COMPUTER Cantice 80

 Running Light Without Overbyte
A REFERENCE JOURNAL FOR USERS OF HOME COMPUTERS

Personal Computing '76 - Looks like it's going to be a great show! Jim C. Warren, Jr. 3
details of seminars, exhibits, door prizes, etc. planned for the Aug. 28-29 Atlantic City hobby exposition
1977 NCC Includes Significant Personal Computing Events 4
The Time for Floppy's is Just About Now! by the Editor 5details of a number of floppy disc subsystems, including one for $\$ 995$ (in 10 -quantity)
Design Contest Offers Head-Per-Track Hard Discs as Prizes E. Mike Engel 7
Proposed Hobbyist-Standard* Bus Structure D. Denny \& J. Broom 8
proposal for allocation of the 100 leads on the standard bus (*previously called the Altair/IMSAI bus)
First Rumors of a West Coast Home Computing Faire 9
The PCM-12: A PDP-8 Look-Alike Well Worth Looking At 10
Z-80 . . . Coming on Strong 11
Three kits Under $\$ 300$ - One includes 2 K bytes, Another runs at 4 megahertz
Remember Those Secret Codes You Played With as a Kid? Well . . . Mal Stiefel 12
details of the National Bureau of Standards encripting/deciphering computer algorithms
8080 TECO and a Floating Point Specification William E. Severence, Jr. 16
6502 SOFTWARE - -
FLOATING POINT ROUTINES FOR THE 6502 R. Rankin \& S. Wozniak 17
Monitor for the 6502 Jack Bradshaw 20
Lunar Lander for the 6502 (Assembler-level Game) Mark Garetz 21
6800 "APPLICATIONS SOFTWARE" - Games
Games in Pittman's 6800 Tiny BASIC Carl Kelb 26
Low-Cost 6800 Systems Software \& Games Technical Systems Consultants 28
Shooting Stars for Uiterwyk's 6800 Micro-BASIC Mark J. Borgerson 29
BUGS \& FIXES
MINOL: Tiny Trek - More Details \& A Correction Erik Mueller 31
MINOL Errata \& Praise Erik T. Mueller, Phillip L. Hansford 32
COMPUTER MUSIC BIBLIOGRAPHY John Snell, PCC Research Engineer 33
SMRT Will Hurt Leroy Finkel 36
Lou Field's Response to the Editor's Note to the SCCS Lou Fields 38

- - AND - -

43 other hardware \& software tidbits, consumer notes, suggestions, questions, etc.

DON'T KEEP IT A SECRET!

Let us know what exciting new software and systems you are working on. We'll tell everyone else (if you wish). Maybe someone is also working on the same thing. You can work together and get results twice as fast. Or, may be someone ellse has already done it; no reason for everyone to reinvent the wheel.

DR DOBB'S JOURNAL OF COMPUTER CALISTHENICS \& ORTHODONTIA

Volume 1, Number 7; August, 1976
Box 310, Menlo Park CA 94025
Copyright (c) 1976 by People's Computer Company

POSTMASTER: Please send Form 3579 to: Box 310, Menlo Park CA 94025. Return postage guaranteed. Application to mail at second-class postage rates is pending at Menlo Park CA.
Rublished 10 times per year; monthly, excluding July \& December.
U.S. subscriptions:
$\$ 1.50$ for a single issue.
$\$ 3$ for the first three issues. $\$ 10$ per year.

Discounts available for bulk orders.

Disclaimer

We serve as a communication medium for the exchange of information. We do not guarantee the validity of that information.

[^0]
SUBMITTTING

 ITEMS FOR

DATE'M-Please include your name, address, and date on all tidbits you send to us.

TYPE'M-If at all possible, items should be typewritten, double-spaced, on standard, $81 / 2 \times 11$ inch, white paper. If we can't read it; we can't publish it. Remember that we will be retyping all natural language (as opposed to computer languages) communications that we publish.

PROGRAM LISTINGS-We will accept hand-written programs only as a very last resort. Too often, they tend to say something that the computer would find indigestible. On the other hand, if the computer typed it, the computer would probably accept it-particularly if it is a listing pass from an assembler or other translator.

It is significantly helpful for program listings to be on continuous paper; either white, or very light blue, roll paper, or fan-folded paper. Since we reduce the copy in size, submitting it on individual pages forces us to do a significant amount of extra cutting and pasting. For the same reason, we prefer that you exclude pagination or page headings from any listings.

Please, please, please put a new ribbon on your printer before you run off a listing for publication.

In any natural language documentation accompanying a program listing, please refer to portions of code by their address or line number or label, rather than by page number.

DRAWINGS \& SCHEMATICS-Please draw them significantly larger than the size you expect them to be when they are published. Take your time and make them as neat as possible. We do not have the staff to retouch or re-draw illustrations. Use a black-ink pen on white paper.

LETTERS FOR PUBLICATION-We are always interestod in hearing your praise, complaints, opinions, daydreams, etc. In letters of opinion for publication, however, please back up any opinions that you present with as much factual information as possible.

We are quite interested in publishing well-founded, responsible evaluations and critiques of anything concerning hobbyist hardware or software, home computers, or computers and people.

We may withhold your name from a published letter if you so request. We will not publish correspondence, however, which is sent to us anonymously.

We reserve the right to edit letters for purposes of clarity and brevity.

ADVERTISING-As long as we can afford to do so, we will not accept commercial advertising. This "keeps us honest" when we pursue the role of consumer advocate.

Personal Computing ' 76

Looks Like It's Going to be a Great Show

by Jim C. Warren, Jr., Editor, DDJ

Up until July 23rd, I wasn't really all that enthusiastic about Personal Computing '76, the hobby convention and exposition being held in Atlantic City on August 28th and 29th. I was unexcited, partially because it was way back there on the East Coast, and mostly because I had received no information about explicit programs or events, other than an exhibition of vendors' goodies. Well, after one lengthy conversation with the Chairman of the convention, John Dilks, all of that has changed. It sounds like it's going to be great!

There are going to be a multitude of seminars. To mention a few:

Hal Chamberlin will be discussing computer music.
A Rockwell-type will be talking about computers in outer space and the space shuttle.
Dave Ahl will offer a seminar on computer games.
Lloyd Rice will be discussing computer speech, and demonstrating his talking computer.
DEC will be presenting a computer-controlled train system.
There will be three Z-80 seminars.
Carl Helmers will be running a session on hobby standards.
I will be discussing the immediate and foreseeable future of home computing.
Dan Falystra is coming in from Holland to give a software seminar.
Ted Nelson will be running a seminar of unknown (to me) content.
There will be a medical computing seminar.
A special session will be offered for officers of computer clubs to exchange ideas.
The ham crowd will be there discussing such things as the ham satellite, a microprocessor-controlled ham radio repeater station, hamateur uses for micros, etc.
And, a whole mess of product-specific seminars will be offered by vendors.

There will be a mass of give-aways including: a LearSiegler ADM-3 kit, a Sphere 310 kit, a MITS 680 kit, a SWTPC 6800 kit, a MOS Technology KIM-1, an E\&L MMD-1 kit, an F-8 evaluation kit from Mostek, a TV Dazzler from CroMemCo, a Z-80 kit from TDL, and 8800 V board from Vector, several floppy disc systems, a MCEM8080 from Hal, a 6502 Familiarizer from Ebka, a software selfteaching course from Logical Services, . . . and on and on and on. There will also be thousands of copies of Dr. Dobb's Journal, and Byte being given away.

As far as the vendor exhibition is concerned, there will be over eighty exhibitors including such unknowns as IBM, and DEC, as well as the many better-known vendors whose names have been dropped in the preceeding paragraph, and many others. Among other things, over 25 computer stores will be present to tell you about their offerings.

If you are a West Coaster, even if you are not in Southern California, you can probably get in on the travelpackage deal that is being offered to SCCS members. It's $\$ 390$ for round-trip air fare, 4-day/3-night hotel accommoda-
tions, Phily-Atlantic City transportation, admission to the exposition, Sunday night banquet, and other nickel and dime items. Furthermore, you don't have to come right back-you can hang around the East Coast for a while before you return. For instance, you could run down to COMPCON Fall ${ }^{\prime} 76$ in Washington, DC, Sept. 7th-10th. Phone Leda Alpert (an SCCS member who also happens to be a travel agent) at (213) 655-0650.

Admission to the whole thing is $\$ 5$, if paid in advance, or $\$ 7.50$ at the door. Incidentally, the profit (if any) doesn't go into someone's private pocket. It will go to a nonprofit amateur radio club that is sponsoring the whole thing, the Southern Counties Radio Association of New Jersey. The folks who are doing most of the organizing, John Dilks, (609 9273873; Davey Jones, (609) 927-6950; and James Main, are club members and computer phreaques who are entirely unpaid volunteers.

HAMATEURS TO

HOLD A COMPUTERFEST

Abstract

The AMRAD COMPUTERFEST will be an exposition of microcomputers for computer amateurs, radio amateurs, and the general public. It is being sponsored by the Amateur Radio Research and Development Corporation (AMRAD), a non-profit scientific and educational organization.

The AMRAD COMPUTERFEST will be held on October 24, 1976 at the Vienna Community Center, 120 Cherry St., Vienna, Virginia, near Exit 11S of the Washington, DC, Beltway.

The exposition will be almost entirely devoted to small computers of the type suitable for home use. There will be displays of microcomputer systems by various manufacturers' representatives as well as tables for used or surplus equipment, circuit boards, and parts. Peripheral devices including video terminals, teletypewriters, and RTTY equipment will be shown. Forums will run throughout the day on subjects of interest to the serious hobbyist, students, and the general public. There will also be an opportunity to talk to representatives of various computer clubs and magazines.

Admission will be $\$ 4$ at the door ($\$ 3.50$ advance registration by mail for pickup at the door). Make checks payable to AMRAD. Write: COMPUTERFEST, Box 682, McLean VA 22101.

For reservations, contact any of these nearby motels directly: Vienna Wolf Trap Motel, 430 Maple Ave. E., Vienna VA 22180, (703) 281-2330; Tysons Corner Holiday Inn, 1960 Chain Bridge Rd, McLean VA 22101, (703) 893-2100; or Tysons Corner Ramada Inn. 7801 Leesburg Pike, Falls Church VA 22043, (703) 893-1340.

patent libraries organized by subject area

Wondering whether your hot hardware homebrew is patentable? Looking for homebrewing ideas?

If you live in the San Francisco or Washington, D.C. areas, you can go check a local Patent Library. It is our understanding that there are only two such patent libraries where the information is organized by subject area. The one in the San Francisco Bay Area is in the Sunnyvale City Library. We understand it is sponsored by local industries. (If some Washingtonite will give us more details about the location of their subject-organized patent library, we will be pleased to publish it.)

1977 NCC Includes Significant Personal Computing Events

The National Computer Conference (NCC) is the largest yearly computer conference and exposition in the U.S. (and probably in the world). It is sponsored by the American Federation of Information Processing Societies (AFIPS), a group group that includes all of the major organizations of U.S. computer professionals. The 1977 NCC will be held in Dallas, June 13-16, 1977.

Mr. Mauch (below) states, "A Milestone for personal computing! Personal computing is being seriously recognized by the computing industry." An alternative viewpoint is that this recognition is a milestone for the computing industry. Either way, it is absolutely certain that the '77 NCC will be an exciting and enlightening event, for pro and amateur alike. We urge you to join the fun.

The 1977 National Computer Conference will feature several events for personal computing enthusiasts including the Personal Computing Fair, exhibits of personal computing equipment by manufacturers, seminars, and social events in addition to paper presentation.

Two days of Personal Computing paper and panel presentations are being planned. Papers and panels in any subject of interest to personal computing enthusiasts are sought including:
\dagger personal computer software
t hardware designs and trends for personal computing
\dagger innovative applications of personal computing systems
\dagger the influence of the personal computing movement on the computer industry and computer science education
\dagger standards for personal computing products
\dagger predictions of trends in personal computing
The "77 NCC will be the year"s largest gathering of data processing users and computer professionals. Approximately 30,000 people are expected to gather for the conference program of over 100 sessions plus the year's largest display of computer hardware, software, systems, and services featuring over 250 exhibitors.

The "77 NCC Steering Committee welcomes your comments and suggestions and participation in this event. Please contact:

Dr. Portia Isaacson
Conference Chairperson
Mathematical Sciences
University of Texas
Richardson TX 75080
(214) 690-2172

Dr. Robert Korfhage
Program Chairperson
Computer Science Dept.
Southern Methodist Univ.
Dallas TX 75275
(214) 692-3082

Dear Mr. Albrecht:
July 26, 1976
A Milestone for personal computing! Personal computing is being seriously recognized by the computing industry.

It is important that we take maximum advantage of this opportunity to present the worth and purpose of personal computing to the computing industry. As the leading publication serving the personal computing enthusiast, People's Computer Company can do much to inform the enthusiast of the importance of his or her participation and involvement in this event.

I would like to enlist your support in promoting the personal computing events in NCC '77, and invite any comments or suggestions you may have.

One of the features of NCC ' 77 will be presentation of papers pertaining to personal computing. Enclosed is a copy of the call for such papers. Since the submittal deadline is December 1, 1976, this

CONSULTANT'S REFERRAL SERVICE

There is now a national consultant's referal group in operation. It is operated by J. Hugo Gottlich and is called the National Software Consultants Referal Service, 8 Gates St., Danvers, MA 01923.

SOFTWARE EXCHANGE FOR \$\$\$

You may be able to peddle well documented, commercially useful software by registering it (for a fee) with the Computer Software Exchange, P.O. Box 27193, San Francisco, CA 94127. [Of course, placing your software in this exchange need not preclude your sharing it with hobbyists via publication in Dr. Dobb's Journal.]

EVIDENTLY OIL AND COMPUTERS DO MIX

Quick notes: Exxon already has a major interest in Zilog. Now, Sun Oil is negotiating to buy DATRAN, one of the largest special carriers in the nation, expecially set up for highspeed, high-reliability digital data communications. The figure involved in the negotiations is $\$ 30$ million.

COBOL FOR THE 8080

RRC Consulting, Los Altos, CA, has a COBOL Cross Compiler for the Data Point 2200 (which is almost an 8008). They only want a one-time use fee in the neighborhood of $\$ 50,000$ (yes...\$50K!)
announcement should appear in the earliest possible issue to permit contributors time to prepare their work.

Plans for the conference are still being formalized. We are planning many interesting and, I feel, innovative events for personal computing enthusiasts. We will keep you advised of developments.

Very truly yours,
Harold A. Mauch PerCom Data Company
Personal Computing Chairperson
1977 National Computer Conference
4021 Windsor
Garland TX 75042

1977 NCC Paper Guidelines

Previously unpublished papers are solicited. Papers submitted for consideration must be in final form with all figures and tables, ready for typesetting. All papers will be refereed. Refereed and approved papers will be sent immediately to the printer, with no opportunity for author changes. The Conference Proceedings Editors reserve the right to edit all papers prior to publication, or to request that the authors change them to meet AFIPS publication requirements.

The material submitted should include:

1) Six copies of the paper. The paper should be a maximum of 5,000 words. The submitted paper should be the final version-cleanly types, double spaced on one side of the paper, ready for typesetting. Each page should be numbered and have the principal author's name on it. Submission of a paper implies guarantee by the author that all necessary approvals and clearances have been obtained.
2) Six copies of a page containing a 150 -word abstract, the Computing Reviews Classification, and four to six keywords descriptive of the content of the paper.
3) Three copies of a short biography of the presentor to be used in conference publicity and for introductions by the session chairperson.

Deadline for all submissions is December 1, 1976. Authors will be notified before March 1, 1977 regarding the acceptance of their papers.

Please send all submissions to the ' 77 NCC Program Chairperson, Dr. Robert Korfhage.

The Time for Floppy's is Just About Now!

by the Editor
Things-most notably, prices-are coming down, fast, in the world of rotating mass storage appropriate for home computers. Prior to this, floppy disc subsystems have either been unavailable for hobby machines, or they have been priced for the industrial consumer (e.g., around $\$ 3,000$ for a dual-drive system). Things have changed: A hobbyist can now reasonably expect to obtain a complete, assembled, single-drive subsystem for a price in the neighborhood of $\$ 1 \mathrm{~K}$. Here is the latest information we have:

The best system we know of-and the least expensive-is available from Digital Systems, 1154 Dunsmuir PI., Livermore CA 94550; (415) 443-4078 (ask for Dr. John Torode). This is the same crowd that built Gary Kildall's original floppy interface over two years ago [see "First Word on a Floppy-Disc Operating System," in the April issue of the Journal]. Gary has yet to have problems with the system. Digital Systems also is marketing a low-cost, floppy-based development system to the industrial market. They know what they are doing. What is much more important is that Dr. Kildall's fancy, DECSystem10 -like operating system-called CP/M-will run on DS's hardware. CP / M has been in use for over two years in a production and instructional environment. It is well debugged, well documented, and has some significant software subsystems available with it.

Back to DS's floppy subsystem: The controller is alreadyassembled, burned-in, and tested, and has been on the market for some time. The controller can handle up to four drives. The drive is a Shugart 800, a highly reliable drive of excellent reputation. The single-system price is $\$ 1095$, and drops to $\$ 995$ in quantities of only 10 . This price includes the controller, the drive, all cabling between controller and drive, a manual, shipping within the continental U.S., and a 90 -day warranty. The manual includes a reproduction of the Shugart tech manual on the drive, a complete manual on the controller, and complete design details for a 20-chip interface from the controller to a hobbyist-standard (Altair/IMSAI) bus. The manual, alone, is available for $\$ 5$, creditable towards purchase of any system.

Though the controller is not available in kit form (too much potential for subtle, hairy problems), the interface is. If you wish to buy your own parts and build the interface, you can. If you want the parts from DS, they will ship them to you for $\$ 50$ (Vector PC board, sockets, chips, connectors, cabling . . . the works). If a dual-drive system is desired, the second drive is $\$ 600$, unit quantity.

As with most of the floppy systems being offered to hobbyists, the power supply (if you don't already have one) is extra. In this case, it costs about $\$ 150$, and the manual gives complete details if you wish to homebrew your own.

Final notes: DS is a relatively small company. We know Dr. Torode both personally and by reputation, and have been very impressed by everything we have seen and heard. He maintains quite high standards for his product, technically, and for his operations, businesswise. We have complete faith in his competence and in his integrity and recommend him without restriction. He builds a good product, and he backs his work. Incidentally, the controllers, drives, and parts are in-stock, off-the-shelf items.

If you have technical questions, Dr. Torode is the person with whom to talk. Unfortunately, he will be in Europe
(teaching microprocessor courses for Phillips) from August 15th to September 15th. Thereafter, however, he will be happy to answer any questions you may have.

Dr. Kildall's CP/M is available from Digital Research; Box 579, Pacific Grove CA 93950; (408) 373-3403, for $\$ 35-$ $\$ 70$ depending on the level of documentation desired. The software comes in the form of a "loaded" disc, including an editor or two, an assembler or two, a PIP (DECese for a filetransfer program), a debugger, and who knows what else (it grows from month to month).

A second, interesting tidbit is a letter we received, dated June 30th, offering brand new CalComp 110 drives for \$395; that's just about half their list price. The letter states that the drives carry CaIComp's 90-day unconditional warranty. The drive does not use the IBM format (a poor format, but the only "industry standard" available for the time being), and could not be easily interfaced to CP/M. Also, CalComp drives appear to have a mixed reputation; some are good, and some are very poorly regarded.

The company making this offer is Martin J. O'Boyle \& Associates, Box 9094, Pittsburgh PA 15224; (412) 361-1602. We know nothing about them, but the offer appears to be well worth checking out. Incidentally, their letter indicates they are also offering IMSAI computers at $\$ 100$ below list; mentions two designers of very low-cost floppy interfaces (Dr. Ken Welles, and Hal Chamberlin); and notes that they have only 95 of their CalComp 110 drives available for the price indicated.

Financially, the next most interesting floppy system for hobbyists appears to be the one available from iCOM, 6741 Variel Ave., Canoga Park CA 91303; (213) 348-1391. It's single-unit price is $\$ 1195$. The price doesn't drop to $\$ 995$ (which appears in all their bold-face advertising) until one purchases them in 100-unit quantities. If you get in on an SCCS group buy, however, you can get them for about $\$ 1100$ which includes tax, handling, and the FDOS-II operating system. As we understand it, for these prices, one gets a Pertec drive, a controller capable of handling more than one drive, and cabling from the drive to the controller, and the controller to an interface board. The interface board is not included, but we have been told that a $3 P+S$ will do the necessary job.

The FDOS-II was done by Art Childs, the recent editor of Interface, and a great hobbyist supporter. It requires about 1 K for the resident $1 / 0$ drivers, 1 K for the monitor, and 4 K for the Executive. To be really useful, it requires about an 8 kilobyte system. This is noticeably less than is required by Kildall's CP/M, which needs at least 12 K and prefers to dine on about 16K. However, FDOS-II was completed only last Spring (1976), and thus may be assumed to have significantly more bugs than the more mature CP / M. (No criticism of Art's work; it's just an inherent characteristic of large systems software.) Also, CP/M has a comparatively extensive library of systems software that runs under it.

Unanswered questions: We don't know how reliable the Pertec drives are. They generally have a much poorer reputation than the Shugart drives. We have an estimate that the power supply for the system will cost in the neighborhood of $\$ 210$, but that estimate is 3 months old. We don't know if the indicated prices include shipping or manuals, and we don't know how well-done the manuals may be (the hobby move-
ment has a widespread characteristic of awful documentation). We also don't know what warranties are offered, and have no information on how well iCOM treats its customers.

