
Donald J. Norris

Beginning
Artificial Intelligence
with the Raspberry Pi

Beginning Artificial Intelligence with the Raspberry Pi

Donald J. Norris
Barrington, New Hampshire, USA

ISBN-13 (pbk): 978-1-4842-2742-8 ISBN-13 (electronic): 978-1-4842-2743-5
DOI 10.1007/978-1-4842-2743-5

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-2742-8. For more detailed information, please visit
http://www.apress.com/source-code.

Library of Congress Control Number: 2017943462

Copyright © 2017 by Donald J. Norris

Contents at a Glance

About the Author ��� xv

About the Technical Reviewer ��� xvii

Preface ��� xix

 ■Chapter 1: Introduction to Artificial Intelligence ���������������������������� 1

 ■Chapter 2: Basic AI Concepts ��� 17

 ■Chapter 3 Expert System Demonstrations ������������������������������������ 49

 ■Chapter 4: Games ��� 77

 ■Chapter 5: Fuzzy Logic System �� 111

 ■Chapter 6: Machine Learning ��� 145

 ■Chapter 7: Machine Learning: Artificial Neural Networks ���������� 171

 ■Chapter 8: Machine Learning: Deep Learning ����������������������������� 211

 ■Chapter 9: Machine Learning: Practical ANN Demonstrations ��� 249

 ■Chapter 10: Evolutionary Computing �� 281

 ■Chapter 11: Behavior-Based Robotics �� 313

 ■Appendix A: Build Instructions for the Alfie Robot Car �������������� 347

Index �� 363

Contents

About the Author ��� xv

About the Technical Reviewer ��� xvii

Preface ��� xix

 ■Chapter 1: Introduction to Artificial Intelligence ���������������������������� 1

AI Historical Origins ��� 1

Intelligence �� 7

Strong AI vs� Weak AI, Broad AI vs� Narrow AI ��� 9

Reasoning ��� 10

AI Categories ��� 11

AI and Big Data �� 13

Summary ��� 15

 ■Chapter 2: Basic AI Concepts ��� 17

Boolean Algebra �� 17

Some Additional Boolean Laws �� 19

Inference ��� 19

Expert Systems ��� 20

Conflict Resolution �� 21

Backward Chaining ��� 22

Raspberry Pi Configuration ��� 23

Introduction to SWI Prolog ��� 23

Installing Prolog on a Raspberry Pi ��� 24

Initial Prolog Demonstration �� 25

Introduction to Fuzzy Logic ��� 27

Example of FL ��� 27

Defuzzification �� 29

Problem Solving �� 29

Breadth-First Search �� 30

Depth-First Search ��� 30

Depth-Limited Search ��� 30

Bidirectional Search ��� 31

Other Problem-Solving Examples ��� 31

Machine Learning �� 31

Prediction ��� 32

Classification �� 33

Further Classification�� 37

Neural Networks�� 39

Shallow Learning vs� Deep Learning ��� 46

Evolutionary Computing �� 46

Genetic Algorithms ��� 47

Summary ��� 48

 ■Chapter 3: Expert System Demonstrations ����������������������������������� 49

Demo 3-1: Office Database ��� 50

Demo 3-2: Animal Identification �� 57

Demo 3-3: tic-tac-toe �� 62

Demo 3-4: Cold or Flu Diagnosis ��� 67

Demo 3-5: Expert System with Raspberry Pi GPIO Control ������������������� 71

Installing PySWIP �� 71

Hardware Setup �� 72

Rpi�GPIO Setup �� 74

Expert System with LED Control ��� 75

Summary ��� 76

 ■Chapter 4: Games ��� 77

Demo 4-1: Rock-Paper-Scissors ��� 78

Rock-Paper-Scissors Game with Switches and LEDs��� 82

Interrupts �� 86

Demo 4-2: Nim �� 89

Nim with LCD and Switches ��� 97

LCD Display ��� 100

Loading the Adafruit LCD Library �� 101

LCD Test �� 103

automated_nim�py �� 103

Summary ��� 110

 ■Chapter 5: Fuzzy Logic System �� 111

Parts List ��� 111

Software Installation ��� 111

Basic FLS ��� 112

Initialization: Define Linguistic Variables and Terms ��������������������������� 113

Demo 5-1: Using FL to Calculate a Tip �� 113

Initialization: Construct Membership Functions ���������������������������������� 114

Membership Function Visualization �� 117

Initialization: Build Rule Set ��� 118

Inference: Evaluate Fuzzy Set According to Rule Set �������������������������� 120

Aggregation: Combine Results from Each Rule Evaluation ����������������� 123

Defuzzification: Convert Fuzzy Set to Crisp Output Values ������������������ 123

Demo 5-2: Modifications to the tipping�py Program ���������������������������� 131

Demo 5-3: FLS Heating and Cooling System ��������������������������������������� 132

Fuzzification ��� 135

Inference��� 136

Aggregation �� 137

Defuzzification �� 137

Testing the Control Program ��� 139

Demo 5-4: Modifications to the HVAC Program ����������������������������������� 141

Summary ��� 143

 ■Chapter 6: Machine Learning ��� 145

Parts List ��� 145

Demo 6-1: Color Selection ��� 146

Algorithm �� 146

Roulette Wheel Algorithm ��� 149

Demo 6-2: Autonomous Robot ��� 151

Autonomous Algorithm ��� 153

Test Run �� 159

Additional Learning ��� 160

Demo 6-3: Adaptive Learning with an Energy Consumption
Consideration �� 164

Test Run �� 169

Summary ��� 169

 ■Chapter 7: Machine Learning: Artificial Neural Networks ���������� 171

Parts List ��� 171

Hopfield Network ��� 172

Demo 7-1: Numerical Figure Recognition Demonstration ������������������� 179

Demo 7-2: Autonomous Robot Car Using ANN ������������������������������������ 186

Demo 7-3: Python Control Script for the Obstacle-Avoiding
Robot Car ��� 190

Test Run �� 195

Demo 7-4: Light-Seeking Robot �� 195

The Unknowns �� 198

Brain Mapping �� 199

Light Intensity Sensor ��� 200

Python Control Script for the Goal-Seeking Robot Car ��� 202

Test Run �� 207

Obstacle Avoidance and Light Seeking ��� 208

Summary ��� 209

 ■Chapter 8: Machine Learning: Deep Learning ����������������������������� 211

Generalized ANN �� 211

Larger ANN ��� 217

Back Propagation In Three-layer ANNs ��� 221

Updating the Weighting Matrix ��� 223

The Gradient Descent Applied to an ANN �� 232

Matrix Multiplications for Weight Change Determination ������������������������������������� 235

Worked-through Example �� 235

Issues with ANN Learning ��� 237

Initial Weight Selection ��� 237

Demo 8-1: ANN Python Scripts �� 238

Initialization �� 239

Test Run �� 241

Demo 8-2: Training an ANN ��� 243

Test Run �� 246

Summary ��� 247

 ■Chapter 9: Machine Learning: Practical ANN Demonstrations ��� 249

Parts List ��� 249

Demo 9-1: MNIST Data Set �� 250

Imaging a MNIST Record �� 254

Adjusting the Input and Output Data Sets �� 256

Configuring the ANN for Handwritten Number Detection ������������������������������������� 259

Test Run �� 261

Demo 9-2: Handwritten Number Recognition with a Pi Camera ��������� 268

Modifying the trainAN�py Script �� 274

Automated Number Recognition with an ANN �� 275

Test Run �� 278

Summary ��� 279

 ■Chapter 10: Evolutionary Computing �� 281

Alife ��� 281

Evolutionary Programing ��� 282

Demo 10-1: Manual Calculation �� 283

Python Script �� 283

Demo 10-2: Conway’s Game of Life �� 292

Sense HAT Hardware Installation ��� 294

Sense HAT Software Installation ��� 295

Game of Life: Python Version �� 296

Test Run �� 305

Single Generation of the Game of Life �� 307

Summary ��� 312

 ■Chapter 11: Behavior-Based Robotics �� 313

Parts List ��� 313

Human Brain Structure �� 314

Subsumption Architecture ��� 316

Traditional Approach ��� 318

Behavior-Based Robotics Approach �� 318

Demo 11-1: The Breve Project ��� 321

Demo 11-2: Building a Subsumption-Controlled Robot Car ���������������� 331

Demo 11-3: Alfie Robot Car ��� 335

Adding Another Behavior �� 343

Test Run �� 344

Summary ��� 345

 ■Appendix A: Build Instructions for the Alfie Robot Car �������������� 347

Robotic Car Power Supply ��� 351

CR Servo Drive Pulse Width Modulation (PWM) ���������������������������������� 352

Mount Plates ��� 352

Electrical and Wiring Instructions �� 356

Ping Sensor �� 358

MCP3008 Analog-to-Digital Converter (ADC) �� 359

Software Installation ��� 361

Final Thoughts ��� 362

Index �� 363

Preface

Artificial intelligence, or AI, is an exciting field and my purpose in writing this book is to
convey some of that excitement to you. I will be using the Raspberry Pi single-board
computer as the primary tool through which you can explore how AI works and,
consequently, gain additional insight on how you might incorporate AI into your projects
and/or applications.

I do want to make something perfectly clear at the outset: reading this book and
completing all the projects will not make you an expert in AI. This is analogous to the
situation where a layperson taking a first aid course could never claim to be a medical
doctor or a nurse after taking that course. Becoming an AI expert requires that you
take many college courses—both undergraduate and graduate—in a variety of areas,
including mathematics, computer science, logic, and even philosophy. There are also
AI experts who come from other spheres of interest, including music and the allied
arts. Having made the previous statements, I do want you to understand that gaining a
reasonable introduction to AI is very achievable by reading this book and other readily
available resources. It is just that you should not try to claim that you are an AI expert
after reading this book.

I will next discuss why the Raspberry Pi is a good platform with which to examine AI.
You should first note that it is a very capable computer on its own merit. Why certainly
not as fast nor as memory capable as a modern PC or Mac, it is no slouch, especially
when using a Raspberry Pi 3. This model has a clock speed of 1 GHz, uses four cores, and
has 1 GB of dynamic ram. This is quite impressive when you realize that this performance
comes with a price tag of only $35 (USD). However, the key feature that makes the
Raspberry Pi so attractive for AI demonstrations is that it is a microcontroller. This means
you can directly control things based upon the outcome of AI events. Microcontrollers
also allow sensors to be easily connected to them, thus allowing AI applications a means
to interact with the real world.

While PCs can also be set up to both sense and control, it often requires expensive
and complex interfaces to achieve these capabilities. The Raspberry Pi was initially
designed to be able to sense and control devices with minimal interface requirements,
and perhaps more importantly, minimal software requirements. PC software interfaces
are often very complex, expensive, and typically proprietary—meaning making user
changes or modifications is a difficult-to-impossible task.

The Raspberry Pis that I use in this book use a Raspian Linux distribution named
Jessie. This distribution is completely open source and freely available from the
Raspberry Pi Foundation’s download website. It is a very stable operating system (OS)
and supports several extremely large open-source applications repositories. This means
that all the software used in this book is freely available and easily downloadable into the
Raspberry Pi.

I use a variety of languages and applications in the book’s various demonstrations
and projects. The languages used are mainly Python, Prolog, and the Wolfram Language.
Each of these languages brings some unique features that allow the book demonstrations
to be quickly and easily implemented.

The main application that I use is Mathematica, which is a full-featured symbolic
processing program that also happens to be part of the Jessie distribution. Mathematica
is also a commercial program that ordinarily costs hundreds of dollars, but is provided
gratis due to the very generous gift of the Wolfram Corporation and Dr. Stephen Wolfram
(CEO) in particular.

I tried to layout the book in a logical manner by first introducing AI in Chapter 1. It is
difficult to explain AI to people who have never heard of it, although it is often surprising
to inform that them that AI often affects them in their daily lives. I have provided a
considerable amount of detail in the first chapter by trying to define AI and how it is
commonly applied in everyday life situations. It will soon become apparent to you how
invasive AI has become in modern society, whether you like it or not. Please note that I
used the term invasive in a non-derogatory way, simply to point out that AI is commonly
applied in many areas, some of which will surprise you. In addition, I also discuss the
topic of business intelligence (BI), as it is very closely allied to AI and is often the vehicle
through which AI affects most people. Some AI practitioners often refer to BI as simply
AI applied in a business setting. You will learn that it is much more than that, however.
I adopt it because it is a useful simplification.

I next explore some basic AI concepts in Chapter 2. There is initially some discussion
regarding basic logical constructs, as they are important to understand inference, which
is an AI core foundation. Expert knowledge systems are next discussed, which constitute
a major portion of the more general knowledge management systems (KMS)—an
important part of BI. The discussion then turns to machine learning, which is a huge
research area in modern AI. Finally, I conclude the chapter with an introduction to fuzzy
logic (FL), which is thoroughly demonstrated in a later book project.

Chapter 3 shows you how to implement a practical expert system using the Prolog
language. I explore some key Prolog features and explain how this somewhat specialized
language is so useful in implementing AI concepts, without requiring extensive
programing support as would be necessary if general-purpose languages such as C/C++
or Java were used for the same purposes. A simple console question-and-answer program
is used in the practical demonstration.

Chapter 4 focuses on using AI with games. Admittedly, the games are quite simple;
however, the chapter’s goal is to simply demonstrate how AI is incorporated into gaming
logic. These gaming AI concepts may then be easily expanded to handle much more
complex games. I used Python to implement the games, which are controlled through a
traditional text-console interface. Do not expect to see World of Warcraft (WoW)–quality
graphics in this chapter, but rest assured that WoW does use AI in its games.

In Chapter 5, I return to using Prolog to implement some fuzzy logic controls
for a practical project demonstration. There is also a simplified expert rules system
incorporated into the project. A Raspberry Pi system using both temperature and
humidity sensors will control a virtual heating and cooling system.

Chapter 6 introduces the concept of shallow machine learning. A Python program
is created, in which the computer “learns” your favorite color and make “decisions”
regarding color selection. Finally, I close the chapter with a discussion of adaptive
learning, which plays a large role in BI.

http://dx.doi.org/10.1007/978-1-4842-2743-5_1
https://www.google.com/search?newwindow=1&client=safari&rls=en&q=practitioners&spell=1&sa=X&ved=0ahUKEwjjornY-LDQAhVJ64MKHQ74A-wQvwUIGigA
http://dx.doi.org/10.1007/978-1-4842-2743-5_2
http://dx.doi.org/10.1007/978-1-4842-2743-5_3
http://dx.doi.org/10.1007/978-1-4842-2743-5_4
http://dx.doi.org/10.1007/978-1-4842-2743-5_5
http://dx.doi.org/10.1007/978-1-4842-2743-5_6

Chapter 7 continues the machine learning topic with an examination of machine
learning using artificial neural networks (ANN). ANNs are by far the most prevalent AI
method used to implement machine learning. I go through a detailed discussion on how
an ANN is constructed, and then demonstrate an actual neural network created with
Python.

The machine learning continues into Chapter 8, where deep learning is discussed.
In this chapter’s project I go through a detailed discussion on how a multi-layer ANN
functions incuding the gradient search feature.

Chapter 9 contains two demonstrations of deep learning using multi-layer ANNs.
The first one recognizes hand-wriiten numbers based on the MNIST training and test
dataset. The second one uses a Pi Camera with a Raspberry Pi to image a hand-written
number and then uses the previously trained ANN to determine the closest match.

Chapter 10 deals with evolutionary computing (EC), which encompasses, but is not
limited to, evolutionary programming, genetic algorithms and genetic programming.
I have provided several interesting demonstrations highlighting some of the EC features
to provide you with a good introduction to this fascinating field.

Chapter 11 discusses subsumption, which is a behavior-based robotic study area.
It is closely allied with AI. I use the robot car first introduced in Chapter 7 to conduct
several demonstrations. You will quickly realize that a robot employing subsumption
behaviors can remarkably mimic actual human behavior, thus completing the AI loop
between human thinking and motor behavior.

I am quite confident that after reading through this book and duplicating
most—if not all the projects and demonstrations, you will come away with an excellent
appreciation of AI and how to incorporate it into your future projects.

http://dx.doi.org/10.1007/978-1-4842-2743-5_7
http://dx.doi.org/10.1007/978-1-4842-2743-5_8
http://dx.doi.org/10.1007/978-1-4842-2743-5_9
http://dx.doi.org/10.1007/978-1-4842-2743-5_10
http://dx.doi.org/10.1007/978-1-4842-2743-5_11
http://dx.doi.org/10.1007/978-1-4842-2743-5_7

CHAPTER 1

This chapter provides a straightforward introduction to artificial intelligence (AI), which
in turn helps provide a framework for comprehending what AI is all about and why it is
such an exciting and rapidly evolving field of study. Let’s start with some historical facts
about the origins of AI.

AI Historical Origins
Remarkably, AI, or something akin to it, has been around for a very long time. It has
been recorded that ancient Greek philosophers discussed automatons or machines with
inherent intelligence. In 1517, the Prague Golem was created; it is shown in Figure 1-1.

Introduction to
Artificial Intelligence

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

2

The Golem is made of clay, but according to Jewish folklore, it could be animated to
carry out various acts of vengeance and retribution to parties responsible for anti-Semitic
acts.

René Descartes, a famous French philosopher, wrote in 1637 about the impossibility
of machine intelligence in his Discourse on Method treatise. Descartes was not advocating
AI, but the treatise does show it was on his mind.

A more fanciful AI experiment example—or more appropriately stated, a hoax—is
an automated chess player that made the rounds in Europe in the late 18th to mid-19th
centuries. It was known as The Turk. A lithograph of it on a modern stamp is shown in
Figure 1-2.

Figure 1-1. Prague Golem

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

3

Figure 1-2. Automated chess player

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

4

It was purported to be an intelligent machine that could play a game of chess
against a human opponent. In reality, there was a human chess player jammed into
the machine’s supporting box. He operated manipulators to move the machine’s chess
pieces. I would suppose that there must have been a miniature periscope or peephole
available to allow this hidden chess player the opportunity to surveil the chessboard. The
odd name The Turk is from the German word Schachtürke, which means “automaton
chess player.” The typical human chess master hidden in the box was so skilled that he
would often win matches against notable opponents, including Napoleon Bonaparte and
Benjamin Franklin. It was not until many years later that a real machine was available to
actually play a reasonable chess game.

The advent of a scientific AI approach waited until 1943, upon the publication a
paper by McCulloch and Pitts, in which they described “perceptrons,” a mathematical
model based on real biological brain cells called neurons. In their paper, they accurately
described how neuron cells fired in a binary fashion, similar to electronic binary circuits.
They also went well beyond that simple comparison to show how such cells could
dynamically change their function with time, essentially creating rudimentary behavioral
actions. This seminal paper was the first in a long series that established an important AI
research area concerned with neural networks. I discuss this topic in greater detail in a
later chapter.

In 1947, Alan M. Turing wrote:

In my opinion, this problem of making a large memory available at
reasonably short notice is much more important than doing operations
such as multiplication at high speed. Speed is necessary if the machine
is to work fast enough for [it] to be commercially valuable, but a
large storage is necessary if it is to be capable of anything more than
rather trivial operations. The storage capability is therefore the more
fundamental requirement.

Turing, who many readers may recognize as the genius behind the effort to decode
the German Enigma machine that considerably shortened the duration of WWII, also
recognized in this short paragraph that any future machine “intelligence” would be
predicated upon having sufficient machine memory available and not be solely reliant
on computing speed. I have more to say about Turing a bit later in this chapter when the
Turing test is discussed.

In 1951, a young mathematics PhD candidate named Marvin Minsky, along with
Dean Edmonds, designed and built an analog computer based on the perceptrons
described in the McCulloch and Pitts paper. This computer was named the Stochastic
Neural Analog Reinforcement Computer (SNARC). It consisted of 40 vacuum tube neuron
modules, which in turn controlled many additional valves, motors, gears, clutches,
and actuators. This system was a randomly connected network of Hebb synapses that
made up a neural network learning machine. The SNARC was possibly the first artificial
self-learning machine. It successfully modeled the behavior of a rat traversing a maze
in a search of food. This system exhibited some rudimentary “learning” behaviors that
allowed the rat sim to eventually negotiate the maze.

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

5

A real turning point in AI progress happened in 1956 during an AI conference at
Dartmouth College. This meeting was held at the behest of Minsky, John McCarthy, and
Claude Shannon to explore the new field of AI. Claude Shannon has often been referred
to as the “father of information theory” in recognition of his brilliant work accomplished
at the prestigious Bell Telephone Lab in Holmdel, NJ.

John McCarthy was no slouch either, as he was the first to use the phrase “artificial
intelligence,” and the creator of the Lisp programming language family. He was a
significant influence in the design of the ALGOL programming language. He also
contributed significantly to the concept of computer timesharing, which makes modern
computer networks possible. Minsky and McCarthy were also the founders of the MIT
Media Lab, now known as the MIT Computer Science and Artificial Intelligence Lab.

Returning to the 1956 conference, McCarthy stated this now classic definition of AI,
which as far as I know, remains the “gold standard” that most people use when asked to
define AI:

It is the science and engineering of making intelligent machines,
especially intelligent computer programs. It is related to the similar task
of using computers to understand human intelligence, but AI does not
have to confine itself to methods that are biologically observable.

McCarthy used the phrase human intelligence in this definition, which I further
explore a little later in this chapter. There were many other fundamental AI concepts set
forth in this conference, which I cannot further explain in this book, but I urge interested
readers to further explore.

The 1960s was a very progressive decade in terms of AI research. Arguably, the work
of Newell and Simon in detailing the General Problem Solver algorithm stands out. This
approach used both computer and human problem-solving techniques. Unfortunately,
computer development was still evolving, and memory and speed capabilities to
efficiently handle the algorithm’s requirements were simply not present. (Remember
Turing’s warning that I earlier discussed.) The General Problem Solver project was
eventually abandoned—not because it was theoretically incorrect, but because the
hardware needed to implement it was simply not available.

Another significant AI contribution during this 1960s was Lofti Zadeh’s introduction
of fuzzy sets and logic, which were the foundation of the impressive AI branch known
as fuzzy logic. Zadeh discussed how computers do not necessarily have to behave in
a precise and discrete logical pattern, but instead take a more human-like fuzzy logic
approach. I present an interesting fuzzy logic project in Chapter 5.

One unfortunate outcome from the ongoing research in the 1960s was the prediction
that a computer could mimic a human brain. Of course, the computing power available
to do fundamental research on how a human brain realistically functions was simply not
available at that time. This led to much disappointment and disillusionment in the AI
community.

The process of mimicking or somehow copying how the human brain works, and
placing that functionality into a machine, has been termed as the classical AI approach.
This has led to deep divisions within the AI community, where many researchers believe
that machines should become intelligent in their own manner rather than mimicking
human intelligence. The later approach has been termed modern AI.

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Timesharing
http://dx.doi.org/10.1007/978-1-4842-2743-5_5

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

6

There was considerable work in the late 1960s on how a computer could converse
with a human by using natural language instead of computer code. One clever program
created by Joseph Weisenbaum during this time was named ELIZA. While primitive
by today’s standards, it was still able to fool some users into thinking that they were
conversing with another human instead of a machine. The ELIZA project brings up a
very interesting topic regarding how one might determine if a machine has reached
some level of “intelligence.” One good answer lies in what is known as the Turing test,
which I mentioned earlier. In a 1950 article in the Journal of Computing Machinery and
Intelligence, Alan Turing discussed what he felt were sufficient conditions for considering
a machine to have reached an intelligent state. He essentially argued that if a machine
could successfully fool a knowledgeable human observer into thinking that he was
having a conversation with another human instead of a machine, then the machine could
be considered intelligent. Of course, the conversation would have had to done using
a neutral communications channel to avoid the obvious clues of voice or appearance
giving away the machine. Teletypes were the communication devices used in the 1950s
to implement the neutral channel. The Turing test is still a reasonable benchmark, even
considering today’s technologies. One could even use highly effective modern voice
recognition and synthesis technologies to further fool the observer. The Turing test is still
controversial among philosophers and other interested parties who discuss the nature of
intelligence.

In the 1970s, AI was slow to mature, due to the slow growth of computing technology.
There was a lot of interest in natural language processing and image recognition and
analysis, but unfortunately, the computers available to researchers were still quite limited
and not up to these difficult tasks. It soon became apparent that there would have to be
significant improvement in processing power before AI could really progress. In addition,
there were also significant philosophical arguments against AI, including the famous
“Chinese room” argument postulated by John Searle. Minsky argued against Searle’s
hypothesis, which only led to a lot of infighting and misdirection in ongoing research.
Meanwhile, McCarthy argued for a modern AI approach, stating that human intelligence
and machine intelligence are different and should be treated that way.

The 1980s showed considerable improvement in AI development due to the onset
of the PC and many researchers taking on McCarthy’s pragmatic approach. The advent
of expert systems happened in this timeframe, which showed great promise and actual
applications in the business and industrial/manufacturing sectors. I demonstrate several
expert system applications in later chapters. The classic AI methodology continued;
however, the modern approach was rapidly gaining acceptance, and perhaps more
importantly, was used in many real-world situations. Coincidentally, there was a lot
being done with robotics and real robot development at this time. AI research naturally
gravitated to this area, because the areas seemed perfectly complementary. The age
of practical AI had finally arrived and future developments came quickly, as the age
of modern computing was also happening. It was about this time that the real impact
of Moore’s law became apparent. Moore’s law refers to Gordon Moore, one of Intel’s
founders, who stated in 1965: “The number of transistors per square inch on integrated
circuits has doubled every year since their invention.”

This exponential growth in density seems to correlate nicely with the incredible
improvement in computer performance, which is so sorely need for AI improvement and
growth.

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

7

Significant milestones where reached in the 1990s, including the impressive win in
1997 by IBM’s Deep Blue computer system over world grand-champion chess master,
Garry Kasparov. Despite how impressive this win was, there was cold water thrown on
this event. The stark reality of the win should be tempered by the following observation
of McCarthy when he was asked specifically about a computer winning Go, a traditional
Chinese board game:

The Chinese and Japanese game of Go is also a board game in which
the players take turns moving. Go exposes the weakness of our present
understanding of the intellectual mechanisms involved in human game
playing. Go programs are very bad players, in spite of considerable effort
(not as much as for chess). The problem seems to be that a position in
Go has to be divided mentally into a collection of suppositions which
are first analyzed separately followed by an analysis of their interaction.
Humans use this in chess also, but chess programs consider the position
as a whole. Chess programs compensate for the lack of this intellectual
mechanism by doing thousands or, in the case of Deep Blue, many
millions of times as much computation.

This prescient analysis should assuage any reader’s fear that computers are any
nearer obtaining a human-level intellect featured in many science fiction movies,
including The Terminator series, 2001: A Space Odyssey, and the classic War Games. There
is a long way to go and much more research to be completed before computing systems
become truly intelligent. This is the subject of the next section.

Intelligence
Discussing the nature of intelligence is always a topic in beginning AI courses. Students
most often wind up using circular reasoning when trying to come to grips with how
to define what it is and how to recognize it. Exploring intelligence also usually ends in
creating an almost endless list of questions, such as:

•	 Are mice intelligent?

•	 What does it mean for a machine to be intelligent?

•	 Are dolphins the smartest mammals in the sea?

•	 How would an extraterrestrial recognize intelligence on Earth?

One could continue ad infinitum with questions like these. Perhaps, on retrospect,
just creating questions like these is a sure sign of intelligence. You can now see what
I meant by circular reasoning. It turns out that agreeing to a common definition of
intelligence is a difficult, if not impossible, action. There are dictionary definitions of
intelligence, such as the following from Meriam-Webster online:

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

8

 1. a (1): the ability to learn or understand or to deal with new or
trying situations : reason; also: the skilled use of reason (2): the
ability to apply knowledge to manipulate one’s environment or
to think abstractly as measured by objective criteria (as tests),
b Christian Science : the basic eternal quality of divine Mind,
c: mental acuteness : shrewdness

 2. a: an intelligent entity; especially : angel, b: intelligent minds or
mind <cosmic intelligence>

 3. the act of understanding : comprehension

 4. a: information, news b: information concerning an enemy
or possible enemy or an area; also: an agency engaged in
obtaining such information

 5. the ability to perform computer functions

As you can readily see, the dictionary editors were widely diverse in trying to capture
the definition of intelligence, including human behaviors, spiritual aspects, religion,
and finally and somewhat interesting, a fifth-level definition of performing computer
functions.

The online Macmillan dictionary offers a much more concise definition:

The ability to understand and think about things, and to gain and use
knowledge

I am positive that if I went to other online dictionaries, I would see many other
definitions, which is why trying to pin down intelligence is so hard. Consequently, not
having an agreed standard regarding what intelligence is makes it nearly impossible to
recognize it when it is happening on a consistent and agreed upon basis.

Intelligence is also related to both sensory inputs and motor or actuating outputs.
Obviously, our brains are contained in our human bodies, which are also nicely equipped
with five sensory systems—vision, hearing, taste, touch, and smell. These sensory systems
are an integral part of our intelligence; however, it has been repeatedly demonstrated
that there are still very intelligent human beings who have lost one or more of their
sensory inputs. The human body is quite remarkable in its ability to compensate when a
particular sensory system has been injured or destroyed. Likewise, human intelligence
is also linked somewhat to our motor skills; however, I would argue not as much as the
sensory inputs. Losing the ability to speak has not diminished the intellect and genius
of Steven Hawking. Having the ability to walk, run, drive a car, or pilot an airplane
gives individuals the opportunity to explore and understand their environment, and
consequently, expand their knowledge and experiences, but not necessarily improve
or expand their intelligence—unless you subscribe to the notion that knowledge and
intelligence are synonymous.

It is only a small leap to study animals and consider whether or not they possess
intelligence. Birds can fly and typically have much better vision than humans have. Does
this mean that they possess intelligence beyond the human species, at least in those two
areas? The answer is obviously unknowable, which leads to the following reasonable

https://www.merriam-webster.com/dictionary/reason
https://www.merriam-webster.com/dictionary/shrewdness
https://www.merriam-webster.com/dictionary/intelligent
https://www.merriam-webster.com/dictionary/angel
https://www.merriam-webster.com/dictionary/comprehension
https://www.merriam-webster.com/dictionary/information
https://www.merriam-webster.com/dictionary/news
http://www.macmillandictionary.com/us/dictionary/american/ability_1
http://www.macmillandictionary.com/us/dictionary/american/understand
http://www.macmillandictionary.com/us/dictionary/american/think_1
http://www.macmillandictionary.com/us/dictionary/american/thing
http://www.macmillandictionary.com/us/dictionary/american/knowledge

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

9

conclusion: animal and machine intelligence should simply be accepted for what it is and
not be compared to human intelligence. Trying to make the latter comparison is simply
like comparing apples and oranges; it is truly meaningless.

My goal in the foregoing discussion is to reiterate the premise of the modern
approach to AI, in that machine intelligence should be considered by itself and not be
compared to human intelligence. This is the underlying premise of the book, where
projects explore machine advantages, but are neither expected to nor even desired to
emulate or simulate human intelligence.

Strong AI vs. Weak AI, Broad AI vs. Narrow AI
There are additional descriptors that are commonly applied to AI, as you may have
inferred from this section’s title. AI work and research that attempts to simulate human
reasoning to the maximum level possible is sometimes called strong AI. I would presume
that proponents of the classical AI approach would also hardily endorse this terminology.
This strong adjective contrasts sharply with the weak AI adjective that simply relates to
getting practical AI systems to function effectively, without regard to the human analog.
This approach is what I have referred to as the modern approach. I do not know how these
strong and weak terms arose, but I suspect they exist to cast a prerogative shadow on
the modern approach, which is unfortunate because both approaches are equally valid
and deserving of equal importance and recognition. I have only introduced these terms
so that you understand their significance if you happen to read about AI applications or
projects. I do not use either term; instead, I just focus on the AI applications— regardless
of their being strong or weak.

The other pair of terms I used in the section title are broad AI and narrow AI. Broad
AI is concerned with general reasoning and not related to a specific task or application.
I suppose that broad AI and strong AI would tend to have a natural bond, as both relate
to the human context of reasoning and thinking. Narrow AI focuses on AI applied to
specific tasks and it is not too generalized. However, there are exceptions, which tend
to easily break the broad and narrow AI definitions. Google has developed systems
that are excellent in predicting or characterizing how “things” should be described or
arranged. Google applications exhibit both broad and narrow AI aspects regarding
generalizations, as well as specific cataloging functions. Amazon, likewise, has intelligent
agents, which tend to be excellent in both generalizations and making specific customer
recommendations.

I close this section with Figure 1-3, which is a word cloud that I created using
Mathematica running on a Raspberry Pi 3. This figure is a simply a graphical
representation of the many different words that are commonly used with AI. Wikipedia
was the source for all the words shown in the figure.

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

10

Reasoning
I repeatedly used the words reason and reasoning in the previous discussions. But what
do they really mean and how are they related to AI? Reasoning describes creating or
considering a reason. The word reason means to think about how things or ideas relate
to what is known—or more simply, knowledge. A few reasoning examples help clarify the
thoughts that I am attempting to convey.

•	 Learning is the process of building a new knowledge set based
upon examining or discussing existing knowledge sets. Sets in this
context are any data collections, whether or not based in reality.

•	 Use of language is the conversion of words, whether written or
spoken into ideas and supportive relationships.

•	 Inference based on logic means deciding whether something is
true based upon logical relationships.

•	 Inference based on evidence means deciding whether something
is true based upon all the supportive available evidence.

•	 Natural language generation exists to satisfy communication
goals and objectives using a given language.

•	 Problem solving is the process of determining how to achieve a
set goal or an objective.

Figure 1-3. A word cloud on artificial intelligence

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

11

Any of these activities must necessarily involve reasoning to achieve a satisfactory
end result. Please note that nowhere in the list do I limit the reasoning to only human
beings. Some of these activities are certainty suitable to be implemented by machines,
and in some cases, even by animals. There have been endless experiments that have
satisfactorily demonstrated that animals can solve problems, especially if it involves
getting to food.

There is a recent proliferation of voice-activated Internet devices, including
Amazon’s Alexa, Microsoft’s Cortana, Apple’s Siri, and Google’s Home. These are either
standalone devices or applications that are installed on smartphones. In any case, they
are well equipped to recognize voice inquires, translate the inquiries into actionable
Internet queries, and finally, relay the results to the user in a highly understandable
format, usually as a well-spoken female voice. These devices/applications must use
some level of reasoning to carry out their intended functions, even if to reply they do not
understand the user’s request.

AI Categories
Table 1-1 is a list that I created to show most of the categories that make up modern-
day AI. I do not think it is comprehensive. There are likely some categories that have
been inadvertently omitted. I did overtly omit some categories, such as the history and
philosophy of AI, because they were not directly pertinent to the intent of this table.

Table 1-1. Modern AI Categories

Category Brief Description

Affective computing The study and development of systems and devices
that can recognize, interpret, process, and simulate
human affects.

Artificial immune systems Intelligent, rule-based machine learning systems
based primarily on the inherent principles and
processes contained within vertebrate immune
systems.

Chatterbot A type of conversational agent or computer program
designed to simulate an intelligent conversation
with one or more human users through text or audio
channels.

Cognitive architecture A theory about the structure of the human mind. One
of the main goals is to incorporate concepts from
cognitive psychology into a comprehensive computer
model.

Computer vision An interdisciplinary field that deals with how
computers can gain high-level understanding from
digital images or videos.

(continued)

https://en.wikipedia.org/wiki/Affect_(psychology)
https://en.wikipedia.org/wiki/Rule-based_machine_learning
https://en.wikipedia.org/wiki/Immune_system
https://en.wikipedia.org/wiki/Immune_system
https://en.wikipedia.org/wiki/Human_mind
https://en.wikipedia.org/wiki/Interdisciplinarity
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Video

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

12

Table 1-1. (continued)

Category Brief Description

Evolutionary computing The use of evolutionary algorithms based on
Darwinian principles from which the name is derived.
These algorithms belong to a family of trial-and-error
problem solvers and use metaheuristic or stochastic
global methods to determine many solutions.

Gaming AI AI used in games to generate intelligent behaviors,
primarily in non-player characters (NPCs), often
simulating human-like intelligence.

Human-Computer-Interface
(HCI)

HCI researches the design and use of computer
technology, focused on the interfaces between people
(users) and computers.

Intelligent soft assistant or
intelligent personal assistant
(IPA)

A software agent that can perform tasks or services for
an individual. These tasks or services are usually based
on user input, location awareness, and the ability to
access information from a variety of online sources.
Examples of such an agent are Apple’s Siri, Amazon’s
Alexa, Amazon’s Evi, Google’s Home, Microsoft’s
Cortana, the open source Lucida, Braina (application
developed by Brainasoft for Microsoft Windows),
Samsung’s S Voice, and LG G3’s Voice Mate.

Knowledge engineering Refers to all technical, scientific, and social aspects
involved in building, maintaining, and using
knowledge-based systems.

Knowledge representation
(KR)

Dedicated to representing information about the
world in a form that a computer system can utilize
to solve complex tasks, such as diagnosing a medical
condition or having a dialog in a natural language.

Logic programming A type of programming largely based on formal logic.
Any program written in a logic programming language
is a set of sentences in logical form, expressing facts
and rules about some problem domain. Major logic
programming language families include Prolog,
answer set programming (ASP), and Datalog.

Machine learning
(ML)

ML in the AI context provides computers the ability to
learn without being explicitly programmed. Shallow
and deep learning are two major subfields.

Multi-agent system
(M.A.S.)

M.A.S. is a computerized system composed of
multiple interacting intelligent agents within an
environment.

(continued)

https://en.wikipedia.org/wiki/Darwinian
https://en.wikipedia.org/wiki/Trial_and_error
https://en.wikipedia.org/wiki/Intelligence_(trait)
https://en.wikipedia.org/wiki/Non-player_character
https://en.wikipedia.org/wiki/Simulating
https://en.wikipedia.org/wiki/User_(computing)
https://en.wikipedia.org/wiki/Software_agent
https://en.wikipedia.org/wiki/Apple_Inc
https://en.wikipedia.org/wiki/Amazon_Alexa
https://en.wikipedia.org/wiki/Amazon_Alexa
https://en.wikipedia.org/wiki/Amazon.com
https://en.wikipedia.org/wiki/Evi_(software)
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Cortana_(intelligent_personal_assistant)
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Lucida_(Intelligent_Assistant)
https://en.wikipedia.org/wiki/Braina
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Samsung
https://en.wikipedia.org/wiki/S_Voice
https://en.wikipedia.org/wiki/LG_G3
https://en.wikipedia.org/wiki/Voice_Mate
https://en.wikipedia.org/wiki/Knowledge-based_systems
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Formal_logic
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Answer_set_programming
https://en.wikipedia.org/wiki/Datalog
https://en.wikipedia.org/wiki/Intelligent_agent

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

13

I will repeat that this table does not cover all modern AI research and activities, but it
certainly highlights most of the important ones. I only demonstrate a few of the listed AI
categories in this book, but even those should provide reasonable insight on how AI may
be implemented using relatively simple computer resources.

At this point, I believe it is appropriate to discuss AI as it affects modern society
in ways well beyond the scope of this book. I provide this brief discussion in hopes of
enhancing my readers’ knowledge and understanding of how AI affects us—one and
all—in our daily lives.

AI and Big Data
Most readers have heard the term big data, but like most people, you may not have
an appreciation of what it is and how it affects our modern society. There are many
definitions of big data, just as there are many definitions of AI. The definition I like is
rather simple: a data collection characterized by huge volumes, rapid velocity, and great
variety.

The magnitude of the huge volumes can be characterized by saying it is typically
measured in petabytes (PB), where one PB equals one million gigabytes (GB). That is
truly a huge amount of data. The rapid velocity mentioned in the definition refers to how
rapidly the data is generated or created. One need only look at Facebook to appreciate
the rapidity of new content that is constantly being created by hundreds of millions of
online users. Finally, the great variety phrase in the definition refers to the various data
types that go into making up the huge data flows. This includes pictures, video, audio, as
well as plain old text. An average photo uploaded to Facebook likely takes about four to
five megabytes of storage. Multiply that by the multimillions of photos that are constantly
uploaded, and you soon realize the nature of big data. So how does AI affect big data?
The answer is that an AI learning system when applied to a big data set allows users

Category Brief Description

Robotics Robotics is the interdisciplinary branches of
engineering and science that includes mechanical
engineering, electrical engineering, computer
science, AI, and others.

Robots A robot is a machine, especially one programmable
by a computer, which is capable of carrying out a
complex series of actions autonomously.

Rule engines or systems Rule-based systems are used to store and manipulate
knowledge to interpret information in a useful way.

Turing test The Turing test is a test, developed by Alan Turing
in 1950, of a machine’s ability to exhibit intelligent
behavior equivalent to, or indistinguishable from, that
of a human.

Table 1-1. (continued)

https://en.wikipedia.org/wiki/Interdisciplinarity
https://en.wikipedia.org/wiki/List_of_engineering_branches
https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

14

to extract useful information from a huge and noisy input. Typical computer systems
that can handle big data are composed of thousands of processors working together
in a parallel fashion to greatly speed up the data reduction process often referred to
as MapReduce. IBM’s Watson computer is a prime example of such a system. It has
implemented expert medical systems by using a rules-based engine and processing many
thousands, if not millions, of medical records. The end result is a computer system that
assists doctors in diagnosing illnesses and related maladies, which do not have obvious or
relatable symptoms to known diseases.

Amazon’s website is integrated with an impressive AI system that easily compiles
a detailed profile of each potential or actual customer that repeatedly visits its site. It
matches the customer’s searches with those of other customers that have searched or
inquired about similar products. It further tries to predict what might interest a site
visitor based on their past searches and orders. All the data that the Amazon system
uses is transactional, basically identifying what potentially interests its customers. This
transactional data, which likely qualifies as big data, is the primary input into Amazon’s
AI computer systems. The output is the profile that I mentioned, but it may be also
considered a set of characterizations attached to the potential or actual customer; for
example, a resulting in a website suggestion may look like the following:

“You may be interested in Robert Heinlein’s book The Moon is a Harsh Mistress
because you have purchased the following books:”

•	 Full Moon

•	 Star Wars: The Empire Strikes Back

•	 The Shawshank Redemption

This list of seemingly unconnected books likely shows that the customer has an
interest in the Moon, conflict in outer space, or injustice in a prison, all of which are
touched in some fashion in Heinlein’s book. (Incidentally, Heinlein’s book received the
Hugo Award for best science fiction novel in 1967.) Making this obscure connection
between the customer’s past book purchases and Heinlein’s book content requires a
significant computer analysis effort, as well as access to a huge database.

The biggest global user of big data analysis is the US government in the execution
of the Global War on Terrorism (GWOT). The US National Security Agency (NSA) is at
the forefront of detecting possible/likely terrorist attacks on the homeland. Its annual
classified budget has been estimated at more than $15 billion, with the vast majority of it
spent on collecting and analyzing all sorts of big data in the fight against GWOT. What it
collects and how it conducts big data analysis is ultrasecret, but it is quite reasonable to
assume that all appropriate AI techniques are used by the NSA experts, many of whom I
expect are also experts at conducting secret AI research. This is not a conspiracy theory
on my part, but simply what any reasonable layperson should expect.

This section concludes my introduction to AI, which although somewhat
abbreviated, hopefully contained sufficient information to provide you with a reasonable
background to start the study of specific AI concepts. This begins in the next chapter.

https://en.wikipedia.org/wiki/Hugo_Award

Chapter 1 ■ IntroduCtIon to artIfICIal IntellIgenCe

15

Summary
I began the chapter with an historical overview of AI that started in ancient times and
proceeded to modern times. This shows that mankind has thought about making
machines to accomplish intelligent actions for a very long time. It is only in very recent
times that computers have been developed with the capabilities to implement intelligent
actions

There was a brief discussion on the differences between the classic and modern
approaches to AI development. In brief, the classic approach attempts to have computers
mimic or simulate the human brain, whereas the modern approach simply takes advantage
of a computer’s inherent speed and processing power to implement AI on it. I also
defined additional terms, such as broad AI and narrow AI and strong AI and weak AI.

The brief inspection of the nature of intelligence was presented to pique your
curiosity and to think about how you might recognize if intelligence is present in
machines or animals. A brief section on reasoning followed, which included some
examples to help recognize reasoning when it is incorporated into AI applications.

I next presented a list of AI categories to help explain important and current AI R&D
efforts. Only a few of the AI categories can be demonstrated in this book.

The chapter finished with a discussion on how AI influences modern society,
especially when dealing with big data.

CHAPTER 2

Basic AI Concepts

In this chapter, I introduce and explore the fundamental concepts that are crucial to AI.
It is very important to closely study these concepts to gain an appreciation and

understanding of how AI functions at its most rudimentary level. It would indeed be
difficult to proceed with more advanced AI projects without first doing this initial study.
I only cover the concepts necessary to understand the projects in this book. Let’s start
with some foundational concept discussions.

Boolean Algebra
Boolean algebra was created by George Boole in 1847. It is an algebra in which variable
values are the truth values—true and false, often denoted as 1 and 0, respectively. There
are a few very basic Boolean operations, which are frequently used in AI expressions.
These operations are listed for variables A and B, as follows:

•	 A AND B

•	 A OR B

•	 NEGATE A

•	 NEGATE B

The expression A AND B may also be represented by A * B where the * symbol
represents the AND’ing operation. It is not a true analog to the general multiplication
symbol used in ordinary algebra, but it is close enough that most people use it
interchangeably. Similarly, the expression A OR B can be represented by A + B, where the
same observation holds true for the normal + symbol used in regular algebra. You will
shortly see that there is a situation where 1 + 1 = 1 in Boolean algebra, but obviously is not
true in non-Boolean algebra. The NEGATE or complement operation is unary, meaning
it only uses one operand or variable; whereas AND and OR are binary, requiring two
logical variables. The NEGATE operation has a formal symbol (¬), but it is not widely used
in programs. Instead, a bar placed over the symbol is commonly used in most in logical
expressions, which is the one that I use.

Table 2-1 shows the output resulting from various A and B inputs for the operations
I just mentioned. Note that I use the variable C to represent the output.

https://en.wikipedia.org/wiki/Abstract_algebra
https://en.wikipedia.org/wiki/Truth_value

Chapter 2 ■ BasiC ai ConCepts

18

Logical symbols can easily be arranged to form both simple and complex Boolean
algebraic expressions. For instance, the AND’ing operation may be expressed as follows:

C A B= *

It should not be hard to realize that far more complex expressions can be created by
using more than two variables and combined using these basic operations. However, the
important point to understand is that eventually all expressions resolve to a true or false,
1 or 0 output.

There are also three secondary operations used in Boolean algebra:

•	 EXCLUSIVE OR

•	 MATERIAL IMPLICATION

•	 EQUIVALENCE

I use two of these three operations in inference discussion (material implication and
equivalence), but I do not specifically call them out by their Boolean algebra names. In AI,
there is a lot of overlap among the different subfields that go into overall AI technology;
hence, it is not unusual to use concepts present in one subfield that uses a specific name
that also exists in another subfield with a different name or reference. This differentiation
should not bother you as long as you grasp the underlying concepts.

Table 2-1. Basic Boolean Operations

Operation Input Variables Output Variable

A B C

A * B 0 0 0

A * B 1 0 0

A * B 0 1 0

A * B 1 1 1

A + B 0 0 0

A + B 1 0 1

A + B 0 1 1

A + B 1 1 1

Ā 0 - 1

Ā 1 - 0

Chapter 2 ■ BasiC ai ConCepts

19

Some Additional Boolean Laws
It is also important that you understand some more basic Boolean algebra laws, because
they are used at various times to combine logical expressions used in many of the
chapters. They are briefly described here.

This is an example of De Morgan’s law:

A B A B*() = +

A B A B+() = *

This is an example of associativity:

A B C A B C* * * *() = ()

A B C A B C+() + = + +()

This is an example of commutativity:

A B B A* *=

A B B A+ = +

This is an example of distributivity:

A B C A B A C* * *+() = () + ()

A B C A B A C+ () = +() +()* *

Inference
Inference is part of the reasoning process introduced in Chapter 1. This reasoning process
consists of moving from an initial premise or statement of fact to a logical conclusion.
Inference is ordinarily divided into three categories.

•	 Deduction: The derivation of a logical conclusion based on premises
known or assumed to be true using the laws and rules of logic.

•	 Induction: Making a universal conclusion based upon specific
premises.

•	 Abduction: Reduction of premises to the optimal explanation.

http://dx.doi.org/10.1007/978-1-4842-2743-5_1

Chapter 2 ■ BasiC ai ConCepts

20

I use the inference deduction category for the following discussion, as it is the best fit
for the topic of expert systems, which is introduced shortly.

There is a Latin phrase, modus ponens, which means “the way that affirms by
affirming.” It represents the fundamental rule for deductive inference. Using logic terms,
this rule may be stated as “P implies Q, and P is asserted to be true, so therefore Q must
be true.” This rule dates to antiquity and has been used by logicians throughout the ages,
up to and including the modern era. The rule may be broken into two sections. The first is
a conditional claim that is traditionally stated in the form of if … then. The second part is
the consequent of the conditional claim; that is, the logical statement following the then.
The conditional claim for the general rule consists of two premises: that P implies Q and
P is true. P is also known as the antecedent of the conditional claim. The consequent is
obviously Q is true. The application of this simple modus ponens rule in AI is known as
forward chaining, which is a key element in expert systems. I discuss it in the next section.

Expert Systems
An expert system is a computer program designed to use facts present in a specific
problem domain. It then develops conclusions about those facts in a way analogous to
a human expert reasoning with the same facts and reaching similar conclusions. Such a
program or expert system would need access to all the facts in the domain, as well as be
programmed with a set of rules that a human expert would follow regarding those facts
and drawing conclusions from the same facts. Sometimes this expert system is known as
a rules-based or knowledge-based system.

The first, large-scale expert system able to perform at a human-expert level was
named MYCIN. It was used as an intelligent aide for doctors in their diagnosis of blood-
borne infections. MYCIN incorporated about 450 rules. It was capable of creating correct
diagnoses on a level comparable to an inexperienced doctor. The set of rules used in
MYCIN was created based on interviews with a large number of experts in the field,
who in turn relied on their own experiences and knowledge. To a large extent, the rules
captured real-world data and knowledge beyond what was in medical textbooks and
standard procedures. The rules used in MYCIN were in the same format I introduced
earlier:

if (conditional claim) then (consequent)

The following is an example:

if (bacteria in blood) then (septicemia)

Incidentally, septicemia is a very serious blood-borne illness and must be treated
immediately.

The conditional claim, which I will now simply shorten to the word condition may
be complex by combining it with other conditions using the logical operators introduced
in the Boolean algebra section. I will also use the word conclusion instead of consequent,
because it is more commonly used in expert system design.

https://en.wikipedia.org/wiki/Material_conditional

Chapter 2 ■ BasiC ai ConCepts

21

The following are some general formats for complex rules:

•	 if (condition1 and condition2) then (conclusion)

•	 if (condition1 or condition2) then (conclusion)

•	 if ((condition1 or condition2) and condition3) then (conclusion)

It is not hard to imagine that the MYCIN rules created were fairly complex, based
upon the problem domain and all the variables or conditions present in that domain. The
tools and techniques developed for MYCIN were later used in other expert systems.

Would there ever be a case where different conclusions could be reached given the
same set of facts or conditions? The answer is definitely yes, and that is where conflict
resolution enters the picture.

Conflict Resolution
Conflict results when rules are applied using the given conditions, and several different
conclusions are created, but only one conclusion is required. This conflict must somehow
be resolved. The conflict resolution answer can be provided in several ways, as described
in the following list.

•	 Highest rule priority: Every rule in the expert system is assigned
a priority or a number. The conclusion reached by the highest
priority rule is the one selected. There also must be some sort of
tiebreaker procedure in these situations.

•	 Highest condition priority: Every condition in the expert system is
assigned a priority or number. The conclusion reached by a rule
that contains the highest priority condition(s) is the one selected.
There also must be some sort of tiebreaker procedure in these
situations.

•	 Most specific priority: The conclusion created by the rule that used
the most conditions is the one selected.

•	 Recent priority: The most recent conclusion created by a rule
created is the one selected.

•	 Context-specific priority: The expert system rules are divided into
groups of which only one to a few are active or used at any given
time. A selected conclusion must be generated from one of the
active rule groups.

Deciding which conflict resolution approach to employ really depends upon the
nature of the expert system. It very well might require applying different approaches
and evaluating which one performs the best. And, of course, there is always the default
decision to not use any conflict resolution and simply present all conclusions to the
human users and let them decide.

Chapter 2 ■ BasiC ai ConCepts

22

Rules may also be combined in a hierarchical manner to create a “reasoned”
approach that reflects how a human expert would function with a given set of conditions.
The following example should help clarify how rule combinations function. I chose to use
a phantom quarterback (QB) playing in the National Football League (NFL) as my virtual
expert. Suppose the situation is that the QB’s team is at a third down, with seven yards to
gain for a first down. It is a reasonable conclusion that an expert QB would be selecting a
pass play to gain the needed yardage, because a seven-yard run gain on a third down has
a low probability of success, at least in the NFL.

The QB’s next concern is the defense’s setup, because it materially affects the pass
type selected. The pass type may also be changed if the QB detects that the defense will
likely blitz, meaning they are sending one or two additional pass rushers to stop the QB.
Blitzing almost always places the defense in a one-on-one or man-to-man coverage,
increasing the probability of a successful pass play. An actual blitz would normally have
the QB try a long yardage pass play. When a blitz is shown but not executed, the QB often
tries for a shorter screen pass play, which normally results in a short yardage gain.

The scenario that I just described can be divided into planning and action phases.
The planning phase starts when the team’s lineup against each other. The action phase
starts when the offense’s center snaps the football to the QB. These two phases translate
into layers when a hierarchical rule structure is generated. The following is a reasonable
set of hierarchical rules for this football scenario.

The following are the layer 1 rules:

if (third down and long yardage to gain) then (pass play planned)
if (blitz suspected) then (long yardage pass planned)

These are the layer 2 rules:

if (blitz happens) then (execute long yardage pass play)
if (blitz does not happen) then (execute screen pass play)

These rules are obviously simplified, because in reality, the QB has other options,
depending on his own athletic abilities—such as holding on to the football and trying
to run for a first down on his own. The rules shown in layer 1 are independent of each
other, while the rules shown in layer 2 are totally dependent, meaning that either one will
be executed or “fired,” but never both. Finally, the rule set is dynamic in the sense that
the conditions are not determined until moments before any rules are fired. This differs
sharply from most routine expert systems, where the conditions are fixed and completely
available before being applied to the rule set.

Backward Chaining
The process of firing rules to generate conclusions, which in turn are then used as
conditions in following rules, is forward chaining. Forward chaining is the normal way
expert systems work. However, it is sometimes very useful and important to begin with the
conclusions and try to deduce which conditions were needed to produce that end-point
conclusion. This process is known as backward chaining, which is often used to verify that

Chapter 2 ■ BasiC ai ConCepts

23

the systems work as intended and to ensure that improper or “wrong” conclusions are
never reached. Such verification is especially important in expert systems that are employed
in safety critical systems, such as control systems used in land, sea, or air vehicles.

Backward chaining can also be used to determine if any more rules need to be
developed to prevent untended or strange conclusions from being reached by using a
specific set of input conditions.

At this point, you should have a sufficient amount of background information to
tackle a beginning AI project using a Raspberry Pi. This project entails installing the SWI
Prolog language on a Raspberry Pi, and subsequently using it to make queries from a
small knowledge base. But first, a few words about the Raspberry Pi configuration used to
work with Prolog.

Raspberry Pi Configuration
I connected to a Raspberry Pi running in a standalone setup using a headless or SSH
connection. My client computer is a MacBook Pro, which I use for all my manuscript
production. It also allowed me to easily capture screenshots of the terminal window
controlling the Raspberry Pi. I find this connection type to be very efficient; it allows me
full access to the Raspberry Pi and to all the files on my Mac. Everything displayed in the
terminal window can be duplicated in a monitor connected directly to the Raspberry Pi,
if this is the way you choose to run your own system. Of course, file manipulation on the
Raspberry Pi has to be done through a command line, rather than through drag/drop/
click—as is the case on a Mac.

Introduction to SWI Prolog
The AI language Prolog was initially created by mix of Scottish, French, and Canadian
researchers from the 1960s to the early 1970s. It has been around a long time, considering
how quickly modern computer languages are generated. Originally, the project’s purpose
was to make deductions from French text extracted through automated means. This
effort involved natural language processing, development of computer algorithms, and
logical analysis. The name Prolog comes from a combination of three French words:
PROgrammation en LOGique.

Prolog is considered a declarative programming language because it uses a set of
facts and rules called a knowledge base. A Prolog user can address queries or questions to
the knowledge base, which are knowns as goals. Prolog responds with an answer to the
goal(s) using logical deduction, as discussed in the inference section. Often, the answer is
simply true or false, but it could be numerical, or even textual, depending upon how the
goal was expressed.

Prolog is also considered a symbolic language, totally devoid of any connection
to hardware or specific implementations. Prolog is often used by people with minimal
computer knowledge, due to its level of abstraction. Most users do not need any prior
computer programming experience to effectively use Prolog—at least at its most basic
levels, as you will shortly experience.

Chapter 2 ■ BasiC ai ConCepts

24

From its start, Prolog was considered by the AI community as a shining example of
what could be achieved by using symbols with AI. The language is essentially reasoning and
logical processes, with the concepts of thinking and intelligence. While fairly simple from
the outset, Prolog has become increasing complex as researchers add additional features
and capabilities to the language. In my humble opinion, this has been both good and bad
for the promotion of the language. Once quite simple and attractive to non-AI users, it has
become quite complex and daunting to beginners in AI. However, do not fear: I keep things
quite straightforward in the following Prolog demonstrations. However, be aware that you
are only seeing the very tip of the “iceberg” when it comes to Prolog’s capabilities.

The computational power necessary to run Prolog has changed dramatically from
the 1970s, when the equivalent of a supercomputer was necessary, compared to today,
when a $35 single-board computer can easily and more quickly process Prolog queries.

Installing Prolog on a Raspberry Pi
The following instructions enable you to install a very capable and useful Prolog version,
named SWI Prolog, on a Raspberry Pi. SWI is the acronym for social science informatics, as
expressed in the Dutch language. SWI Prolog’s website is at www.swi-prolog.org. I urge
you to take a look at this site because it contains a lot of useful tutorials and other key data.

To start the SWI Prolog installation, you first need to update your Raspian
distribution. I assume that most readers are using the latest distribution, named Jessie,
which was available from the Raspberry Pi Foundation at the time this book was written.

The first command you need to execute is the one that updates the Rasperry Pi Linux
distribution:

sudo apt-get Update

The update should only take a few minutes to complete. Afterward, you are ready to
install SWI Prolog. Enter the following:

sudo apt-get install swi-prolog

This command installs the SWI Prolog language along with all the required
dependencies necessary for it to run on a Raspberry Pi. This installation takes several
minutes or longer, depending on the Raspberry Pi model that you are using.

