
AND if guess is less than or equal to the actual weight plus 10. An alternative solu-
tion would would use a subtractor instead of the adder on the left, comparing G with
W-10 rather than comparing G+10 with W. 

Section 4.5: Multiplier—Array Style

4.25 Assuming all gates have a delay of 1 time-unit, which of the following designs will
compute the 8-bit multiplication A*9 faster: (a) a circuit as designed in Exercise
4.45 or (b) an 8-bit array style multiplier with one of its inputs connected to a con-
stant value of nine. 
(a) The circuit designed in Exercise 4.45 requires 16 time-units (all for the adder’s
computation)
(b) An 8-bit array style multplier requires 1 time-unit to compute the partial prod-
ucts (9 + 10 + 11 + 12 + 13 + 14 + 15) * 2 = 168 time-units to add the partial prod-
ucts, for a total of 169 time-units. Clearly, the circuit designed in Exercise 4.45 will
compute the multiplication faster.
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4.26 Design an 8-bit array-style multiplier. (Component design problem).

a7 a6 a5 a4 a3 a2 a1 a0
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4.27 Design a circuit to compute F = (A * B * C) + 3*D + 12. A, B, C, and D are 16-bit
inputs, and F is a 16-bit output. Use 16-bit multiplier and adder components, and
ignore overflow issues. 

Section 4.6: Subtractors

4.28 Convert the following two’s complement binary numbers to decimal numbers:
a. 00001111
b. 10000000
c. 10000001
d. 11111111
e. 10010101

a) 15
b) -128
c) -127
d) -1
e) -107

4.29 Convert the following two’s complement binary numbers to decimal numbers:
a. 01001101
b. 00011010
c. 11101001
d. 10101010
e. 11111100

a) 77
b) 26
c) -23
d) -86
e) -4

*

*

*

A B C 3 D

+

+

12

F

16 16 16 16 16

16
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4.30 Convert the following two’s complement binary numbers to decimal numbers:
a. 11100000
b. 01111111
c. 11110000
d. 11000000
e. 11100000

a) -32
b) 127
c) -16
d) -64
e) -32

4.31 Convert the following 9-bit two’s complement binary numbers to decimal numbers:
a. 011111111
b. 111111111
c. 100000000
d. 110000000
e. 111111110

a) 255
b) -1
c) -256
d) -128
e) -2

4.32 Convert the following decimal numbers to 8-bit two’s complement binary form:
a. 2
b. -1
c. -23
d. -128
e. 126
f. 127
g. 0

a) 00000010
b) 1111111
c) 11101001
d) 10000000
e) 01111110
f) 01111111
g) 00000000
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4.33 Convert the following decimal numbers to 8-bit two’s complement binary form:
a. 29
b. 100
c. 125
d. -29
e. -100
f. -125
g. -2

a) 00011101
b) 01100100
c) 01111101
d) 11100011
e) 10011100
f) 10000011
g) 11111110

4.34 Convert the following decimal numbers to 8-bit two’s complement binary form:
a. 6
b. 26
c. -8
d. -30
e. -60
f. -90

a) 00000110
b) 00011010
c) 11111000
d) 11100010
e) 11000100
f) 10100110

4.35 Convert the following decimal numbers to 9-bit two’s complement binary form:
a. 1
b. -1
c. -256
d. -255
e. 255
f. -8
g. -128

a) 000000001
b) 111111111
c) 100000000
d) 100000001
e) 011111111
f) 111111000
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4.36 Repeat Exercise 4.14, except that the compensation amount can be positive or nega-
tive, coming to the system via four inputs d, c, b, and a from a 4-pin DIP switch (d is
the most significant bit). The compensation amount is in two’s complement form (so
the person setting the DIP switch must know that). Design the circuit. What is the
range by which the input temperature can be compensated? (Component use prob-
lem).

The 4-bit input must be extended to the 8-bit input of the adder. If the high-order bit
d of the 4-bit input is 0, then b7-b3 should all be 0. If the high-order bit d is 1, then
b7-b3 should all be 1. The temperature can be compensated from -8 to +7 degrees.

co
s2 s1s3

b7 b6 b5 b2 b1 b0b4 b3

a

ci
s0

0

a7 a6 a5 a2 a1 a0a4 a3

T7 T6 T4 T3 T2 T1 T0T5

s6 s5s7 s4

U7 U6 U5 U1U3 U2 U0U4

DIP Switches

bc

from Temperature Sensor

8-bit adder
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4.37 Create the internal design of a full-subtractor. (Component design problem).

d = a’b’wi + a’bwi’ + ab’wi’ + abwi
wo = a’b’wi + a’bwi’ + a’bwi + abwi

4.38 Create an absolute value component abs with an 8-bit input A that is a signed binary
number, and an 8-bit output Q that is unsigned and that is the absolute value of A. So
if the input is 00001111 (+15) then the output is also 00001111 (+15), but if the input
is 11111111 (-1) then the output is 00000001 (+1). 

Inputs Outputs
a b wi d wo
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

a
b

wi

d wo

s
i0 i1

d
1x2 8-bit mux

+

1

A

Q

8

1 (MSB)
8

8

8

abs
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4.39 Using 4-bit subtractors, build a circuit that has three 8-bit inputs, A, B, and C, and a
single 8-bit output F, where F=(A-B)-C. (Component use problem.)
First compose the 4-bit subtractors into an 8-bit subtractor, then use 8-bit subtractors
in the design. 

Section 4.7: Arithmetic-Logic Units—ALUs

4.40 Design an ALU with two 8-bit inputs A and B, and control inputs x, y, and z. The
ALU should support the operations described in Table 4.3. Use an 8-bit adder and an
arithmetic/logic extender. (Component design problem). 

Table 4.3

Inputs Operation
x y z

0 0 0 S = A - B

0 0 1 S = A + B

0 1 0 S = A * 8

0 1 1 S = A / 8

1 0 0 S = A NAND B (bitwise NAND)

1 0 1 S = A XOR B (bitwise XOR)

1 1 0 S = Reverse A (bit reversal)

1 1 1 S = NOT A (bitwise complement)

a b
4-bit

subtractor
d

wo wi

a b
4-bit

subtractor
d

wo wi 0

a7...a4 b7.b4 a3...a0 b3...b0

a b
4-bit

subtractor
d

wo wi

a b
4-bit

subtractor
d

wo wi 0

c7...c4 c3..c0

s7...s4 s3...s0
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Operation of the AL-extender:
When xyz=000, ao=a, bo=b’, co=1
When xyz=001, ao=a, bo=b, co=0
When xyz=010, ao=a<<3, bo=0, co=0
When xyz=011, ao=a>>3, bo=0, co=0
When xyz=100, ao=a NAND b, bo=0, co=0
When xyz=101, ao=a XOR b, bo=0, co=0
When xyz=111, ao=a reversed, bo=0, co=0
When xyz=111, ao=NOT a, bo=0, co=0

4.41 Design an ALU with two 8-bit inputs A and B, and control signals x, y, and z. The
ALU should support the operations described in Table 4.4. Use an 8-bit adder and an
arithmetic/logic extender. (Component design problem).

Table 4.4

Inputs Operation
x y z

0 0 0 S = A + B

0 0 1 S = A AND B (bitwise AND)

0 1 0 S = A NAND B (bitwise NAND)

0 1 1 S = A OR B (bitwise OR)

1 0 0 S = A NOR B (bitwise NOR)

1 0 1 S = A XOR B (bitwise XOR)

1 1 0 S = A XNOR B (bitwise XNOR)

1 1 1 S = NOT A (bitwise complement)

A

S

x

a b
8-bit

adder
s

co ci

a b
8-bit

AL-extender
s2

co

B

y
z s0

s1

ao bo
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Operation of the AL-extender:
When xyz=000, ao=a, bo=b’, co=1
When xyz=001, ao=a AND b, bo=0, co=0
When xyz=010, ao=a NAND b, bo=0, co=0
When xyz=011, ao=a OR b, bo=0, co=0
When xyz=100, ao=a NOR b, bo=0, co=0
When xyz=101, ao=a XOR b, bo=0, co=0
When xyz=110, ao=a XNOR b, bo=0, co=0
When xyz=111, ao=NOT a, bo=0, co=0

4.42 An instructor teaching Boolean algebra wants to help her students learn and under-
stand basic Boolean operators by providing the students with a calculator capable of
performing bitwise AND, NAND, OR, NOR, XOR, XNOR, and NOT operations.
Using the ALU specified in Exercise 4.41, build a simple logic calculator using
DIP-switches for input and LEDs for output. The logic calculator should have three
DIP-switch inputs to select which logic operation to perform. (Component use prob-
lem).
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a b
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Section 4.8: Shifters

4.43 Design an 8-bit shifter that shifts its inputs two bits to the right (shifting in 0s) when
the shifter's shift control input is 1 (Component design problem).

4.44 Design a circuit that outputs the average of four 8-bit inputs representing unsigned
binary numbers:

a. Ignoring overflow issues.
b. Using wider internal components or wires to avoid losing information due to

overflow.
(Component use problem.).

a.)

b.)We can use the same circuit from a), but now we prefix the output bus of each
adder with the carry-out bit of that adder, thus adding one bit of precision at each
level of additions..

i2 i1 i0i3

01 01 01 01

0 0

q3 q2 q1 q0

sh

i6 i5 i4i7

01 01 01 01

q7 q6 q5 q4

+ +

+
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8 8 8 8
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I1 I2 I3 I4

O
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4.45 Design a circuit whose 16-bit output is nine times its 16-bit input D representing an
unsigned binary number. Ignore overflow issues. (Component use problem.)
Use a left shift by 3 to obtain 8D, then add D to the result to obtain 8D+D=9D.

4.46 Design a special multiplier circuit that can multiply its 16-bit input by 1, 2, 4, 8, or
16, or 32, specified by three inputs a, b, c (abc=000 means no multiply, abc=001
means multiply by 2, abc=010 means by 4, abc=011 means by 8, abc=100 means by
16, abc=101 means by 32). Hint: A simple solution consists entirely of just one copy
of a component from this chapter. (Component use problem).
The solution just uses a single barrell shifter component. The internals of such a
component are shown below for convenience. 

D2 D1 D0D3

0 0

D6 D5 D4D7

0

a6 a5 a4 a3 a2 a1 a0a7 b6 b5 b4 b3 b2 b1 b0b7

cico
s6 s5 s4 s3 s2 s1 s0s7

0

0

s7s6 s5 s4 s3 s2 s1 s0
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I

sh in<< 4

sh in<< 2

sh in<< 1

0

0

0

a

b

c

O

Barrel shifter component
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4.47 Use strength reduction to create a circuit that computes P = 27*Q using only shifts
and adds. P is a 12-bit output and Q is a 12-bit input. Estimate the transistors in the
circuit and compare to the estimated transistors in a circuit using a multiplier. 
We can implement 27*Q as (16 + 8 + 2 + 1)*Q = (Q*16 + Q*8 + Q*2 + Q), which
could be accomplished using only shifts and adds as (Q<<4 + Q<<3 + Q<<1 + Q):

Since each shifter can be implemented with only wires, each shifter uses 0 transis-
tors. We have 3 12-bit adders, which means 3*12 = 36 full-adders. If each full-adder
requires approximately 12 transistors, this means 12*36 = 432 transistors in the
shift-and-add implementation.

Since the smallest power of two which is greater than or equal to 27 is 32, the small-
est multiplier we could use is a 12x5 multiplier. Assuming the multiplier is an array-
style multiplier, this means 12*5 = 60 AND gates, a 13-bit adder, a 14-bit adder, a
15-bit adder, and a 16-bit adder. Each AND gate is ~6 transistors, so we have 360
transistors from the AND gates alone. The 13-bit adder has (13 * 12) = 156 transis-
tors, the 14-bit adder (14 * 12) = 168 transistors, the 15-bit adder (15 * 12) = 180
transistors, and the 16-bit adder (16 * 12) = 192 transistors. In total, the multiplier
would consist of (360 + 156 + 168 + 180 + 192) = 1052 transistors.

It’s easy to see how the use of strength reduction can drastically reduce the number
of transistors required.

<<1 <<3 <<4

+ +

+

P

Q

12

12
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4.48 Use strength reduction to create a circuit that approximately computes P = (1/3)*Q
using only shifters and adders. Strive for accuracy to the hundredths place (0.33). P
is a 12-bit output and Q is a 12-bit input. Use wider internal components and wires
as necessary to prevent internal overflow. 
Our goal here is essentially to find a fraction whose denominator is a power of two
and whose value approximates 1/3 to the hundredths place. For instance, we might
choose the approximation 85/256, whose value is ~0.332.
The multiplication could thus be approximated by Q*(64 + 16 + 4 + 1) / 256 =
(Q*64 + Q*16 + Q*4 + Q) / 256, which could be accomplished using only shifters
and adders as (Q<<6 + Q<<4 + Q<<2 + Q)>>8:

4.49 Show the internal values of the barrel shifter of Figure 4.64, when I=01100101, x =
1, y = 0, and z = 1. Be sure to show how the input I is shifted after each internal
shifter stage. (Component design problem).
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4.50 Using the barrel shifter shown in Figure 4.42, what settings of the inputs x, y, and z
are required to shift the input I left by six positions.
x = 1, y = 1, z = 0

Section 4.9: Counters

4.51 Design a 4-bit up-counter that has two control inputs: cnt enables counting up, while
clear synchronously resets the counter to all 0s, (a) using a parallel load register as a
building block, (b) using flip-flops and muxes directly by following the register
design process of Section 4.2. (Component design problem). 
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4.52 Design a 4-bit down-counter that has three control inputs: cnt enables counting up,
clear synchronously resets the counter to all 0s, and set synchronously sets the coun-
ter to all 1s, (a) using a parallel load register as a building block, (b) using flip-flops
and muxes directly by following the register design process of Section 4.2. (Compo-
nent design problem). 
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4.53 Design a 4-bit up-counter with an additional output upper. upper outputs a 1 when-
ever the counter is within the upper half of the counter’s range, 8 to 15. Use a basic
4-bit up-counter as a building block. (Component design problem)
Upper is obtained simply from the 4th bit of the counter, which will be 1 for values
8 to 15. The internals of the up-counter are shown below for convenience. 

4.54 Design a 4-bit up/down-counter that has four control inputs: cnt_up enables counting
up, cnt_down enables counting down, clear synchronously resets the counter to all
0s, and set synchronously sets the counter to all 1s. If two or more control inputs are
1, the counter retains its current count value. Use a parallel load register as a build-
ing block. (Component design problem.)
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0 0 0 1 1 0 0
0 0 1 0 0 1 1

0 0 1 1 0 0 0
0 1 0 0 0 1 0

0 1 0 1 0 0 0
0 1 1 0 0 0 0

0 1 1 1 0 0 0
1 0 0 0 0 0 1

1 0 0 1 0 0 0
1 0 1 0 0 0 0

1 0 1 1 0 0 0
1 1 0 0 0 0 0

1 1 0 1 0 0 0
1 1 1 0 0 0 0

1 1 1 1 0 0 0

combinational logic
implementing this truth table



96 c 4 Datapath Components
4.55 Design a circuit for a 4-bit decrementer. (Component design problem).

4.56 Assume an electronic turnstile internally uses a 64-bit counter that counts up once
for each person that passes through the turnstile. Knowing that California’s Disney-
land park attracts about 15,000 visitors per day, and assuming they all pass that one
turnstile, how many days would pass before the counter would roll over? (Compo-
nent use problem.)
264/15000 = 1,229,782,938,247,303 days. That’s a long time. 

4.57 Design a circuit that outputs a 1 every 99 clock cycles:
a. Using an up-counter with a synchronous clear control input, and using extra

logic, 
b. Using a down-counter with parallel load, and using extra logic.
c. What are the tradeoffs between the two designs from parts (a) and (b)?

(Component use problem.) 

(c) The circuit implemented in (a) is smaller, while the circuit implemented in (b) is
easier to modify to pulse at a different rate.

HS

1

a b

wo s
HS

a b

wo s
HS

a b

wo s
HS

a b

wo s

s3 s2 s1 s0wo

i0i1i2i3

8-bit up-counter
clr

o(a)

8-bit down-counter
ld

o(b)

98
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4.58 Give the count range for the following sized up-counters: 
a. 8-bits, 12-bits, 16-bits, 20-bits, 32-bits, 40-bits, 64-bits, and 128-bits.
b. For each size of counter in part (a), assuming a 1 Hz clock, indicate how much

time would pass before the counter wraps around; use the most appropriate
units for each answer (seconds, minutes, hours, days, weeks, months, or years).

(Component use problem.)
8 bits: 0-255 (4 mins, 16 secs)
12 bits: 0-4,095 (1 hour, 8 mins, 16 secs)
16 bits: 0-65,535 (18 hours, 12 mins, 16 secs)
20 bits: 0-1,048,575 (12 days, 3 hours, 16 mins, 16 secs)
32 bits: 0-4,294,967,295 (136 years, 70 days, 6 hours, 28 mins, 16 secs)
40 bits: 0-1,099,511,627,775 (34,865 years, 104 days, 36 mins, 16 secs)
64 bits: 0-1.845E19 (5.849E11 years)
128 bits: 0-3.403E38 (1.079E31 years)
(For comparison, the universe is approximately 14 billion or 14E9 years old)

4.59 Create a clock divider that converts a 14 MHz clock into a 1 MHz clock. Use a
down-counter with parallel load. Clearly indicate the width of the down counter and
the counter’s load value. (Component use problem.)

Note that this is technically a pulse generator, but it still divides the clock by 14. If a
50% duty cycle is required, we can change the down-counter load value to 6, add a
register whose ld signal is Clk_out and whose input is a 1x2 mux, where i0 is 1, i1 is
0, and the select line is the output of the register. The output of the register would
then also be the divided clock signal.

4-bit down-counter
ld

13

Clk

Clk_out
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4.60 Assuming a 32-bit microsecond timer is available to a controller and a controller
clock frequency of 100 MHz, create a controller FSM that blinks an LED by setting
an output L to 1 for 5 ms and then to 0 for 13 ms, and then repeats. Use the timer to
achieve the desired timing (i.e., do not use a clock divider). For this example, the
blinking rate can vary by a few clock cycles. (Component use problem.)
Assuming the timer’s input is connected to a 1x2 32-bit mux whose i0 is 5000 and
whose i1 is 13000, the mux’s select line is called ‘s’, one possible FSM would be:

Section 4.10: Register Files

4.61 Design an 8x32 two port (1 read, 1 write) register file. (Component design problem). 

Inputs: Q
Outputs: s, load, enable, L

s = 0
load = 1
enable = 1

On

Off
L = 1

OnToOffOffToOn

s = 0
load = 0
enable = 1
L = 1

s = 1
load = 1
enable = 1
L = 0

s = 1
load = 0
enable = 1
L = 0

Q’

Q’

Q

Q

ld reg0

ld reg1

ld reg2

ld reg3

ld reg4

ld reg5

ld reg6

ld reg7

d0

d1

d2

d3

d4

d5

d6

d7

i0
i1
i2

e

d0

d1

d2

d3

d4

d5

d6

d7

i0
i1
i2

eW_en

W_addr

W_data
32

R_addr

R_data

R_en

8x32 Register File

32
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4.62 Design a 4x4 three port (2 read, 1 write) register file. (Component design problem). 

ld reg0

ld reg1

ld reg2

ld reg3

d0

d1

d2

d3

i0
i1

e

d0

d1

d2

d3

i0
i1

eW_en

W_addr

W_data
4

R1_addr

R1_data

R1_en

d0

d1

d2

d3

i0
i1

e

R2_addr

R2_en

R2_data4x4 Register File

4

4
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4.63 Design a 10x14 register file (one read port, one write port). (Component design
problem).