Since it is noticeably overpriced in comparison to the preceeding excellent alternatives, we hesitate to even bother mentioning the IMSAI floppy system . . . but, we will, since they are trying to market it to hobbyists. The controller has its own processor and is being touted as being "intelligent." It will handle up to four drives. It interfaces to a hobbyiststandard bus, of course, and the interface is included. In kit form with a single drive, it costs $\$ 1,449$, and goes for $\$ 1649$ in assembled form. Extra drives cost $\$ 925$. The Disk Operating System is available for $\$ 40$. 12K Extended BASIC, including disc access, is supposed to be available by now. Ho hum.

We think IMS manufacturers some excellent microcomputers and m-c kits. However, we find their floppy offerings to be badly out-of-line-at least for the hobbyist-with some other products, at least as far as price is concerned. Incidentally, we hear that Kildall's $C P / M$ was made to run on the IMSAI floppy system . . . and run very, very slowly.

Finally, some immediate-future thoughts concerning floppies:

PerSci is now offering a dual-drive floppy box for $\$ 1 \mathrm{~K}$. To our knowledge, no one has yet built a controller and interfaced it to a hobbyist-standard bus, but we are certain that it will happen very soon. This is deserving of attention, not only due to the low price for two drives, but also because PerSci drives use a voice-coil head positioner that really wails; its track access time is something like 10 times as fast as most of the other drives. Also, the feedback we have from industrial users of PerSci products implies that they manufacture excellent, solid, reliable floppy disc drives.

Don't discard the idea of moving to floppies because you can't afford a dual drive system, and you think you can't back up your discs if you have only a single drive system. It's slow (and also cheap), but you can back up (save for safety's sake) discs, and even copy disc contents from one to another without a second drive . . . by using the cassette tape storage that you probably already have. Not what one would do in an industrial or business environment where $\$ 500$ or $\$ 1,000$ is trivia, but at home . . .

Watch for prices for controllers to drop even lower. We are all waiting for Hal Chamberlin to publish the rest of his series of articles on the super-inexpensive floppy controller/ interface in The Computer Hobbyist. The first article was published last Spring. Someone in Kansas told us of designing a very simple disc interface that he recently sold to a company, back there. Presumably, they will be announcing a product, shortly. The Palo Alto Byte Shop has mentioned a very inexpensive floppy subsystem that they expect to place on the market, shortly. Shugart has announced its mini-floppy drive, which stores less than a "standard" floppy, but is priced significantly less than their "standard" drive. Gary Kildall is still hoping to be able to offer an interface/controller for somewhere in the neighborhood of $\$ 350$, and presumably a single-drive system for about $\$ 800$.

But, there's a problem with watching for prices to come down. We all know they will. (We predict that floppy prices will probably bottom out at around $\$ 600$ for a single drive, ready to plug in to your hobbyist-standard bus. We think that cost of manufacture will keep the price from dropping much below that . . . at least, for reliable units.) The question is, how long do you want to wait until you have high-speed, mass storage.\therefore and can do really interesting things with your home computer?

HEATHKIT TO INTRODUCE A COMPUTER KIT

We have information from a source we consider to be reliable (but not from Heathkit) that Heathkit will present its first computer kit at the Personal Computing ${ }^{\text {² }} 76$ Consumer Trade Fair in Atlantic City, August 28th-29th. The kit is rumored to be using the Signetics 2650 microprocessor. No other information at the moment, but...watch out McDonald's!

DESIGN FOR BINARY INPUT TO HEX DISPLAYS

The July 8th issue of ELECTRONICS Magazine has two quickie design articles detailing how to convert binary input to a HEX-coded, 7 -segment display output. One method uses a PROM; the other uses some decoders and diodes.

300 NANOSECOND 16x16 MULTIPLIER

TRW Electronics Systems Division has a TTL-compatible, monolithic-bipolar multiplier that can perform 16 -bit by 16 -bit multiplication in half a microsecond. Designated the MPY-16, sample quantities can be delivered in under 30 days.

A FLASHY EXTENDER BOARD WITH LOGIC PROBE

This new extender board/logic probe kit is designed to fit either the Altair or IMSAI. It features Logic Level Lights: red ≥ 2.4 volts, green ≤ 0.8 volts, and yellow $\simeq 0.2$ second pulse $\mathrm{HI} / \mathrm{LO}$ transition. A phono-needle probe is provided to ensure good and non-skid contact. Eyelets and jumpers in the power circuits allow convenient current measurement. The leads of the dual 50 read-out edge connector are specially formed to allow convenient access to bus signals. The PC board material is 1 oz . Cu on $0.0625-$ inch, black FR4 board, which is solder-plated and has 50μ tinch gold on the connector edge. The holes are plated through with $0.0015-$ inch Cu .

This product is available now for $\$ 35$, from Mullen Computer Boards, BlastMasters Inc., Box 31, Loma Mar CA 94021. Or check your local computer store.

Design Contest Offers Head-Per-Track Hard Discs as Prizes

Gentlepersons:
July, 1976
At the request of many computer hobbyists, unhappy with the availability of low-cost, mass memory for permanent program and data storage, we are considering the design of a fast-access, memory kit.

In order to offer you the type of storage that serves your needs, we give you the opportunity to participate in the design. So, open your mind and let us know your ideas.

The major cost item is the engineering time required to design the controller which interfaces the memory and the microprocessor. In order to keep the cost down and to make it interesting and rewarding, we decided to have two contests. One, incorporating hardware, and one for software.

To keep the contest proper we propose that the various computer clubs submit proposals on the rules, and judges (i.e., editors of stated computer hobbyist magazines.).

The start up time for the memory is about 120 days. The interface controller requires approximately 60 days from the closing of the contest.

It would be helpful for us to know how many of these fastaccess memory kits will be sold. This is because we need to. buy parts for the kits. The more parts we buy the lesser the cost to you. So please, if you are seriously considering the purchase of our memory, let us know-the bigger the response, the lower the production costs and selling price.

The following is what we think you need. Take an close look and see if it is OK, if not, speak up. Let's make it right the first time.

The proposed memory is designed for optimum performance and reliability at the lowest possible production cost.

It features high rotational disc speed and head-per-track operation, thus it sports a ten-times-faster access time as compared to a floppy disc system. The head-per-track design eliminates the timeconsuming, mechanical positioning of one head on every track as well as simplifying the interface controller.

A large, 14 -inch-diameter disc is chosen to store as many bits with as few heads as possible. The disc is permanently mounted and rotates at 1725 rpm .

A nine-head (Track) per comb-bar assembly is utilized. Eight heads are active, accessing 125,000 unformatted bits per track at a data rate of 3.6 MHz . The ninth track is a spare. Therefore each combbar assembly (8 Tracks) can store 1 million gross bits or at least 100,0008 -bit words. The memory can be expanded to 12 comb-bar assemblies or 96 active tracks storing 12 million bits or 10 million 8 -bit words.

For systems unable to handle the 3.6 MHz data rate, the frequency can be reduced, however fewer bits per track can be stored, or more heads must be used for the same data capacity.

A delay modulation recording system is featured. It requires an 8 -bit preamble containing a 101 code to synchronize the phase-locked, read decoder. (10101011 at the beginning of each sector.)

Preliminary specifications: Disc memory models
HTM 8-1 kit to Minimum

HTM 96-12 kit Maximum

Data capacity, bits
Data per track
Data transfer rate
Data access time average
Size
Power
$1,000,000 \quad 12,000,000$
125,000
3.6 MHz
17.4 milliseconds
$17^{\prime \prime} \mathrm{W} \times 17^{\prime \prime} \mathrm{D} \times 10^{\prime \prime} \mathrm{H}$
115 V 60 Hz 200 VA
Electronics: One read-write amplifier, one index amplifier, and one sector amplifier for 64 sectors.
Interface:
TTL twisted pair
Preliminary pricing based on a 100 -unit production run:

$$
\begin{array}{lr}
\text { HTM 8-1 kit with interface controller } & \$ 600 \\
\text { Each additional } 9 \text {-track, comb-bar assy., } & \\
\text { or } 1 \text { million bits } & \$ 50 \\
\text { HTM 8-1 kit without inter } & \\
\text { H }
\end{array}
$$

First Prize: a) The best controller (price-performance) gets the grand prize of a memory with 300,0008 -bit words free. b) So does the best software for the controller, hopefully a program which makes the memory transparent (virtual) to the microprocessor.
Second Prize: One each, 200,000 8 -bit word memory for the second best controller and software design.
Third Prize: One each, 100,000 8-bit word memory for the third best hardware and software design.
Fourth Prize: \$200 credit each, for the purchase of our memory for the fourth best controller and software design.
Fifth Prize: $\$ 100$ credit each, for the purchase of our memory for the fifth runner-up for hardware and software design.

THE LOW-COST COMB-HEAD*

Consisting of three basic parts-C-CORE, COMB-CORE, and COIL-the assemblies may have from 1 to 12 heads. Assembly of a typical 9 -track COMB-HEAD requires very little time and is accomplished by simply slipping the self-supporting coils over the legs of the COMB-CORE and then pressing C-CORE and COMB-CORE together and applying adhesive. A conductive gap shim is vacuum-deposited (sputtered) over the entire inside of the C-CORE to minimize crosstalk.

That's it! Let's get started, and good luck to you. Sincerely yours,
E. Mike Engel
E. \& U. Engel Consulting

1719 S. Carmelina Ave.
Los Angeles CA 90025
(213) 820-4231
*Developed and licensed by E. \& U. Engel Consulting
Editor's note: We hope that the contest judges will be chosen, announced, and publicized, prior to this company soliciting/receiving contest entries.

COMPUTER COMPONENTS OPENS VAN NUYS STORE

Computer Components opened its first retail store to the general public on June 17th. The address is 5848 Sepulveda Blvd., Van Nuys CA 91411. They are currently authorized IMSAI dealers and expect to expand their microprocessor line to other manufacturers as they demonstrate viability. They also carry a complete line of interface and memory kits, hobbyist supplies, etc.

SAN DIEGO COMPUTER STORE

The Computer Center (8205 Ronson Rd., San Diego CA 92111, (714) 292-5302) opened its doors on May 22nd. It carries a variety of computer hobbyist equipment and publications.

Proposed Hobbyist-Standard* Bus Structure

by D. Denney, \& J. Broom
BISI
Box 1197, Station A
Vancouver, British Columbia
Canada
(604) 683-5246

The most important and often overlooked part of an Altair/IMSAI computer is the 100 wire bus structure. This bus structure as defined by MITS has become a "de facto" standard that has encouraged numerous companies to build and market Altair/IMSAI compatible boards, knowing that there are thousands of machines in which to use them. The bus standard has stimulated competition and allowed product specialization; and the result has been to raise the Altair/ IMSAI from just a 'hobbyist' tag to a full-fledged computer that is rapidly finding its way into industrial, commercial, and educational applications. For what other computer on the market has such a broad base of hardware manufacturers?

To date, most of the second sources have been of RAMs, TV typewriters, etc., but there is a second generation of products just beginning to surface, which will vastly increase
the power and longevity of the 100 wire bus. These products are of two basic types:

1. NEW CPU BOARDS using different 8 and 16 bit microprocessor chips that will plug into the bus. (You can already buy an M6800 CPU board for your Altair and work is in progress with CPU chips from Data General, and Texas Instruments 8800 series.)
2. MASS STORAGE-memory capacity inside the Altair chassis in excess of the 65 K directly addressable bytes, made possible by the new CCD (charge coupled device), and magnetic bubble technologies. Mass storage will typically be configures as a set of storage boards (from 1 to 20) and controller board. The controller board must furnish to the storage boards several critical timing and control signals (all TTL levels), and because of the number of boards involved, these lines should be placed on the 100 -line Altair bus for storage board simplicity, lessened cost, and ease of trouble-shooting.

While opening up the future of the Altair to many new applications, these boards are putting a strain on the bus structure-they use more bus wires than so far have been defined, so the time has come to define more of the unused bus lines.

Altair/IMSAI Bus

$$
\begin{aligned}
& 0=\text { letter } 0 \\
& 0=\text { zero }
\end{aligned}
$$

1. +8 V	Unregulated input to +5 V regulators	
2. +16 V	Unregulated input to +12 V regulators	
3. XRDY	Anded with PRDY and goes to 8080 RDY	
$4 . V 10$	Vectored interrupt request \emptyset	
5. VII	Vectored interrupt request 1	
6. VII2.	Vectored interrupt request 2	
7. V13	Vectored interrupt request 3	
8. V14	Vectored interrupt request 4	
9. VI5	Vectored interrupt request 5	
10. V16	Vectored interrupt request 6	
11. V17	Vectored interrupt request 7	
12. XRDY2	CCDS BORAMS (TENTATIVE)	BUBBLES (TENTATIVE)
13. CK3	Phase 3 shift clock 13.	13. CK2 Phase 2 clock for coil drivers.
14. CKI	Phase I shift clock 14. ADRSEL Address multiplex signal	14. OUTEN Data output buffer enable signal
15. $\overline{B W E}$	Write erable-anded 15. LDL Load to address with WRITE byte	15. XFER Transfer gate signal
16. $L D M$	Load medium address 16. LDM Load med address byte byte	16. ADINX Increment signal for board address
17. BDSEL from	Acknowledge signal 17. BD SEL Acknowledge addressed storage bd. signal	17. BOSEL Acknowledge signal from addr. storage bd.
18. STA DS	$\overline{S B}$ Status buffer disable	
19. $\overline{C / C ~ D S B ~ C o m m a n d / c o n t r o l ~ b u f f e r ~ d i s a b l e ~}$		
20. UNPROT Input to memory protect circuitry on memory bd.		
21. SS	Indicates machine is in single step mode	
22. $\overline{A D D ~ D S ~}$	B Address buffer disable	
23. $\overline{\mathrm{DO} \mathrm{DSB}}$	Data out (from CPU) buffer disable	
24. P2	Phase two clock TTL levels	

26. PHLDA Hold acknowledge, buffered 8080 output
27. PWAIT Wait acknowledge, buffered 8080 output
28. PINTE Interrupt enable, buffered 8080 output
29. AS Buffered address line 5 (32)
30. A4 Buffered address line 4 (16)
31. A3 Buffered address line 3 (8)
32. Al5 Buffered address line 15 (32768)
33. Al2 Buffered address line 12 (4096)
34. A9 Buffered address line 1 (2)
35. D01 Buffered data out line 1
36. DOX Buffered data out line \varnothing
37. Alg Buffered address line 10 (1024)
38. D04 Buffered data out line 4
39. D05 Buffered data out line 5
40. D06 Buffered data out line 6
41. DI 2 Data input line 2
42. D13 Data input line 3
43. DI7 Data input line 7
44. SMI Latched 8080 MI status
45. SOUT Latched 8080 OUT status
46. SINP Latched 8080 INP status
47. SMEMR Latched 8080 MEMR status
48. SHLTA Latched 8080 HLTA s.tatus
49. CLOCK 2 mhz clock, crystal controlled
50. GND Logic and power ground return
(A) 51. +8V Unregulated input to +5 V regulators
(B) 52. - 16 V Unregulated input to negative regulators
(C) 53. $\overline{S S W D S B}$ Sense switch disable
(D) 54. $\overline{E X T C L R} C l e a r ~ s i g n a l ~ f o r ~ 1 / 0 ~ d e v i c e s ~$
(E) 55. RTC Real time clock
(F) 56. STSTB Strobe signal (by 8224 clock chip $8800 \mathrm{~B} d / \mathrm{c}$ board)
(H) 57. DIGI Enable signal for CPU DI drivers 8800 B
(J) 58. FRDY 8800B Front panel ready signal
(K) 59.
(L) 60 .
(M) 61 .
(N) 62. CK4 Phase $\frac{\text { CCDS }}{4}$ shift clock 62. RAS $\frac{\text { BORAMS (tentative) }}{\text { Row address select }} \begin{aligned} & \text { 62. }\end{aligned} \begin{aligned} & \text { BUBBLES (tentative) } \\ & \text { CKI Phase } 1 \text { clock } \\ & \text { for coil drivers }\end{aligned}$
(P) 63. CK2 Phase 2 shift clock
51. CAS Column address select 63. R/A Replicate/
52. BCE Chip enable
53. REF Refresh signal
54. WRITE Write signal
55. LDH Load high address byte
(S)
56. WRITE Write signal
(T) 66. LDH Load high address
(U) 67. see below
(v) 68. MWRT Write enable signal for memory
(W) 69. $\overline{\text { PS }}$ Indicates if addressed memory is protected
(X) 70. PROT input to memory protect circuitry on memory bd.
(Y) 71. RUN Indicates machine is in run mode
(Z) 72. PRDY Anded with XRDY and goes to 8080 RDY
(a) 73. $\overline{\text { PINT }}$ Input to 8080 interrupt request
(b) 74. $\overline{\text { PHOLD }}$ Input to 8080 hold request
(c) 75. $\overline{\text { PRESET Clear signal for CPU }}$
(d) 76. PSYNC Buffered 8080 SYNC signal
(e) 77. $\overline{P W R}$ Buffered 8080 write enable signal
(f) 78. POBIN Buffered 8080 BDIN signal
(h) 79. $A \emptyset$ Buffered address line \emptyset (1)
(j) 80. Al Buffered address line 1 (2)
(k) 81. A2 Buffered address line 2 (4)
(1) 82. A6 Buffered address line 6 (64)
(m) 83. A7 Buffered address line 7 (128)
(n) 84. A8 Buffered address line 8 (256)
(p) 85. Al3 Buffered address line 13 (8192)
(r) 86. A14 Buffered address line 14 (16384)
(s) 87. All Buffered address line 11 (2048)
(t) 88. D02 Buffered data out line 2
(u) 89. D03 Buffered data out line 3
(v) 90. D07 Buffered data out line 7
(w) 91. 014 Data input line 4
(x) 92. DI5 Data input line 5
(y) 93. DI6 Data input line 6
(z) 94. DII Data input line 1
annihilate gate signal
57. READ Signal for bubble defect circuitry

FIRST RUMORS OF A WEST COAST COMPUTER COMPUTER FAIRE

There are some tentative rumors being passed about concerning a hobbyist Computer Faire on the San Francisco peninsula. It is envisioned to be a two-day orgy, including a multitude of seminars, and a massive exhibition of hobby goodies. There is some vacillation about whether to schedule it just before or after Thanksgiving, or wait until after the first of next year.

Let us know if the prospect of such a Faire interests you, and indicate your preferences and dislikes of the proposed dates. Send responses to:

Bob Reiling or	Jim C. Warren, Jr.
(Editor, Homebrew Computer	(Editor, Dr. Dobb's Journal)
\quad Club Newsletter)	PCC
193 Thompson Square	Box 310
Mountain View CA 94043	Menlo Park CA 94025
(415) 967-6754	(415) 323-3111 851-7664

(Editor, Homebrew Computer Club Newsletter)
193 Thompson Square
Mountain View CA 94043
(415) 967-6754
(Editor, Dr. Dobb's Journal)
PCC
Box 310
Menlo Park CA 94025
(415) 323-3111 851-7664
(AA) 95. DID Data input line \varnothing
(AB) 96. SINTA Latched 8080 INTA status
(AC) 97. डWO Latched 8080 WO status
(AD) 98. SSTACK Latched 8080 STACK status
(AE) 99. $\overline{P O C}$ Clear signal during power up
(AF) 100. GND Logic and power ground return

+ A conflict already exists on line 67. Processor Technology Inc., has defined this line as PHANTOM to disable RAM boards when ROM is addressed. Cromenco Inc., has defined line 67 as REFR DSBL which prevents dynamic RAM refresh cycles during the Dazzler DMA (direct memory access).

[^1]
The PCM-12: A PDP-8 Look-Alike Well Worth Looking At

by Jim Warren, Jr., Editor

PCM, Box 215, San Ramon CA 94583; (415) 837-5400, is marketing a microcomputer kit based on the Intersil 6100 microprocessor. It is a system well worth giving serious consideration. It's only selling point is that there is a massive amount of systems and applications software in existence for it. And, if you want to use it, instead of simply tinker with it, that's a major point. The 6100 executes all of the Digital Equipment Corp. PDP-8/E instruction set, except the I/O instructions. Since the " 8 " has been around for about fifteen years, and is still one of the most popular minicomputers (due almost totally to its software)-there are around 70,000 of them in use-anything that executes a PDP-8 instruction set should be given serious attention.

If you are a hardware builder type, the system should satisfy your desires. It comes in a kit form and can adequately pacify those who love to fondly caress a soldering iron and dikes.

If you are a software type, with some nominal scrounging, you can come up with all sorts of glorious software, including several editors, assemblers with macro capabilities, BASIC's, FOCAL, several FORTRAN's, a number of debuggers, business software, and on and on.

If you are a computer architecture type . . . forget it. The PDP-8 was designed in the early 1960 's. It is a single accumulator CPU with no index registers, fixed-block addressing, a 12 -bit word length, and doesn't even have a SUBTRACT instruction (you have to do a 2's Complement, then Add). Architecturally, there are far more exciting microprocessors/ microcomputers on the market.

And, if you are financially frugal concerning your computer hardware (regardless of the potential expense for the software), then you should also forget the PCM-12. The system with only 1 K words is priced at $\$ 799$ (kit), or $\$ 1224$ (assembled). To expand it to 4 K words costs another $\$ 139$ (kit form), and to add memory beyond that costs $\$ 135$ (memory extender kit), plus $\$ 245$ per 4 K memory module. This means that a complete system in kit form, including 8 K 12-bit words of memory would cost $\$ 1415$.