To test if you had a successful installation, simply enter the following:

swipl

You should see the following text appear on the monitor:

pi@raspberrypi:~ $ swipl
Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 6.6.6)
Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

http://www.swi-prolog.org/

Chapter 2 ■ BasiC ai ConCepts

25

The prompt is ?-, which means that Prolog is awaiting your input. Assuming that
you see this opening screen, you are set to start experimenting with Prolog, which is the
subject of the next section.

Initial Prolog Demonstration
As I stated, you need a knowledge base to query Prolog. The knowledge base I use comes
straight from a SWI Prolog tutorial that is located on their website. This knowledge base
concerns the sun, planets, and a moon. The knowledge base is just a text file that should
be put in the Raspberry Pi’s home directory. I created this text file using the default nano
editor. I highly recommend that you also use nano; however, you certainly could use
other text editors if you so desire. You should not use Microsoft Word or similar powerful
word editors unless you ensure that all hidden formatting is excluded from the text file.
Any hidden formatting causes the Prolog program to generate an error, so you would not
be able to use that knowledge base.

The following is a listing of the knowledge base, which is named satellites.pl,
and located in the pi directory.

%% a simple Prolog knowledge base

%% facts
orbits(earth, sun).
orbits(saturn, sun).
orbits(titan, saturn).

%% rules
satellite(X) :- orbits(X, _).
planet(X) :- orbits(X, sun).
moon(X) :- orbits(X, Y), planet(Y).

There are a few things that you should know about this knowledge base. Comments
are started these symbols: %%. Comments are for human readers; they are ignored by the
Prolog interpreter. Case counts in the file (meaning x and X) are not the same symbol.
Facts and rules are always terminated with a period '.'.

You must use the consult command to force Prolog to use a knowledge base. In
this situation, the command is with the name of the knowledge base without the .pl
extension as the command argument:

?- consult(satellites).

This is a shorthand version of the consult command:

?- [satellites].

Chapter 2 ■ BasiC ai ConCepts

26

You can now start making queries, or setting goals, once the knowledge base is in
place. The following is a simple query that asks if the Earth is a satellite of the sun:

?- satellite(earth).

The Prolog response is true because one of the facts in the knowledge base is that
the Earth orbits the sun, and one of the rules is that a satellite is defined as any symbol
that orbits the sun. Of course, the symbol used for this rule is the text “earth”. Figure 2-1
shows five queries that involve satellites, planets, and a moon.

Figure 2-1. Prolog knowledge base queries

Technically, moons also orbit the sun because their planets orbit the sun, but that
can quickly become confusing, so it is left to the reader to ponder. Notice also that a
halt. command is the last of the interactive Prolog entries shown in Figure 2-1. This
command causes Prolog to stop and return control to the default operating system (OS)
prompt.

Chapter 2 ■ BasiC ai ConCepts

27

It should be obvious that many additional facts can be added to the knowledge base
to encompass more of the solar system. Additional rules can also be easily added to cover
behaviors other than determining planet, satellite, and moon status. This flexibility is one
of the inherent powers that Prolog possesses to handle more complex and comprehensive
knowledge bases.

It should now also be obvious that through its knowledge bases, Prolog is a natural
way to implement an expert system. One such system is thoroughly examined in the
chapter devoted to expert systems. Now it is time to shift focus to discuss the approach
fuzzy logic takes with AI.

Introduction to Fuzzy Logic
I start this section with the obvious point that there is nothing fuzzy or imprecise with
the theory behind fuzzy logic (FL), which is so named because it goes well beyond a core
concept in traditional logic that a statement is either true or false (also called a binary
decision). In FL, a statement can be partially true or false. There can also be probabilities
attached to a statement, such as There is a 60 percent chance that the statement is true. FL
reflects reality in the sense that human beings not only make binary decisions but also
decide things based on gradations. When you adjust the temperature in your shower, it is
not just hot or cold but more likely warm or slightly cool. When driving, you likely adjust
the speed of your car to the nominal traffic flow, which could easily be a little above the
posted limit; you are not just speeding or stopped. These decisions—based on magnitude
or gradations—are all around us. FL helps capture this decision making within AI. The
following example should shed more light on what FL is and how it functions.

Example of FL
Let’s go back to the shower example to illustrate how FL works. I’ll start with some
extreme ranges for the water temperature: the coldest it can be is 50°F and the hottest is
150°F. The total temperature range is a convenient 100°F, which I arranged to ease the
calculations. Of course, either extreme would not be acceptable for normal showers.
Now let’s take a percentage of the range and see what happens. Let’s say that the shower
temperature is set at 40% of the range. That would make the actual shower temperature
a cozy 90°F, well within the comfort zone of most people. This simple method of relating
a percentage to an actual temperature is the start of a process called fuzzification, where
real-world conditions are associated with FL values, or temperatures to percentages
in this case. The following set of conditions applies to the fuzzification of the shower
temperature example:

•	 50°F becomes 0%, 60°F becomes 10%, and so forth, until 150°F
becomes 100%

•	 Every 1°F difference is precisely 1% within the extremes

It is also very easy to create a simple equation relating percentages with
temperatures:

Percentage = (T – 50) where T is °F and in the range 50 to 150.

Chapter 2 ■ BasiC ai ConCepts

28

Once a real-world value has been fuzzified, it can then be passed on to a set of rules
to be evaluated. These rules are exactly the same as I described in the expert system
discussion, which only reinforces the integration of various technologies within AI. These
FL models are sometimes called fuzzy inference systems.

However, the general modus ponens form of if (condition) then (conclusion) must
be modified a bit to accommodate FL. What this means is that the following rules might
apply in a traditional logic arrangement:

if (water temp is cold) then (turn on water heater)
if (water temp is hot) then (turn off water heater)

They can be replaced with a simpler FL compatible rule:

if (water is hot) then (turn on water heater)

But wait a moment! At first glance, this rule makes no sense. It seems to say if the
water is hot, turn on the water heater. That is because you are thinking about it in the
traditional sense of either true/false or on/off. Now, rethink the condition about water
is hot from not being either true or false, but to a fuzzified percentage value ranging
from 0 to 100%, and you should start to realize that the conclusion part of turn on water
heater also changes to a percentage, but in reverse manner. For instance, if the water
is hot condition is only 10% true, then the turn on water heater conclusion might be
90% of its maximum value, and the water heater would be working at nearly maximum
capacity. However, if the water is hot condition is 90% true, then the turn on water heater
conclusion might be 10% of its maximum value, and the water heater would essentially
be turned off. It does take a bit of effort to realign your thinking regarding FL and how it is
applied within a rules system, but I guarantee it is well worth the effort.

Rules may be combined in a similar way that was shown in the expert systems
discussion. Let’s suppose that the hot water heating system has been installed in an
energy distribution grid where there are different kilowatt-hour (kw-hr) usage rates
for different times during the day. There could be a modified rule that accounts for the
different energy utility costs, such as the following:

if (water is hot and kw-hr rate is high) then (turn on water
heater)

Now, what is the combined conditional value given that the fuzzified water
temperature has been assigned a value of 45% and the fuzzified energy cost is valued at
58%? It turns out that under FL rule construction, the minimum percentage is carried
forward when an and operator is used in the conditional expression. In this example,
that value is 45%. In a similar manner, the maximum percentage is carried forward when
an or operator is used in a conditional expression. You might be wondering what the
final fuzzified value is in a complex expression that includes both and and or operators.
The answer is that the final and minimum value is used because the and operator takes
precedence over the or operator per the laws of logical combination, as described earlier
in this chapter.

Chapter 2 ■ BasiC ai ConCepts

29

Defuzzification
Defuzzification is the process in which the numerical conclusions from multiple rules are
combined to produce a final, overall resultant value. The simplest and most straightforward
procedure is simply to average all the conclusions to produce a single number. This
approach would be fine if all the rules had equal importance, but that is often not the
case. Importance assigned to a rule is done through a weighting factor; for example,
suppose there are four rules, each weighted with different values, as shown in Table 2-2.

Table 2-2. Weighted Rules Example

Rule No. Weighting Conclusion Value Conclusion Value * Weight

1 2 74 148

2 4 37 148

3 6 50 300

4 8 22 176

The combined or defuzzified value is equal to the sum of all the conclusion values,
multiplied by the respective rule weights, divided by the sum of all the rule weights. This
is shown in the following:

Defuzzified value = (148 + 148 + 300 + 176)/(2 + 4 + 6 + 8) = 772/20 = 38.6
This defuzzified value is also known as the weighted average.

Conflict resolution is often not an issue with FL rules application because the
weighting values invoke a prioritization to the rules.

I demonstrate a comprehensive FL example in Chapter 5, at which point I also
introduce the concept of fuzzy sets with regard to the specific FL project. I felt it would
make more sense if you saw a fuzzy set applied to a real-word example, rather than read
an abstract discussion. Let’s now turn our attention to the problem-solving area.

Problem Solving
Up until this point in the AI discussion, all the various questions/decisions regarding the
problem domain have been carefully detailed in a comprehensive set of rules. That is
not the case when it comes to the general topic of problem solving. Consider the classic
example of knowing your starting and finishing points in your car’s GPS system. There
are usually many ways to travel between two points, excluding the trivial case of going
between two points on an isolated, desert highway. This is the type of problem that AI is
very good at solving, often in a fast and efficient manner.

Let’s set up a scenario to examine the various facets of how to solve this problem.
Consider a road trip between Boston and New York City. There are a variety of ways
to make this trip. There are many paths between Boston and New York, because it is a
heavily populated corridor with many towns and cities between the two locations. There
will be some common-sense guidelines applied, including that any town or city on the
path may be visited only once in a trip. It would not make much sense to repeatedly loop
through a specific town or city during a trip. The key realistic points to consider in making

http://dx.doi.org/10.1007/978-1-4842-2743-5_5

Chapter 2 ■ BasiC ai ConCepts

30

the trip’s path selections are the costs that are manifested: travel time, path length, fuel
costs, tolls and traffic density, which are actual or anticipated delays. These costs are often
dependent because a longer path will increase fuel expenses, but not necessarily travel
time because an alternate path could use a super highway, on which the car maintains a
higher consistent speed, as compared to traveling through backroads and going through
many small towns. But, a super highway can be congested, reducing overall speed, and
there may even be tolls to add to the misery.

The first approach in determining the optimal path is called the breadth-first search.

Breadth-First Search
The breadth-first approach starts by considering all possible paths between Boston and
New York City, and computing and accumulating the total costs incurred while progressing
through the various paths. This brute-force approach is both time-consuming and memory
intensive because the computer must keep track of all the costs for perhaps thousands of
paths before deciding on the optimal one. Of course, the algorithm might streamline the
search by automatically excluding all secondary roads and sticking solely to the interstate
highways. The typical cost that most modern vehicle GPS systems optimize is path length,
but not always. Sometimes minimizing the travel time is a priority goal; it all depends upon
the requirements given to the GPS system’s software developers. There are other ways to
conduct a path search.

Depth-First Search
In a depth-first search, one path is followed from start to finish, and its total cost is
calculated. Then, another path is followed and its cost is calculated. Next, the two costs
are compared and the more expensive one is rejected. Then, another path is considered
and a cost comparison is done. This process continues until all possible paths have been
considered. This approach minimizes memory requirements because only the most
recent and least expensive path is retained. The real problem with this type of search
is that it can take a long time to complete computationally, especially if there is a poor
choice made for the first path. Search algorithms often only slightly change an initial path
and then compute its cost. It doesn’t take much imagination to recognize that it could
take a long time before a good path is finally discovered.

The next search improves a lot on this search approach.

Depth-Limited Search
The depth-limited search is much like the depth-first search, except only a limited
number of towns and cities are selected before a cost is determined. The cost comparison
is made when the selection number is reached and the least expensive path is retained.
This approach is based on the realistic assumption that if the path starts out less
expensive than a competing path, it most likely remains so. No path search algorithms
that I am aware of search in broadly different directions to unexpectedly increase the
cost by including a path with a radical detour from the preferred direction. Selecting the
appropriate depth number is the main concern with this algorithm. Too few, and you
could easily miss the optimal path, but with too many, it starts resembling the depth-first
search in terms of computational load. A depth limit of 10 to 12 is reasonable.

Chapter 2 ■ BasiC ai ConCepts

31

Bidirectional Search
The bidirectional search is a variant of the depth-limited search designed to greatly
improve on the latter’s computational efficiency. The path examined in a bidirectional
search is first split in two, with two searches then conducted: one in the backward
direction to the start point and other in the forward direction toward the finish point.
These two new bifurcated search paths are both depth-limited, so only a preselected
number of towns and cities will be transverse. Cost comparisons are made in the same
manner done in the depth-limited search, in which the least expensive path is retained.
The thought process behind this search algorithm is that splitting a path and examining
two sections is a more efficient approach in quickly determining the lower cost path.
It also eliminates the issue with a poor initial path selection that is present in a regular
depth-limited search.

Other Problem-Solving Examples
There are many other situations where path searching can be applied. Solving a maze
is one excellent example, in which a bidirectional path search makes short work of
negotiating even the most complex maze. Search algorithms can even be applied to a
Rubik’s Cube solution, where the ultimate goal is to change each of the cube’s side to a
solid color.

Playing a game of chess is completely different from the path-search-problem
domain. This is because there is an intelligent opponent in the game, who is actively
countering moves and whose goal is to ultimately achieve a checkmate position. This
new dynamic is not present in a traveler’s path search problem, where all the path
routes are static and unchanging. In chess, a computer cannot simply examine all the
future available moves, because they are dependent on the next move that the opponent
makes—and the number of potential moves is literally astronomical. Instead, the
computer is set up to incorporate deep machine learning, which is a portion of the next
section’s discussion.

Machine Learning
Machine learning was first defined in 1959 by MIT professor Arthur Samuel, a recognized
pioneer in both computer science and artificial intelligence. Professor Samuel stated in
part, “machine learning as a field of study that gives computers the ability to learn without
being explicitly programmed.” What he was essentially driving at is that computers can be
programmed with algorithms that can learn from input data and then make consequent
predictions based on that same data. This means that learning algorithms can be
completely divorced from any preprogrammed or static algorithms and be free to make
data-driven decisions or predictions by building models based on the input data.

Machine learning is used in a many modern applications, including e-mail spam
filters, optical character recognition (OCR), textual search engines, computer vision,
and more.

Chapter 2 ■ BasiC ai ConCepts

32

Implementing machine learning may be easier than you realize if you consider an
expert system. In a traditional expert system, there are a series of rules generated by
interviewing experts, which are then “fired” using input conditions. What if a machine
could take one or more of those rules and slightly modify them, and subsequently
try to use the conclusions generated by the modified rules? If the new modified rules
improved upon the final conclusion, then they would be retained and perhaps awarded
with somewhat higher priorities than older rules, similar to what is done with conflict
resolution. On the other hand, if the conclusions reached using the modified rules
were less optimal, then they would be rejected and replaced with additional new rule
modifications. If this was a continual process, could it not be said that the computer is
indeed learning? Answering this type of question has been somewhat of a contentious
area within the AI community.

There are a variety of ways to implement machine learning. I discuss a few of
them in the following sections. However, I think it would be prudent to review some
fundamental concepts (prediction and classification) regarding learning, as it will be
applied in this area.

Prediction
Prediction is how you determine a new output value using specific input with a model
that relates the output to the input. Perhaps the simplest predictor is a sloped straight line
going through the origin of an x-y graph. This is easily modeled by the following equation
and is shown graphically in Figure 2-2.

Figure 2-2. Graph of y x= 2

Chapter 2 ■ BasiC ai ConCepts

33

There are a several hidden constraints using this predictor. First, is the allowed
range of input values. In Figure 2-2, there are five output values plotted that match the
five corresponding input values ranging between 0 and 10. Normally, you could assume
that the input values were not restricted to this same range, but models in the real
world could have restrictions, such as only non-negative numbers are allowed.
In addition, while the equation is linear within the plotted zone, there is no guarantee
that a real-world model wouldn’t become non-linear if input values exceeded a
certain value.

As you have probably determined from the brief introduction, useful prediction
is only as good as the model employed in the prediction. Realistic models are typically
much more complex than a simple straight-line equation, because modeling real-
world behavior is a complex matter. Now it is time to consider classification, which is as
equally important as prediction.

Classification
I begin the classification discussion by stating a hypothetical situation where it is
import to classify a select species of mushroom. Note, the mushrooms discussed are
pure fiction, so any mycologists (fungi experts) in my readership need not respond.
Assume there are two mushroom types: one delicious and non-poisonous, and the
other poisonous and obviously inedible. They look almost identical; however, the
edible variety is larger and less dense, whereas the poisonous variety is smaller and
denser. There are two parameters or input values used to classify these mushroom
types: weight in grams and the crown (or cap) circumference in millimetres (mm).
Density is a derived parameter, which can be determined, if needed, from the two
basic measurements of weight and circumference. Figure 2-3 is an x-y scatter plot of a
selection of both mushroom types.

Chapter 2 ■ BasiC ai ConCepts

34

Figure 2-3. Mushroom scatter plot

In Figure 2-3, I encircled all the data points for both mushroom types, and I placed
a sloped dividing line, labeled classification line. This line clearly divides the two groups,
as you can easily see, but the problem remains as to how to best analytically determine
the diving line. The line equation is precisely the same form shown in Figure 2-1, with a
generalized form of

y mx=

where m is the slope. Let’s try m = 2 for an initial value and see what happens. Figure 2-4
shows the result.

Chapter 2 ■ BasiC ai ConCepts

35

Clearly, this is not a satisfactory result, as both data point clusters are on the same side
of the line, which proves that this particular choice for m cannot serve as a useful classifier.
What is needed is a precise way of determining m other than using a blind manual trial-
and-error approach. This approach is the start of a machine learning process.

I first need to establish what is known as a training data set, which will be used to
assess how well the classifier function works. This data is simply a data point from each
cluster, as shown in Table 2-3.

Figure 2-4. Scatter plot with classification line y = 2x

Table 2-3. Training Data

Data Point # Grams (x) mm (y) Mushroom type

1 15 50 poisonous

2 8 100 edible

Chapter 2 ■ BasiC ai ConCepts

36

Substituting the x value for data point 1 into the equation y x= 2 yields a value of 30
for y instead of 100, which is the true or target value. The difference of +20 is known as the
error value. It must be minimized to achieve a workable classifier. Increasing the classifier
line slope is the only way to minimize the error. Let's use the symbol ∆ to represent a
change in the slope, € for the error, and y

t
 for the desired target value. The error thus

becomes

 = y
t
 − y

Expand the preceding equation with the assumption that ∆ assumes a value that
allows y

t
 to be reached yields the following:

€ = y
t
 − y = (m + ∆)x − mx

Expanding and collecting terms yields the following:

€ = y
t
 − y = mx + ∆x − mx

€ = y
t
 − y = ∆x

The very simple final expression for the error term is simply the Δ value times the
input value, which makes complete sense if you reflect on it for a while. Rearranging the
last equation and solving for Δ yields

Δ = €/x

Plugging in the initial trial values yields a Δ value of

∆ = 20/15 = 1.3333

The new value for m is now 1.3333 + 2, or 1.3333, and the revised classifier line
equation is consequently

y x= 3 3333.

Plugging in the previous value for the x training value, or 15, now yields the desired
target value of 50. Figure 2-5 shows the revised classifier line on the scatter plot.

Chapter 2 ■ BasiC ai ConCepts

37

Further Classification
While the revised classifier line has improved the classification somewhat there are still
poisonous mushrooms data points either on or above the line, which still makes this
classifier line unsatisfactory.

Now, let’s use data point number 2 with this revised classifier line and see what
results. Using the value x = 8 yields a y value of 26.664. Now, the actual y data point
value is 100, which means that € = 100 – 26.664 = 73.336. A newly revised m value can be
calculated as follows:

m = + =73 336 8 3 333 12 5. / . .

Plugging in the training value x, which is 8, now yields the desired target value of 50.
Figure 2-6 shows the newly revised classifier line on the scatter plot.

Figure 2-5. Revised classifier line y = 3.3333x

Chapter 2 ■ BasiC ai ConCepts

38

While this newly revised classifier line does separate all the edible mushrooms from
the poisonous ones, it is unsatisfactory: there could still be some edible mushrooms
falsely rejected because they fell slightly below the line. Now there exists a larger problem,
however, because all the training points have been exhausted. If I went back and reused
the previous point number 1, it would return to the y x= 3 3333. classifier line. This is
because the procedure does not consider the effects of any previous data points; that
is, there is no memory. A way around this is to introduce the concept of a learning rate
that moderates the revisions so that they do not jump to the extremes, which is what is
happening at present.

The standard symbol used in AI for learning rate is η (the Greek letter Eta). The
learning rate is a simple multiplier used in the equation for Δ:

Δ = h€/x

Setting η = 0.5 is a reasonable start, if only one-half the update is applied. For the
initial data point, the new Δ = 0.5 * 1.333 = 0.667. The new classifier line is therefore
y = 2.667x. I am not going to show the scatter plot line for this change, but suffice it to say,
it is slightly worse than the original revision. That’s OK because the next revision should
be considerably better.

For data point 2, the new classifier line is y = 6.25x, using the new η learning rate.
Figure 2-7 shows the resulting scatter plot for this new classifier line.

Figure 2-6. Revised classifier line y = 12.5x

Chapter 2 ■ BasiC ai ConCepts

39

Figure 2-7 reveals an excellent classifier line that properly separates the two
mushroom types, minimizing the likelihood of a false classification.

It is now time to introduce the very fundamental concept of a neural network, which
is essential for implementing practical machine learning.

Neural Networks
The concept of neural networks can be traced back to a 1943 research article by
McCulloch and Pitts, which focused on neurocomputing. I first mentioned these
pioneering researchers in Chapter 1. This article shows that simple neural networks
could, in principle, compute any arithmetic or logical function. To understand a neural
network, you must understand the key element in a biological neural network, which is
the neuron. Figure 2-8 is a diagram of a human neuron.

Figure 2-7. Revised classifier line y = 6.25x

http://dx.doi.org/10.1007/978-1-4842-2743-5_1

Chapter 2 ■ BasiC ai ConCepts

40

Figure 2-8. Diagram of a human neuron (Source: Wikipedia)

Figure 2-9 is a sketch of pigeon brain neurons, created in 1899 by Spanish
neuroscientist Santiago Ramón y Cajal. Dendrites and terminals are clearly shown in
the figure.

https://en.wikipedia.org/wiki/Santiago_Ramón_y_Cajal

Chapter 2 ■ BasiC ai ConCepts

41

The question now becomes Why is the human brain so much more capable of
successfully undertaking intelligent tasks when compared to modern computers? One
answer is that a mature human brain is estimated to have over 100 billion neurons. The
precise functioning is still unknown. To get an idea of the inherent capabilities of such a
large number of neurons, you can simply consider the capabilities of a simple earthworm,
which has only 302 neurons, yet is still capable of doing tasks that would baffle large-scale
computers.

Figure 2-9. Pigeon brain neurons sketch (Source: Wikipedia)

Chapter 2 ■ BasiC ai ConCepts

42

Examining how a single neuron functions helps explain how a network of them
can be created to solve AI problems. The output signal from a neuron can either cause
an excitation or an inhibition to a neuron immediately connected to it. When a neuron
sends an excitation signal to the connected neuron, it is added to all the other inputs that
neuron is concurrently receiving, and when the combined excitation of all the inputs
reaches a preset level or threshold, that neuron will fire. The firing does not depend on
the level of any given input; it only matters that the threshold be exceeded to initiate a
firing. Figure 2-10 shows a time trace of a typical neuron electrical signal.

Figure 2-10. Firing neuron time trace

Chapter 2 ■ BasiC ai ConCepts

43

As you can see in Figure 2-10, the peak voltage is only 40 millivolts and total pulse
time duration is approximately 3 milliseconds (ms). Most neurons have one axon, so the
delay between stimulus input and excitation output in a given neuron is only 3 ms. It is
interesting to try to relate this to human reaction time. The fastest human reaction time
ever verified is 101 ms, with the average being approximately 215 ms. This is the total time
that it takes to progress from a sensory input, such as sight, to a motor actuation, such as
a mouse click. Assume that it takes 10 ms to send a signal from the eyes to the appropriate
neurons in the brain; perhaps 20 ms to send a nerve signal from the neurons controlling
finger-muscle action and 40 ms for muscle activation itself. This leaves about 145 ms
for total brain-processing time. That time duration limits the longest chain of neurons
to about 14 to 15 in length. That number implies there must be a huge number of short
parallel neuron chains interoperating to accomplish the tasks of interpreting a visual
signal, recalling the appropriate action to take, and then sending nerve control signals
to the fingers to do a mouse click. And all of these tasks are done dynamically while still
doing the background autonomic things necessary to stay alive.

The neuron’s excitation action can be roughly modeled by using a step function, as
shown in Figure 2-11.

Figure 2-11. Step function

In nature, nothing is ever as sharp and defined as a step function, especially for
biological functions. AI researchers have adopted the sigmoid function as more realistically
modeling the neuron threshold function. Figure 2-12 shows the sigmoid function.

Chapter 2 ■ BasiC ai ConCepts

44

The sigmoid function analytic expression is

y e x= + -1 1/(), where e = math constant 2.71828…

When x = 0, then y = 0.5, which is the y axis intercept for the sigmoid function. This
function is used as the threshold function for our neuron model. Consider Figure 2-13 a
very basic neuron model with three inputs (x1, x2, and x3) and one output (y).

Figure 2-12. Sigmoid function

Figure 2-13. Basic three-input neuron model

Chapter 2 ■ BasiC ai ConCepts

45

The basic model is useful, but it is not the complete answer because neurons must
be connected to a network to function as a learning entity. Figure 2-14 shows a simple
neural network made up of three neuron layers, labeled input, hidden, and output,
respectively.

Figure 2-14. Example neural network

The next obvious question is How does this network learn? The easiest way is to
adjust the weights of the connections. This means adjusting the amplitude or strength
from an output to an input. Thus, a high weight means a given connection is emphasized
more, whereas a low weight is de-emphasized. Figure 2-15 shows weights assigned to
each of the neuron, or node, connections. They are shown as w

n,m
, where n is the source

node number and m is the destination node number.

Chapter 2 ■ BasiC ai ConCepts

46

At this point, I defer any further discussion until the neural network chapter, in which
I assign actual weights and demonstrate an actual learning system. The primary purpose
of the discussion to this point is to prepare you for the neural network implementation.

Shallow Learning vs. Deep Learning
You may have heard the terms shallow and deep applied to machine learning. The
term shallow seems to imply that somewhat trivial and lightweight learning is going
on, whereas deep implies the opposite. In actuality, shallow learning and deep learning
are only subjective adjectives applied to neural networks, based upon the number of
layers implemented in the network. There really isn’t a formal definition separating
shallow from deep learning, because the effectiveness of a particular neural network is
determined by many factors, one of which is the number of layers in the network. The
point in stating this is because I am not really worried about whether a particular neural
network is classified as shallow or deep, but I am concerned about its effectiveness in
performing at the desired requirements and standards.

Evolutionary Computing
There is a rapidly evolving AI field called evolutionary computing. It is inspired by the
theory of biological evolution, but uses algorithms grounded on population-based
trial-and-error problem solvers. In turn, these problem solvers use metaheuristic
techniques, meaning they rely on statistical and probabilistic approaches rather than
strict deterministic, analytical techniques. In broad terms, an evolutionary computing
problem starts with an initial set of candidate solutions, which are subsequently tested

Figure 2-15. Neural network with weighted interconnections

Chapter 2 ■ BasiC ai ConCepts

47

for optimality. If they are found to be suboptimal, the solutions are altered by only a
small random amount and then retested. Every new generation of candidate solutions
is improved by removing the less desired solutions determined from the previous
generation. A biological analog is when a population is subjected to natural selection and
mutations. This results in the population gradually evolving to increase overall fitness to
meet environmental conditions. For evolutionary computing, the analogous process is to
optimize the algorithm’s pre-selected fitness function. In fact, evolutionary computation
is sometimes used by researchers in evolutionary biology for experimental procedures to
study common processes.

Evolutionary computing can be used in other AI areas. If you recall, I alluded to an
evolutionary computing approach when I stated that a machine could take one or more
of those rules and slightly modify them, and subsequently try to use the conclusions
generated by the modified rules. It would likely be a difficult but solvable problem to
create a candidate set of expert rules subjected to the evolutionary screening process.

A very popular subset of evolutionary computing is known as genetic algorithms,
which I briefly introduce in the next section.

Genetic Algorithms
A genetic algorithm (GA) starts with a population of candidate solutions, as mentioned
in the evolutionary computing introduction. These solutions in the GA jargon are called
individuals, creatures, or phenotypes. They are used in an optimization procedure
to find improved solutions. Every candidate solution has a set of properties known as
chromosomes, or genotypes, which can be altered or mutated. It is also traditional to
represent candidate solutions as a string of binary digits, 1s and 0s. The evolutionary
process follows, where every individual in a randomly generated candidate solution is
evaluated regarding fitness. The more “fit” individuals are stochastically selected from the
population. Those individuals’ genomes are further modified to form the next generation.
This next generation is then iteratively used in the GA until one of two things happens.
First, the maximum number of iterations is reached and the process is terminated,
whether or not an optimal solution is found. Second, a satisfactory fitness level is
achieved prior to reaching the maximum iteration limit.

A typical GA requires

•	 A genetic representation compatible with the problem domain

•	 A fitness function that can effectively evaluate the solution

Binary digits, or bits, are the most common way candidate solutions are generated.
There are other forms and structures, but using bits seems by far the most popular way
that GA is done in modern AI. Usually, there is a fixed size to the bit string, which makes
it easy to perform what are known as crossover operations. These operations, along with
others, are imperative to complete the generational modifications and mutations.

If this explanation is as clear as mud, do not be dismayed. I assure you that a GA
demonstration in a later chapter will clarify this subject to the point where you may even
wish to experiment with some GA algorithms. Readers who wish to further explore GA
may go to https://intelligence.org to read some interesting articles.

https://en.wikipedia.org/wiki/Evolutionary_biology
https://intelligence.org/

Chapter 2 ■ BasiC ai ConCepts

48

This introduction to GA brings this basic AI concepts chapter to an end. You should
already feel somewhat prepared to take on the demonstrations and projects presented
in the remaining chapters. But be forewarned: there is new AI material presented in the
project chapters, because it is simply impossible to cover it all in one chapter.

Summary
The primary purpose of this chapter was to introduce and discuss some basic AI
concepts that will be demonstrated in the project chapters. I began with a brief overview
of Boolean logic and associated logical operations, as these are frequently used in AI
expressions. The remainder of the chapter provided an overview of the following:

•	 Inference, expert systems, and conflict resolution as it pertains to
implementing an expert system

•	 The installation of SWI Prolog on a Raspberry Pi

•	 A Prolog demo, which is my program of choice to implement an
expert system when required for a project

•	 A simple example of fuzzy logic to help clarify the underlying
concepts

•	 A series of sections on machine learning

•	 Neural networks (NN), which are modeled after biological brain
neurons

•	 Evolutionary computing that features genetic algorithms

CHAPTER 3

Expert System
Demonstrations

This chapter contains several expert systems demonstrations, all of which have been
run on a Raspberry 3 standalone desktop configuration. The first demonstration, Demo
3-1, is a very simple one—designed to show you how to get started using Prolog on the
Raspberry Pi. I have included some discussion on how to use both the command line
and GUI trace functions that are very useful in debugging a Prolog program. The second
demonstration, Demo 3-2, is somewhat more complex, in which the program asks the
user some questions about an unknown animal and then tries to reach a conclusion
based on the answers to the questions.

The complexity rises with the next expert program, Demo 3-3, which implements
a tic-tac-toe game. I provide some detailed discussion on how the tic-tac-toe program
functions in order to provide some insight into predicates and how they are used in a
Prolog program. The next demonstration, Demo 3-4, should help diagnosis whether you
are suffering with a cold or the flu. It is only a demonstration; it should not be substituted
for a visit to the doctor’s office. Demo 3-5 couples the results from the Prolog expert
system to the actual activation of Raspberry Pi GPIO pins. I show you how to install and
use a library named PySWIP, which allows Prolog commands to be called and executed
within a Python program.

All of these demonstrations should also run on earlier Raspberry models, but at
a somewhat slower pace. For Demo 3-5, you need some additional parts, which are
described in Table 3-1.

Table 3-1. Parts Lists

Description Quantity Remarks

Pi Cobbler 1 40-pin version, either T or DIP form factor
acceptable

solderless breadboard 1 860 insertion points with power supply strips

jumper wires 1 package

LED 2

220Ω resistor 2 1/4 watt

Chapter 3 ■ expert SyStem DemonStrationS

50

These parts are readily available from a number of online sources, including Adafruit
Industries, MCM Electronics, RS Components, Digikey, and Mouser.

I start the expert system demonstrations with a simple database, in which I use the
trace command to illustrate how Prolog resolves user goals or queries.

Demo 3-1: Office Database
The following program and discussion are based largely on a very clear tutorial from
the MultiWingSpan website on tracing with Prolog. The following listing is the Prolog
database, which is aptly named office.pl.

/*office program */
adminWorker(black).
admnWorker(white).

officeJunior(green).

manager(brown).
manager(grey).
supervises(X,Y) :- manager(X), adminWorker(Y).
supervises(X,Y) :- adminWorker(X), officeJunior(Y).
supervises(X,Y) :- manager(X), officeJunior(Y).

The database is quite simple: only five facts regarding office roles and three rules
regarding who supervises whom. Figure 3-1 shows an interactive Prolog session where
I have queried Prolog regarding various office members’ roles and who they supervise.
The queries are very straightforward, but not very revealing about how Prolog reaches
conclusions.

Chapter 3 ■ expert SyStem DemonStrationS

51

An important debugging tool available in Prolog is the trace command. Trace allows
you to view all the goals as they are executed in a sequence in a Prolog query. You can also view
any “backtracking” that happens when a goal fails. Tracing is turned on by this command:

?- trace.

Prolog will respond with:

true.

When finished with tracing, you turn it off using this command:

?- notrace.

Prolog will respond with:

true.

Figure 3-1. Interactive Prolog session

Chapter 3 ■ expert SyStem DemonStrationS

52

The trace command is among more than 20 debugging commands that are
implemented in SWI Prolog. Covering all the various ways of using the Prolog debugging
tools would likely take a separate book by itself. My intention is only to illustrate some
straightforward debugging measures that should help you understand how Prolog
functions with a database.

The following is a command-line trace session using the office database that I just
presented. Figure 3-2 is a complete screenshot of the tracing session.

Figure 3-2. Office database tracing session

Table 3-2 is a line-by-line commentary on the tracing session shown in Figure 3-2. You
should note that the SWI Prolog debugger supports six standard ports, which are named
Call, Exit, Redo, Fail, Exception, and Unify. You see some of these ports in the following
commentary, as they represent which actions the Prolog interpreter is taking with regard to
the database facts and rules. You also see a number in parenthesis following the port name.
This is the current clause line number that is being processed from the database.

Chapter 3 ■ expert SyStem DemonStrationS

53

Table 3-2. Line-by-Line Trace Session Commentary

Prolog dialog/trace output Commentary

swipl Start SWI-Prolog

[office]. Load the office database. This form is
shorthand for the consult function.

trace. Start the tracing.

supervises(Who, green). The user input query to determine who
supervises employee green.

Call: (6)
supervises(_G2345, green) ?
creep

Prolog finds the first rule for supervises(X,Y)
and instantiates Y to match green, as stated
in the query. The word creep appears when
you press Enter. It means that Prolog has been
instructed to move to the next instruction.
Prolog memory reference _G2345 is for the X
argument, which is henceforth named Who.

Call: (7)
manager(_G2345) ? creep

Prolog tries to satisfy the first subgoal of the
rule. It tries manager(X).

Exit: (7)
manager(brown) ? creep

brown is found as a manager. Prolog next tests
whether this leads to a solution. The word
Exit reflects the fact that Prolog has found a
solution to its last call. It sets X to brown.

Call: (7)
adminWorker(green) ? creep

If brown manages green, green must be an
adminWorker.

Fail: (7)
adminWorker(green) ? creep

Since green is not an adminWorker, the
second subgoal of the rule cannot be satisfied.

Redo: (7)
manager(_G2345) ? creep

Prolog backtracks to the first subgoal and
resumes where it left off with manager(X).

Exit: (7)
manager(grey) ? creep

Prolog finds grey and instantiates X to this
new value.

Call: (7)
adminWorker(green) ? creep

Prolog again tests whether or not green is an
adminWorker.

Fail: (7)
adminWorker(green) ? creep

Once again, it fails. This means the rule
cannot provide a solution.

Redo: (6)
supervises(_G2345, green) ?
creep

Prolog backtracks to the initial rule and
proceeds with processing the top-level goal.

Call: (7)
adminWorker(_G2345) ? creep

This time, Prolog looks for an adminWorker
as the supervisor. (The second rule.)

Exit: (7)
adminWorker(black) ? creep

Prolog finds black and instantiates X to this
new value.

(continued)

Chapter 3 ■ expert SyStem DemonStrationS

54

The statement Who = black. in the figure is not part of the trace but is the Prolog
response that is displayed in response to the initial query, supervises(Who, green).

The word creep that is shown on all of the trace lines appears after you press the
Enter key. It just indicates that Prolog is proceeding to the next line of the trace. There is
a lot of additional information available regarding the trace command. Simply type the
following to find out more about trace and its capabilities:

?- help(trace).

You should also note that trace does not work on Prolog’s built-in functions. You
have to rely on Prolog’s extensive documentation to learn about those functions.

SWI Prolog also provides a debugging graphical user interface (GUI) in addition to
the command-line version that I just demonstrated. Figure 3-3 shows the command-
line session used to invoke the GUI using the same database and query in the previous
example.

Table 3-2. (continued)

Prolog dialog/trace output Commentary

Call: (7)
officeJunior(green) ? creep

Prolog checks if the second subgoal is now
satisfied.

Exit: (7)
officeJunior(green) ? creep

green is an officeJunior, and
consequently, the second subgoal is satisfied.

Exit: (6)
supervises(black, green) ?
creep

The top-level goal is satisfied.

Chapter 3 ■ expert SyStem DemonStrationS

55

The only difference between the command line and GUI invocations is that the
guitracer. command is entered right after the consult command. Prolog returns this
statement:

% The graphical front-end will be used for subsequent tracing
true.

However, no GUI is displayed until you actually enter the trace. command and
then enter a goal, which in this example is supervises(Who, green). From this
point on, all the user tracing and debugging actions take place in the GUI dialog screen,
which is shown in Figure 3-4.

Figure 3-3. Invoking the GUI tracer

Chapter 3 ■ expert SyStem DemonStrationS

56

You must repeatedly click the right-facing arrow located in the upper left-hand
portion of the toolbar in order to step through all the Prolog operations detailed in
Table 3-2. Figure 3-4 actually shows the state of the Prolog sequence at the following step,
excerpted from Table 3-2.

Call: (7)
officeJunior(green) ? creep

Prolog checks if the second subgoal is now
satisfied.

A graphical representation of the call stack is also shown in the upper right-
hand pane of the GUI display. Many Prolog users prefer the GUI representation to the
command-line version, but you can be assured that either version does precisely the
same tracing actions.

You can stop the GUI trace by using a command similar to the command-line version:

?- noguitracer.

The next expert system demonstration is a classic game that is presented to most
beginning AI students.

Figure 3-4. GUI trace dialog display

Chapter 3 ■ expert SyStem DemonStrationS

57

Demo 3-2: Animal Identification
This expert system is an animal identification game that is the Prolog version of a Lisp
program originally presented in The Handbook of Artificial Intelligence Vol 4, a book edited
by Barr, Cohen and Feigenbaum (Addison-Wesley, 1990). It is a relatively simple program
that tries to identify the animal that you are thinking about from a choice of seven:

•	 cheetah

•	 tiger

•	 giraffe

•	 zebra

•	 ostrich

•	 penguin

•	 albatross

The program is set up to ask a series of questions in an endeavor to determine the
animal. I suggest you try the program before I discuss how it works. You need only enter a
yes or no to answer the questions. Your responses can even be shortened to y or n. Enter
the following

?- go.

after you load the program.
The following is a listing of the Prolog animal script.

/* animal.pl
 animal identification game.

 start with ?- go. */

go :- hypothesize(Animal),
 write('I guess that the animal is: '),
 write(Animal),
 nl,
 undo.

/* hypotheses to be tested */
hypothesize(cheetah) :- cheetah, !.
hypothesize(tiger) :- tiger, !.
hypothesize(giraffe) :- giraffe, !.
hypothesize(zebra) :- zebra, !.
hypothesize(ostrich) :- ostrich, !.
hypothesize(penguin) :- penguin, !.
hypothesize(albatross) :- albatross, !.
hypothesize(unknown). /* no diagnosis */

Chapter 3 ■ expert SyStem DemonStrationS

58

/* animal identification rules */
cheetah :- mammal,
 carnivore,
 verify(has_tawny_color),
 verify(has_dark_spots).
tiger :- mammal,
 carnivore,
 verify(has_tawny_color),
 verify(has_black_stripes).
giraffe :- ungulate,
 verify(has_long_neck),
 verify(has_long_legs).
zebra :- ungulate,
 verify(has_black_stripes).

ostrich :- bird,
 verify(does_not_fly),
 verify(has_long_neck).
penguin :- bird,
 verify(does_not_fly),
 verify(swims),
 verify(is_black_and_white).
albatross :- bird,
 verify(appears_in_story_Ancient_Mariner),
 verify(flys_well).

/* classification rules */
mammal :- verify(has_hair), !.
mammal :- verify(gives_milk).
bird :- verify(has_feathers), !.
bird :- verify(flys),
 verify(lays_eggs).
carnivore :- verify(eats_meat), !.
carnivore :- verify(has_pointed_teeth),
 verify(has_claws),
 verify(has_forward_eyes).
ungulate :- mammal,
 verify(has_hooves), !.
ungulate :- mammal,
 verify(chews_cud).

/* how to ask questions */
ask(Question) :-
 write('Does the animal have the following attribute: '),
 write(Question),
 write('? '),
 read(Response),
 nl,

Chapter 3 ■ expert SyStem DemonStrationS

59

 ((Response == yes ; Response == y)
 ->
 assert(yes(Question)) ;
 assert(no(Question)), fail).

:- dynamic yes/1,no/1.

/* How to verify something */
verify(S) :-
 (yes(S)
 ->
 true ;
 (no(S)
 ->
 fail ;
 ask(S))).

/* undo all yes/no assertions */
undo :- retract(yes(_)),fail.
undo :- retract(no(_)),fail.
undo.

This program is interesting because it tries to verify properties to draw conclusions.
The answers to the questions are also briefly stored for future reference. When a question
is asked and answered with a yes, then the answer is recorded by asserting the clause
yes(question) and succeeding; otherwise, the answer is recorded by asserting the
clause no(question) and failing. The yes answers are recorded because a later no
answer to a different question while trying to verify the same hypothesis could cause the
entire hypothesis to fail; whereas the same yes answer could have led to a successful
verification of a different hypothesis later in the process. Recording answers is the way the
program avoids asking the same question twice. Conditions specified in a question are
verified by checking if the yes(question) is in the memory and has succeeded or the
no(question) is stored and has failed. If neither check is true, then ask(question)
is done.

Figure 3-5 shows a sample interactive session with this program, in which I went
through several question-and-answer runs.

Chapter 3 ■ expert SyStem DemonStrationS

60

Figure 3-5. Interactive animal program session

Chapter 3 ■ expert SyStem DemonStrationS

61

I did determine that the program will draw an erroneous conclusion regarding
carnivores based on the addition of a rule that classifies carnivores solely on having
pointed teeth, claws, and forward-facing eyes. Figure 3-6 shows the interactive session
in which I answered no to the question asking if the animal eats meat and yes to the
questions on teeth, claws, and eyes.

Figure 3-6. Incorrect conclusion animal session

This behavior in this particular expert system simply points out that incorrect results
can be reached if the rules are not consistent with the real-world models on which they
are based. By definition, carnivores are meat eaters, even though I deliberately answered
no to that question. In the next demonstration, I get away from big cats and birds to a
much more benign, yet interesting expert system.

Chapter 3 ■ expert SyStem DemonStrationS

62

Demo 3-3: tic-tac-toe
Tic-tac-toe, as it’s known in the United States, or noughts and crosses in other lands, is
a delightful game often played quite effectively by very young children. It may also be
implemented by an expert system. The following listing is a straightforward tic-tac-toe
program named tictactoe.pl, which may be played against the computer by entering the
following:

?- playo.

There is also a self-play option in which the computer plays against itself. That
option always ends with X winning. To initiate self-play enter this:

?- selfgame.

The tictactoe.pl listing follows:

% A tic-tac-toe program in Prolog. S. Tanimoto, May 11, 2003.
% Additional comments D. J. Norris, Jan, 2017.
% To play a game with the computer, type
% playo.
% To watch the computer play a game with itself, type
% selfgame.

% Predicates that define the winning conditions:

win(Board, Player) :- rowwin(Board, Player).
win(Board, Player) :- colwin(Board, Player).
win(Board, Player) :- diagwin(Board, Player).

rowwin(Board, Player) :- Board = [Player,Player,
Player,_,_,_,_,_,_].
rowwin(Board, Player) :- Board = [_,_,_,Player,Player,
Player,_,_,_].
rowwin(Board, Player) :- Board = [_,_,_,_,_,_,Player,Player,
Player].

colwin(Board, Player) :- Board = [Player,_,_,Player,_,_,
Player,_,_].
colwin(Board, Player) :- Board = [_,Player,_,_,Player,_,_,
Player,_].
colwin(Board, Player) :- Board = [_,_,Player,_,_,Player,_,_,
Player].

diagwin(Board, Player) :- Board = [Player,_,_,_,Player,_,_,_,
Player].
diagwin(Board, Player) :- Board = [_,_,Player,_,Player,_,
Player,_,_].

Chapter 3 ■ expert SyStem DemonStrationS

63

% Helping predicate for alternating play in a "self" game:

other(x,o).
other(o,x).

game(Board, Player) :- win(Board, Player), !, write([player,
Player, wins]).
game(Board, Player) :-
 other(Player,Otherplayer),
 move(Board,Player,Newboard),
 !,
 display(Newboard),
 game(Newboard,Otherplayer).

% These move predicates control how a move is made

move([b,B,C,D,E,F,G,H,I], Player, [Player,B,C,D,E,F,G,H,I]).
move([A,b,C,D,E,F,G,H,I], Player, [A,Player,C,D,E,F,G,H,I]).
move([A,B,b,D,E,F,G,H,I], Player, [A,B,Player,D,E,F,G,H,I]).
move([A,B,C,b,E,F,G,H,I], Player, [A,B,C,Player,E,F,G,H,I]).
move([A,B,C,D,b,F,G,H,I], Player, [A,B,C,D,Player,F,G,H,I]).
move([A,B,C,D,E,b,G,H,I], Player, [A,B,C,D,E,Player,G,H,I]).
move([A,B,C,D,E,F,b,H,I], Player, [A,B,C,D,E,F,Player,H,I]).
move([A,B,C,D,E,F,G,b,I], Player, [A,B,C,D,E,F,G,Player,I]).
move([A,B,C,D,E,F,G,H,b], Player, [A,B,C,D,E,F,G,H,Player]).

display([A,B,C,D,E,F,G,H,I]) :- write([A,B,C]),nl,
write([D,E,F]),nl,
 write([G,H,I]),nl,nl.

selfgame :- game([b,b,b,b,b,b,b,b,b],x).

% Predicates to support playing a game with the user:

x_can_win_in_one(Board) :- move(Board, x, Newboard),
win(Newboard, x).

% The predicate orespond generates the computer's (playing o)
reponse
% from the current Board.

orespond(Board,Newboard) :-
 move(Board, o, Newboard),
 win(Newboard, o),
 !.
orespond(Board,Newboard) :-
 move(Board, o, Newboard),
 not(x_can_win_in_one(Newboard)).

Chapter 3 ■ expert SyStem DemonStrationS

64

orespond(Board,Newboard) :-
 move(Board, o, Newboard).
orespond(Board,Newboard) :-
 not(member(b,Board)),
 !,
 write('Cats game!'), nl,
 Newboard = Board.

% The following translates from an integer description
% of x's move to a board transformation.

xmove([b,B,C,D,E,F,G,H,I], 1, [x,B,C,D,E,F,G,H,I]).
xmove([A,b,C,D,E,F,G,H,I], 2, [A,x,C,D,E,F,G,H,I]).
xmove([A,B,b,D,E,F,G,H,I], 3, [A,B,x,D,E,F,G,H,I]).
xmove([A,B,C,b,E,F,G,H,I], 4, [A,B,C,x,E,F,G,H,I]).
xmove([A,B,C,D,b,F,G,H,I], 5, [A,B,C,D,x,F,G,H,I]).
xmove([A,B,C,D,E,b,G,H,I], 6, [A,B,C,D,E,x,G,H,I]).
xmove([A,B,C,D,E,F,b,H,I], 7, [A,B,C,D,E,F,x,H,I]).
xmove([A,B,C,D,E,F,G,b,I], 8, [A,B,C,D,E,F,G,x,I]).
xmove([A,B,C,D,E,F,G,H,b], 9, [A,B,C,D,E,F,G,H,x]).
xmove(Board, N, Board) :- write('Illegal move.'), nl.

% The 0-place predicate playo starts a game with the user.

playo :- explain, playfrom([b,b,b,b,b,b,b,b,b]).

explain :-
 write('You play X by entering integer positions followed by a
period.'),

 nl,
 display([1,2,3,4,5,6,7,8,9]).

playfrom(Board) :- win(Board, x), write('You win!').
playfrom(Board) :- win(Board, o), write('I win!').
playfrom(Board) :- read(N),
 xmove(Board, N, Newboard),
 display(Newboard),
 orespond(Newboard, Newnewboard),
 display(Newnewboard),
 playfrom(Newnewboard).

Figure 3-7 shows one of the games that I played against the computer.

Chapter 3 ■ expert SyStem DemonStrationS

65

Figure 3-7. Game played against the computer

Chapter 3 ■ expert SyStem DemonStrationS

66

You should notice that the program displayed Cats game! at the end of rounds,
which is tic-tac-toe terminology for a tie game.

I also initiated a self-game in which the computer played against itself. Figure 3-8
shows that result. It always ends with X winning, as I mentioned earlier.

Figure 3-8. Self-game

Chapter 3 ■ expert SyStem DemonStrationS

67

At this point, I discuss the inner workings of the tic-tac-toe program, now that you
have seen how it runs. There are three rules or predicates that define winning: by row, by
column, or by diagonal. The following is one of the generalized win predicates:

win(Board, Player) :- rowwin(Board, Player).

Next, there are three ways of winning: by row or by column, and two by diagonal. The
following predicate is one way of winning by completing the top row:

rowwin(Board, Player) :- Board = [Player,Player,
Player,_,_,_,_,_,_].

Similar predicates are generated for the other rows, columns, and diagonals, as you
can see by reviewing the code.

There are nine move predicates that control how a move is made, which corresponds
to each of the nine board positions.

The predicate, as follows, controls how the human player interacts with the game:

x_can_win_in_one(Board) :- move(Board, x, Newboard),
win(Newboard, x).

Similarly, the series of orespond predicates control how the computer interacts
with the game.

Finally, there are nine predicates named xmove that ensure only legal moves can be
made. They also translate the internal game position representations from A, B, C, … to
the corresponding displayed positions 1, 2, 3, … .

The next expert system demonstration deals with a situation that we all occasionally
encounter: determining whether we have a cold or the flu.

Demo 3-4: Cold or Flu Diagnosis
This example is a very basic medical-diagnosis expert system in which you answer a few
questions and the system tries to determine whether you are suffering from the flu or a
much more benign cold.

 ■ Caution this expert system is in no way a substitute for a real doctor’s advice and
consultation. if you are really sick, please go to your doctor. Do not rely on this program for a
trusted diagnosis.

Chapter 3 ■ expert SyStem DemonStrationS

68

The following program is named flu_cold.pl.

% flu_cold.pl
% Flu or cold identification example
% Start with ?- go.

go:- hypothesis(Disease),
 write('I believe you have: '),
 write(Disease),
 nl,
 undo.

% Hypothesis to be tested
hypothesis(cold):- cold, !.
hypothesis(flu):- flu, !.

% Hypothesis Identification Rules
cold :-
 verify(headache),
 verify(runny_nose),
 verify(sneezing),
 verify(sore_throat).
flu :-
 verify(fever),
 verify(headache),
 verify(chills),
 verify(body_ache).

% Ask a question
ask(Question) :-
 write('Do you have the following symptom: '),
 write(Question),
 write('? '),
 read(Response),
 nl,
 ((Response == yes ; Response == y)
 ->
 assert(yes(Question)) ;
 assert(no(Question)), fail).

Chapter 3 ■ expert SyStem DemonStrationS

69

:- dynamic yes/1,no/1.

% Verify something
verify(S) :- (yes(S) -> true ;
 (no(S) -> fail ;
 ask(S))).

% Undo all yes/no assertions
undo :- retract(yes(_)),fail.
undo :- retract(no(_)),fail.
undo.

As noted in the comments, you start the program with this:

?- go.

The symptoms are then presented one after the other. Just answer with either a yes. or
no. (alternatively, you can use the single letters y. or n.). Do not forget to enter the period
at the end of the response; otherwise, Prolog will not recognize your entry. If you select a
combination of symptoms that are not inclusive to either one of the hypotheses, then Prolog
will simply show a fail because it cannot match your entries with the known facts.

Figure 3-9 shows a sample session that I conducted with this expert system. I selected
symptoms for the flu, a cold, and finally, some for the no-match case.

Chapter 3 ■ expert SyStem DemonStrationS

70

Figure 3-9. Cold and flu expert system session

Chapter 3 ■ expert SyStem DemonStrationS

71

The next demonstration is the last one in the chapter. It involves another simple
expert system—but with a twist, because the system controls several Raspberry Pi GPIO
outputs.

Demo 3-5: Expert System with Raspberry
Pi GPIO Control
Until now, I have shown you expert systems that could be run on any PC or Mac with
a compatible version of Prolog. This demonstration differs because I show you how to
directly control some general-purpose input/out (GPIO) pins with Prolog—something
that is not generally possible on a regular PC.

To be totally honest, it is simply not possible to directly control a GPIO pin using a
Prolog command; but it is possible if you combine Prolog with the Python language. This
combination is made possible by a great program named PySWIP, which allows Prolog
commands to be called and executed within a Python program. There is also a great
Python application program interface (API) named RPi.GPIO, which easily facilitates
GPIO pin control. Next, I describe how to install the PySWIP application and set up the
RPi.GPIO API, which are both prerequisites for this expert system demonstration.

Installing PySWIP
PySWIP was created by Yuce Tekol as a bridge program between Prolog and Python. He
provided it to the community as GPL open source software. The program is not part of the
Raspian repositories and therefore cannot be installed using the apt package manager. To
install it, you must use the pip program. If you do not have pip already installed on your
Raspberry Pi, use the following command to install it:

sudo apt-get install python-pip

Once pip is installed, you can then use it to install PySWIP with this command:

sudo pip install pyswip

There is one additional step that must be done for Python to recognize Prolog, and
that is to create a symlink between the original shared library name and the latest one.
Just enter this next command to create the link:

sudo ln -s libswipl.so /usr/lib/libpl.so

You should next enter the following Python commands in an interactive Python
session to test if the PySWIP installation was successful:

>>> from pyswip import Prolog
>>> prolog = Prolog()
>>> prolog.assertz("father(michael,john)")
>>> prolog.assertz("father(michael,gina)")
>>> list(prolog.query("father(michael,X)"))

Chapter 3 ■ expert SyStem DemonStrationS

72

The following line is the Prolog response to the preceding command:

[{'X': 'john'}, {'X': 'gina'}]

>>> for soln in prolog.query("father(X,Y)"):

Ensure that you indent the next line. I used four spaces.

... print soln["X"], "is the father of", soln["Y"]

...

Press the Backspace and Enter keys to execute the for statement. The Python
interpreter should then display the following:

michael is the father of john
michael is the father of gina

If you see these two lines, you can be assured that Python and Prolog are working
fine together, courtesy of the PySWIP bridge program. Figure 3-10 shows this test done
with a Raspberry Pi.

Figure 3-10. Prolog and Python compatibility test

It is now time to discuss the hardware setup, which uses the Python/Prolog expert
system.

Hardware Setup
I used a T-form Pi Cobbler accessory to extend the Raspberry Pi GPIO pins so that they
can be easily used with a solderless breadboard in this setup. Figure 3-11 is a Fritzing
diagram, which shows the setup with two LEDs and two current-limiting resistors.

Chapter 3 ■ expert SyStem DemonStrationS

73

The LEDs are connected to GPIO pins #4 and #17, with the 220Ω current-limiting
resistors connected to ground. Thus, the LEDs light when the pins are set to a high value,
which is 3.3V for the Raspberry Pi. The LED series resistor sets the maximum current
flow to approximately 12 ma, which is well within the 25 ma current limit for any given
Raspberry Pi GPIO pin.

Figure 3-12 shows the Raspberry Pi physical setup with the T Pi Cobbler, solderless
breadboard, LEDs, and other components.

Figure 3-11. Fritzing diagram

Figure 3-12. Raspberry Pi physical setup

You should next set up the RPi.GPIO API to control the LEDs with Python.

Chapter 3 ■ expert SyStem DemonStrationS

74

Rpi.GPIO Setup
This discussion focuses on how the RPi.GPIO API is used in a Python program. These
setup steps must be included in every Python program that needs to control GPIO pins.
I demonstrate the setup in an interactive session, but you should realize that the same
statements must be included in a regular program script.

The RPi.GPIO API is now included with all standard Raspian Linux distributions. You
should be all set if you are using the latest Jessie Raspian distribution. The first step is to
import the API, as follows:

>>> import RPi.GPIO as GPIO

From this point on, all references to the API simply use the GPIO name. Next, you
have to select the appropriate pin-numbering scheme. There are two variations in the
Raspberry Pi pin-numbering scheme:

•	 GPIO.BOARD: The board numbers that follow the physical pin
numbers on the P1 header, which contains all the GPIO pins.

•	 GPIO.BCM: The numbering scheme used by the chip
manufacturer, BROADCOM, or BCM.

The pin numbers on the Pi Cobbler follow the BCM scheme, so that is what I used.
You establish which numbering scheme to use with this statement:

>>> GPIO.setmode(GPIO.BCM)

Next, the two selected pins must be set from the default input mode to the output
mode, which is done using these two statements:

>>> GPIO.setup(4, GPIO.OUT)
>>> GPIO.setup(17, GPIO.OUT)

Now, everything should be established to switch the pins high or low. By default,
they are set to a low state upon boot-up. These next two statements should turn on the
two LEDs:

>>> GPIO.output(4, GPIO.HIGH)
>>> GPIO.output(17, GPIO.HIGH)

If the LEDs did not light up, you should double-check the orientation of the LEDs
in the breadboard. Every standard LED has two “legs,” one of which is slightly shorter
than the other. The shorter leg is connected to one lead of the resistor, whose other lead
is connected to ground. Try switching the orientation of the LED and see if it turns on.
You will not harm the LED by switching the orientation. Also, double-check that you are
connected to pins 4 and 17, and that you have selected the correct numbering scheme.
I have found that when something does not work as expected, it is usually a connection
issue or a simple mistake in the setup.

