
(

EK -lVAXD-TM-003

VAX Diagnostic
Design Guide

Prepared bv Educational Services
of

Digital Equipment Corporation

Copyright © 1983 by Digital Equipment Corporation
All Rights Reserved

First Edition August 1979

Second Edition, March 1981

Third Edition, November 1983

The reproduction of this material, in part or whole, is strictly prohibited.
For copy information, contact the Educational Services Department,
Digital Equipment Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may not be used or copied except in accordance with the terms of
such license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by Digital.

The manuscript for this book was created using DIGITAL Standard
Runoff. Book production was done by Educational Services
Development and Publishing in Nashua, NH.

The following are trademarks of Digital Equipment Corporation:

~D~DDmD DECtape Rainbow
DATATRIEVE DECUS RSTS
DEC DECwriter RSX
DECmate DIBOL UNIBUS
DECnet MASS BUS VAX
DECset PDP VMS
DECsystem-10 P/OS VT
DECSYSTEM-20 Professional Work Processor

\

(

(

C---
',:-

,,- -

l

\'
i

CHAPTER

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
loll

CHAPTER

2.1
2.2
2.2.1
2.3
2.4
2.5
2.5.1
2.5.2
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7

CHAPTER

3.1
3.1. 1
3.1. 2
3.1. 3
3.1. 4
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1

1

2

3

CONTENTS

WHAT IS A DIAGNOSTIC PROGRAM?

INTRODUCTION. . • . • • • . • . • . • . • •• .1-1
USES OF DIAGNOSTIC PROGRAMS •••• . .1-1
DIAGNOSTIC PROGRAM USERS •••••.••••••.• 1-2
USER REQUIREMENTS ••••••••••...•.•• 1-2
RUN-TIME ENVIRONMENTS •••.•••••..•..• 1-5
DEFINITIONS. . • ••. . ••.• 1-6
TESTING GOALS .•...••..••••••••.. 1-7
LOGIC TESTS, FUNCTION TESTS, AND EXERCISERS. .1-9
SERIAL AND PARALLEL TESTING •• .•••••• 1-10
BOTTOM-UP AND TOP-DOWN TESTING. . • • • • 1-11
MACROPROGRAMS AND MICROPROGRAMS • • • • • 1-12

VAX DIAGNOSTIC PROGRAMS

INTRODUCTION •...••••••••••..•••• 2-1
RUN-TIME ENVIRONMENTS FOR VAX DIAGNOSTIC PROGRAMS.2-1

The VAX Diagnostic Supervisor. • • • . • • .2-2
INTRODUCTION TO THE VAX DIAGNOSTIC STRATEGY .••• 2-3
METHODS OF PERFORMING I/O •.•• ~•.. 2-7
APPLYING THE VAX DIAGNOSTIC STRATEGY •.••... 2-10

Testing the CPU Cluster • . . • . . . • • . • • 2-10
Testing Peripheral Devices •.••..••••• 2-11

GUIDELINES FOR WRITING VAX DIAGNOSTIC PROGRAMS •. 2-12
Level 1 Guidelines •..•.• , .•.•.•••. 2-12
Level 2R Guidelines .••.•••••..••. 2-13
Level- 2 Guideline •.••••..•.•••.• 2-13
Level 3 Function Tests Guidelines • . . 2-13
Level 3 Logic Test Guidelines • ••. • 2-14
Level 4 Guidelines. • . . • . • •. • .•• 2-15
Level 5 Guidelines. . . • • •• 2-16

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

INTRODUCTION .•..•.•••.•••••••••• 3-1
Overview of the VAX Diagnostic Supervisor •... 3-2
Overview of a VDS Diagnostic Program •• 3-2
Memory Layout. . ••••.••••••••• 3-4
Introduction to the Macros.••••• 3-5

P-TABLES ••.•.••.•••••.••.••••• 3-6
Introduction to P-Tab1es •••..•......• 3-6
P-Table Format. • • • •• •••••. • .3-8
P-Tab1e Descriptors • • • • • • • • • . . • • • 3-11

Introduction to P-Tab1e Descriptors ••• 3-11

iii

3.2.3.2
3.2.3.3
3.2.3.4
3.2.4
3.2.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
3.9
3.9.1
3.9.2

3.9.3
3.9.3.1
3.9.3.2
3.9.3.3
3.9.3.4
3.9.3.5
3.10
3.10.1
3.10.2
3.10.3
3.10.4
3.11
3.12
3.12.1
3.12.1.1
3.12.1.2
3.12.2
3.12.2.1
3.12.2.2
3.12.2.3
3.13
3.13.1
3.13.2
3.13.3
3.14

Location of P-Tab1e Descriptors • • • • • • • 3~12
Creating P-Tab1e Descriptors. . • • . . • . . 3-13
Creating Names for Device-Dependent Fields •• 3-19

Referencing P-Tab1es from a Diagnostic Program. 3-22
Attaching from Within the Diagnostic Program •. 3-22

DIAGNOSTIC PROGRAM GLOBAL DATA STRUCTURES •• 3-22
Diagnostic Program Header . . • . • • • • • • . 3-22
Dispatch Table. • • • • • • • • . . • • 3-22
Program Sections Table. .. .•. .•• 3-23
Device Mnemonics List • • . • . • • • • • • . . 3-23

PROGRAM PASSES AND SUBPASSES. . •..••.. 3-23
INITIALIZATION CODE • . • • • • • 3-24

Format of the Initialization Code •••••.. 3-24
Services Used by the Initialization Code ••.. 3-24
Logical Units •.••••••.•••.•••• 3-25
Program Passes and the Initialization Code ..• 3-25
Initialization Code Examples. . •. 3-26

CLEANUP CODE. . • • • • • •• .•..••.• 3-27
SUMMARY ROUTINE . • • . • • • . . 3-28
TESTS, SUBTESTS, AND SECTIONS .•••.••.•. 3-29

Tests. . • . • . • • ••. 3-29
Subtests. . •• .••••..•..•.•• 3-29
Sections 3-31

REPORTING ERRORS. . .• . •....••••. 3-32
Error Message Formats • • • • • • • • . 3-32
VDS Control Flags Associated
with Error Reporting. . •••••.•• 3-34
Error Types • • • • • • • . . • 3-35

Preparation Errors. •••• . •.. 3-35
Soft Errors • • • • • • . . • . . . • •• 3-35
Hard Errors • • • . • • • • . • • . . • 3-35
Device-Fatal Errors ••..•••. .• 3-36
System-Fatal Errors .••••.....•• 3-36

LOOPING • . • • • . • • • ••.•••••. 3-36
Defining Loop Boundaries •••••..•..•• 3-37
Characteristics of Loops ••..•••.••.. 3-38
Nesting Loops • • . . • • • • • • . • . . • • • 3-39
User-Specified Looping •..•••••••.•. 3-40

CONDITIONAL AND UNCONDITIONAL BRANCHING . 3-41
INPUT/OUTPUT. • • • • • . . • • • • • . • 3-43

I/O with the Unit Under Test •••••..•.• 3-43
I/O in User Mode ••••••.••..•.•• 3-43
I/O in Standalone Mode. . • . •. . •.• 3-48

I/O with the User Terminal. • . . • •• .• 3-50
Displaying Message Strings. • • . • •• ~ 3-51
Prompting the User •••••....•••.. 3-52
Displaying HELP Text. . • •• • ••.•• 3-54

MEMORY MANAGEMENT AND ALLOCATION ..••••••• 3-54
Memory ~anagement in User Mode. •. . ••• 3-54
Memory Management in Standalone Mode .••.•• 3-55
Memory Allocation • • • . . • . • • •• .. 3-55

SYNCHRONOUS AND ASYNCHRONOUS EVENTS . • • • • . • 3-56

iv

(

3.14.2
3.14.3

c 3.14.3.1
3.14.3.2
3.14.4
3.14.4.1

3.14.4.2

3.~4.5
3.14.6
3.15
3.15.1
3.15.2
3.15.3
3.15.4
3.15.5
3.15.6
3.15.7
3.15.8

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.4
4.5
4.6
4.7

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.3
5.3.1
5.3.2
5.3.3
5.4

Event Flags • • • . • • • • • • • • . • . . • • 3-56
Asynchronous System Traps (ASTs) •••.•••• 3-58

AST Delivery. • •. • •••...•.•• 3-58
AST Routines. • • • . . • ••..•• 3-58

Timing. • . . . 3-59
Timing Facilities Available in User Mode
and Standalone Mode • • . . • . • . • •• 3-60
Timing Facilities Available in Standalone
Mode Only • • . • • • • ~ • • • • • • • • • • 3-61

Condition Handling. •••• . ••••• 3-61
Handling Control-Cs • .•••..••.•• 3-65

FILE MANAGEMENT • . • • • • . • •• • 3-66
Introduction. • • • . . •. • • • • 3-66
VDS RMS Overview. • • • •• .••• 3-68
The FAB, RAB, and XAB ••••• 3-68
Accessing the VDS RMS Control Structures. . 3-69
Reading Files • • . • • • • . . 3-70
Record Processing •••...•••.••• 3-70
Block Processing. • ••••.•••.•.• 3-73
Mixing Block Processing and Record Processing • 3-73

VDS MACROS

INTRODUCTION. . • • • . • • • • • . •••• 4-1
CODING SYSTEM SERVICE MACRO CALLS .•• • .4-1

Fields of the Macro Name •••••.•..•.•• 4-2
Macro Arguments • • • • • • • •• ••• .4-4
Return Status Codes •••••.....••••. 4-5

CONVENTIONS USED IN THIS CHAPTER. • • • •• . .4-6
PROGRAM STRUCTURE MACROS ••••••••••••• 4-8
PROGRAM CONTROL MACROS •••••••..•••• 4-94
SYSTEM SERVICE MACROS. • • . . . • • • .4-105
SYMBOL DEFINITION MACROS. • • • • • • • •• .4-264

CREATING A VDS DIAGNOSTIC PROGRAM

INTRODUCTION • • • • • •• .•.•••• .5-1
PROGRAM DEVELOPMENT PROCESS. . •••.•.•• 5-1

Overview 5-1
Consultation Phase. • • • •• .••• • .5-1
Planning Phase. • • • • • • • • • • . . .5-2
Functional Specification Phase .••..••••. 5-2
Design Phase~ • • • • • • • • • • • • • .5-3
Design Implementation Phase . •• • .5-3
Design Verification Phase. • •••. 5-5

PROGRAM STRUCTURE. . • •••.••.••• 5-5
Header Module ••....•••••.•••••• 5-5
Test Modules. .• ...•..•. • .5-7
Module Templates. • ••.•••.••••.. 5-8

PROGRAM DOCUMENTATION. •••. • •••.. 5-8

v

5.4.1
5.4.2
5.4.3
5.4.3.2
5.4.3.3
5.4.3.4
5.4.3.5
5.4.3.6
5.4.4
5.4.4.1
5.4.4.2
5.4.4.3
5.5
5.6
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.7.7
5.8
5.9
5.110
5.110.1
5.110.1.1
5.110.1.2
5.110.1.3
5.110.2

Introduction. • • • • • • • • •• ••• .5-8
Documentation File ..••...••.••..•. 5-9
Source Code Documentation . . . •• •••. 5-12

Module Names. • . • • • . • •• . •••• 5-12
Module Cover Page • . .• .••••..• 5-12
Test and Subtest Prefaces • • • . . • • • . • 5-12
Subroutine Preface.. ••• . •••• 5-14
Source Code Comments. . • • • • • . ..• 5-16

Help Files. . • • • • • • • . •• . 5-19
Description of Help Files •...•••••• 5-19
Creating Help Files • • • . • • • • • 5-210
Contents of Help Files. . . • 5-23

RUN-TIME ENVIRONMENT CONSIDERATIONS•.• 5-24
CUSTOMER-RUNNABLE DIAGNOSTICS (CRD). .•.. 5-25
CODING CONVENTIONS •.•......•..•••• 5-25

Error Message Formats • • . . • . • 5-25
Volume Verification .• .•• ••..• 5-27
Long Silences • • • •• .••••. .. 5-28
Hardware Preparation. • . • . • . . •. .• 5-29
Manual Intervention •• ..•.•.. • 5-310
Quick Mode. • . • . • • • • • • • . • 5-31
Naming Symbols .•.••....••.••.•• 5-31

LINKING A DIAGNOSTIC PROGRAM. 5-33
DEBUGGING A DIAGNOSTIC PROGRAM. . . • • 5-34
QUALITY ASSURANCE . • • . • • . . 5-34

Quality Requirements ••.••.•••••••• 5-34
Documentation Quality ..•••••••• 5-35
Functional Quality. . • . . • •• • ••• 5-35
Operational Quality • .•....•..• 5-35

Automated Quality Assurance •.••....•• 5-410

APPENDIX A TEMPLATE FOR THE VDS DIAGNOSTIC PROGRAM HEADER MODULE

APPENDIX B TEMPLATE FOR VDS DIAGNOSTIC PROGRAM TEST MODULES

APPENDIX C TEMPLATE FOR DIAGNOSTIC PROGRAM DOCUMENTATION FILE

APPENDIX 0 SAMPLE ,HELP FILE

2-1

3-1
3-2
3-3

3-4

FIGURES

Hardware Environments for VAX Diagnostic
Programs. . . • •. ..•••••. 2-6

VDS Overview. • . •
VDS Memory Layout
Sample Hardware Configuration
P-Tables •..•.
P-Table Layout •..•••••

vi

.3-2

.3-5
and Associated
. 3-7

. 3-9

(

(

(

3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15

4-1
4-2

4-3
4-4
4-5
4-6
4-7
4-8

2-1
2-2
2-3

3-1
3-2

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

Legal and Illegal Usage of Subtests · · · · · · · 3-30
Examples of Loop Boundaries · · · · · · · · · 3-38
Proper and Improper Branching Within Loops. · · · 3-39
Nesting Loops · · · · · · · · · · · · · · 3-40
$QIO Function Code and Modifier Fields. · 3-45
I/O Status Block Format · · · · · · · · · · · · · 3-46
Typical $QIO Diagnostic Buffer Format · · · · · · 3-48
Argument List Passed to an AST Routine. · 3-59
Argument List Passed to a Condition Handler · · · 3-63
Format of Signal Array. · · · · · · · · · 3-63
Format of Mechanism Array · · · · · · · · 3-64

Quadword String Descriptor. · · · · · · · · · .4-7
Argument List Format for
$DS BGNDATA - $DS ENDDATA · · · · · · · · · · · · 4-40
Sample Parse Tree - 4-59 . . · · · · · · · · · · · · "Valtab" Table Format · · · · · · · · · .4-114
Adapter Status Format · · · · · · · · · · · .4-135
$DS CVTREG Value Mnemonics Table Usage. · · .4-152
Device Characteristics Buffer (Standalone Mode) .4-177
Format of Terminal Characteristics. · · · · · · .4-179

TABLES

Program Levels and Run-Time Environment. • •
Hardware Environments and Hardcore Requirements •
I/O Methods and Program Types ••••••••

.2-5

. 2-6

.2-9

Device-Independent Read and Write Functions .•• 3-35
Comparison of VAX-II RMS and VDS RMS ••...• 3-67

EXAMPLES

P-Table Descriptor for RK6ll Disk Controller ••• 3-16
P-Table Skeletons for RH780 MASSBUS Adapter ••• 3-17
P-Table Descriptor for RH780 MASSBUS Adapter ••• 3-18
Referencing P-Tables in MACRO-32. ••. • 3-20
Referencing P-Tables in BLISS-32. • • • • 3-21
Sample Error Message..•••••• 3-33
Sample Error Message. . • • • . • •. .••• 3-34
Record Processing with RMS. . . • •• • ••• 3-72

vi i '

{

(
'----

(i

(

1.1 INTRODUCTION

CHAPTER 1
WHAT IS A DIAGNOSTIC PROGRAM?

This chapter presents an introduction to diagnostic program
design. It discusses the uses and users of diagnostic programs,
the testing goals any diagnostic program design should meet, and
the various methods used to test hardware. This chapter discusses
those characteristics that are common to all diagnostic programs,
regardless of the hardware they are designed to execute in or
test.

1.2 USES OF DIAGNOSTIC PROGRAMS

A diagnostic program is any program designed specifically to
discover and identify hardware failures in a computer system.
There are three main cases in which diagnostic programs are used.

1. During execution of applications or systems programs, when
the system produces unexpected events or incorrect
computation results.

This indicates the possibility of malfunctioning hardware.
A diagnostic program or set of programs will be executed
to determine if there was a hardware malfunction and, if
so, which part of the system failed.

2 • Du r i n g man u f act uri n g •

After a hardware device is built, it must be thoroughly
tested before it is shipped to a customer. This testing
generally is performed "bottom-up." First, logic modules
making up the device are tested separately. Then, the
modules are put together to create the whole device and
the device itself is tested. Sometimes entire systems are
put together in the manufacturing plant and tested before
being shipped to a customer. Other times, systems are not
put together until the individual parts (previously tested
processors and peripherals) arrive at the customer site.

1-1

3.

WHAT IS A DIAGNOSTIC PROGRAM?

During the design of a new product.

If the functionality of a product is accurately defined,
and a diagnostic program for the product is correctly
written, then when the diagnostic program is executed it
should (if the product has no hardware malfunctions)
indicate that the product is functioning correctly. If
tne diagnostic program indicates that errors have been
detected, they could be the result of a faulty product
design that needs to be corrected.

1.3 DIAGNOSTIC PROGRAM USERS

Because diagnostic programs are put to various uses, the users
(operators) of these programs are also varied. When a diagnostic
program is used to identify problems in a system at a customer
site, the program may be run by a customer service representative
or by the customer.

Diagnostic programs used to verify proper functioning of new
devices or systems might be run by technicians at the
manufacturing site. They might be loaded and run using an
automated method requiring no operator. Also, customer service
representatives must verify proper functioning of new systems when
the systems arrive at a customer site.

A diagnostic program used for design verification would probably
be run by a hardware design engineer.

Because of the variety of users for diagnostic programs, the
program developer should be aware who the users of his or her
program will be. Some programs may be intended for a specific
audience, and the program can be tailored to its needs,
background, and experience. Other programs will be intended for a
wide range of users and must be written to be useful to all of
them.

1.4 USER REQUIREMENTS

All diagnostic program users have specific requirements that the
programs must meet. While some requirements are common to more
than one user, some are not.

All users have in common the need for good fault detection, or
"coverage" (the ability to find as many failures as possible).
Every user expects that if an error exists on the device being
tested, then some diagnostic program will detect that error.

Customers, or "end users,"
diagnostic programs.

have three main requirements for

1-2

(

(

(

(

(,

WHAT IS A DIAGNOSTIC PROGRAM?

• Ease of use.

The functions of diagnostic programs are technical and
relate to internal system hardware. An end user may not
have the training to understand what operations are taking
place in the diagnostic program. Therefore, the human
interface must be simple. For example, installing cables,
setting switches on logic boards, requesting information
such as CSR addresses or device priority levels are all
inappropriate.

• Preservation of user data.

•

Since device media may contain data needed by the user,
diagnostic programs must provide safeguards against
destruction of this data. This is generally accomplished
by only writing on media designated for diagnostic use.
Some disks provide specific sectors that are used only for
diagnostic purposes.

Nonexclusion of users.

A large system at a customer site will usually be
timeshared by many users. If the users cannot use the
system while diagnostic programs are running, significant
loss to the customer can occur. Therefore, diagnostic
programs should operate under the user's operating system
and not preempt other system users.

Customer service representatives have the following diagnostic
program requirements.

• Quick fault detection.

The faster a customer service representative arrives at a
site, fixes the problem, and leaves, the happier the
customer. Diagnostic programs should be able to find
faults as quickly as possible.

• Identification of bad field-replacable units.

The diagnostic program should be able to tell the customer
service representative which FRU (see definition in
Section 1.6) should be replaced.

1-3

WHAT IS A DIAGNOSTIC PROGRAM?

• Good program documentation.

To identify a failure, it is often necessary for the
customer service representative to understand what
functions a diagnostic program is performing. Therefore,
the program should be well documented with detailed
functional descriptions of each test.

Manufacturing requirements depend on which phase
manufacturing process a diagnostic program is used in.

of the

In the module test phase, quick error detection is valued,
particularly in high volume settings. Good error identification
is sometimes NOT necessary, because modules are sent to module
repair stations that use their own special-purpose hardware and
software to identify module failures. In other cases, module
repair stations are not used and good error identification IS
important.

During device testing, manufacturing technicians have the same
requirements as customer service representatives. Quick detection
is needed so the manufacturing process will not be slowed.
Identification of an easily replaced constituent part of the
hardware system is necessary so the part can be replaced and the
device shipped while the bad part is repaired, instead of holding
up shipment of the device. Good documentation is necessary
because determining the bad part sometimes requires a thorough
understanding of the diagnostic program's functionality.

The main requirement of design engineers is that the program give
good fault detection. Since the engineer is using the diagnostic
program to check out his or her design, any section of the logic
that the program does not test could contain a design flaw that
may not be caught until after the hardware is in production,
necessitating an engineering change order (ECO).

It is important to note that user requirements often vary from
product to product. A particular user's specific needs often
depend on the type of product for which the diagnostic program is
being designed, or the program's use. For example, program
requirements specified by manufacturing personnel will depend on
the manufacturing site's testing stategy for the product. This
strategy is often not the same from one product to the next. The
program developer must maintain close communication with the
program's eventual users in order to tailor the program to the
requirements of those users.

1-4

(

(

c-

(

WHAT IS A DIAGNOSTIC PROGRAM?

1.5 RUN-TIME ENVIRONMENTS

The variety of uses and users of diagnostic programs creates a
variety of "run-time environments" in which diagnostic programs
must be able to execute. A "run-time environment" is the
control-level software, if any, under which the diagnostic program
must run. Some diagnostic programs cannot function in all
run-time environments. The environments a program is designed to
run in are determined by the purpose the program is to serve.

In the "user mode" run-time environment, a timesharing operating
system is executing on the system tested. There could be many
users on the system at the time a diagnostic program is run, and
the diagnostic program is just another user of the system. The
diagnostic program should not affect any other user on the system.
(The operating system will prohibit the diagnostic program from
exceeding its bounds.) Often, the device tested is assigned
exclusively to the diagnostic program, and the device's storage
medium must be replaced with a "scratch" medium the diagnostic
program can use to write test patterns. Some storage devices
provide an area for the exclusive use of diagnostic programs, such
as the "maintenance cylinders" on some disk media. In such cases,
the diagostic program uses this reserved area and other users of
the device are unaffected.

The opposite of the user mode run-time environment is the
"standalone mode" environment. In standalone mode, the diagnostic
program has exclusive use of the computer system. There is no
high-level operating system to allow other users to run at the
same time or to place execution boundaries on the diagnostic
prog~am. Thus the diagnostic program can run in privileged
execution modes and use reserved registers and memory space.
Sometimes in standalone mode a monitor or other type of control
program provides services to and controls execution of the
diagnostic program. However, this type of monitor will not place
execution constraints on the diagnostic program.

The advantage of standalone mode over user mode is that the lack
of execution boundaries sometim~s offers a greater level of
resolution in error identification. The disadvantage is that the
computer's operating system must be brought down, costing the
customer time and money. This disadvantage does not exist when
these programs are used on new systems at the manufacturing site.

The description of user and standa~one modes has implied that the
computer system under test is not connected to another system via
any type of network used for system diagnosis. There are,
however, networks that are used to load and run diagnostic
programs, increasing the number of run-time environments to be
contended with.

1-5

WHAT IS A DIAGNOSTIC PROGRAM?

Networks are commonly used at manufacturing sites, where it is
necessary to test a large number of systems at once. Typically, a
host processor will maintain up-to-date copies of all diagnostic
programs. The system to be tested will be connected to the host,
and the host will transmit the appropriate programs to the test
system. The programs will be executed in the test system's
processor, but the host will monitor the performance of the
programs and note any errors that occur.

Networks can also be used to diagnose systems at customer sites.
In this case, a centrally located host system can use phone lines
to· "call" a customer's system. The host can then monitor
diagnostic programs executed on the system tested and provide
customer service representatives with the results of the tests.
This can greatly decrease the amount of time customer service
personnel must spend at the customer's site. Since they will not
go to the customer site until after the tests are executed, they
will have a good idea of what the problem is before they arrive.

1.6 DEFINITIONS

The following are some commonly used terms.

• System under test (SUT) - The hardware system on which a
diagnostic program is executed.

• Unit under test (UUT) - The device tested (part of the
SUT). The UUT is defined by the diagnostic program, and
can be one drive of a particular device type or an entire
subsystem of the SUT, such as one of the remote nodes of a
host system.

• Hardcore - The portion of the SUT's hardware that must
operate properly for the diagnostic program to execute.
Programs that test peripheral devices typically have a
hardcore consisting of the processor, main memory, and a
program load device. A program's hardcore should never
include any portion of the UUT.

• Field-replacable unit (FRU) - Any portion of the UUT that
can be easily and quickly replaced at a customer's site
(for example, a logic board).

1-6

(

l

l

(

c-

c-

WHAT IS A DIAGNOSTIC PROGRAM?

1.7 TESTING GOALS

All diagnostic programs have the same testing goals, regardless of
what they test and what their execution environments or main users
are. The first goal is to

• Clearly define the testing scope and required hardcore.

The "testing scope" is that portion of the hardware logic which
the program tests. It should never extend beyond the boundaries of
the unit under test. For example, consider a disk controller that
can support several drives. A diagnostic program to test the
controller should not detect faults on the drives, unless it
cannot be avoided. Signals generated in the logic should be
limited to those areas meant to be tested by the diagnostic
program. (The fewer stray signals there are in the system, the
easier it will be to identify the failure.)

The hardcore required by the diagnostic program should be as small
as possible. Testing almost any peripheral device requires some
correctly functioning logic that signals must pass through in
order to get to and from the UUT. The smaller this hardcore, the
more likely that a diagnosis of the UUT can be made without
finding other errors within the the system but outside the scope
of test, which could invalidate the diagnosis. For example, a
program designer writing a diagnostic program for a disk might
have the option of having memory management on or off while the
program is running. Having memory management on will increase the
hardcore for the diagnostic program, and the program will not be
able to test the disk if ther~ are errors in the memory management
log ic.

The next goal of a diagnostic program is to

• Detect any and all failures that could occur within the
testing scope.

If any part of the unit under test could malfunction, the
diagnostic program should be able to detect that malfunction. The
diagnostic program does NOT need to be concerned with problems
outside the scope of the unit it is intended to test. For
example, a diagnostic to test a disk driver should not be expected
to detect CPU problems (although it might detect them
inadvertently) •

1-7

WHAT IS A DIAGNOSTIC PROGRAM?

This goal is clear-cut and simple if a malfunction occurs
anywhere within the unit under test, the diagnostic program should
detect and report it. Thus a diagnostic program designed to test
a set of tape drive controllers and their attached drives should
be able to detect any failure occurring in either the controllers
or their associated drives. A system exerciser (designed to
validate the overall functionality of a computer system, including
the CPU, memory, and all peripheral devices) should be able to
detect errors on any device attached to the system.

Once a failure has been detected, the diagnostic progam must

• Attempt to identify which part of the unit under test
caused the malfunction.

It is not enough to recognize that an error has occurred. The
diagnostic program should also be able to indicate which part (or
parts) need(s) to be repaired or replaced.

This third goal is not as clear-cut as the last one, for it
involves the concept of "degree of resolution." When attempting to
identify a failing part, the diagnostic program designer must
decide what the smallest part within the system is that should be
considered. Each computer system is made up of hardware devices,
which contain one or several logic boards, which in turn are made
up of IC chips. A diagnostic program's degree of resolution is a
relative measure of its ability to identify the smallest possible
failing constituent part. For example, consider a tape subsystem
consisting of several tape drives connected to one controller. A
diagnostic program that could identify the failing logic board
within the failing tape drive would have a higher degree of
resolution than one that only identified the failing drive.
("Fault isolation" is another phrase often used to refer to the
degree of error resolution.)

A particular program's proper degree of resolution depends on its
intended function. For example, it would be impractical for a
system exerciser (described in Section 1.8) to attempt to identify
failures to the degree of the failing chip. More likely, it would
determine which peripheral device was malfunctioning and, if the
peripheral consisted of several drives attached to one controller,
which drive was in error. On the other hand, a diagnostic program
designed to test a specific peripheral device probably should
attempt to identify the failing logic board within that device.

A diagnostic program's degree of resolution can also be affected
by the program's user requirements. It is not always practical to
achieve the highest possible degree of resolution, because
increasing resolution can also cause increased program size and
run-time, and may require a more highly skilled operator. In some
cases it may be more important to keep these variables within
bounds than to attain a high degree of resolution.

1-8

(

(

(~

WHAT IS A DIAGNOSTIC PROGRAM?

Unfortunately, achieving a high degree of error resolution is
sometimes more an ideal than an attainable goal. Diagnostic
programs used by customer service representatives should ideally
be able to identify the smallest malfunctioning FRU. But for the
program to identify an error as existing on one particular FRU,
two requirements must be met. First, all the hardware logic used
to execute the function that failed must reside on a single FRU.
Second, the diagnostic program must be able to determine which FRU
the logic resides on. Both these requirements can only be met
through proper hardware design of the device. Close communication
between the hardware designer and the diagnostic program designer
are essential when a new product is in development, to guarantee
proper logic partitioning along with visibility of all signals
needed by the program to achieve high error resolution.

It is sometimes not possible for a diagnostic program to
accurately identify a failure to the degree of resolution desired
in a particular situation. In these cases a technician will have
to determine the failing component by examining electrical signals
on logic boards with an oscilloscope. The responsibility of the
diagnostic program then is to provide the technician with aids to
locate the failure quickly and accurately. These aids mainly
consist of program loops that can be invoked if an error is
detected, and whose purpose is to provide repetitive state
transitions on small subsets of the hardware logic so that the
techinician can easily observe these transitions and make sure
they are taking place properly.

Thus we have one final design goal for diagnostic programs that
cannot isolate all faults automatically (at the present time, this
includes ALL diagnostic programs). The goal is

• To provide enough useful program loops that all possible
errors can be quickly and easily detected bi observing
logic state transitions.

This goal is more relevant to logic tests than to function tests,
both of which are discussed next.

1.8 LOGIC TESTS, FUNCTION TESTS, AND EXERCISERS

Not all diagnostic programs have the same functional goals. In
general, diagnostic programs can be divided into three groups:
"logic tests," "function tests," and "exercisers."

1-9

WHAT IS A DIAGNOSTIC PROGRAM?

A logic test is usually used during the repair of a failing
device. A logic test tests the device's combinational logic
(verifies that a specific section of hardware logic within the
device is functioning correctly). A logic test should provide the
greatest degree of error resolution of the three types of tests.
Logic tests are designed to run in a standalone environment.

A function test verifies the functionality of a device. For
example, a function test for a disk drive would be used to verify
that the "functions" provided by the disk, such as reading and
writing blocks of data, are operating properly. Function tests
may be used in the repair of failing devices or to detect the
failure. These tests may not have as great a degree of error
resolution as logic tests. Function tests can be designed to run
in either a standalone or user mode environment.

For many products, both a logic test and a function test are
developed. The function test is used to detect the hardware
failure and the logic test to repair the failing part. For some
products, the function test is used for repair. Some products
have logic tests in microprograms (see Section 1.11). In short,
the types of programs developed vary from product to product.
Program users will specify the types of programs they desire for a
particular product.

A third type of diagnostic program is an exerciser. Its purpose
is to verify that a system's functionality can be sustained over a
period of time. Exercisers are more likely to be designed for use
on entire systems than on a single device. Typically, Rn
exerciser will simultaneously perform repeated functional testing
of every device composing the system, in an attempt to detect (1)
failures that result from this simultaneous use of numerous
devices, or (2) failures that only occur rarely.

1.9 SERIAL AND PARALLEL TESTING

Many diagnostic programs are designed to test all units of a
specific type of device existing on a given system. There are two
methods by which this testing of multiple units can be
accomplished, "serial testing" and "parallel testing." Serial
testing involves testing each unit of the device individually, one
at a time. Parallel testing is the testing of all units at once.
Serial testing is more likely to be found in a logic test, where
it is desirable to keep the overall level of system activity to a
minimum. Parallel testing, on the other hand, may be included in
function tests to achieve higher levels of system activity.

1-10

(

l

~. -

l

WHAT IS A DIAGNOSTIC PROGRAM?

1.19 BOTTOM-UP AND TOP-DOWN TESTING

Two testing techniques are used to test hardware systems. They
are generally used in combination to produce a thorough test of
the SUT.

"Bottom-up testing" involves testing a device or system by
considering the UUT to be made up of a set of layers. The lowest
layer is the simplest and most elementary. Successively higher
layers depend on proper functioning of the layers underneath. All
layers taken together make up the entire UUT. Layers are tested
from lowest to highest. Once a layer is tested it is considered
the hardcore for the next layer. This testing technique is based
on a "guilty until proven innocent" assumption. That is, a
section of hardware is not assumed to be functioning properly
("innocent " of causing errors) until its integrity is verified.

Bottom-up testing is a important in logic tests, where the logic
must be tested in an order such that whenever a certain section of
logic is being examined, all the logic that electrical signals
must pass through before reaching the logic being tested should
have itself been tested previously. Each section of logic is
looike upon as another layer that depends on the previous sections
or layers operating properly. Function tests also make use of
bottom-up testing.

The bottom-up technique provides a thorough, systematic,
step-by-step approach to hardware testing. However, using this
method to validate an entire system can take a long time.

"Top-down testing" consists of first looking at the UUT as a
whole, then gradually subdividing the UUT into its component parts
until the failing part can be identified. This technique uses an
assumption of "innocent until proven guilty." (The program assumes
everything is operating properly unless errors are detected.) The
problem with this approach is that a fault might exist in a
portion of the hardware outside the testing scope of the
diagnostic program. In this case the diagnostic program might not
detect or might incorrectly diagnose the error, or might not be
able to execute at all.

In practice, diagnosis of a hardware system suspected of
containing faults uses a combination of top-down and bottom-up
techniques. Often, bottom-up programs will be run in a top-down
manner. Programs written to use the bottom-up technique are run
in an order such that those that test the largest subsystems are
executed first, followed by those that test devices tht previously
executed programs point to as questionable.

1-11

WHAT IS A DIAGNOSTIC PROGRAM?

1.11 MACROPROGRAMS AND MICROPROGRAMS

Many computer processors built today have two types of programming
instructions. "Macro-instruetions" make up the prbcessor's
machine language. These instr~ctions are the "moves," "branches,"
arithmetic and boolean operators, and so on, that are used to
manipulate data in specific memory locations. Programs that use
these instructions, either directly through the use of an assembly
language or indirectly by using a high-level language compiled
down to an assembly language, are called "macroprograms." By far
most programs written are macroprograms.

Beneath the macro-instructions is a set of "micro-instructions"
used to implement the processor's machine language.
Micro-instructions define the macro-level instructions, plus the
registers defined by the machine language as existing "in the
processor" (such as general purpose registers or a program
counter). Micro-instructions do not execute in the system's main
memory. Instead, they are loaded into and executed in a "writable
control store" (WCS). (Micro-instructions also often exist in
ROMs.) Since micro-instructions execute more rapidly than
macro~instructions, it is sometimes useful for applications or
systems programmers to use the micro-instruction set to create
"microprograms."

Developers of diagnostic programs sometimes make use of
microprogramming. Programs designed to test the processor will
most likely use micro-instructions, executing them in a WCS. Some
peripheral devices possess their own microprocessors. These
devices usually also have ROMs in which diagnostic routines have
been stored. In this case the diagnostic programmer writes a
macrodiagnostic program that activates the microprograms residing
in the ROM.

Parts of Chapter 2 discusses diagnostic microprograms further.
However, most of this manual concerns diagnostic macroprograms.

1-12

(

(
'--.-

(, CHAPTER 2

(

VAX DIAGNOSTIC PROGRAMS

2.1 INTRODUCTION

The discussion in Chapter 1 consisted of an overview of diagnostic
programs. It did not deal with specific types of computer
systems. This chapter introduces characteristics of diagnostic
programs that are unique to VAX.

2.2 RUN-TIME ENVIRONMENTS FOR VAX DIAGNOSTIC PROGRAMS

VAX diagnostic programs are expected to operate in several
run-time environments. These include user mode, standalone mode,
and network environments. The user mode environment that supports
execution of VAX diagnostic programs is the VAX/VMS operating
system. For almost all devices supported by DIGITAL under
VAX/VMS, a user mode diagnostic program must be developed. These
programs are used extensively at customer sites so that diagnostic
programs can be executed without bringing down VMS and thus
locking other users out of the system under test.

Many VAX diagnostic programs are designed to execute in standalone
mode. Manufacturing sites commonly use standalone programs,
because if user mode programs were used it would be necessary to
boot VMS just to run the diagnostic programs. Since standalone
programs often provide better error detection than user mode
programs, customer service personnel sometimes must use standalone
programs at customer sites.- Repair of failing device parts (after
they have been identified and removed from the system under test)
almost always involves the use of standalone diagnostic programs.

Networking environments have been developed for loading and exe
cuting diagnostic programs on VAX computer systems. One example
is the Automated Product Test (APT) run-time environment, commonly
used at manufacturing sites. Under this environment, a system
under test is connected to a "mother" system that has copies of
all diagnostic programs used. For each system to be tested, a
"script" is built. A script is a file containing a list of diag
nostic programs to be run, along with any run-time parameters that
must be passed to the diagnostic program. The mother system reads
this script and sends the appropriate diagnostic programs, one at
a time, to the system under test. (This is referred to as
"down-line loading.") Once a program has been sent to the system
under test, it is starte~ ~nd monj~~r~d by the mother system,
which will note any errors detected. When one program has com
pleted execution, the next one listed in the script is sent down
the line and started, until all programs in the script have been
run. Programs executing on the system under test can only run in
standalone mode.

2-1

VAX DIAGNOSTIC PROGRAMS

Another example of a diagnostic network is APT/RD (for Remote
Diagnosis), which provides a method of loading and monitoring
diagnostic programs for diagnosing a system at a customer site.
With APT/RD, a temporary communications link (via phone lines) is
established between the system to be tested and a centrally
located system belonging to DIGITAL and running the APT/RD
software. Once the link is established, the central system can
step through a script of diagnostic programs to attempt to
diagnose the customer's system. Unlike the APT system used at
manufacturing sites, though, the APT/RD system usually does not
perform down-line loading of diagnostic programs. Instead, the
programs must exist on some storage medium of the customer's
system. They are loaded "locally" from that medium, on command
from the central system. (Programs can be loaded down-line if
necessary, for example when the diagnostic load medium of the
system under test is malfunctioning.)

2.2.1 The VAX Diagnostic Supervisor

The previous chapter detailed the various uses and users a
diagnostic program may encounter. The above section describes the
run-time environments supported for VAX diagnostic programs. If a
diagnostic program designer had to include proper interfaces for
all users and environments in each program he or she developed,
the task would become burdensome. For this reason the "VAX
Diagnostic Supervisor" was developed for diagnostic macroprograms
designed to run on VAX systems. The VAX Diagnostic Supervisor, or
VDS, is a control program that will load, execute, and provide
run-time services to diagnostic programs.

The VDS is divided into two major sections.
interface between the VDS and the program
"human interface." The other is an interface
the diagnostic program and is referred
interface."

One section is an
user and is called the
between the VDS and
to as the "program

The human interface consists of a command line interpreter (CLI)
that receives and processes commands typed on a terminal by a
user. Commands supported by the CLI include those for loading and
running diagnostic programs, selecting which device units to test,
displaying execution summaries, and controlling program looping.

The program interface consists of a set of service routines for
service calls from the diagnostic program to the VDS, along with a
mechanism for dispatching calls from the program to the proper
routines in the VDS. These service routines provide the
diagnostic program with convenient methods for performing device
I/O, formatting error messages, controlling program loops, storing
and retrieving system-specific device parameters, prompting the
user for additional run-time parameters, and providing file
management fa~ilities.

2-2

/

~.

(

(

(

VAX DIAGNOSTIC PROGRAMS

The specific purposes of the VDS are to

1. Provide a common human interface for all diagnostic
programs. With the large number of VAX diagnostic
programs in existence, it is important that users not be
required to spend time learning how to use each one. The
VDS provides the user with a standard set of commands and
functions that can be performed for all diagnostic
programs.

2. Insulate the diagnostic program from the run-time
environment. The VDS performs any communication that may
be needed between the diagnostic program and the run-time
environment, be that environment VMS (user mode), APT,
APT/RD, or standalone.

3. Insulate the diagnostic program from processor-specific
hardware differences. The VDS performs I/O initialization
operations that are unique to the type of VAX processor
being used. Thus the diagnostic program does not need to
be concerned with knowing the type of VAX processor.

4. Make the programmer's job easier. Providing facilities
for formatting error messages, controlling program
looping, initiating I/O activity, manipulating files, and
other services not only guarantees consistency among
diagnostic programs from the user's standpoint but also
greatly reduces the development effort necessary to
produce a new program.

Later chapters of this manual discuss the VDS in detail. The VDS
is introduced at this point in the manual because it plays a role
in the VAX diagnostic strategy, discussed next.

The VDS is used by most, but
written for VAX systems,
sec tion.

not all, diagnostic
as will be shown in

2.3 INTRODUCTION TO THE VAX DIAGNOSTIC STRATEGY

macroprograms
the following

In order to ensure a careful, comprehensive, step-by-step approach
to diagnosing problems, a strategy for diagnosis of VAX systems
has been developed. This strategy, generally referred to simply
as the "VAX diagnostic strategy," has been to create a hierarchy
of diagnostic programs based on hardcore requirements. Programs
higher in the hierarchy require greater hardcore (they require a
larger portion of the whole system to be operating).

2-3

VAX DIAGNOSTIC PROGRAMS

Programs higher in the hierarchy are more likely to provide a
versatile human interface and are less likely to require exclusive
use of the system under test. On the other hand, programs lower
in the hierarchy can test a device more thoroughly and thus
provide a more accurate diagnosis. Hence it is best, when
diagnosing a customer's system, to begin by using diagnostic
programs of as high a level as possible and then drop down the
hierarchy as necessary until a program is found that can detect
the fault.

The diagnostic strategy has been implemented by
types, or "levels," of diagnostic programs.
defined by:

creating various
These levels were

1. Making use of the fact that the VAX hardware can be
divided into various building blocks that, when connected
together, create a whole system. These building blocks
consist of

• A system console

• A CPU "cluster" consisting of processor, memory, and
I/O channels

• Peripheral devices

2. Remembering that some fault diagnosis can take place while
a system's operating system is running.

3. Using the VAX diagnostic supervisor when appropriate.

By using these considerations, a set of five program levels has
been defined. The diagnostic programs belonging to each level
possess characteristics that differentiate them from programs
belonging to the other levels. These characteristics are related
to the program's run-time environment, hardware environment (see
below), and method of performing I/O operations (see below).

Table 2-1 introduces each program level by listing its level name
and the run-time environment associated with it.

2-4

(

(

(

(

(

VAX DIAGNOSTIC PROGRAMS

Table 2-1 Program Levels and Run-Time Environments

Level

1

2R

2

3

4

5

Run-Time Environment

Runs under VMS operating system.

Runs under VDS in user mode only.

(Before 1982 only. No new programs
are written for this level.)
Runs under VDS in both user and
standalone modes.

Runs under VDS in standalone mode
only.

Runs in standalone without VDS.

Runs in WCS or system console, not
in VAX main memory.

A program's "hardware environment" is the minimum hardware
configuration on which the program will execute. (Do not confuse
this with the program's hardcore, which is the minimum amount of
hardware that must be functioning properly in order for the
diagnostic program to execute. For example, the hardware
environment of a program to test a disk controller would be the
CPU cluster, buses connecting the controller to the cluster, and
the controller itself, while the hardcore requirements in this
case would be the CPU cluster and the buses.)

Three different hardware environments can be defined for VAX
diagnostic programs. The hardware environments relate to the
building blocks listed above. These environments are

1. Console environment. Consists of only the system console
and the console load device.

2. CPU cluster environment. Consists of the system console,
the VAX processor, main memory, and I/O channels.

3. System environment. Consists of the system console, the
CPU cluster, and all attached peripherals. In other
words, this is the whole system.

Figure 2-1 illustrates the hardware environments for a typical VAX
hardware configuration.

2-5

VAX DIAGNOSTIC PROGRAMS

SYSTEM EN VI RONMENT

CPU CLUSTER ENVIRONMENT

CONSOLE ENVIRONMENT

111

·111

:::.'

ll'-' IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'~' -:'
CONSOLE STORAGE DEVICE

~

~-
'Z

TK·10515

Figure 2-1 Hardware Environments for VAX Diagnostic Programs

The hardcore requirements and the hardware environments of the
levels vary, with both increasing as the hierarchical level
increases. Thus level 1 programs have the greatest hardcore
requirements and largest hardware environments, while level 5
programs have the least and smallest.

The hardware environment and hardcore requirements of each program
level are listed in Table 2-2.

Table 2-2 Hardware Environments and Hardcore Requirements

Level

1

2R

2

3

4

5

Hardware Environment

System

Enough of system for VMS
to execute, plus UUT

Same as 2R in user mode.
Same as 3 in standalone mode.

CPU cluster, UUT, load device

CPU cluster

Console, CPU cluster

2-6

Hardcore Requirements

Enough of system for
VMS to execute

Enough of system for
VMS to execute

Same as 2R in user mode.
Same as 3 in standalone mode.

CPU cluster, load device

Console, subset of
CPU cluster

Subset of console

(

(

(

(

VAX DIAGNOSTIC PROGRAMS

2.4 METHODS OF PERFORMING I/O

Perhaps the most significant difference among the various program
levels is the method of performing I/O operations. The various
I/O methods are determined by the run-time environments existing
for VAX diagnostic programs, since run-time environments generally
put restrictions on I/O operations.

Before discussing the methods of performing I/O operations used by
each level, it is necessary to define three types of I/O
operations that are provided by the run-time environments.

• Physical I/O - In physical I/O operations, references can
be made to the actual physically addressable units of the
device or its storage medium, such as sectors on a disk,
ignoring any block structuring or file structuring
algorithms that may have been created for the device by
software.

• Logical I/O - For logical I/O operations, a disk-type
storage device may be referenced by addressing "logical"
blocks on the device (blocks defined by software, such as
the Sl2-byte blocks defined by VMS). Blocks are
referenced relative to the beginning of the storage
medium, and are numbered from 0 to n, where n is the last
block. File structuring algorithms are ignored.

• Virtual I/O With virtual I/O operations,
software-defined blocks are referenced relative to the
beg inn ing of a fi 1 e. They are numbered from I to n, where
n is the last block in the file being referenced'. This
method of I/O takes full advantage of software-defined
blocking and file structuring on the storage medium.

A more detailed discussion of the I/O types can be found in the
VAX/VMS I/O User's Guide. That guide should be read before the
development of a level 1 or 2R program is initiated.

In level 1 programs, I/O transfers are accomplished by issuing
requests to the VMS operating system by using the $QIO system
service call, or by using the Record Management Services (RMS)
routines. Level 1 programs are expected to perform virtual, or
sometimes logical, I/O operations, allowing them to execute
without corrupting existing data on any storage media and thus not
affecting the operation of any other processes executing
concurrently.

2-7

VAX DIAGNOSTIC PROGRAMS

For level 2R programs, I/O transfers are performed by issuing the (
$QIO service call, but in this case the VAX diagnostic supervisor
fields the call. The VDS in turn passes the I/O request to VMS,
where the I/O operation is actually performed. Level 2R programs
are used for exercisers of devices or entire systems, and for
functional testing of devices when it is desirable to not force
other users off the system.

Physical I/O transfers are generally used in level 2R programs,
since this type of transfer allows access to all areas of the
device medium and thus provides maximum usage of the device's
logic. It provides minimum device accesstime. Use of physical
I/O implies that a "scratch" medium will have to be placed in the
UUT in order to not corrupt valid user data, unless the device
possesses special "maintenance cylinders" reserved for use by
diagnostic programs. It also requires that the user of the
program be granted special VMS "user privileges" (see the
VAX/VMS Command Language User's Guide). While physical I/O is
most often used, logical or even virtual I/O may be more
appropriate in some cases.

Level 2 programs also perform I/O transfers using the $QIO service
call, with the VDS fielding the call. In user mode, the VDS
passes the request on to VMS. In standalone mode, the VDS itself
services the request. It is not clear that one diagnostic program
should be written to run in two different run-time environments, (
since the program is at best a compromise of the sometimes
conflicting characteristics of the two environments (for example,
ability to run with other users in user mode vs. ability to have
unlimited system access in standalone mode). Also, the difficulty
in maintaining this duplicity of functionality within the VDS is
considerable. Therefore, LEVEL 2 DIAGNOSTIC PROGRAMS ARE NO
LONGER BEING DEVELOPED. No new level 2 programs will be accepted
for release.

Level 3 diagnostic programs perform their I/O operations directly.
That is, they address the device's registers and field its
interrupts. The VDS provides services for creating a "channel,"
or addressing path, to the device. This insulates the diagnostic
prog ram from the spec if i c VAX processor type, enabl ing the
programmer to create code that does not need to be concerned with
L/O characteristics of particular processors. Since at this
program level there are no software provisions for block
formatting or file structuring, the only I/O type possible is
physical. Logic tests (see Chapter 1) are written in level 3,
since this level allows relatively comprehensive access to the
device under test while also providing the VDS's common user and
programming interfaces.

2-8

(

c-

VAX DIAGNOSTIC PROGRAMS

Level 4 programs are not used to test peripheral I/O devices and
thus do not perform I/O operations. They should only be used to
test those portions of the CPU cluster environment that are
considered to be a part bf the VAX Diagnostic Supervisor's
hardcore.

Level 5 programs generally do not perform I/O operations, since
they are generally microprograms used to test portions of the
processor. However, some level 5 programs (specifically those
diagnostic microprograms that test peripheral devices) may perform
physical I/O operations.

Table 2-3 summarizes the I/O methods used in the various program
levels. The table also indicates the types of diagnostic programs
generally assigned to each level.

Level

1

2R

2

3

4

5

Table 2-3 I/O Methods and Program Types

I/O Method

Virtual or logical, using
VMS QIO service.

Generally
virtual
allowed) ,
service.

physical (but
or logical are
using VMS QIO

Physical, using VMS/VDS
QIO service.

Physical, using program
defined I/O functions.

None.

None, or physical using
program~defined functions.

2-9

Types of Programs

System exercisers.

Exercisers and func
tion tests of periph
eral devices.

Function tests of
peripheral devices.

Function tests and
logic tests of periph
eral devices.

Function and logic
tests of CPU cluster.

Microprograms.

VAX DIAGNOSTIC PROGRAMS

2.5 APPLYING THE VAX DIAGNOSTIC STRATEGY

Applying the VAX diagnostic strategy to a specific product usually
implies developing a set of diagnostic programs to test the
product.

2.5.1 Testing The CPU Cluster

The VAX CPU cluster is tested by a set of programs, existing at
several program levels, as follows.

Level 5

• Console tests
• Processor tests
• Memory tests

Level 4

• VAX instruction set test (hardcore for VDS)
• Cache and translation buffer tests (VAX-11/750 only)

Level 3

• Memory tests (if no level 5 test possible)
• Channel adapter tests
• Cluster exerciser

This set of programs implements the VAX diagnostic strategy by
providing a set of building blocks by which a system may be
tested, starting with the level 5 basic processor tests and ending
with the level 3 "cluster exerciser," which is a program meant to
exercise all components of the cluster.

Level 5 programs may not exist for all VAX processors, since they
are microprograms. Ideally (but not necessarily), microdiagnostic
programs should be executed in a separate console processor
("front end"), making use of a writable control store (WCS).
Low-cost VAX processors may not provide these features.

Most of the programs can be used on all types of VAX processors,
so when a new processor is developed it is not necessary to
produce a whole new set of programs for testing the new cluster.
However, A new processor-specific module must be added to the
cluster exerciser.

2-10

(

(

(

(

c

VAX DIAGNOSTIC PROGRAMS

2.5.2 Testing Peripheral Devices

Thorough testing of a peripheral device requires the development
of three different diagnostic programs. For each device type
there will typically (but not necessarily) exist

1. A level 3 logic test
2. A level 3 function test
3. A level 2R function test

This group of programs implements the diagnostic strategy by
providing a facility for producing very accurate and detailed
identifications of fault conditions via the level 3 programs and
by also providing a method by which the device may be tested
without bringing down the customer's operating system via the
level 2R program.

The level 3 logic test will provide the greatest detail of error
resolution, indicating which section of logic is failing. This
program will be used by technicians to repair bad logic boards,
and will provide very high test coverage~ Some devices contain
ROM-resident microprograms ("self-tests") that perform logic
testing, making a level 3 logic test unnecessary.

The level 3 function test will provide a comprehensive test of all
of the device's functions. This program will be used to determine
accurately whether or not a device is operating correctly. This
is the definitive function test and provides very high test
coverage. Level 3 function tests are usually required even if the
device possesses self-testing capabilities, because self-tests
generally aren't capable of complete detection of function
failures.

The level 2R program will typically consist of a subset of the
level 3 function test. It will test as much of the device's
functionality as can be tested in the user (VMS) environment. The
tests it contains are exact or approximate copies of tests
existing in the level 3 program.

A typical sequence of use for these programs, when dealing with a
system at a customer site, is as follows.

1.

2.

3.

The customer (or field service) suspects a fault
in the device.

The level 2R program is run to see if the error
detected without stopping the operating system.
error is found, go to step 4.

existing

can be
If the

If the level 2R program cannot identify the fault, the
operating system is brought down and the level 3 function
test is run.

2-11

4.

VAX DIAGNOSTIC PROGRAMS

The fault is identified and the failing FRU is replaced.
The operating system is then brought back up.

5. The failing FRU is brought back to DIGITAL, where the
level 3 logic test, the level 3 function test, or perhaps
a module test station is used to identify the failing
logic on the FRU. The FRU is repaired.

2.6 GUIDELINES FOR WRITING VAX DIAGNOSTIC PROGRAMS

This sections contains general guidelines that should be followed
when writing VAX diagnostic programs.

2.6.1 Levell Guidelines

Level 1 diagnostic programs are usually used as exercisers of the
entire hardware system. Level 1 is used when it is necessary to
cause various concurrent activities to take place, using numerous
types of devices and other hardware and software resources
provided by the system.

Since no standard human interface exists for level 1 programs, it
is important for the program developer to design a convenient,
"user-friendly" interface using such techniques as English-like
commands, menus, and detailed "help" messages.

Error reporting will also be the responsibility of the program
designer. However, much use can be made of the system software's
error reporting facilities.

2.6.2 Level 2R Guidelines

Level 2R programs run under the VDS is user mode. They test
device functionality and must test as many of a device's functions
as can be performed under the constraints of the operating system.

I/O is performed by issuing QIO requests to the VDS. These
requests are passed directly to VMS, which performs the indicated
operations and returns an error status. Actual I/O activity is
controlled by VMS device drivers. Full use should be made of the
returned error information, which may include device register
contents. All information made available should be displayed to
the user via the VDS error reporting facilities.

The level 2R program should be written after the level 3 function
test has been developed, since the level 2R program should be a
subset of the level 3 program. Take the level 3 program, change
the I/O method from the channel services of the level 3 (see
below) to QIO calls, and remove any functions that the VMS
operating system will not allow to be performed.

2-12

(

(

(

(

(

\

l

VAX DIAGNOSTIC PROGRAMS

2.6.3 Level 2 Guidelines

DO NOT WRITE ANY NEW LEVEL 2 DIAGNOSTIC PROGRAMS.

2.6.4 Level 3 Function Tests Guidelines

L~vel 3 programs run under the VDS. There is no operating system
software to limit the functionality or access rights of the
diagnostic program. However, the program should use VDS channel
services (discussed in the following chapters) for creating data
paths to the device under test in order to eliminate the need for
diagnostic programs to concern themselves with processor-specific
details of bus adapter mapping.

I/O operations are initiated and interrupts are fielded by the
diagnostic program. Since these programs have unlimited access to
system hardware resources, detailed error messages can and should
be created that contain dumps of pertinent registers.

Level 3 function tests should test every function the the device
is capable of performing. Illegal orders and combinations should
also be tried.

Not only should the data transfer functions be performed, but
electromechanical functions should also be tested to assure that
they operate within specified parameters and time intervals, as
should the operater-related functions, such as setting the
write-protect switch.

All timing operations must be performed
services provided by the VDS, since the VDS
type of VAX processor being used and
differences between processor types.

2.6.5 Level 3 Logic Test Guidelines

by using the timing
takes into account the
corrects for timing

Because logic tests are designed to help technicians repair
malfunctioning logic boards, it is important that they provide
good fragmentation of activity in the logic, causing as little
overall activity as possible at a given point in execution time.
Every effort should be made to concentrate electrical activity to
one small section at a time. The extent to which this is possible
depends on the particular hardware design, and it is often more of
an ideal than an attainable goal.

2-13

VAX DIAGNOSTIC PROGRAMS

The first section of logic to be tested should be that which is
most likely to be depended on by other logic. Thus a general
sequence of steps this type of program might contain would be as
follows.

1. Test the interface between the device's controller and the
I/O bus to which it is attached, including address
decoding logic and logic used in referencing controller
registers.

2. Test the controller's commands and the logic associated
with each command, using the device's "maintenance mode"
if applicable.

3. Test the data transfer functions of the device, again
using maintenance mode.

In each step, invalid and borderline conditions should be checked.
For example, purposely formatting data improperly, issuing illegal
function codes, and making illegal references to device registers
are techniques that can be used.

All timing operations must be- performed
services provided by the VDS, since the VDS
type of VAX processor being used and
differences between processor types.

2.6.6 Level 4 Guidelines

by using the timing
takes into account the
corrects for timing

Level 4 programs are only used to test those parts of the system
that belong to the VDS envir6nment's hardcore, and that are not
tested by level 5 programs. For example, level 4 programs are
needed to test the VAX instruction set, the translation buffer,
and cache of some (but not all) VAX processors.

If a new level 4 program needs to be developed,
rules should be adhered to.

the following

1. Use straight-line code (no subroutines). This makes it
easier for the user to step through the program when
necessary.

