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Abstract We provide a user guide on the analysis of data

(including best–worst and best–best data) generated from

discrete-choice experiments (DCEs), comprising a theo-

retical review of the main choice models followed by

practical advice on estimation and post-estimation. We also

provide a review of standard software. In providing this

guide, we endeavour to not only provide guidance on

choice modelling but to do so in a way that provides a ‘way

in’ for researchers to the practicalities of data analysis. We

argue that choice of modelling approach depends on the

research questions, study design and constraints in terms of

quality/quantity of data and that decisions made in relation

to analysis of choice data are often interdependent rather

than sequential. Given the core theory and estimation of

choice models is common across settings, we expect the

theoretical and practical content of this paper to be useful

to researchers not only within but also beyond health

economics.

Key Points for Decision Makers

We provide a user guide on the analysis of data,

including best–worst and best–best data, generated

from discrete-choice experiments (DCEs),

addressing the questions of ‘what can be done in the

analysis of DCE data’ and ‘how to do it’.

We provide a theoretical overview of the main

choice models and review three standard statistical

software packages: Stata, Nlogit and Biogeme.

Choice of modelling approach depends on the

research questions, study design and constraints in

terms of quality/quantity of data, and decisions made

in relation to analysis of choice data are often

interdependent rather than sequential.

A health-based DCE example for which we provide

the data and estimation code is used throughout to

demonstrate the data set-up, variable coding and

various model estimation and post-estimation

approaches.

1 Introduction

Despite researchers having access to ever-expanding

sources and amounts of data, gaps remain in what existing

data can provide to answer important questions in health

economics. Discrete-choice experiments (DCEs) [1] are in

demand because they provide opportunities to answer a

range of research questions, some of which cannot other-

wise be satisfactorily answered. In particular, they can

provide insight into preferences (e.g. to inform clinical and
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policy decisions and improve adherence with clinical/

public health programmes or to understand the behaviour

of key agents in the health sector, such as the health

workforce, patients, policy makers, etc.), quantification of

the trade-offs individuals are prepared to make between

different aspects of healthcare (e.g. benefit–risk trade-offs),

monetary and non-monetary valuation (e.g. valuing

healthcare and/or health outcomes for use in both cost-

benefit and cost-utility analysis and priority setting more

generally) and demand forecasts (e.g. forecasting uptake of

new treatments to assist in planning appropriate levels of

provision).

DCEs are a stated-preference method that involve the

generation and analysis of choice data. They are usually

implemented in surveys; respondents are presented with

several choice sets, each containing a number of alterna-

tives between which respondents are asked to choose. Each

alternative is described by its attributes and each attribute

takes one of several levels that describe ranges over which

the attributes vary.

Some reviews [2, 3] document the popularity and

growth of such methods in health economics; others [4–6]

provide guidance on how to use such methods in general.

Unsurprisingly, given the detailed research investment

needed to generate stated-preference data via DCEs, more

detailed user guides on specific components of under-

taking a DCE have also been developed, including the use

of qualitative methods in DCEs [7], experimental design

[8] and external validity [9]. A natural next large com-

ponent of undertaking and interpreting DCEs to be

addressed is guidance on the analysis of DCE data. This

topic has recently received some attention: Hauber et al.

[10] provide a useful review of a number of statistical

models for use with DCE data. We go beyond that work in

both scope and depth in this paper, covering not only

model specification, which is the focus of the paper by

Hauber et al. [10] (and within model specification we

cover more ground), but also estimation, post-estimation

and software.

We provide an overview of the key considerations

that are common to data collected in DCEs, and the

implications these have in determining the appropriate

modelling approach, before presenting an overview of

the various models applicable to data generated from

standard first-best DCEs as well as for models applicable

to data generated via best–worst and best–best DCEs.

We discuss the fact that the parameter estimates from

choice models are typically not of intrinsic interest (and

why that is) and instead encourage researchers to

undertake post-estimation analysis derived from the

estimation results to both improve interpretation and

produce measures relevant to policy and practice. Such

additional analysis includes predicted uptake or demand,

marginal rates of substitution, elasticities and welfare

analysis. Coupled with this theoretical overview, we

discuss how such models can be estimated and provide

an overview of statistical software packages that can be

used in such estimation. In doing so, we cover important

practical considerations such as how to set up the data

for analysis, coding and other estimation issues. We also

provide information on cutting-edge approaches and

references for further detail.

Many steps are involved in generating discrete-choice

data prior to their analysis, including reviews of the

relevant literature and qualitative work to generate the

appropriate choice context and attributes and levels,

survey design and, importantly, experimental design

used to generate the alternatives between which

respondents are asked to choose, and—of course—pi-

loting and data collection. As noted, many of these

‘front-end’ steps have received attention in the literature

and we do not discuss those topics here. Instead, we take

as the starting point the question of how best to analyse

the data generated from DCEs. Having said that, it is

important to note that model specification and experi-

mental design are intimately linked, not least because the

types of models that can be estimated are determined by

the experimental design. That means the analysis of

DCE data is undertaken within the constraints of the

identification and statistical properties embedded in the

experimental design used to generate the choice data.

For that reason, consideration of the types of models one

is interested in estimating (and the content of this current

paper) is important prior to creating the experimental

design for a given DCE.

In providing this guide, we endeavour to not only pro-

vide guidance on choice modelling but to do so in a way

that provides a ‘way in’ for researchers to the practicalities

of data analysis. To this end, we refer throughout to and

demonstrate the data set-up, variable coding, various model

estimation and post-estimation approaches using a health-

based DCE example by Ghijben et al. [11], for which we

provide the data and Stata estimation code in the Electronic

Supplementary Material (ESM). This resource adds an

additional dimension that complements the guidance pro-

vided in this paper by providing a practical example to help

elucidate the points made, and it can also be used as a

general template for researchers when they come to esti-

mate models from their own DCEs.

As such, the two main components of the paper are

‘what can be done in the analysis of DCE data’ and ‘how to

do it’. Given many (but not all) considerations in the

analysis of DCE data are common across contexts in which

choice data may be collected, we envisage the content of

this paper being relevant to DCE researchers within and

outside of health economics.

E. Lancsar et al.



2 Choice Models

2.1 Introduction

Continual reference to the case study provided by Ghijben

et al. [11] enables us to provide insights into some of the

modelling decisions made in that paper as well as to make

the associated data available as supplementary material to

enable replication of all results produced in the current

paper; some but not all of which appear in Ghijben et al.

[11]. This carefully chosen example is broadly represen-

tative of the type of studies found in health economics and

enables us to illustrate a relatively wide range of features of

DCEs. Naturally, one example cannot provide an exhaus-

tive coverage of issues likely to be faced by practitioners

and, when appropriate, reference will be made to other

applied work that supply templates for aspects that fall

outside the scope of our case study.

Ghijben et al. [11] were motivated by the growing

public health problem associated with atrial fibrillation and

concerns of under-treatment. The study aimed to examine

patient preferences for warfarin and new anticoagulants

and motivated a decision problem where individuals faced

with atrial fibrillation and an elevated risk of stroke needed

to decide upon alternative treatments. These considerations

motivated the development of the final choice task, an

example of which is presented in Fig. 1. Sequences of such

tasks were presented to respondents and form an integral

part of the data collection. Again, we emphasize that get-

ting to the stage of having a dataset amenable to analysis is

a significant part of conducting a DCE and should not be

underestimated. But this is not our focus, and interested

readers should consult Johnson et al. [8], Dillman [12] and

Tourangeau et al. [13] for details on the important topics of

experimental and survey design.

It is useful to first introduce some terminology and to

discuss a number of key features common to data collected

in DCEs. In broad terms, the features are as follows:

A. Discrete choices On each choice occasion, respon-

dents face a choice set containing two or more discrete

and mutually exclusive alternatives. Respondents are

then required to answer one or more questions

reflecting their evaluation of these alternatives. In

Fig. 1, respondents are required to first choose their

most preferred alternative amongst the choice set of

three options. They are then asked a follow-up

question requiring them to choose the better of the

two options remaining after their initial choice, which

delivers a complete ranking of the three alternatives.

Including just the first question is possibly the most

common way to generate choice outcomes, and our

discussion focuses on this case. However, the second

type of question is an example that falls under the

rubric of best–worst scaling (BWS) that is becoming

increasingly popular because of the extra preference

information provided at low marginal cost [14, 15].

B. Choice sets Choice sets contain two or more alterna-

tives.1 The choice set in our case study contains three

alternatives, two referring to hypothetical drugs and

one being a no-treatment option. Variants of such a

structure include a status quo option so the investiga-

tor is determining which hypothetical alternatives

would be attractive enough to make respondents

switch from what they currently use; see Bartels

et al. [16] and King et al. [17] for examples.2 Where

no-choice is a realistic alternative but is not provided

as part of the choice set, the situation is referred to as a

forced-choice problem. Including no-choice or status

quo options usually adds realism to the choice task and

is especially relevant in forecasting exercises and

welfare analysis. The two hypothetical alternatives in

Fig. 1 are fully described by their attributes, and the

drugs are denoted by generic titles, ‘drug A’ and ‘drug

B’. They are said to be unlabelled alternatives.

Sometimes it is more appropriate to provide a

descriptive name for the hypothetical alternatives.

