

# FF 109 – Intro to Embedded **Systems**

Unit 0:

Class Introduction Computer Organization





# What is Computer Engineering

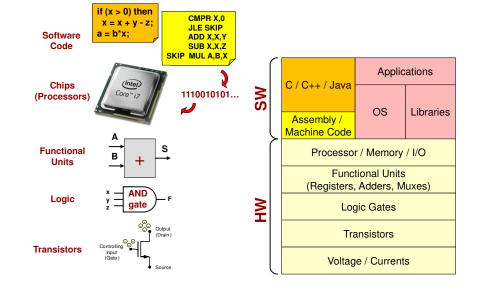
- Computer Engineering is...
  - Computer Science
    - · Focus on information and transforming information into more useful forms (i.e. algorithms and computer programs)
  - Electrical Engineering
    - · Focus on designing circuits and systems that physically manipulate information (i.e. a high or low voltage => 1 or 0) or other mechanical systems
- Design, implement, and test devices and systems
- Getting your hands dirty!
  - Designing circuits, using lab equipment, and building s\*\*\*!

Goal of CECS: To develop engineers who can span the complex inter-relationship of computer hardware and software, creating and designing system solutions



http://blog.tmcnet.com/blog/rich-tehrani/uploads/facebook-datacenter-electrical-large.ipg

http://www.cmu.edu/news/image-archive/Boss.jpg


http://prisonerofclass-5933.zippykid.netdna-cdn.com/wp-content/uploads/2013/05/iphone.ipg

http://firstcallappliance.com/wp-content/uploads/image/microwave.jpg

http://www.engadget.com/2011/02/19/intel-to-spend-5-billion-on-new-14nm-fab-in-arizona-creating-4/http://www.amazon.com/Fisher-Price-T-M-X-Tickle-Me-Elmo/dp/B000ETRE0Q



#### Computer Engineering as Abstraction Levels





#### You Can Do That...

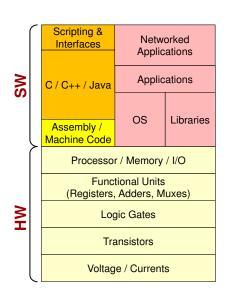
#### **Cloud & Distributed Computing**

(CyberPhysical, Databases, Data Mining, etc.)

#### **Applications**

(AI, Robotics, Graphics, Mobile)

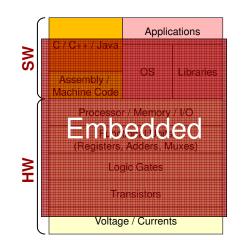
#### Systems & Networking


(Embedded Systems, Networks)

#### **Architecture**

(Processor & Embedded HW)

#### **Devices & Integrated Circuits**


(Semiconductors & Fabrication)





#### Goals of this Course

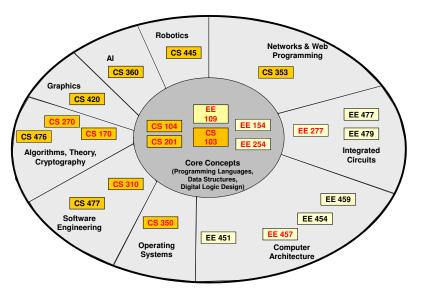
- Embedded systems
- Programming
  - C language
- Computer organization
  - − CPU, memory, I/O, etc.
- Digital logic
  - Basic logic functions
- Electronics
  - Voltage, current, basic circuit theory





#### Full Timeout - Syllabus

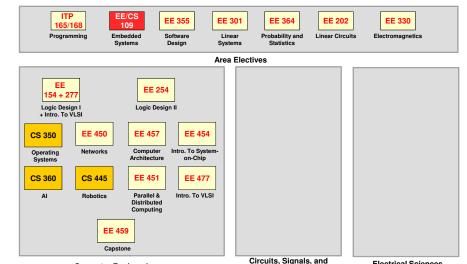



#### Catch the wave!

- Underestimate the time you will need and your ability to get your work done
- Limit extracurricular activities in the 1<sup>st</sup> semester
- Don't let shame or embarrassment keep you from the help you need
- You're here to learn not to be taught
  - Be active and engaged
  - Do not be afraid to fail
  - http://ceng.usc.edu/~bkrishna/TheDangersOfClassroomTeaching.pdf






# **CECS Curriculum (Fall)**





**Electrical Sciences** 

# **EE Curriculum (Spring)**



#### **Careers**

- Information Technology
- General & High Performance Computing
- Telecomm and Networking
- Media & Entertainment
- Automotive
- Robotics
- Aerospace / Defense











Systems



**Computer Engineering** 

- **General & High Performance Computing**
- Telecomm and Networking
- Media & Entertainment
- Automotive
- Robotics
- Aerospace / Defense
- Academia / Research





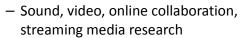








#### **Companies**


- Information Technology
- Semiconductor & General computing
- · Telecomm and Networking
- Media & Entertainment
- Automotive
- Robotics
- Aerospace
- Startups