4.64 A 4x4 register file’s four registers initially each contain 0101. 
a. Show the input values necessary to read register 3 and to simultaneously write

register 3 with the value 1110. 
b. With these values, show the register file’s register values and output values

before the next rising clock edge, and after the next rising clock edge. 
a.)W_data = 1110, W_addr = 11, W_en = 1, R_addr = 11, R_en = 1.
b.) Before rising edge:
R0 = 0101
R1 = 0101
R2 = 0101
R3 = 0101
R_data = 0101

After rising edge:
R0 = 0101
R1 = 0101
R2 = 0101
R3 = 1110
R_data = 1110

ld reg0

ld reg1

ld reg2

ld reg3

ld reg4

ld reg5

ld reg6

ld reg7

d0

d1

d2

d3

d4

d5

d6

d7

i0
i1
i2

e

d0

d1

d2

d3

d4

d5

d6

d7

i0
i1
i2

eW_en

W_addr

W_data
14

R_addr

R_data

R_en

10x14 Register File

14

i3 i3

ld reg8

ld reg9

d8

d9
d10
d11
d12
d13
d14
d15

d8

d9

d10
d11
d12
d13
d14
d15



CHAPTER 5

REGISTER-TRANSFER 
LEVEL (RTL) DESIGN

5.1 EXERCISES
For each exercise, unless otherwise indicated, assume that the clock frequency is much
faster than any input events of interest, and that any button inputs have been debounced.
Problems noted with an asterisk (*) represent especially challenging problems.

Section 5.2: High-Level State Machines

5.1. Draw a timing diagram to trace the behavior of the soda dispenser HLSM of Figure
5.3 for the case of a soda costing 50 cents and for the following coins being depos-
ited: a dime (10 cents), then a quarter (25 cents), and then another quarter. The tim-
ing diagram should show values for all system inputs, outputs, and local storage
items, and for the systems’ current state.

Note: figure not drawn to scale

s

c

State Init Wait Add

a

tot

d

50

Wait Add Wait Add Wait Disp Init Wait

??? 10 25 25

0 10 35 60 0
95
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5.2 Capture the following system behavior as an HLSM. The system counts the number
of events on a single-bit input B and always outputs that number unsigned on a 16-
bit output C, which is initially 0. An event is a change from 0 to 1 or from 1 to 0.
Assume the system count rolls over when the maximum value of C is reached.

5.3 Capture the following system behavior as an HLSM. The system has two single-bit
inputs U and D each coming from a button, and a 16-bit output C, which is initially
0. For each press of U, the system increments C. For each press of D, the system dec-
rements C. If both buttons are pressed, the system does not change C. The system
does not roll over; it goes no higher than than the largest C and no lower than C=0.
A press is detected as a change from 0 to 1; the duration of that 1 does not matter.

Inputs: B(bit)
Outputs: C (16 bits)
Local registers: Creg (16 bits)

Init

Wait1

Creg := 0

Inc1 Creg := Creg + 1
B

B’

Inputs: B(bit)
Outputs: C (16 bits)
Local registers: Creg (16 bits), prev (bit)

Init Wait

Creg := 0

Change

Creg := Creg + 1

(B == prev)’

B == prev

prev := B prev := B

Alternative solution:

B’

Wait0

B
B

B’ Inc0 Creg := Creg + 1

Init Wait

PressU WaitRelU

PressD WaitRelD

Inputs: U (bit), D (bit)
Outputs: C (16 bits)
Local registers: Creg (16 bits)

Creg := 0

UD’*(Creg < 65535)

U’D*(Creg > 0)

( UD’*(Creg < 65535) + U’D*(Creg > 0) )’ Creg := Creg + 1

Creg := Creg - 1

U

D

U’

D’
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5.4 Capture the following system behavior as an HLSM. A soda machine dispenser sys-
tem has a 2-bit control input C1 C0 indicating the value of a deposited coin. C1C0 =
00 means no coin, 01 means nickel (5 cents), 10 means dime (10 cents), and 11
means quarter (25 cents); when a coin is deposited, the input changes to indicate the
value of the coin (for possibly more than one clock cycle) and then changes back to
00. A soda costs 80 cents. The system displays the deposited amount on a 12-bit
output D. The system has a single-bit input S coming from a button. If the deposited
amount is less than the cost of a soda, S is ignored. Otherwise, if the button is
pressed, the system releases a single soda by setting a single-bit output R to 1 for
exactly one clock cycle, and the system deducts the soda cost from the deposited
amount. 

Inputs: C1C0 (2 bits), S (bit)
Outputs: D (12 bits), R (bit)
Local registers: Dreg (12 bits)

Init

Dreg := 0

Wait

Nickel Wait5

Dime Wait10

Quarter Wait25

Dispense WaitS

C1’C0 

C1C0’

C1C0 

C1’C0’ *

(S*(Dreg>=80))’

C
1’

C
0’

 *
 S

 *
 (D

re
g 

>=
 8

0)

S

S’
C1’C0

(C1’C0 )’
C1C0’

C1C0

(C1C0 )’

(C1C0’)’

R := ‘1’
Dreg := Dreg - 80

R := ‘0’

R := ‘0’

Dreg := Dreg + 5

Dreg := Dreg +10

Dreg := Dreg + 25
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5.5 Create a high-level state machine that initializes a 16x32 register file’s contents to
0s, beginning the initialization when an input rst becomes 1. The register file does
not have a clear input; each register must be individually written with a 0. Do not
define 16 states; instead, declare a local storage item so that only a few states need
to be defined. 

5.6 Create a high-level state machine for a simple data encryption/decryption device. If a
single-bit input b is 1, the device stores the data from a 32-bit signed input I, refer-
ring to this as an offset value. If b is 0 and another single-bit input e is 1, then the
device “encrypts” its input I by adding the stored offset value to I, and outputs this
encrypted value over a 32-bit signed output J. If instead another single-bit input d is
1, the device “decrypts” the data on I by subtracting the offset value before output-
ting the decrypted value over J. Be sure to explicitly handle all possible combina-
tions of the three input bits.

Inputs: rst (bit)
Outputs: rfAddr (4 bits), rfLoad (bit), rfData (32 bits)
Local registers: index, rfAddrreg(4 bits), rfDatareg (32 bits)

Init

index := 0

ClearRegrst

rfAddrreg := index
rfLoad := ‘1’
rfDatareg := 0

Next

index := index + 1

index < 15

(index < 15)’

rfLoad := ‘0’

rst’

Inputs: I (32 bits), b (bit), e (bit), d (bit)
Outputs: J (32 bits)
Local registers: offset (32 bits), Jreg (32 bits)

Init Wait

offset := 0

LoadOffset

Encrypt

Decrypt

offset := I

Jreg := I + offset

Jreg := I - offset

b’e

b’e’d

b

(b + b’e + b’e’d)’
Jreg := 0
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Section 5.3: RTL Design Process

5.7 Create a datapath for the HLSM in Figure 5.98.

(Note that “P” is not involved in the datapath; it will be a controller output.) 

5.8 Create a datapath for the HLSM in Figure 5.63.

<

sum
ld
clr

+

509916

16

sum_lt_5099

sum_ld
sum_clr

+

16

16

16 16

0 1sum_s0

A BC
16

Sreg
ld
clr

Sreg_ld
Sreg_clr

S

a
ld
clr

Rareg
ld
clr +

1

<

4095

a_ld
a_clr

Rareg_ld

Ra

a_lt_4095

12

0
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5.9 For the HLSM in Figure 5.14, complete the RTL design process:
a. Create a datapath.
b. Connect the datapath to a controller.
c. Derive the controller’s FSM.

a) Create a datapath.

b) Connect the datapath to a controller.

Jreg
ld
clr

+

1

<

2

Jreg_ld

Jreg_lt_2

8

i0 i1
2x1 8-bit muxs0

d

1

Jreg_mux_s0

0

Jreg_mux_s0

DatapathController

Jreg_ld
Jreg_lt_2
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c) Derive the controller’s FSM.

5.10 Given the HLSM in Figure 5.99, complete the RTL design process to achieve a con-
troller (FSM) connected with a datapath. 

Inputs: B, Jreg_lt_2
Outputs: P, Jreg_mux_s0, Jreg_ld

S0 S1

B’

Jreg_lt_2’

B

Jreg_lt_2

P = 0
Jreg_mux_s0 = 0
Jreg_ld = 1

P = 1
Jreg_mux_s0 = 1
Jreg_ld = 1

Wait

Inputs: start, w_wait (bit)
Outputs: w_wr, w_addr_ld, w_data_ld (bit)

w_addrreg
ld

start’

Send
Addr

start

Send
Data

w_wr=1
w_addr_ld=1

w_wait’

w_wait

w_data_ld=1
w_datareg

ld

addr data

w_data w_addr
Controller FSM

Datapath

w_data_ld

w_addr_ld

(a)

clr0

clr0

start
w_wait
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5.11 Given the partial HLSM in Figure 5.75 for the system of Figure 5.74, proceed with
the RTL design process to achieve a controller (partial FSM) connected with a data-
path.

S

Inputs: bu, a_lt_4096
Outputs: a_rst, er, a_ld, ad_buf, Rareg_ld, Rrw, Ren, a_ld

a_rst = 1
er = 1

T

er = 0

bu

Ubu’

ad_ld = 1
ad_buf = 1
Rareg_ld = 1
Rrw = 1
Ren = 1
a_ld = 1

V

a_lt_4096
a_lt_4096’

a
ld
clr

+1

<

4096

a_lt_4096
a_lda_rst

erbu ad_buf a_ld Rrw Ren

Rareg
ld
clr

Rareg_ld

Ra

0
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5.12 Use the RTL design process to create a 4-bit up-counter with input cnt (1 means
count up), clear input clr, a terminal count output tc, and a 4-bit output Q indicat-
ing the present count. Only use datapath components from Figure 5.21. After deriv-
ing the controller’s FSM, implement the controller as a state register and
combinational logic.

Inputs: cnt (bit), clr (bit)
Outputs: tc (bit)
Local registers: Qreg (4 bits)

Init

Qreg := 0
tc := ‘0’

Count

cnt

clr

Qreg := Qreg + 1

TC
clr’*cnt*

clr’*cnt*(Qreg < 14)

Qreg := 0
tc := ‘1’

Idle
cnt’clr’

clr
cnt’*clr’

clr High-Level State Machine

clr’*cnt

Init

Qreg_clr = 1
tc = 0

Count

cnt

clr

Qreg_ld = 1

TCcnt*clr’*Qreg_lt_14’

cnt*clr’*Qreg_lt_14

Qreg_clr = 1
tc = 1

Idle
cnt’clr’

cnt*clr’clr
cnt’clr’

clr Controller FSM

Inputs: cnt, clr, Q_lt_14
Outputs: tc, Qreg_ld, Qreg_clr

<

Qreg
ld
clr

+1

144

4

Qreg_lt_14

Datapath

Qreg_ld
Qreg_clr

cnt’

(Qreg < 14)’

clr’*cnt

cnt’clr’

cnt’*clr’

cnt*clr’

Q

4
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n1 = (s1 + s0)cnt’clr’ + s1’s0*cnt*clr’Qreg_lt_14’
n0 = s1’s0’cnt + (s1 + s0)cnt*clr’
tc = s1s0
Qreg_ld = s1’s0

Inputs Outputs

s1 s0 cnt clr Qreg_lt_14 n1 n0 tc Qreg_ld Qreg_clr

I
n
i
t

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1

0 0 0 1 1 0 0 0 0 1
0 0 1 0 0 0 1 0 0 1

0 0 1 0 1 0 1 0 0 1
0 0 1 1 0 0 1 0 0 1

0 0 1 1 1 0 1 0 0 1

C
o
u
n
t

0 1 0 0 0 1 0 0 1 0

0 1 0 0 1 1 0 0 1 0
0 1 0 1 0 0 0 0 1 0

0 1 0 1 1 0 0 0 1 0
0 1 1 0 0 1 1 0 1 0

0 1 1 0 1 0 1 0 1 0
0 1 1 1 0 0 0 0 1 0

0 1 1 1 1 0 0 0 1 0

I
d
l
e

1 0 0 0 0 1 0 0 0 0

1 0 0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0

1 0 1 0 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0

T
C

1 1 0 0 0 1 0 1 0 1

1 1 0 0 1 1 0 1 0 1
1 1 0 1 0 0 0 1 0 1

1 1 0 1 1 0 0 1 0 1
1 1 1 0 0 0 1 1 0 1

1 1 1 0 1 0 1 1 0 1
1 1 1 1 0 0 0 1 0 1

1 1 1 1 1 0 0 1 0 1
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Qreg_clr = s1’s0’ + s1s0

cnt

tc

State Register

s1

n1

n0

s0

clr
Qreg_lt_14

Qreg_ld

Qreg_clr
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5.13 Use the RTL design process to design a system that outputs the average of the most
recent two data input samples. The system has an 8-bit unsigned data input I, and an
8-bit unsigned output avg. The data input is sampled when a single-bit input S
changes from 0 to 1. Choose internal bitwidths that prevent overflow. 

Step 1 - Capture a high-level state machine
Inputs: I (8 bits), S (bit)
Outputs: avg (8 bits)
Local Registers: Prevreg (8 bits), Ireg (8 bits), 

Init Wait

Sample

WaitLow

Prevreg := 0

S

S’

S’ S

S’
Savgreg := 0

Prevreg := Ireg

avgreg (8 bits) 

Ireg := 0

Ireg := I
avgreg := 
(Prevreg + Ireg)/ 2
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Step 2 - Create a datapath 

Note: A solution more consistent with the chapter’s methdology would use a sepa-
rate clear and ld signal for each register. In this particular example, a single clr and a
single load line happens to work.

Step 3 - Connect the datapath to a controller

Prevreg
ld
clr

avgreg
ld
clr

+

>> 1

I

avg

ld
clr

8

9

8

8

Ireg
ld
clr

ld

DatapathController

clr

avg

I
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Step 4 - Derive the controller’s FSM
Inputs: S
Outputs: ld, clr

Init Wait

Sample

WaitLow

S

S’

S’ S

S’
S

clr = 1

ld = 1
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5.14 Use the RTL design process to create an alarm system that sets a single-bit output
alarm to 1 when the average temperature of four consecutive samples meets or
exceeds a user-defined threshold value. A 32-bit unsigned input CT indicates the
current temperature, and a 32-bit unsigned input WT indicates the warning thresh-
hold. Samples should be taken every few clock cycles. A single-bit input clr when
1 disables the alarm and the sampling process. Start by capturing the desired system
behavior as an HLSM, and then convert to a controller/datapath.

Step 1 - Capture a high-level state machine

Init

Inputs: CT, WT (32 bits); clr (bit)
Outputs: alarm (bit)
Local Registers: tmp0, tmp1, tmp2, tmp3, avg (32 bits)

alarm := ‘0’
tmp0 := 0
tmp1 := 0
tmp2 := 0
tmp3 := 0

Sample

tmp0 := CT
tmp1 := tmp0
tmp2 := tmp1
tmp3 := tmp2
avg := (tmp0 + tmp1

+ tmp2 + tmp3) / 4

Clr
alarm := ‘0’

clr

clr’

avg := 0

clr AlrmOn

AlrmOff

clr

clr

clr’*(avg>=WT)

clr’
clr’

clr’*(avg>=WT)’

alarm := ‘1’

alarm := ‘0’
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Step 2A - Create a datapath

Note: A solution more consistent with the chapter’s methdology would use a separate
clear and ld signal for each register. In this particular example, a single clr and a single
load line happens to work. 

tmp0
ld

C
T

tmp1
ld

tmp2
ld

tmp3
ld

tm
p_

ld

+

+

+

>> 2

>=

W
T

avg_ge_WT

avg
ld

clr

clr

clr

clr

clr

cl
r_

al
l
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Step 2B- Connect the datapath to a controller

Step 2C - Derive the controller’s FSM

CT

DatapathController

clr

ld

avg_ge_WT

alarm

WT

clr_all

Inputs: clr, avg_lt_WT
Outputs: alarm, clr_all, ld

Init

alarm = 0
clr_all = 1

Sample

Clr
alarm = 0 

clr

clr’
clr

clr’
ld = 1

alarm = avg_ge_WT
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5.15 Use the RTL design process to design a reaction timer system that measures the time
elapsed between the illumination of a light and the pressing of a button by a user.
The reaction timer has three inputs, a clock input clk, a reset input rst, and a button
input B. It has three outputs, a light enable output len, a 10-bit reaction time output
rtime, and a slow output indicating that the user was not fast enough. The reaction
timer works as follows. On reset, the reaction timer waits for 10 seconds before illu-
minating the light by setting len to 1. The reaction timer then measures the length of
time in milliseconds before the user presses the button B, outputting the time as a
12-bit binary number on rtime. If the user did not press the button within 2 seconds
(2000 milliseconds), the reaction timer will set the output slow to 1 and output 2000
on rtime. Assume that the clock input has a frequency of 1 kHz. Do not use a timer
component in the datapath. 

Init

Inputs: rst, B (bit)
Outputs: len, slow (bit); rtime (11 bits)

wCount := 0
Wait

rtime := 0

rst’

rst

Local Registers: wCount (14 bits); rCount (11 bits)

rCount := 0 wCount := wCount + 1

wCount < 9999

len := ‘1’

slow := ‘0’

(wCount < 9999)’
Count

rCount := rCount + 1

Slow

Done

B’*(rCount < 1999)

B’*(rCount < 1999)’

B
slow := ‘1’

rtime := rCount
High-Level State Machine

Init

Inputs: rst, B, rCount_lt_1999, wCount_lt_9999
Outputs: len, slow, wCount_clr, rCount_clr, rTime_clr, wCount_ld, rCount_ld, rtime_ld

wCount_clr = 1
Wait

rtime_clr = 1

rst’

rst

rCount_clr = 1 wCount_ld = 1

wCount_lt_9999

len = 1

slow = 0

wCount_lt_9999’
Count

rcount_ld = 1

Slow

Done

B’*rCount_lt_1999

B’*rCount_lt_1999’

B
slow = 1

rtime_ld = 1

wCount
ld
clr

rtime
ld
clr

+1

<

9999

rCount
ld
clr

+1

<

1999

w
C

ount_clr
w

C
ount_ld

wCount_lt_9999

rC
ount_clr

rC
ount_ld

rtim
e_clr

rtim
e_ld

rCount_lt_1999

rtime

rst B slow len
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Section 5.4: More RTL Design

5.16 Create an FSM that interfaces with the datapath in Figure 5.100. The FSM should
use the datapath to compute the average value of the 16 32-bit elements of any array
A. Array A is stored in a memory, with the first element at address 25, the second at
address 26, and so on. Assume that putting a new value onto the address lines
M_addr causes the memory to almost immediately output the read data on the
M_data lines. Ignore overflow issues. 

5.17 Design a system that repeatedly computes and outputs the sum of all positive num-
bers within a 512-word register file A consisting of 32-bit signed numbers.