For example, the choice set could include warfarin and

a new oral anticoagulant such as dabigatran; the

alternatives are now said to be labelled.

C. Alternatives defined by attributes Alternatives are

defined by a set of attributes that are individually

assessed by consumers in coming to an evaluation of

the product as a whole [17]. The levels of the

attributes are varied over choice occasions as part of

the experimental design. Thus, the structure of these

variables that figure prominently in subsequent anal-

ysis are under the control of the analyst. A good

experimental design is one that ensures they deliver

the best possible estimates and so problems prominent

with revealed preference data, such as limited varia-

tion in key variables and multicollinearity, can be

avoided in DCEs. It is true though that this comes with

added responsibility on the part of analysts. For

example, if there are interaction effects between

attributes that are theoretically relevant, then it is

necessary for the design to ensure that such effects are

in fact identified.

D. Repeated measures The data have a panel structure

with the same respondent providing multiple out-

comes for a sequence of different choice occasions or

1 This can include presenting a single profile and asking respondents

to accept or reject it.
2 In our case study, the status quo is no treatment; however, more

generally, status quo and no treatment need not coincide.

Discrete Choice Experiments: A Guide to Model Specification, Estimation and Software



scenarios. While asking respondents to answer more

than one choice task is an economical way of

gathering more information, it is clear that extra

observations from the same respondent do not repre-

sent independent information. As in our case study,

there are also examples where multiple outcomes are

available for each scenario.

E. Respondent characteristics In a section of the survey

instrument separate from the choice scenarios, per-

sonal characteristics of respondents are routinely

collected. Different respondents may value different

alternatives and attributes in different ways and so

trying to capture these sources of preference hetero-

geneity with observable characteristics will typically

form part of the analysis plan. In our case study, the

medical history of respondents including any history

of atrial fibrillation is potentially very relevant. While

personal characteristics and relevant health history are

natural inclusions, there is scope to collect and use less

standard characteristics such as attitudinal variables

[18–20].

F. Context Choices depend on the environment or context

in which they are made [21]. In designing a DCE, the

choice context plays a major role in making the

hypothetical choice realistic. Context can also be

manipulated as part of the experimental design by

defining different contexts in which the choice is to be

made and then allocating respondents to these context

treatments and by including context variables as

attributes. For example, our case study could be

extended by allocating respondents to treatments that

differed in the form or amount of information they

were provided on atrial fibrillation or by including

attributes of the cardiologist that respondents visited.

As well as providing an overview of typical DCE data

and introducing some terminology, this initial discussion is

important because several features of these data will

eventually impact model specification.

Fig. 1 Example of a discrete-choice experiment choice set. Ghijben et al. [11]

E. Lancsar et al.



2.2 Standard Discrete-Choice Models

It is natural to start with the classical multinomial logit

(MNL) and its link to the random-utility model established

by McFadden [22, 23]. This provides an opportunity to

introduce most of the key specification and estimation

issues and represents the baseline for most extensions to

more sophisticated models and for research on the theo-

retical underpinnings of decision making in choice

problems.

Assume the utility that respondent i derives from

choosing alternative j in choice scenario s is given by

Uisj ¼ Visj þ eisj; i ¼ 1; � � � ;N; s ¼ 1; � � � ; S;
j ¼ 1; � � � ; J; ð1Þ

where there are N decision makers choosing amongst J

alternatives across S scenarios. Visj represents the

systematic or predictable component of the overall utility

of choosing alternative j, and eisj is the stochastic

disturbance term representing characteristics unobservable

by the analyst. We have data on the discrete choice yis ¼ j,

which are then linked to the associated utilities by

assuming the individual decision maker chooses

alternative j if it delivers the highest utility in

comparison with the utility associated with all other

alternatives in the choice set. Thus, we model the

probability of choosing alternative j as follows:

Pisj ¼ Probðyis ¼ jÞ ¼ ProbðUisj � Uisl [ 0Þ 8l 6¼ j: ð2Þ

Equations 1 and 2 imply that the overall scale of utility

is irrelevant in that multiplying both Visj and eisj by a

positive constant yields a different utility level but does not

change the resultant choice. Consequently, the scale of

utility needs to be normalized, which is equivalent to

normalizing the variance of eisj.
Econometric analysis proceeds within this framework

by making a number of assumptions and specification

decisions. First, consider the distribution of the stochastic

disturbance terms. Under the assumption that these are

independently and identically distributed type-I extreme

values, the probability of choosing j takes the familiar

MNL form:

Pisj ¼
exp kVisj

� �

PJ
l¼1 exp kVislð Þ

ð3Þ

where k is the scale parameter (inverse of the standard

deviation of the disturbance). We will return to a further

discussion of scale, but in a standard MNL model k cannot

be separately identified and by convention is set to unity.

Such normalizations should be familiar to anyone with

knowledge of basic binary choice models such as logit and

probit.

For modelling purposes, there is no compelling reason to

prefer this specification for the disturbance distribution in

preference to, say, normality that leads to a multinomial

probit model. Historically, the preference for MNL arose

because of the availability of a closed form solution for the

probabilities as in Eq. 3, which leads to considerable

computational advantages over multinomial probit where

such representations of probabilities are not available.

While computational considerations are today less of an

issue, as we will see later, more complicated estimation

problems can still benefit from having an MNL model as its

base.

Turning to the specification of Visj as an initial starting

point, one might consider a linear specification:

Visj ¼ aj þ A
0

isjdþ Z
0

icj ð4Þ

where Aisj is a vector of attributes describing alternative j,

Zi is a vector of characteristics of the individual decision

maker and aj; d; cj are parameters to be estimated. Note the

different sources of variation in the covariates. The attri-

butes by design will typically vary over individuals, sce-

narios and alternatives while personal characteristics will

only vary over individuals and will be constant over sce-

narios and alternatives. According to Eq. 2, only differ-

ences in utilities matter and so another generic specification

issue is that characteristics of the individual have an impact

on choice only to the extent that their associated parame-

ters vary over alternatives, specified here as cj: Similarly,

the alternative specific constants, aj; are specified to vary

over alternatives. As there are J � 1 differences in utilities,

it is also necessary to apply at least one normalization to

the alternative specific constants and the parameters for the

individual characteristics. This can be accommodated in a

number of ways, but typically one alternative is set as the

base and the associated parameters are normalized to zero.

Because attributes do vary over alternatives, it is possible

to estimate associated effects or preference weights that are

not alternative specific. One could allow d to vary over

alternatives, but it is not necessary for the purposes of

estimation.

Some discussions make a distinction between models of

multinomial outcomes based on the structure of the

regressors, calling a model with alternative-specific

regressors a conditional logit model, one with case-specific

regressors an MNL model and where there is a mixture of

alternative-specific and case-specific regressors, as we have

specified in Eq. 4, some authors call this a mixed model.

They are essentially the same model, so such distinctions

can lead to confusion. Thus, we simply call the model

given by Eqs. 1–4 an MNL specification [24].

One way to interpret Eq. 4 is that the alternative specific

constants vary by respondent characteristics. Faced with a

Discrete Choice Experiments: A Guide to Model Specification, Estimation and Software



choice between the same alternatives, different individuals

make different choices that can be predicted by differences

in their observable characteristics. A natural extension to

Eq. 4 also allows attribute weights to vary with respondent

characteristics. Such heterogeneity can be captured by

including interactions between attributes and individual

characteristics. Decisions about these specification choices

will depend on the subject matter of the particular problem

and the research questions being considered.

As various models are introduced, we will supply

associated estimation results produced using Stata and

collect these in Table 1. Section 3 provides a comparison

of estimates using alternative packages and more detail on

estimation issues. The first column of results are for MNL,

where we have used the first-best data and model B of

Table 5 in Ghijben et al. [11] as the particular specification.

There are three alternatives, j ¼ N;A;B; corresponding

to no treatment and drugs A and B. The no treatment choice

parameters are normalized to zero; aN ¼ 0; cN ¼ 0. These

constraints are necessary for identification. Ghijben et al.

[11] impose two further constraints, neither of which is

necessary for the purposes of identification, but both are

sensible in this case. The first constraint, aA ¼ aB; implies a

single ‘treatment’ alternative-specific constant. Because the

hypothetical alternatives are unlabelled, we would expect

any preference for one drug over the other to be attributed

solely to differences in attributes. In other words, if A and

B were described by the same attribute levels, respondents

would be expected to be indifferent between them.

Conversely, in the case of labelled alternatives, it would

not be prudent to impose such constraints. In such appli-

cations, alternative-specific constants would be capturing

effects attributable to the label or brand over and above

those captured by the attributes and hence these would be

expected to differ across alternatives. Ghijben et al. [11]

also imposed the constraint cA ¼ cB. Once cN ¼ 0 has been

imposed, this second constraint is not necessary. It would

be possible to specify alternative-specific attribute effects,

for example, preferences over risk could differ depending

on the treatment option, but specifying generic attribute

effects is appropriate with these data.

In Table 1, the block effect, which is a dummy variable

to control for the version of the survey to which the

respondent answered, is written as an interaction with the

treatment alternative-specific constant as are the personal

characteristics in model C of Table 3 in Ghijben et al. [11]

(an exception is age, which is interacted with the risk

attribute). This is operationally equivalent to allowing the

associated parameters to vary between treatment and no

treatment; depending on the options available in the soft-

ware, this may be how the data need to be constructed for

estimation to be undertaken (These and other estimation

issues are addressed in Sect. 3).