Incidentally, Digital Systems Design in Berkeley has a complete, assembled floppy disc system including two Shugart drives that plug into the PCM-12. It costs $\$ 2998$. We understand that DEC's great PDP-8 Operating System, OS-8, is up and running on the PCM/DSD floppy system, however its direct availability to a purchaser is unclear.

To sum it up, if you have access to PDP-8 software that you find significantly useful, you should investigate the PCM12. (You should also investigate the PDP-8/A from DEC; it's more expensive, but avoids any bootleggery problems concerning software). If you just want to play, or you want to learn about current computer architecture, you should look elsewhere.

Some personal notes: For much of a decade, I made most of a very comfortable living, programming PDP-8's. Their architecture was infuriating, but their systems software and documentation was significantly better than any other mini around at the time. Even now, DEC software for the " 8 " remains better than most systems software for most other

VRAM-VIDEO DISPLAY RAM

Matrox Electronic Systems, P.O. Box 56, Ahontsic Stn. Montreal, Quebec H3L 3N5, (514) 481-6838 has a number of very interesting "Black Boxes" available for 4-12 week delivery. To the computer, those appear to be "write only" RAM. Their output, however, is a standard (American or European) video signal (75 ohm, crystal controlled). This will drive video monitors up to 3000 feet away. Quick tidbits:

Model
MTX-816

MTX-1632

MTX-1632 SL Externally synchronized 16 by 32 display
MTX-1664*
MTX-3264*
MTX-2480*
MTX-256**2
Function
8 by 16 large-character;, no lower-case character display
16 by 32 caps \& lower-case character display

16 by 64 character display $\$ 364$
32 by 64 display $\$ 440$
24 by 80 display $\$ 480$
a 256 by 256 point arbitrary

Price (single unit)
\$194
\$285 graphics display
\$630
*The 1664 and 3264 require a 5.2 Mhz bandwidth monitor. The 2480 requires 6.5 Mhz .
Whoops! There's a ringer: They say a minimum order is 100 units, and there is a setup charge. Just goes to show-you gotta read all the small print.
machines, and is generally better documented. Even when there is functionally equivalent software for other machines, it usually requires more memory than it does on the PDP-8. For example, OS/ 8 requires only 8 K 12 -bit words on the PDP-8. It's PDP-11 counterpart, RT-11, requires a minimum of 16 K 8 -bit bytes. Operating systems for Data General's Nova machines exhibit a similar hunger for memory, and the development systems from the micro manufacturers absolutely gobble memory-though the comparison is only partially valid. If I didn't already have my own PDP-8/I (elderly, but definitely "burned in" and reliable), I would probably get a PCM-12-even though I consider them somewhat overpriced. Incidentally, I consider DSD's floppy system to be grossly overpriced by about $\$ 1300$.

Z-80... Coming on Strong Three Kits Under \$300--One Includes 2 K Bytes, Another Runs at 4 MegaHertz

by Jim C. Warren, Jr., Editor
Three groups are (or will be) offering processor boards or microcomputers to hobbyists, based on Zilog's hot, new $\mu \mathrm{p}$, the Z-80. They are the Digital Group, TDL, and CroMemCo. The Z-80 has an exciting instruction set that is almost completely upwards compatible with the Intel 8080 (which is, of course, upwards compatible with the Intel 8008). Note: the Z-80 is not pin-for-pin compatible with the 8080; the almost-compatibility only concerns instruction sets. Also note: The Z-80 is being second-sourced by Mostek.

The one instruction incompatibility we have heard about, so far, concerns the handling of the parity flag. As explained to us, the Z-80 sets the parity flag only on logical operations, as one would expect, whereas the 8080 sets the parity flag on both logical and arithmetic operations. Incidentally, since Bill Gate's Altair BASIC uses this 8080 eccentricity in three or four places, Altair BASIC will not run on a Z-80 unless a few minor modifications are first made to the code. We understand that listings of those mods are floating about. If someone will send us a good, clear, documented copy, we will be happy to publish them (with or without an author's credit line). Note: We consider publishing such mods to be roughly analogous to an auto magazine publshing details about modifying a patented Ford engine design for the purpose of obtaining more useful or efficient operation; patent infringement is not involved.

The Digital Group, Box 6528, Denver CO 80206; (303) 861-1686, is offering a Z-80 CPU board for $\$ 295$ (kit), or $\$ 395$ (assembled). The last we heard, they were planning on initial deliveries around the middle of July. The CPU board includes 2 K bytes of half-microsecond static RAM, a 256 byte EPROM bootstrap, two DMA channels, a 400 ns-rated Z-80, and some other interesting goodies. The board is interchangeable with previous Digital Group CPU boards, but is not plug-compatible to a "hobbyist-standard" (Altair/IMSAI) bus.

Also, the Digital Group is doing something that we broadly applaud: They are offering a Z-80 CPU upgrade kit for $\$ 185$ to those who have previously purchased systems from them based on some less exciting microprocessor, and wish to upgrade to the Z-80. We have consistently been very favorably impressed by Digital Group's "up front" stance, candidness, apparent integrity, and consistent, soft-sell approach to marketing their goods. A comment, however: We have been getting an increasing number of letters, here at People's Computer Company, complaining about poor service or responsiveness from the Digital Group. We have published such complaints, as well as some compliments, and will continue to do so. Our assumptions are: 1. Customer interest in Digital Group products has exceeded their initial capacity to respond in the manner they would like. 2. They are aware that they have a problem and are doing everything they can to expand their customer service department and procedures. 3. It is their wish to maintain an operation of unusually high integrity and responsiveness to their customers.

TDL (Technical Design Laboratories), 342 Columbus Ave., Trenton NJ 08629; (609) 392-7070, is the second
company offering a Z-80 CPU board to the hobbyist community. Their kit price is $\$ 269$, and includes IC sockets, but excludes the two kilobytes of static RAM found in the Digital Group's subsystem. As of the middle of July, their prototype had been running for about a month, and their PC version (production version) had been running, glitch-free for about half a month. The system has been demonstrated to members of the Amateur Computer Group of New Jersey, several of whom have commented very favorably about it, to us.

TDL is a new entry into the rapidly growing mob of computer hobbyist companies. We have received several favorable comments about them, however, from people who are independent of TDL, and whose judgement we trust. The comments we hear are that the TDL principals are technically competent, and are dedicated to turning out an excellent product, and backing it with first-rate customer service. We are most interested in receiving comments, positive or negative, from their customers.

They are also offering one other rather flashy item: Their Z8K RAM board is an 8 kilobyte static RAM for $\$ 295$ with $215 n s$ access time. Furthermore, it only draws about 150 ms from a 5 V power supply. We are particularly interested in hearing customer comments regarding this RAM. The rumor we hear is that this system uses RAM made by EMM, the same as is in MITS 16 K boards . . . and EMM is the only semiconductor house that has been able to make them. We want to spread the word, if they are reliable. And, we have no reason to question their reliability, other than the fact that none of the larger chip houses are marketing a competitor. Presumably, they will, soon.

CroMemCo, 2432 Charleston, Mountain View CA

 94043; (415) 964-7400, is the third company to jump onto the Z-80 bandwagon. [This is pre-announcement information, obtained from Dr. Harry Garland, one of the principals in CroMemCo.] They are planning a Z-80/4 CPU card that will plug into a hobbyist-standard bus that sounds like a super subsystem. For a starter, the Z-80/4 is a 4 megahertz processor; that's a 250 ns cycle time. The board can be switched, at any time, back and forth between 2 MHz and 4 MHz . It has a power-on JUMP to any 4 K memory blank, jumper selectable. There is a wait-state generator on-board that can place waitstates on M-1 cycles if desired, or on any other cycle. A jumper can be used to select between 8080 -mode I/O and Z-80 mode. The subsystem price is expected to be $\$ 295$ (kit), or $\$ 395$ (built and burned-in). Dr Garland specified October 1st as being a firm availability date.CroMemCo is another of those companies that we feel is really "doing right" by its hobbyist customers. As well as this writer can remember, PCC has yet to receive a single complaint about CroMemCo products or service. We know several of the principals in the company, and believe that they act with first-rate integrity; a level of honesty that one would more expect from a close friend than from an "unknown businessman." Their technical competence is also topnotch. Minor tidbit: Aside from being a principal in CroMemCo, Dr. Garland is also Assistant Chairman of the Department of Electrical Engineering at Stanford University.

Remember those secret codes you played with as a kid? Well. . .

By Mal Stiefel

(reprinted with permission from, and copyright by, Computerworld, Newton MA 02160)

The National Bureau of Standards (NBS) published a proposed standard in the Federal Register of Aug. 1, 1975 specifying "a mathematical algorithm for encrypting (enciphering) and decrypting (deciphering) binarycoded information" for federal use.

The process is intended to be implemented "in a special-purpose electronic device...designed in such a way that it may be embedded in a computer system or network and provide cryptographic protection to bi-nary-coded data.
"The method of implementa-
tion, the control of the cryptographic device and the interface of the device to its associated equipment will depend on the application and environment. . . Certification of compliance with this standard is the responsibility of the designer and manufacturer of the device."

Basic Principles

Figures 1 and 2 illustrate the various data manipulation functions found in the algorithm. The permutations in Figure 1 involve rearrangements of bits without changing their value, while the substitutions (also called ciphers) do not generally pre-

(a) BALANCED - SAME NUMBER OF BITS IN INPUT AND OUTPUT. THIS PERMUTATION IS INVERTIBLE, BECAUSE EACH INPUT BIT IS TIED TO ONE OUTPUT BIT.

(b) CYCLIC-CYCLE LEFT 1 BIT IS IL. LUSTRATED

(c) EXPANDED - OUTPUT HAS MORE BITS THAN INPUT

(d) CONTRACTED - OUTPUT HAS FEWER BITS THAN INPUT
FIGURE 1
PERMUTATIONS WITH 4-BIT INPUTS

(a) BALANCED

(b) EXCLUSIVE OR (MODULO 2 BIT-BYBIT ADDITION)

(c) EXPANDED

(d) CONTRACTED

FIGURE 2
SUBSTITUTIONS WITH 4-BIT INPUTS
serve bit values between input and output.
In fact, an invertible balanced permutation (Figure 1a) may be regarded as a balanced substitution (Figure 2a) in which the number of output 1 s is equal to the number of input 1 s and the number of output 0 s is equal to the number of input 0 s for every input bit combination.
The distinction between an invertible process and a noninvertible process may be seen in figures $3 \mathrm{a}, 3 \mathrm{~b}$ and 3 c . In Figure 3 a , every output bit combination (000 , 001 . . 111) occurs only once, and every input bit configuration has a corresponding output.
With these characteristics, the inverse of the process can be constructed, as shown in Figure 3b.
By contrast, the process shown in Figure $3 c$ is not invertible because the output configurations 110 and 101 occur twice and the configurations 000 and 010 . do not occur at all.
Thus, if an attempt were made to construct the inverse of Figure $3 c$, the outputs would be undefined for input values of $000,010,101$ and 110.
The invertibility property may also be applied to permutations. A permutation is invertible if each input bit is tied to one and only one output bit.
The cyclic permutation, Figure 1 c , is a special case of an invertible balanced permutation. The inverse of Figure 1c would be a "cycle right 1 bit" process.
As indicated in Figure , 2, substitution may be regarded as a table lookup procedure which could be used if the function were performed by a microprocessor or could be realized by a network of logic gates.
As indicated in the standard, the method of implementation is up to the individual hardware designer.
Taking this one step further, there's no
reason why such a function can't be executed by software on a general-purpose computer, although dedicated cus-tom-tailored hardware will accomplish the task most efficiently.
The most intriguing class of substitution, the exclusive OR process, is shown in Figure 2b; a typical truth table is given in Figure 3d.
The process is not only invertible but self-invertible. Suppose an input bit sequence of:

$$
a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}
$$

produces a given output sequence of:
$b_{n}, b_{n-1}, \ldots, b_{1}, b_{0}$
If, instead,
$b_{n}, \ldots b_{0}$
is applied as the input, the output will be

$$
a_{n} \ldots a_{0}
$$

The process may be generated by a circuit which has two inputs - data and a key with equal numbers of bits. Then the output is obtained by a bit-by-bit modu-lo-2 addition (exclusive OR) of the key bits and data bits.
The bit-by-bit transfer functions is given by:

$$
\begin{array}{cc}
0 & 0=0 ; \\
0 & 1=1 ; \\
1 & 0=1 ; \\
\text { and } & =1 \\
\mathbf{1} & 1
\end{array}
$$

where the \oplus sign symbolizes the exclusive OR operation.
In the encryption algorithm, as we shall see, the remarkable properties of the exclusive OR circuit permit a common logic to be used for encryption at one end of a transmission line and decryption at the other end.

$$
\begin{array}{lll|l|l|l|l|l|l|l|l}
a_{2} & a_{1} & a_{0} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline b_{2} & b_{1} & b_{0} & 6 & 5 & 1 & 4 & 7 & 0 & 8 & 2
\end{array}
$$

To look at the exclusive OR process in another light, it may be noted that, if Figure 3a represented the truth table of an exclusive OR function, then Figures 3a and 3 b would have been identical.
The expansion and contraction operations, where the number of output bits is not equal to the number of input bits, are used in several stages in the algorithm, along with balanced operations.

Two-Part Algorithm

The algorithm is composed of two distinct subfunctions: key generation and encryption/decryption.

Key generation (Figure 4) is the process of transforming a user-defined 64-bit key into a set of 16 different 48 -bit keys, each to be used in a different iteration of the encryption/decryption procedure.
The proposed standard defines the input/output relationships of all the con-
(a) BALANCED, INVERTIBLE

$$
\begin{array}{ll|l|l|l|l|l|l|l|l}
a_{2} & a_{1} & a_{0} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline b_{2} & b_{1} & b_{0} & 5 & 2 & 7 & 6 & 3 & 1 & 0
\end{array}
$$

(b) INVERSE OF (a) ABOVE

$$
\begin{array}{lll|l|l|l|l|l|l|l|l}
a_{2} & a_{1} & a_{0} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline b_{2} & b_{1} & b_{0} & 6 & 5 & 1 & 4 & 7 & 6 & 3 & 5
\end{array}
$$

(c) BALANCED, NOT INVERTIBLE

a_{2}	a_{1}	a_{0}	0	1	2	3	4	5	6	7
b_{2}	b_{1}	b_{0}	5	4	7	6	1	0	3	2

(d) EXCLUSIVE OR, USING A KEY VALUE $O F k_{2} k_{1} k_{0}=(101)_{2}=(5)_{8}$
(NOTE SYMMETRY OF INPUT-OUTPUT PAIRS. THE INVERSE OF THIS TRUTH table is equal to the original.)

b_{3}| a_{2} | a_{1} | a_{0} | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b_{2} | b_{1} | b_{0} | C | 5 | 2 | 4 | E | 6 | A |

(e) EXPANDED (4-BIT OUTPUT VALUES SHOWN IN HEXIDECIMAL NOTATION)

$$
\begin{array}{lll|l|l|l|l|l|l|l|l}
a_{2} & a_{1} & a_{0} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \mathbf{b}_{1} & b_{0} & 3 & 1 & 1 & 0 & 3 & 2 & 3 & 1
\end{array}
$$

(f) CONTRACTED (2-BIT OUTPUT)

FIGURE 3

TYPICAL TRUTH TABLES FOR THE CLASSES OF SUBSTITUTIONS ILLUSTRATED IN FIGURE 2, WITH 3-BIT INPUTS. INPUT AND OUTPUT VALUES ARE GIVEN OCTAL NOTATION UNLESS OTHERWISE NOTED.

tracted permutations given in Figure 4, as well as all of the other permutations and substitutions of the algorithm. The substitutions (other than exclusive OR) are defined in truth tables, as in Figure 3, and the permutations are delineated by showing tables of input/output bit "connections," illustrated symbolically in Figure 1.

Each contracted permutation in Figure 4 is actually composed of a balanced permutation followed by a cycle left operation and a contracted permutation. The result is logically equivalent to a series of contracted permutations, as indicated in the figure.
Strictly speaking, a user could supply $(\mathrm{KEY})_{1}$ through (KEY) ${ }_{16}$ directly, without building the hardware to perform the permutations, since all of the 48-bit keys can be predicted for any given 64-bit master key.
For example, an off-line program could easily print a series of keys that could be loaded simultaneously into the 48 -bit registers, for each of a limited number of master keys.
Such an approach may be reasonable because the intent of the algorithm appears to be to use a given master key over a long period of time - a matter of hours, days or weeks, for instance.
This conclusion is inferred from the
language of the proposed standard, which states, "Data may be protected against unauthorized disclosure by generating a random key and issuing it to the authorized users of the data."
This indicates it isn't necessary to supply a new 64 -bit key for every 64 -bit data block. That would require synchronizaation of the encrypting and decrypting key generators so the same key could be used to encipher and decipher each data block.
Instead, a federal agency with a timesharing system or a remote batch operation can select, for example, a daily key to be used at each transmitting site and the central processing facility. Obviously, any private organization choosing to adhere to the standard can use the same technique for its own operations.
The encryption/decryption process itself is shown in Figure 5. It consists of several steps to be performed on each 64-bit input data block: an initial balanced permutation; a series of 16 iterations of a complex cipher, each iteration using a separate 48 -bit key; a cycle left 32 bits (nothing more than an interchange of the left and right half-word); and a final balanced permutation which is chosen to be the inverse of the initial balanced permutation.
The decryption process uses precisely
the same bit manipulation stages as the encryption algorithm. The only difference is that the keys are used in the reverse order, beginning with (KEY) ${ }_{16}$ and ending with (KEY) ${ }_{1}$.
Figure 6 shows the $n^{\text {th }}$ iteration in the encryption process, a complex function that encompasses permutation, substitution, expansion and contraction.
If the same process is used for decryption, it can be shown that .

$$
\begin{aligned}
& L_{O D}(\text { decryption })=R_{16 E}(\text { encryption }) \\
& R_{O D}=L_{16 E}, L_{1 D}=R_{15 E}
\end{aligned}
$$

and so on. Thus, following the final exchange of left and right half-words and the final permutation, the output of the decryption process is equal to the input to the encryption process, where it all began.
It is worth noting the nature of the contracted substitution in Figure 6, which is composed of a set of eight so-called "primitive functions," each with a 6-bit input and a 4-bit output.
These functions are recommended for inclusion in the algorithm, so there's an implication the user can choose his own primitive functions or his own contracted substitution if he wishes.
This contrasts with the practice (in the proposed standard) of dictating all of the other bit manipulation functions, without any hint of freedom of choice for the user.

8080 TECO and
FLOATING POINT PACK
Dear Jim, June 23, 1976
Congratulations on the Journal! This approach to software development and to Tiny BASIC in particular is most stimulating.

I would, however, be interested in seeing more support of the 8008 -based systems. Presently, I'm running a modified Mark 8 with 15 K RAM, 1K ROM operating system, 256 level hardware stack, TVT-I, Suding Calculator interface, ASCII keyboard, National Multiplex Digital Data Recorder (2400 baud) driven by serial-parallel interface of my own design.

Recently, I've been working on and have nearly debugged a 4 K emulation of most of the commands of DEC's TECO, a powerful text editor. Unfortunately, I have neither an assembler or hardcopy printer, and hand documentation for publication is too time consuming. Any suggestions as to methods of placing TEXTED (as I call it) before the public eye would be appreciated. [Suggestions, anyone?]

Tiny BASIC is intriguing, but a bit too tiny. Floating point capabilities are a must. Hence, for the last week, I've been working on a software package for the Suding Calculator. Up and running (with only one or two known bugs) are routines to read/write from/to the Calculator, input to RAM storage a floating point number from keyboard, output from RAM storage a floating point number to TVT.

To assist anyone working with the Calculator and to invite comments from readers, I offer these notes:

1) Storage format for FP numbers. After long consideration, I have decided upon a 5 (8-bit) word convention as follows:

In the format above, the 8 significant digits from the Calculator are stored two BCD (0-9) digits per word as represented by $D_{1}-D_{8}$ with the sign of the entire number indicated by the sign bit "S" (1 if negative). The exponent or scale factor "EXP" is stored in 7 bit, two's complement binary with the assumed decimal point falling after the last digit, D_{8}. Thus, the useful range is from ± 1. $x 10^{-64}$ to $\pm 99999999 . x 10^{\dagger 63}$. Although this format is not as compact as a signed magnitude or two's complement binary, it results in considerable savings of time and programming effort in reading/writing from/to the Calculator.
2) Output printing format for FP numbers. Numbers are printed with a leading negative sign (if appropriate) as floating point in the range of ± 0.00000001 to ± 99999999, and as scientific notation in the range of $\pm 9.9999999 \mathrm{E}-09$ to $\pm E-64$ and of $\pm 1 E+08$ to $\pm 9.9999999 E+70$.
3) FP Package calling sequences. It is planned to have Register A contain an operation code (i.e., output, input, multiply, divide, etc.), Registers H and L a pointer to the

RANDOM DATA

by Robert Reiling
(reprinted with permission from
Homebrew Computer Club Newsletter, Vol. 2, No. 5)
Kenneth Young wrote in with a report of the last Southern California Computer Society (SCCS) meeting and inlcuded his observations about the Altair 8800B. The following exerpt is from Ken's letter: "Pat Ward and David Bunnell of MITs were one of the vendors at the meeting and they were showing off the Altair 8800B. Iliked it. They cleaned up their computer a lot. I feel that this machine is comparable to the IMSAI 8080 with a 22 -slot motherboard and fan. Unfortunately, the Altair $8800 B$ will cost about $\$ 840$ in kit form. The IMSAI 8080 with a 28-Amp power supply, 22-slot motherboard and fan costs $\$ 680$ (IMSAI does not charge that insulting 5\% handling fee anymore, so I have been told). The two computers are a little different, but I do feel they are comparable to one another. However, I do not feel that the Altair 8800B should cost more than the IMSAI. My conclusion is that the IMSAI is still a better deal than the Altair."