2. Use a minimum instruction set, at least at the beginning
of the program.

3. Write the program in position-independent code, so that it
may be loaded and executed in any section of memory in
case there is a bad area of memory. '

2-14

(

(

(

(

(

VAX DIAGNOSTIC PROGRAMS

4. Create a section of code to handle unexpected interrupt
conditions, such as machine checks or other traps.

5. Do not use any terminal I/O routines unless all the logic
required to perform the I/O has been previously tested.

6. When an error is detected, execute the HALT instruction.

7. Use the general purpose regi sters (GPRs) to pass
information to the user. For example, on a data
comparison error, the expected and actual bit patterns can
be placed in the GPRs.

8. Store the current test and subtest numbers in some
location, such as address 0, so the user can obtain them.

9. Provide very precise program documentation. Since no
terminal displays can be provided, the user must be able
to use the PC of a failure to find out exactly what type
or error occurred and what was happening to cause the
error. This information must be clearly indicated in the
program listing.

2.6.7 Level 5 Guidelines

Level 5 programs are microprograms. Since the microcode and
hardware design of each VAX processor type is different, there
must be a separate set of level 5 programs for each processor
type. Following are general rules that should be followed when
developing diagnostic microprograms.

1. Diagnostic microprograms should always be designed to
perform bottom-up testing.

2. Program loops should be as short as possible, in order
isolate electrical activity to as small an area of
logic as possible. Ideally, these loops should enable
technician to isolate a fault to the failing component.

to
the

a

3. Error reports should be precise enough for the technician
to locate the code in a program listing. The listing
should contain a clear description of what logic was being
tested and which component(s) may be failing. Avoid
referring to components by their "E-numbers," since these
can change when ECOs are issued.

4. A level 5 program should be able to test every component
except those requiring an external stimulus.

2-15

(\

(.

(

(

3.1 INTRODUCTION

CHAPTER 3
THE STRUCTURE OF A VAX SUPERVISOR

DIAGNOSTIC PROGRAM

This chapter describes the composition of a diagnostic program
designed to run under the VAX Diagnostic Supervisor (VDS). It
discusses all of the functions that must be performed by the
diagnostic program, such as device initialization and testing,
error reporting, and input/output functions. It also provides an
introduction to the macros detailed in Chapter 4 by indicating
where within the diagnostic program the various macros should be
used.

3.1.1 Overview Of The VAX Diagnostic Supervisor

The VDS is divided into three major segments, each segment
performing a separate function. These segments are the command
line interpreter, the dispatcher, and the system service routines.

• Command Line Interpreter

The command line interpreter provides the human interface
to the diagnostic program. It allows the diagnostic
program user to select which programs to execute, which
portions of that program to run, and which of the system's
device units to test.

The command line interpreter implements the commands
described in the VAX Diagnostic Supervisor User's Guide.

• Di spa tcher

The dispatcher controls the operation of the diagnostic
program. It is given control whenever the command line
interpreter recognizes a START or RUN command. The
dispatcher will call the various segments of the
diagnostic program (such as the program's initialization
code, tests, cleanup code, and summary routine, all of
which are discussed in this chapter) at the appropriate
times.

3-1

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

• System Service Routines

The system service routines provide run-time services to
the diagnostic program to facilitate many of the functions
a diagnostic program must perform, such as I/O operations,
error reporting, and event synchronization.

Figure 3-1 illustrates the VDS segments and their relationship to
a diagnostic program.

USER

t
COMMAND

SYSTEM
LINE - DISPATCHER
INTERPRETER

SERVICES

1 I
DIAGNOSTIC
PROGRAM

t
UNIT UNDER TEST

TK-10516

Figure 3-1 VDS Overview

3.1. 2 Overview Of A VDS Diagnostic Program

Every diagnostic program must possess several major segments, as
follows:

• Initialization Code

This is code that is executed before a device unit is
tested. It performs the operations necessary for creating
a data link to the unit.

• Tests

These are the actual device tests. They report any errors
detected and provide the ability to create loops.

• Cleanup Code

This code performs any operations that might be needed to
leave the UUT in a state such that it is available to the
next system user.

3-2

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

• Tables

There are various tables residing in the diagnostic
program for the purpose of enabling the VDS to control the
diagnostic program's operation.

Additionally, a diagnostic program can possess other optional
segments, such as

• A summary routine
• Error reporting routines
• Interrupt service routines
• Condition handling routines

Notice that the diagnostic program contains no dispatching
mechanism. The program should be viewed simply as a set of
low-level routines to be called by the VDS when needed.

Following are illustrations of program flow for both
testing and parallel testing of devices. As will be seen
chapter is read, these program flows are accomplished
interaction between the diagnostic program and the VDS.

Program Flow for Serial Testing:

Get RUN or START command.
Get passes_requested.
Passes executed = 0.
REPEAT-

Unit number = 0.
REPEAT

Call initialization code.
Call selected tests.
Call summary code.
Unit number = unit number + 1.

UNTIL unit number = max unTt number.
Passes executed = passes executed + 1.

UNTIL passes executed EQL passes=requested.
Call cleanup-code.

3-3

serial
as this
through

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Program Flow for Parallel Testing:

Get RUN or START command.
Get passes_requested.
Passes executed = 0.
REPEAT-

Unit number = 0.
REPEAT

Call initialization code.
Unit number = unit number + 1.

UNTIL unit number = max unTt number.
Call selected tests.
Call summary code.
Passes executed = passes executed + 1.

UNTIL passes_executed EQL passes=requested.
Call cleanup code.

3.1.3 Memory Layout

Figure 3-2 shows the layout within memory of the various pieces of
software existing when a VDS diagnostic program is executing. All
addresses are virtual. In standalone mode, the virtual addresses
are also the physical addresses, so the illustration represents a
true picture of the actual program layout in memory. In user
mode, memory management is in operation and thus the virtual
addresses shown have no relation to the actual program layout in
memory.

As can be seen in the figure, the base address of a diagnostic
program is 200 (hex). (When a diagnostic program is linked, a
base address of 200 (hex) must be explicitly specified.) The
loadable image of a diagnostic program may not extend beyond
virtual address F9FF (hex). Thus the maximum size for the
loadable image of a diagnostic program is 63487 (decimal) bytes.

Addresses from FA00 to FFFF are used by the VDS to communicate
with APT. The VDS loadable image starts at virtual address 10000
(hex). At run time, the VDS occupies a contiguous portion of

memory starting at 10000 (hex). The total size of this area
depends on such parameters as the type of processor being used,
memory size, and the number of attached devices.

Two areas of memory are used to allocate buffer space to
diagnostic programs. The first area is any space that may exist
between the top of the diagnostic program's loadable image and
address FA00 (hex). The second (and generally larger) area
consists of addresses above the highest address used by the VDS.
Allocation of this buffer space to a diagnostic program is
discussed in Section 3.13.3, Memory Allocation.

3-4

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

UNUSED

DIAGNOSTIC PROGRAM

r----1-----
BUFFER SPACE

AREA USED FOR APT
COMMUNICATION

VDS

r---------
BUFFER SPACE

VI RTUAL ADDRESS (HEX)

o

200

F9FF
FAOO

10000

TK-10517

Figure 3-2 VDS Memory Layout

3~1.4 Introduction To The Macros

All linkages between the diagnostic program and the VDS are
defined by a set of macros. These macros can be divided into four
main groups.

• Program Structure Macros

This group consists of those macros used to define the
various sections, tables, and data structures making up
the diagnostic program. For example, every test must be
delimited by the $DS BGNTEST and $DS ENDTEST macros.
Using the program structure macros enables the VDS
dispatcher to locate and call the initialization code,
tests, and cleanup code. Most of the macros in this group
are required to exist in every diagnostic program.

• Program Control Macros

These macros are used to affect the program's execution
path and provide such facilities as looping and
branch-on-error. For example, the $DS CKLOOP macro can be
used to define the upper bound of a program loop.

3-5

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

• System Service Macros

This group is used to call service routines. An example
service macro is $DS WAITMS, which can be used to cause a
program delay of a specified number of milliseconds.

• Symbol Definition Macros

This is a set of macros that define global symbols used by
the other macros, the VDS, and the diagnostic program.
For example, the $DS HDRDEF macro defines symbols for the
1 oca tions wi th in the d i ag nostic prog ram's head er (see
Section 3.3.1).

This chapter will not give detailed descriptions of the macros,
but it will indicate when and where each macro (except the symbol
definition macros) should be employed. The macros are discussed
in detail in Chapter 4.

3.2 P-TABLES

3.2.1 Introduction To P-Tables

In order to test a device, a diagnostic program must have access
to the device's characteristics. Since some device
characteristics are system-specific, it is impossible to define
them permanently in the diagnostic program. Instead, it is
necessary to provide a means by which these system-specific
characteristics can be specified at run time. The VDS provides
the "hardware parameter tables," or simply "p-tables," for this
purpose.

A p-table is a data structure containing the information about a
device that is needed in order for a diagnostic program to access
the device. P-tables are constructed by the VDS when the program
user types the ATTACH command (refer to the VAX Diagnostic
Supervisor User's Guide). Each time the ATTACH command IS used, a
new p-table is created. Once the VDS has created the p-tables,
the diagnostic program can reference the tables to obtain
information necessary for testing a UUT. Thus the burden of
determining device characteristics is removed from the diagnostic
program itself.

3-6

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

When the user attaches a device, one of the parameters he or she
must specify is the device's "link." The link is the piece of
hardware to which the device is connected. The link must have
been previously specified with another ATTACH command so that its
p-table already exists. A set of ATTACH commands will result in a
tree str~cture of device links. The root of this tree is a
pseudo-device called HUB. This pseudo-device was created because
the actual hardware interconnect existing depends on the type of
processor (for example, the SBI on the VAX-ll/780). In general,
processors and buses are linked to HUB, controllers are linked to
buses, and device units are linked to controllers. Figure 3-3
illustrates the manner in which p-tables describe a hardware
system.

11/780 UNI8US S81
CPU ADAPTER

I
TYPE: RK06
LINK: DMA
NAME: DMAO

DEVICE CHARAC-
TERISTICS

Ii::>
RK611
CONTROLLER

TYPE: DW780
LINK: HUB

P-TA8LE FOR NAME: DWO
UNIBUS ADAPTER

DEVICE CHARAC-
TERISTICS

1
TYPE: RK611
LINK: DWO
NAME: DMA P-TABLE FOR

DEVICE CHARAC- DISK CONTROLLER

TERISTICS

1 t
I

TYPE: RK06
LINK: DMA

P-TABLE FOR NAME: DMA1
DISK DRIVE 0

RK06
DRIVE 0

RK06
DRIVE 1

P-TABLE FOR
DISK DRIVE 1

Figure 3-3 Sample Hardware Configuration
and Associated P-Tables

3-7

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The p-table for a particular device will contain the
provided by the ATTACH command arguments. Each
contain the following standard information:

information
p-table will

• Device type - This is the product name for the device,
such as RK06 or TM03.

• Device's generic name - This is the name with which the
device will be referred to, such as DRBI or DMA0.

• Address of p-table for device's link

• Device characteristics - The types of information that
must be included in a p-table to sufficiently describe a
device depend on both the type of device and its link.
For example, devices linked to a UNIBUS require the UNIBUS
CSR address and bus request level, plus the device's
interrupt vector address.

3.2.2 P-Table Format

P-tables have a standard format. Each p-table is divided into two
sections. The first section contains device-independent fields.
All p-tables for all devices contain these fields. Each
device-independent field in the p-table has a mnemonic assigned to
it which can be used by the diagnostic program when these fields
are referenced. The second section of the p-table contains
device-dependent information. This section is unique to the type
of device being described.

Figure 3-4 shows the standard layout of all p-tables.

Following is a description of the device-independent p-table
fields.

HP$Q DEVICE - A VMS-type quadword descriptor of the device
name- string (see HP$T DEVICE below). That is, the first word
of the field contains the length (number of characters) in the
device name string, the next word is unused, and the following
longword contains the address of the string (the address of
HP$T_DEVICE) •

HP$W SIZE - The size of the p-table in bytes. This includes
both- the device-independent and the device- dependent p-table
fields.

3-8

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

31

HP$B_DRIVE

...

T

HP$B FLAGS -
initIalized.

I HP$B -

16 15

HP$Q_DEVICE

FLAGS I

HP$T _DEVICE

HP$A_DEVICE

HP$A_DVA

HP$A_LlNK

I
HP$T_ TYPE

HP$A -

I
DEPENDENT

• • • •

HP$W_SIZE

HP$W_ VECTOR

Figure 3-4 P-Table Layout

Flags used by the VDS when
Flags are defined as follows.

o
o (decimal)

4

8

12

16

20

24

28

32

36

40

44

48

52

T
TK-10519

the device is

• HP$M ALLOC - (bit 0) - If set, indicates that the VDS must
request VMS to allocate ($ALLOCATE system service) the
device before it can be tested in user mode.

• HP$M WASALL - (bit 1) - Set by VDS if a device has been
successfully allocated.

• (Bits 2-7) - Unused.

3-9

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

HP$B DRIVE - The un i t number of the dev ice. Th is is the
number appearing at the end of the device's generic name, such
as' 7' in' TTA 7' •

HP$T DEVICE An ASCII string representing the device's
generic name. All device names begin with' " as in ' RH0'.

HP$A DEVICE - The virtual address of the lowest-addressed
device register. The type of register being pointed to
depends on the device type. For example, it would be a CSR
for a UNIBUS device, a configuration register for an SBI
device, and so on.

The address must be virtual, in PI space (bit 30 set). This
is because when memory management is enabled in standalone
mode, the VDS maps all physical I/O addresses through virtual
Pl space.

" HP$A DVA - This is the base of the virtual address space
a sSigned to th i s dev ice. Dev ices 1 inked to th i s dev ice wi 11
have address assignments relative to this base address. When
the VDS constructs a new p-table for a device linked to this
one, it copies this field into the linked device's HP$A DEVICE
field. When the device address for the new device is fetched
from the user, it can be added to the base address already in
HP$A DEVICE.

The address must be virtual, in PI space (bit 30 set). This
is because when memory management is enabled in standalone
mode, the VDS maps all physical I/O addresses through virtual
PI space.

The HP$A DVA field is not always relevant. An example of its
use is the case of UNIBUS adapters. Each UNIBUS is assigned
to a certain base address. The addresses of devices connected
to a particular UNIBUS are added to the UNIBUS's base address
to obtain the device's actual physical address. A UNIBUS's
base address is stored in the HP$A DVA field for a UNIBUS's
p-table. When a controller is linked to the UNIBUS, its
HP$A DEVICE field will be initializ~d to the value contained
in the UNIBUS's HP$A DVA field. Subsequently, the user will
be prompted for the controller's 18-bit address. This address
can be stored in the low-order 18 bits of HP$A DEVICE to
result in a full physical address for the controller.

HP$A LINK - The address of the p-table for the device to which
this- one is linked. If this device is linked to HUB,· the
field contains 0.

(

(

HP$W VECTOR - If relevant, contains the vector address through
which the device will interrupt. This address is an offset (-__
into the System Contol Block (SCB). .

3-10

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

HP$T TYPE - Contains a counted ASCII string representing the
device type, such as DW780, RH780, or RK611.

HP$A DEPENDENT - The first location of the device-dependent
sectTon of the p-table.

The HPW_SIZE, HPQ DEVICE, HP$B DRIVE, HP$T DEVICE, HP$A LINK,
and HP$T TYPE fields are filled Tn automatically by the VDS-:- The
other fields are loaded (if needed not all fields are relevant
to all devices) in accordance to directions contained in the
p-table descriptors (see below).

The fields within the device-dependent section also
mnemonics, but they are unique to the device (see below).

3.2.3 P-Table Descriptors

have

3.2.3.1 Introduction To P-Table Descriptors - The VDS builds a
p-table by referring to a "p-table descriptor." This is a set of
instructions that indicate the size and format of the
device-dependent p-table fields. When a user types an
ATTACH command, the VDS will refer to the p-table descriptor of
the specified device type in order to determine how to construct
the device-dependent fields of a particular p-table.

Following is a sample ATTACH command dialogue. Portions of the
dialogue that are typed by the user the VDS are underlined.

DS> ATTACH

Device type? RK6l1

Device link? DW0

Device name? DMA

CSR? 777440

VECTOR? 210

BR? .i

3-11

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRA1Vi

In the sample, the first three prompts fill in device-independent
fields of the p-table. These prompts are generated by the VDS and
will be displayed every time the ATTACH command is used. The last
three prompts are device-specific. These prompts are defined by
the p-table descriptor for the RK611.

Instructions within the p-table descriptor specify to the VDS the
following types of information.

• The p-table's size

• The device type

• A prompting message for each device-dependent hardware
parameter to be stored in the p-table

• The format in which user response to the device-dependent
prompts is to be interpreted

• The p-table field in which the responses to the
device-dependent prompts are to be stored

3.2.3.2 Location of P-Table Descriptors - P-table descriptors
generally reside in the VDS. When a diagnostic program is written
to test a device for which the VDS does not possess p-table
descriptors, it is the reponsibility of the diagnostic program
developer to also create a p-table descriptor for the device.
This descriptor will then be incorporated into the VDS.

Note: It is important to work in cooperation with the VDS support
group when developing a p-table descriptor.

P-table descriptors may also be included in the diagnostic
program. When processing an ATTACH command, the VDS will first
check the diagnostic program to see if a p-table descriptor exists
for the specified device type. If none exists, the VDS will check
its own p-table descriptors to locate the appropriate one. Thus,
a descriptor residing in a diagnostic program will have precedence
over a descriptor for the same device residing within the VDS.

Including the descriptors in a diagnostic program has several
disadvantages.

• They can only be used by the diagnostic program in which
they are defined.

• The devices they describe cannot be attached unless the
diagnostic program has been loaded.

3-12

(

(

(

(

l

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

• These diagnostic programs wilL not be executable under
APT. Other special environments, such as Customer
Runnable Diagnostics (CRD) may also place prohibitions on
execution of programs containing their own p-tables.

• The autosizer program will only support devices for which
the descriptors reside in the VDS.

When development of a program for a new device begins, the p-table
descriptor should be first placed in the diagnostic program until
the descriptor design, and indeed the design of the device
hardware itself, has been solidified. Once the p-table's design
is certain, it can be included in the VDS. Only in rare instances
should it be necessary to release a diagnostic program that
contains its own p-table descriptors.

3.2.3.3 Creating P-Table Descriptors - The following general
guidelines should be followed when creating a p-table descriptor.

• Each user prompting message should provide a clear
indication of what information the user must provide.

• Responses should be requested in a format that is relevant
to the particular type of data being requested. For
example, UNIBUS addresses should be formatted in octal
instead of hexadecimal, since that is their normal format.

• Only include information that is needed for referencing a
device. This information may include such items as the
device's address, interrupt vector, BR or TR level, and so
on. Do not include information that will only be used by
one diagnostic program; remember that a p-table for a
particular device will be used by all diagnostic programs
that test that device. Information needed by a particular
program or test should be obtained via the $DS ASKxxxx
macros (see Chapter 4).

There are two steps to creating a p-table descriptor. First, a
"skeleton" for the p-table's device-dependent fields must be
defined. This skeleton is a representation of the memory space
required for the p-table. When the VDS builds a p-table in
response to an ATTACH command, skeletons of both the
device-independent and device-dependent fields are copied into a
dynamic memory storage area, and the fields are filled in with the
proper information. The MACRO-32 skeleton for the
device-dependent fields is defined by using the $DEFINI, $DEF, and
$DEFEND macros, which are defined in the VMS system library
LIB.MLB. An example skeleton is as follows:

3-13

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

.MACRO $DS RK6ll DEF $GBL

.ENDM

$DEFINI
$DEF
$DEF
$DEF
$DEFEND

$DS RKll DEF

RK6ll, GBL, HPA DEPENDENT
HP$L RK6ll CSR, .SLKL, 1 ilS-bit CSR address
HP$B-RK6ll-BR, .BLKB, 1 iUNIBUS BR level
HP$K-RK6ll-LEN
RK6l1, $GBL, DEF

Note: The final $DEF statement in the example defines the length
of the p-table.

The BLISS-32 version of this example is:

BLISS-32 :

$DS RK611 DEF=
SET
HP$L RK6ll CSR = [HP$K LENGTH+0,0,32,0],
HP$B-RK611-BR = [HP$K=LENGTH+4,0,S,]
TESi

This skeleton represents the device-dependent fields for a p-table
of an RK6ll controller. Each field is assigned a mnemonic. There
are two fields, named HP$L RK6ll CSR and HP$B RK6l1 BR. (See

(

Section 3.2.3.4 for field naming conventions.) (
"

Notice that the MACRO-32 skeleton is defined as a macro. When the
p-table descriptor is added to the VDS, this macro is made
available to diagnostic programs. After the diagnostic program
calls this macro it can reference the p-table fields by using the
mnemonics. (See the MACRO-32 example in Section 3.2.4.)

Notice that the BLISS-32 skeletion is simply a field declaration
statement. The BLISS-32 example in Section 3.2.4 indicates how
the field declaration is used by a diagnostic program.

The second step in creating a p-table descriptor involves
generating the instructions that the VDS will use when filling in
the device-dependent fields. Also, instructions must be developed
for filling in the following device-independent fields, if they
are relevant to the device: HP$A DEVICE, HP$A DVA, HP$B FLAGS,
and HP$W VECTOR. - - -

3-14

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

These instructions are produced by using a set of macros. The
macros make use of a temporary storage location referred to as the
"value register." Certain macros cause information to be read from
the ATTACH command line and placed into the value register. Other
macros can manipulate the value register's contents, and still
others can transfer those contents into fields of the p-table.
The p-table descriptor macros are as follows:

• $DS $INITIALIZE - This is the first macro in any p-table
descriptor. It indicates the device type, the p-table-
size, the maximum number of units allowed, and the name of
the device driver used for level 2 diagnostic programs
(see Chapter 2).

• $DS $NAME- Specifies a format to which the device unit's
generic name must conform.

• $DS $DECIMAL, $DS $OCTAL, $DS_$HEX, $DS_$STRING,
$DS-$LOGICAL Each of these macros is used to obtain
hardware parameters from the user when an ATTACH command
is typed. The exact macro to use depends on the format in
which the input string of the particular parameter is to
be interpreted. For example,· the $DS $DECIMAL macro
should be used if the user is to type a decimal number,
and the $DS $STRING macro is used if an alphabetic string
is to be typed. For each of these macros, the programmer
specifies a user prompting message. Information is read
from the ATTACH command line and stored in the value
register.

• $DS $STORE, $DS $ADD, $DS $FETCH - These macros are used
to -manipulate data that was received from a $DS $DECIMAL,
$DS $OCTAL, $DS $HEX, $DS $STRING, or $DS $LOGICAL command
and placed in-the value register. $DS $STORE will place
the value register's contents into a Iield within the
p-table. $DS $ADD will add the value -register's contents
to the current- contents of a field. $DS $FETCH will
retreive data from a field and place it, right-justified,
in the value register.

• $DS $COMPLEMENT, $DS $CASE, $DS $LITERAL These macros
are used to alter the contents of the value register.

• $DS $END - The $DS $END macro is used to indicate the end
of a p-table descrIptor.

Example 3-1 shows how these macros are used.

3-15

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

$[lS_$ItHTIAL.IZE
~;[l8_ .. $NAME
$))8 ... $OCTAL
$IHL. $STOF<E
$DS $STORE
!~DS._$OCTAl..

$[18 $STORr::
~;DS $[lEC r MAl..
$(lS .• $STORE
~I;OS $END

RK611, RK611SK_LEN, 0,
PTDSM_CONTROLLER, DM
CSR, 760000, 777776
HP$l_RK611_CSR, 0, 32
HP$A_DEVICE, 0, 18
VECTOR, 2, 776
HP$W_VECTOR, 0, 9
BR, 4, 7
HP$B_RK611_BR, 0, 8

DM'

Example 3-1 P-Table Descriptor for RK611 Disk Controller

This example will produce the dialogue
3.2.3.1. Explanations of the macro
Chapter 4.

This example will:

illustrated in Section
arguments can be found in

1. Cause the VDS to request the user to type a CSR address.

(

2. Store the CSR address in HP$L RK611 CSR, bits 0 through
31, and in HP$A _DEVICE, bits if through 17. (

3. Cause the VDS to request the user to type a vector
address.

4. Store the vector address in HP$W_VECTOR, bits o through 8.

5. Cause the VDS to request the user to type a BR level.

6. Store the BR level in HP$B_RK611_BR, bits 0 through 7.

Following is a more complex example -- the p-table descriptor for
the RH780 (MASSBUS adapter for the VAX-ll/780). Example 3-2
contains the MACRO-32 and BLISS-32 skeletons.

3-16

(

(
-'--

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

MACRO·';32 t

.MACRO SDS_RH780_DEF SGBl
SQEFINI RH780,SGBL,HPSA_DEPENDENT
$DEF HPSB_RH780_TR,.BLKB,1 TR number of adapter
SDEF HPSB_RH780_BR,.BLKB,1 BR level of adapter
$DEF HPSK_RH780_LEN
SDEFEND RH780,SGBL,DEF

.ENDM SDS_RH780_DEF

BLIBS-32:

$DS_RH780_DEF:::
SET
HPSB_RH780_TR ::: [HPSK_LENGTH+O,O,8,OJ,
HPSB_RH780_BR ::: CHPSK_LENGTH+l,O,8,OJ
TES;

Example 3-2 P-Table Skeletons for RH780 MASSBUS Adapter

Example 3-3 presents the p-table descriptor for the RH780.
descriptor causes the following events to occur:

1. The VDS will request the user for an SBI transfer
(TR) level.

2. The TR level will be stored in HP$B_RH780_TR,
through 7.

This

request

bits 0

3. The TR level is also stored in HP$A _DEVICE, bits 13
through 16.

4. The TR level is also stored in HP$W_VECTOR, bits 2 through
5.

5. The VDS will request the user for a BR level.

6. The BR level is stored in HP$B_RH780_BR, bits o through 7.

7. The BR level is also stored in HP$W_VECTOR, bits 6 through
7.

8. The value register is loaded with the value "6."

9. The "6" is placed in HP$A DEVICE, bits 28 through 31.
(This will create a virtual PI space address for the
physical address 20000000 (hex).)

3-17

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

10. The contents of HP$A DEVICE is loaded into the value
register.

11. This value is written into HP$A DVA.

12. The value register is loaded with the value "1."

13. The "1" is placed in HP$A_DVA, bit 10.

14. The "1" is placed in HP$W_VECTOR, bit 8.

$ nS_.RH780 .. liE F
$[lS_$INITIALIZE
$[lS,,_ $NAME
$[lS_$DECIMAL
illS .. $STORE
$I)S_. $STORE
$[lS_" $oS TORE
$[lS." $DEe I MAL
$[lS_$STORE
!~[lS ... $oS TORE:
$tIlL $L I TERAL
!I>VB ... $STOf~E
$ [18._ $FETCH
<.I>[lS". $STORE
$[lS .. iLITERAL
$J)S_.$STORE
$[lS_$STORE
!~[lS_.$END

RH780,RH780$K_LEN,8
PTD$M_UNIT, RH
TR,1,15
HP$B_RH780_TR,O,8
HPiA_DEVICE,13,4
HP$W_VECTOR,2,4
BR,4,7
HP$B_RH780_BR,O,8
HP$W_VECTOR,6,2
6
HP$A_DEVICE,28,4
HP$A_DEVICE,O,32
HPiA_DVA,O,32
1
HP$A_DVA,10,1
HP$W""VECTOR,8, :I.

Example 3-3 P-Table Descriptor for RH780 MASSBUS Adapter

Note that several fields of a p-table created from this descriptor
require several steps. For instance, the HP$A DEVICE field is
constructed by:

• Setting the high order four bits to "6" (bit 30 indicates·
PI space and bit 29 indicates VAX-11/780 I/O addresses) •
Note: This is an important step to remember. The VDS
maps PI addresses to I/O space when memory management is
turned on. Therefore device addresses must be constructed
as virtual addresses in PI space.

• Using the TR level to set bits 13 through 16, which will
select the address space for the indicated TR level.

• In this case the contents of HP$A DEVICE are copied into
HP$A_DVA, and bit 10 of HP$A DVA is set.

3-18

(

(

(

(
~-.-

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

(Note: When a device is attached to this RH780 adapter, the VDS
will initialize the HP$A DEVICE field of that device to the
contents of the adapter's HP$A DVA field. The p-table descriptor
for the device must be careful not to overwrite bits in
HP$A DEVICE that were loaded in HP$A DVA of the adapter. This
example illustrates that it is important, when designing a p-table
descriptor, to first obtain copies of the descriptors for all
possible link devices. The design of the new p-table must be
coordinated with p-table design for these link devices.)

3.2.3.4 Creating Names for Device-dependent Fields - For easy
reference, all device-dependent fields of a p-table should be
assigned mnemonics. These mnemonics can then be used by the
p-table descriptor macros $DS $STORE, $DS $ADD, and $DS $FETCH.
Also, the diagnostic program can use the mnemonics when it
references a p-table.

The field naming conventions for p-tables follow the VMS standard
for data structure naming conditions. The field name begins with
the name of the data structure (HP), followed by a dollar sign
($), followed by the data type specifier (L for longword, W for
word, and so on, as listed in Table 5-1), followed by an
underscore (), followed by the field name. For example, the
RK611 controller's p-table has a device-dependent field for
storing the controller's CSR address. This field is named
HP$L RK611 CSR. - -
Note: Many p-table descriptors were developed before this
standard was implemented. Previously, the standard was for field
names to consist of the device name, dollar sign, data type,
underscore, field name, as in 'RK611$L CSR'. If the mnemonics for
the device-dependent fields of a particular p-table do not match
the current standard, then they will conform to this old standard.

3.2.4 Referencing P-Tables from a Diagnostic P~ogram

A diagnostic program gains access to a p-table by using the
$DS GPHARD macro. The program indicates a unit number as an
argument to the macro, and the VDS will pass to the diagnostic
program the base address of the p-table for that unit. The
program can t.hen access fields wi thin the p-table by using the
base address and the predefined field mnemonic offsets (see
above) ~ The $DS GPHARD macro is discussed further in the
description of initialization code (see Section 3.5).

Example 3-4 provides an example of referencing a p-table in a
MACRO-32 program. Notice that before the p-table field mnemonics
can be referenced, the macros which define them must be called
($DS_HPODEF for the device-independent fields -and, in this case,
$DS RK6l1 DEF for device-dependent fields).

3-19

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

LOG_UNIT :
F'TABLEI
DEV_NAM:

$DS_HPODEF
$DS __ RK61 LDEF

.BLKL

.BLKL
1
1

• ASCIC \RK611 \

Define device-independent p-table fields
Define RK611 device-dependent fields

Place to store los. unit no.
Place to store pointer

Ascii naIDe of desired device

INCL LOG_UNIT
$DS_GPHARD_S DEVNUM=LOG_UNIT, - ;

ADRLOC=PTABLE
CMPL RO, DS$_NORMAL
BNEQ 40$
MOVL PTABLE, R2
MOVAL DEV_NAM, RO
CMPL (RO), HP$T_TYPE(R2)
[(NEQ 20$
CMPW 4(RO), HP$T_TYPE+4(R2)
BEQL 30$'
$DS_ABORT ARG=TEST
MOVZBL HP$B_RK611_BR(R2), R10
MOVL HP$A_DEVICE(R2), Rl1

Get ptable for next loS. unit
•• address in PTABLE
If all units done
then branch to re-init.
Use R2 as structure pointer
Set UP pointer to type
Check lenSth and first 3

characters of type.
Check last 2 cha~acters
If it matches, OK
If not RK611, abort test
Set RIO to BR level
Set Rl1 to CSR address

Example 3-4 Referencing P-Tables in MACRO-32

(Note: This code is meant only to show an example of the use of
p-table mnemonics. The function performed does not need to be
included in a real diagnostic program.)

Example 3-5 is a BLISS-32 example of referencing p-tables. Notic€
that before p-table mnemonics can be referenced, a pointer must be
declared (in this case called 'PTABLE') using the $DS HPO DECL
macro and including the field declaration for the device-type
being tested (an RK611 in this case).

Notice that· the 'HP$T' prefix fields expand only to addresses. To
do data fetches from these fields, explicit field r~ferences must
be made (as in the example for HP$T_TYPE).

3-20

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

BEGIN

LOCAL
LOG_UNIT, Place to store loS. unit no.
BR_LEVEL, Place to store BR level
STATUS, ! Status return from service calls
CSR : REF VECTOR [, LONG], ! Device resister access
PTABlE : REF fDS_HPO_DECl ($DS_RK611_DEF); ! Address of ptable

BIND
DEV_NAM = UPlIT BYTE (~ASCIC'RK611'); Ascii name of device

++
Get the address of the p-table for the next 10Sicai unit number.

, If the $DS_GPHARD call returns successfull~, do the processinS.

lOG_UNIT = ,LOG_UNIT + 1;
STATUS = fDS_GPHARD (UNIT=.LOG_UNIT,

RETADR=PTABLE);

IF ,STATUS EQL DSf_NORMAL
THEN

Get ptable

BEGIN ! $DS_GPHARD worked

IF .(PTABlE [HPfT_TYPE]) NEQ .DEV_NAM ! Validate t~pe
OR .(PTABLE [HP$T_TYPEJ + 4)(0, 16) NEQ .(DEV_NAM + 4)(0, 16)

THEN
SDS_ABORT (ARG = TEST); ! Abort te&t if wronS device

BR_lEVEL = .PTABlE [HP$B_RK611_BRJ;
CSR = .PTABlE [HPfA_DEVICEJ;

Get bus reQuest level
! Get CSR pointer

END
ELSE

BEGIN fDS_GPHARD returned error.

END

Example 3-5 Referencing P-Tables in BLISS-32

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

(Note: This code is meant only to show an example of the use of
p-table mnemonics. The function performed does not need to be
included in a real diagnostic program.)

3.2.5 Attaching From Within The Diagnostic Program

It may occasionally be necessary for a diagnostic program to
explicitly attach a device instead of depending on the program
user to issue an ATTACH command. For example, if the program is
going to access a file (see Section 3.15, File Management), the
device on which the file resides must be attached before it can be
referenced. In this case, the diagnostic program can issue the
$DS ATTACH macro. This macro serves exactly the same function as
the ATTACH command.

3.3 DIAGNOSTIC PROGRAM GLOBAL DATA STRUCTURES

The data structures described here are used to pass information
about the diagnostic program to the VDS.

3.3.1 Diagnostic Program Header

The diagnostic program header is a data block containing various
types of information needed by the VDS, such as the program's
title and pointers to the various areas of the program that the
VDS must call during program execution.

The header is allocated by using the $DS HEADER macro. This macro
will be at the beginning of the program. It is the first (lowest)
area of memory allocated to the program. When the program is
loaded by the VDS, the header's first address will be location 200
(hex) •

Some header entries must be initialized at
macro arguments. Other entries are filled
diagnostic program should not alter or
entries during program execution.

3.3.2 Dispatch Table

assembly time using
in by the linker. The
reference any header

The dispatch table is the means by which the VDS dispatches
program control to the various tests in the diagnostic program.
The table consists of a list of addresses of the tests.

The dispatch table is defined by the $DS DISPATCH macro. The
table's entries (test addresses) are generated when the diagnostic
program is linked.

3-22

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.3.3 Program Sections Table

The program sections table contains character strings defining the
names of the program sections (see Section 3.8.3), as well as
pointers to the sections. The VDS uses this table when the user
specifies a section name with a RUN or START command, in order to
determine if the specified section exists and where it is located.

The program sections table is defined with the $DS SECTION macro.

3.3.4 Device Mnemonics List

The device mnemonics list is the means by which the VDS determines
what types of devices the diagnostic program is capable of
testing. When a RUN or START command is issued by the user, the
VDS compares the device types in the device mnemonics list against
the types of the, SELECTed devices (see the VAX
Diagnostic Supervisor User's Guide) to determine if there are any
SELECTed devices that the program can test. The list has two
kinds of entries. Entries can either be addresses of counted
ASCII strings or addresses of p-table descriptors.

For device types having p-table descriptors defined within the
VDS, the device mnemonics list entry will be the address of an
ASCIC string representing the device type (for example, RK06,
TM(3) •

For device types having p-table descriptors defined within the
diagnostic program, the device mnemonics list entry will be the
address of the device's p-table descriptor.

The device mnemonics list is created and formatted by the
$DS DEVTYP macro.

3.4 PROGRAM PASSES AND SUBPASSES

Most diagnostic programs contain several tests (see Section
3.8.1). It is common for a system-under-test to have several
units of the type of device being tested.

One complete execution of all selected tests on all selected units
is one program "pass."

One complete execution of all selected tests on one selected unit
is one "subpass."

For a diagnostic program employing serial testing (see Chapter 1),
each pass will consist of one or more subpasses.

3-23

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

For a diagnostip program employing parallel" testing" (see Chapter
1), each pass will contain only one subpass, since all devices are
tested concurrently.

3.5 INITIALIZATION CODE

Prior to the execution of a group of tests on a particular device,
the diagnostic program generally must perform some initialization
functions. These functions include obtaining the address and
other needed characteristics of the next unit to be tested,
creating a data path to the device, and initializing program
buffers and counters. These functions are placed in a portion of
the diagnostic program known as the "initializatio"n code. 1I This
code is delimlted by the macros $DS BGNINIT and $DS ENDINIT. The
VDS will dispatch control to this co~e at the begin~ing of each
program subpass, before calling any of the tests.

3.5.1 Format Of The Initialization Code

(

The format of the initialization code depends on whether the
diagnostic program performs serial testing or parallel testing of
the units (see Chapter 1). For serial testing, one unit will be
initialized each time the initialization code is executed. The
VDS will dispatch control to each selected test and then call the (
initialization code again so that the next unit may be
initialized. For parallel testing, each execution of the
initialization code should cause all units to be initialized.
When the VDS calls the tests, all units will be tested at once.
(Note that the VDS itself does not operate any differently when
parallel testing is occurring instead of serial testing. The
initialization code determines the type of testing to be performed
by initializing only one device at a time for serial testing, or
all devices at once for parallel testing.)

3.5.2 Services Used By The Initialization Code

The $DS GPHARD service is very important in the initialization
code. -This macro will pass the address of a p-table to the
d iagn.ostic prog ram. The prog ram wi 11 then use the dev ice
parameters stored in the p-table to determine how to reference the
device. (P-tables are discussed in Section 3.2).

For level 3 (standalone mode) programs, initializing a unit
involves executing the $DS GPHARD macro to get a unit's p-table
address, and then executing the $DS CHANNEL macro to initialize
the appropriate bus adapter. The $DS SETMAP macro may also be
used in the initialization code. (Both the $DS CHANNEL and
$DS SETMAP macros may also be used within the actual tests.)

3-24

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

For level 2R (user mode) programs, unit initialization will
consist of executing the $DS GPHARD macro to obtain the unit's
p-table address, followed by issuing the $ASSIGN system service.
Device allocation (using the $ALLOCATE system service) is
requested by the VDS -if the p-table descriptor for the device
indicates that the device must be allocated (see Section 3.2.2).

3.5.3 Logical Units

The initialization code must be written to handle an unspecified
number of units, since the number of units will vary from system
to system. At run time, the VDS determines the number of units
that can be tested by using the list of SELECTed units (see the
VAX Diagnostic Supervisor User's Guide) and comparing it with the
list of device-types testable by the diagnostic program (as
contained in the Device Mnemonics List - see Section 3.3.4). One
of the arguments to the $DS GPHARD macro is the "logical unit
number." If this value is grea~er than the actual number of
testable units, the VDS will return from the $DS GPHARD service
routine with an error status. Thus the initialization code can
contain a REPEAT-UNTIL loop that executes the $DS GPHARD macro and
increments the logical unit number until the macro's return status
value indicates the error.

It is important to note that the "logical unit number" argument to
the $DS GPHARD macro does not refer to the actual unit number of a
hardware configuration. For example, consider a program that
tests disks. Suppose this program is run on a system that has two
controllers, each possessing one drive. Each of these drives
could be unit 0 on its respective controller. The logical unit
number associated with the unit would depend on the order in which
the drives were attached. Once the $DS GPHARD service has been
executed, the p-table for the logical unit-number can be examined
(specifically, field HP$B DRIVE) to determine which unit has been
associated with the logical unit number.

3.5.4 Program Passes And The Initialization Code

When $DS GPHARD returns an error status, indicating the highest
numbered- logical unit has been tested, the initialization code
must signal the VDS that one program pass has been completed. The
$DS_ENDPASS macro is used for this purpose. This macro will call
a VDS service that will update the count of passes executed and
check to see if the number of passes requested by the user has
been executed. If so, the program's summary routine (see Section
3.7) and cleanup code (see Section 3.6) will be executed, and the
VDS command line interpreter will be called. Otherwise program
control is returned to the diagnostic program's initialization
code, which can reset the logical unit number to zero so that a
new program pass can beginL

3-25

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Two other macros useful in the initialization code are $DS BPASS0 (
and $DS BNPASS0. These macros are used to cause program branching
depending on whether or not the first program pass is being
executed. It is often necessary to perform special initialization
the first time the initialization code is executed. For example,
the location containing the number of the next logical unit to be
tested must be initialized the first time through the code.
Another example of a function that should only be performed the
first time the initialization code is executed is "volume
verification" (see Section 5.6.2). These macros are discussed in
Section 3.11, Conditional and Unconditional Branching.

3.5.5 Initialization Code Examples

The following are examples
initialization code.

of program

Initialization Code for Serial Testing:

IF PASS 0
THEN

BEGIN
! Program initialization
ALLOCATE BUFFERS

ELSE

LOGICAL UNIT NUMBER=0
END

steps

INCREMENT LOGICAL UNIT NUMBER
IF ALL UNITS DONE
THEN

! Per-pass code
CALL $DS GPHARD
ASSIGN CHANNEL
CLEAR BUFFERS
C LEAR COUNTERS

BEGIN
! End of pass
CALL $DS ENDPASS
LOGICAL UNIT NUMBER=0
END

3-26

needed in

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Initialization Code for Parallel Testing:

IF PASS 0
THEN

ELSE

BEGIN
! Program initialization
ALLOCATE BUFFERS
END

BEGIN
! End of pass
CALL $DS ENDPASS
END

LOGICAL UNIT NUMBER=0
REPEAT

$DS GPHARD
ASSIGN CHANNEL
INCREMENT LOGICAL UNIT NUMBER

UNTIL ALL UNITS DONE
C LEAR BUFFERS
C LEAR COUNTERS

3.6 CLEANUP CODE

When all testing of a device has been completed, there must be a
means for guaranteeing that the device is left in a known,
initialized, static state. The "cleanup code" is provided for
this purpose. This code resides in the diagnostic program,
delimited by the macros $DS BGNCLEAN and $DS ENDCLEAN.

The cleanup code will
circumstances.

be executed under

• The last program pass has been completed.

the following

• The diagnostic program executes the $DS ABORT macro. This
macro should be used when a catastrophic failure is
detected by the program.

• The user issues the VDSI S ABORT command.

• An exception condition occurs and is handled by
last chance condition handler (see Section
Condition Handling).

the VDS
3.14.5,

• The program is aborted because a $DS ASKxxxx macro was
executed with no user present and no default response (see
Chapter 4).

3-27

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Cleanup code should perform the following functions.

• Disable all device and adapter interrupts.
• Deassign channels, if in user mode.
• Deallocate memory buffers.
• Cancel timers.

3.7 SUMMARY ROUTINE

The "summary routine" is an optional portion of the diagnostic
program. If included, it is used to display on the user's
terminal a summary of the program's execution history. Summary
routines are most likely to be included in programs that perform
many repetitive functions and/or have long execution times, since
these program are likely to compile large error counts. The
summary routine will be called by the VDS at the end of the last
program pass (unless the user has inhibited the display with the
IES flag; see the VAX Diagnostic Supervisor User's Guide).
Additionally, the routine will' be executed when the user issues
the SUMMARY command (see the User's Guide).

When the SUMMARY command is issued, the VDS provides a generalized
summary message whether or not the diagnostic program includes a
summary routine. This message indicates the program name and the

(

number of errors that were reported (Section 3.9 discusses error (
reporting). An example of the message is as follows:

Summar~ of EVRAD - LEVEL 2 DISK FUNCTIONAL TEST, Rev 1.1:
1 proSram detected error (1 Hard, 0 Soft, 0 S~stem, 0 Device).
o Supervisor detected errors.

If a summary routine is included in the diagnostic program, the
message generated by that routine is displayed with the above
message.

The summary routine is delimited by the $DS BGNSUMMARY and
$DS ENDSUMMARY macros. All messages displayed with the summary
routine must be printed by using the $DS_PRINTS macro.

Typically, the routine will contain code to display such runtime
statistics as the total numbers of read transfers, write
transfers, read errors, and write errors that have been detected
on each unit being tested. Any other information relevant to the
type of device being tested may also be displayed. A separate set
of totals must be kept for each unit. It is useful to store these
sets of totals in one large data area within the program,
delimited by the $DS BGNSTAT and $DS ENDSTAT macros.

3-28

(

(
\

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.8 TESTS, SUBTESTS, AND SECTIONS

3.8.1 Tests

All diagnostic programs contain one or more (usually several)
"tests." A test consists of code that examines a portion of the
UUT. If the diagnostic program is a logic test (see Chapter 1),
each test should be designed to check a subset of the UUT's logic.
If the program is a function test (see Chapter 1), then each test
will check a subset of the total functionality of the device.
Specific design, content, and number of tests are the program
designer's decision of what is appropriate for a particular
device.

Each test must be free-standing. That is, proper execution of a
test must not depend on the previous execution of any other test.
Thus, any group of tests must be executable in all possible
combinations and sequences.

If several tests require a common segment of code, this common
seqment may be made into a global routine called by each test.
Global routines should be placed in a separate area of the
diagnostic program, outside the boundaries of any particular test.

Each test is delimited by the $DS BGNTEST and $DS ENDTEST macros.

Sometimes it may be desirable to execute the same test repeatedly,
but using a different set of input arguments each time. This may
be accomplished by grouping the various sets of input arguments
together and delimiting them with the $DS BGNDATA and $DS ENDDATA
macros. When this is done, the VDS will automatically execute the
code within the test once for every set of arguments specified
before going on to the next test. From the user's point of view,
this repeated execution of the code within the test will appear to
be one execution of the test.

3.8.2 Subtests

Tests should be composed of one or more of "subtests." A subtest
is a small section of code that performs one function. Each
subtest must be delimited by the $DS BGNSUB and $DS ENDSUB macros.
The $DS BGNSUB macro automatically assigns a number to each
subtest. Subtests are numbered from I to N for each test, where N
is the total number of subtests within the test. Subtests cannot
be nested. It is not legal to branch from one subtest to another
using GOTO-type instructions. Subtests may be either executed
sequentially or called from a higher-level routine. Figure 3-5
illustrates legal and illegal program flow using subtests.

3-29

w
I
w
lSI

('

$DS BGNSUB
- sub

#1
$DS END SUB

LEGAL

$DS_BGNTEST
control
routine
$DS_ENDTEST

$DS_BGNSUB
sub
#2

$DS_ENDSUB

$DS_BGNSUB
sub
#3

$DS_ENDSUB

LEGAL

$DS_BGNTEST
$DS_BGNSUB

· · •
$DS_ENDSUB
$DS_BGNSUB · ·
$DS_ENDSUB

$DS_BGNSUB · · · · · · $DS_ENDSUB

$DS_ENDTEST

ILLEGAL ILLEGAL

$DS_BGNTEST $DS_BGNTEST
$DS_BGNSUB $DS BGNSUB

· · · · · · · $DS_BGNSUB · GOTO LABEL1
$DS_ENDSUB · $DS_ENDSUB · $DS_BGNSUB ·

$DS_ENDSUB

· $DS_ENDSUB · · LABELl: :

$DS_ENDSUB

$DS_ENDTEST

TK-10520

Figure 3-5 Legal and Illegal Usage of Subtests

r-".

,

/~

t-3
::t
tlJ

(J)

t-3
::0
C
()

t-3
c
::0
tlJ

o
1"1]

~

~
:><:
(J)

c
'tI
tlJ
::0
<:
H
(J)

o
::0

t:l
H
~
Gl
Z
o
(J)

t-3
H
()

'tI
::0
o
Gl
::0

~

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

If several tests require the use of the same subtest, the code
within the subtest (NOT including the $DS BGNSUB and $DS ENDSUB
macros) can be placed in a global subroutine-placed in a separate
area of the diagnostic program, outside any particular test. Then
each subtest requiring the code can call the subroutine.

Subtests are useful for the following reasons:

• They define loop boundaries for the loop-on-error
facility. Refer to Section 3.10, Looping, for a
discussion of loop boundaries and looping on errors.

• They provide a means by which the program user can execute
a small portion of a test. The user can use the VDS
command language to cause the diagnostic program to be
executed up to and including a particular subtest, with
the option of looping on the subtest. Refer to the
VAX Diagnostic Supervisor User's Guide.

3.8.3 Sections

A "section" is a group of tests. Sections are defined for the
convenience of the program user. If the user specifies that a
certain section of the program is to be executed, all the tests
assigned to that section are automatically run. This frees the
user of needing to specify a long string of test numbers manually.

The programmer should assign to a section groups of tests
performing similar functions. The number, names, and purposes of
a particular program's sections are the programmer's option, but
the program should consider which groups of tests a user might
wish to run as a set and create a section for that set. A test
may belong to any number of sections.

Sections are defined by using the $DS SECTION and $DS SECDEF
macros, and by including the section name(s) as arguments to the
$DS BGNTEST macro. These macros indicate to the VDS which tests
should be associated with which sections.

3-31

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Every program has a default section called DEFAULT. The contents
of this section depend on the particular program application and
are generally specified by the program's user community. However,
no . test within the default section can require any sort of manual
intervention, such as altering switch positions, adding cables,
and so on. The default section MAY ask for keyboard responses
using the $DS ASKxxxx macros (see Section 3.12.2.2, Prompting the
User), but arl $DS ASKxxxx macros included in the default section
MUST provide default responses. This will ensure that the default
section will execute to completion if the VDS control flag
OPERATOR is clear, indicating that no operator (user) is present.

If any tests in the diagnostic program require manual
intervention, these tests must be grouped together in one section.
This section should be called MANUAL. The manual section MUST
test for the presence of an operator by using the $DS BOPER or
$DS BNOPER macro (see Section 3.11, Conditional and Unconditional
Branching) • If an operator is not present, each test in this
section must use the $DS ABORT macro.

3.9 REPORTING ERRORS

The VDS provides extensive capabilities,
reporting detected error conditions. All
reported by using the VDS macro calls.
format $DS_ERRxxxx, as indicated later in

3.9.1 Error Message Formats

via macro calls, for
error conditions MUST be
Error macros have the
this section.

The macros call VDS services that will cause error messages to be
displayed on the user's terminal. Error messages are divided into
three sections, or "levels." This is so users can use VDS control
flags to select or inhibit the display of all or part of a
message, as discussed in Section 3.9.2.

The first level is referred to as the "message header." Part of
this header is generated automatically by the VDS and identifies
the current test, subtest, unit, and error. The rest of the
header consists of a message specified by the programmer as an
argument to the $DS ERRxxxx macro. This last part of the message
is a short statement identifying the type of error.

The second level is provided by the programmer via the $DS PRINTB
macro. This level is used to provide a clear statement of what
the error is. For example, if a particular register's contents
are tested and found to be not as expected, this level would be
used to display the expected and actual contents of the register.

3-32

(

(

(

(

\.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The third level, also provided by the programmer (this time by
using the $DS_PRINTX macro), can be a detailed error description,
including such variable data as device register dumps and buffers
of send vs. received data patterns. This level is used for
dumping out large amounts of auxiliary information.

The $DS PRINTB and $DS PRINTX macros that are used to generate the
second -and third message levels are contained in a sUbroutine
referred to as an "error reporting routine." When the address of
an error reporting routine is passed to an error macro
($DS ERRxxxx), the VDS will cause the routine to be executed after
the message header (first level) has been displayed.

Details on specifying error messages are given in the description
of the i nd i v id ual er ror mac ros ($DS _ ERRxxxx) in Chapter 4.

Example 3-6 shows a typical error message. In this example, the
first three lines comprise the message header. The second half of
the third line was specified by the programmer; the rest of the
header (plus the last line of the message) was generated by the
VDS. The remaining portions of the message were generated by an
error reporting routine. In this example, only the $DS PRINTB
macro would be used within the error reporting routine.

******* ECKAX - VAX ii/7S0-specific CPU Cluster Exerciser - 4.0 ********
Pass 1. test 8. subtest 2. error 2, 4-MAR-1983 09:04:30.04
Hard error while testing KAO: Attempting to initialize TUS8 controller.

Incorrect number of bytes received.

EXPECTED: CONTINUE flag = 1
Unrecognizable packet received.
ACTUAL: 00000092(X) bytes beginning at OOOOBAOO

******** End of hard error number 2 *********
Example 3-6 Sample Error Message

Example 3-7 illustrates an error message in which both $DSPRINTB
and $DS PRINTX macros should be used. The first line following
the three-line header should be displayed using $DS PRINTB. The
last part of the message displays the parameters of a $QIO
service. Since this is a fairly long list of auxiliary
information, it belongs to the third message level and hence
should be displayed using $DS PRINTX.

3-33

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

****** EVXBA - VAX Bus I~teraction ProSram - 5,1 ******
Pass If subtest 1, e~ror 5, 9-MAY-83 14:55:29.16
S~stem fatal error while testins TTG1: ERROR ON aIO COMPLETION

ERROR ATTEMPTING TO WRITE TO TTG1:

NO PR!'-)
WERE:

010 COMPLETION STATUS WAS:
_TTGI 010 BLOCK PARAMETERS
DIO .. EFN: 00000020(X)
QIO_CHAN: 00000050(X)

EVENT FLAG =If

n I O ... FUNC: OOC'OOOOF.: ('l;'
oro CHANNEL *
IOS_WRITEPBLK FUNCTION

OIO_lOSB: 0004E888(X) Jose (iDDRESG
RJO_ASTADR: 00001069(X) tl[IDR'ESS OF AST
QIO_ASTPRM: 0004E800(X)
UIO_P1: 00004C10(X)

VALUE OF AST PARAMETER
p 1 r~RG VALUE

QIO_P2: 00000005(X) P? ARG !)r.~LUF

QIO_P3: OOOOOOOO(X) F'3 f"-lFW I,·'AL.UE
QIO_P4: OOOOOOOO(X) F'4 Af':C VALUE
QID_PS: OOOOOOOO(X) F'5 MW !)f;U.IE
QIO_P6: 0004E940(X) F'6 ('~RG 'v'~;LUE

****** End of device fatal error number 5 ******
Example 3-7 Sample Error Message

3.9.2 VDS Control Flags Associated With Error Reporting

Several VDS control flags are associated with error
These flags are lEI, IE2, IE2, HALT, and LOOP.
VAX Diagnostic Supervisor User's Guide for a complete
of VDS control flags.)

reporting.
(See the

discussion

The lEI, IE2, and IE3 flags control error message displays. If
the user sets the IE3 flag, message level 3 is not displayed. If
the IE2 flag is set, messages levels 2 and 3 are not displayed.
Setting the IE3 flag will inhibit displaying of the entire error
message.

If the user has set the VDS control flag HALT to activate
halt-on-error, the VDS will stop execution of the diagnostic
program after the error message has been printed. If the VDS
control flag LOOP has been set, the VDS will begin executing a
program loop after the error message has been executed (see
Section 3.10, Looping).

3-34

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.9.3 Error Types

Error conditions are divided into five classes, depending on their
severity. A macro is provided for each class. The five error
classes are "preparation errors," "soft errors," "hard errors,"
"device-fatal errors," and "system-fatal errors."

3.9.3.1 Preparation Errors - Preparation errors are not hardware
faults. They refer to the case in which the program user has not
properly "prepared" the UUT for testing. For example, a
particular diagnostic program may require that a disk drive be
write-enabled by the user. If the program finds that the user has
not write-enabled the drive, it can declare a preparation error.
The program could then run only those tests that do not require
writing to the UUT, or it could skip the unit altogether.

Preparation errors are declared by using the $DS ERRPREP macro.
This macro may be issued from any point within the diagnostic
program except the cleanup code.

3.9.3.2 Soft Errors - A soft error is one that potentially can be
recovered from. That is, it is an error which may go away if the
operation that detected the error is repeated. In an operating
system this type of error probably would not even be reported to
the user, but in a diagnostic program it is important to flag all
errors whether or not they can be recovered from so that the
operation can be completed. An example of a soft error might be
the occurrence of a write-check error when writing data to a
medium. (It may be the medium that is bad, and not the device.)
When a soft error is detected by the diagnostic program, the error
should be reported and the operation reexecuted. However, there
is generally a maximum number of retries that should be allowed.
If the maximum is reached, a hard error (see below) should then be
declared.

The macro to use when reporting a soft error is $DS ERRSOFT. This
macro can only be issued from within tests (see Section 3.8.1).

3.9.3.3 Hard Errors - A hard error is one that cannot be
recovered from. That is, it is an error so serious that the
operation being performed cannot be completed. Such an error
might be a disk seek error. A hard error should also be declared
if an operation detected a soft error and the operation was
retried unsuccessfully several times. If, for example, a routine
performing write operations on a disk detected several write-check
errors (which are soft errors), then a hard error should be
declared.

3-35

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Hard errors are reported by using the $DS ERRHARD macro. This
macro can only be issued from within tests (see Section 3.8.1).

3.9.3.4 Device-Fatal Errors - Sometimes a diagnostic program
detects so many hard errors on a UUT that it is pointless to
continue testing the device. Perhaps there is something so
seriously wrong with the device that it cannot be tested at all.
Or maybe an attempt has been made to test a nonexistent unit. In
any of these cases it is appropriate to declare a device-fatal
error, which indicates to the user that the program intends to
stop attempting to test the UUT in question. Whenever a
device-fatal error is declared in a program performing serial
testing, the program should leave the current test (by issuing the
$DS EXI'r macro). Additionally, an internal flag could be set to
indTcate that a fatal error has been declared. Each test could
check this flag and, if set, immediately issue the $DS EXIT macro.
That way no more testing would be performed on the unIt (for this
pass). The initialization code would reset the flag to allow
testing of the next unit.