Chapter 3 ■ expert SyStem DemonStrationS

75

Turning off the LEDs is accomplished using these statements:

>>> GPIO.output(4, GPIO.LOW)
>>> GPIO.output(17, GPIO.LOW)

An expert system is now ready to be created to control the LEDs.

Expert System with LED Control
I decided to essentially use the same simple Prolog script that was used to verify the
PySWIP installation. However, the program was restructured a bit to take advantage of the
Python way of using functions. That is the reason for using the PySWIP Functor function
near the start of the program. This program is named LEDtest.py, which is run by entering
the following:

python LEDtest.py

The LEDtest.py listing follows.

LEDtest.py by D. J. Norris Jan, 2017
Uses Prolog with Python type functions

import time
import RPi.GPIO as GPIO
from pyswip import Functor, Variable, Query, call

Setup GPIO pins
GPIO.setmode(GPIO.BCM)
GPIO.setup(4, GPIO.output)
GPIO.setup(17, GPIO.output)

Setup Python like functions for Prolog statements
assertz = Functor("assertz", 1)
father = Functor("father", 2)

Add facts to a dynamic database
call(assertz(father("michael","john")))
call(assertz(father("michael", "gina")))

Setup an iterative query session
X = Variable()
q = Query(father("michael",X))
while q.nextSolution():
 print "Hello, ", X.value

Chapter 3 ■ expert SyStem DemonStrationS

76

 if str(X.value) == "john": # LED #4 on if john is michael's
child

 GPIO.output(4,GPIO.HIGH)
 time.sleep(5)
 GPIO.output(4,GPIO.LOW)
 if str(X.value) == "gina": # LED #17 on if gina is

michael's child
 GPIO.output(17,GPIO.HIGH)
 time.sleep(5)
 GPIO.output(17,GPIO.LOW)

Figure 3-13 shows the program output. What cannot be shown is that LEDs were lit
for five seconds each, indicating that the two queries were successfully run.

Figure 3-13. Program output

At this point, you are probably wondering how this demonstration can be put to
a practical use with a Raspberry Pi. That answer will have to be deferred for several
chapters until I cover a fuzzy logic project, which uses an embedded expert system with
some GPIO pins controlling a heating and cooling system (HVAC).

Summary
There were five expert systems demonstrated in this chapter. They ranged from an
extremely simple one with only a few facts and rules, to a much more complicated one
that implemented the tic-toe-toe game.

The final demonstration showed you how to combine Python with Prolog so that
Raspberry Pi GPIO pins could be controlled.

CHAPTER 4

Games

This chapter is all about games. But the games I discuss are not the multi-million-dollar
video blockbusters that are currently saturating the marketplace. Instead, they are the
much simpler games that have been around for a very long time; some for thousands of
years. But even in these simple games, AI has had an impact. The games discussed in this
chapter traditionally involve two human opponents, but the modern varieties involve
one human playing against a computer. That’s where the AI comes in: to provide some
randomness and competition to the human player such that playing the game does not
quickly become boring and trivial.

Each demonstration presents several iterations for which you will need some
additional parts, as detailed in the Table 4-1.

Table 4-1. Parts Lists

Description Quantity Remarks

Pi Cobbler 1 40-pin version, either T or DIP form
factor acceptable

solderless breadboard 1 860 insertion points with power
supply strips

jumper wires 1 package

LED 3

220Ω resistor 3 1/4 watt

16 × 4 LCD display 1 Adafruit p/n 198 or equivalent
You can also use a 16 × 2 LCD

10k Ω potentiometer 1 Included with LCD display

push button switches 4 Tactile, suitable for use with a
solderless breadboard

The first game to be demonstrated is that old-time favorite we all have played:
rock-paper-scissors.

Chapter 4 ■ Games

78

Demo 4-1: Rock-Paper-Scissors
Here are the rules for the human-to-human rock-paper-scissors game, in case you have
not played it for a while. Each opponent clenches his or her fist, counts to three, and then
displays one of the following hand signals:

•	 Flat hand: paper

•	 Fist: rock

•	 Two fingers in a V: scissors

Winning is determined as follows:

•	 The same signal from each opponent is a tie.

•	 Rock dulls a scissor, so the rock sign wins.

•	 Paper covers a rock, so the paper sign wins.

•	 Scissors cut paper, so the scissor sign wins.

There are only nine possible combinations, including three ways to tie. Each
opponent has three ways to win, as described, which leads to the nine possible
combinations.

The following Python program named prs.py is a straightforward implementation
of the rock-paper-scissors game. This program does not use any Prolog statements
demonstrated in the previous chapter, but instead relies on standard Python
if ... else statements. These statements have the same effect as the if <condition>
then <conclusion> discussed in the section on inference.

prs.py listing

prs.py
from random import randint

List the input options
inputList = ["paper", "rock", "scissors"]

Random computer pick
computer = inputList[randint(0,2)]

Initially set player = False
player = False

while player == False:

 player = raw_input("paper, rock, scissors?")
 if player == computer:
 print("Tie!")
 elif player == "rock":

Chapter 4 ■ Games

79

 if computer == "paper":
 print("You lose ", computer, "covers", player)
 else:
 print("You win ", player, "dulls", computer)
 elif player == "paper":
 if computer == "scissors":
 print("You lose ", computer, "cuts", player)
 else:
 print("You win ", player, "covers", computer)
 elif player == "scissors":
 if computer == "rock":
 print("You lose ", computer, "dulls", player)
 else:
 print("You win ", player, "cuts", computer)
 else:
 print("Invalid input. Please reenter")

 # Reset player = False to continue looping
 player = False

 computer = inputList[randint(0,2)]

Figure 4-1 shows several rounds that I conducted with the Raspberry Pi.

Figure 4-1. Rock-paper-scissors game play

Chapter 4 ■ Games

80

I do want to comment on one aspect of this program, which is especially directed
to those readers who are not too comfortable with writing Python programs. The elif
command is a contraction of the words else if and is used as part of a nested
if ... else structure, which implements the game logic. The game logic can also be
portrayed in a tree diagram, as shown in Figure 4-2.

Figure 4-2. Tree diagram for rock-paper-scissors game

Chapter 4 ■ Games

81

I think you can appreciate the symmetry of the logic as depicted in the figure. Note
that there are six leafs or end points, which show where the player either wins or loses.
This matches exactly with the six win/loss combinations I mentioned earlier.

Believe or not, there is some underlying strategy, which can be invoked when playing
this game against a human opponent. To understand the competitive strategy, I must first
assign some values to the game outcomes. Let’s assume the following reasonable point
assignment for each outcome:

•	 Win = 2 points

•	 Tie = 1 point

•	 Loss = 0 points

Table 4-2 shows, on average, what the expected player values should be for a long
run of consecutive play.

Table 4-2. Averaged Player Outcomes

Opponents’ Move Averaged Player Score

paper rock scissors

Player’s Move paper 1 2 0 1

rock 0 1 2 1

scissors 2 0 1 1

The averaged player score should not surprise you, as over the long run (assuming
random choices by each opponent), the expected scores or values should be equally
divided over all the possible outcomes. But now, let’s add a twist to the normal approach
and take advantage of a human trait. This trait or behavior involves random number
selection. If you asked someone to select three random numbers from 1 to 10, odds would
favor that they might answer 7, 4, and 8, or some similar variation. They could easily
answer 5, 5, and 5, which would have satisfied the request, but using the word random
obviously biases behavior. Let’s assume now that your opponent selected rock in the last
round. It is more likely than not that he will not select rock again for the next round. The
averaged expected values table can now be modified, as shown in Table 4-3.

Table 4-3. Modified Averaged Expected Values

Opponent’s Move Averaged Player Score

paper rock scissors

Player’s Move paper 1 - 0 0.5

rock 0 - 2 1

scissors 2 - 1 1.5

Chapter 4 ■ Games

82

Clearly, there is a best move on the player’s part based on the opponent’s previous
move, which is based on normal human behaviors. However, it is not too hard to program
in a check routine to avoid providing the human player a competitive advantage. The
code would be something like the following; but note that I just used the index integer
values and not the equivalent string values.

if computer == lastMove & won == 0:
 computer = player + 1
 if computer > 3:
 computer = 1

lastMove and won are new integer variables representing the computer’s previous
selection and whether it won, respectively. I did not incorporate this code into the current
program because I just wanted to demonstrate the classic game design.

My next iteration of the rock-paper-scissors game eliminates keyboard entry and the
screen display, and replaces them with push buttons and LEDs.

Rock-Paper-Scissors Game with Switches and LEDs
I thought it would both be fun and interesting to change the game play on the Raspberry
Pi to use push button switches to select the sign and have LEDs indicate a win, lose, or
tie for the game. In this project, I also introduce how the Raspberry Pi handles interrupts
using the Python language. There is one caveat to this program. It must be started using
the following command-line entry:

python prs_with_LEDs_and_Switches.py

The Raspberry Pi system now needs to be set up. The Fritzing diagram is shown in
Figure 4-3.

Figure 4-3. Fritzing diagram for rock-paper-scissors game machine

Chapter 4 ■ Games

83

Figure 4-3 is an extension of Figure 3-11, which was used in an expert system
demonstration. I added one additional LED and four push button switches to the circuit.
The additional LED was connected to pin 27, while the push buttons were connected to
pins 12, 16, 20, and 21.

The physical Raspberry Pi setup is shown in Figure 4-4. Notice that I put labels
near the LEDs and push buttons to help the user determine what the LEDs indicate and
which sign a particular push button enables. The fourth push button exits the program
when pushed.

Figure 4-4. Physical Raspberry Pi setup

The push buttons act as inputs that momentarily provide a high level of 3.3V to
the pin when pushed. Each of the input pins is also set up to be in a pull-down mode,
where an internal resistor at the pin input is connected to ground. This prevents an
indeterminate floating state from being applied to the pin. In such a state, a floating pin
could “see” voltages ranging from tens of millivolts to as high as two volts, which could
trigger a false high on the pin. The actual float voltage is highly variable and dependent on
the local potential field surrounding the pin. Connecting a pull-down resistor avoids all
that nasty trouble. And the good news is that the pull-down resistor is actually configured
via a software command, which I discuss after I show you the following code listing.

prs_with_LEDs_and_Switches.py

import RPi.GPIO as GPIO
import time
from random import randint

Setup GPIO pins
Set the BCM mode
GPIO.setmode(GPIO.BCM)

Chapter 4 ■ Games

84

Outputs
GPIO.setup(4, GPIO.OUT)
GPIO.setup(17, GPIO.OUT)
GPIO.setup(27, GPIO.OUT)

Ensure all LEDs are off to start
GPIO.output(4, GPIO.LOW)
GPIO.output(17, GPIO.LOW)
GPIO.output(27, GPIO.LOW)

Inputs
GPIO.setup(12, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
GPIO.setup(16, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
GPIO.setup(21, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
GPIO.setup(20, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)

global player
player = 0

Setup the callback functions
def rock(channel):
 global player
 player = 1 # magic number 1 = rock, pin 12

def paper(channel):
 global player
 player = 2 # magic number 2 = paper pin 16

def scissors(channel):
 global player
 player = 3 # magic number 3 = scissors pin 21

def quit(channel):
 exit() # pin 20, immediate exit from the game

Add event detection and callback assignments
GPIO.add_event_detect(12, GPIO.RISING, callback=rock)
GPIO.add_event_detect(16, GPIO.RISING, callback=paper)
GPIO.add_event_detect(21, GPIO.RISING, callback=scissors)
GPIO.add_event_detect(20, GPIO.RISING, callback=quit)

computer random pick
computer = randint(1,3)

while True:

 if player == computer:
 # This is a tie condition

Chapter 4 ■ Games

85

 GPIO.output(27,GPIO.HIGH)
 time.sleep(5)
 GPIO.output(27, GPIO.LOW)
 player = 0
 elif player == 1:
 if computer == 2:
 # Player loses, paper covers rock
 GPIO.output(17,GPIO.HIGH)
 time.sleep(5)
 GPIO.output(17, GPIO.LOW)
 player = 0
 else:
 # Player wins, rock dulls scissors
 GPIO.output(4,GPIO.HIGH)
 time.sleep(5)
 GPIO.output(4, GPIO.LOW)
 player = 0
 elif player == 2:
 if computer == 3:
 # Player loses, scissors cuts paper
 GPIO.output(17,GPIO.HIGH)
 time.sleep(5)
 GPIO.output(17, GPIO.LOW)
 player = 0
 else:
 # Player wins, paper covers rock
 GPIO.output(4,GPIO.HIGH)
 time.sleep(5)
 GPIO.output(4, GPIO.LOW)
 player = 0
 elif player == 3:
 if computer == 1:
 # Player loses, rock dulls scissors
 GPIO.output(17,GPIO.HIGH)
 time.sleep(5)
 GPIO.output(17, GPIO.LOW)
 player = 0
 else:
 # Player wins, scissors cuts paper
 GPIO.output(4,GPIO.HIGH)
 time.sleep(5)
 GPIO.output(4, GPIO.LOW)
 player = 0

 # another random pick for the computer
 computer = randint(1,3)

Chapter 4 ■ Games

86

One thing that you should immediately notice is that I only used numbers to
represent the signs in this game version. There is no need for actual string names because
the LEDs show the result of the round and the push buttons are already clearly labeled.
However, I did identify what these “magic” numbers represent by using comments
with the code listing. I use the magic to represent any number that is used to represent
something else. Without a comment or other identifying means, it does become a
magic trick to figure what an isolated number in a program is supposed to represent.
Unfortunately, more than a few developers still resort to using magic numbers in their
programs—a practice I highly suggest you avoid unless you comment them, but then they
are no longer magic.

The logic in the preceding program is exactly the same as what was presented in the
first version of the program. Yet, there are big differences in the input and outputs, which
now use push buttons and LEDs. I will discuss the LED output first since you have already
seen it in the expert system demonstration. The pin number scheme is first selected,
which is still going to BCM because it matches the T Pi Cobbler pin designations. The
pins selected to be outputs are set up next. Those pins are 4, 17, and 27, which represent
win, lose, and tie, respectively. That’s all that’s needed to preconfigure the outputs.
Turning on an output is done using this command:

GPIO.output(n, GPIO.HIGH) # where n = pin number

You should also notice that I followed each LED output command with this
command:

time.sleep(5)

This forces the Python interpreter to pause for five seconds, which allows the user
to easily recognize which LED is lit. Without a pause, the LED will light and extinguish
so quickly that you could never see it. That condition would likely puzzle a lot of new
programmers who expect to see a lit LED, but never do. The program was probably
functioning as desired but the new programmer neglected the reality of a real-time clock
cycle, such that the LED stayed on for only microseconds—far too brief a time to detect
with the human eye.

Now on to the input pins and the interrupt discussion.

Interrupts
There are two principal ways to handle pin inputs: polling and interrupts. Polling, as the
name suggests, simply periodically checks on a pin state. It must be implemented in a
loop to work. The following code snippet shows a way to check on a pin status:

if GPIO.input(n): # where n = pin number
 print('Input was HIGH')
else:
 print('Input was LOW')

Chapter 4 ■ Games

87

Polling is much slower than using interrupts, because all the code in a loop must be
executed. It is possible to miss a button press if the program takes a relatively long time to
complete each loop, especially if there are any pause statements in the loop.

Interrupts, on the other hand, are practically immediate, independent of what is
going on in the main program, looping or not. Interrupts take advantage of a hardware
subsystem contained within the ARM microprocessor called the interrupt controller.
Figure 4-5 is a very simplified diagram of an interrupt controller that has three interrupt
sources: a push button, a serial input, and a clock input. The push button interrupt source
is pertinent in this project.

Figure 4-5. Interrupt controller

Figure 4-6 is a logic flow diagram that clearly shows the sequence of actions when an
interrupt occurs.

Chapter 4 ■ Games

88

Normally, the microprocessor fetches and executes one instruction after another
while running the main program. When an interrupt occurs, which I will now call an
event to conform to the Python language terminology, a jump is made to an interrupt
service routine (ISR), as shown in Figure 4-6. And just to further confuse you, ISRs are
known as callback functions in Python. The interrupt controller automatically saves the
address of the next executable instruction, as well as several other parameters, which is
known as saving the processor state. The callback function is run next, and when that is
completed, the interrupt controller reloads the processor state and resumes exactly from
the point it was when interrupted. All of this action only takes microseconds to complete
and is much faster than polling.

There are several steps that must be done in Python to set up interrupts. First, the
appropriate pin to receive the interrupt must be set up. I will use the rock push button
as an example. This next statement sets pin 12 as an input with a pull-down resistor
configured for the reasons I discussed earlier:

GPIO.setup(12, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)

Next, the interrupt source must be identified and linked to a callback function. The
following statement does it for the rock-signal push button:

GPIO.add_event_detect(12, GPIO.RISING, callback=rock)

Figure 4-6. Interrupt logic flow diagram

Chapter 4 ■ Games

89

Finally, the callback function must be defined. For the rock signal, this function is

def rock(channel):
 global player
 player = 1 # magic number 1 = rock, pin 12

Notice, that the word channel must be used as an argument in the function
definition. This is just a peculiarity of the Python language.

Also notice that I used the word global in the function definition, which specifies
that the player variable was global or available to all portions of the program, whether
or not it was in the function or the main program. I normally do not like to use globals
because they break the object-oriented principle of encapsulation, but in this case, it
seemed appropriate to minimize code duplication and to increase program efficiency.
You also need to identify player as a global in the main program.

The last new program feature is the exit push button, which causes it to immediately
quit the Python interpreter. This is the callback function:

def quit(channel):
 exit() # pin 20, immediate exit from the game

Everything else in the program is straightforward or was discussed previously.
There is no screenshot that I can show of this program running because the inputs

are manual push button activations and the outputs are LEDs being lit. I can just assure
you that everything functioned as anticipated.

The next game that I discuss is Nim.

Demo 4-2: Nim
Nim is game of mathematical strategy in which two players take turns removing items
from a common heap. In each turn, a player may remove one, two, or three items. The
objective of the game is to avoid being the player removing the last item, although there
are Nim variants in which you win by removing the last item.

Various Nim-style games have been played since ancient times, often using pebbles
as the heap. Nim has also been called pebble pickup, last pebble, and in recent times,
sticks, or pick-up sticks. Although not really known as a fact, Nim is thought to have
originated in China because it closely resembles the game Tsyan-shizi, or “picking stones.”
In European history, Nim dates back to the beginning of the 16th century. The actual
name of Nim name is attributed to Harvard University Professor Charles Bouton, who is
recognized as the creator game theory during the early 1900s.

I will first demonstrate a Python version of Nim in a two-person game. I simply
describe it as “naive Nim,” in which there is no AI but simply innate player intelligence.

Chapter 4 ■ Games

90

naive_nim.py listing

sticks = 21
max_picks = 3

while (sticks != 0):
 pick1 = 0
 pick2 = 0

 pick1 = int(raw_input("Player 1 pick: "))
 while pick1 > max_picks or (sticks - pick1) <= 0:
 print "You cannot pick more than 3 or reduce sticks to

zero or less"
 pick1 = int(raw_input("Player 1 pick: "))
 sticks = sticks - pick1
 print "remaining sticks = ", sticks
 if sticks == 1:
 print 'Player 1 Wins!'
 exit()

 pick2 = int(raw_input("Player 2 pick: "))
 while pick2 > max_picks or (sticks - pick2) <= 0:
 print "You cannot pick more than 3 or reduce sticks to

zero or less"
 pick2 = int(raw_input("Player2 pick: "))
 sticks = sticks - pick2
 print "remaining sticks = ", sticks
 if sticks == 1:
 print 'Player 2 Wins!'
 exit()

Figure 4-7 shows two rounds that I played: pick1 and pick2. Notice that I added some
validation checks, which ensured that no more than three sticks were picked and that any
pick did not reduce the stick total to zero or less.

Chapter 4 ■ Games

91

Figure 4-7. Two rounds of Nim play

Now it is time to add some AI to the Nim game by implementing a computer opponent.

nim_computer.py listing

import random
print "NIM GAME"

player1 = raw_input("Enter your name: ")
player2 = "Computer"
howMany = 0

Chapter 4 ■ Games

92

gameover=False
global stickNumber
stickNumber = 21

def moveComputer():
 removedNumber = random.randint(1,3)
 global stickNumber
 while (removedNumber < stickNumber) or (stickNumber <= 4):
 if stickNumber >= 5:
 stickNumber -= removedNumber
 return stickNumber
 elif (stickNumber == 4) or (stickNumber == 3) or

(stickNumber == 2):
 stickNumber = 1
 return stickNumber

def moveHuman():
 global stickNumber
 global howMany
 stickNumber -= howMany
 return stickNumber

def humanLegalMove():
 global howMany
 global stickNumber
 legalMove=False
 while not legalMove:
 print("It's your turn, ",player1)
 howMany=int(input("How many sticks do you want to

remove?
(from 1 to 3) "))

 if howMany>3 or howMany<1:
 print("Enter a number between 1 and 3.")
 else:
 legalMove=True
 while (howMany >= stickNumber):
 print("The entered number is greater than or equal to

the number of sticks remaining.")
 howMany=int(input("How many sticks do you want to

remove?"))
 return howMany

def checkWinner(player):
 global stickNumber
 if stickNumber == 1:
 print(player," wins.")
 global gameover

Chapter 4 ■ Games

93

 gameover = True
 return gameover

def resetGameover():
 global gameover
 global stickNumber
 gameover = False
 stickNumber = 21
 howMany = 0
 return gameover

def game():
 while gameover == False:
 print("It's ",player2,"turn. The number of sticks left:

", moveComputer())
 checkWinner(player2)
 if gameover == True:
 playAgain()
 humanLegalMove()
 print("The number of sticks left: ", moveHuman())
 checkWinner(player1)
 if gameover == True:
 playAgain()

def playAgain():
 answer = raw_input("Do you want to play again?(y/n)")
 resetGameover()
 if answer=="y":
 game()
 else:
 print("Thanks for playing the game")
 exit()

game()
playAgain()

Figure 4-8 shows two rounds of Nim played against the computer.

Chapter 4 ■ Games

94

Figure 4-8 demonstrates that the program functions as designed when each
opponent enters a valid stick number. While it is impossible for the computer to enter an
invalid number, the same is not true for a human. In addition, the program must guard
against an entry that would reduce the number of sticks to zero or less. Figure 4-9 shows
these safeguards in action when I attempted to enter a number greater than three, or to
reduce the stick total to zero.

Figure 4-8. Two rounds of computer vs. human play

Chapter 4 ■ Games

95

Figure 4-9. Validation or “sanity” checks

Chapter 4 ■ Games

96

What is not evident in Figures 4-8 and 4-9 is my addition of a small amount of AI to
the program. Normally, the computer entry for each turn is determined by the following
statement:

removedNumber = random.randint(1,3)

This statement generates a random number between one and three, inclusively.
Normally, this is OK for a naive approach; however, I did not wish to give too much of an
unfair advantage to the human player when the stick count was four or lower. Therefore, I
added the following code to the moveComputer function:

elif (stickNumber == 4) or (stickNumber == 3) or
(stickNumber == 2):
 stickNumber = 1
 return stickNumber

This ensures that the computer wins the round as it emulates the exact human
behavior expected if a human player was presented with two, three, or four remaining
sticks.

There is more to the Nim game competitive strategy that you should know. Let’s
assume that six sticks are left and it is your turn. According to game theory, your best
option would be to remove the exact number of sticks that satisfies the following equation:

nmod4 1= where n is the remaining sticks number after your turn.

The mod operator in the equation represents integer remaindering division. For
instance, 8 mod 3 would equal 2 because 3 divides twice into 8 with a remainder of 2. So
basically, you discard the dividend and keep the remainder for integer division. Table 4-4
shows all of your possible moves with six sticks still in the heap.

Table 4-4. Competitive Strategy for Six Sticks in the Heap

Possible Move Remaining Sticks (n) n mod 4

1 5 1

2 4 0

3 3 3

Thus, according to game theory, your optimal move is to remove one stick. You don’t
have to be a gaming expert to understand this choice. Remember your opponent can only
remove one, two, or three sticks. Therefore, after the opponent removes the sticks, there
can only be two, three, or four sticks remaining. You are then guaranteed a win because
you can remove the appropriate amount to have one remaining.

The human player has a distinct advantage in this particular game because the
computer always randomly selects a stick removal number until there are four or less
sticks remaining in the heap. Therefore, you should always try to have the computer’s
second-to-last move be with six sticks. I have removed this advantage in the next
demonstrated Nim version in the following section.

Chapter 4 ■ Games

97

Nim with LCD and Switches
This Nim version uses push button switches to enter the number of sticks to be removed.
It uses an LCD to display when the human player should press a push button and to show
the number of remaining sticks. The push buttons are connected to Python callback
functions, as was done with the automated rock-paper-scissors (rps) game version. In
fact, I used a very similar push button circuitry in the prs game. I did have to change the
pins used with the push buttons to accommodate the LCD display interconnections. The
LEDs in the prs game are no longer needed because they are replaced by the 16 × 2 LCD
display.

The Fritzing diagram for the automated Nim setup is shown in Figure 4-10.

Figure 4-10. Fritzing diagram for the automated Nim game

There are obviously too many wiring connections in this setup than can be
properly shown in a Fritzing diagram. Therefore, I have provided both a schematic
showing the LCD-to–Pi Cobbler interconnections and a pin list showing all the system
interconnections. Figure 4-11 is the LCD module–to–Pi Cobbler schematic.

Chapter 4 ■ Games

98

Table 4-5 is the pin list detailing all the board interconnections. Note that the LCD
pin designations start at 1 at the left and go to 16 at the far right for the LCD orientation,
as shown in the Fritzing diagram. The potentiometer is oriented “upside-down,” which
places the pins on top. The left pin connects to ground, the middle pin to LCD pin 3, and
the right pin connects to 5V.

Figure 4-11. Schematic of Pi Cobbler–to–LCD module

Table 4-5. Pin List for Wiring Interconnections

From To Remarks

LCD pin 1 ground

LCD pin 2 5V Vcc

LCD pin 3 middle lead - potentiometer Contrast adjustment Vo

LCD pin 4 RasPi pin 27 Register select

LCD pin 5 ground Read/Write (R/W)

LCD pin 6 RasPi pin 22 Enable (Clock)

LCD pin 7 - no connection (Bit 0)

LCD pin 8 - no connection (Bit 1)

LCD pin 9 - no connection (Bit 2)

(continued)

Chapter 4 ■ Games

99

From To Remarks

LCD pin 10 - no connection (Bit 3)

LCD pin 11 RasPi pin 25 Bit 4

LCD pin 12 RasPi pin 24 Bit 5

LCD pin 13 RasPi pin 23 Bit 6

LCD pin 14 RasPi pin 18 Bit 7

LCD pin 15 5V Backlight LED anode

LCD pin 16 RasPi pin 4 Backlight LED cathode

left lead potentiometer ground

middle lead potentiometer LCD pin 3

right lead potentiometer 5V

stick button 1, left side RasPi pin 12

stick button 1, right side 3.3V

stick button 2, left side RasPi pin 13

stick button 2, right side 3.3V

stick button 3, left side RasPi pin 19

stick button 3, right side 3.3V

exit button, left side RasPi pin 20

exit button, right side 3.3V

There are a lot of jumpers to connect in this setup, so be especially carefully when
wiring the solderless breadboard. I recommend that you use a separate power rail for
the 5V supply that should be located on the top of the breadboard if you are using a
horizontal orientation for the board. Pay particular attention that you do not connect any
5V source to a Raspberry Pi input because it will surely destroy that input pin. The GPIO
inputs are strictly limited to a maximum level of 3.3V, anything higher will burn out that
input pin and likely cause further damage to the Raspberry Pi core.

Figure 4-12 shows the complete physical setup with each of the push buttons’
functions labeled.

Table 4-5. (continued)

Chapter 4 ■ Games

100

Figure 4-12. Physical setup for the automated Nim game

The program that controls this hardware is named automated_nim.py. It is based on
the previous program, except all the inputs are now accomplished with callback functions
and an LCD display is used to show the game status. I felt it was appropriate to first
discuss how the LCD display functions with the Raspberry Pi before actually getting into
the main program.

LCD Display
I will first acknowledge that most of the material in this section is based on a very good
Adafruit tutorial by Tony DiCola available at https://learn.adafruit.com/
character-lcd-with-raspberry-pi-or-beaglebone-black/overview.

Inexpensive 16 × 2 or 16 × 4 LCDs with 16 connector pins are most likely using a
Hitachi HD44780 controller or a generic equivalent. The LCD uses a parallel interface,
meaning that you need multiple wires from the Raspberry Pi to control it. This setup uses
only four data pins and two control pins. This configuration is known as the LCD nibble
input mode. The other mode is where a full byte, or eight bits, is transferred each time
there is a new character input to the LCD. Obviously, the nibble mode is slower than the
byte mode, but for this application, the speed difference is not apparent. The Raspberry Pi
is only sending data to the display; it is not reading any data. This means that that you do
not have to be concerned about any 5V pulses being sent to the more sensitive Raspberry
Pi input pins that only have a 3.3V maximum voltage input, as I mentioned earlier.

The register select pin #4 on the 16-pin LCD header has two uses. When pulled
low, the Raspberry Pi can send control commands to the LCD, such as change to a
designated character position or clear the screen. This is mode is referred to as writing
to the instruction or command register. When the register select pin is set high, the LCD
controller goes into a data mode and accepts data to display on the screen.

https://learn.adafruit.com/character-lcd-with-raspberry-pi-or-beaglebone-black/overview
https://learn.adafruit.com/character-lcd-with-raspberry-pi-or-beaglebone-black/overview

Chapter 4 ■ Games

101

The read/write pin #5 is grounded, because only data is to be written to the LCD for
this setup.

The enable pin #6 is toggled as necessary to write data to the input registers that
eventually display on the screen.

After you wire the LCD, push button switches, and potentiometer, you need to load
a special Python library that allows the LCD display to work with the Raspberry Pi. This
library was created by the clever folks at Adafruit, who have a lot of libraries to support all
sorts of devices and sensors. The procedure I go through next is also applicable to loading
most other specialty Adafruit libraries.

Loading the Adafruit LCD Library
You need the Git application to load the library because Adafruit uses github.com to store
all of its libraries. Enter the following commands to install Git:

sudo apt-get update
sudo apt-get install git

Once Git is installed, you can now download the LCD library. This download process
is called cloning. It results in new directory named Adafruit_Python_CharLCD
created in your home directory. Enter this command:

sudo git clone git://github.com/adafruit/Adafruit_Python_CharLCD

The newly created directory contains all the required files for the next step, which is
to set up the library. The setup process is long and involved; however, there is a simple
setup script provided to automate the whole process. Enter the following commands to
set up the library:

cd Adafruit_Python_CharLCD
sudo python setup.py install

Figure 4-13 shows the beginning and ending of the install process. Overall, there are
more than 70 separate actions taking place in the installation, including downloading and
building multiple dependencies.

Chapter 4 ■ Games

102

Figure 4-13. LCD library installation script execution

Now, you should test the both the hardware and the software installations to verify
that everything is working properly.

Chapter 4 ■ Games

103

LCD Test
The test program named char_lcd.py should be located in the examples subdirectory
of the Adafruit_Python_CharLCD directory that was created after the Git clone
operation completed. Go to the examples directory and enter this command:

python char_lcd.py

If everything is wired correctly, and all the libraries are installed properly, you should
see the display as shown in Figure 4-14.

Figure 4-14. Result of running the char_lcd.py program

If you do not see this display, please recheck all the wiring because it is pretty easy
to misplace a jumper insertion point or connect to the wrong pin on the Pi Cobbler or
LCD module. As I mentioned earlier, most faults are normally wiring or interconnection
mistakes.

Assuming that the LCD test was successful, it is now time to consider the main Nim
program.

automated_nim.py
This program has been substantially changed from the previous Nim program because
of the need to incorporate callback functions and LCD display routines. I have also
incorporated some AI logic into the program: the computer opponent now uses the game
theory n mod 4 = 1 equation to help in its stick selection, in addition to using the random
number generator when the optimal pick is not achievable.

Chapter 4 ■ Games

104

automated_nim.py listing

!/usr/bin/python

import statements
import random
import time
import Adafruit_CharLCD as LCD
import RPi.GPIO as GPIO

Start Raspberry Pi configuration
Raspberry Pi pin designations
lcd_rs = 27
lcd_en = 22
lcd_d4 = 25
lcd_d5 = 24
lcd_d6 = 23
lcd_d7 = 18
lcd_backlight = 4

Define LCD column and row size for a 16x4 LCD.
lcd_columns = 16
lcd_rows = 4

Instantiate an LCD object
lcd = LCD.Adafruit_CharLCD(lcd_rs, lcd_en, lcd_d4, lcd_d5,
lcd_d6, lcd_d7, lcd_columns, lcd_rows, lcd_backlight)

Print a two line welcoming message
lcd.message('Lets play nim\ncomputer vs human')

Wait 5 seconds
time.sleep(5.0)

Clear the screen
lcd.clear()

Setup GPIO pins
Set the BCM mode
GPIO.setmode(GPIO.BCM)

Inputs
GPIO.setup(12, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
GPIO.setup(13, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
GPIO.setup(19, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
GPIO.setup(20, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)

Chapter 4 ■ Games

105

Create the global variables
global player
player = ""
global humanTurn
humanTurn = False
global stickNumber
stickNumber = 21
global humanPick
humanPick = 0
global gameover
gameover = False

Set up the callback functions
def pickOne(channel):
 global humanTurn
 global humanPick
 humanPick = 1
 humanTurn = True

def pickTwo(channel):
 global humanTurn
 global humanPick
 humanPick = 2
 humanTurn = True

def pickThree(channel):
 global humanTurn
 global humanPick
 humanPick = 3
 humanTurn = True

def quit(channel):
 lcd.clear()
 exit() # pin 20, immediate exit from the game

Add event detection and callback assignments
GPIO.add_event_detect(12, GPIO.RISING, callback=pickOne)
GPIO.add_event_detect(13, GPIO.RISING, callback=pickTwo)
GPIO.add_event_detect(19, GPIO.RISING, callback=pickThree)
GPIO.add_event_detect(20, GPIO.RISING, callback=quit)

random selection for the players
playerSelect = random.randint(0,1)
if playerSelect:
 humanTurn = True
 lcd.message('Human goes first')
 time.sleep(2)
 lcd.clear()

Chapter 4 ■ Games

106

else:
 humanTurn = False
 lcd.message('Computer goes first')
 time.sleep(2)
 lcd.clear()

The AI portion
def computerMove():
 global stickNumber
 global humanTurn

 if (stickNumber-1) % 4 == 1:
 computerPick = 1
 elif (stickNumber-2) % 4 == 1:
 computerPick = 2
 elif (stickNumber-3) % 4 == 1:
 computerPick = 3
 else:
 computerPick = random.randint(1,3)

 if stickNumber >= 4:
 stickNumber -= computerPick
 elif (stickNumber==4) or (stickNumber==3) or

(stickNumber==2):
 stickNumber = 1
 humanTurn = True

The human portion
def humanMove():
 global humanPick
 global humanTurn
 global stickNumber
 while not humanPick:
 pass
 while (humanPick >= stickNumber):
 lcd.message('Number selected\n')
 lcd.message('is >= remaining\n')
 lcd.message('sticks')
 stickNumber -= humanPick
 humanTurn = False
 humanPick = 0
 lcd.clear()

def checkWinner():
 global gameover
 global player
 global stickNumber

Chapter 4 ■ Games

107

 if stickNumber == 1:
 msg = player + ' wins!'
 lcd.message(msg)
 time.sleep(5)
 gameover = True

def resetGameover():
 global gameover
 global stickNumber
 gameover = False
 stickNumber = 21
 return gameover

This module controls the overall game play
def game():
 global player
 global humanTurn
 global gameover
 global stickNumber
 while gameover == False:
 if humanTurn == True:
 lcd.message('human turn\n')
 msg = 'sticks left: ' + str(stickNumber) + '\n'
 lcd.message(msg)
 humanMove()
 msg = 'sticks left: ' + str(stickNumber)
 lcd.message(msg)
 time.sleep(2)
 checkWinner()
 lcd.clear()
 else:
 lcd.message('computer turn\n')
 computerMove()
 msg = 'sticks left: ' + str(stickNumber)
 lcd.message(msg)
 time.sleep(2)
 checkWinner()
 lcd.clear()

 if gameover == True:
 lcd.clear()
 playAgain()

As the name suggests; play again?
def playAgain():
 global humanPick
 lcd.message('Play again?\n')
 lcd.message('1 = y, 2 = n')

Chapter 4 ■ Games

108

 # This loop is needed to idle while waiting for a button
press

 while humanPick == 0:
 pass
 if humanPick == 1:
 lcd.clear()
 resetGameover()
 game()
 elif humanPick == 2:
 lcd.clear()
 lcd.message('Thanks for \n')
 lcd.message('playing the game')
 time.sleep(5)
 lcd.clear()
 exit()

This function call kicks off the game play
game()

I believe you will find that defeating the computer in this program is quite difficult,
which differs sharply from the earlier, more naive Nim program. Figure 4-15 is a
photograph of the LCD screen captured while I was playing a round with the computer.

This automated Nim program is the final project in this chapter. There are more
Python games readily available in the Jessie Linux distribution that you may wish to
investigate. They can be found in the main X window GUI that is shown in Figure 4-16.

Figure 4-15. LCD display during round play

Chapter 4 ■ Games

109

Figure 4-16. Additional Python games

Chapter 4 ■ Games

110

These games are curtesy of Al Sweigert, whose website is at
www.inventwithpython.com. At this website, you may freely download a 347-page
e-book entitled Making Games with Python & Pygame, in which Al describes, in detail,
how the games listed in Figure 4-16 function. It is highly recommended for those readers
interested in taking the next step in Python game development beyond what I have
discussed in this chapter.

Summary
Fairly simple game programs written in the Python language were the focus of this
chapter. I presented several versions of two games—rock-paper-scissors and Nim—that
progressed from relatively naive versions to more sophisticated versions incorporating AI
into the computer opponent.

One of goals of this chapter was to show how fairly straightforward AI concepts
can be implemented into classic game play where a human player opposes a computer
program.

Another incidental goal was to demonstrate some hardware and software technology
that included Python interrupts and to show how to use an LCD display with the
Raspberry Pi.

http://www.inventwithpython.com/

CHAPTER 5

Fuzzy Logic System

This chapter is an extension of the fuzzy logic (FL) concepts first introduced in Chapter 2.
I demonstrate two fuzzy logic projects. The first one deals with a common situation that
we all occasionally encounter: how to compute a tip for a meal at a restaurant. The second
demonstration is more complex and involves implementing a control system that uses
FL as part of its control technology. Both demonstrations use Python with the pyFuzzy
add-in library, which incorporates FL into the Python language. There are also a number
of new FL topics that I need to discuss. I incorporate these new topics with the FL tipping
demonstration to provide a better framework for the new concepts.

Before I begin the basic fuzzy logic system (FLS) section, it is important that you set
up the Raspberry Pi so that you can load and run the FL demonstration programs.

Parts List
For the last demonstration, you need the parts listed in Table 5-1.

Table 5-1. Parts List

Description Quantity Remarks

Pi Cobbler 1 40-pin version, either T or DIP form factor
acceptable

solderless breadboard 1 860 insertion points with power supply strips

jumper wires 1 package Available from many sources

LED 3 Commodity item available from many sources

220Ω resistor 3 1/4 watt

Software Installation
First, you need Python 2.7, which should already be installed as part of the Jessie Linux
distribution. You also need the numpy, scipy, matplotlib, and skfuzzy packages, which
implement FL with Python and the plotting functions that create the visualizations.

http://dx.doi.org/10.1007/978-1-4842-2743-5_2

Chapter 5 ■ Fuzzy LogiC SyStem

112

Enter the following commands at the command line to install the numpy, scipy, and
matplotlib software:

sudo apt-get update
sudo apt-get install python-numpy

 ■ Note numpy may already be installed, so all that you see when this command is run is
that the latest version is installed.

sudo apt-get install python-scipy
sudo apt-get install python-matplotlib

The skfuzzy software is somewhat more complex to install. You need to clone the
software from the GitHub website; however, you need the Git application to do this.
So install Git by entering this command:

sudo apt-get install git

Once Git is installed, you then need to clone the software by using this command:

sudo git clone https://github.com/scikit-fuzzy/scikit-fuzzy.git

The cloning operation automatically unzips all the skfuzzy software into a new
subdirectory named scikit-fuzzy, located in the home directory. Enter the following
commands to set up skfuzzy:

cd scikit-fuzzy
sudo python setup.py install

You will see a lot of dialog scroll by as the skfuzzy installation is in progress. After this
installation, you should be all set to execute fuzzy Python scripts.

Basic FLS
Figure 5-1 shows all four of the principal components that make up a basic FLS.

Figure 5-1. Block diagram for a basic FLS

Chapter 5 ■ Fuzzy LogiC SyStem

113

These are the principal FLS components:

•	 Fuzzifier: The process in which a crisp set of input data is
collected and converted to a fuzzy set using fuzzy linguistic
variables, fuzzy linguistic terms, and membership functions.

•	 Rules: The expert knowledge collected and codified into the
inference engine.

•	 Inference engine: Inferences are generated based upon a set of
rules applied to the input fuzzy set.

•	 Defuzzifier: Crisp outputs are created based on the fuzzy set
output from the inference engine.

Figure 5-1 may also be expressed as a series of steps or a logical algorithm that
implements the FL process. I use this generic algorithm, shown in Table 5-2, to
implement all of the chapter’s FLS demonstration projects.

Table 5-2. FL Algorithm

Step # Name Description

1 Initialization Define linguistic variables and terms

2 Initialization Construct membership functions

3 Initialization Build rule set

4 Fuzzification Convert crisp input data into fuzzy set using membership
functions

5 Inference Evaluate fuzzy set according to rule set

6 Aggregation Combine results from each rule evaluation

7 Defuzzification Convert fuzzy set to crisp output values

Initialization: Define Linguistic Variables
and Terms
The linguistic variables that I just introduced are values that represent the inputs and
outputs of the system. They are not typically numerical values but instead are usually
words, or even sentences, from a natural language, such as English. Linguistic variables
are also decomposed into a set of linguistic terms.

Demo 5-1: Using FL to Calculate a Tip
In a tipping scenario, there are a number of input variables that go into the decision
about how much to tip the server after completing a restaurant meal. Let us consider two
primary inputs: food quality and service quality.

Chapter 5 ■ Fuzzy LogiC SyStem

114

I do realize that many people, when determining a tip, differentiate the quality of the
food from the quality of the service because the server has no control over food quality or
preparation other than ensuring that the meal is still hot when served at the table. For this
demonstration, however, I consider food quality as a valid input.

The only output variable is the tip amount, which is a percentage of the total bill.
Now, it is important to develop some linguistic terms that are appropriate to this

situation.
Perhaps the easiest and most obvious way to classify food quality is to use the

following terms:

•	 great

•	 decent

•	 bad

Likewise, classifying service quality uses these terms:

•	 amazing

•	 acceptable

•	 poor

The tip amount is also subject to fuzzy linguistic terms. These are the terms used for
the tip amount:

•	 low

•	 medium

•	 high

 ■ Note From now on, i italicize linguistic variables to help differentiate them from
ordinary words or terms.

There must be a numerical scale for users to rate both the service quality and the
food quality. A scale of 0 to 10 is fine for most people, where 0 is the worst and 10 is the
best. The tip output must also have a numerical scale. This is set at 0 to 26 to represent a
suitable scale for normal tipping percentages. All of these numerical scales represent the
crisp or non-fuzzy inputs or outputs to the membership functions, which are discussed in
the next section.

Initialization: Construct Membership Functions
Membership functions are used in both FL fuzzification and defuzzification steps. These
functions map non-fuzzy input values to fuzzy linguistic variables for fuzzification,
and map fuzzy variables to non-fuzzy output values for defuzzification. Essentially,
a membership function quantifies linguistic terms. Figure 5-2 shows the food quality
membership function.

Chapter 5 ■ Fuzzy LogiC SyStem

115

Figure 5-3 shows the service quality membership function.

Figure 5-2. Food quality membership function

Figure 5-3. Service quality membership function

Chapter 5 ■ Fuzzy LogiC SyStem

116

I chose to use triangular shapes for the decent, acceptable, and medium linguistic
terms. I use open-ended trapezoid shapes for the extremis bad, great, poor, amazing,
low, and high terms. There are shapes other than triangular that are commonly used for
membership functions, including

•	 Gaussian

•	 trapezoidal

•	 singleton

•	 piecewise linear

•	 sinusoidal

•	 exponential

The selection of an appropriate membership function shape is often based on the
user’s experience. I sometimes use the following analogy to help people understand
membership functions. Suppose that you interviewed a large group of people on their
preferences in determining an appropriate amount to tip, given the quality of the food
and the service. As most of my readers understand, the resulting distribution of tip values
is Gaussian, or normal in shape, which is the likely outcome of randomly interviewing
large numbers of people. Any point on a Gaussian curve is the group probability for
the corresponding measure of food and service quality. It is perfectly possible to use a
Gaussian distribution shape as the membership function, as shown in Figure 5-5.

Figure 5-4. Tip amount membership function

Finally, Figure 5-4 shows the tip amount membership function.

Chapter 5 ■ Fuzzy LogiC SyStem

117

The only problem with using this shape is that you are now dealing with the
underlying mathematics behind the Gaussian curve, which rapidly becomes messy and
cumbersome when trying to use it in an FL application. A normalized Gaussian equation
is of the following form:

f x ae x b c() = − −()2 22/ where a, b, and c are generalized parameters

The Gaussian curve is mostly likely a better model of human behavior and choice
for this example, but using it is not worth the effort, as the AI concepts can be well
understood using the much simpler triangular shape for the membership curves.

Membership Function Visualization
The main Python program also contains the code shown in Figures 5-2, 5-3, and 5-4,
which should help greatly in understanding the membership functions. The following
code segment generates these figures when the overall program is executed:

Visualize the membership functions
fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, figsize=(8, 9))

ax0.plot(x_qual, qual_lo, 'b', linewidth=1.5, label='Bad')
ax0.plot(x_qual, qual_md, 'g', linewidth=1.5, label='Decent')
ax0.plot(x_qual, qual_hi, 'r', linewidth=1.5, label='Great')
ax0.set_title('Food quality')
ax0.legend()

Figure 5-5. Gaussian membership function

Chapter 5 ■ Fuzzy LogiC SyStem

118

ax1.plot(x_serv, serv_lo, 'b', linewidth=1.5, label='Poor')
ax1.plot(x_serv, serv_md, 'g', linewidth=1.5, label='Acceptable')
ax1.plot(x_serv, serv_hi, 'r', linewidth=1.5, label='Amazing')
ax1.set_title('Service quality')
ax1.legend()

ax2.plot(x_tip, tip_lo, 'b', linewidth=1.5, label='Low')
ax2.plot(x_tip, tip_md, 'g', linewidth=1.5, label='Medium')
ax2.plot(x_tip, tip_hi, 'r', linewidth=1.5, label='High')
ax2.set_title('Tip amount')
ax2.legend()

Turn off top/right axes
for ax in (ax0, ax1, ax2):
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()

plt.tight_layout()

 ■ Note this code segment listing needs additional initialization before it can be run. that
additional code is shown in the next code segment listing.

Initialization: Build Rule Set
An FLS also requires an expert system to generate the appropriate control actions based
upon the fuzzified input variables. This expert system is of the form if <condition> then
<conclusion>, which was discussed in Chapter 2. The following are the rules implemented
for this FLS demonstration:

•	 if the food is bad or the service is poor, then the tip will be low

•	 if the service is acceptable, then the tip will be medium

•	 if the food is great or the service is amazing, then the tip will be high

These three rules apply to both the input variables and the output variable. I discuss
how the rules are applied after the fuzzification section discussion, which is next.
Fuzzification is step 4 in the FLS algorithm.

Fuzzification: Convert crisp input data a into fuzzy set using membership functions.
The membership function shapes and the rules for generating an appropriate tip

percentage are set. The next thing is to show you how to fuzzify the crisp food and service
ratings. The procedure is exactly the same for each of these crisp variables, because I
chose the same membership function shapes for each one. That choice can vary and it
is often common to have distinct and separate member functions in an FLS for different
crisp variables.

http://dx.doi.org/10.1007/978-1-4842-2743-5_2

Chapter 5 ■ Fuzzy LogiC SyStem

119

The word fuzzification refers to the action of converting a crisp set of input data to
a fuzzy set using fuzzy linguistic variables and terms along with membership functions.
The actual fuzzification takes place in a set of functions that depend upon the following
code segment, which creates the input and output variable ranges and the membership
functions:

import numpy as np
import skfuzzy as fuzz
import matplotlib.pyplot as plt

Generate universe variables
* food quality and service on subjective ranges, 0 to 10
* tip has a range of 0 to 25 in units of percentage points
x_qual = np.arange(0, 11, 1)
x_serv = np.arange(0, 11, 1)
x_tip = np.arange(0, 26, 1)

Generate fuzzy membership functions
qual_lo = fuzz.trimf(x_qual, [0, 0, 5])
qual_md = fuzz.trimf(x_qual, [0, 5, 10])
qual_hi = fuzz.trimf(x_qual, [5, 10, 10])
serv_lo = fuzz.trimf(x_serv, [0, 0, 5])
serv_md = fuzz.trimf(x_serv, [0, 5, 10])
serv_hi = fuzz.trimf(x_serv, [5, 10, 10])
tip_lo = fuzz.trimf(x_tip, [0, 0, 13])
tip_md = fuzz.trimf(x_tip, [0, 13, 25])
tip_hi = fuzz.trimf(x_tip, [13, 25, 25])

To test the algorithm, let’s assume that the food quality was valued at 6.5 and the
service at 9.8. The following code segment calculates the six degrees of membership for
each input variable and membership function:

qual_level_lo = fuzz.interp_membership(x_qual, qual_lo, 6.5)
qual_level_md = fuzz.interp_membership(x_qual, qual_md, 6.5)
qual_level_hi = fuzz.interp_membership(x_qual, qual_hi, 6.5)

serv_level_lo = fuzz.interp_membership(x_serv, serv_lo, 9.8)
serv_level_md = fuzz.interp_membership(x_serv, serv_md, 9.8)
serv_level_hi = fuzz.interp_membership(x_serv, serv_hi, 9.8)

The fuzz.interp_membership(a, b, c) function is part of the skfuzzy
library that you installed earlier. This is an interpolation function that uses the
membership function range (a) and linear shape (b) along with the crisp input value (c)
to calculate the degree of membership for that particular group.

It is time to apply the rules once the degree of membership values has been
determined. This is step 5 of the algorithm or inference.

Chapter 5 ■ Fuzzy LogiC SyStem

120

Inference: Evaluate Fuzzy Set According to Rule Set
Applying the if … then inferential rules is rather easy because all you must do is focus on
how the linguistic terms are related. For instance, this is rule 1:

if the food is bad or the service is poor, then the tip will be low

The conjunction between the bad and poor linguistic terms is the or operator. In
fuzzy logic, using an or operator is equivalent to selecting the maximum of the two
membership values representing the respective linguistic terms. If you refer back to
Figures 5-2 and 5-3, you quickly see that there are no intersections with either the bad
and poor membership functions for the assumed crisp input variable values, so the result
of applying this rule must be 0. Connecting the combined bad and poor linguistic terms
to the low tip membership function is trivial because the value is still 0 more than the
universe of applicable values.

Applying rule 2 is a bit different. This is rule 2:

If the service is acceptable, then the tip will be medium.

In this case, only the service membership function is considered for input. Referring
back to Figure 5-3, you see that applying a crisp input variable value of 9.8 to the
acceptable membership group results in a degree of membership of approximately 0.02.
The and operator is then applied to the acceptable service and medium tip membership
functions, which results in the minimum operation being applied to both membership
functions. This minimum operation effectively “flattops” the membership functions,
resulting in a new shape, as shown in Figure 5-6. Note also that the input range has been
expanded to accommodate the tip value range, which is 2.5 times the input service
range. Notice also that the slopes of the lines at the ends of the membership function are
lessened due to the expanded x-axis scale.

Figure 5-6. Service and tip membership functions after rule 2 is applied

Rule 3 is the last to be applied:

If the food is great or the service is amazing, then the tip will be high.

Chapter 5 ■ Fuzzy LogiC SyStem

121

The or operation is applied for rule 3, just as it was for rule 1. But in this case, there
are definite intersections with the great and amazing membership functions. Figure 5-7
shows both the food and the service membership functions after being flattop but before
being combined.

Figure 5-7. Flattop food and service membership functions

Figure 5-8 shows the great, amazing, and high membership functions combined.
It should not be a big surprise that the shape is roughly the same as the unmodified
membership functions because the or operation commands the maximum value
and the two unmodified membership shapes are exactly the same. The shape also
remains unchanged after the combined membership function is “anded” with the
high tip membership function, although the range of x-axis values changes to 0 to 25
to accommodate the tip range, as done with the previous rule, and the flattop region
expands a bit due to the x-axis expansion.

Chapter 5 ■ Fuzzy LogiC SyStem

122

The following code segment applies the rules and combines the membership functions:

Apply rule 1
The 'or' operator means to take the maximum by using the
'np.max' function

active_rule1 = np.fmax(qual_level_lo, serv_level_lo)

Next, flattop the corresponding output
Combine with low tip membership function using `np.fmin`

tip_activation_lo = np.fmin(active_rule1, tip_lo) # Removed
entirely to 0

Rule 2 connects acceptable service to medium tipping
No flat topping needed as there is only one input membership
function
However, the tip membership must be combined using an 'and'
or 'np.fmin' function

tip_activation_md = np.fmin(serv_level_md, tip_md)

Rule 3 connects amazing service or great food with high
tipping

active_rule3 = np.fmax(qual_level_hi, serv_level_hi)
tip_activation_hi = np.fmin(active_rule3, tip_hi)

At this point, all the rules have been applied to the output membership functions. It
now remains to combine them all. In FL terminology, this is known as aggregation, which
is step 6 in the FLS algorithm.

Figure 5-8. Combined great, amazing, and high membership functions

Chapter 5 ■ Fuzzy LogiC SyStem

123

Aggregation: Combine Results from
Each Rule Evaluation
Aggregation is normally done using the maximum operator. The following statement does
the aggregation:

Aggregate all three output membership functions together

aggregated = np.fmax(tip_activation_lo, np.fmax(tip_
activation_md, tip_activation_hi))

Figure 5-9 shows the final combined membership functions after the aggregation is
complete.

Figure 5-9. Membership functions after aggregation

There is only one more step in the FLS algorithm: defuzzification.

Defuzzification: Convert Fuzzy Set to Crisp
Output Values
Defuzzification is the process where we return from the fuzzy world to the real world and
create an output that can be acted upon, which in this case is a tip percentage. There are a
variety of mathematical techniques available for defuzzification, including

•	 centroid

•	 bisector

•	 mean

•	 smallest of maximum

•	 largest of maximum

•	 weighted average

Chapter 5 ■ Fuzzy LogiC SyStem

124

Figure 5-10 demonstrates how values for each method are chosen using an arbitrary
aggregation membership function.