Jef Raskin's discussion of FLOW, an instructional computer programming language, at the May 26th meeting of the Homebrew Computer Club interested quite a few members. For a brief discussion of the language, have your librarian get a copy of Computers And The Humanities, Vol. 8, pp 231-237, Pergamon Press, 1974.

5 word FP accumulator in which the result is formed on return, and Registers D and E a pointer to the 5 word FP operand (where applicable). This use of two word address pointers would simplify linkage of the FP package to existing Tiny BASICs now using two word integer arithmetic and operation stacks. Other planned operations (besides the functions provided by the Calculator) would include FP compare, clear, move, and scale.
4) Bugs. Suding's suggested procedure of outputting a Digit 9 request and waiting for the Data Available MSB line to gotrue to indicate that the Calculator"s internal calculations are completed does not allow sufficient time for long calculations such as y^{x} or N!. Any suggestions would be appreciated. Calculator functions DGR/RAD and Σ do not seem to work or else I'm using them incorrectly.

I'll keep plugging away at a Calculator FP package and if time permits, write up the results for $D D J$. [Do! Do!] I've also had considerable experience developing expression handlers using Polish notation and operation stacks. So I'll also be thinking of developing multi-parameter function call and return sequences. Meanwhile, keep those Journals coming!!!! Sincerely,
William E. Severence, Jr. Center Lovell ME 04016 William E. Severance Realtors (207) 925-2271
P.S. Our DEC Datasystem 310W should be arriving in another $11 / 2$ months. If I decide to purchase the scientific operating system with assembler, I'll hopefully be able to write an 8008 cross-assembler.

Floating Point Routines for the 6502

by Roy Rankin, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
(415) 497-1822
and
Steve Wozniak, Apple Computer Company
770 Welch Road, Suite 154
Palo Alto, CA 94304
(415) 326-4248

Editor's Note: Although these routines are for the 6502, it would appear that one could generate equivalent routines for most of the "traditional" microprocessors, relatively easily, by following the flow of the algorithms given in the excellent comments included in the program listing. This is particularly true of the transcendental functions which were directly modeled after well-known and proven algorithms, and for which, the comments are relatively machine-independent.

These floating point routines allow 6502 users to perform most of the more popular and desired floating point and transcendental functions, namely:

```
Natural Log - LOG
Common Log - LOG10
    Exponential - EXP
    Floating Add - FADD
    Floating Subtract - FSUB
    Floating Multiply - FMUL
    Floating Divide - FDIV
    Convert Floating to Fixed - FIX
    Convert Fixed to Floating - FLOAT
```

They presume a four-byte floating point operand consisting of a one-byte exponent ranging from -218 through +127 , and a 24-bit two's complement mantissa between 1.0 and 2.0.

The floating point routines were done by Steve Wozniak, one of the principals in Apple Computer Company. The transcendental functions were patterned after those offered by Hewlett-Packard for their HP2100 minicomputer (with some modifications), and were done by Roy Rankin, a Ph.D. student at Stanford University.

There are three error traps; two for overflow, and one for prohibited logarithm argument. ERROR (1DO6) is the error exit used in event of a non-positive log argument. OVFLW (1E3B) is the error exit for overflow occuring during calculation of e to some power. OVFL (1FE4) is the error exit for overflow in all of the floating point routines. There is no trap for underflow; in such cases, the result is set to 0.0 .

All routines are called and exited in a uniform manner: The argument(s) are placed in the specified floating point storage locations (for specifics, see documentation preceeding each routine in the listing), then a JSR is used to enter the desired routine. Upon normal completion, the called routine is exited via a subroutine return instruction (RTS).

Note: The preceeding documentation was written by the Editor, based on phone conversations with Roy and studying the listing. There is a high probability that it is correct. However, since it was not written nor reviewed by the authors of these routines, the preceeding documentation may contain errors in concept or in detail.
-- JCW, Jr.

In the Exponent:
(00 Represents - 128
7F Represents -1
80 Represents 0
81 Represents +1

FF Represents +127

[^2]\mathrm{ REM (ITS SIGN IS CHANGED)
0770 FOR K=1 TO 9
0780 IF(F(X)/S(K))*S(K)=F(X) S(K)=-S(K
0790 NEXT K
08GE RETUPN
gegig REM THIS SUBROUTINE PRINTS OUT THE GALAXY
OCB20 REM STATEMENT 950Ø DOES A HOME UP AND ERASE OF SCREEN ON TVT
OD830 REM EQUIPPED UITH COMPUTER CURSOR CONTROL.
08BAE PRINT"<CNTRL-P><CNTRL-V>"
00850 FOP J=1 TO 9
0860 if S(J)<0 PFINT
087% IF S(J)>6 PRINT" \#"";
0080 REM IF J ISN'T DIVISIBLE BY 3, SKIP CARRIAGE RETURNSo
0890 IF J/3官3<>J GO TO 920
9%% PRNT
910 P品阬
910 PFENT
920 N- ERT J
ABEIR END OF SUBROUTINE AND GAME
950 END
So EvD

```

\section*{A PL／6800 CROSS COMPILER}

Intermetrics， 701 Concord Ave．，Cambridge MA 02138，is reported to have a PL／M－type cross compiler for the 6800.

\section*{SINGLE－CHIP CONTROLLER FOR 6800}

Motorola has scheduled a single－chip controller for the \(6800 \mathrm{~m}-\mathrm{p}\) for delivery around the second quarter of 1977. Designated the 6802，it will have 8 K bits of ROM， 256 bits of RAM，and will include I／O capabilities．

（ANOTHER）L．A．STORE：
THE DATA CENTER
Gentlepersons：
May 13， 1976
We are currently opening＂The Data Center，＂another micro－computer store，in the Los Angeles area．

Sincerely，
Mel Norell
General Manager
Programma
3400 Wilshire Blvd． Los Angeles CA 90010

\section*{SPACE GAMES MARATHON（IN MENLO PARK，CA）}

The Community Computer Center， 1919 Menalto， Menlo Park，CA 94025，is having a computer marathon on August 20th and 21 st．During the 24 －hour period be－ ginning at 9 PM，Friday evening，the Center will offer reduced rates for computer time（ \(\$ 1.20 /\) hour），and will charge a one－time admission fee of 50 cents．There will be 25 door prizes each being an hour of free computer time at the Center．

There will be for－fun（non－prize）competition for such things as most ships destroyed，longest time，etc．

\section*{6800 TBX FOR FREE ．．．} BUT IT＇S SOFTCOPY

Dear Folks，
12 June 1976
The receipt yesterday of \(D D J\)［Vol．1，No．3］，and the continued inability or unwillingness of Sphere to deliver a BASIC interpreter has motivated me to write you with some good news and some bad news．

First，the good news：
I am willing to place in the public domain a running version of TBX which I developed for my 6800 （Sphere）system．It contains all of the features of TBX as published in DDJ［Vol．1，No．2］，including the DATA statement；plus REMarks，LOAD \＆SAVE（tape cassette commands），EDIT \＆CLEAR（CRT commands），and PRINT format－ ting with a＇：＇for concatenation with no space．

Now the bad news：
My listing is in the same sort of shape as the TBX one you published－probably for the same reasons－i．e．，hand－written on about 55 IBM assembler coding sheets，hand－assembled into hex．

Additionally，the code jumps about to patch locations，is CRT－ oriented，and uses routines in the Sphere－supplied PROM monitor whenever possible．

If you would be interested in publishing this，（and can scrape up the necessary volunteer labor to type it into your format）I will send you a copy of the listing plus a page or so of comments about the significant differences from TBX as you published it．Please let me know．

Sincerely，
Chuck Crayne
734 S．Ardmore Ave Los Angeles CA 90005

Well，all you 6800 fans who have been yelling for software ．．． How＂bout pitching in and gening some publishable＝sharable hardcopy and documentation？－JCW，Jr．

\section*{NTS}

\section*{AMII 6800 EVALUATION KIT INCLUDES TINY BASIC}

American Microsystems，Inc．， 3800 Homestead Rd．， Santa Clara，CA 95051，is marketing a 6800 Microprocessor Evaluation Board．It includes the 6800 version of Tiny BASIC， a ROM－resident prototyping operating system，and a built－in EPROM programmer．In kit form with a PC（evidently with－ out memory？），it is \(\$ 295\) ．With 512 bytes of EPROM，the kit is \(\$ 595\) ．A fully assembled kit with 2 K bytes of EPROM is \(\$ 950\) ．

人x，

\section*{SOMEONE COPIES 6800 TINY BASIC．．．AND PAYS，ANYWAY}

Tom Pittman，［Box 23189，San Jose，CA 95153］who is offering an excellent version of Tiny BASIC for the 6800 for \(\$ 5\) ，told us of receiving a five dollar payment from someone who said he had already copied the documentation and paper tape （from a friend）and was sending the payment＂retroactively＂．

FAR OUT！（As we used to say in the＇60＇s）．We applaud and encourage such actions by hobbyists．We feel Tom is charging a fair price for a good product．This case supports our theory that reasonably priced software will not be＂ripped off \({ }^{\prime \prime}\) by hobbyists．

We actively encourage the continuation of such ethical behavior on the part of hobbyists，relative to fairly－priced software．We believe that it will encourage Tom and other com－ puter pros to continue to develop excellent software and offer it to the hobbyist community at reasonable prices．We applaud such action by vendors such as Processor Technology，Apple Computer，Southwest Texas Products，Digital Research，and others．


\section*{MINOL: TINY TREK-}

\section*{MORE DETAILS \& A CORRECTION}

Dear Jim,
July 12, 1976
If you are planning to publish the TINY TREK game, here are some additional details and corrections.

Sincerely,
Erik Mueller
Britton House
Roosevelt NJ 08555
Too late! We have already published it in \(D D J\) Vol. 1. No. 6. -JCW
TINY TREK
(written for MINOL)
A Sample TVT screen update looks like this:
1234567
1 . K


\section*{7 UNIT HIT FROM KLINGON}

\section*{COMMAND?}

On the space printout, the " \(K\) " represents a Klingon ship; the ".". a star; the "B", a starbase; and the "E", the Enterprise. The purpose of the game is to wipe out all the Klingons
without the energy dropping below 60.

\section*{COMMANDS}
1. Go to new sector (move within quadrant). The amount of energy used depends on the distance traveled.
2. Go to a new quadrant. The galaxy is made up of an infinite amount of quadrants (such as the one above) which are generated when you move to them. You wll never see the same quadrant twice, and you have no control over where you go. The amount of Klingons in a quadrant is always less than or equal to the amount left in the galaxy.
3. Fire phasers. You fire phasers to destroy Klingons. The amount of energy used depends on the distance away from the Enterprise.

Traveling or firing through obstructions is OK, although you may not move to an occupied sector.

Refuelling is accomplished by "orbiting" a starbase: Maneuver yourself to within one unit of it, and then move to adjacent sectors until your energy goes back up to 255 .

Corrections to listing previously sent:
```

3 X=1 : A=0 : S=250 : T=250
10 J=J+1 : IF A=W; GOTO12 : IF J<8; GOTO9
16 (delete)
13(12,E-1*8+f+200)=3:IF 150<!; GOTO17
39 X=X+1 : IF X 8; GOTO22 : PR : IF L<50 ; GOTO170

```