The macro for declaring device-fatal errors is $DS ERRDEV. This
macro may be issued from anywhere within a dia~nostic program
except the cleanup code.

3.9.3.5 System-Fatal Errors - A system-fatal error is one so
serious that the diagnostic program cannot be executed at all. In
user mode, for example, a system-fatal error should be declared if
the user's process does not possess VMS privileges necessary to
perform functions required by the diagnostic program (such as
PHYSIO for a program that uses physical I/O -- refer to the
VAX/VMS System Services Reference Manual.) Any time a system-fatal
error is declared, the diagnostic program should subsequently
execute the $DS ABORT macro to abort program execution.

The macro for system-fatal errors is $DS ERRSYS. This macro may
be issued from anywhere within a dia~nostic program except the
cleanup code.

3.10 LOOPING

The VDS facility that is probably the most useful to repair
technicians is program looping. Program loops, often called
"scope loops," because they aid the technician in tracing signals
with an oscilloscope, are enabled when the technician sets the VDS
control flag LOOP (see the VAX Diagnostic Supervisor User's
Guide) • Once this flag has been set, a loop will begin executing
any time an error macro ($DS_ERRxxxx) is issued.

3-36

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.1~.1 Defining Loop Boundaries

Although actual execution of program loops is initiated
automatically by the VDS, it is the responsibil i ty of the
programmer to define the boundaries of the loops.

Each loop will have a lower bound and an upper bound. Within
these bounds will be at least one error macro. Whenever an error
macro is serviced with the LOOP flag set, the VDS begins execution
of the loop. Loop execution proceeds in the following sequence.

1. After servicing the error macro call, the VDS returns
program control to the diagnostic program, to the point
directly after the error call.

2. The diagnostic program continues execution until the
loop's upper bound is reached.

3. From the upper bounf, the VDS causes program control to
branch to the loop's lower bound.

4. Execution of the diagnostic program continues until the
upper bound is again reached, whether or not the error
macro is again issued.

5. The cycle is repeated.

Note that once the cycle is started, through the execution of an
error macro, the macro mayor may not be executed on subsequent
passes through the loop. This means that the loop will continue
to execute even if the error condition disappears. In fact, once
a program loop has been initiated, it will continue to execute
perpetually until a control-C is typed on the user's terminal.

Loop boundaries may be defined explicitly by the programmer. If
they are not, then defaul t values will be used. For a test that
does not contain subtests, the default lower bound and upper bound
for loops in that test are the SDS BGNTEST and SDS ENDTESTmacros,
respectively. For tests containing subtests, the- default lower
and upper bounds are, respectively, the SDS BGNSUB and SDB ENDSUB
macros of the subtest containing the error macro that was executed
to report the error condition.

3-37

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The programmer can explicitly define loop boundaries by using the
$DS CKLOOP macro. This macro is placed after an error macro, but
before the next $DS ENDSUB or $DS ENDTEST. If the the $DS CKLOOP
macro is contained within a test that consists of subtests, it
must be placed within the bounds of a subtest. The macro takes as
an argument the name of a program label. This label must be
located before the error macro,but after the most recent
$DS BGNSUB or $DS BGNTEST. The result is a loop whose lower bound
is the label and whose upper bound is the $DS CKLOOP macro itself.

Figure 3-6 illustrates the various loop boundaries.

$DS_BGNTEST $DS_BGNTEST

$DS_BGNSUB $DS_BGNSUB

$DS_ENDSUB $DS_ENDSUB

$DS_BGNSUB $DS_BGNSUB

$DS_ERRxxxx LOOP $DS_ER Rxxxx ,.b,' }
LOOP $DS_ERRxxxx LOOP

$DS_CKLOOP label

$DS_ENDSUB $DS_ENSUB

$DS_ENDTEST $DS_ENDTEST

Figure 3-6 Examples of Loop Boundaries

3.1~.2 Characteristics Of Loops

Loops should be small. Each loop
of electrical activity on the
occurring, the easier it will be
relevant signals.

should generate a minimum amount
UUT. The less activity that is
for the technician to trace

Loops must be made up of code that is repeatable. There is no
point in creat~ng a program loop unless the code within that loop
can be executed repeatedly. The code must cause the same
electrical activity to occur each time it is executed. For
example, a loop that just sets a bit is useless, beca~se the bit
will be set the first time through the loop, and subsequent passes
through the loop will cause no changes to take place. A loop that
sets and then clears the bit would be appropriate.

3-38

(

(

(

I

~.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

In order to make a loop's code repeatable, it may occasionally be
necessary to alter the program flow within the loop after the
first pass through the loop. The $DS INLOOP macro can be used to
determine if a loop is being executed. Branching within the loop
can be performed depending on the return status from this macro.
This macro is useful in places where severe errors occur.
Ordinarily the programmer may want to abort the program (using the
$DS ABORT macro) in such a case. However, if a loop is present,
it may be desirable to branch around the $DS ABORT macro to allow
the loop to continue.

Caution should be practiced when branching within subtests
containing $DS CKLOOP macros. It is important not to branch past
the $DS CKLOOP macro, or the loop could be broken. For example,
suppose- a loop is being executed, with a $DS CKLOOP macro as the
loop's upper bound. Suppose now that a sectio~ of code within the
loop tests for a hard error condition and then branches around a
$DS ERRHARD macro if the error does not exist. If the branch goes
past the $DS CKLOOP macro, the loop will be broken. Illustrations
of proper and improper branching within loops are shown in Figure
3-7.

PROPER BRANCHING
WITHIN A LOOP

labell:

TSTL ERRBITS
BNEQ NO_ERROR · · · NO_ERROR:

$OS_CKLOOP LABELl · · · ·

IMPROPER BRANCHING
WITHIN A LOOP

labell:

· •
TSTL ERRBITS
~NEQ NO_ERROR

· · $OS_CKLOOP LABELl

NO ERROR:

Figure 3-7 Proper and Improper· Branching Within Loops

3.10.3 Nesting Loops

Loops whose boundaries are defined with the $DS CKLOOP macro may
be nested. Figure 3-17 illustrates nesting of-loops. In Example
A of Figure 3-8, loop 2 and loop 3 are contained in loop 1. In
Example B, loop 3 is contained within loop 2, and loop 2 is
contained within loop 1.

3-39

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

EXAMPLE A EXAMPLE B

LABEL1 : LABEL1:

LABEL2: LABEL2:

}
LOOP 2

error macro 2

$DS CKLOOP LABEL2

LABEL3:

LOOP 2

LOOP 3

LABEL3: }

error macro 3 LOOP 3

$DS CKLOOP LABEL3

$DS_CKLOOP LABEL3

LOOP 1
error macro 3

LOOP 1

error macro 1 error macro 2

$DS_CKLOOP LABEL 1 $DS_CKLOOP LABEL2

error macro 1

$DS_CKLOOP LABEL 1

TK-l0523

Figure 3-8 Nesting Loops

When loops are nested, the VDS always executes the smallest loop
containing the issued error macro. If error macro 2 was issued in
Example B, loop 2 would be executed.

The VDS will always execute the loop containing the most recently
issued error macro. In Example A, suppose error macro 1 was
issued. This would cause loop 1 to begin executing. Suppose at a
later point in time that error macro 2 was executed for the first
time (perhaps because of an intermittent hardware failure). Then
loop 2 would begin execution and loop 1 would be forgotten.

3.10.4 User-Specified Looping

There is a method by which the user can request a loop to be
executed even though an error macro has not been issued. The
/SUBTEST qualifier on the RUN and START commands (see the
VAX Diagnostic Supervisor User's Guide) can be used to specify a
subtest on which the user wishes looping to occur. When the
specified subtest is reached, ~looping begins on that subtest. The
programmer should keep this feature in mind as subtests are
designed.

3-40

(

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.11 CONDITIONAL AND UNCONDITIONAL BRANCHING

The VDS provides several macros to facilitate
branching within the diagnostic program.

$DS_BERROR, $DS BNERROR

conditional

The "bran6h if error" and "branch if no error" macros can be
used immediately after macros that call system services. The
services will return a status indication (in R0), and these
macros cue on that status. The macros accept as an argument
the address to which the program should branch.

$DS_BCOMPLETE, $DS BNCOMPLETE

The "branch if complete" and "branch if incomplete" macros are
also used immediately following macros that call system
services. Their function is the inverse of that of the
$DS BERROR and $DS BNERROR macros. That is, $DS BCOMPLETE is
equivalent to $DS BNERROR and $DS BNCOMPLETE is the same as
$DS BERROR. Choosing one set -of macros over the other is
simply a matter of "readability" in the source code. For some
system services it makes more sense to branch if the service
"completed successfully," while for others it is more
appropriate to branch if there was "no error."

The "branch if operator present" and "branch if operator not
present" macros can be used anywhere in the diagnostic
program. They cue on the setting of the OPERATOR flag (see
the VAX Diagnostic Supervisor User's Guide). They make it
possible to execute or skip certain segments of code,
depending on whether a user is or is not present.

$DS_BQUICK, $DS BNQUICK

The "branch if QUICK flag set" and "branch if QUICK flag not
set" macros can be used anywhere in the diagnostic program.
They cue on the setting of the QUICK flag (see the User's
Guide) • These macros allow you to create a "quick mode" in
your program. This mode is selected optionally if the user
sets the QUICK flag.

Quick mode provides a fast program pass that does not perform
thorough testing and is used when the user is more interested
in a fast run time than in careful, complete fault detection.
The macros can be used to skip around segments of code in
quick mode. Determination of what segments of code should be
included or excluded in quick mode depends on specific program
requirements.

3-41

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

$DS_BPASS0, $DS BNPASS0

The "branch if pass 0" and "branch if not pass 0" macros can
be used when it is necessary to cause program flow to change
depending on whether or not the current program pass is the
first one. The macros call a system service that returns a
status indication (in R0) of whether or not the current pass
is the first one, then an appropriate branch is generated.
These macros are only to be used in the program's
initialization code.

$DS ESCAPE

The $DS ESCAPE macro is used to exit from a test or subtest if
an error has been detected within that test or subtest. It is
used when it is pointless to execute the rest of the code
within the test or subtest after the ~rror was detected. For
example, there is no point in executing write tests on a disk
if it has been discovered that the disk is write-protected and
a user is not present.

If an error reporting macro ($DS ERRxxxx) has been issued from
within the current subtest or test, then issuing an $DS ESCAPE
macro will cause program control to pass to the end of the
subtest or test.

$DS EXIT

The $DS EXIT macro provides for unconditional branching to the
end of a test, a subtest, an interrupt service routine, or the
summary routine. This macro is often used in conjunction with
the conditional branching macros, as in the following example:

10$:

$DS BGNTEST

$DS BOPER 10$
$DS-EXIT TEST

·$DS ENDTEST

3-42

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.12 INPUT/OUTPUT

3.12.1 I/O With The Unit Under Test

3.12.1.1 I/O in User Mode - In user mode (level 2R programs), all
input/output operations must be accomplished by using the VMS $QIO
system service. The details of performing I/O operations with the
$QIO service are described in the VAX/VMS I/O User's Guide, which
MUST be read before development of a level 2R program is begun.

Initiating I/O activity in user mode is a process involving three
steps, each of which requires use of a VMS system service.

• Assigning a channel to the device.

•

A device cannot be referenced unless a channel linking the
device to the program has been "assigned" to the user. A
"channel" is a data path linking the device to the
diagnostic program.

Channel assignments are accomplished by using the $ASSIGN
system service. This service request should be issued
from the diagnostic program's initialization code.

When the diagnostic program has finished using the device,
its channel should be deassigned by using the $DASSGN
system service. This service should be requested in the
program's cleanup code.

Allocating the device •

If the diagnostic program will need exclusive use of the
device to be tested (no other users allowed to reference
the device while it is being tested), then the device must
be "allocated" to the diagnostic program. Allocation is
necessary if the program requires that a scratch medium be
placed in the UUT. If the program can use the currently
loaded (nonscratch) device medium in a nondesructive
manner, device allocation is not necessary.

3-43

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Device allocation is not performed directly by the
diagnostic program. Instead, the allocation request is
issued by the VDS (via the $ALLOCATE system service) when
the user types the VDS SELECT command (see the
VAX Diagnostic Supervisor User's Guide). The VDS
determines whether or not to allocate the device by
checking the HP$M ALLOC bit in the device's p-table (see
Section 3.2.1, ~-Table Format). If this bit is set (by
the program developer who created the p-table descriptor;
see Section 3.2.2, P-Table Descriptors), then the
$ALLOCATE service is requested. If the device cannot be
allocated because it has already been allocated to someone
else, the VDS informs the user.

An allocated device will be deallocated (by the VDS
issuing a $DEALLOCATE service request) when the device is
DESELECTed or when the VDS EXIT command is typed.

An instance when the diagnostic program might have to
specifically allocate and deallocate a device is in the
case of error logging. (We are not referring to VMS
system error logging.) If a level 2R program writes error
logging data to a device, it MAY be necessary to allocate
the device. In this case the diagnostic program should
use the $ALLOCATE service of VMS within the initialization
code. The cleanup code will have to use the $DEALLOCATE
service to deallocate the device. Refer to the
VAX/VMS System Services Reference Manual.

• Queueing I/O requests.

Actual input/output operations are requested by using the
$QIO and $QIOW system services, which will place the
request in an I/O queue. These services require that a
set of parameters be passed to the service routine. These
parameters specify the following types of information.

The channel number over which the data transfer is to
take place. The channel number is obtained from the
$ASSIGN service.

The type of transaction desired. This is indicated by
a "function code" and is discussed below under "I/O
Function Encoding."

The method by which the program is to be notified that
the transaction has been completed. Three methods are
available and are discussed below under "Synchronizing
I/O Completion."

3-44

(

(

(

THE STRUCTURE OF A VAX SUPERVISDR DIAGNOSTIC PROGRAM

The address of a buffer to receive diagnostic
information. This buffer is discussed under "The $QIO
Diagnostic Buffer."

1. I/O Func tion Encod ing

I/O functions fall into three groups, corresponding to
the three I/O methods (physical, logical, and
virtual). The type of function to be used will depend
on the type of device being tested and the type of
diagnostic program being written (refer to Chapter 2).

The function that is to be performed by a $QIO service
is indicated by passing to the service routine a
16-bit value having the format illustrated in Figure
3-9.

15

FUNCTION
MODIFIER

6 5

FUNCTION
CODE

o

TK-l0524

Figure 3-9 $QIO Function Code and Modifier Fields

The "function code" is a six-bit field indicating the
type of I/O operation to be performed. Some function
codes are device-independent, and others are devicB
dependent. Table 3-1 contains device-independent
function codes for read and write functions in the
three I/O transfer modes.

Table 3-1 Device-Independent Read and Write Functions

Physical I/O

10$ READPBLK
I O$-WRITEPB LK

Log ical I/O

lO$ READLBLK
IO$-WRITELBLK

Virtual I/O

10$ READVBLK
IO$-WRITEVBLK

Refer to the VAX/VMS I/O User's Guide for discussions
of the function codes available to individual devices.

3-45

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The "function modifier" field is used to modify the
operation specified by the function code. Bits within
this field can be set in conjunction with the function
code, and the $QIO service will alter the function to
be performed accordingly. For example, the
IO$ INHRETRY modifier can be used with an IO$ READVLBK
function to inhibit retries when read errors are
encountered.

Refer to the VAX/VMS I/O User's Guide for a
detailed dicussion or I/O function encoding,
with tables of all function codes and modifiers
are valid for each device supported by VMS.

more
along

that

2. Synchronizing I/O Completion

Three methods exist by which the diagnostic program
can determine that an I/O request has been completed.
The desired method of determination is indicated with
the $QIO service call. The three methods available
are

a. Waiting for an event flag.

It is possible to specify, as an argument to the
$QIO or $QIOW macros, the number of an event flag
(see Section 3.14.2) that system service is to set
when I/O has completed. The diagnostic program
can (by using a system service) wait for the
specified flag to be set. (The $QIOW service is a
combination of the $QIO and $WAITFR services.)

b. Testing an I/O status block.

The address of an "I/O status block" can be
specified -as an argument to the $QIO macro. When
this is done, the $QIO service will cause the
first word of this block to be loaded with a
status code when the I/O operation has been
completed. The program can test the contents of
the block to determine the status of the I/O
operation. The format of an I/O status block is
shown in Figure 3-10.

31 16 15

TRANSFER COUNT I STATUS

DEVICE-DEPENDENT DATA

TK-10525

Figure 3-10 I/O Status Block Format

3-46

c

(

(

THE ST~lJC'J:'URE OF A VA,X SUPERVISOR DIAGNOSTIC PROGRAM

Refer to
deta i Is
block.

the VAX/VMS I/O User's Guide
about the contents of the

for more
I/O status

c. Execution of an AST routine.

It is possible to specify, as a $QIO argument, the
address of an AST routine. (ASTs -- asynchronous
system traps -- are discussed in Section 3.14.3.)
If this is done, an AST will be delivered (and the
AST routine called) when the I/O operation has
been completed. This method of determining I/O
completion provides for the most asynchronous (and
most efficient, with regards to processor usage)
I/O activity.

3. The $QIO Diagnostic Buffer

When a $QIO or $QIOW macro is issued, it is possible
to request the system service routine to load a buffer
with the contents of the device's registers. This
"diagnostic buffer" will be loaded if two conditions
are met:

a. The I/O transfer method is physical
2) •

(see Chapter

b. .The process possesses
privilege (see the
User's Guide).

the "diagnostic" VMS
VA X/~Ti.§. __ ~~l!!.l!!.~~~ __ ~~~g ua g e

To request the system service to load the buffer, the
programmer must:

a. Define a buffer area
program. This buffer
contain the contents
registers.

within
must be
of all

the diagnostic
large enough to

the device's

b. Specify the address of this buffer as the "P6"
argument to the $QIO or $QIOW macro (see Chapter
4) •

When the I/O operation has completed, the buffer will
contain the final contents of the device registers,
plus additional information. Generally (but not
always), the format of the buffer's contents will be
as indicated in Figure 3-11.

3-47

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

31 o
OPERATION START TIME
IN 64-BIT FORMAT

OPERATION COMPLETION TIME
IN 64-BIT FORMAT

FINAL ERROR COUNTER CONTENTS

NUMBER OF DEVICE REGISTERS

-: .. DEVICE REGISTERS,

'" ONE PER LONGWORD

T T

Figure 3-11 Typical $QIO Diagnostic Buffer Format

Two other VMS system services are useful to diagnostic
programmers. The $GETCHN service will provide information about
the device attached to a specific channel. This information
consists of the "primary" and "secondary" device characteristics
as described in the VAX/VMS I/O User's Guide. The $CANCEL system
service will cancel all pending I/O requests on a specified
channel, including those already in progress.

3.12.1.2 I/O in Standalone Mode - In standalone mode (level 3
programs), I/O is performed by direct reference of the device's
registers. Thus routines to set up a device's control registers,
service its interrupts, and check for error conditions must be
contained within the diagnostic program.

The diagnostic program must set up the bus adapters so that a data
channel can be created to transfer information across the buses.
Because of the differences inherent in the bus adapters of the
various VAX processor types, the VDS provides facilities for
channel initialization that remove from the diagnostic programmer
the burden of dealing with processor-specific details. This
allows diagnostic programs to be automatically compatible with all
VAX processor types.

The $DS CHANNEL and $DS SETMAP services of the VDS are used to
create -data channels in standalone mode. The $DS CHANNEL service
is used to initialize the MASSBUS and UNIBUS adapters. Depending
on the parameters included with the $DS CHANNEL macro, the service
will

• Initialize the adapter
• Clear the adapter
• Enable or disable interrupts
• Provide current adapter status

3-48

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Details are provided in the description of the $DS CHANNEL macro
in Chapter 4.

The $DS SETMAP service will set up the adapter's mapping registers
so that data transfers will reference the desired areas of main
memory. ~tails are provided in the description of the $DS SETMAP
macro in Chapter 4.

The $DS SHOCHAN service provides automatic display on the user's
terminal of a bus adapter's internal registers. The configuration
register and the status register are always displayed. If error
conditions exist, additional registers will also be displayed.
This macro should be used whenever the $DS CHANNEL system service
detects an error condition.

Interrupt ~ervice routines in a diagnostic program should be
delimited by the $DS BGNSERV and $DS ENDSERV macros. The address
of the interrupt servIce routine is passed to the $DS CHANNEL
service. The VDS has an interrupt preprocessor that initially
receives control when an interrupt occurs, and then dispatches
control to the specified interrupt service routine.

An interrupt service routine's function should be minimal, such as
disabling further interrupts, making sure that the interrupt was
expected (arrived through the proper vector), and saving device
status. Error reporting should NOT be carried out in an interrupt
service routine, with one exception; interrupt service routines
should report unexpected interrupts.

Typical program flow when using an interrupt service routine is as
follows.

Main-Line Code:

Clear and initialize channel.
Set up I/O transfer.
Start watchdog timer.
Enable interrupts.
Clear done flag.
REPEAT

Test done flag.
UNTIL done flag set OR watchdog timer finishes.
IF done flag set
THEN cancel watchdog timer; report I/O status
ELSE report timeout error.

3-49

THE STRUC'rURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Interrupt Service Routine:

Disable interrupts.
IF unexpected interrupt (wrong vector)
THEN set error status
ELSE save device status.
Set done flag.
Return.

More information on interrupts can be found in the description of
the $DS CHANNEL service in the next chapter.

Other macros useful when performing I/O functions in standalone
mode are:

$DS SETVEC - Sets the contents of
exception vector to a specified
ONLY method by which the vectors
reference the SCB directly) •

a specified interrupt or
address. This macro is the

may be loaded (do not

$DS CLRVEC - Removes from a specified vector whatever contents
had- been placed in it by a $DS SETVEC macro, and replaces it
with the address of the VDS condItion handler. This macro is
the ONLY method by which the vectors may be reset (do not
clear the SCB directly).

$DS INITSCB - Reinitializes the system control block (SCB),
which contains all of the interrupt and exception vectors, to
their standard (VDS-defined) values. Useful if several
$DS SETVEC macros have been used.

$DS PROBE - Attempts to access an address to determine whether
or -not hardware (either memory or an I/O device) is connected
to it.

$DS SETIPL - Sets the processor's interrupt priority level
(IPL) to a specified value.

3.12.2 I/O With The User Terminal

All I/O between a diagnostic program and the user's terminal must
be accomplished via VDS macros. Macros are provided for:

• Displaying messages consisting of simple ASCII strings or
a combination of ASCII strings and variable data

• Prompting the user for a response, and then receiving and
storing the response

3-50

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

o Displaying the contents of a register and assigning a
mnemonic to each bit

o Determining the user's terminal type and characteristics

3.12.2.1 Displaying Message Strings - Message strings consisting
of a combination of ASCII strings and data variables are displayed
by means of the "print" macros. This set of macros has the
general form $DS PRINTx. Specifically, there are four print
macros, known as- $DS PRINTB, $DS PRINTX, $DS PRINTF, and
$DS PRINTS. The $DS PRINTB and $DS PRINTX macros are only used to
print error messages~ and are used In conjunction with the error
macros ($DS ERRxxxx). The VDS control flags used to inhibit error
messages (see the VAX Diagnostic Supervisor User's Guide) are
keyed to the $DS PRINTB and $DS PRINTX macros. The $DS PRINTF
macro is used when It is necessary to provide the user with
information unrelated to error reports. The $DS PRINTS macro is
used for summaries (see Section 3.7, Summary Routines).

The print macros are used to print simple ASCII strings, such as

DEVICE IS WRITE LOCKED.

They can also be used to display the contents of data words or to
print a combination of ASCII strings and variable data, such as

EXPECTED:
RECEIVED:
XOR:

1010101010101010 (B)
1011101010101010 (B)
0001000000000000 (B)

Using a print macro involves specifying the address of a "format
statement" and a list of variables. Format statements indicate
the format in which the variables are to be printed. The method
used by the print macros to format messages is the same as the
$FAO system service provided by VMS. In fact, the $FAO service is
also provided by the VDS. This service will format, but not
print, a message. The print macros will both format and print the
desired message. It is also possible (and occasionally desirable)
to format a message with the $FAO service and then display it by
using one of the print macros.

Another macro useful for displaying information to the user is
$DS CVTREG. With this macro, you specify the address of a
register and the address of a string of mnemonics. The mnemonics
are the names assigned to the bits within the register. The macro
will read the register and produce a character string telling
which bits of the register are set. This string can then be
displayed using one of the print macros.

3-51

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Details on the print macros are in Chapter 4. The $FAO service is
discussed in Chapter 4 and in the VAX/VMS System Services
Reference Manual.

It is sometimes useful to know the type and characteristics of the
user terminal. For instance, you may want to format text displays
differently on a video terminal than on a hardcopy terminal. The
$DS GETTERM service may be used to determine the user terminal's
type and characteristics.

3.12.2.2 Prompting the User - There are occasionally instances in
which it is necessary to solicit information from the user. A
common example is the case in which the program must, at a certain
point in its execution, ask the user to perform an action such as
connecting a cable and to then type a response indicating that the
action has taken place. Also, there may be circumstances under
which it is necessary to obtain information about the UUT other
than what is contained in the p-tables. (It is important,
however, to TRY to place all device-specific information in the
p-tables so that it can be specified in ATTACH commands BEFORE the
diagnostic program is started.)

All solicitation of user responses during the diagnostic program's
execution must be made through the use of the $DS ASKxxxx macros.
These macros allow the programmer to specify a prompting message,
the format in which the user's response is to be interpreted, and
a storage area into which the response should be placed.

Specifically, there are five $DS ASKxxxx macros.

1. $DS_ASKADR - Prompt the user for an address within a
specified range and store the result.

2. $DS_ASKDATA - Prompt the user for a numeric value within a
specified range and store the result.

3. $DS ASKVLD - Same as $DS_ASKDATA, except allows programmer
to specify storage location of result as a field (using
position and size) within a large bit structure.

4. $DS ASKLGCL Prompt the user for a "yes" or "no"
response, and store the result as one bit, set or cleared.

5. $DS_ASKSTR - Prompt the user for a character string and
store the result.

3-52

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The macros also allow the programmer to specify a default value
for the response. If there is no user present (indicated by the
state of the VOS control flag OPERATOR, see the
VAX Diagnostic Supervisor User's Guide), the default value will
automatically be used. If no default value exists, the program
will be aborted.

Sometimes diagnostic programs require the user to specify run-time
options other than those that can be selected using the VDS
command language. In such cases, the $DS ASKxxxx macros can be
used to prompt the user to indicate- the required run-time
parameters. One method of accomplishing this is to ask a set of
questions that can be answered with "yes" or "no," such as

DO YOU WISH TO RUN OPTION X?
DO YOU WANT THE DEVICE TO RUN IN MODE Y?

The responses to these question could be converted to set or
cleared bits that the diagnostic program could test. This method
is fine if the total number of program options is small.

However, for a program with a large number of run-time options,
the program user might have to answer a large list of questions
every time the program is executed (assuming he or she did not
want to use the default values for these questions). In such
cases, the programmer might want to just prompt the user once and
allow him or her to type a string of options, as

OPTIONS ARE OPTION X, OPTION_Y, OPTION Z
(DEFAULT IS OPTION-X)
TYPE OPTIONS: -

Allowing the user to type a list of the options wanted is more
convenient for the user, even though it is more difficult for the
programmer to check the strings typed to see if they are valid.

For a program having a very large set of run-time options it might
be beneficial for the programmer to create a command language. An
example might be

Commands:
OPTIONS
MODES
BEGIN
RESUME

- select options
- select device modes
- begin program execution
- continue after control-C

3-53

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The user would type the VDS RUN or START command to start the
diagnostic program's execution. In the program's initialization
code or perhaps within a particular test, the program executes
$DS ASKxxxx macros to prompt the user for command strings. The
program parses and executes each command. The BEGIN command (or
something similar) simply allows the VDS to continue normal
dispatching of the diagnostic program. The RESUME command would
be useful if a control-C handler is defined within the diagnostic
program (see Section 3.14.6, Handling Control-Cs). The number and
types of commands defined would, of course, depend completely on
the particular diagnostic program being designed.

The VDS provides two macros to facilitate command parsing. The
$DS CLI macro is used to define the desired command language. The
$DS=PARSE macro compares an input stream (obtained from the user
via a $DS ASKxxxx macro) against the command language defined with
a set of ~DS CLI macros and will either dispatch to the proper
action routines or inform the user if an illegal command has been
typed.

3.12.2.3 Displaying HELP Text - Chapter 5 discusses the creation
of HELP files, which are supplemental files containing
informational text that the user can read. It may sometimes be
desirable for the diagnostic program to fetch and display sections
of the HELP file. This can be accomplished by using the $DS HELP
macro. Read the section of Chapter 5 on HELP files, and then
refer to Chapter 4 for a description of the $DS HELP macro.

3.13 MEMORY MANAGEMENT AND ALLOCATION

Note: For a discussion of VAX memory management, see the VAX
Architecture Handbook.

The memory management hardware may not be directly referenced by
diagnostic programs running under the VDS.

3.13.1 Memory Management In User Mode

In user mode (level 2R programs), memory management hardware is
under the control of VMS and it is always turned on. All of the
VMS memory management system services are available for use by
diagnostic programs. See the VAX/VMS System Services
Reference Manual for the uses and restrictions applying to VMS
memory-management services. Allocation of new memory space should
only be accomplished with the VDS $DS GETBUF macro, as described
in Section 3.13.3.

3-54

(

(

(
THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.13.2 Memory Management In Standalone Mode

In standalone mode (level 3 programs), the memory management
hardware may be turned on or off. Normally, it is off.
Diagnostic programs can turn on memory management with the
$DS MMON macro. Once on, it can be turned back off with the
$DS-MMOFF macro. All map register initialization is performed by
the VDS, outside the control of the diagnostic program. Turning
on memory management will not increase the diagnostic program's
virtual address space, since the VDS loads the mapping registers
so that there is a direct one to one correspondence between
virtual and physical addresses in P0 memory space.

When memory management is enabled, the VDS sets the protection of
all pages to"user write." It is possible to change the protection
of any page or group of pages by using the $SETPRT macro.

In standalone mode, the memory management hardware can be turned
on and off by the user, via the SET MM ON and SET MM OFF commands.
These commands override the $DS MMON and $DS MMOFF macros
contained within a dignostic program. Thus if a user has issued
the SET MM ON command, the diagnostic program cannot shut off
memory management with the $DS_MMOFF macro.

Some diagnostic programs may not be able to execute if the memory
management hardware is enabled. If this is the case, the
$DS MMOFF macro must be issued at the beginning of the program.
If -the status return from this macro indicates that the operator
has turned on memory management then the program must abort itself
(with the $DS ABORT macro), printing an appropriate error message
before doing so.

3.13.3 Memory Allocation

Many diagnostic programs need extra memory space for I/O buffers
or other uses. Additional memory space may be acquired by using
the $DSGETBUF macro. Both user mode and standalone mode programs
should use this macro, since this method is the only way of
assuring that there will be no memory allocation conflicts between
the VDS and the diagnostic program.

3-55

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The VDS keeps track of all free memory. The $DS GETBUF macro is (
used to request the VDS to assign a certain number of pages to the
diagnostic program. The VDS will return the starting address of
the memory space it has assigned. (Space will be assigned as a
group of contiguous physical pages in standalone mode, and as a
group of contiguous virtual pages in user mode.) When a diagnostic
program is executing on a system possessing 5l2K bytes of physical
memory (the smallest memory size supported by the VDS), the
program is guaranteed access to at least 96K bytes of buffer
space.

Memory space is returned to the VDS's free memory pool by using
the $DS RELBUF macro.

3.14 SYNCHRONOUS AND ASYNCHRONOUS EVENTS

3.14.1 Introduction

Synchronous events are those that occur within the normal
execution flow of a program. Waiting for a bit to become set or
creating a time delay are both examples of synchronous events.
Asynchronous events are those that happen outside the normal
execution flow. VAX exceptions are asynchronous, because they
cause the normal flow of a program to be changed (program control
is passed to the condition handler) • Refer to the (
VAX Architecture Handbook for a detailed discussion of VAX ,
exceptions.

Diagnostic programs often need to handle occurrences of
synchronous and asynchronous events. "Event flags" are useful for
synchronous processing of events. AST routines and condition
handlers are used for asynchronous processing. There are both
synchronous and asynchronous methods available for handling
time-critical situations.

3.14.2 Event Flags

Event flags are flags that can be used by diagnostic programs to
indicate status information. Services are provided for setting,
clearing, and reading the flags. Additional services allow the
diagnostic program to wait for a flag or group of flags to be set
before proceeding with program execution. The services are called
via macros.

There are 64 event flags, numbered from 0 to 63. The
divided into two clusters, each containing 32 flags.
flag macros require that the cluster be indicated.

3-56

flags are
Some event

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Event flag 0 is reserved for exclusive use by the VDS and is not
available to diagnostic programs.

Flags 1 through 23 can be set or cleared by the user via the
SET EVENT FLAGS and CLEAR EVENT FLAGS commands, which means they
can be used to implement user selection of optional program
features.

Flags 24 through 31 are used by VMS and hence cannot be used by
level 2R diagnostic programs. They are available, however, to
level 3 programs.

Flags 32 through 63 are available to all diagnostic programs.
Users cannot modify these flags.

In user mode (level 2R programs), event flags are maintained by
VMS. The event flag macros call service routines within VMS.
Event flags 0 through 63 are referred to as "local event flags,"
since they can only be used internally by a single process.
Another set of event flags, numbered from 64 through 127, are
referred to as "common event flags" since they tan be shared by
cooperating processes. The VMS system service $ASCEFC must be
used to associate common event flags with processes in order for
these flags to be shared. See the VAX/VMS System Service
Reference Manual for details.

In standalone mode (level 3), event flags are maintained by the
VDS, and the event flag macros call service routines within the
VDS.

The following macros are used in both level 2R and level 3
programs to reference event flags:

$SETEF - Sets specified event flags.

$CLREF - Clears specified event flags.

$READEF - Read the current status of specified event flags.

$WAITFR - Wait for a specified event flag to become set.

$WFLAND - Wait for a group of event flags to become set.

$WFLOR - Wait for one of a group of event flags to become set.

$QIOW - Queue an I/O request and wait for a specified
flag to become set (indicating I/O completion).
alent to $QIO followed by $WAITFR.

3-57

event
Equi v-

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Additionally, the $SETIMR (see Section 3.14.4, Timing) and $QIO
(see Section 3.12.1.1, I/O in User Mode) macros can optionally
specify references to event flags.

3.14.3 Asynchronous System Traps (ASTs)

An asynchronous system trap (AST) is a method by which a routine
can be entered asynchronously, outside the normal program flow,
similar to a device interrupt. A routine that is entered via an
AST is referred to as an AST routine. The process by which
AST routines are dispatched is called AST delivery.

3.14.3.1 AST Delivery - Three macros, available to both level 2R
and level 3 diagnostic programs, allow the use of ASTs. These
macros are $SETIMR, $QIO, $QIOW, and $DS CNTRLC. Each of these
macros will accept as an argument the address of an AST routine.
In the case of the $SETIMR macro, the AST routine will be entered
when the specified amount of time has elapsed. For the $QIO and
$QIOW macros, the AST routine will be executed when the requested
I/O operation has completed. If the $DS CNTRLC macro is used, it
will cause an AST routine to be entered -when the program user
types a control-C.

(

ASTs may be enabled or disabled with the $SETAST macro. If ASTs (
are disabled, ASTs will not be delivered and thus the AST routines
will not be executed.

If a diagnostic program is waiting for an event flag (see Section
3.14.2, Event Flags) or hibernating {see Section 3.14.4, Timing),
ASTs will still be delivered to it. After the AST routine has
been executed, the program will be returned to the state it was in
before the AST was delivered (unless, of course, the AST routine
itself set the desired flag or woke the program).

'3.14.3.2 AST Routines - An AST routine is
instruction. Thus the routine must have
return by using a RET instruction. It must
them in the entry mask) any registers it
Rl.

entered via a CALLG
an entry mask and must

save (by specifying
uses, other than R0 or

When an AST routine is entered, the AP points to an argument list
in the format illustrated by Figure 3-12. The register values in
the argument list are those saved when the main-line code was
interrupted on delivery of the AST. The AST parameter is a value
specified by the "AST parameter" argument of the $SETIMR, $QIO, or
$QIOW macro used to request delivery of the AST. This argument
can be. used by the AST routine to determine who called it.

3-58

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

31 87 o

0 I 5

AST PARAMETER

RO

R1

PC

PSL

TK-l0527

Figure 3-12 Argument List Passed to an AST Routine

3.14.4 Timing

Facilities are provided for creating timing delays within a
diagnostic program. These facilities allow you to

• Specify a particular length of time you wish to wait
before proceeding

• Cause the diagnostic program to stop executing until an
expected event occurs

• Cause an asynchronous event to occur after a specified
length of time has passed

The timing facilities provided by the VDS take into account speed
differences among the various VAX process types. Therefore, all
diagnostic programs containing time-dependent operations MUST use
the VDS timing facilities when coding these operations, in order
to guarantee program compatability with all current and future
processor types.

The VDS timer services are accessed by macro calls. Some macros
can be used for both level 2R (user mode) and level 3 (standalone)
programs, while others may only be used for level 3 programs.

3-59

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.14.4.1 Timing Facilities Available in User Mode and Standalone
Mode - The following is a list of macros that may be

used by both level 2R and level 3 programs to control
time-dependent functions.

$GETTIM - Gets the current system time.

$SETIMR - Allows you to cause an event to take place after a
specified amount of time has passed.

$BINTIM - Converts an ASCII string that specifies a time into
a numeric value meaningful to the $SETIMR macro.

$CANTIM - Cancels requests specified with the $SETIMR macro.

$HIBER - Causes processing to stop until an expected event
occurs. Referred to as "hibernation."

$WAKE - Cancels a $HIBER request. Referred to as "waking" the
program.

$DS WAITMS Delays sequential program execution for a
specified number of milliseconds.

$DS CANWAIT - Cancels time remaining from a $DS WAITUS or
$DS-WAITMS call

A typical use of these macros in standalone mode would be -to issue
a $SETIMR macro that will cause an AST routine (see Section
3.14.3) to be executed when the specified time has expired. Then
a device's interrupts could be enabled. Some other processing
could take place while waiting for the interrupt. When the
interrupt occurs, the interrupt service routine could issue a
$CANTIM macro to cancel the $SETIMR. If the interrupt does not
occur before the time period ends, the AST routine would be
entered. This routine could declare a timeout error. Program
steps for this function would be as follows.

Main Program:

Issue $SETIMR macro.
Enable interrupts.
Continue.
IF error flag set
THEN

issue $DS ERRxxxx
ELSE

continue.

Interrupt Service
Routine:

Process interrupt.
Issue $DS CANTIM macro.
Return from interrupt.

macro

3-60

AST Routine:

Set error flag.
Return.

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.14.4.2 Timing Facilities Available in Standalone Mode Only
The next macro may only be used by level 3 programs.

$DS WAITUS Delays sequential program execution for a
specified number of microseconds.

A typical use of this service would be the enabling of a device's
interrupts followed by a call to the $DS WAITUS service to see if
an interrupt occurred within a certain time frame. The interrupt
service routine would set a flag to indicate that the interrupt
occurred and would issue a $DS CANWAIT to cancel any time
remaining from the wait service. (Usually, the $DS CANWAIT is
optional and simply improves execution time by eliminai1ng
unnecessary time remaining in wait loops.) After the $DS WAIT,US
call would be code to test the interrupt service flag. If the
flag is set, the interrupt occurred. If not, the entire time
delay was used up, indicating a time out condition. Program steps
for this function would be as follows.

Main Program:

Set up device for I/O.
Enable interrupts.
Issue $DS WAITxx macro call.
Test interrupt-occurred flag.
If flag not set
THEN

issue $DS ERRxxxx macro
ELSE

continue.

3.14.5 Condition Handling

Interrupt Service Routine:

Process interrupt.
Set interrupt-occurred flag.
Issue $DS CANWAIT macro.
Return from interrupt.

Note.: Fo r add i tional informa tion regard ing cond i tion handl ing ,
refer to the VAX Architecture Handbook and the VAX/VMS Software
Handbook.

The VDS contains condition handling routines that will handle all
exception conditions. It is therefore unnecessary under most
circumstances for the diagnostic program to provide exception
handling facilities. However, the VDS provides the ability for
the diagnostic program to field exceptions when necessary.

3-61

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The VDS searches for condition handlers in exactly the same manner
as VMS. As detailed in VMS documentation, handlers are searched
for in the following order:

1. If a primary handler exists, it is used.
2. If secondary handler exists, use it.
3. Search call frames for address of handler.
4. Use" last chance" handler.

If a handler is found it can

• Handle the condition and
(SS$_CONTINUE) return, or

indicate a "success"

• Not handle the condition and indicate a "resignal"
(SS$ RESIGNAL) return, which causes the handler dispatcher
to continue to search for a handler.

The VDS has a secondary condition handler, but it only services
BPT and T-bit exceptions associated the the VDS's breakpoint and
single-step facilities (see the VAX Diagnostic Supervisor User's
Guide) •

The main condition handling facility of the VDS is a "last chance"
handler that is capable of dealing with all exception conditions
(and will abort execution of the diagnostic program by causing the
program's cleanup code to be executed).

In standalone mode, the VDS searches for a condition handler and
if none is found, a call to the last chance handler is forced.
This call to the last chance handler cannot be disabled by a
diagnostic program.

Additionally, the address of the VDS last chance handler is placed
on the highest call frame of the VDS. This means that in user
mode, the VDS last chance handler will take precedence over the
VMS last chance handler. It also means that, as in standalone
mode, a diagnostic program cannot disable the VDS handler.

If a diagnostic program declares a handler in one of its call
frames, that handler will take precedence over the VDS's last
chance handler. In both user mode and standalone mode, a
condition handler may be specified by loading the handler's
address into the first address of the call frame (the address
pointed to by the FP). In MACRO-32, this would be accomplished
with the instruction

MOVAB CONDHNDLR, (FP)

To declare a condition handler in BLISS-32, refer to the BLISS
Language Guide.

3-62

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

In user mode, diagnostic programs may also declare condition
handlers by using the $SETEXP system service of VMS. Refer to the
VAX/VMS System Services Reference Manual.

When a condition handler is given control, it is passed two
arguments. The first argument is the address of a "signal array"
and the second is the address of a "mechanism array." These
arguments are passed in the manner indicated by Figure 3-13.

2 _AP

ADDRESS OF SIGNAL ARRAY

ADDRESS OF MECHANISM ARRAY

TK-l0528

Figure 3-13 Argument List Passed to a Condition Handler

The signal array indicates the type of condition. Its format is
shown in Figure 3-14. In the figure, N is the total number of
longwords (excluding the one containing N) making up the array.
Condition names are defined by the $SSDEF macro of LIB.MLB listed
in the VAX/VMS System Services Reference Manual, or the $DS DSDEF
VDS macro. If the "condition name" parameter is DS$ UNEXPINT,
then the next argument is the SCB vector offset. -

N

CONDITION NAME

o TO 2 EXCEPTION-SPECIFIC
PARAMETERS

EXCEPTION PC

EXCEPTION PSL

Figure 3-14 Format of Signal Array

The mechanism array is illustrated in Figure 3-15.

3-63

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

(

4

HANDLER ESTABLISHER FRAME FP

FRAME DEPTH

RD

Rl

TK-10630

Figure 3-15 Format of Mechanism Array

A condition handler can either field the condition or return with
a "resignal" status to indicate that another handler should be
called. If the handler fields the condition, it must place the
status code SS$ CONTINUE in R0 before returning. If the handler
does not field the condition, the SS$ RESIGNAL status code must be
placed in R0. Condition handlers- end with an RET MACRO-32
instruction. A condition handler may use the $UNWIND macro to
"unwind" the call frame (alter program flow) if it cannot handle
the condition~ Unwinding is detailed in the discussion of the
$UNWIND macro in Chapter 4. (

The condition handler will receive control when ANY exception
condition occurs. The handler must determine the type of
exception (by examining the signal array) and decide whether or
not to handle the particular condition. It is quite common to
write a condition handler that will only process one or two types
of exception conditions, and resignal all others so that another
handler (such as the VDS last chance handler) can process them.

As an alternate method in standalone mode, the programmer may use
the VDS macro $SETVEC to store the address of a condition handler
in the system control block (SCB). This allows the diagnostic
program to field specific exception conditions, instead of all of
them. By using this method, the VDS handler dispatcher is
bypassed and control passes directly to the handler pointed to by
the exception vector. This handler MUST process the exception and
cannot "resignal."

If the diagnostic program contains a condition handler, the
$DS PRINTSIG macro can by used to automatically format and print
the-contents of the signal array.

3-64

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.14.6 Handling Contr01-Cs

Normally when the user types control-C, program control passes to
a VDS routine which aborts the current VDS function (such as
executing a diagnostic program or building a p-table). It is
possible to specify an alternate control-C handling mechanism
within the diagnostic program by using the $DS CNTRLC macro. The
diagnostic program can use this macro to specTfy the address of a
routine that is to be executed when a control-C is typed.

If the macro is used and a control-C is typed, the VDS
program control to the specified routine. This
perform any processing needed and then

will pass
routine may

a. Pass a return status code of zero (in R0), which will
cause the VDS to then execute its own control-C handler.
This technique is useful in cases where it is desirable
for the diagnostic program to perform some processing of
its own whenever a control-C is typed, before the VDS
takes over.

b. Pass a nonzero status code (in R0), to indicate that the
VDS should not execute its own control-C handler. In such
a case, the VDS will continue performing the function it
was performing before the control-C was typed.

c. Not return at all.

A possible use of options (b) and (c) would be the case where a
special command language has been defined by the programmer (see
Section 3.12.2.2, Prompting the User). In this case it might be
desirable for the user to be brought back to the special command
line interpreter when a control-C is typed. One of the special
commands might have the same function as the VDS CONTINUE command
(such as the RESUME used above), in which case option (b) would be
used. If the RESUME command was not typed, the current function
would be aborted and a new command would be fetched from the user,
so option (c) would be selected.

The $DS CNTRLC macro also allows the programmer to disable
control-C servicing altogether. This makes it possible to ensure
that certain portions of code will be executed without
interruption, if necessary. Control-C servicing can be disabled
temporarily while this uninterruptable code is executing, and then
reenabled. If a control-C is typed while control-C servicing is
disabled, the control-C is not lost. It will be serviced when the
servicing is reenabled. It is important to note that CONTROL-C
SERVICING MUST NOT BE DISABLED FOR LONGER THAN THREE SECONDS AT
ONE TIME. Some run-time environments (APT in particular) cannot
tolerate a longer control-C response delay, nor do users
appreciate long periods of time when control-Cs are not serviced.

3-65

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Because dispatching to the control-C handler is performed by the
VDS, a control-C will not be acknowledged while the diagnostic
program is executing • Whenever the diagnostic program calls a
system service routine, the service routine will check to see if a
control-C has been typed. But suppose that by some chance the
program contains a large segment of code that does not call any
system service routines for a long period of tim~. If a control-C
is typed, it will not be acknowledged while this code is
executing. In order to prevent this problem, any large section of
code (or small section that loops for a long period of time) that
does not call any system services must occasionally issue the
$DS BREAK macro. This macro will call a service that simply
checks for a control-C and, if none has been received, just
returns. A $DS BREAK MACRO OR SOME OTHER SYSTEM SERVICE ~UST BE
ISSUED AT LEAST EVERY THREE SECONDS.

3.15 FILE MANAGEMENT

3.15.1 Introduction

It may occasionally be necessary for a diagnostic program to make
reference to a separate, subsidiary file. In such a case, two
fadilities are available, namely:

• The $DS LOAD system service
• Record ~anagement services (RMS)

The $DS_LOAD system service is useful for loading an entire file
into a buffer area of memory.

If more involved manipulations of files is desired, such as
referencing specific records or blocks, then the record management
services should be used.

Level 2R (user mode) programs may use VAX-Il
services (RMS) to manipulate files. The
services is available to the diagnostic
information for VAX-ll RMS is available
Management Services Reference Manual.

record management
entire range of RMS

program. Detailed
in the VAX-ll Record

Level 3 (standalone mode) programs are provided with a subset of
the VAX-ll RMS functionality. This functionality resides within
the VDS. It emulates VAX-ll RMS and is referred to in this manual
as VDS RMS. For those functions supported by VDS RMS, the program
interface is exactly the same as that of VAX-ll RMS. That is,
both level 2R and level 3 programs will use the same macros. In
user mode the service calls are fielded by VMS, while in
standalone mode they are handled by the VDS.

3-66

(

(

(

(,

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Table 3-2 lists the limitations of VDS RMS, as compared to VAX-II
RMS.

Table 3-2 Comparison of VAX-II RMS and VDS RMS

VAX-II RMS VDS RMS

• Provides read and write
access.

• Supports sequential and
relative files.

• Supports sequential,
random, and random-by-RFA
file access.

• Terminals can be accessed.

• Console device cannot be
referenced.

• FAB, RAB, XAB, and NAM
control structures are
defined.

• Provides read access only.

• Supports sequential files only.

• Supports sequential and random
by-RFA file access.

• Terminals cannot be accessed.

• Console device can be referenced.
(RT-II f6rmat only.)

• Only FAB, RAB, and FHC fields of
XAB are defined.

Also, many of the option bits defined in the VAX-II RMS control
structures are not defined in VDS RMS.

When using RMS in a level 2R program, use the VAX-II Record
Management Services Reference Manual as a reference guide. When
using RMS in a level 3 program, use this manual as the main
reference guide. However, since this manual is not as detailed as
the VAX-II RMS reference manual, it may be necessary to refer to
that manual also.

Whether the diagnostic program is level 3 or level 2R, the RMS
macros are defined in LIB.MLB for MACRO-32 and LIB.L32 for
BLISS-32. Note that these are VMS libraries and thus contain the
VAX-II RMS macro definitions. Therefore, inclusion of unsupported
RMS functions in a level 3 program will not be detected until the
program is actually executed.

3-67

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

In order for a diagnostic program to use RMS services on a file,
the device on which the file resides must have been previously
attached. (This is true for both level 2R and level 3 programs.)
If the device is the one from which the VDS was loaded, the VDS
wi 11 automa tically issue a $DS ATTACH mac ro for the dev ice. If
the device is not the VDS load device then the diagnostic program
can issue an $DS ATTACH macro, or the program can depend on the
user to issue an-ATTACH command.

3.15.2 VDS RMS Overview

VDS RMS provides facilities for easily gaining access to and
reading sequential files on a disk or magnetic tape device,
including the system's console device. The records within a file
may be accessed sequentially, or they may be accessed randomly by
a record's file address (RFA, discussed later).

VDS RMS consists of a set of routines that will service requests
for reading files, along with a group of control structures that
are used to pass information about the file back and forth between
the diagnostic program and the VDS. VDS RMS supports three
control structures: the file access block (FAB), an extended
attribute block (XAB), and the record access block (RAB). When a
program requests a file service, it usually must load fields
within these control structures. The control structures contain
information such as the name and type of file to be read along
with codes indicating how the file is to be referenced.

3.15.3 The FAB, RAB, And XAB

The file access block (FAB) is a user control block that describes
a particular file. An FAB is allocated by using the $FAB macro.
One FAB must be defined for each file that is to be referenced.

The record access block (RAB) contains information about the
file's records. There must be an RAB associated with each FAB.
An RAB is allocated by using the $RAB macro.

An extended attribute block (XAB) is an optional control block
that, if used, contains file attributes beyond those contained in
a file's FAB. While VAX-II RMS supports several different types
of XABs, VDS RMS supports only the "file header characteristics
XAB" (FHC XAB). The FHC XAB is allocated with the $XABFHC macro.

3-68

(

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.15.4 Accessing The VDS RMS Control Structures

The various fields of the FAS, RAS, and XAS can be initialized at
program assembly time by using the predefined keywords that exist
for each field. The fields can also be loaded at run time. The
fields defined for each control block are named and described in
the descriptions of the $FAS, $RAS, and $XASFHC macros in Chapter
4.

VDS RMS control structure fields are defined by a mnemonic of the
general format

structure$datatype~name

where "structure" is FAS, RAS, or XAS; "datatype" is a data type
specifier (see Table 5-1); and name is the field name. Examples
are FAS$L FNA and RAS$V SIO.

To access a structure field at run time, use the field name as an
offset from the beginning of the structure. For example, suppose
an FAS has been defined with the $FAS macro and has been labeled
FAB SLaCK. Accessing fields of the FAS in a MACRO-32 program
would be done with instuctions such as

MOVAS FILE NAME, FAS SLOCK+FAS$L FNA ;Load filename addr.
or MOVB R0,FAS SLOCK+FAS$S FNS - ;Load filename size. -

In BLISS-32, the same fields would be referenced with the
statements

FAS SLaCK [FAS$L FNA] = FILE_NAME; !Load filename addr. -
FAB BLOCK [FAS$S FNS] = • FILE NAME SIZE; !Load filename si ze. - -
For some fields, offsets have been defined. Mnemonics are defined
for both the bit offsets and the mask values of these offsets.
For example, the mnemonics FAS$V SIO and FAS$M SIO are defined for
the bit offset and the mask-value of SIO parameter in the FAC
field of the FAS. Referencing this bit at run time in MACRO-32
could be accomplished with the following (unrelated) instructions.

SISB
or SSC

#FAS$M SIO,FAS SLOCK+FAS$S FAC
#FAS$V=SIO,FAS=SLOCK+FAS$S=FAC

Similar SLISS-32 statements would be

;Set SIO in FAS's FAC
iSranch if SIO clear.

FAS SLaCK [FAS$S FAC] = .FAS SLaCK [FAS$S FAC] OR FAS$M SIO;
IF ~FAS SLaCK [FAS$S_FAC] <FAS$V_SIO,l> THEN ••• ;

3-69

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

When a control block is declared (with the $FAB, $RAB, or $XABFHC
macro), relevant fields may be initialized at compile time by
using keyword representations of the fields·. An example (in
MACRO-32) is

$FAB FAC = <BIO,GET),
FOP = RWO,-
XAB = FHCXAB

Similarly, fields can be loaded at run time with the $FAB STORE,
$RAB_STORE, and $XABFHC STORE macros, as in this BLISS-32 example.

$RAB STORE (BKT = 10,
FAB = FAB BLOCK,
RAC = SEQ,
FNA = .FILE NAME [ADDRESS],
FNS = • FILE-NAME [SIZE]);

Using the STORE macros is a run-time alternate to directly
referencing the fields, described above.

3.15.5 Reading Files

Two methods are available for reading files. These methods are
"record processing" and "block processing." When a file is being (
referenced, the programmer may use whichever method is more
appropriate to the file and operations being performed. It is
also possible to combine the two methods.

3.15.6 Record Processing

When using record processing, reading a file involves accessing
records within the file. The number, size, and contents of a
file's records are immaterial to RMS and are determined by
whatever utility created the file.

Two access methods are available for referencing records. The
record access method is specified by loading the record access
(RAC) field in the RAB. When specifying the RAC field, one of the
following values may be chosen.

• SEQ - sequential access

Records retrieved through sequential access are returned
in the order in which they were stored. Once all the
records have been retrieved, any further attempt to
sequentially access records in the file will cause an
end-of-file condition to be returned.

3-70

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

• RFA - record's file address access

Whenever a record is read from a file, an internal
representation of the record's location within the file is
returned in the RFA field of the RAB. VDS RMS can save
the value contained in the RFA field and use it to again
retrieve that record by using a random-by-RFA request.
(Note: In VDS RMS, random-by-RFA access is supported for
both disks and magnetic tapes.)

Before the records of a file can be read, a "record stream" to the
file must be established. A record stream is the association of
an RAB to an FAB. After the file has been opened with the $OPEN
macro, the record stream is established by placing the address of
the FAB into the FAB field of the RAB. Then a $CONNECT macro is
issued.

Once the record stream has been established, records in the file
can be read using the $GET macro. The first $GET will cause the
file's first record to be read, and each successive $GET will
fetch the next record, if the RAB's RAC field is set to SEQ. If
the RAC field is set to RFA, then each $GET will retrieve the
record whose record file address (RFA) is stored in the RAB's RFA
field.

To break the record stream after record
completed, a $DISCONNECT macro is issued.
is used to terminate processing of the file.

processing has been
Then the $CLOSE macro

Example 3-8 illustrates record processing of a file.

3-71

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

;
This routine reads a seauential file into a buffer.

;

IIATA, WRT, NOEXE .PSECT
BUFFER: • BlKB
BlJFF_DESC:

.lONG

.L.ONG

1000 Allocate a 1000-b~te buffer
; Descriptor for buffer

o ; len.th will be set at run tim~
BUFFER Address of buffer

MY_FAll: $FAB
I-tY ... RAB: $.RAB

FNM = <INFIlE:> File access block
FAB=MY_FAB,- Record access block
UBF=BUFFER,-
USZ=100

.PSECT CODE,NOWRT,EXE

.ENTRY SIMPLE, ~M<>

$OPEN FAB=MY_FAB
BL.BC RO,EXIT
$CONNECT RAB=MY_RAB
BL.BC RO,EXIT

GET .. RECORD:
$GET
BlBC
ADDl

RAB=MY_RAB
1;:0, CHECK_DONE
MY _RAB+$lLRSZ,
MY_RAB+RAB$l_BUF
GET_RECORD EIRB

CHECICDONE:

ERRORS:

CMPL.
BNEQ
$ClOSE
RET

RO,tRMS$_EOF
ERRORS
FAB=MY_FAB

(Error handler.>

Open the file.
Exit on error.

; Connect for record operations.
; Exit on error.

Get a record
Branch on error.

; Advance buffer pointer

Get another record

Done?
; No -- error.

Close the file.
; RetlJrn.

Example 3-8 Record Processing with RMS

3-72

(

(

(

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.15.7 Block Processing

Block processing makes it possible to directly read the blocks of
a file, ignoring any sort of record structure that might exist for
the file.