Figure 5-10. Various defuzzification methods

Centroid defuzzification is the most commonly used method because it is very
accurate. It calculates the center of the area under the curve of membership function.
This can require significant computational processing for complex membership
functions. The centroid equation is

z x xdx x dxi i0 = () ()∫ ∫µ µ/

where z
0
 is the defuzzified output, μ

i
 represents a membership function, and x is the

output variable.
Bisector defuzzification uses vertical lines that divide the area under the

membership curve into two equal areas:

a

z

A

z

Ax dx x dx∫ ∫() = ()µ µ
β

The mean of maximum (MOM) defuzzification method uses the average value of the
aggregated membership function outputs.

z
ni

n
i

0
1

=
=
∑ω

Chapter 5 ■ Fuzzy LogiC SyStem

125

The smallest of maximum defuzzification method uses the minimum value of the
aggregated membership function outputs.

z member of x x0 | minµ µ ω() = (){ }

The largest of maximum defuzzification method uses the maximum value of the
aggregated membership function outputs.

z member of x x0 | maxµ µ ω() = (){ }

The weighted average defuzzification method calculates the weighted sum of
each fuzzy set. The crisp value is set according to the weighted values and the degree of
membership for fuzzy output, as determined by the following formula:

z
x W

x
i i

i

0 =
()
()

∑
∑
µ
µ

μ
i
 is the degree of membership in output singleton i and W

i
 is the fuzzy output weight

value for the output singleton i.
Next, I discuss how the centroid method is implemented for this project. The

following code snippet calculates the centroid defuzzification value:

Calculate defuzzified result
tip = fuzz.defuzz(x_tip, aggregated, 'centroid')

This value is needed for the plot
tip_activation = fuzz.interp_membership(x_tip, aggregated, tip)

This section completes the tipping fuzzy logic project. All that’s left to do is load
and run the following code, which is named tipping.py. Enter the following to run the
program:

sudo python tipping.py

You need to close each plot after it appears to go on to the next plot.

tipping.py listing

import numpy as np
import skfuzzy as fuzz
import matplotlib.pyplot as plt

Generate universe variables
* Quality and service on subjective ranges [0, 10]
* Tip has a range of [0, 25] in units of percentage points

Chapter 5 ■ Fuzzy LogiC SyStem

126

x_qual = np.arange(0, 11, 1)
x_serv = np.arange(0, 11, 1)
x_tip = np.arange(0, 26, 1)

Generate fuzzy membership functions
qual_lo = fuzz.trimf(x_qual, [0, 0, 5])
qual_md = fuzz.trimf(x_qual, [0, 5, 10])
qual_hi = fuzz.trimf(x_qual, [5, 10, 10])
serv_lo = fuzz.trimf(x_serv, [0, 0, 5])
serv_md = fuzz.trimf(x_serv, [0, 5, 10])
serv_hi = fuzz.trimf(x_serv, [5, 10, 10])
tip_lo = fuzz.trimf(x_tip, [0, 0, 13])
tip_md = fuzz.trimf(x_tip, [0, 13, 25])
tip_hi = fuzz.trimf(x_tip, [13, 25, 25])

Visualize these universes and membership functions
fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, figsize=(8, 9))

ax0.plot(x_qual, qual_lo, 'b', linewidth=1.5, label='Bad')
ax0.plot(x_qual, qual_md, 'g', linewidth=1.5, label='Decent')
ax0.plot(x_qual, qual_hi, 'r', linewidth=1.5, label='Great')
ax0.set_title('Food quality')
ax0.legend()

ax1.plot(x_serv, serv_lo, 'b', linewidth=1.5, label='Poor')
ax1.plot(x_serv, serv_md, 'g', linewidth=1.5,
label='Acceptable')
ax1.plot(x_serv, serv_hi, 'r', linewidth=1.5, label='Amazing')
ax1.set_title('Service quality')
ax1.legend()

ax2.plot(x_tip, tip_lo, 'b', linewidth=1.5, label='Low')
ax2.plot(x_tip, tip_md, 'g', linewidth=1.5, label='Medium')
ax2.plot(x_tip, tip_hi, 'r', linewidth=1.5, label='High')
ax2.set_title('Tip amount')
ax2.legend()

Turn off top/right axes
for ax in (ax0, ax1, ax2):
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()

plt.tight_layout()
plt.show()

Chapter 5 ■ Fuzzy LogiC SyStem

127

Calculate degrees of membership
The exact values 6.5 and 9.8 do not exist on our universes
Use fuzz.interp_membership to determine values

qual_level_lo = fuzz.interp_membership(x_qual, qual_lo, 6.5)
qual_level_md = fuzz.interp_membership(x_qual, qual_md, 6.5)
qual_level_hi = fuzz.interp_membership(x_qual, qual_hi, 6.5)

serv_level_lo = fuzz.interp_membership(x_serv, serv_lo, 9.8)
serv_level_md = fuzz.interp_membership(x_serv, serv_md, 9.8)
serv_level_hi = fuzz.interp_membership(x_serv, serv_hi, 9.8)

Apply the rules, Rule 1 concerns bad food OR service.
The OR operator means we take the maximum of these two.

active_rule1 = np.fmax(qual_level_lo, serv_level_lo)

Now we apply this by clipping the top off the corresponding output
membership function with `np.fmin`

tip_activation_lo = np.fmin(active_rule1, tip_lo) # removed
entirely to 0

Rule 2 is a straight if ... then construction
if acceptable service then medium tipping. This is an AND operator
We take the minimum for an AND operator

tip_activation_md = np.fmin(serv_level_md, tip_md)

For rule 3 we connect high service OR high food with high tipping
active_rule3 = np.fmax(qual_level_hi, serv_level_hi)
tip_activation_hi = np.fmin(active_rule3, tip_hi)
tip0 = np.zeros_like(x_tip)

Visualize these rule applications

fig, ax0 = plt.subplots(figsize=(8, 3))
ax0.fill_between(x_tip, tip0, tip_activation_lo, facecolor='b',
alpha=0.7)
ax0.plot(x_tip, tip_lo, 'b', linewidth=0.5, linestyle='--',)
ax0.fill_between(x_tip, tip0, tip_activation_md, facecolor='g',
alpha=0.7)
ax0.plot(x_tip, tip_md, 'g', linewidth=0.5, linestyle='--')
ax0.fill_between(x_tip, tip0, tip_activation_hi, facecolor='r',
alpha=0.7)
ax0.plot(x_tip, tip_hi, 'r', linewidth=0.5, linestyle='--')
ax0.set_title('Output membership activity')

Chapter 5 ■ Fuzzy LogiC SyStem

128

Turn off top/right axes

for ax in (ax0,):
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()

plt.tight_layout()
plt.show()

Aggregate all three output membership functions together
This aggregation uses OR operators, hence the maximum is found

aggregated = np.fmax(tip_activation_lo, np.fmax(tip_activation_
md, tip_activation_hi))

Calculate defuzzified result using the method of centroids
tip = fuzz.defuzz(x_tip, aggregated, 'centroid')

display the tip percentage on the console
print tip

Value needed for the next plot
tip_activation = fuzz.interp_membership(x_tip, aggregated, tip)

Visualize the final results
fig, ax0 = plt.subplots(figsize=(8, 3))

ax0.plot(x_tip, tip_lo, 'b', linewidth=0.5, linestyle='--',)
ax0.plot(x_tip, tip_md, 'g', linewidth=0.5, linestyle='--')
ax0.plot(x_tip, tip_hi, 'r', linewidth=0.5, linestyle='--')
ax0.fill_between(x_tip, tip0, aggregated, facecolor='Orange',
alpha=0.7)
ax0.plot([tip, tip], [0, tip_activation], 'k', linewidth=1.5,
alpha=0.9)
ax0.set_title('Aggregated membership and result (line)')

Turn off top/right axes

for ax in (ax0,):
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()

plt.tight_layout()
plt.show()

Chapter 5 ■ Fuzzy LogiC SyStem

129

Figure 5-11 is the first display shown on the monitor. It shows all three membership
functions: food quality, service quality, and tip amount.

Figure 5-11. Three membership functions

Chapter 5 ■ Fuzzy LogiC SyStem

130

Figure 5-12 shows the next display: the combined membership functions after all the
rules are applied, and all the input and output membership are functions connected.

Figure 5-13 shows the next display: the post aggregation results for all the processed
membership functions. In addition, there is a line indicating the crisp output for the tip
percentage resulting from the defuzzification process.

Finally, Figure 5-14 shows the text display for the tip percentage, which comes from a
print statement within the program.

Figure 5-12. Membership functions after rules application

Figure 5-13. Post aggregation and defuzzification results

Chapter 5 ■ Fuzzy LogiC SyStem

131

Figure 5-14. Print statement for tip percentage

Demo 5-2: Modifications to the tipping.py Program
In this section, I discuss modifications to the Python program to make it easier to use
and significantly more portable. The main modification is to query the user about the
food and service quality, rather than have static values, which was the case for the initial
project. This modification is fairly easy and consists of creating two variables to hold the
food and service quality levels, and two input statements to get the data into the program.
The additional or modified code is as follows:

food_qual = raw_input('Rate the food quality, 0 to 10')
service_qual = raw_input('Rate the service quality, 0 to 10')

qual_level_lo = fuzz.interp_membership(x_qual, qual_lo,
float(food_qual))
qual_level_md = fuzz.interp_membership(x_qual, qual_md,
float(food_qual))
qual_level_hi = fuzz.interp_membership(x_qual, qual_hi,
float(food_qual))

serv_level_lo = fuzz.interp_membership(x_serv, serv_lo,
float(service_qual))
serv_level_md = fuzz.interp_membership(x_serv, serv_md,
float(service_qual))
serv_level_hi = fuzz.interp_membership(x_serv, serv_hi,
float(service_qual))

This modified code takes care of prompting the user to enter food and service
quality ratings.

The second modification is to make the whole system completely portable,
somewhat akin to the Nim game configuration discussed in the previous chapter.
I would use an LCD display to show the user prompts to enter the food and the service
quality ratings, and then show the resulting tip percentage. How cool would it be to have
a portable fuzzy logic system that computes tip percentages to show off to your relatives
and friends? The LCD display interface and software was discussed in the previous
chapter. The only new required technology is a USB numeric key pad for the user to enter

Chapter 5 ■ Fuzzy LogiC SyStem

132

the quality ratings. Figure 5-15 shows a very inexpensive USB keypad that I experimented
with for this modification. I am not going into all the details on how to complete this
portable system, since I am reasonably confident that most of you can adapt the previous
LCD discussions to this new application. Just remember, there is no longer a need for all
the visualization code, which considerably reduces the size of the main program.

Figure 5-15. Inexpensive USB numeric keypad

This section completes the first project. It is now time to consider a more complex
fuzzy logic controller project.

Demo 5-3: FLS Heating and Cooling System
I start this project assuming that you have read and understood the first project in
the chapter. There should be no need to go into any detailed discussion regarding FL
concepts. I simply follow the FLS algorithm in developing this project. In addition, I do
not use any of the visualization code in this project because it already served its purpose
in the previous project. Interested readers can easily reintroduce the code to obtain the
plots to see how this system functions.

Consider a heating, ventilation, and cooling system (HVAC) that, practically
speaking, is a heat pump that acts as either an air conditioner or a heater. Figure 5-16
shows a block diagram of such a system. This configuration is also known in control
terminology as a closed-loop system.

Chapter 5 ■ Fuzzy LogiC SyStem

133

Figure 5-16. HVAC closed-loop system

Let’s define temperature (t) as a crisp input variable to represent the room
temperature that is being heated or cooled. Generally, people use the terms hot and cold
as room temperature qualifiers. These terms, as well as related ones, can be developed
into a set of linguistic terms, such that

T(t) = { cold, comfortable, hot }

This expression for T(t) represents a decomposition function for the input variable
t. Each member of this linguistic decomposition set represents or is associated with
a numerical temperature range. For instance, cold could be a range of 40°F to 60°F,
while hot might be a range of 70°F to 90°F. Other linguistic terms could easily fill in the
intervening ranges if it was decided that 20°F was an appropriate interval value.

In addition, there is another input named target temperature, which is set by the
people who occupy the room. This is analogous to setting a room thermostat.

Figure 5-17 shows the membership functions that were created to map the crisp,
non-fuzzy, room and target temperature values to the corresponding fuzzy linguistic
terms. Only one set of membership functions is shown because they are common to both
the room and target temperature input variables.

Figure 5-17. Room and target temperature membership functions

In this case, any given room temperature can belong to one or two groups,
depending upon its values. Figure 5-18 shows that a room temperature of 65°F has a
membership value of 0.5 in the comfortable membership function, as well as 0.5 in the

Chapter 5 ■ Fuzzy LogiC SyStem

134

cold membership function. A room temperature of exactly 70°F has a membership value
of 1.0 and is only in the comfortable membership function.

Table 5-3. Matrix of Command Actions for Room and Target Temperature Linguistic Variables

Room Temperature Target Temperature

cold comfortable hot

cold no change heat heat

comfortable cool no change heat

hot cool cool no change

Figure 5-18. HVAC control membership functions

The HVAC controller also needs a set of membership functions to take based on
command results. Figure 5-18 shows the set of membership functions for HVAC control.
Note that it has the same shapes and output variable range as the input variables.

The following are some example rules to determine the control commands based on
room and target temperatures:

•	 if (room temperature is cold) and (target temperature is
comfortable), then the command is heat

•	 if (room temperature is hot) and (target temperature is
comfortable), then the command is cool

•	 if (room temperature is comfortable) and (target temperature is
comfortable), then the command is no change

The precise command actions to be taken using a preset target temperature and
measured room temperature have to be determined by a human expert and codified in
the rules database. Table 5-3 is a matrix detailing the precise control commands for all
combinations of linguistic variables for both room and target temperatures.

Chapter 5 ■ Fuzzy LogiC SyStem

135

There are six rules required to accommodate all the combinations of the intersecting
room temperature and target temperature linguistic terms that require action. The rules
for no change are ignored. These are the rules:

•	 if room temp is cold and target temp is comfortable, then the
command is heat

•	 if room temp is cold and target temp is hot, then the command
is heat

•	 if room temp is comfortable and target temp is cold, then the
command is cool

•	 if room temp is comfortable and target temp is heat, then the
command is heat

•	 if room temp is hot and target temp is cold, then the command
is cool

•	 if room temp is hot and target temp is comfortable, then the
command is cool

Now that the set of rules have been created, it is time to discuss fuzzification.

Fuzzification
The following code segment sets up the input variable ranges and the membership functions:

import numpy as np
import skfuzzy as fuzz

Generate universe variables
* room and target temperature range is 50 to 90
* same for the output control variable
x_room_temp = np.arange(50, 91, 1)
x_target_temp = np.arange(50, 91, 1)
x_control_temp = np.arange(50, 91, 1)

Generate fuzzy membership functions
room_temp_lo = fuzz.trimf(x_qual, [50, 50, 70])
room_temp_md = fuzz.trimf(x_qual, [50, 70, 90])
room_temp_hi = fuzz.trimf(x_qual, [70, 90, 90])
target_temp_lo = fuzz.trimf(x_serv, [50, 50, 70])
target_temp_md = fuzz.trimf(x_serv, [50, 70, 90])
target_temp_hi = fuzz.trimf(x_serv, [50, 90, 90])
control_temp_lo = fuzz.trimf(x_tip, [50, 50, 70])
control_temp_md = fuzz.trimf(x_tip, [50, 70, 90])
control_temp_hi = fuzz.trimf(x_tip, [70, 90, 90])

Chapter 5 ■ Fuzzy LogiC SyStem

136

The next step in the algorithm is to determine the fuzzified values based on values
for room and target temperatures. In this project, the user is asked to input both values.
In a real-word FL control system, the target temperature is manually set, while the room
temperature is determined with a sensor. However, to simplify things, both inputs are
manually set. The following code accepts user input and fuzzifies those inputs:

Get user inputs
room_temp = raw_input('Enter room temperature 50 to 90')
target_temp = raw_input('Enter target temperature 50 to 90')

Calculate degrees of membership
room_temp_level_lo = fuzz.interp_membership(x_room_temp,
room_temp_lo, float(room_temp))
room_temp_level_md = fuzz.interp_membership(x_room_temp,
room_temp_md, float(room_temp))
room_temp_level_hi = fuzz.interp_membership(x_room_temp,
room_temp_hi, float(room_temp))

target_temp_level_lo = fuzz.interp_membership(x_target_temp,
target_temp_lo, float(target_temp))
target_temp_level_md = fuzz.interp_membership(x_target_temp,
target_temp_md, float(target_temp))
target_temp_level_hi = fuzz.interp_membership(x_target_temp,
Target_temp_hi, float(target_temp))

Now on to the inference step where all the rules are applied and membership
functions combined.

Inference
The following code segment applies the six rules and combines all the membership
functions:

Apply rule 1: if room_temp is cold and target temp is
comfortable then command is heat
The 'and' operator means to take the minimum by using the
'np.fmin' function
active_rule1 = np.fmin(room_temp_level_lo, target_temp_level_md)
Combine with hi control membership function using `np.fmin`
control_activation_1 = np.fmin(active_rule1, control_temp_hi)

Next go through all five remaining rules
#Apply rule 2: if room_temp is cold and target temp is hot then
command is heat
active_rule2 = np.fmin(room_temp_level_lo, target_temp_level_hi)
Combine with hi control membership function using `np.fmin`
control_activation_2 = np.fmin(active_rule2, control_temp_hi)

Chapter 5 ■ Fuzzy LogiC SyStem

137

#Apply rule 3: if room_temp is comfortable and target temp is
cold then command is cool
active_rule3 = np.fmin(room_temp_level_md, target_temp_level_lo)
Combine with lo control membership function using `np.fmin`
control_activation_3 = np.fmin(active_rule3, control_temp_lo)

#Apply rule 4: if room_temp is comfortable and target temp is
heat then command is heat
active_rule4 = np.fmin(room_temp_level_md, target_temp_level_hi)
Combine with hi control membership function using `np.fmin`
control_activation_4 = np.fmin(active_rule4, control_temp_hi)

#Apply rule 5: if room_temp is hot and target temp is cold then
command is cool
active_rule5 = np.fmin(room_temp_level_hi, target_temp_level_lo)
Combine with lo control membership function using `np.fmin`
control_activation_5 = np.fmin(active_rule5, control_temp_lo)

#Apply rule 6: if room_temp is hot and target temp is
comfortable then command is cool
active_rule6 = np.fmin(room_temp_level_hi, target_temp_level_md)
Combine with lo control membership function using `np.fmin`
control_activation_6 = np.fmin(active_rule6, control_temp_lo)

This section covered applying rules and combining sets. The next step is aggregation.

Aggregation
The aggregation statement is long because of the six control activation values.

aggregated = np.fmax(control_activation_1, control_activation_2,
 control_activation_3, control_activation_4,
 control_activation_5, control_activation_6)

It is time for the defuzzification once the aggregation is completed.

Defuzzification
The centroid method will be applied for this project as it was done for the previous project.

Calculate defuzzified result using the method of centroids
control_value = fuzz.defuzz(x_control_temp, aggregated,
'centroid')

Now, simply display the crisp output value.

print control_value

Chapter 5 ■ Fuzzy LogiC SyStem

138

The following is the complete listing for the hvac.py program.

import numpy as np
import skfuzzy as fuzz

Generate universe variables
* room and target temperature range is 50 to 90
* same for the output control variable
x_room_temp = np.arange(50, 91, 1)
x_target_temp = np.arange(50, 91, 1)
x_control_temp = np.arange(50, 91, 1)

Generate fuzzy membership functions
room_temp_lo = fuzz.trimf(x_room_temp, [50, 50, 70])
room_temp_md = fuzz.trimf(x_room_temp, [50, 70, 90])
room_temp_hi = fuzz.trimf(x_room_temp, [70, 90, 90])
target_temp_lo = fuzz.trimf(x_target_temp, [50, 50, 70])
target_temp_md = fuzz.trimf(x_target_temp, [50, 70, 90])
target_temp_hi = fuzz.trimf(x_target_temp, [50, 90, 90])
control_temp_lo = fuzz.trimf(x_control_temp,[50, 50, 70])
control_temp_md = fuzz.trimf(x_control_temp,[50, 70, 90])
control_temp_hi = fuzz.trimf(x_control_temp,[70, 90, 90])

Get user inputs
room_temp = raw_input('Enter room temperature 50 to 90: ')
target_temp = raw_input('Enter target temperature 50 to 90: ')

Calculate degrees of membership
room_temp_level_lo = fuzz.interp_membership(x_room_temp,
room_temp_lo, float(room_temp))
room_temp_level_md = fuzz.interp_membership(x_room_temp,
room_temp_md, float(room_temp))
room_temp_level_hi = fuzz.interp_membership(x_room_temp,
room_temp_hi, float(room_temp))

target_temp_level_lo = fuzz.interp_membership(x_target_temp,
target_temp_lo, float(target_temp))
target_temp_level_md = fuzz.interp_membership(x_target_temp,
target_temp_md, float(target_temp))
target_temp_level_hi = fuzz.interp_membership(x_target_temp,
target_temp_hi, float(target_temp))

Apply all six rules
rule 1: if room_temp is cold and target temp is comfortable
then command is heat
active_rule1 = np.fmin(room_temp_level_lo, target_temp_level_md)
control_activation_1 = np.fmin(active_rule1, control_temp_hi)

Chapter 5 ■ Fuzzy LogiC SyStem

139

rule 2: if room_temp is cold and target temp is hot then
command is heat
active_rule2 = np.fmin(room_temp_level_lo, target_temp_level_hi)
control_activation_2 = np.fmin(active_rule2, control_temp_hi)

rule 3: if room_temp is comfortable and target temp is cold
then command is cool
active_rule3 = np.fmin(room_temp_level_md, target_temp_level_lo)
control_activation_3 = np.fmin(active_rule3, control_temp_lo)

rule 4: if room_temp is comfortable and target temp is heat
then command is heat
active_rule4 = np.fmin(room_temp_level_md, target_temp_level_hi)
control_activation_4 = np.fmin(active_rule4, control_temp_hi)

rule 5: if room_temp is hot and target temp is cold then
command is cool
active_rule5 = np.fmin(room_temp_level_hi, target_temp_level_lo)
control_activation_5 = np.fmin(active_rule5, control_temp_lo)

rule 6: if room_temp is hot and target temp is comfortable then
command is cool
active_rule6 = np.fmin(room_temp_level_hi, target_temp_level_md)
control_activation_6 = np.fmin(active_rule6, control_temp_lo)

Aggregate all six output membership functions together
Combine outputs to ease the complexity as fmax() only as two
args
c1 = np.fmax(control_activation1, control_activation2)
c2 = np.fmax(control_activation3, control_activation4)
c3 = np.fmax(control_activation5, control_activation6)
c4 = np.fmax(c2,c3)
aggregated = np.fmax(c1, c4)

Calculate defuzzified result using the method of centroids
control_value = fuzz.defuzz(x_control_temp, aggregated,
'centroid')

Display the crisp output value
print control_value

Testing the Control Program
Tables 5-4 through 5-8 show the results of testing the control program throughout a
representative range of room and target temperature inputs.

Chapter 5 ■ Fuzzy LogiC SyStem

140

Table 5-4. Target Set at 50

Room Temperature Target Temperature Command Output

51* 51* 70.00

60 50 57.78

70 50 56.67

80 50 57.78

90 50 56.67

Table 5-5. Target Set at 60

Room Temperature Target Temperature Command Output

50 60 82.22

60 60 70.00

70 60 66.40

80 60 66.40

90 60 57.78

Table 5-6. Target Set at 70

Room Temperature Target Temperature Command Output

50 70 83.33

60 70 82.22

70 70 82.22

80 70 70.00

90 70 56.67

Table 5-7. Target Set at 80

Room Temperature Target Temperature Command Output

50 80 83.33

60 80 82.22

70 80 83.33

80 80 70.00

90 80 57.78

Chapter 5 ■ Fuzzy LogiC SyStem

141

 ■ Note the temperatures with an asterisk (*) were slightly shifted because the
defuzzification method throws an error when the temperatures match and are at the
extremes of the variable range.

I carefully studied the results and derived these conclusions from the test data:

•	 A command value of approximately 65 to 75 means no change

•	 A command value of approximately 82 to 83 means that heating is
required

•	 A command value of approximately 56 to 65 means that cooling is
required

The “no change” range was approximately ±4 around the target temperature. This is
actually not too bad of a finding since it prevents the system from unnecessary operation
while still achieving the majority “opinion” for the desired room temperature.

Demo 5-4: Modifications to the HVAC Program
For this demo, I made a simple modification to the control program: one of three LEDs
lights up, based on whether heating, cooling, or no change is determined from user input.
The following code is appended to the prior listing, except the additional import and
configuration statements should be placed at the start of the program, just as I did with
previous programs that used LEDs. I provide comments that indicate the GPIO pins used
in this modification. They are the same ones that were used in the prs.py game, so use the
LED interconnection diagram shown in that project.

Include the following at the beginning of the hvac.py program
import RPi.GPIO as GPIO
import time

Setup GPIO pins
Set the BCM mode
GPIO.setmode(GPIO.BCM)

Table 5-8. Target Set at 90

Room Temperature Target Temperature Command Output

50 90 83.33

60 90 82.22

70 90 83.33

80 90 82.22

89* 89* 70.00

Chapter 5 ■ Fuzzy LogiC SyStem

142

Outputs
GPIO.setup(4, GPIO.OUT) # heat command
GPIO.setup(17, GPIO.OUT) # cool command
GPIO.setup(27, GPIO.OUT) # no change command

Ensure all LEDs are off to start
GPIO.output(4, GPIO.LOW)
GPIO.output(17, GPIO.LOW)
GPIO.output(27, GPIO.LOW)

The following should be appended to the existing code
if control_value > 65 and control_value < 75: # no change
 GPIO.output(27, GPIO.HIGH)
 time.sleep(5)
 GPIO.output(27, GPIO.LOW)
elif control_value > 82 and control_value < 84: # heat
 GPIO.output(4, GPIO.HIGH)
 time.sleep(5)
 GPIO.output(4, GPIO.LOW)
elif control_value > 56 and control_value < 68: # cool
 GPIO.output(17, GPIO.HIGH)
 time.sleep(5)
 GPIO.output(17, GPIO.LOW)
else:
 print 'strange value calculated'
This next statement used in debugging phase
print 'Thats all folks'

hvac_led.py—the complete program with the LED modifications—is available on
this book’s website. Figure 5-19 shows the Raspberry Pi physical setup with the three
control LEDs connected to a solderless breadboard.

Chapter 5 ■ Fuzzy LogiC SyStem

143

Summary
This chapter focused on fuzzy logic, which is a very clever approach to handling non-
precise values that are present in almost every human situation. My approach was to use
several practical projects to bring fuzzy logic into an understandable framework from
where you could develop your own FL projects.

This chapter had very detailed demonstrations, including a seven-step algorithm for
developing a fuzzy logic system (FLS).

The first demonstration showed how to compute a tip based on food quality and
service quality. The seven-step algorithm resulted in a program that quickly computed
a tip percentage based on user ratings. I even suggested a way to make the project
completely portable.

The second demonstration was somewhat more technical than the first. It involved
creating a heating and cooling FL control system. This system type is commercially available
in HVAC products. In fact, one manufacturer advertises that its system incorporates fuzzy
logic. Admittedly, this chapter’s project is a scaled-down version of a commercial HVAC
system, but it nonetheless incorporates all the important parts of an FLS.

Figure 5-19. Physical setup

CHAPTER 6

Machine Learning

This chapter starts an exploration into the broad topic of machine learning, which
I introduced in Chapter 2. Machine learning is a hot topic in current industry and
academia. Companies such as Google, Amazon, and Facebook have invested many
millions of dollars in machine learning to improve their products and services. I
begin with some fairly simple demonstrations on the Raspberry Pi to examine how a
computer can “learn” in a primitive or naive sense. First, I would like to acknowledge
that I drew much inspiration and knowledge for this chapter from Bert van Dam’s book
Artificial Intelligence: 23 Projects to Bring Your Microcontroller to Life (Elektor Electronics
Publishing, 2009). Although van Dam did not use a Raspberry Pi as a microcontroller, the
concepts and techniques he applied are completely valid and especially appreciated.

Parts List
For the first demonstration, you need the parts listed in Table 6-1.

Table 6-1. Parts List

Description Quantity Remarks

Pi Cobbler 1 40-pin version, either T or DIP form factor
acceptable

solderless breadboard 1 300 insertion points with power supply strips

solderless breadboard 1 300 insertion points

jumper wires 1 package

LED 2 green and yellow LEDs, if possible

2.2kΩ resistor 6 1/4 watt

220Ω resistor 2 1/4 watt

10Ω resistor 2 1/2 watt

push button 1 tactile

MCP3008 1 8-channel ADC chip DIP

http://dx.doi.org/10.1007/978-1-4842-2743-5_2

Chapter 6 ■ MaChine Learning

146

There is a robot demonstration discussed in this chapter that you can build by
following the instructions in the appendix. It is also feasible to simply read the robot
discussion and gain an appreciation of the concepts.

Demo 6-1: Color Selection
In this demonstration, you teach the computer your preferred color, which is either green
or yellow. First, the Raspberry Pi must be set up according to the Fritzing diagram shown
in Figure 6-1.

 ■ Caution ensure that you connect one side of the push button switch to 3.3 V and not 5
V because you will destroy the gpiO pin if you inadvertently connect it to the higher voltage.

Next, I explain how the color selection algorithm works.

Algorithm
Consider the horizontal bar shown in Figure 6-2. It has a total numerical scale of 0 to 255.
The left half of the bar has a scale of 0 to 127, which represents the green LED activation.
The right half has a scale of 128 to 255, which represents the yellow LED activation.

Figure 6-1. Fritzing diagram

Figure 6-2. LED activation bar

Chapter 6 ■ MaChine Learning

147

Let’s create an integer random-number generator that produces a number between
0 and 255, inclusively. This is easily done with the following function, which I have used
in previous Python programs:

decision = randint(0,255)

randint() is the random integer generator method from the Python random
library. The variable decision is a value between 0 and 255. If it is between 0 and 127, the
green LED is lit; otherwise, the value is between 128 and 255, in which case the yellow
LED is lit. Now, if the decision point remains unchanged, there is a 50/50 chance (or
probability, over the long run) that the green LED lights up in each program repetition;
there is an equal chance that the yellow LED will light. But that is not the goal of this
program. The goal is to “teach” the program to select your favorite color. This goal can
eventually be reached by moving the decision point so that it favors the favorite color
selection. Let’s decide that green is the favorite color. Therefore, the decision point
changes each time the green LED lights up because the user pressed the push button.
This button press creates an interrupt with a callback function that increments the
decision point value. Eventually, the decision point will be increased to such a value that
just about every random number generated will fall within the green LED portion of the
bar, as shown in Figure 6-3.

The following program, named color_selection.py, implements the algorithm:

!/usr/bin/python
import statements
import random
import time
import RPi.GPIO as GPIO

initialize global variable for decision point
global dp
dp = 127

Setup GPIO pins
Set the BCM mode
GPIO.setmode(GPIO.BCM)

Figure 6-3. Adjusted number bar

Chapter 6 ■ MaChine Learning

148

Outputs
GPIO.setup(4, GPIO.OUT)
GPIO.setup(17, GPIO.OUT)

Input
GPIO.setup(27, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)

Setup the callback function
def changeDecisionPt(channel):
 global dp
 dp = dp + 1
 if dp == 255: # do not increase dp beyond 255
 dp =255

Add event detection and callback assignment
GPIO.add_event_detect(27, GPIO.RISING, callback=changeDecisionPt)

while True:
 rn = random.randint(0,255)
 # useful to check on the dp value
 print 'dp = ', dp
 if rn <= dp:
 GPIO.output(4, GPIO.HIGH)
 time.sleep(2)
 GPIO.output(4, GPIO.LOW)
 else:
 GPIO.output(17, GPIO.HIGH)
 time.sleep(2)
 GPIO.output(17, GPIO.LOW)

 ■ Note press CtrL+C to exit the program.

When the program began, it was easy to see that the LEDs were on and off about
equal amounts of time. However, as I continually pressed the push button, it rapidly
became apparent that the green LED stayed lit for a longer time, until the dp value
equaled 255 and the yellow LED never lit. The program thus “learned” that my favorite
color was green.

But did the computer actually learn anything? This is more of a philosophical
question than a technical one. It is the type of question that has continually bothered AI
researchers and enthusiasts. I could easily restart the program, and the computer would
reset the decision point and “forgot” the previous program execution. Likewise, I could
change the program such that the dp value is stored externally in a separate data file that
would load each time the program is run, thus remembering the favorite color selection.
I will sidetrack the question of what computer learning actually means and focus on AI
practicalities, as was the path taken by Dr. McCarthy, who I mentioned in Chapter 1.

The next section extends the concepts discussed in this simple demonstration.

http://dx.doi.org/10.1007/978-1-4842-2743-5_1

Chapter 6 ■ MaChine Learning

149

Roulette Wheel Algorithm
Figure 6-4 shows a very simplified roulette wheel with four equal sectors (A through D),
which represent events in a problem domain that compose the complete circle.

There is an average 0.25 probability that any segment will be selected on a given spin
of the wheel. An equation to compute this event probability is directly related to the area
of each segment. It can be expressed as follows:

p
Area

Area Area Area AreaA
A

A B C D

=
+ + +

A particular issue with using an equation such as this is that even though only p
A

may be needed, the representative areas B, C, and D must also be calculated to derive a
valid probability for event A. From a computational point of view, it is very advantageous
to focus on p

A
 and not be concerned with the other event probabilities. All you really

need to know is that a p
A
 exists for the particular event A, and that it can be modified to

accommodate a dynamic situation. In AI terminology, A, B, C, and D are known as fitness.
In addition, the initial assumption is that all fitness ranges are equal, given that there is no
apparent evidence to change this obvious choice.

Figure 6-4. Simple roulette wheel

Chapter 6 ■ MaChine Learning

150

It is somewhat easier to discuss fitness using a horizontal bar, as with the first
example in this chapter. Figure 6-5 shows the fitness variables set in a horizontal bar, with
25 arbitrary values assigned to each one. Also shown on the bar are the results of three
random draws, whose percentage values can range from 0 to 100. My selection of the
individual fitness ranges makes it a one-to-one conversion with the draw percentages.

The matching fitness for each draw is shown in Table 6-2.

However, let’s say that the initial assumption was wrong and that the four fitness
ranges were not equal, but are as shown in Figure 6-6. The same draw percentages from
Figure 6-5 are also shown.

Figure 6-5. Four fitness variables with three random draws

Table 6-2. Initial Fitness Selection

Draw Number Draw Percentage Numerical Value Fitness Selected

1 9 9 A

2 60 60 C

3 93 93 D

Figure 6-6. True fitness ranges

Chapter 6 ■ MaChine Learning

151

This new information changes the fitness choices, as displayed in Table 6-3.

The now reduced A and B fitness ranges leads to the draw #2 fitness choice, which
changes from C to D. This scenario is precisely the same activity that happened in the
color selection example, where every button press changed the decision point, which
in-turn changed the fitness ranges for the two color selections.

Modifying the fitness range and the consequent selection of a strategy are the
fundamental bases for the roulette wheel algorithm. As you will shortly learn, this
algorithm is very useful in implementing a learning behavior for an autonomous vehicle,
such as a small mobile robot. The roulette algorithm is used in medicine in the study of
chromosome survival statistics, for example.

Demo 6-2: Autonomous Robot
Meet Alfie, a name I picked for my small mobile and autonomous robot. Alfie is pictured
in Figure 6-7.

Table 6-3. Modified Fitness Selection

Draw Number Draw Percentage Numerical Value Fitness Selected

1 9 6.3 A

2 60 42 D

3 93 65.1 D

Chapter 6 ■ MaChine Learning

152

I mentioned that the build instructions for Alfie are in the appendix. Feel free to read
the following section without concern about all the tedious technical details involved in
building the robot. However, you are certainly able to replicate this demonstration after
you build and program Alfie.

The robot’s main task is to avoid all obstacles in its path. The path the robot takes
is randomly generated in 2-second increments. Sometimes the path is straight ahead,
whereas other times it is a circling motion to the left or right. Technically, the robot is not
really avoiding obstacles because that would imply a predetermined path. It is avoiding
all containment surfaces, actually, which are any nearby walls and doors.

Figure 6-7. Alfie

Chapter 6 ■ MaChine Learning

153

The robot has an ultrasonic sensor that is beaming or “looking” forward. The
objective is that if the ultrasonic sensor detects an obstacle, the robot must take
immediate action to avoid it. The following are the only actions that the robot can take:

•	 drive forward

•	 turn left

•	 turn right

There is no option for simply stopping. The robot must continue to move, even
though it may not be the best option in a particular situation.

Autonomous Algorithm
Let’s start implementing the roulette wheel algorithm by arbitrarily assigning a fitness
value of 20 to each of the actions. This initial value can be changed if it is found to
be ineffective in the algorithm. Next, a random choice or draw is made. This draw is
done every 2 seconds to prevent the robot from settling into a static behavior and not
“learning” anything. I use the same 256 numerical range that was in the color selection
example. The equation for a fitness selection is as follows:

draw randomInt A B C= + +()()* /255

randomInt ranges from 0 to 255.
The horizontal bar display for this setup is shown in Figure 6-8.

The fitness regions are continually updated and modified based on the robot’s
activities and whether it has encountered an obstacle. Typically, if an obstacle is
encountered, the fitness for the particular activity is decremented by one, thus slightly
reducing its overall probability of being chosen in a draw. You can imagine that, over a
long enough time span, all the activity finesses is reduced to 0. At that point, the robot is
commanded to stop, essentially giving up in its quest to avoid obstacles.

Figure 6-8. Robot roulette wheel fitness configuration

Chapter 6 ■ MaChine Learning

154

The following code segment contains the initialization statements for all the
component modules and the selection logic for the roulette wheel algorithm:

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)

GPIO.setup(18, GPIO.OUT)
GPIO.setup(19, GPIO.OUT)

pwmL = GPIO.PWM(18,20) # pin 18 is left wheel pwm
pwmR = GPIO.PWM(19,20) # pin 19 is right wheel pwm

must 'start' the motors with 0 rotation speeds
pwmL.start(2.8)
pwmR.start(2.8)

ultrasonic sensor pins
TRIG = 23 # an output
ECHO = 24 # an input

set the output pin
GPIO.setup(TRIG, GPIO.OUT)

set the input pin
GPIO.setup(ECHO, GPIO.IN)

initialize sensor
GPIO.output(TRIG, GPIO.LOW)
time.sleep(1)

if fitA + fitB + fitC == 0:
 select = 0
 robotAction(select)
elif draw >= 0 and draw <= fitA:
 select = 1
 robotAction(select)
elif draw > fitA and draw <= (fitA + fitB):
 select = 2
 robotAction(select)
elif draw > (fitA + fitB):
 select = 3
 robotAction(select)

The robotAction(select) method commands the robot to do one of the actions,
or to stop in the extreme case where all the finesses have been reduced to 0. The selected
robotAction is effective for only 2 seconds, until another draw is generated and an
action is randomly selected. It could be the same as the one that just completed or one of
the other two actions. The selection probabilities change as obstacles are encountered.

Chapter 6 ■ MaChine Learning

155

The following code implements the robotAction method:

def robotAction(select):
 if select == 0:
 # stop immediately
 exit()
 elif select == 1:
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.2)
 elif select == 2:
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.8)
 elif select == 3:
 pwmL.ChangeDutyCycle(2.8)
 pwmR.ChangeDutyCycle(2.2)

The robot program utilizes a polling routine to indicate when the robot is within
10 inches or 25.4 cm of an obstacle. This routine causes the robot to momentarily stop
and then back up for 2 seconds, at which point a new draw is generated. In addition, the
fitness that was in effect when the obstacle was detected is decremented by one unit. This
activity is all set in an infinite loop, such that the robot continues to roam or reaches a
quiescent state where it just rotates in place. All the fitness levels could also be reduced to
0, stopping it permanently.

The operation and wiring of the ultrasonic sensor is covered in the appendix, but
now it is important to realize that when the ultrasonic sensor’s distance output values
reach 10 inches or 25.4 cm, the polling routine will jump to the backup action and
decrement the current active fitness sector.

The following code segment lists the distance calculation routine for the ultrasonic
sensor:

forever loop to continually generate distance measurements
while True:
 # generate a 10 usec trigger pulse
 GPIO.output(TRIG, GPIO.HIGH)
 time.sleep(0.000010)
 GPIO.output(TRIG, GPIO.LOW)

 # following code detects the time duration for the echo pulse
 while GPIO.input(ECHO) == 0:
 pulse_start = time.time()
 while GPIO.input(ECHO) == 1:
 pulse_end = time.time()
 pulse_duration = pulse_end - pulse_start

 # distance calculation
 distance = pulse_duration * 17150

Chapter 6 ■ MaChine Learning

156

 # round distance to two decimal points
 distance = round(distance, 2)

 # for debug
 print 'distance = ', dist, ' cm'

 # check for 25.4 cm distance or less
 if distance < 25.40:
 backup()

The backup()method is only called if the detected distance falls below 10 inches
or 25.4 cm. In this routine, the robot is commanded to move backward from whatever
position it is in when the ultrasonic sensor polling routine triggers the method. The
backup method also decrements the active fitness controlling the robot when the backup
event is initiated. The following is the backup method listing:

def backup():
 global fitA, fitB, fitC, pwmL, pwmR
 if select == 1:
 fitA = fitA - 1
 if fitA < 0:
 fitA = 0
 elif select == 2:
 fitB = fitB - 1
 if fitB < 0:
 fitB = 0
 else:
 fitC = fitC -1
 if fitC < 0:
 fitC = 0

 # now, drive the robot in reverse for 2 secs.
 pwmL.ChangeDutyCycle(2.2)
 pwmR.ChangeDutyCycle(3.6)
 time.sleep(2) # unconditional time interval

I have now covered all the principal modules that make up the autonomous control
program. The following listing combines all the modules into a comprehensive program.
I also incorporated a time routine in the main loop that ensures that each of the robot
actions selected by the draw is activated for 2 seconds. The ultrasonic sensor is also
running while the robot actions are being performed. The only exception is when an
obstacle is detected; this causes the robot to immediately stop what it is doing and back
up for an unconditional 2 seconds. This program is named robotRoulette.py.

import RPi.GPIO as GPIO
import time
from random import randint

Chapter 6 ■ MaChine Learning

157

global pwmL, pwmR, fitA, fitB, fitC

initial fitness values for each of the 3 activities
fitA = 20
fitB = 20
fitC = 20

use the BCM pin numbers
GPIO.setmode(GPIO.BCM)

setup the motor control pins
GPIO.setup(18, GPIO.OUT)
GPIO.setup(19, GPIO.OUT)

pwmL = GPIO.PWM(18,20) # pin 18 is left wheel pwm
pwmR = GPIO.PWM(19,20) # pin 19 is right wheel pwm

must 'start' the motors with 0 rotation speeds
pwmL.start(2.8)
pwmR.start(2.8)

ultrasonic sensor pins
TRIG = 23 # an output
ECHO = 24 # an input

set the output pin
GPIO.setup(TRIG, GPIO.OUT)

set the input pin
GPIO.setup(ECHO, GPIO.IN)

initialize sensor
GPIO.output(TRIG, GPIO.LOW)
time.sleep(1)

robotAction module
def robotAction(select):
 global pwmL, pwmR
 if select == 0:
 # stop immediately
 exit()
 elif select == 1:
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.2)
 elif select == 2:
 pwmL.ChangeDutyCycle(2.2)
 pwmR.ChangeDutyCycle(2.8)
 elif select == 3:

Chapter 6 ■ MaChine Learning

158

 pwmL.ChangeDutyCycle(2.8)
 pwmR.ChangeDutyCycle(2.2)

backup module
def backup(select):
 global fitA, fitB, fitC, pwmL, pwmR
 if select == 1:
 fitA = fitA - 1
 if fitA < 0:
 fitA = 0
 elif select == 2:
 fitB = fitB - 1
 if fitB < 0:
 fitB = 0
 else:
 fitC = fitC -1
 if fitC < 0:
 fitC = 0

 # now, drive the robot in reverse for 2 secs.
 pwmL.ChangeDutyCycle(2.2)
 pwmR.ChangeDutyCycle(3.6)
 time.sleep(2) # unconditional time interval

clockFlag = False

forever loop
while True:
 if clockFlag == False:
 start = time.time()

 randomInt = randint(0, 255)
 draw = (randomInt*(fitA + fitB + fitC))/255

 if fitA + fitB + fitC == 0:
 select = 0
 robotAction(select)
 elif draw >= 0 and draw <= fitA:
 select = 1
 robotAction(select)
 elif draw > fitA and draw <= (fitA + fitB):
 select = 2
 robotAction(select)
 elif draw > (fitA + fitB):
 select = 3
 robotAction(select)

 clockFlag = True

Chapter 6 ■ MaChine Learning

159

 current = time.time()

 # check to see if 2 seconds (2000ms) have elapsed
 if (current - start)*1000 > 2000:
 # this triggers a new draw at loop start
 clockFlag = False

 # generate a 10 μsec trigger pulse
 GPIO.output(TRIG, GPIO.HIGH)
 time.sleep(0.000010)
 GPIO.output(TRIG, GPIO.LOW)

 # following code detects the time duration for the echo pulse
 while GPIO.input(ECHO) == 0:
 pulse_start = time.time()

 while GPIO.input(ECHO) == 1:
 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

 # distance calculation
 distance = pulse_duration * 17150

 # round distance to two decimal points
 distance = round(distance, 2)

 # check for 25.4 cm distance or less
 if distance < 25.40:
 backup()

Test Run
I placed the robot in an L-shaped hallway in my home, where it was completely enclosed
by walls and doors. The robot was powered by an external cell phone battery. I was able
to SSH into the Raspberry Pi through my home Wi-Fi network. I started the program by
entering the following command:

sudo python robotRoulette.py

The robot immediately responded by making a turn, moving straight ahead, or
backing up as it neared a wall or a door. It appeared that the robot essentially confined
itself to an approximate 3 × 3 ft area, but there were occasional excursions. This behavior
lasted for about 6 minutes when it began to move only in a back-and-forth motion, which
probably meant the turning fitness sectors were reduced to 0, or near 0. After 7 minutes,
the robot shut down as the program exited when all the fitness values finally equaled 0.

Chapter 6 ■ MaChine Learning

160

This test demonstrated that the robot did change its operational behavior based on
dynamically changing fitness values. I will leave it up to you to call it learning or not.

What would you need to do if you wanted to add some additional learning to the
robot car? That is the subject for the next section.

Additional Learning
It is critical to understand the basic requirements for learning if you want to add learning
behaviors to the robot car. Just consider how the robot car changed its behavior in the
previous example. First, the actions that the car is allowed to take were defined. They
are pretty straightforward so there is really no learning involved at this point. Next, the
fitness sectors were created and a randomized method of selecting a particular sector was
implemented to actuate a consequent action. Again, no learning was involved. Finally,
a sensor was incorporated into the scheme so that the sensor output could affect the
fitness values, and ultimately, the robot’s behavior. That is where the learning kicks in.
Thus learning, at least in this case, requires a sensor and a technique to modify the fitness
values based on the sensor output. If you reflect on this for a moment, you recognize that
this is the way humans also learn. It could be by reading a book where the eyes are the
sensors, or listening to music where the ears are the primary sensors. It could even be the
fingers of a small child touching a hot radiator.

It is therefore likely that we will either need a new sensor or somehow modify the
existing one to implement additional learning. I elected to consider energy management
to be the new learning behavior. Specifically, favoring those actions that minimize energy
consumption to enhance the robot car’s learning potential.

Directly measuring energy consumption is difficult, but measuring energy used
per unit of time is quite easy. Of course, energy used over a time period is simply power,
which is easily computed using Ohm’s law:

P I R= 2

or the equivalent:

P
E

R
=

2

A small resistor needs to be inserted into the motor power supply so that the current
through it or the voltage drop across it can be measured. I elected to measure the voltage
drop because it is compatible with the analog-to-digital converter chip that used with the
Raspberry Pi to obtain sensor readings. The resistor value has to be quite small so as to
not drop the motor supply voltage to the point that it would interfere with the required
motor operation.

To determine the resistor value, I placed a VOM in series with the positive motor
power supply lead and measured the average current while both motors were operating
in the forward direction. The average current draw was about 190 ma. A series 5Ω resistor
has about a 1 V drop with this current, while dissipating 0.2 W of power. The single volt
drop should not have much of an impact on motor operation, considering that the

Chapter 6 ■ MaChine Learning

161

maximum full-scale voltage output from the motor power supply is 7.5 V. The robot
motors are nominally rated at 6 V, but can accept somewhat higher voltages without any
harm. Higher voltages simply cause the motors to rotate faster.

The voltage drop across the resistor is measured using a MCP3008 multi-channel
analog-to-digital converter (ADC). The setup and installation of this ADC chip is
thoroughly covered in the robot build appendix. Two ADC channels are used because the
differential voltage across the resistor is required to determine the current. Figure 6-9 is a
schematic of the ADC connection with the current sense resistor.

The following code is a test program that proves that the ADC is connected and
functioning properly. It is a slight modification of the simpletest.py program sourced from
the Adafruit Learn website:

Import SPI library (for hardware SPI) and MCP3008 library.
import Adafruit_GPIO.SPI as SPI
import Adafruit_MCP3008

Figure 6-9. ADC connection to the current sense resistor

Chapter 6 ■ MaChine Learning

162

Hardware SPI configuration:
SPI_PORT = 0
SPI_DEVICE = 0
mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT,
SPI_DEVICE))

print('Reading MCP3008 values, press Ctrl-C to quit...')
Print nice channel column headers.
print('| {0:>4} | {1:>4} | {2:>4} | {3:>4} | {4:>4} | {5:>4} |
{6:>4} | {7:>4} |'.format(*range(8)))
print('-' * 57)
Main program loop.
while True:
 # Read all the ADC channel values in a list.
 values = [0]*8
 for i in range(8):
 # The read_adc function will get the value of the

specified channel (0-7).
 values[i] = mcp.read_adc(i)
 # Print the ADC values.
 print('| {0:>4} | {1:>4} | {2:>4} | {3:>4} | {4:>4} |
{5:>4} | {6:>4} | {7:>4} |'.format(*values))
 # Pause for half a second.
 time.sleep(0.5)

Figure 6-10 is a screenshot of the program output after it ran for about 30 seconds.

Chapter 6 ■ MaChine Learning

163

Notice that channel 1 shows a consistent value of 1023 because it was tied to the 3.3
V supply. V

ref
 is also tied to the 3.3 V supply, causing the maximum value to be 1023. This

maximum value is a direct result of there being 10 bits in the conversion process. Also of
interest is that channel 0 shows varying values, ranging from 0 to 66, while not connected
to anything or basically floating. Channels 2 through 7 are also floating, but only display
values from 0 to 9. It is my guess that there exists a high-impedance cross-coupling
between channels 0 and 1, which is influencing the channel 0 reading. This coupling
should not matter when channel 0 is actually connected to the sense resistor.

The actual total power computation requires the difference of two ADC readings
from channels 0 and 1. Channel 0 is also the input motor supply voltage. I chose to use
the absolute count difference across the resistor because there is almost an exact ratio
of 1 count per millivolt thanks to the 1 V resistor drop and 1023 maximum ADC range.
Both inputs use a voltage divider network that reduces the input voltage by two-thirds to
keep them within the 3.3 V input range for the ADC chip. Theses voltage reductions are
compensated for in the power calculation,

Figure 6-10. Test program output

Chapter 6 ■ MaChine Learning

164

The total power dissipated includes the resistor power and the motor power. This
value (expressed in watts) is computed as follows:

Let diff count count= -0 1

This is also the resistor’s voltage drop.

The current is therefore I diff= /5

Voltage drop across the motors: E count diffL = -3 0*

P
E

R
E I

diff
count diff

diff

di

resistor

resistor
L= + = + -()

=

2 2

5
3 0

5
* * *

fff count diff diff count diff2 2

5

3 0

5 5

3 0

5
+ - =

* * * *

The next step is to consider how to integrate the power measurement and the energy
consumption minimization approach into the existing robotRoulette program.

Demo 6-3: Adaptive Learning with an Energy
Consumption Consideration
Minimizing energy consumption should be considered as a background activity for the
robot car, instead of a primary activity such as driving forward or turning. The reason for
this distinction is that all primary activities use energy, but some use less than others.
Since all activities are involved with energy consumption, it makes no sense to create a
separate fitness category for it. Instead, it is more logical to reward those activities that
use less energy and to penalize activities that use more energy. The rewards and penalties
take the form of slight adjustments to the respective activity fitness values. I arbitrarily
decided that 0.5 points are added or subtracted to the fitness values depending upon
whether the measured power level is above or below a preset milliwatt threshold value.
This adjustment is included in the robotAction module. No other changes were made to
the existing code except for inserting a new module that computes the power level. The
new power module and modified robotAction modules are listed next.

global mcp, pwrThreshold
pwrThreshold = 1000 # initial threshold value of 1000 mW

def calcPower:
 global mcp
 count0 = mcp.read_adc(0)
 count1 = mcp.read_adc(1)
 diff = count0 - count1
 power = (3*count0*diff)/5
 return power

modified robotAction module

Chapter 6 ■ MaChine Learning

165

def robotAction(select):
 global pwmL, pwmR, pwrThreshold, fitA, fitB, fitC
 if select == 0:
 # stop immediately
 exit()
 elif select == 1:
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.2)
 if power() > pwrThreshold:
 fitA = fitA - 0.5
 else:
 fitA = fitA + 0.5
 elif select == 2:
 pwmL.ChangeDutyCycle(2.2)
 pwmR.ChangeDutyCycle(2.8)
 if power() > pwrThreshold:
 fitB = fitB - 0.5
 else:
 fitB = fitB + 0.5
 elif select == 3:
 pwmL.ChangeDutyCycle(2.8)
 pwmR.ChangeDutyCycle(2.2)
 if power() > pwrThreshold:
 fitC = fitC - 0.5
 else:
 fitC = fitC + 0.5

My expectation was that, on average, the energy consumption in the turning
activities would be less than in driving forward. The reason is because only one motor is
powered during a turn but two motors are powered while driving forward. This naturally
leads to a gradual increase in both the fitB and fitC values, while the fitA value is reduced.
Of course, the fitness adjustments related to obstacle detection are still taking place. My
weighting of 0.5 fitness points for energy consumption makes that learning factor only
50 percent as effective as the obstacle-learning factor. I expected that the robot would
eventually reach a quiescent state where it only turns in circles.

I renamed the main program to rre.py (short for robotRoulette_energy) after
incorporating the modifications and the initializations needed to support the
modifications. The complete listing follows.

import RPi.GPIO as GPIO
import time
from random import randint
next two libraries must be installed IAW appendix instructions
import Adafruit_GPIO.SPI as SPI
import Adafruit_MCP3008

global pwmL, pwmR, fitA, fitB, fitC, pwrThreshold, mcp

Chapter 6 ■ MaChine Learning

166

Hardware SPI configuration:
SPI_PORT = 0
SPI_DEVICE = 0
mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT,
SPI_DEVICE))

initial fitness values for each of the 3 activities
fitA = 20
fitB = 20
fitC = 20

#initial pwrThreshold
pwrThreshold = 1000 # units of milliwatts

use the BCM pin numbers
GPIO.setmode(GPIO.BCM)

setup the motor control pins
GPIO.setup(18, GPIO.OUT)
GPIO.setup(19, GPIO.OUT)

pwmL = GPIO.PWM(18,20) # pin 18 is left wheel pwm
pwmR = GPIO.PWM(19,20) # pin 19 is right wheel pwm

must 'start' the motors with 0 rotation speeds
pwmL.start(2.8)
pwmR.start(2.8)

ultrasonic sensor pins
TRIG = 23 # an output
ECHO = 24 # an input

set the output pin
GPIO.setup(TRIG, GPIO.OUT)

set the input pin
GPIO.setup(ECHO, GPIO.IN)

initialize sensor
GPIO.output(TRIG, GPIO.LOW)
time.sleep(1)

modified robotAction module
def robotAction(select):
 global pwmL, pwmR, pwrThreshold, fitA, fitB, fitC
 if select == 0:
 # stop immediately
 exit()
 elif select == 1:
 pwmL.ChangeDutyCycle(3.6)

Chapter 6 ■ MaChine Learning

167

 pwmR.ChangeDutyCycle(2.2)
 if calcPower() > pwrThreshold:
 fitA = fitA - 0.5
 else:
 fitA = fitA + 0.5
 elif select == 2:
 pwmL.ChangeDutyCycle(2.2)
 pwmR.ChangeDutyCycle(2.8)
 if calcPower() > pwrThreshold:
 fitB = fitB - 0.5
 else:
 fitB = fitB + 0.5
 elif select == 3:
 pwmL.ChangeDutyCycle(2.8)
 pwmR.ChangeDutyCycle(2.2)
 if calcPower() > pwrThreshold:
 fitC = fitC - 0.5
 else:
 fitC = fitC + 0.5

backup module
def backup(select):
 global fitA, fitB, fitC, pwmL, pwmR
 if select == 1:
 fitA = fitA - 1
 if fitA < 0:
 fitA = 0
 elif select == 2:
 fitB = fitB - 1
 if fitB < 0:
 fitB = 0
 else:
 fitC = fitC -1
 if fitC < 0:
 fitC = 0

 # now, drive the robot in reverse for 2 secs.
 pwmL.ChangeDutyCycle(2.2)
 pwmR.ChangeDutyCycle(3.6)
 time.sleep(2) # unconditional time interval

power calculation module
def calcPower:
 global mcp
 count0 = mcp.read_adc(0)
 count1 = mcp.read_adc(1)
 count2 = mcp.read_adc(2)
 diff = count0 - count1

Chapter 6 ■ MaChine Learning

168

 power = (3*count0*diff)/5
 return power

clockFlag = False

forever loop
while True:
 if clockFlag == False:
 start = time.time()

 randomInt = randint(0, 255)
 draw = (randomInt*(fitA + fitB + fitC))/255

 if fitA + fitB + fitC == 0:
 select = 0
 robotAction(select)
 elif draw >= 0 and draw <= fitA:
 select = 1
 robotAction(select)
 elif draw > fitA and draw <= (fitA + fitB):
 select = 2
 robotAction(select)
 elif draw > (fitA + fitB):
 select = 3
 robotAction(select)

 clockFlag = True

 current = time.time()

 # check to see if 2 seconds (2000ms) have elapsed
 if (current - start)*1000 > 2000:
 # this triggers a new draw at loop start
 clockFlag = False

 # generate a 10 μsec trigger pulse
 GPIO.output(TRIG, GPIO.HIGH)
 time.sleep(0.000010)
 GPIO.output(TRIG, GPIO.LOW)

 # following code detects the time duration for the echo pulse
 while GPIO.input(ECHO) == 0:
 pulse_start = time.time()

 while GPIO.input(ECHO) == 1:
 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

Chapter 6 ■ MaChine Learning

169

 # distance calculation
 distance = pulse_duration * 17150

 # round distance to two decimal points
 distance = round(distance, 2)

 # check for 25.4 cm distance or less
 if distance < 25.40:
 backup()

Test Run
I placed the robot in the same hallway as the previous test run. I initiated another SSH
session and started the program by the entering the following command:

sudo python rre.py

The robot immediately responded, as it did previously, by making a turn, moving
straight ahead, or backing up as it neared a wall or door. The motions were fairly well
mixed. After approximately 5 minutes, the vast majority of motions were the turning
actions, with only an occasional straight-ahead action. The backups only happened if the
robot came too close to a wall while turning. It certainly became apparent to me that the
robot had “learned” that turning motions were indeed the best way to conserve energy.

This project concludes this chapter’s focus on machine learning. The next chapter
takes machine leaning to a much deeper level.

Summary
This chapter is the first of several that explore the highly interesting topic of machine learning.
The first Raspberry Pi demonstration involved the user pressing a push button whenever
the favored LED randomly lit. Before long, the computer “learned” the favorite color and
consistently lit that particular LED. The concept of fitness was introduced in this project.

I next discussed the roulette wheel algorithm, which was a prelude to the next
demonstration of an autonomous robot car that incorporated learning behaviors. Alfie,
the robot car, performed a few selected actions or behaviors, which eventually became
either reinforced or diminished, depending on whether the car encountered an obstacle
while performing the action. Eventually, the car reached a quiescent state where it could
not perform any actions and it simply shut down.

The final demonstration illustrated how to add another behavior to the robot car. This
new behavior focused on energy conservation. The car rapidly learned to favor those actions
that consumed less energy than the ones that consumed more than the preset threshold.

CHAPTER 7

This chapter continues with the exploration of machine learning and focuses on the
artificial neural network (ANN). I would like to reacknowledge that several of the
demonstrations were inspired by Bert van Dam.

Parts List
For Demo 7-1, you need the Alfie robot car and additional parts, which are detailed in
Table 7-1.

Table 7-1. Parts Lists

Description Quantity Remarks

Pi Cobbler 1 40-pin version, either T or DIP form factor
acceptable

solderless breadboard 1 700 insertion points with 2 power supply strips

jumper wires 1 package

ultrasonic sensors 2 type HC-SR04

4.9kΩ resistor 2 1/4 watt

10kΩ resistor 6 1/4 watt

MCP3008 1 8-channel ADC chip

photo cell 1 Any of the CdS variety

Let’s start by delving into one of the simplest of all ANNs: a Hopfield network.

Machine Learning:
Artificial Neural Networks

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

172

Hopfield Network
Hopfield networks were popularized by John Hopfield in 1982, when he described an
ANN that implemented an associative memory model closely resembling a human’s
memory functions. The Hopfield network gained a bit of fame when it was discussed in
Howard S. Smith’s book I, robot, (Robot Binaries, 2008) & Press; (not to be confused with
Isaac Asimov’s I, Robot (Grosset & Dunlap, 1950), which was the basis for the 2004 Will
Smith movie of the same name).

I need to describe the artificial neuron used in a Hopfield network before I describe
the network itself. Figure 7-1 is a model of this artificial neuron.

Figure 7-1. Neuron model

While only three inputs are shown in Figure 7-1, many more exist in complex
networks. There is only one output, no matter how many inputs enter the neuron. The
neuron is in a state that is consistent or maintained until it is updated. The state of a
neuron is binary, with a value of 1 or –1 (at least for the Hopfield networks used in this
book). An update is done by going through the following three steps.

 1. The value of each input is determined and a weighted sum is
calculated.

 2. The neuron output is set to 1 if the weighted sum input is
equal to or greater than 0; otherwise, it is set to –1.

 3. The neuron retains the output value until it is updated again.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

173

There are two methods for updating neurons, which I describe next. It is not critical
for you to understand the update methods because that is done in the mathematics of the
network initialization and real-time operations.

Asynchronous: Specific neurons are selected and immediately
updated. This can be done in a preselected order or randomly.

Synchronous: All weighted input sums are calculated without
outdating the neurons. Once completed, all neurons are
updated.