Step 1 - Capture a high-level state machine

Init

Inputs: go, i_lt_16 (bit)
Outputs: s_clr, i_clr, avg_clr, s_ld, i_ld, a_ld (bit)

s_clr=1
i_clr=1

avg_clr=1

Read

a_ld=1

Add

s_ld=1

i_lt_16

Next

i_ld=1

i_lt_16’

Divide

avg_ld = 1

go

go’

go’go

Init

Inputs: A_data (32 bits)
Outputs: A_addr (9 bits), sum_out (32 bits)

A_addr := 0

Local Registers: sum (32 bits), index (9 bits)

sum := 0

Add

index := 0

(A_data>0)*(index<511)

Next

sum := sum+A_data

Done

(A_data>0)’*
index<511

(A_data>0)’*
(index<511)’

sum_out := sum
A_addr := index

Compare
index := index+1

AddLast
sum := sum+A_data

(A_data>0)*(index<511)’
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Step 2A - Create a datapath

Step 2B - Connect the datapath to a controller

sum
ld

index

clr

ld
clr

sum_ld
sum_clr

index_ld
index_clr

>

A_data_gt_0

0

<

511

index_lt_511

+

1

A_addr

A_data

sum_out

+

sum_out
ldsum_out_ld

A_addrreg
ld
clr

Addr_ld
Addr_clr

sum_ld
sum_clr

index_ld
index_clr
data_ld
data_clr

data_gt_0
index_lt_511

A_addr

A_data

sum_out

DatapathController sum_out_ld

Addr_ld
Addr_clr
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Step 2C - Derive the controller’s FSM

Init

Inputs: data_gt_0, index_lt_511
Outputs: sum_clr, sum_ld, index_clr, index_ld, data_ld, sum_out_ld

sum_clr=1

Add

index_clr=1

data_gt_0*index_lt_511

Next

sum_ld=1

Done

data_gt_0’*
index_lt_511

data_gt_0’*
index_lt_511’

sum_out_ld=1
Addr_ld=1

Compare

AddLast
sum_ld=1

data_gt_0*index_lt_511

index_ld=1

Addr_clr=1



116 5 Register-Transfer Level (RTL) Design
5.18 Design a system that repeatedly computes and outputs the maximum value found
within a register file A consisting of 64 32-bit unsigned numbers.

Step 1 - Capture a high-level state machine

Step 2A - Create a datapath

Reset

Inputs: A_data (32 bits)
Outputs: A_addr (6 bits), max (32 bits)
Local Registers: tmp (32 bits), index (6 bits)

index := 0
tmp := 0

Compare

Next

index := index + 1

NewMax
A_data > tmp

(A_data > tmp)’(in
de

x=
0)’

Done
(index=0)

max := tmp

tmp := A_data

tmp := 0
max := 0

Init

A_addr := 0

A_addr := index

index

=

0

+1

ld
clr max_tmp

ld
clr

ld
A_addr

A
_d

at
a

tm
p_

ld
tm

p_
cl

r

in
de

x_
ld

in
de

x_
cl

r

A
_a

dd
r_

ld

index_eq_0
>

maxreg
ld

maxreg_ld
data_gt_max

max

clr

clr

A
_a

dd
r_

cl
r

0



5.1 Exercises 117
Step 2B - Connect the datapath to a controller

Step 2C - Derive the controller’s FSM

A_addr_ld

max

A_data

DatapathController

index_clr
index_ld
tmp_clr
tmp_ld
maxreg_ld
index_lt_64
data_gt_max

A_addr

A_addr_clr

Inputs: index_eq_0, data_gt_max
Outputs: A_addr_ld, A_addr_clr, index_clr, index_ld, tmp_clr, tmp_ld, maxreg_ld

Reset

tmp_clr=1
index_clr=1

Compare

Next

index_ld=1

NewMax
data_gt_max

data_gt_max’ind
ex

_e
q_

0’

Done
index_eq_0maxreg_ld=1

tmp_ld=1

tmp_clr=1
Init

A_addr_clr=1

A_addr_ld=1
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5.19 Using a timer, design a system with single-bit inputs U and D corresponding to two
buttons, and a 16-bit output Q which is initially 0. Pressing the button for U causes Q
to increment, while D causes a decrement; pressing both buttons causes Q to stay the
same. If a single button is held down, Q should then continue to increment or decre-
ment at a rate of once per second as long as the button is held. Assume the buttons
are already debounced. Assume Q simply rolls over if its upper or lower value is
reached.

Step 1 - Capture a high-level state machine

Step 2A - Create a datapath

Inputs: U, D, tm_pulse (bit)
Outputs: Q (16 bits), Tmr_ld, Tmr_en (bit)

Init Wait

PressU HoldU

PressD HoldD

(U’*D’) +(U*D) U*D’

U’*D

cnt := cnt + 1

cnt := cnt - 1

Tmr_en := ‘1’

Tmr_ld := ‘1’

Tmr_ld := ‘1’

Tmr_en := ‘1’

U*tm_pulse’

D*tm_pulse’

U*tm_pulse

D*tm_pulse

U’

D’
cnt := 0

Local Registers: cnt (16 bits)

Q := 0
Q := cnt

Q := cnt

Q := cnt

Q := cnt

Q := cnt

1000000

microsecond
timer

ld
en

Qreg
ld
clr

-1 +1

i0 i1s 1x2 16-bit

Q tm_pulse

Qreg_clr

Qreg_ld

Qreg_sel
Tmr_en Tmr_ld
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Step 2B - Connect the datapath to a controller

Step 2C - Derive the controller’s FSM

5.20 Using a timer, design a display system that reads the ASCII characters from a 64-
word 8-bit register file RF and writes each word to a 2-row LED-based display hav-
ing 32 characters per row, doing so 100 times per second. The display has an 8-bit
input A for the ASCII character to be displayed, a single-bit input row where 0 or 1
denotes the top or bottom row respectively, a 5-bit input col that indicates a column
in the row, and an enable input en whose change from 0 to 1 causes the character to
be displayed in the given row and column. The system should write RF[0] through
RF[15] to row 0’s columns 0 to 15 respectively, and RF[16] to RF[31] to row 1.

Do not assign this exercise; it contains an error. 

Controller Datapath

U
D

Qreg_clr
Qreg_ld

Qreg_sel
Tmr_ld
Tmr_en

tm_pulse

Q

Inputs: U, D, tm_pulse
Outputs: Qreg_clr, Qreg_ld, Qregsel, Tmr_ld, Tmr_en

Init Wait

PressU HoldU

PressD HoldD

U’D’ + UD UD’

U’D

Qreg_sel = 1
Qreg_ld = 1

Qreg_sel = 0
Qreg_ld = 1

Tmr_en = 1

Tmr_ld = 1

Tmr_ld = 1

Tmr_en = 1

U * tm_pulse’

D * tm_pulse’

U * tm_pulse

D * tm_pulse

U’

D’
Qreg_clr = 1
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5.21 Design a data-dominated system that computes and outputs the sum of the absolute
values of 16 separate 32-bit registers (not in a register file) storing signed numbers
(do not consider how those numbers get stored). The computation of the sum should
be done using a single equation in one state. The computation should be performed
once when a single-bit input go changes from 0 to 1, and the computed result
should be held at the output until the next time go changes from 0 to 1.

Step 1 - Capture a high-level state machine

Since this problem is a data-dominated design, the problem’s high-level state
machine is fairly simple:

Init

Inputs: go (bit), R0...R15 (32 bits)
Outputs: sum (32 bits)

go’

Compgo

sum := abs(R0)+abs(R1)+...abs(R15)

Wait

go

go’
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Step 2A - Create a datapath

Note: the abs component may be found in Exercise 4.38

Step 2B - Connect the datapath to a controller

R0

>

0

sum

0 1

+

R1

>

0

0 1
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+ +

+

sum
ldsum_ld

abs abs

clr0

sum_ld

sum

R0

DatapathController

go R15...
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Step 2C - Derive the controller’s FSM

Section 5.5: Determining Clock Frequency

5.22 ) Assuming an inverter has a delay of 1 ns, all other gates have a delay of 2 ns, and
wires have a delay of 1 ns, determine the critical path for the full-adder circuit in
Figure 4.30.

The critical path of the full adder lies along the path from any of the inputs to the co
output. The critical path features two gates with a total delay of 4ns and three seg-
ments of wire with a total delay of 4ns, for a total critical path delay of 7ns.

5.23 Assuming an inverter has a delay of 1 ns, all other gates have a delay of 2 ns, and
wires have a delay of 1 ns, determine the critical path for the 3x8 decoder of Figure
2.62.

The critical path of the decoder lies along one of the decoder’s inverted inputs to one
of its outputs: 1ns (wire) + 1ns (inverter) + 1ns (wire) + 2ns (AND gate) + 1ns
(wire) = 6ns.

5.24 Assuming an inverter has a delay of 1 ns, all other gates have a delay of 2 ns, and
wires have a delay of 1 ns, determine the critical path for the 4x1 multiplexer of Fig-
ure 2.67.

The critical path of a 4x1 multiplexer involves an inverter (1ns), an AND gate (2ns),
and an OR gate (2ns), resulting in a total critical path delay of 5ns.

5.25 Assuming an inverter has a delay of 1 ns, and all other gates have a delay of 2 ns,
determine the critical path for the 8-bit carry-ripple adder, assuming a design fol-
lowing Figure 4.31 and Figure 4.30, and: (a) assuming wires have no delay, (b)
assuming wires have a delay of 1 ns.

(a) Assume the 8-bit carry-ripple adder consists of 8 full-adders chained together.
Each full-adder features a critical path delay of 4ns (an AND gate and a XOR gate).
Thus, the total critical path delay for the 8-bit carry-ripple adder is 8*4ns = 32ns.

(b) Each full-adder’s critical path features one internal wire between an AND and
XOR gate and two wires that connect the full-adder’s inputs and outputs. For the
entire 8-bit carry-ripple adder, the 8 internal wires contribute 8ns to the critical path
delay. Wires connecting full-adders together contribute 7ns to the critical path delay.

Inputs: go (bit)
Outputs: sum_ld (bit)

Init

go’

Compgo

sum_ld = 1

Wait

go

go’
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The initial ci and final co contribute 2ns to the critical path delay. Thus, the total
critical path delay is 32ns (for gates) + 8ns + 7ns + 2ns = 49ns.

5.26 (a) Convert the laser-based distance measurer’s FSM, shown in Figure 5.21, to a
state register and logic. (b) Assuming all gates have a delay of 2 ns and the 16-bit
up-counter has a delay of 5 ns, and wires have no delay, determine the critical path
for the laser-based distance measurer. (c) Calculate the corresponding maximum
clock frequency for the circuit.

(a)
Inputs Outputs

s2 s1 s0 B S n2 n1 n0 L Dreg_clr Dreg_ld Dctr_clr Dctr_cnt
0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0

0 0 0 1 1 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 1 0

0 0 1 0 1 0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 0 0 0 0 1 0

0 0 1 1 1 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 1 1 0 0 0 0

0 1 0 0 1 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 1 1 0 0 0 0

0 1 0 1 1 0 1 1 1 0 0 0 0
0 1 1 0 0 0 1 1 0 0 0 0 1

0 1 1 0 1 1 0 0 0 0 0 0 1
0 1 1 1 0 0 1 1 0 0 0 0 1

0 1 1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0

1 0 0 1 1 0 0 1 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0
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n2 = s1’s1s0B’S + s2’s1s0BS
n1 = s2’s1’s0B + s2’s1s0’ + s2’s1s0S’
n0 = s2’s1’s0’ + s2’s1’s0B’ + s2’s1s0’ + s2’s1s0S’ + s2s1’s0’
Dreg_clr = s2’s1’s0’
Dreg_ld = s2s1’s0’
Dctr_clr = s2’s1’s0
Dctr_ctr = s2’s1s0

(b) The controller features two levels of gates, resulting in a delay of 4ns. Therefore
the critical path is within the up-counter, or 5ns.

(c) With a critical path of 5ns, the maximum clock frequency is 1,000,000,000/5 =
200MHz.

Dreg_clr

State Register

s1 s0

n1

n0

s2

B S

n2

Dreg_ld
Dctr_clr
Dctr_cnt
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Section 5.5: Behavioral-Level Design: C to Gates (Optional)

5.27 Convert the following C-like code, which calculates the greatest common divisor
(GCD) of the two 8-bit numbers a and b, into a high-level state machine.

Inputs: byte a, byte b, bit go
Outputs: byte gcd, bit done
GCD:
while(1) {

while(!go);
done = 0;
while ( a != b ) {

if( a > b ) {
a = a - b;

}
else {

b = b - a;
}

}
gcd = a;
done = 1;

}

A

Inputs: go (bit), a, b (8 bits)
Outputs: done (bit), gcd (8 bits)

go’
go

Local Registers: a_reg (8 bits), b_reg (8 bits)

C

done := ‘0’a_reg := a
b_reg := b

D
(a_reg==b_reg)’

Ea > b

F

(a > b)’

a_reg := a_reg - b_reg

b_reg := b_reg - a_reg

gcd := a_reg

G

done := ‘1’

a_
re

g=
=b

_r
eg

B
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5.28 Use the RTL design process to convert the high-level state machine you created in
Exercise 5.27 to a controller and a datapath. Design the datapath to structure, but
design the controller to the point of an FSM only.

Step 1 - Capture a high-level state machine

The high-level state machine was developed in Exercise 5.27.

Step 2 - Create a datapath

a_reg
ld

b_reg
ld

=

gcd
ld

a

gcd

gcd_ld

0 1 0 1

b

- -

a_ld b_selb_lda_sel

a_gt_b

>

a_eq_b

clr0 clr0

clr0
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Step 3 - Connect the datapath to a controller

Step 4 - Derive the controller’s FSM

a_ld

DatapathController

a_sel
b_ld

gcd

a

done

go b

b_sel
gcd_ld
a_eq_b
a_gt_b

A

Inputs: go, done, a_gt_b, a_eq_b (bit)
Outputs: done, a_ld, a_sel, b_ld, b_sel, gcd_ld (bit)

go’
go

C

done=0a_ld=1
a_sel=0

D
a_eq_b’

Ea_gt_b

F

a_gt_b’

gcd_ld=1

G

done=1

a_
eq

_b

b_ld=1
b_sel=0

b_ld=1
b_sel=1

a_ld=1
a_sel=1

B
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5.29 Convert the following C code, which calculates the maximum difference between
any two numbers within an array A consisting of 256 8-bit values, into a high-level
state machine.

Inputs: byte a[256], bit go
Outputs: byte max_diff, bit done
MAX_DIFF:
while(1) {
while(!go);
done = 0;
i = 0; 
max = 0;
min = 255; // largest 8-bit value
while( i < 256 ) {

if( a[i] < min ) {
min = a[i];

}
if( a[1] > max ) {

max = a[i];
}
i = i + 1;

}
max_diff = max - min;
done = 1;

}

A

Inputs: go (bit), a, b (256-byte memory)
Outputs: done (bit), max_diff (8 bits)

go’

go

Local Registers: min, max, i (8 bits)

B
done := ‘0’
i := 0
max := 0
min := 255

D
i<256

E
a[i]<min

min := a[i]

F

H

i := i+1

I
max_diff := max-min

done := ‘1’

C

(i<
25

6)
’

max := a[i]

(a[i]<min)’

G a[i]>max
(a[i]>max)’
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5.30 Use the RTL design process to convert the high-level state machine you created in
Exercise 5.29 to a controller and a datapath. Design the datapath to structure, but
design the controller to the point of an FSM only.

Step 1 - Capture a high-level state machine

The high-level state machine was developed in Exercise 5.29.

Step 2 - Create a datapath

max
ld

min
ld

i
ld

0 1

<

m
ax

_l
d

a_gt_max

>

a_lt_min

m
ax

_c
lr

m
in

_l
d

m
in

_s
el

a[i]

-

max_diff
ld

i_ld
i_clr clr

+

1

<

256

i i_lt_256 max_diff_ld max_diff

255

clr clr0

clr0



130 5 Register-Transfer Level (RTL) Design
Step 3 - Connect the datapath to a controller

Step 4 - Derive the controller’s FSM

max_clr

DatapathController

max_ld
min_sel

max_diff

a[i]

done

go

min_ld
max_diff_ld

a_lt_min

i_lt_256
a_gt_max

i_ld
i_clr

i

A

Inputs: go, i_lt_256, a_gt_max, a_lt_min (bit)
Outputs: done, max_clr, max_ld, min_sel, min_ld, max_diff_ld, i_ld, i_clr (bit)

go’

go
B

done=0
i_clr=1
max_clr=1
min_sel=0

D
i_lt_256

E
a_lt_min

min_sel=1

F

H

i_ld=1

I
max_diff_ld=1

done=1

C

i_
lt_

25
6’

max_ld=1

a_lt_min’

G a_gt_max
a_gt_max’

min_ld=1

min_ld=1
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5.31 Convert the following C code, which calculates the number of times the value b is
found within an array A consisting of 256 8-bit values, into a high-level state
machine.

Inputs: byte a[256], byte b, bit go
Outputs: byte freq, bit done
FREQUENCY:
while(1) {

while(!go);
done = 0;
i = 0;
freq = 0;
while( i < 256 ) {

if( a[i] == b ) {
freq = freq + 1;

}
i = i + 1;

}
done = 1;

}

A

Inputs: go (bit), a (256-byte memory), b (8 bits)
Outputs: done (bit), freq (8 bits)

go’

go
B

done := ‘0’
i := 0
freq := 0

D
i<256

E

a[i]==b

freq := freq+1

F
i := i+1

(a[i]==b)’

G
done := ‘1’

C

(i<
25

6)
’
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5.32 Use the RTL design process to convert the high-level state machine you created in
Exercise 5.31 to a controller and a datapath. Design the datapath to structure, but
design the controller to the point of an FSM only.
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Step 1 - Capture a high-level state machine

The high-level state machine was developed in Exercise 5.31.

Step 2 - Create a datapath

Step 3 - Connect the datapath to a controller

freq
ld

i
ld

a[i]

i_ld
i_clr clr

+

1

<

256

i i_lt_256

clr =

bfreq_ldfreq_clr

+

1

a_eq_b

freq

freq_clr

DatapathController

freq_ld
i_clr

freq

a[i]

done

go

i_ld

i_lt_256
a_eq_b

i

b
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Step 4 - Derive the controller’s FSM

5.33 Develop a template for converting a do{ }while loop of the following form to a
high-level state machine.

do { 
// do while statements

} while (cond);

A

Inputs: go, i_lt_256, a_eq_b (bit)
Outputs: done, i_clr, i_ld, freq_clr, freq_ld (bit)

go’

go
B

done=0
i_clr=1

freq_clr=1

D
i_lt_256

E

a_eq_b

freq_ld=1

F
i_ld=1

a_eq_b’

G
done=1

C

i_
lt_

25
6’

do {

// do while statements

} while (cond);

(do while statements) cond

!cond
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5.34 Develop a template for converting a for() loop of the following form to a high-
level state machine.

for(i=start; i<cond; i++) 
{

// for statements
}

5.35 Compare the time required to execute the following computation using a custom cir-
cuit versus using a microprocessor. Assume a gate has a delay of 1 ns. Assume a
microprocessor executes one instruction every 5 ns. Assume that n=10 and m=5.
Estimates are acceptable; you need not design the circuit, or determine exactly how
many software instructions will execute.

for (i = 0; i<n; i++) {
s = 0;

 for (j = 0; j < m; j++) {
  s = s + c[i]*x[i + j];
 }
 y[i] = s;

}

Based on our answer for Exercise 5.34, we naively assume that each “for” construct
requires 4 states, not including any statements. We’ll also assume that “s=0”
requires one state, “s = s + c[i] * x[i + j]” requires one state, and “y[i] = s” requires
one state. 