```

ERRATA FOR COATS.
TVT-2 KEYBOARD LOADER

```

Bob,
6/18/76
I just received a copy of Dr. Dobb's Journal Volume 1, No. 3. I was looking over my program on page 16 ["Keyboard Loader for Octal Code via the TVT-2"0] , and I noticed an error. The label GO should be at 006, and location 061 should contain 006.

Keep up the good work.
Jack O. Coats, Jr
213 Argonaut, No. 27
El Paso TX 79912

\section*{MINOL Errata \& Praise}

Dear Jim:
July 5, 1976
I have just received a letter from Joseph F. Gaffney listing.a zillion errors or typos in the MINOL listing. Below is a list of the corrections that should be made. Apparently, the listing has been published. But I still haven't received the issue or any issues after the third. Please check with the subscription department for me. **ERRORS** (Most of them
were pointed out by Joseph F. Gaffney, 321 Lyndhurst Ave., Lyndhurst NJ 07071.)

Changes are underlined.
\begin{tabular}{|c|c|c|c|}
\hline GSM & \[
\begin{aligned}
& 001106 \\
& 002345
\end{aligned}
\] & \(303013 \quad 001\) & \\
\hline \multirow[t]{8}{*}{ACT} & 003123 & & \\
\hline & 003211 & & CPI "(") \\
\hline & 003206 & 312371003 & \\
\hline & 003317 & 320 315 003 & \\
\hline & 003327 & \(\underline{016000}\) & MVI C 0 \\
\hline & 003333 & 312345003 & \\
\hline & 003375 & 303134003 & JMP, NXGT \\
\hline & 004043 & 303134003 & JMP, NXGT \\
\hline NXGT & \[
\begin{aligned}
& 003134 \\
& 004005
\end{aligned}
\] & \[
\underline{176}
\] & MOV A.M \\
\hline \multirow[t]{3}{*}{INPTXT} & 004052 & & \\
\hline & 004135 & 302144004 & \\
\hline & 004155 & 303057004 & JMP, INO \\
\hline \multirow[t]{6}{*}{CHEKN} & 005062 & & \\
\hline & 005256 & 312_276 005 & JZ, INU \\
\hline & \[
\begin{aligned}
& 006027 \\
& 006353
\end{aligned}
\] & \[
\begin{aligned}
& 376243 \\
& \underline{311}
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPI "伊" } \\
& \text { RET }
\end{aligned}
\] \\
\hline & 006053 & 322013001 & JC, LPBUB \\
\hline & 006056 & 303041001 & JMP, EXEC \\
\hline & 006101 & 302066006 & JNZ,SHME \\
\hline
\end{tabular}

Sincerely yours,
Erik T. Mueller
36 Homestead Lane
Roosevelt NJ 08555
Thanks for the errata. Your subscription was entered on May 19th. Issues no. 4 and no. 5 were mailed a week and a half apart, about a month prior to your letter. II encourage you to complain to your local congressional reps (complaining to the Post Office appears to be useless). II also mailed an extra copy of the issue in which MINOL appeared, separately.

Dear Mr. Warren,
July 19, 1976
Erik Mueller's MINOL version of Tiny BASIC in the April issue is fantastic, and I'm really enjoying it! I relocated it to fit with my monitor (a modified 'JAMON' [MITS User's Group]), and it's running with a Model 33 Teletype. Some of the MINOL subroutines are useful in other programs as well, and are easily called (particularly useful is PRINTXT). MINOL is fun, certainly, but it is also very amazing (how can it be so smart and yet so small?).

There were a few typographical errors which were easy to correct. Corrections (at the original addresses) are shown below.
\begin{tabular}{lll} 
Address & Was & Change to \\
\(001 / 350\) & 342 & 242 \\
\(002 / 050\) & 274 & 273 \\
\(002 / 346\) & OMITTED & 013,001 \\
\(03 / 207\) & 271 & 371 \\
\(003 / 317\) & 320 & 302 \\
\(003 / 320\) & OMITTED & 315,003 \\
\(03 / 327\) & OMITTED & 016,000 \\
\(003 / 334\) & OMITTED & 345,003 \\
\(004 / 005\) & OMITTED & 176 \\
\(004 / 060\) & OMITTED & 107 \\
\(004 / 137\) & OMITTED & 004 \\
\(005 / 256\) & OMITTED & 312 \\
\(005 / 257\) & DISPLACED & 276,005 \\
\(006 / 353\) & OMITTED & 311
\end{tabular}

As the program stands, the processor will enter an endless loop if you try to divide by zero. This doesn't hurt anything, but it does hang it up. To cure this, you might wish to add the following routine to test for division by zero. It adds Error 7.
\begin{tabular}{llll} 
Change: & \(003 / 326\) & \(315,000,004\) & CALL DIVO \\
DIVO * MOVAB & \(004 / 000\) & 170 & MOVE B TO A \\
ORAA & \(004 / 001\) & 267 & SET STATUS \\
MOVAC & \(004 / 002\) & 171 & MOVE C TO A; \\
& & & STATUS UN \\
& & & AFFECTED \\
MVIC & \(004 / 003\) & 016,000 & CLEAR C \\
RNZ & \(004 / 005\) & 300 & RETURN NOT \\
& & & ZERO \\
MVIB & \(004 / 006\) & 006,067 & ERR '7' \\
JMP & \(004 / 010\) & \(303,226,004\) & JMP ERR
\end{tabular}
*This is my 'relocated' code. Any convenient locations will do.

Yours truly,
Phillip L. Hansford
6841 Haywood St.
Tujunga CA 91042

\section*{EUGENE STORE:}

THE REAL OREGON COMPUTER CO.

\section*{Dear Bob,}

4/26/76
Indeed we are running a store and would love it if
you mentioned us. The store opened May 8.
Thanks,
John Montgomery
205 W 10th
The Real Oregon Computer Co.
Eugene OR 97401

\section*{NEW CLUB CONTACTS: VENTURA COUNTY COMPUTER SOCIETY}

VCCS is a Chapter of the Southern California Computer Society. Its mailing address is P.O. Box 525, Port Hueneme, CA 93041. For more direct responses, contact their Secretary, Fred Moeckel, 4240 Harbor Blvd. No.208, Oxnard, CA 93030.

\section*{Computer Music Bibliography}

\section*{by John Snell, Research Engineer, People's Computer Co. Box 310, Menlo Park CA 94025; 415 323-3111}

Digital circuits may be used for controlling analog synthesizers, direct digital synthesis, composing music, analyzing (or tracking several parameters of) traditional musical instruments and the voice, spacial movement of sounds, and processing of musical sounds (filtering, reverberation, choral effects, etc.). I hope the following list of articles and books will help some of you to develop systems which are capable of making music enjoyable even by master musicians. This list is relatively short, and includes only a "taste" of relevant topics not specifically about digital music. For a more comprehensive, well-organized listing see the bibliography from Electronotes (a fine electronic music periodical edited by Bernie Hutchins).
J. Allen, "Computer Architecture for Signal Processing," IEEE, Vol. 63, No. 4; April, 1975.
W. Apel, Havard Dictionary of Music, Halliday Lithograph, 1969.
J. Backus, The Acoustical Foundations of Music, W.W. Norton, 1969.
J.K. Baker, "The DRAGON System-An Overview," IEEE, Vol. ASSP-23, No. 1; Feb., 1975.
S.C. Bass, and B.J. Leon, "Designers' Guide to Digital Filters," EDN, Jan. - June, 1974 ( 6 issues).
J.W. Beauchamp \& H. Von Foerster, editors, Music by Computer, Wiley, 1969.
J.W. Beauchamp, "Analysis and Synthesis of Cornet Tones Using Nonlinear Interharmonic Relationships," JAES, Vol. 23, No. 10; 1975.
J.W. Beauchamp, "A Computer System for Time-Variant Harmonic Analysis and Synthesis of Musical Tones," Music by Computers, 1969.
J.W. Beauchamp, "Additive Synthesis of Harmonic Musical Tones", JAES, Vol. 14, No. 4, p. 332; 1966.
L. Beranek, "Digital Synthesis of Speech and Music," IEEE Transactions on Audio, Vol. AU-18, No. 4; Dec., 1970.
S. Bertram, "Frequency Analysis Using the Discrete Fourier Transform," IEEE Transactions on Audio and Electroacoustics, Vol. AU-18, No. 4; Dec., 1970.
B.A. Blesser, K. Baeder, \& R. Zaorski, "A Real-Time Digital Computer for Simulating Audio Systems," JAES, Vol. 23, No. 9, p. 698; 1975.
B.A. Blesser, "An Investigation of Quantization Noise," JAES, Vol. 22, No. 1, p. 20; 1974.
B.A. Blesser, \& F. Lee, "An Audio Delay System Using Digital Technology," JAES, Vol. 19, No. 5, p. 393; May, 1971.
E. Blom, editor, Grove's Dictionary of Music and Musicians, St. Martin's Press.
D. Bohn, editor, Audio Handbook, National Semiconductor Corp., Santa Clara, Cal.; 1976.
R.W. Burhams, "Digital Tone Synthesis," JAES, Vol. 19, No. 8; Sept., 1971.
R.W. Burhams, "Single-Bus Keyboard Control for Digital Musical Instruments," JAES, Vol. 19, No. 10, p. 865; Nov., 1971.
R.W. Burhams, "Simplified Educational Music Synthesizer," JAES, Vol. 19, No. 2, p. 127; Feb., 1971.
R.P. Ceely, "A Composer's View of MITSYN," AES Preprint No. 811 (M-1), Oct., 1971.
H. Chamberlin, "Fourier Series Waveform Generator, Part 1"" EN, Vol. 5, No. 39, p. 2; May, 1974.
J.M. Chowning, J.M. Grey, L. Rush, \& J.A. Moorer, Computer Simulation of Music Instrument Tones in Reverberant Environments, Stanford University Dept. of Music Report No. STAN-M-1; June, 1974.
J.M. Chowning, "The Simulation of Moving Sound Sources," JAES, Vol. 19, No. 1, p. 2; Jan., 1971.
J.M. Chowning, "The Synthesis of Complex Audio Spectra by Means of Frequency Modulation!" JAES, Vol. 21, No. 7, p. 526; Sept., 1973.
J.M. Chowning, "Stanford Computer Music Project," NW, No. 1; 1972.
W. Cochran, J. Cooley, D. Favin, H. Helms, R. Kaenel, W. Lang, G. Maling Jr., D. Nelson, C. Rader, P. Welch, "What is the Fast Fourier Transforme" IEEE, Vol. 55, No. 10, p. 1664; Oct., 1967
R. Crochiere, \& P. Penfield, Jr., "On the Efficient Design of Bandpass Digital Filter Structures, \({ }^{\circ \prime}\) IEEE, Vol. ASSP-23; 1975.
M.G. Crosby, "Carrier and Side-Frequency Relations with Multi-Tone Frequency or Phase Modulation," RCA Review, Vol. 3; 1938.
D.R. Curtis, "A Monolithic Voltage-Controlled Amplifier Employing Log-Antilog Techniques," JAES, Vol. 24, No. 2; March, 1976.
D. De Kold, "Binary Division Produces Harmonic Frequencies," Electronics, Dec., 1972.
J.L. Divilbliss, "The Real-Time Generation of Music with a Digital Computer," JMT, No. 8, p. 99; 1964.
J. Dubnowski, R. Schafer, \& L.R. Rabiner, "Real-Time Digital Hardware Pitch Detector, IEEE, Vol. ASSP-24, No. 1; Feb., 1976.
J.L. Flanagan \& L.R. Rabiner, editors, Speech Synthesis, Dowden, Hutchinson, \& Ross; 1973.
A. Forte, Tonal Harmony in Concept and Practice, Holt, Rinehart, \& Winston; 1962.
N.V. Franssen \& L. Van der Peet, "Digital Tone Generation for a Transposing Keyboard Instrument," Philips Tech. Revo, No. 31, p. 354; 1970.
M.D. Freedman, "Technique for Analysis of Musical Instrument Tones," Ph.D. dissertation, University of Illinois, Urbana; 1965.
M.D. Freedman, "Analysis of Musical Instrument Tones, \({ }^{\text {o" }}\) JASA, No. 41, p. 793; 1967.
M.D. Freedman, "A Method for Analyzing Musical Tones,"

JAES, Vol. 16, No. 4, p. 419; Oct., 1968.
S. Freeny, "Special-Purpose Hardware for Digital filtering,"

IEEE, Vol. 63, No. 4; April, 1975.
R. Gabel, "A Parallel Arithmetic Hardware Structure for Recursive Digital Filtering," IEEE, Vol. ASSP-22; Aug., 1974.
J. Gabura \& G. Ciamaga, "Computer Control of Sound

Apparatus for Electronic Music," AES preprint No. 520; 1967.
S. Gill, "A Technique for the Composition of Music in a

Computer," Computer Joumal, Vol. 6, No. 2, p. 129; July, 1963.
J.M. Grey, An Exploration of Musical Timbre, Stanford University Dept of Music Report No. STAN-M-2; Feb., 1975.
P. Grogono, "MUSYS: Software for an Electronic Music Studio," Software-Practice and Experience, No. 3, p. 369; 1973.
H.L.F. Helmholtz, On the Sensations of Tone as a Physiological Basis for the Theory of Music, translation-originally written in German in 1863-and additions by A.J. Ellis, Dover, N.Y.; 1954.
W. Henke, Multiple Interactive Tone Synthesis System, Research Laboratory of Electronics, M.I.T.; Oct., 1971.
L. Hiller \& L. Isaacson, "Musical Composition with a HighSpeed Digital Computer," JAES, Vol. 6, p. 154; July, 1958.
L. Hiller, "Computer Music," Scientific American, p. 109; Dec., 1959.
L. Hiller, "A Review of Decca Recording DL-9103, 'Music from Mathematics"," IEEE, Vol. 51, No. 3, p. 538; March, 1963.
L. Hiller, "Musical Applications of Electronic Digital Computers," Gravesano Review, pp. 26-28; Nov., 1965.
C. Hovey \& D. Seamans, "A Polyphonic Keyboard for a Voltage-Controlled Music Synthesizer," JAES, VoI. 23, No. 6, p. 459; 1975.
K. Huehne, "Programmable ROM's Offer a Digital Approach to Waveform Synthesis," EDN, Aug., 1972.
B. Hutchins, "B-004 Sourcelist of Electronic Music and Musical Engineering," \(E N, 1975\).
B. Hutchins, Musical Engineer's Handbook, (EN address) 1975.
B. Hutchins, "The Frequency Modulation Spectrum of an Exponential Voltage-Controlled Oscillator " JAES, Vol. 23, No. 3, p. 200; 1975.
B. Hutchins, "Application of a Real-Time Hadamard Transform Network to Sound Synthesis, JAES, Vol. 23, No. 7, p. 558; 1975.
B. Hutchins, "Digital Harmonics 1, Waveshaping 2," \(E N\), Vol. 2. No. 12, p. 5; Sept., 1972.
B. Hutchins, T. Mintner, \& C. Anderton, "Digital Harmonics 200 \(E N\), Vol. 2, No. 13, p. 12; Oct. 1972.
B. Hutchins, ""Analog Delay for Musical Engineering, \({ }^{\circ 0}\) EN, Vol. 7. No. 56; Aug., 1975.

IEEE, Vol. 63, No. 4, special issue on digital signal processing; April, 1975.
F. Itakura, \& S. Saito, "Digital Filtering Techniques for Speech Analysis and Synthesis," in Conf. Rec., 7th Int. Congr. Acoustics, Paper 25C No. 1; 1971.

EV. Jansson, \& J. Sundberg, "Long-Time-Average-Spectra Applied to Analysis of Music," Acustica, Vol. 34, No. 1; Nov., 1975. L.B.W. Jolley, Summation of Series, Dover, N.Y.; 1961.
P. Knowlton, "Capture and Display of Keyboard Music," Datamation, P. 56; May, 1972.
S. Kriz, "A \(16-\) Bit \(A-D-A\) Conversion System for High Fidelity Audio Research," IEEE Symposium on Speech Recognition, p. 278; April, 1974.
P. Lehman, "Harmonic Structure of the Tone of the Bassoon," JASA, Vol. 36, No. 9, p. 1649; Sept., 1964.
V. Lesser, D. Fennell, L. Erman, \& R. Reddy, "Organization of Hearsay II Speech Understanding System," IEEE, Vol. ASSP-23, No. 1; Feb., 1975.
T. Letowski, "Difference Limen for Nonlinear Distortion in Sine Signals and Musical Sounds," Acustica, Vol. 34, No. 2; Dec., 1975.
H. Lincoln, editor, The Computer and Music, Cornell University Press; 1970.
J. Link, Theory and Tuning: Aron's Meantone Temperament and Marpsurg's Temperatment "I", Tuners Supply Co., Boston; 1969.
B. Lin, \& A. Peled, "A New Hardware Realization of High Speed Fast Fourier Transformers," IEEE, Vol. ASSP-23, No. 6; Dec., 1975.
H.C. Longuet-Higgins, \& M.J. Steedman, On Interpreting Bach in Machine Intelligence VI;'B. Meltzer; \& D. Michie, editors, Edinburgh University Press, Edinburgh; p. 221; 1971.
D. Luce, "Description of a Real-Time Multipartial Waveform Analyzer-Synthesizer," AES preprint No. 611; 1968.
D. Luce, "Dynamic Spectrum Changes of Orchestral Instruments," JAES, Vol. 23, No. 7; 1975.
D. Luce, \& M. Clark, "Physical Correlates of Brass Instrument Tones," JASA, Vot. 42, p. 1232; 1967.
M. Mathews, The Technology of Computer Music, M.I.T. Press, Boston; 1969.
M. Mathews, et. al., "Computers and Future Music," Science, Vol. 183, No. 4122; Jan. 25, 1974.
N. Mathews, "The Digital Computer as a Musical Instrument," Science, Vol. 142, p. 553; 1963.
M. Mathews, \& J. Kohut, "Electronic Simulation of Violin Resonances, \({ }^{\text {e0 }}\) JASA, No. 53, p. 1620; 1973.
C.A. McGonegal, L.R. Rabiner, \& A.E. Rosenberg, "A Semiautomatic Pitch Detector "i IEEE, Vol. ASSP-23, No. 6; Dec., 1975.
N.J. Miller, "Filtering of Singing Voice Signal from Noise by Synthesis," Ph.D. thesis; University of Utah, Dept. of Computer Science; May, 1973.
N.J. Miller, "Pitch Detection by Data Reduction," IEEE, Vol. ASSP-23, No. 1, pp. 72-78; Feb., 1975.
F.R. Moore, \&i M. Mathews, "Grove-A Computer Program for Real-Time Music and Sound Synthesis," Communications of the ACM, Vol. 13, No. 12; Dec., 1970.
J.A. Moorer, "The Optimum Comb Method of Pitch Period Analysis of Continuous Digitized Speech "' IEEE, Vol. ASSP-22, No. 5, p. 330; Oct., 1974.
J.A. Moorer, "Music and Computer Composition," Communications of the ACM, Vol. 15, No. 2; Feb., 1972.
J.A. Moorer, On the Segmentation and Analysis of Continuous Musical Sound by Digital Computer, Stanford University Dept. of Music Report No. STAN-M-3; May, 1975.
J.A. Moorer, The Synthesis of Complex Audio Spectra by

Means of Discrete Summation Formulae, Stanford University Dept. of Music Report No. STAN-M-5; Dec., 1975.
J.A. Moorer, On the Loudness of Complex Time-Variant Tones, Stanford University Dept. of Music Report No. STAN-M-4; Feb., 1975. NUMUS West, No. 4; 1973. (computer music issue)
T.H. O'Beirne, "Computer Program Which Plays Music by Microtones," Computer Journal, Vol. 13, No. 4, p. 350; 1970.
A.V. Oppenheim, \& R.W. Schafer, Digital Signal Processing, Prentice Hall; 1975.
W. Piston, Counterpoint, W.W. Norton Publishers.
W. Piston, Orchestration, W.W. Norton Publishers.
G. Plitnik, \& W. Strong, "Digital Filter Technique for Synthesis of Bassoon Tones, "JASA, No. 47, p. 131; 1970.
R. Plomp. "Timbre as a Multidimensional Attribute of Complex Tones," Frequency Analysis and Periodicity Detection in Hearing, edited by R. Plomp \& G.F. Smoorenburg; A.W. Sijthoff, Leiden; 1970.
L. Rabiner \& B. Gold, Theory and Applications of Digital Signal Processing, Prentice-Hall, N.J.; 1975.
L. Rabiner \& C. Rader, editors, Digital Signal Processing, IEEE Press; 1972.
J.C. Risset \& M. Mathews, "Analysis of Musical Instrument Tones," Physics Today, Vol. 22, No. 2, p. 23; 1969.
J.C. Risset, "Computer Study of Trumpet Tones," Bell Telephone Lab, Murray Hill, N.J.; 1966.
P. Samson, "Digital Signal Synthesizer," Systems Concepts, San Francisco, Cal.
P. Samson, "Digital Synthesizer-Brief Functional Description," Systems Concepts, San Francisco, Cal.
P. Samson, "Digital Synthesizer-Programming Specifications," Systems Concepts, San Francisco, Cal.
S. Saunders, "FM The Easy Way," Carnegie Mellon University Computer Science Dept \& Xerox PARC; 1974.
R.A. Schaefer, "Digital Generation of Equal Temperament,"

IEEE, Vol. AASP-23, No. 4; Aug., 1975.
M. Schroeder, "Natural Sounding Artificial Reverberation,

JAES, Vol. 10, p. 219; 1962.
M. Schroeder, "Models of Hearing," IEEE, Vol. 63, No. 9; Sept., 1975.
R. Schumacher, "Self-Sustained Musical Oscillators," paper delivered at the 91 st meeting of the Acoustical Society of
America; April, 1976.
J. Sennott, "Efficient Digital Conversion of Audio Signals," AES preprint No. 970 (M-4); Sept., 1974.
W. Slawson, Syntal II; A Speech Oriented Computer Synthesizer Revisited, Dept. of Music, University of Pittsburgh, Pa.
W. Slawson, "Vowel Quality and Musical Timbre as Functions of Spectrum Envelope and Fundamental Frequency," JASA, No. 43, p. 87; 1968.
G.W. Small, "Synthesis of the Musical Scale Using Non-integer Frequency Division," JAES, Vol. 21, No. 4, p. 261; May, 1973.
G.W. Small, "Rate-Feedback Binary Counters in Musical Scale

Generation," JAES, Vol. 21, No. 9, p. 702; Nov., 1973.
L. Smith, "Score-A Musician's Approach to Computer Music,"

JAES, Vol. 20, No. 1; Jan./Feb., 1972.
L. Smith, "Editing and Printing Music by Computer," JMT, p. 292; Fall, 1973.
S. Smith, "Computer Music in 1972," Computers and Automation, Oct., 1972.
G. Steinke, "Experimental Music with the Subharchord Subharmonic Sound Generator," JAES, Vol. 14, No. 2, p. 140; April, 1966.
S.S. Stevens \& H. Davis, Hearing-Its Psychology and Physiology, Wiley, N.Y.; 1938.
T.G. Stockham, Jr., "A-D and D-A Converters: Their Effect on Digital Audio Fidelity," AES Preprint No. 834 (D-1), Oct., 1971.
W. Strong \& M. Clark, "Synthesis of Wind-Instrument Tones," JASA, Vol. 41, p. 39; 1967.
W. Strong, \& M. Clark, "Perturbations of Synthetic Orchestral Wind-Instrument Tones," JASA, No. 41, p. 277; 1967.
R. Talambiras, "Digital-to-Analog Converters: Some Problems in Producing High Fidelity Systems," Computer Design, Vol. 15, No. 1, p. 63; Jan., 1976.
J.C. Tenny, "Sound Generation by Means of a Digital Computer," JMT, No. 7, p. 24; 1963.
H.M. Tremaine, Audio Cyclopedia, Sams, N.Y.; 1969.
D.E. Walker, "The SRI Speech Understanding System," IEEE, Vol. ASSP-23, No. 5, Oct., 1975.
L. Wedin \& G. Goude, "Dimensional Analysis of the Perception of Instrumental Timbre," Scand. Jour. Psych., No. 13, P. 228; 1972.
S. White, "On Mechanization of Vector Multiplication," IEEE, Vol. 63, No. 4; April, 1975.
T. Winograd, "Linguistics and the Computer Analysis of Tonal Harmony," JMT, Vol. 12, No. 1; p. 2; 1968.
J. Zingheim, "Introduction to Computer Music Techniques," EN, Vol. 6, No. 42, p. 1; Aug., 1974.

ABBREVIATIONS USED, AND ADDRESSES
ACM Association for Computing Machinery
Acustica, S. Hirzel, Stuttgart 1, Birkenwaldstr, 44, Postfach 347, Germany.
AES
Audio Engineering Society
ASSP IEEE Transactions on Acoustics Speech and Signal Processing


\section*{AMBIGUITY ABOUT ADVERTISING}

The "Do You..." editorial in the preceeding issue mentioned the fact that we don't accept commercial advertising. This was in apparent contradiction to the "Advertising" note printed inside the front cover, as well as to the obvious fact that we carry articles about commercial products. To clarify this point:

The "Advertising" policy inside the front cover has been corrected to reflect our current position. The preceeding policy was a tentative one, chosen when we first began. We had been automatically reprinting that information in each issue and neglected to note that it was inaccurate (blush).

We do, and will continue to, carry articles about commercial products and services. We are not paid for this, however. It is provided as information for our readers. These articles often concern items that are unusually good deals for hobbyists (and thus worth special mention), or items being offered by very small companies that are too small to afford the hefty advertising rates charged by the other publications.