Now that I have introduced the basic artificial neuron, it is time to discuss the
Hopfield network. This network is normally described as a recurrent network where
output values are fed back to the input in an undirected manner. These feedback loops
have an important impact on the learning capacity of the network. The following listing
provides some of the important Hopfield network properties.

•	 Consists of a set of N neurons, or nodes, as I refer to them from
this point on

•	 Symmetric weights for all node interconnections

•	 No node is directly connected back to itself (i.e., no self-loops are
permitted)

•	 No specialized input or output nodes

•	 Each node only has a binary or two-state output

•	 A firing node activates all nodes connected to it with a positive
weight

•	 All inputs are simultaneously applied to all nodes and then
feedback

•	 The network takes a finite number of iterations to reach an
equilibrium or constant state

Figure 7-2 is a diagram of the six-node Hopfield network that I use in the next series
of demonstrations.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

174

At the beginning of this section, I mentioned that a Hopfield network was based
upon an associative memory model. It is definitely helpful to explore the associative
memory model and learn how it works. Examine Figure 7-3. I am positive that you
recognize it as the letter S.

Figure 7-2. Six-node Hopfield network

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

175

You recognize it because the shape of the S letter is ingrained in your memory since
childhood. There is not much to understand regarding this memory recall, because all of
the patterns of letters and numbers are very much embedded in our memories. However,
look at Figure 7-4 and try to determine what it is.

Figure 7-3. Letter S

Figure 7-4. Distorted letter

I am pretty sure that most readers recognize the same letter S, even though over
50 percent of the letter body has been erased. Your brain and inherent memories have
essentially filled in the dots to form in your mind that it is indeed the S letter. In all
likelihood, you didn’t recognize the distorted figure as a letter but instead “associated”
the jumble of dots and black spots with the letter S. This concept of association between
what is stored in machine memory and the reality of what is presented is an important
point in the following demonstration.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

176

Just as you had to learn to recognize the letter S, machines also have to be taught
to recognize things. The Hopfield network example that follows only uses +1 and –1 as
input symbols. What these symbols represent in the real world is largely irrelevant to this
discussion. Let’s begin with a six-input sample set of data consisting of the values 1, –1,
–1, –1, 1, and 1. However, to be mathematically precise, I express this input data set as the
following vector:

1

1

1

1

1

1

-
-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

This vector has to be converted into a 6×6 matrix to represent all the node
interconnections that result from a six-node Hopfield network. This is easily done by
multiplying the input data vector by itself.

1

1

1

1

1

1

1

1

1

1

1

1

-
-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

-
-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

*

þþ

ï
ï
ï
ï

=

-
-
-

-

-
-

-

-
-

-

-
-

-
-
-

-
-
-

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

Table 7-2 shows the complete vector multiplication of the information.

Table 7-2. Vector Multiplication

 1 –1 –1 –1 1 1

 1 1 –1 –1 –1 1 1

–1 –1 1 1 1 –1 –1

–1 –1 1 1 1 –1 –1

–1 –1 1 1 1 –1 –1

 1 1 –1 –1 –1 1 1

 1 1 –1 –1 –1 1 1

Fortunately, the Python numpy library provides excellent matrix operations for all
future calculations, which completely automates all of these tedious and error-prone
manual calculations.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

177

Now, let’s suppose that there is another set of input data represented by the following
vector:

1

1

1

1

1

1

-

-

-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

Multiplying this new vector by itself yields this:

1

1

1

1

1

1

1

1

1

1

1

1

-

-

-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

-

-

-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

*

þþ

ï
ï
ï
ï

=

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

--

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

1

1

The next step is to add the two 6×6 matrices together. This yields a single 6×6 matrix
that “remembers” both sets of input data vectors. Let’s call this final matrix the weighting
matrix to conform with the matrix shown in Figure 7-1.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1-
+

-

-

-

-

-

-

-

-

-

-

-

ì

í

ï
ï
ï

î

ï
ï
ï

ü

ý

ï
ï
ï

þ

ï
ï
ï

--

-

-

-

-

-

-

=

-

-

-

-

ì

í

ï
ï
ï

î

ï
ï
ï

ü

ý

ï
ï
ï

þ

ï
ï
ï

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

2

2

2

2

2

2

2

2

2

2

2

2-

-

-

-

-

-

ì

í

ï
ï
ï

î

ï
ï
ï

ü

ý

ï
ï
ï

þ

ï
ï
ï

Given that the input matrices only contain ±1, the summed matrix can only contain
±2 or 0, which it does.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

178

To prove that the weighting matrix actually “remembers” the input data set vectors, I
multiply the first vector by the weighting matrix and see what results.

1

1

1

1

1

1

2

2

0

2

2

0

2

2

0

2

2

0

0

0

2

0

0

2

2

2-
-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

-

-

-

-
-

-

*
00

2

2

0

2

2

0

2

2

0

0

0

2

0

0

2

8

8

4

8

8

4

-

-

-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

=

-
-
-

ì

í

ï
ï
ïïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

The preceding matrix multiplication process consists of six separate steps where the
vector values are multiplied by every row in the weighting matrix row, and the resulting
partial products are summed. For instance, the vector times the first row in the weighting
matrix yields the following:

(1 * 2) + (–1 * –2) (–1 * 0) + (–1 * –2) + (1 * 2) + (1 * 0) = 8

This resulting vector must next be normalized to match the format of the input data,
which only consists of a 1 or –1. The normalization rule is quite simple:

All values 0 or greater are changed to 1, while all values less than 0 are changed to –1.

It should be noted that the exact normalization of the 0 value is not an exact science.
In some networks, normalizing it to 1 provides better results, while in other networks,
normalizing it to –1 is preferable. For this network, I determined the former was more
appropriate and yielded accurate results.

Applying this rule to the vector resultant yields the following:

8

8

4

8

8

4

1

1

1

1

1

1

-
-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

-
-
-

ì

í

ï
ï
ïï

î

ï
ï

apply rule

ïï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

You can now readily see that the normalized resultant vector is exactly the same
as the original input data vector. You can do the preceding operations to the second
input data vector, and it returns that one as well, thus proving the weighting matrix
“remembers” the initial data stored in it.

At this point, you are likely thinking that these operations are interesting, but what is
their practical value? How can this Hopfield network be put to any use? To answer these
legitimate questions, consider the following scenario.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

179

Let’s say that the input vector represents some real-world thing, perhaps generated
by one or more sensors, and the resulting vector is corrupted or distorted due to noise or
a similar disturbance, much like how Figure 7-4 resembles Figure 7-3. Suppose the new
input data vector is as follows, where the 0s represent no data:

0

0

0

1

1

1

-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

Next, multiply this new vector by the weighting matrix and see what happens:

0

0

0

1

1

1

2

2

0

2

2

0

2

2

0

2

2

0

0

0

2

0

0

2

2

2

0

2-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

-

-

-

-
-

-

*

--

-

-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

=

-
-
-

ì

í

ï
ï
ïï

î

2

0

2

2

0

2

2

0

0

0

2

0

0

2

4

4

2

4

4

2

ïï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

=

-
-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

normalized

1

1

1

1

1

1

The final, normalized resultant vector is exactly equal to the original input vector.
The Hopfield network associated the corrupted input vector with what was stored within
its structure and returned the vector that most closely resembled the distorted input
version. This situation is very much akin to how you recognized the badly distorted letter
from the original.

The next demonstration should help further define this association process.

Demo 7-1: Numerical Figure Recognition
Demonstration
Figure 7-5 shows a unique way to represent the decimal numbers 0 to 9 using only six
straight line segments. There is no name for this scheme because I completely made it up.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

180

I am pretty confident that you can easily recognize the majority of the segmented
numbers in Figure 7-5 without a problem. The numbers 4 and 5 were the hardest due to
the limitation on the number of available segments.

Suppose that an input data vector is created for each of these numbers, where a 1 is
used for a displayed segment and a –1 is used for a non-displayed segment. For instance,
the numbers 0 and 1 would be represented by these vectors:

0

1

1

1

1

1

1

1

1

1

1

1

1

1

»

-
-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

»

-
-

-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ïï
ï
ïï

þ

ï
ï
ï
ï

Next, a Hopfield network would need to be created using all ten input data vectors
that are shown in Table 7-3.

Figure 7-5. Six-segment numerical scheme

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

181

There is a lot of manual computation that I avoided by using the Python numpy matrix
library that I mentioned earlier. In the ensuing discussion, I use the phrase dot product
vector to describe the result of a matrix multiplication. I have included the following sidebar
to describe dot and cross products and explain how they are applied to matrices.

DOT AND CROSS PRODUCTS

a dot product is also known as a scalar product, which is the result of multiplying
two matrices or arrays together. the only requirement for a successful operation is
that the number of rows in one matrix or array must match the number of columns
in the other matrix or array. the following simple python example should suffice to
show how this works:

>>> import numpy as np
>>> x = np.array(((2,3), (3,5)))
>>> y = np,array(((1,2), (5,-1)))
>>> np.dot(x,y)
matrix([17,1],
 [28,1])
>>>

the same result may be obtained by converting the arrays into matrices and using
the multiplication operator (*).

>>> np.mat(x) * np.mat(y)
matrix([17,1],
 [28,1])
>>>

Table 7-3. Input Data Vectors for the Numerical Scheme

Number 0 1 2 3 4 5

0 –1 –1 –1 1 1 1

1 –1 –1 1 1 –1 –1

2 1 –1 1 1 –1 1

3 1 1 –1 1 –1 1

4 1 –1 1 –1 1 –1

5 1 1 –1 –1 1 1

6 –1 –1 1 1 1 1

7 1 –1 1 1 –1 –1

8 1 1 1 1 1 1

9 1 1 1 1 –1 –1

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

182

for the previous example, python automatically invoked the dot product operation
when the interpreter determined that two matrices were to be multiplied.

a second type of matrix-like multiplication involves the cross product. a cross
product is defined as a binary operation on two vectors in three-dimensional space.
The resultant vector is orthogonal to the two input vectors.

this next example should clarify the definition. suppose that there are two unit
vectors created, as follows:

>>> y = np.array([0,1,0])
>>> z = np.array([0,0,1])
>>>

figure 7-6 shows these two vectors plotted in 3D space.

Figure 7-6. y and z unit vectors

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

183

the following expression computes the cross product vector for y and z.

>>> np.cross(y, z)
array([-1,0,0]
>>>

this new vector is orthogonal to y and z, and hence, must lie on the x axis, as shown
in figure 7-7.

Figure 7-7. Cross product resultant vector

the order of the arguments in the numpy cross function is important. if you were to
reverse the order, the following would result:

>>> np.cross(z, y)
array([1,0,0]
>>>

it is the same unit magnitude vector but in the opposite direction. i did not plot this
one since it is pretty simple to visualize. i do not use the cross product in any of the
demonstrations, but i have included it for your information.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

184

Figure 7-8 shows the beginning and ending of a Python interactive session
where I created the Hopfield weighting matrix based on all 10 input data vectors.

Figure 7-8. Python session for creating the Hopfield weighting matrix

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

185

The following is the final weighting matrix:

array([[10, 4, 2, 0, -2, 0],
 [4, 10, -4, -2, 0, 2],
 [2, -4, 10, 4, -2, -4],
 [0, -2, 4, 10, -4, 2],
 [-2, 0, -2, -4, 10, 4],
 [0, 2, -4, 2, 4, 10]])

I shall use this matrix and a slightly distorted number from the contrived numerical
scheme and see if the Hopfield network can figure it out. Figure 7-9 shows the number 8
missing two segments.

Figure 7-9. Distorted figure 8

The following is the corresponding input data vector for this distorted figure:

1

0

0

1

1

1

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

All that is needed to test the network is to multiply the distorted input vector by
the weighting matrix and normalize the resulting dot product vector. Figure 7-10 shows
the interactive session where the vector is multiplied by the weighting matrix and the
resultant dot product vector is displayed.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

186

The following shows the normalized vector. It exactly matches the figure 8 input data
vector.

8

4

0

8

8

16

1

1

1

1

1

1

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

=

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

normalized ýý

ï
ï
ïï

þ

ï
ï
ï
ï

This test shows once again that a Hopfield network really does store data that can
readily help identify an unknown or distorted input data set given that it is part of the
network. I did a brief and limited review of articles concerning the Hopfield network and
character or pattern recognition, and I found that such networks typically have over a 90%
success rate in recognizing proper characters from distorted or convoluted input vectors.
Of course, it all depends on the amount and quality of the input data and the number of
nodes created in the network. In my very simple and limited demonstration, I would be
very surprised if the success rate was much over 70%, which is still impressive given its
limitations and constraints.

The next demonstration considerably changes what I have done so far using a purely
computation approach. It uses a more realistic application of ANN.

Demo 7-2: Autonomous Robot Car Using ANN
This demonstration uses Alfie, the robot car introduced in the previous chapter. In Alfie’s
last project, it was programmed to avoid all walls and doors as much as possible and also
to conserve as much energy as it could while driving about. This project is significantly
different in that the robot car approaches obstacles and tries to navigate around them.
I dropped the energy conservation scheme because it was not important for this ANN
demonstration. Alfie is equipped with another ultrasonic sensor, however, which should

Figure 7-10. Interactive Python session to compute the distorted figure

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

187

assist in its efforts to detect and avoid obstacles. A Hopfield network is implemented
to help the robot remember past actions, which should promote the selection of better
actions and behaviors in its journey through the environment.

A five-element input data vector is used with this network. The following are the
elements making up the input vector:

•	 left sensor

•	 right sensor

•	 both sensors

•	 left motor

•	 right motor

These elements are all that is needed for the initial demonstration but more
elements can easily be increased as desired. These five elements imply that a 5×5
Hopfield network should be used to support the robot car control system. The nominal
values of 1 and–1 are used, as I did in the previous example. What needs to be done is
associate what a 1 or –1 means to each of the elements. Let’s start with the sensors. It
seems very appropriate to have a 1 indicate that a sensor has not detected an object; or
in the case of “both sensors,” that each sensor reports an obstacle ahead. Note that I have
not yet defined a threshold distance for the ultrasonic sensors. That comes a bit later.
The motor elements are also fairly easy to define. A 1 indicates that a motor is running,
and a –1 shows that it is stopped. Note here, too, that the motors are either running or are
not running; there is no intermediate power settings. So what would the following input
vector mean?

1

1

1

1

1

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

All 1s for the sensors mean that no obstacles have been detected, and all 1s for
the motors mean that the car is driving straight ahead. That is a pretty simple and
unambiguous rule, which would be suitable if it not for the fact that the car is supposed
to learn and not simply follow a set of stored rules. What is needed is a way for the car
to learn what is a good rule or behavior, and what is not a very good rule. This approach
implies that the car must try different things and determine which are good and should
be remembered, and which are not good and should not be retained. Of course, what is
good or not so good is fairly arbitrary, so there must be a way to assess those behaviors to
keep and store, and those to be discarded.

Trying different things really means randomly activating the motors such that new
paths can be tried to see if obstacles are encountered. The only motion that is prohibited

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

188

is backing up, because there is no sensor facing in that direction and no way for a valid
input data vector to be generated. The following are the only motions that are allowed:

•	 turn left

•	 turn right

•	 go straight

•	 stop

The stop option was not permitted in the last robot demonstration because of the nature
of the experiment. This time, it is absolutely permitted. In fact, it is entirely possible that the
robot eventually learns that the optimum behavior is to stop and not move at all. The way
that turns are done is also a bit different from the last demonstration. In the previous test, the
wheel on the side to turn stopped and other wheel kept rotating. The robot essentially pivoted
on the stopped wheel. This time, the wheel on the side to turn is commanded to rotate in the
opposite direction while the other wheel stops. This action allows the robot to turn within its
own radius. This is generally known as making a zero-radius turn. Not quite accurate, but you
get the idea that the actual turn radius is very small.

The next part of the robot learning process is more difficult: distinguishing good
behavior or actions from not too good behavior. Fortunately, most of us had parents
and teachers that were around as we were growing up to help with this important task.
Unfortunately for the robot, there is no one around to help it with this critical task. It
must do this on its own. We can help the robot by programming it to accept actions that
“improve” its overall progress. The obvious tasks to accept are those actions that do not
include detecting an obstacle. This approach is very much akin to the way the fitness
values were adjusted in the previous robot demonstration. Whenever a wall or door was
encountered, the fitness value in play at that time was slightly decreased. This time, there
are no fitness values, just input data vectors that will either be stored or not be stored.
To store the vector, all that matters is that the robot “believes” that the situation has
improved. The next time the robot encounters a situation with the same vector, it recalls
what was stored and repeats the action. This approach likely causes the robot to operate
in a manner totally alien to what you expected, but that is fine because it is “learning” on
its own terms. This is what it means for the robot car to be really autonomous. Besides,
observing an unpredictable robot can be amusing, provided it does not chase your cat or
tip over your expensive vase.

Another important question to answer is how the robot will recognize a new
situation. Let’s assume that the robot sensors have not detected anything and that we
have no idea about operating motors. This is very similar to the distorted input vector that
I discussed in the beginning of the Hopfield network discussion. In this case, the input
data vector would be as follows:

1

1

1

0

0

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

189

You may remember that you need to multiply the distorted input vector by the
weighting matrix. So, we must create the weighting matrix, which in this case is

1

1

1

1

1

1

1

1

1

1

11111

11111

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

=* 111111

11111

11111

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

The new vector times the weighting matrix is therefore

1

1

1

0

0

11111

11111

11111

11111

11111

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

ì

í

ï
ïï

î

ï
ï
ï

*

üü

ý

ï
ïï

þ

ï
ï
ï

=

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

=

ì

í

ï
ïï

î

ï
ï

3

3

3

3

3

1

1

1

1

1

normalized

ïï

ü

ý

ï
ïï

þ

ï
ï
ï

This vector result should not surprise you at this point in the discussion. The network
has associated this unknown vector with what it knows about a vector that also contains
sensor data that no objects have been detected, such as

1

1

1

1

1

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

The stored action is to turn on the two motors and drive straight forward. This result
leads to the following conclusion:

If the known data are correct then you should assume that the unknown data are also
correct.

While this conclusion looks good and is somewhat profound, it may also lead to an
erroneous action if the stored vector itself is in error. Having an erroneous stored vector is
quite similar to having a false memory. That is any memory that you believe to be factual
and accurate, but in reality, it is not representative of the true experience. As we age, most
people tend to substitute false memories for real ones, which prompts one to think of the
“good old days” that were in all likelihood not that good.

Most of this discussion has been a prelude to the software discussion that starts next.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

190

Demo 7-3: Python Control Script for the
Obstacle-Avoiding Robot Car
The robot car control program named annRobot.py uses a similar structure that was
developed for the robotRoulette.py program. The motor control and ultrasonic sensor
modules are identical. The random action selection code has been modified and there
are several new matrix computation modules that are needed to support the Hopfield
network. The new program (shown here) is quite long, with heavy annotations preceding
the new sections or modules. I opted for this approach instead of presenting each new
section or module, discussing it, and having a final comprehensive listing at the end.
Please refer back to previous discussions or the robot build appendix for information
concerning the modules already presented, such as the random draw or motor control.

import RPi.GPIO as GPIO
import time
from random import randint
import numpy as np

global pwmL, pwmR

threshold = 25.4

use the BCM pin numbers
GPIO.setmode(GPIO.BCM)

setup the motor control pins
GPIO.setup(18, GPIO.OUT)
GPIO.setup(19, GPIO.OUT)

pwmL = GPIO.PWM(18,20) # pin 18 is left wheel pwm
pwmR = GPIO.PWM(19,20) # pin 19 is right wheel pwm

must 'start' the motors with 0 rotation speeds
pwmL.start(2.8)
pwmR.start(2.8)

ultrasonic sensor pins
TRIG1 = 23 # an output
ECHO1 = 24 # an input
TRIG2 = 25 # an output
ECHO2 = 27 # an input

set the output pins
GPIO.setup(TRIG1, GPIO.OUT)
GPIO.setup(TRIG2, GPIO.OUT)

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

191

set the input pins
GPIO.setup(ECHO1, GPIO.IN)
GPIO.setup(ECHO2, GPIO.IN)

initialize sensors
GPIO.output(TRIG1, GPIO.LOW)
GPIO.output(TRIG2, GPIO.LOW)
time.sleep(1)

Create an initial weighting matrix named wtg
based on all 1's in the input data vector
vInput = np.array([1,1,1,1,1])[:,None] # actually a [1,0] matrix
wtg = vInput.T*vInput # matrix multiplication yields a 5 x 5 matrix
 # vInput.T is the transpose form (i.e. column)
 # The square of new and successful input data
 # vectors be added to wtg matrix.

robotAction module
def robotAction(select):
 global pwmL, pwmR
 if select == 0: # drive straight
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.2)
 elif select == 1: # turn left
 pwmL.ChangeDutyCycle(2.2)
 pwmR.ChangeDutyCycle(2.8)
 elif select == 2: # turn right
 pwmL.ChangeDutyCycle(2.8)
 pwmR.ChangeDutyCycle(3.6)
 elif select == 3: # stop
 pwmL.ChangeDutyCycle(2.8)
 pwmR.ChangeDutyCycle(2.8)
flag used to trigger a new draw
clockFlag = False

forever loop
while True:

 if clockFlag == False:
 start = time.time()
 draw = randint(0,3) # generate a random draw
 if draw == 0: # drive forward
 select = 0
 robotAction(select)

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

192

 elif draw == 1: # turn left
 select = 1
 robotAction(select)
 elif draw == 2: # turn right
 select = 2
 robotAction(select)
 elif draw == 3: # stop
 select = 3
 robotAction(select)
 clockFlag = True
 numHits = 0

 # sensor 1 reading
 GPIO.output(TRIG1, GPIO.HIGH)
 time.sleep(0.000010)
 GPIO.output(TRIG1, GPIO.LOW)

 # following code detects the time duration for the echo pulse
 while GPIO.input(ECHO1) == 0:
 pulse_start = time.time()

 while GPIO.input(ECHO1) == 1:
 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

 # distance calculation
 distance1 = pulse_duration * 17150

 # round distance to two decimal points
 distance1 = round(distance1, 2)

 # check for distance and set v1 as appropriate
 if distance1 < threshold:
 # set v1 to -1 to signal obstacle detected
 v1 = -1
 numHits = numHits + 1
 else:
 v1 = 1 # no obstacle detected
 time.sleep(0.1) # ensure that sensor 1 is quiet

 # sensor 2 reading
 GPIO.output(TRIG2, GPIO.HIGH)
 time.sleep(0.000010)
 GPIO.output(TRIG2, GPIO.LOW)

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

193

 # following code detects the time duration for the echo pulse
 while GPIO.input(ECHO2) == 0:
 pulse_start = time.time()

 while GPIO.input(ECHO2) == 1:
 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

 # distance calculation
 distance2 = pulse_duration * 17150

 # round distance to two decimal points
 distance2 = round(distance2, 2)

 # check for distance and set v2 as appropriate
 if distance2 < threshold:
 # set v2 to -1 to signal obstacle detected
 v2 = -1
 numHits = numHits + 1
 else:
 v2 = 1 # no obstacle detected

 time.sleep(0.1) # ensure that sensor 2 is quiet

 # check if both sensors detected an obstacle
 if v1 == -1 and v2 == -1:
 v3 = -1 # set v3 to a -1
 numHits = numHits + 1
 else:
 v3 = 1 # set v3 to a 1 indicating that both sensors
 # have not detected an obstacle

 # Create a new input data vector reflecting the new situation
 vInput = np.array([v1, v2, v3, 0, 0])[:,None]

 # Dot product between the vector transpose and the wtg matrix
 testVector = np.dot(vInput.T,wtg)
 testVector = np.array(testVector).tolist()

 # normalize testVector
 tv = np.array([0,0,0,0,0])[:,None]
 for i in range(0,4):
 if testVector[0][i] >= 0:
 tv[i][0] = 1
 else:
 tv[i][0] = -1

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

194

 # check for a solution
 if(tv[0][0] != v1 or tv[1][0] != v2 or tv[2][0] != v3):
 print 'No solution found'

 # generate a random solution
 if randint(0,64) > 31:
 v4 = 1
 else:
 v4 = -1
 if randint(0,64) > 31:
 v5 = 1
 else:
 v5 = -1

 # select an action based on the random draws for v3 and v4
 if v4 ==1 and v5 == 1:
 select = 0
 robotAction(select)
 elif v4 == 1 and v5 == -1:
 select = 1
 robotAction(select)
 elif v4 == -1 and v5 == 1:
 select = 2
 robotAction(select)
 elif v4 == -1 and v5 == -1:
 select =3
 robotAction(select)

 earlyNumHits = numHits
 numHits = 0 # reset to check if new solution is better

 # check if the new solution, if any, is better
 if numHits < earlyNumHits or numHits == 0:
 # create the solution vector
 vInput = np.array([v1, v2, v3, v4, v5])[:,None]
 # multiply by itself
 VInputSq = vInput.T*vInput
 # Add it to the wtg matrix
 wtg = wtg + VInputSq
 # The wtg matrix now has the new solution stored in it

 current = time.time()

 # check to see if two seconds have elapsed
 if (current - start)*1000 > 2000:
 #this triggers a new draw at loop start
 clockFlag = False

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

195

Test Run
The robot was powered by an external cell battery pack that enabled it to operate
completely untethered. I initiated an SSH remote session, as shown in Figure 7-11, to start
the annRobot program.

Figure 7-11. SSH session

The robot’s moves began as turns predominantly, with an occasional straight drive.
There were two solution “not found” messages shown within the first minute of operation
as the robot encountered either the obstacle I placed in the playing field or a wall. I
judged the overall motion as somewhat chaotic, which was expected. After about 4 to 5
minutes, the robot settled into mainly circular motions, and very occasionally moved in a
straight line. Apparently, it learned that this was the best plan to avoid obstacles. It never
stopped, even though that was one of the options.

The next demonstration is a modification of this one. It adds a goal-seeking behavior.

Demo 7-4: Light-Seeking Robot
The autonomous robot in Demo 7-3 was merely trying to avoid obstacles as it traveled
about in its environment. This new adventure gives the robot more of a purpose by
trying to travel to an objective, which will be a bright light. I will use a new light sensor in
addition to the two ultrasonic sensors used in the previous project. A Hopfield network
will help guide the robot to its destination. This means that an initial input data vector
must be created with appropriate element definitions. The following vector defines this
network:

•	 v1 - Light sensor measurement (t
0
)

•	 v2 - Light sensor measurement (t
1
)

•	 v3 - Ultrasonic senor 1

•	 v4 - Ultrasonic sensor 2

•	 v5 - Left motor

•	 v6 - Right motor

I use 1 and –1 for the vector values representing the states for each vector element, as
shown in Table 7-4.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

196

Table 7-5 specifies all the relevant vector states that the robot will likely encounter.
There are 10 states shown out of a maximum 36 combinations. I could have included all
the states but it would have needlessly complicated the calculations without any realistic
benefit. It is always possible to go back and add combinations if they are later deemed to
be beneficial.

Table 7-4. Input Data Vector State Definitions

Vector Elements Value State Description

v1, v2 1 Change to a higher light intensity

v1, v2 –1 Same or change to a lower light intensity

v3, v4 1 No object detected

v3, v4 –1 Object detected

v5, v6 1 Motor on

v5, v6 –1 Motor off

Table 7-5. Relevant Vector States

Vector Element 1 2 3 4 5 6 7 8 9 10

v1 1 –1 1 –1 1 –1 1 1 1 1

v2 –1 1 –1 1 –1 1 1 1 1 1

v3 –1 –1 1 1 –1 –1 –1 –1 1 1

v4 –1 –1 –1 –1 1 1 –1 1 –1 1

v5 1 –1 1 1 –1 –1 1 –1 1 –1

v6 1 1 –1 –1 1 1 1 1 –1 –1

This is an example of a non-useful or “irrelevant” vector:

-
-

-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

1

1

1

1

1

1

This vector means that the light intensity is unchanged, no obstacles have been
detected, and both motors are off. This vector conveys no useful information to help
propel the robot to its final destination; therefore, it should not be incorporated into the
final weighting matrix.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

197

The next series of steps squares each vector shown in Table 7-5 and adds them all
together. All the steps are shown in Figure 7-12.

Figure 7-12. Calculations to create the weighting matrix

The final weighting matrix, named wtg, is as follows:

>>> wtg
array([[10, -2, 0, 0, 2, 0],
 [-2, 10, 0, 0, -2, 0],
 [0, 0, 10, -2, 4, -10],
 [0, 0, -2, 10, -8, 2],
 [2, -2, 4, -8, 10, -4],
 [0, 0, -10, 2, -4, 10]])

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

198

The Unknowns
One of the real issues with autonomous robot operations is that they encounter situations
that you simply cannot plan for. This issue of dealing with unknowns is the primary
reason why the Hopfield network is superior to having a series of built-in rules or pre-
programmed routines to deal with different situations. To illustrate, say that the robot is
running normally and suddenly runs into an obstacle that completely block its path. For
unknown reasons, the obstacle avoidance didn’t work and the robot is struggling with
the obstacle. There could have been an opening in the floor in which the drive wheels
dropped into, thus stopping the forward motion, yet no obstacles were detected.

The ideal solution is to stop the motors before they overheat and/or completely
exhaust the motor power supply. Let’s discuss the Hopfield network solution. The
following input data vector describes this situation:

-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

1

1

1

1

0

0

This vector describes the situation where the light intensity is unchanged and no
obstacles are reported. The motors, while likely still running, are not part of the known
input vector, and consequently, are assigned a 0 value. This vector is multiplied by the
wtg matrix, with this final resultant vector:

-
-

-
-

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

=

-
-

-
-

ì

í

ï
ï
ï

8

8

8

8

4

8

1

1

1

1

1

1

normalized
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

The motor values in the final, normalized resultant vector are both –1, which means
that they should be turned off. This is exactly the correct solution for this unlikely and
unknown scenario. Properly handling the unknowns is precisely why the Hopfield
network is superior to typical robotic control routines.

The next section explains how the final weighting matrix for Demo 7-4 was
developed and how it is related to the broader concept of brain mapping.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

199

Brain Mapping
There is a remarkable similarity between a Hopfield network and the human brain.
Certain areas in the human brain are responsible for specific behaviors, such as vision,
speech, and movement. In a loosely related manner, certain regions or sets of weighting
matrix elements can be related to specific behaviors, functions, or sensory input that a
weighting matrix encodes for the robot. Figure 7-13 shows these regions mapped on to
the weighting matrix.

Figure 7-13. Weighting matrix with an overlay of functions and sensory inputs

This overlay is interesting, but what is the practical use for segmenting the
weighting matrix in this manner? The answer lies in computational efficiency. In this
demonstration, I focus on the motor control functions, which are directly related to the
light-seeking objective. This approach only involves the motor control vectors v5 and
v6 and has just eight element multiplications and sums, compared to processing the
complete 36-element matrix.

In addition, it is entirely possible to target and change specific matrix values to
amplify or diminish either sensory effects or motor control activations. The overlays
provide much needed information if you attempt this process. The resulting matrix
would likely become unstable and perhaps not even reach an equilibrium, as I discussed
previously. In any case, it is easy to reconstitute the entire weighing matrix by simply
running the program.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

200

The use of a partial Hopfield network is analogous to what can happen to the
human brain that experiences a stroke. Certain areas of the brain are destroyed, yet over
time, patients are able to regain some lost functions through therapy and rehabilitation,
because portions of the brain network are still viable and able to perform these functions,
even though the brain is not as entirely “enabled” as it was prior to the stroke.

The light-intensity sensor used on the modified robot car is discussed before I
discuss the control program.

Light Intensity Sensor
I used a photocell to measure light intensity. Figure 7-14 shows a typical photocell, which
is technically known as a cadmium sulphide (CdS) photoresistor.

Figure 7-14. Photo cell

A photocell is also known as a light dependent resistor (LDR) because the resistance
to the current flow through it is directly dependent on the intensity of the light striking its
active surface. A voltage must also be applied to the photocell and an external resistor to
generate a current flow and the subsequent voltage drop across the photocell. Figure 7-15
is the schematic of the photocell circuit installed on the robot car.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

201

The voltage measured by the MCP3008 ADC is the drop across the 10K ohm series
resistor, which is halved by another voltage divider so as to not exceed the 3.3V maximum
input voltage limit for the ADC. The maximum voltage expected from the photocell
circuit is approximately 2.2V when the photocell is fully illuminated. The absolute voltage
measured by the ADC is not important because only relative voltage comparisons are
needed to tell if the robot is approaching or moving away from the light source. It is only
necessary to ensure that all measured voltages are situated somewhat near the ADC mid-
range to avoid saturation or cut-off.

I use the same MCP3008 circuit that was used in the Chapter 6 project on energy
conservation. In this case, instead of the motor power, the ADC measures a voltage
related to the light intensity illuminating the photocell. As a reminder, the MCP3008
uses the SPI bus to communicate with the RasPi. This bus must be enabled when the
RasPi boots, which can be accomplished using the raspi-config application discussed in
Chapter 1.

Figure 7-16 shows a photograph of the complete robot car used in the following
demonstration.

Figure 7-15. Photo cell schematic

http://dx.doi.org/10.1007/978-1-4842-2743-5_6
http://dx.doi.org/10.1007/978-1-4842-2743-5_1

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

202

If you look carefully at the left-hand portion of the solderless breadboard, you can
barely see the photocell plugged into the board. This was not an optimal placement, as I
explain in the test run discussion.

This completes the hardware discussion. It’s now time to discuss the software.

Python Control Script for the Goal-Seeking Robot Car
I named this control program lightSeeker.py to reflect the nature of the robot car’s
behavior. It uses a good portion of the annRobot.py code with the addition of the
MCP3008 interface code, as well as a new module to process the light sensor. I have
deleted all the random draw code from this script since this robot’s primary objective
is to seek out the light source, and not to avoid obstacles. I discuss the code change
implications when light seeking and obstacle avoidance are both needed, after this
demonstration.

Figure 7-16. Complete light seeker robot car

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

203

The following code contains liberal comments to help you understand what is
happening in the various segments and modules.

import RPi.GPIO as GPIO
import time
from random import randint
import numpy as np
next two libraries must be installed IAW appendix
instructions
import Adafruit_GPIO.SPI as SPI
import Adafruit_MCP3008

global pwmL, pwmR, mcp
lightOld = 0
hysteresis = 2

Hardware SPI configuration:
SPI_PORT = 0
SPI_DEVICE = 0
mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT,
SPI_DEVICE))

threshold = 25.4

use the BCM pin numbers
GPIO.setmode(GPIO.BCM)

setup the motor control pins
GPIO.setup(18, GPIO.OUT)
GPIO.setup(19, GPIO.OUT)

pwmL = GPIO.PWM(18,20) # pin 18 is left wheel pwm
pwmR = GPIO.PWM(19,20) # pin 19 is right wheel pwm

must 'start' the motors with 0 rotation speeds
pwmL.start(2.8)
pwmR.start(2.8)

ultrasonic sensor pins
TRIG1 = 23 # an output
ECHO1 = 24 # an input
TRIG2 = 25 # an output
ECHO2 = 27 # an input

set the output pins
GPIO.setup(TRIG1, GPIO.OUT)
GPIO.setup(TRIG2, GPIO.OUT)

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

204

set the input pins
GPIO.setup(ECHO1, GPIO.IN)
GPIO.setup(ECHO2, GPIO.IN)

initialize sensors
GPIO.output(TRIG1, GPIO.LOW)
GPIO.output(TRIG2, GPIO.LOW)
time.sleep(1)

The following matrix elements are all that are needed
(and a bit more) to implement the motor control function.
Read the brain mapping section to see why this is true.
m25 = 2
m26 = -2
m27 = 4
m28 = -8
m29 = 10
m30 = -4
m31 = 0
m32 = 0
m33 = -10
m34 = 2
m35 = -4
m36 = 10

robotAction module
def robotAction(select):
 global pwmL, pwmR
 if select == 0: # drive straight
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.2)
 elif select == 1: # turn left
 pwmL.ChangeDutyCycle(2.4)
 pwmR.ChangeDutyCycle(2.8)
 elif select == 2: # turn right
 pwmL.ChangeDutyCycle(2.8)
 pwmR.ChangeDutyCycle(3.4)
 elif select == 3: # stop
 pwmL.ChangeDutyCycle(2.8)
 pwmR.ChangeDutyCycle(2.8)

forever loop
while True:
 # light sensor readings

 # acquire new reading
 lightNew = mcp.read_adc(0)

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

205

 v7 = 0
 # debug
 print 'lightNew = ',lightNew, ' lightOld = ',lightOld

 # determine if moving toward or away from light source
 if lightNew > (lightOld+hysteresis):
 # moving toward the light source
 v1 = 1
 v2 = -1
 elif lightNew < (lightOld-hysteresis):
 # moving away from light source
 v1 = -1
 v2 = 1
 else:
 # must be stationary
 v1 = 1
 v2 = 1
 v7 = 1
 # save sensor reading
 lightOld = lightNew
 # sensor 1 reading
 GPIO.output(TRIG1, GPIO.HIGH)
 time.sleep(0.000010)
 GPIO.output(TRIG1, GPIO.LOW)

 # following code detects the time duration for the echo pulse
 while GPIO.input(ECHO1) == 0:
 pulse_start = time.time()

 while GPIO.input(ECHO1) == 1:
 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

 # distance calculation
 distance1 = pulse_duration * 17150

 # round distance to two decimal points
 distance1 = round(distance1, 2)

 # check for distance and set v3 as appropriate
 if distance1 < threshold:
 # set v3 to -1 to signal obstacle detected
 v3 = -1
 else:
 v3 = 1 # no obstacle detected
 time.sleep(0.1) # ensure that sensor 1 is quiet

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

206

 # sensor 2 reading
 GPIO.output(TRIG2, GPIO.HIGH)
 time.sleep(0.000010)
 GPIO.output(TRIG2, GPIO.LOW)

 # following code detects the time duration for the echo pulse
 while GPIO.input(ECHO2) == 0:
 pulse_start = time.time()

 while GPIO.input(ECHO2) == 1:
 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

 # distance calculation
 distance2 = pulse_duration * 17150

 # round distance to two decimal points
 distance2 = round(distance2, 2)

 # check for distance and set v4 as appropriate
 if distance2 < threshold:
 # set v4 to -1 to signal obstacle detected
 v4 = -1
 else:
 v4 = 1 # no obstacle detected
 time.sleep(0.1) # ensure that sensor 2 is quiet

 # calculate v5 and v6
 v5 = m25*v1 + m26*v2 + m27*v3 + m28*v4 # not using m29 and m30
 v6 = m31*v1 + m32*v2 + m33*v3 + m34*v4 # not using m35 and m36

 # normalize v5 and v6
 if v5 >= 0:
 v5 = 1
 else:
 v5 = -1
 if v6 > 0:
 v6 = 1
 else:
 v6 = -1

 # motor control actions based on the new computed vector elements
 if v7 == 1:
 # stop, light is unchanged
 select = 3
 robotAction(select)

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

207

 # debug
 print 'stopped'
 exit()
 elif v5 == 1 and v6 == -1:
 # drive straight ahead
 select = 0
 robotAction(select)
 # debug
 print 'driving straight ahead'
 elif v5 == -1 and v6 == -1:
 # randomly select turning left or right
 turnRnd = randint(0,1)
 if turnRnd == 0:
 # turn left
 select = 1
 robotAction(select)
 # debug
 print 'turning left'
 else:
 # turn right
 select = 2
 robotAction(select)
 # debug
 print 'turning right'

 # pause for a 2 seconds
 time.sleep(2)
(End list)

Test Run
I conducted the test run in the same inner hallway that I ran all the earlier
demonstrations. There are no windows in the hallway and all the adjoining doors were
closed. I placed a bright fluorescent, adjustable desktop lamp on the floor to serve as the
light source. The robot car was placed about four feet away from the lamp and pointed in
the direction of the lamp. I initiated the test run using an SSH session from my MacBook
Pro laptop. Figure 7-17 shows the entire SSH session, which only lasted about 10 seconds,
with the robot facing a wall about two feet away from the lamp.

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

208

Figure 7-17. SSH session

I didn’t consider the hallway walls, which are painted in a very reflective white color;
thus, the light sensor immediately detected this and the robot drove to the wall. When it
contacted the wall, the light intensity obviously did not change, which robot sensed, and
it immediately stopped—as it was programmed to do. That action showed me that the
program was functioning properly, but there was a problem with the way the light sensor
detected ambient light rather than the light source. Shielding the light sensor would not
help much because it would still likely detect the reflected light from the walls vs. the light
source itself. This is because there was more reflected light present in the environment
than directly emanating from the light source. The only solution to this dilemma was to
paint the hallway walls black, which my wife would not agree to, or to conduct the test
in an area without any ambient light except for the light source. I did the latter in my
garage in the evening. The space was large enough such that any light reflected off the
walls was greatly diminished with respect to the intense light coming from the lamp. The
robot drove directly to the lamp and then stopped as it was expected to do. This action
confirmed that the program was functioning as expected.

In the next session, I discuss the issues presented if obstacle avoidance and light
seeking are attempted at the same time.

Obstacle Avoidance and Light Seeking
Simultaneous obstacle avoidance and light seeking is a difficult problem to solve. As you
probably realized, I did not place any obstacles in the path of the robot while trying out
the light-seeking function. At first glance, these two functions seem to be direct opposites
because the obstacle avoidance script causes the robot to take random actions to clear
obstacles, while the light-seeking function tends to drive the robot closer to the light

Chapter 7 ■ MaChine Learning: artifiCiaL neuraL networks

209

source. I admit that I placed a random selection regarding left or right turns in the light
seeker script, but the intent was to arrange the robot to take a straight drive to the light
source. So how do you resolve these conflicting priorities?

One approach is to simply suspend the light-seeking function if an obstacle is
detected. It makes no sense to try to drive straight to the light source if an obstacle is
blocking the path. In this case, let the robot take its random actions per the Hopfield
network commands, and try to somehow clear the obstacles. Once cleared, resume the
light seeking. This may not be the most efficient way to seek light, but it would probably
be successful.

Another approach is to generate an additional set of vectors that instruct the robot to
take a desired action based on light sensor measurements and ultrasonic measurements.
These additional vectors definitely increase the size of the weighting matrix to account
for all the sensor value combinations. For example, there would have to be a new
vector element for a light to change from high to low and an obstacle reported on the
right. Another case might be that the light remains constant but both sensors report an
obstacle directly in front of the robot. This would cause the robot to stop using the pure
light-seeking script, but that is not what you want in this case. I think you get the idea of
the rapid growth in complexity that would be involved if this approach were taken. Just
remember, the Hopfield network is not magic; it needs to have the desired vectors stored
in it to achieve good results.

It turns out that the Hopfield network is probably not the best solution for this
scenario of obstacle avoidance and goal seeking. There are other AI solutions to consider;
for example, a subsumption architecture, where priorities are assigned to different
behaviors, which is discussed in Chapter 11. The obstacle avoidance behavior would be
assigned a higher priority than the light-seeking behavior and the robot would clear any
obstacles before continuing its light-seeking behavior.

Summary
This was the second chapter in a series that explores machine learning. In this chapter,
I focused on the Hopfield network, which is one of the simplest forms of an artificial
neural network (ANN). The discussion started with an explanation of the artificial neuron
model used in a Hopfield network. I then proceeded to create an example network using
numerical matrices to represent the network.

The key attribute for a Hopfield network is that it acts as an associative memory,
similar to the way a human brain functions. The network memory consists of a weighting
matrix made up of data vectors that represent sensory inputs and motor control actions.

The first demonstration used the same robot car introduced in the last chapter. The
demonstration’s purpose was to show how the car navigates through an area containing
obstacles. I showed how a Python program script could create and update a Hopfield network
that “learned” the appropriate ways to detect and avoid obstacles. numpy library matrix
functions were used in the script to simplify the calculations and improve program efficiency.

The second demonstration took a different approach by using a partial Hopfield
network weighting matrix to control the robot in a goal-seeking experiment. The goal was
to travel to a light source, using a photocell as the primary sensor. The ultrasonic sensors
were activated but not required because no obstacles were placed in the path of the robot.
I successfully demonstrated that even a partial Hopfield network can control a robot in
this situation.

http://dx.doi.org/10.1007/978-1-4842-2743-5_11

CHAPTER 8

Machine Learning:
Deep Learning

This is the third chapter in the series on machine learning. The focus is on generalized
artificial neural networks (ANNs). Covering this topic requires an extensive background
discussion containing a fair amount of math, so be forewarned. The Python implementation
on the Raspberry Pi also takes a good deal of discussion. I try my best to keep it all interesting
and to the point.

Let’s start with a brief review of some fundamentals, and then move on to some
calculations for a larger three-layer, nine-node ANN using Python and matrix algorithms
imported from the numpy library. You’ll also look at some propagation examples, which
is followed by a discussion on gradient descent (GD).

Two demonstrations are provided later in this chapter. The first one shows you how
to create an untrained ANN. The second demonstration shows you how to train an ANN
to generate useful results. Several practical ANN demonstrations using the techniques
presented in this chapter are shown in Chapter 9. There is simply too much ANN content
to present in a single chapter.

When you complete this chapter, you will have gained a good amount of theoretical
and practical knowledge on how to create a useful ANN.

Generalized ANN
At this point in the book, I have covered quite a bit on the subject of ANN, but there is still
a considerable amount to discuss. What should be clear to you at this stage in the book
is that an ANN is a mathematical representation or model of the many neurons and their
interconnections in a human brain. ANN basics were discussed in Chapter 2. I introduced
you to a specialized ANN in Chapter 7 that was well suited for a fairly simple robotic
application. However, the field of ANNs is quite broad and there is still much to cover.

http://dx.doi.org/10.1007/978-1-4842-2743-5_9
http://dx.doi.org/10.1007/978-1-4842-2743-5_2
http://dx.doi.org/10.1007/978-1-4842-2743-5_7

Chapter 8 ■ MaChine Learning: Deep Learning

212

In this chapter’s title, I used the phrase deep learning, which I also briefly mentioned
in Chapter 2. Deep learning is commonly used by AI practitioners to refer to multilayer
ANNs, which are able to learn by having repeated training data sets applied to them.
Figure 8-1 shows a three-layer ANN.

The following explains the layers shown in Figure 8-1.

•	 Input: Inputs are applied to this layer.

•	 Hidden: All layers that are not classified as input or output are
hidden.

•	 Output: Outputs appear at this layer.

All the neurons or nodes are interconnected to each other, layer by layer. This means
that the input layer connects to all the nodes in the first hidden layer. Likewise, all the
nodes in the last hidden layer connect to the output nodes.

Figure 8-1. Three-layer ANN

http://dx.doi.org/10.1007/978-1-4842-2743-5_2

Chapter 8 ■ MaChine Learning: Deep Learning

213

I have also referred to this network configuration as a generalized ANN to
differentiate from the Hopfield network, which is a special case from the general. The
Hopfield network only consists of a single layer where all the nodes serve as both inputs
and outputs, and there are no hidden layers. From this point on when I speak of an ANN,
I am referring to the generalized type with multiple layers.

There are two broad categories for ANNs:

•	 FeedForward: Data flow is unidirectional. Nodes send data from
one layer to the next one.

•	 Feedback: Data is bidirectional using feedback loops.

Figure 8-2 shows models for both of these ANN types.

Figure 8-2. FeedForward and Feedback ANN models

Chapter 8 ■ MaChine Learning: Deep Learning

214

An input to an ANN is just a pattern of numbers that propagate through the network
where each node sums the inputs and if the sum exceeds a threshold value causes the
node to fire and output a number to the next connected node. The connection strength
between nodes is known as the weighting, as I have previously described in the Hopfield
network. Determining the weight values is the key element in how an ANN learns. ANN
learning usually happens when many training data sets are applied to the network. These
training data sets contain both input and output data. The input data creates output data,
which is then compared to the true output data with error results created when the values
do not agree. This error data is consequently feedback through the ANN and the weights
adjusted in an incremental fashion in accordance with a pre-programmed learning
algorithm. Over many training cycles, often thousands, the ANN is trained to compute the
desired output for a given input. This learning technique is called back propagation.

Figure 8-3 shows a three-layer ANN with all the associated weights interconnecting
the nodes. The weights are shown in a w

i,j
 notation where i is the source node and j is the

receiving or destination node. The stronger the weight the more the source node affects
the destination node. Of course, the reverse is also true.

If you examine Figure 8-3 closely, you see that not all layer-to-layer nodes are
interconnected. For instance, input layer node 1 has no connection with hidden
layer node 3. This can be remedied if it is determined that the network cannot be
adequately trained. Adding more node-to-node connections is quite easy to do using
matrix operations, as you will see shortly. Adding more connections does no real harm
because the connection weights are adjusted. The network is trained to the point where
unnecessary connections are assigned a 0 weighting value, which effectively removes
them from the network.

Figure 8-3. Three-layer ANN with weights

Chapter 8 ■ MaChine Learning: Deep Learning

215

At this point, it is useful to actually follow a signal path through a simplified ANN so
that that you have a good understanding of the inner workings of this type of network.
I use a very simple two-layer, four-node network for this example because it more than
suffices for this purpose. Figure 8-4 shows this network, which only consists of one input
and one output layer. No hidden layers are necessary in this ANN.

Now, let’s assign the following values to the inputs and weights shown in Figure 8-4,
as listed in Table 8-1.

Figure 8-4. Two-layer ANN

Table 8-1. Input and Weight Values for Example ANN

Symbol Value

in1 0.8

in2 0.4

w
1,1

0.8

w
1,2

0.1

w
2,2

0.4

w
2,1

0.9

These values were selected randomly and do not represent nor model any physical
situation. Often times, weights are randomly assigned with the intention that it is easier
to promote a rapid convergence to an optimal, trained solution. With so few inputs and
weights involved, I did not see it as an issue to omit a diagram with these real values.
You can easily scribble out a diagram with the values if that helps you understand the
following steps.

Chapter 8 ■ MaChine Learning: Deep Learning

216

I start the calculation with node 1 in layer 2 because there are no modifications
that take place between the data input and the input nodes. The input nodes exist as a
convenience for network computations. There is no weighting directly applied by the
input layer nodes to the data input set. Recall from Chapter 2 that the node sums all the
weighted inputs from all of its interconnected nodes. In this case, node 1 in layer 2 has
inputs from both nodes in layer 1. The weighted sum is therefore

w
1,1

 * in1 + w
2,1

 * in2 = 0.8 * 0.8 + 0.9 * 0.4 = 0.64 + 0.36 = 1.00
Let’s next assume that the activation function is the standard sigmoid expression that

I also described in Chapter 2. The sigmoid equation is:

y e x= +()−1 1/ where e = math constant 2.71828…

With x = 1.0, this equation becomes:

y e= +()−1 1 1/ = 1/(1.3679) = 0.7310 or out1 = 0.7310

Repeating the preceding steps for the other node in layer 2 yields the following:

w
2,2

 * in2 + w
1,2

 * in1 = 0.4*0.4 + 0.1*0.8 = 0.16 + 0.08 = 0.24

Letting x = 0.24 yields this:

y e= +()−1 1 0 24/ . = 1/(1.7866) = 0.5597 or out2 = 0.5597

The two ANN outputs have now been determined for the specific input data set.
This was a fair amount of manual calculations to perform for this extremely simple
two-layer, four-node ANN. I believe you can easily see that it is nearly impossible to
manually perform these calculations on much larger networks without generating errors.
That is where the computer excels in performing these tedious calculations without error
for large ANNs with many layers. I used numpy matrices in the last chapter when doing
the Hopfield network multiplications and dot products. Similar matrix operations are
applied to this network. The input vector for this example is just the two values: in1 and
in2. They are expressed in a vector format as

in

in

1

2

Likewise, the following is the weighting matrix:

w w

w w
1 1 1 2

2 1 2 2

, ,

, ,

Figure 8-5 shows these matrix operations being applied in an interactive Python
session. Notice that it only takes a few statements to come up with exactly the same
results as was done with the manual calculations.

http://dx.doi.org/10.1007/978-1-4842-2743-5_2
http://dx.doi.org/10.1007/978-1-4842-2743-5_2

Chapter 8 ■ MaChine Learning: Deep Learning

217

The next example involves a larger ANN that is handled entirely by a Python script.

Larger ANN
This example involves a three-layer ANN that has three nodes in each layer. The ANN
model is shown in Figure 8-6 with an input data set and a portion of the weighting values
in an effort not to obscure the diagram.

Figure 8-5. Interactive Python session

Figure 8-6. Larger ANN

Let’s start with the input data set as that is quite simple. This is shown in a vector
format as follows:

input =

0 8

0 2

0 7

.

.

.

Chapter 8 ■ MaChine Learning: Deep Learning

218

There are two weighting matrices in this example. One is needed to represent
the weights between the input layer (wtg

ih
) and the hidden layer and the other for the

weights between the hidden layer and the output layer (wtg
ho

). The weights are randomly
assigned as was done for the previous examples.

wtgih =

=

w w w

w w w

w w w

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

0 8 0, , ,

, , ,

, , ,

. .66 0 3

0 2 0 9 0 3

0 2 0 5 0 8

.

. . .

. . .

wtgho =

=

w w w

w w w

w w w

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

0 4 0, , ,

, , ,

, , ,

. .88 0 4

0 5 0 7 0 2

0 9 0 1 0 6

.

. . .

. . .

Figure 8-7 shows the matrix multiplication for the input to the hidden layer. The
resultant matrix is shown as X1 in the screenshot.

Figure 8-7. First matrix multiplication

The sigmoid activation function has to be applied next to this resultant. I called
the transformed matrix O1 to indicate it was an output from the hidden layer to the real
output layer. The resultant O1 matrix is:

matrix([[0.69423634, 0.73302015, 0.70266065]])

These are the values multiplied by the weighting matrix wtg
ho

. Figure 8-8 shows this
multiplication. I called the resultant matrix X2 to differentiate from the first one. The final
sigmoid calculation is also shown in the screenshot, which I named O2.

Chapter 8 ■ MaChine Learning: Deep Learning

219

Figure 8-8. Second matrix multiplication

Table 8-2. Comparison of ANN Outputs with the Inputs

Input Output Error

0.8 0.78187033 0.01812967

0.2 0.7574536 -0.5574536

0.7 0.69970531 0.00029469

The matrix O2 is also the final output from the ANN, which is

matrix([[0.78187033, 0.7574536, 0.69970531]])

This output should reflect the input so let’s compare the two and calculate the error
or difference between the two. All of this is shown in Table 8-2.

The results are actually quite remarkable as two of the three outputs are very close to
the respective input values. However, the middle value is way off, which indicates that at
least some of the ANN weights must be modified. But, how do you do it?

Before I show you how that is done, please consider the situation shown in Figure 8-9.

Chapter 8 ■ MaChine Learning: Deep Learning

220

In Figure 8-9, two nodes are connected to one output node, which has an error
value. How can the error be reflected back to the weights interconnecting the nodes? In
one case, you could evenly split the error between the input nodes. However, that would
not accurately represent the true error contribution from the input nodes as node 1 has
twice the weight or impact as node 2. A moments thought should lead you to the correct
solution that the error should be divided in direct proportion to the weighting values
connecting the nodes. In the case of the two input nodes shown in Figure 8-9, node 1
should be responsible for two-thirds of the error while node 2 should have one-third of
the error contribution, which is precisely the ratios of their respective weights to the sum
applied to the output node.

This use of the weights in this fashion is an additional feature for the weighting matrix.
Normally, weights are applied to signals propagating in a forward direction through the ANN.
However, this approach uses weights with the error value, which is then propagated in a
backwards direction. This is reason that error determination is also called back propagation.

Consider next what would happen if there were errors appearing at more than one
output node, which is likely the case in most initial ANN startups. Figure 8-10 shows this
situation.

Figure 8-9. Error allocation problem

Chapter 8 ■ MaChine Learning: Deep Learning

221

It turns out the process is identical for multiple nodes as it was for a single
node. This is true because the output nodes are independent of one another, with no
interconnecting links. If this were not true, it would be very difficult to back propagate
from interlinked output nodes.

The equation to apportion the error is also very simple. It is a just a fraction based on
the weights connected to the output node. For instance, to determine the correction for e

1

in Figure 8-10, the fractions applied to w
1,1

 and w
2,1

 are as follows:

w
1,1

/(w
1,1

 + w
2,1

) and w
2,1

/(w
1,1

 + w
2,1

)

Similarly, the following are the errors for e
2
.

w
1,2

/(w
1,2

 + w
2,2

) and w
2,2

/(w
1,2

 + w
2,2

)

So far, the process to adjust the weights based on the output errors has been quite
simple. The errors are easy to determine because the training data provides the correct
answers. For two-layer ANNs, this is all that is needed. But how do you handle a three-
layer ANN where there are most certainly errors in the hidden layer output, yet there is no
training data available, which can be used to determine the error values?

Back Propagation In Three-layer ANNs
Figure 8-11 shows a three-layer, six-node ANN with two nodes per layer. I deliberately
simplified this ANN so that it is relatively easy to focus on the limited back propagation
required for the network.

Figure 8-10. Error allocation problem for multiple output nodes

Chapter 8 ■ MaChine Learning: Deep Learning

222

In Figure 8-11, you should be able to see the output error values that were arbitrarily
created for this example. Individual error contributions from nodes 1 and 2 of the hidden
layer are shown at the inputs to each of the output nodes. These normalized values were
calculated as follows:

e
1output1

 * w
1,1

/(w
1,1

 + w
2,1

) = 0.96 * 2/(2 + 3) = 0.96 * 0.4 = 0.38

e
1output2

 * w
2,1

/(w
1,1

 + w
2,1

) = 0.96 * 3/(2 + 3) = 0.96 * 0.6 = 0.58

e
2output1

 * w
1,2

/(w
1,2

 + w
2,2

) = 0.8 * 2/(2 + 1) = 0.8 * 0.66 = 0.53

e
2output2

 * w
2,2

/(w
1,2

 + w
2,2

) = 0.8 * 1/(2 + 1) = 0.8 * 0.33 = 0.27

The total normalized error value for each hidden node is the sum of the individual
error contributions to a given output node and are calculated as follows:

e
1
 = e

1output1
 + e

2output1
 = 0.38 + 0.53 = 0.91

e
2
 = e

1output2
 + e

2output2
 = 0.58 + 0.27 = 0.85

These values are shown next to each of the hidden nodes in Figure 8-11.
The preceding process may be continued as needed to calculate all the combined

error values for any remaining hidden layers. There is no need to calculate error values
for the input layer because it must be 0 for all input nodes as they simply pass the input
values without any modifications.

The preceding process for calculating the hidden layer error outputs is quite tedious
since it was done manually. It would be much nicer if it could be automated using
matrices in a similar way that the feed forward calculations were done. The following
would result if the matrices were translated on a one-to-one basis from the manual
method:

ehidden =
+ +

+ +

w

w w

w

w w

w

w w

w

w w

1 1

1 1 2 1

1 2

1 2 2 2

2 1

2 1 1 1

2 2

2 2 1

,

, ,

,

, ,

,

, ,

,

, ,,

*

2

1

2

in

in

Figure 8-11. Three-layer, six-node ANN with error values

Chapter 8 ■ MaChine Learning: Deep Learning

223

Unfortunately, there is no reasonable way to input the fractions that are shown in
the preceding matrix. But all hope is not lost if you think about what the fractions actually
do. They normalize the node’s error contribution, meaning that the fraction converts to a
number ranging between 0 and 1.0. The relative error contribution can also be expressed
as an unnormalized number by simply using the weight numerator and dropping the
denominator. The result is still acceptable because it is really only important to calculate a
combined error value that is useful in the weight updates. I cover this in the next section.