The inner loop statement is executed 5 times per outer loop iteration, which means
we go through ((2 states + 1 state/inner statement) * 5 iterations) + 2 states = 17
states for the entire inner loop at each outer loop iteration. That means the outer

for (i = start; i < cond; i++) {

// for statements

}

(for statements)

i<cond

i=start

i<cond

i++

(i<cond)’

(i<cond)’
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loop’s inner statement is comprised of 19 states. We execute the outer loop 10 times,
for a total of ((2 states + 19 states/inner statement) * 10 iterations) + 2 states = 212
states.

We’ll assume that one state takes at most the same amount of time as one micropro-
cessor instruction. This gives us 212 * 5ns = 1060 ns for the hardware implementa-
tion.

On the microprocessor, if we assume we are allowed base + offset addressing, we
must first compute i+j for the inner loop’s inner statement, then fetch x[i + j], then
fetch c[i], then multiply, and then add. This equates to 5 instructions per inner loop
statement. The for loop itself requires two extra instructions, for incrementing j and
branching. For 5 iterations, this gives us (5 instr./inner statement * 5 iterations + 1
increment * 5 iterations + 1 branch * 5 iterations) = 35 instructions / inner loop.

Thus, each outer loop iteration requires 35 + 2 = 37 instructions. We then have a
total of (37 instr./inner statement * 10 iterations + 1 increment * 10 iterations + 1
branch * 10 iterations) = 390 instructions. This gives us 390 instructions * 5ns/
instruction = 1950 ns for the software implementation.

We can see that even with very rough estimates, hardware is clearly much faster
than software.

Section 5.6: Memory Components

5.36 Calculate the approximate number of DRAM bit storage cells that will fit on an IC
with a capacity of 10 million transistors.

10 million transistors / 1 transistor/DRAM bit storage cell = 10 million DRAM bit
storage cells.

5.37 Calculate the approximate number of SRAM bit storage cells that will fit on an IC
with a capacity of 10 million transistors.

10 million transistors / 6 transistors/SRAM bit storage cell = 1,666,666 SRAM bit
storage cells, or about 1.67 million SRAM bit storage cells.
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5.38 Summarize the main differences between DRAM and SRAM memories.

DRAM memories use a single transistor and capacitor per bit, while SRAM memo-
ries require six transistors per bit. SRAM is thus less compact and more expensive
than a DRAM that can store the same number of bits. However, SRAMs typically
feature faster access times than DRAMs as DRAMs require a periodic refresh of its
contents, a process which blocks DRAM accesses.

5.39 Draw a circuit of transistors showing the internal structure for all the storage cells for
a 4x2 DRAM (four words, two bits each), clearly labelling all internal components
and connections.

5.40 Draw a circuit of transistors showing the internal structure for all the storage cells for
a 4x2 SRAM (four words, two bits each), clearly labelling all internal components
and connections.

w0
enable

w1
enable

w2
enable

w3
enable

d0d1

d1 d1’ d0 d0’

w0
enable

w1
enable

w2
enable

w3
enable

to sense amplifiers
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5.41 Summarize the main differences between EPROM and EEPROM memories.

An EPROM is erased en masse by shining ultraviolet light on the memory (typically
through a window in the memory’s packaging). An EEPROM is erased through a
high-voltage signal, and specific words can be erased.

5.42 Summarize the main differences between EEPROM and flash memories.

Whereas an EEPROM may permit erasing one word at a time, a flash memory is a
type of EEPROM which permits erasing larger blocks of memory at a time (or per-
haps the entire memory).
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5.43 Use an HLSM to capture the design of a system that can save data samples and then
play them back. The system has an 8-bit input D where data appears. A single-bit
input S changing from 0 to 1 requests that the current value on D (i.e., a sample) be
saved in a nonvolatile memory. Sample requests will not arrive faster than once per
10 clock cycles. Up to 10,000 samples can be saved, after which sampling requests
are ignored. A single-bit input P changing from 0 to 1 causes all recorded samples to
be played back—i.e., to be written to an output Q one sample at a time in the order
they were saved at a rate of one sample per clock cycle. A single-bit input R resets
the system, clearing all recorded samples. During playback, any sample or reset
request is ignored. At other times, reset has priority over a sample request. Choose
an appropriate size and type of memory, and declare and use that memory in your
HLSM.

Inputs: S, P, R (bit); D, Mem_D (8 bits)
Outputs: Q (8 bits); Mem_D (8 bits) [both an input and an output]; Mem_addr (14 bits); Mem_wr, Mem_rd (bit)
Local Registers: index (14 bits), pb_index (14 bits)

Init Wait

Sample WaitSLow

PlayBack WaitPLow

index := 0
pb_index := 0
Q := 0

Q := 0

Mem_D := D

Q := Mem_D
pb_index := pb_index + 1

pb_index := 0

pb_index < index

(pb_index < index)’

P*R’

S*R’

R

R

R

R’*P’*S’ R’*P
’*S

R’*P

Q := 0

S’*R’

P’*R’

Mem_rd := ‘1’
Mem_addr := pb_index

index := index + 1
Mem_addr := index

Sample Mem_wr := ‘1’
Mem_wr := ‘0’

Mem_D := 0
Mem_addr := 0
Mem_wr := ‘0’
Mem_rd := ‘0’

Mem_D := 0

Mem_rd := ‘0’
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Section 5.7: Queues (FIFOs)

5.44 For an 8-word queue, show the queue’s internal state and provide the value of
popped data for the following sequences of pushes and pops: (1) push A, B, C, D, E,
(2) pop, (3) pop, (4) push U, V, W, X, Y, (5) pop, (6) push Z, (7) pop, (8) pop, (9)
pop.

A

7 6 5 4 3 2 1 0

Step 1 BCDE

r f

AStep 2 BCDE

r f

AStep 3 BCDE

r f

popped A

popped B

XStep 4 YCDE

rf

popped C

UVW

XStep 5 YCDE

rf

UVW

popped D

XStep 6 YZDE

rf

UVW

XStep 7 YZDE

rf

UVW

popped EXStep 8 YZDE

rf

UVW

popped UXStep 9 YZDE

rf

UVW
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5.45 Create an FSM describing the queue controller of Figure 5.79. Pay careful attention
to correctly setting the full and empty outputs.

Init

rear_clr=1
front_clr=1
empty=1
full=0
rf_wr=0
rf_rd=0

WaitE

full=0

ReadE

front_inc=1
rf_rd=1

re
se

t’w
r’

rd

Read2E

reset’wr’rd’

WriteE

re
se

t’w
r

rear_inc=1
rf_wr=1

Write2E

empty=1

Inputs: wr, rd, reset, eq Outputs: rear_clr, rear_inc, front_clr, front_inc, rf_wr, rf_rd, full, empty

reset

full=1
empty=0

full=0
empty=0

full=0
empty=1

full=0
empty=1

Wait

full=0

Read

front_inc=1
rf_rd=1

re
se

t’w
r’

rd

Read2 eq’

reset’wr’rd’

Write

re
se

t’w
r

rear_inc=1
rf_wr=1

Write2

empty=0

eq’
eq

reset

full=0
empty=0

full=0
empty=0

full=0
empty=0

full=0
empty=0

eq

WaitF

full=1

ReadF

front_inc=1
rf_rd=1

re
se

t’w
r’

rd

Read2F

reset’wr’rd’

WriteF

re
se

t’w
r

rear_inc=1
rf_wr=1

Write2F

empty=0

full=1
empty=0

full=1
empty=0

full=1
empty=0

full=0
empty=0

reset
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5.46 Create an FSM describing the queue controller of Figure 5.79, but with error-pre-
venting behavior that ignores any pushes when the queue is full, and ignores pops of
an empty queue (outputting 0).

Init

rear_clr=1
front_clr=1
empty=1

WaitMT

reset’wr’

full=0
rf_wr=0
rf_rd=0

reset

WriteMT

re
se

t’w
r

rear_inc=1
rf_wr=1

empty=1
full=0

Wait

full=0

Read

front_inc=1
rf_rd=1

re
se

t’w
r’

rd

Read2
eq

eq’

reset’wr’rd’

res
et

Write

re
se

t’w
r

rear_inc=1
rf_wr=1

Write2

empty=0

eq’

WaitFull

eq

ReadFull

re
se

t’r
d

front_inc=1
rf_rd=1

empty=0
full=1

re
se

t’r
d’

res
et

Inputs: wr, rd, reset, eq Outputs: rear_clr, rear_inc, front_clr, front_inc, rf_wr, rf_rd, full, empty
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Section 5.9: Multiple Processors

5.47 A system S counts people that enter a store, incrementing the count value when a
single-bit input P changes from 1 to 0. The value is reset when R is 1. The value is
output on a 16-bit output C, which connects to a display. Furthermore, the system
has a lighting system to indicate the approximate count value to the store manager,
turning on a red LED (LR=1) for 0 to 99, else a blue LED (LB=1) for 100 to 199,
else a green LED (LG=1) for 200 and above. Draw a block diagram of the system
and its peripheral components, using two processors for the system S. Show the
HLSM for each processor.

]

P

R

Counter
Processor

Display

C
LED
Processor

LR

LG
LB

System Diagram:

Counter HLSM:
Inputs: P, R (bit)
Outputs: C (16 bits)
Local Registers: Cnt (16 bits)

Init Wait0

Wait1 Incr

P == 0

P 
==

 1

(R==0)*(P==0)

R == 1

(R
==

0)
*(

P=
=1

)

R 
==

 1 (R==0)*(P==1)

(R==0)*(P==0)

P == 1

P == 0Cnt := 0
C := Cnt

C := Cnt

C := Cnt

Cnt := Cnt + 1
C := Cnt

LED HLSM:
Inputs: Cnt (16 bits)
Outputs: LR, LG, LB (bit)
 

Init

Red

Blu

Grn

(Cnt>=0)*(Cnt<=99)

(Cnt>=100)*(Cnt<=199)

Cnt>=200

C
nt>99

Note: RGB will be a name for LR, LG, LB concatenated

RGB:=”100”

RGB:=”001”

RGB:= “010”

C
nt>199

C
n t<100

C
nt <200
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5.48 A system S counts the cycles high of the most recent pulse on a single-bit input P
and displays the value on a 16-bit output D, holding the value there until the next
pulse completes. The system also keeps track of the previous 8 values, and com-
putes and outputs the average of those values on a 16-bit output A whenever an
input C changes from 0 to 1. The system holds that output value until the next
change of C from 0 to 1. Draw a block diagram of the system and its peripheral
components, using two processors and a global register file for the system. Show the
HLSM for each processor.

P

C

Pulse
Processor

D

8-word
16-bit RF

System Diagram:

RF_wr
RF_w_addr

Average
Processor

RF_rd
RF_r_addr

RF_r_data

A

Pulse HLSM:
Inputs: P (bit)
Outputs: RF_waddr (3 bits), RF_we (bit), RF_wd (16 bits)
 

Init

Local Registers: i (3 bits), Cnt (16 bits)

i := 0

WaitH

WaitL

Pulse

Write

Cnt := Cnt + 1

Cnt := 0

RF_wd := Cnt

Cnt := 0
i := (i + 1) % 8

P

P’

P

P’

P’

P

P

P’

P’

P

SetAddr

RF_we := ‘1’

RF_waddr := i
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Average HLSM:
Inputs: C (bit), RF_rd (16 bits)
Outputs: A (16 bits), RF_re (bit), RF_raddr (3 bits)
Local Registers: i (3 bits), tmp (16 bits)

Init

i := 0
tmp := 0

WaitL

i := 0
tmp:= 0

WaitH

Go

Choose

i := i + 1
tmp := tmp + RF_rd

i < 7

C

C’

C
C

C’

C’

C
’

C
 

i >
= 7

SetAddr

RF_raddr := i
i := i + 1

RF_re := ‘1’
RF_raddr := i
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5.49 A system S counts people that enter a store, incrementing the count value when a
single-bit input P changes from 1 to 0. The value is reset when R is 1. The value is
output on a 16-bit output C, which connects to a display. Furthermore, the system
has a lighting system to indicate the approximate count value to the store manager,
turning on a red LED (LR=1) for 0 to 99, else a blue LED (LB=1) for 100 to 199,
else a green LED (LG=1) for 200 and above. Draw a block diagram of the system
and its peripheral components, using two processors for the system S. Show the
HLSM for each processor.

Crec

Keypress
Processor

data_in

Queue from

System Diagram:

wr Interface
Processor

rd
empty

data_out

CK

Keypad

K

E Ex. 5.46

[32](4)

CE

Keypress HLSM:
Inputs: K (4 bits), E (bit)
Outputs: data_in (4 bits), wr (bit)
 

Init

WaitH

WaitL

Go

E

E’

E’

E

E’

E

E

E’
data_in := 0
wr := ‘0’

data_in := 0
wr := ‘0’

data_in := 0
wr := ‘0’

data_in := K
wr := ‘1’

Interface HLSM:
Inputs: empty (bit), Crec (bit), data_out (4 bits)
Outputs: rd (bit), CE (bit), CK (4 bits)
 

WaitD

Try

Recvd

empty

Local Registers: tmp (4 bits)

Read

em
pty’

Crec’

Crec

CE := ‘0’
CK := 0

CE := ‘0’
CK := 0

rd := ‘1’

rd := ‘0’

tmp := data_out
CE := ‘1’
CK := tmp
rd := ‘0’
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Section 5.10: Hierarchy—A Key Design Concept

5.50 Compose a 20-input AND gate from 2-input AND gates.

5.51 Compose a 16x1 mux from 2x1 muxes.

i19
i18

F

i17
i16
i15
i14
i13
i12
i11
i10
i9
i8
i7
i6
i5
i4
i3
i2
i1
i0

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i0
d

s

2x1
i1

i15
i14

i13
i12

i11
i10

i9
i8

i7
i6

i5
i4

i3
i2

i1
i0

i0
d

s

2x1
i1

d

s0 s1 s2 s3

16x1
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5.52 Compose a 4x16 decoder with enable from 2x4 decoders with enable.

5.53 Compose a 1024x8 RAM using only 512x8 RAMs.

5.54 Compose a 512x8 RAM using only 512x4 RAMs.

i0
d3

e

2x4
i1

i3
i2

d2
d1
d0

i0
d3

e

2x4
i1

d2
d1
d0

i0
d3

e

2x4
i1

d2
d1
d0

i0
d3

e

2x4
i1

d2
d1
d0

i0
d3

e

2x4
i1

d2
d1
d0

i1
i0

d15
d14
d13
d12

d11
d10
d9
d8

d7
d6
d5
d4

d3
d2
d1
d0

4x16

e (or “1”)

addr

rw

i0
e

1x2 dcd
d1
d0

1024x8 RAM

512x8
RAM

addr

en data

a8..a0

a9

8

rw

512x8
RAM

addr

en data
rw

en

data

10 9

addr

rw

512x4
RAM

addr

en data
rw

en

9

512x4
RAM

addr

en data
rw

4
44

8

data

512x8 RAM
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5.55 Compose a 1024x8 ROM using only 512x4 ROMs.

5.56 Compose a 2048x8 ROM using only 256x8 ROMs.

addr

512x4
ROM

addr

en data

en

9

512x4
ROM

addr

en data

4
44

8

data

1024x8 ROM

512x4
ROM

addr

en data

512x4
ROM

addr

en data

i0
e

1x2 dcd
d1
d0

a8..a0

a9

addr

en

8
2048x8 ROM

e

3x8 dcd

d1
d0

a7..a0

a1
0

256x8
ROM

en

addr

data

i2
i1
i0 d3

d2

d5
d4

d7
d6a9a8

256x8
ROM

en

addr

data

256x8
ROM

en

addr

data

256x8
ROM

en

addr

data

256x8
ROM

en

addr

data

256x8
ROM

en

addr

data

256x8
ROM

en

addr

data

256x8
ROM

en

addr

data

data
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5.57 Compose a 1024x16 RAM using only 512x8 RAMs.

5.58 Compose a 1024x12 RAM using 512x8 and 512x4 RAMs.

addr

512x8
RAM

addr

en data

en

9

512x8
RAM

addr

en data

8
8

16

data

1024x16 RAM

512x8
RAM

addr

en data

512x8
RAM

addr

en data

i0
e

1x2 dcd
d1
d0

a8..a0

a9

rw

rw

rw rw

rw

addr

512x8
RAM

addr

en data

en

9

512x4
RAM

addr

en data

8
4

12

data

1024x12 RAM

512x8
RAM

addr

en data

512x4
RAM

addr

en data

i0
e

1x2 dcd
d1
d0

a8..a0

a9

rw

rw

rw rw

rw
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5.59 Compose a 640x12 RAM using only 128x4 RAMs.

5.60 *Write a program that takes a parameter N, and automatically builds an N-input
AND gate from 2-input AND gates. Your program merely need indicate how many
2-input AND gates exist in each level, from which we could easily determine the
connections. 

Solution not shown for challenge problems. The general solution involves a while
loop that continues until an iteration involves just 1 AND gate. Each iteration should
place X/2 gates, where X is initially N and where X is set to X/2 in each iteration.
Care must be taken when a level has an odd number of inputs. 

addr

128x4
RAM

addr

en data

en

7

128x4
RAM

addr

en data

4 4
12

data

640x12 RAM

i2

e

3x8 dcd

d4
d3

a6..a0

a7

rw

rw rw

128x4
RAM

addr

en data
rw

4

128x4
RAM

addr

en data

128x4
RAM

addr

en data
rw rw

128x4
RAM

addr

en data
rw

d2
d1
d0

d5i1
i0

a8
a9 d6

d7

128x4
RAM

addr

en data

128x4
RAM

addr

en data
rw rw

128x4
RAM

addr

en data
rw

128x4
RAM

addr

en data

128x4
RAM

addr

en data
rw rw

128x4
RAM

addr

en data
rw

128x4
RAM

addr

en data

128x4
RAM

addr

en data
rw rw

128x4
RAM

addr

en data
rw
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CHAPTER 6

OPTIMIZATIONS AND 
TRADEOFFS

6.1 EXERCISES

SECTION 6.1: INTRODUCTION

6.1) Define the terms “optimization” and “tradeof.f”

An optimization improves all criteria of interest to us, whereas a tradeoff improves
certain criteria at the expense of other criteria.

6.2) A homeowner wishes to increase the amount of light inside the house during the day,
with the only criteria of interest being the amount of light and the cost of electricity.
Describe how to increase the light via: (a) an optimization, (b) a tradeoff.

(a) An optimization would be to add a window or sunroof (note: the initial cost of
installing those items was not listed as a criteria of interest and thus can be
neglected). The window or sunroof adds light without changing the cost of electric-
ity. 