While the specification has been shaped somewhat by

the generic features of DCE data, a number of features

have been overlooked in this basic MNL model. Simplicity

of estimation and interpretation are among the main

advantages of MNL, but these come at the cost of some

Table 1 Estimates of standard discrete-choice models using data from Ghijben et al. [11]

Variable MNL MXL SH G-MNL ROL MROL

Stroke risk 0.698 (0.080) 0.774 (0.088) 0.886 (0.165) 0.867 (0.117) 0.503 (0.058) 0.705 (0.076)

Bleed risk 0.684 (0.080) 0.742 (0.094) 0.790 (0.135) 0.816 (0.120) 0.572 (0.066) 0.767 (0.088)

Antidote 0.066 (0.116) 0.137 (0.133) 0.108 (0.192) 0.137 (0.147) 0.149 (0.121) 0.228 (0.146)

Blood test -0.079 (0.075) -0.088 (0.081) -0.107 (0.099) -0.120 (0.092) -0.052 (0.059) -0.038 (0.079)

Dose frequency -0.064 (0.061) -0.079 (0.065) -0.132 (0.096) -0.107 (0.078) -0.014 (0.051) -0.019 (0.067)

Drug/food interactions -0.267 (0.083) -0.314 (0.091) -0.319 (0.097) -0.338 (0.090) -0.280 (0.078) -0.385 (0.099)

Cost -0.010 (0.001) -0.011 (0.002) -0.009 (0.002) -0.011 (0.002) -0.011 (0.001) -0.014 (0.002)

Bleed riska antidote -0.337 (0.081) -0.321 (0.094) -0.320 (0.105) -0.327 (0.100) -0.213 (0.060) -0.273 (0.077)

ASCa block -0.589 (0.518) -0.655 (1.533) -0.810 (0.825) -1.513 (0.575) -0.216 (0.335) -0.327 (0.656)

ASC (mean) 0.926 (0.404) 2.767 (0.966) 1.824 (0.738) 3.201 (0.538) 1.043 (0.233) 1.514 (0.431)

ASC (standard deviation) 3.052 (0.948) 3.178 (0.332) 2.438 (0.246)

s 0.961 (0.240) -0.388 (0.109)

Log-likelihood -944.3 -786.1 -884.7 -781.8 -1713.2 -1377.9

Data are presented as estimate (standard error)

ROL/MROL estimates use the complete ranking data coming from the best–best choices of respondents, whereas all other columns of estimates

only use the first best choices. All standard errors are cluster-robust, which allows for arbitrary correlation between the disturbance terms at the

individual level. Estimation was undertaken in Stata 14.2

ASC alternative specific constant, GMNL generalised multinomial logit, MNL multinomial logit, MROL mixed rank ordered logit, MXL mixed

logit, ROL rank ordered logit, SH scale heterogeneity model

E. Lancsar et al.



restrictive assumptions that are clearly unrealistic in the

context of DCEs.

The assumption of iid disturbances is especially prob-

lematic. We have already noted that the panel structure of

the data is likely to induce correlation across choice

occasions. A respondent in the case study with a preference

for no treatment that is not captured by observable char-

acteristics will carry that preference across choice occa-

sions, inducing persistence in their choices. Such effects

cannot be explicitly captured by any aspect of the current

specification, but it is possible to adjust the standard errors

to allow for clustering at the respondent level and this we

have done in Table 1.

It has long been recognized that the independence of

irrelevant alternatives (IIA) is a problematic aspect of the

MNL. Proportional substitution across alternatives is a

consequence of this model, irrespective of the actual data.

Empirically, it may be a reasonable approximation in some

settings, such as when all alternatives are generic. But in

many DCE settings, especially those involving labelled

alternatives, this is unlikely to be the situation. In the case

study, it is highly likely that the impact of changing the

cost of drug B is going to have a very different impact on

the demand for drug A relative to the impact on the choice

of the no treatment option. However, for MNL, we know

beforehand that the predicted relative market shares would

not change in response to a change in the cost of one drug.

Thus, in situations where differential substitution patterns

are likely, it is advisable to move to a more flexible

specification.

It has already been suggested that attribute weights may

vary with respondent characteristics. However, in mod-

elling individual behaviour, unobserved heterogeneity is

pervasive, implying a need to allow some or all of the

parameters in Eqs. 3 and 4 to vary over individuals, even

after controlling for variation explained by observable

characteristics.

Rather than building up the model with extensions tar-

geting separate issues, we will move to a very general

model specification provided by the generalized MNL (G-

MNL) developed in Fiebig et al. [25]. This is not the only

model that could be chosen, and it is not without its critics

[26], although these criticisms are more about interpreta-

tion than the model itself. It is a convenient choice in our

discussion because it has the potential to capture all of the

issues just raised. Moreover, it is a very flexible specifi-

cation nesting several models often used in empirical

applications and therefore provides a convenient frame-

work for choosing between competing models. G-MNL is

based on a utility specification that explicitly includes both

individual-specific scale and preference heterogeneity. In

other words, we allow k; the scale parameter in Eq. 3, to

vary by respondent: a form of heteroscedasticity. This

allows for differential choice variability in that the errors

are more important relative to the observed attributes for

some respondents compared with others. Differences in

scale are often interpreted as differences in choice consis-

tency. In addition, the utility weights in Eq. 4 are assumed

to be random coefficients that vary over respondents. G-

MNL is written as follows:

Uisj ¼ X
0

isjbi þ eisj ð5Þ

bi ¼ kibþ cgi þ 1 � cð Þkigi: ð6Þ

For notational convenience, all variables and parameters

have been collapsed into single vectors X and b.

If ki ¼ k, implying no scale heterogeneity (SH), G-MNL

reduces to the mixed logit (MXL) specification, which has

long been the most popular model used in DCE work; for

examples, see Revelt and Train [27], Brownstone and Train

[28], Hall et al. [29] and Hole [30]. After normalizing scale

to unity, Eq. 6 becomes bi ¼ bþ gi so that MXL is a

random coefficient specification designed to capture pref-

erence heterogeneity, where gi represents random variation

around the parameter means. There are error component

versions of MXL [25] where the motivation comes from

the need to induce correlation and heteroscedasticity across

alternatives rather than from preference heterogeneity.

Suppose only the alternative-specific constants are speci-

fied to be random. Assuming they are correlated provides a

convenient way to avoid IIA and allow more flexible

substitution between choices. It also provides a means to

capture dependence due to the panel structure because gi
varies over individuals but it is assumed to be fixed over

choice occasions. This then induces a positive correlation

across choice occasions and represents a typical baseline

specification common in panel analyses. Importantly, it

will provide estimated standard errors that better reflect the

nature of the data. Such a specification has been estimated,

and the results are denoted by MXL in Table 1.

If gi ¼ 0 so that there is no preference heterogeneity, G-

MNL reduces to a model where bi ¼ kib: Allowing only

for SH indicates how this specification is observationally

equivalent to a particular type of preference heterogeneity

in the utility weights, an observation that led Louviere et al.

[31] to be critical of the standard MXL model. The esti-

mation results for this model are denoted by SH in Table 1.

While conceptually there is a difference between SH and

preference heterogeneity, they are intrinsically linked and,

hence, in practice it is difficult to disentangle the two

empirically [26]. In particular, rather than making this

distinction, one could simply motivate the G-MNL as a

flexible parametric specification for the distribution of

heterogeneity.

Restricting c to zero implies bi ¼ kiðbþ giÞ, whereas c
equal to one implies bi ¼ kibþ gi. In these two variants of
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G-MNL, it is either the random coefficients or just their

means that are scaled. Both of these are sensible alternatives,

although the choice between them may not be a priori

obvious. Freely estimating c allows more flexibility in how

the variance of residual taste heterogeneity varies with scale.

The estimation results denoted by G-MNL in Table 1 are for

a specification that simply combines the features of the cur-

rent MXL and SH specifications with c ¼ 0: The full G-MNL

model provides flexibility in how SH and taste heterogeneity

are combined but can involve a large number of parameters,

especially when there is a large number of alternatives and

their random coefficients are assumed to be correlated. Given

the relatively small sample size in the case study, this parsi-

monious specification is a sensible choice here.

The specification is completed by choosing distributions

that capture the individual heterogeneity. Preference

heterogeneity is often specified to follow a multivariate

normal distribution. This is what has been assumed in the

results used to generate MXL and G-MNL in Table 1. In

principle, the choice of distribution is flexible, but—in

practice—normality is by far the most common choice.

Lognormality is another popular option used when

restricting coefficient signs. SH in the SH and G-MNL

models is assumed to be as follows:

ki ¼ exp �kþ sti
� �

ð7Þ

where ti �N 0; 1ð Þ and �k is a normalizing constant required

to ensure identification of ki. Note, the GMNL results in

Table 1 include scaling the alternative specific constant

(ASC); in other situations, it may be problematic to do so;

see Fiebig et al. [25] for further discussion. The additional

parameter s provides a measure of SH. If s ¼ 0; the G-MNL

model reduces to a standard MXL specification. The work of

Fiebig et al. [25] highlights the empirical importance of

accommodating this extra dimension of heterogeneity. One

attraction of this specification of SH is a considerable

amount of flexibility with the addition of only one param-

eter. In principle, researchers have considerable flexibility in

choosing these distributions, but in practice most are con-

fined to what options are offered in available software

(Again these are issues are addressed in Sect. 3).