Removing the denominators of all the fractions yields

ehidden =

w w

w w

in

in
1 1 1 2

2 1 2 2

1

2
, ,

, ,

*

The preceding matrix can easily be handled using numpy’s matrix operations.
The only catch is that the transpose of the matrix must be used in the multiplication,
which again is not an issue. Figure 8-12 shows the actual matrix operations for this error
backpropagation example.

It is now time to discuss how the weighting matrix values are updated once the errors
have been determined.

Updating the Weighting Matrix
Updating the weighting matrix is the heart of the ANN learning process. The quality of
this matrix determines how effective the ANN is in solving its particular AI problem.
However, there is a very significant problem in trying to mathematically determine a
node’s output given its input and weights. Consider the following equation, which is
applicable to a three-layer, nine-node ANN that determines the value appearing at a
particular output node:

O

e

k
w

e
j

j k

j
w j k xi

=

+

å-
+

= -
=
å ()

1

1
1

3

1

3

1

1

(*,

, *

O
k
 is the output at the k

th
 node.

w
j,k

 is all the interconnecting weights between the input layer and selected output node.
x

i
 are the input values.

Figure 8-12. Hidden layer error matrix multiplication

Chapter 8 ■ MaChine Learning: Deep Learning

224

This certainly is a formidable equation even though it only deals with a relatively
simple three-layer, nine-node ANN. You can probably imagine the horrendous equation
that would model a six-input, five-layer ANN, which in itself is not that large of an
ANN. Larger ANN equations are likely beyond human comprehension. So how is this
conundrum solved?

You could try a brute-force approach, where a fast computer simply tries a series of
different values for each weight. Let’s say there are 1000 values to test for each weight,
ranging from –1 to 1 in increments of 0.002. Negative weights are allowed in an ANN
and the 0.002 increment is probably fine to determine an accurate weight. However,
for our three-layer, nine-node ANN there are 18 possible weighting links. Since there
are 1000 values per link, there are 18,000 possibilities to test. That means it would take
approximately five hours to go through all the combinations if the computer took one
second for each combination. Five hours is not that bad for a simple ANN, however, the
elapsed time would grow exponentially for larger ANNs. For example, in a very practical
500-node ANN, there are about 500 million weight combinations. Testing at one second
per combination would take approximately 16 years to complete. And that is only for one
training set. Imagine the time taken for thousands of training sets. Obviously, there must
be a better way than using the brute-force approach.

The solution for this difficult problem comes from the application of a mathematical
approach named steepest descent. This approach was first created in 1847 by a French
mathematics professor named Augustin Louis Cauchy. He proposed it in a treatise
concerning the solution of a system of simultaneous equations. However, a period of
more than 120 years elapsed before mathematicians and AI researchers applied it to
ANNs. The field of ANN research rapidly developed once this technique became well
known and understood.

The technique is also commonly referred to as gradient descent, which I start doing
from this point. The underlying mathematics for gradient descent can be a bit confusing
and somewhat obscure, especially when it is applied to ANNs. The following sidebar
delves into the details of the gradient descent technique in order to provide those
interested readers with a brief background on the subject.

EXAMINING THE GRADIENT DESCENT TECHNIQUE

Credit goes to Matt nedrich, who wrote a great blog in early 2014 from which i have
based much of this discussion. at the time, Matt was working for atomic Objects,
a software consultancy based in ann arbor, Mi. You can view the original blog at
https://spin.atomicobject.com.

i start by focusing on a close relative named linear regression. this is not the first
time i have discussed linear regression. in Chapter 2, i discussed the concept of a
linear predictor using mushrooms in the example. the linear predictor was a sloped
line with a generalized equation form of

y mx b= +

https://spin.atomicobject.com/
http://dx.doi.org/10.1007/978-1-4842-2743-5_2

Chapter 8 ■ MaChine Learning: Deep Learning

225

i didn’t mention it at that time, but this equation is often used a “best fit” predictor for
x-y scatter plot data, which is the basis for linear regression. Consider Figure 8-13,
which is also the starting gif for an automated plot sequence in Matt’s blog.

the linear regression technique strives to best fit a sloped line that goes through
the x-y data points in such a position to minimize the total error if you were to use
the sloped line alone as a y predictor for a given x. i recommend going to the blog
and clicking on the gif to see the automated sequence as the line seeks a best-fit
position. i can only proceed in this book with the mathematical steps that determine
the sloped line’s position.

there should be starting equation to kick off this linear regression technique
discussion. in this case, it is the sloped line equation used in the Chapter 2 linear
predictor model.

y mx b= +

where m = slope or gradient

b = y-axis intercept

Figure 8-13. Initial x-y scatter plot

http://dx.doi.org/10.1007/978-1-4842-2743-5_2

Chapter 8 ■ MaChine Learning: Deep Learning

226

the general approach is to use a data set of (m, b) and then determine how well
that line with those parameters “fits” the x-y data points. this fit is determined by
calculating y for a given x in the data set and then calculating the error using the
true y in the data set. all the x’s in the data set are used. this error is often referred
to as the distance from the sloped line as it makes its way through the data set.
this error or distance is also squared to ensure that distances below the line that
are negative do not cancel out the positive distances above the line. Squaring the
distances also ensures that the overall error function can be differentiated.

the following is a python method that implements this error function:

y = mx + b
m is slope, b is y-intercept
def computeErrorForLineGivenPoints(b, m, points):
 totalError = 0
 for i in range(0, len(points)):
 totalError += (points[i].y - (m * points[i].x + b)) ** 2
 return totalError / float(len(points))

the following is a formal error function for the code implements:

e
N

y m x bm b
i

N

i i, *= − +()()
=
∑1

1

2

a sloped line generates the best fit when the error—as calculated by the preceding
error function—is at its lowest minimum value possible for the totality of the data
set. the trick now is to create some form for the error function that provides the
appropriate values for m and b that produce the overall minimum. Before i go into
that, it would helpful to visualize the relationships between m, b, and e

m, b.
Figure 8-14 is from the blog that clearly shows the curved nature of the
relationships between all the variables.

Chapter 8 ■ MaChine Learning: Deep Learning

227

it might also be helpful to imagine holding a marble high up on one of surfaces and
allowing it to roll down the slope. it should just stop at the minimum point, which
has an m and b associated with it as well as the minimum em,b.

running a gradient descent search is equivalent to rolling the mythical marble
down the slope. the first step in doing a gradient descent calculation is to perform
two partial differentiations on the error function because it has two independent
variables: m and b.

∂
∂

= − − +()()
=
∑m N

x y mx b
i

N

i i i

2

1

∂
∂

= − − +()()
=
∑b N

y mx b
i

N

i i

2

1

i would like to discuss the concept of a global minimum before i describe the
process of calculating the optimum m and b values. Figure 8-15 is a three-
dimensional (3D) plot of an analytic continuous function with variables x and y.

Figure 8-14. Plots form, b and e
m,b

Chapter 8 ■ MaChine Learning: Deep Learning

228

Figure 8-15. Multiple minima 3D plot

in this 3D plot, you can see where two minima or valleys have been identified. One is
“deeper” than the other is. the deepest minimum is considered the global minimum,
while the other is called a local minimum. Depending upon where you start the
gradient descent, it is possible to land in a local minimum while also believing it is
the global minimum. Unfortunately, computers do not have the inherent ability to
look at 3D image such as Figure 8-15 and figure out where to start the gradient
descent to find the true global minimum. it is therefore important to iterate over the
entire ranges of the independent variables m and b, taking sufficiently small steps
to locate the global minimum and rejecting all local minima. Shortly, you see that
setting step size becomes an important part of the process.

all the parts necessary to start the gradient descent have now been discussed. the
actual search starts by setting m = –1 and b = 0. this point may be called the origin
as a simple reference. the gradient descent should begin its march downhill based
on the initial error function towards the optimum solution. each iteration should
also provide an improved solution until it reaches a point where the error remains
constant or starts increasing. the direction that an iteration takes is based on the
two partial derivatives that were shown earlier.

the following python code implements this gradient descent algorithm:

def stepGradient(b_current, m_current, points, learningRate):
 b_gradient = 0
 m_gradient = 0
 N = float(len(points))
 for i in range(0, len(points)):
 b_gradient += -(2/N) * (points[i].y -

((m_current*points[i].x) + b_current))
 m_gradient += -(2/N) * points[i].x * (points[i].y -

((m_current * points[i].x) + b_current))
 new_b = b_current - (learningRate * b_gradient)
 new_m = m_current - (learningRate * m_gradient)
 return [new_b, new_m]

Chapter 8 ■ MaChine Learning: Deep Learning

229

the learningRate variable controls the step size in the effort to locate the
minimum. too large a step size and you may miss the minimum. however, too small
a step size needlessly increases the number of iterations taken before locating the
minimum.

executing the algorithm begins at the origin stated earlier. For each iteration, the m
and b values are updated to yield a slightly lower error than the previous iteration.
in Figure 18-16, the dot on the left plot displays the current location of the gradient
descent search. the right plot displays the corresponding line of best fit for the
current m and b values.

You can clearly see from the right plot that the initial guess for the line of best fit was
way off. the fit vastly improves in the next iteration, as shown in Figure 18-17. the
left plot now has line indicating the path taken to get there from the initial point.

Figure 18-16. Start of the gradient descent

Chapter 8 ■ MaChine Learning: Deep Learning

230

the fit continues to improve after the next iteration, as shown in Figure 18-18.

Finally, after 100 iterations, the search resolves to a very good fit, as shown in
Figure 18-19.

Figure 18-17. Iteration 1 for the gradient search

Figure 18-18. Iteration 2 for the gradient search

Chapter 8 ■ MaChine Learning: Deep Learning

231

You can see from the path displayed in the left graph that the search in the last
series of iterations took a slight jog downward and to the right in search of the
global minimum.

Figure 18-20 is a plot of error values for the first 100 iterations in the gradient
search.

Figure 18-19. Iteration 100 for the gradient search

Figure 18-20. Plot of error values vs iteration number

Chapter 8 ■ MaChine Learning: Deep Learning

232

it is good to check on the proper operation of the gradient search. Make sure that
the error values continually decrease as the number of iterations increase. Looking
at the chart it appears the error values are very close to zero after the 50th iteration.
this might well indicate a broad minimum surface exists where the values of m and
b would not change significantly in producing a line of best fit.

this is the final line of best fit using 100 iterations in the gradient search:

y x= +1 3 0 61. .

i hope that you have gained some insight into how the gradient search technique
works.

The Gradient Descent Applied to an ANN
Figure 8-21 nicely summarizes the gradient descent technique as it applies to an ANN. It
must determine the global minimum by adjusting the weights w

i,j
 so as to minimize the

overall errors present in the ANN.

This adjustment becomes a function of the partial derivative of the error function

with respect to a weight, w
j,k

. This partial derivative is shown by these symbols:
∂

∂
e

w j k,

.

This derivative is also the slope of the error function. It is the gradient descent algorithm
that follows the slope down to the global minimum.

Figure 8-22 shows the three-layer, six-node ANN that is the basis network for the
following discussion. Note the i, j, and k indices because they are important to follow as
you go through the procedure.

Figure 8-21. ANN global minimum

Chapter 8 ■ MaChine Learning: Deep Learning

233

There is one additional symbol required beyond those shown in Figure 8-22: the
output node error, which is expressed as

e t ok k k= −

t
k
 is the true or target value from the training set.

o
k
 is output resulting from the training set input x

i
 values.

The total error at any given node n is the preceding equation with n substituted for
k. Consequently, the total error for the entire ANN is the sum of all errors for all of the
individual nodes. The errors are also squared for reasons mentioned in the sidebar. This
leads to the following equation for the error function:

e t o
i

N

n n= −()
=
∑

1

2

N is the total number of nodes in the ANN.
This error function is the exact one that is required to differentiate with respect to w

j,k
 ,

leading to the following form:

¶
¶

=
¶

¶
-()

=
åe

w w
t o

j k j k i

N

n n
, , 1

2

This equation may be considerably simplified by taking note that the error at any
specific node is due solely to its input connections. This means the output for the k

th
 node

only depends on the w
j,k

 weights on its input connections. What this realization does is to
remove the summation from the error function because no other nodes contribute to the
k

th
 node’s output. This yields a much simpler error function:

¶
¶

=
¶

¶
-()e

w w
t o

j k j k
k k

, ,

2

Figure 8-22. Three-layer, six-node ANN

Chapter 8 ■ MaChine Learning: Deep Learning

234

The next step is to do the actual partial differentiation on the function. I simply go
through the steps with minimal comments to get to the final equation without prolonging
this whole derivation.

 1. Chain rule applied:
∂

∂
=

∂
∂

∂
∂

e

w

e

o

o

wj k k

k

j k, ,

*

 2. o
k
 is independent of w

j,k
. The first partial = − −()2 t ok k

 3. The output o
k
 has a sigmoid function applied. The second

partial =
∂
∂
o

w
k

j k,

 sigmoid
j

j k jw o∑

, *

 4. The differential of the sigmoid is

∂
∂

() = () − ()()
x
sigmoid x sigmoid x sigmoid x* 1

 5. Combining:
¶

¶
= - -() æ

è
çç

ö

ø
÷÷åe

w
t o w o

j k
k k

j
j k j

,
,* * *2 sigmoid

1-
æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
÷÷

¶
¶

æ

è
çç

ö

ø
÷÷å åsigmoid w o

w
w o

j
j k j

j k j
j k j,

,
,* * * . Note the last

term is necessary because of the summation term in the
sigmoid function. Just another application of the chain rule.

 6. Simplifying:

¶
¶

= - -() æ

è
çç

ö

ø
÷÷ -å åe

w
t o w o sigmoid w

j k
k k

j
j k j

j
j

,
, ,* * *2 1sigmoid kk jo*

æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
÷÷

Take a breath, which I often did after a rigorous calculus session. This is the final
equation that is used to adjust the weights:

∂
∂

= − −()

−∑ ∑e

w
t o w o sigmoid w o

j k
k k

j
j k j

j
j k j

,
, ,* * * *sigmoid 1

 *oj

You should also notice that the 2 at the beginning of the equation has been dropped.
It was only a scaling factor and not important in determining the direction of the error
function slope, which is the main key to the gradient descent algorithm. I do wish to
congratulate my readers who have made it this far. Many folks have a very difficult time
with the mathematics required to get to this stage.

It would now be very helpful to put a physical interpretation on this complex
equation. The first part ()t ok k- is just the error, which is easy to see. The sum

expressions
j

j k jw o∑ , * inside the sigmoid functions are the inputs into the k
th

 final layer

node. And the very last term o
j
 is the output from the j

th
 node in the hidden layer. Knowing

this physical interpretation should make the creation of the other layer-to-layer error
slope expressions much easier.

Chapter 8 ■ MaChine Learning: Deep Learning

235

I state the input to hidden layer error slope equation without subjecting you to the
rigorous mathematical derivation. This expression relies on the physical interpretation
just presented.

¶
¶

= -() æ

è
ç

ö

ø
÷ -

æ

è
çå åe

w
e w o sigmoid w o

i j
j

i
i j i

i
i j i

,
, ,* * * *sigmoid 1

öö

ø
÷

æ

è
ç

ö

ø
÷ * oi

The next step is to demonstrate how new weights are calculated using the preceding
error slope expressions. It is actually quite simple as shown in the following equation:

neww old w
e

wj k j k
j k

, ,
,

*= −
∂

∂
α

α= learning rate

Yes, that is exactly the same learning rate discussed in Chapter 2 where I introduced
it as part of the linear predictor discussion. The learning rate is important because setting
it too high may cause the gradient descent to miss the minimum, and setting it too low
would cause many extra iterations and lessen the efficiency of the gradient descent
algorithm.

Matrix Multiplications for Weight Change Determination
It would be very helpful to express all the preceding expressions in terms of matrices,
which is the practical way real weight changes are calculated. Let the following expression
represent one matrix element for the error slope expression between the hidden and the
output layers:

gd w e sigmoid o sigmoid o oj k k k k j
T

, * * * *() = () − ()()α 1

o
j
T is the transpose of the hidden layer output matrix.

The following are the matrices for the three-layer, six-node example ANN:

gd gd gd

gd gd gd

w w w

w w w
1 1 2 1 3 1

1 2 2 2 3 2

, ,) ,

,) ,) ,)

(

(((

() ()

**

* *

* *

e sigmoid sigmoid

e sigmoid sigmoid
1 1 1

2 2 2

1

1

−()
−()

{ }* o o1 2

o
1
 and o

2
 are outputs from the hidden layer.

This completes all the necessary preparatory background in order to start updating
the weights.

Worked-through Example
It’s important to go through a manual example before showing the Python approach, so
that you truly understand the process when you run it as a Python script. Figure 8-23 is a
slightly modified version of Figure 8-11, on which I have inserted arbitrary hidden node
output values to have sufficient data to complete the example.

http://dx.doi.org/10.1007/978-1-4842-2743-5_2

Chapter 8 ■ MaChine Learning: Deep Learning

236

Let’s start by updating w
1,1

, which is the weight-connecting node 1 in the hidden
layer to node 1 in the output layer. Currently, it has a value of 2.0. This is the error slope
equation used for these layer links:

∂
∂

= − −()

−∑ ∑e

w
t o w o sigmoid w o

j k
k k

j
j k j

j
j k j

,
, ,* * * *sigmoid 1

 *oj

Substitute the values, as shown in the following figure yields:

t ok k−() = e
1
 = 0.96

j
j k jw o∑

, * = (2.0 * 0.6) + (3.0 * 0.4) = 2.4

sigmoid =
1

1 2 4+()−e . = 0.9168

1 – sigmoid = 0.0832
o

1
= 0.6

Multiply the applicable values with the negative sign yields:

–0.96 * 0.9168 * 0.0832 * 0.6 = –0.04394

Let’s assume a learning rate of 0.15, which is not too aggressive and the following is
the new weight:

2.0 – 0.15 * (–0.04394) = 2.0 + 0.0066 = 2.0066

This is not a large change from the original but you must keep in mind that there
is hundreds, if not thousands of iterations performed before the global minimum is
reached. Small changes rapidly accumulate to some rather large changes in the weights.

The other weights in the network can be adjusted in the same manner as
demonstrated.

There are some important issues regarding how well an ANN can learn, which I
discuss next.

Figure 8-23. Example ANN used for manual calculations

Chapter 8 ■ MaChine Learning: Deep Learning

237

Issues with ANN Learning
You should realize that not all ANNs learn well, just as not all people learn the same way.
Fortunately for ANNs, it has nothing to do with intelligence but rather for more mundane
items directly related to the sigmoid activation function. Figure 8-24 is a modified version
of Figure 2-12 showing the input and output ranges for the sigmoid function.

Looking at Figure 8-24, you should see that if the x inputs are larger than 2.5, the
y output has very small changes. This is because the sigmoid function asymptotically
approaches 1.0 around that x value. Small changes for large input changes imply very
small gradient changes happen. ANN learning becomes suppressed in this situation
because the gradient descent algorithm depends upon a reasonable slope being present.
Thus, ANN training sets should limit the input x values to what might be called a pseudo-
linear range of roughly –3 to 3. Values of x outside this range causes a saturation effect for
ANN learning, and no effective weight updates happen.

In a similar fashion, the sigmoid function cannot output values greater than one
or less than zero. Output values in those ranges are not possible and weights must be
appropriately scaled back such that the allowable output range is always maintained.
In reality, the output range should be 0.01 to 0.99 because of the asymptotic nature
described earlier.

Initial Weight Selection
Based on the issues just discussed, I believe you can probably realize that it is very
important to select a good initial set of ANN weights so that learning can take effect
without bumping into input saturation or output limit problems. The obvious choice is to
constrain weight selection to the pseudo-linear range I mentioned earlier (i.e., ±3). Often,
weights are further constrained to ±1 to be a bit more conservative.

Figure 8-24. Annotated sigmoid function

Chapter 8 ■ MaChine Learning: Deep Learning

238

There has been a “rule of thumb” developed over the years by AI researchers and
mathematicians that roughly states:

The weights should be initially allocated using a normal distribution set at a mean
value equal to the inverse of the square root of the number of nodes in the ANN.

For a 36-node, three-layer ANN, which I have previously used, the mean is
1

36
 or

0.16667. Figure 8-25 shows a normal probability distribution with this mean and ±2
approximate standard deviations are also clearly indicated.

A random selection of weights in the range of approximately –0.5 to 0.8333 would
nicely provide an excellent starting point for ANN learning for a 36-node network.

Finally, you should avoid setting all weights to the same value because ANN learning
depends upon an unequal weight distribution. And obviously, do not set all the weights
to 0 because that completely disables the ANN.

This last section completes all of my background discussion on ANN. It is finally time
to generate a full-fledged ANN on the Raspberry Pi using Python.

Demo 8-1: ANN Python Scripts
This first demonstration shows you how to create an untrained ANN using Python. I start
by discussing the modules that constitute the ANN. Once I have done that, all the modules
put into an operative package and the script run. The first module to discuss is the one that
creates and initializes the ANN.

Figure 8-25. Normal distribution of initial weights for a 36-node ANN

Chapter 8 ■ MaChine Learning: Deep Learning

239

Initialization
This module’s structure depends largely on the type of ANN to be built. I am building
a three-layer, nine-node ANN for this demonstration, which means there must objects
representing each layer. In addition, the inputs, outputs, and weights must be created
and appropriately labeled. Table 8-3 details the objects and references that are needed for
this module.

The basic initialization module structure begins as follows:

def __init__ (self, inode, hnode, onode, lr):
 # Set local variables
 self.inode = inode
 self.hnode = hnode
 self.onode = onode
 self.lr = lr

You need to call the init module with the proper values for the ANN to be created.
For a three-layer, nine-node network with a moderate learning rate, the values are as
follows:

•	 inode = 3

•	 hnode = 3

•	 onode = 3

•	 lr = 0.25

Table 8-3. Initialization Module Objects and References

Name Description

inode Number of nodes in the input layer

hnode Number of nodes in the hidden layer

onode Number of nodes in the output layer

wtgih Weight matrix between input and hidden layers

wtgho Weight matrix between hidden and output layers

wij Individual weight matrix element

input Array for inputs

output Array for outputs

ohidden Array for hidden layer outputs

lr Learning rate

Chapter 8 ■ MaChine Learning: Deep Learning

240

The next item to discuss is how to create and initialize the key weighting matrices
based on all the previous background discussions. I use a normal distribution for the
weight generation with a mean of 0.1667 and a standard deviation of 0.3333. Fortunately,
numpy has a very nice function that automates this process. The first matrix to create is
the wtgih, whose dimensions are inode × hnode, or 3 × 3, for our example.

This next Python statement generates this matrix:

self.wtgih = np.random.normal(0.1667, 0.3333, self.hnodes,
self.inodes)

The following is a sample output from an interactive session that was generated by
the preceding statement:

>>>import numpy as np
>>>wtgih = np.random.normal(0.1667, 0.3333, [3, 3])
>>>wtgih
array([[0.44602141, 0.58021837, 0.00499487],
 [0.40433922, -0.31695922, -0.40410581],
 [0.63401073, -0.37218566, 0.14726115]])

The resulting matrix wtgih is well formed with excellent starting values.
At this point, the init module can be completed using the matrix generating

statements shown earlier.

def __init__ (self, inode, hnode, onode, lr):
 # Set local variables
 self.inode = inode
 self.hnode = hnode
 self.onode = onode
 self.lr = lr

 # mean is the reciprocal of the sq root total nodes
 mean = 1/(pow((inode + hnode + onode), 0.5)

 # standard deviation (sd) is approximately 1/6 total weight range
 # total range = 2
 sd = 0.3333

 # generate both weighting matrices
 # input to hidden layer matrix
 self.wtgih = np.random.normal(mean, sd, (hnode, inode])

 # hidden to output layer matrix
 self.wtgho = np.random.normal(mean, sd, [onode, hnode])

Chapter 8 ■ MaChine Learning: Deep Learning

241

At this point, I introduce a second module that allows some simple tests to run on
the network created by the init module. This new module is named testNet to reflect
its purpose. The takes an input data set or tuple in Python terms and returns an output
set. The following process runs in the module:

 1. Input data tuple converted to an array.

 2. The array is multiplied by the wtgih weighting matrix. This is
now the input to the hidden layer.

 3. This new array is then adjusted by the sigmoid function.

 4. The adjusted array from the hidden layer is multiplied by the
wtgho matrix. This now the input to the output layer.

 5. This new array is then adjusted by the sigmoid function
yielding the final output array.

The module listing follows:

def testNet(self, input):
 # convert input tuple to an array
 input = np.array(input, ndmin=2).T

 # multiply input by wtgih
 hInput = np.dot(self.wtgih, input)

 # sigmoid adjustment
 hOutput = 1/(1 + np.exp(-hInput))

 # multiply hidden layer output by wtgho
 oInput = np.dot(self.wtgho, hOutput)

 # sigmoid adjustment
 oOutput = 1/(1 + np.exp(-oInput))

 return oOutput

Test Run
Figure 8-26 shows an interactive Python session that I ran on a Raspberry Pi 3 to test this
preliminary code.

Chapter 8 ■ MaChine Learning: Deep Learning

242

The init and testNet modules were both part of a class named ANN, which in
turn were in a file named ANN.py. I first started Python and imported the class from the
file so that the interpreter would recognize the class name. I next instantiated an object
named ann with all nodes set to 3 and a learning rate equal to 0.3. The learning rate is
not needed yet, but it must be present or you cannot instantiate an object. The act of
instantiating an object automatically causes the init module to run. It is expecting size
values for all three nodes and a learning rate value.

I next ran the testNet module with the three input values. These are shown in
Table 8-4 along with the respective calculated output values. I also included the manually
calculated error values.

The errors are not too much considering this is a totally untrained ANN. The next
section discusses how to train an ANN to greatly improve its accuracy.

Figure 8-26. Interactive Python session

Table 8-4. Initial Test

Input Output Error Percent error

0.8 0.74993428 –0.05006572 6.3

0.5 0.52509703 0.02509703 5.0

0.6 0.60488966 0.00488966 0.8

Chapter 8 ■ MaChine Learning: Deep Learning

243

Demo 8-2: Training an ANN
In this demonstration, I show you how to train an ANN using a third module named
trainNet, which has been added to the ANN class definition. This module functions
in a very similar fashion to the testNet function by calculating an output set based
on an input data set. However, the trainNet module input data is a predetermined
training set instead of an arbitrary data tuple as I just demonstrated. This new module
also calculates an error set by comparing the ANN outputs with its inputs and using
the differences for training the network. The outputs are calculated in exactly the same
manner as was done in testNet module. The arguments to trainNet now include
both an input list and a training list. The following statements create these arrays from
the list arguments:

def trainNet(self, inputT, train):
 # This module depends on the values, arrays and matrices
 # created when the init module is run.

 # create the arrays from the list arguments
 self.inputT = np.array(inputT, ndmin=2).T
 self.train = np.array(train, ndmin=2).T

The error is as stated before is the difference between the training set outputs and
the actual outputs. The error equation for the k

th
 output node as previously stated is:

e t ok k k= −

The matrix notation for the output errors is

self.eOutput = self.train - self.oOutput

The hidden layer error array in matrix notation for this example ANN is

hError =

w w w

w w w

w w w

e

e

T

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

1, , ,

, , ,

, , ,

* 22

3e

The following is the Python statement to generate this array:

self.hError = np.dot(self.wtgho.T, self.eOutput)

The following is the update equation for adjusting a link between the j
th

 and k
th

layers, as previously shown:

gd w e sigmoid o sigmoid o oj k k k k j
T

, * * * *() = () − ()()α 1

Chapter 8 ■ MaChine Learning: Deep Learning

244

The new gd(w
j,k

)array must be added to the original because these are adjustments
to the original. The preceding equations can be neatly packaged into this single Python
statement:

self.wtgho += self.lr * np.dot((self.eOutput * self.oOutputT *
(1 - self.oOutputT)), self.hOutputT.T)

Writing the code for the weight updates between the input and hidden layers uses
precisely the same format.

self.wtgih += self.lr * np.dot((self.hError * self.hOutputT *
(1 - self.hOutputT)), self.inputT.T)

Putting all the preceding code segments together along with the previous modules
produces the ANN.py listing. Note that I have included comments regarding the functions
for each segment, along with additional debug statements.

import numpy as np

class ANN:

 def __init__ (self, inode, hnode, onode, lr):
 # set local variables
 self.inode = inode
 self.hnode = hnode
 self.onode = onode
 self.lr = lr

 # mean is the reciprocal of the sq root of the total nodes
 mean = 1/(pow((inode + hnode + onode), 0.5))

 # standard deviation is approximately 1/6 of total range
 # range = 2
 stdev = 0.3333

 # generate both weighting matrices
 # input to hidden layer matrix
 self.wtgih = np.random.normal(mean, stdev, [hnode, inode])
 print 'wtgih'
 print self.wtgih
 print

 # hidden to output layer matrix
 self.wtgho = np.random.normal(mean, stdev, [onode, hnode])
 print 'wtgho'
 print self.wtgho
 print

Chapter 8 ■ MaChine Learning: Deep Learning

245

 def testNet(self, input):
 # convert input tuple to an array
 input = np.array(input, ndmin=2).T

 # multiply input by wtgih
 hInput = np.dot(self.wtgih, input)

 # sigmoid adjustment
 hOutput = 1/(1 + np.exp(-hInput))

 # multiply hidden layer output by wtgho
 oInput = np.dot(self.wtgho, hOutput)

 # sigmoid adjustment
 oOutput = 1/(1 + np.exp(-oInput))

 return oOutput

 def trainNet(self, inputT, train):

 # This module depends on the values, arrays and matrices
 # created when the init module is run.

 # create the arrays from the list arguments
 self.inputT = np.array(inputT, ndmin=2).T
 self.train = np.array(train, ndmin=2).T

 # multiply inputT array by wtgih
 self.hInputT = np.dot(self.wtgih, self.inputT)

 # sigmoid adjustment
 self.hOutputT = 1/(1 + np.exp(-self.hInputT))

 # multiply hidden layer output by wtgho
 self.oInputT = np.dot(self.wtgho, self.hOutputT)
 # sigmoid adjustment
 self.oOutputT = 1/(1 + np.exp(-self.oInputT))

 # calculate output errors
 self.eOutput = self.train - self.oOutputT

 # calculate hidden layer error array
 self.hError = np.dot(self.wtgho.T, self.eOutput)

 # update weight matrix wtgho
 self.wtgho += self.lr * np.dot((self.eOutput *

self.oOutputT * (1 - self.oOutputT)), self.hOutputT.T)

Chapter 8 ■ MaChine Learning: Deep Learning

246

 # update weight matrix wtgih
 self.wtgih += self.lr * np.dot((self.hError *

self.hOutputT * (1 - self.hOutputT)), self.inputT.T)
 print 'updated wtgih'
 print wtgih
 print
 print 'updated wtgho'
 print wtgho
 print

Test Run
Figure 8-27 shows an interactive Python session where I instantiated a three-layer, nine-
node ANN with a learning rate equal to 0.20.

Figure 8-27. Interactive Python session

Chapter 8 ■ MaChine Learning: Deep Learning

247

I have included several debug print statements in the ANN script, which allows for a
direct comparison between the initial weight matrices and the updated ones. You should
see there are only small changes between them, which is what was expected and desired.
It is an important fact that the gradient descent works well using small increments to
avoid missing the global minimum. I could only do one iteration in this session because
the code was not set up for multiple iterations.

Congratulations for staying with me to this point! I covered a lot of topics concerning
both ANN fundamentals and implementations. You should now be fully prepared to
understand and appreciate the interesting practical ANN demonstrations presented in
the next chapter.

Summary
This was the third of four chapters concerning artificial neural networks (ANNs). In this
chapter, I focused on deep learning, which is really nothing more than the fundamentals
and concepts behind multilayer ANNs.

After a brief review of some fundamentals, I completed a step-by-step manual
calculation of a two-layer, six-node ANN. I subsequently redid the calculations using a
Python script.

Next were the calculations for a larger, three-layer, nine-node ANN. Those
calculations were done entirely with Python and matrix algorithms imported from the
numpy library.

I discussed the errors that exist within an untrained ANN and how they are
propagated. This was important to understand because it serves as the basis for the back
propagation technique used to adjust weights in an effort to optimize the ANN.

Next, I went through a complete back propagation example, which illustrated how
weights could be updated to reduce overall network errors. A sidebar followed wherein
the gradient descent (GD) technique was introduced using a linear regression example.

A discussion involving the application of GD to an example ANN followed. The GD
algorithm uses the slope of the error function in an effort to locate a global minimum,
which is necessary to achieve a well-performing ANN.

I provided a complete example illustrating how to update weights using the GD
algorithm. Issues with ANN learning and initial weight selection were discussed.

The chapter concluded with a thorough example of a Python script that initializes
and trains any sized ANN.

CHAPTER 9

Machine Learning: Practical
ANN Demonstrations

This is the final chapter in the series exploring machine learning. I demonstrate two
practical examples of an artificial neuron network (ANN) based on the concepts and
Python implementations discussed in the previous chapters. You should review the
material in at least the two previous chapters to gain the most benefit from reading and
even duplicating this chapter’s demonstrations.

I would like to give much credit to Tariq Rashid, whose book Make Your Own Neural
Network (CreateSpace Independent Publishing Platform, 2016) was a source of inspiration
and guidance for me in preparing this and other chapters in my book. I highly recommend
Tariq’s book to readers who wish to gain more insight into practical ANNs. Tariq also has a
blog at http://makeyourownneuralnetwork.blogspot.co.uk/, which I found
to be a highly useful source of information and lively discussions.

The demonstrations in this chapter are centered on recognizing handwritten
numbers. They are classic ANN projects that fully demonstrate the learning capability of
an ANN.

Parts List
You need additional parts for the demonstrations, which are detailed in Table 9-1.

http://makeyourownneuralnetwork.blogspot.co.uk/

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

250

Demo 9-1: MNIST Data Set
I will show you how an ANN can recognize handwritten numbers. The training and test
data used in this project come directly from two Mixed National Institute of Standards
and Technology (MNIST) databases. These databases have been widely used for training
and testing ANNs for many years and are an accepted standard for rating how accurate a
particular ANN is for accomplishing a task.

The genesis for the MNIST databases comes from input images taken from
handwritten numeric symbols by 500 people, half of which were US Census Bureau
employees and the other half were high school students. The original black-and-white
images were also normalized to fit a 20 × 20-pixel-image bounding block and further anti-
aliased, which generated a one-byte grayscale value for each pixel. What this means will
be made very clear to you shortly.

The MNIST data sets are quite large, consisting of 60,000 training images (104MB)
and 10,000 testing images (18MB). Both data sets are freely available in a comma-
separated value (CSV) format from the following websites:

Training set:
http://www.pjreddie.com/media/files/mnist_
train.csv

Test set:
http://www.pjreddie.com/media/files/mnist_
test.csv

The training set should be used to train the ANN. All the included records are labeled,
meaning that the CSV data is identified with the corresponding image it is representing.
The test set is used to check how well the ANN functions in recognizing test CSV data. The
test data set also contains labels as an aid to verify whether the ANN successfully identified
the correct number. Separating training from test data is always a good idea because the
ANN could return stored patterns if the training data was also the test data. This situation
would not be a good indicator of how well the ANN actually learned.

Figure 9-1 shows only the beginning of the first record contained in the training data
set as displayed by a hex editor application running on my MacBook Pro.

Table 9-1. Parts Lists

Description Quantity Remarks

Pi Cobbler 1 40-pin version, either T or DIP form factor
acceptable

solderless breadboard 1 700 insertion points with 1 power supply strip

jumper wires 1 package

220Ω resistor 1 1/4 watt

LED 1

Pi Camera 1 version 2

tactile push button switch 1 with solderless connections

http://www.pjreddie.com/media/files/mnist_train.csv
http://www.pjreddie.com/media/files/mnist_train.csv
http://www.pjreddie.com/media/files/mnist_test.csv
http://www.pjreddie.com/media/files/mnist_test.csv

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

251

Figure 9-1. A portion of the first record in the MNIST training data set

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

252

There are 784 bytes composing one image because each image in the database has
been resized to 28 × 28 pixels or 784 overall. Each pixel value represents the equivalent
grayscale value of a pixel. One byte has a numeric range of 0 to 255, where 0 is total white
and 255 is total black. Each database image therefore consists of 784 pixel values, 785
commas, and 1 byte for the label, which sums to 1570 bytes overall. While one record of
this size is not too hard to handle, having more than 60,000 of them in one file tends to
overload most programs, especially programs that are expected to run on a Raspberry Pi.
Fortunately, there are two very small subsets of both the larger MNIST train and the test
data sets, which are available at the following websites:

•	 Test data set

 https://raw.githubusercontent.com/makeyour
ownneuralnetwork/makeyourownneuralnetwork/
master/mnist_dataset/mnist_test_10.csv

•	 Train data set

	 https://raw.githubusercontent.com/makeyour
ownneuralnetwork/makeyourownneuralnetwork/
master/mnist_dataset/mnist_train_100.csv

I opened both downloaded data sets using the hex editor and they appeared to be
just fine. However, to use the data in a Python script, you need to use some statements to
access these data sets. The following Python statements instantiate a file object named
dataFile, read the data line by line into a list object named dataList, and finally close
the file. These statement types are a very common way to read data files with Python:

dataFile = open("mnist_train_100.csv")
dataList = dataFile.readlines()
dataFile.close()

Figure 9-2 shows an interactive session on a Raspberry Pi where I used the preceding
statements to create the dataList object.

Figure 9-2. Interactive Python session creating a dataList object

I ran the Python session in the same directory where the MNIST data set was located. If
you do not have the data set in the same directory, then you have to prepend the appropriate
path to the MNIST data set name to avoid the Python error of not finding the file.

https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetwork/master/mnist_dataset/mnist_test_10.csv
https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetwork/master/mnist_dataset/mnist_test_10.csv
https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetwork/master/mnist_dataset/mnist_test_10.csv
https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetwork/master/mnist_dataset/mnist_train_100.csv
https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetwork/master/mnist_dataset/mnist_train_100.csv
https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetwork/master/mnist_dataset/mnist_train_100.csv

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

253

You may start examining the data once it has been read. I entered len(dataList)
to find out the number of records that were put into the dataList object. The return
value was 100, as expected. Figure 9-3 shows this statement along with a display of the
first record, which I directed by entering dataList[0].

Figure 9-3. dataList properties

If you closely examine the datalist[0] display in the figure, you probably see
that the data begins and ends with apostrophes. This indicates that the dataList[0]
record is recognized as a string by the Python interpreter. It may look like numbers but
it is considered just a string of ASCII characters according to Python. The character just
before the ending apostrophe is \n, which is the “escaped” letter n. This indicates to
Python that the first record ends and it should place a new line at that point. New line
characters are delimiters for the record set, telling Python where one record ends and the
next begins. All 100 records are indexed, meaning they may be individually accessed by
using the appropriate index number along the list name, as I did to access the first record
(i.e., dataList[0]). The indices are 0 based, ranging from 0 to 99 in this case.

Next, I show you how to image a record, instead of simply looking at sterile numbers
that make little to no sense.

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

254

Imaging a MNIST Record
It is actually fairly easy to image a data record using a few Python commands. I used the
Python GUI IDLE 2 to accomplish the next steps. A GUI environment is necessary to show
the resultant image. You can use the Python 3 GUI if so desired, but you need to modify
the following installation statements for Python 3. The matplotlib library is required
to create and display the image; more specifically, the imshow and show methods
contained in the pyplot package, which is part of the overall matplotlib library. Enter the
following commands to install the matplotlib library:

sudo apt-get update
sudo apt-get install python-matplotlib

Once the installation is completed, you are ready to enter the next commands to read
in the data from the 100-record, abbreviated data set. Enter these commands:

import numpy as np
import matplotlib.pyplot as plt
dataFile = open('mnist_train_100.csv')
dataList = dataFile.readlines()
dataFile.close()

The first two import commands are not needed for the data-read portion, but I
always want to put any import statements at the start of a code block. The dataFile
logical reference is created with the open statement and it points to the start of the
100-record file. The actual read happens with the next statement that reads in 100
separate records into a list object named dataList. The readlines method just
reads one character after another until it encounters a new-line character (\n). At that
instant, it creates a new record for the list and resumes the character-by-character reads
until it encounters the end-of-file (EOF) character, which ceases the read process. The
close method just “destroys” the dataFile logical reference so that the file will not be
inadvertently modified.

The script is set to image a selected record once the data set is in memory. The
following code accomplishes this objective:

record0 = dataList[0].split(',')
imageArray = np.asfarray(record0[1:]).reshape((28, 28))
plt.imshow(imageArray, cmap='Greys', interpolation='None')
plt.show()

The first command creates a small list object named record0 that consists of all
785 elements in the first record that were read into the large dataList object. There are
785 separate list elements in the record0 object because the split method created
them by using the comma delimiter as an indicator for separation. The second command
uses the imshow method to create the image to be displayed. It starts with the second
list element and it is a grayscale image that is shaped into a 28 × 28–pixel array. Note
the spelling of Greys in the imshow argument list. Finally, the show method actually
displays the image in the IDLE 2 GUI.

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

255

Figure 9-4 shows all of the preceding commands running in an IDLE 2 GUI.

Figure 9-4. IDLE 2 GUI interactive Python session

Figure 9-5. The number figure

The resulting number image is shown in Figure 9-5.

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

256

As you can see, the image shows a rather casually written number 5, which is one
of the many records to be used to train the ANN. Incidentally, if you go back and look
at Figure 9-1, you see the number 5 as the label for the first record, which confirms the
record identity.

At this point, I turn the discussion toward how to prepare the data sets so that they
can be used effectively with an ANN.

Adjusting the Input and Output Data Sets
You certainly know that all MNIST data sets contain values ranging from 0 to 255, which
is well beyond the range that any ANN that I have developed so far can accept. The input
values should be in a preferred range of 0.01 to 1.0, which matches the sigmoid function
input requirements quite nicely. The following Python statement adjusts the values range
for a MNIST data set record to match the preferred range for an ANN input data set:

adjustedRecord0 = (np.asfarray(record0[1:]) / 255.0 * 0.99) + 0.01

Figure 9-6 shows an adjusted record set created in an interactive Python session. A
portion of the record set is also shown in the screenshot, confirming that the new MNIST
values fall within the desired input value range.

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

257

Figure 9-6. Adjusted MNIST data set

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

258

The preceding discussion takes care of the input, but what should an output data set
look like? The answer lies in considering the purpose that the ANN serves. Its purpose is
to recognize a handwritten number whose value ranges from 0 to 9. It would make sense
to have the ANN just output a high value near one of the output nodes associated with
the recognized number. Thus, an ideal output array such as the following shows that a
handwritten number 5 was detected by the ANN.

0

0

0

0

0

1

0

0

0

0

ì

í

ï
ï
ï
ï
ï
ïï

î

ï
ï
ï
ï
ï
ï
ï

ü

ý

ï
ï
ï
ï
ï
ïï

þ

ï
ï
ï
ï
ï
ï
ï

The actual values in such an array would not be 0 or 1, but instead values near 0 for
low recognition and near 1 for high recognition. It is also entirely possible to have the
ANN output intermediate values on several nodes, such as 0.4 and 0.6, indicating that
the ANN cannot choose a unique value, but “thinks” the input number could be one of
several candidates. This is quite similar to a human unable to decide what the causally
written number is, such as confusing a four for a nine.

The next code segment creates a sample train array that is needed to update the
ANN weights so that it can recognize a specific number. Let’s create a train array for the
first record in the small MNIST training data set by using the realistic input values earlier
discussed. The Python code is quite simple, as shown in the following:

import numpy as np
dataFile = open('mnist_train_100.csv')
dataList = dataFile.readlines()
dataFile.close()
record0 = dataList[0].split(',')
onodes = 10
train = np.zeros(onodes) + 0.01
train[int[record0[0]] = 0.99
print train

The preceding program segment should be very familiar to you by now, except for the
last few lines. The following line creates a 10-element array with all values equal to 0.01:

train = np.zeros(onodes) + 0.01

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

259

Next, the following line takes the first element in the first record (the label) and
converts it to an integer, and subsequently sets it equal to 0.99:

train[int([record0[0])] = 0.99

Figure 9-7 shows the preceding code segment run in an interactive Python session.

Figure 9-7. Creating a training array interactive session

You can clearly see the train array created where the sixth element has been set to
0.99 because the label equaled 5.

It is time to focus on how to configure this ANN now that the data set input and
training sets have been developed.

Configuring the ANN for Handwritten Number Detection
The first step in this process is to decide on the basic ANN configuration. I have primarily
used three-layer ANNs up to this point and I see no real reason to change that approach.
The number of output nodes is determined to be 10 based on the previous discussion.
What remains is to figure out the number of input and hidden nodes to create.

Figuring out the number of input nodes is relatively easy because there are 784
separate pixel values that must be examined. This means that the ANN needs 784 input
nodes. That seems like a lot, but the nature of this problem dictates that is the number
required to take advantage of all the data present in the problem domain.

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

260

Determining the number of nodes in the hidden layer is a more difficult issue to
resolve. There is no analytic method available to determine the appropriate number.
I have done a fair amount of research on this topic and have determined that most AI
researchers use a variety of “rules of thumb” to determine this number. The following are
among the most common:

•	 Use the mean of the input layer nodes (N
i
) and output layer nodes (N

o
).

•	 Take the square root of N
i
 times N

o
.

•	 The number of hidden layer nodes (N
h
) should be between the

size of the N
i
 and N

o
.

•	 Nh should be 2/3 the size of N
i
 plus N

o
.

•	 Nh should be less than twice the size of the N
i
.

One fact that became abundantly clear to me is that an ANN configuration often
turns into a trial-and-error situation. There are two related terms that you should be
familiar with and those are under-fitting and over-fitting. Under-fitting happens in an
ANN when there are too few nodes present to support adequate training. The symptoms
of under-fitting are that the ANN cannot be trained and/or the error is high enough to
render the ANN unusable. The converse is true of over-fitting, in which there is a surplus
of nodes, training is hampered by too many links, and the ANN performance suffers.
When over-fitting occurs, the ANN has so much information processing capacity that
the limited amount of data contained in the training set is not sufficient to train all the
nodes in the hidden layer. Additionally, a large number of unneeded nodes in the hidden
layer increases the time that it takes to train the network. This increased training time can
make it impossible to adequately train the ANN. To achieve optimal performance, the
goal is to neither under-fit nor over-fit an ANN.

Based on the preceding discussion and my research, I came to the following
conclusion on setting the appropriate number of hidden layer nodes:

The number of hidden layer nodes in a three-layer ANN should be set at the square
of the number of output nodes, but should not exceed the mean of the input and output
layer nodes.

This conclusion might be considered a “mashup” of the various rules of thumb stated
earlier. I have also noted anecdotally that there seems to be a squaring relationship that
often pops up in ANN technology. This relationship was present when the mean was
calculated for the initial weighting and when the error function slope was calculated.
Squaring the 10 output nodes means that 100 hidden layer nodes should be set. This value
seems appropriate for an initial try. It can easily be changed if the ANN performs poorly.

At this point, it is appropriate to incorporate all the preceding code segments into
a Python script that also imports the ANN.py script developed in the last chapter. The
following listing is named trainANN.py:

trainANN.py
import numpy as np
import matplotlib.pyplot as plt
from ANN import ANN

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

261

setup the network configuration
inode = 784
hnode = 100
onode = 10

set the learning rate
lr = 0.2

instantiate an ANN object named ann
ann = ANN(inode, hnode, onode, lr)

create the training list data
dataFile = open('mnist_train_100.csv')
dataList = dataFile.readlines()
dataFile.close()

train the ANN using all the records in the list
for record in dataList:
 recordx = record.split(',')
 inputT = (np.asfarray(recordx[1:])/255.0 * 0.99) + 0.01
 train = np.zeros(onode) + 0.01
 train[int(recordx[0])] = 0.99
 # training begins here
 ann.trainNet(inputT, train)

The Python code is remarkably concise for the amount of computations being
carried out. Separating the ANN class definition from the test code is always a good idea
because the class may be easily updated or extended without requiring modifications to
the test code.

I executed the trainANN script in an interactive session and it ran without errors, but
of course, nothing displayed. It now needs some test data to see how well it functions.

Test Run
The subset of MNIST test data that I downloaded is set up in the same way as the training
data because it is in the same format as the training data. The following familiar Python
code prepares the test data:

import numpy as np
testDataFile = open('mnist_test_10.csv')
testDataList = testDataFile.readlines()
testDataFile.close()

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

262

The number that displayed is shown in Figure 9-9.

It would be wise to image the first test data record before tactually testing it with the
ANN. Figure 9-8 shows a session with IDLE 2 that imaged the record.

Figure 9-8. IDLE 2 GUI interactive Python session

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

263

Figure 9-9. The number figure

The next step is to add the following code to the trainANN.py script. Technically, this
script both trains and tests the ANN. You may wish to give it a new name to reflect its new
function. I just kept the old name and tried to remember that it now tests the ANN. The
additional Python code is in the following:

create the test list data
testDataFile = open('mnist_test_10.csv')
testDataList = testDataFile.readlines()
testDataFile.close()

iterate through all 10 test records and display output arrays
for record in testDataList:
 recordz = record.split(',')
 # determine record label
 labelz = int(recordz[0])
 # rescale and offset record values
 inputz = (np.asfarray(recordz[1:])/255.0 * 0.99) + 0.01
 outputz = ann.testNet(inputz)
 print 'output for label = ', labelz
 print outputz

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

264

Figure 9-10 shows the results of running the newly modified trainANN script. Ten
output arrays were output but only six are shown in the screenshot due to limitations in
the screen capture process.

Figure 9-10. trainANN output with test inputs

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

265

Table 9-2 neatly summarizes the results comparing the label value with the index of
the highest value in the output array.

Table 9-2. Test Results

Label 7 2 1 0 4 1 4 9 5 9

Index 7 3 1 0 4 1 7 6 0 7

Match x x x x x

The 50 percent was rather disappointing, but maybe that was to be expected because
the ANN was trained with only 100 records out of more than 60,000 available for training.
I did notice that the output values were fairly high for those records that matched,
whereas the ones that didn’t match had a uniform spread of random-like values.

I next slightly modified the code to automatically calculate the success rate,
especially considering that I was going to run 10,000 test records through and I did not
want to manually calculate that test run. I also deleted the display code for the output
arrays. The following code implements these changes:

match = 0
no_match = 0
iterate through all test records and display output arrays
for record in testDataList:
 recordz = record.split(',')
 # determine record label
 labelz = int(recordz[0])
 # rescale and offset record values
 inputz = (np.asfarray(recordz[1:])/255.0 * 0.99) + 0.01
 outputz = ann.testNet(inputz)
 max_value = np.argmax(outputz)
 if max_ value == labelz:
 match = match + 1
 else:
 no_match = no_match + 1
print 'success match rate = ', float(match)/float(match + no_match)

I ran the trainANN script six times and saw some interesting results, as shown in
Figure 9-11.

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

266

The success rate varied from 0.4 to 0.6; it used the same test input data set. The
only reasonable explanation is that some weight matrices were better fitted than others
were. These matrices are generated using a random normal distribution, as I discussed
in Chapter 8, and apparently, some are slightly better suited to produce more accurate
results than others are. Let’s hope that these random variations disappear when the
ANN is trained using the full 60,000 training record set. To use the 60,000 record set only
requires the following change to the file’s open statement in the trainANN.py script:

dataFile = open('mnist_train.csv')

I made this change and reran the 10 test data records. I was pleasantly surprised that
the success rate now equaled 0.90. Incidentally, the Raspberry Pi took about 5 minutes
to process the full training set, which I didn’t think was very long for a quad-core, 1.2GHz
processor.

The next step is to run the full 10,000-record test data set. You can do that by again
changing only one statement:

testDataFile = open('mnist_test.csv')

This time, the script took about 8 minutes to complete and displayed a very
respectable 0.9381 success match rate.

Figure 9-11. trainANN script with success rate calculations

http://dx.doi.org/10.1007/978-1-4842-2743-5_8

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

267

I next wanted to see wanted to see how the match success rate varied with different
learning rates. To do this, I added a new loop around both the train and test code in the
trainANN.py script, where the learn rate was changed in 0.1 increments from 0.1 to 0.9.
Figure 9-12 shows the results for this test.

Figure 9-12. Match success rates with different learning rates

The maximum success match rate of 0.9442 was for a learning rate equal to 0.1.
This is a very good recognition rate, comparable with many larger and more complex
research-grade ANNs. I really believe that you will be pleased to have created such a
well-performing ANN if you have duplicated what I have done to this point. I can say from
personal experience that most college AI students have not accomplished what you have
done in this chapter. You should be very happy with the background and education you
have achieved to this point.

However, do not be timid about trying some additional experiments to see how
the ANN performs with different parameters, including changing the number of hidden
nodes. One technique that Tariq mentions in his book is the concept of epochs, where the
ANN is trained multiple times using the same training data set. Each complete training
cycle is termed an epoch. Tariq, as well as other AI researchers, have found that it is often
possible to over-train an ANN, resulting in an overall poorer performance than could
be expected from just running several epochs. The exact reason for this phenomenon
is unknown, except that researchers do speculate that the ANN is over-fitted due to
the excessive data inputs. See the previous the discussion regarding over-fitting, which
explains the symptoms that appear with this type of training.

The fun and interesting aspect of ANNs is that there is a lot of variety present, with
which you can experiment to try to tweak out additional performance. While 94 to 95
percent recognition accuracy is nothing to be ashamed of, it is also worthwhile to try

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

268

to improve the ANN just a little more. You could also try building a convolutional ANN,
which purportedly has a 98.5 percent success rate with the MNIST test data set. A blog by
Dr. Adrian Rosebrock at www.pyimagesearch.com explains how this is done. It is a bit
complicated, but using a great Python library named Keras, along with Adrian’s custom
libraries, allows a rapid and trouble-free ANN build. These are highly recommended for
those of you who want to go the extra step.

In the next section, I show you a complementary project that uses a Pi Camera for
handwritten number recognition.

Demo 9-2: Handwritten Number Recognition with
a Pi Camera
The very first thing you must do is ensure that the Pi Camera has been enabled in the
Raspberry Pi configuration. The easiest way to do this is to run the raspi-config utility by
entering the following command at the command line:

sudo raspi-config

You then see the menu displayed, as shown in Figure 9-13.

Figure 9-13. raspi-config menu

Select 6 Enable Camera. This option installs the drivers for the Pi Camera. The
drivers enable the camera device and the Jessie operating system to work together.

http://www.pyimagesearch.com/

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

269

The next step is to install the Pi Camera. The camera connects to the Raspberry Pi
using a flex ribbon cable that should already be attached to the camera when purchased.
The cable’s free end plugs into the camera serial interface (CSI) connector, which is
located on the board and directly behind the RJ-45 connector. To plug in the cable, you
must first carefully pull directly up on two black plastic tabs on each side of a slim plastic
bar. Be very careful because this is a flimsy piece of plastic that can easily be broken from
using too much force. The plastic piece will become loose, yet is still attached to the
connector body.

Next, carefully insert the flex cable into the socket with the exposed, silver-colored
contacts facing away from the RJ-45 connector. The blue backing on the ribbon cable
should face the RJ-45 connector. Ensure that the cable is firmly seated at the bottom of the
connector and that the cable is perpendicular to the board and not slanted in any way in
the connector. Next, gently push down on the black plastic tabs to lock the cable in place.
Note that there is no clicking or other noise to indicate the plastic piece is completely
seated. Just use firm but gentle pressure to lock it in place. As a caution, I have noticed that
the cable can become dislodged if the camera is moved about, causing the ribbon cable to
slightly shift in the connector. If this happens, you usually see that the software reports that
it cannot connect with the camera any more. If you see that error, just reseat the connector.
Figure 9-14 is a close-up of the camera ribbon cable connected to the CSI connector.

Figure 9-14. Camera ribbon cable connected

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

270

You will next need to install some Python libraries, which are required for taking
pictures with Python. That task is easily accomplished by entering the following
commands:

sudo apt-get update
sudo apt-get install python-picamera

You are ready to take pictures once all of the preceding is done. I will take you
through a step-by-step Python interactive session to demonstrate how to image a
handwritten number.

First, you need a handwritten number as the subject. I suggest using a black,
fine-point Sharpie to draw a single number on a piece of white paper that is approximately
4 × 4 inches. I drew the number 9 as my subject. You can draw whatever number you want.
Figure 9-15 shows my handwritten number.

Figure 9-15. Subject handwritten number

It may look a bit odd because the image was captured using a monochrome effect
from the Pi Camera, which I explain shortly. Take my word for the fact that the paper was
white and the number was very dark. The following is the Python interactive session, with
comments following each command:

>>> import picamera

The picamera package contains all the modules needed to capture, save, and read
images.

>>> camera = picamera.PiCamera()

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

271

This instantiates an object named camera, upon which the desired operations can
be called.

>>> camera.color_effects = (128, 128)

This command sets up the Pi Camera to take black-and-white images, which are
more technically described as monochrome or even “shades of gray.”

>>> camera.capture('ninebw.jpg')

The image is taken or captured with this command. In this case, it is stored in the
current directory with the name ninebw.jpg. It is in the default high-resolution format
of 1920 × 1080 pixels. I recommend that the piece of paper with the number on it be
placed about 5 inches in front of the camera and supported such that it is perpendicular
to the camera. The Pi Camera lens has a very wide angle, so it will completely fill the
sensor with the subject at such a close distance. The resulting image will be drastically
reduced and resized in the processing script.

Figure 9-16 shows the Pi Camera version 2 in a clear plastic holder facing the paper
with the number written on it. Incidentally, the inexpensive holder is available on
Amazon.com.

Figure 9-16. Pi Camera set up to capture image

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

272

The complete interactive Python session that captures the number image is shown in
Figure 9-17.

Figure 9-17. Interactive Python session

I modified the trainANN.py script so that it used the image Figure 9-15 as the test
data input. The complete listing named trainANN_Image.py is shown next, with clarifying
explanations following the listing.

import numpy as np
import matplotlib.pyplot as plt
from ANN import ANN
import PIL
from PIL import Image

setup the network configuration
inode = 784
hnode = 100
onode = 10

set the learning rate
lr = 0.1

instantiate an ANN object named ann
ann = ANN(inode, hnode, onode, lr)

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

273

create the training list data
dataFile = open('mnist_train.csv')
dataList = dataFile.readlines()
dataFile.close()

train the ANN using all the records in the list
for record in dataList:
 recordx = record.split(',')
 inputT = (np.asfarray(recordx[1:])/255.0 * 0.99) + 0.01
 train = np.zeros(onode) + 0.01
 train[int(recordx[0])] = 0.99
 # training begins here
 ann.trainNet(inputT, train)

create the test list data from an image
img = Image.open('ninebw.jpg')
img = img.resize((28, 28), PIL.Image.ANTIALIAS)

read pixels into list
pixels = list(img.getdata())

convert into single values from tuples
pixels = [i[0] for i in pixels]

save to a temp file named test.csv with comma separators
a = np.array(pixels)
a.tofile('test.csv', sep=',')

open the temp file and read into a list
testDataFile = open('test.csv')
testDataList = testDataFile.readlines()
testDataFile.close()

iterate through all the list elements and submit to the ANN
for record in testDataList:
 recordx = record.split(',')
 input = (np.asfarray(recordx[0:])/255.0 * 0.99) + 0.01
 output = ann.testNet(input)

display output
print output

Please note that I did not have to change the basic ANN class to incorporate these
modifications into the trainANN_Image script, which is a powerful reason for separating
class definitions from the functional or application code.