(b) A tradeoff would be to turn on a lamp during the day. The light would increase,
but at the expense of higher electric cost. 
139
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SECTION 6.2: COMBINATIONAL LOGIC OPTIMIZATIONS AND
TRADEOFFS

6.3) Perform two-level logic size optimization for F(a,b,c) = ab'c + abc + a'bc +
abc' using (a) algebraic methods, (b) a K-map. Express the answers in sum-of-products
form.

(a) F = ab’c + abc + a’bc + abc’
F = ab’c + abc + abc + a’bc + abc + abc’
F = ac(b’ + b) + bc(a + a’) + ab(c + c’)
F = ac + bc + ab

6.4) Perform two-level logic size optimization for F(a,b,c) = a + a'b'c + a'c using
a K-map..

6.5) Perform two-level logic size optimization for F(a,b,c,d) = a'bc' + abc'd' +
abd using a K-map.

0
0 1

0 1 0
1 1

a
bc

0

1

00 01 11 10
F

ab

bc

ac

F(a,b,c) = ab + ac + bc
(b)

0
1 1

1 1 0
1 1

a
bc

0

1

00 01 11 10
F

a

c

F(a,b,c) = a + c

F(a,b,c,d) = bc’ + abd0
1 1

0 0 0
0 0

ab
cd

00

01

00 01 11 10
F

1
0 0

1 1 0
0 0

11
10

abd

bc’
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6.6) Perform two-level logic size optimization F(a,b,c,d) = ab + a'b'd' using a K-
map.

6.7) Perform two-level logic size optimization for F(a,b,c) = a'b'c + abc, assuming
input combinations a'bc and ab'c can never occur (those two minterms represent don’t
cares). 

6.8) Perform two-level logic size optimization for F(a,b,c,d) = a'bc'd + ab'cd',
assuming that a and b can never both be 1 at the same time, and that c and d can never
both be 1 at the same time (i.e., there are don’t cares). 

6.9) Consider the function F(a,b,c) = a'c + ac + a'b. Using a K-map: (a) Determine
which of the following terms are implicants (but not necessarily prime implicants) of the
equation: a'b'c', a'b', a'bc, a'c, c, bc, a'bc', a'b. (b) Determine
which of those terms are prime implicants of the function.

(b) Prime implicants: a’b, c

F(a,b,c,d) = ab + a’b’d’1
0 0

0 0 1
0 0

ab
cd

00

01

00 01 11 10
F

1
0 0

1 1 1
0 0

11
10 ab

a’b’d’

0
0 x

1 x 0
1 0

a
bc

0

1

00 01 11 10
F c

F(a,b,c) = c

F(a,b,c,d) = ac + bd0
0 1

0 x 0
x 0

ab
cd

00

01

00 01 11 10
F

x
0 0

x x x
x 1

11
10

ac

bd

Implicants listed in the question:
0
1 1

0 1 1
1 1

ab
cd

00

01

00 01 11 10
F

0
0 0

0 1 1
1 1

11
10

a’b’c’, a’b’, a’bc, a’c, c, bc, a’bc’, a’b
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6.10) For the function F(a,b,c) = a'c + ac + a'b, determine all prime implicants and
all essential prime implicants: (a) using a K-map, (b) using the tabular method.

(a)

(b)

6.11) For the equation F(a,b,c,d)  = ab'c' + abc'd + abcd + a'bcd + a'bcd',
determine all prime implicants and all essential prime implicants: (a) using a K-map, (b)
using the tabular method.

(a) 

0
0 1

1 1 1
1 0

a
bc

0

1

00 01 11 10
F c

a’b and c are both prime implicants and
a’b

also essential prime implicants; each is the
only cover of some particular 1. 

1

2

a’b
a’c

ac

c

2-literal impl. 1-literal impl.

Prime implicants

Minterm a’b c
a’b
a’c

c

X
X
X

All prime implicants are essential; stop

Step 1:

Step 2:

0
0 0

0 0 0
1 1

ab
cd

00

01

00 01 11 10
F

0
1 1

1 1 0
0 0

11
10

a’bc

bcd
abd

ac’dab’c’

Prime implicants: ab’c’, ac’d, a’bc, bcd, abd
Essential prime implicants: ab’c’, a’bc
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6.12) Use repeated application of the expand operation to heuristically minimize the equa-
tion F(a,b,c) = a'b'c + a'bc + abc. (a) Try expanding each term for each
variable. (b) Instead, determine a way to randomly choose an expand operation, and then
apply 5 random expands.

(a) A possible sequence of expand attempts:

F = b’c + a’bc + abc - invalid (ab’c is not in on-set)
F = a’c + a’bc + abc - valid
F = a’ + a’bc + abc - invalid (a’c’ is not in on-set)
F = a’c + bc + abc - valid
F = a’c + c + abc - invalid (b’c is not in on-set)
F = a’c + b + abc - invalid (bc’ is not in on-set)
F = a’c + bc + bc - valid
F = a’c + bc + c - invalid (b’c is not in on-set)
F = a’c + bc + b - invalid (bc’ is not in on-set)

Final equation:
F = a’c + bc + bc
(F = a’c + bc if a simple search for redundant terms is included)

(b) We may choose a heuristic which chooses a minterm to expand at random and a
variable in that minterm to expand at random. One possible sequence of random

2

3

a’bcd’

abc’d

4-literal impl.

Minterm ab’c’
ab’c’

Step 1:

Step 2:

a’bcd

4 abcd

1

2

ab’c’

a’bc

3-literal impl.

bcd3 abd

1 ab’c’d’

ab’c’d
ac’d Cannot be expanded further; stop

Prime implicants are circled.

a’bc ac’d abd bcd

abc’d
abcd

a’bcd
a’bcd’

X

X
X

X
X X

X

X Essential prime implicants:
ab’c’, a’bc

Step 3:
With ab’c’ and a’bc, we only have abc’d and abcd left to cover. Choosing abd
will cover both with only one prime implicant, so the final cover is:
F(a, b, c, d) = ab’c’ + a’bc + abd
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expand attempts:
F = a’b’c + a’bc + ab - invalid (abc’ is not in on-set)
F = a’b’c + bc + abc - valid
F = b’c + bc + abc - invalid (ab’c is not in on-set)
F = a’c + bc + abc - valid
F = a’c + bc + ac - invalid (ab’c is not in on-set)

6.13) Use repeated application of the expand operation to heuristically minimize the equa-
tion F(a,b,c,d,e) = abcde + abcde' + abcd'e'. (a) Try expanding each
term for each variable. (b) Instead, determine a way to randomly choose an expand opera-
tion, and then apply 5 random expands.

(a)
One possible sequence of expand attempts:
F = bcde + abcde’ + abcd’e’ - invalid (a’bcde is not in on-set)
F = acde + abcde’ + abcd’e’ - invalid (ab’cde is not in on-set)
F = abde + abcde’ + abcd’e’ - invalid (abc’de is not in on-set)
F = abcd + abcde’ + abcd’e’ - valid
F = abcd + bcde’ + abcd’e’ - invalid (a’bcde’ is not in on-set)
F = abcd + acde’ + abcd’e’ - invalid (ab’cde’ is not in on-set)
F = abcd + abde’ + abcd’e’ - invalid (abc’de’ is not in on-set)
F = abcd + abce’ + abcd’e’ - valid
F = abcd + abc + abcd’e’ - invalid (abcd’e is not in on-set)
F = abcd + abce’ + bcd’e’ - invalid (a’bcd’e’ is not in on-set)
F = abcd + abce’ + acd’e’ - invalid (ab’cd’e’ is not in on-set)
F = abcd + abce’ + abd’e’ - invalid (abc’d’e’ is not in on-set)
F = abcd + abce’ + abce’ - valid
F = abcd + abce’ + abc - invalid (abcd’e is not in on-set)

Final equation:
F = abcd + abce’ + abce’
(F = abcd + abce’ if a simple search for redundant terms is included)

(b) We may choose a heuristic which chooses a minterm to expand at random and a
variable in that minterm to expand at random. One possible sequence of random
expand attempts:
F = abde + abcde’ + abcd’e’ - invalid (abc’de is not in on-set)
F = abcde + abcde’ + bcd’e’ - invalid (a’bcd’e’ is not in on-set)
F = abcde + acde’ + abcd’e’ - invalid (ab’cde’ is not in on-set)
F = abcde + abcd + abcd’e’ - valid
F = abcde + abcd + abd’e’ - invalid (abc’d’e’ is not in on-set)
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6.14) Using algebraic methods, reduce the number of gate inputs for the following equa-
tion by creating a multilevel circuit: F(a,b,c,d,e,f,g) = abcde + abcd'e'fg +
abcd'e'f'g'. Assume only AND, OR, and NOT gates will be used. Draw the circuit
for the original equation and for the multilevel circuit, and clearly list the delay and num-
ber of gate inputs for each circuit.

F = abcde + abcd’e’fg + abcd’e’f’g’

F = abc(de + d’e’fg + d’e’f’g’)

F = abc(de + d’e’(fg + f’g’))

SECTION 6.3: SEQUENTIAL LOGIC OPTIMIZATIONS AND TRADEOFFS

6.15) Reduce the number of states for the FSM in Figure 6.88 using the partitioning
method.

Initial groups: G1:{S0,S3}, G2:{S1,S4}, G3:{S2,S5}
G1: S0 goes to S1 (G2), S3 goes to S4 {G2} --> Next states in same group
G2: S1 goes to S2 (G3), S4 goes to S5 (G3) --> Next states in same group
G3: S2 goes to S3 (G1), S5 goes to S0 (G1) --> Next states in same group
Thus, no groups need to be partitioned further, and hence states within a group are
equivalent. Replace S3 by S0, S4 by S1, and S5 by S2 to yield:

a
bc
d
e
f
g

F

a
bc
d
e
f
g

F

19 Gate Inputs
5 Levels of Gate Delay

28 Gate Inputs
3 Levels of Gate Delay

Note: each “bubble” is a NOT gate

S0,S3
xy=00 xy=01 xy=10

Inputs: none; Outputs: x,y

S1,S4 S2,S5
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6.16) Reduce the number of states for the FSM in Figure 6.89 using the partitioning
method.

Initial groups: G1:{S0, S1, S2, S3, S6}, G2:{S4, S5}
x=0: G1: S0 -> S1 (G1), S1 -> S3 (G1), S2 -> S5 (G2), S3 -> S0 (G1), S6 -> S0 (G1)
--> Next states NOT all in same group

New groups: G1: {S0, S1, S3, S6}, G2:{S4, S5}, G3:{S2}
x=0: G1: S0 -> S1 (G1), S1 -> S3 (G1), S3 -> S0 (G1), S6 -> S0 (G1)
x=0: G2: S4 -> S0 (G1), S5 -> S0 (G1)
x=0: G3 (One state group; nothing to check)
x=1: G1: S0 -> S2 (G3), S1 -> S4 (G2), S3 -> S0 (G1), S6 -> S0 (G1) 
--> Next states NOT all in same group

New groups: G1:{S0}, G2:{S4, S5}, G3:{S2}, G4:{S1}, G5:{S3, S6}
x=0: G1: (One state group; nothing to check)
x=0: G2: S4 -> S0 (G1), S5 -> S0 (G1)
x=0: G3: (One state group; nothing to check)
x=0: G4: (One state group; nothing to check)
x=0: G5: S3 -> S0 (G1), S6 -> S0 (G1)
x=1: G1: (One state group; nothing to check)
x=1: G2: S4 -> S0 (G1), S5 -> S0 (G1)
x=1: G3: (One state group; nothing to check)
x=1: G4: (One state group; nothing to check)
x=1: G5: S3 -> S0 (G1), S6 -> S0 (G1)
Thus, no groups need to be partitioned further, and hence states within a group are
equivalent. Replace S6 by S3 and S5 by S4 to yield:

S0
y=0

S1 S2

S3,S6 S4,S5

x

xxx’

x’

x’ y=0

y=1
y=0

y=0

Inputs: x; Outputs: y
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 6.17) Reduce the number of states for the FSM in Figure 6.90 using the partitioning
method.

Initial groups: G1:{A, D, E, F, G}, G2:{B, C}
i=0: G1: A -> F (G1), D -> F (G1), E -> G (G1), F -> F (G1), G -> C (G2)
-->Next states NOT all in same group

New groups: G1:{A, D, E, F}, G2:{B, C}, G3:{G}
i=0: G1: A -> F (G1), D -> F (G1), E -> G (G3), F -> F (G1)
-->Next states NOT all in same group

New groups: G1:{A, D, F}, G2: {B, C}, G3:{G}, G4:{E}
i=0: G1: A -> F (G1), D -> F (G1), F -> F (G1)
i=0: G2: B -> E (G4), C -> E (G4)
i=0: G3: (One state group; nothing to check)
i=0: G4: (One state group; nothing to check)
i=1: G1: A -> F (G1), D -> F (G1), F -> E (G4)
-->Next states NOT all in same group

New groups: G1:{A, D}, G2: {B, C}, G3:{G}, G4:{E}, G5:{F}
i=0: G1: A -> F (G5), D -> F (G5)
i=0: G2: B -> E (G4), C -> E (G4)
i=0: G3: (One state group; nothing to check)
i=0: G4: (One state group; nothing to check)
i=0: G5: (One state group; nothing to check)
i=1: G1: A -> F (G5), D -> F (G5)
i=1: G2: B -> A (G1), C-> D (G1)
i=1: G3: (One state group, nothing to check)
i=1: G4: (One state group, nothing to check)
i=1: G5: (One state group, nothing to check)

Thus, no groups need to be partitioned further, and hence states within a group are-
equivalent. Replace C by B and D by A to yield:

Inputs: i; Outputs: h

A,D

h=0

B,C E

F

G

i

i’

h=0

h=1
h=0

h=0

i
i’

i

i’
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6.18) Compare the logic size (number of gate inputs) and the delay (number of gate-
delays) of a straightforward 2-bit binary encoding of the FSM in Figure 6.91 using a 3-bit
output encoding versus using a one-hot encoding.

Inputs Outputs
s2 s1 s0 n2 n1 n0 w x y
1 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

Inputs Outputs
s1 s0 n1 n0 w x y
0 0 0 1 1 0 0
0 1 1 0 0 1 0
1 0 1 1 0 0 1
1 1 1 1 0 0 0

State encodings: S0: 00, S1: 01, S2: 10, S3: 11 y

State Register

s1

n1

n0

s0

x
w

n1=s1+s0
n0=s1’s0’ + s1
w = s1’s0’
x = s1’s0
y=s1s0’

State encodings: S0: 100, S1: 010, S2: 001, S3: 000

n2 = 0
y

State Register

n1
n0

s2

x
w

s1 s0

n2

Logic size: 10 gate inputs
Delay: 2 gate delays

Logic size: 0 gate inputs
Delay: 0 gate delays

2-bit binary encoding:

3-bit output encoding:

State encodings: S0: 0001, S1: 0010, S2: 0100, S3: 1000

Inputs Outputs

s3 s2 s1 s0 n3 n2 n1 n0 w x y
0 0 0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0

n3 = s3 + s2
n2 = s1
n1 = s0
n0 = 0
w = s0
x = s1
y = s2

y

State Register

s3

n1
n0

s2

x
w

0

s1 s0

n2
n3

Logic size: 2 gate inputs
Delay: 1 gate delays

One-hot encoding:

n1 = s2
n0 = s1
w = s2
x = s1
y = s0

0
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6.19) Compare the logic size (number of gate inputs) and the delay (number of gate-
delays) of a minimal bitwidth state encoding versus an output encoding for the laser-based
distance measurer FSM shown in Figure 5.26..

Inputs Outputs
s2 s1 s0 B S n2 n1 n0 L Dreg_clr Dreg_ld Dcnt_clr Dcnt_cnt
0 0 0 x x 0 0 1 0 1 0 0 0
0 0 1 0 x 0 0 1 0 0 0 1 0
0 0 1 1 x 0 1 0 0 0 0 1 0
0 1 0 x x 0 1 1 1 0 0 0 0
0 1 1 x 0 0 1 1 0 0 0 0 1
0 1 1 x 1 1 0 0 0 0 0 0 1
1 0 0 x x 0 0 1 0 0 1 0 0

State encodings: S0: 000, S1: 001, S2: 010, S3: 011, S4: 100
Minimal bit width encoding:

n2 = s1s0S
n1 = s1’s0B + s1s0’ + s1s0S’
n0 = s1’s0’ + s1’s0B’ + s1s0’ + s1s0S’
L = s1s0’
Dreg_clr = s2’s1’s0’
Dreg_ld = s2
Dcnt_clr = s1’s0
Dcnt_cnt = s1s0

Logic size: 37 gate inputs
Delay: 2 gate delays

Inputs Outputs
s4 s3 s2 s1 s0 B S n4 n3 n2 n1 n0 L

D
r
e
g
_
c
l
r

D
r
e
g
_
l
d

D
c
n
t
_
c
l
r

D
c
n
t
_
c
n
t

0 1 0 0 0 x x 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 x 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 1 x 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 x x 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 x 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 x 1 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 x x 0 0 0 1 0 0 0 1 0 0

State encodings: S0: 01000, S1: 00010, S2: 10000, S3: 00001, S4: 00100
Output encoding:

n4 = s1’B
n3 = 0
n2 = s0S
n1 = s3 + s1x’ + s2
n0 = s4 + s0S’
L = s4
Dreg_clr = s3
Dreg_ld = s2
Dcnt_clr = s1
Dcnt_cnt = s0

Logic size: 13 gate inputs
Delay: 2 gate delays
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6.20) Compare the logic size (number of gate inputs) and the delay (number of gate-
delays) of a minimum binary encoding, an output encoding (if it is possible; if not, indi-
cate why not), and a one-hot encoding of the laser timer FSM in Figure 3.47..

6.21) Convert the Moore FSM for the code detector circuit shown in Figure 3.58 to the
nearest Mealy FSM equivalent.

.

Inputs Outputs
s1 s0 b n1 n0 x
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 1
0 1 1 1 0 1
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 0 0 1
1 1 1 0 0 1

State encodings: S0: Off, On1: 01, On2: 10, On3: 11

State Register

s1

n1

n0

s0

x

State encodings: S0: 0001, S1: 0010, S2: 0100, S3: 1000

Inputs Outputs
s3 s2 s1 s0 b n3 n2 n1 n0 x
0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0
0 0 1 0 x 0 1 0 0 1
0 1 0 0 x 1 0 0 0 1
1 0 0 0 x 0 0 0 1 1

n3 = s2

State Register

s3

n0

s2

x

s1 s0

n1
n2

Logic size: 11 gate inputs
Delay: 2 gate delays

Logic size: 9 gate inputs
Delay: 2 gate delays

n1 = s1 xor s0
n0 = s1’s0’b + s1s0’
x = s1 + s0

b

n2 = s1
n1 = s0b
n0 = s0b’ + s3
x = s3 + s2 + s1

n3

b

An output encoding is not possible since each state’s external outputs are not unique.

One-hot encoding:

Minimum binary encoding:

Inputs: s, r, g, b, a
Outputs: u

Wait

Start

s/u=0
s’/u=0

Red1

a’/u=0

a(r’+b+g)/u=0

arb’g’/u=0

a’/u=0 Blueabr’g’/u=0
a(b’+r+g)/u=0

a’/u=0

Greenagr’b’/u=0

a’/u=0

a(g’+r+b)/u=0

a(r
’+b+

g)/
u=

0

arb’g’/u=1
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6.22) Convert the Moore FSM in Figure 6.92 to the nearest Mealy FSM equivalent.