We stress that there are different approaches to model

specification. An alternative to specifying random coeffi-

cient models that is quite popular in applications is to

assume that there are a finite number of types where

parameters vary within but not across types. So, modelling

heterogeneity is again the motivation but finite mixture or

latent class models result; see Hole [30] for an example.

Keane and Wasi [32] provide a comparison of the two

approaches in terms of fit and, while they do not proclaim a

clear winner, they do suggest that G-MNL performs well in

comparison with finite mixture models in part because the

former tends to be more parsimonious.

2.3 Best–Worst and Best–Best Discrete-Choice

Models

The term BWS has been used somewhat loosely in the

literature. It is in fact a generic term that covers three

specific cases: (1) best–worst object scaling, (2) best–

worst attribute scaling and (3) best–worst DCEs

(BWDCE). All three involve asking respondents to

choose the best and worst (most and least preferred) from

a set of three or more items. In reverse order, respondents

choose best and worst between alternatives in (3);

between attribute levels within a single alternative or

profile in (2) and between whole objects (or sometimes

statements, principles, etc.) that are not decomposed into

attributes in (1). See Lancsar et al. [14] and Louviere et al.

[15] for further description and comparison of the three

cases. Here, we focus on BWDCEs for two reasons. First,

they are the form of BWS closest to traditional DCEs, or

can be thought of as a specific type of DCE. Second, the

models we discuss here for BWDCE data can readily be

applied to the other two types of BWS.

Like standard DCEs, respondents make repeated choices

between alternatives offered in choice sets, each described

by a number of attributes. However, BWDCEs are

designed to elicit extra preference information per choice

set by asking respondents not only to choose the best

option but also to sequentially choose the worst option,

potentially followed by choice of best of the remaining

options and so on until an implied preference ordering is

obtained over all alternatives in a set. For a choice set

containing J alternatives, respondents can be asked to make

(and the analyst build models based on) up to J - 1

sequential best and worst choices. At a minimum, a

BWDCE doubles the number of observations for analysis

(or more if more alternatives are included per set and

additional best and worst questions are answered), which in

turn can be used to increase the statistical efficiency of the

choice models or reduce sample sizes for a given target

number of observations [14]. By providing a higher num-

ber of degrees of freedom for analysis, the extra preference

data obtained via BWDCEs also opens up new research

avenues such as the estimation of individual-level models

[35], something generally not possible with the amount of

data collected per person in a standard DCE.

More recently, Ghijben et al. [11] introduced a varia-

tion of BWDCE, namely a best–best DCE in which best

is chosen from the full choice set followed by repeated

choice of best (instead of worst) from the remaining

alternatives until a preference order is obtained over all

alternatives, and used this elicitation process in their

study. Like a BWDCE, this increases the number of

observations collected per choice set but does so without
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asking respondents to swap to a new mental task of

choice of worst.

We discuss three ways to analyse best–worst data that

account for varying amounts and composition of prefer-

ence information. The first is to simply harness the first

(best) choice in each choice set, ignoring the additional

choice data using models outlined in Sect. 2.2 (as done by

Lancsar et al. [33] and Fiebig et al. [34]). Alternatively, the

additional preference information obtained from a

BWDCE can be used to estimate discrete-choice models by

noting that the best and worst choice questions produce an

implied rank order over alternatives, which can be mod-

elled with rank ordered logit (ROL) (e.g. Lancsar and

Louviere [35] and Scarpa et al. [36]). ROL [37–39] models

the probability of a particular ranking of alternatives as the

product of MNL models for choice of best. For example,

the ranking of three alternatives A[B[C is modelled as

the product of the (MNL) probability of choosing A as best

from the set (A B C) times the probability of choosing B as

best from the remaining alternatives (B C).

Pr ranking A;B;Cð Þ ¼ Pr A is1st bestð Þ � Pr B is 2nd bestð Þ

¼ exp VAð Þ
P

j¼A;B;C exp Vj

� � � expðVBÞP
j¼B;C expðVjÞ

ð8Þ

Subscripts are omitted for notational brevity. In using

ROL to estimate the implied preference order from a

BWDCE, the best–worst structure used to generate that

order is ignored since ROL assumes best (not worst) is

chosen from successively smaller choice sets. In contrast, the

ROL matches exactly the data-generation process of a best–

best DCE in which best is chosen from successively smaller

choice sets. The data are modelled using ROL in Table 1.

The sequential best–worst MNL (SBWMNL) model

developed in Lancsar and Louviere [14, 35] directly models

the series of sequential best and worst choices made in each

choice set as the product of MNL models. Using the

aforementioned example of a choice set containing three

alternatives (A B C), the probability of observing the pref-

erence order A[B[C is modelled as the (MNL) proba-

bility of choosing A as best from the set (A B C) times

probability of choosing C as worst from the remaining

alternatives (B C), which can be expressed as follows:

Pr best worst ordering A, B, Cð Þ
¼ Pr A is bestð Þ � Pr C is worstð Þ

¼ exp VAð Þ
P

j¼A;B;C exp Vj

� �� exp �VCð Þ
P

j¼B;C exp �Vj

� �
ð9Þ

Here, the best–worst ordering of the three alternatives is

represented as the two choices made by respondents per

choice set in the BWDCE and the deterministic part of utility

of choosing an alternative as worst is modelled as the negative

of the deterministic utility of choosing that alternative as best.

SBWMNL models the choice data in the way they were

generated so that the worst choice is modelled in the second

MNL model in Eq. 8 and the composition of the denominator

reflects the actual choice sets considered by respondents

associated with each choice set in the sequence.

Equations 7 and 8 can both be generalized to account for

the types of heterogeneity discussed in Sect. 2.2. For example,

Lancsar et al. [14] demonstrated how mixed logit,

heteroscedastic logit and G-MNL versions of ROL and

SBWMNL could be estimated. The mechanics of doing so is

made very straightforward because (as we discuss in Sect. 3)

both ROL and the SBWMNL models can be estimated by

‘exploding’ the data into the implied choice sets and then

estimating MNL on the exploded data. As such, it is

straightforward to estimate any of the models discussed earlier

on rank or best–worst data. In the final column of Table 1, we

present the estimates for the mixed ROL (MROL) that

reproduces the specification B results from Table 3 in Ghijben

et al. [11]. Thus, these results are directly comparable to the

MXL estimates in Table 1 that just uses the first best choice.

2.4 Post-Estimation

Good econometric practice suggests one should conduct

various robustness checks to ensure the internal validity of

the estimated model. When dealing with revealed prefer-

ence data, a constant threat is omitted variable biases,

meaning that effects of interest may be very sensitive to the

variables not included in the model. This is much less of a

concern with stated-preference data where the effects of

interest are typically associated with the attributes that are

created as part of the experimental design, meaning there is

typically no correlation between attributes and no reason to

believe they will be correlated with respondent character-

istics. For omitted variable biases to arise in stated pref-

erences, attributes would need to be omitted from the

design that lead respondents to change their evaluation of

included attributes because of expectations about the

relationship between omitted and included attributes. This

would lead to biased estimates of coefficients of included

attributes, and these biases could depend on respondent

characteristics. But such problems can readily be mini-

mized at the design stage and is an argument for avoiding

simple designs with minimal numbers of attributes.

What is a potential threat are features of the design such

as when respondents are assigned to different versions of

the survey. In the case study, the authors included a dummy

variable to control for block effects. From Table 1, we see

that these effects are never statistically significant at any

conventional level and so, at least in this dimension, one

should be confident about the results.
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Often issues of model choice can be resolved by testing

restrictions associated with nested versions of more general

models. Because maximum likelihood is the basis for

estimation, likelihood ratio tests can easily be conducted

for this purpose. For example, in Table 1, MNL, MXL and

SH are nested within G-MNL. It is wise to remember that,

except for MNL, the log-likelihood function is simulated

rather than known exactly and so is subject to simulation

noise. In the case of non-nested models, such as a com-

parison between MXL and SH or between MROL and

MXL, information criteria such as Akaike information

criterion (AIC) and Bayesian information criterion (BIC)

may be used to discriminate between alternative models.

While model fit may provide some guidance in choice of

models, often what is more important is the specific

research question being considered and the specific fea-

tures of the data being used and how they map into the

model being considered. For example, if data are being

pooled across very different subsamples of respondents, SH

would be an obvious concern; see, for example, Hall et al.

[29]. If one is simulating the impact of the introduction of a

new product or treatment as in Fiebig et al. [34], then it

would be prudent to avoid MNL and allow for flexible

substitution patterns.

Section 3.4 discusses other post-estimation issues, such

as how the estimated model can be used to generate mea-

sures of marginal willingness to pay (mWTP) and carry out

predictive analyses.

3 Software and Estimation

3.1 Discrete Choice

This section provides an overview of software for esti-

mating the models described in the previous section,

summarised in Table 2. The focus is on general statistics/

econometrics packages with built-in commands for esti-

mating discrete-choice models,3 rather than programming

languages that require user-written code.4

3.1.1 Nlogit

Nlogit (www.limdep.com/products/nlogit) is an extension

of the Limdep statistical package. It has a very compre-

hensive set of built-in commands for estimating discrete-

choice models, and can be used to estimate all of the

models covered in Sect. 2. It has various post-estimation

routines for generating predicted probabilities, performing

simulations and calculating elasticities. Nlogit is relatively

easy to use and comes with a comprehensive manual as a

PDF.