The next discussion just concerns the changes that were made to the original
trainAN.py script to accommodate the new imaging processing function.

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

274

Modifying the trainAN.py Script
Start with the following command:

import PIL
from PIL import Image

The Python imaging library (PIL) and Image, one of its components, are required to
process an image using Python.

img = Image.open('ninebw.jpg')
img = img.resize((28, 28), PIL.Image.ANTIALIAS)

These commands load the file, which is hard-coded in the script, and then proceeds
to resize it to just a 28 × 28 pixels–sized image. The anti-alias argument ensures that no
artifacts are created during the downsizing operation.

pixels = list(img.getdata())

This command converts the 784 pixel values into a list named pixels.

a = np.array(pixels)
a.tofile('test.csv', sep=',')

The pixels list is then converted into an array suitable to be stored as a comma-
separated array in a file named test.csv. This newly created file is then processed in
exactly the same manner as all the other test files in the unmodified trainANN.py script.

Figure 9-18 shows the output data array, in which you clearly see that the very last
element is the highest of the entire array that corresponds to the ANN believing that it has
recognize the number 9, which is the correct answer.

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

275

This demonstration took a considerable amount of effort to prepare and run to show
that a Raspberry Pi–controlled camera coupled with a well-trained ANN can literally
recognize a number written in a fashion it had never seen before.

The final portion of this demonstration describes how to automate the image-
recognition process.

Automated Number Recognition with an ANN
Automating the process of imaging with an ANN is a fairly simple task. I used an
interrupt-driven structure wherein the image capture and processing is initiated by
pressing a push button connected to one of the Raspberry Pi GPIO pins.

The first item is the hardware setup, which consists of connecting the Pi Camera,
a push button, and an LED to the Raspberry Pi using the Pi Cobbler I/O adapter.
Figure 9-19 is a Fritzing diagram showing the connections for the LED and push
button to the Pi Cobbler.

Figure 9-18. Output data array

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

276

I saw no need for a separate schematic because the connections are clearly shown in
Figure 9-19. The Pi Camera is connected as previously discussed.

There is a “forever loop” in the new script, which I named automatedImager.py, that
simply flashes an LED while awaiting the interrupt signal to start the image processing.
The complete script is listed next with indicating the new modifications from the
trainANN_Image.py script.

import numpy as np
import matplotlib.pyplot as plt
from ANN import ANN
import PIL
from PIL import Image
import RPi.GPIO as GPIO
import time
import picamera

instantiate and configure a Pi Camera object
camera = picamera.PiCamera()
camera.color_effects = (128, 128)

setup the i/o pins 12 and 19
GPIO.setmode(GPIO.BCM)
GPIO.setup(12, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.setup(19, GPIO.OUT)

this is the callback function where all the processing is done
def processImage(self):
 # capture an image
 camera.capture('test.jpg')

 # create the test list data from an image
 img = Image.open('test.jpg')
 img = img.resize((28, 28), PIL.Image.ANTIALIAS)

Figure 9-19. LED and push button connections

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

277

 # read pixels into list
 pixels = list(img.getdata())

 # convert into single values from tuples
 pixels = [i[0] for i in pixels]

 # save to a temp file named test.csv with comma separators
 a = np.array(pixels)
 a.tofile('test.csv', sep=',')

 # open the temp file and read into a list
 testDataFile = open('test.csv')
 testDataList = testDataFile.readlines()
 testDataFile.close()

 # iterate through all the list elements and submit to the ANN
 for record in testDataList:
 recordx = record.split(',')
 input = (np.asfarray(recordx[0:])/255.0 * 0.99) + 0.01
 output = ann.testNet(input)

 # display output
 print output

event detection
GPIO.add_event_detect(12, GPIO.RISING, callback=processImage)

setup the network configuration
inode = 784
hnode = 100
onode = 10

set the learning rate
lr = 0.1 # optimal value

instantiate an ANN object named ann
ann = ANN(inode, hnode, onode, lr)

create the training list data
dataFile = open('mnist_train.csv')
dataList = dataFile.readlines()
dataFile.close()

train the ANN using all the records in the list
for record in dataList:
 recordx = record.split(',')

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

278

 inputT = (np.asfarray(recordx[1:])/255.0 * 0.99) + 0.01
 train = np.zeros(onode) + 0.01
 train[int(recordx[0])] = 0.99
 # training begins here
 ann.trainNet(inputT, train)

while True:
 # blink an LED forever
 GPIO.output(19, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(19, GPIO.LOW)
 time.sleep(1)

Test Run
I set up the Pi Camera in exactly the same manner as I did for the manual test run. The
LED started blinking after the training finished, indicating that the system was ready for a
push button press to activate the image capture and ANN analysis. The results of the ANN
test run are shown in Figure 9-20.

Figure 9-20. Automated test run output

The last array element was the highest value in the array, indicating that the ANN
recognized the number as a 9, which is the correct number.

This project concludes the practical demonstrations that I wished to show you.
You should consider them as a starting point for further experimentation and practice
with ANNs.

Chapter 9 ■ MaChine Learning: praCtiCaL ann DeMonstrations

279

Summary
Two ANN demonstrations were presented in this chapter. These demonstrations
showed how a trained ANN could recognize handwritten numbers. The training data set
consisted of 60,000 records from the MNIST database.

The first demonstration used 10,000 test data records from a database separate from
the MNIST training database. It turned out that a three-layer ANN achieved a 94.5 percent
successful recognition rate.

The second demonstration used a Pi Camera to recognize a handwritten number.
A Python script converted a captured image into an input data record that successfully
recognized the handwritten number.

A slightly modified version of the Python script was then demonstrated, which fully
automated the image-recognition process.

CHAPTER 10

Evolutionary Computing

This chapter deals with evolutionary computing (EC). I’ll start by defining EC and its
scope so that you understand what is being discussed in this chapter and how it applies to
AI. The following lists some of the major subtopics in the field of EC:

•	 Evolutionary programming

•	 Evolution strategies

•	 Genetic algorithms

•	 Genetic programming

•	 Classifier systems

This list is by no means comprehensive, as the scope of many AI topics is often
subject to the viewpoints of AI practitioners, but it serves me well and more than
encompasses all the items discussed in this chapter.

I’ll begin with a story that should place the underlying EC concepts of evolution and
mutation in a proper context.

Alife
Many years ago, there existed a large cavern in a subtropical jungle that was home to an
amphibian creature, which I will simply call an alife. Alifes were gentle animals that made
up a large colony (numbering in the tens of thousands) that lived in the cavern for a very
long time. They ate lichen, moss, and other nutrients that were generously supplied by
several clear water streams that flowed through the cavern. The alifes were quite prolific
and bred very quickly, with generational times measured in weeks. Their colony size was
also quite stable, basically set at an equilibrium point based on constant birth and death
rates, and a stable food supply. All in all, the alife community seemed quite content with
conditions as they were. Then a catastrophe struck.

A major earthquake shook the region, which was so strong that it collapsed the
cavern roof, exposing the alifes to the outside world for the first time in eons. The alifes
didn’t realize what had happened, having fairly primitive brains, and just continued with
their ordinary ways. However, a hawk happened to be circling nearby and dove down
through the newly opened hole to investigate. There it discovered the delicious alife
colony and started consuming them. Having its fill, the hawk flew back to its nest area

Chapter 10 ■ evolutionary Computing

282

and communicated with other hawks about what it found. Very shortly, there were vast
amounts of hungry hawks devouring the alifes. Things looked pretty grim for the alifes.

Fortunately, some groups of alifes were able to shelter in rocks and holes that the
hawks could not reach. But it would only be a matter of time before the colony would be
exterminated. Then, something remarkable happened. A skin cell on the top of the head of a
newborn alife changed or mutated so that it became sensitive to light. The alife didn’t know
what to do but primitive instincts directed it to avoid any light. This alife proceeded to have
offspring and they too had the light-sensitive cells. Interestingly, each generation of alife
became better at detecting light than the previous ones. These light-sensitive alifes quickly
became somewhat adept at hiding from the hawks to the point that they were the only alifes
that survived. The hawks left when it became apparent to them that the free lunch was over.

Another mutation happened with alifes, wherein a second set of light-sensitive cells
developed fairly close to the first set. Over many generations, these light-sensitive cells
evolved into primitive eyes. These alifes could now see, and more importantly, with two
eyes they could perceive the third dimension of depth. With this new sense of depth, the
alifes could venture forth and start exploring the world beyond their cavern home.

When the alifes started venturing from the cavern, they were exposed to the strong
sunlight and their top skin cells started mutating, and became tougher and more
protective. Their mouths also started mutating because they needed more food energy
to move about in the jungle. They grew teeth and their digestive system changed to
accommodate the raw meat proteins they were now consuming. Their bodies also
started to grow to handle the new mass of organs and body parts. This evolution process
continued for a very long time, until the present time. Today, there are alifes are among
us, but we do not call them that; instead, we call them alligators.

I am sure that you recognize my story as fiction, except for the important parts of
mutation and evolution that were necessary for the alifes to continue their species. The
adaptation of species to survive in a hostile environment was the primary idea put forth
in Charles Darwin’s thesis On the Origin of Species.

When it occurs in nature, mutation is always at a very small scale and usually based
upon some random process. This idea is carried through in evolutionary computing,
where changes or mutations are also very small and have little impact on the overall
process, whatever that maybe. The mutations are also created by using a compatible
pseudo-random mechanism. I’ll now further develop these ideas in a discussion of
evolution programming (EP).

Evolutionary Programing
EP was created by Dr. Lawrence Fogel in the early 1960s. It can be viewed as an optimization
strategy using randomly selected trial solutions to test against one or more objectives. Trial
solutions are also known as individual populations. Mutations are then applied to existing
individuals, which create new individuals or offspring. The mutations can have a wide effect
on the resultant behavior of the new individuals. New individuals are then compared in a
“tournament” to select which ones survive to form a new individual population.

EP differs from a genetic algorithm (GA) because it focuses on the behavioral linkages
between parents and offspring; whereas a GA tries to emulate nature’s genetic operations
that occur in a genome, including encoding behaviors and recombinations using genetic
crossovers.

Chapter 10 ■ evolutionary Computing

283

EP is also very similar to evolution strategy (ES), even though they were developed
independently of each other. The main difference is that EP uses a random process to
select individuals from a population, compared to a deterministic approach used in ES.
In ES, poorly performing individuals are deleted from the individual population based on
well-defined metrics.

Now that I have introduced EC and discussed its fundamental components, it is time
to show you a practical EC demonstration.

Demo 10-1: Manual Calculation
I begin this demonstration with some manual calculations, as I have done in other
chapters. However, it would be helpful to state the purpose so that you have an idea
about what the demonstration is supposed to show. The purpose is to generate a list of
six integers whose values range from 0 to 100 and whose sum is 371. I can guess that most
readers can easily come up with a list without any real issues.

I will take you through my reasoning to illustrate how I developed a list.

 1. First, I recognized that that each number is likely more than
60 because there are only six numbers available to sum to the
target value.

 2. Next, I selected a number (say 71) and subtracted it from the
target, which caused a new target of 300 to be created with the
five numbers left.

 3. I repeated these steps using other numbers until I arrived at
the following list. The last number was simply the remainder
after I selected the fifth integer.

[71, 90, 65, 70, 25, 50]

This process was not randomized in any way as I reasoned my selections throughout
the process. This process should be classified as deterministic. A traditional script or
program could be written to codify it. Incidentally, I could have also created the following
list because there was no stipulation that integers could not be repeated:

[60, 60, 60, 60, 60, 71]

It is just a quirk of human nature that we usually do not think or reason in that manner.
I would consider the preceding manual calculations as fairly trivial for a human.

However, it is not so trivial for a computer, and this is where the following Python
demonstration comes into play.

Python Script
Credit must go to Will Larson. I am using his code from a 2009 article entitled “Genetic
Algorithms: Cool Name & Damn Simple” (https://lethain.com/genetic-
algorithms-cool-name-damn-simple/) from his blog, which is called Irrational
Exuberance. I highly recommend that you take a look at it.

https://lethain.com/genetic-algorithms-cool-name-damn-simple/
https://lethain.com/genetic-algorithms-cool-name-damn-simple/

Chapter 10 ■ evolutionary Computing

284

The problem to be solved is the same one used in the manual calculations section on
determining six integers with values ranging from 0 to 100 and summing to a target value
of 371.

The first item to consider in formulating a solution is how to structure it to fit into
the EC paradigm. There are individuals to create who will eventually form a population.
The individuals for this specific case will be six element lists consisting of integers whose
values range from 0 to 100. Multiple individuals make up a population. The following
code segment creates the individuals:

from random import randint
def individual(length, min, max):
 # generates an individual
 return [randint(min, max) for x in xrange(length)]

Figure 10-1 shows an interactive Python session where I generated several
individuals.

Figure 10-1. Interactive Python session individual generation

The individuals generated must be collected so that they form a population, which is
the next part of the solution structure. The following code segment generates a population.
This segment depends upon the previous code segment to have already been entered:

def population(count, length, min, max):
 # generate a population
 return [individual(length, min, max) for x in xrange(count)]

Figure 10-2 shows an interactive Python session where I generated several
populations.

Chapter 10 ■ evolutionary Computing

285

The next step in this process is to create a function that measures how well a
particular individual performs in meeting the stated objective (i.e., integer lists values
summing to a target value). This function is called a fitness function. Note that the fitness
function requires the individual function to have been previously entered. The following
is a code segment implementation for the fitness function:

from operator import add
def fitness(individual, target):
 # calculate fitness, lower the better
 sum = reduce(add, individual, 0)
 return abs(target - sum)

Figure 10-3 shows an interactive Python session where I tested several individuals
against a constant target value.

Figure 10-2. Interactive Python session population generation

Chapter 10 ■ evolutionary Computing

286

This particular fitness function is much simpler than similar fitness tests that I have
demonstrated in past chapters. In this one, only the absolute value of the difference
between the summed elements contained in an individual list and a target value is
calculated. The best case would be a 0.0 value, which I will shortly demonstrate.

The only missing element in the structure is how to change or evolve the population
to meet the objective. Only by the purest luck would an initial solution also be an optimal
solution. There must be a strategy stated to properly implement an evolutionary function.
The following is the strategy set forth for this structure:

•	 Take 20% of the top performers (elitism rate) from a prior
population and include them in a new one.

•	 Breed approximately 75% of the new population as children.

•	 Take the first length/2 elements from a father and the last
length/2 elements from a mother to form a child.

•	 It is forbidden to have a father and a mother as the same
individual.

•	 Randomly select 5% from the population.

•	 Mutate 1% of the new population.

This strategy is by no means a standard one, or even a very comprehensive one,
but it will suffice for this problem and it is fairly representative of those used for similar
problems.

Figure 10-4 is an interactive Python session that shows how children are formed in
this strategy.

Figure 10-3. Interactive Python session fitness tests

Chapter 10 ■ evolutionary Computing

287

The mutating part of the strategy is a bit more complex, which I show, in part, with
the next code segment before trying to explain it:

from random import random, randint
chance_to_mutate = 0.01
for i in population:
 if chance_to_mutate > random():
 place_to_mutate = randint(0, len(i))
 i[place_to_mutate] = randint(min(i), max(i))
...
...

The chance_to_mutate variable is set to 0.01, representing a 1% chance for mutation,
which is very low as I noted earlier. The statement for i in population: iterates
through the entire population and causes a mutation only when the random number
generator is less than .01, which is not very often. The actual individual chosen to be mutated is
accomplished by the place_to_mutate = randint(0, len(i)) statement, which is
not likely the individual that happened to be iterated upon at the time the random number was
less than .01. Finally, the actual mutation is done by this statement: i[place_to_mutate]
= randint(min(i), max(i)). The integer values in the selected individual are
randomly generated based upon the population’s min and max values.

The whole strategy design, which includes a mix of selecting the best-performing
individuals, breeding children from all portions of the population, and the occasional
mutations is geared toward finding the global maximum and avoiding local maximums.
This is precisely the same thought process that was going on in the gradient descent
algorithm for ANNs, where the goal was to locate a global minimum and avoid local
minimums. You can look at Figure 8-15 to visualize the process for locating the global
maximum or highest peak instead of the deepest valley, representing the global minimum.

There is much more to the evolve function than what was shown. The remaining
code is shown next in the complete script listing.

Figure 10-4. Forming children for a new population

Chapter 10 ■ evolutionary Computing

288

There is one more function to explain before the complete script is shown. This function
is named grade and it calculates an overall fitness measure for a whole population. The
Python built-in reduce function sums the fitness scores for each individual and averages
the sum by the population size. The following code implements the grade function:

def grade(pop, target):
 'Find average fitness for a population.'
 summed = reduce(add, (fitness(x, target) for x in pop))
 return summed / (len(pop) * 1.0)

This last function listing concludes my discussion on all the functions that compose
the Python script. The following is a complete listing of the final script, along with
instructions on how to run the script within an interactive Python session. Note that I did
modify the instructions to display the first generation number that met the target and the
final solution itself. The population in the example is equal to 100 and each individual has
six elements with values ranging between 0 and 100.

"""
Example usage
>>> from genetic import *
>>> target = 371
>>> p_count = 100
>>> i_length = 6
>>> i_min = 0
>>> i_max = 100
>>> p = population(p_count, i_length, i_min, i_max)
>>> fitness_history = [grade(p, target),]
>>> fitFlag = 0
>>> for i in xrange(100):
... p = evolve(p, target)
... fitness_history.append(grade(p, target))
... if grade(p, target) == 0:
... if fitFlag == 0:
... fitFlag = 1
... print 'Generation = ', i
... print p[0]
>>> for datum in fitness_history:
... print datum
"""

from random import randint, random
from operator import add

def individual(length, min, max):
 'Create a member of the population.'
 return [randint(min,max) for x in xrange(length)]

def population(count, length, min, max):
 """
 Create a number of individuals (i.e. a population).

Chapter 10 ■ evolutionary Computing

289

 count: the number of individuals in the population
 length: the number of values per individual
 min: the minimum possible value in an individual's list of values
 max: the maximum possible value in an individual's list of values

 """
 return [individual(length, min, max) for x in xrange(count)]

def fitness(individual, target):
 """
 Determine the fitness of an individual. Higher is better.

 individual: the individual to evaluate
 target: the target number individuals are aiming for
 """
 sum = reduce(add, individual, 0)
 return abs(target-sum)

def grade(pop, target):
 'Find average fitness for a population.'
 summed = reduce(add, (fitness(x, target) for x in pop))
 return summed / (len(pop) * 1.0)

def evolve(pop, target, retain=0.2, random_select=0.05,
mutate=0.01):
 graded = [(fitness(x, target), x) for x in pop]
 graded = [x[1] for x in sorted(graded)]
 retain_length = int(len(graded)*retain)
 parents = graded[:retain_length]
 # randomly add other individuals to
 # promote genetic diversity
 for individual in graded[retain_length:]:
 if random_select > random():
 parents.append(individual)
 # mutate some individuals
 for individual in parents:
 if mutate > random():
 pos_to_mutate = randint(0, len(individual)-1)
 # this mutation is not ideal, because it
 # restricts the range of possible values,
 # but the function is unaware of the min/max
 # values used to create the individuals,
 individual[pos_to_mutate] = randint(
 min(individual), max(individual))
 # crossover parents to create children
 parents_length = len(parents)
 desired_length = len(pop) - parents_length
 children = []
 while len(children) < desired_length:

Chapter 10 ■ evolutionary Computing

290

 male = randint(0, parents_length-1)
 female = randint(0, parents_length-1)
 if male != female:
 male = parents[male]
 female = parents[female]
 half = len(male) / 2
 child = male[:half] + female[half:]
 children.append(child)
 parents.extend(children)
 return parents

Figure 10-5 shows an interactive session in which I entered all the statements shown
in the instructions portion of the script comments.

Figure 10-5. Interactive Python session running the script

You should be able to see in the screenshot that a solution was found after only seven
generations had evolved. The solution was [72, 68, 67, 64, 75, 25], which does
sum to the target value of 371. The script does not stop after the first successful solution is

Chapter 10 ■ evolutionary Computing

291

found, but continues to evolve and mutate, slightly degrading and then improving until it
has run through its preset cycle number.

A portion of the history of the fitness numbers associated with each generation is
shown in Figure 10-6.

Figure 10-6. Fitness history list

Chapter 10 ■ evolutionary Computing

292

In Figure 10-6, I annotated where generation 7 has a 0.0 fitness value for each of its
individuals. Overall, this genetic programming approach is very efficient, especially for
the relatively simple objective of determining a target sum given a list of six randomly
generated integer numbers.

The next demonstration is a slight variant from Conway’s Game of Life, which is a
classic project incorporating genetic programming with artificial life (alife) that breed
and die according to a set of conditions based on their proximity to each other, which I
explain later.

Demo 10-2: Conway’s Game of Life
The Game of Life, or as it is commonly known, Life, is a cellular automaton project
created by British mathematician John Conway in 1970. The game starts with an initial
condition, but it needs no further user input to play to its completion. This modus
operandi is called a zero-player game, which means that the automatons—or cells, as I
shall refer to them from now on—evolve on their own according to the following set of
rules or conditions:

 1. Any live cell with fewer than two live neighbors dies, as if
caused by underpopulation.

 2. Any live cell with two or three live neighbors lives to the next
generation.

 3. Any live cell with more than three live neighbors dies, as if by
overpopulation.

 4. Any dead cell with exactly three live neighbors becomes a live
cell, as if by reproduction.

The board field, or universe, for this game is theoretically an infinite, orthogonal set
of grid squares where a cell can occupy a grid in either an alive or a dead state. Alive is
synonymous with populated and dead is synonymous with unpopulated. Each cell has
a maximum of eight neighbors, except for the edge cells in our real-world, practical grid
system, where an infinite grid is not possible.

The grid is “seeded” with an initial placement of cells, which can be randomly or
deterministically placed. The cellular rules are then immediately applied, causing births
and deaths to happen simultaneously. This application is known as time tick in game
terminology. A new generation is thus formed and the rules are immediately reapplied.
Ultimately, the game settles into an equilibrium state, where cells cycle between two
stable cellular configurations, they roam about forever, or they all die.

From a historical perspective, Conway was very much interested in Professor John
von Neumann’s attempts at creating a computing machine that could replicate itself.
von Neumann eventually succeeded by describing a mathematical model based on a
rectangular grid governed by a very complex set of rules. The Conway game was a big
simplification of von Neumann’s concepts. The game was published in the October 1970
issue of Scientific American in Martin Gardener’s “Mathematical Games” column. It
instantly became a huge success and generated much interest from fellow AI researchers
and enthusiastic readers.

Chapter 10 ■ evolutionary Computing

293

The game can also be extended to the point that it is comparable to the universal
Turing machine, first proposed by Alan Turning in the 1940s (explained in an earlier
chapter).

The game has another important influence on AI in that it likely kick-started the
mathematical field of study known as cellular automata. The game simulates the birth
and death of a colony of organisms in a surprising close relationship to real-life processes
occurring in nature. This game has led directly to many other similar simulation games
modeling nature’s own processes. These simulations have been applied in computer
science, biology, physics, biochemistry, economics, mathematics, and many others.

I demonstrate Conway’s Game of Life using a neat Raspberry Pi accessory board
known as a Sense HAT. Figure 10-7 shows a Sense HAT board. The HAT name represents
a line of accessory boards known as Hardware Attached on Top (HAT) boards, which
feature a standardized format that allows them to be directly plugged into the 40-pin
GPIO header and mechanically fastened to the Raspberry Pi 2 and 3 model boards.

Figure 10-7. Sense HAT board

Chapter 10 ■ evolutionary Computing

294

Every HAT board supports an autoconfiguration system that allows automatic GPIO
and driver setup. This automatic configuration is achieved using two dedicated pins
on the 40-pin GPIO header that are reserved for an I2C eeprom. This eeprom holds the
board manufacturer’s information, GPIO setup, and a device tree fragment, which is a
description of the attached hardware, which in turn allows the Linux OS to automatically
load any required drivers.

The Sense HAT board has an 8 × 8 RGB LED array, which provides a very nice grid
display for all the cellular automatons. In addition, there is a powerful Python library
that provides a good deal of functionality for the LED array and for a variety of onboard
sensors, which include the following:

•	 Gyroscope

•	 Accelerometer

•	 Magnetometer

•	 Temperature

•	 Barometric pressure

•	 Humidity

There is also a five-way position joystick on the board to support applications that
need that type of user control. I do not use any of the sensors or the joystick for the Game
of Life application, just the 8 × 8 LED array.

Sense HAT Hardware Installation
First, ensure that the Raspberry Pi is completely powered down. The Sense HAT is
designed to mount on top of a Raspberry Pi. It comes with a 40-pin GPIO male pin
extension header that you must first plug into the female 40-pin header on the Raspberry
Pi. The Sense HAT is then mounted on top of the Raspberry Pi using the 40 male pins as
a guide. These pins should simply push through the 40-pin female header on the Sense
board. All that’s left is to attach the supplied stand-offs, which provide firm support
between the Raspberry Pi and the Sense HAT. Figure 10-8 shows a mounted Sense HAT
on a Raspberry Pi.

Chapter 10 ■ evolutionary Computing

295

There is one more item that you should know. The Raspberry Pi and Sense HAT
require a power supply capable of providing 2.5A at 5V. Failing to use a sufficiently
powerful power supply will likely cause strange behavior, such as the Linux OS failing to
recognize the Sense HAT, which I unfortunately confirmed as a fact.

Sense HAT Software Installation
The Python library supporting the Sense HAT must be loaded prior to running any of the
scripts that will run the Life game. First, ensure that the Raspberry Pi is connected to the
Internet, and then enter the following commands to load the software:

sudo apt-get update
sudo apt-get install sense-hat
sudo reboot

You want to run the following test to ensure that the Sense HAT is working properly
with the newly installed software. Enter the following in an interactive Python session:

from sense_hat import SenseHat
sense = SenseHat()
sense.show_message("Hello World!")

Figure 10-8. Sense HAT mounted onto a Raspberry Pi

Chapter 10 ■ evolutionary Computing

296

If all went well with the installation, you show see the Hello World! message
scrolling across the LED array. If you don’t see it, I would recheck that the Sense HAT
is securely fastened to the Raspberry Pi and that all 40 pins go through their respective
socket holes. It very well might be that you inadvertently bent one of the pins such that it
is has been forced out of the way. If that’s the case, just carefully straighten it and reseat all
the pins.

Once the software checks out, you are ready to run a Python version of the Game
of Life on this combination of Sense HAT/Raspberry Pi. I now turn the discussion to the
game software.

Game of Life: Python Version
I begin this section by giving credit to Mr. Swee Meng Ng, a very talented Malaysian
developer who posted much of the code I used in this project on GitHub.com. Swee goes by
the username sweemeng on GitHub. He has a blog at www.nomadiccodemonkey.com.
Take a look at it if you want an appreciation for the code development efforts that are
ongoing in that part of the world.

You should first load the following Python scripts from https://github.com/
sweemeng/sweemengs-game-of-life.git into your home directory:

•	 genelab.ppy

•	 designer.py

•	 gameoflife.py

genelab.py is the first script that I’ll discuss. It is the main one in this application.
By main, I mean it incorporates the starting point, initialization, generation creation,
and mutation, and finally, it enforces the behavioral rules. However, this script needs
two helper scripts to work properly. These helper scripts are named designer.py and
gameoflife.py, which I discuss shortly. I have added my own comments to Swee Meng’s
scripts to help relate portions of it to concepts that have already been discussed, and
hopefully, to clarify the purpose of the code segments.

import random
import time
first helper
from designer import CellDesigner
from designer import GeneBank
second helper
from gameoflife import GameOfLife
not exactly a helper but needed for the display
from sense_hat import SenseHat

you can customize your colors here
WHITE = [0, 0, 0]
RED = [120, 0, 0]

http://www.nomadiccodemonkey.com/
https://github.com/sweemeng/sweemengs-game-of-life.git
https://github.com/sweemeng/sweemengs-game-of-life.git

Chapter 10 ■ evolutionary Computing

297

begin class definition
class Genelab(object):
 # begin initialization
 def __init__(self):
 self.survive_min = 5 # Cycle
 self.surival_record = 0
 self.designer = CellDesigner()
 self.gene_bank = GeneBank()
 self.game = GameOfLife()
 self.sense = SenseHat()

 # random starting point
 def get_start_point(self):
 x = random.randint(0, 7)
 y = random.randint(0, 7)
 return x, y

 # create a fresh generation (population)
 # or mutate an existing one
 def get_new_gen(self):
 if len(self.gene_bank.bank) == 0:
 print("creating new generation")
 self.designer.generate_genome()
 elif len(self.gene_bank.bank) == 1:
 print("Mutating first gen")
 self.designer.destroy()
 seq_x = self.gene_bank.bank[0]
 self.designer.mutate(seq_x)
 else:
 self.designer.destroy()
 coin_toss = random.choice([0, 1])
 if coin_toss:
 print("Breeding")
 seq_x = self.gene_bank.random_choice()
 seq_y = self.gene_bank.random_choice()
 self.designer.cross_breed(seq_x, seq_y)
 else:
 print("Mutating")
 seq_x = self.gene_bank.random_choice()
 self.designer.mutate(seq_x)

 # a method to start the whole game, i.e. lab.run()
 def run(self):
 self.get_new_gen()
 x, y = self.get_start_point()
 cells = self.designer.generate_cells(x, y)
 self.game.set_cells(cells)

Chapter 10 ■ evolutionary Computing

298

 # count is the generation number
 count = 1
 self.game.destroy_world()
 # forever loop. Change this if you only want a finite run
 while True:
 try:
 # essentially where the rules are applied
 if not self.game.everyone_alive():
 if count > self.survive_min:
 # Surivival the fittest

 self.gene_bank.add_gene(self.designer.genome)
 self.survival_record = count

 print("Everyone died, making new gen")
 print("Species survived %s cycle" % count)
 self.sense.clear()
 self.get_new_gen()
 x, y = self.get_start_point()
 cells = self.designer.generate_cells(x, y)
 self.game.set_cells(cells)
 count = 1

 if count % random.randint(10, 100) == 0:
 print("let's spice thing up a little")
 print("destroying world")
 print("Species survived %s cycle" % count)
 self.game.destroy_world()
 self.gene_bank.add_gene(self.designer.genome)
 self.sense.clear()
 self.get_new_gen()
 x, y = self.get_start_point()
 cells = self.designer.generate_cells(x, y)
 self.game.set_cells(cells)
 count = 1

 canvas = []

 # this where the cells are "painted" onto the canvas
 # The canvas is based on the grid pattern from the
 # gameoflife script
 for i in self.game.world:
 if not i:
 canvas.append(WHITE)
 else:
 canvas.append(RED)
 self.sense.set_pixels(canvas)
 self.game.run()

Chapter 10 ■ evolutionary Computing

299

 count = count + 1
 time.sleep(0.1)
 except:
 print("Destroy world")
 print("%s generation tested" % len(self.gene_bank.bank))
 self.sense.clear()
 break

if __name__ == "__main__":
 # instantiate the class GeneLab
 lab = Genelab()
 # start the game
 lab.run()

The first helper script is designer.py. The code listing follows with the addition of my
own comments:

import random

class CellDesigner(object):
 # initialization
 def __init__(self, max_point=7, max_gene_length=10, genome=[]):
 self.genome = genome
 self.max_point = max_point
 self.max_gene_length = max_gene_length

 # a genome is made up of 1 to 10 genes
 def generate_genome(self):
 length = random.randint(1, self.max_gene_length)
 print(length)
 for l in range(length):
 gene = self.generate_gene()
 self.genome.append(gene)

 # a gene is an (+/-x, +/-y) cooordinate pair; x, y range 0 to 7
 def generate_gene(self):
 x = random.randint(0, self.max_point)
 y = random.randint(0, self.max_point)
 x_dir = random.choice([1, -1])
 y_dir = random.choice([1, -1])
 return ((x * x_dir), (y * y_dir))

 def generate_cells(self, x, y):
 cells = []
 for item in self.genome:
 x_move, y_move = item

Chapter 10 ■ evolutionary Computing

300

 new_x = x + x_move
 if new_x > self.max_point:
 new_x = new_x - self.max_point
 if new_x < 0:
 new_x = self.max_point + new_x

 new_y = y + x_move
 if new_y > self.max_point:
 new_y = new_y - self.max_point
 if new_y < 0:
 new_y = self.max_point + new_y
 cells.append((new_x, new_y))
 return cells

 def cross_breed(self, seq_x, seq_y):
 if len(seq_x) > len(seq_y):
 main_seq = seq_x
 secondary_seq = seq_y
 else:
 main_seq = seq_y
 secondary_seq = seq_x

 for i in range(len(main_seq)):
 gene = random.choice([main_seq, secondary_seq])
 if i > len(gene):
 continue
 self.genome.append(gene[i])

 def mutate(self, sequence):
 # Just mutate one gene
 for i in sequence:
 mutate = random.choice([True, False])
 if mutate:
 gene = self.generate_gene()
 self.genome.append(gene)
 else:
 self.genome.append(i)

 def destroy(self):
 self.genome = []

class GeneBank(object):
 def __init__(self):
 self.bank = []

 def add_gene(self, sequence):
 self.bank.append(sequence)

Chapter 10 ■ evolutionary Computing

301

 def random_choice(self):
 if not self.bank:
 return None
 return random.choice(self.bank)

The second helper script is gameoflife.py. There is only a small portion of this script
that is actually used as a helper for the main script. I have included it all for the sake of
completeness and to provide you with the code, in case you want to run a single-generation
Game of Life, which I will explain shortly. The complete code listing follows with my own
comments added:

import time
world = [
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
]

max_point = 7 # We use a square world to make things easy

class GameOfLife(object):
 def __init__(self, world=world, max_point=max_point,
value=1):
 self.world = world
 self.max_point = max_point
 self.value = value

 def to_reproduce(self, x, y):
 if not self.is_alive(x, y):
 neighbor_alive = self.neighbor_alive_count(x, y)
 if neighbor_alive == 3:
 return True
 return False

 def to_kill(self, x, y):
 if self.is_alive(x, y):
 neighbor_alive = self.neighbor_alive_count(x, y)
 if neighbor_alive < 2 or neighbor_alive > 3:
 return True
 return False

Chapter 10 ■ evolutionary Computing

302

 def to_keep(self, x, y):
 if self.is_alive(x, y):
 neighbor_alive = self.neighbor_alive_count(x, y)
 if neighbor_alive >= 2 and neighbor_alive <= 3:
 return True
 return False

 def is_alive(self, x, y):
 pos = self.get_pos(x, y)
 return self.world[pos]

 def neighbor_alive_count(self, x, y):

 neighbors = self.get_neighbor(x, y)
 alives = 0
 for i, j in neighbors:
 if self.is_alive(i, j):
 alives = alives + 1
 # Because neighbor comes with self, just for easiness
 if self.is_alive(x, y):
 return alives - 1
 return alives

 def get_neighbor(self, x, y):
 #neighbors = [
 # (x + 1, y + 1), (x, y + 1), (x - 1, y + 1),
 # (x + 1, y), (x, y), (x, y + 1),
 # (x + 1, y - 1), (x, y - 1), (x - 1, y - 1),
 #]
 neighbors = [
 (x - 1, y - 1), (x - 1, y), (x - 1, y + 1),
 (x, y - 1), (x, y), (x, y + 1),
 (x + 1, y - 1), (x + 1, y), (x + 1, y + 1)
]
 return neighbors

 def get_pos(self, x, y):
 if x < 0:
 x = max_point
 if x > max_point:
 x = 0
 if y < 0:
 y = max_point
 if y > max_point:
 y = 0

 return (x * (max_point+1)) + y

Chapter 10 ■ evolutionary Computing

303

 # I am seriously thinking of having multiple species
 def set_pos(self, x, y):
 pos = self.get_pos(x, y)
 self.world[pos] = self.value

 def set_cells(self, cells):
 for x, y in cells:
 self.set_pos(x, y)

 def unset_pos(self, x, y):
 pos = self.get_pos(x, y)
 self.world[pos] = 0

 def run(self):
 something_happen = False
 operations = []
 for i in range(max_point + 1):
 for j in range(max_point + 1):
 if self.to_keep(i, j):
 something_happen = True
 continue
 if self.to_kill(i, j):
 operations.append((self.unset_pos, i, j))
 something_happen = True
 continue
 if self.to_reproduce(i, j):
 something_happen = True
 operations.append((self.set_pos, i, j))
 continue
 for func, i, j in operations:
 func(i, j)
 if not something_happen:
 print("weird nothing happen")

 def print_world(self):
 count = 1
 for i in self.world:

 if count % 8 == 0:
 print("%s " %i)
 else:
 print("%s " %i) #, end = "")
 count = count + 1
 print(count)

 def print_neighbor(self, x, y):
 neighbors = self.get_neighbor(x, y)
 count = 1

Chapter 10 ■ evolutionary Computing

304

 for i, j in neighbors:
 pos = self.get_pos(i, j)
 if count %3 == 0:
 print("%s " %self.world[pos])
 else:
 print("%s " %self.world[pos]) #, end = "")
 count = count + 1
 print(count)

 def everyone_alive(self):
 count = 0
 for i in self.world:
 if i:
 count = count + 1
 if count:
 return True
 return False

 def destroy_world(self):
 for i in range(len(self.world)):
 self.world[i] = 0

def main():
 game = GameOfLife()
 cells = [(2, 4), (3, 5), (4, 3), (4, 4), (4, 5)]
 game.set_cells(cells)
 print(cells)
 while True:
 try:
 game.print_world()

 game.run()
 count = 0
 time.sleep(5)
 except KeyboardInterrupt:
 print("Destroy world")
 break

def debug():
 game = GameOfLife()
 cells = [(2, 4), (3, 5), (4, 3), (4, 4), (4, 5)]
 game.set_cells(cells)
 test_cell = (3, 3)
 game.print_neighbor(*test_cell)
 print("Cell is alive: %s" % game.is_alive(*test_cell))
 print("Neighbor alive: %s" % game.neighbor_alive_

count(*test_cell))

Chapter 10 ■ evolutionary Computing

305

 print("Keep cell: %s" % game.to_keep(*test_cell))
 print("Make cell: %s" % game.to_reproduce(*test_cell))
 print("Kill cell: %s" % game.to_kill(*test_cell))
 game.print_world()
 game.run()
 game.print_world()

if __name__ == "__main__":
 main()
 #debug()

Test Run
First, ensure that the genelab.py, designer.py, and gameoflife.py scripts are in the pi home
directory before running this command:

python genelab.py

The Raspberry takes a moment to load everything. You should begin to see the cells
appear on the Sense HAT LED array, as well as status messages on the console screen.
Figure 10-9 is a photograph of the LED array while my script was running.

Chapter 10 ■ evolutionary Computing

306

Figure 10-9. Sense HAT LED array with the Game of Life running

Chapter 10 ■ evolutionary Computing

307

Figure 10-10 shows the console display while the game was running.

Figure 10-10. Console display with the Game of Life running

Single Generation of the Game of Life
It is also entirely possible to experiment with only a single generation of the Game of
Life. This script simply adheres to the rules for the cell neighbors that were previously
specified, with no cell or gene mutations allowed. The following script is named main.py.
It is available on the same GitHub website as the previous scripts.

Chapter 10 ■ evolutionary Computing

308

from sense_hat import SenseHat
from gameoflife import GameOfLife
import time

WHITE = [0, 0, 0]
RED = [255, 0, 0]

def main():

 game = GameOfLife()

 sense = SenseHat()
 # cells = [(2, 4), (3, 5), (4, 3), (4, 4), (4, 5)]
 cells = [(2, 4), (2, 5), (1,5), (1, 6), (3, 5)]
 game.set_cells(cells)

 while True:
 try:
 canvas = []
 for i in game.world:
 if not i:
 canvas.append(WHITE)
 else:
 canvas.append(RED)
 sense.set_pixels(canvas)
 game.run()
 if not game.everyone_alive():
 sense.clear()
 print("everyone died")
 break
 time.sleep(0.1)
 except:
 sense.clear()
 break

if __name__ == "__main__":
 main()

Enter the following command to run this script:

python main.py

The initial cell configuration is set by this statement:

cells = [(2, 4), (2, 5), (1, 5), (1, 6), (3, 5)]

You can try another configuration by uncommenting the prior cells array, and
then comment out this one. I did that very action and then ran the script. I observed an
unusual display, which I will not describe. I will leave it for you to discover.

Chapter 10 ■ evolutionary Computing

309

I want to caution that what I am about to describe can become quite addictive. It is
testing the consequences of new initial starting patterns. There are more than a few AI
researchers who have dedicated their careers to the study of cellular automata, which
includes researching the fascinating evolving patterns from the Game of Life.

Figure 10-11 illustrates some starting configurations that you may wish to try. The
companion cell configuration array values are shown next to each of the patterns.

Figure 10-11. Example Game of Life starting patterns

Two of the patterns immediately disappear (die), one goes into a bi-stable state, and
the fourth pattern enters a stable state. I tested each pattern and confirmed it acted as
shown.

Figure 10-12 shows other initial patterns that you can experiment with to see how
they evolve according to the rules set. The companion cell array values are shown next to
each pattern.

Chapter 10 ■ evolutionary Computing

310

There are a series of patterns that are dynamic, which means that they constantly
move across the grid and repeat their patterns. Figure 10-13 shows the glider that moves
around the grid and repeats its pattern every fourth generation.

Figure 10-13. Glider pattern

Figure 10-12. Additional starting patterns

A similar dynamic pattern is the lightweight spaceship, which is shown in
Figure 10-14. It moves across the grid too.

Chapter 10 ■ evolutionary Computing

311

Conway discovered several patterns that took many generations to finally evolve
and become both predictable and periodic. Incidentally, he made these discoveries
without the aid of a computer. He called these patterns Methuselahs, after a man who was
described in the Hebrew Bible to have lived to the age of 969 years. The first of these long-
lived patterns is named F-pentomino, which is shown in Figure 10-15. It becomes stable
after 1101 generations.

Figure 10-14. Lightweight spaceship pattern

Figure 10-16. Acorn pattern

The Acorn pattern shown in Figure 10-16 is another example of a Methuselah that
becomes stable and predictable after 5206 generations.

Figure 10-15. F-pentomino pattern

Readers who wish to experiment with more patterns can go to Alan Hensel’s
webpage at radicaleye.com/lifepage/picgloss/picgloss.html, where he
has compiled a fairly large list of other common patterns.

This completes the initial foray into cellular automata using Conway’s Game of Life
as the tool. You should now be empowered to further experiment with this tool to gain
more experience and confidence in this powerful AI topic. I also highly recommend
Dr. Stephen Wolfram’s book A New Kind of Science (Wolfram Media, 2002), in which he

https://en.wikipedia.org/wiki/Hebrew_Bible

Chapter 10 ■ evolutionary Computing

312

examines the entire field of cellular automata using the Mathematica application, which
he created. Incidentally, the Mathematica application is now freely provided with the
latest Raspian distributions available from raspberrypi.org.

Summary
This chapter was concerned with evolutionary computing. I began the chapter with a
story relating how evolution and mutation were integral parts of EC.

The first demonstration showed how evolutionary programming could be used to
find solutions to fairly simple problems using both evolution and mutation techniques.
The solution was first calculated manually and then automatically by a Python script.

The second demonstration introduced the EC subtopic of genetic algorithms and
genetic programming. I used a Python version of Conway’s Game of Life as the means
to explain and demonstrate these concepts. This section also introduced the concept of
cellular automata, which is central to the game.

There were two game versions shown: one that used genetic evolution and mutation,
and another that was more deterministic in that you could specify the starting patterns.
The latter version was further used to examine a variety of cellular patterns that generated
some unusual behaviors.

A Sense HAT accessory board was used with a Raspberry Pi 3 to display the Game of
Life simulations.

CHAPTER 11

Behavior-based robotics (BBR) is an approach to control robots. Its origins are in the
study of both animal and insect behaviors. This chapter presents an in-depth exploration
of this approach.

Parts List
For the second demonstration, you need the parts that are listed in Table 11-1.

Table 11-1. Parts Lists

Description Quantity Remarks

Pi Cobbler 1 40-pin version, either T or DIP form factor
acceptable

solderless breadboard 1 300 insertion points with power supply strips

solderless breadboard 1 300 insertion points

jumper wires 1 package

ultrasonic sensors 2 type HC-SR04

4.9kΩ resistor 2 1/4 watt

10kΩ resistor 5 1/4 watt

MCP3008 1 8-channel ADC chip

There is a robot used in a demonstration discussed in this chapter that you can
build by following the instructions in the appendix. The parts list includes items required
beyond those needed for the basic robot.

The underlying formal structure for BBR is called subsumption architecture. In 1985,
MIT professor Dr. Rodney Brooks wrote an internal technical memo titled “A Robust
Layered Control Mechanism for Mobile Robots.” At the time, Dr. Brooks worked in MIT’s
Artificial Intelligence Laboratory. His memo was subsequently published in 1986 as a
paper in the IEEE Journal of Robotics and Automation. His paper changed the nature

Behavior-Based Robotics

Chapter 11 ■ Behavior-Based roBotiCs

314

and direction of robotics research for many years. The gist of the paper described a robot
control organization that he called subsumption architecture. The theory behind this
architecture is based, in part, on the evolutionary development of the human brain.

Human Brain Structure
On a very broad scale, the human brain can be divided into three levels or parts. The
lowest level is the most primitive part, which is responsible for basic life-supporting
activities, such as respiration, blood pressure, core temperature, and so forth. The
brain stem is the organic brain section that hosts these primitive functions. Figure 11-1
illustrates the brain stem and the limbic system.

Figure 11-1. Brain stem and limbic system

Chapter 11 ■ Behavior-Based roBotiCs

315

The next highest level of brain function has been termed the reptile brain or limbic
system. It is responsible for eating, sleeping, reproduction, flight or fight, and similar
behaviors. The limbic system is made up of the hippocampus, amygdala, hypothalamus,
and the pituitary gland. Finally, the highest cognitive level is the neocortex, which is
responsible for learning, thinking, and similar high-level complex activities. The brain
components composing the neocortex, or cerebral cortex, are the frontal, temporal,
occipital, and parietal lobes. Figure 11-2 illustrates the four lobes that comprise the
cerebral cortex.

Figure 11-2. Cerebral cortex

Most often, these various brain levels function quite independently of each other but
they can and often have conflicts. Perhaps you have a “high-strung” personality and find
food a welcoming diversion to ease stress. The higher-level function knows that eating
too much of the wrong types of food is no good for you, but the lower-level reptile brain
still craves it. Which brain level overrides and changes your behavior is problematic.
Sometimes the lower level wins and other times the higher level wins. However, if
you have an addiction, it is always the case that the lower level wins and changes your

Chapter 11 ■ Behavior-Based roBotiCs

316

behavior, usually for the worst. Anyone can have many different brain-level behaviors
ready to activate at a given time, but only one “wins” out and causes the current active
behavior to be displayed. This interplay between brain behaviors was one source of
Dr. Brooks’ subsumption architecture.

Subsumption Architecture
A definition of subsumption will help at this point in the discussion. However, what really
has to be defined is the word subsume, because subsumption is circularly defined as the
act of subsuming.

subsume: incorporating something under a more general category; to
include something in a larger group or a group in a higher position

These definitions imply that complex behaviors can be decomposed into multiple
simpler behaviors. There is another perspective that must be added to the definition.
This addition is the word reactive, because in the real world, robots depend on sensors to
react or change behaviors based on sensory inputs. These inputs are constantly reacting
to changes in the robot’s environment. Reactive behavior is also called stimulus/response
behavior, which is appropriate for insects. Insects are a lower-level life form when
compared to mammals, and they do not have a highly developed learning capability.
What they do have is called habituation, which allows an insect to adapt to certain types
of environmental changes. This can easily be seen by blowing air on a cockroach. The
insect initially retreats from the blowing air. However, repeatedly blowing air on the
cockroach causes it to ignore the air because it is perceived as non–life threatening. This
type of low-level learning is useful for robots, especially autonomous robots.

One way to display the traditional approach for a reactive system is shown in
Figure 11-3.

Figure 11-3. Flowchart for a sensor-based system

The collection of serial processes, from sensors to action, may be thought of as a
behavior. This layout of serial processes or tasks is slow and relatively inflexible. Sensors
acquire data without attempting to process it in any way. That job is left to the perception
block, which must sort out all relevant sensory data before passing it on to the model
block. The model block transforms this filtered data into a contextual sense or state. The
plan block has rules that are followed based upon the state it receives from the model

Chapter 11 ■ Behavior-Based roBotiCs

317

block. Finally, the action block implements the appropriate rules received from the plan
block and sends the required control signals to the actuators, which are shown in the final
block in the diagram. Having all of these blocks in a serial architecture makes for a slow
response, which is not a good robotic attribute.

The serial blocks shown in the diagram represent a complex behavior that can be
represented by a single layer. A layer in a behavioral sense may be considered a goal to be
achieved by an agent or a robot.

Complex behaviors maybe decomposed into simpler behaviors. This is the key to
subsumption architecture. Figure 11-4 shows a two-layer decomposition in place of the
complex single-layer behavior stream shown in Figure 11-3.

Figure 11-4. Two-layer behavior serial stream

Each layer or path is considered related to a specific task, such as following a wall
or detecting an obstacle. This is the subsumption architecture proposed by Dr. Brooks.
Notice that there is an additional arbitrator block that processes all of the action block
signals before sending selected ones to the actuators. This arbitrator block is another
important element in subsumption architecture.

Systems can be made much more responsive by essentially converting a single,
complex behavior into multiple parallel paths. It is also easy to envision that many more
layers can be added without disturbing any of the existing layers. The feature of extending
code without modifying existing code closely mimics the software composition principle
discussed in an earlier chapter. It is always a good thing to be able to extend existing code
without too much “disturbance” to the existing code.

The subsumption architecture does not provide any guidance on how to decompose
a complex behavior into simpler multiple tasks. In addition, the perception block is
generally regarded as the hardest of all the blocks to define and implement. The problem
is to create a meaningful data set from a limited number of environmental sensors. This
data set then feeds the model block that effectively creates the robot’s world or state.
At this point, BBR differs significantly from the more traditional approach. I discuss the
traditional approach first, followed by the BBR approach.

Chapter 11 ■ Behavior-Based roBotiCs

318

Traditional Approach
In the traditional approach, the model block stores a complete and accurate model of the
real world that the robot operates within. This may be accomplished in a variety of ways,
but there is usually some type of geometric coordinate system involved for mobile robots
to establish the current state and predict the future state. Sensor data must be calibrated
and accurate for the state to be precisely determined. Ideal state information is either
stored or computed based upon the sensor data set. Deviations from the ideal state are
errors that are passed onto to the plan block so that appropriate control measures can be
taken to minimize these errors. Controllers or actuators must also be precise and accurate
to ensure that the corrective motions are done in strict conformance with the commands
created by the plan and action blocks.

The traditional approach often involves a lot of computer memory to store or
compute the necessary state information. It is slower than the BBR approach, which in
turn makes the robot less responsive.

Behavior-Based Robotics Approach
It is worth digressing a bit before discussing BBR. In the study of animal behavior, also known
as ethology, it has been shown that infant seagulls respond to parent models. Figure 11-5
shows such a parent model with a feature circled in the figure, which will trigger the infant
gull’s instinct feeding behavior.

Figure 11-5. Seagull ethology

Chapter 11 ■ Behavior-Based roBotiCs

319

All that matters to the infant gulls is that the parent gull model has a sharp beak with
a colored spot near the beak tip. The babies open their beaks awaiting food delivery.
These infant gulls use a very limited real-world representation, but it has been shown to
be perfectly adequate for the gull species to survive.

Similarly, real-world robots can use a limited real-world representation or model, so
that it should be adequate to carry out the desired requirements without reliance on an
overly detailed world model.

These limited representations are often referred to as “snapshots” of the local
environment. Behaviors are then designed to react to these snapshots. Two of the
important points are that the mobile robot does not need to maintain a geometric
coordinate system, and it does not have to have a memory-laden real-world model.
By utilizing reflex-like direct responses, mobile robots minimize the complexity of the
model, plan, and action blocks. The behavior stream almost reverts to a simple behavior
diagram, as shown in Figure 11-6.

Figure 11-6. Simple behavioral stream

How can environmental snapshots be related to robot behaviors? Initially, a data
set has to be created that consists of the sensor data generated when the environmental
conditions exist, which should trigger the desired robotic reflexive behavior. These are
termed sensor signatures. Now all that needs to be done is to link the signatures to a
specific behavior using interpretive routines, normally done in the Prediction block.
However, there could be an issue that given the relatively coarse-grained sensor data
signatures, simultaneous stimulus/response pairings could happen. Assigning priorities
to the simple behaviors alleviates this situation. In addition, default or long-term
behaviors are normally assigned a lower priority than emergent or “tactical” behaviors.
The tactical signature happens if the robot encounters an environment condition that
requires immediate attention from the robot control system.

Instituting a behavior prioritization scheme has an unintended positive outcome.
Robots usually operate with the same behavior, such as moving forward. All behaviors
acting in sequence should strive to maintain this normalcy. Only when environmental
conditions warrant should a behavior direct the robot to deviate from the normal. When
deviations happen, the higher-priority behaviors take control and try to restore normalcy.

Chapter 11 ■ Behavior-Based roBotiCs

320

BBR also incorporates long-term progress indicators to help avoid a “looping”
situation, as might be the case where the robot continually bounces between two barriers
or is locked into a wall corner. These long-term progress indicators effectively generate
a strategic trajectory in which the robot moves in a general direction or path. When
progress is impeded, a different set of behaviors is selected to return to the normal state.

In a layered subsumption model, a low-level layer might have the goal to “avoid
an obstacle.” This layer could be “beneath” a higher level of “roam around.” The higher
level of “roam around” is said to subsume the lower-level behavior of “avoid an obstacle.”
All layers have access to sensors to detect environment changes, as well as the ability to
control actuators. An overall constraint is that separate tasks have the ability to suppress
any input and to inhibit output sent to actuators. In this way, the lowest levels can be very
responsive to environment changes, much the way reflexes function in living organisms.
Higher levels are more abstract and devoted to satisfying goals.

The following behaviors may be represented by a variety of graphical or
mathematical models:

•	 Functional notation

•	 Stimulus/response diagram

•	 Finite state machine (FSM)

•	 Schema

I use the FSM model because it provides a good representation of behavior
interactions without much mathematic abstraction. A basic FSM model is shown in
Figure 11-7.

Figure 11-7. Basic FSM model

Figure 11-8 shows multiple behaviors with interrelationships, including sensory
inhibitions and actuator suppressions. Notice the layered behavior sequences and
behavior prioritization discussed earlier.

Chapter 11 ■ Behavior-Based roBotiCs

321

At this point in the discussion, I would normally proceed to show you a Python
implementation for a subsumption architecture that runs on a Raspberry Pi. Next,
however, I divert from the norm to discuss a very nice robot simulation project that can
implement subsumption and a whole lot more.

Demo 11-1: The Breve Project
The breve project is the work of Jon Klein, who developed it as part of his undergraduate
and graduate thesis work. It is available from Jon’s website at www.spiderland.org for
Windows, Linux, and Mac platforms. I am using it on a MacBook Pro and it seems to perform
quite flawlessly. Just be aware that Jon states on his website that he is no longer actively
updating the application but continues to make it available, at least in the Mac format.

Here are Jon’s own words to describe what breve is all about: “breve is a free, open-
source software package which makes it easy to build 3D simulations of multi-agent
systems and artificial life. Using Python, or using a simple scripting language called steve,
you can define the behaviors of agents in a 3D world and observe how they interact. breve
includes physical simulation and collision detection so you can simulate realistic creatures.
It also has an OpenGL display engine so you can visualize your simulated worlds.”

There is extensive HTML-formatted documentation on the website that I urge
you to review; particularly the introductory pages showing how to run one of the many
available demo scripts. These scripts are both in the “steve” front-end language as well
as Python. It is impossible for me to go through the many documentation pages, which
would constitute an entire book to itself. I did run the following Python script, titled
RangerImage.py, in breve. The listing is shown here to provide a glimpse of the power and
flexibility that you have using breve.

Figure 11-8. Multilayered FSM model

http://www.spiderland.org/

Chapter 11 ■ Behavior-Based roBotiCs

322

import breve

class AggressorController(breve.BraitenbergControl):
 def __init__(self):
 breve.BraitenbergControl.__init__(self)
 self.depth = None
 self.frameCount = 0
 self.leftSensor = None
 self.leftWheel = None
 self.n = 0
 self.rightSensor = None
 self.rightWheel = None
 self.simSpeed = 0
 self.startTime = 0
 self.vehicle = None
 self.video = None
 AggressorController.init(self)

 def init(self):
 self.n = 0
 while (self.n < 10):
 breve.createInstances(breve.BraitenbergLight, 1).

move(breve.vector((20 * breve.breveInternal
FunctionFinder.sin(self, ((self.n *
6.280000) / 10))), 1, (20 * breve.
breveInternalFunctionFinder.cos(self, ((self.n *
6.280000) / 10)))))

 self.n = (self.n + 1)

 self.vehicle = breve.createInstances(breve.
BraitenbergVehicle, 1)

 self.watch(self.vehicle)
 self.vehicle.move(breve.vector(0, 2, 18))
 self.leftWheel = self.vehicle.addWheel(breve.vector

(-0.500000, 0, -1.500000))
 self.rightWheel = self.vehicle.addWheel(breve.vector

(-0.500000, 0, 1.500000))
 self.leftWheel.setNaturalVelocity(0.000000)
 self.rightWheel.setNaturalVelocity(0.000000)
 self.rightSensor = self.vehicle.addSensor(breve.

vector(2.000000, 0.400000, 1.500000))
 self.leftSensor = self.vehicle.addSensor(breve.vector

(2.000000, 0.400000, -1.500000))
 self.leftSensor.link(self.rightWheel)
 self.rightSensor.link(self.leftWheel)
 self.leftSensor.setBias(15.000000)
 self.rightSensor.setBias(15.000000)
 self.video = breve.createInstances(breve.Image, 1)

Chapter 11 ■ Behavior-Based roBotiCs

323

 self.video.setSize(176, 144)
 self.depth = breve.createInstances(breve.Image, 1)
 self.depth.setSize(176, 144)
 self.startTime = self.getRealTime()

 def postIterate(self):
 self.frameCount = (self.frameCount + 1)
 self.simSpeed = (self.getTime()/(self.getRealTime()-

self.startTime))
 print '''Simulation speed = %s''' % (self.simSpeed)
 self.video.readPixels(0, 0)
 self.depth.readDepth(0, 0, 1, 50)
 if (self.frameCount < 10):
 self.video.write('''imgs/video-%s.png''' %

(self.frameCount))

 self.depth.write16BitGrayscale('''imgs/depth-%s.png''' %
(self.frameCount))

breve.AggressorController = AggressorController

Create an instance of our controller object to initialize the
simulation
AggressorController()

Figure 11-9 shows the actual robot running in the breve display, which was created
by the preceding script.