6.23) Convert the Mealy FSM in Figure 6.93 to the nearest Moore equivalent.

6.24) Convert the Mealy FSM in Figure 6.94 to the nearest Moore equivalent.
.

Inputs: s, r
Outputs: u, y

Wait

Start

s/a=1, en=0
s’/a=0, en=0

C1

r’/a
=0, en

=0

r/a=0, en=0

r/a=0, en=0 C2 r/a=0, en=0 C3 r/a=0, en=0 C3

C4

r/a=0, en=0

/a=0, en=1

r’/a=0, en=0

r’/a=0, en=0

r’/a=0, en=0

Inputs: s, r
Outputs: u, y Start

uy=00

S2 S0 S1
uy=10 uy=01s’s

uy=10

r

r’

Inputs: g, r
Outputs: x, y, z

G0

G1

xyz=000
gr’

G2

r+g’

g’r’
xyz=110

r
gr’

xyz=100g’r’

G3
xyz=010

gr’

g’r’

G4
xyz=111g

gr’

g’
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SECTION 6.4: DATAPATH COMPONENT TRADEOFFS

6.25) Trace the execution of the 4-bit carry-lookahead adder shown in Figure 6.57 when a
= 11 (eleven) and b = 7. Show all the input and output values of the SPG blocks and of the
carry-lookahead block initially and after each relevant number of gate delays..

b3

a b cin
SPG Block

P G S

P3 G3

cout

cout S3

a b cin
SPG Block

P G S

c3 P2 G2 c2

S2

a b cin
SPG Block

P G S

c1P1 G1

a b cin
SPG Block

P G S

P0 G0

b0b2 b1 c0

S1 S0

4-bit carry-lookahead logic

a3 a2 a1 a0
01 1 1 1110 0

Initial values
XX XX XXXX

X X X X X

X X X

b3

a b cin
SPG Block

P G S

P3 G3

cout

cout S3

a b cin
SPG Block

P G S

c3 P2 G2 c2

S2

a b cin
SPG Block

P G S

c1P1 G1

a b cin
SPG Block

P G S

P0 G0

b0b2 b1 c0

S1 S0

4-bit carry-lookahead logic

a3 a2 a1 a0
01 1 1 1110 0

01 10 1001

X X X X X

X X X

Generate/Propagate
bits computed

b3

a b cin
SPG Block

P G S

P3 G3

cout

cout S3

a b cin
SPG Block

P G S

c3 P2 G2 c2

S2

a b cin
SPG Block

P G S

c1P1 G1

a b cin
SPG Block

P G S

P0 G0

b0b2 b1 c0

S1 S0

4-bit carry-lookahead logic

a3 a2 a1 a0
01 1 1 1110 0

01 10 1001

1 X X X 0

1 1 1

Carry-lookahead

after 1 gate delay (S0

logic outputs
computed after
2 more gate delays

b3

a b cin
SPG Block

P G S

P3 G3

cout

cout S3

a b cin
SPG Block

P G S

c3 P2 G2 c2

S2

a b cin
SPG Block

P G S

c1P1 G1

a b cin
SPG Block

P G S

P0 G0

b0b2 b1 c0

S1 S0

4-bit carry-lookahead logic

a3 a2 a1 a0
01 1 1 1110 0

01 10 1001

1 0 0 1 0

1 1 1

Sums computed
after 1 more gate
delay

will be computed
after one more gate 
delay; we won’t show
another diagram/step
just for this one bit)
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6.26) Trace the execution of the 4-bit carry-lookahead adder shown in Figure 6.57 when a
= 5 and b = 4. Show all the input and output values of the SPG blocks and of the carry-
lookahead block initially and after each relevant number of gate delays.

b3

a b cin
SPG Block

P G S

P3 G3

cout

cout S3

a b cin
SPG Block

P G S

c3 P2 G2 c2

S2

a b cin
SPG Block

P G S

c1P1 G1

a b cin
SPG Block

P G S

P0 G0

b0b2 b1 c0

S1 S0

4-bit carry-lookahead logic

a3 a2 a1 a0
10 0 1 0010 0

Initial values
XX XX XXXX

X X X X X

X X X

b3

a b cin
SPG Block

P G S

P3 G3

cout

cout S3

a b cin
SPG Block

P G S

c3 P2 G2 c2

S2

a b cin
SPG Block

P G S

c1P1 G1

a b cin
SPG Block

P G S

P0 G0

b0b2 b1 c0

S1 S0

4-bit carry-lookahead logic

a3 a2 a1 a0
10 0 1 0010 0

10 00 0100

X X X X X

X X X

Generate/Propagate
bits computed

b3

a b cin
SPG Block

P G S

P3 G3

cout

cout S3

a b cin
SPG Block

P G S

c3 P2 G2 c2

S2

a b cin
SPG Block

P G S

c1P1 G1

a b cin
SPG Block

P G S

P0 G0

b0b2 b1 c0

S1 S0

4-bit carry-lookahead logic

a3 a2 a1 a0
10 0 1 0010 0

10 00 0100

0 X X X 1

1 0 0

Carry-lookahead

after 1 gate delay (S0

logic outputs
computed after
2 more gate delays

b3

a b cin
SPG Block

P G S

P3 G3

cout

cout S3

a b cin
SPG Block

P G S

c3 P2 G2 c2

S2

a b cin
SPG Block

P G S

c1P1 G1

a b cin
SPG Block

P G S

P0 G0

b0b2 b1 c0

S1 S0

4-bit carry-lookahead logic

a3 a2 a1 a0
10 0 1 0010 0

10 00 0100

0 1 0 0 1

1 0 0

Sums computed
after 1 more gate 

will be computed
after one more gate 
delay; we won’t show
another diagram/step
just for this one bit)

delay
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6.27) Trace the execution of the 16-bit carry-lookahead adder built from 4-bit adders as
shown in Figure 6.60 when a = 43690 and b = 21845. Do not trace internal behavior of
the individual 4-bit carry-lookahead adders..

a3
4-bit adder

P G

P3 G3

cout
4-bit carry-lookahead logic

a2 a1 a0 b3b2b1 b0

cout
cin

s3 s2 s1 s0

P G

a3
4-bit adder

P G

a2 a1 a0 b3 b2b1b0

cout
cin

s3 s2 s1 s0

P2 G2c3

a3
4-bit adder

P G

a2 a1 a0 b3b2 b1b0

cout
cin

s3 s2 s1 s0

P1 G1c2

a3
4-bit adder

P G

a2 a1 a0 b3b2b1 b0

cout
cin

s3 s2 s1 s0

P0 G0c1

00 1100 1100 1100 11 00 1 100 1 100 1 100 1 1

x

x x

x x x xx x x xx x x xx x x xx x x

x x

x

x x

x

x x

a3
4-bit adder

P G

P3 G3

cout
4-bit carry-lookahead logic

a2 a1 a0 b3b2b1 b0

cout
cin

s3 s2 s1 s0

P G

a3
4-bit adder

P G

a2 a1 a0 b3 b2b1b0

cout
cin

s3 s2 s1 s0

P2 G2c3

a3
4-bit adder

P G

a2 a1 a0 b3b2 b1b0

cout
cin
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6.28) (a) Design a 64-bit hierarchical carry-lookahead adder using 4-bit carry-lookahead
adders. (b) What is the total delay through the 64-bit adder? (c) What is the speedup of the
carry-lookahead adder compared to a 64-bit carry-ripple adder; compute speedup as
(slower time)/(faster time). 
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(b) The hierarchical carry-lookahead adder depicted above requires 8 gate delays (2
for the SPG blocks, and 6 for the three levels of CLA logic). 

(c) Compared to a carry-ripple adder (composed of a chain of full-adders), the hier-
archical carry-lookahead adder speedup is 128 gate delays/8 gate delays = 16 times
faster.

6.29) Design a 24-bit hierarchical carry-lookahead adder using 4-bit carry-lookahead
adders.

6.30) Design a 16-bit carry-select adder using 4-bit ripple carry adders.
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Section 6.5: RTL Design Optimizations and Tradeoffs

6.31) The adder tree shown in Figure 6.2 is used to compute the sum of eight inputs on
every clock cycle, where the sum is: S = R + T + U + V + W + X + Y + Z. (a)
Design a pipelined version of the adder tree to maximize the speed at which we can oper-
ate our clock input clk. (b) Create a timing diagram of the pipelined tree circuit showing
the values of pipeline registers and the output register for the following input valuesL
R=1, T=2, U=3, V=4, W=5, X=6, Y=7, and Z=8. (c) If the delay of an adder is 3 ns, com-
pare the fastest clock frequency of the original circuit versus the pipelined circuit. (d)
Again assuming 3 ns adders, compare the fastest latency and throughput values for the
original circuit versus the pipelined circuit.

(a) 

(b) 

R T U V

S

+ +

+

W X Y Z

+ +

+

+

clk
R1 R2 R3 R4

R5 R6

Clk

R1

R=1, T=2, U=3, V=4, W=5, X=6, Y=7, Z=8

3? 3 3

R2 7? 7 7

R3 11? 11 11

R4 15? 15 15

R5 ?? 10 10

R6 ?? 26 26

S ?? ? 36
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(c) The non-pipelined adder tree can be operated with a clock period of 9 ns while
the pipelined adder tree can be operated with a clock period of 3 ns. The frequencies
are 1/9ns = 1.11E8 or 111 MHz, versus 1/3ns = 3.33E8 or 333 MHz. 

(d) Assuming the delay of an adder is 3 ns, the latency and throughput of the origi-
nal circuit are 9 ns and 9 ns, and of the pipelined circuit are 9 ns and 3 ns.
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6.32) (a) Convert the following C-like code to a high-level state machine. Ignore overflow.
(b) Use the RTL design process shown in Table 5.1 to convert the HLSM for the C code to
a controller and a datapath. Design the datapath to structure, but design the controller to
the point of an FSM only. (c) Redesign the datapath to allow for concurrency in which
four multiplications and two additions can be performed concurrently. Assume memory
ports can can be introduced as needed. (d) Assuming a multiplier delay is 4 ns and an
adder delay is 2 ns, list the fastest clock period, latency, and throughput for the original
design and for the more concurrent design, assuming the critical path is in the datapath. (e)
Introduce more multipliers or adders and pipeline registers as needed to further improve
the speed of the design, and compare the clock period, throughput, and latency with the
previous two designs.

(a)

(b)
Step 1 - Capture a high-level state machine - (completed above)

Step 2 - Create a datapath

Inputs: byte a[256], byte b[256]
Outputs: byte sum, byte c[256]

Init MAC Iterate Idle

Local Storage: byte temp, byte i

i := 0
sum := 0

c[i] := a[i] * b[i]
temp := temp + (a[i] * b[i])

sum := temp

i != 255

i = 255

i := i + 1

ld
clr i

ld
clr sumreg

ld
clr temp

ABC_addr A_data B_data

*

C_data

sum

+

=255 +1

i_ld
i_clr

i_ne_255

temp_ld

sumreg_ld
sumreg_clr
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Step 3 - Connect the datapath to a controller

Step 4 - Derive the controller’s FSM

Controller Datapath

i_ld
i_clr

i_ne_255
temp_ld

sumreg_ld
sumreg_clr

sum
A

B
_r

d

C
_w

r

A
B

C
_a

dd
r

A
_d

at
a

B
_d

at
a

C
_d

at
a

Inputs: i_ne_255
Outputs: i_ld, i_clr, temp_ld, sumreg_ld, sumreg_clr, AB_rd, C_wr

Init MAC Iterate Idle
i_clr = 1

sumreg_clr = 1
temp_ld = 1

sumreg_ld = 1

i_ne_255

i_ne_255’

temp_ld = 0

i_ld = 1
AB_rd = 1
C_wr = 1

C_wr = 0
AB_rd = 0
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(c)
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* * * *

A
_d

at
a_

1
B

_d
at

a_
1

. . .
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(d)
Original Design: 4ns + 2ns = 6ns critical path, so 6ns clock period. Latency is 6 ns,
and throughput is 1 multiply-accumulates per 6ns -- 166.6 million multiply-accumu-
lates per second.

Concurrent Design: 4ns + 2ns + 2ns + 2ns = 10ns critical path, so 10ns clock period.
Latency is also 10ns, and throughput is 4 multiply-accumulates per 10ns -- 400 mil-
lion multiply-accumulates per second.

(e) We have a range of area-performance tradeoffs available to us. For instance, we
could theoretically include 128 multipliers and a full adder tree (assuming we can
either reorganize the memory or create a 256 port memory). With pipeline register-
ing, we could have a 4ns clock period. Our latency would be 5 clock cycles, or 20ns. 

We would, however, complete the entire operation in ‘one go’, for a throughput of
256 MACs in 20ns = 12.80 billion MACs / second.

A more likely scenario, though, would be to pipeline the datapath in (c):
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With the circuit above, we would see a clock period of 4ns, a latency of (4ns + 4ns +
4ns) = 12ns, and a throughput of 4 MACs per cycle, or 1 billion MACs / second.
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6.33) (a) Convert the following C-like code to a high-level state machine. Ignore overflow.
(b) Use the RTL design process shown in Table 5.1 to convert the high-level state machine
for the C code to a controller and a datapath. Design the datapath to structure, but design
the controller to the point of an FSM only. (c) Redesign your datapath to allow for concur-
rency in which three comparisons, three additions, and three multiplications can be per-
formed concurrently.
(a)

(b)

Step 1 - Capture a high-level state machine - (completed above)

Inputs: byte a[256], byte b[256], byte cy
Outputs: byte sumx, byte sumy, byte c[256]

Init

Local Storage: byte i

i := 0
sumx := 0
sumy := 0

Choose

GT128 Else

Iter

c[i] := a[i] * b[i]
sumx := sumx + (a[i] * b[i])

c[i] := a[i] * (b[i] + cy)
sumy := sumy + (a[i] * (b[i] + cy))

Idle

a[i
] >

 128 a[i] <= 128

(i == 0)’
i =

= 0

i := i + 1 i := i + 1
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Step 2 - Create a datapath

Step 3 - Connect the datapath to a controller

Omitted. Datapath and controller are connected in the same manner as 6.32. The
controller’s signals to the datapath are i_ld, i_clr, sumx_ld, sumx_clr, sumy_ld,
sumy_clr, and B_mux_sel. The datapath’s signals to the controller are i_eq_0 and
A_gt_128.

ld
clr i

+1

*

+

2x1 8bit
0 1

0

ld
clr sumx +

ld
clr sumy +

cyB_dataA_data

C
_data

sum
y

sum
x

A
B

C
_addr

i_ld
i_clr

sumx_ld
sumx_clr

sumy_ld
sumy_clr

B_mux_sel

> 128

A
_gt_128

= 0

i_eq_0
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Step 4 - Derive the controller’s FSM

(c)

Inputs: i_eq_0, A_gt_128
Outputs: i_ld, i_clr, sumx_ld, sumx_clr, sumy_ld, sumy_clr, B_mux_sel

Init

i_clr = 1
sumx_clr = 1
sumy_clr = 1

Choose

GT128 Else

Iter

B_mux_sel = 0
sumx_ld = 1

B_mux_sel = 1
sumy_ld = 1

Idle

A_gt_128 A_gt_128’

i_eq_0’

i_e
q_

0

i_ld = 1 i_ld = 1

ld
clr i

+3

*

+

2x1 8bit
0 1

0

ld
clr sumx +

ld
clr sumy +

cyB_data1A_data1
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B_data2A_data2

C
_data2

> 128

A
2_gt_128

*

+

2x1 8bit
0 1

0
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6.34) Redesign the datapath and controller designed in Exercise 6.33 by allowing up to
nine concurrent additions and inserting pipeline registers, updating the controller as neces-
sary. Assuming a comparator has a delay of 4 ns, an adder has a delay of 3 ns, and a multi-
plier has a delay of 20 ns, how long will the circuit take to finish its computation?

Note that if we choose the maximum number of operations (9), then we will have a
few units at the end adding erroneous data, and so the results must be gated off on
the last cycle. If we choose 8 operations, we have a similar problem -- we end up
adding an element from address 0. While entirely possible, these are likely not the
best design choices. Thus, we will use the maximum number of concurrent additions
which allow an easy design (i.e. the remainder of 255 divided by this number is
zero). Thus, we will use 5 concurrent additions in this solution.

The solution is very similar to 6.33(c), but with 5 separate (mux, comparator, adder,
multiplier) units instead of 3. The most obvious pipeline register insertion would be
before and after each multiplier, to give us a clock period of 20 ns. 
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6.35) Given the HLSM in Figure 6.98, create two different designs: one optimized for
minimum circuit speed and the other optimized for minimum circuit size. Be sure to
clearly indicate the component allocation, operator binding, and operator scheduling used
to design the two circuits.

Design 1: Optimize For Size

New Schedule: (an extra register is definitely smaller than an extra multiplier)

A B1 B2 C D1 D2
s0 := s0 * c0 s1 := s1 + s0*c1 s2 := s0*x2 s3 := s2 + s0*c1

s4 := s0 * c1
tmp := s4*c2 F := s3 * tmp

Component Allocation: We’ll only need the registers, one adder, one multiplier, and 
three muxes (one with two inputs, one with at least three inputs and one with at least 

s0 s1 s2s3s4

tmp

F

x2c2c1c0

5 inputs)

+

*

2x1 mux

8x1 mux4x1 mux

Note: control signals are omitted for simplicity



6.1 Exercises 169
Design 2: Optimize For Speed

New Schedule:

A B D
s0 := s0 * c0 s1 := s1 + s0*c1 F := s3 * s4 * c2

Component Allocation: We can use two multipliers if we are OK with using muxes.
 

s0 s1 s2s3s4 F

x2c2c1c0

Note: control signals are omitted for simplicity

s2 := s0 * x2 s3 := s2 + s0*c1
s4 := s0*c1

However, for the best performance possible, we will use dedicated multipliers (albeit
at a huge cost in area). We will also use dedicated adders.

*

*

*
+ +

*

*
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SECTION 6.6: MORE ON OPTIMIZATIONS AND TRADEOFFS

6.36) Trace through the execution of the binary search algorithm when searching for the
number 86 in the following sorted list of 15 numbers: 1, 10, 25, 62, 74, 75, 80, 84, 85, 86,
87, 100, 106, 111, 121. How many comparisons were required to find the number using
the binary search and how many comparisons would have been required using a linear
search?

Assume that the 15 numbers are indexed from 0 to 14.

1. We compare the middle number (number[7]: 84) with 86 and determine that 86
might be between number[8] and number[14], inclusive

2. We compare the middle number (number[11]: 100) to 86 and determine that 86
might be between number[8] and number[10], inclusive

3. We compare the middle number (number[9]: 86) to 86 and conclude the search

A binary search requires 3 comparisons to find number 86, while a linear search
(assuming we start from number[0]) requires 9 comparisons to find number 86.

6.37) Trace through the execution of the binary search algorithm when searching for the
number 99 in the following list of 15 numbers: 1, 10, 25, 62, 74, 75, 80, 84, 85, 87, 99,
100, 106, 111, 121. How many comparisons were required to look for the number using
the binary search and how many comparisons are required using a linear search?

Assume that the 15 numbers are indexed from 0 to 14.