- · Facebook, Apple, Google, MS
- Intel, AMD, IBM, Motorola, HP
- · Qualcomm, Cisco
- EA, Disney, Riot Games
- Ford, etc.
- JPL, iRobot
- SpaceX, Boeing, Raytheon
- Embark, Zboard

2 of the top 10 fastest-growing job markets will be Computer Science and System (CENG) Engineers

## Research at USC







- AI, Internet, Advanced Processing Systems research
- Institute for Creative Technologies
  - Virtual Reality, Graphics, Animation, Games







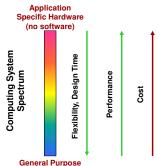




#### Media

- Robotics
  - http://www.isi.edu/robots/superbot/movies/FoxNews.s wf
  - http://www.isi.edu/robots/superbot/movies/SuperBot.s wf
- Virtual Reality
  - http://www.youtube.com/uscict#p/u/13/Fh9glswxbvU
  - http://www.youtube.com/uscict#p/u/0/0U7-q 9YV5c




#### **EMBEDDED SYSTEMS**

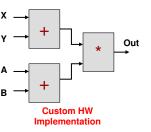


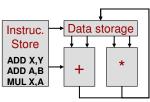
#### **Digital System Spectrum**

- Key idea: Any "algorithm" can be implemented in HW or SW or some mixture of both
- A digital systems can be located anywhere in a spectrum of:
  - ALL HW: (a.k.a. Application-Specific IC's)
  - ALL SW: An embedded computer system
- Advantages of application specific HW
  - Faster, less power
- Advantages of an embedded computer system (i.e. general purpose HW for executing SW)
  - Reprogrammable (i.e. make a mistake, fix it)
  - Less expensive than a dedicated hardware system (single computer system can be used for multiple designs)
- · Image Processing: System-on-Chip (SoC) approach
  - Some dedicated HW for intensive JPG/MPG decoding operations
  - Programmable processor for UI & other simple tasks

http://www.xbitlabs.com/images/news/2008-06/nvda\_tegra\_chip\_scheme.jpg







HW w/ Software



#### **Processing Logic Approaches**

- Custom Logic
  - Logic that directly implements a specific task
  - Example above may use separate adders and a multiplier unit
- General Purpose Processor
  - Logic designed to execute SW instructions
  - Provides basic processing resources that are reused by each instruction
- What if I want to perform:
  - X\*Y + A\*B
  - What's easiest to redesign?





GP Proc. Implementation of (X+Y)\*(A+B)



#### **Embedded Systems**

- An embedded system is...
  - A special purpose computer that is designed into a larger device to perform some amount of dedicated tasks
- Utilize a microcontroller...
  - Laptops or desktops contain a microprocessor
  - Embedded systems contain *microcontrollers*
  - What's the difference?
    - Microprocessor is part of a larger computer system w/ RAM and general purpose I/O
    - Microcontroller is a single-chip with RAM and I/O to control specific electro/mechanical devices

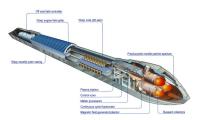


 Different microprocessor and microcontroller based systems

|             | PC<br>(Core i7) | iPhone<br>(A6 chip) | MIPS32<br>(PIC32MX) | Arduino<br>(ATMega328) |
|-------------|-----------------|---------------------|---------------------|------------------------|
| Clock speed | 3 GHz           | 1.3 GHz             | 80 MHz              | < 20 MHz               |
| Data size   | 64-bits         | 32-bit              | 32-bits             | 8-bits                 |
| RAM         | 8 GB            | 1 GB                | 16 KB               | 2 KB                   |
| Storage     | 1 TB            | 32 GB               | 128 KB              | 32 KB                  |
| Cost        | \$1,000         | \$650               | \$6.04              | \$2.88                 |



#### **Engineering Design**


Engineering is

Design with Constraints


### **Engineering Design**

Artists and engineers both design things, but differently.

Artist: "We'll create a spaceship powered by a warp drive."



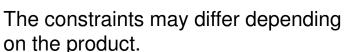
Engineer: "We need to build a rocket engine that works."





#### **Engineering Design**

What constraints does an engineer face when designing something?


Cost Performance Reliability

Durability Ease of use Weight

Power Size Safety

Environmental Political etc.

### **Engineering Design**



Medical implant device: Reliability > Cost

Toy: Cost > Reliability



## **Engineering Design**

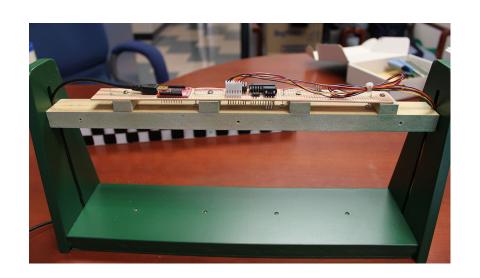
Example: Design a device for use in a Pinewood Derby to see which car finishes 1st, 2nd, etc.