3.1.2 Stata

Stata (www.stata.com) is a general statistics package that

offers a broad range of tools for data analysis and data

management. While it has fewer built-in commands for

estimating discrete-choice models than Nlogit, there is a

range of user-written commands freely available that can

be used to implement the methods covered in Sect. 2

[40–43]. It has routines for generating predicted probabil-

ities, and simulations can be performed and elasticities

calculated by using the generated probabilities. Like Nlo-

git, Stata is relatively easy to use and comes with a com-

prehensive manual as a PDF. User-written commands are

often documented in articles published in The Stata Jour-

nal (www.stata-journal.com).

3.1.3 Biogeme

Unlike Stata and Nlogit, which are general statistical

packages, Biogeme (biogeme.epfl.ch) is specifically cre-

ated for estimating discrete-choice models.5 It also stands

out for being the only package of the three that is free; both

Stata and Nlogit require the user to pay a licence fee.

Biogeme is capable of estimating MNL models with both

linear and non-linear utility functions and with random

coefficients, which means that all of the models covered in

Sect. 2 can be implemented. It also has a routine for per-

forming simulations (biosim). While, in our experience,

Biogeme is somewhat less easy for beginners to use than

Stata and Nlogit, the documentation is comprehensive and

has helpful examples. Since Biogeme requires a somewhat

higher initial time investment, it is recommended in par-

ticular for more advanced users who wish to go beyond

standard model specifications. As Biogeme has fewer built-

in commands for data management than Stata and Nlogit, it

will often be necessary to use an alternative software

package to set up the data in the form required by Biogeme.

3 Our overview is not exhaustive, as other software packages capable

of estimating some of the discrete-choice models in our review are

available. However, the three packages we have reviewed are among

the most commonly used for estimating these models.
4 This implies we will not cover software such as Gauss, Matlab and

R, despite there being excellent routines written in these packages for

estimating, for example, mixed logit models. A prominent example is

Kenneth Train’s codes for mixed logit estimation (http://eml.

berkeley.edu/*train/software.html), which served as inspiration for

many of the routines later introduced in other statistical packages.

5 Two versions of Biogeme are available: BisonBiogeme and

PythonBiogeme. We focus on BisonBiogeme, which is designed to

estimate a range of commonly used discrete-choice models.
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To sum up, Nlogit, Stata and Biogeme are all good options

for estimating discrete-choice models. We would argue that

there is no ‘one size fits all’: no package strictly dominates the

others, and it will therefore be up to the individual user to

choose the package that best suits their needs. As mentioned,

Biogeme has the advantage of being free and very powerful,

but it requires a somewhat greater time investment on the part

of the user to learn how to use it effectively. Nlogit has a very

comprehensive set of built-in commands that cover most, if

not all, of the models that the majority of DCE analysts would

want to estimate. Stata has a less comprehensive set of built-

in commands, but has user-written routines that cover the

most commonly used models. Both Nlogit and Stata have the

advantage that all data processing and cleaning can be done in

the same package that is used to run the analysis. All three

packages have active online user group discussion forums

where queries are typically answered quickly. The forum

archives are searchable and contain a wealth of useful

information in the form of past questions and answers, so it is

typically worth spending some time searching the archives

before posting a new question.

3.2 Estimation of Discrete-Choice Models

3.2.1 Data Setup

Before proceeding to the estimation stage, the analyst

needs to organise the data in the way required by the

estimation software. In general, the data can be organized

in two ways: ‘long form’ (see Supplementary Appendix 1)

and ‘wide form’ (see Supplementary Appendix 2):

• Long form, which is the data structure required by Stata

and Nlogit,6 implies that the dataset has one row per

alternative for each choice scenario that the decision

makers face. Thus, with N decision makers choosing

amongst J alternatives across S scenarios, the dataset

will have N � J � S rows. The dependent variable is

coded 1 for the chosen alternative in each scenario and

0 for the non-chosen alternatives.

• Wide form, which is the data structure required by

Biogeme, implies that the dataset has one row for each

choice scenario that the decision makers face. The

dataset will therefore have N � S rows. In this case, the

dependent variable is coded 1; . . .; J, indicating the

chosen alternative. Each design attribute will have J

associated variables, containing the level of the

attribute for the respective alternative. This contrasts

with the long form structure, where there is only one

variable per design attribute.

Both Stata and Nlogit have built-in commands for

transforming the dataset from long to wide form, and vice

versa. For convenience, the example dataset is available as

ESM in both long and wide form.

When the data are in long form, ASCs can be defined as

a dummy variable that is equal to one in the row corre-

sponding to the relevant alternative and zero otherwise.

Alternative-specific coefficients can then be estimated by

interacting the ASCs with the desired attribute(s) and

including the interactions in the model. In Biogeme, such

effects are specified by explicitly defining the utility

function of the different alternatives, an option that is also

available in Nlogit. More generally, categorical attributes

and covariates can be coded as dummy variables or effects

coded, either being appropriate as long as interpreted

appropriately [44, 45]. Indeed, even for continuous vari-

ables (e.g. price), it can often prove useful to initially treat

the levels as categorical in exploratory testing in order to

plot the coefficients to help inform choice of functional

form for the continuous variable.

Table 2 A summary of the

modelling capabilities of the

main software packages covered

in the review

Software package MNL MXL Latent class MXL Bayesian G-MNL

Nlogit 4 4 4 4

Stata 4 UW UW UW UW

Biogeme 4 4 4 4

This is not an exhaustive list; all of the packages have options for estimating other discrete-choice models

not covered in this review. The packages differ in terms of which distributions are supported for the random

coefficients in the mixed logit routines, with Nlogit having the widest selection of distributions. GMNL can

be fit in Biogeme by exploiting the option for specifying non-linear utility functions; however, it is less

straightforward to do than in the other two packages. Scaled ASCs are the default GMNL option in Stata

and Nlogit and can be done in Biogeme. However, this can be potentially problematic depending on the

context and model and we suggest testing with and without scaling the ASC (in our case, it made little

difference)

ASC alternative specific constant, GMNL generalised multinomial logit, MNL multinomial logit, MXL

mixed logit, UW user-written

6 Nlogit also optionally allows the data to be organized in wide form,

although the manual suggests that long form is typically more

convenient.
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3.2.2 Other Estimation Issues

Implementing the models presented in Sect. 2 in practice

requires the analyst to make a number of choices at the

estimation stage.7 As we show, these choices can impact on

the results, and it is therefore recommended to carry out a

sensitivity analysis to examine the robustness of the findings.

Starting values Estimating the parameters in the model

involves maximising a non-linear log-likelihood function,

and the maximisation process requires the user to provide

an initial guess of the parameter values.8 The software

package then searches for improvements in the log-likeli-

hood iteratively by changing the values of the parameters

using an optimisation algorithm. In the case of the MNL

model, the choice of starting values typically does not

matter in practice, as the MNL log-likelihood function has

a single maximum. The algorithm will therefore find the

maximum even if the starting values are far from the values

that maximize the log-likelihood. However, in the case of

models such as MXL and G-MNL, matters are less simple.

For those models, the log-likelihood may have several

optima, of which only one is the overall (global) optimum

that we seek to identify. Starting from a set of parameter

values far away from the global optimum may lead the

algorithm to identify one of the inferior local optima, at

which point the algorithm will declare convergence as it

cannot distinguish between local and global optima. Only

the parameter values associated with the global optimum

have the desirable properties of maximum likelihood esti-

mates, and it is therefore recommended to investigate the

sensitivity of the results to a different choice of starting

values. Hole and Yoo [46] discuss these issues in the

context of the G-MNL model. Czajkowski and Budziński

[47] find that increasing the number of simulation draws

improves the chance of the algorithm converging to the

global optimum.

Simulation draws Another issue that the analyst needs to

be aware of when estimating MXL and G-MNL models is

that the log-likelihood function must be approximated

using simulation methods, as it cannot be calculated ana-

lytically. Simulation methods involve taking a large num-

ber of random draws, which represent the distribution of

the coefficients at the current parameter values. As the

draws are generated by a computer, they are not truly

random but instead created using an algorithm designed for

the purpose of generating draws, which have similar

properties to random draws. The analyst needs to decide

how many draws to use to approximate the log-likelihood

function and which method to use to generate the draws.

Regarding the number of draws, there is a trade-off

between accuracy and estimation time; a large number of

draws gives a better approximation of the true log-likeli-

hood function but slows down the estimation process. It is

therefore common to start with a relatively small number of

draws at the exploratory stage, for example using the

default setting in the software.9 It is then strongly advisable

to check for the stability of the final solution to be reported

by increasing the draws. The number of draws required to

stabilize the results will depend on the model specification;

typically, a larger number of draws is needed if there are

more random coefficients in the model. The number of

draws required is also related to the method chosen to

generate the draws. For example, in the context of mixed

logit estimation, 100 Halton draws have been found to be

more accurate than 1000 pseudo-random draws [48, 49].