To indicate that block I/O will be performed on a file, the BIO
bit in the FAC field of the FAB must be set before issuing the
$OPEN macro. To perform block processing, the file must first be
opened with the $OPEN macro. Then an RAB must be associated with
the file's FAB by using the $CONNECT macro. Blocks can then be
read from the file using the $READ macro. The first $READ will
cause the first block of the file to be read. Each subsequent
$READ will fetch the next sequential block of the file.

When file processing has been completed, issue the $DISCONNECT
macro followed by the $CLOSE macro.

3.15.8 Mixing Block Processing And Record Processing

If the BRO bit in the FAC field of the FAB is set, then both block
processing and record processing may be performed on the file.
The BRO bit cannot be set after the $OPEN macro has been issued.

It is possible to initially allow both block processing and record
processing, then to at some later time disable record processing
and only allow block processing. This is accomplished by setting
the BIO bit in the ROP field of the RAB (NOT the BIO bit in the
FAC field of the FAB!). Once this bit is set, no further record
processing will be·allowed.

Mixing processing modes requires some caution. For example,
switching from block reads to record reads on a disk, RMS's
record pointer and its next block pointer are both undefined,
the first $GET after a $READ and the first $READ after a $GET
both use random-by-RFA access. For magnetic tape devices,
pointers will indicate the next block of the tape.

3-73

when
next

so
must

the

(

(

c

4.1 INTRODUCTION

CHAPTER 4
VDS MACROS

This chapter describes in detail the format and function of each
macro used in VDS diagnostic programs. The macros are grouped in
four sections. Within each section, macros are listed alpha
betically by the macro name, ignoring the name's prefix ($DS_ or
$) •

The "program structure macros" are used
sections, tables, and data structures
program.

The "program control macros" are used to
execution path and provide facilities
branch-on-error.

to define the various
making up a diagnostic

affect the program's
such as looping and

The "system service macros" are used to call system services
provided by the VDS.

The "symbol definition macros" are used to define global symbols
used by the other macros, the VDS, and the di~gnostic program.
For programs written in MACRO-32, these macros must be issued
before any of the symbols defined by the macros are referenced.
In BLISS-32 programs, however, the symbols are not defined within
symbol definition macros and thus may be referenced without first
issuing symbol definition macros. For BLISS-32 programs, the
documentation on symbol definition macros provided in this guide
can be used simply as a list of available symbols.

4.2 CODING SYSTEM SERVICE MACRO CALLS

The VDS system services are invoked by issuing a macro call for
the desired service and, if required, including an argument list
to provide values for the macro's parameters. Before any system
service macros can be called, the $DS DSSDEF macro must be
declared. This macro defines the system service entry points.

4-1

VDS MACROS

4.2.1 Fields Of The Macro Name

Macro names consist of three fields. These fields are:

• A prefix.

This prefix may be '$DS ' or '$'. Macro names having the
'$DS' prefix are defined exclusively for use with the VAX
Diagnostic Supervisor. Macro names having the '$' prefix
are defined for use not only with the VAX Diagnostic
Supervisor, but also for any program running under the
VAX/VMS operating system.

Diagnostic programmers should not assume that a macro
name's prefix implies any restriction on the run~time
environment in which the macro may be used. For instance,
do NOT assume that macros with the '$' prefix may only be
used for level 2R programs. Any run-time environment
restrictions that may exist for a particular macro will be
spelled out in the description of the macro.

Because of the different prefixes, macro names have been
alphabetized in this chapter by ignoring the prefix. Thus,
for example, $BINTIM will be located after $DS ABORT, and
$DS SETMAP will follow $READEF. -

• A name.

This name identifies the system service being invoked by
the macro call.

• A suffix.

For MACRO-32 programs this suffix may be '_Sf, '_G', '_L',
or' DEF'.

The'S' suffix indicates that the system service routine
is to be called with a CALLS MACRO-32 instruction. If this
suffix is used, the macro call must include an argument
list to provide values for required parameters.
(Specifying argument lists is detailed below.) Following is
an example of the'S' form of the macro call:

$DS ERRHARD S -
UNIT = LOG UNIT, -
MSGADR = HARD12 MSG, -
PRLINK = HARD MSGRTN, -
PI = SAVED STATUS

4-2

(

(

(

(

VDS MACROS

If the' G' suffix is used, the system service routine will
be called with a CALLG MACRO-32 instruction. In this case,
only one argument is specified with the macro call; that
argument is the address of a list of arguments to the
system service. Following is an example of the 'G' form
of the macro call:

$DS ERRHARD G HARD ARGLIST

The ' L' suffix will not call the system service. It will
generate an argument list. This argument list may later be
passed to the system service when the service is called
with a 'G' suffix, if the li~t's address is used as the
macro callTs argument. Following is an example of the' L'
form of the macro call:

HARD ARGLIST:
$"DS ERRHARD L UNIT = LOG UNIT, -

MSGADR = HARDI2_MSG, -
PRLINK = HARD MSGRTN, -
PI = SAVED STATUS

- -

The ' DEF' suffix simply generates symbolic names for the
service's parameters. These symbolic names can be used to
fill in fields of an argument list that was defined with a
, L' macro. Names will consist of the service name, a "$",
an ' " and the parameter name. The symbolic names should
be used as offsets from the beginning of the argument list.
Following is an example of the 'DEF' form of the macro
call:

$DS ERRHARD DEF

MOVAL HARD13_MSG, HARD_ARGLIST+ERRHARD$_MSGADR

For BLISS-32 programs, the suffix field of the macro call
is always left blank. System services are always called
with a CALLS MACRO-32 instruction, and the macro call must
include an argument list. (Specifying argument lists in
BLISS-32 is decribed in the next section.) Following is an
example of invoking a system service in BLISS-32.

$DS ERRHARD
(UNIT = .LOG UNIT,

MSGADR = HARD12 MSG,
PRLINK = HARD MSGRTN,
PI = .SAVED_STATUS);

4-3

VDS MACROS

4.2.2 Macro Arguments

Most system services possess a set of input parameters for which
values must be provided when a service is invoked. Values are
associated with input parameters via arguments to the service's
macro call.

For MACRO-32 programs, macro arguments may be specified in either
of two ways:

1. Arguments may be specified as a list with each argument
except the last followed by a comma. The position of each
argument is significant and thus arguments must be listed
in the order specified in the macro's description. If a
particular argument is optional and is to be omitted, a
comma must be included to signify its omission. An example
of a macro call using positional specification of arguments
is:

$DS GETBUF S #3", #1

(

2. Arguments may be specified by "keywords." Keywords are
symbolic names that are assigned to input parameters. A
keyword is defined for every parameter of every macro, and
that keyword is the name used to identify the parameter in (
the description of- the macro's MACRO-32 format. For
example, the $DS GETBUF macro's MACRO-32 format is defined
as:

$DS GETBUF x pagcnt, [retadr], [phyadr], [region]

(brackets indicate optional arguments). Specifying this
macro's arguments with keywords would appear as:

$DS_GETBUF_S PAGCNT=i3, REGION=il

Notice that when using keywords, it is not necessary to
include commas for unspecified arguments.

For BLISS-32 programs, macro arguments may also be specified
positionally or by keyword, but the choice is NOT up to the
programmer. For some macros, arguments must be specified with
keywords. For others, arguments must be specified positionally.
If the description of the macro's BLISS-32 format specifies
keywords (capital letters followed by an equal sign), the keyword
must be used. If the description does not indicate keywords, then
positional specification is required.

4-4

(
'I

(

VDS MACROS

4.2.3 Return Status Codes

All system services return an error status code in R0. This
status code should always be examined immediately after the
diagnostic program regains program control from the service.

All status codes have symbolic names associated with them. Each
of these names will have one of three possible prefixes. These
prefixes are

•

•

SS$ - Most status codes
MACRO-32, these codes are

begin with this prefix.
defined by the $SSDEF macro.

For

RMS$ - Status codes associated with
SerVIces (RMS) begin with this prefix.
codes are defined by the $RMSDEF macro.

Record Management
For MACRO-32, these

• DS$ - A few status codes begin with this prefix. Such
codes are defined for MACRO-32 by the $DS DSDEF macro.

For status codes whose symbolic names begin with "SS$_" or
"RMS$ ", the low-order three bits indicate the severity of the
error. Severity codes are as follows:

Val ue (Binary)

000
001
010
011
100
101-111,

Meaning

Warning
Success
Error
Informational
Severe or fatal error
Reserved

Symbol ic Name

STS$K WARNING
STS$K-SUCCESS
STS$K-ERROR
STS$K INFO
STS$K-SEVERR

Symbolic names are defined by VMS with the $STSDEF macro.

SS$ NORMAL vs. DS$ NORMAL - Most services return the "normal"
status to indicate that the service was successfully completed.
For some services, the correct prefix on the "normal" return code
is "SS$ "; for other services, "DS$" is the proper prefix.
These two status codes are NOT interchangable. Care must be taken
that a program's code uses the proper "normal" 'status code for the
particular service being invoked. Each service's macro
description will indicate which code is correct.

For all status codes that indicate an error condition, bit 0 of R0
will be cleared. For.all other status codes, bit 0 of R0 will be
set. Thus for MACRO-32 programs it is possible to determine that
an error has occurred by simply using the BLBS or BLBC
instruction. However, this method is NOT recommended. Program
readablility is improved if status codes are always tested by
using symbolic names, as in the example:

4-5

VDS MACROS

$QIO G
CMPL-

QIO ARGLIST
R0,-.SS$ NORMAL
QIO_ERROR

iEnqueue I/O request.
iIf success, then continue.

BNEQ iElse branch to the error handler.
iContinue

4.3 CONVENTIONS USED IN THIS CHAPTER

In the macro descriptions that follow, certain conventions have
been adhered to. These conventions are as follows:

1. For macros that accept arguments, those arguments that are
optional have been indicated by enclosing the parameter
name in brackets ([••• l).

2. Macro parameters are listed in positional order. That is,
if arguments are to be listed positionally, they must be
listed in the order indicated in the macro format.

3. For MACRO-32, the parameter name indicates the keyword that
must be used if arguments are to be specified with
keywords.

4. For BLISS-32, keywords are indicated in capital
If a keyword is not supplied in the macro format,
macro will not accept keyword arguments. In such
arguments must be specified positionally.

letters.
then the

a case

5. The description of each macro parameter will indicate
whether the argument supplied for that parameter must be a
"value," an "address," or a "string."

• Values as arguments - If a value is required, the
argument will be interpreted as a value. Thus if a
literal is specified for the argument, that literal
will be interpreted as being the argument. If an
address is specified, the CONTENTS of that address will
be interpreted as being the argument.

• Addresses as arguments - If an address is required, the
argument will be interpreted as an address. No
translation of the argument occurs.

(

(

• Strings as arguments - If a string is required, the
argument will be interpreted as a literal string. For
MACRO-32, strings must be enclosed in angle brackets
« ••• ». For BLISS-32, strings must be enclosed in
single quotation marks (1 ••• 1), and if the string
itself is to contain the (I) character it must be
included twice, as in IDebbiells Program l • (

4-6

(

VDS MACROS

6. Some services require that the address of a "quadword
descriptor" or "character string descriptor" be passed.
For our purposes, these terms are interchangeable and refer
to a quadword that describes a string in the manner
illustrated by Figure 4-1.

31 1615 o

I LENGTH OF STRING

ADDRESS OF STRING

TK-10531

Figure 4-1 Quadword String Descriptor

String descriptors can be generated by using the .ASCID
directive in MACRO-32, the %ASCID directive in BLISS-32, or
the $DS STRING macro.

4-7

VDS MACROS - PROGRAM STRUCTURE MACROS

4.4 PROGRAM STRUCTURE MACROS

$DEF

The $DEF macro is used to define a field in a data structure.
It is defined in the VMS system library LIB.MLB. This macro
can be used to define p-table desciptors, as discussed in
Section 3.2.2.

MACRO-32 Format:

$DEF sym, alloc, siz

BLISS-32 Format:

Not supported for BLISS-32.

sym

Symbolic name to be associated with the field.

alloc

siz

Allocation unit. Use one of the MACRO-32 block storage
directives for this parameter. MACRO-32 block storage
directives are of the form I.BLKx," such as .BLKW or .BLKQ.

Size of the field. This indicates the number of allocation
units to assign.

Example:

SDEF FIELD1, .BLKL, 1 ;Field named FIELDl is 1 lon~word.

4-8

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DEFINI - $ DEFEND

macros are used to define data
within the data structure are defined
These macros are defined in the VMS
and can be used to define p-table

The $DEFINI and $OEFEND
structures. The fields
by using the $DEF macro.
system library LIB.MLB
desciptors, as discussed in Section 3.2.2.

MACRO-32 Format:

$DEFINI struc, gbl, dot

(data structure field definitions)

$DEFEND struc, gbl

BLISS-32 Format:

Not supported for BLISS-32.

struc

gbl

dot

Symbolic name that was assigned to the structure by the $DEFINI
mac ro.

GLOBAL or LOCAL. Indicates whether the data structure's
symbolic name ("struc") will be defined globally or locally.

Address of the first field within the data structure. The
symbol defined by the first $DEF macro will be assigned to this
value. Subsequent fields are assigned to the next sequential
memory addresses. The argument can be numeric (for example,
512), or symbolic (for example, BLOCK ADDR). If symbolic, the
symbol must be defined before the $DEFINI macro call.

4-9

Example:

$llEFINI
$DEF
$DEF
$DEFEND

VDS MACROS - PROGRAM STRUCTURE MACROS

TABlE1, GLOBAL, OFFSET
FIELD1, .BLKl, 2
fIELD2, .BlKB, 1
TI~BLE, GLOBAL

In this .example, a global data structure named "TABLEl" has
been defined to contain two fields, called FIELDI and FIELD2.
FIELDI starts at location TABLEl+OFFSET and consists of 2
longwords. FIELD2 immediately follows FIELDl and is one byte
long.

4-10

(

(

(
,

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_$ADD

The $DS
contents
field of
addition
field.

$ADD
of

the
is

p-table descriptor macro is used to add the
the "val ue register" (see Section 3.2.3.3) into a

p-table being built. The field is fetched, the
performed, and the result is placed back into the

Macro-32 Format:

$DS_$ADD (offset, pos, size)

Bliss-32 Format:

$DS $ADD (OFFSET=offset, POS=pos, SIZ=size);

offset

pos

The byte offset into the p-table of the field to which the
contents of the value register are to be added.

Bit posi tionof the field, relative to
byte specified by "offset." If the
boundary, this value will be 0.

the beginning of the
field starts on a byte

size

Number of bits making up the field. The size cannot be larger
than 32.

Notes:

1. Bits added (or carried) beyond the field width are lost.

2. The contents of the value register are not changed.

3. Code generated by macro (shown in Macro-32;·
. equivalent) :

Bliss-32 is

.BYTE

.WORD

.BYTE

.BYTE

"X8A
offset
pos
size

; Beginning of ADD directive
; Word data structure offset
; Bit position in word
; Bit field size

4-11

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

Macro-32 Examples:

OFFSET=HP$A_DEVICE, POS=O, SIZE=32

<"'X40>, 0, 32

B1iss-32 Examples:

SDS_SADD (OFFSET=XFIELDEXPAND(HP$A_DEVICE,O),
POS=XFIELDEXPAND(HP$A_DEVICE,l),
SIZE=XFIELDEXPANDCHPSA_DEVICE,2»;

SDS_SADD (OFFSET=XX'40', POS=O, SIZ=32);

4-12

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

The $DS_$CASE p-table descriptor macro is used to test the
current contents of the "value register" (see Section 3.2.3.3)
and then load a new value into the register, depending on the
old contents. The $DS $CASE macro is used to specify pairs of
values. The current value register contents are compared with
the first value of each pair until a match is found; the
second value of the pair is then loaded into the value
register. There may be any number of pairs in the case list.
If no pair matches the value register, then the value register
i s no t a I te red.

Macro-32 Format:

$DS $CASE «case_pair>, [<case_pair>, •••]>

Bliss-32 Format:

$DS $CASE ((case_pair), [(case_pair), •••]);

A pair of values, separated by a comma.
stored in a longword.

Each value will be

Notes:

1. Code generated by macro (shown in Macro-32;
equivalent) :

.BYTE

.BYTE
• LONG

• LONG

.... X8C
n
matchl,

match-n,

;
;

valuel ;

;

value-n;

4-13

Beginning of CASE
Number of case pairs
First case pair

Other case pairs

Last (nth) case pair

Bliss-32 is

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

Macro-32 Example:

$DS_$CASE < -

81iss-32 Example:

fDS_fCASE (

<1,2>, -
<2,3), -
<3,4»

<1,2h
(2,3),
(3,4»;

fDS_$CASE «1,XX'FFFFF'),(2,XX'FFFEFFFF'»;

4-14

(

(

(

(

VOS MACROS - PROGRAM STRUCTURE MACROS

$DS_$COMPLEMENT

This p-tab1e descriptor macro complements the current contents
of the value register.

Macro-32 Format:

$OS $C OM PLEM ENT

B1iss-32 Format:

$OS_$COMPLEMENTi

Notes:

1. Code generated by macro (shown in Macro-32i
equivalent) :

.BYTE AX89 i Complement value register

4-15

B1iss-32 is

VOS MACROS - PROGRAM STRUCTURE MACROS

$DS_$DECIMAL

This p-table descriptor macro reads a value from the ATTACH
command line. If no more parameters are available on the
command line, or if the next parameter is not a decimal value,
it will prompt the operator with the prompt text value. The
value that is read is stored in the "value register" (see
Section 3.2.3.3) for use by a $OS $COMPLEMENT, $OS $STORE, or
$OS $CASE statement. - -

Macro-32 Format:

$DS_$DECIMAL <prompt), low, high

Bliss-32 Format:

$DS_$DECIMAL {PROMPT='prompt', LOW=low, HIGH=high)i

prompt

low

Character string that is to
This prompt will be used
contain the required value.

be printed as a prompt to the user.
if the ATTACH command line does not

The low limit for the value. If the value given is lower than
this, an error message followed by the prompt message will be
displayed. The default radix for this value is decimal.

high

The high limit for the value. If the value given is higher
than this, an error message followed by the prompt message will
be displayed. The default radix for this value is decimal.

Notes:

1. Code generated by macro (shown in Macro-32i
equivalent) :

Bliss-32 is

.BYTE

.ASCIC
• LONG
• LONG

.... X82
\prompt\
low
high

i Beginning of DECIMAL prompt
i Prompt string
i Low 1 imi t
i High limit

4-16

(

[
\

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

Macro-32 Example:

$DS_$DECIMAL TR, 1, 1.5

$DS_$DECIMAL PROMPT=<NOMBER OF ARRAY CARDS>, LOW=O, HIGH=15

Bliss-32 Example:

$DS_$DECIMAL (PROMPT='TR', LOW=1, HIGH=15);

$DS_$DECIMAL (PROHPT='NUMBER OF ARRAY CARDS', LOW=O, HIGH=15);

4-17

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_$END

The $DS $END macro is used to terminate a p-table descriptor.

Macro-32 Format:

$DS $END

Bliss-32 Format:

Notes:

1. Code generated by macro (shown in Macro-32;
equi val en t) :

.BYTE AX81; End of p-table descriptor

4-18

Bliss-32 is

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_$FETCH

The $DS $FETCH macro is used in p-table descriptors. It will
extract the contents of a ·field within the p-table, and store
the contents, right-justified, in the "value regist~r" (see
Section 3.2.3.3). It is possible to reference a
device-dependent field that was filled with a previous
$DS $STORE macro, or device-independent field that was filled
by the VDS. The macro can also be used to facilitate temporary
storage, by storing a value in the p-table while the value
register is needed for something else, then restoring the old
value.

Macro-32 Format:

$DS_$FETCH offset, pos, size

Bliss-32 Format:

$DS $FETCH (OFFSET=offset, POS=pos, SIZE=size);

offset

pos

The byte offset into the p-table of the field from which the
contents are to be fetched.

Bit position of the field, relative to
byte specified by "offset." If the
boundary, this value will be 0.

the beginning of the
field starts on a byte

size

Number of bits making up the field. The size cannot be larger
than 32.

Notes:

1. Code generated by macro (shown in Macro-32;
equivalent) :

Bliss-32 is

.BYTE

.WORD

.BYTE

.BYTE

AX87
offset
pos
size

; Beginning of FETCH directive
; Word data structure offset
; Bit position in word
; Bit field size

4-19

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

Macro-32 Example:

$DS_$FETCH OFFSET=HP$A_DVA, POS=O. SIZE=32

Bliss-32 Example:

$DS_$FETCH (OFFSET=~FIELDEXPAND(HP$A_DVA,O),
POS=~FIELDEXPAND(HP$A_DVA,l),
SIZE=~FIELDEXPAND(HP$A_DVA,2»;

$DS_$FETCH (OFFSET=~XI40', POS=O, SIZ=32);

4-20

(
\

(

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

The $DS $HEX p-tab1e descriptor macro is used to read a value
from the ATTACH command line. If no more parameters are
available on the command line, or if the next parameter is not
a hex value, the user will be prompted with the prompt text
value. The value that is read is left in the "value register"
(see Section 3.2.3.3) for use by a $DS $COMPLEMENT, $DS $STORE,
or $DS $CASE statement. - -

Macro-32 Format:

$DS_$HEX <prompt>, low, high

Bliss-32 Format:

$DS $HEX (PROMPT='prompt', LOW=low, HIGH=high);

prompt

low

Character string that is to be printed as a prompt to the user.
This prompt will be used if the ATTACH command line does not
contain the required value.

The low limit for the value. If the value given is lower than
this, an error message followed by the prompt message will be
displayed. For MACRO-32, the default radix for this value is
hexadecimal. For BLISS-32, the default radix is decimal.

high

The high limit for the value. If the value given is higher
than this, an error message followed by the prompt message will
be displayed. For MACRO-32, the default radix for this value
is hexadecimal. For BLISS-32, the default radix is decimal.

4-21

VDS MACROS - PROGRAM STRUCTURE MACROS

Notes:

1. Code generated by macro (shown in Macro-32;
equivalent) :

Bliss-32 is

.BYTE

.ASCIC
"X84
\prompt\
"X<low>
"X<high>

Beginning of HEX prompt
; Prompt string

• LONG ; Low 1 imi t
• LONG High limit

Examples:

Macro-32 Example:

$DS_.HEX <WCS Last address),O,FFFO

Bliss-32 Example:

$DS_$HEX (PROMPT='WCS Last address', LOW=O, HIGH=XX'FFFO')f

4-22

(

(

(
\,

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_$INITIALIZE

The $DS $INITIALIZE p-tabl~ descriptor macro must be the first
macro in every p-table descriptor. It is used to indicate the
device type, the p-table's total size, the maximum number of
units allowed by the hardware, and the name of the device
driver required for a level 2 diagnostic program to reference
the device.

MACRO-32 Format:

$DS $INITIALIZE device, length, max, driver

BLISS-32 Format:

$DS $INITIALIZE (DEVICE=device, LENGTH=length, MAX=max,
DRIVER=driver) ;

device

Character string representing the device type of the hardware
being described by the p-table, such as RK6ll, RK06, RM03,
RH780, and so on. The string specified here will be the string
that the user must type as the first argument to the ATTACH
command, as in "ATTACH RK6ll".

1 eng th

max

The length (in bytes) of the p-table that is to be
The length includes both the device-independent
device-dependent fields. Generally, a symbolic name
value is created with a $DEF macro during memory
specifications, as illustrated in Section 3.2.2.3.

created.
and the

for this
allocation

The maximum number of units that can exist.· This number is
controlled by the hardware design. For example, the number
would be 8 for an RK07, since that is the maximum number of
RK07 drives that can exist on an RK7ll controller.

Some devices, such as
assigned a unit number.

controllers and adapter~, are not
For these cases, "max" shotild be 0.

4-23

VDS MACROS - PROGRAM STRUCTURE MACROS

If this value is greater than 0, and if the $DS $NAME macro is
not used, the device's generic name will be required to contain
a unit number. If, on the other hand, the $DS $NAME macro is
used, then whether or not-a unit number-must be typed is
controlled by the $DS_$NAME statement.

The default value for "max" is 0.

driver

The name of the QIO driver (if any) needed by level 2
diagnostic programs in order to reference the device. The
value must be a string of two characters. The string given,
'dn', determines the driver loaded as follows: the string is
appended to the string 'EVQ' and followed by the file type
'.EXE'. Thus the driver's filename is 'EVQdn.EXE'.

Notes:

1. Code generated by macro (shown in Macro-32;
equivalent) :

\Device\
Length

ASCIC device type
; Length of p-table
; Maximum unit number
; Driver suffix

Bliss-32 is

.ASCIC

.BYTE

.BYTE

.WORD

.BYTE

Max Units
.... A"Driver"
.... X80 ; End of initialization statement

Examples:

Macro-32 Examples:

$DS_$INITIALIZE DEVICE=DHCll, -
LENGTH=HP$K_DHC11_LEN, -
DRIVER=<XH)

$DS_$INITIALIZE DEVICE=DW7S0, -
LENGTH=HP$K_DW7S0_LEN, -
MAX=3

$DS_$INITIALIZE RK611, HP$K_RK611_LEN, 0

4-24

(

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

Bliss-32 Examples:

tDS_tINITIALIZE (DEVICE='DHCll',
LENGTH=HP$K_DHCll_LEN,
DRIVER='XH')f

$Ds_tINITIALIZE (DEVICE='DW780',
LENGTH=HP$K_DW780_LEN,
HAX=3);

tDS_$INITIALIZE (DEVICE='RK611', LENGTH=HP$K_RK611_LEN)f

4-25

VOS MACROS - PROGRAM STRUCTURE MACROS

$DS_$LlTERAL

This p-table descriptor macro is used to load a literal value
into the value register. This value can then be manipulated by
a $DS_$COMPLEMENT, $DS_$STORE, or $OS $GASE statement.

Macro-32 Format:

$DS_$LITERAL lit

Bliss-32 Format:

$DS_$LITERAL (LIT=lit);

Value (longword) to be loaded into the "value register" (see
Section 3.2.3.3).

Notes:

1. Code generated by macro (shown in Macro-32;
equivalent) :

.BYTE
• LONG

Examples:

"X86
lit

Macro-32 Examples:

$DS_$LITERAL LIT=~XFF

$DS_$LITERAL ~0776

Bliss-32 Examples:

$DS_$LITERAL (LIT=XX'FF');

$DS_$LITERAL (LIT=XO'776');

Beginning of LITERAL
; Literal value

4-26

Bliss-32 is

(

(
VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_$LOGICAL

This p-table descriptor macro is used to read a "yes" or "no"
response from an ATTACH command line. The expected response is
one of the strings 'YES' or 'NO'. They may be abbreviated, and
may be upper or lower case. The value register will be loaded
with a 0 if the response was "no," or with a 1 if the response
was "yes."

Macro-32 Format:

$DS_$LOGICAL <prompt_>

Bliss-3a Format:

$DS $LOGlCAL (PROMPT='prompt');

prompt

A character string representing the prompting message to be
displayed by the ATTACH command processing routine of the VDS.

Notes:

1. Code generated by macro (shown in Macro-32;
equivalent) :

Bliss-32 is

• BYTE X8B
.ASClC \prompt\

; Beginning of LOGICAL prompt
; Prompt string

Examples:

Macro-32 Examples:

$DS_$LOGICAL <Load WCS_>

Bliss-32 Examples:

$DS_$LOGICAL (PROMPT='Load WCS');

VDS MACROS - PROGRAM STRUCTURE MACROS

The $DS $NAME p-table descriptor macro is used if device name
validatIon is desired. If used, the macro must immediately
follow the $DS $INITIALIZE macro. When this macro is present,
the device generic name (the third argument to the ATTACH
command) must conform to the naming conventions specified.
(See note 1 for exceptions.)

All device names can be described by the general formula
'ggan'; where 'gg' is a generic device prefix (not necessarily
only two characters), 'a' is a letter representing which
controller or bus adapter the device is on, and In' represents
the device's unit number on that controller or adapter. Both
the 'a' and In' portions are optional, but every device must
have a 'gg' portion. For most devices, 'gg' is fixed by the
physical type of the device; or, it may be determined by its
LINK device (the controller to which it is attached). The
$DS $NAME statement allows specification and enforcement of
these rules.

Macro-32 Format:

$DS_$NAME flags, generic

Bliss-32 Format:

$DS $NAME (FLAGS=flags, GENERIC=generic);

flags

Flag bits that control the format of the device name. Symbolic
names for the flags are defined by the $DS PTDDEF macro. The
flag bits are:

• Bit 0 - PTD$M UNIT - The In' portion of the generic name is
required for- this device. Its maximum value is specified
by the "max" parameter of the $DS_$INITIALIZE macro.

• Bit 1 - PTD$M CONTROLLER - The 'a' portion of the generic
name is required for this device. If the bit
PTD$M INHERIT CON is also set, the 'a' portion must match
the Ta' portion of the controller to which this device is
attached.

4-28

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

• Bit 2 - PTD$M NAME - Only the 'gg' portion of the generic
name is required. This is most common for network devices,
which are known by their DECnet names (for example, YODA,
STAR, GALAXY).

• Bit 3 - PTD$M INHERIT PRE - The 'gg' device name prefix is
inherited from the -controller to which the device is
attached. This, for example, allows a VT100 to require a
name of the form 'TTan' when attached to a DZ11 ('TTa'), or
'TXan' when attached to a DMF32A ('TXa').

• Bit 4 - PTD$M INHERIT CON - The 'a' controller designator
portion of the device-name is inherited from the controller
to which the device is attached. This, for example, allows
a VT100 to require a name of the form 'TTAn' when attached
to DZ11 'TTA', or 'TTBn' when attached to DZll 'TTB'.

• Bits 5 to 7 are reserved for future expansion and must not
be set by any p-table descriptor.

Additionally, several special names are defined that combine
common sets of these flag bits. They are:

• PTD$M INHERIT - This combines the bits PTD$M INHERIT PRE
and PTD$M INHERIT CON. This is the normal permutation of
the two bits.

• PTD$M DEVICE - This combines the bits PTD$M CONTROLLER and
PTD$M-UNIT. It would commonly be used for devices that are
connected directly to a bus, rather than a controller, and
therefore require both 'a' and 'n' portions but should not
inherit them from their LINK device.

• PTD$M ENDDEVICE - This combines the bits PTD$M CONTROLLER,
PTD$M UNIT, and PTD$M INHERIT. It would commonly be used
for devices that have controllers, such as an RK07 that is
attached to an RK711, and should inherit the controller's
name prefix and controller letter.

The default is PTD$M DEVICE.

generic

The 'gg' portion required
PTD$M INHERIT PRE is set,
device is linked to HUB.

4-29

for
this

this device. If the flag
argument is used only if the

VDS MACROS - PROGRAM STRUCTURE MACROS

Notes:

1. The naming conventions specified with
ignored if the VDS is running under
executing a script file. This is to
with APT scripts and VDS scripts
proper naming conventions.

the$DS $NAMEwill be
APT, or if the VDS is
ensure compatability
that do not adhere to

2. Code generated by macro (shown in Macro-32;
equivalent) :

Bliss-32 is

.BYTE

.BYTE

.ASCIC

"X8D
flags
"generic"

; Start of NAME statment

Examples:

Macro-32 Examples:

; Generic name format flags
; Enforced generic name

$DS_$NAHE FLAGS=PTD$H_ENDDEVICE; GENERIC=DH

$DS_$NAHE PTD$H_UNIT, DM

Bliss-32 Examples:

$DS_$NAHE (FLAGS=(PTD$H_ENDDEVICE), GENERIC='DM');

$DS_$NAHE (FLAGS=(PTD$H_UNIT), GENERIC='KA');

4-30

(

(

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_$OCTAL

The $DS $OCTAL p-tab1e macro is used to read a value from the
ATTACH -command line. If no more parameters are available on
the command 1ine~ or if the next parameter is not an octal
value, the prompting message will be displayed to the user.
The value that is read is stored in the "value register" (see
Sec tion 3.2.3. 3) fo r use by a $DS $COMPLEMENT, $DS $STORE, 0 r
$DS $CASE statement. - -

Macro-32 Format:

$DS $OCTAL prompt, low, high

Bliss-32 Format:

$DS $OCTAL (PROMPT=prompt, LOW=low, HIGH=high);

prompt

low

Character string that is to be printed as a prompt to the user.
This prompt will be used if the ATTACH command line does not
contain the required value.

The low limit for the value. If the value given is lower than
this, an error message followed by the prompt message will be
displayed. For MACRO-32, the default radix of this value is
octal. For BLISS-32, the default radix is decimal.

high

The high limit for the value. If the value given is higher
than this, an error message followed by the prompt message will
be displayed. For MACRO-32, the default radix of this value is
octal. For BLISS-32, the default radix is decimal.

4-31

VDS MACROS - PROGRAM STRUCTURE MACROS

Notes:

1. Code generated by macro {shown in Macro-32;
equivalent} :

Bliss-32 is

.BYTE

.ASCIC
"X83
\prompt\
"O<low>
"O<high>

; Beginning of OCTAL prompt
; Prompt string

• LONG ; Low 1 imi t
• LONG ; High limit

Examples:

Macro-32 Examples:

$DS_$OCTAL PROMPT=<VECTOR_>, LOW=2, HIGH=776

Bliss-32 Examples:

$DS_$OCTAL (PROMPT='CSR', LOW=%O'760000', HIGH=%O'777776');

$DS_$OCTAL (PROMPT='VECTOR', LOW=%O'2', HIGH=%O'776')9

4-32

c

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_$STORE

The $DS $STORE p-table descriptor macro is used to load the
contents of the "value register" (see Section 3.2.3.3) into a
field of the p-table being buil t. The macro can be used to
store values read by the $DS $DECIMAL, $DS $OCTAL, $DS $HEX,
$DS $STRING, or $DS $LOGICAL statements, or generated by the
$DS-$LITERAL, $DS-$FETCH, $DS $COMPLEMENT, or $DS $CASE
statements. It can also be used to facilitate temporary
storage. A value can be stored in the p-table temporarily
while the value register is needed for something else, then
later restored with the $DS $FETCH statement. This macro does
not change the contents of the value register.

Macro-32 Format:

$DS $STORE offset, pos, size

Bliss-32 Format:

$DS $STORE (OFFSET=offset, POS=pos, SIZE=size);

offset

pos

The byte offset into the p-table of the field into which the
contents of the value register are to be placed.

8it position of the field, relative to
byte specified by "offset." If the
boundary, this value will be 0.

the beginning of the
field starts on a byte

size

Number of bits making up the field. The size cannot be larger
than 32.

Notes:

1. Code generated by macro (shown in Macro-32;
equivalent) :

8liss-32 is

.BYTE

.WORD

.BYTE

.BYTE

~X88

offset
pos
size

BeSinnins of STORE directive
; Word data structure offset

Bit position in word
; Bit field size

4-33

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

Macro-32 Examples:

$DS_$STORE OFFSET=HP$L_RK611_CSR, POS=O, SIZE=32

$DS_$STORE <'"'X40), 0, 32

Bliss-32 Examples:

$DS_$STORE (OFFSET=XFIELDEXPAND(HP$L_RK611_CSR,0),
POS=XFIELDEXPAND(HP$L_RK611_CSR,1),
SIZE=XFIELDEXPAND(HP$L_RK611_CSR,2»;

$DS_$STORE (OFFSET=XX'40', POS=O, SIZ=32);

4-34

(

(

(

(

(-

VOS MACROS - PROGRAM STRUCTURE MACROS

$DS_$STRING

The $OS $STRING p-table descriptor macro is used to read a
string -from an ATTACH command line. If the string exists on
the ATTACH command line, it will be used; otherwise the
prompting message will be displayed. The string read from the
command line is compared against a list of valid strings, and
the number of the match string (0# 1, 2, and so on, in the
order given) is returned in the value register. This can be
used, for example, to determine if a OZ-ll line card to be
tested is 'EIA' or '20MA', by the statement "$OS $STRING ('Line
type', 'EIA', '20MA')" which would return 0 if the respohse was
EIA, or 1 if the response was 20MA.

Macro-32 Format:

$OS $STRING <prompt_>, <string, [string, •••]_>

81iss-32 Format:

$OS $STRING ('prompt', 'string', ['string', •••]);

prompt

Character string to be used as a prompting message.

string

A character string with which the input string is to be
compared. The number of the first string that exactly matches
the input will be returned.

Notes:

1. Code generated by macro (shown in Macro-32;
equivalent) :

Bliss.;...32 is

.BYTE

.ASCIC

.ASCIC

.... X85
\prompt\
\stringl\

.ASCIC \stringn\

.BYTE 0

; Beginning of STRING prompt
; Prompt string
; ASC IC s tr i ng 1

; ASCIC strings

; ASCIC string n
; List terminator

4-35

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

Macro-32 Examples:

DSSTRlNG <Module t~pe), «ElA), <20M A»

DSSTRlNG PROMPT=<Node t~pe), STRlNGS=<780,750,730)

Bliss-32 Examples:

$DS_$STRING ('Module t~pe~, 'ElA', '20MA');

$DS_$STRING ('Node t~pe', '780', '750', '730');

4-36

(

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNCLEAN - $DS_ENDCLEAN

The $DS BGNCLEAN and $DS ENDCLEAN macros are used
the program's clean-up code. These macros
connections which make it possible for the VDS to
execute the clean-up code.

MACRO-32 Format:

$DS_BGNCLEAN [<regmask>], [<psect>]

(clean-up code)

$DS ENDC LEAN

BLISS-32 Format:

$DS_BGNCLEAN;

(clean-up code);

$DS ENDC LEAN;

regmask

to del imi t
create the
locate and

List of general purpose register names to be placed in the
entry mask.

psect

Any argument string that
statement. If none is
"CLEANUP,LONG" will be used.

Notes:

is valid for
specified,

a
the

MACRO-32
argument

• PSECT
string

1. In MACRO-32, the $DS BGNCLEAN macro will generate the
following code:

• SAVE
• PSECT psect

CLEAN UP:
.WORD AM<regmask>

4-37

VDS MACROS - PROGRAM STRUCTURE MACROS

In MACRO-3.2, the $DS ENDCLEAN macro will generate the
following code:

CLEAN UP X:
$DS BREAK
RET-
• RESTORE

2. In BLISS-32, the $DS BGNCLEAN macro will generate the
following code:

%SBTTL 'CLEAN UP'
PSECT CODE = CLEANUP(WRITE);
GLOBAL ROUTINE CLEAN UP:NOVALUE =
BEGIN

In BLISS-32, the $DS ENDCLEAN macro will generate the
following code:

END

Examples:

MACRO-32 Example:

tDS_BGNCLEAN <R2,R3,R4,R5), <CLEANSECT,LONG)

:tDS ENDCLEAN

BLISS-32 Example:

$))S ... BGNCLEI!'.JN;

$D~~ ENDCLEAN;

4-38

(

(

(

(

(

VOS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNDATA - $DS_ENDDATA

The $OS BGNOATA and $OS ENDDATA macros are used to optionally
provide- lists of input-arguments to a test. Each time the VDS
executes a test for which argument lists have been specified,
it will execute the code within the test once for each argument
list. From the user's point of view, this repeated execution
of the code within a test will appear to be one execution of
the test.

The $OS BGNDATA and $DS ENDDATA macros must be located
immediately before the $DS ~GNTEST macro of the test to which
the parameter lists belong.

MACRO-32 Format:

$DS BGNDATA [align]
argument-list
[qrgument-l i st]

$DS ENDDATA

BLISS-32 Format:

This macro is not supported for BLISS-32.

align

Desired alignment for the psect containing the argument lists.
Possible values are BYTE, WORD, LONG, QUAD, PAGE, or an integer
from ~ to 9. If an integer is specified, the psect will start
at the next address that is a multiple of two raised to the
power of the integer.

a rgument-l ist

A list of arguments to be used by the test. Each argument must
occupy a longword. Each parameter list must be formatted as
shown in Figure 4-2.

4-39

VDS MACROS - PROGRAM STRUCTURE MACROS

31

~'"

T

N

ARGUMENT 1

ARGUMENT 2

• • • • •
ARGUMENT N

o

~

TK-l0532

Figure 4-2 Argument List Format for $DS_BGNDATA - $DS ENDDATA

The $DS_~NDDATA will provide termination for the set of lists
by generating a longword of 0.

Notes:

1. The VDS will call the test code with a CALLG instruction.

(

Each time the test is called, the address of the next
argument list will be used as the CALLG instruction's C.
argument list parameter. Thus the arguments can be .
referenced within the test by offsets from the AP.

Example:

.LONG

.LONG

.LONG

4, D~TA_i, DATA_2, DATA_3, DATA_4
4, DATA_5, DATA_b, DATA_7, DATA~8
4, DATA_i, DATA_3, DATA_7, DATA_9

$DS._ENDDATA

4-40

(
'-

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNINIT - $DS_ENDINIT

The $DS BGNINIT and $DS ENDINIT macros are used to delimit the
diagnostic prog ram IS ini tial i za tion code. These macros create
the connections that make it possible for the VDS to locate .and
execute the initialization code.

MACRO-32 Format:

(initialization code)

$DS ENDINIT

BLISS-32 Format:

$DS_BGNINIT;

(initialization code);

$DS_ENDINIT;

regmask

List of general purpose register names to be placed in the
entry mask.

psect

Anyargument string that is valid for a MACRO-32 .PSECT
statement. If none is specified, the argument string
"INITIALIZE,LONG" will be used.

Notes:

l. In MACRO-32, the $DS BGNINIT macro will generate the
following code:

• SAVE
• PSECT psect

INITIALIZE:
.WORD "M<regmask>

In MACRO-32, the $DS ENDINIT macro will generate the
following code:

4-41

VDS MACROS - PROGRAM STRUCTURE MACROS

INITIALIZ EX:
$DS BREAK
RET-
• RESTORE

2. In BLISS-32, the $DS BGNINIT macro will generate the
following code:

%SBTTL 'INITIALIZE'
PSECT CODE = INITIALIZE{WRITE);
GLOBAL ROUTINE INITIALIZE : NOVALUE =
BEGIN

In BLISS-32, the $DS ENDINIT macro will generate the
following code:

Examples:

$DS BREAK;
END-

MACRO-32 Example:

$DS._ENDINIT

BLISS-32 Example:

$DS ... BGNINIT;

-$ D S ._ END t NIT;

4-42

(

(

l

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNMESSAGE - $DS_ENDMESSAGE

The $DS BGNMESSAGE and $DS ENDMESSAGE macros should be used to
delimit- each error reporting routine used in conjunction with
the error reporting macros ($DS_ERRxxxx).

MACRO-32 Format:

$DS_6GNMESSAGE [<regmask>]

(error reporting routine)

$DS ENDMESSAGE

BLISS-32 Format:

$DS BGNMESSAGE (ROUTINE~AME=routine_name);

(error reporting routine);

$DS_ENDMESSAGE;

regmask

List of general purpose register names to be placed in the
entry mask.

routine name

Symbolic name to be associated with the error reporting
routine.

Notes:

1. The error reporting routine must use $DS PRINTB and
$DS PRINTX macros to print messages. The most important
information should be printed first, using $DS PRINTB
macros. The most detailed information, such as dumps of
device registers, should be printed last, using $DS PRINTX
macros. Refer to Section 3.9.1, Error Message Formats, for
example error messages.

2. Further details on error reporting routines are listed in
the description of the error macros ($DS_ERRxxxx).

4-43

3.

VDS MACROS - PROGRAM STRUCTURE MACROS

In MACRO-32, the $DS BGNMESSAGE macro
mask. . The $DS ENDMESSAGE macro
instruction.

generates an entry
generates a RET

4. In BLISS-32, THE $DS BGNMESSAGE macro
following code:

generates the

GLOBAL ROUTINE %NAME(routine name) (NUM, UNIT, MSGADR, PRLINK,
PI, P2, P3, P4, PS, P.6) : NOVALUE =

BEGIN

The $DS ENDMESSAGE macro generates the following code:

Examples:

RETURN
END

Refer to the description of the $DS ERRxxxx macros (later in
this chapter) for examples- of $DS BGNMESSAGE and
$DS ENDMESSAGE.

4-44

(

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNMOD - $DS_ENDMOD

The $DS BGNMOD and $DS ENDMOD macros must be included at the
beginning and end, respectively, of every source module making
up the diagnostic program.

MACRO-32 Format:

$DS_BGNMOD [env] , [tn], [st]

(source module)

$DS ENDMOD

BLISS-32 Format:

env

tn

st

$DS_BGNMOD ([ENV=evn], [TEST=tn]);

(source module);

Used to indicate if the program is a level 2 program. If so,
this value must be 2. Otherwise the value should be 0 (the
default). NOTE: In the past, this parameter was assigned one
of four predefined values: CEP FUNCTIONAL, CEP REPAIR,
SEP FUNCTIONAL, or SEP REPAIR. These symbols are meaningless
and-should not be used~ (SEP_FUNCTIONAL is equivalent to 2.)

Value representing the number to be assigned to the first test
in this module, if this module contains tests. Default value
is 1.

Value representing the number
subtest in this module, if
Default value is 1.

4-45

to be
this

assigned to the first
module contains subtests.

VDS MACROS - PROGRAM STRUCTURE MACROS

Notes: (

1. In BLISS-32, the $DS BGNMOD and $DS ENDMOD macros must be
contained within the bounds of -the MODULE and ELUDOM
keywords, as follows.

MODULE modnam =
BEGIN

$DS BGNMOD (); . .

$DS ENDMOD;
END-
ELUDOM

4-46

(

VOS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNREG - $DS_ENDREG

The $OS BGNREG and $OS ENOREG macros may be used to delimit a
storage-area in which device register contents are placed.

MACRO-32 Format:

$OS BGNREG

(register storage area)

$OS ENOREG

BLISS~32 Format:

$DS BGNREG;

(register storage area);

$DS ENDREG;

Notes:

1. In MACRO-3 2, the $DS BGNREG macro genera tes the label
"OEVREG:".

In BLISS-32~ the $DS BGNREG macro generates the statement

OWN DEV REG: VECTOR [0];

2. The $DS ENDREG does not generate any source code.

4-47

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNSERV - $DS_ENDSERV

The $DS BGNSERV and $DS ENDSERV macros shouid be used _to
delimit-interrupt service routines.

MACRO-32 Format:

$DS BGNSERV addr

(interrupt service routine)

$DS ENDSERV

BLISS-32 Format:

These macros are not supported for BLISS-32.

addr

Symbolic name to be associated with the interrupt service
routine.

Notes:

1. The $DS BGNSERV macro will generate the following code:

.ALIGN LONG, eJ ALIGN ON LONGWORD BOUNDARY
ADDR:

PUSHR ."M<ReJ,Rl> ; SAVE ReJ AND Rl

The $DS ENDSERV macro will generate the following code:

POPR
REI

."M<ReJ,Rl>

4-48

; RESTORE ReJ AND Rl
; RETURN FROM SERVICE

(

l

c
VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNSTAT - $DS_ENDSTAT

The $DS BGNSTAT and $DS ENDSTAT macros should be used to
delimit-the data storage area referenced by the summary routine
(see Section 3.7, Summary Routines). This data area should
contain a set of error counts for each unit under test. Thus
there must be enough storage space allocated to handle the
maximum number of device units the diagnostic program can test.

MACRO-32 Format:

$DS BGNSTAT

(statistics tables)

$DS ENDS TAT

BLISS~32 Format:

(statistics tables);

$DS_ENDSTAT;

Notes:

1. In MACRO-32, the $DS BGNSTAT macro simply generates the
label 'STATISTIC: '.- The $DS ENDSTAT does not generate any
code.

2. In BLISS-32, the $DS BGNSTAT macro generates the following
statement:

GLOBAL STATISTIC VECTOR [0];

The $DS ENDSTAT macro does not generate any code.

4-49

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNSUB - $DS_ENDSUB

The $DS BGNSUB and $DS ENDSUB macros are used to delimit each
subtest-existing in any particular test. Refer to Section 3.8,
Tests, Subtests, and Sections, for a discussion of subtests.

MACRO-32 Format:

$DS BGNSUB

(subtest)

$DS ENDSUB

BLISS-32 Format:

(subtest) ;

$DS _ENDS UB ;

(

Notes: (

1. The macro automatically numbers each subtest. Subtests are
numbered from 1 to N for each test, where N is the total
number of subtests within the test.

2. The $DS BGNSUB macro generates a call to a VDS routine that
will record the numbers of the current test and subtest.
The $DS ENDSUB macro will generate a call to a VDS routine
that will verify that the current test and subtest numbers
are the same as those stored when the $DS BGNSUB macro was
issued. If the numbers do not match,-the VDS will stop
execution of the diagnostic program.

4-50

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNSUMMARY - $DS_ENDSUMMARY

The $DS BGNSUMMARY and $DS ENDSUMMARY macros are used to
delimit the summary routine. -Summary routines are discussed in
Sec tion 3. 7.

MACRO-32 Format:

$DS BGNSUMMARY [<regmask>], [<psect>]

(summary routine)

$DS ENDSUMMARY

BLISS-32 Format:

$DS_BGNSUMMARYi

(summary routine)i

$DS_ENDSUMMARYi

regmask

List of general purpose register names to be placed in the
entry mask.

psect

Any argument string that
statement. If none is
'SUMMARY, LONG' will be used.

Notes:

is valid for a
specified, the

MACRO-32
argument

• PSECT
string

1. In MACRO-32, the $DS BGNSUMMARY macro will generate the
following code: -

• SAVE
• PSECT psec t

SUMMARY:
WORD AM<regmask> ;ENTRY MASK

4-51

VDS MACROS - PROGRAM STRUCTURE MACROS

In MACRO-32, the $DS ENDSUMMARY macro will generate the
(

following code:

SUMMARY X: -
$DS BREAK -RET
• RESTORE

2. In BLISS-32, the $DS BGNSUMMARY macro will generate the
following code:

PSECT CODE = SUMMARY (WRITE) ;
GLOBAL ROUTINE SUMMARY : NOVALUE =
BEGIN

In BLISS-32, the $DS ENDSUMMARY macro will generate the
following code:

$DS_BREAK;
END

(

4-52

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_BGNTEST - $DS_ENDTEST

The $DS BGNTEST and $DS ENDTEST macros are used to delimit each
test existing in a diagnostic program. Tests are discussed in
Section 5.8, Tests, Subtests, and Sections.

MACRO-32 Format:

$DS BGNTEST [<section-name,section-name, ••• >],
[<regmask>], [al ign]

(test code)

$DS ENDTEST

BLISS~32 Format:

$DS BGNTEST ([SECTION=<section-name,section-name, ••• >],
[TEXT='test-name']);

(test code);

$DS_ENDTEST;

sec tion-name

Name of a program section to which this test belongs. Refer to
Section 3.8, Tests, Subtests, and Sections.

regmask

List of general purpose register names to be placed in the
entry mask.

align

Desired alignment for the psect containing the argument lists.
Possible values are BYTE, WORD, LONG, QUAD, PAGE, or an integer
from 0 to 9. If an integer is specified, the psect will start
at the next address that is a multiple of two raised to the
power of the integer.

4-53

VOS MACROS - PROGRAM STRUCTURE MACROS

text

Text string identifying the test. This test will be displayed
on the user terminal each time the test is executed, provided
that the user has set the VDS control flag TRACE. If the (I)
character is to be included within the text string, it must be
specified twice, as in:

TEXT='Fred"s test l

(In MACRO-32, the identifying message is defined by using the
$OS SUBTTL macro.)

Notes:

1. The $OS BGNTEST macro will assign a test number to the
test. -The test number is incremented each time the
$OS BGNTEST macro is called within a source module. (The
test number can be initialized when the $OS BGNMOO macro is
called at the beginning of the source module.)

2. In MACRO-32, the $OS BGNTEST macro causes the following
label to be generated:

TEST xxx:: .WORO AM< >

where "xxx" is the current test number.

In MACRO-32, the $OS_ENDTEST macro generates the following
code:

MOVL *1,R0 ;NORMAL EXIT
TEST nnn X::

-$OS-BREAK
RET-

3. In BLISS-32, the $OS BGNTEST macro generates the following
entry point:

where "xxx" is the current test number.

In BLISS-32, the $OS ENDTEST macro generates the
code:

$OS BREAK;
SS$-NORMAL
END;

4-54

following

(

(

(

VDS MACROS -PROGRAM STRUCTURE MACROS

The $DS CLI program structure macro is used to create a parse
tree. -The tree can then be used to parse command strings
containing commands defined by the diagnostic program (see
Section 3.12.2.2, Prompting the User). Actual parsing of a
command string can be performed by the $DS PARSE system
service. That service will traverse a parse tree previously
constructed with the $DS eLI macro.

A parse tree is created by using a set of $DS eLI macros. Each
time the macro is used, a .node of the tree is created. Most
nodes will possess the following:

• A character, string of characters, or special "traversal
code" that will indicate what must be next in the input
command string to constitute a legal command.

• An "action code"
if there is a
command str i ng .
discussion of the

that will be passed to an "action routine"
match between the tree node and the input

Action routines are detailed in the
$DS PARSE macro.

• The address of a node to jump to if the current traversal
path turns out to be the wrong one (a mismatch has been
encountered) •

Once the tree has been created, the $DS PARSE system service
can be used. That service will start at the root of the tree
and traverse it, comparing an input command string with the
characters or "traversal codes" contained in each node. Each
time there is a match, the $DS PARSE service will call the
"action routine," passing to the routine the "action code"
specified with the $DS eLI macro. Then the next node in the
current path will be checked. If, on the other hand, there is
a mismatch, the system service will jump to the node specified
as being the one to go to on a mismatch.

4-55

VDS MACROS - PROGRAM STRUCTURE MACROS

MACRO-32 Format:

$DS_CLI char, action, miss, [asc i i)

BLISS-32 Format:

Not implemented for BLISS-32.

char

1. A character to be compared to the next character in the
input string, or

2. A "traversal code," indicating which types of characters
should be expected next in the input str ing. The traversal
codes are defined by the $DS CLIDEF macro. They are
discussed in Note 1.

action

Code to be passed to the action routine. The action routine is
called every time there is a match between the current node and
the input string.

miss

Address of node to jump to if there is a mismatch at the
current node.

asci i

ASCII string to be used as node content. if CLI$K STRING is used
"for "char" (see Note 1). See examples for prope~ format.

Notes:

1. The "char" parameter may either be a single ASCII character
or it may be a traversal code. Its purpose is to indicate
to the $DS PARSE system service what character, characters,
or types of characters should be expected next in the input
string. The traversal codes are defined by the $DS CLIDEF
macro. The actions that the $DS PARSE service will take
for each traversal code are defined-as follows:

4-56

(

(

(

(,

(

VDS MACROS - PROGRAM STRUCTURE MACROS

• CLI$K ALNUM - Continue reading input string as long as
alphabetic or numeric characters are encountered.

• CLI$K ALPHA - Continue reading input string as long as
alphabetic characters are encountered.

• CLI$K NUM - Continue reading input string as long as
numerIc characters are encountered. Numeric characters
must be valid for the current default radix setting
(refer to the SET DEFAULT command in the
VAX Diagnostic Supervisor User's Guide.)

• CLI$K SYMBOL - Continue reading input string as long as
valid symbol characters are encountered. Valid symbol
characters are A - Z, 0 - 9, $, and

• CLI$K FILE - Continue reading input string as long as
valid filename characters are encountered. (Filename
characters are A-Z, 0-9, plus the wildcard characters *
and %.)

• CLI$K SPACE - Continue reading input string as long
spaces are encountered. If no spaces exist at
current point in the input string, do not call
action routine; branch to "miss" instead.

as
the
~e

• CLI$K COMMA - Find next nonspace input character, and
see if it is a comma. If so, find next nonspace input
character, then call action routine. Otherwise branch
to "miss."

• CLI$K SLASH - Find next nonspace input character, and
see If it is a slash (/). If so, find next nonspace
input character, then call action routine. Otherwise
branch to "miss."

• CLI$K VALUE - Find next nonspace input character, and
see if it is a: or an =. If so, find next nonspace
input character, then call action routine. Otherwise
branch to "miss."

• CLI$K EOL - Find next nonspace input character, and see
if it is a line terminator. If so, call action
routine. Otherwise branch to "miss."

• CLI$K DEC - Continue reading input string as long as
valid-decimal numeric characters are encountered.

• CLI$K HEX - Continue reading input string as long as
valid-hexadecimal numeric characters are encountered.

4-57

VDS MACROS - PROGRAM STRUCTURE MACROS

• CLI$K OCT - Continue reading input string as long as
valid-octal numeric characters are encountered.

• CLI$K STRING - Continue reading input string as long as
the input string matches the character string specified
by the "ascii" parameter. The comparison is considered
to be a match even if only the first character of the
input string (starting at the current pointer position)
matches the character string.

• CLI$K BR Call the action routine, then branch
unconditionally to the address specified by "miss." No
reading of the input string occurs.

• CLI$K BIF - Call the action routine, then branch to
address specified by "miss" if bit 0 of R0 is set. No
reading of the input string occurs.

• CLI$K CALL - Call action routine, then uncon~itionally
branch to another parse tree. Address of tree is
specified by "miss." Do not nest calls.

• CLI$K RETURN - Call action routine, then return to
original parse tree, to the $DS CLI macro directly
following the macro containing the- CLI$K CALL code.
The action routine may set or clear bit 0-of r0. The
contents of R0 will then be saved for use by the
CLI$K BIFS macro.

• CLI$K BIFS - Used after return from a subtree. Call
action routine, then branch if the action routine had
set bit 0 of R0 during processing of CLI$K RETURN
macro. (Contents of R0 will have already changed, but
its value will have been saved during processing of
CLI$K_RETURN.)

• CLI$K EXIT Call the action routine, then stop
traversing the tree. The $DS PARSE system service
returns control to the caller; with R0 set to
SS$ NORMAL. No reading of the input string occurs.
This code is used to indicate that the input string has
been successfully parsed.