# **Engineering Design**



What constraints does the engineer have to consider?


# Engineering Design USCViterbi School of Engineering





# **Engineering Design**



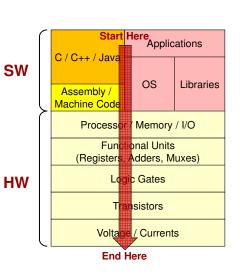


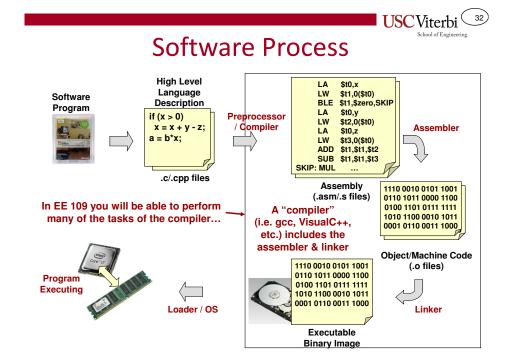


#### **Engineering Design**






How does your computer work?


# COMPUTER ORGANIZATION OVERVIEW

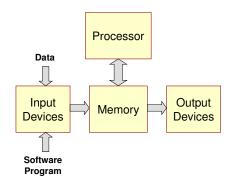


#### **Computer Systems Tour**

- How does a SW program get mapped and executed on a computer
- What components is a computer composed of and what are their functions
- How does the architecture affect performance



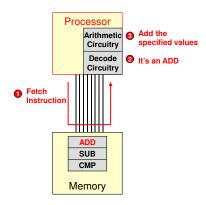





#### **Compiler Process**

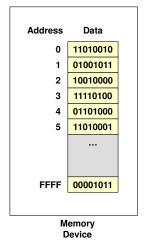
- A compiler such as 'g++' performs 3 tasks:
  - Compiler
    - · Converts HLL (high-level language) files to assembly
  - Assembler
    - · Converts assembly to object (machine) code
  - Static Linker
    - Links multiple object files into a single executable resolving references between code in the separate files
  - Output of a compiler is a binary image that can be loaded into memory and then executed.
- Loader/Dynamic Linker
  - Loads the executable image into memory and resolves dynamic calls (to OS subroutines, libraries, etc.)

# **Hardware Components**


- Computer hardware can be classified into three categories
  - Processor
    - Performs operations on data
    - Pentium, PowerPC, etc.
  - Memory (RAM & ROM)
    - Temporary storage for data and program (instructions)
  - Input/Output Devices
    - Supplies and consumes data
    - Supplies the program
    - Keyboard, Mouse, Monitor, Hard Drive
- Many variations due to different performance, cost, reliability, power factors



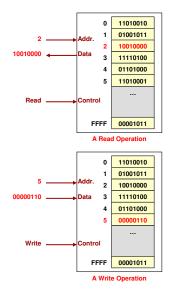



#### **Processor**

- Performs the same 3-step process over and over again
  - Fetch an instruction from memory
  - Decode the instruction
    - Is it an ADD, SUB, etc.?
  - Execute the instruction
    - Perform the specified operation
- This process is known as the Instruction Cycle






- Set of cells that each store a group of bits (usually, 1 byte = 8 bits)
- Unique address assigned to each cell
  - Used to reference the value in that location
- Numbers and instructions are all represented as a string of 1's and 0's





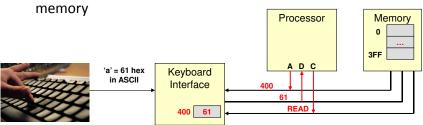
### **Memory Operations**

- Memories perform 2 operations
  - Read: retrieves data value in a particular location (specified using the address)
  - Write: changes data in a location to a new value
- To perform these operations a set of address, data, and control inputs/outputs are used
  - Note: A group of wires/signals is referred to as a 'bus'
  - Thus, we say that memories have an address, data, and control bus.





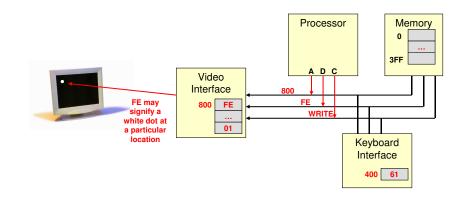
#### **Memory Types**


- RAM (Random Access Memory)
  - Most memory types are random access
  - RAM really has come to mean the memory can be both read and written
  - Volatile: Contents are lost on power-off
- ROM (Read-Only Memory)
  - Data values are programmed prior to shipping and cannot be rewritten by the processor
  - Non-volatile: Contents are retained w/o power



## Input / Output

- Keyboard, Mouse, Display, USB devices, Hard Drive, Printer, etc.
- Processor can perform reads and writes on I/O devices just as it does on memory
  - I/O devices have locations that contain data that the processor can access


 These locations are assigned unique addresses just like memory





#### Input / Output

 Writing a value to the video adapter can set a pixel on the screen