For this reason, Halton draws are often used when esti-

mating MXL and G-MNL models.10

Table 3 presents the results from estimating a simplified

version of the MXL model described in Sect. 2 (model A

from Ghijben et al. [11]) in Nlogit, Stata and Biogeme. The

starting values are set at the default values in Nlogit and

Stata, and the Biogeme starting values are set to be iden-

tical to the Stata default values.11 While it can be seen that

there are no qualitative differences between the results—

the coefficients have the same sign and significance and the

point estimates are similar—they are not exactly identical.

This is in spite of using the same number of simulation

draws (500) and the same method for generating the sim-

ulation draws (Halton).12 However, as long as the results

do not differ to the extent that it has an impact on the

substantive implications of the findings, this should not

give much cause for concern.

3.3 Estimation of Best–Worst and Best–Best Models

Estimation of choice models harnessing just the first best

choice from best–worst or best–best data proceeds as

7 Interested readers are referred to chapters 8–10 in Train [49] for

more information about the issues covered in this section.
8 Both Nlogit and Stata will use a default set of starting values unless

explicitly specified by the user, whereas Biogeme requires the user to

specify the starting values.

9 The default number of draws is 100 in Nlogit, 50 in Stata and 150 in

Biogeme.
10 In models with several random coefficients, alternative approaches

such as shuffled or scrambled Halton draws [50] or Sobol draws

[51, 52] are sometimes used to minimize the correlation between the

draws, which can be substantial for standard Halton draws in higher

dimensions. See chapter 9 in Train [49] for a discussion.
11 Nlogit and Stata’s default starting values are the MNL parameters

for the means of the random coefficients and 0 (Nlogit)/0.1 (Stata) for

the standard deviations.
12 Differences can still arise, for example because the optimization

algorithms differ in the three packages, subtle differences in terms of

how the Halton draws are generated and different starting values (in

this case Stata/Biogeme vs Nlogit).
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outlined in Sect. 3.1. Estimation of ROL in Stata involves

the rologit command. In Nlogit, ROL models can be esti-

mated using the rank as the dependent variable and adding

‘ranks’ to the usual model syntax. In Biogeme, the data

need to be exploded manually (see Supplementary

Appendix 3 in the ESM). Indeed, an attractive property of

both ROL and SBWMNL is that they can be estimated

using standard MNL (or extensions such as MIXL,

G-MNL, etc.) after the data have been set up appropriately.

In fact, ROL is also known as ‘exploded logit’ because,

drawing on the IIA property of MNL models, it can be

estimated by exploding the data from each choice set into

statistically independent choice subsets. For a choice set

with J alternatives, the data can be expanded into J - 1

sub choice sets. For example, for a ranking over J = 3

alternatives, the data can be exploded into two sub choice

sets. The first contains three rows of data representing the

three alternatives contained in the original choice set with

the dependent variable equal to 1 for the alternative ranked

first (chosen as best) and 0 for the remaining alternatives,

which is identical to data set-up for standard first best

choice model. The second sub choice set identifies best

from the remaining two alternatives and contains two rows

of data pertaining to the two alternatives not ranked first

with the dependent variable equal to 1 for the alternative

ranked second (chosen as best from the two on offer) and 0

for the remaining alternative. So, for each original choice

set containing three alternatives, there are five rows of

data.13 Once the rankings are exploded in the dataset to the

implied choices made in each of the subsets, the ROL

parameters can be estimated using a traditional MNL

model (or extensions of the MNL model) from the

expanded choice data. Indeed, prior to ROL routines being

programmed in software packages, this was the standard

way to estimate a ROL. A good check that the data have

been exploded correctly before moving on to more

sophisticated models accounting for unobserved hetero-

geneity, etc. is to run an MNL (e.g. via the clogit or

asclogit command in Stata) on the exploded data and then

run an ROL on the un-exploded data (e.g. using rologit in

Stata). The results should be identical in all decimal places.

In all three software packages (Stata, Nlogit and Bio-

geme), the data need to be exploded to estimate SBWMNL

models. Like the ROL model, estimation of the SBWMNL

model draws on the IIA property and exploits the addi-

tional preference information obtained in each choice set in

a BWDCE, expanding the data in a similar but slightly

different way. Again, for a choice set with J alternatives,

the data can be exploded into J - 1 sub choice sets. So

data from a choice set containing three alternatives from

which best and worst are chosen are expanded into two sub

choice sets. The first contains three rows of data corre-

sponding to the three alternatives presented in the original

choice set with the dependent variable equal to 1 for the

alternative chosen as best, and 0 for the remaining alter-

natives. The second sub choice set contains two rows of

data representing the two alternatives not chosen as best in

the full choice set with the dependent variable equal to 1

for the alternative chosen as worst and 0 for the remaining

alternative. Thus, again for each original choice set con-

taining three alternatives, there are five rows of data. In

addition, for the sub choice set in which worst is chosen,

the utility of worst is scaled to be the negative of the utility

of best, which in practice means multiplying the data for

the alternatives in the second sub choice set by -1.

Parameters can then be estimated using MNL (or its

extensions) on the exploded choice data. Code for all

Table 3 Results from

estimating a MXL model in the

different software packages

Variable Nlogit Stata Biogeme

Stroke risk 0.706 (0.060) 0.706 (0.060) 0.706 (0.060)

Bleed risk 0.578 (0.049) 0.578 (0.049) 0.578 (0.049)

Antidote 0.600 (0.081) 0.600 (0.081) 0.600 (0.081)

Blood test -0.082 (0.077) -0.082 (0.077) -0.082 (0.077)

Dose frequency -0.089 (0.077) -0.089 (0.077) -0.089 (0.077)

Drug/food interactions -0.340 (0.079) -0.340 (0.079) -0.340 (0.079)

Cost -0.012 (0.001) -0.012 (0.001) -0.012 (0.001)

ASC x block -1.051 (0.862) -1.003 (0.856) -1.000 (0.854)

ASC (mean) 3.108 (0.759) 3.086 (0.750) 3.090 (0.742)

ASC (SD) 3.102 (0.492) 3.069 (0.477) 3.050 (0.478)

Log-likelihood -791.03 -790.91 -790.85

Data are presented as coefficient (standard error) unless otherwise indicated

The following versions were used for estimation: Stata 14.2, NLOGIT 5 and Biogeme 2.0

ASC alternative specific logit, SD standard deviation

13 Applying this procedure modifies the data from the standard set-up

in Supplementary Appendix 1 to the exploded set-up in Supplemen-

tary Appendix 3.
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estimation contained in this paper is provided in Supple-

mentary Appendix 4 (ESM).

3.4 Post-Estimation

As discussed in Sect. 2.4, issues of model choice can be

resolved by testing restrictions associated with nested

versions of more general models. Such tests can easily be

carried out using the tools available in Nlogit and Stata for

performing Wald tests. In all packages, an alternative

approach is to carry out a likelihood ratio test using the

reported simulated log likelihood values for the restricted

and unrestricted models.

Information criteria such as AIC and BIC may be used

to discriminate between alternative models that are not

nested. Apart from the examples mentioned in Sect. 2.4,

this can be useful when assessing the goodness of fit of

MXL models with different distributions for the random

coefficients, for example. The information criteria can be

readily calculated in all packages using the reported sim-

ulated log likelihood values, along with the relevant

information regarding the number of parameters in the

competing models and (in the case of BIC) the sample size.

It is worth re-iterating that while model fit may provide

some guidance in choice of models, often what is more

important is the specific research question being considered

and the specific features of the data being used. Rather than

choosing one preferred specification, it is typically better to

report the output of interest (such as mWTP measures,

predictive analyses) for a range of model specifications and

compare and contrast the results, as demonstrated below.

3.4.1 Marginal Willingness to Pay Measures

Calculating mWTP measures is a convenient and useful

way to compare attribute estimates. mWTP can be derived

as the marginal rate of substitution between attribute Xk and

cost (C):

mWTPXk ¼ �MUXk

MUC

ð10Þ

where MUXk and MUC are the marginal utilities of attribute

Xk and cost, respectively. When the utility function is

specified to be linear in parameters, the marginal utility of

an attribute is equal to its coefficient, which means that

mWTP is given by the negative of the ratio of the coeffi-

cients for attribute Xk and cost. In Table 4, we use the

MNL, MXL and MROL results from Table 1 to produce

mWTP estimates for the most important attributes, stroke

risk and bleed risk. The latter replicate the results in

Table 4 in Ghijben et al. [11].

The MNL results indicate that, for example, the WTP

for a 1%-point reduction in the stroke risk is about 69

Australian dollars (AUD) per month. The remaining esti-

mates can be interpreted in an analogous way. The esti-

mates are reasonably stable across models, with the MNL

and MXL estimates being especially close, whereas the

MROL stroke risk mWTP is somewhat of an exception. If

we refer back to the actual parameter estimates used in

these calculations, those for MNL are systematically

smaller in magnitude, a scaling effect, but those for MXL

and MROL are very similar, as we would expect.

While mWTP measures are straightforward to calculate

when the utility function is linear in parameters, routines

for obtaining confidence intervals using either the delta

method or parametric (Krinsky–Robb) or non-parametric

bootstrapping [53] are useful since a measure of the pre-

cision of the estimates should always be reported. Such

routines are available in both Nlogit and Stata. In some

cases, the assumption of linearity is inappropriate, as a

researcher may want to allow the marginal utility of a

change in an attribute to depend on the level of the attri-

butes (e.g. due to interactions or non-linear functional

form; for an example, see Lancsar et al. [33]). In such

cases, the calculation of mWTP is slightly more involved,

but we can still use general routines for calculating non-

linear combinations of parameters in Stata and Nlogit to

obtain point estimates and measures of precision.