• CLI$K ERROR Call the action routine, then stop
traversing the tree. The $DS PARSE system service
returns control to the caller, with R0 set to
DS$ ERROR. No reading of the input string occurs.
This code is used to indicate an unsuccessful parse of
the input string (an illegal command string was
specified) •

4-58

(

(

c'-

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

Here is a simple but instructive example of a user-defined
command language. Suppose we wanted to create a command
language to represent some of the steps involved in baking a
cake. Consider just the following steps:

1. Add sugar.
2. Add sal t.
3. Add milk.
4. Beat ingredients.
5. Bake cake.

Figure 4-3 illustrates a parse tree for this command language.

TK-10533

Figure 4-3 Sample Parse Tree

4-59

VDS MACROS - PROGRAM STRUCTURE MACROS

This tree would be described with $DS eLI macros as follows:

NO ACTION=0
ADD=l
BAKE=2
BEAT=3
MILK=4
SALT=5
SUGAR=6
ILLCMD=7
BADARG=8

TREE ROOT::
$DS_CLI CLI$K_SPACE, NO_ACTION, ADD_NODE

ADD NODE:
$DS CLI CLI$K STRING, ADD, B NODE, 'ADD'
$DS-CLI CLI$K-SPACE, NO ACTION, ILLCMD$
$DS-CLI CLI$K-STRING, MILK, S NODE, 'MILK'
$DS-CLI CLI $K-EOL, NO ACTION, -BADARG$
$DS=CLI CLI$K-EXIT -

B NODE:
$DS CLI <AA'B'>, NO ACTION, ILLCMD$
$DS-CLI CLI$K STRING, BAKE, EAT NODE, 'AKE'
$DS-CLI CLI$K-EOL, NO ACTION, ILLCMD$
$DS=CLI CLI$K=EXIT -

EAT NOD~:
- $DS CLI CLI$K STRING, BEAT, ILLCMD$, 'EAT'

$DS-CLI CLI$K-EOL, NO_ACTION, ILLCMD$
$DS-CLI CLI$K-EXIT

S NODE:

UGAR

DONE:

$DS CLI <AA'S'>, NO ACTION, ILLCMD$
$DS-CLI CLI$K STRING, SALT, UGAR NODE, 'ALT'
$DS-CLI CLI$K-EOL, NO ACTION, BADARG$
$DS=CLI CLI$K=EXIT -

NODE:
$DS CLI CLI$K STRING, SUGAR, BADARG$, 'UGAR'
$DS-CLI CLI$K-EOL, NO _ACTION, BADARG$
$DS-CLI CLI$K-EXIT

$DS_CLI CLI$K_EXIT

ILLCMD$:
$DS_CLI CLI$K_ERROR, ILLCMD

BADARG$:
$DS_CLI CLI$K_ERROR, BADARG

4-60

iLeading spaces

i ADD
iADD<space>
iADD<space>MILK
iADD<space>MILK<cr>

i B
iBAKE
iBAKE<cr>

iBEAT
iBEAT<cr>

iADD<space>S
iADD<space>SALT
iADD<space>$ALT<cr>

iADD<space>SUGAR
iADD<space>SUGAR<cr>

(

(

(

(

l

VDS MACROS - PROGRAM STRUCTURE MACROS

The $DS DEVTYP macro is used to indicate to the VDS which types
of devices the diagnostic program is capable of testing.

MACRO-32 Format:

$DS DEVTYP

BLISS-32 Format:

$DS DEVTYP

str ing

< [s t ring] , [s t ring] , ••• >,
< [address] , [address] , ••• >

([STRINGS=<string, [string], ••• >],
[ADDRESSES=<address,[address] , ••• >]);

Character string representing a device type, such as 'RK06' or
'TM03'. This parameter is used to specify device types for
which p-table descriptors exist in the VDS.

address

Address of a p-table descriptor defined within the diagnostic
wi thin the program. P-table desciptors must be defined

diagnostic program if:

1. A p-table descriptor for the device does not exist in the
VDS, or

2. The programmer wishes
descriptor for a device.
in Section 3.2.2.

4-61

to override the VDS's p-table
P-table descriptors are discussed

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

MACRO-32 Examples:

SDS_DEUTYP (RP04, RP05, RP06)

SDS_DEVTYP (),(DESCR1, DESCR2)

BLISS-32 Examples:

SDS_DEUTYP (STRINGS=(RP04, RP05, RP06»;

SDS_DEUTYP (ADDRESSES=(DESCR1, DESCR2»;

4-62

(

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$FAB

The $FAB macro is used to allocate an RMS file access block
(FAB) at program compilation time and, optionally, to load
values into the various fields within the FAB. An FAB is a
data structure that is required for performing file management
operations using RMS. Refer to Section 3.15, File Management.

This description only discusses FAB fields supported by VDS
RMS. For a discussion of VMS RMS-supported fields, refer to
the VAX/VMS RMS Reference Manual.

Besides allocating the FAB, the $FAB macro also defines symbols
for each FAB field. Symbols are of the form
"FAB$datatype fieldname," where "datatype" is a data type
specifier listed in Table 5-1.

MACRO-32 Format:

$FAB DNA=default-name-address,
DNM=<default-name-filespec),
DNS=default-string-size,
FAC=fac-param,
FNA=filename-address,
FNM=<filename-filespec),
FNS=filename-string-size,
FOP=RWO, -
FSZ=header-size,
XAB=xab-addr

BLISS-32 Format:

$FAB (DNA=default-name-address,
DNM='default-name-filespec' ,
DNS=default-string-size,
FAC=fac-param,
FNA=filename-address,
FNM='filename-filespec' ,
FNS=filename-string-size,
FOP=RWO,
FSZ=header-size,
XAB=xab-addr) ;

4-63

VDS MACROS - PROGRAM STRUCTURE MACROS

Note: All parameters are optional. Refer to descriptions of
the RMS run-time services to determine which fields are
required for which services. Fields may be loaded at run-time
with the $F~B STORE macro, or by directly referencing FAB
fields, as descFibed in Section 3.15.~.

DNA = default-name-address

Address of a character string representing defaults to be used
for the filename, if the actual filename specification is
incomplete. The default string may contain all Qr some of the
following fields:

• Node

• Device

• Device directory

• Filename

• Filename extension

• File version number

An example default string is

DEF STRING: • ASC I I I. DATI

The DNS field must be used in conjunction with the DNA field.

DNM = default-name-filespec

A character string representing defaults to be used for the
filename, if the actual filename specification is incomplete.
Using the DNM parameter is an alternative to using the DNA and
DNS parameters.

A MACRO-32 example of this parameter is DNM=<.EXE;0>. A
BLISS-32 example is DNM='.EXE;0'.

DNS = default-string-size

Size of the string pointed to by "default-name-address." Used
only if the DNA parameter is also used.

4-64

(

(

t-,

(

(

VDSMACROS - PROGRAM STRUCTURE MACROS

FAC = fac-param

File access parameters. If the program is to perform $GET or
$READ operations, the FAC field must be set up before the $OPEN
operation is performed. Following are valid file access
parameters:

• BIO - Block I/O operations ($READ) will be performed.

• BRO Both Block I/O ($READ) and Record I/O ($GET)
operations will be performed.

• GET - Record I/O operations ($GET) will be performed. This
is the default.

FNA = filename-address

Address of character string representing the name of the file
on which operations are to be performed. If any filename
components are missing from the string, those components will
be extracted from the default string specified by either the
DNA or the DNM parameter. If components are still missing,
they will be defaulted to the fields that would be exhibited if
a SHOW LOAD user command were issued.

The FNS parameter must be used in conjunction with the FNA
parameter.

FN!Vl = filename-filespec

Character string representing the name of the file on which
operations are to be performed. This parameter is an
alternative to the FNA and FNS parameters, and would most
likely be used in programs that always open the same file. An
example in BLISS-32 would be FNM='EVABC.DAT'.

FNS = filename-string-size

Size of character string pointed to by "filename-address." The
FNS parameter is used only if the FNA parameter is also used.

FOP = RWO

Rewind on open. Indicates that a magnetic tape should be
rewound before a file on the tape is opened.

4-65

VDS MACROS - PROGRAM STRUCTURE MACROS

FSZ = header-size

Size of file's fixed control area. Used only for
containing fixed-length control records. Refer to
VAX/VMS RMS Reference Manual for details. It is unlikely
a diagnostic program will make use of this field.

files
the

that

XAB = xab-addr

Address of the FHC XAB, if used. (The FHC XAB is declared with
the $XABFHC macro.)

Notes:

1. Read-Only FAB Fields

The following FAB fields are not loaded by the programmer
under VDS RMS. They are filled in by RMS services, and may
be read after the service has completed. (Some of these
fields are read/write in VMS RMS.)

• BID - Block identifier field. Indicates to RMS that a
block is an FAB.

• BLN - Block length field. Defines the length of the
FAB.

• DEV Device characteristics field.
indicating various characteristics of
which the file being referenced resides.
a list of bits supported by VDS RMS:

DIR - Directory-structured device.

A bitmap
the device on
Following is

FOD File-oriented device (disk and magnetic
tape) •

RND - Random access device.

SDI Single directory device (master fi Ie

directory only) •

SQD - Sequential block-oriented device (magnetic
tape) •

4-66

(

(

(

\

VDS MACROS - PROGRAM STRUCTURE MACROS

• IFI Internal file identifier field. Used to
associate the FAB with an internal access block.

• MRS - Maximum record size.

• ORG - File organization. Valid values for this field
are:

REL - Relative file organization.

IDX - Indexed file organization.

SEQ - Sequential file organization.
Note: VDS RMS only supports operations on files having
sequential organization.

• RAT Record attributes. Indicates that special
control information has been attached to the records of
a file. Refer to the VAX/VMS RMS Reference Manual for
a discussion of record attributes. It is unlikely that
a diagnostic program will make use of this field.

• RFM - Record format. Indicates the format of the
records in the file. Possible values for this field
are:

FIX - (FAB$C_FIX) Fixed length record format.

VFC - (FAB$C VFC) Variable length with fixed length
control record format.

VAR - (FAB$C_VAR) Variable length record format.

UDF - (FAB$C_UDF) Undefined record format.

If the file is on the console medium (RT-ll
format), the RFM code returned by the $OPEN service
will be 4. There is no symbolic repesentation for
this value.

4-67

VDS MACROS - PROGRAM STRUCTURE MACROS

• STS - Completion status code field. RMS services load
this field with a success or failure completion status
before returning to the caller of the service. The
completion status code is also passed to the caller in
R0.

• STV - Status
additional
caller.

value
status

fi eld. Sometimes
information from

2. Table 4-1 lists all of the FAB fields.

4-68

used to pass
a service to the

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

Field and
Keyword Field
Name Size

ALQ
BID
BKS
BLN
BLS
CTX
DEQ
DEV
DNA

DNS

FAC
FNA
FNS
FOP
FSZ
IFI
MRN
MRS
NAM
ORG
RAT
RFM
RTV
SDC
SHR
STS
STV
XAB

Longword
Byte
Byte
Byte
Word
Longword
Word
Longword
Longword

Byte

Byte
Longword
Byte
Longword
Byte
Word
Longword
Word
Longword
Byte
Byte
Byte
Byte
Longword
Byte
Longword
Longword
Longword

Table 4-1 FAB Fields

Description

Allocation quantity
Block identifier
Bucket size
Block length
Block size
Context
Default file extension quantity
Device characteristics
Default file specification
string address
Default file specification
s t r i n,9 s i z e
File access
File specification string addr.
File specification string size
File-processing options
Fixed control area size
Internal file identifier
Name block address
Maximum record size
Name block address
File organization
Record attributes
Record format
Retrieval window size
Spooling device characteristics
File sharing
Completion status code
Status values
Extend attribute block address

4-69

Offset

FAB$L ALQ
FAB$B-BID
FAB$B-BKS
FAB$B-BLN
FAB$W-BLS
FAB$L-CTX
FAB$W-DEQ
FAB$L-DEV
FAB$L-DNA

FAB$B DNS

FAB$B FAC
FAB$L-FNA
FAB$B-FNS
FAB$L-FOP
FAB$B-FSZ
FAB$W-IFI
FAB$L-MRN
FAB$W-MRS
FAB$L-NAM
FAB$B-ORG
FAB$B-RAT
FAB$B-RFM
FAB$B-RTV
FAB$L-SDC
FAB$B-SHR
FAB$L-STS
FAB$L-STV
FAB$L-XAB

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

MACRO-32 Example:

BLISS-32 Example:

OWN

$FAB DNM=<.EXE>, -
FAC=BIO, -
FNA=FILE_NAME, -
FNS=FILE_NAME_SIZE

fFAB (FAC=GET, -
FNM='EVXYZ.DAT');

4-70

~\

l

(-

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$FAB_INIT
$FAB_STORE

The $FAB STORE and $FAB INIT macros can be
fields at run time. The $FAB STORE macro
programs. The $FAB INIT macro-is used in
Refer to the discussion of the $FAB macro
FA8 fields.

used to load FAB
is used for MACRO-32
BLISS-32 programs.

for a description of

MACRO-32 Format:

$FA8 STORE

BLISS-32 Format:

$FAB INIT

DNA=default-name-address,
DNM=<default-name-filespec),
DNS=default-string-size,
FAC=fac-param,
FNA=filename-address,
FNM=<filename-filespec),
FNS=filename-string-size,
FOP=RWO, -
FSZ=header-size,
XAB=xab-addr

(DNA=default-name-address,
DNM='default-name-filespec' ,
DNS=default-string-size,
FAC=fac-param,
FNA=filename-address,
FNM='filename-filespec' ,
FNS=filename-string-size,
FOP=RWO,
FSZ=header-size,
XAB=xab-addr)i

Refer to the discussion of the $FAB macro for descriptions of
input parameters. All parameters are optional.

4-71

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

MACRO-32 Example:

BLISS-32 Example:

FNM=<FILE1.DAf), -
XAB=XABFHC_ADDR

(FNM='FILE1.DAT',
FOP=RWO);

4-72

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_DISPATCH

The $DS DISPATCH macro generates the diagnostic program
"dispatc~ table." This table contains the starting addresses of
all the tests. (These addresses are placed in the table by the
linker.) The VDS uses the table when dispatching control to the
tests.

MACRO-32 Format:

$DS DISPATCH

BLISS-32 Format:

$DS_DISPATCHi

Notes:

1. In BLISS-32 programs, the $DS DISPATCH macro must be placed
before the $DS HEADER macro. (Refer to the template in
Append ix A.)

Examples:

MACRO-32 Example:

$[lS.DISF'ATCH

BLISS-32 Example:

$I.iS .. DISF'ATCH;

4-73

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_HEADER

The $DS HEADER macro generates the diagnostic program header.
The header must be situated so that its starting address is
virtual 512 (200 hexadecimal). (The diagnostic program may not
use address space below the header.)

MACRO-32 Format:

$DS_HEADER <pname), rev, [update], [nunit]

BLISS-32 Format:

$DS HEADER (PNAME='pname', REV=rev, [UPDATE=update],
[NUNIT=nuni t]) ;

pname

Character string representing the program's name. This string
is displayed on the user's terminal when the program is
started. Note: In BLISS-32, if a (') character is to be
included in the string, it must be included twice, as in
PNAME='MARY"S PROGRAM'.

The string should contain the following information:

rev

• The program's name (EVKAC, EVRAD, and so on)

• The program's level (2~ 2R, or 3)

• The type of program (logic test, function test, or
exerciser; see Chapter 1)

• The types of devices that the program can test

Refer to the examples below.

Numeric value representing the program revision level.

update

Numeric value representing the program patch level. The
default is 0.

4-74

(

~-

VDS MACROS - PROGRAM STRUCTURE MACROS

nunit

Numeric value representing the maximum number of device units
that can be tested by the program. The default is 0.

Notes:

1. Refer to the templates in Appendix A to determine the exact
location of the $DS HEADER macro in relation to other
macros appearing in the program. The arrangement of macros
depends on whether the program is written in MACRO-32 or
BLISS-3 2.

Examples:

MACRO-32 Example:

$ DS HEADEf\' -
PNAME ::: <EVXYZ - LEVEL 3 LOGIC TEST FOR XXYY DISK CONTROLLER}, -
REV::: 1, .-
NUNIT ;::: 8

BLISS-32 Example:

$DS_.HEADER
(PNAME = 'EVZYX - LEVEL 2R FUNCTION TEST FOR YYZZ TAPE DRIVE',

REV = 1., -
NUMINT :: 16);

4-75

VDS MACROS - PROGRAM STRUCTURE MACROS

The $OS PAGE macro is used in conjunction with the $OS SBTTL
macro. -If the $OS PAGE macro with a nonzero argument is placed
immediately before-the $OS_SBTTL macro, the following actions
will take place:

1. Printing of the $OS SBTTL call in the assembly listing will
be suppressed, but the expansion of the $OS SBTTL macro
will be printed.

2. The subtitle will appear at the top of a new page.

The result of these actions is that the .SBTTL statement
accompanying text generated by the $OS SBTTL macro will appear
at the top of the next page in the assembly listing.

MACRO-32 Format:

$OS SBTTL num

BLISS-32 Format:

num

Not supported for BLISS-32.

Flag indicating whether or not the subtitle generated by the
$OS SBTTL macro should appear on a new page. If this value is
0, the subtitle will appear on the current page, and printing
of the $OS SBTTL macro call will be suppressed. If the value
is nonzero, a new page will be started. The subtitle will
appear at the top of the new page, and printing of the
$OS SBTTL macro call will be suppressed.

Example:

$DSJ'f;GE
:~Df.~ •. !:;[{TTL <REt..P/WF:ITE TESTS>

4-76

(

(

?
\

(

VDS MACROS - PROGRAM STRUCTURE MACROS

$RAB

The $RAB macro is used to allocate an RMS record access block
(RAB) at program compilation time and, optionally, to load
values into the various fields within the RAB. An RAB is a
data structure that is required for performing file management
operations using RMS. Refer to Section 3.15, File Management.

This description only discusses RAB fields supported by VDS
RMS. For a discussion of VMS RMS-supported fields, refer to
the VAX/VMS RMS Reference Manua~.

Besides allocating the RAB, the $RAB macro also defines symbols
for each RAB field. Symbols are of the form
"RAB$datatype fieldname," where "datatype" is a data type
specifier listed in Table 5-1.

MACRO-32 Format:

$RAB BKT=bkt-code,
FAB=fab-address,
RAC=rac-param,
RHB=header-buffer-address,
ROP=BIO,
UBF=user-buffer-address,
USZ=user-buffer-size

BLISS-32 Format:

$RAB (BKT=bkt-code,
FAB=fab-address,
RAC=rac-param,
RHB=header-buffer-address,
ROP=BIO,
UBF=user-buffer-address,
USZ=user-buffer-size) ;

BKT = bkt-code

Bucket code. Used only with block I/O. Should be loaded with
the number of the first virtual block that is to be read by the
$READ service. If 0 is specified, reading will begin at block
o for the first $READ, or at the block pointed to by the
internal "next block pointer" for subsequent $READs.

FAB = fab-address

Address of the FAB describing the file to be accessed.

4-77

VDS MACROS - PROGRAM STRUCTURE MACROS

RAC = rac-param

Record access mode. Indicates the type of access to be used in
retrieving records from the file. Valid values are

1. SEQ - Sequential record access. This is the default.

2. RFA - Random access by record's file address (RFA).

Refer to Section 5.15.6, Record Processing, and Note 2 below.

RHB = header-buffer-address

Address of buffer to store record header buffer. Used only for
files consisting of variable records with fixed-length control.
The $GET service will load the record's header into the
specified buffer. The size of this buffer must match the size
specified by the FSZ field of the FAB.

ROP = BIO

Block I/O. Only meaningful if BRO was
the FAB before $OPEN was issued. If
record processing option will enable
block processing to be mixed.

set in the FOP field of
so, then setting the BIO

record processing and

UBF = user-buffer-address

Address of a buffer to receive record fetched by $GET or block
fetched by $READ. Buffer size is specified with USZ.

USZ = user-buffer-size

Size (number of bytes) of buffer pointed to by UBF field.

Notes:

1. Read-Only RAB Fields

The following RAB fields are not loaded by the programmer
under VDS RMS. They are filled in by RMS services, and may
be read after the service has completed. (Some of these
fields are read/write in VMS RMS.)

• BID - Block identifier field. Identifies the block as
aRAB.

• BLN - Block length field. Contains the length of the
RAB.

4-78

(

(

t -

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

• lSI - Internal stream identifier. Associates the RAB
wi th an FAB.

• RBF - Contains the address of the last record read.

• RFA - Record's file address.
record read. See Note 2.

File address of last

• RSZ - Length, in bytes, of the last record read.

• STS - Completion status code field. RMS services load
this field with a success or failure completion status
before returning to the caller of the service. The
completion status code is also passed to the caller in
R0.

• STV - Status value
additional status
caller.

fi eld. Sometimes used to pa ss
information from a service to the

2. Record's File Address (RFA)

After a successful $GET operation, the file address of
record read into memory is stored in the RFA field.
program can extract this field and store it elsewhere
memory. Then if it is later necessary to re-read
record, the program returns the extracted address to
RFA, sets the record access mode to random-by-RFA
setting RFA in RAC) , and issues another $GET.

the
The

in
the
the
(by

The RFA field is six bytes long. There are two ways to
reference the field:

1. RAB$W RFA is the field's offset into the RAB.

2.

RAB$S-RFA is the field's size. Thus the field may be
copied as follows:

MOVAL
MOVC3

RABBLK, R0
#RABS_RFA, RABW_RFA(R0), SAVE_RFA

RAB$LRFA0 is the offset of the first longword of the
six-byte field. RAB$WRFA4 is the offset of the last
word of the field. Thus the field may be copied as
follows:

MOVAL
MOVL
MOVW

RABBLK, R0
RAB$L RFA0(R0), SAVE RFA
RAB$W=RFA4(R0), SAVE-RFA+4

3. Table 4-2 lists all of the RAB fields.

4-79

Field and
Keyword
Name

BID
BKT
BLN
CTX
FAB
lSI
KBF
KRF
MBC
MBF
PBF
PSZ
RAC
RBF
RFA
RHB
ROP
RSZ
STS
STV
STV0
STV2
TMO
UBF
USZ

Examples:

VDS MACROS - PROGRAM STRUCTURE MACROS

Field
Size

Byte
Longword
Byte
Longword
Longword
Word
Longword
Byte
Byte
Byte
Longword
Byte
Byte
Longword
3 words
Longword
Longword
Word
Longword
Longword
Word
Word
Byte
Longword
Word

Table 4-2 RAB Fields

Description

Block identifier
Bucket code
Block length
Context
File access block address
Internal stream identifier
Key buffer address
Key of reference
Multiblock count
Multibuffer count
Prompt buffer address
Prompt buffer size
Record access mode
Record address
Record's file address
Record header buffer
Record-processing options
Record size
Completion status code
Status value
Low-order word of status value
High-order word of status value
Timeout per iod
User record area address
User record area size

MACRO-32 Example:

BUFFER: .ELKB 50
aUF_SIZE ::: • - BUFFER
F{~B_BLOCK :

,FAD FNM:::(INFILE.DAT)
Ri~B BLOCK :

SRAB FAB~FAB_BLOCK,-

RAC=SEQ, -
UBF=BUFFER, -
IWZ:::BlJF _8 I ZE

4-80

Offset

RAB$B BID
RAB$L-BKT
RAB$B-BLN
RAB$L-CTX
RAB$L-FAB
RAB$W-ISI
RAB$L-KBF
RAB$B-KRF
RAB$B-MBC
RAB$S-MBF
RAB$L-PBF
RAB$B-PSZ
RAB$B-RAC
RAB$L-RBF
RAB$W-RFA
RAB$L-RHB
RAB$L-ROP
RAB$W-RSZ
RAB$L-STS
RAB$L-STV
RAB$W-STV0
RAB$W-STV2
RAB$B-TMO
RAB$L-UBF
RAB$W-USZ

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

BLISS-32 Example:

LITFHf',!.
OUF_SrZE ::: 50;

OWN
BUFFER
FAE~_.BLOCI(

Ii:AB Bl.OCK

VECTOR
$FAB
$RAB

[BUF_SIZE, BYTEJ,
CFNM='FI[El.DAT'),
(FAB=FAB_.BL..OCK,
I:t:AC:::SEQ,
UBF:::BUFFER,
USZ=BUF_SIZE);

4-81

VDS MACROS - PROGRAM STRUCTURE MACROS

$RAB_INIT
$RAB_STORE

The $RAB STORE and $RAB INIT macros can be
fields at run time. The $RAB STORE macro
programs. The $RAB INIT macro-is used in
Refer to the discussion of the $RAB macro
RAB fields.

MACRO-32 Format:

$RAB STORE

BLISS-32 Format:

$RAB INIT

BKT=bkt-code,
FAB=fab-address,
RAC=rac...;..param,
RHB=header-buffer-address,
ROP=BIO, -
UBF=user-buffer-address,
USZ=user-buffer-size

(BKT=bkt-code,
FAB=fab-address,
RAC=rac-param,
RHB=header-buffer-address,
ROP=BIO,
UBF=user-buffer-address,
USZ=user-buffer-size) ;

used to load RAB
is used for MACRO-32

BLISS-32 programs.
for a description of

Refer to the discussion of the $RAB macro for descriptions of
input parameters. All parameters are optional.

4-82

(

(
,-

(

(

(
'---

VDS MACROS - PROGRAM STRUCTURE MACROS

Examples:

MACRO-32 Example:

BUF _.SI ZE ::: 50
IN_BUF: .BLKB BUF_SIZE

BLISS-32 Example:

LOCAl ...

UBF=IN_BUF, -
UBZ=tBUF __ 8 I ZE

INBUF : VECTOR [50, BYTE);

(UBF=INBUF, UBZ=BUF_SIZE);

4-83

VDS MACROS - PROGRAM STRUCTURE MACROS

The $DS SBTTL macro should be used at the beginning of each
test and subtest. It will perform the following functions:

• It will generate text containing the test and subtest
numbers, along with the contents of a programmer-specified
character string. This text will be included in a .SBTTL
MACRO-32 statememt, and will also be displayed on the user
terminal when the test or subtest is entered and the VDS
Control Flag TRACE is set.

• If the macro is at the beginning of a test, a new program
section (.PSECT) is assigned to the test. (A subtest will
be included in the PSECT of the test to which it belongs.)

• The code of the test or subtest will be aligned as
specified by the programmer.

MACRO-32 Format:

$DS_SBTTL ascii, [align]

BLISS-32 Format:

Not supported for BLISS-32.

ascii

Character string representing text to be used as program
subtitle and to be displayed when VDS TRACE flag is set.

align

Desired program section alignment for the test or subtest.
Possible values are BYTE, WORD, LONG, QUAD, PAGE, or an integer
from 0 to 9. If an integer is specified, the psect will start
at the next address that is a multiple of two raised to the
power of the integer.

4-84

(

(

(

(

VOS MACROS- PROGRAM STRUCTURE MACROS

Notes:

1. The $OS SBTTL macro should be used in conjunction with the
$OS PAGE macro.

Example:

*,DS ... SBTTL. ..•
ALIGN -- BYTE, -
ASCII - <READ/WRITE SWAP DATA TEST)

4-85

VDS MACROS - PROGRAM STRUCTURE MACROS

$DS_SECDEF

The $DS SECDEF macro is used to declare all of the names of the
test sections (see Section 3.8.3) of the diagnostic program.
This macro must appear in every source module that contains
tests. The macro is used in conjunction with the $DS SECTION
macro.

MACRO-32 Format:

$DS_SECDEF a, [b, c, d, e, f, g, h, i, j, k, 1, m, n, 0, p]

BLISS-32 Format:

$DS SECDEF (a, [b, c, d, e, f, g, h, i, j, k, 1, m, n, 0, p]);

a, b, ••• , 0, P

List of from 1 to 16 test section names. This list must be
identical to the list included with the $DS SECTION macro, even
if the module in which the $DS SECDEF macro is being placed
does not include tests belonging to every listed section.

Notes:

1. The macro automatically includes the section name DEFAULT
at the beginning of the section name list.

Examples:

MACRO-32 Example:

iDS_SECDEF READTESTS, WRITETESTS, SEEKTESTS

BLISS-32 Example:

SDS_SECDEF (READTESTS, WRITETESTS, SEEKTESTS);

4-86

(

(

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

The $DS SECTION macro is used to declare all of the names of
the test sections (see Section 3.8.3) of the diagnostic
program. This maCro must appear in the source module that
contains the $DS HEADER macro. The $DS SECTION macro is used
in conjunction with the $DS SECDEF macro.

MACRO-32 Format:

$DS SECTION a, [b, c, d, e, f, g, h, i, j , k, 1, - p] m, n, 0,

BLISS-32 Format:

$DS SECTION (a, - [b, c, d, e, f, g, h, i, j , k, 1 ,
m, n, 0, p]) ;

a, b, ••• ,o, p

List of from 1 to 16 test section names. This list must be
identical to the list included with the $DS SECDEF macro.

Notes:

1. The macro automatically includes the section name DEFAULT
at the beginning of the section name list.

Examples:

MACRO-32 Example:

'DS_SECTION READTESTS, WRITETESTS, SEEKTESTS

BLISS-32 Example:

IDS_SECTION (READT~STS, WRITETESTS, SEEKTESTS);

4-87

VDS MACROS - PROGRAM STRUCTURE MACROS

The $DS STRING macro can be used to generate a quadword
descriptor (see section 4.3) for a given character string. In
MACRO-32 programs, .ASCIC and .ASCIZ formats for the string may
also be generated. This enables the programmer to reference
the same string in any of the three formats.

MACRO-32 Format:

$DS STRING <text>, [labell], [labe12]

BLISS-32 Format:

$DS STRING (I tex t I) ;

text

Character string for which a quadword descriptor is to be
constructed.

labe11

(

Label to be placed at the .ASCIC construction of the character (
string. (This parameter may not be referenced by keyword.)

labe12

Label to be placed at the .ASCIZ construction of the character
string. (This parameter may not be referenced by keyword.)

Notes:

1. The quadword descriptor will be contructed at the current
PC. It may be accessed by placing a label at the macro
call, as illustrated in the example.

4-88

VDS MACROS- PROGRAM STRUCTURE MACROS

(Examples:

MACRO-32 Example:

MSG_LABEL:
$DB_STRING - ;Create descriptor for strin~.

(THIS IS A MESSAGE.), - ;
MSG_LABEL1, - ;Include label for .ASCrC
MSG_LABEL2 ;Include label for .ASCIZ

BLISS-32 Example:

BIND
MSG_LABEL = $DS_STRING (THIS IS A MESSAGE.);

4-89

VDS MACROS - PROGRAM STRUCTURE MACROS

$XABFHC

The $XABFHC will allocate the File Header Characteristics
Extended Attribute Block (FHC XAB), which is an optional data
structure used by RMS. If the $XABFHC macro is used, and if a
pointer to the FHC XAB is specified in the FAB, then the $OPEN
operation will load the FHC XAB with file header
characteristics obtained from the header of the file that was
opened.

Besides allocating the XAB, the $XAB macro also defines symbols
Symbols are of the form
"datatype" is a data type

for each XAB fi eld.
XAB$datatype fieldname, where
specifier listed in Table 5-1.

MACRO-32 Format:

$XABFHC

BLISS-32 Format:

$XABFHCi

Notes:

1. FHC XAB Fi elds

Following are the FHC XAB fields filled in by VDS RMS.
Refer to the VAX/VMS RMS Reference Manual for fields filled
in QY VMS RMS.

• ATR - Record attributes. Same as RAT field of FAB.

• BLN - Length of the XAB.

• COD - Type of XAB. (Only FHC XAB type is allowed.)

• EBK - Virtual block number of end-of-tile.

• FFB - First free byte in end-of-file block.

• HSZ Fixed length control header size.
field of FAB.

• LRL - Longest record length.

4-90

Same as FSZ

(

(

VDS MACROS - PROGRAM STRUCTURE MACROS

(• MRZ - Maximum record size. Same as MRS field of FAB.

• RFO - File organization and record format. Combines
ORG and RFM fields of FAB.

• SBN - Starting block number of the file if it is
contiguous; otherwise field is 0.

Examples:

MACRO-32 Example:

$XABFHC

BLISS-32 Example:

LDCAL
XAB_BLOCK: $XABFHC;

(

4-91

VOS MACROS - PROGRAM STRUCTURE MACROS

$DS_ERRNUM

The $OS ERRNUM macro is used in conjunction with the
$OS ERRxxxx L macros. It generates executable code that will
dynamically-load the "num" argument of the argument list
created by the $OS_ERRxxxx L macro.

MACRO-32 Format:

$OS ERRNUM label, [num]

BLISS-32 Format:

Not supported for BLISS-32.

label

num

Address of the argument list generated by the $DS ERxxxx L
macro.

(

Error number. If a value is specified, the value will be used
as the "num" parameter in the argument list. If a value is not (
specified, the current assembly-time error number is used. '
Refer to the description of the $DS ERRxxxx system services for
an explanation of the assignment of-error numbers at assembly
time.

Notes:

1. Using the -$OS ERRxxxx L macro to create an argument list,
dynamically altering- the error number with the $DS_ERRNUM
macro, then calling the error service with a $DS ERRxxxx G
call has a disadvantage. It is difficult to relate-a
specific error message, displayed at run-time, to a
specific point in the program listing because the error
number is not explicitly specified as a macro argument.
This mayor may not be a problem, depending on the
program's use and users.

4-92

VDS MACROS - PROGRAM STRUCTURE MACROS

(Example:

ARG_LIST:
SDS_ERRHARD_L - ;Declare hard error ars. list

UNIT = LOG_UNIT, -
MSGADR = HARD_MSGI, -
PRLINK = HARD_RTNI, -
PI = CSR_REG

;Put error number in ars. list

(

4-93

VDS MACROS - PROGRAM CONTROL MACROS

4.5 PROGRAM CONTROL MACROS

$DS_BCOMPLETE - $DS_BNCOMPLETE

The $DS BCOMPLETE and $OS BNCOMPLETE program control macros can
be used to test the return status of a system service (or any
routine which returns a status code in R0) and branch if the
service's operation was "complete" or "incomplete."

MACRO-32 Format:

$OS BCOMPLETE adr
$OS-BNCOMPLETE adr

BLISS-32 Format:

adr

Not supported for BLISS-32, since testing R0 is implicit in the
ianguage. See the example below.

Address to which to branch if tested condition is satisfied.

Notes:

1. For all error status codes, bit 0 is clear. Therefore,
these macros simply generate the following code:

$DS BCOMPLETE -
$DS-BNCOMPLETE -

BLBS R0,adr
BLBC R0, adr

2. If an error status code is detected, the contents of R0
should be compared with all error codes that could possibly
be returned from the service (or other) routine to determine
the exact nature of the error.

Examples:

MACRO-32 Example:

SDS_GETBUF t2, RETADDR, PHYSADDR
$DS_BNCOMPLETE BAD_BUF

BLISS-32 Example:

IF $DS_GETBUF (PAGCNT=2) THEN •• "

4-94

(

(

(

(

VDS MACROS - PROGRAM CONTROL MACROS

$DS_BERROR - $DS_BNERROR

The $OS BERROR and $OS BNERROR program control macros
used to test the return status of a system service
routine which returns a status code in R0) and branch
service's operation was in error or was error-free~

can be
(or any
if the

MACRO-32 Format:

$OS BERROR adr

$OS BNERROR adr

BLISS-32 Format:

adr

Not supported for BLISS-32, since testing R0 is implicit in the
language. See the example below.

Address to which to branch if tested condition is satisfied.

Notes:

1. For all error status codes, bit 0 is clear. Therefore,
these macros simply generate the following code:

$OS BERROR -

$OS B.NERROR -

BLBC R0, adr

BLBS R0, adr

2. If an error status code is detected, the contents of R0
should be compared with all error codes that could possibly
be returned from the service (or other) routine to determine
the exact nature of the error.

Examples:

MACRO-32 Example:

LOG_.lIN IT, AD DR 1

$ [lS._ BNERROR 10$

BLISS-32 Example:

IF NOT 'DS_GPHARD (UNIT=.LOG_UNIT, RETADR=ADDRl) THEN •••

4-95

VDS MACROS - PROGRAM CONTROL MACROS

The $DS BOPER and $DS BNOPER macros can be used to determine the
presence of an operator (user) during program execution. (The
presence of a user is indicated by the condition of the VDS
control flag OPERATOR.) These macros can be used to control
whether certain portions of the program are executed only if a
user is present. $DS BOPER will cause a branch if the OPERATOR
flag is se t, and $DS _BNOPER wi 11 cause a branch if the -flag is
clear.

MACRO-32 Format:

$DS BOPER adr

$DS BNOPER adr

BLISS-32 Format:

adr

Not implemented for BLISS-32. Direct reference of the
corresponding VDS control flag, as illustrated in the example
below, is recommended.

Address to which to branch if the tested condition is satisfied.

Examples:

MACRO-32 Example:

BLISS-32 Example:

[F .DSASV_OPER THEN BEGIN .t. END;

4-96

/

(

(

(

VDS MACROS - PROGRAM CONTROL MACROS

$DS_BPASSO - $DS_BNPASSO

The $DS BPASS0 and $DS BNPASS0 program control macros can be
used wIthin the initialization code to determine if the current
pass through the initialization code is the first one. It is
often necessary to perform certain operations the first time the
initialization code is executed that should not be repeated on
subsequent passes through the initialization _ code, such as
initialization of run-time variables. (It is helpful to think
of "pass 0" as the execution that takes place before the first
pass through the tests occurs.)

$DS BPASS0 will cause a branch if the current pass through the
initialization code is the first one. $DS BNPASS0 will cause a
branch if the current pass through the initialization code is
not the first one. These macros may only be used in the
initialization code.

MACRO-32 Format:

$DS BPASS0 adr

$DS BNPASS0 adr

BLISS-32 Format:

adr

Not implemented for BLISS-32. Direct reference of the
corresponding VDS control flag, as illustrated in the example
below, is recommended.

Address to which to branch if the tested condition is satisfied.

Examples:

MACRO-32 Examples:

$. [J S "" r: N P f"~ S S 0
$DfL.flF'ASSO

BLISS-32 Example:

:;0$
PASSt

IF .DSASV_PASSO THEN BEGIN +t. END;

4-97

VDS MACROS - PROGRAM CONTROL MACROS

$DS_BQUICK - $DS_BNQUICK

The $DS BQUICK and $DS BNQUICK program control macros can be
used to determine if the VDS control flag QUICK has been set by
the program user. The $DS BQUICK will cause a branch if the
QUICK flag is set, and the $DS BNQUICK will cause a branch if
the flag is clear. If the flag has been set, the diagnostic
program should execute only the portions of code deemed
appropriate to the "quick" mode of operation.

MACRO-32 Format:

$DS BQUICK adr

$DS BNQUICK adr

BLISS-32 Format:

adr

Not implemented for BLISS-32. Direct reference of the
corresponding VDS control flag, as illustrated in the example
below, is recommended.

(

Address to which to branch if the tested condition is satisfied. (

Examples:

MACRO-32 Examples:

${I!LBCWICK TAG:!,

BLISS-32 Example:

IF .DSA$V_QUICK THEN BEGIN ••• END;

4-98

(

(

VDS MACROS - PROGRAM CONTROL MACROS

The $DS CKLOOP program control macro is used to explicitly
specify- the upper bound of a program loop. It is used when the
implicit upper bound provided by a $DS ENDSUB or $DS ENDTEST
macro creates a loop that is too large to be useful. A detailed
discussion of program looping, including the use of the
$DS CKLOOP macro, is provided in Section 3.10, Looping.

MACRO-32 Format:

$DS CKLOOP label

BLISS-32 Format:

Not supported for BLISS-32. See note 2.

label

Address of loop's lower bound. After the $DS CKLOOP is
executed, prog ram flow branches to th i s add ress. -The add ress
must be lower than the location of the $DS CKLOOP macro, but
higher than the most recent $DS BGNTEST or $OS BGNSUB macro.

Notes:

1. If $DS CKLOOP macros are used in
contain subtests, the $DS CKLOOP
anywhere within the test. For tests
the $DS CKLOOP macros must be placed

a test that does not
macros may be placed
that contain subtests,
within the subtests.

2. The $DS CKLOOP has not been implemented for BLISS-32.
However, programs written in BLISS-32 (and MACRO-32, for
that matter) can define sufficiently small program loops
with judicious use of $DS BGNSUB and $DS ENDSUB macros.

3. The $DS INLOOP system service may be used inside the bounds
of a loop to determine whether or not the loop is actually
being executed.

4-99

VDS MACROS - PROGRAM CONTROL MACROS

Example:

$[IS_,BGN8UB

LOOF'_.BGN:

$DS .• ERRHAFW

$ [IS., EN DS US

UNIT~LOG_UNrT, MSGADR=HRD1, PRLINK=HRDRTNl

4-100

(

(

(

VDS MACROS - PROGRAM CONTROL MACROS

The $DS ESCAPE program control macro can be used to exit from a
test or subtest if a hardware failure has been detected from
within the test or subtest. If the failure is reported using
one of the error reporting macros ($DS ERRxxxx), and if
$DS ESCAPE is executed before the next $DS ENDSUB or $DS ENDTEST
macro is encountered, then program control will branch to the
next $DS ENDSUB or $DS ENDTEST (whichever is specified).

MACRO-32 Format:

$DS_ESCAPE arg

BLISS-32 Format:

arg

No t suppo r ted fo r BLISS-3 2. See No te 1.

Indicates whether program control
$DS ENDSUB or nearest $DS ENDTEST.
SUB or TEST.

should branch to nearest
The argument may be either

Notes:

1. For programs written in BLISS-32, similar functionalilty can
be obtained by following the $DS ERRxxx macro with a LEAVE
statement, as shown in the example-below.

4-101

VDS MACROS - PROGRAM CONTROL MACROS

Examples:

MACRO-32 Example:

$DS ... BGNSUB

$I)S_ERRHARD
$DS_ESCAPE

$J)S ... ENDSUB

BLISS-32 Example:

$[lS_BGNSUB;
SUB3: BEGIN

UNIT=LOG_UNIT, MSGADR=HRDMSG3, PRLINK=HRDRTN3
SUB

$DS_ERRHARD_S (UNIT=.LOG_UNIT, MSGADR=HRDMSG3, PRLINK=HRDRTN3);
LEAVE SUB3;

END;
$[lS_ENIISUB;

4-1132

(

(

(

(

(

VDS MACROS - PROGRAM CONTROL MACROS

The $DS EXIT program control macro is used to unconditionally
branch -to the end of the currently executing program segment.
Exits can be made from any of the following:

1. A test
2. A subtest
3. An interrupt service routine
4. The summary routine

MACRO-32 Format:

$DS_EXIT arg

BLISS-32 Format:

arg

Not supported for BLISS-32. See note 1.

Indicates program segment type. Valid arguments are TEST, SUB,
SERV, and SUMMARY.

Notes:

1. For programs written in BLISS-32, similar functionalilty can
be obtained by using the LEAVE statement, as shown in the
example below.

Examples:

MACRO-32 Example:

SERV RTN

SEI:::V

4-103

VDS MACROS - PROGRAM CONTROL MACROS

BLISS-32 Example:

T2_BLKt:
BEGIN

END;
SDS_ENDTESTi

4-104

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

4.6 SYSTEM SERVICE MACROS

$DS-ABORT

The Abort Program or Test service can be used to stop execution
of either the whole diagnostic program or just the current
test. If the program is aborted, a system service is called.
This service will execute the program's cleanup code and return
control to the VDS command line interpreter. If only the
current test is aborted, the test is exited (with an RET
instruction) and the next selected test is called.

MACRO-32 Format:

$DS_ABORT arg

(No suffix.)

BLISS-32 Format:

arg

$DS ABORT (ARG=arg);

'PROGRAM' or 'TEST'. If 'PROGRAM' is specified, then the
program will be aborted. If 'TEST' is specified, the current
test will be exited (with an RET instruction) and the next
selected test will be called.

Return Status:

No status is returned, because $DS ABORT (TEST) does not
generate a service call and $DS ABORT (PROGRAM) does not allow
program control to return to the-diagnostic program.

Examples:

MACRO-32 Example:

SDS_ABORT (PROGRAM)

$DS ABORT (TEST)

BLISS-32 Example:

SDS_ABORT (ARG=PROGRAM);

IDS_ABORT (ARG=TEST);

4-105

VDS MACROS - SYSTEM SERVICE MACROS

$ASCTIM

The Convert Binary Time to ASCII String system service converts
the contents of a quadword from 64-bit time format into an
ASCII string. This is the converse of the function performed
by the $BINTIM service.

MACRO-32 Format:

$ASCTIM_X [timlen], timbuf, [timadr], [cvtflg]

BLISS-32 Format:

$ASCTIM ([TIMLEN=timlen], TIMBUF=timbuf, [TIMADR=timadr],
[CVTFLG=cvtflg]);

timlen

Address of a word to receive length of output string.

timbuf

Address of a character string descriptor (see Section 4.3)
pointing to buffer to receive converted string.

timadr

Address of the 64-bit time value to be converted. A value of 0
(the defaul t) resul ts in the current system time being
converted. A positive value represents an absolute time. A
negative value represents a relative time (offset from the
current time).

cvtflg

Conversion indicator. A value of 1 causes only the hour,
minute, second, and hundredth of second fields to be returned,
while a value of 0 causes the full date and time to be
returned.

4-106

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ IVTIME

The specified relative time is equal to or greater than 10,000
days.

Notes:

1. The ASCII string returned by the service will be in the
format specified in the notes to the $BINTIM service.

2. To receive full absol ute da te and time, the "timbuf" buffer
length must be 23 bytes. To receive the full relative day
and time, the buffer length must be 16 bytes. Specifying a
shorter buffer length will cause the returned string to be
truncated to the buffer size. This may be useful if, say,
only the absolute date is required, and not the time. It
is only necessary to provide a buffer that can hold the
amount of the returned string the caller wishes to receive.

Examples:

MACRO~32 Example:

$ASCTIM .. S

BLISS-32 Example:

$ASCTIM (TIMLEN=STR_LENGTH, TIMBUF=BUFPTR, TIMADR=TIME,
CVTFLG:::l);

4-107

$DS_ASKADR
$DS_ASKDATA

$DS_ASKLGCL

$DS_ASKSTR
$DS_ASKVLD

VDS MACROS - SYSTEM SERVICE MACROS

The "ask" system services are used to obtain information from
the program user at run time. With these services, the
diagnostic program can

• Prompt the user with a message specified by the programmer
• Obtain keyboard input from the user
• Interpret and validate the input string
• Store the value specified by the input string

The Ask for Address ($DS_ASKADR) system service is used when
the information requested from the user is an address.

The Ask for Data ($DS_ASKDATA) system service is used when the
information requested from the user is a numeric value other
than an address.

The Ask for Logical Response ($DS ASKLGCL) system service is
used to ask the user a question that can be answered with a
"yes" or "no" response. Optionally, the caller can specify
addresses of routines that will automatically be branched to on
a "yes" or "no" response.

The Ask for Character String ($DS ASKSTR) system service is
used to obtain an alphabetic character string from the user.
Optionally, the caller can also provide a set of valid response
strings. The system service will compare the input string to
the valid responses and indicate to the caller which response
was provided.

The Ask for Data Field ($DS ASKVLD) system service is used to
obtain a numeric value from the user and insert the value into
a data field indicated by a position and size. This service is
useful for loading fi€lds in large data structures (greater
than 32 bits) •

4-108

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

MACRO-32 Format:

$DS ASKADR x msgadr, datadr,
[defalt], [unused], [exword]

[radix] , [lolim] , (hilim],

$DS ASKDATA x msgadr, datadr, [radix],
[hilim], [defalt], [unused], [exword]

[mask] , [lolim],

$DS_ASKLGCL __ x msgadr, datadr, [pos] , [yexfer] , [noxfer] ,
[defalt]

$DS_ASKSTR_X msgadr, bufadr, [maxlen], [val tab], [defadrJ

$DS ASKVLD x msgadr, datadr, [radix], [pos], [size], [loliml,
[hilim], [defalt], [unused], [exword]

BLISS-32 Format:

$DS ASKADR (MSGADR=msgadr,
DATADR=datadr,
[RADIX=radix],
[LOLIM=lolim] ,
[HILIM=hilim] ,
[DEFALT=defalt],
[EXWORD=exword]);

$DS ASKDATA (MSGADR=msgadr,
DATADR=datadr,
[RADIX=radix] ,
[MASK=mask] ,
[LOLIM=lolim] ,
[HILIM=hilim] ,
[DEFALT=defalt] ,
[EXWORD=exword]);

$DS ASKLGCL (MSGADR=msgadr,
DATADR=datadr,
[POS=pos] ,
[YEXFER=yexfer] ,
[NOXFER=noxfer] ,
[DEFALT=defalt]);

$DS ASKSTR (MSGADR=msgadr,
BUFADR=bufadr,
[MAXLEN=maxlen],
[VALTAB=val tab] ,
[DEFADR=defadr]);

4-109

VDS MACROS - SYSTEM SERVICE MACROS

$DS ASKVLD (MSGADR=msgadr,
DATADR=datadr,
[RADIX=radix] ,
[POS=pos] ,
[SIZE=size] ,
[LOLIM=lol im] ,
[HILIM=hilim] ,
[DEFALT=defalt] ,
[EXWORD=exword])i

msgadr

Address of counted ASCII string to be used as user prompting
message.

datadr

Address of longword to receive interpreted user response value.

For $DS_ASKDATA, value is placed in bit position indicated by
IImask.1I

For $DS_ASKVLD, value is placed in field indicated by IIpOSIl and
IIsiz,1I where IIpOSIl is bit offset from IIdatadr.1I

For $DS ASKLGCL, value will be placed in one bit, indicated by
IIpOS.1I The bit can be compared with PAR$NO and PAR$YES, defined
in $DS PARDEF. (No = 0, yes = 1).

bufadr ($DS_ASKSTR only)

Address of buffer that will receive counted ASCII input string.

maxlen ($DS_ASKSTR only)

Size of the buffer specified in IIbufadr.1I The default value is
72.

valtab ($DS_ASKSTR only)

Address of table containing list of string pointers. See Note
4 for table format. Each table entry points to an ASCII string
(uncounted) that represents a valid user response. The system
service will compare actual user input to the valid responses.
If a match is found, the number of the table entry pointing to
the matched string will be returned in Rl. If a match is not
found, the system service will inform the user that an invalid
response has been issued and will then reissue the prompt
message. See Note 5 for a description of the string comparison
algorithm.

4-110

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

If this parameter is 0 (the default), no validation will take
place.

defadr ($DS_ASKSTR only)

Address of counted ASCII string to be used as a default user
response. The default value for this parameter is 0, which
means there is no default user response.

radix

Radix in which the user response is to be interpreted. Legal
values for this parameter are defined by the macro $DS PARDEF,
and consist of PAR$ BIN, PAR$ OCT, PAR$ DEC, and PAR$ HEX. The
default radix is decimal, except in the-case of $DS ASKADR, for
which the default is hexadecimal. -

mask ($DS_ASKDATA only)

Mask indicating the bit positions within "datadr" in which the
interpreted user response should be stored. The defaul t value
is FFFFFFFF (hexadecimal), indicating 32 bits starting at bit
0.

pos ($DS_ASKVLD and $DS_ASKLGCL only)

Bit offset from "datadr," indicating where interpreted user
response is to be stored. See Note 6 for legal values.
Default is 0, indicating value should be stored starting at bit
o of "datadr."

size ($DS_ASKVLD only)

Number of bits in "datadr" in which interpreted user response
is to be stored. Range is 1 through 32.

101im

Minimum acceptable value for numeric user reponse. Default is
minus 2 to the 31st power, except in the case of $DS_ASKADR,
for which the default is (unsigned) 0.

hilim

Maximum acceptable value for numeric user response. Default is
2 to the 31st power minus 1, except in the case of $DS ASKADR,
for which the default is (unsigned) FFFFFFFF (hexadecimal).

4-111

VDS MACROS - SYSTEM SERVICE MACROS

defalt

The value to be used if the user does not provide a response
(user just types return key). The default value for "defalt"
is " (which, for $DS ASKLGCL, is equivalent to a "no"
response). If no default is to be used, then NODEF must be set
in the "exword" parameter.

For the $DS ASKLGCL macro, default values may be specified by
the symbols PAR$NO and PAR$YES, defined by the $DS PARDEF
macro.

yexfer ($DS_ASKLGCL only)

Address to branch to if user response is "yes." Default is 0,
meaning no branch will take place.

noxfer ($DS_ASKLGCL only)

Address to branch to if user response is "no." Default is 0,
meaning no branch will take place.

unused

Reserved for expansion.

exword

The "exception mask." This is a longword containing "exception
flags." These flags are used to modify the interpretations of
some of the other parameters. Symbols for the exception flags
are defined by the $DS PARDEF macro. Refer to the description
of that macro for the complete symbol names. The flags are:

• NODEF - There is to be no default value for the user
response. In other words, the "defalt" parameter is to be
ignored.

• ATDEF - The argument specified for the "defalt" parameter
is the address of a location containing the default value.

• ATLO - The argument specified for the "lolim" parameter is
the address of a location containing the low limit value.

• ATHI - The argument specified for the "hilim" parameter is
the address of a location containing the high limit value.

By default, all flags are cleared.

4-112

(

(

(

(

(

VOS MACROS - SYSTEM SERVICE MACROS

Return Status:

SS$ NORMAL

Service successfully completed.

OS$ PROGERR

An incorrect number of arguments was supplied with the macro.

DS$ TRUNCATE

For $OS ASKSTR, the string supplied by the user was too long to
fit into the buffer pointed to by "bufadr." The string was
truncated in order to fit into the buffer.

For $DS ASKOATA and $OS ASKVLO, the value specified by the user
was tOb large to fit into the bit field specified by the
caller. The value was truncated in order to fi t into the
specified field.

Notes:

1. If the VDS control flag OPERATOR is clear, and if no
defa~lt value has been specified for the prompting message,
then the diagnostic program will be aborted. Thus if the
diagnostic program is intended to be executed in an
automated run-time environment (such as APT), these macros
cannot be used unless default values are provided.

It is also required that if these macros are used in the
DEFAULT program section (see Section 3.8.3), default values
must be provided.

2. If the VDS control flag PROMPT is set, the ranges and
default values for user responses will be displayed along
with the prompting message.

3. To ensure that prompting messages are left-justified,
precede each prompting message with a CR and LF.

4. Figure 4-4 illustrates the format of the "valtab" table.

4-113

VDS MACROS - SYSTEM SERVICE MACROS

31 8 7 o

Unused I N

String Pointer 1 .ASC II stri ng 1

String Pointer 2 .ASCII string2

• • -:: .. ~ .. •

It------S-tr-in-g p"';;:-in-te-r N----------------------tJ-+-.. ~ .ASCII stringN

TK~1D534

Figure 4-4 "Val tab" Table Format

5. When the $DS ASKSTR system service compares the user
response string with the set of valid responses optionally
specified by "val tab," it will go through the table of
valid string pointers and, for each valid string, it will
compare the characters of the user response with the
characters of the valid string until the end of the user
response is reached. If all the characters of the user
response match all the characters of the current valid
string, up to the end of the user reponse, a match is
declared. This means the user can abbreviate input
strings. For example, if a valid string is EXECUTE, the
user can type EXEC, EX, or even just E. However, suppose
two valid strings are START and STOP. If the user typed
ST, then the service routine would declare a match on
whichever of the valid strings was defined first in
"val tab."

6. When the "pOSH parameter is used with the $DS ASKLGCL
macro, its legal range is 0 through 7.

When the "pOSH parameter is used with the $DS ASKVLD macro,
its legal range normally is 0 through the-largest value
that can be stored in a ~ongword. However, if a register
is specified for "datadr," then the legal range for "pOSH
is 0 through 31.

4-114

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

PF:OMF'T:
I~ESPONSE !

.ASCIC IDEVICE ADDRESS:;

.L.ONG 0

:I;:)S __ tiEKADF: ... S .•
MSGADR - PROMPT, -
DATADR - RESPONSE, -
RADIX = tPAR._OCT, -
LOL.IM - *760000, -
HILIM = 1777777, -
DEFAt.. T .- *::'64000

BLISS-32 Example:

BIND
PROMPT = UPLIT (%ASCIC 'IS THE DRIVE WRITE-ENABLED?);

LOCAL
I~ESPONSE ;

IDS_ASKLGCL (MSGADR=PROMPT, DATADR=RESPONSE);

4-115

VDS MACROS - SYSTEM SERVICE MACROS

$ASSIGN

The Assign I/O Channel system service of VMS is used to provide
an I/O channel that can be used by the caller to communicate
with a peripheral device in user mode. Level 2R programs must
issue the $ASSIGN macro before the $QIO macro can be used.
Refer to Section 3.12.1.1 for details of I/O operations in user
mode.

This service can also be used to create a logical link with a
remote node on a network. Refer to the DECnet-VAX User's Guide
for details.

MACRO-32 Format:

$ASSIGN __ x devnam, chan, [acmode], [mbxnam]

BLISS-32 Format:

$ASSIGN (DEVNAM=devnam, CHAN=chan, [ACMODE=acmode] ,
[MBXNAM=mbxnam]);

devnam

Addre~s of a character string descriptor (see Section 4.3)
pointing to the device name string. The string may be either a
physical device name or a logical name. If the first character
of the string is an underscore (), then the name is a physical
name. Otherwise one level of logical name translation is
performed and the equivalence name, if any, is used.

If the device name contains a double colon (::), VMS assigns a
channel to the device NET0: and performs an access function on
the network.

chan

Address of a longword to recei~e the channel number assigned.

acmode

Access mode to be associated with the channel. The specified
access mode is maximized with the access mode of the caller.
I/O operations on the channel can only be performed from equal
and more privileged access modes. Legal values are 0 for
Kernel, 1 for Executive, 2 for Supervisor, and 3 for User.

4-116

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

mxbnam

Address of a character string descriptor (see section 4.3)
pointing to the logical name ~tring for the mailbox to be
associated with the device, if any. The mailbox receives
status information from the device driver. An address of 0
implies no mailbox. This is the default value.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ REMOTE

Service successfully completed. A logical link is established
with the target on a remote node.

SS$ ABORT

A physical line went down during a network correct operation.