Incidentally, you might note that we try to include address, telephone, and single unit pricing in these articles (when we know them); information often missing from paid-for advertisements.

IT WAS NOT

\section*{A "POLISH JOKE"}

There was a "digital calculator" cartoon on page 18 of the April, 1976, issue of \(D D J\) that included text: "Made in Hong Kong . . . Polish versions also available." Our production manager, who is an outstanding publications production person but not a computer phreaque, questioned our including a cartoon with an apparent racial slur. We explained the rather in-group pun that was involved, and put his mind at rest. It occurred to us that, although no one else has commented on the cartoon, it might be appropriate to explain the pun:

Handheld calculators use either infix or postfix processing for accepting a sequence of data and arithmetic operators. If infix processing is used, there must be some explicit means for indicating the sequence in which operations are to be performed. Commonly, parentheses are used (e.g., \(3 x(4+5)\) indicates that the + at the right is to be performed before the \(x\) at the left).

Postfix processing, however, is a very classy parentheses-free system in which the order of data and operator entry determines the order of operations (e.g., \(45+3 x\) produces the same result as the preceeding infix-coded example). The latter example says, Store 4 then Store 5 then Add last two elements stored and store the result then Store 3 then Multiply the last two elements stored: Postfix processing is one of the major concepts utilized in information processing by digital computers. It possibly rivals the concept of an electrically stored program, or the application of Boolean algebra to digital circuitry in its importance to computers.

Why all this monologue on postfix processing? Because, more often than not, computer professionals refer to this as "Polish postfix" or simply "Polish" processing. It is so-named because its inventor was a Polish logician named Lukasiewicz. So, you see, if anything, the cartoon's pun was really a racial compliment.


\section*{CLASSROOM USE OF HAND-HELD CALCULATORS}

The November 1976 issue of the ARITHMETIC TEACHER, published by the National Council of Teachers of Mathematics, will focus on instructional uses of hand-held calculators. Copies of this issue will be available for distribution at a special price of 50 cents each under the following conditions:
1). The minimum order is 100 copies.
2). All 100 copies must be sent to a single address.
3). Orders must be in the NCTM Headquarters Office by 31 August 1976.
4). NCTM will pay the shipping charges if full payment is received with the order.
To place an order, or for further information, contact Charles R. Hucka, Director of Publications Services, NCTM, 1906 Association Drive, Reston, Virginia 22091, or call (703) 620-9840.

\section*{REPORT ON ELECTRONIC HAND CALCULATORS IN EDUCATION}

The body of the Final Report on the National Science Foundation supported project, "Electronic Hand Calculators: The Implications for Pre-College Education," is now available from the ERIC Information Analysis Center for Science, Mathematics, and Environmental Education, 1200 Chambers Road, The Ohio State University, Columbus, OH 43212. The 350-page complete Final Report will be available later in 1976 from the ERIC Document Reproduction Service, Box 190, Arlington, VA 22210.

\section*{DON'T PRINT ITEMS IN DDJ \\ that appear elsewhere}

Dear Dr. Dobb,
Please concentrate on infromation not available elsewhere-if PCC moves toward "blue sky"" DDJ should move toward practicality: Draw a sharp line and find out what your readers really want. MOST OF ALL: don:t waste space on something that has already been printed nationally-we have that.
James R. Zimmerman
7835 Querida Lane
Dallas TX 75248

\title{
SMRT Will Hurt
}

\author{
by Leroy Finkel
}

\author{
(reprinted from PCC Vol. 4, No. 6)
}

EDITOR'S NOTE: In general, we are trying to avoid duplicating articles in PCC and \(D D J\), since our subscribers overlap. This information is sufficiently important, however, that we believe it warrants as widespread publicity as possible.

We believe that in and for the foreseeable future, home computer users will need use of the phone system. They will need it, not for traditional time-sharing, but for accessing large databases with their personal computers.

Since the phone system is the only public carrier that is reasonably available to home computer users, a governmentlicensed monopoly, it behooves us to assure that it meets our needs with reasonable economy.

On July 1, 1976 Pacific Telephone will implement a new phone tariff in major cities in California, on all business telephone service, called Single Message Rate Timing. SMRT, as it is known, will assess a supercharge of approximately 1 cent per minute on all calls over five minutes. That means that the dial-up, time-sharing setup that you presently enjoy for a cost of \(\$ 7.50\) a month, or thereabouts, to make local computer calls could increase to as much as \(\$ 80\) a month, based on a 6 -hour day usage. HELP!

SMRT has come to California. How long will it be before it ZAP's you? How does SMRT work? For any call that exceeds 5 minutes a one message unit supercharge will be added to the bill for each 5 minutes after the first five minutes. Since one message unit currently costs Californians 5.75 cents, that means that a previously "free" 30 minute call will cost 28.75 cents under SMRT; a sixty minute call, 63.25 cents. Projecting hours into days, a school that uses dial-up service for 3 hours a day, 20 days a month can expect additional phone charges of \(\$ 36.00\) each month; a six hour day, \(\$ 72.00\) for EACH TERMINAL IN OPERATION. Can your budget afford that?

The affects of SMRT could make you reconsider your hardware acquisition, location and use decisions. SMRT makes local microprocessors in each school look like a real wise decision. Think about it!

In our area, the phone company has computer printouts projecting the implications of SMRT on your bill. Ask to see this information, it is scary. In all honesty, I must admit that this is one new phone charge that does make sense. Those of us that use dial-up service for computer data, all day long, are not using the equipment "as intended." Therefore, we 'tie-up' valuable equipment for long periods without paying our fair share of the costs. SMRT will even all this out.... and then some!

\section*{THINGS TO DO}

There are many things you can do to avoid or minimize the affects of SMRT. Your greatest problem will be getting all the right answers to your questions (We have not provided all the answers, just some suggestions.)

> CAVEAT EMPTOR. Do not expect to get all the "right" answers from the local phone company staff. They provide a limited array of services in the area of data communications. The right solution for you may not be in their array. You must ask Telco competitors about services they offer that fill the void of services provided by Telco.


FIGURE 1

Your present phone-terminal-to-computer link probably like that shown in Fig. 1. Local costs will vary, but generally our costs break down like this:
\[
\begin{array}{cl}
\text { At Terminal site - Dial-up business line } & \$ 7.50 / \text { month } \\
\text { At Computer site-Business phone line(not shown } & 7.50 \\
\text { Data Access Arrangement(DAA) } & 5.50 \\
& \\
\begin{array}{cc}
\text { Phone costs per terminal }
\end{array} & 20.50 / \text { month } \\
\text { Add modem and acoustic coupler rental (\$15@) } & 30.00 \\
\begin{array}{cl}
\text { (may be purchased for } \$ 300 \text { each) } \\
\text { Total communications costs per terminal } & \$ 50.50 / \text { month }
\end{array}
\end{array}
\]

This is the type of configuration that SMRT will really hurt. But, such a dial-up system has some real advantages to the user: Terminals can be used from any location where there is a standard dial-up telephone(home included); you can 'oversubscribe' your system and users schedule themselves or compete for open phone lines.
Alternative No. 1 Probably the cheapest way to change your phone set-up to minimize the affects of SMRT is to convert all outside phone lines to run through your school or district PBX switchboard. (assuming you have one.) If you do not have a PBX, now may be the time for the school system to get one. Such a move should greatly reduce your normal monthly phone charges and because the system is "internal" via the PBX, no SMRT charges will be added to your bill. Schools can be located anywhere. SMRT charges are avoided as long as everything runs through the PBX. Flexibility continues as before. The only problem we have discovered is that there may not by space on your PBX to accomodate additional lines. Each computer line requires TWO PBX extensions (one at computer, one at the terminal). But do check this alternative out. We can't estimate how much, but can guarantee you substantial dollar savings.

Alternative No. 2. The phone company will likely suggest a Lease Line running from each terminal directly to the computer (picture a pair of wires running directly between the two sites). Lease lines are charged a fixed monthly fee for 24 hour usage that is based on distance from point to point. For the short distances we needed (no more than 12 miles), lease line costs ranged from \(\$ 14\) to \(\$ 42\) per month per terminal. Add to this a Telco modem at each end for \(\$ 50 /\) month (No DAA needed).

Lease lines avoid SMRT costs, and, depending on distances, should save you substantial money. However, you lose the flexibility of dial-up from any phone and it is unclear how you can "oversubscribe" a lease line communication. system.

Alternative No. 3. Instead of using two Telco modems for \(\$ 50 /\) month, you can use lease lines as suggested in Alternative 2 but buy or lease modems from a company other than the phone company. Such modems may cost as little as \(\$ 200\) each and may lease for as little as \(\$ 25\) /month (for both). If you already own modems and acoustic couplers as part of a dial-up system, your present equipment MAY be usable with lease lines. Some will not be usable on lease lines. Contact your equipment supplier to see if your hardware is convertible for use on lease lines. We found our equipment was usable after a minor field modification made to our connecting cables.

Alternative No. 4 In the long run, the least-cost method to provide for multiple terminals at one site is to connect ONE phone lease line between computer and terminal site. (Fig.3) To this one line you connect all your terminals (19 teletypes, claims one firm-12 is more real) - using a special modem called a Frequency Division Multiplexer (FDM). The FDM allows multiple terminals to share one phone line by varying the frequency at which the data is transmitted. Teletypes at 10 CPS and 30 CPS terminals can share the same line via the FDM's. At each terminal you need an FDM with another FDM at the computer end to "unscramble" the data. The FDM units cost about \(\$ 450\) each, more than the standard lease line modems. But you only need one phone line. Therefore, your initial cash outlay may be greater, but in the long run you will save money because phone costs are reduced dramatically.
Terminals can even be located in different classrooms using FDM's. There is even the possibility of using ONE lease line connecting a number of schools and a


What is the answer? It all depends on
Where you are in the greater US
Your computer
What equipment you already own
how much money you have
Should you spend big money NOW to save big money later
Should you spend less money now and have a bigger phone bill forever...
and
on

\section*{SOLID STATE SALES \\ SLIPS ORDER FOR 9 MONTHS}

\section*{Dear Editor,}

April 3, 1976
I think it is worth telling about one supplier who is very remiss. I sent an order to Solid State Sales last July, for about \(\$ 70\) worth of electronic components. They sent roughly a third and backordered the rest. When October came and I had not received the balance I wrote them, with no reply received. My reminder in Decmeber brought a promise of 4-5 weeks delivery. When that passed I wrote again, in March. I have just received another promise of 4-6 weeks delivery. They have now had my money for nine months-I think maybe they ought to start paying interest. At any rate, if they can't supply the stuff they ought not to send out those enticing advertisements.
Kendall Stambaugh
5009 Guide Meridian Bellingham WA 98225 206 734-9424

\section*{0000000000000000000000000000000000} SAN FRANCISCO COMPUTER STORE OPENS

The Computer Store of San Francisco, affiliated with Byte, Inc., opened its doors for business in the second week of July. It is located at 1093 Mission Street; (415) 431-0640.

It used to be fun
To add one and one. But it's no longer plain What result to obtain
They say it could even be none. -unknown

\section*{ENERGY SOFTWARE SOUGHT}

Dear Dr. Dobb,
I am trying to combine low cost computers, and alternative sources of energy. As a start, I'm collecting programs about energy use. Any programs or ideas, in any language. that readers could donate would be appreciated. If I get enough of a response, these will form the basis for a book.

Possible topics: Solar Parabolic Reflectors, Windmill Design, Thermal Loss, and Storage; Units Conversion (BTU, KW-HR), Battery Charge and Discharge, Flywheel Momentum etc.

Keep up the good words,

Rich Roth

1052 Clark Ave Mountain View
OOO3MOBOOOLCOCA 94040

\section*{A COMMENT ON THE DIGITAL GROUP}

Dear Dr. Dobb (alias Jim Warren?)
July 15, 1976
I have (had?) a Digital Group 8080 system, which after being built didn't work quite right, and I had to send it back for de-bugging. It didn't care to read in the cassette tape, an initialization process needed to give it life. The still-born has been away for a month now, with no word from the doctor yet (it's under the care of Dr. Sudding and his staff - very competent I understand), but we're very hopeful.

Your journal and concept is the best. I have the D.G.'s version of TBX-TVCOS and would dearly love to see it run. but alas (sob) | wait....

Christopher Hovey
ESD/OC
San Fran.APO
CA 96369

\section*{ BAD SERVICE REPORT \\ ABOUT THE DIGITAL GROUP}

Dear PCC,
June 30; 1976
Beginning to get bad vibes from The Digital Group. Purchased their television character generator cassette interface board. The Original character generator chip gave inverted characters on video monitor. The replacement was no good at all. On June 29th I called about a replacement for the chip and I requested that the chip be tested before being shipped. A Gus Calabrese stated that "They were swamped with orders and couldn't possibly get around to shipping the replacement for another two to three weeks."

I can understand their being quite busy, but I don't think that they should abandon any kind of customer service to previous purchasers of their equipment.

Thank you.
Robert L. Gerald 102 Coventry Dr. Lakewood NJ 08701

\section*{LOU FIELD'S RESPONSE TO THE EDITOR'S NOTE TO SCCS MEMBERS IN THE MAY ISSUE}

The May issue of the Journal carried a note that was essentially critical of Lou Fields, the current Vice President of the Southern California Computer Society, and their potential next President. As is PCC policy, equal space (in fact, much more space) is being provided for the response.

In response to Jim Warren's note to the members of the Southern California Computer Society:

In reply to your letter May Dr. Dobb's this is following my conversations by phone conversation with you and Bob Albrecht lafter you wrote your letter but before 1 saw it - it arrived on the 22 nd of July)
1. Your letter is unfair, inaccurate, and at best intemperate. If you really wanted to be constructive you could have called me first - or at least consulted Bob Albrecht who made the arrangement with me. 2. The facts are that I did not call to place an order. Bob called Ward Spaniol and Art Childs re: distribution of your products. He was told it was SCCS policy to handle no such material including its own magazine, Interface. They referred him to me since I had made arrangements for some other publications. I feel it in the best interests of the members to have magazines at meetings. Bob then called me and asked if he could send some (on corsignment). I was not familiar with all the material but suggested he send what he thought was appropriate. Just before the meeting, 12 cases of papers arrived. I could not fit it all in my apartment or car.
3. On the day of the April meeting, I brought what I could fit into my car blong with the many supplies for the meeting).

Jim arrived at the meeting unannounced and proceeded to make a 45 minute presentation on \(D r_{0} . D o b b s_{0}\) The members were fascinated with his excellent talk, however it would have been better and more considerate if the Program Committee had been consulted about it so that the talk could have been scheduled, announced, and not have so disrupted two other excellent speakers.

Seeing the interest, I apologized to Jim because | thought | hadn't brought Dr. Dobb's (in fact I had and they were later uncovered and available). It was the seeming lack of the pre-shipped Dobb's which I believe may have really upset Jim.
4. Recognizing that the PCC was donated (but marked one dollar) | asked the staff to stamp them in some way so that they could not be inadvertently sold. A few (axerhaps 12-20) were stamped as mentioned (in type approximately the size of a headline on the May letter). If I had been intending these for my own uses, I would have distributed them all this way. The newsletters were shipped to me, but no slight was intended and Jim made no mention of it at the time.
5. Though these items were on consignment as confirmed with Bob and Jim during my telecon, I have sent you a total of \(\$ 259.75\) as well as the remaining material. I trust you will refund the difference. 6. This unfortunate incident is perhaps the most dramatic example l've seen of the need for an ombudsman (consumer advocate) service.

The SCCS will, I hope, soon offer this, so that some reasonable inquiry can be made of the facts before damaging, insulting and unfair material is distributed for which no timely or effective rebuttal is available.
7. I think your technical work is worthwhile, clever, imaginative, and creative. It is my heartfelt with that all of these good virtues will soon be matched with responsibility, accuracy, and a respect for the feelings, reputation, and good name of others.

I, too, am working very hard to bring the knowledge and experience of computing to our friends. I would like to hear directly what the readers think of this matter.

Louis G Fields, 11662 Sunset Blvd Suite 2, Los Angeles CA 90049 (213)478-0388

We stand by our original May note. 1. Bob read and agreed with that note, prior to its publication. 2. The for-sale materials were not sent on consignment. This was a legitimate misunderstanding in the original phone conversation. It was very explicitly stated, however, in a later conversation (referred to in point 5). 3. I had been invited to fly down and attend the meeting by Ward Spaniol and Art Childs. By agreement with Art, who was running the Announcements Period between the two major speakers, I spoke briefly about the cournal. Due to my own longwindedness and a flood of questions, Itook almost 15 minutes. Others with other announcements both preceeded and followed me, thus it is unlikely that I disrupted the moming or afternoon speakers. 4. Stamping the give-aways as being complimentary copies was a good idea. The copy I have, however, was stamped with two different stamps, one stating 'Compliments of Louis G. Fields' and the other being a 7-line stamp with Lou's name

\section*{WHAT THIS WORLD NEEDS IS A GOOD . . .}

Dear
Dr. Dobb .
May 1, 1976
As I see it, the hobbyist could use three different publications.
1. a monthly news magazine similar in content to the present PCC. This would be written for the average hobbyist who just wants to know what's going on in general terms without being inundated by a mass of technical detail. It could include:

Reprints of articles of general interest from the club newsletters.

News items related to home computers.
Articles on social implications of computers (although Creative Computing seems to be doing this pretty well).

Letters of general interest.
Suggestions, gripes, comments, and blue-sky stuff.
General information on new hardware, software, etc.
Listings of useful or novel applications programs or computer games.

Indices of selected non-technical or semi-technical articles, etc. from other publications.

Classified ads.