1. We compare the middle number (number[7]: 84) with 99 and determine that 99
might be between number[8] and number[14], inclusive

2. We compare the middle number (number[11]: 100) to 99 and determine that 99
might be between number[8] and number[10], inclusive

3. We compare the middle number (number[9]: 86 to 99) and determine that 99
might be number[10].

4. We compare number[10] (87) and conclude the search (99 was not found).

Using a binary search required 4 comparisons, while a linear search would require
12 comparisons.
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6.38) Trace through the execution of the binary search algorithm when searching for the
number 121 in the list of numbers from the previous example. How many comparisons
were required to find the number using the binary search and how many comparisons are
required using a linear search?

A binary search requires 4 or 5 comparisons (depending on how the middle number
is chosen for even-sized ranges) to find 121, while a linear search takes 14 compari-
sons to find 121.

6.39) Using the list of 15 numbers from Exercise 6.37, how many numbers can be found
faster using a linear search algorithm compared with the binary search algorithm?

Depending on how the middle number is chosen for even-sized ranges, we can find
the first 2 or first 3 numbers in the list faster using linear search instead of binary
search.

Section : Power Optimization

6.40) Given the logic gate library in Figure 6.99, optimize the circuit in Figure 6.100 by
reducing power consumption without increasing the circuit’s delay..

.6.41) Given the logic gates shown in Figure 6.99, optimize the circuit in Figure 6.101 by
reducing power consumption without increasing the circuit’s delay.

6.42) Given the logic gates shown in Figure 6.99, optimize the circuit in Figure 6.102 by
reducing power consumption without increasing the circuit’s delay..
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6.43) Given the logic gates shown in Figure 6.99, optimize the circuit in Figure 6.103by
reducing power consumption without increasing the circuit’s delay.

a
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CHAPTER 7

PHYSICAL IMPLEMENTA-
TION

7.1 EXERCISES

Section 7.2: Manufactured IC Technologies

7.1. Explain why gate array IC technology has a shorter production time than full-custom
IC technology.
Full-custom IC technology requires that every layer of the chip be manufactured,
and each layer takes time to produce. Gate array IC technology only requires the
wiring layers to be manufactured, so the lower transistor layers can be pre-manufac-
tured. Furthermore, gate array technology will have fewer errors due to eliminating-
errors in the pre-designed transistor layers. 

7.2 Explain why the use of NAND or NOR gates in a CMOS gate-array circuit imple-
mentations is typically preferred over an AND/OR/NOT implementation of a cir-
cuit.
NAND and NOR gates have more efficient CMOS implementations, due to pMOS
transistors being efficient at passing 1s and nMOS transistors being efficient at pass-
ing 0s. As such, a 2-input NAND gate can be built using two pMOS transistors con-
nected to 1 (power) and two nMOS transistors connected to 0 (ground); an AND
gate would then be built be adding an inverter (two more transistors) to the NAND
output, yielding more transistors and larger delay. 

7.3 Draw a gate array IC having three rows, the first row having four 2-input AND gates,
the second row having four 2-input OR gates, and the third having row four NOT
165
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gates. Show how to instantiate wires to the gate array to implement the function
F(a,b,c) = abc + a’b’c’.

7.4 Assume a standard cell library has a 2-input AND gate, a 2-input OR gate, and a
NOT gate. Use a drawing to show how to instantiate and place standard cells on an
IC and wire them together to implement the function in Exercise 7.3. Draw your
cells the same size as the gates in Exercise 7.3, and be sure your rows are of equal
size.

Note that wires are shorter. There are also fewer gates. 

7.5 Draw a gate array IC having three rows, the first row having four 2-input AND gates,
the second row having four 2-input OR gates, and the third having row four NOT
gates. Show how to instantiate wires to the gate array to implement the function
F(a,b,c,d) = a’b + cd + c’.

7.6 Assume a standard cell library has a 2-input AND gate, a 2-input OR gate, and a
NOT gate. Use a drawing to show how to instantiate and place standard cells on an
IC and wire them together to implement the function in Exercise 7.5. Be sure to

a
b
c

F

a
b
c

F

b

a

F

c

d
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draw your cells the same size as the gates in Exercise 7.5, and be sure your rows are
of equal size.

Note that wires are shorter. There are also fewer gates. 

7.7 Consider the implementations of a half adder with a gate array in Figure 7.5 and with
standard cells in Figure 7.7. Assume each gate or cell (including inverters) has a
delay of 1 ns. Also assume that every inch of wire (for each inch in your drawing,
not on an actual IC) in the drawing has a delay of 3 ns (wires are relatively slow in
the era of tiny fast transistors). Estimate the delay of the gate array and the standard
cell circuits. 
The gate array-based half adder requires 3 levels of gates, contributing 3ns to its
delay, and approximately 4.25” of wire, contributing 12.75ns to its delay for a total
of 15.75ns. The standard cell-based half adder requires 3 levels of gates (3ns) and
approximately 3” of wire (9ns) for a total delay of 12ns.

7.8 For your solutions to Exercises 7.3 and 7.4, assume that each gate and cell has a
delay of 1 ns, and that every inch of wire (for each inch in your drawing, not on an
actual IC) your drawing corresponds to a delay of 3 ns. Estimate the delays of the
gate-array and standard cell circuits.
Our solution to Exercise 7.3 required 4 levels of gates (4ns) and approximately 4.5”
of wire (13.5ns) for a total delay of 17.5ns. Our solution to Exercise 7.4 required 4
levels of gates (4ns) and approximately 3” of wire (9ns) for a total delay of 13ns.

7.9 Draw a circuit using AND, OR and NOT gates for the following function:
F(a,b,c) = a’bc + abc’. Place inversion bubbles on that circuit to convert
that circuit to: (a) NAND gates only, (b) NOR gates only. 

a

d

F
b

c

(b)(a)

a
b
c F

a
b
c F

a
b
c F
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7.10 Draw a circuit using AND, OR and NOT gates for the following function:
F(a,b,c) = abc + a’ + b’ + c’. Place inversion bubbles on that circuit
to convert that circuit to: (a) NAND gates only, (b) NOR gates only.

7.11 Draw a circuit using AND, OR, and NOT gates for the following function:
F(a,b,c) = (ab + c)(a’ + d) + c’. Convert the circuit to a circuit
using: (a) NAND gates only, (b) NOR gates only.

7.12 Draw a circuit using AND, OR, and NOT gates for the following function:
F(w,x,y,z) = (w + x)(y + z) + wy + xz. Convert the circuit to a cir-
cuit using: (a) NAND gates only, (b) NOR gates only..

a
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7.13 Draw a circuit using AND, OR, and NOT gates for the following function:
F(a,b,c,d) = (ab)(b’ + c) + (a’d + c’). Convert the circuit to a cir-
cuit using: (a) NAND gates only, (b) NOR gates only.

7.14 Show how to convert the following gates into circuits having only 3-input NAND gates:

a. a 3-input AND gate

b. a 3-input OR gate.

c. a NOT gate.

7.15 Assume a standard cell library consisting of 2-input and 3-input NAND gates with a
delay of 1 ns each, 2-input and 3-input AND and OR gates with a delay of 1.8 ns
each, and a NOT gate with a delay of 1 ns. Compare the number of transistors and
the delay of an implementation using only AND/OR/NOT gates with an implemen-
tation using only NAND gates for the function: F(a,b,c)=ab’c + a’b. For
calculating the size of an implementation, assume each gate requires two transistors.

a
b

F
c
d

(b)

a
b

F
c
d

(a)

a
b

F
c
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b F
a

c
Delay: 4.6ns

b F
a

c
Delay: 3ns

Size: 10 transistors

Size: 10 transistors
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7.16 Assume a standard cell library consisting of 2-input AND and OR gates with a delay
of 1 ns each, 3-input AND and OR gates with a delay of 1.5 ns each, and a NOT gate
with a delay of 1 ns. Compare the number of transistors and the delay of an imple-
mentation using only 2-input AND/OR gates and NOT gates with an implementa-
tion using only 3-input AND/OR gates and NOT gates for the function:
F(a,b,c)= abc + a’b’c + a’b’c’. For calculating the size of an imple-
mentation, assume each gate requires two transistors.

7.17 Assume a standard cell library consisting of 2-input NAND and NOR gates with a
delay of 1 ns each, and 3-input NAND and NOR gates with a delay of 1.5 ns each.
Compare the number of transistors and the delay of an implementation using only 2-
input NAND/NOR gates with an implementation using only 3-input NAND/NOR
gates for the function: F(a,b,c)= a’bc + ab’c + abc’. For calculating the
size of an implementation, assume each gate requires two transistors.

b F
a

c

Delay: 5ns

b F
a

c
Delay: 3ns

Size: 11 transistors

Size: 10 transistors

b
a

c

Delay: 7ns
Size: 30 transistors

F

a
b
c

F

Delay: 4.5ns
Size: 14 transistors
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Section 7.3: Programmable IC Technology -- FPGA

7.18 Show how to implement on a 3-input 2-output lookup table the function F(a,b,c)
= a + bc.

7.19 Show how to implement on two 3-input 2-output lookup tables the function
F(a,b,c,d) = ab + cd. Assume you can connect the lookup tables in a cus-
tom manner (i.e., do not use a switch matrix, just directly connect your wires). 

7.20 Show how to implement on two 3-
input 2-output lookup tables the
following function:
F(a,b,c,d) = a’bd +
b’cd’. Assume the two lookup
tables are connected in the manner
shown in Figure 7.47. You may
not need to use every lookup table
output.
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Figure 7.47: Two 3-input 2-output lookup tables
implemented using 8x2 memory.
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Inputs Outputs
x y c - F
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7.21 Show how to implement on two 3-input 2-output lookup tables the following func-
tions: F(x,y,z) = x’y + xyz’ and G(w,x,y,z) = w’x’y + w’xyz’.
Assume the two lookup tables are connected in the manner shown in Figure 7.47.

7.22 Show how to implement on two 3-input 2-output lookup tables the following func-
tions: F(a,b,c,d) = abc + d and G = a’. You must implement both F and
G with only two lookup tables connected in the manner shown in Figure 7.47.
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7.23 Implement a 2-bit comparator that compares two 2-bit numbers and has three outputs
indicating greater-than, less-than, and equal-to, using any number of 3-input 2-out-
put lookup tables and custom connections among the lookup tables. 

Only the left component need be completed for this exercise. The right component
with the ilt, ieq, igt components goes beyond the exercise’s problem statement.
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An alternative solution creates a single 16-row truth table for a1 a0 b1 b0, and 3 output
functions gt, lt, eq; creates minimized equations; and maps equations to LUTs. The above
ripple-carry-based approach may be simpler. 
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7.24 Show how to implement a 4-bit carry-ripple adder using any number of 3-input 2-
output lookup tables and custom connections among the lookup tables. Hint: map
one full-adder to each lookup table.

7.25 Show how to implement a 4-bit carry-ripple adder using any number of 4-input 1-
output lookup tables and custom connections among the lookup tables.
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Similarly to Exercise 7.24, we can simply use one LUT for each output of a full-
adder. We can just “ignore” the extra input by repeating the first 8 entries of the table
to fill the last 8 entries of the table.
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7.26 Show how to implement a comparator that compares two 8-bit numbers and has a
single equal-to output, using any number of 4-input 1-output lookup tables and cus-
tom connections among the lookup tables.

7.27 Show the bitfile necessary to program the FPGA fabric in Figure 7.31 to implement
the function F(a,b,c,d) = ab + cd, where a, b, c and d are external inputs.

The corresponding bitfile is: 00000000 00010000 0 0 11 00 10 00000000 00110111
0 0
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7.28 Show the bitfile necessary to program the FPGA fabric in Figure 7.31 to implement
the function F(a,b,c,d) = abcd, where a, b, c and d are external inputs.

The corresponding bitfile is: 00000000 00000001 0 0 11 00 10 00000000 00000010
0 0

7.29 Show the bitfile necessary to program the FPGA fabric in Figure 7.31 to implement
the function F(a,b,c,d) = a’b’ + c’d, where a, b, c and d are external
inputs.

The corresponding bitfile is: 00000000 10000000 0 0 11 00 10 00000000 00111011
0 0
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Section 7.4: Other Technologies

7.30 Use any combination of 7400 ICs listed in Table 7.1 to implement the function
F(a,b,c,d) = ab + cd.

7.31 Use any combination of 7400 ICs listed in Table 7.1 to implement the function
F(a,b,c,d) = abc + ab’c’ + a’bd + a’b’d’.

7.32 By drawing Xs on the circuit, program the PLD of Figure 7.38(a) to implement a
full-adder.

74LS08 74LS32

a b c d F

74LS32

a b c d

74LS04
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PLD IC

I1 I2 I3
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1 1 1 1 1

a b
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7.33 By drawing Xs on the circuit, program the PLD of Figure 7.38(a) to implement a 2-
bit equality comparator. Assume the PLD has an additional I4 input.

7.34 *(a) Design a PLD device capable of supporting a 2-bit carry-ripple adder. By draw-
ing Xs on your PLD circuit, program the PLD to implement the 2-bit carry-ripple
adder. (b) Using a CPLD device consisting of several PLDs from Figure 7.38 and
assuming you can connect the PLDs in a custom manner, implement the 2-bit carry-
ripple adder by drawing X’s on the PLDs . (c) Compare the size of your PLD and the
CPLD by determining the gates required for both designs (make sure you compare
the number of gates within the PLD and CPLD and not the number of gates used for
your implementation).

Solution not shown for challenge problems. 

Section 7.5: IC Technology Comparisons

7.35 For each of the system constraints below, choose the most appropriate technology
from among FPGA, standard cell, and full-custom IC technologies for implement-
ing a given circuit. Justify your answers.

a. The system must exist as a physical prototype by next week.
b. The system should be as small and low-power as possible. Short design time

and low cost are not priorities. 
c. The system should be reprogrammable even after the final product has been

produced. 
d. The system should be as fast as possible and should consume as little power as

possible, subject to being completely implemented in just a few months. 
e. Only five copies of the system will be produced and we have no more than

$1,000 to spend on all the ICs. 
a) FPGA
b) Full-custom IC
c) FPGA
d) Standard cell
e) FPGA

O1

PLD IC

I1 I2 I3
b1 a0

eq

I4
a1 b0

O2
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7.36 Which of the following implementations are not possible? (1) A custom processor on
an FPGA. (2) A custom processor on an ASIC. (3) A custom processor on a full-
custom IC. (4) A programmable processor on an FPGA. (5) A programmable pro-
cessor on an ASIC. (6) A programmable processor on a full-custom IC. Explain
your answer.
None of the above - both a custom processor and a progammable processor can be
implemented on either an FPGA, an ASIC, or a full-custom IC. Each implementa-
tion has its own strengths and weaknesses, but each implementation is possible.
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CHAPTER 8

PROGRAMMABLE PROCES-
SORS

8.1 EXERCISES

Section 8.2: Basic Architecture

8.1. If a processor’s program counter is 20-bits wide, up to how many words can the pro-
cessor’s instruction memory hold (ignoring any special tricks to expand the instruc-
tion memory size)?
220 = 1,048,576

8.2 Which of the following are legal single-cycle datapath operations for the datapath in
Figure 8.2? Explain your answer.

a. Copy data from a memory location into another memory location.
b. Copy two register locations into two memory locations.
c. Add data from a register file location and a memory location, storing the result

in a memory location.
a) Invalid. Data must first be loaded into the register file then stored into the destina-
tion memory location.
b) Invalid. Only one register file to memory location copy is permitted during a sin-
gle cycle.
c) Invalid. Data must first be loaded into a register file, then the addition must be
performed, then the sum must be stored into a memory location. The entire sequence
of operations would take three cycles.
181
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8.3 Which of the following are legal single-cycle datapath operations for the datapath in
Figure 8.2? Explain your answer.

a. Copy data from a register file location into a memory location.
b. Subtract data from two memory locations and store the result in another mem-

ory location.
c. Add data from a register file location and a memory location, storing the result

in the same memory location.
a) Valid operation.
b) Invalid. Two cycles are required to load the two operands. One cycle is required
to perform the subtraction. One cycle is required to store the difference. Four cycles
total are needed to perform this sequence of operations.
c) Invalid. Three cycles are required (Load, Add, Store).

8.4 Assume we are using a dual-port memory from which we can read two locations
simultaneously. Modify the datapath of the programmable processor of Figure 8.2 to
support an instruction that performs an ALU operation on any two memory loca-
tions and stores the result in a register file location. Trace through the execution of
this operation, as illustrated in Figure 8.3.

8.5 Determine the operations required to instruct the datapath of Figure 8.2 to perform
the operation: D[8] = (D[4] + D[5]) - D[7], where D represents the data memory.
1) Load D[4] into the register file (R[0])
2) Load D[5] into the register file (R[1])
3) Add R[0] and R[1] and store the result in the register file (R[2])
4) Load D[7] into the register file (R[0])
5) Subtract R[0] from R[2] and store the result in the register file (R[1])
6) Store R[1] in the data memory location D[8]

Data memory D

Register file RF

n-bit
2x1

ALU

to the outside world

n-bit
2x1

n-bit
2x1

somehow connected Data memory D

Register file RF

n-bit
2x1

ALU

n-bit
2x1

n-bit
2x1

Two memory locations
are read from data memory
D and, via the ALU’s input
multiplexers, are fed into the
ALU. The result of the ALU
operation is then fed into
the register file’s input mux
and stored in the appropriate
location.