SS$ ACCVIO

A device or mailbox name string or string descriptor cannot be
read by the caller, or the channel number cannot be written by
the caller.

SS$ DEVACTIVE

A mailbox name has been specified, but a mailbox is already
associated with the device.

SS$ DEVALLOC

Warning. The device is allocated to another process.

SS$ DEVNOTMBX

A logical name has been specified for the associated mailbox,
but the logical name refers to a device that is not a mailbox.

The target of the assignment is on a remote node and the
process has insufficient buffer quota to allocate a network
control block.

4-117

VDS MACROS - SYSTEM SERVICE MACROS

SS$ INSFMEM

The target of the assignment is on a remote node and there
insufficient dynamic system memory to complete the request.

SS$ IVDEVNAM

is

No device name was specified, or the device or mailbox name
string contains invalid characters. If the device name is a
target on a remote node, this status code indicates that the
Network Control Block has an invalid format.

,SS$_IVLOGNAM

The device or mailbox name string has a length of e or has more
than 63 characters.

SS$ NOIOCHAN

No I/O channel is available for assignment.

SS$ NOLINKS

No logical network links are available.

SS$ NOPRIV

The process does not have the privilege to perform network
operations.

SS$ NOSUCHDEV

Warning. The specified device or mailbox does not exist.

SS$ NOSUCHNODE

The specified network node is nonexistent or unavailable.

SS$ REJECT

The network connect was rejected by the network software or by
the partner at the nremote node; or the target image exited
before the connect confirm could be issued.

4-118

(

(

(

VDS MACROS -' SYSTEM SERVICE MACROS

Notes:

Refer to the VAX/VMS System Services Reference Manual for notes
on the $ASSIGN system service. That manual should be read
before attempting I/O operations in user mode.

Examples:

MACRO-32 Example:

TTNAME~

TTCHAN:

$ASSIGN ... S

.AselD
• BLI\/"
• +

BLISS-32 Example:

BIND

ITTA2:1
1

~TERMINAL DESCRIPTOR
;TERMINAL CHANNEL NUMBER

DEVNAM=TTNAME, CHAN=TTCHAN

TTNAME = UPLIT (ZASCID 'TTA2:');

OWN
TTCHAN VECTOR,

.ASSIGN (DEVNAM=.TTNAME, CHAN=TTCHAN);

4-119

VDS MACROS - SYSTEM SERVICE MACROS

The Attach Device system service can be used to "attach" a
device automatically from within the diagnostic program,
instead of requiring the program user to issue the ATTACH
command. Attaching devices is discussed in Section 3.2. An
example of when it might be desirable to use the $DS ATTACH
macro is the case in which record management services (RMS) are
to be used to reference a file on a device other than the VDS
default load device.

MACRO-32 Format:

$DS_ATTACH_x cmd, [pmt]

BLISS-32 Format:

$DS ATTACH (CMD=cmd, [PMT=pmt])i

cmd

(

Address of a quadword descriptor that points to a valid ATTACH
command argument string. If the argument string does not
~ont?in everytnecessar y lrespobnse to. f?adch A(TThTACH prompt, ~he C

pmt parame er must a so e speci Ie • e argument strIng

pmt

should not include prompting strings).

Address of a quadword descriptor pointing to a buffer that will
receive error messages and prompting messages if the command
string pointed to by "cmd" is incomplete or in error. This
parameter is optional only if the programmer is absolutely sure
that the specified command string will always be correct for
any hardware configuration. Using the contents of this buffer
is discussed in Note 1.

Return Status:

SS$ NORMAL

Service successfully completed.

DS$ BADTYPE

An invalid device type was specified in the argument string.

4-120

(

(

VDS MACROS - SYSTEM SERVICE MACROS

DS$ BADLINK

The device link specified in the argument string is not
attached.

DS$ ILLUNIT

The device unit number was required and not given, or was too
larg e.

DS$ DEVNAME

The device name specified in the argument string is invalid.

SS$ BADPARAM

A numeric argument was specified in an invalid radix or was out
of range.

SS$ INSFARG

The argument string was incomplete.

Notes:

1. If an argument in the argument string is invalid, or if the
argument string is incomplete, the following will occur:

a. One of the error status codes will be returned.

b. The length field of the quadword descriptor pointed to
by "cmd" will be altered to reflect the length of the
valid portion of the argument string.

c. The buffer described by "pmt" will contain a
VDS-generated error message and the user prompt for the
invalid or missing argument.

The contents of the "pmt" buffer can be used as the
prompting string ("msgadr" parameter) of a $DS ASKSTRING
maCro. The user's response could then be added to the
argument string, after the last valid argument. The
argument string's size would then be readjusted and the
$DS ATTACH macro would be reissued. (Note that a p-table
is not actually built until all arguments are valid, so
this process can be repeated until the user has supplied a
complete argument string.)

4-121

VDS MACROS - SYSTEM SERVICE MACROS

This service will not display any information on the user's
terminal. Thus if an error occurs, simply using
$DS ASKSTRING macro to display the error message and prompt
is -insufficient, since the user will have no idea what
device is being attached! It will be necessary for the
program to display an explanatory message indicating (1)
that an attach was being attempted and (2) which device was
being attached.

Examples:

MACRO-32 Example:

CMrrr..INE: .ASClrr IRH780 SBI RHO 8 51

BLISS-32 Example:

BIND
CMDLINE - UPLIT (XASCIrr 'RH780 SBI RHO 8 5');

.DS_ATTACH (CMD=.CMDLINE);

4-122

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$BINTIM

The Convert ASCII String to Binary Time system service converts
an ASCII string to an absolute or offset time value in the
system 64-bit time format suitable for input to the $SETIMR
service.

MACRO-32 Format:

$BINTIM_X timbuf, timadr

BLISS-32 Format:

$BINTIM (TIMBUF=timbuf, TIMADR=timadr)i

timbuf

Address of a character string descriptor (see Section 4.3)
pointing to the buffer containing the absolute or offset time
to be converted. See notes for input string format.

The maximum offset time that may be specified is 10,000 days.

timadr

Address of a quadword to receive the converted time in 64-bit
format.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ IVTIME

Syntax of the input string is invalid, or the specified time is
out of range.

4-123

VDS MACROS - SYSTEM SERVICE MACROS

Notes: (

1. For absolute time, the input string must be formatted as

dd-mmm-yyyy hh:mm:ss.cc

For absolute time, any of the fields may b~ omitted, but
all punctuation must be included. The system will fill in
the current values for all unspecified fields.

Examples are:

a. 5-DEC-1983 5:16:14.98 (16 minutes, 14.98 seconds after
5 A.M. on 5-DEC-1983)

b. 14:00:00.00 (2 P.M. today)

c. ::05 (5 seconds past the current time)'

2. Fo r rela ti ve time (time offse t from the cur r en t time), the
input string format is

dddd hh:mm:ss.cc

For relative time, any of the fields may be omitted, but
all punctuation must be included. The system will default
all unspecified fields to 0.

Examples are:

a. 4 12:46:14.56 (4 days, 12 hours, 46 minutes, 14.56
seconds from now)

b. 0 5:12 (5 minutes and 12 seconds from now)

c. 0 ::10 (10 seconds from now)

4-124

(

l

(

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

ONE-MIN:
BIN_TIM:

BLISS-32 Example:

BIND
ONE_MIN =.

.ASCID 10 00:01:00.001 ;DESCRIPTOR FOR 1 MINUTE.

.QUAD 1 ;QUADWORD TO HOLD BINARY TIME •

. •
$BINTIM_S ONE_MIN, BIN_TIM

UPLIT (%ASCID '0 00:01:00.00'); ! DESCRIPTOR FOR 1 MINUTE.

LOCAL
BIN_TIM: VECTOR [2J; ! QUADWORD TO HOLD BINARY TIME.

$BINTIM (TIMBUF=ONE_MIN, TIMADR=BIN_TIMJ;

4-125

VDS MACROS - SYSTEM SERVICE MACROS

The Break system service causes a temporary return to the VDS
to take place. The main purpose of this return is to see if
any asynchronous events (including receipt of a control-C
character from the user terminal) have occurred and are waiting
to be processed.

All diagnostic programs must return to the VDS at least once
every three seconds. Issuing any system service macro or
program control macro, plus some program structure macros (such
as $DS ENDSUB and $DS ENDTEST) is considered to be a return to
the VDS~ so the $DS BREAK service only needs to be called if
none of those macros has been issued in a particular
three-second interval. Be particularly careful that all
potential program loops (see Section 3.10) adhere to this
constraint.

MACRO-32 Format:

$DS BREAK

(No suffix.)

BLISS-32 Format:

Return Status:

None.

Examples:

MACRO-32 Example:

BLISS-32 Example:

4-126

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$CANCEl

The Cancel I/O on Channel system service can be used to cancel
I/O requests that were created with the $QIO and $QIOW system
services. The caller specifies the number of the channel for.
which I/O requests are to be canceled, and the service will
cancel all current and pending I/O operations directed to the
channel.

Level 3 programs may not use this service.

MACRO-32 Format:

$CANCEL x chan

BLISS-32 Format:

$CANCEL (CHAN=chan);

chan

Number of the I/O channel on which I/O is to be canceled.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$_EXQUOTA (user mode only)

The process has exceeded its direct I/O quota.

SS$ INSFMEM

Insufficient memory space is available to perform the Cancel
I/O service.

SS$ IVCHAN

An invalid channel number was specified, that is, a channel
number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV (user mode only)

The specified channel was not assigned, or was assigned from a
more privileged access mode.

4-127

Notes:

1.

VDS MACROS - SYSTEM SERVICE MACROS

See the VAX/VMS System Services Reference Manual for
discussions of privilege restrictions, resource
requirements, and other notes relating to the $CANCEL
service.

Examples:

MACRO-32 Example:

$CANCEL_S CHANNUM

BLISS-32 Example:

$CANCEL (CHAN=.CHANNUM);

4-128

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$CANTIM

The Cancel Timer Request system service can be used to cancel
timer requests previously made with the $SETIMR macro. See
Section 3.14.4, Timing.

MACRO-32 Format:

$CANTIM_x [reqidt], [acmode]

BLISS-32 Format:

$CANTIM ([REQIDT=reqidt], [ACMODE=acmode]);

reqid t

The request identification number of the timer request(s) to be
canceled. A request id number is associated with each timer
request when the $SETIMR macro is used. The $CANTIM service
will only cancel the requests having the specified id number.
The default value is 0, which means that all timer requests
should be canceled, regardless of their id numbers.

acmode (user mode only)

Access mode of the requests to be canceled. In user mode, the
access mode is maximized with the access mode of the caller.
Only those timer requests issued from an access mode equal to
or less privileged than the resultant access mode are canceled.

Return Status:

SS$ NORMAL

Service successfully completed.

Examples:

MACRO-32 Example:

;Cancel tiruer reGuest(s) with ID of 2.

BLISS-32 Example:

$CANTIM (); !Cancel all tiruer reGuests.

4-129

VDS MACROS - SYSTEM SERVICE .MACROS

$DS_CANWAIT

The Cancel Wait system service is used to cancel a program wait
state that was created by using the $OS WAITMS or $OS WAITUS
macro. See Section 3.14.4, Timing.

MACRO-32 Format:

$OS CANWAIT x

BLISS-32 Format:

$OS_CANWAITi

Return Status:

SS$ NORMAL

Service successfully completed.

Notes:

1. The $OS CANWAIT macro is only useful if it is included in
an AST- routine or interrupt service routine that was
entered while a $OS WAITMS or $OS WAITUS service was being
executed. See SectIon 3.14.4.

Examples:

MACRO-32 Example:

BLISS-32 Example:

4-130

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$OS_CHANNEL

The Channel Adapter system service of the VDS is used to
control functions that are initiated by referencing internal
registers in the bus adapters. This service takes into account
all processor-specific differences in the adapters and thus
insulates the diagnostic program from those differences.

The Channel Adapter service enables the program to:

• Initialize a MASSBUS adapter or a UNIBUS adapter

• Initialize a UNIBUS

• Enable and disable interrupts from a MASSBUS adapter or a
UNIBUS adapter

• Abort data transfers on a MASSBUS adapter

• Purge a UNIBUS data path

• Set or clear UNIBUS defeat parity

• Request or clear adapter status

For descriptions of the design and operation of the various bus
adapters for VAX processors, refer to the VAX Hardware
Handbook.

The Channel Adapter system service may only be used by level 3
diagnostic programs.

MACRO-32 Format:

$DS CHANNEL x unit, func, [vecadr], [stsadr]

BLISS-32 Format:

$DS CHANNEL (UNIT=unit, FUNC=func, [VECADR=vecadr],
[STSADR=stsadr])i

unit

Logical unit number of the device unit to be tested. The
function specified by "func" will be performed on the adapter
to which this device unit is attached.

4-131

VDS MACROS - SYSTEM SERVICE MACROS

func

Function code indicating the
$DS CHANNEL service. Must
function codes are defined
function codes are described

vecadr

function to be performed by the
be a literal value. In MACRO-32,
by the $DS CHCDEF macro. The

in Note 1. -

Address of interrupt service routine to receive control when an
interrupt occurs. The interrupt may come from the device
specified by "unit" or from the adapter to which the device is
attached. This parameter is only used with the CHC$ ENINT
function code, in which case it is required.

stsadr

Address of a quadword to receive adapter status. Used only
with the CHC$ ENINT and CHC$ STATUS function codes, in which
cases it is required. The adapter status is discussed in Note
2.

Return Status:

$DS NORMAL

Service successfully completed.

$DS ERROR

The specified logical unit number is too large.

$DS IHWE

Initial hardware error. An error condition was detected in the
adapter before the specified function was initiated. The
function will not be performed. Note: To determine exact
hardware error after this status is returned, issue a
CHC$ STATUS function.

$DS IVVECT

The p-table for the device unit indicated with the "unit"
parameter contains an invalid vector address.

$DS LOGIC

An attempt to set or clear a bit within an adapter register has
failed. Indicates a hardware failure.

4-i32

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$DS NOSUPPORT

The specified function is not supported on the processor type
being used. This is not an error condition. See Note 4.

$DS PROGERR

An invalid function code was specified.

A required argument was not included with the macro call.

Notes:

1. Following is a list of the valid function codes along with
their functions and return status codes.

• CHC$ INITA - Initialize the MASSBUS or
to which the device unit specified
attached.

UNIBUS adapter
by "uni ttl is

Return status codes: DS$_NORMAL, DS$_ERROR, DS$_LOGIC,
DS$ NOSUPPORT

• CHC$ INITB - Initialize the UNIBUS to which the device
unit-specified by "unit" is attached.

•

•

Return status codes: DS$_NORMAL, DS$_ERROR, DS$_LOGIC,
DS$ NOSUPPORT

CHC$ ENINT - Enable
UNIBUS adapter to
"unit" is attached.

interrupts for the MASSBUS or
which the device unit specified by
Refer to Note 3 for details.

Return status codes: DS$ NORMAL,DS$ ERROR, DS$_IHWE,
DS$_NORMAL, DS$_LOGIC, DS$_PROGERR -

CHC$ DSINT - Disable
UNIBUS adapter to
"unit" is attached.

interrupts for the MASSBUS or
which the device unit specified by

Return status codes: DS$_NORMAL, DS $_ERROR , DS$_IHWE,
DS$_IVVECT, DS$_LOGIC

• CHC$ ABORT Abort data transfers on the MASSBUS
adapter to which the device unit specified by "unit" is
attached.

4-133

•

VDS MACROS - SYSTEM SERVICE MACROS

Return status
DS$ NOSUPPORT

codes:

CHC$ PURGE - Purge a buffered data path on
The -buffered data path that is purged
specified by the last DS$ SETMAP macro
UNIBUS will be the one to which the
specified by "unit" is attached.

Return status
DS$ NOSUPPORT

codes:

a UNIBUS.
is the one

call. The
device unit

• CHC$ CLEAR - Clear status bits. Clears error bits in
the status registers of the adapter to which the device
unit specified by "unit" is attached. This function
should be requested before interrupts are enabled.

Return status codes: DS$_NORMAL, DS$_ERROR, DS$_LOGIC,
DS$ NOSUPPORT

• CHC$ STATUS - Fetch status for the adapter to which the
device unit specified by "unit" is attached. The
current status of the adapter will be returned in the
quadword specified by "stsadr." See Note I for details.

Return status codes: DS$_NORMAL, DS$_ERROR

• CHC$ SETDFT - Sets the Defeat Data Path Parity bit for
the adapter to which the device unit specified by
"unit" is attached.

Re turn sta tus
DS$ NOSUPPORT

codes:

• CHC$ CLRDFT - Clears the Defeat Data Path Parity bit
for the adapter to which the device unit specified by
"unit" is attached.

Return status
DS$ NOSUPPORT

2. Adapter Status

codes:

Adapter status will be returned to the caller in two
instances:

1. The CHC$ STATUS function is requested.

2. An interrupt has occurred.

4-134

(

(

(

I~

VDS MACROS - SYSTEM SERVICE MACROS

In the latter case, the interrupt service routine (whose
address was specified with the "vecadr" parameter) can (and
should) examine the status quadword to see if errors have
occurred.

The returned status quadword will have the format indicated
in Figure 4-5.

31 16 15 o

STATUS-1

VECTOR I STATUS-2

TK~10635

Figure 4-5 Adapter Status Format

Note: Both longwords are filled when an interrupt occurs.
If the CHC$ STATUS function is requested, however, only the
first longword is filled in the second longword is
cleared.

"Status-I" is a bitmap, each bit representing an error
condition. Each bit has a symbolic name associated with
it, in the form CHS$V xxxxxx.. A longword mask for each bit
is also defined, with the form CHS$M xxxxxx. In MACRO-32,
these symbols are defined by the- $DS CHSDEF macro.
Status-l bits are defined as follows:

Bit 0 - CHS$V SYSERR - System error. Set if either of
bits 9 or 10 1s set.

Bit 1 - CHS$V CHNERR - Channel error. Set if any of
bits 6, 7, 8,-25, 26, and 27 are set.

Bit 2 - CHS$V DEVERR - Device error. Set if either of
bits 4 or 5 is set.

Bit 3 - CHS$V PGMERR - Program error. Set if bit 11 is
set.

3 - CHS$M ERRANY (defined only as
Can be used to test if any error
SYSERR, CHNERR, DEVERR, OR PGMERR

Bi ts 0, 1, 2, and
longword mask)
conditions of types
exist •.

4-135

VDS MACROS - SYSTEM SERVICE MACROS

Bi t 4 - CHS$V DEVBUS - Bus error. Some type of error
has occurred on the bus.

Bit 5 - CHS$V DEVTO - Device timeout.
device did not respond.

The refer.enced

Bit 6 - CHS$V CHNDPE - Data path parity error.

Bit 7 - CHS$V CHNMPE - Map parity error. A MASSBUS
page frame map parity error or a UNIBUS map register
parity failure was detected.

Bit 8 - CHS$V CHPFOT - Power failure/Overtemp. A power
failure or overtemperature condition was detected.

Bit 9 - CHS$V SYSMEM - System memory error. Set if any
of a number- of ~rror conditions relating to data
transfers was detected.

Bit 10 - CHS$V SYSSBI SBI error. For processors
having an SBY, this bit is set if an SBI error
condition is detected.

Bit 11 CHS$V PGMHDE . Hardware-detected program
error. The mapping registers were not set up correctly
by the software, or the software attempted to initiate
a MASSBUS data transfer while one was already in
progress.

Bits 12 through 15 - Unused.

Bit 16 - CHS$V MBAEXC - MASSBUS exception.

Bit 17 - CHS$V MBANED Nonexistent MASSBUS
The referenced MASSBUS device did not
Equivalent to bit 5.

device.
respond.

Bit 18 - CHS$V MBADTB - MASSBUS DTBUSY. Set if MASSBUS
DTBUSY is set (not an error bit).

Bit 19
completed.

CHS$V MBADTC MASSBUS data
Set if MASSBUS DT CMP is set.

Bit 20 - CHS$V MBAATN
MASSBUS ATTN is set.

MASSBUS attention.

transfer

Set if

Bit 21 - CHS$V MBACPE - MASSBUS control parity error.
Set if MASSBUS-MCPE is set.

. 4-136

(

(

l

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Bit 22 - CHS$V BUSINIT - UNIBUS INIT asserted. Set if
UB INIT is set-:-

Bit 23 - CHS$V BUSIC - UNIBUS initialization completed.
Set if UBIC is set.

Bit 24 - CHS$V BUSPDN - UNIBUS power down. Set if UB
PDN is set.

Bit 25 - CHS$V MBAWCKLWR - MASSBUS write check lower
error. Set if-MASSBUS WCK LWR ERR is set.

Bit 26 - CHS$V WBAWCKUPR - MASSBUS write check upper
error. Set if-MASSBUS WCK UP ERR is set.

Bit 27 - CHS$V BUSNXM - UNIBUS nonexistent memory or
device. The referenced address does not respond.

Note: Whenever "status-I" indicates error conditions,
the program should call the $DS SHOWCHAN service so
that the bus adapter's internal registers will be
displayed on the user's terminal. This will enable the
user to determine the exact cause of the error
condition.

If examined in an interrupt service routine, "status-2"
will contain the following:

1. A bit called CHI$V CHNINT which, if set, indicates
that the interrupt-was issued from the adapter.

2. A bit called CHI$V DEVINT which, if set, indicates
that the interrupt-was issued from a device.

3. A five-bit field, starting at bit position
CHI$V IPL and having a length defined by CHI$S_IPL,
which-contains the IPL of the interrupt.

For MACRO-32, the fields of "status-2" are defined by
the $DS CHIDEF macro. Note that CHI$V CHNINT and
CHI$V DEVINT are not mutually exclusive, thit is, both
a device interrupt and an adapter interrupt can be
received at the same time.

The "vector" field will contain the vector of the
device which caused the interrupt. The field is only
relevant for interrupts from devices attached to a
UNIBUS.

4-137

VOS MACROS - SYSTEM SERVICE MACROS

Interrupts

The CHC$ ENINT function enables interrupts for the
adapter (if the adapter is capable of generating
interrupts) . Device interrupts must be explicitly
enabled by the diagnostic program. The CHC$ ENINT
function also loads the appropriate vector addresses.
Thus this function MUST be used, even if the adapter
itself cannot generate interrupts.

Device vector addresses are loaded with the address of
an interrupt preprocessor within the VDS. When an
interrupt occurs, program control is vectored to the
interrupt preprocessor.

The preprocessor will first raise the processor's IPL
to 17 (hex). Next it will check for errors incurred by
the bus adapter and then construct the status quadword.
It will then determine the type of interrupt: adapter,
device, or "passive release." If the interrupt was from
an ad~pter or device, the appropriate bit in "status-2"
is set and control is passed to the user's interrupt
service routine ("vecadr") with a JMP instruction. If
a "passive release" has occurred, an REI instruction is
executed without calling the user's interrupt service
routine.

The user's interrupt service routine should check the
vector address passed in the status quadword to ensure
that the interrupt received was from the expected
device. This can be done by comparing the vector in
the status quadword with the vector in HP$W VECTOR of
the interrupting device's p-table.

It is not wise to request the CHC$ INITA or CHC$ INITB
function while interrupts are enabled.

Processor-Specific Considerations

For some processors, some functions are not relevant.
However, requesting such functions will not cause an
error. The $OS NOSUPPORT status will be returned, but
the program need not necessarily test for this code.
For example, the CHC$ INITB is not relevant on a
VAX-11/730 but, in order to allow a diagnostic program
to be compatible with all processor types, the VDS will
not reject the function it will just return the
$OS NOSUPPORT status code.

4-138

(

(

(

(,

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

Following is an example in MACRO-32 and BLISS-32 of code that
will initialize a MASSBUS, enable bus interrupts, then issue a
SEARCH function on an RP06 disk drive.

MACRO-32 Example:

$DS_CHANNEL_S
DRIVE, tCHC$_INITA

$DS_SETIF'L_S to
MOVL NEXT_ADDR,RF'DA(R2)
MOVL CYLINDER,RF'DC(R2)
$DS_CHANNELS -

Initialize MASSBUS

Lower IF'L
Next disk address to
Desired c~linder.
Enable interrupts.

access.

DRIVE, tCHC$_ENINT, SERVICE_RTN, CH_STATUS
CLRQ
MClVL

20$:

BITL

CH_STATUS
tSEARCH!GO,(R2)
BBC tCHS$V_MBAATN,
CH_.STATUS, 20$
tERR,RF'DS(R2)

BLISS-32 Example:

$DS_CHANNEL
<UNIT = .DRIVE,
FUNC = CHC$_INITA);

$DS_SETIF'L (0);
• (RF'_BASE + RF'DA) = .NEXT_ADDR;
• (RF'_BASE + RF'DC) .CYLINDER;
$DS_CHANNEL

UNIT = .DRIVE,
FUNC = CHC$_ENIT,
VECADR = SERVICE_RTN,
STSADR = CH_STATUS;

CH_STATUS = 0;
• (RP_BASE + RPCS) = SEARCH OR GO;
REPEAT

1
UNTIL .CH_STATUS <CHS$V_MBAATN,l);
IF .(RP_BASE + RPDS) <ERR,l)
THEN
ELSE ••• ,

- ;

4-139

Clear status auadword.
SEARCH flJnct i on.
Wait for SEARCH to finish.

Check for drive errors.

Initialize MASSBUS

Lowe I' I F'L
Next disk address to access •
Desired c~linder.
Enable interrupts.

Clear status auadword •
SEARCH function.
Wait for SEARCH to finish.

If drive errors occurred
then
else •••

VDS MACROS - SYSTEM SERVICE MACROS

$CLOSE

The Close File service of RMS is used to close a file after all
processing of the file has been completed. The $CLOSE service
will also perform a $DISCONNECT operation.

MACRO-32 Format:

$CLOSE fab, [err], [suc]

BLISS-32 Format:

$CLOSE (FAB=fab, [ERR=err], [SUC=suc);

rab

Address of the RAB to be associated with the FAB describing the
file to which connection is to be made. (The address of the
FAB is in the RAB.)

err (user mode only)

Address of a routine to be executed on error return from the
service.

suc (user mode only)

Address of a routine to be executed on successful return from
the service.

Return Status:

Note: For further details on return status values, refer to
the VAX-II RMS Reference Manual.

RMS$ NORMAL

Service successfully completed.

RMS$ CCF

Cannot close file. (Status value will be placed in STY of
FAB.)

4-140

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Notes:

1. Table 4-3 lists the FAB fields used by the $CLOSE service
IN STANDALONE MODE. For user mode, refer to the VAX-II RMS
Reference Manual.

Table 4-3 FAB Fields Used by $CLOSE (Standalone Mode)

Field Mnemonic Field Name

Input:

IFI Internal file identifier.

XAB Extended attribute block address.

Output:

IFI Internal file identifier (zeroed).

STS Completion status code (also returned in R0).

STV Status value.

Examples:

MACRO-32 Example:

$CLOSE FAB_ADDR

BLISS-32 Example:

$CLOSE (FAB=FAB_ADDR);

4-141

VDS MACROS - SYSTEM SERVICE MACROS

$CLREF

The $CLREF macro is used to clear event flags.
are discussed in Section 3.14.2).

MACRO-32 Format:

$CLREF x efn

BLISS-32 Format:

$CLREF {EFN=efn)j

efn

{Event flags

Number of the event flag to be cleared. In user mode, the
number may be from 1 through 23 or from 32 through 127. In
standalone mode, flags 1 through 6~ may be used.

Return Status:

SS$ WASCLR

Service successfully completed.
previously 0.

SS$ WASSET

Service successfully completed.
previously 1.

SS$ ILLEFC

The specified

The specified

An illegal event flag number was specified.

SS$ UNASEFC

flag was

flag was

In user mode, indicates that the specified common event flag
(see Section 3.14.2) has not been associated with the process
issuing the CLREF macro.

In standalone mode, indicates
through 127 was specified.
standalone mode.

4-142

that
These

an event flag from 64
flags are not valid in

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

fCLREF IS

BLISS-32 Example:

$CLREF (EFN=S);

;Clear event flas S.

!Clear event flas S.

4-143

VDS MACROS - SYSTEM SERVICE MACROS

The Clear Exception or Interrupt Vector system service is used
to load an exception or interrupt vector with the address of
the standard VDS condition handler for the specified vector.
The macro's purpose is to restore the standard VDS vector
contents after the vector has been modified with the $DS SETVEC
service.

Only level 3 diagnostic programs may use the $DS CLRVEC macro.

MACRO-32 Format:

$DS CLRVEC x vector - -
BLISS-32 Format:

$DS CLRVEC (VECTOR=vector);

vector

The vector address, relative to the base of the System Control
Block (SCB).

Return Status:

DS$ NORMAL

Service successfully completed.

DS$ IVVECT

Address specified for "vector" is not a valid vector address.

Examples:

MACRO-32 Example:

.... X60

BLISS-32 Example:

$DS_CLRVEC (XX'60');

JRestore VDS handler address for
; memor~ write timeout vector

!Restore VDS handler address for
! memor~ write timeout vector

4-144

(

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

The Declare Control-C Handler system service has two purposes.
It can be used to:

• Declare a control-C handler that will receive control when
the program user types a control-C

• Enable and disable delivery of control-Cs

Refer to Section 3.14.6, Handling Control-Cs, for a details on
control-C handlers and disabling delivery of control-Cs.

If the $DS CNTRLC service is not used, the VDS control-C
handler will be invoked.

MACRO-32 Format:

$DS_CNTRLC_x [astadr], [disabl]

BLISS-32 Format:

$DS CNTRLC ([ASTADR=astadr], [DISABL=disable]);

astadr

Address of the control-C handler. Default value is 0, which
causes VDS control-C handler to be declared.

disable

Value used to indicate if control-C delivery should be disabled
or enabled. If disable is set to 1, control-C delivery will be
disabled. If the value is 0 (the default), control-C delivery
is enabled, and control-Cs will be delivered to whichever
control-C handler has been selected.

Return Status:

SS$ WASSET

Service successfully completed. Control-C delivery was
previously disabled (the disable flag was previously set) •

SS$ WASCLR

Service successfully completed. Control-C delivery was
previously enabled (the disable flag was previously clear) •

4-145

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Examples:

$DS_CNTRlC_S CNTRlC_HDlR

$DS_CNTRlC_S

DISABl=tl

BLISS-32 Examples:

~I want to handle control-Cst

;let VDS handle control-Cst

~Disable control-Cst

$DS_CNTRlC (ASTADR=CNTRlC_HDlR);!I want to handle control-Cst

$DS_CNTRlC ();

$DS_CNTRlC (DISABlE=l)~

4-146

!Let VDS handle control-Cst

!Disable control-Cst

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$CONNECT

The Connect RAB to FAB service of RMS is used to associate an
RAB to an FAB after the file described in the FAB has been
opened with the $OPEN service. The file cannot be read until
after it has been connected.

MACRO-32 Format:

$CONNECT rab, [err], [suc]

BLISS-32 Format:

rab

$CONNECT (RAB=rab, [ERR=err], [SUC=suc]);

Address of the RAB to be associated with the FAB describing the
file to which connection is to be made. (The address of the
FAB is in the RAB.)

err (user mode only)

Address of a routine to be executed on error return from the
service.

suc (user mode only)

Address of a routine to be executed on successful return from
the service.

Return Status:

Note: For further details on return status values, refer to
the VAX-II RMS Reference Manual.

RMS$ NORMAL

Service successfully completed.

RMS$ CCR

An RAB is already associated with the specified FAB.

RMS$ FAB

The FAB block is invalid.

4-147

VDS MACROS - SYSTEM SERVICE MACROS

RMS$ IFI

The FAB's IFI field is invalid.

RMS$ RAB

The RAB block is invalid.

RMS$ RAC

Invalid record access mode. In standalone
sequential and RFA access modes are allowed.

Notes:

mode, only

1. Table 4-4 lists the RAB fields used by the $CONNECT service
IN STANDALONE MODE. For user mode, refer to the VAX-II RMS
Reference Manual.

Table 4-4 RAB Fields Used by $CONNECT (Standalone Mode)

Field Mnemonic Field Name

Input:

FAB Address of FAB.

ROP Record-processing options. (Only BIO is allowed.)

Output:

STS Completion status code. (Also returned in R0.)

Examples:

MACRO-32 Example:

$CONNECT RAB_ADDR

BLISS-32 Example:

SCONNECT (RAB=RAB_ADDR);

4-148

(

(

(
\

VDS MACROS - SYSTEM SERVICE MACROS

The Convert Register Contents to Character String system
service can be used to produce an ASCIC character string that
associates each field in a register (or any longword) with a
mnemonic and indicates the current value of each field. When
the string is constructed, the following algorithm is used:

• For fi elds
mnemonic is
bit is set.

consisting of only one bit, the field
placed into the output string only if the

• For fields greater than one bit in length, two options
are available:

A mnemonic can be associated with the field, in
which case the mnemonic and the field's numeric
value (in the specified radix) are placed into the
output string.

Instead of associating a mnemonic with the field,
the field's VALUE can have a mnemonic assigned to
it. In this case, only the mnemonic is placed into
the output string.

The string can be displayed on the user terminal by using one
of the $DS PRINTx services.

MACRO-32 Format:

$DS CVTREG x msb, data, mneadr, strbuf, maxlen, [vI],
[v3], [v4]~ [v5], [v6]

[v2] ,

BLISS-32 Format:

msb

$DS CVTREG (MSB=msb, DATA=data, MNEADR=mnead r, STR8UF=strbuf,
MAXLEN=maxlen, [VI=v1], [V2=v2], [V3=v3], [V4=v4], [V5=v5],
[V6=v6]);

Most significant bit. Reading
fields progresses from left
indicates the first bit that is
31.

of the specified
to right, so this
to be read. Maximum

location's
pa rameter
value is

data

Contents to be converted. (Note that this is not the address
of the contents, but the contents themselves.)

4-149

VDS MACROS - SYSTEM SERVICE MACROS

mnead r

Address of a string of mnemonics and field specifiers.

A mnemonic may be a
character except '=',

str ing of any
',I, or '@'.

length,

Fields are specified in the following manner:

containing any

1. For one-bit fields, simply include the mnemonic and
follow it by a comma, such as ••• ,MNEMI,MNEM2,MNEM3, ••.

2. For multiple-bit fields, two formats are used:

If a mnemonic is to be associated with the field,
the format is "mnemonic=sizeAradix", where "size" is
the size of the field and "radix" is the radix in
which the field contents is to be displayed. Valid
values for "radix" are "X" (hexadecimal), "0"
(octal), and "D" (decimal). An example is IPL=5 AX.

(

If a mnemonic is to be associated with the field's
VALUE, then the format is "mnemonic=size«l", where
"size" is the size of the field. The value's
mnemonic is specified using the "vI" through "v6"
parameters. (

strbuf

3. If a bit is not to be included in any field, simply
include a comma in the mnemonics list; for example,
••• ,BITI0,BIT9",BIT6, ••.

4. The first mnemonic in the list will be associated with
the bit indicated by the "msb" parameter. Mnemonics
will be assigned from left to right until the mnemonics
list has been exhausted, or until bit 0 has been
reached, whichever happens first.

Address of a buffer to receive the character string.

maxlen

Length of the buffer pointed to by "strbuf." The buffer may not
be greater than 255 bytes. Caution: If the character string
overruns the specified length, the buffer will not contain a
valid string.

4-150

(

(

VDS MACROS - SYSTEM SERVICE MACROS

vI through v6

Each of these, if used, is the address of a counted table of
value mnemonics. Each table will contain pointers to lists of
mnemonics that are to be associated with the possible values
for a particular field. One of these tables will be referenced
each time a field specifier with the format "mnemonic=size@" is
encountered in the mnemonic string (pointed to by "mneadr").
The first time that format is used, the table pointed -to by
"vI" will be referenced; the second time the format is used,
the table pointed to by "v2" will be referenced, and so on.

Each entry in a table will be the address of a mnemonic that is
to be associated with the field's value. The value contained
in the field will be used as an offset into the table. If the
field's value is 0, the first table entry will be fetched; if
the field's value is 1, the table's second entry will be used,
and so on. The mnemonic pointed to by the_ table entry must be
defined by an ASCIC string. The mnemonic will be placed into
the output string. Figure 4-6 illustrates the linkages
involved in this mechanism.

Return Status:

DS$ NORMAL

Service successfully completed.

DS$ PROGERR

The output string was too large to fit into the buffer
provided, or was larger than 255 characters.

The string of mnemonics and field descriptors contains an
invalid field descriptor.

The value specified for "msb" was greater than 31.

The total number of macro arguments was greater than 11.

4-151

VDS MACROS - SYSTEM SERVICE MACROS

Vl:

V2:

:

.. ~

:

..

ADDRESS OF
TABLE_ T1

ADDRESS OF
TABLE_ T2

N

T1 ADDR 1 - -

T1 - ADDR _2

N

T2_ADDR -'
T2_ADDR _2

"L.

.. ~

TK-10536

Figure 4-6 $DS CVTREG Value Mnemonics Table Usage

Notes:

1. On return from the service, Rl will contain the total
length of the output string, even if the string overflowed.

2. A good convention to follow is to not leave any fields
unlabeled. Fields that must be zero (MBZ) , are not used,
or consist of "don't care" bits should be identified as
such. This will cause the fields to be read and displayed,
and the program user will know if, for example, an MBZ bit
actually is 0.

4-152

(

(

(

(
\

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

The following examples illustrate, in both MACRO-32 and
BLISS-32, a method of displaying the processor's PSL.

MACRO-32 Example:

.ASCIC ICM,TP,MBZ=2-X,FPD,IS,CUR=2@,PRV=2@,MBZ,I
IIPL=5-X,MBZ=S-X,DV,FU,IV,T,N,Z,V,CI

MODE_LIST: .LONG 4
.ADDRESS KERNEL
.ADDRESS EXEC
.ADDRESS SUPER
.ADDRESS USER

KERNEL: .ASCIC IKERNELI
EXEC: .ASCle IEXECUTIVEI
SUPEr< : .ASCIC ISUPERVISORI
USER: .ASCIC IUSERI

OUT_BUF: .BLKB 255

MOVPSL RO ;Fetch PSL contents.
$DS_CVTREG - ;Creat.e string.

MSB = 131, - ;Read all 32 bits.
DATA = RO, - ;PSL contents.
MNEA!lR = PSL_MNE, _ .. ;MneRionics strins.
STRBUF = OUT_BUF, - ;OIJtpIJt buffer.
MAXLEN = .,255, - ; Ma>~ i IJI'JRI length.
V1 = MODE_LIST, .- ;1st table.
V2 = MODE_LIST ;2nd table (use 1st one agaird.
• •

4-153

VDS MACROS - SYSTEM SERVICE MACROS

BLISS-32 Example:

BIND
f'SL_MNE =
Uf'LIT
(Y.ASCIC
'CM,TP,MBZ=2-X,FPD,IS,CUR=2~,PRV=2@,MBZ,If'L=5-X,MBZ=8-X,
DV,FU,IV,T,N,Z,V,C');

BIND
KERNEL = UPLIT (ZASCIC 'KERNEL'),
EXEC = UF-LIT CY.ASCIC lEXECUTIVE'),
SUPER = UPLIT (ZASCIC 'SUPERVISOR'),
USER = UF-LIT (ZASCIC 'USER I) ;

OWN
MODE_LIST VECTOR [5) INITIAL (4, KERNEL, EXEC, SUPER, USER);

OWN
OUT_BUF VECTOR [255, BYTE);

BUILTIN
MOVPSL;

LOCAL
PSL_SHIRE: ;

• •
+ •

MOVPSL (PSL_STORE);
$DS_CVTREG

(MSB
DATA

= 31,
= .PSL_STORE,

PSL_MNE,
OUT_BUF,

MNEADR =
STRBUF =
MAXLEN = 255,
VI
V2
• •
l

= MODE_LIST,
= MODE_LIST);

4-154

Fetch PSL contents.
Create strins.
Read all 32 bits.
PSL contents.
Mnemonics strins.
OIJtplJt buffe J'.

Ma>:lensth.
1st table.
2nd table (use 1st one aSain).

(

(

('-

(

VDS MACROS - SYSTEM SERVICE MACROS

$DASSGN

The Deassign I/O Channel system service of VMS is used to
release an I/O channel that was previously assigned with the
$ASSIGN service. Level 2R diagnostic programs should use this
macro when all I/O operations on a device have been completed.
See Section 3.12.1.1 for details of I/O in user mode.

MACRO-32 Format:

$DASSGN x chan

BLISS-32 Format:

$DASSGN (CHAN=chan);

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ IVCHAN

An invalid channel number was specified; that is, a channel
number of 0 or a number larger than the number of channels
available.

SS$ NOPRIV

The specified channel is not assigned, or was assigned from a
more privileged access mode.

Notes:

See the VAX/VMS System Services Reference Manual for notes on
the $DASSGN macro. That manual should be read before
performing I/O operations in user mode.

Examples:

MACRO-32 Example:

BLISS-32 Example:

SDASSGN (CHAN=.CHAN_NUM);

4-155

VDS MACROS - SYSTEM SERVICE MACROS

$DISCONNECT

The Disconnect RAB from FAB service of RMS is used to break the
connection between an RAB and an FAB. This terminates the
record stream and dea110cates all I/O buffers and data
structures.

MACRO-32 Format:

$DISCONNECT rab, [err], [suc]

BLISS-32 Format:

rab

$DISCONNECT (RAB=rab, [ERR=err], [SUC=suc]);

Address of the RAB to be disconnected.
the address of its associated FAB.)

(The RAB will contain

err (user mode only)

Address of a routine to be executed on error return from the
service.

suc (user mode only)

Address of a routine to be executed on successful return from
the service.

Return Status:

Note: For further details on return status values, refer to
the VAX-11 RMS Reference Manual.

RMS$ NORMAL

Service successfully completed.

RMS$ IFI

The FAB's IFI field is invalid.

4-156

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

RMS$ lSI

Invalid stream id.
connected.

The specified RAS and FAS were not

RMS$ FAS

The FAS block is invalid.

RMS$ RAS

The RAS block is invalid.

Notes:

1. Table 4-5 lists the RAS fields
service IN STANDALONE MODE.
VAX-II RMS Reference Manual.

used by the $DISCONNECT
For user mode, refer to the

Table 4-5 RAS Fields Used by $DISCONNECT (Standalone Mode)

Field Mnemonic

Input:

lSI

Output:

STS

Examples:

MACRO~32 Example:

$DISCONNECT RAB_ADDR

SLISS-32 Example:

Field Name

Internal stream identifier.

Completion status code.
(Also returned in R0.)

$DISCONNECT CRAB=RAB_ADDR);

4-157

VDS MACROS - SYSTEM SERVICE MACROS

$DS_ENDPASS

The End-of-Pass system service is used to indicate to the VDS
that a program pass has been completed. This service must be
included in the initialization code of every program. Refer to
Section 3.5, Initialization Code, for an explanation of how the
$DS ENDPASS macro is to be used.

MACRO-32 Format:

$DS_ENDPASS_X;

BLISS-32 Format:

$DS _ ENDPASS;

Return Status:

This service does not return a status code.

Examples:

MACRO-32 Example:

$DS __ GPHARII_S -
LOG_UNIT, PTABLE_ADDR

CMPL RO, DS$_ERROR
BNEQL 10$
$DS_ENDPASS_S

-BLISS-32 Example:

IF $DS_GPHARD
(DEVNAM = .LOGUNIT,

RETADR = PTABLE_ADnR)
EQL nS$_ERROR THEN $DS_ENDPASSi

4-158

Get p-table for next unit.
; If ~ll units done,

then
declare end-of-pass

; else continue.

Get p-table for next unit.

If all units done,
declare end-of-pass.

(

(

(

(

$DS_ERRDEV
$DS_ERRHARD

$DS_ERRPREP
$DS_ERRSOFT
$DS_ERRSYS

VDS MACROS - SYSTEM SERVICE MACROS

The five error reporting system services are used to report to
the program user any errors encountered by the program that
relate to failures in the device being tested.

• The $DS ERRDEV macro is used to report device-fatal
errors.

• The $DS ERRHARD macro is used to report hard errors.

• The $DS ERRPREP macro is used
preparation errors.

to report device

• The $DS ERRSOFTmacro is used to report soft errors.

• The $DS ERRSYS macro is used to report system-fat~l
errors.

The error types are discussed in Section 3.9, Reporting Errors.

The error reporting system services will:

1. Display a "header message" consisting of the program
title, the pass, test, and subtest numbers, and the
message specified by the error macro's "msgadr"
parameter (see below).

2. Cause the message routine specified by the error macro's
"prlink" parameter (see below) to be called.

3. Test the VDS control flags HALT and LOOP. If
set, execution of the program will be stopped.
is set, a program loop will be established (see
3.10, Looping).

4-159

HALT is
If LOOP
Section

VDS MACROS - SYSTEM SERVICE MACROS

MACRO-32 Format:

$OS ERRDEV x [num], [unit], [msgadr], [prlinkJ, [pI], ••• [p6]
$OS-ERRHARD x [num], [unit], [msgadr], [prlink], [pI], ••• (p6]
$OS-ERRPREP-x [num], [unit], [msgadr], [prlink], [pI], ••• [p6]
$DS-ERRSOFT-x [num], [unit], [msgadr], [prlink], [pI], ••• [p6]
$DS_ERRSYS_x [num], [unit], [msgadr], [prlink], [pI], ••• [p6]

BLISS-32 Format:

num

$OS ERRDEV ([NUM=num] , [UNIT=uni t] , [MSGAOR=msgadr] ,
[PRLINK=prlink], [Pl=pl], ••• , [P6=p6]);

$OS ERRHARD ([NUM=num] , [UNIT=uni t] ,
[PRLINK=prlink], [Pl=pl], .•• ,[P6=p6]);

[MSGAOR=msgadr] ,

$OS ERRPREP ([NUM=num], [UNIT=unit], [MSGAOR=msgadr] ,
[PRLINK=prl ink], [Pl=pl], ••• , [P6=p6]);

$OS ERRSOFT ([NUM=num] , [UNIT=uni t] ,
[PRLINK=prlink], [Pl=pl], •.• , [P6=p6]);

[MSGAOR=msgadr] ,

$OS ERRSYS ([NUM=num], [UNIT=unit], [MSGAOR=msgadr] ,
[PRLINK=prlink], [Pl=pl], •.• , [P6=p6]);

An identification number assigned to the error macro.
specified, a number is automatically assigned to
macro at program assembly time, according to the
algorithm.

If not
the error
following

1. The error number is set to 1 at the beginning of each
test and each subtest.

2. Each time one of the error reporting macros is
encountered at assembly time, the macro is assigned the
current error number and then the error number is
incremented.

3. If a macro call possesses
parameter, that argument
number is not incremented.

an argument for the "num"
is used and the stored error

Thus if the default value for "num" is always taken, each error
reporting macro within a given subtest will have a unique error
number assigned to it, and for each subtest the error macros
will be numbered sequentially starting with 1.

4-160

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

If the $DS ERRxxxx L form of the macro is used, the Unum"
argument must be specified by using the $DS ERRNUM macro.

unit

The logical unit number of the unit currently being tested.

msgadr

Address of a counted ASCII string, to be included in the error
message header. Should contain a short description of the
error.

prlink

Address of an error reporting routine. Routine must be
delimited by $DS BGNMESSAGE and $DS ENDMESSAGE macros and must
use $DS PRINTB and $DS PRINTX macros-for output.

pI through p6

One to six optional parameters that may be used to pass
arguments to the error reporting routine whose address is
contained in "prlink."

Return Status:

None.

Notes:

1. Registers R2 through R11 are preserved so that the routine
pointed to by "prlink" can expect to find them intact.

Error Reporting Routines:

The "prlink" parameter is used to link an error reporting
routine to the error macro. The error reporting system service
first displays the header message, including the text pointed
to by "msgadr." Then the routine pointed to be "prlink" is
called. The error reporting routine must have the following
properties:

1. It is called with a CALLG instruction, so it must have
an entry mask.

2. It must be delimited by
$DS ENDMESSAGE macros.

4-161

the $DS BGNMESSAGE and

VDS MACROS - SYSTEM SERVICE MACROS

3. It must print the second and third levels of the error
message (see Section 3.9, Reporting Errors) by using the
$OS_PRINTB and $OS_PRINTX macros, respectively.

4. It can reference arguments passed via the pI through p6
parameters. These parameters can be accessed using the
symbols defined by the $OS ERROEF macro.

5. It must contain all of the $OS PRINTB and $OS PRINTX
macros that are used to display the error message. (If
$OS PRINTB and $OS PRINTX macros are used to display an
error message, they must be contained in an error
reporting routine.)

Examples:

Note: These examples will produce error messages that adhere
to the format indicated in Section 5.6.1, Error Message
Formats.

4-162

(

(

VDS MACROS - SYSTEM SERVICE MACROS

MACRO-32 Example:

READERRMSG: .ABCIC IRE AD error while performinS block transfer.1
.ASCIe \I/!/Device base address!_!!_!SL\-FMT_GOODBAD:

\I/Address of expected buffer!_! !_!SL\
\I/Address of received buffer!_:!_!SL\
\I/Transfer size (words) !_:!_!SL\-
\I/Words in errorl_:I_!SL\

FMT_DUMPHDR: .ABCIC \!/!/ADDRESS:!_EXPECTED: !_RECEIVED: !_XOR: !/!/\
.ASeIC \ISL!_!SL!_ISL!_!SL!/\ FMT_DUMPBUF:

BUFDUMP:

10$:

20':

30$:

SDS_BGNMESSAGE
SDS_PRINTB_S

SDS_PRINTX_S
CLRL R2

<R2,R3,R4,R5>
FMT_GOODBAD,- ; Print second level of error msS.
ERR'_P5(AP),ERR,_P2(AP),ERR'_Pl(AP), -
FRR'_P3(AP),ERR'_P4(AP)
FMT_DUMPHDR Print header for buffer dUIDP

Clear error count
MOVAL REC_BUF,R3
MOVAL EXP_BUF,R4

Get addr. of received
Get addr. of expected
REPEAT

buffer
buffer

CMPW
BEQL

(R3),(R4)
20$

INCL R2
XORL3 R3,R4,R5
SDS_PRINTX_S FMT_DUMPBUF,-

CMPL R2,tB
BEQL 30'
CMPL (R3)t,(R4)t
CMPL R3,tREC_BUF_SIZE
BRB 10'
'DS_ENDMESSAGE

See if this word is sood.
IF word is bad
THEN

Count the error.
XOR Scad and b.d data
Print a line of 3rd msS. level

IF eisht bad words dispI.~ed,
THEN stoP.

Increment buffer pointers.
See if top of buffer reached.

UNTIL entire buffer done.

UNIT=LOG_UNIT~ ~SGADR=READERRMSG, -
PRLINK=BUFDUMP, -
Pl=REC_BUF, P2=EXP_BUF, -
P3=tREC_BUF_SIZE, P4=ERR_COUNT, -
PS=DEV_BASE

4-163

VDS MACROS - SYSTEM SERVICE MACROS

BLISS-32 Example:

LITERAL.

BIND

OWN

Fa::ADEf~RMSG ==
UPLIT (ZASCIC 'READ error performing brock transfer.');

REC_BUF : VECTOR CREC_BUF_SIZE,WORDJ,
EXP_BUF : VECTOR CREC_BUF_SIZE,WORDJ,
LOG_UNIT,ERR_COUNT,DEV_BASE;

$DS_BGNMESSAGE (ROUTINE_NAME==SUFDUMP)

LOCAL

BIND

EFmORS,
>(or~._VALUE •

FMT _.GOODIlADl =
UPLIT

FMT_GOODBAD2=
tJPLI T

FMT_GOOnBAD3=
UPLIT

FMT_GOIJDBAD4=
UPLIT

FMT ._GOODBAD5=

(ZASCIC '!/!/Device base address!_!!_!SL'),

(ZASCIC '!/Address of expected buffer!_: !_!SL'), ,

(ZASCIC '!/Address of received buffer!_: !_!SL'),

(ZASCIC 'I/Transfer size (worcls>!_:!_!SL'),

UPLIT (ZASCIC 'I/Welrds in error!_:!_!SL'),
FMT_DUMPHDR=

UPLIT (ZASCIC '!/!/ADDRESS: !_EXPECTED: !_RECEIVED: !_XOR:!/!/'),
FMLDUMPBUF=

UPLIT (XASCIC '!SLI_!SL!_!SL!_!SL!/');

Displaw the second level of the error messaSe.

SDS_PRINTB (FMT_GOODBAD1,P5);
$DS_PRINTB (FMT_GOODBAD2,P2);
SDS_PRINTS (FMT_GOODBAD3,Pl);
$DS_PRINTB (FMT_GOODBAD4,P3);
SDS_PRINTB (FMT_GOODBAD5,P4);

I Displaw the third level of the error message.
First print the header and clear the error count.

$DS_PRINTX (FMT_DUMPHDR);
ERRORS == 0;

4-164

Print header for buffer dump.
Clear error count

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Now compare the expected buffer with the received buffer. Displa~ all
mismatches. If more than eight errors are found, we can stoP.

INCR INDEX FROM 0 TO REC_BUF_SIZE DO
BEGIN

$DS_ENDMESSAGE;

IF .REC_BUF [.INDEXJ NEG .EXP_BUF [.INDEXJ
THEN

BEGIN
ERRORS = .ERRORS + 1;
XOR_VALUE ::::

.REC_BUF [.INDEXJ XOR .EXP_BUF [.INDEXJ;
$DS_PRINTX CFMT_DUMPBUF,

END;

REC_BUF [.INDEXJ,
.EXP_BUF [.INDEXJ,
.REC_BUF [.INDEXJ,
.XOR-VALUE) ;

IF .ERRORS EGL 8 THEN EXITLOOPi
END;

'DS_BGNTEST .(TEXT='Read tests');

$DS_ERRHARD (UNIT=.LOG_UNIT,
PRL.INK=BUFDUMP,
P2=EXP_BUF,
P4=. ERR .. ~C()UNT,

4-165

MSGADR=READERRMSG,
Pl=REC._BUF,
P3=RELBLJF_SIZE,
P5=.DEV_BASE);

$FAO

$FAOL

VDS MACROS - SYSTEM SERVICE MACROS

The Formatted ASCII Output ($FAO) system service provides a
means by which complex messages can be formatted into ASCII
character strings. This macro can be used to:

• Insert variable character string data into an output
string.

• Convert binary values into the ASCII representations of
their decimal, hexadecimal, or octal equivalents and
sUbstitute the results into an output string

The system service constructs an output string by
formatted ASCII output (FAO) directives contained
string" and using those directives to operate on
of value parameters.

referring to
in a "control
the con ten ts

The $FAOL macro performs the exact same function as the $FAO
macro, but allows the specification of an address of a
parameter list instead of requiring each parameter to be listed
explicitly in the macro call.

MACRO-32 Format:

$FAO x ctrstr, [outlen], outbuf, [pI], [p2], ••• [pn]
$FAOL_x ctrstr, [outlen], outbuf, prmlst

BLISS-32 Format:

$FAO (CTRSTR=ctrstr, [OUTLEN=outlen], OUTBUF=outbuf, [Pl=pl],
[P2=p2], ••• [Pn=ph]);

$FAOL (CTRSTR=ctrstr, [OUTLEN=outlen] , OUTBUF=oiltbuf,
PRMLST=prmlst) ;

c tr str

Address of a character string descriptor (see Section 4.3)
pointing to the "control string." The control string contains a
set of Formatted ASCII Output (FAO) directives. These
directives are described in the notes of the $DS PRINTx macros.

outlen

Address of a word to receive length of
constructed by the service routine.

4-166

output string

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

outbuf

Address of a character string descriptor (see Section 4.3)
pointing to the output buffer. The fully formatted output
string is placed in this buffer.

pI through pn ($FAO only)

o to 20 directive parameters, contained in longwords.
Depending on the corresponding FAO directive, a parameter may
be a value that is to be converted, the address of a string
that is to be inserted, a length, or an argument count.
Parameters are listed in the order they are referenced by the
control string. If more than 20 parameters must be specified,
use the $FAOL macro.

prmlst ($FAOL only)

Address of a list of longwords containing
parameters. The list may be of any length.

the d i rec ti ve
It may be an
values are already existing data structure from which certain

to be extracted.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ B UFFEROVF

Service successfully completed, but the size of the output
string was greater than the maximum allowed and was truncated
(see notes).

SS$ BADPARAM

An invalid FAO directive was specified in the control string.

Notes:

1. If the formatted output string is to be displayed on the
user's terminal, it is important to select the proper
$DS PRINTx macro to cause the message to be displayed.
Refer to the description of the $DS PRINTx macros.

4-167

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

This example will create the following string:

VALUES 200 (DEC) 0000012C (HEX) -400 (SIGNED)

MACRO-32 Example:

FAOIIESC:
.LONG
.LONG

;Descriptor for output buffer
80 ;Output buffer len~th
FAOBUF ;Address of buff~r

FAOBUF: • BLKB 80
FAOLEN: • BLKW 1

;SO-character buffer
;Word to receive len~th of output

CNTRL_STRING:

VALl:
VAL2:
VAL3:

.ASCI[I /VALUES !UL (DEC) !XL (HEX) !SL (SIGNE[I)/

.LONG 200

.LONG 300

.LONG -400

$FAO_S CTRSTR=CNTRL_STRING,
OUTBUF=FAODESC, -
OUTLEN=FAOLEN, -
Pl=VAL1, P2=VAL2, P3=VAL3

BLISS-32 Example:

OWN
FAOBUF
FAODESC

FAOLEN
VALl

VAL2

VAL3

BIND
UPLIT

VECTOR [80, BYTEJ,
VECTOR [2J
INITIAL <80, FAOBUF),
VECTOR [1, WORDJ,
VECTOR
INITIAL (200),

: VECTOR
INITIAL (300),
VECTOR
INITIAL (-400);

= (~ASCID 'VALUES !UL (DEC) !XL (HEX) !SL (SIGNED)');

$FAO (CTRSTR=CNTRL_STRING,
OUTBUF=FAODESC,
OUTLEN=FAOLEN,
Pl=VAL1, P2=VAL2, P3=VAL3);

4-168

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$GET

The Get a Record service of RMS is used to read a record from a
file. The file must have been previously opened and connected
with the $OPEN and $CONNECT services, respectively. Records
may be read from the file sequentially or by the random-hy-RFA
method. These access methods are discussed in Section 3.15,
Fi Ie Management.