Figure 11-9. breve world

Chapter 11 ■ Behavior-Based roBotiCs

324

You may have noticed in the script that there are references to BraitenbergControl,
BraitenbergLight, and BraitenbergVehicle. These are based on a thought experiment
conducted by Italian-Austrian cyberneticist Valentino Braitenberg, who wrote Vehicles:
Experiments in Synthetic Psychology (The MIT Press,1984), which I highly recommend
for readers desiring to learn more about his innovative approach to robotics. In his
experiment, he envisions vehicles directly controlled by sensors. The resulting behavior
might appear complex, or even intelligent, but in reality, it is based on a combination of
simpler behaviors. That should remind you of subsumption at work.

A Braitenberg vehicle may be thought of as an agent that autonomously moves
around based on its own sensory inputs. In these thought experiments, the sensors
are primitive and simply measure a stimulus, which is often just a point light source.
The sensors are also directly connected to the motor actuators so that a sensor can
immediately activate a motor upon stimulation. Again, this should remind you of the
simple behavioral stream shown in Figure 11-4.

The resulting Braitenberg vehicle behavior depends on how the sensors and motors
are connected. In Figure 11-10, there are two different configurations between the sensors
and the motors. The vehicle to the left is wired so that it avoids or drives away from the light
source. This contrasts with the vehicle on the right, which drives toward the light source.

Figure 11-10. Braitenberg vehicles

https://en.wikipedia.org/wiki/Thought_experiment#Thought experiment
https://en.wikipedia.org/wiki/Italy#Italy
https://en.wikipedia.org/wiki/Austria#Austria
https://en.wikipedia.org/wiki/Valentino_Braitenberg#Valentino Braitenberg

Chapter 11 ■ Behavior-Based roBotiCs

325

It is not too much of a leap to say that the vehicle on the left “fears” the light, while
the vehicle on the right “likes” the light. I have assigned human-like behaviors to a robot,
which is precisely the result that Braitenberg was seeking.

Another Braitenberg vehicle has one light sensor with the following behaviors:

•	 More light produces faster movement.

•	 Less light produces slower movement.

•	 Darkness produces standstill.

This behavior can be interpreted as a robot that is afraid of the light and moves
quickly to get away from it. Its goal is to find a dark spot to hide.

Of course, the complementary Braitenberg vehicle is one that features these
behaviors:

•	 More darkness produces faster movement.

•	 Less darkness produces slower movement.

•	 Full light produces standstill.

In this case, the behavior can be interpreted as a robot that is seeking light and
moves quickly to get to it. Its goal is to find the brightest spot to park.

Braitenberg vehicles exhibit complex and dynamic behavior in a complex
environment with multiple stimulation sources. Depending on the configuration between
the sensors and the actuators, a Braitenberg vehicle might move close to a source, but
not touch it, run away very quickly, or make circles or figures-of-eight around a point.
Figure 11-11 illustrates these complex behaviors.

Chapter 11 ■ Behavior-Based roBotiCs

326

These behaviors may appear to be goal-directed, adaptive, and even intelligent in
much the same way that minimal intelligence is attributed to a cockroach’s behavior.
But the truth is that the agent is functioning in a purely mechanical way, without any
cognitive or reasoning processes at play.

There are a few items in the breve Python example that I want to further explain in
preparation for a step-by-step example in which you create your own Braitenberg vehicle.
The first item to note is that all breve simulations require a controller object, which
specifies how the simulation is to be set up. The controller’s name in this simulation is
AggressorController. In the controller definition, there is at least one initialization method
named init. In this specific case, because this is a Python script, there is another
initialization method named __init__. The first initialization method is called when
a breve object is instantiated. The second initialization method is automatically called
when a Python object is instantiated. breve takes care of sorting out the relationships
between breve and Python objects using a third object called a bridge. You don’t
ordinarily have to be concerned with these bridge objects. In fact, if you only use the steve
scripting language (instead of Python), you never see a bridge object.

The init method creates 10 Braitenberg light objects, a few of which you can see in
Figure 11-7. They are the spheres named 'n' surrounding the Braitenberg robot, which
is also created by the init method and is referred to as vehicle.

Figure 11-11. Braitenberg vehicles with complex behaviors

https://en.wikipedia.org/wiki/Cognition#Cognition

Chapter 11 ■ Behavior-Based roBotiCs

327

The __init__ method creates all the attributes needed for the simulation, and
then it calls the init method that instantiates all the required simulation objects and
assigns real values to the attributes. Once that is accomplished, all that is needed to click
the play button to view the simulation.

The step-by-step demonstration starts here. The following listing creates a non-
functioning Braitenberg vehicle and a light source:

import breve
class Controller(breve.BraitenbergControl):
 def __init__(self):
 breve.BraitenbergControl.__init__(self)
 self.vehicle = None
 self.leftSensor = None
 self.rightSensor = None
 self.leftWheel = None
 self.rightWheel = None
 self.simSpeed = 0
 self.light = None
 Controller.init(self)

 def init(self):
 self.light = breve.createInstances(breve.BraitenbergLight, 1)
 self.light.move(breve.vector(10, 1, 0))
 self.vehicle = breve.createInstances(breve.BraitenbergVehicle, 1)
 self.watch(self.vehicle)

 def iterate(self):
 breve.BraitenbergControl.iterate(self)

breve.Controller = Controller
Controller()

I named this script firstVehicle.py to indicate that it is the first of several generated
in the process of developing a working simulation. Figure 11-12 shows the result after
I loaded and “played” this script in the breve application.

Chapter 11 ■ Behavior-Based roBotiCs

328

This script defines a Controller class that has the two initialization methods
mentioned earlier. The init method instantiates a Braitenberg light object and a
Braitenberg vehicle. The __init__ method creates a list of attributes, which is filled in
by a follow-on script. This method also calls the init method.

There is also a new method called iterate that simply causes the simulation to run
continuously.

The next step in developing the script is to add sensors and wheels to the vehicle
to allow it to move through and explore the breve world. The following statements add
the wheels and set an initial velocity that causes the vehicle to turn in circles. These
statements go into the init method.

self.vehicle.move(breve.vector(0, 2, 18))
self.leftWheel = self.vehicle.addWheel(breve.
vector(-0.500000,0,-1.500000))
self.rightWheel = self.vehicle.addWheel(breve.
vector(-0.500000,0,1.500000))
self.leftWheel.setNaturalVelocity(0.500000)
self.rightWheel.setNaturalVelocity(1.000000)

The next set of statements adds the sensors. These are also added to the init
method. The sensors are also cross-linked between the wheels (i.e., right sensor controls
the left wheel and vice versa). The setBias method sets the amount of influence that a
sensor has on its linked wheel. The default value is 1, which means that the sensor has a
slightly positive influence on the wheel. A value of 15 means that the sensor has a strongly
positive influence on the wheel. Bias can also be negative, meaning the influence is
directly opposite to wheel activation.

self.rightSensor = self.vehicle.addSensor(breve.vector
(2.000000, 0.400000, 1.500000))
self.leftSensor = self.vehicle.addSensor(breve.vector
(2.000000, 0.400000, -1.500000))

Figure 11-12. breve world for the firstVehicle script

Chapter 11 ■ Behavior-Based roBotiCs

329

self.leftSensor.link(self.rightWheel)
self.rightSensor.link(self.leftWheel)
self.leftSensor.setBias(15.000000)
self.rightSensor.setBias(15.000000)

The preceding sets of statements were added to the init method. The whole script
name was changed to secondVehicle.py. The sensors are designed to have a natural
affinity toward any light source. However, if the sensors do not detect any light source,
they will not activate their respective linked wheels. In this script configuration, the
sensors do not immediately detect the light source and the vehicle simply stays still,
which is the reason for my setting an initial natural velocity for each wheel. These settings
guarantee that the robot will move. It may not move in the direction of the light source,
but it moves. Figure 11-13 shows the updated breve world with the enhanced vehicle.

Figure 11-13. Breve world for the secondVehicle script

At this stage, the simulation is working, but it is a bit dull because the vehicle has no
purpose other than to turn in circles in the breve world, and perhaps to catch a glimpse of the
solitary light source. It is time to give the vehicle a better goal to realize the rationale behind
a simulation. I make the goal really simple, as this is a “hello world” type demonstration and
its purpose is to clarify, not obscure how a breve simulation works. The goal is to have the
vehicle seek out a number of light sources and simply “run through” them.

These additional Braitenberg light sources are generated by the following loop that is
added to the init method.

self.n = 0
 while (self.n < 10):
 breve.createInstances(breve.BraitenbergLight, 1).move(

breve.vector((20 * breve.breveInternalFunctionFinder.
sin(self, ((self.n * 6.280000) / 10))), 1,(20 * breve.
breveInternalFunctionFinder. cos(self, ((self.n *
6.280000) / 10)))))

 self.n = (self.n + 1)

Chapter 11 ■ Behavior-Based roBotiCs

330

I also commented out the single light source created in the initial script. In addition,
I reset the natural velocities back to 0.0 because there are now a sufficient number of light
sources that the vehicle sensors can likely detect. Figure 11-14 shows the updated breve
world, with some of the additional light sources and the vehicle going through them.
The new script was renamed thirdVehicle.py.

Figure 11-14. breve world for the thirdVehicle script

Figure 11-15. breve snapshot

This last script completes my introductory lesson on how to create a robot
simulation in the breve environment using Python. This lesson just scratches the surface
on what breve has to offer—not just in robotic simulations but in a whole host of other AI
applications. Look at Figure 11-15 and see if you recognize it.

Chapter 11 ■ Behavior-Based roBotiCs

331

It is a snapshot of Conway’s Game of Life running in breve. This script is named
PatchLife.py. It is available in the Demos menu selection in both Python and steve
formats. In fact, most demos are available in both formats. There are many demos
available for you to try, including the following:

•	 Braitenberg: vehicles, lights

•	 Chemistry: Gray Scott diffusion, hypercycle

•	 DLA: diffusion limited aggression (fractal growth)

•	 Genetics: Game of Life both 2D and 3D

•	 Music: play midi and wav files

•	 Neural networks: multilayer

•	 Physics: springs, joints, walkers

•	 Swarms: swarming robots and other lifeforms

•	 Terrain: robots, creatures exploring terrain features

It is now time to conclude the breve discussion and return to subsumption.

Demo 11-2: Building a Subsumption-Controlled
Robot Car
This section’s objective is to describe how to program a Raspberry Pi that directly
controls a robot car. The robot car is the same platform used in Chapter 7, but now uses
subsumption architecture to control the car’s behaviors. Python is the implementation
language for the subsumption classes and scripts.

After searching through GitHub, I was inspired by Alexander Svenden’s EV3 post
that used Python to implement a generic subsumption structure. I also relied on my
experience with developing subsumptive Java classes with leJOS. You can read more
about these Java classes at www.lejos.org. There are two primary classes required:
one abstract class named Behavior and the other named Controller. The
Behavior class encapsulates the car’s behavior using the following methods:

•	 takeControl(): Returns a Boolean value indicating if the
behavior should take control or not.

•	 action(): Implements the specific behavior done by the car.

•	 suppress(): Causes the action behavior to immediately stop,
and then returns the car state to one in which the next behavior
can take control.

http://dx.doi.org/10.1007/978-1-4842-2743-5_7
http://www.lejos.org/

Chapter 11 ■ Behavior-Based roBotiCs

332

import RPi.GPIO as GPIO
import time
class Behavior(self):
 global pwmL, pwmR

 # use the BCM pin numbers
 GPIO.setmode(GPIO.BCM)

 # setup the motor control pins
 GPIO.setup(18, GPIO.OUT)
 GPIO.setup(19, GPIO.OUT)

 pwmL = GPIO.PWM(18,20) # pin 18 is left wheel pwm
 pwmR = GPIO.PWM(19,20) # pin 19 is right wheel pwm

 # must 'start' the motors with 0 rotation speeds
 pwmL.start(2.8)
 pwmR.start(2.8)

The Controller class contains the main subsumption logic that determines which
behaviors are active based on priority and the need for activation. The following are some
of the methods in this class:

•	 __init__(): Initializes the Controller object.

•	 add(): Adds a behavior to the list of available behaviors. The
order in which they are added determines the behavior’s priority.

•	 remove(): Removes a behavior from the list of available
behaviors. Stops any running behavior if the next highest behavior
overrides it.

•	 update(): Stops an old behavior and runs the new behavior.

•	 step(): Finds the next active behavior and runs it.

•	 find_next_active_behavior(): Finds the next behavior
wishing to be active.

•	 find_and_set_new_active_behavior(): Finds the next
behavior wishing to be active and makes it active.

•	 start(): Runs the selected action method.

•	 stop(): Stops the current action.

•	 continously_find_new_active_behavior(): Monitors
in real-time for new behaviors desiring to be active.

•	 __str__(): Returns the name of the current behavior.

The Controller object also functions as a scheduler, where one behavior is active
at a time. The active behavior is decided by the sensor data and its priority. Any old active
behavior is suppressed when a behavior with a higher priority signals that it wants to run.

Chapter 11 ■ Behavior-Based roBotiCs

333

There are two ways to use the Controller class. The first way is to let the class take
care of the scheduler itself by calling the start() method. The other way is to forcibly
start the scheduler by calling the step() method.

import threading
class Controller():

 def __init__(self):
 self.behaviors = []
 self.wait_object = threading.Event()
 self.active_behavior_index = None

 self.running = True
 #self.return_when_no_action = return_when_no_action

 #self.callback = lambda x: 0

 def add(self, behavior):
 self.behaviors.append(behavior)

 def remove(self, index):
 old_behavior = self.behaviors[index]
 del self.behaviors[index]
 if self.active_behavior_index == index: # stop the old

one if the new one overrides it
 old_behavior.suppress()
 self.active_behavior_index = None

 def update(self, behavior, index):
 old_behavior = self.behaviors[index]
 self.behaviors[index] = behavior
 if self.active_behavior_index == index: # stop the old

one if the new one overrides it
 old_behavior.suppress()

 def step(self):
 behavior = self.find_next_active_behavior()
 if behavior is not None:
 self.behaviors[behavior].action()
 return True
 return False

 def find_next_active_behavior(self):
 for priority, behavior in enumerate(self.behaviors):
 active = behavior.takeControl()
 if active == True:
 activeIndex = priority
 return activeIndex

Chapter 11 ■ Behavior-Based roBotiCs

334

 def find_and_set_new_active_behavior(self):
 new_behavior_priority = self.find_next_active_behavior()
 if self.active_behavior_index is None or self.active_

behavior_index > new_behavior_priority:
 if self.active_behavior_index is not None:
 self.behaviors[self.active_behavior_index].suppress()
 self.active_behavior_index = new_behavior_priority

 def start(self): # run the action methods
 self.running = True
 self.find_and_set_new_active_behavior() # force it once
 thread = threading.Thread(name="Continuous behavior checker",
 target=self.continuously_find_

new_active_behavior, args=())
 thread.daemon = True
 thread.start()

 while self.running:
 if self.active_behavior_index is not None:
 running_behavior = self.active_behavior_index
 self.behaviors[running_behavior].action()

 if running_behavior == self.active_behavior_index:
 self.active_behavior_index = None
 self.find_and_set_new_active_behavior()
 self.running = False

 def stop(self):
 self._running = False
 self.behaviors[self.active_behavior_index].suppress()

 def continuously_find_new_active_behavior(self):
 while self.running:
 self.find_and_set_new_active_behavior()

 def __str__(self):
 return str(self.behaviors)

The Controller class is very general by allowing a wide variety of behaviors to
be implemented using the general-purpose methods. The takeControl() method
allows a behavior to signal that it wishes to take control of the robot. The way it does
this is discussed later. The action() method is the way a behavior starts to control the
robot. The obstacle avoidance behavior kicks off its action() method if a sensor detects
an obstacle impeding the robot’s path. The suppress() method is used by a higher
priority behavior to stop or suppress the action() method of a lower priority behavior.
This happens when an obstacle avoidance behavior takes over from the normal forward
motion behavior by suppressing the forward behavior’s action() method and having
its own action() method activated.

Chapter 11 ■ Behavior-Based roBotiCs

335

The Controller class requires a list or array of Behavior objects that comprise
the robot’s overall behavior. A Controller instance starts with the highest array index
in the Behavior array and checks the takeControl() method’s return value. If
true, it calls that behavior’s action() method. If it is false, the Controller checks
the next Behavior object’s takeControl() method return value. Prioritization
happens by the assignment of index array values attached to each Behavior object. The
Controller class continually rescans all the Behavior objects and suppresses a lower
priority behavior if a higher priority behavior asserts the takeControl() method while
the lower priority action() method is activated. Figure 11-16 shows this process with
all the behaviors that are eventually added.

Figure 11-16. Behavior state diagram

It is now time to create a relatively simple behavior-based robot example.

Demo 11-3: Alfie Robot Car
The target robot is Alfie, which was used in previous chapters. The normal or low-
priority behavior is to drive in a forward direction. A higher-priority behavior is obstacle
avoidance, which uses ultrasonic sensors to detect obstacles in the robot’s direct path.
The obstacle avoidance behavior is to stop, back up, and turn 90 degrees to the right.

The following class is named NormalBehavior. It reinforces the layered behavior
approach. This class has all the required Behavior method implementations.

class NormalBehavior(Behavior):
 def takeControl():
 return true
 def action():
 # drive forward
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.2)

Chapter 11 ■ Behavior-Based roBotiCs

336

 def suppress():
 # all stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

The takeControl() method should always return the logical value true. Higher
priority behaviors are always allowed control by the Controller class; it really doesn’t
matter if this lower priority requests control.

The action() method is very simple: power the motors in a forward direction
using the full-power setting.

The suppress() method is also very simple: it stops both motors.
The obstacle avoidance behavior is a bit more complex, however. It still implements

the same three methods specified in the Behavior interface. I named the class
AvoidObstacle to indicate its basic behavior.

class AvoidObstacle(Behavior):
global distance1, distance2
 def takeControl():
 if distance1 <= 25.4 or distance2 <= 25.4:
 return True
 else:
 return False

 def action():
 # drive backward
 pwmL.ChangeDutyCycle(2.2)
 pwmR.ChangeDutyCycle(3.6)
 time.sleep(1.5)
 # turn right
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.6)
 time.sleep(0.3)
 # stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

 def suppress():
 # all stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

There are a few items to point out regarding this class. The takeControl()
method returns a logical true only if the distance between the ultrasonic sensor and the
obstacle is 10 inches or less. This behavior is never active without asserting a true value.

The action() method causes the robot to back up for 1.5 seconds, as seen by the
time.sleep(1.5) statement. The robot next rotates for 0.3 seconds based on stopping
the right motor and allowing the left motor to continue to run. The robot then stops
waiting for the next behavior to activate.

Chapter 11 ■ Behavior-Based roBotiCs

337

The suspense() method simply stops both motors because there is no other
obvious behavioral intent regarding suspending obstacle avoidance.

The next step is to create a test class named testBBR that instantiates all of
the classes defined earlier, and a Controller object. Note that I also added the
StopRobot class to this listing, which I discuss next. I did this to avoid another long
code listing. The following listing is named subsumption.py:

import RPi.GPIO as GPIO
import time
import threading
import numpy as np

next two libraries must be installed IAW appendix
instructions
import Adafruit_GPIO.SPI as SPI
import Adafruit_MCP3008

class Behavior():
 global pwmL, pwmR, distance1, distance2

 # use the BCM pin numbers
 GPIO.setmode(GPIO.BCM)

 # setup the motor control pins
 GPIO.setup(18, GPIO.OUT)
 GPIO.setup(19, GPIO.OUT)

 pwmL = GPIO.PWM(18,20) # pin 18 is left wheel pwm
 pwmR = GPIO.PWM(19,20) # pin 19 is right wheel pwm

 # must 'start' the motors with 0 rotation speeds
 pwmL.start(2.8)
 pwmR.start(2.8)

class Controller():

 def __init__(self):
 self.behaviors = []
 self.wait_object = threading.Event()
 self.active_behavior_index = None

 self.running = True
 #self.return_when_no_action = return_when_no_action

 #self.callback = lambda x: 0

 def add(self, behavior):
 self.behaviors.append(behavior)

Chapter 11 ■ Behavior-Based roBotiCs

338

 def remove(self, index):
 old_behavior = self.behaviors[index]
 del self.behaviors[index]
 if self.active_behavior_index == index: # stop the old

one if the new one overrides it
 old_behavior.suppress()
 self.active_behavior_index = None

 def update(self, behavior, index):
 old_behavior = self.behaviors[index]
 self.behaviors[index] = behavior
 if self.active_behavior_index == index: # stop the old

one if the new one overrides it
 old_behavior.suppress()

 def step(self):
 behavior = self.find_next_active_behavior()
 if behavior is not None:
 self.behaviors[behavior].action()
 return True
 return False

 def find_next_active_behavior(self):
 for priority, behavior in enumerate(self.behaviors):
 active = behavior.takeControl()
 if active == True:
 activeIndex = priority
 return activeIndex

 def find_and_set_new_active_behavior(self):
 new_behavior_priority = self.find_next_active_behavior()
 if self.active_behavior_index is None or self.active_

behavior_index > new_behavior_priority:
 if self.active_behavior_index is not None:
 self.behaviors[self.active_behavior_index].suppress()
 self.active_behavior_index = new_behavior_priority

 def start(self): # run the action methods
 self.running = True
 self.find_and_set_new_active_behavior() # force it once
 thread = threading.Thread(name="Continuous behavior checker",
 target=self.continuously_

find_new_active_behavior,
args=())

 thread.daemon = True
 thread.start()

Chapter 11 ■ Behavior-Based roBotiCs

339

 while self.running:
 if self.active_behavior_index is not None:
 running_behavior = self.active_behavior_index
 self.behaviors[running_behavior].action()

 if running_behavior == self.active_behavior_index:
 self.active_behavior_index = None
 self.find_and_set_new_active_behavior()
 self.running = False

 def stop(self):
 self._running = False
 self.behaviors[self.active_behavior_index].suppress()

 def continuously_find_new_active_behavior(self):
 while self.running:
 self.find_and_set_new_active_behavior()

 def __str__(self):
 return str(self.behaviors)

class NormalBehavior(Behavior):

 def takeControl(self):
 return True

 def action(self):
 # drive forward
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.2)

 def suppress(self):
 # all stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

class AvoidObstacle(Behavior):

 def takeControl(self):
 #self.distance1 = distance1
 #self.distance2 = distance2
 if self.distance1 <= 25.4 or self.distance2 <= 25.4:
 return True
 else:
 return False

Chapter 11 ■ Behavior-Based roBotiCs

340

 def action(self):
 # drive backward
 pwmL.ChangeDutyCycle(2.2)
 pwmR.ChangeDutyCycle(3.6)
 time.sleep(1.5)
 # turn right
 pwmL.ChangeDutyCycle(3.6)
 pwmR.ChangeDutyCycle(2.6)
 time.sleep(0.3)
 # stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

 def suppress(self):
 # all stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

 def setDistances(self, dest1, dest2):
 self.distance1 = dest1
 self.distance2 = dest2

class StopRobot(Behavior):

 critical_voltage = 6.0

 def takeControl(self):
 if self.voltage < critical_voltage:
 return True
 else:
 return False

 def action(self):
 # all stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

 def suppress(self):
 # all stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

 def setVoltage(self, volts):
 self.voltage = volts

the test class
class testBBR():

Chapter 11 ■ Behavior-Based roBotiCs

341

 def __init__(self):

 # instantiate objects
 self.nb = NormalBehavior()
 self.oa = AvoidObstacle()
 self.control = Controller()

 # setup the behaviors array by priority; last-in = highest
 self.control.add(self.nb)
 self.control.add(self.oa)

 # initialize distances
 distance1 = 50
 distance2 = 50
 self.oa.setDistances(distance1, distance2)

 # activate the behaviors
 self.control.start()

 threshold = 25.4 #10 inches

 # use the BCM pin numbers
 GPIO.setmode(GPIO.BCM)

 # ultrasonic sensor pins
 self.TRIG1 = 23 # an output
 self.ECHO1 = 24 # an input
 self.TRIG2 = 25 # an output
 self.ECHO2 = 27 # an input

 # set the output pins
 GPIO.setup(self.TRIG1, GPIO.OUT)
 GPIO.setup(self.TRIG2, GPIO.OUT)

 # set the input pins
 GPIO.setup(self.ECHO1, GPIO.IN)
 GPIO.setup(self.ECHO2, GPIO.IN)

 # initialize sensors
 GPIO.output(self.TRIG1, GPIO.LOW)
 GPIO.output(self.TRIG2, GPIO.LOW)
 time.sleep(1)

 # Hardware SPI configuration:
 SPI_PORT = 0
 SPI_DEVICE = 0
 self.mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_

PORT, SPI_DEVICE))

Chapter 11 ■ Behavior-Based roBotiCs

342

 def run(self):
 # forever loop
 while True:
 # sensor 1 reading
 GPIO.output(self.TRIG1, GPIO.HIGH)
 time.sleep(0.000010)
 GPIO.output(self.TRIG1, GPIO.LOW)

 # detects the time duration for the echo pulse
 while GPIO.input(self.ECHO1) == 0:
 pulse_start = time.time()

 while GPIO.input(self.ECHO1) == 1:
 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

 # distance calculation
 distance1 = pulse_duration * 17150

 # round distance to two decimal points
 distance1 = round(distance1, 2)

 time.sleep(0.1) # ensure that sensor 1 is quiet

 # sensor 2 reading
 GPIO.output(self.TRIG2, GPIO.HIGH)
 time.sleep(0.000010)
 GPIO.output(self.TRIG2, GPIO.LOW)

 # detects the time duration for the echo pulse
 while GPIO.input(self.ECHO2) == 0:
 pulse_start = time.time()

 while GPIO.input(self.ECHO2) == 1:
 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

 # distance calculation
 distance2 = pulse_duration * 17150

 # round distance to two decimal points
 distance2 = round(distance2, 2)

 time.sleep(0.1) # ensure that sensor 2 is quiet

 self.oa.setDistances(distance1, distance2)

Chapter 11 ■ Behavior-Based roBotiCs

343

 count0 = self.mcp.read_adc(0)
 # approximation given 1023 = 7.5V
 voltage = count0 / 100

 self.control.find_and_set_new_active_behavior()

instantiate an instance of testBBR
bbr = testBBR()

run it
bbr.run()

At this point, it is a good opportunity to show how easy it is to add another behavior.

Adding Another Behavior
The new class encapsulates a stop behavior based on the battery voltage level. You
certainly wish to halt the robot if the battery voltage drops below a critical level. You also
need to build and connect a battery monitoring circuit, as shown in the Figure 11-17
schematic.

Figure 11-17. Battery monitor schematic

Chapter 11 ■ Behavior-Based roBotiCs

344

This circuit uses the MCP3008 ADC chip discussed in earlier chapters. You should
review the installation and configuration for this chip because it uses SPI, which requires
a specialized Python interface library.

The new Behavior subclass is named StopRobot. It implements all three
Behavior subsumption methods, as well as one more that sets a real-time voltage level.
The following is the class code:

class StopRobot(Behavior):

 critical_voltage = 6.0 # change to any value suitable for robot

 def takeControl(self):
 if self.voltage < critical_voltage:
 return True
 else:
 return False

 def action(self):
 # all stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

 def suppress(self):
 # all stop
 pwmL.ChangeDutyCycle(2.6)
 pwmR.ChangeDutyCycle(2.6)

 def setVoltage(self, volts):
 self.voltage = volts

The testBBR class also has to be slightly modified to accept the additional behavior.
The following code shows the two statements that must be added to the testBBR
class. Notice that the StopRobot behavior is the last one added, making it the highest
priority—as it should be.

self.sr = StopRobot() (Add this to the bottom of the list of instantiated
Behavior subclasses.)

self.sr.setVoltage(voltage) (Add this right after the voltage
measurement.)

Test Run
The robot was run using an SSH session to make the robot car completely autonomous
and free of any encumbering wires or cables. The script started with the following
command:

python subsumption.py

Chapter 11 ■ Behavior-Based roBotiCs

345

The robot immediately drove forward in a straight line until in encountered an
obstacle, which was a cardboard box. When the robot closed to about 10 inches from
the box, it quickly paused, turned right, and proceeded to drive in a straight line. For
this demonstration’s purpose, it is sufficient to stop at this point; although the robot’s
behaviors may be continuously fine-tuned as additional requirements are placed on
the robot.

Readers who wish to pursue more in-depth research into BBR should take a look at
the following recommended website and online articles:

•	 https://sccn.ucsd.edu/wiki/MoBILAB

•	 http://www.sci.brooklyn.cuny.edu/~sklar/
teaching/boston-college/s01/mc375/iecon98.pdf

•	 http://robotics.usc.edu/publications/media/
uploads/pubs/60.pdf

•	 http://www.ohio.edu/people/starzykj/network/
Class/ee690/EE690 Design of Embodied
Intelligence/Reading Assignments/robot-
emotion-Breazeal-Brooks-03.pdf

Summary
Behavior-based robotics (BBR) was this chapter’s theme. BBR is based on animal and
insect behavior patterns, especially the ones related to how organisms react to sensory
stimulation within their environment.

A brief section discussed how the human brain exhibits multilayer behavioral
functions, which range from basic survival behaviors to complex reasoning behaviors.
An introduction to the subsumption architecture followed; it is closely modeled after the
human brain’s multilayered behavioral model.

Further in-depth discussion went through both simple and complex behavioral
models. I choose to use the finite state model (FSM) for this chapter’s robot car
demonstration.

I next demonstrated an open source, graphical robotic simulation system named
breve. A simple Braitenberg vehicle simulation was created and run that further
demonstrated how the stimulus/response behavior pattern functions.

The final demonstration used the Alfie robot car, which was controlled by a Python
script created using the subsumption architecture model. The script contained three
behaviors, each with its own priority level. I showed how subsumptive-based behavior
could take over the robot, depending on the environmental conditions that the robot
encountered.

https://sccn.ucsd.edu/wiki/MoBILAB
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/boston-college/s01/mc375/iecon98.pdf
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/boston-college/s01/mc375/iecon98.pdf
http://robotics.usc.edu/publications/media/uploads/pubs/60.pdf
http://robotics.usc.edu/publications/media/uploads/pubs/60.pdf
http://www.ohio.edu/people/starzykj/network/Class/ee690/EE690 Design of Embodied Intelligence/Reading Assignments/robot-emotion-Breazeal-Brooks-03.pdf
http://www.ohio.edu/people/starzykj/network/Class/ee690/EE690 Design of Embodied Intelligence/Reading Assignments/robot-emotion-Breazeal-Brooks-03.pdf
http://www.ohio.edu/people/starzykj/network/Class/ee690/EE690 Design of Embodied Intelligence/Reading Assignments/robot-emotion-Breazeal-Brooks-03.pdf
http://www.ohio.edu/people/starzykj/network/Class/ee690/EE690 Design of Embodied Intelligence/Reading Assignments/robot-emotion-Breazeal-Brooks-03.pdf

An oblique front view of the robotic car is shown in Figure A-1. It was constructed from a
kit available from the Parallax Corporation (www.parallax.com).

Build Instructions for
the Alfie Robot Car

http://www.parallax.com/

Appendix A ■ Build instructions for the Alfie roBot cAr

348

Figure A-1. Finished robotic car

Appendix A ■ Build instructions for the Alfie roBot cAr

349

A straight-on back view of the car is shown in Figure A-2.

Parallax named this robot model the Boe-Bot, which is short for board of education
robot. The company sells several versions of the Boe-Bot, which include different
microcontrollers. I purchased the kit controlled by their propeller activity board.
However, there is a basic model 28124 parts kit available without a microcontroller, which
allows you to build only the robot car platform, and then you add your own Raspberry Pi.

Figure A-2. Straight-on back view of the finished robot car

Appendix A ■ Build instructions for the Alfie roBot cAr

350

The car is powered by two continuous rotation (CR) servos on the underside of the
robot, as seen in Figure A-3.

It is easy to quickly build the basic robotic car platform. You can go to the Parallax
website to download the assembly instructions if you want a preview of what is involved
in the platform assembly.

Figure A-3. Underside of the robotic car

Appendix A ■ Build instructions for the Alfie roBot cAr

351

Robotic Car Power Supply
The two CR servos driving the robot car require more voltage and current than provided
by a cell battery eliminator, which powers the Raspberry Pi. Fortunately, Parallax provides
a nice alternative power supply for both CR servos. In addition, its form factor matches
nicely with the robotic car’s chassis. Figure A-4 shows the Li-ion battery power supply
mounted on the robotic car’s chassis.

Figure A-4. Li-ion battery power supply mounted on the robot car’s chassis

Appendix A ■ Build instructions for the Alfie roBot cAr

352

The Parallax part number for the power supply with two Li-ion batteries is 28989.
It has a built-in charging system for the two 18650-size Li-ion cells. Each cell provides
3.7 VDC that will provide over 1 A when fully charged. Two cells in the series provide 7.4
VDC to the CR servos, which is plenty of power to allow them to be operated at maximum
capacity if so desired.

CR Servo Drive Pulse Width Modulation (PWM)
The motors on the robot car are CR servos, which mean they must be driven using
appropriate PWM signals. The PWM pulse duration ranges from 1.0 to 2.0 milliseconds (ms)
for the CR servos used on this robot car. Sending a 1.5 ms pulse duration signal will cause
the CR servos to remain motionless with no rotation. The ChangeDutyCycle(arg)
Python command sets the servo’s rotation speed. I experimentally determined the arg
values as follows:

•	 2.6: No rotation

•	 3.6: Full speed in the counterclockwise direction

•	 2.2: Full speed in the clockwise direction

You will see these values in the various Python scripts that control the robot car.

 ■ Note i used raspberry pi model 3, which has two independent pWM channels, suitable
for directly controlling each cr servo. if you use a model 2 B or B+, there is only one pWM
channel available on these boards. You need to use an external multiplexer board to enable
the two channels for cr servo control. i refer you to Adafruit’s learn tutorial at
https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-
raspberry-pi/overview, where the installation and setup of a 16 -channel
multiplexed servo driver is discussed in an excellent fashion. in other projects, i set up this
board according to the tutorial instructions without any difficulty.

Mount Plates
The robot car incorporates two mount plates designed to hold the cell battery eliminator’s
power supply and a Raspberry Pi. Figure A-5 is a side view of the robot car with all the
plates installed with the battery eliminator, Raspberry Pi, and solderless breadboard.

https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/overview
https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/overview
https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/overview

Appendix A ■ Build instructions for the Alfie roBot cAr

353

I used four non-threaded 1/2-inch nylon spacers with four 7/8-inch 4-40 machine
screws to mount the Li-ion power supply to the car chassis. The 4-40 machine screws
were threaded into 1-inch nylon spacers with internal 4-40 threads. The battery
eliminator plate is secured between the top of the 1/2-inch nylon spacers and the bottom
of the 1-inch threaded nylon spacers. Figure A-6 is a detailed drawing of the battery
eliminator mount plate.

Figure A-5. Side view of the robot car

Appendix A ■ Build instructions for the Alfie roBot cAr

354

Figure A-6. Battery eliminator mount plate construction drawing

Appendix A ■ Build instructions for the Alfie roBot cAr

355

The next mount plate holds the Raspberry Pi and a solderless breadboard. Figure A-7
shows a construction drawing for this mount plate.

This plate is secured to the battery eliminator mount plate using the four 1-inch
threaded nylon spacers with four 4-40 1/2-inch machine screws.

Finally, the Raspberry Pi is secured to the Raspberry Pi mount plate with 7/8-inch
non-threaded nylon spacers coupled with 1-1/4-inch 4-40 machine screws and nuts.

I plugged in two Ping ultrasonic sensors into the breadboard along with a MCP3008
ADC chip. Figure A-8 is a close-up of the solderless breadboard with all the components
plugged in.

Figure A-7. Raspberry Pi mount plate

Appendix A ■ Build instructions for the Alfie roBot cAr

356

The solderless breadboard is attached to the mount plate using double-sided tape,
which allows easy removal if desired. I strongly recommend that you do not use the
adhesive backing that comes with the solderless breadboard because it is practically
impossible to remove the breadboard once it is attached to the plastic mount plate.

This completes the mechanical build instructions for the robotic car. Next, I present
the electrical and wiring instructions that will energize the car and sensors.

Electrical and Wiring Instructions
The electrical connections for the car are fairly simply, as shown in the Figure A-9
schematic of both the propulsion drive electrical schematic and the ultrasonic sensor
interconnections.

Figure A-8. Solderless breadboard with all components plugged in

Appendix A ■ Build instructions for the Alfie roBot cAr

357

The main power source for the two CR servos is the Li-ion power supply, which
provides 7.4 VDC and has an energy capacity of approximately 2600 mAh when fully
charged. This capacity should provide the CR servos with more than 6 hours of runtime
before they need a recharge.

The Raspberry Pi is powered by a separate cell battery eliminator module. The
Raspberry Pi model 3 draws an average current of about 120 ma, which means that a
2100 mAh battery eliminator provides more than 15 hours of power to the Raspberry Pi
before requiring a recharge.

Figure A-9. Electrical schematic for the robot car

Appendix A ■ Build instructions for the Alfie roBot cAr

358

Ping Sensor
I purchased several inexpensive HC-SR04 Ping sensors from Amazon.com. Figure A-10
shows close-up front and back views of this sensor.

Figure A-10. HC-SR04 Ping sensor

The Ping sensor contains an embedded microprocessor as part of the sensor
hardware. This processor controls the ultrasonic transmitter and receiver transducers
that physically measure distance by bouncing discrete ultrasonic sound wave pulses off
objects, and timing how long the sound takes to transit from the sensor transmitter to the
sensor receiver. The distance is easily calculated because the speed of sound is relatively
constant at 1130 ft/sec. This is method of operation is quite similar to the way that bats
navigate in caves and attics. Figure A-11 is a block diagram of the sensor and all the
principal components.

Appendix A ■ Build instructions for the Alfie roBot cAr

359

The distance is proportional to the length of the digital pulse, which is sensed by
any processor that needs it—in this case, the Raspberry Pi. The digital pulse generated by
the Ping has a 10-μsec time measurement resolution, which translates to approximately
1-inch distance measurement uncertainty in its total range of up to 100 inches. Of course,
distance measurements also depend upon the size and texture of the reflecting object.
A hard wall provides excellent reflection, whereas a curtain would be more problematic.

Note that the Ping sensor requires 5 VDC for its power supply, and as a consequence,
the digital output pulse from the Ping sensor is also at a 5 VDC level. This level is
incompatible with the Raspberry Pi maximum 3.3 VDC GPIO input level. This is the
reason I used resistive dividers as shown in the Figure A-9 schematic.

The digital communication protocol between the Ping sensor and Raspberry Pi
commences when the Raspberry Pi (host device) generates a 10-μsec trigger pulse that in
turn causes the Ping sensor to emit a short burst of 40-kHz ultrasonic sound waves. This
burst travels through the air, hits an object, and then bounces back to the Ping sensor.
The Ping simultaneously starts its digital pulse when it receives the host’s trigger pulse.
This pulse terminates when an echo return is detected. Therefore, the width of the digital
pulse is proportional to the distance to the target.

The electrical schematic in Figure A-9 shows the interconnections between the
Raspberry Pi and the Ping sensors. Besides the V

CC
 and ground wires, there are two

other wires connecting each Ping sensor to the Raspberry Pi: one wire carries the pulse
initiation trigger from the Raspberry Pi to the Ping and the other wire sends the digital
timing pulse from the Ping to the Raspberry Pi. The actual range measurement is
calculated within the Raspberry Pi’s Python script.

MCP3008 Analog-to-Digital Converter (ADC)
One of the significant shortfalls of the Raspberry Pi—at least as far as it concerns
experimenters—is the lack of any analog-to-digital converters. Unlike most popular
microcontroller boards, such as the Arduino Uno or the Beaglebone Black, the Raspberry
Pi has never come equipped with this option. Therefore, it is necessary to use an
external chip for this function. A very popular and inexpensive solution is the Microchip
MCP3008, 8-channel, 10-bit, ADC chip. Figure A-12 shows the pinout for this chip.

Figure A-11. Ping sensor block diagram

Appendix A ■ Build instructions for the Alfie roBot cAr

360

The following pins must be used to convert analog voltages to equivalent digital
numbers:

•	 V
DD

 (power)

•	 V
REF

 (analog voltage reference)

•	 DGND (digital ground)

•	 AGND (analog ground)

•	 DOUT (data out from MCP3008)

•	 CLK (clock pin)

•	 DIN (data in from Raspberry Pi)

•	 /CS (chip select)

•	 An analog input, channels 0 to 7

Table A-1 lists the interconnections used for several robot car
circuits in this book’s projects.

Figure A-12. MCP3008 pinout

Appendix A ■ Build instructions for the Alfie roBot cAr

361

Table A-1. MCP3008/Pi Cobbler Interconnections

MCP Pin MCP Description Pi Cobbler Pin Pi Cobbler Description

9 DGND 6 GND

10 CS /SHDN 24 CE0

11 DIN 19 MOSI

12 DOUT 21 MISO

13 CLK 23 SCLK

14 AGND 6 GND

15 V
REF

1 3.3V

16 V
DD

1 3.3V

1 Analog Channel 0 N/A

Software Installation
I used Adafruit’s MCP3008 library to interface the MCP3008 to the Raspberry Pi. You must
first ensure that the SPI interface is enabled in the Jessie distribution. Use the raspi-config
application to enable SPI, if it hasn’t already been enabled. You should enter the following
commands once the SPI interface is enabled:

sudo apt-get update
sudo apt-get install build-essential python-dev python-smbus
python-pip
sudo pip install adafruit-mcp3008

There is an examples folder in the Adafruit_Python_MCP3008 directory once
the Adafruit library is installed. Go to the examples directory and run this command:

python simpletest.py

You should see a display similar to what is shown in Figure A-13.

Figure A-13. simpletest.py display

Appendix A ■ Build instructions for the Alfie roBot cAr

362

Final Thoughts
I believe that I sufficiently provided you with detailed information on how to build and set
up a robot car for use in this book’s demonstrations, as well as for your own experiments.
You can obviously modify and adjust the build instructions to suit your own situation.
This is part of the fun and excitement of being a maker.

��������� A
action() method, 331, 336
Aggregation, 123
Alfie robot car

AvoidObstacle, 336
battery monitor schematics, 343
behavior, 343
evolutionary computing, 281
NormalBehavior, 335
subsumption.py, 337
test run, 344

Analog-to-Digital Converter
(ADC), 359

Animal identification game
incorrect conclusion, 61
interactive session, 60
program list, 57
source code, 57

Artificial immune systems, 11
Artificial intelligence (AI), 1

Alan, M., 4
automated chess player, 3
big data, 13
categories, 11
Chinese board game, 7
computing technology, 6
definition, 8
development, 6
Golem, Prague, 1–2
history of, 2
intelligence, 7
McCarthy, John, 5
Meriam-Webster online, 7
modern approach, 9
modern stamp, 2
reason and reasoning, 10
scientific approach, 4

SNARC, 4
strong vs. weak, 9
vacuum tube neuron module, 4
Weisenbaum, Joseph, 6
Zadeh, Lofti, 5

Artificial neural network
(ANN), 171, 249

demonstrations (see Demonstrations)
Hopfield networks (see Hopfield

networks)
light-seeking robot

brain mapping, 199
goal-seeking robot car, 202
irrelevant vector, 196
light intensity sensor, 200
networks, 195
obstacle avoidance and light

seeking, 208
photo cell, 200
relevant vector states, 196
running, 207
unknowns, 198
vector state definitions, 196
weighting matrix, 197

lists, 171
numerical scheme

cross product resultant
vector, 183

distorted number, 185
dot and cross product, 181
input data vectors, 180
interactive Python

session, 186
matrix, 185
normalized vector, 186
Python session, 184
scalar product, 181
six-segment, 180

Index

■ INDEX

364

unit vectors, 182
vectors, 180

Python control script
robot car, 190
test run, 195

robot car, 186
automated_nim.py, 103

��������� B
Behavior-based robotics (BBR)

Alfie robot car, 335
breve project, 321
human brain structure, 314
part lists, 313

subsumption (see also
Subsumption architecture)
architecture, 313

controlled robot car, 331
Boolean algebra

expression, 17
laws, 19
logical symbols, 18
operations, 18
variable values, 17

Breadth-first approach, 30
Breve project, 321

behaviors, 325
Braitenberg vehicles, 324
breve world, 323
complex behaviors, 325–326
firstVehicle script, 328
init method, 326, 328
RangerImage.py, 321
secondVehicle script, 329
setBias method, 328
snapshot, 330
step-by-step demonstration, 327
steve formats, 331
thirdVehicle script, 330

Broad AI vs. Narrow AI, 9

��������� C
Camera serial interface (CSI) connector, 269
Chromosomes/genotypes, 47
Cognitive architecture, 11
Cold/Flu diagnosis

code source, 67
expert system, 69–70

Comma-separated value (CSV)
format, 250

Conway game
cellular automata, 293
hardware installation, 294
onboard sensors, 294
Python version, 296
rules/conditions, 292
sense HAT board, 293
single generation

acorn pattern, 311
code segments, 307–308
F-pentomino pattern, 311
initial patterns, 309
lightweight spaceship

pattern, 311
starting patterns, 309

software installation, 295
test (genelab.py), 305
time tick, 292

��������� D
Defuzzification, 29, 137

bisector, 124
centroid equation, 124
centroid method, 125
functions, 129
mathematical techniques, 123
mean of maximum, 124
methods, 124
post aggregation, 130
print statement, 131
rules application, 130
tipping.py code, 125–128
weighted formula, 125

Demonstrations
lists, 249
MNIST databases (see Mixed National

Institute of Standards and
Technology (MNIST))

Pi Camera
automated number

recognition, 275
capture image, 271
command line, 268
commands, 270
CSI connector, 269
handwritten number, 270
monochrome/even, 271
picamera package, 270

Artificial neural network (ANN) (cont.)

■ INDEX

365

Python session, 272–273
raspi-config menu, 268
ribbon cable connection, 269
test run, 278
trainANN_Image.py, 272
trainAN.py script, 274

Depth-first search, 30

��������� E
Energy consumption consideration, 164

modifications, 165
robotAction modules, 164
test, 169

Evolutionary computing (EC), 46
Alife, 281
algorithms, 12
Conway game (see Conway game)
evolution programming, 282
individual populations, 282
lists, 281
manual calculation

issues, 283
Python script, 283

Python script
code segment, 284–285, 287
fitness tests, 286
history list, 291
grade function, 288
individual generation, 284
irrational exuberance, 283
population generation, 285, 287
script running, 290
source code, 288
structure, 286

Evolution programming (EP), 282
Evolution strategy (ES), 283
Expert systems

backward chaining, 22
conclusion, 21
conflict resolution, 21
formats, 21
rule priority, 21
rules-based/knowledge-based

system, 20
Expert systems demonstrations

animal identification game
incorrect conclusion, 61
interactive session, 60
program list, 57
source code, 57

cold/flu diagnosis
code source, 67
expert system, 69–70

lists, 49
office database (see Office database)
Prolog program, 49
Raspberry Pi GPIO control, 71

fritzing diagram, 73
hardware setup, 72
models, 49
LED control, 75
physical setup, 73
program output, 76
PySWIP, 71
Rpi.GPIO setup, 74

tic-tac-toe, 62

��������� F
Firing neuron, 42
Fuzzification, 118, 135
Fuzzy logic (FL)

binary decision, 27
defuzzification, 29
fuzzification, 27
temperature example, 27

Fuzzy logic system (FLS), 111
aggregation, 123
algorithm, 113
block diagram, 112
components, 113
defuzzification (see Defuzzification)
fuzzification, 118
HVAC (see Heating, ventilation,

and cooling system (HVAC))
inference

code segment, 122
conjunction, 120
flattop food and service, 121
great, amazing, and high, 122
if … then, 120
service and tip membership

functions, 120
linguistic variables, 113
lists, 111
membership functions

food quality, 115
fuzzification and

defuzzification, 114
Gaussian equation, 117
selection of, 116

■ INDEX

366

service quality, 115
tip amount, 116
triangular shapes, 116
visualization, 117

modifications, 131
software installation, 111–112
tipping scenario, 113

��������� G
Games

lists, 77
Nim (see Nim-style games)
rock-paper-scissors (see

Rock-paper-scissors game)
Generalized ANNs, 211

back propagation, 214
error backpropagation, 223
error values, 221
fractions, 223
hidden nodes, 222
manual method, 222
output nodes, 222

broad categories, 213
comparison, 219
deep learning

pseudo-linear range, 237
sigmoid function, 237
weight selection, 237

error allocation problem, 220
FeedForward and Feedback

models, 213
fractions, 221
gradient descent (see Gradient

descent (GD) technique)
input and weight values, 215
interactive Python session, 217
larger ANN, 217
manual calculations, 236
matrix multiplication, 218–219
multiple output nodes, 221
normal distribution, 238
Python scripts, 238
sigmoid

activation function, 218
equation, 216

three-layer, 212
trainNet

module functions, 243
test run, 246

two-layer and four-node
network, 215

vector format, 216–217
weight, 214
weighting matrix

brute-force approach, 224
gradient descent, 224
output node, 223

Genetic algorithm (GA), 47, 282
Global War on Terrorism (GWOT), 14
Gradient descent (GD) technique,

211, 224
algorithm, 228
analytic continuous function, 227
ANN

equation, 234
error function, 233
error slope expressions, 235
global minimum, 232
layer-to-layer error, 234
matrix multiplications, 235
three-layer and six-node, 233
whole derivation, 234

calculation, 227
error values vs. iteration number, 231
formal error function, 226
general approach, 226
global and local minimum, 228
iteration, 230–231
linear regression, 224
plots form, 227
Python method, 226
scatter plot, 225
search option, 229

Graphical user interface (GUI), 54

��������� H
Hardware Attached on Top (HAT), 293
Heating, ventilation, and cooling system

(HVAC)
aggregation, 137
closed-loop system, 133
control commands, 134
control membership functions, 134
control program, 139
defuzzification, 137
fuzzification, 135
inference, 136
matrix of, 134
modifications, 141

Fuzzy logic system (FLS) (cont.)

■ INDEX

367

room and target temperature, 133
rules, 135
target temperature, 133

Hopfield networks
asynchronous, 173
distorted letter, 175
Letter S., 175
multiplication, 176
neuron model, 172
properties, 173
six-node, 173
steps, 172
synchronous, 173
vector, 176

Human brain structure
brain stem and limbic system, 314
cerebral cortex, 315
levels function, 315
reptile brain/limbic system, 315

Human-Computer-Interface (HCI), 12

��������� I, J
Inference, 19
Intelligent soft assistant/intelligent

personal assistant (IPA), 12
Interrupt service routine (ISR), 88

��������� K
Knowledge representation (KR), 12

��������� L
Light dependent resistor (LDR), 200
Linear regression technique, 225

��������� M
Machine learning, 31, 145

autonomous robot
Alfie, 151
algorithm, 153
learning, 160
testing, 159
test program output, 163

classification, 33, 37
color selection

adjusted number bar, 147
algorithm, 146
fritzing diagram, 146

LED activation bar, 146
randint() method, 147
roulette wheel algorithm, 149

energy consumption
consideration, 164

modifications, 165
robotAction modules, 164
testing, 169

lists, 145
prediction, 32

Machine learning (ML), 12
Mean of maximum (MOM), 124
Mixed National Institute of Standards

and Technology (MNIST), 250
CSV format, 250
dataList properties, 253
data record

EOF character, 254
IDLE 2 GUI interactive, 255
import commands, 254
matplotlib library, 254
number figure, 255
objective, 254
Python commands, 254

handwritten number detection, 259
input and output data sets

actual values, 258
ANN serves, 258
code segment, 258
MNIST data set, 257
training array creation, 259

interactive Python session, 252
layer nodes, 260
over-fitting, 260
Python, 252
test data

calculations, 266
IDLE 2 GUI interactive, 262
match rates and learning

rates, 267
number figure, 263
output arrays, 264
Python code, 261
results, 265
source code, 265
trainANN.py script, 263, 266

trainANN.py, 260
training data set, 251
under-fitting, 260
websites, 252

Multi-agent system (M.A.S), 12

■ INDEX

368

��������� N
Neural networks, 39

human neuron, 39–40
neural network, 45
pigeon brain neurons, 40–41
sigmoid function, 44
step function, 43
three-input neuron

model, 44
weighted interconnections, 46

Nim-style games
automated_nim.py, 103
competitive strategies, 96
computer vs. human play, 94
equation, 96
implementation, 91
LCD and switches, 97

display, 100, 108
fritzing diagram, 97
library installation script

execution, 101
physical setup, 100
Pi cobbler-to-LCD

module, 98
pin connection, 98
Python games, 109
test program, 103

mod operator, 96
moveComputer function, 96
pebble pickup, 89
Python version, 89
validation checks, 90–91
validation/sanity checks, 95

��������� O
Office database

command-line version, 56
GUI trace dialog

display, 56
GUI tracer, 55
guitracer command, 55
interactive Prolog session, 51
line-by-line commentary, 52
MultiWingSpan website, 50
Prolog sequence, 56
trace command, 51
tracing session, 52

Optical character
recognition (OCR), 31

��������� P
Rock-paper-scissors game

averaged player
outcomes, 81

callback functions, 88
fritzing diagram, 82
hand signals, 78
if … else statements, 78
interrupts, 86
logic flow diagram, 87
modification, 81
physical Raspberry Pi setup, 83
Raspberry Pi code, 79
string values, 82
switches and LEDs, 82
tree diagram, 80

Phenotypes, 47
Problem-solving area, 29

bidirectional search, 31
breadth-first approach, 30
chess, 31
depth-first search, 30
depth-limited search, 30
path searching, 31
questions/decisions, 29

Prolog
demonstration, 25
Raspberry Pi, 24

Pulse Width Modulation
(PWM), 352

Python scripts
initialization, 239
test run, 241

��������� Q
Quarterback (QB), 22

��������� R
Raspberry Pi, 23

Prolog, 24
GPIO control, 71

fritzing diagram, 73
hardware setup, 72
LED control, 75
physical setup, 73
program output, 76
PySWIP, 71
Rpi.GPIO setup, 74

■ INDEX

369

Robotic car
Alfie, 151
algorithm, 153
artificial neural network, 186
backup() method, 156
Boe-Bot, 349
completion, 347–348
CR servos, 352
electrical connections, 356–357
fitness configuration, 153
learning, 160
MCP3008 ADC, 359
mount plates design

construction drawing, 354
Raspberry Pi, 355
side view, 352
solderless breadboard, 356

ping sensor, 358
power supply, 351
robotAction method, 155
software installation, 361
straight-on back view, 349
testing, 159
test program output, 163
underside of, 350

Robotics, 13
Roulette wheel algorithm, 149
Rule-based systems, 13

��������� S
setBias method, 328
Shallow learning vs. deep learning, 46
Stochastic Neural Analog Reinforcement

Computer (SNARC), 4
Strong AI vs. Weak AI, 9
Subsumption architecture

BBR approach
behavioral stream, 319
ethology, 318

FSM model, 320
graphical/mathematical

models, 320
long-term progress, 320
multilayered FSM model, 321
prioritization scheme, 319
real-world robots, 319
sensor signatures, 319

definition, 316
habituation, 316
sensor-based system, 316
serial processes, 316
stimulus/response behavior, 316
traditional approach, 318
two-layer behavior serial stream, 317

Subsumption-controlled robot car, 331
action() method, 334
architecture, 313
behavior state diagram, 335
controller class, 333
methods, 331
takeControl() method, 334

suppress() method, 331, 336, 337
SWI Prolog, 23

computational power, 24
goals, 23
knowledge base, 23
Prolog (see Prolog)

��������� T, U, V, W, X, Y, Z
takeControl() method, 331, 336
Tic-tac-toe game

computer, 64–65
human player interacts, 67
rules/predicates, 67
self-game, 66
self-play option, 62

Traditional approach, 318
Turing test, 13

	Brief Contents
	Contents
	Preface
	Intro to AI
	AI Historical Origins
	Intelligence
	Strong vs Weak AI. Broad vs Narrow AI
	Reasoning
	AI Categories
	AI & Big Data
	Summary

	Basic AI Concepts
	Boolean Algebra
	Inference
	Expert Systems
	Raspberry Pi Configuration
	Intro to SWI Prolog
	Installing Prolog on Raspberry Pi
	Initial Prolog Demonstration
	Intro to Fuzzy Logic
	Problem Solving
	Machine Learning
	Neural Networks
	Shallow vs Deep Learning
	Evolutionary Computing
	Summary

	Expert System Demonstrations
	Office Database
	Animal Identification
	Tic-Tac-Toe
	Cold or Flu Diagnosis
	Expert System with GPIO Control
	Summary

	Games
	Rock-Paper-Scissors
	Nim
	Summary

	Fuzzy Logic System
	Parts List
	Software Installation
	Basic FLS
	Initialization - Define Linguistic Variables & Terms
	Using FL to calculate a Tip
	Initialization - construct Membership Functions
	Initialization - build Rule Set
	Inference - evaluate Fuzzy Set according to Rule Set
	Aggregation - combine Results from each Rule Evaluation
	Defuzzification - convert Fuzzy Set to Crisp Output Values
	Modifications to tipping.py
	FLS Heating & Cooling System
	Modifications to HVAC program
	Summary

	Machine Learning
	Parts List
	Color Selection
	Autonomous Robot
	Adaptive Learning with Energy Consumption Consideration
	Summary

	Machine Learning - ANNs
	Parts List
	Hopfield Network
	Numerical Figure Recognition Demonstration
	Autonomous Robot Car using ANN
	Python Control Script for Obstacle-avoiding Robot Car
	Light-seeking Robot
	Summary

	Machine Learning - Deep Learning
	Generalized ANN
	Gradient Descent Applied to ANN
	Worked-through Example
	ANN Python Scripts
	Training ANN
	Summary

	Practical ANN Demonstrations
	Parts List
	MNIST Data Set
	Handwritten Number Recognition with Pi Camera
	Summary

	Evolutionary Computing
	Alife
	Evolutionary Programing
	Manual Calculation
	Conway Game of Life
	Summary

	Behavior-based Robotics
	Parts List
	Human Brain Structure
	Subsumption Architecture
	Breve Project
	Subsumption-controlled Robot Car
	Alfie Robot Car
	Summary

	Build Instructions for Alfie Robot Car
	Robotic Car Power Supply
	CR Servo Drive PWM
	Mount Plates
	Electrical & Wiring Instructions
	Software Installation
	Final Thoughts

	Index