8.1 Exercises 183
Section 8.3: A Three-Instruction Programmable Processor

8.6 If a processor’s instruction has 4 bits for the opcode, how many possible instructions
can the processor support?
24 = 16

8.7 What does the following assembly program, which uses the three-instruction instruc-
tion set of this chapter, compute? MOV R5, 19; ADD R5, R5, R5; MOV 20, R5.
D[20] = D[19] + D[19]

8.8 What does the following assembly program, which uses the three-instruction instruc-
tion set of this chapter, compute? MOV R4, 20; MOV R9, 18; ADD R4, R4, R9;
MOV R5, 30; ADD R9, R4, R5; MOV 20, R9.
D[20] = D[20] + D[18] + D[30]

8.9 Using the three-instruction instruction set of this chapter, write an assembly program
that updates the data memory D as follows: D[0]=D[0]+D[1].
MOV R0, 0
MOV R1, 1
ADD R0, R0, R1
MOV 0, R0

8.10 Using the three-instruction instruction set of this chapter, write an assembly program
that updates the data memory D as follows: D[4]=D[1]*2+D[2].
MOV R0, 1
ADD R0, R0, R0
MOV R1, 2
ADD R0, R0, R1
MOV 4, R0

8.11 Convert the following assembly program to machine code based on the three-
instruction instruction set of this chapter: MOV R5, 19; ADD R5, R5, R5; MOV 20,
R5.
0000 1001 00010011
0010 1001 1001 1001
0001 1001 00010100
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8.12 List the basic register/memory transfers and operations that occur during each clock
cycle for the following program, based on the three-instruction instruction set of this
chapter: MOV R0, 1; MOV R1, 9; ADD R0, R0, R1;
1) Fetch Instruction #1
2) Decode Instruction #1
3) The FSM sets the control lines on the memory and register file to load D[1] into
RF[0]
4) Fetch Instruction #2
5) Decode Instruction #2
6) The FSM sets the control lines on the memory and register file to load D[9] into
RF[1]
7) Fetch Instruction #3
8) Decode Instruction #3
9) The FSM sets the control lines on the ALU and register file to effect RF[0] :=
RF[0] + RF[1]

Section 8.4: A Six-Instruction Programmable Processor

8.13 List the basic register/memory transfers and operations that occur during each clock
cycle for the following program, based on the six-instruction instruction set of this
chapter, assuming that the content of D[9] is 0: MOV R6, #1; MOV R5, 9; JMPZ
R5, label1; ADD R5, R5, R6; label1: ADD R5, R5, R6. What is the value in R5 after
the program completes?
1) Fetch Instruction #1
2) Decode Instruction #1
3) The FSM sets the control lines on the register file and RF write mux to load the
constant value ‘1’ to RF[6]
4) Fetch Instruction #2
5) Decode Instruction #2
6) The FSM sets the conrol lines on the register file, RF write mux, and memory to
load the contents of D[9] (which contains ‘0’) to RF[5]
7) Fetch Instruction #3
8) Decode Instruction #3
9) The FSM sets the control lines on the register file to test whether RF[5] is ‘0’
10) RF[5] was ‘0’, so the PC gets loaded with PC + 2 - 1 (the offset of label1)
11) Fetch Instruction #5
12) Decode Instruction #5
13) The FSM sets the control lines on the register file, the RF write mux, and the
ALU to effect RF[5] := RF[5] + RF[6]

After the program completes, RF[5] is 1.
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8.14 Add a new instruction to the six-instruction instruction set of this chapter that per-
forms a bitwise AND of two registers and stores the result in a third register. Extend
the datapath, control unit, and the controller’s FSM as needed.
We’ll use the opcode 0110 for the AND operation. We’ll modify the ALU to per-
form the AND operation when the ALU’s s1s0=11

opcode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0110)
ra

dest register
rb

src register 1
rc

src register 2

AND ra, rb, rc

addr D
rd
wr W_data R_data

256x16

16-bit
3x1

2 1 0
s1
s0

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr

Rp_data Rq_data

16x16
RF

ALU
A B

s1
s0

=0

Datapath

IR
ld

PC
ld clr up

Controller

(a+b-1)
+

addr rd data

I
I_

rd

PC
_l

d
PC

_c
lr

PC
_i

nc
D_addr
D_rd
D_wr

RF_W_data

RF_s1
RF_s0

RF_W_addr
RF_W_wr
RF_Rp_addr
RF_Rp_rd
RF_Rq_addr
RF_Rq_rd Rq_rd

RF_Rp_zero
alu_s1
alu_s0

Control unit

s1
0
0
1
1

s0
0
1
0
1

ALU op
pass A
A+B
A-B
A AND B

IR[7:0]
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.

Init Fetch

Decode

Load

Store

D_addr=d
D_rd=1
RF_s1=0
RF_s0=1
RF_W_addr=ra
RF_W_wr=1

D_addr=d
D_wr=1
RF_s1=X
RF_s0=X
RF_Rp_addr=ra
RF_Rp_rd=1

Add

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_add=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=0
alu_s0=1

Load-
constant

RF_s1=1
RF_s0=0
RF_W_addr=ra
RF_W_wr=1

Subtract

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=1
alu_s0=0

Jump-if-zero

RF_Rp_addr=ra
RF_Rp_rd=1

Jump-if-
zero-jmp
PC_ld=1

op=0100
op=0101

op=0011

I_rd=1
PC_inc=1
IR_ld=1

PC_clr=1

op=0010

op
=00

01

op=0000

R
F_

R
p_

ze
ro R

F_R
p_zero’

AND

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=1
alu_s0=1

op=0110
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8.15 Add a new instruction to the six-instruction instruction set of this chapter that per-
forms an unconditional jump (jumps always) to a location specified by a 12-bit off-
set. Extend the datapath, control unit, and the controller’s FSM as needed.
We’ll use opcode 0110.

opcode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0110)
offset

JMP offset

addr D
rd
wr W_data R_data

256x16

16-bit
3x1

2 1 0
s1
s0

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr

Rp_data Rq_data

16x16
RF

ALU
A B

s1
s0

=0

Datapath

IR
ld

PC
ld clr up

Controller

(a+b-1)
+

addr rd data

I

I_
rd

PC
_l

d
PC

_c
lr

PC
_i

nc

D_addr
D_rd
D_wr

RF_W_data

RF_s1
RF_s0

RF_W_addr
RF_W_wr
RF_Rp_addr
RF_Rp_rd
RF_Rq_addr
RF_Rq_rd Rq_rd

RF_Rp_zero
alu_s1
alu_s0

Control unit

s1
0
0
1

s0
0
1
0

ALU op
pass A
A+B
A-B

IR
[7

:0
]

0 1

IR
[1

1:
0]

s

PCmux_s

Init Fetch

Decode

Load

Store

D_addr=d
D_rd=1
RF_s1=0
RF_s0=1
RF_W_addr=ra
RF_W_wr=1

D_addr=d
D_wr=1
RF_s1=X
RF_s0=X
RF_Rp_addr=ra
RF_Rp_rd=1

Add

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_add=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=0
alu_s0=1

Load-
constant

RF_s1=1
RF_s0=0
RF_W_addr=ra
RF_W_wr=1

Subtract

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=1
alu_s0=0

Jump-if-zero

RF_Rp_addr=ra
RF_Rp_rd=1

Jump-if-
zero-jmp
PC_ld=1

op=0100
op=0101

op=0011

I_rd=1
PC_inc=1
IR_ld=1

PC_clr=1

op=0010

op
=00

01

op=0000

R
F_

R
p_

ze
ro

R
F_R

p_zero’

Jump

PC_ld=1op=0110

PCmux_s=0

PCmux_s=1
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8.16 Add a new instruction to the six-instruction instruction set of this chapter that per-
forms a jump if two registers are equal, to a location specified by a 4-bit offset.
Extend the datapath, control unit, and the controller’s FSM as needed.
We’ll use opcode 0110.

opcode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0110)
ra

register 1
rb

register 2
offset

JMPEQ ra, rb, offset

addr D
rd
wr W_data R_data

256x16

16-bit
3x1

2 1 0
s1
s0

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr

Rp_data Rq_data

16x16
RF

ALU
A B

s1
s0

=0

Datapath

IR
ld

PC
ld clr up

Controller

addr rd data

I

I_
rd

PC
_c

lr
PC

_i
nc

D_addr
D_rd
D_wr

RF_W_data

RF_s1
RF_s0

RF_W_addr
RF_W_wr
RF_Rp_addr
RF_Rp_rd
RF_Rq_addr
RF_Rq_rd Rq_rd

RF_Rp_zero
alu_s1
alu_s0

Control unit

s1
0
0
1

s0
0
1
0

ALU op
pass A
A+B
A-B

=Rp_eq_Rq

(a+b-1)
+

PC
_l

d

IR
[7

:0
]

0 1

IR
[3

:0
]

PCmux_s

s

Init Fetch

Decode

Load

Store

D_addr=d
D_rd=1
RF_s1=0
RF_s0=1
RF_W_addr=ra
RF_W_wr=1

D_addr=d
D_wr=1
RF_s1=X
RF_s0=X
RF_Rp_addr=ra
RF_Rp_rd=1

Add

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_add=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=0
alu_s0=1

Load-
constant

RF_s1=1
RF_s0=0
RF_W_addr=ra
RF_W_wr=1

Subtract

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=1
alu_s0=0

Jump-if-zero

RF_Rp_addr=ra
RF_Rp_rd=1

Jump-if-
zero-jmp
PC_ld=1

op=0100
op=0101

op=0011

I_rd=1
PC_inc=1
IR_ld=1

PC_clr=1

op=0010

op
=00

01

op=0000

R
F_

R
p_

ze
ro

R
F_R

p_zero’

Jump-if-equal

RF_Rp_addr=ra
op=0110

PCmux_s=0

Jump-if-
equal-jmp

RF_Rp_rd=1
RF_Rq_addr=rb
RF_Rq_rd=1R

p_
eq

_R
q

PC_ld=1
PCmux_s=1

Rp_eq_Rq’
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8.17 Using the six-instruction instruction set of this chapter, write an assembly program
for the following C code, which computes the sum of the first N numbers, where N
is another name for D[9]. Hint: use a register to first store N..

i=0;
sum=0;
while ( i!=N ) {

sum = sum + i;
 i = i + 1;

}
MOV R0, #0 // R0 is “i”
MOV R1, #0 // R1 is “sum”
MOV R2, #1 // R2 is the constant “1”
MOV R3, 9 // R3 is “N” or “D[9]”
MOV R4, #0 // R4 is the constant “0” (for looping)

loop: SUB R5, R3, R0 // R4 = N - i
JMPZ R5, done // if i==N, end while loop
ADD R1, R1, R0 // sum = sum + i
ADD R0, R0, R2 // i = i + 1
JMPZ R4, loop // continue through while loop

done:

8.18 Using the extended instruction set you designed in Exercise 8.16, write an assembly
program for the C code in Exercise 8.17.

MOV R0, #0 // R0 is “i”
MOV R1, #0 // R1 is “sum”
MOV R2, #1 // R2 is the constant “1”
MOV R3, 9 // R3 is “N” or “D[9]”
MOV R4, #0 // R4 is the constant “0” (for looping)

loop: JMPEQ R0, R3, done // end while loop if i==N
ADD R1, R1, R0 // sum = sum + i
ADD R0, R0, R2 // i = i + 1
JMPZ R4, loop // continue through while loop

done:



190 8 Programmable Processors
Section 8.5: Example Assembly and Machine Programs

8.19 Define two new data movement instructions for the six-instruction instruction set of
this chapter. Extend the datapath, control unit, and the controller’s FSM as needed.
We’ll define LUI and MOVR, with opcodes 0110 and 0111.
LUI will act just as “MOV Ra, #C” but will load #C into the upper 8 bits of Ra.
MOVR will allow us to duplicate the contents of one register into another, eliminat-
ing the need to use memory or initialize another register to zero. Its syntax is
“MOVR Ra, Rb”, where Ra is assigned Rb’s value.

opcode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0110)
ra

dest register

LUI ra, #C

C
constant value

opcode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0111)
ra

dest register
rb

src register
xxxx

extraneous

MOVR ra, rb

addr D
rd
wr W_data R_data

256x16

16-bit
3x1

2 1 0
s1
s0

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr

Rp_data Rq_data

16x16
RF

ALU
A B

s1
s0

=0

Datapath

IR
ld

PC
ld clr up

Controller

addr rd data

I

I_
rd

PC
_c

lr
PC

_i
nc

D_addr
D_rd
D_wr

RF_W_data

RF_s1
RF_s0

RF_W_addr
RF_W_wr
RF_Rp_addr
RF_Rp_rd
RF_Rq_addr
RF_Rq_rd Rq_rd

RF_Rp_zero
alu_s1
alu_s0

Control unit

s1
0
0
1

s0
0
1
0

ALU op
pass A
A+B
A-B

(a+b-1)
+

PC
_l

d

IR
[7

:0
]

<< 8 3
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8.20 Define two new arithmetic/logic instructions for the six-instruction instruction set of
this chapter. Extend the datapath, control unit, and the controller’s FSM as needed.
We’ll define AND and NOT, with opcodes 0110 and 0111. The syntax for AND will
be “AND Ra, Rb, Rc”, where Ra gets the bitwise AND of the contents of of Rb and
Rc. The syntax for NOT will be “NOT Ra, Rb”, where Ra gets the logical comple-
ment of the contents of Rb.

Init Fetch

Decode

Load

Store

D_addr=d
D_rd=1
RF_s1=0
RF_s0=1
RF_W_addr=ra
RF_W_wr=1

D_addr=d
D_wr=1
RF_s1=X
RF_s0=X
RF_Rp_addr=ra
RF_Rp_rd=1

Add

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_add=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=0
alu_s0=1

Load-
constant

RF_s1=1
RF_s0=0
RF_W_addr=ra
RF_W_wr=1

Subtract

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=1
alu_s0=0

Jump-if-zero

RF_Rp_addr=ra
RF_Rp_rd=1

Jump-if-
zero-jmp
PC_ld=1

op=0100
op=0101

op=0011

I_rd=1
PC_inc=1
IR_ld=1

PC_clr=1

op=0010

op
=00

01

op=0000

R
F_

R
p_

ze
ro

R
F_R

p_zero’

LUI

RF_s1=1
RF_s0=1
RF_W_addr=ra
RF_W_wr=1

op=0110

MOVR

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_W_addr=ra
RF_W_wr=1
alu_s1=0
alu_s0=0

op=0111

opcode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0110)
ra

dest register
rb

src register 1
rc

src register 2

AND ra, rb, rc

opcode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0111)
ra

dest register
rb

src register
xxxx

extraneous

NOT ra, rb
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addr D
rd
wr W_data R_data

256x16

16-bit
3x1

2 1 0
s1
s0

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr

Rp_data Rq_data

16x16
RF

ALU
A B

s2
s1

=0

Datapath

IR
ld

PC
ld clr up

Controller

addr rd data

I

I_
rd

PC
_c

lr
PC

_i
nc

D_addr
D_rd
D_wr

RF_W_data

RF_s1
RF_s0

RF_W_addr
RF_W_wr
RF_Rp_addr
RF_Rp_rd
RF_Rq_addr
RF_Rq_rd Rq_rd

RF_Rp_zero
alu_s2
alu_s1

Control unit

s2
0
0
1

s1
0
1
0

op
pass A
A+B
A-B

(a+b-1)
+

PC
_l

d

IR
[7

:0
]

alu_s0 s0

s0
0
0
0
0

0
1
0

A&B
A|B

1
1

Init Fetch

Decode

Load

Store

D_addr=d
D_rd=1
RF_s1=0
RF_s0=1
RF_W_addr=ra
RF_W_wr=1

D_addr=d
D_wr=1
RF_s1=X
RF_s0=X
RF_Rp_addr=ra
RF_Rp_rd=1

Add

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_add=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1

Load-
constant

RF_s1=1
RF_s0=0
RF_W_addr=ra
RF_W_wr=1

Subtract

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1 Jump-if-zero

RF_Rp_addr=ra
RF_Rp_rd=1

Jump-if-
zero-jmp
PC_ld=1

op=0100
op=0101

op=0011

I_rd=1
PC_inc=1
IR_ld=1

PC_clr=1

op=0010

op
=00

01

op=0000

R
F_

R
p_

ze
ro

R
F_R

p_zero’

AND

op=0110

NOT

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_W_addr=ra
RF_W_wr=1

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0

RF_W_addr=ra
RF_W_wr=1
alu_s2=0
alu_s1=1
alu_s0=1

op=0111

RF_Rq_addr=rc
RF_Rp_rd=1

alu_s2=1
alu_s1=0
alu_s0=0

alu_s2=0
alu_s1=1
alu_s0=0

alu_s2=0
alu_s1=0
alu_s0=1
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8.21 Define two new flow-of-control instructions for the six-instruction instruction set of
this chapter. Extend the datapath, control unit, and the controller’s FSM as needed.
We’ll define JMPLT and JMPGE, with opcodes 0110 and 0111. The syntax for
JMPLT will be “JMPLT Ra, Rb, offset”, where we jump to the offset if the contents
of Ra are less than the contents of Rb. The syntax for JMPGE will be “JMPGE Ra,
Rb, offset”, where we jump to the offset if the contents of Ra are greater than or
equal to the contents of Rb.

opcode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0110)
ra

register 1
rb

register 2
offset

JMPLT ra, rb, offset

opcode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0111)
ra

register 1
rb

register 2
offset

JMPGE ra, rb, offset

addr D
rd
wr W_data R_data

256x16

16-bit
3x1

2 1 0
s1
s0

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr

Rp_data Rq_data

16x16
RF

ALU
A B

s1
s0

=0

Datapath

IR
ld

PC
ld clr up

Controller

addr rd data

I

I_
rd

PC
_c

lr
PC

_i
nc

D_addr
D_rd
D_wr

RF_W_data

RF_s1
RF_s0

RF_W_addr
RF_W_wr
RF_Rp_addr
RF_Rp_rd
RF_Rq_addr
RF_Rq_rd Rq_rd

RF_Rp_zero
alu_s1
alu_s0

Control unit

s1
0
0
1

s0
0
1
0

ALU op
pass A
A+B
A-B

<Rp_lt_Rq

(a+b-1)
+

PC
_l

d

IR
[7

:0
]

0 1

IR
[3

:0
]

PCmux_s

s
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8.22 Assuming that the microprocessor’s external pins I0..I7 and P0..P7 are mapped to
data memory locations as in Figure 8.15 and an AND instruction has been added to
the six-instruction instruction set of this chapter, create an assembly program that
will output 0 on P4 if all eight inputs I0..I7 are 1s.

MOV R0, #1 // R0 is the constant “1”
MOV R1, 240 // R1 gets the value of I0
MOV R2, 241 // R2 gets the value of I1
AND R2, R1, R2 // R2 = I0 ANDI1
MOV R1, 242 // R1 = I2
AND R2, R1, R2 // R2 = R2 AND I2
MOV R1, 243 // R1 = I3
AND R2, R1, R2 // R2 = R2 AND I3
MOV R1, 244 // R1 = I4
AND R2, R1, R2 // R2 = R2 AND I4
MOV R1, 245 // R1 = I5
AND R2, R1, R2 // R2 = R2 AND I5
MOV R1, 246 // R1 = I6
AND R2, R1, R2 // R2 = R2 AND I6
MOV R1, 247 // R1 = I6
AND R2, R1, R2 // R2 = R2 AND I7
SUB R2, R2, R0 // R2 = R2 - 1
MOV R0, #0 // R0 is the constant “0”
JMPZ R2, output // If R2-1==0, then I7..I0 were all 1s
JMPZ R0, done // exit program

output: MOV 252, R0 // P4 = 0
done:

Init Fetch

Decode

Load

Store

D_addr=d
D_rd=1
RF_s1=0
RF_s0=1
RF_W_addr=ra
RF_W_wr=1

D_addr=d
D_wr=1
RF_s1=X
RF_s0=X
RF_Rp_addr=ra
RF_Rp_rd=1

Add

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_add=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=0
alu_s0=1

Load-
constant

RF_s1=1
RF_s0=0
RF_W_addr=ra
RF_W_wr=1

Subtract

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=1
alu_s0=0

Jump-if-zero

RF_Rp_addr=ra
RF_Rp_rd=1

Jump-if-
zero-jmp
PC_ld=1

op=0100
op=0101

op=0011

I_rd=1
PC_inc=1
IR_ld=1

PC_clr=1

op=0010
op

=00
01

op=0000

R
F_

R
p_

ze
ro

R
F_R

p_zero’

Jump-if-GE

RF_Rp_addr=ra

Jump-if-
GE-jmp

RF_Rp_rd=1
RF_Rq_addr=rb
RF_Rq_rd=1R

p_
lt_

R
q’

PC_ld=1
PCmux_s=1

Jump-if-LT

RF_Rp_addr=ra

Jump-if-
LT-jmp

RF_Rp_rd=1
RF_Rq_addr=rb
RF_Rq_rd=1R

p_
lt_

R
q

PC_ld=1
PCmux_s=1

PCmux_s=0

R
p_

lt_
R

q

R
p_

lt_
R

q’

op=0110

op=0111