MACRO-32 Format:

$GET rab, [err], [suc]

BLISS-32 Format:

rab

$GET (RAB=rab, [ERR=err], [SUC=suc]);

Address of the RAB to be associated with the FAB describing the
f i 1 e to wh ich connection is to be made. (The add ress of the
FAS is in the RAB.)

err (user mode only)

Address of a routine to be executed on error return from the
service.

suc (user mode only)

Address of a routine to be executed on successful return from
the service.

Return Status:

Note: For further details on return status values, refer to
the VAX-II RMS Reference Manual.

RMS$ NORMAL

Service successfully completed.

4-169

VDS MACROS - SYSTEM SERVICE MACROS

RMS$ EOF

Attempt was made to read beyond end of file.

RMS$ PAB·

The FAS block is invalid.

RMS$ IFI

The FAB's IFI field is invalid.

RMS$ lSI

The RAB's lSI field is invalid.

RMS$ RAB

The RAB block is invalid.

RMS$ RER

Read error. (The device driver's return status will be in
STV field of the RAB.)

RMS$ RFA

Invalid RFA was specified in random-by-RFA mode.

RMS$ RTB

the

Record retrieved was too big for the buffer provided, ann was
truncated.

Notes:

1. Table 4-6 lists the RAB fields used by the $GET service IN
STANDALONE MODE. For user mode, refer to the VAX-II RMS
Reference Manual.

4-170

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Table 4-6 RAB Fields Used by $GET (Standalone Mode)

Field Mnemonic

Input:

lSI

RAC

RFA

ROP

UBF

USZ

Output:

RBF

RFA

RSZ

S'l'S

STV

Examples:

MACRO-32 Example:

$GET RAB_ADDR

BLISS-32 Example:

Field Name

Internal stream identifier.

Record access mode.

Record's address. (Used only if RAC=RFA.)

Record-processing options.

User record area address.

User record area size.

Record address.

Record's file address.

Record si ze.

Completion status code. (Also returned in R0).

Status value. (See Return Status, above.)

$GET (RAB=RAB_ADDR);

4-171

VDS MACROS - SYSTEM SERVICE MACROS

The $DS GETBUF macro is used to obtain buffer space. In
standalone mode, the buffer space is allocated by the VDS from
its free memory pool. In user mode, the VDS calls the VMS
$EXPREG system service (see the VAX/VMS System Services
Reference Manual for details).

The caller indicates the number
service returns the low and
allocated.

of
high

pa g e s des ire d ,
addresses of

and the
the space

When the program no longer needs the allocated buffer space, it
can be returned to the free memory pool with the $DS RELBUF
macro.

MACRO-32 Format:

$DS_GETBUF_x pagcnt, [retadr], [phyadr], [region]

B LISS-32 Fo rma t:

$DS GETBUF (PAGCNT=pagcnt,
[RETADR=retadr] ,
[PHYADR=phyadr] ,
[REGION=region]);

pagcnt

Size (number of pages) desired for buffer.

retad r

Address of a two-Iongword array to receive the
addresses of the low and high buffer limits.

phyadr

virtual

Address of a two-longword array to receive physical addresses
of low and high buffer limits. This parameter is only relevant
in standalone mode.

4-172

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

reg ion

Memory region from which caller wishes buffer space to be
allocated. Values are

0: buffer allocated from P0 space. (Default.)

1 : buffer allocated from PI space.

2: buffer allocated from system space.

In standalone mod e, this parameter is only relevant if memory
management is turned on.

Return Status:

SS$ NORMAL

Buffer space allocated.

SS$_ACCVIO (user mode only)

The "retadr" array cannot be written by the caller.

SS$_EXQUOTA (user mode only)

The process exceeded its paging file quota.

SS$ ILLPAGCNT

Requested page count was less than 1.

SS$_INSFWSL (user mode only)

The process's working set limit is not large enough to
accommodate the increased virtual address space.

SS$ VASFULL

Insufficient virtual address space is available to fulfill the
buffer request. (See note 4.)

R0 = 0 (standalone mode only)

Illegal value was given for "region" parameter.

4-173

Notes:

1.

2.

VDS MACROS - SYSTEM SERVICE MACROS

If PI space is requested in user mode, the "retadr" array
will contain the allocated space's high address as its
first element and the low address as its second element.

In standalone mode, buffer space will always be allocated
as contiguous pages. If there is not a set of contiguous
pages equal to the requested buffer size, then the
SS$ VASFULL status will be returned.

3. In standalone mode, buffer space is allocated starting at
the lowest available physical page.

4. If there are fewer pages availahle than the number
requested, then the number of pages available will be
allocated. The beginning and ending virtual addresses of
this area will be placed in the "retadr" array.

Examples:

MACRO-32 Example:

$DS_GETBUF_S 110, BUFLIMITS ;Ask for 10 psses.

BLISS-32 Example:

$DS_GETBUF !Ask for 5 psSes in PI space.
(PAGCNT=5,
RETADR=BUF_LIMITS,
REGION=1);

4-174

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$GETCHN

The Get I/O Channel Information system service returns
information about a device to which an I/O channel has been
assigned. Two sets of information can be returned, if desired.

• The primary device characteristics
• The secondary device characteristics

In most cases, the two sets of characteristics are identical.
However, there are three instances in which the primary and
secondary characteristics are not the same:

1. If the device is associated with a mailbox, the primary
characteristics are those of the device and the
secondary characteristics are those of the mailbox.

2. If the device is a spooled device, the primary

3.

characteristics are those of the intermediate device and
the secondary characteristics are those of the spooled
device.

If the device is a logical link in a network,
secondary characteristics describe the link.

the

If the diagnostic program is running in standalone mode, the
primary and secondary characteristics will always be identical.

This service is not available to level 3 programs.

Note: It is recommended that all newly developed level 2R
programs use the VMS $GETDVI service instead of $GETCHN,
because of plans to remove support of $GETCHN from VMS. Refer
the VAX/VM~_Syst~'.!:!._Servl<::.es-.!3.~f~~enc~~anua!...

4-175

VDS MACROS - SYSTEM SERVICE MACROS

MACRO-32 Format:

,$GETCHN chan, [prilen], [pribuf], [scdlen], [scclbuf]

BLISS-32 Format:

$GETCHN (CHAN=chan, [PRILEN=prilen], (PRIBUF=pribuf] ,
[SCDLEN=scdlen] , [SCDBUF=scdbuf]);

chan

Number of the I/O channel assigned to the device.

prilen

Address of a word to receive the length of the primary
characteristics.

pribuf

Address of a character string descriptor (see Section 4.3)
pointing to buffer that will receive primary characteristics.
The default is 0, implying no buffer.

scdlen

Address of a word to receive the length of the secondary
characteristics.

scdbuf

Address of a character string descriptor (see Section 4.3)
pointing to buffer that will receive secondary characteristics.
The default is 0, implying no buffer.

4-176

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Return Status:

SS$ BUFFEROVF

Service successfully completed. Device information overflowed
the buffer(s), so information was truncated.

SS$ NORMAL

Service successfully completed.

SS$_ACVIO (user mode only)

A buffer descriptor cannot be read by the caller, or a buffer
or buffer length cannot be written by the caller.

SS$ IVCHAN

An invalid channel number was specified, that is, a channel
number of 0 or a number greater than the number of channels
available.

SS$_NOPRIV (user mode only)

The specified channel is not assigned or was assigned from a
more privileged access mode.

Notes:

1. In standalone mode, the device characteristics are placed
into the specified buffer in the format illustrated in
Figure 4-7.

31 1615 8 7 o

DEVICE CHARACTERISTICS

BUFFER SIZE I TYPE I CLASS

DEVICE-DEPENDENT INFORMATION

I UNIT NUMBER

TK·10537

Figure 4-7 Device Characteristics Buffer (Standalone Mode)

4-177

VDS MACROS - SYSTEM SERVICE MACROS

following the unit number is an ASCII string representing
the device's generic name.

The "device characteristics" and "device dependent
information" fields are the same as they are for user mode.
Refer to the VAX/VMS I/O User's Guide for details.

2. In user mode, the device characteristics are placed into
the specified buffers in the format detailed in the VAX/VMS
I/O Us~r's Guide.

3. Refer to the VAX/VMS System Services Reference Manual for
privilege restrictions and other notes on the use of this
service in user mode.

Examples:

MACRO-32 Example:

CHANNUM:.WORD 0
BUFFER:

BBUF:

.lONG DIB$K_lENGTH

.lONG BBUF

.BlKB DIB$K_lENGTH

BLISS-32 Example:

OWN
CHANNUM
BBUF
BUFFER

VECTOR [WORD],
VECTOR CDIB$K_lENGTH, BYTE],
VECTOR [2J
INITIAL <DIB$K_lENGTH, BBUF),

• •

$GETCHN <CHAN=.CHANNUM"PRIBUF=BUFFER);

4-178

(

(

I
I
\

VDS MACROS - SYSTEM SERVICE MACROS

$DS_GETTERM

The Get Terminal Characteristics service can be used to obtain
the type and characteristics of the user's terminal.

MACRO-32 Format:

$DS GETTERM x termchar

BLISS-32 Format:

$DS GETTERM (TERMCHAR=termchar) ;

termchar

Address of a quadword to receive the terminal characteristics.
See Note 1 for format of the characteristics.

Return Status:

SS$ NORMAL

Service successfully completed.

Notes:

1. The terminal characteristics are returned in a quadword
with fields in the following format:

31

PAGE WIDTH

PAGE 1
LENGTH

I TYPE I CLASS

TERMINAL
CHARACTERISTICS

o

Figure 4-8 Format of Terminal Characteristics

Values for the "type" field and "terminal characteristics"
are defined by the $TTDEF macro of VMS.

Note: In standalone mode, only the "type" and "terminal
characteristics" fields are supplied. For terminal
characteristics, only TT$M SCOPE is provided. In user
mode, all fields and all terminal characteristics are
supplied.

4-179

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

TERM_INFO: .:aLKQ

$DS_GETTERH_S

BLISS-32 Example:

OWN

1

TERM_INFO

VECTOR (2);

4-180

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$GETTIM

The Get Time system service furnishes the current system time
in 64-bit format. The time can be converted to ASCII by using
the $ASCTIM service.

MACRO-32 Format:

$GETTI!Vi timadr

BLISS-32 Format:

$GETTIM (TIMADR=timadr);

timadr

Address of a quadword that is to receive the current time in
64-bit format.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO (user mode only)

The quadword to receive the time cannot be written by the
caller.

Examples:

MACRO-32 Example:

$GETTIM_S TIME

BLISS-32 Example:

$GETTIM (TIMADR=TIME);

4-181

VDS MACROS - SYSTEM SERVICE MACROS

$DS_GPHARD

The Get Hardware Parameter Table system service will provide
the caller with the address of the p-table for the logical unit
specified. The p-table's contents can then be accessed by the
caller. The macro is used in a diagnostic program's
initialization code, discussed in Section 3.5.

MACRO-32 Format:

$DS_GPHARD_x devnam, adrloc

BLISS-32 Format:

$DS GPHARD x (UNIT=devnam, RETADR=adrloc);

devnam

The logical unit number of the device whose p-table is being
requested. Minimum value is 0.- Maximum value is determined by
VDS, depending on the number of selected device units testable
by caller. (See notes.)

adrloc

Address of longword to receive p-table base address.

Return Status:

DS$ NORMAL

Service successfully completed.

DS$ ERROR

The argument list does not contain exactly two arguments.

The specified logical unit number is too large.

4-182

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Notes:

1. If "devnam" was initialized to 0 and incremented after each
issuance of the $DS GPHARD macro, then the DS$ ERROR return
status simply means-that the p-tables for all selected,
testable device units have been referenced. "Devnam"
should be reinitialized to 0. See Section 3.5,
Initialization Code, for details.

Examples:

MACRO-32 Example:

INCL lOG_UNIT
$DS_GPHARD_S -

LOG_UNIT, P_TABLE

BLISS-32 Example:

LOG_UNIT = .lOG_UNIT + 1;
$DS_GPHARD (UNIT=.LOG_UNIT, RETADR=P_TABLE);

4-183

VDS MACROS - SYSTEM SERVICE MACROS

The Display Help Text service can be used to display text
contained in a help file. Help files are described in Chapter
5. This service is functionally identical to the VDS command
HELP.

MACRO-32 Format:

$DS_HELP_X keylst

BLISS-32 Format:

$DS HELP (KEYLST=keylst);

keylst

Address of a character string descriptor (see Section 4.3) that
points to a list of help file keywords. This list is exactly
equivalent to the keywords that would be included as parameters
to the HELP command (see the VAX Diagnostic Supervisor
User's Guide). To reference the help file EVXYZ. HLP, for
diagnostic program EVXYZ, the first keyword in the list must be
'EVXYZ' •

Return Status:

The return status may be any status that may be returned from
the $OPEN, $CONNECT, $READ, or $CLOS.E services of RMS. Refer
to descriptions of these services.

Examples:

MACRO-32 Example:

KEYSTRING:

BLISS-32 Example:

.ASCID IEVXYZ MANUAL OPTIONSI
• •

KEYSTRING

BIND KEYSTRING = UPLIT (XASCID 'EVXYZ MANUAL OPTIONS');

tDS_HELP (KEYLST=KEYSTRING);

4-184

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$HISER

The Hibernate system service allows a diagnostic program to
make itself inactive. A hibernating program can be interrupted
to process asynchronous events. After the diagnostic program's
event handler has been ex~cuted, the program will be returned
to its state of hibernation. This state will remain in effect
until the program is awakened with the $WAKE system service.

MACRO-32 Format:

$HIBER S

(Note: Only the S form of the macro is supported.)

BLISS-32 Format:

$HIBER;

Return Status:

SS$ NORMAL

Service successfully completed.

Notes:

1. In standalone mode, the only way for a hibernating program
to be awakened is for an event handler (for example, an AST
routine or interrupt service routine) to call the $WAKE
service.

2. In user mode, a hibernating process may be awakened by
another process. Refer to the VAX/VMS System Services
Reference Manual for details.

Examples:

MACRO-32 Example:

BLISS-32 Example:

$HIBEFn

4-185

VDS MACROS - SYSTEM SERVICE MACROS

$DS_INITSCB (

The Initialize System Control Block system service will load
the VDS default values into all vectors within the SCB. It can
be used to restore VDS exception and interrupt handling to all
vectors if the diagnostic program has previously defined its
own handlers using the $DS SETVEC service.

This system service is only available to level 3 diagnostic
programs.

MACRO-32 Format:

$DS I NI'rSCB x

BLISS-32 Format:

$DS INITSCB ()i

Return Status:

SS$ NORMAL

Service successfully completed.

Examples:

MACRO-32 Example:

BLISS-32 Example:

4-186

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

The $DS INLOOP program control macro can be used to determine
if a program loop is being executed. Program looping is
discussed in Section 3.10.

MACRO-32 Format:

$DS INLOOP x

BLISS-32 Format:

Return Status:

DS$ NORMAL

A program loop is being executed.

DS$ ERROR

A program loop is not being executed.

Examples:

MACRO-32 Example:

BLISS-32 Example:

4-187

VDS MACROS - SYSTEM SERVICE MACROS

The $DS LOAD system service can be used for reading a file into
a buffer area. This service may be employed when the full
range of processing options provided by RMS is not needed.
(The $DS_LOAD service uses RMS to implement its functionality.)

MACRO-32 Format:

$DS LOAD x file, default, length, address, retlen, retrec,
[vbn]

BLISS-32 Format:

$DS LOAD (FILE=file, DEFAULT=default, LENGTH=length,
ADDRESS=address, RETLEN=retlen, RETEC=retrec, [VBN=vbn])i

file

Address of a quadword descript~r (see Section 4.3) describing a
character string that represents the name of the file to be
loaded. The filename format is:

(

NODE::DEV: [DIRECTORY] FILENAME. EXTiVER. (

If any fields of the filename are missing, they will be filled
in with fields specified by the "default" parameter.

default

Address of a quadword descriptor (see Section 4.3) describing a
character string that represents the default fields for the
filename.

length

Size, in bytes, of the buffer that will receive the file.

address

Address of the buffer that will receive the file.

retlen

Address of longword to receive the total length of the file.

4-188

(
'-

(

VDS MACROS - SYSTEM SERVICE MACROS

r etr ec

vbn

Address of a longword to receive RMS file attributes of the
file. The first word of the longword will contain the FAB MRS
(maximum record size) field. The third byte will contain the
FAB RFM (record format) field. The fourth byte will contain
the FAB FSZ (fixed header size) field. Refer to the discussion
of the $FAB macro for descriptions of these fields.

Virtual block number. This is the number of the first virtual
block to be read. rfhe default value is 1, which will cause
reading to begin with the first block of the file.

Return Status:

The $DS LOAD service can return any of the statuses associated
with ~he $OPEN, $CONNECT, $READ, $DISCONNECT, or $CLOSE
services of RMS. Refer to the descriptions of these services
for lists of return statuses.

Examples:

MACRO-32 Example:

NAMEIIESC:
.lONG
.LONG

;Filename descriptor

BUFF: .BlKB

o
BUFF
30

;Store filename strin~ len~th here.
;Address of filename strins
;Store filename here.

DEFIIESC:
.ASCID

fDefault filename strins descriptor
I.EXE;OI

BUF_SIZE = 512
BUFFER: .BlKB BUF_SIZE
FILE_LENGTH:

.l.ONG 0
FIlE_ATTRt

.LONG 0
• •

$I1S_LOAII_S NAMEIIESC,DEFDESC,tBUF_SIZE, -
BUFFER,FILE_LENGTH,FILE_ATTR

4-189

VDS MACROS - SYSTEM SERVICE MACROS

BLISS-32 Example: (

LITERAL
BUF_SIZE = 512;

OWN
BUFFER VECTOR [BUF_SIZE, BYTEJ,
BUFF : VECTOR (30, BYTEJ, ! store filename here.
NAHEDESC: VECTOR [2J ! Filename descriptor

INITIAL (0, Store filename strin~ lenSth here.
BUFF), Address of filename strins

FILE_LENGTH : VECTOR,
FILE_ATTR : VECTOR;

BIND
DEFDESC =

• +

(XASCID '.EXE;O');! Default filename strinS descriptor

$DS_LOAD (FILE=NAHEDESC, DEFAULT=DEFDESC, LENGTH=BUF_SIZE,
ADDRESS=BUFFER, RETLEN=FILE_LENGTH, RETREC=FILE_ATTR);

4-190

(

(

(

$DS_MMON

$DS_MMOFF

VOS MACROS - SYSTEM SERVICE MACROS

The Turn Memory Management
Management Off (OS$ MMOFF)
enabling and disablIng the
standalone mode.

On (OS$_MMON) and Turn Memory
system services are proviaed for

memory management hardware in

Only level 3 diagnostic programs may turn memory management on
or off. If a level 3 program turns memory management on or
off, it MUST use these services to do so.

Memory management is discussed in Section
Management and Allocation.

MACRO-32 Format:

DS$ MMON x
DS$-MMOFF x

BLISS-32 Format:

nS$ MMON ();
DS$-MMOFF ();

Return Status:

Service successfully
previously disabled.

SS$ WASSET

Service successfully
previously enabled.

completed.

completed.

DS$_WARNING (used with MMOFF only)

Memory

Memory

3.13, .Memory

management was

management was

The $DS MMOFF macro was issued, but memory management was not
disable~ because a SET MM ON user command had previously been
issued (see the VAX Diagnostic Supervisor User's Guide).

4-191

VDS MACROS - SYSTEM SERVICE MACROS

Notes:

1. The user command SET MM ON has precedence over the
$DS MMOFF macro. Thus a program cannot shut off memory
management if the user has turned it on.

Examples:

MACRO-32 Example:

fTurn on memor~ manaSement •

. BLISS-32 Example;

(This example illustrates the case of a
execute if memory management is enabled.
turn memory management off, it aborts.)

program that cannot
If the program cannot

Turn off memor~ manasement. If the user has turned it on,
call routine to report the problem, then abort thw PfoSram.

$DS_HHOFF ();
IF DS$_WARNING
THEN

BEGIN
REPORT_MM_ON ();
$DS_ABORT ();
END;

4-192

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$OPEN

The Open Existing File service of RMS is used to make a file
available for processing. Opening a file is the first step in
processing the information within the file. This service uses
parameters within the FAB to determine which file to open and
what access attributes to assign to the file.

MACRO-32 Format:
.

$OPEN fa b , [err], [s uc] ;

BLISS-32 Format:

$OPEN (FAB=fab, [ERR=err], [SUC=suc]);

fab

Address of the FAB. The FAB is declared using the $FAS macro.

err (user mode only)

Address of routine to execute on error return from open
service.

suc (user mode only)

Address of routine to execute on successful return from open
service.

Return Status:

Note: For further details on return status values, refer to
the VAX-II RMS Reference Manual.

RMS$ NORMAL

Service successfully completed.

RMS$ ACC

Error accessing file.

RMS$ DME

Dynamic memory
available.

exhausted.

4-193

Insufficient dynamic memory

VDS MACROS - SYSTEM SERVICE MACROS

RMS$ DEV

Bad device specification.

RMS$ FAB

Error in FAB.

RI~S$ FNF

File not found.

RMS$ FNM

Bad file name.

RMS$ ORG

Invalid file organization. In standalone mode, file
organization must be sequential.

RMS$ RER

File read error.

Notes:

1. Table 4-7 lists the FAB fields used by the $OPEN service IN
s'rANDALONE MODE. For user mode, refer to the
VAX-II RMS Reference Manual.

4-194

(

(

(,

VDS MACROS - SYSTEM SERVICE MACROS

Table 4-7 FAS Fields Used by $OPEN (Standalone Mode)

Field Mnemonic

Input:

DNA

DNS

FAC

FNA

FNS

FOP

FSZ

IFI

RAT

RFM

XAB

Output:

ALQ

BLS

DEV

FSZ

IFI

MRS

ORG

RAT

RFM

STS

Field Name

Default file specification string address.

Default file specification string size.

File access.

File specification string address.

File specification string size.

File processing options.

Fixed control area size; unit record devices only.

Internal file indentifier (must be 0).

Record attributes (unit record devices only).

Record format; unit record devices only.

Extended attribute block address.

Allocation quantity; contains the highest numbered
block allocated to the file.

Block size.

Device characteristics.

Fixed control area size; applies only to "variable
with fixed length" control records

Internal file identifier.

Maximum record size.

File organization.

Record attributes.

Record format.

Completion status code (also returned in R0).

4-195

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

$OPEN FAB._BLOCK

BLISS-32 Example:

$OPEN (FAB=FAB_BLOCK);

4-196

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

The Parse Command String system service can be used in a
diagnostic program for which a unique command language has been
defined (see Section 3.12.2.2, Prompting the User). This
service will parse a command string by searching a predefined
command tree, looking for a matches between the command string
and nodes of the tree. Every time a match is found, the
service will dispatch to an· "action routin." Details are
presented in the notes below.

MACRO-32 Format:

$DS_PARSE_x bufadr, tree, action

BLISS-32 Format:

$DS PARSE (BUFFER=bufadr, TREE=tree, ACTION=action);

bufadr

Address of a quadword descriptor (see Section 4.3) pointing to
the command string.

tree

Address of the tree of valid commands.
defined by using the $DS CLI macro.

action

This tree should be

Address of action routine. See notes for routine format.

Return Status:

SS$ NORMAL

Service successfully completed.

DS$ ERROR

While traversing the command tree, an error node (defined by
CLI$K ERROR, see $DS CLI description) was encountered. In
other-words, an illegal command string was specified.

4-197

VDS MACROS - SYSTEM SERVICE MACROS

Notes:

1. The command string to be parsed should be fetched from the
user by issuing the $DS_ASKSTR macro.

2. The $DS PARSE system service will traverse the parse tree
until a CLI$K EXIT or a CLI$K ERROR code is encountered
(see DS$ CLI description), at which point it will return to
the caller.

3. As the tree is traversed, the action routine will be called
each time there is a match between the contents of the
current node of the tree and the input stream. If a match
is found, the action routine is called and then the next
node in the current path is checked. Otherwise, a branch
to the node specified by the "miss" parameter of the
$DS CLI macro occurs.

Action Routines:

Parameters will be passed to the action routine as follows:

R0 - Will contain action code specified for current node in
parse tree.

R7 - Will contain current value of pointer used by VDS when
traversing tree.

R8 - Will point to next unparsed character in the input
string.

R9 - Will contain number of unparsed characters remaining
in input string.

R10 and\Rll - Will contain quadword value of last numeric
string read from input buffer.

Generally, the programmer will specify a unique action code for
each tree node, using the $DS CLI macro. Sometimes a "null"
action code is used, because it 1s not necessary for the action
routine to do anything for nodes wh.ich do not completely
identify a command, parameter, or qualifier. In other words,
it is usually necessary to perform an action only when the
parser is sure it has found something recognizable.

4-198

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

When the action routine is called, the action code is passed in
R0. The action routine can thus use a MACRO-32 CASE
instruction or a BLISS-32 CASE expression, or some other means,
to dispatch to a unique subroutine for each code. These
subroutines will often just set bits in a bitmap indicating
what command, command parameter, or command qualifier has been
parsed. When the entire command string has been parsed, a
command dispatching routine can be called. This dispatcher can
ex-amine the bi tmap to determine which command processing
routine to call.

An example action routine corresponding to the sample p~rse

tree defined in the description of the $DS CLI macro (earlier
in this chapter) would be as follows:

ACTION RTN::
CASEL

10$:

ACT NO ACTION:
RSB

ACT ADD:
BISB
RSB

ACT BAKE:
BISB
RSB

ACT BEAT:
BISB
RSB

ACT MILK:
BISB
RSB

ACT SALT:
BISB
RSB

R0, #0, #8

.WORD

.WORD
• WORD
.WORD
.WORD
· WORD
• \.."rORD
.WORD
• WORD

ACT NO ACTION-10$
ACT-ADD-U~$

ACT-BAKE-10$
ACT-BEAT-10$
ACT-MILK-10$
ACT-SALT-IO$
ACT-SUGAR-10$
ACT-ILLCMD-10$
ACT-BADARG-10$

#l@ADD, CMD BLOCK

#l@BAKE, CMD BLOCK

#l@BEAT, CMD BLOCK

#l@MILK, PARAM BLOCK

#l@SALT, PARAM BLOCK

4-199

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

ACT SUGAR:
BISB
RSB

ACT ILLCMD:
BISB
RSB

ACT BADARG:
BISB
RSB

MACRO-32 Example:

#l@SUGAR, PARAM BLOCK

#l@ILLCMD, ERROR BLOCK

#l@BADARG, ERROR BLOCK

This example fetches a command string, attempts to parse the
string, and then either calls a command dispatcher or an error
handler.

tDS_ASKSTR_S
MSGADR=PROMPT_MSG, -
BUFADR=STRING_BUF

CMPL RO, SSt_NORMAL
BNEQ ASK_ERRHNDLR

MOVZBL STRING_BUF, CMD_BUFFER
MOVAL STRING_BUF+l, CMD_BUFFER+4

fDS_PARses -
BUFADR=CMD_BUFFER, -
TREE=TREE_ROOT,
ACTION=ACTION~RTN

CMPL RO, SSt_NORMAL
BNEQ PARSE_ERRHNDLR

BSBW CMD_DISPATCHER

4-200

Pro~pt user for input strinS.

If error occurred
then So to error handler

Put strins length and strinS
address in Guadword descriptor

Parse the input strins.

If unsuccessful parse
then So to error handler

Good parse - process co~~and.

(

(

(

($DS_PRINTB

$DS_PRINTF

$DS_PRINTS

$DS_PRINTX

VDS MACROS - SYSTEM SERVICE MACROS

The Format and Print ASCII Message system services provide a
means by which complex messages can be formatted into ASCII
character strings and displayed on the user terminal. The
macros that call these services are commonly referred to as the
"print" maCros. These macros can be used to

• Insert variable character string data into an output
string

• Convert binary values into the ASCII representations of
their decimal, hexadecimal, or octal equivalents and
substitute the results in an output string

The system services construct an output string by
formatted ASCII output (FAO) directives contained
string" and using those directives to operate on
of value parameters.

referring to
in a "control
the contents

Once the system service creates the output string, it is
automatically displayed on the user terminal.

The $DS PRINTS macro ("print basic error message") is used
exclusively to display the second message level of error
messages (see Section 3.9, Reporting Errors). Display of
messages generated with this macro will be inhibited if either
of the VDS control flags IE2 or IE3 is set (see the
VAX Diagnostic Supervisor User's Guide).

The $DS PRINTX macro ("print extended error message") is used
exclusively to display the third message level of error
messages (see Section 3.9, Reporting Errors). Display of
messages generated with this macro will be inhibited if the VDS
control flag IE3 is set (see the VAX Dia~nostic Supervisor
User's Guide).

The $DS PRINTS macro ("print summary message") is used
exclusively to display program summary messages (see Section
3.7, Summary Routine). Display of messages generated with this
macro will be inhibited if the VDS control flag IES is set (see
the VAX Diagnostic Supervisor User's Guide).

4-201

VDS MACROS - SYSTEM SERVICE MACROS

The $DS PR-INTF macro ("print forced message") is used to
display- informational messages that are not related to device
errors. These messages are referred to as "forced" messages
because they are printed regardless of the state of the flags
which inhibit message displays (see the VAX Diagnostic
Supervisor User's Guide).

MACRO-32 Format:

$DS PRINTS x format, [p0], [pI], [p2], [p3], [p4], [p5], [p6],
[p7T, [p8]; [p9], [pa], [pb], [pc], [pa], [pe], [pf]

$DS PRINTX x format, [p0], [pI], [p2], [p3], [p4], [p5], [p6l,
[p7T, [p8]; [p9], [pa], [pb], [pc], [pd], [pel, [pf]

$DS PRINTF x format, [p0], [pI], [p2], [p3], [p4], [p5], (p6],
[p7T, [p8]; [p9], [pa], [pb], [pc], [pd], [pe], [pf]

$DS PRINTS x format, [p0], [pI], [p2], [p3], [p4], [p5], [p6],
[p7T, [p8]; [p9], [pa], [pb], [pc], [pd], [pe], [pf]

SLISS-32 Format:

(

$DS PRINTS (format, [p0], [pI], [p2], [p3], [p4], [p5], [p6],
[p7], [p8], [p9], [pa], [pb] , [pc], [pd], [pe], [pf]); (

$DS PRINTX (format, [p0], [pI], [p2], [p3], [p4], [p5], [p6],
[p7], [p8], [p9], [pa], [pb], [pc], [pd], [pe], [pf]);

$DS PRINTF (format, [p0], [pI], [p2], [p3], [p4], [p5], [p6],
[p7], [p8], [p9], [pa], [pb], [pc], [pd], [pe], [pf]);

$DS PRINTS (format, [p0], [pI], [p2], [p3], [p4], [p5], [p6],
[p7], [p8], [p9], [pa], [pb], [pc], [pd], [pe], (pf]);

4-202

(

VDS MACROS - SYSTEM SERVICE MACROS

format

Address of a counted ASCII string. This is
string," which consists of the fixed text of the
plus FAO directives for formatting variable
directives are listed below. Variable data
parameters p0 through pf.

p0 through pf

the "control
output string
data. FAO

is passed in

o to 16 directive parameters, contained in longwords.
Depending on the corresponding FAO directive, a parameter may
be a value that is to be converted, the address of a string
that is to be inserted, a length, or an argument count.
Parameters are listed in the order they are referenced by the
control string.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ 8UFFEROVF

Service successfully completed, but the size of the output
string was greater than the maximum allowed and was truncated
(see notes) •

SS$ BADPARAM

An invalid FAO directive was specified in the control string.

Notes:

1. VDS stores the output string in an internal buffer as it is
being created. This buffer can contain up to 512
characters. If the output string is greater than 512
characters, the string is truncated and the truncated
message is displayed.

2. If it is necessary to format a message containing more than
16 para~eters, it is possible to

• Use several PRINT macros in succession, or

4-203

VDS MACROS - SYSTEM SERVICE MACROS

• Use the $FAO or $FAOL macros to format the message.
The message should then be printed using the proper
print macro (for example, PRINTX for a level 3 error
message) •

3. In MACRO-3 2, the $FAO S mac ro fo rm uses a PUSHL i nstr uc tion
for all parameters (pI through pn) specified with the macro
call. In other words, all arguments are assumed to be
values, not addresses. Therefore, if an address is
desired, precede the argument with a # character, or load
the address into a register.

FAO Directives:

An FAO directive has the format

!DD

where! indicates that the following character(s) are to be
interpreted as an FAO directive.

DO is a one- or two-character FAO
may require that a parameter be
list of the macro call. Note:
specified in uppercase letters.

Optionally, a directive may include:

• A repeat count

directive. A directive
included in the parameter
All directives must be

A repeat count is coded as !n(DD), where n is a decimal
number indicating that the directive should be repeated for
the next n parameters.

• An output field length

An output field length is specified as tlengthDD,
"length" indicates the field length that the
resulting from the specified directive should have.

where
output

A directive may contain both a repeat count and a field length,
as in !n(lengthDD).

4-204

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Repeat counts and output field lengths may be specified as
variables, by using a # in place of an absolute numeric value.
If a # is specified for a repeat count, the next argument
included in the macro call must contain the count. If a # is
specified for an output field length, the next argument must
contain the length value.

If an output field length is specified as a variable, and a
repeat count is also specified (by variable or by value), then
only one length parameter will be fetched from the argument
list, and each output string generated by the repeat count will
have that length.

A control string may be any length and may contain
of FAO directives. The only restriction is on the
character (ASCII code AX21). If a literal! is
the output string, the directive!! must be used.

any number
use of the !
required in

Each character in the control string that is not part of an FAO
directive is copied into the output string. Thus if a portion
of the message being formatted is a nonvolatile character
string, that string can be placed directly into the control
string.

If an invalid FAO directive is encountered in the control
string, creation of the output string ceases at that point and
an error status is returned to the caller.

No tests are made to determine if the correct number of
parameters have been included in the macro call. If fewer
parameters have been specified than are referenced by the
control string, the system service routine will continue to
fetch parameters past the end of the parameter list.

Table 4-8 lists the FAO directives.

Table 4-9 summarizes how the length of each field in the output
string is determined, if no field length has been specified.

4-205

VDS MACROS - SYSTEM SERVICE MACROS

Table 4-8 FAO Directives

Directive Function

Character String Substitution:

!AC

!AD

!AF

!AS

Inserts a counted ASCII
str ing.

Inserts an ASCII string.

Inserts an ASCII string;
Replaces all nonprintable
ASCII codes with periods (.).

Inserts an ASCII string.

Numeric Conversion (zero-filled):

! DB
lOW
! OL

!XB
!XW
!XL

!ZB
!ZW
!ZL

Converts a byte to octal.
Converts a word to octal.
Converts a longword to octal.

Converts a byte to hexadecimal.
Converts a word to hexadecimal.
Converts a longword to hex.

Converts an unsigned decimal byte.
Converts an unsigned decimal word.
Converts an unsigned decimal
longword.

Numeric Conversion (blank-filled):

!UB Converts an unsigned decimal byte.
IUW Converts an unsigned decimal word.
!UL Converts an unsigned decimal

longword.

!SB Conver ts a signed decimal byte.
!SW Converts a signed decimal word.
!SL Converts a signed decimal

longword.

4-206

Parameter (s)

Address of the string;
the first byte must
contain the length

1) Length of string
2) Address of string

1) Length of string
2) Address of string

Address of quadword
character string
descriptor pointing
to the string

Value to be converted to
ASCII representation

For byte or word conversion,
FAD uses only the low-order
byte or word of the longword
parameter.

Value to be converted to
ASCII representation

For byte or word
conversion, FAD uses only
the low-order byte or word
of the longword parameter

(

(

(

l

VDS MACROS - SYSTEM SERVICE MACROS

Table 4-8 FAO Directives (Cont)

Directive Function Parameter(s)

Output String Formatting:

!/

! !

!%S

l%T

!%D

!n<
!>

!n*c

Inserts new line (cr/lf).

Inserts a tab.

Inserts a form feed.

Inserts an exclamation point.

Inserts the letter S if most
recently converted numeric value
is not 1.

Inserts the system time.

Inserts the system date and time.

None

Address of a quadword time
value to be converted to
ASCII. If 0 is specified,
the current system time is
used.

Defines output field width of n. None
characters. All data and direc-
tives within delimiters are left
justified and blank-filled within
the field.

Repeats the specified character
in the output string n times.

Parameter Interpretation:

!-

1+

Reuses last parameter in the
list.

Skips next parameter in the list.

None

Note: If a variable repeat count and/or a variable output field length is
specified with a directive, parameters indicating the count and/or length
must precede other parameters required by the directive.

4-207

VDS MACROS - SYSTEM SERVICE MACROS

Table 4-9 FAO Field Lengths and Fill Characters

How FAO Determines Output Field Lengths and Fill Characters:

Conversion or
Substitution
Type

Hexadecmal
byte
word
longword

Octal
byte
word
longword

Signed or
unsigned
decimal

Unsigned
zero-filled
decimal

ASCII string
substitution

Defaul t Length
of Output Field

2 (zero-filled)
4 (zero-filled)
8 (zero-filled)

3 (zero-filled)
6 (zero-filled)
11 (zero-filled)

As many char
acters as
necessary

As many char
acters as
necessary

Length of input
character
st:ring

Action When Explicit
Output Field Length is
Longer Then Default

ASCII result is right
justified and blank
filled to the specified
length.

Hex or octal output is
zero-filled to the
default output field
length, then blank
filled to specified
length.

ASCII result is right
justified and blank
filled to the specified
length.

ASCII result is right
justified and zero
filled to the specified
length.

ASCII string is left
justified and blank
filled to the specified
length.

4-208

Action When Explicit
Output Field Length is
Shorter Than Default

ASCII result is
truncated on the
left.

Signed and unsigned
decimal output fields
are completely filled
with asterisks (*).

ASCII str ing is
truncated on the
right.

(

(

(

MACRO-32 Example:

FHT_ERRCOUNT:
.ASCIC

• •
:

BLISS-32 Example:

BIND

FMT_ERRCOUNT =

VDS MACROS - SYSTEM SERVICE MACROS

1!/!/BYTES TRANSFERRED:!SL!_BAD:!SL!/!/1

UPLIT (XASCIC '!/I/BYTES TRANSFERREDtISLI_BADtISLI/I/');
• • • •

$DS_PRINTB (FHT_ERRCOUNT, .TOTAL, .ERR_CNT);

4-209

VDS MACROS - SYSTEM SERVICE MACROS

$DS_PRINTSIG

The Print Signal Array system service will format and print the
contents of a signal array. Signal arrays are passed to
condition handlers when exception conditions occur. Refer to
Section 3.14.5, Condition Handling.

MACRO-32 Format:

$DS PRINTSIG G argptr

(Note: Only the G form of the macro is supported.)

BLISS-32 Format:

$DS PRINTSIG (ARGPTR=argptr);

argptr

Address of the signal array.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ RESIGNAL

The VDS does not support condition handling for the detected
condition. The signal array will not be displayed. The
following conditions will always result in this return status:
SS$_PAGRDERR, SS$_FAIL, SS$_DEBUG, and SS$ ARTRES.

Examples:

These examples illustrate use of the macro within a condition
handler. Condition handlers receive the signal array address
as the first argument on the argument stack.

MACRO-32 Example:

;Display ~iSnal array

BLISS-32 Example:

$DS_PRINTSIG (ARGPTR = .(tAP + 4»; !DisplaY siSnal arra~

4-210

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

'The Probe Device Address system service of the VDS may be used
to determine if a device resides at a particular physical
address. The service is passed the address to be checked and
the logical unit number of the device that is expected to be at
that address, and it will return a status code indicating
whether or not the address exists.

This service is only available to level 3 programs.

MACRO-32 Format:

BLISS-32 Format:

$DS PROBE (ADDRESS=address, LENGTH=length, UNIT=unit);

address

The physical address whose existence is to be determined.

length

Size of the location specified by "address." Valid values are 1
for byte, 2 for word, and 4 for longword.

unit

Logical unit number of the device expected to be at the
specified address.

Return Status:

$SS NORMAL

Service successfully completed.
$DS ERROR

An invalid value was specified for "length".

The specified address does not exist, or the device existing nt
address does not respond.

4-211

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

This example probes devices on a MASSBUS controller.

•
•

$DS_GPHARII_S -

MOVL
MOVL

•
•

LOG_UNIT, PTABLE

PTABLE, R3
BM HP$A_DEVICE(R3),Rl0

CLRL Rl1
$ItS_PROBE_S

ADDRESS =
LENGTH
UNIT

(Rl0HR11l
= .4
= LOG_UNIT

$DS_BERROR ERR10
•
•

(Continue)
•

Get p-table.

; Get p-table address.
; Get MBA controller resister
; base address.
; Init. controller reSister pointer
; See if the drive unit exists.
;

;
;

ERR10; (Report error - device not there.)

BLISS-32 Example:

$DS_GPHARD (UNIT=.LOG_UNIT, RETADR=PTABLE);
CONTROLLER_BASE = .PTABLE CHP$A_DEVICEl;
DEVICE_ADDR = .CONTROLLER_BASE;
WHILE .DEVICE_ADDR LSS LAST_DEVICE DO

BEGIN
IF NOT $DS_PROBE (ADDRESS=.DEVICE_ADDR,

LENGTH=4, UNIT=.LOG_UNIT)
THEN BEGIN ••• Report error - drive not there ••• END
ELSE DEVICE_ADDR = .DEVICE_ADDR + NEXT_DEVICE
ENII;

4-212

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$QIO

$QIOW

The Queue I/O Request system service ($QIO) initiates an I/O
operation in user mode by queueing a request to an I/O channel.
The channel must have been previously assigned with $ASSIGN
service. Once the I/O request has been queued, control returns
to the caller. Notification that the I/O operation has
completed can be accomplished by one of three methods:

1. An AST routine can be caused to execute when I/O has
completed.

2. The diagnostrcprogram can specify that an event flag be
set when I/O has completed.

3. The diagnostic program can specify that an I/O status
block be filled in when I/O has completed.

These methods for notification of I/O completion are discussed
in Section 3.12.1.1, I/O in User Mode.

The Queue I/O Request and Wait for Event Flag system service
($QIOW) combines the operations of the $QIO and SWAITFR (Wait
for Single Event Flag) system services.

The $QIO and $QIOW services may not be used by level 3
programs.

MACRO-32 Format:

$QIO x efn, chan, func, [iosb], [astadr], [astprm], [pI], [p2],
[p3]~ [p4], [p5], [p6]

$ Q I OW x e f n, c han, fun c , [i 0 s b] ,
[p2] ,-[p3], [p4], [p5], [p6]

B LISS-3 2 Fo rma t:

$QIO (EFN=efn, CHAN=chan,
[ASTADR=astadr] , [ASTPRM=astprm] ,
[P4=p4], [P5=pS], [P6=p6]);

$QIOW (EFN=efn, CHAN=chan,
[ASTADR=as tad r] , [ASTPRM=as tprm] ,
[P4=p4], [PS=p5], [P6=p6]);

4-213

[astadr] , [astprm] , [pI] ,

FUNC=func, [IOSB=iosb],
[Pl=p1], [P2=p2], [P3=p3],

FUNC=func, [IOSB=iosb],
[P1=p1], [P2=p2], [P3=p3],

efn

VDS MACROS - SYSTEM SERVICE MACROS

Number of the event flag that is to be set at request
completion. Caution: If an event flag is not specified, the
default is 0. Since event flag 0 is used by the VDS, a nonzero
value for this parameter must ALWAYS be specified, for both the
$QIO and the $QIOW macros, whether or not the diagnostic
program actually tests this flag as a means of determining that
the I/O operation has completed.

chan

Number of the I/O channel assigned to the device to which the
request is directed. Obtained by using the $ASSIGN macro.

func

Function code and modifier bits that specify the operation to
be perform~d. An introduction to function codes is provided in
Section 3.12.1.1, I/O in User Mode. Complete documentation of
function codes is located in the VAX/VMS I/O User's Guide.

iosb

(

Address of a quadword I/O status block that is to receive final
completion status. See "Synchronizing I/O Completion" in (
Section 3.12.1.1, I/O in User Mode.

astadr

Address of the entry mask of an AST routine to be executed when
the I/O completes. The AST routine will execute at the access
mode from which the $QIO macro was issued. See "Synchronizing
I/O Completion" in Section 3.12.1.1, I/O in User Mode.

astprm

AST parameter to be passed to the AST ro~tine.
3.14.3.

4-214

See Section

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

pI to p6

Optional device- and function-specific parameters.
the VAX/VMS I/O User's Guide.

Refer to

The first parameter may be specified as "pI" or as "plv,"
depending on whether an address or a value is required,
respectively. If the keyword is not used, "pI" is the default
and the argument is considered to be an ADDRESS.

P2 through p6 are always interpreted as VALUES.

Return Status:

SS$ NORMAL

Service successfully completed. The I/O request packet was
successfully queued.

SS$ ABORT

A network logical link was broken.

SS$ ACCVIO

The I/O status block cannot be written by the caller.

This status code may also be returned if parameters for
device-dependent function codes are incorrectly specified.

SS$ DEVOFFLINE

The specified device is offline.

SS$ EXQUOTA

The process has exceeded its buffered I/O quota, direct I/O
quota, or buffered I/O byte count quota and has disabled
resource wait mode with the Set Resource Wait Mode ($SETRWM)
system service; or the process has exceeded its AST limit
quota.

SS$ ILLEFC

An illegal event flag number was specified.

4-215

VDS MACROS - SYSTEM SERVICE MACROS

SS$ INSFMEM

Insufficient system dynamic memory is available to complete the
service, and the process has disabled resource wait mode with
the Set Resource Wait Mode ($SETRWM) system service.

SS$ IVCHAN

An invalid channel number was specified, that is, a channel
number of 0 or a number larger than the number of channels
available.

SS$ NOPRIV

The specified channel does not exist or was assigned to a more
privileged access mode.

SS$ UNASEFC

The process is not associated with the cluster containing the
specified event flag.

Notes:

(

1. See the VAX/VMS System Services Reference Manual for (,
discussions of privilege restrictions, resource ",
requirements, and other notes relating to the $QIO and
$QIOW macros.

2. Two potential problems exist when the $QIOW service is
used:

• If the I/O device is malfunctioning, the event flag may
never be set and service will never return to the
diagnostic program.

• If the I/O device is slow or overloaded, the
restriction that control-Cs be checked at least every
three seconds may be violated (see Section 3.14.6,
Handling Control-Cs).

It is therefore better for diagnostic programs to
$QIO and $WAITFR services. Additionally, the
service should be used to limit the amount of time
the program will wait for the event flag, in case
becomes set.

4-216

use the
$SETI.MR

in which
it never

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

$OIO_S EFN=tl,
CHAN=TTCHAN1, -
FUNC=tIO$_WRITEBLK,
Pl=BUFADD,
P2=tBUFSIZE

BLISS-32 Example:

;Event flas 1
;Channel
;Virtual write function
; B'Jffe r add ress
;Buffer size

IF NOT (STATUS=$GIOW (EFN=32, CHAN=.LOG_UNIT,
FUNC=IO$_SETMODE OR IO$M_ATTAST,
IOSB = SETMODE_IOSB, Pl=ATNAST)

THEN
BEGIN

(Report error.)
END;

4-217

VDS MACROS - SYSTEM SERVICE MACROS

$READ

The Read File service of RMS is used to read a specified number
of bytes, starting at a block boundary, from a file. The file
must have been opened and connected, using the $OPEN and
$CONNECT services, respectively.

MACRO-32 Format:

$READ rab, lerr], [suc]

BLISS-32 Format:

rab

$READ (RAB=rab, [ERR=err], [SUC=suc]);

Address of the RAB to be associated with the FAB describing the
file to which connection is to be made. (The address of the
FAS is in the RAB.)

err (user mode only)

Address of a routine to be executed on error return from the
service.

suc (user mode only)

Address of a routine to be executed on successful return from
the service.

Return Status:

Note: For further details on return status values, refer to
the VAX-ll RMS Reference Manual.

RMS$ NORMAL

Service successfully completed.

RMS$ EOF

Attempt was made to read beyond end of file.

4-218

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

RMS$ FAB

The FAB block is invalid.

RMS$ IFI

The FAB's IF! field is invalid.

RMS$ lSI

The RAB's lSI field is invalid.

RMS$ RAB

The RAB block is invalid.

RMS$ RER

Read error. (The device driver's return status will be in the
STV field of the RAB.)

Notes:

1. Table 4-10 lists the RAB fields used by the $READ service
IN STANDALONE MODE. For user mode, refer to the VAX-II RMS
Reference Manual.

4-219

VDS MACROS - SYSTEM SERVICE MACROS

Table 4-10 RAB Fields Used by $READ (Standalone Mode)

Field Mnemonic

Input:

BKT

lSI

UBF

USZ

Output:

RBF

RFA

RSZ

STS

STV

Examples:

MACRO-32 Example:

Field Name

Bucket number. Must contain the virtual
block number of the first block to be read.

Internal stream identifier.

User record area address. This is where the
block will be stored.

User record area size. Indicates length of the
transfer, in bytes.

Record address.

Record's file address. Contains the virtual block
number of the first block transferred.

Record size. Indicates the actual number of bytes
transferred.

Completion status code. (Also contained in R0.)

Status value. (See Return Status, above.)

$READ RAB=RAB_BLOCK

BLISS-32 Example:

$READ (RAB=RAB_BLOCK);

4-220

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$READEF

The $READEF macro is used to obtain the current status of all
flags within an event flag cluster. Event flags are discussed
in Section 3.14.2.

MACRO-32 Format:

$READEF_x efn, state

BLISS-32 Format:

efn

$READEF (EFN=efn, STATE=state)i

Number of any event flag within the cluster to be read. A flag
of number 1 through 31 specifies cluster 0, and a flag of
number 32 through 63 specifies cluster 1.

state

Address of a longword to receive the status of all event flags
within the cluster.

Return Status:

SS$ WASCLR (user mode only)

Service successfully completed. The specified event flag is
clear.

SS$ WASSET (user mode only)

Service successfully completed. The specified event flag was
set.

SS$ NORMAL (standalone mode only)

Service successfully completed.

SS$ ACCVIO (user mode only)

The address specified in the "state" parameter could not be
written by the caller.

4-221

VDS MACROS - SYSTEM SERVICE MACROS

SS$ ILLEFC

An illegal event flag number was specified.

SS$,UNASEFC

In user mode, indicates that the specified common event flag
(see Section 3.14.2) has not been associated with the process
issuing the $CLREF macro.

In standalone mode, indicates
through 127 was specified.
standalone mode.

Examples:

MACRO-32 Example:

$READEF_S 3, FLAGS

BLISS-32 Example:

$READEF (EFN=3, STATE~FLAGS);

4-222

that
These

an event flag from 64
flags are not valid in

(

(

l

(

(

("

VDS MACROS - SYSTEM SERVICE MACROS

$DS_RELBUF

The $DS RELBUF macro is used to deallocate buffer space that
was previously obtained with the $DS GETBUF macro. The pages
deallocated will be the pages that were most recently
allocated. In user mode, the VDS calls the VMS $CNTREG service
(see the ::!AX/VMX Sy.~tem Servl<::'.~~_~~f~£en<::.~~~l].~~:U •

MACRO-32 Format:

$DS_RELBUF_x pagcnt, [retadr], [region]

BLISS-32 Format:

$DS RELBUF (PAGCNT=pagcnt,
[RETADR=retadr] ,
[REGION=region]) ;

pagcnt

Size (number of pages) of buffer space to be deallocated.

r etad r

Address of a two-Iongword array to receive virtual addresses of
low and high limit of address space deallocated.

reg ion

Memory region from which caller wishes buffer space to be
deallocated. Values are

0: buffer allocated from PO space. (Defaul t.)

I : buffer allocated from PI space.

2: buffer allocated from system space.

In standalone mode, this parameter is only relevant if memory
management is turned on.

Return Status:

SS$ NORMAL

Buffer space deallocated.

4-223

VDS MACROS - SYSTEM SERVICE MACROS

SS$_ACCVIO (user mode only)

The "retadr" array cannot be written by the caller.

DS$_FRAGBUF (standalone mode only)

The deallocated space was not contiguous. This condition could
only exist if the specified page count was greater the page
count specified with the most recently issued $DS GETBUF macro,
since space is always allocated in contiguous chunks in
standalone mode.

SS$ ILLPAGCNT

The specified page count was less than 1.

SS$ PAGOWNVIO

In user mode, indicates that a page in the specified range is
owned by a more privileged access mode.

In standalone mode, indicates that an attempt was made to
deallocate more pages than had been previously allocated with
GETBUF macros.

Examples:

MACRO-32 Example:

BUF_LIMITS:
.QUAD 0

$DS_RELBUF 110, BUF_LIMITS

BLISS-32 Example:

OWN
BUF_LIMITS : VECTOR [2J;

;Release 10 paSes.

$DS_RELBUF (PAGCNT=10, RETADR=BUF_LIMITS);

4-224

(

c

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$SETAST

The Set AST Enable system service is used to enable and disable
the delivery of ASTs to the diagnostic program.

MACRO-32 Format:

$SETAST x enbflg

BLISS-32 Format:

$SETKST (ENBFLG=enbflg);

enbflg

AST enable indicator. A value of 1 enables AST delivery, while
a value of 0 disables AST delivery.

Return Status:

SS$ WASCLR

Service successfully completed. AST delivery was previously
disabled.

SS$ WASSET

Service successfully completed. AST delivery was previously
enabled.

Notes:

1. For notes on enabling and disabling AST delivery in user
mode, refer to the VAX/VMS System Services Reference
Manual.

4-225

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

$SETAST_S 11

BLISS-32 Example:

$SETAST (ENBFLG=O);

;Enable deliver~ of ASTs

!Disable deliver~ of ASTs

4-226

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$SETEF

The Set Event Flag system service is used to set event flags.
(Event flags are discussed in Section 3.14.2.)

MACRO-32 Format:

$SETEF x efn

BLISS-32 Format:

efn

$SETEF (EFN=efn);

Numbe r of the even t fl ag to be se t. In use r mod e, the number
may be from 1 through 23 or from 32 through 127. In standalone
mode, flags 1 through 64 may be used.

Return Status:

SS$ WASCLR

Service successfully completed.
previously 0.

SS$ WASSET

Service successfully completed.
previously 1.

SS$ ILLEFC

The spec if i ed

The spec i f i'ed

An illegal event flag number was specified.

SS$ UNASEFC

flag WRS

flag was

In user mode, indicates that the specified common event ~lag
(see Section 3.14.2) has not been associated with the process
issuing the $SETEF macro.

In standalone mode, indicates
through 127 was specified.
standalone mode.

that
These

an event flag from 64
flags are not valid in

4-227

VDS MACROS - SYSTEM SERVICE MACROS

Examples: (

MACRO-32 Example:

$SETEF 14 98et event fla~ number 4.

BLISS-32 Example:

$SETEF (EFN=4); !Set event flas number 4.

(

4-228

(

VDS MACROS - SYSTEM SERVICE MACROS

$SETIMR

The Set Timer system service allows the caller to request that
an event flag be set, and optionally that an AST be delivered,
after a specified amount of time has elapsed.

It is possible to make a number of concurrent timer requests.
The caller will be notified (via event flag and AST delivery)
when each specified time interval has completed.

MACRO-32 Format:

$SETIMR x efn, day tim, [astadr], [reqidt]

BLISS-32 Format:

efn

$SETIMR (EFN=efn, DAYTIM=daytim, [ASTADR=astadr] ,
[REQIDT=reqidt])i

Number of the event flag to be set after the specified time has
elapsed. Note: If not specified, defaults to event flag 0,
which will cause VDS errors.

day tim

Address of quadword containing expiration time. A positive
value indicates an absolute time at which the timer is to
expire. A negative value indicates an offset from the current
time. In standalone mode, only negative values are allowed.
(See notes for specifying time.)

astadr

Address of the entry mask of an AST routine to be called when
the specified time interval expires. If not specified,
defaults to 0, indicating no AST routine is to be called.

4-229

VDS MACROS - SYSTEM SERVICE MACROS

reqidt

Identification number for the timer request. Default value is
0. A unique number may be specified for each timer request, or
the same number can be assigned to several related requests.
This number can be specified with the $CANTIM macro to cancel
all timer requests having the specified number. Also, if an
AST routine is specified, the number will be passed to the AST
routine as the AST parameter.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$_ACCVIO (user mode only)

The expiration time cannot be read by the caller.

SS$ EXQUOTA

• In user mode:

Timer entry quota or AST limit quota exceeded, or
insufficient system dynamic memory to complete the r~quest.

• In standalone mode:

The interval clock is already in use and hence is
unavailable to this system service.

SS$ ILLEFC

An illegal event flag number was specified.

SS$$ INSFMEM

Insufficient dynamic memory to allocate a timer queue entry.

SS$ UNASEFC

• In user mode:

Indicates that the specified common event flag (see Section
3.14.2) has not been associated with the process issuing
the CLREF macro.

4-230

(

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

• In standalone mode:

Indicates that an event flag from 64 through 127 was
specified. These flags are not valid in standalone mode.

DS$_NOTIMP (standalone mode only)

An absolute time value was specified for "day tim." Only offset
time values are allowed in standalone mode.

DS$_IPL2HI (standalone mode only)

The current IPL is too high. The IPL must be less than 2.

Notes:

1. To create a valid argument for the "day tim" parameter,
first specify the time as an ASCII string, then use the
$BINTIM macro to convert the ASCII string into the quadword
format required by the "day tim" parameter.

2. In user mode, if the specified absolute time has already
passed, the timer expires at the next clock cycle (within
10 milliseconds) •

3. Each time the interval clock interrupts, the queue of timer
requests is scanned to determine if any of the specified
time intervals have expired. In standalone mode, the clock
has been set up to interrupt every 10 milliseconds when
$SETIMR requests are being processed.