Calculating mWTP measures following the estimation

of a model with random coefficients, such as MXL or

G-MNL, can be more complicated depending on the model

specification. If both the attribute coefficient and the cost

coefficient are fixed, as in our examples, the calculation is

the same as for the MNL model. If the attribute coefficient

is normally distributed and the cost coefficient is fixed,

which is a common specification, the mean mWTP is

Table 4 Selected estimates of

marginal willingness to pay for

a subset of attributes using data

from Ghijben et al. [11]

Attribute MNL MXL MROL

Stroke risk 68.37 (44.24–92.51) 70.53 (44.31–96.75) 50.48 (33.68–67.28)

Bleed risk (without antidote) 67.02 (42.29–91.75) 67.66 (41.09–94.23) 54.87 (35.70–74.05)

Bleed risk (with antidote) 34.02 (18.55–49.50) 38.36 (21.93–54.79) 35.70 (21.70–48.99)

Data are presented as estimate (95% confidence interval)

Marginal willingness to pay per month in Australian dollars for a 1 percentage point reduction in absolute

risk

MNL multinomial logit, MROL mixed rank ordered logit, MXL mixed logit

E. Lancsar et al.



simply given by the ratio of the mean attribute coefficient

to the negative of the estimated cost coefficient. Relaxing

the assumption that the cost coefficient is fixed can lead to

complications: a normally distributed cost coefficient, for

example, leads to a distribution for mWTP that has no

defined mean since the cost coefficient can now be equal to

zero. Researchers therefore often choose a distribution for

the cost coefficient that is constrained to be negative to

avoid this problem, such as the negative of a log-normal

distribution.14 While this solves the problem of the mWTP

distribution not having a defined mean, it can lead to a non-

standard distribution whose mean may not be straightfor-

ward to calculate.15 One solution is to approximate the

mean using simulation by taking many draws from the

distribution of the attribute coefficient and the price coef-

ficient, calculating the ratio for each draw and taking the

average of the calculated ratios. If we take a large number

of draws, the resulting average should be close to the true

mean of the mWTP distribution.

An alternative to estimating the model in the usual way

and calculating mWTP as the ratio of parameters is to

reformulate the model so that mWTP is estimated directly.

This approach, called estimation in WTP space [54], is

appealing as it avoids the complications just described. The

recent paper by Ben-Akiva et al. [55] covers this estimation

approach in detail with illustrative examples. Estimation in

WTP space is supported in both Nlogit and Stata, and is

possible to implement in Biogeme by exploiting the option

for specifying non-linear utility functions.

The mWTP measures can be conditioned on observed

choices to obtain individual-level estimates of mWTP; see,

for example, Hole [30] and Greene and Hensher [56]. The

individual-level mWTP measures can be useful for policy

analysis, for example to identify respondents who are likely

to benefit particularly highly from a policy improvement.

3.4.2 Predictive Analysis

A predictive analysis is an extremely flexible post-esti-

mation tool. It is a convenient way to characterize how

predicted probabilities change in response to changes in

attributes as well as providing a means to simulate inter-

esting scenarios. We illustrate the former here and refer

interested readers to Johar et al. [57] for an application

involving policy changes; for applications where the

impact of the introduction of a new product is investigated,

see Fiebig et al. [34] and Ghijben et al. [11], who opera-

tionalize procedures outlined in Train [49].

Again using the MNL, MXL and MROL results from

Table 1, consider a base case where all attributes have been

set to zero. This produces predicted probabilities for each

of the estimation methods given in the rows labelled

‘baseline’ of Table 5. Subsequent rows then show how

these predicted probabilities would change in response to

two particular changes in the attributes of drug B. The first

is a $AUD50 increase making drug B less attractive; the

Table 5 Comparison of predictions for each alternative in response to changes in selected attributes using data from Ghijben et al. [11]

Model and scenario No treatment Drug A Drug B

MNL

Baseline 0.165 (0.079–0.317) 0.417 (0.341–0.461) 0.417 (0.341–0.461)

Increase cost of $50 for drug B 0.198 (0.098–0.363) 0.501 (0.394–0.567) 0.301 (0.238–0.348)

Reduction of 1% in stroke risk for drug B 0.116 (0.054–0.234) 0.294 (0.244–0.331) 0.590 (0.515–0.640)

MXL

Baseline 0.177 (0.020–0.389) 0.412 (0.306–0.490) 0.412 (0.306–0.490)

Increase cost of $50 for drug B 0.193 (0.025–0.408) 0.511 (0.377–0.620) 0.295 (0.215–0.366)

Reduction of 1% in stroke risk for drug B 0.148 (0.013–0.348) 0.269 (0.199–0.327) 0.583 (0.445–0.682)

MROL

Baseline 0.243 (0.174–0.336) 0.379 (0.332–0.413) 0.379 (0.332–0.413)

Increase cost of $50 for drug B 0.273 (0.200–0.372) 0.486 (0.415–0.542) 0.242 (0.203–0.279)

Reduction of 1% in stroke risk for drug B 0.204 (0.142–0.289) 0.263 (0.226–0.298) 0.533 (0.474–0.581)

Data are presented as probability (95% confidence interval)

These are the probabilities that each alternative is chosen as best. Baseline refers to the case when all of the attributes for drug A and drug B are

set to zero. Each variation in attribute level is simulated one at a time, and only selected variations have been reported

MNL multinomial logit, MROL mixed rank ordered logit, MXL mixed logit

14 Log-normal parameter distributions are supported by all of the

packages. The negative of the log-normal can easily be implemented

by multiplying the price attribute by -1 before entering the model.

This is equivalent to specifying the negative of the price coefficient to

be log-normally distributed. The sign of the coefficient can easily be

reversed post-estimation.
15 One exception is when both the attribute coefficient and the

negative of the price coefficient are log-normally distributed, in which

case the distribution of mWTP is also log-normal.
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second, that makes drug B more attractive is a 1% point

reduction in stroke risk. Each of these changes in drug B is

simulated separately and so the appropriate comparison in

each case is with reference to the baseline probabilities.

Nlogit, Stata and Biogeme all have built-in routines for

conducting predictive analyses. Confidence intervals for

the predictions can be generated by taking many draws

from the attribute coefficients, generating the predicted

probabilities of interest for each draw and calculating the

desired percentiles of the generated distributions.

The implications of IIA are clear from the changes in

MNL predicted probabilities in comparison with those for

MXL and MROL. For example, the response to the cost

change implies a dramatic predicted shift away from drug

B but, in the case of MNL, the change in predicted prob-

abilities is such that relativities between, say, drug A and

no treatment are maintained at the baseline level: (0.501/

0.198) = (0.417/0.165) = 2.55. In contrast, the increase in

the predicted share of drug A is proportionally larger in the

case of MXL and MROL, implying a more realistic sub-

stitution pattern. We note that the above analysis differs

from the predicted probability analysis presented in Ghi-

jben et al. [11], where more complex policy scenarios are

explored, including the introduction of new medications as

well as recalibration to market data.

Marginal effects are essentially a simple form of pre-

dictive analysis, in which the probabilities in a baseline

scenario are compared with the probabilities in an alter-

native scenario following a marginal increase in a single

attribute of one of the alternatives in the model. When

viewed this way, marginal effects can be calculated using

the same tools as those used to carry out predictive anal-

yses. Elasticities can be calculated in an analogous way,

only that in this case we are looking at the percentage

change in the probabilities resulting from a 1% increase in

an alternative attribute.

It is worth bearing in mind that a potential issue with

using DCE data for predictive analysis is that the data do

not embody the market equilibrium. Calibrating the ASCs

using market data is therefore strongly advisable where

such data are available.

3.4.3 Welfare Analysis

A key behavioural outcome of interest to economists is

individual and aggregate WTP and willingness to accept

monetary amounts in response to policy changes such as a

change in single attributes, multiple attributes or the

introduction or removal of entire options from the choice

set. Indeed, such values are essential in cost-benefit anal-

ysis. Such values can be calculated in post-estimation

welfare analysis using the compensating variation (CV). In

the case of the MNL model, the CV can be expressed as

follows:

CV ¼ 1

l
ln
XJ

j¼1

eV
0
j � ln

XJ

j¼1

eV
1
j

" #

ð11Þ

where V0
j and V1

j are the values of the utility function, V,

estimated in the choice model for each choice option j be-

fore and after the quality change, respectively, and J is the

number of options in the choice set. The log sum terms in

Eq. 11 weight the utility associated with each alternative

by the probability of selecting that alternative and as such

can be interpreted as the expected utility. The CV therefore

calculates the change in expected utility before and after

the policy change and scales this utility difference by the

marginal utility of income, l, to provide a monetary and

therefore cardinal measure of the change in welfare. Often

information on income is unavailable, in which case the

coefficient on the price attribute (which represents the

marginal disutility of price) can be used as the negative of

the marginal utility of income. In fact any quantitative

numeraire would work—see for example Lancsar et al.