2. A monthly or quarterly technical journal similar to \(D D J\). This would be written for the hard-core hobbyist who is grimly determined to cram all the features of OS-360 into his homebrew machine. It could include:

Schematics from the club newsletters.
Indices to selected technical articles, etc. from other publications.

Letters of technical content.
Listings, hopefully legible, of useful non-applications software.
3. An annual catalog or directory of reference-type information. This could include:

Computer clubs.
Hobbyist-oriented publications (e.g., BYTE).
Computer stores and distributors.
Manufacturers of computers, kits, and other hardware.
Brief descriptions and prices of all current stuff of use to hobbyists and commercially available.
Jim Day
17042 Gunther St. Granada Hills CA 91344

We're tryin". Let us know, in a year, if you think we've succeeded. --JCW.
being the largest and in boldface print. 5. As of July 29th, we have received \(\$ 259.75\) and publication returns with a wholesale value of \(\$ 70.60\). We assume that the remaining \(\$ 29.40\) will be forthcoming. We also assume that the publications were sold for their retail value and the resulting profit was handled in a manner acceptable to the SCCS. If any excess payment is received, it will be immediately refunded. 6. We agree that there should be consumer advocates. We can think of many more dramatic examples of their need than this. 7. Rather than avoid controversy, we prefer to present statements from both sides (or all sides), and let our readers make up their own minds.

This particular controversy, however, has taken up enough space. THE END.

A reference Journal for home computer users
from the People's Computer Company-

\section*{DR. DOBB's SOURNAL of COMPUTER CALISTHENIGS \& ORTHODONTIA}
\(-81 / 2 \times 11\) inch magazine format
- "all meat" content; no display ads
- published monthly, except July \& December

Content regularly includes:
Complete documentation on systems software

- Tiny BASIC, interpreters, debuggers, assemblers, compilers, cassette \& floppy disc file systems, TV Dazzler software, graphics programs, music programs, etc.
- User documentation, implementation details, complete annotated source code listings

Design notes for build-your-own software
Detailed 'blue skying' about practical systems projects for the immediate future
- Tiny BASIC was the first such project (proposed, March, 1975; detailed, September, 1975; 5 systems up \& running, March, "76)
- English language voice synthesis kits - Electronic telephone book
- Computer music \& graphics systems - Community memory
- Shared mass storage - Biofeedback
- \& much, much more

Reprints of articles \& schematics from computer club newsletters (all of 'em)
Directories: used equipment sources, users \& their equipment, clubs \& organizations, etc.
Indices: All articles in all major hobbyist publications, \& selected articles from other publications
Active consumer advocacy for home computer users
- Supported by magazine sales-not by ads
- No vested interest in good will of manufacturers

Published ten times per year, monthly except in July and December.(Volume 1, Number 1 is January, 1976.)\(\$ 1.50\) for a single copy: Vol.___ No.
\(\$ 10\). per year ( 10 issues/year), to begin with Vol. \(\qquad\) No. \(\qquad\) \(\square\) This is a renewal.
for foreign subscriptions
\(\square\) add \(\$ 4\). per year for surface mail
\(\square\) add \(\$ 12\). per year for air mail
Payment must accompany order. We do not invoice for individual subscriptions or single copies. Please make your check or money order payable to People's Computer Company. Thank you.

Name \(\qquad\)

Mailing Address \(\qquad\)

City \(\qquad\) State \(\qquad\) Zip Code \(\qquad\)
This information may be published in directories and lists of individuals interested in computers in non-commercial environments: \(\square Y E S \quad \square N O\)

Please return this form to: PCC, Box 310, Menlo Park CA 94025; (415) 323.3111

\author{
DR DOBB'S JOURNAL OF COMPUTER CALISTHENICS \& ORTHODONTIA PCC
}

Box 310
Menlo Park CA• 94025

\section*{}


SOFTWARE CONTEST

Sponsored by People's Computer Company
P.O. Box 310. Menlo Park, Ca. 94025

FIRST PRIZE: \(\quad \$ 500\) certificate for hardware from CROMEMCO

SECOND PRIZE: \(\$ 250\) certificate for hardware from CROMEMCO

\section*{2 - general user appeal}

3 - clarity of documentation
- Entries should include source code and object code on punched paper tape. A listing of an appropriate bootstrap loader should also be provided.
- Software should be compatible with MITS REV 1 serial I/O port convention for I/O requirements (i.e., data transfer is on port 1 , bit 7 [active low] of input port 0 is used to indicate receiver ready, and bit 0 [active low] of input port 0 is used to indicate transmitter empty).

Microcomputers can be incredibly versatile. The Dazzler adds the dimension of full-color graphic display to the microcomputer.

What can you develop? - games? - business? - education?
- art? - others?

SEND ALL ENTRIES TO: PEOPLE'S COMPUTER CO P.O. Box 310

Menlo Park, Ca. 94025

OBIECT: Develop a program resulting in a new and interesting display using the Cromemco TV Dazzler. (The Dazzler is an interface that permits a home color TV set to be a graphic terminal for certain microcomputers.)

RULES: - All entries must use the Cromemco Dazzler display and must not require more than 20 K of computer memory.
- All entries will be judged by People's

Computer Company on
1 -originality```


[^0]:    Roprint privileges
    Articles herein that are copyrighted by individual authors or otherwise explicitly marked as having restricted reproduction rights may not bc reprinted or copied without permission from People's Computter Compary, or the authors All other articles may be reprinted for any noncommorcial purpose, provided a credit-line is included The creditdine should indicate that the material was reprinted from Dr. Dobo's Lournal of Computer Calisthenics \& Ortnodontia. Box 310. Nenlo Park CA 94025.

[^1]:    *Editor's Note: Up to this point, this bus has been referred to as the "Altair/IMSAI bus." Given the number of manufacturers now making the bus, or making products for it, we think it's time to start calling it what it has become-" ${ }^{a}$ The HobbyistStandard" bus.

[^2]:    * JULY 5, 1976

    BASIC FLOATING POINT ROUTINES
    FOR 6502 MICROPROCESSOR
    BY R. RANKIN AND S. WOZNIAK
    CONSISTING OF:
    NATURAL LOG
    COMMON LOG
    EXPONENTIAL (E**X)
    $\begin{array}{ll}\text { FLORT } & \text { FIX } \\ \text { FADD } & \text { FSUB }\end{array}$
    FMUL FDIV

    FLOATING POINT REPRESENTATION (4-BYTES)
    EXPONENT BYTE 1
    MANTISSA BYTES 2-4
    MANTISSA: TWO'S COMPLIMENT REPRESENTATION WITH SIGN IN MSB OF HIGH-ORDER B'YTE. MANTISSA IS NORMALIZED UITH AN ASSUMED DECIMAL POINT BETUEEN BITS 5 AND 5 OF THE HIGH-ORDER BYTE. THUS THE MANTISSA IS IN THE RANGE 1. TO 2. EXCEFT WHEN THE NUMEER IS LESS THAN $2 * *(-128)$.

    EXPONENT: THE EXPDNENT REPRESENTS POUERS OF TWO. THE REPRESENTATION IS 2's COMPLIMENT EXCEPT THAT THE SIGN BIT (BIT 7) IS COMPLIMENTED. THIS ALLOUS DIRECT COMPARISION OF EXPONENTS FOR SIZE SINCE THEY ARE STORED IN INCREASING NUMERICAL SEQUENCE RANGING FROM $900(-128)$ TO 生FF ( +127 ) ( $\ddagger$ MEANS NUMEER IS HEXADEC IMAL).

    REPRESENTATION OF DECIMAL NUMBERS: THE PRESENT FLOATING POINT REPRESENTATION ALLOUS DECIMAL NUMEERS IN THE APFROXIMFTE RANGE OF 10** ( -38 ) THRDUGH 10** (38) WITH E TO 7 SIGNIFICHNT DIGITS.
    
    
    

    Jack Bradshaw 18 Harbor View Dr. Hingham, MA 02043

    This listing is a Monitor for the 6502, a-la the Ohio Scientific Model 420. The interrupt vector has been set to use John Zeiglers breakpoint routine. [DDJ, Vol.1, No.3]. His program needs to have a few addresses changed to use this Monitor, but they should be obvious from the subroutine names.

    Ohio Scientific [11679 Hayden St., P.O. Box 269, Hiram, OH 44234] seems to be the cheapest way to go if you roll your own equipment. They sell [albeit slowly] a variety of bare boards at very reasonable prices and good quality. So
    $\$$
    ADDR $X X X X X X$

    FFO2 8D 00 FC
    FFD5/A9 B1
    FFOT/ 8D OU FC
    FFOA/ A2 FF
    FFDC/ 9A
    FFOD/ 20 SE FF
    FFID/ 20 CG FF
    FFI3/AA
    FFI $4 / 20$ 4F FF
    FF17/ED $4 C$
    FF19/FO O9
    FFIB/EO 50
    FFID/FO 14
    FFIF/ED47
    FF21/ DO E7
    FF23/ 40
    *
    FF2A/ 2069 FF LOAD
    FF27/ 2077 FF
    FF2A/ 91 FE
    FF2C/ C8
    FF2D/ DO F8
    FF2F/E6 FF
    FF31/DDF4
    *
    FF33/ 2069 FF PRNT
    FF36/ 20 5E FF
    FF39/ A9 F8
    FF3E/ 85 FD
    FF3D/ 204 CFF
    FF40/ E6 FD
    FF42/ DO F9
    FFA4/ AD OO FC
    FF47/ 4A
    FF48/ 90 EC

    LABEL

    MAIN
    LDA
    STA (ABS) FCDO
    LDA (IMM) BI
    STA (ABS) FCOO
    LDX (IMMF) FF
    TXS (IMP)
    JSR (ABS) CRLF
    JSR (ABS) INPT
    TAX (IMP)
    JSR (ABS) SPAC
    CPX (IMM) $\triangle C$
    BEO (KEL) LOAD
    CPX (IMM) 50
    BEQ (REL) PRNT
    CPK (IMM) 47
    BNE (REL) FFDA
    RTI (IMP)

    JSR (ABS) ADDR
    JSR (ABS) FILL
    STA (IND,Y) FE
    INY (IMP)
    BNE (REL) FFRD
    INC (ZER) DEFF
    INC (ZER) DOF
    BNE (REL) FFZ7

    JSK (ABS) ADDR
    JSK (ABS) CRLF
    LDA (IMM) F8
    STA (ZEK) DOFD
    JSK (ABS) MEML
    INC (ZER) DDFD
    BNE (KEL) FF3D
    LDA (ABS) FCGD
    LSR (ACC)
    BCC (REL) FF36
    far I have assembled the CPU board and 4 K board, am finishing a homebrew panel, and wrote the Monitor to check things on a borrowed ASR33. The next step calls for revising the Monitor to take the Viatron keyboard and translate to ASCII with a look-up table.

    The Viatron keyboard is optically encoded, has parallel output, and is a fantastic bargain at $\$ 20.00$ from John Meshna [P.O. Box 62, E. Lynn MA 01904] These are new surplus with 73 (I think) keys. Anyway, I will pass along an updated version.

    Eventually hope to get TB for the 6502 (if you publish a 6800 version someone will translate it overnight or viceversa).

    Note: I would like to hear from other 6502's in the area.

    | $\text { FF } 4 \mathrm{Al}$ | BO | $B E$ |  |  | BCS | (REL) | $F F O A$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | FFAC/ | 20 | 88 | FF | MEML | $J S R$ | (ABS) | EMTY |
    | FF4F/ <br> * | A9 | 20 |  | SPAC | LDA | (IMM) | 20 |
    | FF51/ | 48 |  |  | OUTP | PHA | (IMP) |  |
    | FF52/ | AD | 00 | FC |  | LDA | (ABS) | FCOO |
    | FF55/ | 4 A |  |  |  | LSR | (ACC) |  |
    | FF56/ | 4 A |  |  |  | LSR | (ACC) |  |
    | FFS7/ | 90 | 59 |  |  | BCC | (REL) | FF52 |
    | FF59/ | 68 |  |  |  | PLA | (IMP) |  |
    | FFSA | 8D | 01 | FC |  | STA | (ABS) | $F C O 1$ |
    | FFSD / | 60 |  |  |  | RTS | (IMP) |  |
    | * |  |  |  |  |  |  |  |
    | * |  |  |  |  |  |  |  |
    | FFSE/ | A9 | $\triangle D$ |  | CRLF | LDA | (IMM) | OD |
    | FF60 | 20 | 51 | FF |  | JSR | (ABS) | OUTP |
    | FF63/ | A9 | OA |  |  | LDA | (IMM) | DA |
    | FF66 | 20 | 51 | FF |  | JSK | (ABS) | OUTP |
    | FF68/ | 60 |  |  |  | RTS | (IMP) |  |
    | * |  |  |  |  |  |  |  |
    | FF69/ | 20 | 77 | FF | ADDR | $J S R$ | ( $A B S$ ) | FILL |
    | * \$ |  |  |  |  |  |  |  |
    | * |  |  |  |  |  |  |  |
    | FF691 | 20 | 77 | FF | ADDR | JSR | (ABS) | FILL |
    | FF6C/ | 85 | FF |  |  | STA | (ZER) | ODFF |
    | FF6E/ | 20 | 77 | FF |  | JSK | (ABS) | FILL |
    | FF71/ | A8 |  |  |  | TAY | (IMP) |  |
    | FF72, | A9 | 00 |  |  | LDA | (IMM) | 180 |
    | FF76/ | 60 |  |  |  | RTS | (IMP) |  |
    | * 5 |  |  |  |  |  |  |  |
    | * |  |  |  |  |  |  |  |
    | FF77/ | 20 | 98 | FF | FILL | JSR | (ABS) | READ |
    | FF7A/ | DA |  |  |  | ASL | ( $A C C$ ) |  |
    | FF7B/ | $\square A$ |  |  |  | ASL | ( $A C C$ ) |  |
    | FF7C/ | $0 A$ |  |  |  | ASL | ( $A C C$ ) |  |
    | FF7D | DA |  |  |  | ASL | ( $A C C$ ) |  |


    | FF7E. | 85 | FC |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | FF80 | 20 | 98 | FF |  |
    | FF83 | 29 | OF |  |  |
    | FF74/ | 85 | $F E$ |  |  |
    | FF83/ | 29 | 08 |  |  |
    | FF85/ | 65 | $F C$ |  |  |
    | FF87/ | 60 |  |  |  |
    | * |  |  |  |  |
    | FF88 | B1 | $F E$ |  | EMTY |
    | FF8A | 20 | 85 | FF |  |
    | FF\%D | B1 | FE |  |  |
    | FF8F/ | 20 | 89 | FF |  |
    | FF921 | C8 |  |  |  |
    | FF931 | DO | 02 |  |  |
    | FF95/ | E6 | FF |  |  |
    | FF97/ | 60 |  |  |  |
    | * |  |  |  |  |
    | FF98/ | 20 | C 6 | FF | READ |
    | FF9B/ | C9 | 52 |  |  |
    | FF90/ | DO | 03 |  |  |
    | FF9F/ | 4C | 00 | FF |  |
    | FFAC/ | C9 | 30 |  |  |
    | FFA4/ | 30 | $F 2$ |  |  |
    | FFA6 | C9 | 3 A |  |  |
    | FFAB/ | 30 | $\square B$ |  |  |
    | FFAAP | C9 | 41 |  |  |
    | FFAC/ | 30 | EA |  |  |
    | FFAE/ | C9 | 46 |  |  |
    | FFBD/ | 10 | E6 |  |  |
    | FFB2/ | E9 | 07 |  |  |
    | FF84/ | 60 |  |  |  |
    | * |  |  |  |  |
    | FFB5 | 4 A |  |  | UNPK |
    | FFB6 | 4A |  |  |  |
    | FFB7 | 4 A |  |  |  |
    | FFB8 | 4A |  |  |  |
    | * |  |  |  |  |
    | FFB9/ | 29 | 0 F |  | UNPI |
    | FFBE/ | 69 | 30 |  |  |
    | FFBD | C9 | 3A |  |  |
    | FFBF/ | 30 | 02 |  |  |
    | FFCl/ | 69 | 07 |  |  |
    | FFC3/ | 20 | 51 | FF |  |
    | * |  |  |  |  |
    | FFC6/ | AD | 00 | $F C$ | INPT |
    | FFC9 | 4 A |  |  |  |
    | FFCA/ | 90 | $F A$ |  |  |
    | FFCC/ | $A D$ | D1 | $F C$ |  |
    | FFCF | 29 | 7 F |  |  |
    | FFDI/ | C9 | 7 F |  |  |
    | FFD3/ | FO | F1 |  |  |
    | FFD5 | 4 C | 51 | $F F$ |  |
    | * |  |  |  |  |
    | FFFC | 100 | FF |  |  |
    | FFFE/ | 64 | 182 |  |  |

    * 

    | STA | (2ER) ODFC | © TINY TIM |
    | :---: | :---: | :---: |
    | JSR | (ABS) READ | SEEKS TINY BASIC |
    | AND | (IMM) OF | (\%) SEEKS TINY BASIC |
    | STA | (ZER) DOFE | ( Dear Doctor, June 22, 1976 |
    | AND | (IMM) OF | 8. I am an electronics instructor and at school where I teach I |
    | ADC | (ZER) DOFC | have a friend named TIM. Now when I first met TIM he was just a little fella', you know, a chip off the block of silicon. Well, he has |
    | RTS | (IMP) | put on some pounds with all the bytes he has been consuming. Now there's almost nothing left to feed him. What we need for him is some BASIC nutrition. If you know of even a Tiny BASIC meal for him |
    | LDA | (IND,Y) FE (ABS) UNPK | we would appreciate it. |
    | JSR | (ABS) UNPK | (4) Thanks, and thanks for TIM. |
    | LDA | (IND,Y) FE | (7) John Bottoms 423 Knobloch Ave. |
    | JSR | (ABS) UNPI | 7 United Electronics Inst. Keffersonville IN 47130 |
    | INY | (IMP) | 5 Note: 'TIM' is a Monitor for the 6502. |
    | BNE | (REL) FF97 | 4, |
    | INC | (ZER) | (4 GOOD |
    | RTS | (IMP) | (ASSEMBLER PROPOSAL |

    JSR (ABS) INPT
    CMP (IMM) 52
    BNE (REL) FFA2
    JMP (ABS) MAIN
    CMP (IMM) 30
    BMI (REL) FFAA
    CMP (IMM) 3A
    BMI (REL) FFBS
    CMP (IMM) 41
    BMI (REL) FFAA
    CMP (IMM) 46
    BPL (REL) FFAA
    SBC (IMM) D7
    RTI (IMP)
    LSR (ACC)
    LSR (ACC)
    LSR (ACC)
    LSR (ACC)

    AND (IMM) OF
    ADC (IMM) 30
    CMP (IMM) 3A
    BMI (REL) FFC3
    ADC (IMM) D7
    JSR (ABS) OUTP

    LDA (ABS) FCOD
    LSR (ACC)
    BCC (REL) FFC6
    LDA (ABS) FCOI
    AND (IMM) 7F
    CMP (IMM) 7F
    BEQ (REL) FFC6
    JMP (ABS) OUTP

    RES (RESET) VECTOR
    IRO (INTERRUPT) VECTOR

    June 27, 1976
    All of the implementations of Tiny BASIC have been excellent, and the authors of each version deserve to be congratulated on a job well done. I agree that it may be time to ease up on Tiny for a bit, and devote more space to other equally useful items.

    It seems to me that a really good assembler would be of great value to hobbyists. I am thinking primarily of an 8080 assembler, but any machine would benefit from a good assembler. By "good" I mean one with most or all of the following features:

    1. Free-form source coding.
    2. Symbols up to 15 characters long.
    3. Symbol table assignable to tape cassette or floppy disc.
    4. Provision for both local and global symbols.
    5. Sophisticated macro expansion capability.
    6. Operation in either absolute or relocatable mode, assuming use of a suitable link editor for relocation.
    7. Optional output of object listing and/or diagnostics.
    8. Optional retention of symbol table for use in debugging.
    9. Automatic separation of procedural and data areas, to facilitate memory protection.
    10. Optional concordance and/or memory map listing.
    11. Provision for symbolic patching.
    12. Optional inclusion of kitchen sink (for bit bucket overflow).

    Sincerely,
    Jim Day 17042 Gunther St.
    Granada Hills CA 91344

    ## SUBSCRIBERS TO JOURNAL SENT A SECOND COPY OF JUNE/JULY ISSUE

    Our printers botched the first press run on DOS, Vol. 1 Number 6. They used the wrong paper (poorer quality), and they had a bad print blanket on one of the pages.

    Before Picky Jim noticed it, Fast Tom (our super-duper mailer male) had processed the subscription issues and given them to the post office.

    So, when we received the properly printed copies, we sent our subscribers a second copy. It involved some extrá expense and effort for us, but that's the way we do things.

    # Lunar Lander for the 6502 

    ## by Mark Garetz

    Editor's Note: Normally, we don't like to publish software listings that have no accompanying user documentation. In this case, however, we feel that (1) the program is simple, (2) the listing is very clearly annotated, (3) it's use is selfdocumenting during execution, and (4) it's presumption of a TIM or DEMON monitor simplifies I/O problems. Please let us know how you feel about it.

    RESTART
    Mark assures me that use of this program is super-simple, and fool-proof. He sez:
    "It requires a TIM or DEMON monitor starting at 7000 H . TIM is available from MOS Technology. DEMON comes with the JOLT from Microcomputer Associates, Box 1167. Cupertino CA 95014; (408) 247-8940.

    After placing the program in memory, simply start execution at 0300 H .

    ## ZERO PAGE LOCATIONS

    |  | ZERO PAGE LOCATIONS |
    | :---: | :---: |
    | 00 | BYTE THAT CONTAINS TIME |
    | 01 | byte that contains height lo value |
    | 02 | byte that contains height hi value |
    | 03 | NOT USED |
    | 04 | BYTE CONTAINS VELOCITY |
    | 05 | OUT OF FUEL PRINTED FLAG - TELLS PROGRAM 0.O.F. HAS BEEN PRINTED |
    | 06 | FUEL REMAINING LO BYTE |
    | 07 | FUEL REMAINING HI BYTE |
    | 08 | OUT OF FUEL FLAG, IF $=00$, MEANS FUEL LEFT, $\mathrm{FFF=OUT}$ |
    | 09 | SIGN FLAG ${ }^{\text {e }}$ O 0 IF VELOCITY IS NEGATIVE, FF IF POSITIVE |
    | 0A | CONTAINS AMOUNT OF BURN, SET TO 00 WHEN FUEL OUT |
    | OB | SCRATCH 1 |
    | 0 C | SCRATCH 2 |

    
    "I see that you have quite a lot of experierice with microcomputer design, Dr. Featherstone."

    ## LUNAR LANDER

    LOC

    | 0300 | JSR | 20 | 8A | 72 | CRLF SUBROUTINE IN TIM |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 0303 | JSR | 20 | 8A | 72 | AGAIN |
    | 0306 | JSR | 20 | 71 | 06 | PRINT INSTRUCTIONS |
    | 0309 | JSR | 20 | 8A | 72 | CRLF |
    | 030C | LDA | A9 | 00 |  | LDA W/00 |
    | 030E | STA | 85 | 00 |  | INITIALIZE TIME BYTE |
    | 0310 | STA | 85 | 01 |  | INITIALIZE HEIGHT LO BYTE |
    | 0312 | STA | 85 | 05 |  | INITIALIZE 0.0.F. PRINTED FLAG |
    | 0314 | STA | 85 | 08 |  | INITIALIZE OUT OF FUEL FLAG |
    | 0316 | STA | 85 | 09 |  | INITIALIZE SIGN FLAG |
    | 0318 | LDA | A9 | 05 |  | LDA W/05 |
    | 031A | STA | 85 | 02 |  | INITIALIZE HEIGHT HI BYTE |
    | 031C | LDA | A9 | 50 |  | LDA W/50 |
    | 031 E | STA | 85 | 04 |  | INITIALIZE VELOCITY |
    | 0320 | LDA | A9 | 20 |  | LDA W/20 |
    | 0322 | STA | 85 | 06 |  | INITIALIZE FUEL LO BYTE |
    | 0324 | LDA | A9 | 01 |  | LDA W/01 |
    | 0326 | STA | 85 | 07 |  | INITIALIZE FUEL HI BYTE |
    | 0328 | JSR | 20 | 8A | 72 | CRLF |
    | 032B | JSR | 20 | 72 | 07 | PRINT HEADINGS |
    | 032E | JSR | 20 | 8A | 72 | CRLF |
    | 0331 | JSR | 20 | 12 | 06 | PRINT DATA LINE |
    | 0334 | BIT | 24 | 08 |  | CHECK OUT OF FUEL FLAG |
    | 0336 | BPL | 10 | 10 |  | IF NOT OUT OF FUEL THEN INPUT BURN |
    | 0338 | BIT | 24 | 05 |  | CHECK IF O.O.F. HAS BEEN PRINTED |
    | 033A | BMI | 30 | OF |  | YES BRANCH TO FUEL SUB |
    | 033C | JSR | 20 | 8A | 72 | CRLF |
    | 033F | JSR | 20 | 31 | 08 | PRINT OUT OF FUEL |
    | 0342 | LDA | A9 | 00 |  | LDA W/00 |
    | 0344 | STA | 85 | 0A |  | SET BURN BYTE TO 00 |
    | 0346 | BEQ | F0 | 03 |  | BRANCH TO FUEL SUB, SKIP INPUT BURN |
    | 0348 | JSR | 20 | 00 | 05 | INPUT AMOUNT TO BURN |
    | 034B | JSR | 20 | 2E | 05 | FIGURE FUEL REMAINING |
    | 034E | JSR | 20 | 58 | 05 | FIGURE NEW VELOCITY |
    | 0351 | LDA | A5 | 04 |  | GET NEW VELOCITY |
    | 0353 | BNE | D0 | 04 |  | VELOCITY $=00$ ? NO, BRANCH TO HEIGHT |
    | 0355 | LDA | A9 | 00 |  | YES, |
    | 0357 | STA | 85 | 09 |  | CLEAR SIGN FLAG |
    | 0359 | JSR | 20 | B7 | 05 | FIGURE NEW HEIGHT |
    | 035C | JSR | 20 | F7 | 05 | INCREMENT TIME BYTE |
    | 035F | LDA | A5 | 02 |  | GET HEIGHT HI BYTE |
    | 0361 | BEQ | F0 | 03 |  | IF®00 GO TO CHECKLO |