[58], who use the marginal utility of a quality-adjusted life-

year (QALY) as the numeraire. Calculation of the CV

involves harnessing the coefficients estimated in the choice

model along with the values of the attributes of interest and

can easily be undertaken by hand or in standard software

packages (e.g. using nlcom in Stata, which also produces

confidence intervals). The interested reader is referred to

Lancsar and Savage [58] for further discussion of the

theory and methods for such calculations.

4 Discussion

Choice modelling is a critical component of undertaking a

DCE but to date has received less attention in terms of

guidance than other components. As we highlight in

Sect. 2, researchers face a number of decisions when

analysing DCE data and arriving at a final model. Some

decisions are resolved by the choice problem and design

(e.g. binary vs. multinomial choice, which variables are

independently identified in the experimental design, whe-

ther the choice is labelled therefore allowing for the pos-

sibility of alternative specific utility functions, or generic,

etc.) and others are specification decisions that need to be

made on a case-by-case basis (e.g. functional form of

specific variables, which could be linear, quadratic, loga-

rithmic, etc., forms of heterogeneity to be explored, etc.).

Such decisions are not necessarily linear and sequential;

instead, many are simultaneous and interdependent.

There is no single model that we would recommend in

all cases. Each have a number of advantages and possible
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disadvantages depending on the research question being

addressed. In selecting a modelling approach, we would

recommend finding a model that addresses the researcher’s

questions of interest and provides a reasonable device with

which to represent the choice at hand. Ultimately, it is still

a model and all models involve assumptions. The question

to address is which assumptions are most appropriate (or

have minimum detriment) to the research questions being

explored. It is important to note that the choice of model to

be estimated is not only dependent on the research objec-

tives, study design, etc. but is also constrained by what can

be estimated given the data a researcher has (including

such issues as quantity and quality) and so is based on

considerations from both Sects. 2 and 3.

MNL was for decades the workhorse of choice mod-

elling and we recommend it as a natural first model to

estimate. Where to go next after MNL is not always clear

and depends on the research objectives, but a basic first

step would be the estimation of a mixed logit model to

account for the panel structure of the data, providing more

reliable standard errors and move away from proportional

substitution (by relaxing IIA). It also allows for unobserved

preference heterogeneity by allowing coefficients to vary

randomly across individuals. Whether one takes a Fre-

quentist or Bayesian approach to the estimation of mixed

logit in part comes down to preferences of the researcher,

but, with the use of simulation methods, the distinction

between the two approaches is becoming less pronounced,

and recent evidence suggests little difference in estimates

[59]. Focus on mixed logit in the health economics litera-

ture has often been motivated by interest in unobserved

heterogeneity. To our minds, the other two reasons for

exploring mixed logit are at least as important.

Having said that, exploration of heterogeneity can be

important and has received much attention. If one views

the distribution of preference heterogeneity to be discrete

rather than continuous, a latent class model would be

appropriate. By allowing for different preference parame-

ters between classes, an advantage of latent class modelling

is that it allows heterogeneity to be interpreted in terms of

class type and class membership. Another form of hetero-

geneity gaining attention is SH. A modification to the MNL

leads to the heteroscedastic logit, which allows for

between-person differences in scale to be modelled as a

function of covariates. Alternatively, interest in unobserved

SH could lead to the SH model. G-MNL offers a very

flexible approach that nests several of the standard models

discussed in Sect. 2 including mixed logit, heteroscedastic

logit and SH models.

When exploring heterogeneity, key decisions to make

include which form(s) of heterogeneity are most of interest

to the researcher (e.g. preferences or scale, unobserved or

observed; noting that these need not be mutually

exclusive). While both observed and unobserved hetero-

geneity can be important, and indeed can be explored

within the same model, a distinction between the two is

that the latter often improves model fit but is not always

readily interpretable. In contrast, observed heterogeneity is

interpretable in relation to known covariates (e.g. age,

gender, past experience, etc.), thereby potentially generat-

ing useful implications for policy and practice. Ultimately,

the source(s) of heterogeneity to be explored depends on

the research questions, the assumptions researchers are

prepared to make and what is revealed by the data.

Whichever model is estimated, it is important to be cog-

nizant of the implications of the model (and associated

assumptions) chosen for the conclusions that can be drawn.

We also provided model and estimation procedures for

best–worst and best–best DCEs, including ROL and

SBWMNL. The fact that both models can be estimated by

expanding the data as described in Sect. 3 and then applying

MNL has a particularly advantageous feature in that it is

straightforward to estimate more sophisticated versions of

these base models, allowing for non IIA, correlated errors

and various forms of heterogeneity. For example, all of the

models discussed in Sect. 2 for estimation with first best-

data (mixed logit, G-MNL, etc.) can be estimated simply by

running such commands on the expanded best–worst or

best–best data. Correct data set-up is therefore crucial, and

we offer advice on a useful way to check this.

More generally, the advantages and limitations of best–

worst data collection have been outlined elsewhere. As

Lancsar et al. [14] note, a key advantage is the generation

of more data relative to a standard DCE, which can prove

particularly useful when sample size constraints exist (due

to budget considerations or when the population from

which the sample is being drawn is itself small); even when

sample size is not a constraint, it can prove an efficient way

to generate a given quantity of data or simply provide more

data. The additional data can also prove particularly useful

for the estimation of models for single individuals [31, 35].

We presented several standard software options in

Sect. 3. An advantage of Stata and Nlogit beyond estima-

tion is that they provide comprehensive data management.

In contrast, Biogeme requires external data management

but is very flexible in estimation; it is also free. Which a

researcher selects will in part depend on personal prefer-

ences, particularly if they have already invested time and

resources in a particular software package. We also offered

advice on data set-up and best practice in terms of esti-

mation, including issues such as choice of starting values,

number of draws in estimation, etc.

When it comes to interpretation of results, the parameter

estimates from choice models are typically not of intrinsic

interest and indeed parameters often cannot meaningfully

be compared because of the different scales on which they
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are measured, some of which may be quantitative (e.g.

time, cost, risk, etc.) and others of which may be qualitative

(provider type, location, etc.) [33]. It is therefore surprising

that many researchers stop after generating attribute coef-

ficients without undertaking post-estimation, particularly

given post-estimation is not difficult and provides useful

insights. We strongly encourage researchers to harness

model parameters in post-estimation analysis to both

improve interpretation and to produce measures that are

relevant to policy and practice. At a minimum, we suggest

the calculation of marginal rates of substitution, but—de-

pending on the goals of the research—additional analysis

could include predicted uptake or demand, elasticities and

welfare analysis.

As with all methods, validity is crucial. Internal validity

has received considerable attention in the health economics

literature, including checking signs of estimated parameters

accord with a priori expectations and the testing of axioms

of consumer theory (e.g. Ryan and Bate [60] and Ryan and

San Miguel [61]). Lancsar and Louviere [62] caution

against deleting data on the basis of such tests. Lancsar and

Swait [9] provide a new and more comprehensive con-

ceptualization of external validity, which advocates that its

investigation should be broader than the comparison of

final outcomes and predictive performance and indeed

encompasses process validity. They suggest innovative

ways in which the broader definition can be pursued in

practice, starting from the initial conception and design of

a DCE through to model and post-estimation. Most rele-

vant to the modelling stage of DCE research is the possible

extension of the basic random-utility choice modelling

framework in an attempt to more closely replicate reality,

for example to account for decision rule selection and

choice set formation.

We did not set out to be exhaustive in our coverage of

either choice models or software, instead focusing on stan-

dard models that can be estimated in standard commonly

used software. There are, of course, interesting extensions to

these core models that warrant attention for particular

research questions, often requiring bespoke coding and

estimation. One interesting stream of choice modelling is to

account for different underlying decision rules and pro-

cessing strategies. Two examples of this are choice set for-

mation, championed by Swait and colleagues in the general

choice modelling literature (e.g. Swait and Erdem [20]) and

starting to be used in health (e.g. Fiebig et al. [63]), and

attribute non-attendance (e.g. Hensher and Greene [64],

Lagarde [65] and Hole et al. [66]), where the latter can also

arise from the broader issue of excessive cognitive burden

[67]. Another useful stream of choice modelling is data

fusion. We discussed the need to calibrate ASCs for market

data where such data are available, particularly for welfare

and forecasting analysis. A natural extension is more

complete data fusion, where stated-preference data collected

in a DCE can be combined with revealed-preference data

either from observed choices [68, 69] or indeed from linking

or embedding experiments in other data collection (cross

sectional, panel, experimental, randomised controlled trials)

more generally to harness the advantages of the various data

sources [70]. There are, of course, other interesting choice

modelling extensions, and we refer the interested reader to

the Handbook of Choice Modelling [71] for a recent survey

of cutting-edge choice models and estimation issues on the

research frontier.

5 Conclusion

As the use of DCEs and DCE results by researchers, policy

makers and practitioners in the health sector continues to

increase, so too will the importance placed on the theory

and methods underpinning the approach in general and the

analysis and interpretation of the generated choice data in

particular. As this guide has highlighted, choice of mod-

elling approach depends on a number of factors (research

questions, study design and constraints such as quality/

quantity of data), and decisions regarding analysis of

choice data are often simultaneous and interdependent.

When faced with such decisions, we hope the theoretical

and practical content of this paper proves useful to

researchers not only within but also beyond health

economics.
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