    | 0363 | JMP | 4C | 2E | 03 | IF NOT THEN GO TO PRINT NEXT |
    | 0366 | LDA | A5 | 01 |  | GET HEIGHT LO BYTE |
    | 0368 | BEQ | F0 | 03 |  | IF=00 GO TO DOWN |
    | 036A | JMP | 4 C | 2 E | 03 | IF NOT THEN GO TO PRINT NEXT |
    | 036D | JSR | 20 | 8A | 72 | CRLF |
    | 0370 | JSR | 20 | 53 | 08 | PRINT ON THE MOON |
    | 0373 | JSR | 20 | 8A | 72 | CRLF |
    | 0376 | JSR | 20 | 12 | 06 | PRINT FINAL DATA |
    | 0379 | JSR | 20 | 8A | 72 | CRLF |
    | 037C | JSR | 20 | 8A | 72 | CRLF |
    | 037F | LDA | A5 | 04 |  | GET VELOCITY BYTE |
    | 0381 | BEQ | F0 | 14 |  | IF=00 BRANCH TO PERFECT |
    | 0383 | CMP | C9 | 03 |  | IF NOT, COMPARE TO 3 |
    | 0385 | BCC | 90 | 10 |  | IF VLO < 3, BRANCH TO PERFECT |
    | 0387 | CMP | C9 | 07 |  | IF VLO $>3$, COMPARE TO 7 |
    | 0389 | BCC | 90 | 06 |  | IF VLO < 7, BRANCH TO STRANDED |
    | 038B | JSR | 20 | 06 | 09 | IF VLO $>27^{\circ}$. PRINT "CREAMED" |
    | 038E | JMP | 4 C | 9A | 03 | JMP TO TRY AGAIN |
    | 0391 | JSR | 20 | A9 | 08 | PRINT "STRANDED" |
    | 0394 | JMP | 4C | 9A | 03 | JUMP TO TRY AGAIN |
    | 0397 | JSR | 20 | 71 | 08 | PRINT "PERFECT" |
    | 039A | JSR | 20 | 8A | 72 | CRLF |
    | 039D | JSR | 20 | 8A | 72 | CRLF |
    | 03A0 | JSR | 20 | 43 | 09 | PRINT TRY AGAIN |
    | 03A3 | JSR | 20 | E9 | 72 | INPUT CHARACTER |
    | 03A6 | CMP | C9 | 59 |  | CHECK FOR "Y" |
    | 03A8 | BEQ | F0 | OC |  | IF "Y" GO TO JMPBACK |
    | 03AA | JSR | 20 | 8A | 72 | CRLF |
    | 03AD | JSR | 20 | 8A | 72 | CRLF |
    | $03 \mathrm{B0}$ | JSR | 20 | 9A | 09 | IF NOT THEN PRINT CONTROL OUT |
    | 03B3 | JMP | 4C | 86 | 70 | RETURN CONTROL TO TIM |
    | 03B6 | JMP | 4C | 09 | 03 | JUMP TO RESTART |

    Reprinted with permission of Digital Equipment Corporation.
    
    \＆

    ず
    
    
    
    

    뇽
    
    
    
    
    

    ## 亮

    $\square$
    

    | 05F9 | LDA | AS | 00 | LDA W/TIME | The Subroutines that follow are those that contain basically only ASCII Data <br> 05FB |
    | :--- | :--- | :--- | :--- | :--- | :--- |
    | ADC | 69 | 01 | ADD 1 TO TIME | for the messages that the program prints. However the first part of each of these |  |
    | 05FD | STA | 85 | 00 | STORE NEW TIME | routines plugs values that pertain to it (i.e., length of string starting addr. |
    | 05FF | CLD | D8 |  | CLEAR DECIMAL MODE |  | then called by each of the character string routines.

    All of the rest of the Character String Subroutines are identical, except of
    course for the initial values and the string data itself. One exception is the Out of Fuel rout ine which sets 10 cat ion 0005 to FF so that the program knows it
    already printed Out of Fuel and the other exception is the "Burn Out of Range"
    
    
     PACE DECREMENT Y REG.
    LOOP UNTIL DONE
    CHECK SIGN FLAG CHECK SIGN FLAG
    IF SET BRANCH TO PRINT PLUS
    LDA W/ASCII ( - ) MINUS
    PRINT IT

    PRINT DATA MN N N N N N
    
    
     Num
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

    ## 栄 INSTRUCTIONS HEADINGS

    प्య
     window ith under-mat weight sensors, or just general para catalog ( 97 pages) from Mountain West Alarm Supply Co., 4215 N. 16th St.,Phoenix, AZ 85016 (602) 263-8831.

    # ＂Applications Software＂－－ Games in Pittman＇s 6800 Tiny BASIC 

    by Carl Kelb
    These games－Stars，Acey－Deucy，Trap，and Slot－were
    adapted from older versions to Tom Pittman＇s Tiny BASIC for the 6800．Note：A bell（control－G）was imbedded in the print statements for each＊．

    ## orson 0 㟶

    
    
    
    을上务
    
    
    
     0
    0
    0
    0
    0
    0 ＂JACK＂
    2910
    ＂QUEEN＂
    2910
    ＂KING＂ 연
    a
    a A KOTO 2930
    2970
    $=$ KOTO 2970
    ：YOU WIN！！！＂ ＝E KOTO 2970
    ＂YOU WIN！！！＂
    2210 MT SORRY，YOU
    $M Q$ KOTO 2240
    
    
    
    
    
    
    SORFY, FFIENI, FUT YOU BLEEW YOUR WAII."
    DIO YOU WANT TO TFY AGAIN ?"
    TYFE 1 TO FLAY AGAIN AND 2 TO FLAY ANOTHER DAME"
     FRIN
    FRIN
    FRIN
    FRIN
    INFU
    IF I
    IF I
    IF I
    IF I
    ENI
    
    

    ## 000 REM

    | 4000 | REM: TRAP |
    | :---: | :---: |
    | 4160 | FRINT I WILL THINK OF A NUMBER FROM 1 TO 100." |
    | 4170 | FRINT "TRY TO GUESS MY NUMRER. ENTER TWO NUMBERS, TRYING" |
    | 4180 | FRINT "TO TRAP MY NUMBER EY YOUR TWO TRAF NUMBERS. I'LL." |
    | 4190 | FRINT "TELL YOU IF YOU HAVE TRAFPED MY NUMBER OR IF MY* |
    | 4200 | FRINT "NUMRER IS SMALLER THAN YOUR TWO TRAF NUMEERS OR" |
    | 4210 | FRINT "IF MY NUMBER IS LARGER THAN YOUR TWO TRAF NUMEERS." |
    | 4220 | FRINT "IF I TELL YOU THAT YOU HAUE TRAPPED MY NUMRER', I" |
    | 4230 | PRINT "MEAN THAT MY NUMBER IS *BETWEEN* YOUR TRAF NUMEERS" |
    | 4240 | PRINT ${ }^{\circ} \mathrm{OR}$ - PERHAPS MY NUMRER IS THE SAME AS ONE OF YOUR* |
    | 4250 | FRINT "TRAF NUMEERS." |
    | 4260 | PR |
    | 4270 | FRINT 『!!! ${ }^{\text {P }}$ (MFORTANT!!! IF YOU THINK YOU KNOW MY NUMRER, THEN" |
    | 4280 | PRINT "ENTER YOUR GUESS FOR wEOTH* TRAF NUMBERS. |
    | 4290 | F'R |
    | 4300 | LET $X=(\operatorname{RND}(100))+1$ |
    | 4310 | FRINT 'I'M THINKING...THINKING...AH! I HAUE A NUMEER!" |
    | 4320 | LET K=1 |
    | 4330 | PR |
    | 4340 | FFiINT "FIRST TRAF' NUMBER " |
    | 4350 | INFUT A |
    | 4360 | PRINT 'SECONI TRAP NUMBER " |
    | 4370 | INFUT B |
    | 4371 | LET $Y=X \cdots \mathrm{~A}$ |
    | 4372 | IF $Y<0$ THEN $Y=-1$ |
    | 4373 | IF $Y>0$ THEN $Y=1$ |
    | 4374 | LET $\mathrm{Z}=\mathrm{X}-\mathrm{B}$ |
    | 4375 | IF Z ¢ 0 THEN $\mathrm{Z}=-1$ |
    | 4376 | IF $Z>0$ THEN $Z=1$ |
    | 4380 | LET $T=Y+Z$ |
    | 4390 | IF $T=-2$ GOT0 4430 |
    | 4391 | IF $\mathrm{T}=-1 . \mathrm{GOTO} 4410$ |
    | 4392 | IF $\mathrm{T}=0$ ) GOTO 4400 |
    | 4393 | IF $\mathrm{T}=1$ GOTO 4410 |
    | 4394 | IF $\mathrm{T}=2 \mathrm{GOTO} 4450$ |
    | 4400 | IF $A=E$ GOTO 4480 ( |
    | 4410 | FRINT "MY NUMEER IS TRAPPEII BY YOUR NUMEERS." |
    | 4420 | GOTO 4460 ( |
    | 4430 | FRINT "MY NUMEER IS SMALLEE THAN YOUR TRAF NUMBERS." |
    | 4440 | GOTO 4460 |
    | 4450 | FRINT "My NUMEER IS LARGER THAN YOUR TRAF' NUMEERS.* |
    | 4460 | LET K=K+1 |
    | 4470 | GOTO 4330 |
    | 4480 |  |
    | 4485 | FR |
    | 4490 | FRINT 'LO YOU WANT TO PLAY AGAIN ? |
    | 4500 | FRINT "TYFE 1 IF YOU WANT TO FLAY AGAIN OR 2 IF YOU WANT ANOTHEF GAME" |
    | 4510 | INFUT I |
    | 4520 | IF $\mathrm{I}=0$ GOTO 4500 |
    | 4530 | IF I>2 GOTO 4500 |
    | 4540 | IF I=1 GOTO 4290 |
    | 4550 | IF $\mathrm{I}=2$ GOTO 1000 |
    | 4560 | ENII |
    | 5000 | REM: SLOTS |
    | 5100 | FR |
    | 5120 | PRINT "THIS IS A SIMULATION OF A SLOT MACHINE USING A COMFUTER" |
    | 5130 | FRINT "EACH TIME YOU 'FULL', I WILL ASK YOU IF YOU WISH TO FLAY AGAIN." |
    | 5140 | FRINT 'JUST ANSWER WITH A ' 1 ' FOR YES AND $A$ ' $0^{\prime}$ ' FOR NO.: |
    | 5150 | FRINT "PLEASE PLACE 4 Quarters on my cpu for each play." |
    | 5160 | LET $\mathrm{B}=0$ |
    | 5170 | FR |
    | 5180 | LET $\mathrm{D}=(\mathrm{RND}(8) \mathrm{l}+1$ |
    | 5181 | LET $E=(R N D(7))+1$ |
    | 5182 | LET $F=(\operatorname{RNII}(7))+1$ |
    | 5201 | IF $\mathrm{l}=1$ GOTO 5211 |
    | 5202 | IF $\mathrm{H}=2$ GOTO 5213 |

    ## Low-Cost 6800 Systems Software \& Games

    ## by Technical Systems Consultants' staff <br> Box 2574, W. Lafayette IN 47906

    TSC is presently involved in the creation of products which are currently in high demand among computer hobbyists and other micro computer users. Up to this time there has been little or no software available for Motorola 6800 based systems other than Monitor programs in ROM. We have developed many programs both useful and fun which allow the system builder to utilize his creation to its fullest extent. The software listings which we offer implement a variety of user and system type functions. The programs have been written in 6800 assembly language and assembled to run on Motorola and AMI 6800 based systems and utilize I/O routines contained in the MIKBUG* monitor ROM. All references to these external routines are clearly marked, however, facilitating conversion to other I/O routines. The software listings include a fully commented source listing, a hexadecimal machine code dump, sample output, and complete instructions for use. Because software "bugs" are bound to occur regardless of the degree of testing we offer a limited warranty. This 90 -day warranty is limited to replacement of the original software listing or providing a patch at the discretion of TSC.

    For those requiring the service, all of our routines can be assembled at a custom address or with user supplied I/O routines for an extra charge.

    New products are constantly being developed by TSC. These include a Micro BASIC interpreter, a scientific floating point package, a business and accounting system, graphics games, and an 8080 emulator, among others. We also plan to offer some of our programs on "Kansas City" standard cassettes. Hardiware items being developed and tested for the 6800 based system include a cassette interface system, A/D and D/A boards, a high speed arithmetic processor and other general purpose items. All of these products will be available when announced in our advertising.

    We can only offer what the hobbyists want, so let us know what your needs are in both hardware and software.
    "MIKBUG is a registered trademark of Motorola, Inc.

    1. HANGMAN: The old word guessing game. Easily modified with your own word list. Requires 640 Bytes. $\$ 3.25$
    2. ACEY-DUCEY: A card game played against the computer. Bet and try to break the bank! Requires 1 K Bytes. $\$ 3.25$
    3. CRAPS: A real casino craps game. Match your luck against the computer and try to win money. Requires 1 K Bytes.
    4. FLOATING POINT PACKAGE: Full floating point capability. 9 digits of accuracy with exponent range, -99 to +99. Four routines for add, subtract, multiply, and divide are all included. Requires 512 Bytes. $\$ 5.00$
    5. SPACE VOYAGE: Similar to the famous STAR TREK with only a few limitations. Every game is a different adventure! Requires 4K Bytes. $\quad \$ 10.00$
    6. KLINGON CAPTURE: A smaller space simulation game, but, has many of the same surprises. 2K Bytes $\$ 4.75$
    7. STOCKMARKET: Similar to the popular board game of the same name. Simulates real WALL STREET action. Requires $1: 5$ Bytes.
    \$3.50
    8. LINE EDITOR: Allows you to create a file in memory and then completely edit it. Commands are: NEW ADD, INSERT, DELETE, SEARCH, LIST, MOVE, PRINT. Will run in only 512 Bytes!
    $\$ 4.00$

    9, RANDOM NUMBER GENERATOR: Here is a routine which is an absolute must for writing your own game programs. Requires 60 Bytes. $\$ 1.50$
    10. MASTERMIND: Test your logical abilities; An intricate guessing game requiring both skill and logic. Requires 512 Bytes.
    $\$ 3.00$
    11. CARD SHUFFLE AND DEAL: Two very useful
    routines. Includes a driver routine to print out
    4 hands of 13 cards each. Requires 512 Bytes. $\$ 2.75$
    12. NUMBER GUESS I: Try to guess the number the computer is thinking of! Requires 256 Bytes. $\$ 1.50$
    13. NUMBER GUESS II: A more advanced number
    guessing game. Requires 512 Bytes. $\$ 2.00$
    14. HURKLE: Try to find the hiding Hurkle relying upon clues given by the computer. Requires 640 bytes $\$ 2.00$
    15. ROVER: Find and catch the Rover with the aid of hints supplied by the computer. Requires 1 K Bytes. $\$ 2.50$
    16. SWITCH: Correctly arrange a random string of digits in the fewest possible moves. Requires 512 Bytes. $\$ 2.00$
    17. CHOMP: A 2 player game which resembles a two dimensional "NIM" game. Requires 512 Bytes.
    \$2.00
    18. SUBROUTINE PACKAGE: A special package of very useful subroutines selected by the staff of TSC. This package could save you many hours when writing your own programs.
    $\$ 3.00$
    **SPECIAL PACKAGE DEALS....Supplied in a 3-ring binder
    I. Contains programs $1,2,3,6,9,10$
    $\$ 13.50$
    II. Contains programs $1,2,3,9,10,11,12,13,18,15$, 16,17
    \$18.95
    III. Contains programs in 1 and II plus 4 and $8 \quad \$ 29.50$
    **********SPECIAL ANNOUNCEMENT****************
    At last there exists a valuable service to the computer hobbyistTHE PROGRAM OF THE MONTH CLUB-- For only $\$ 2.00$ you will get a one year membership. You will receive a monthly bulletin describing the main selection as well as many alternates. Members will receive a $15 \%$ discount on the featured program. THERE IS NO OBLIGATION TO BUY ANYTHING! If you join now, you will receive free our Random Number Generator.
    [ $\$ 1.00$ handling charge for orders under $\$ 10$. Add $5 \%$ for First Class Mail. Indiana Residents add $4 \%$ sales tax.]

    PITTSBURGH CLUB HAS 50 MEMBERS \& GROWING FAST

    There is a club in Pittsburgh. It has about 50 members and is still growing; all sorts of machines and hardware; anybody in Western Pennsylvania, Eastern Ohio or West Virginia who is interested can write:

    > Pittsburgh Area Computer Club 400 Smithfield St.
    > Pittsburgh, PA 15205

    Or Call:
    Eric Liber (Pres.) (412) 276-6546 Nite
    Fred Kitman (Treas.) (412) 391-3800 Day

    ## Shooting Stars for

    # Uiterwyk＇s 6800 Micro－BASIC 

    Dear Jim，

    （received July 29，1976）
    My copy of $D D J$ is arriving right on schedule－and full of good stuff too！．Keep up the good work．To help you and／or PCC with that work $\mathbb{a}$ am enclosing a copy of my latest game program．This is a version of Shooting Stars（Alias Teaser）．The program is written in Micro－BASIC as supplied in the June SWTPC 6800 newsletter．（This interpreter was written by Robert Uiterwyk and Bill Turner，and has provided me with many hours of enjoyment．）Since the Micro－BASIC allows only arithmetic comparisons，I have had to use a rather unusual method for determining which positions are stars and which are black holes．The interpreter and game will fit in 4 K of memory if you remove all the REM statements（doesn＇t REM mean REMOVE anyway？）． The game features a randomization of the universe at the start of the game to keep you from getting too complacent or bored if you have a good memory．

    By the way，Corvallis is in the Willimette Valley about 80 miles south of Portland．It is the home of Oregon State University－ which has a good computer center（with Super Star Trek！）．Unfor－ tunately，our town lacks a computer store at present－know anybody who wants to invest in a small business in a community with an active and growing－technically－oriented population？I＇d work for a ridiculous wage．

    I am currently work on a text editor for my 6800 system which is very similar to the＂classy＂ 8080 editor in your June／July issue．I still have a few commands let to program，but it is now run－ ning with the INSERT，DELETE，APPEND，FIND，LIST，CLEAR， TOP，and NEXT commands active．I still have to get the CHANGE command on line．This is not too much of a problem at present since I use a TVT with a 32－character line－it＇s easy enough to change a whole line，so \｜left this one until last．Since I am using the cross－ assembler on the computer center＂s CYBER system to write this program I may try to recoup some of my costs by selling the editor in an article where I can get some money for it．Rest assured that unless I change professions（ $l^{\prime \prime} \mathrm{m}$ now a grad student in Oceanography），the source code for this and any other programs I find worth spreading around will be distributed at cost（mailing cost－not my development cost－this is a hobby，right？）．

    Sincerely，
    Mark J．Borgerson
    325 NW 9th，No． 3 Corvallis OR 97330

    If you find that the other hobby mags are unwilling to publish the complete，annotated source code for your Editor，pass it along to us． We do publish useful－though－long program listings－Jim W．

    ## PROGRAMMING NOTES

    ## FOR＂SHOOTING STARS＂

    The game of Shooting Stars was originally published in the September，1974，issue of People＇s Computer Company（under the name of Teaser）．It is well described in the May，1976，Byte，so I＇m not going to say much about the game itself here．The primary problem in writing the game in Micro－BASIC is finding a way to group the stars and black holes in the universe into the appropriate gal－ axies．I have solved this problem using an array of nine numbers which are each the product of several prime factors．These are the values of the＂$F$＂array in the program．Each point in the universe is assigned a prime number value（the＂$S$＂values in the program）．A pos－ itive value indicates a＂Star＂，and a negative value is a＂black hole．＂ The program can then check for stars and black holes with a simple arithmetic comparison（i．e．，IF X＞0）．Reversing stars and black holes is as simple as changing their signs．The program determines which stars are in a given galaxy by finding all the prime number factors of the＂$F$＂value for that position．The appropriate galaxy is then re－ versed．The integer arithmetic of the Micro－BASIC interpreter allows checking for the factors of a number in the following manner：

    Suppose we have $A=3$ $B=12$
    then $(B / A) * A=12 / 3 * 3$ or 12
    But if $B=5$ then $(B / A) * A=10$
    because $12 / 5=2.4$ and this is truncated to 2 ．
    This is the type of test which is performed in line 780 of the program．If the $S$ value divides evenly into the $F$ value the appropriate point in the galaxy is inverted．A FOR－NEXT loop checks and inverts the appropriate points in the complete universe．The same technique of checking for even division is used to print the carriage returns after each third point to produce a square matrix display（line 890）．

    The＂$S$＂values must be prime numbers to ensure that no extra factors creep into the＂$F$＂values which are the product of the appropriate＂$S^{\prime \prime}$ values for each galaxy．

    This program should run in any other type of Tiny BASIC which will handle－one－dimensioned arrays．You will have to change the RND statement $(380,390)$ to fit your random number generator． The RND statement in Micro－BASIC produces a random integer be－ tween 1 and 32,762 ．Line 390 causes the starting universe to be biased toward black holes；roughly two black holes for each star．The program can easily be converted to a scale basic interpreter by using the INT function when checking for factors．For example，line 780 would become： $780 \operatorname{IF}(\operatorname{INT}(F(X) / S(K)) * S(K)=F(X)$ LET $S(K)=-S(K)$ ．

    If you＇re not using a TVT with cursor control，change line 840 to a simple＂print＂or whatever form of page control you need．

    Good Luck！

    0日Iणの REM SHOOTING STARS IN 68のロ MICRO－BASIC．
    0日119 PEM MARK BORGERSON 7－23－76
    60120 REM DESIGNED FOR SUTPC 6800 VITH TVT－11（CT－1024）。
    00130 DIM $F(9), S(9)$
    O日 140 REM THE FOLLOUING STEPS ENTER THE INITIAL VALUES OF THE 00150 REM $F$ AND $S$ ARRAYS．（MICRO－BASIC HAS NO DATA AND READ STATEMENTS）
    90160 S（1）$=-23$
    $90160 \mathrm{~S}(1)=-23$
    $00179 \quad S(2)=-3$
    $00180 \quad S(3)=-19$
    $00190 \quad S(4)=-11$
    の020 $S(5)=2$
    $00210 \mathrm{~S}(6)=-5$
    g0220 $S(7)=-13$
    00230 $5(8)=-7$
    00240 $S(9)=-17$
    90250 $F(1)=1518$
    50260 $\mathrm{F}(2)=1311$
    9027 $\mathrm{F}(3)=570$
    90280 $F(4)=3289$
    0029 © $F(5)=2310$
    Фø3のの $F(6)=1615$
    $00310 \mathrm{~F}(7)=2062$
    60320 $F(8)=1547$
    の6339 $F(9)=1190$
    O日340 REM INITIALIZE SHOT COINTER
    $00350 \mathrm{C}=\varnothing$
    G0360 REM RANDOMIZE STAF．AND BLACK HOLE PATTERN
    gの37の FOR $I=1$ TO 9
    00380 $X=P N D$
    6039の IF $X>2$ のロロの $S(I)=-S(I)$
    Ge390 IF X＞2
    GEAOG NEXT I
    B0410 REM PPINT
    20420 GOSUB 840
    g0420 GOSUB 840
    g043 P PEM GET FIRST SHOT
    D0430 PEM GET FIRST SHOT
    20440 PRINT＂YOUR SHOT＂；
    20440 PRINT＂Y
    פ0450 INPUT X
    OQ450 INPUT X
    O0460 REM INCREMENT SHOT COUNTER
    00460 REM IN
    $00470 \quad \mathrm{C}=\mathrm{C}+1$
    $00470 \mathrm{C}=\mathrm{C}+1$
    פ0480 PEM CHECK FOP VALID SHOT
    פ6480 REM CHECK FOP VALID
    08490 IF $S(X)>0$ GO TO 530
    GO50Ø PPINT＂YOU CAN ONLY SHOOT STARS＂
    00510 GO TO 440
    G日520 REM INITIALIZE SCOFING COUNTER
    の日530 $\mathrm{B}=$ ๆ
    9054の REM INUERT（CHANGE．SIGII）OF APPROPRIATE GALAYY。
    90550 GOSUB 770
    GO56月 REM CHECK SCORE BY ADDING STAP．VALIES
    Q0570 FOP L＝1 TO 9
    $08588 \mathrm{~B}=\mathrm{B}+\mathrm{S}$（L）
    90590 NEKT L
    صø600 PEM PPINT OUT MODIFIED INIVERSE
    90619 GOSUB 849
    のल62e 只EM IF $B=-100$ ALL POINTS ARE BLACK HOLES

    ```
 0630 IF E=-100 GO TO 690
 0640 REM IF B IS NEITHER - 100 NOR 96 GAME CONTINUES
 0650 IF B<>96 GO TO 440
 O660 PRINT'EROU UIN"
 0670 PRINT"YOU FIRED ";C;" SHOTS."
 0680 GO TO 70日
 00690 PRIMTOYYOU LOST"
 O0700 PRINT "TO PLAY AGAIN TY`E 'RUN', CN."
 07010 GOTD 950
 B9720 PEM THE FOLLO%ING SUBROUTINE CHECKS TO SEE IF THE F VALUE
 G0730 REM FOR THE SHOT CAN BE EVENLY DIUIDED BY THE SVALUE
 OO730 REM FOR THE SHOT CAN BE EFITION. IF S DIVIDES INTO F VITHOUT
 OTGO REM FOR. EACN, SOSITIONO IF SIVIDES INTO F UITHOUT
 ETSE PEM A REMAINDER, THE STAR OR BLACK HOLE IS INVEPTED
 0760```