4. In standalone mode, do not a ttempt to use the $DS \IITAITUS
service while $SETIMR requests are still pending.

4-231

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

DAYTIME:
.QUAIt 0 ;Store 64-bit ti~e here •

• ENTRY AST_RTN, -M<R2,R3,R4>
• •

; AST rOIJt i ne •

RET
• •
• •

$SETIMR_S tS, DAYTIME, AST_RTN

BLISS-32 Example:

OWN
DAYTIME: VECTOR [2];

• •
$SETIMR (EFN=8, ItAYTIM=DAYTIME);

• •

4-232

(

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

The Set Interrupt Priority Level system service is used to
change the processor's interrupt priorty level (IPL).

Only level 3 diagnostic programs are allowed to change the
processor's interrupt priority level. These programs may not
change the IPL without using this macro.

MACRO-32 Format:

$DS SETIPL x level

BLISS-32 Format:

$DS SETIPL (LEVEL=level);

level

The level to which the IPL is to be set.

Return Status:

SS$ NORMAL

Service successfully completed.

Examples:

MACRO-32 Example:

fSet IPL to 31 (decimal).

BLISS-32 Example:

$DS_SETIPL (LEVEL=31); !Set IPL to 31 (decimal).

4-233

VOS MACROS - SYSTEM SERVICE MACROS

The Set Adapter Mapping system service of the VDS will set up
the mapping registers of a bus adapter so that data will be
transferred to or from the desired physical address space. The
service may be used to set, clear, validate, or invalidate an
adapter's mapping registers.

MACRO-32 Format:

$OS SETMAP x unit, func, phyadr, [mapbas), [bytcnt), (datpth]

BLISS-32 Format:

$OS SETMAP (UNIT=un it, FUNC=func, PHYAOR=phyad r ,
[MAPBAS=mapbas), [BYTCNT=bytcnt), [DATPTH=datpth])i

unit

Logical unit number of the device to be tested.

func

Function code indicating the function to
Function codes are listed in Note 1.

phyadr

be performed.

Address of a two-longword array containing physical addresses
of beginning and ending of physical address space from which or
to which data is to be transferred. Commonly, this is the
"phyadr" array filled in by the $DS GETBUF service. The value
specified as the ending address Is used to validate the
"bytcnt" parameter.

mapbas

This argument is used to optionally select the first (lowest
addressed) map register to be employed in mapping virtual
program addresses to physical memory addresses. The service
will start with the map register specified and set up (or
clear) enough map registers to map the address range indicated
by"phyadr".

4-234

(

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

For MASSBUS operation, the argument must be a value from 0 to
255 (decimal), where 0 selects the first map register, 1
selects the second, and so on. The MBA Virtual Address
Register will be automatically set up to point to the specified
map register.

For UNIBUS operation, the argument must be a value from 0 to
495 (decimal), where 0 selects the first map register, 1
selects the second, and so on.

The default value is 0.

For descriptions of address translation in bus adapters, refer
to the VAX Hardware Handbook.

bytcnt

Number of bytes composing a data transfer. For MASSBUS
operation, the 2's complement of this value is stored in the
MBA byte counter. Maximum -value allowed is 65535 (decimal).

For both MASSBUS and UNIBUS operation, this value is used when
setting up map registers -- enough pages are mapped to handle
the number of bytes specified.

The default value is 0. If the default is used, one page (512
bytes) is mapped.

datpth

Value indicating the UNIBUS data path. The default is 0,
indicating the direct data path. Values from 1 through 15 may
be specified to select one of the buffered data paths. This
field is ignored if the UNIBUS adapter does not support
buffered data paths.

Return Status:

DS$ NORMAL

Service successfully completed.

4-235

VDS MACROS - SYSTEM SERVICE MACROS

DS$ ERROR

The specified logical unit number is too large.

DS$ IHWE

Initial hardware error. A hardware error was detected in the
bus adapter before the specified function was performed. The
function was not performed. Call the $DS CHANNEL service,
specifying the CHC$ STATUS function to dete~mine the error
type.

$DS PROGERR

An invalid function code was specified.

The byte count specified is too large to be mapped starting at
the specified map register. Lower the byte count or lower the
starting map register number.

The byte count specified will not fit into the buffer limits
indicated by "phyadr."

Notes:

1. Function Codes

Following is a list of valid function codes. For MACRO-32,
these codes are defined by the $DS_CHMDEF macro.

• CHM$ INVALIDATE - Clear the "valid" bits~-for all map
regi~ters in the bus adapter to which the device unit
specified by "unit" is attached.

• CHM$ MFWDN Set up map registers for a forward
transfer according to "phyadr, " "mapbas, " and "bytcnt"
pa rameter s, and set the "valid" bit in each register
used. Do not invalidate any registers. If MASSBUS,
load MBA virtual address register and MBA byte counter.

• CHM$ MFWDNO - Set up map registers for a forward
tranifer according to "phyadr," "mapbas," and "bytcnt"
parameters, and set the "valid" bit in each register
used. Do not invalidate any registers. Indicate that
a byte offset transfer will be performed (UNIBUS only).

4-236

(

(

l

(

(

VDS MACROS - SYSTEM SERVICE MACROS

• CHM$ MFWDV - Invalidate all map registers. Set up map
regiiters for a forward transfer according to "phyadr,"
"mapbas," and "bytcnt" parameters, and set the "valid"
bit in each register used. If MASSBUS, load MBA
virtual address register and MBA byte counter.

• CHM$ MFWDVO - Invalidate all map registers. Set up map
regiiters for a forward transfer according to "phyadr,"
"mapbas," and "bytcnt" parameters, and set the "valid"
bit in each register used. Indicate that a byte offset
transfer will be performed (UNIBUS only).

• CHM$ MREVN Set up map registers for a
transfer according to "phyadr," "mapbas," and
parameters, and set the "valid" bit in each
used. Do not invalidate any registers. If
load MBA virtual address register and MBA byte

reverse
"bytcnt"
register
MASSBUS,
counter.

• CHM$ MREVNO - Set up map registers for a reverse
transfer according to "phyadr," "mapbas," and "bytcnt"
parameters, and set the "valid" bit in each register
used. Do not invalidate any registers. Indicate that
a byte offset transfer will be performed (UNIBUS only).

• CHM$ MREVV - Invalidate all map registers. Set up map
registers for a reverse transfer according to "phyadr,"
"mapbas," and "bytcnt" parameters, and set the "valid"
bit in each register used. If MASSBUS, load MBA
virtual address register and MBA byte counter.

• CHM$ MREVVO - Invalidate all map registers. Set up map
registers for a reverse transfer according to "phyadr,"
"mapbas," and "bytcnt" parameters, and set the "valid"
bit in each register used. Indicate that a byte offset
transfer will be performea (UNIBUS only).

• CHM$ NFWDN - Do not alter map register contents. If
MASSBUS, load MBA virtual address register and MBA byte
counter for forward transfer.

• CHM$ NREVN - Do not alter map register contents. If
MASSBUS, load MBA virtual address register and MBA byte
counter for reverse transfer.

4-237

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

BUF'"_srZE ::: 1024
LOG_UNITt .BLKL 1
BUFFER: .BLKQ 1

+
$DS_SETMAP_S LOG_UNIT, tCHM$_MFWDV, BUFFER"tBUF_SIZE

BLISS-32 Example:

LITERAL..

OWN
LOG_UNIT
BUFFER

VECTOR,
VECTOR 1:2];

+
$DS_SETMAP (UNIT=.LOG_UNIT, FUNC=CHM$_MFWDV,

PHYADR=BUFFER, BYTCNT=BUF_SIZE);

4-238

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$SETPRT

The Set Protection on Pages system service allows a program to
change the protection code associated with one or more pages of
virtual memory.

MACRO-32 Format:

$SETPRT inadr, [retadr], [acmode], prot, [prvprtl

BLISS-32 Format:

$SETPRT (INADR=inadr, [RETADR=retadr], [ACMODE=acmode] ,
PROT=prot, [PRVPRT=prvprt]);

inadr

Address of a two-longword array containing the starting and
ending virtual addresses of the pages for which the protection
code is to be changed. Specifying the same value for the
starting and ending addresses will cause the protection of one
page to be changed. Only the virtual page number portion of
the address is used; the low-order nine bits are ignored.

r etad r

Address of a two-longword array to
ending virtual addresses of
protections changed. See Note 2.

receive the starting and
the pag es tha t had the i r

acmode

Access mode on behalf of which the request is being made. The
specified access mode is maximized with the access mode of the
caller. The result must be equal to or more privileged than
the access mode of the owner of the pages being changed.

This parameter isiqnored in standalone mode.

prot

New protection, in bits 0 through 3.
various page protection codes are
macro which is defined in LIB.MLB.

4-239

Symbolic names for the
described by the $PRTDEF

VDS MACROS - SYSTEM SERVICE MACROS

prvprt

Address of a byte to receive the protection previously assigned
to the last page whose protection was changed. Useful if only
one page was changed.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

• User mode:

The input address array cannot be read by the caller,
or the output address array or the byte to receive the
previous protection cannot be written by the caller.

An attempt was made to change the protection of a
nonexistent page.

• Standalone mode:

The specified address range was in the reserved virtual
address space (C0000000 to FFFFFFFF).

SS$_EXQUOTA (use mode only)

The process exceeded its paging file quota while changing a
page in a read-only private section to a read/write page.

SS$_IVPROTECT (user mode only)

The specified protection code has a numeric value of 1 or is
greater than 15.

SS$ LENVIO

In user mode, a page in the specified range is beyond the end
of the program or control region.

In standalone mode, a page in the specified range is beyond the
end of the program, control, or system region.

4-240

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

SS$_NOPRiV (user mode only)

A page in the specified range is in the system address space.

SS$ PAGOWNVIO (user mode only)

Page owner violation. An attempt was made to change the
protection on a page owned by a more privileged access mode.

DS$_PROGERR (standalone mode only)

The specified address range was improperly formatted.

Notes:

1. In standalone mode, setting page protection is
meaningful if memory management has been enabled.

only

2. If an error occurs while changing page protections, the
return array, if specified, will contain the start and
ending address of the pages that were changed before the
error occurred. If no pages were changed, the return
address array will contain a-I.

Examples:

MACRO-32 Example:

ADDR_RANGE: .BLKQ 1
• •

$SETPRT INADR=ADDR_RANGE, PROT=tPRT$C_UW

BLISS-32 Example:

OWN

• •

ADDR_RANGE : VECTOR [2];
• •
:

tSETPRT <INADR=ADDR_RANGE, PROT=PRT$C_UW);

4-241

VDS MACROS - SYSTEM SERVICE MACROS

The Set Exception or Interrupt Vector system service is used to
load an exception or interrupt vector with the address of a
service routine.

Only level 3 diagnostic programs may use the $DS SETVEC macro.
Vector contents may not be changed by any means-other than the
use of this macro.

MACRO-32 Format:

$DS_SETVEC_X vector, srvadr, [code]

BLISS-32 Format:

$DS SETVEC (VECTOR=vector, SRVADR=srvadr, [CODE=code]);

vector

The vector address, relative to the base of the System Control
Block (SCB). Refer to the VAX Architecture Handbook for a list
of vector addresses in the SCB. See Note 1.

srvadr

The address of a service routine which is to receive control
when an exception or interrupt is delivered through the
specified vector. The address must be on a longword boundary.

code

Used to indicate the stack on which the event is to be
serviced.

Can be " or 1. (Th e de fa u 1 tis ".)

• If 0, service the event on the kernel stack unless
already running on the interrupt stack, in which case
service on the interrupt stack. Behavior of the
processor is undefined for a "kernel stack not valid"
exception with this code.

• If 1, service the event on the interrupt stack. If the
event is an exception, raise the IPL to IF(16).

4-242

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

The value specified for this parameter is loaded into bits
<1:0> of the specified vector.

Return Status:

DS$ NORMAL

Service successfully completed.

DS$ IVADDR

Address specified for "srvadr" routine does not start on a
longword boundary.

DS$ IVVECT

Address specified for "vector" is not a valid vector address.

DS$ ICBUSY

The caller specified the interval clock's vector, and the
interval clock was already active.

Notes:

1. When setting device interrupt vectors, remember that the
SCB is several pages long. The page on which a particular
device interrupt vector resides is determined by both the
bus adapter(s) to which the device is attached and the
processor being used.

For instance, to find the SCB offset for a particular
UNIBUS device's vector address, read HP$W VECTOR in the
device's p-table, then OR this value with the contents of
HP$W VECTOR in the p-table associated witih EACH adapter
existing between the device and the processor", The number
and type of adapter depend on the processor type. (The
device's p-table contains the actual UNIBUS vector, and the
adapters' p-tables contain relative offsets into the SCB
for the bases of the vector areas for the adapters.)

4-243

VDS MACROS - SYSTEM SERVICE MACROS

It thus becomes obvious that referencing device vectors in
the SCB will cause a diagnostic program to become
processor-dependent. Using the $DS CHANNEL service for I/O
operations eliminates the need to load SCB vectors and thus
keeps diagnostic programs processor- independent.

Examples:

MACRO-32 Example:

VECTADDR, SERV_RTN

BLISS-32 Example:

$DS_SETVEC (VECTOR=.VECTADDR, SRVADR=SERV_RTN, CODE=1);

4-244

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

$DS_SHOCHAN

The Show Channel Status system service of the VDS will display
on the user's terminal the contents of internal bus adapter
registers. This service should be used whenever the
$DS CHANNEL or $DS SETMAP services detect adapter faults.

The display will consist of the name of each register, the
mnemonic name of' each bit field within the register, and the
current value of each bit field.

This service is only available to level 3 diagnostic programs.

MACRO-32 Format:

$DS SHOCHAN x unit

BLISS-32 Format:

$DS SHOCHAN (UNIT=unit);

unit

Logical unit number of device currently being tested. Adapter
to which this unit is attached will be the one whose registers
are displayed.

Return Status:

$DS NORMAL

Service successfully completed.

$DS ERROR

Logical unit number is too large.

Notes:

1. It may be useful to include the $DS SHOWCHAN macro in an
error reporting routine (refer to the error reporting
macros, $DS_ERRxxxx).

4-245

VDS MACROS - SYSTEM SERVICE MACROS

Examples:

MACRO-32 Example:

tDS_SHOCHAN_S LOG_UNIT

BLISS-32 Example:

.Display adapt.r status.

tDS_SHOCHAN (UNIT-.LOG_UNIT)'

4-246

(

c

(

VDS MACROS - SYSTEM SERVICE MACROS

$OS_SUMMARY

The Print Summary system service will cause the diagnostic
program's summary routine to be executed. Summary routines are
discussed in Section 3.7. Note that the summary routine will
also be executed when the $DS ENDPASS service is called, if the
requested number of program passes have been executed.

MACRO-32 Format:

$DS SUMMARY x - -

BLISS-32 Format:

$DS_SUMMARY;

Return Status:

No status returned.

Examples:

MACRO-32 Example:

BLISS-32 Example:

4-247

VDS MACROS - SYSTEM SERVICE MACROS

$UNWIND

The Unwind Call Stack system service allows a condition handler
to "unwind" the procedure call stack to a specified depth.
"Unwinding" is the process of stepping through a specified
number of call frames on the stack so tha t when the cond i tion
handler returns, the specified call frame will be used instead
of the one placed on the stack when the condition handler was
called. In other words, the normal execution flow is altered.
Optionally, an address can be specified that will be placed in
the return PC argument of the call frame that was stepped to.

For a further discussion of unwinding, refer to sections on
condition handling in the VAX/VMS System Services Reference
Manual.

MACRO-32 Format:

$UNWIND x [depadr], [newpc]

BLISS-32 Format:

$UNWIND ([DEPADR=depadr], [NEWPC=newpc]);

depadr

Address of a longword indicating the depth to which the stack
is to be unwound. A depth of 0 indicates the call frame that
was active-when the condition occurred (the frame that would
normally be used when the condition handler returns), 1
indicates the caller of that frame, 2 indicates the caller of
the caller of the frame, and so on. If the depth is specified
as 0 or less, no unwind occurs and a successful status code is
returned. If no value is specified for this parameter, the
unwind is performed to the caller of the frame that established
the condition handler.

newpc

Address to be given control when the unwind is complete.
value is placed in the return PC argument of the call
that is stepped to. If no value is specified for
parameter, the return PC argument is not altered.

4-248

This
frame
this

(

\

(

(

(

(
\

VDS MACROS - SYSTEM SERVICE MACROS

Return Status:

SS$ NORMAL

Service successfully completed.

SS$_ACCVIO (user mode only)

The call stack is not accessible to the caller. This condition
is detected when the call stack is scanned to modify the return
address.

SS$ INSFRAME

There are insufficient call frames to unwind the specified
number of frames.

SS$ NOSIGNAL

No signal for an exception condition is currently active.

SS$ UNWINDING

An unwind is already in progress.

Notes:

1. The actual unwind does not occur when the service is
called. The service simply modifies the return addresses
in the call frames so that when the condition handler
returns, an "unwind" procedure is called from each frame
that is being unwound.

Examples:

In this example, the $UNWIND will cause the return PC of the
call frame created by the CALLS ROUTINEI instruction to be
replaced by OUTADDR, and the RET instruction on the condition
handler will cause that call frame to be referenced.

4-249

MACRO-32 Example:

ROUTINEU
• •

CALLS

RET

ROUTINE2:

• •

• •

VDS MACROS - SYSTEM SERVICE MACROS

ROUTINE2

(condition handler is called.>
:

RET

COND_HNDLRt

OUTADDR:

HOVL t1, DEPTH
$UNWIND_S DEPTH, OUTADDR

RET
• •

• •

4-250

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

BLISS-32 Example:

ROUTINE ROUTINEI =
BEGIN

• •
CALLS

END;
• •

ROUTINE2

ROUTINE ROUTINE2 =
BEGIN

(condition handler is called.)

END;

ROUTINE COND_HNDLR =
BEGIN

+ •
DEPTH = 1;
SUNWIND_S DEPTH, ERRORS

END;
• •

ROUTINE ERRORS
BEGIN

END;
• ..

4-251

VDS MACROS - SYSTEM SERVICE MACROS

$WAITFR

The $WAITFR macro calls a system service that will wait until a
specified event flag is set before returning. Event flags are
discussed in Section 3.14.2. If the specified flag is already
set, the service routine returns immediately. Otherwise,
control is not returned to the caller until the flag has been
set.

MACRO-32 Format:

$WAITFR x efn

BLISS-32 Format:

$WAITFR (EFN=efn)i

efn

Number of the event flag to wait for.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ ILLEFC

An illegal event flag number was specified.

SS$ UNASEFC(user mode only)

In user mode, indicates that the specified common event flag
(see Section 3.14.2) has not been associated with the process
issuing the $SETEF macro.

In standalone mode, indicates
through 127 was specified.
standalone mode.

4-252

that
These

an event flag from 64
flags are not valid in

(

(

(
"--

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Notes:

1. While the system service routine is waiting for the event
flag to be set, ASTs can interrupt the service. Program
control will return to the $WAITFR system service after
execution of the AST routine has completed.

Examples:

MACRO-32 Example:

SWAITFR_S .4

BLISS-32 Example:

$WAITFR (EFN=5);

4-253

VOS MACROS - SYSTEM SERVICE MACROS

The Millisecond Wait system service is used to create a delay
of a specified number of milliseconds. When the service
routine is called, control is not returned to the caller until
the requested amount of time has elapsed (unless an
asynchronous event occurs that causes a routine containing a
$CANTIM or $OS_CANWAIT macro to be executed; see Note 1).

MACRO-32 Format:

$OS WAITMS x time, [tag]

BLISS-32 Format:

$DS WAITMS (TIME=time, [RETTIM=tag]);

time

tag

Length of delay in time units. One time
milliseconds. Value must be greater than 0.

unit equals 10

Address of longword to receive amount of unused time, if delay
was canceled before all requested time was used up (see note
1) •

Return Status:

SS$ NORMAL

Service successfully completed.

DS$_PROGERR

An invalid value was specified for the "time" parameter.

4-254

(

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

SS$ EXQUOTA

• In user mode:

Timer entry quota or AST delivery quota exceeded, or
insufficient dynamic memory space.

• In standalone mode:

The interval clock is already in use and hence is
unavailable to this system service.

Notes:

1. If an asychronous event (AST delivery or hardware
interrupt) occurs, and the routine handling the AST or
interrupt issues a $CANTIM or $DS CANWAIT macro, then the
$WAITMS service will, on regaining program control after
return from the event handler, store the unused delay time
in the address specified by "tag" and return control to the
caller.

Examples:

MACRO-32 Example:

BLISS-32 Example:

$DS_WAITMS (TIME=200, RETTIM=TIHE_LEFT);

4-255

VOS MACROS - SYSTEM SERVICE MACROS

$DS_WAITUS

The Microsecond Wait system service is used to create a delay
of a specified number of microseconds. When the service
routine is called, control is not returned to the caller until
the requested amount of time has elapsed (unless an
asynchronous event occurs which causes a routine containing a
$CANTIM or $OS CANWAIT macro to be executed; see Note 1).

This macro may only be used by level 3 diagnostic programs.

MACRO-32 Format:

$DS WAITUS x time, [tag]

BLISS-32 Format:

$OS WAITUS (TIME=time, [RETTIM=tag]);

time

tag

Length of delay in time units. One time unit equals 10
microseconds. Value must be greater than 0.

Address of longword to receive amount of unused time, if delay
was canceled before all requested time was used up (see notes).

Return Status:

SS$ NORMAL

Service successfully completed.

OS$ PROGERR

An invalid value was specified for the "time" parameter.

4-256

(

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

• In user mode:

Timer entry quota or AST delivery quota exceed~d, or
insufficient dynamic memory space.

• In standalone mode:

The -interval clock is already in use and hence is
unavailable to this system service.

Notes:

1. If an asychronous event (AST del ivery or hardware
in ter r upt) occur s, and the rout ine handl ing the AST 0 r
interrupt issues a $CANTIM or $DS CANWAIT macro, then the
$DS WAITUS service will, on regaining program control after
return from the event handler, store the unused delay time
in the address specified by "tag" and return control to the
caller.

2. Do not attempt to use the $DS WAITUS service if $SETIMR
requests have been issued and are still pending.

Examples:

MACRO-32 Example:

BLISS-32 Example:

$DS_WA~TUS (TIME=40, RETTIM=TIME_LEFT);

4-257

VDS MACROS - SYSTEM SERVICE MACROS

$WAKE

The Wake system
hibernation as
service.

MACRO-32 Format:

service reactivites a
a result of execution

$WAKE_x [pidadr], [prcnam]

BLISS-32 Format:

$WAKE ([PIDADR=pidadr], [PRCNAM=prcnam]);

pidadr (user mode only)

process that is in
of the $HIBER system

Address of a longword containing the process indentification of
the process to be awakened.

prcnam (user mode only)

Address of a character string descriptor (see Section 4.3)
pointing to the process name string.

Refer to the VAX/VMS System Services Reference Manual for
details on the interpretation of these parameters.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$_ACCVIO (user mode only)

The name string or string descriptor
caller, or the process id number
caller.

4-258

cannot be read by the
cannot be written by the

()

(

(

(

(~

VDS MACROS - SYSTEM SERVICE MACROS

SS$ IVLOGNAM

The process name string is invalid.

SS$ NONEXPR

Warning. The specified process does not exist, or an invalid
process id was specified.

SS$ NOPRIV

The caller's process does not have the privilege required for
waking the specified process.

Notes:

1. In standalone mode, the only meaningful use of this macro
is to place it in an event handler that will be executed
while the diagnostic program is in hibernation. This will
awaken the program so that it may continue executing.

Examples:

MACRO-32 Example:

BLISS-32 Example:

$WAKE ();

4-259

VDS MACROS - SYSTEM SERVICE MACROS

$WFLAND

The $WFLAND macro calls a system service that will wait until a
specified group of event flags is set before returning. Event
flags are discussed in section 3.14.2. All of the event flags
must be in the same event flag cluster. If the specified flags
are already set, the service routine returns immediately.
Otherwise, control is not returned to the caller until all
specifi~d flags have been set.

MACRO-32 Format:

$WFLAND x efn, mask

BLISS-32 Format:

$WFLAND (EFN=efn, MASK=mask);

efn

Number of any event flag in the cluster being used.

mask

32-bit mask in which bits set to 1 indicate event flags that
must be set before the system service returns.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ ILLEFC

An illegal event flag number was specified.

SS$ UNASEFC

In user mode, indicates that the specified common event flag
(see Section 3.14.2) has not been associated with the process
issuing the macro.

In standalone mode, indicates
through 127 was specified.
standalone mode.

4-260

that
These

an event flag from 64
flags are not valid in

(

l

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

Notes:

1. While the system service routine is waiting for the event
flags to be set, ASTs can interrupt the service. Program
control will return to the $WFLAND system service after
execution of the AST routine has completed.

Examples:

MACRO-32 Example:

$WFLAND_S 10, 1000000FO

BLISS-32 Example:

$WFLAND (EFN=O, HASK=.FLAG_HASK);

$WFLAND (EFN=O, MASK=7.X'OOOOOOFO');

4-261

VDS MACROS - SYSTEM SERVICE MACROS

$WFLOR

The $WFLOR macro calls a system service that will wait until
anyone of a specified group of event flags is set before
returning. Event flags are discussed in Section 3.14.2. All
of the event flags must be in the same event flag cluster. If
anyone of the specified flags is already set, the service
routine returns immediately. Otherwise, control is not
returned to the caller until one of the specified flags has
been set.

MACRO-32 Format:

$WFLOR x efn, mask

BLISS-32 Format:

$WFLOR (efn, mask);

efn

Number of any event flag in the cluster being used.

mask

32-bit mask in which bits set to 1 indicate event flags that
are to be tested by the system service.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$ ILLEFC

An illegal event flag number was specified.

4-262

(

(

(

VDS MACROS - SYSTEM SERVICE MACROS

SS$ UNASEFC

In user mode, indicates that the specified common event flag
(see Section 3.14.2) has not been associated with the process
issuing the macro.

In standalone mode, indicates
through 127 was specified.
standalone mode.

Notes:

that
These

an event flag from 64
flags are not valid in

While the system service routine is waiting for an event flag
to be set, ASTs can interrupt the service. Program control
will return to the WFLOR system service after execution of the
AST routine has completed.

Examples:

MACRO-32 Example:

$WFLOR_S to, FLAG_MASK

$WFLOR_S to, 1000000FO

BLISS-32 Example:

$WFLAND (EFN=O, MASK=FLAG_MASK);

$WFL~ND (EFN=O, MASK=r.X'OOOOOOFO');

4-263

VDS MACROS - SYMBOL DEFINITION MACROS

4.7 SYMBOL DEFINITION MACROS

$DS_BITDEF

The $DS BITDEF macro defines (for MACRO-32 programs) a bit mask
for each bit from 0 through 31. For BLISS-32 programs, these
symbols may be referenced without first issuing the $DS BITDEF
macro.

Symbols defined are:

BIT0
BITI
BIT2

BIT31

=
=

=

00000001 (HEX)
00000002 (HEX)
00000004 (HEX)

80000000 (HEX)

4-264

(

(

(

(

VDS MACROS - SYMBOL DEFINITION MACROS

The $DS CFDEF macro defines (for MACRO-32 programs) symbolic
names for the fields of a call frame. For BLISS-32 programs,
these symbols may be referenced without first issuing the
$DS CFDEF macro.

Symbols defined are:

Notes:

CF$L ONCOND
CF$W-PSW
CF$W-MASK
CF$L-AP
CF$L-FP
CF$L-PC
CF$L-REG

- Address of condition handler
- Processor status word
- Register mask
- Saved AP
- Saved FP
- Saved PC
- Start of saved R0 through Rll

1. These symbols are used as offsets from the current FP, as
in 'CF$W_PSW(FP)'.

4-265

VDS MACROS - SYMBOL DEFINITION MACROS

The $DS CHCDEF macro defines (for MACRO-32 programs) the
symbolic- names of the function codes associated with the
$DS CHANNEL service. For BLISS-32 programs, these symbols may
be referenced without first issuing the $DS CHCDEF macro.

Symbols defined are:

CHC$ INITA
CHC$-INITB
CHC$-ENINT
CHC$-DSINT
CHC$-ABORT
CHC$-PURGE
CHC$-CLEAR
CHC$-STATUS
CHC$-SETDFT
CHC$-CLRDFT

4-266

(

(

(

(

VDS MACROS - SYMBOL DEFINITION MACROS

$DS_CHMDEF

The $DS CHMDEF macro defines (for MACRO-32 programs) symbolic
names for the function codes associated with the $DS SETMAP
service. For BLISS-32 programs, these symbols may be
referenced without first issuing the $DS CHMDEF macro.

Symbols defined are:

CHM$ INVALIDATE
CHM$-MFWDN
CHM$-MFWDNO
CHM$-MFWDV
CHM$-MFWDVO
CHM$-MREVN
CHM$-MREVNO
CHM$-MREVV
CHM$-MREVVO
CHM$-NFWDN
CHM$ NREVN

4-267

VDS MACROS - SYMBOL DEFINITION MACROS

The $DS CLIDEF macro defines (for MACRO-32 programs) symbolic
names fo r the .. tr aversal codes" used in a.ssoc ia ted wi th the
$DS_CLI macro.

Symbols defined are:

CLI$K ALNUM
CLI$K-ALPHA
CLI$K-NUM
CLI$K-SYMBOL
CLI$K-FILE
CLI$K-SPACE
CLI$K-COMMA
C LI $K-S LASH
CLI$K-VALUE
CLI$K-EOL
CLI$K-DEC
CLI$K-HEX
CLI$K-OCT
CLI$K-STRING
CLI$K-BR
CLI$K-BIF
CLI$K-CALL
CLI$K-RETURN
CLI$K-BIFS
CLI$K-EXIT
CLI$K-ERROR

4-268

(

(

(

(

VDS MACROS - SYMBOL DEFINITION MACROS

The $DS DSDEF macro defines (for MACRO-32 programs) symbolic
names for status codes returned by system services that begin
with the prefix 'DS$ '. Status codes beginning with the 'SS$,
prefix are defined by the $SSDEF macro in LIB.MLB. For
BLISS-32 programs, these symbols may be referenced without
first issuing the $DS_DSDEF macro.

Symbols defined are:

DS$ NORMAL
DS$-SEVERE
DS $-1 LLCHAR
DS$-NOTDON
DS$-VASFUL
DS$-IHWE
DS$-ILLPAGCNT
DS$-KRNLSTK
DS$-CHME
DS$-ICERR
DS$-UNEXPINT
DS$-BADLINK
DS$-DEVNAME

DS$ WARNING
DS$-OVERFLOW
DS$-PROGERR
DS $-1 VVECT
DS$-INSFMEM
DS$-FHWE
DS$-FRABUF
DS$-POWER
DS$-NOTI"'1P
DS$-ICBUSY
DS$-CHMK
DS$-NEEDUNIT
DS$-NClPCS

4-269

DS$ ERROR
DS$-NULLSTR
DS$-TRUNCATE
DS $-1 VADDR
DS$-MMOFF
DS$-LOGIC
DS$-MCHK
DS$-TRANSL
DS$-IPL2HI
DS$-ARITH
DS$-BADTYPE
DS$-ILLUNIT
DS$-NOSUPPORT

VDS MACROS - SYMBOL DEFINITION MACROS

$DS_DSSDEF

The $DS DSSDEF macro defines (for MACRO-32 programs and
BLISS-32- programs) the symbolic names of entry points for the
system services.

For BLISS-32 programs, the macro must be defined globally in at
least one source module, as follows:

GLOBAL $DSSDEF;

Symbols defined are:

DS$ABORT DS$ASKDATA DS$ASKADR
DS$ASKLGCL DS$ASKSTR DS$ASKVLD
DS$ATTACH DS$BGNSUB DS$BRANCH
DS$BREAK DS$CANWAIT DS$CHANNEL
DS$CKLOOP DS$CLRVEC DS$CNTRLC
DS$CVTREG DS$ENDPASS DS$ENDSUB
DS$ERRDEV DS$ERRHARD DS$ERRPREP
DS$ERRSOFT DS$ERRSYS DS$ESCAPE
DS$FREEDBGSYM DS$GETBUF DS$GETMEM
DS$GPHARD DS$HELP DS$INITSCB
DS$INLOOP DS$LOAD DS$LOADPCS
DS$MAPDBGBLOCK DS$MMOFF DS$MMON
DS$MOVPHY DS$MOVVRT DS$PARSE
DS$PRINTB DS$PRINTF DS$PRINTS
DS$PRINTSIG DS$PRINTX DS$PROBE
DS$RELBUF DS$RELMEM DS$SETIPL
DS$SETMAP DS$SETPRIEXV DS$SETVEC
DS$SHOCHAN DS$SUMMARY DS$WAITMS
DS$WAITUS SYS$ALLOC SYS$ASCTIM
SYS$ASSIGN SYS$BINTIM SYS$CANCEL
SYS$CANTIM SYS$CLOSE SYS$CLREF
SYS$CONNECT SYS$DISCONNECT SYS$DALLOC
SYS$DASSGN SYS$FAO SYS$FAOL

SYS$GET SYS$GETCHN SYS$GETTIM
SYS$LKWSET SYS$NUMTIM SYS$OPEN
SYS$QIO SYS$QIOW SYS$READ

SYS$READEF SYS$SETAST SYS$SETEF
SYS$SETIMR SYS$SETPRI SYS$SETPRT
SYS$SETRWM SYS$SETSWM SYS$ULKPAG
SYS$ULWSET SYS$UNWIND SYS$WAITFR

SYS$WFLAND SYS$WFLOR

4-270

(

(

(

(

VDS MACROS - SYMBOL DEFINITION MACROS

The $DS ERRDEF macro defines (for MACRO-32 programs) the
symbolic- names of the parameters associated with the
$DS ERRxxxx macros. These symbols will most likely be used in
error reporting routines.

For BLISS-32 programs, these
reporting routines because
macro produces a parameter
routine.

symbols are not used in error
expansion of the $DS BGNMESSAGE
list for the error reporting

Refer to descriptions of the $DS BGNMESSAGE and $DS ERRxxxx
macros for examples of referencIng $DS ERRxxxx parameters in
error reporting routines.

Symbols defined are:

Notes:

ERR$ NUM
ERR$ UNIT
ERR$-MSGADR
ERR$-PRLINK
ERR$-Pl
ERR$-P2
ERR$-P3
ERR$-P4
ERR$-PS
ERR$-P6

1. These symbols are used as offsets into the argument list,
for example, ERR$_P3(AP).

4-271

VDS MACROS - SYMBOL DEFINITION MACROS

$DS_HPODEF
$DS_HPO_DECL

The $DS HPODEF macro defines (for MACRO-32 programs) the
symbolic-names of the device-independent fields of a p-table.

The $DS HPO DECL is used for BLISS-32 programs. The format of
this macro Is as follows:

where "xxxx" represents
p-table fields are to
($DS_RH780_DEF) •

Symbols defined are:

the
be

name of
defined,

the device for which
such as $DS HPO DECL

HP$Q DEVICE - Quadword descriptor of device name
HP$W-SIZE - Total length of p-table
HP$B-FLAGS - Initialization flags
HP$B-DRIVE - Unit number
HP$T-DEVICE - Start of device name string
HP$A-DEVICE - Hardware address of device

(

HP$A-DVA - Base of address space assigned to device C.
HP$A-LINK - Address of p-table for device's link -

Notes:

HP$W-VECTOR - Device's vector
HP$T-TYPE - Start of counted string for device type
HP$A-DEPENDENT - Start of device-dependent portion of p-table
Device-dependent fields

1. These symbols should be used as offsets from the base of
the p-table. For example, if the p-table base address was
placed in R2, then the vector field could be referenced as
'HP$W VECTOR(R2)'. Refer to Section 3.2.4, Referencing
P-Tables from a Diagnostic Program.

4-272

(

(

VDS MACROS - SYMBOL DEFINITION MACROS

The $DS PARDEF macro defines (for MACRO-32 programs) symbolic
names for values that can be used with the "radix," "defalt,"
and "exword" parameters to the $DS ASKxxxx macros. For
BLISS-32 programs, these symbols may be referenced without
first issuing the $DS_PARDEF macro.

Symbols defined are:

PAR$ BIN
PAR$-DEC
PAR$-HEX
PARS-OCT

PAR$ NO
PARS-YES

PAR$V NODEF
PAR$V-ATLO
PAR$V-ATHI
PAR$V-ATDEF

PAR$M NODEF
PAR$M-ATLO
PAR$M-ATHI
PAR$M-ATDEF

4-273

VDS MACROS - SYMBOL DEFINITION MACROS

$DS_PTDDEF

The $DS PTDDEF macro defines (for MACRO-32 programs) symbolic
names for the flags associated with the DSNAME p-table
descriptor macro. For BLISS-32 programs, these symbols may be
referenced without first issuing the $DS P~DDEF macro.

Symbols defined are:

PTD$M UNIT
PTD$M-CONTROLLER
PTD$M-NAME
PTD$M-INHERIT PRE
PTD$M-INHERIT-CON
PTD$M-INHERIT
PTD$M-DEVICE
P'i'D$V-ENDDEVICE

4-274

PTD$V UNIT
PTD$V-CONTROLLER
PTD$V~AME
PTD$V-INHERIT PRE
PTD$V-INHERIT-CON

(

(

(

(

VDS MACROS - SYMBOL DEFINITION MACROS

$DS_PSLDEF

The $DS PSLDEF macro defines (for MACRO-32 programs) symbolic
names for fields of the process status longword. For BLISS-32
programs, these symbols may be referenced without first issuing
the $DS PSLDEF macro.

Symbols defined are:

PSL$V CBIT
PSL$V-VBIT
PSL$V-ZBIT
PSL$V-NBIT

PSL$K KERNAL
PSL$K-EXEC
PSL$K-SUPER
PSL$K-USER

PSL$M CBIT
PSL$M-VBIT
PSL$M-ZBIT
PSL$M-NBIT

4-275

VDS MACROS - SYMBOL DEFINITION MACROS

The $DS SCBDEF macro defines (for MACRO-32
names for the vector offsets in the system
BLISS-32 programs, these symbols may be
first issuing the $DS_SCBDEF macro.

Symbols defined are:

SCB$L ZERO
SCB$L-MACHCK
SCB$L-KNLSTK
SCB$L-POWER
SCB$L-OPCDEC
SCB$L-OPCCUS
SCB$L-ROPRAND
SCB$L-RADRMOD
SCB$L-ACCESS
SCB$L-TRANSL
SCB$L-TBIT
SCB$L-BREAK
SCB$L -COMPAT
SCB$L-ARITH
SCB$L-CHMK
SCB$L-CHME
SCB$L-CHMS
SCB$L -CHMU
SCB$L-SFTLVLl
SCB$L-SFTLVL2
SCB$L-SFTLVL3
SCB$L-SFTLVL4
SCB$L-SFTLVL5
SCB$L-SFTLVL6
SCB$L-SFTLVL7
SCB$L-SFTLVL8
SCB$L-SFTLVL9
SCB$L-SFTLVL10
SCB$L-SFTLVLll
SCB$L-SFTLVL12
SCB$L-SFTLVL13
SCB$L-SFTLVL14
SCB$L-SFTLVL15
SCB$L-TIMER

4-276

programs) symbolic
control block. For
referenced without

(

(

(

(

VDS MACROS -, SYMBOL DEFINITION MACROS

The $DS DEFDEL macro is used to conserve memory space during
program assembly time. Some of the symbol definition macros
cause memory space to be allocated. If the $DS DEFDEL macro is
issued AFTER the symbol definition macros, then any memory
space allocated during the symbol defintion process will be
deallocated. This will not affect the symbol definitions
themselves.

4-277

(,

(

(

(

CHAPTER 5
CREATING A VDS DIAGNOSTIC PROGRAM

5.1 INTRODUCTION

The previous chapters have presented the building blocks needed to
contruct a diagnostic program that will execute under the VAX
Diagnostic Supervisor. This chapter describes the steps required
to create a VDS diagnostic program, from the program's inception
to its completion. It also specifies all standards and
conventions to which a diagnostic program must adhere.

5.2 PROGRAM DEVELOPMENT PROCESS

5.2.1 Overview

Creating a diagnostic program involves several distinct,
consecutive phases. Each phase is required, and the phases must
be entered in same order that they are described here.

5.2.2 Consultation Phase

The consultation phase of program development consists of informal
gathering and exchanging of information relating to the hardware
product for which the diagnostic program is to be written. This
phase should begin soon after an engineering or product management
group has made a commitment to develop a new product.

Goals of
product
identify
staffing

this phase are to formulate a testing strategy for the
(what types of diagnostic programs should be developed),
a few key project milestones (dates), and estimate
and funding requirements.

The consultation phase begins before staffing and funding
commitments have been negotiated. Typically, the result of this
phase is a cursory project plan.

Participants will include management and senior technical
personnel from the engineerIng group or product line developing
the product, the future program's user community (generally field
service and manufacturing personnel) , and the diagnostic
programming group.

5-1

CREATING A VDS DIAGNOSTIC PROGRAM

An important note: If it is desirable for the hardware design of
a new product to provide aids that will enhance the fault
detection of a diagno~tic program, then the diagnostic programming
group must request these aids as soon as possible in order to
ensure that they will be incorporated into the device's final
design. Negotiations for design changes to aid diagnosis should
thus commence during this phase of the project.

5.2.3 Planning Phase

This phase begins after staffing and funding commitments have been
made. This and all following phases, are performed by the
diagnostic program's project leader and his or her staff.

The goal of the planning phase is to develop a plan for
implementation of the project. This project plan will include a
description of the diagnostic program and will specify project
goals, schedules, development requirements, training requirements,
and maintenance requirements.

The result of this phase is a Diagnostic Engineering Project Plan
adhering to the format specified by Section 7C3-l.A of the
Software Development Policies and Procedures.

5.2.4 Functional Specification Phase

After the project plan has been-completed, the task of defining
the functional operation of the diagnostic program begins.

The goal of this phase is to clearly define the functions that the
diagnostic program will perform. A functional specification must
answer the question, "What will the program do?". (On the other
hand, it should NOT approach the question of HOW the function will
be implemented.)

Additionally, a functional specification will include specific
statements about the program's intended uses and users, plus goals
regarding the program's performance and run-time parameters.

The result of the functional specification phase is a Diagnostic
Engineering Functional Specification that adheres to the format
specified by Section 7C3-2.A of the Software Development Policies
and Procedures.

5-2

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

5.2.5 Design Phase

The program's design phase may be entered when the functional
specification phase has been completed.

The goal of the design phase is to develop a design specification
that defines the methods that will be used to implement the
functionality defined in the functional specification. This phase
answers the question, "How will the program's functionality be
provided?". For example, if the functional description states
that the program will test a certain section of the device's
logic, then the design specification will describe the algorithm
to be used to perform the test.

Some of the methods that may be used to specify designs are:

1. Detailed hierarchy charts
2. Interface specification blocks
3. HIPO diagrams
4. Structured flowcharts
5. Program Design Language 1 (PDLl) (See below.)

The result of this phase will be a Diagnostic Engineering
Specification, adhering to the format specified in Section
of the Software Development Policies and Procedures. This
ment also descrlbes pOLl.

5.2.6 Design Implementation Phase

Design
7C3-3.A

docu-

After the design has been completely
implemented. Design implementation is,
which coding and debugging take place.

specified, it may be
of course, the phase in

The schedule on which coding and debugging of the various pieces
of the program is based depends greatly upon the availability of
product hardware. Programs that are written for new hardware are
typically in the process of development concurrently with the
hardware itself. Therefore it is important to create a schedule
for program development that matches the hardware development's
schedule.

5-3

CREATING A VDS DIAGNOSTIC PROGRAM

Implementation of programs for new hardware must often be carried
out in two stages. These stages are referred to as "prototype
support" and "fin~l product support."

Prototype support involves providing the engineering group
responsible for the product with a preliminary version of the
program. This version will be used to help verify the integrity
of the hardware design. The engineering group will generally
expect this version to be ready for use within a matter of days
after the hardware is "powered up" for the first time. Specific
requirements for prototype support depend on the particular
product. These requirements should be specified in the Project
Plan and Functional Specification.

Unfortunately, it may be necessary to provide prototype support
before the plan~ing and specification phases just described have
been completed. Therefore, it is important to carefully
coordinate all phases of program development so that the needs of
all users can be met on schedule. For example, some portions of
the design specification or even the functional specification may
have to be delayed until debugged code supporting the prototype
hardware has been provided.

Final product support involves development of the program that
will be used with the final, error-free version of the hardware
product. This is the version of the program that will be released
for general use. User requirements for the final product may be
different from user requirements for prototype suppo~t. Knowledge
of the hardware',s operation that was gleaned by the programmer
during development of prototype support will, of course, aid him
or her in creating a program that provides high degrees of fault
detection and isolation.

Because hardware development and diagnostic program development
occur concurrently for new hardware products, it is necessary to
carefully coordinate the two development processes. Hardware
design engineers and manufacturing personnel will often desire
working versions of the diagnostic program before the scheduled
completion date. It is thus common for diagnostic programmers to
provide "prerelease" versions of the program before the final
program has been completed. A prereleased program mayor may not
provide the full functionality that will exist in the final
program.

5-4

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

5.2.7 Design Verification Phase

Once the final program has been completed, its functionality and
operation must be assessed to ensure that the program meets all of
the functionality goals that were originally set and that it
adheres to all applicable operating standards (such as using VDS
macros properly). Assuring overall program quality is performed
by following the steps indicated in Section 5.10, Quality
Assurance.

5.3 PROGRAM STRUCTURE

Chapter 3 described all of the required and optional components of
a VDS diagnostic program. Since all VDS diagnostic programs are
made up of the same components, it is useful to arrange these
components in the same order and format in the source code of
every program. This will aid program maintainers by ensuring a
large measure of consistency from one program to the next.

In all diagnostic program sources, program components should be
divided into a series of source modules. There should be a
"header module" and one or more "test modules."

5.3.1 Header Module

The header module contains all of the tables used by the VDS, the
initialization, cleanup, and summary routines, plus any routines
used globally by the diagnostic program. Components of the header
module should be arranged in the following order:

• Module cover page (copyright statement, title and author,
maintenance history)

• Functional description of module

• Declarations of libraries and BLISS require files

• User-defined macro definitions

• Symbol definitions

• Diagnostic header ($DS_HEADER)

• Dispatch table ($DS_DISPATCH)

• Statistics table ($DS_BGNSTAT, $DS_ENDSTAT) (optional)

• Section names declaration ($DS_SECTION)

5-5

CREATING A VDS DIAGNOSTIC PROGRAM

• Device mnemonics list ($DS_DEVTYP)

• ASCII text:

Register and bit names for $DS CVTREG calls

Other ASCII strings

Error message strings

• Initialization code ($DS_BGNINIT, $DS_ENDINIT)

• Cleanup code ($DS_BGNCLEAN, $DS_ENDCLEAN)

• Summary routine ($DS_BGNSUMMARY, $DS_ENDSUMMARY)

• Error reporting routines ($DS_BGNMESSAGE, $DS_ENDMESSAGE)

• Other (optional) global subroutines, including interrupt
service routines, condition handlers, and so on.

Note: If a program has many global routines and data structures,
they should be placed in a separate module.

5-6

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

5.3.2 Test Modules

Each test module will contain one or more tests. The number of
tests modules and the number of tests per module are unrestricted.
Each test module should be formatted as follows:

• Module cover page (copyright statement, title and author,
maintenance history)

• Functional description of module

• Declarations of library and require files

• User-defined macro definitions

• Symbol definitions

• Section names declaration ($DS_SECDEF)

• For each test in module:

Test name ($DS_SBTTL)

$DS BGNTEST

Test header

For each (optional) subtest in test!

Sub test header

$DS BGNSUB

Subtest code

$DS ENDSUB

$DS ENDTEST

5-7

CREATING A VDS DIAGNOSTIC PROGRAM

5.3.3 Module Templates

To help the programmer follow the above format&, template files
have been created. There is a header module template and a test
module template. Each template contains the program-independent
fields of each program component. The programmer simply fills in
the program-dependent fields of each module. These templates are
named HEADER. MAR and TEST.MAR for MACRO-32, and HEADER.B32 and
TEST.B32 for BLISS-32. The templates are reproduced in Appendixes
A and B.

5.4 PROGRAM DOCUMENTATION

5.4.1 Introduction

A diagnostic program should be considered to be
parts the code and the documentation. Each
of equal importance. Documentation should NEVER
auxiliary to the code, to be hurriedly added
project, if time permits. The best documentation
developed before and during code development.

made up of two
of these parts is
be thought of as
at the end of the
is tha t wh ich is

Diagnostic program documentation serves two purposes:

1. Users of diagnostic programs probably refer to and depend
on program documentation more than users of any other
software. This is because identification of hardware
failures requires a very exact understanding of what
function is being performed by a particular section of
code and what areas of the hardware circuitry are likely
to be activated to carry out that function. It is
sometimes necessary for the program user to read the
program's listing files to see what signals are being
activated within a test or subtest.

2. As is the case with any software product, program
maintenance is usually performed by persons other than the
product's author. Those who must enhance, correct, or
otherwise update a diagnostic program depend on the
documentation for understanding of the program's function,
design, and implementation.

5-8

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

Documentation for VDS diagnostic programs consists of three parts.
These are: .

1. A documentation file containing hardware requirements,
operating instructions, and functional descriptions of the
prog ram's tests

2. Source code documentation providing detailed functional
descriptions of every test, subtest, routine, and line of
code

3. "Help" files that the user can access with the VDS HELP
command, and that summarize the program's operating
instructions

5.4.2 Documentation File

The documentation file will be distributed with the diagnostic
program. The documentation file for program EVXYZ will be called
EVXYZ.DOC. A template for the documentation file is available in
both RUNOFF and non-RUNOFF formats. A reproduction of the
template can be found in Appendix C.

The documentation file will contain the following information:

• Cover page

The cover page contains identification information such as
the program's name, release date, and maintainer, along
with copyright and disclaimer statements.

• Table of contents

• Abstract

The abstract is a short description of the program,
summarizing information found in later sections of the
document. This section should identify which types of
hardware will be tested. It should also state the program
level (level 2R or level 3).

• Hardware requirements

This section lists the minimum hardware required for the
program to execute, plus any optional hardware. Include
special connectors or other special hardware required by
the prog ram.

5-9

CREATING A VDS DIAGNOSTIC PROGRAM

List the processor types with which the program is
compa tibl e. Do NOT make general ized sta temen ts, such as
"all VAX processors," since the program may not be
executable on future processors.

• Software requirements

List the software required, including the VAX Diagnostic
Supervisor. Any auxiliary data files should be included
here.

• Prerequisites

This section should list the program's
requirements, that is, the hardware that must be
properly in order for the diagnostic program to
diagnose faults on the hardware being tested.

• Operating instructions

hardcore
operating
correctly

In most cases, the
should be the
instruc tions.

VAX Diagnostic Supervisor User's Guide
only reference needed for operating

Options

If the program has special instructions (such as using
a user-defined command language), that information
should be provided in this section.

Event Flags

If any user-controllable event flags are used by the
program, they should be listed.

• Program functional description

Program overview

This is a general functional description of the
program. The program's purpose and testing strategy
should be included.

Program size

The load time and run-time memory requirements
be specified. Include memory required
auxiliary data files.

5-10

should
by any

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

Program run times

The execution time of each program section
here. If a QUICK mode is provided,
execution time also.

Run-time dynamics

is listed
include its

Indicate how the program allocates resources during
execution time. Include both memory and device
allocations. Specify the mimimum buffer space needed.

Fault detection

Describe the fault coverage (include percentage) and
error resolution the program is capable of.

Include sample error messages, if error reporting
routines are used.

Performance during hardware failures

Indicate how the program
exceptions resulting from
failure, and the like.

Program applications

will handle unexpected
hardware failures, power

List the uses this program was designed for, such as
manufacturing, customer services, engineering,
customers, or whomever.

Test descriptions

For each test, include:

A functional description of the test

The step-by-step flow of the test

"Debug aids" - hints to the program user about
what should be looked at next if the test fails.
Very important for logic tests.

• Maintenance history

Each time the program is updated, the update must be
described here. The description must include the date of
the change and the program's version number.

5-11

CREATING A VDS DIAGNOSTIC PROGRAM

5.4.3 Source Code Documentation

5.4.3.1 Diaghostic Codes - Each diagnostic program released by
DIGITAL is assigned a "diagnostic code" that uniquely identifies
it. Co.des fo r VAX diagnostic prog rams consi st of five cha rac ter s,
the first of which is "E." The code is assigned by the Release
Engineering group.

5.4.3.2 Module Names - For the diagnostic program having the
diagnostic code "EVXYZ," the header module should be named
EVXY~0.MAR if it is a MACRO-32 program, or EVXYZ0.B32 if it is a
BLISS-32 program. Test modulBs should be named EVXYZl.MAR (or
.Bj2), EVXYZ2.MAR (or .B32), and so on.

5.4 .• 3.3 Module Cover Page - Each module must have a cover page.
The cover page will include:

1. Module and program names, including version numbers (see
above) •

2. Copyright statement

3. Module abstract

4. Author

5. Maintenance history (see below).

The format of the cover page is illustrated in the header module
template example contained in Appendix A.

5.4.3.3.1 Maintenance History - Each time the module is upd~ted,
the update must be described here. The description must include
the date of the change and the module's version number.

5.4.3.4 Test and Subtest Prefaces - Each test and each subtest
must possess a preface. Prefaces for tests and subtests must
contain the following information:

1. Test descr iption

This will contain a detailed description of WHAT is being
tested and HOW the test is implemented.

5-12

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

2. Assumptions

List assumptions being made about the state of the
hardware before the test is executed. Fbr example, if
this test will not function properly unless certain parts
of the hardware are good, list those parts.

3. Test steps

In this section list the test steps. A pseudolanguage is
very useful for this purpose.

4. Errors

Provide a detailed description of all errors reported by
this test.

5. Debug

This section should provide information that might be
helpful to someone attempting to determine the cause of a
hardware error. For example, there might be a statement
of the form "If error number X is reported, then Y might
be broken."

The format of test and subtest prefaces is illustrated in the test
module template in Appendix B.

5-13

CREATING A VDS DIAGNOSTIC PROGRAM

5.4.3.5 Subroutine Preface - Each
preface. Subroutine prefaces
information:

• Functional description

subroutine must possess a
must contain the following

This must be a DETAILED description of WHAT function the
routine performs and does and HOW the function is
performed.

• Calling sequence

Indicate how the routine is to be called, for example:

CALLS #4,ROUTINE or CALLG ARGPTR,ROUTINE
or BSBW ROUTINE
or Entered via exception vector

• Inputs

List here all input parameters that are explicitly passed
to the routine. Explicitly passed input parameters are
those pushed onto the stack before a routine is called.
(In BLISS-32, explicit input parameters are those that are
listed in parentheses after the routine name.)

• Implicit inputs

List here all input parameters that are not explicitly
passed on the stack. This list will include ANY variable
referenced by the routine but not defined locally in the
routine and not passed explicitly. For example,
parameters passed in registers are implicit inputs.

Note: Use of implicit inputs should be kept to a minimum.
They adversely affect program maintainability and routine
transportability.

• Outputs

List all output parameters that are explicitly passed back
to the caller. Explicitly passed output parameters are
those that are:

• Loaded onto the stack by the routine, or

• Loaded into locations whose addresses were explicitly
passed to the routine.

5-14

(

l

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

• Implicit outputs

List all output parameters that are implicitly returned to
the caller. Implicit output parameters are ANY variables
that are modified by the routine but were not explicitly
passed to the routine. For example, if a variable stored
in a register is updated, that variable is an implicit
output.

Note: Use of implicit outputs should be kept to a
mlnlmum. They adversely affect program maintainability
and routine transportability.

• Completion codes

•

Indicate all completion codes that could be returned by
this routine. If the routine passes along completion
codes received from subordinate subroutines, these codes
must also be listed. Also indicate how the completion
code is passed. (Placing the code in R0 is the normal
method.)

Side effects

List here any actions taken by this routine that could
affect the operation of other routines. Examples are
initializing data structures or altering the state of
global flags.

Also, if the routine places the hardware in some unusual
or indeterminate state, indicate that here.

• Registers used

Identify the purpose of each general purpose register used
by the routine, so anyone reading the code can quickly
determine the functions of the registers.

The format of a routine preface is illustrated in the header
module template of Appendix A.

5-15

CREATING A VDS DIAGNOSTIC PROGRAM

5.4.3.6 Source Code Comments - It is extremely important that the
source code be very accurately commented. Comments within the
source code can take three forms; they may b~ "block comments,"
"group comments," or "line comments."

5.4.3.6.1 Block Comments - Block comments are used to identify
major functions within a routine. They have the following format:

<skip>
;++

MACRO-32

; This is a block comment. It begins at the left-hand margin
; and extends fully across the page.
i-
<skip>

<skip>
!++

BLISS-32

! This is a block comment. It begins at the left-hand margin
! and extends fully across the page.
!--
<skip>

5-16

(

(

l

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

5.4.3.6.2 Group Comm~nts - Group comments are used within blocks
of code delimited by block comments. The are useful when it is
desirable to make a comment stand out on the page. Group comments
have the following format:

MACRO-32

;
; This is a group comment. It is indented the same amount as
; the cod~ being commented, and extends fully across the page.
;

BLISS-32

This is a group comment. It is indented the same amount as
the code being commented, and extends fully across the page.

Group comments should be used extensively in BLISS-32 programs.
BLISS-32 programs use group comments instead of the line comments
(below) used by MACRO-32 programs.

An illustration of the use of group comments in BLISS-32 code is
as follows:

Explain what the IF-THEN-ELSE statement will do.

IF THEN ••••
ELSE

BEGIN

Explain what the REPEAT-UNTIL loop will do.

REPEAT

UNTIL ;

END;

See the example in the next section for an illustration of group
comments in MACRO-32 code.

5-17

5.4.3.6.3
the end
BLISS 32
MACRO-32
followed

CREATING A VDS DIAGNOSTIC PROGRAM

Line Comments - Line comments are those. that appear
of, and on the same line as, a MACRO-32 instruction

statement. These comments are extremely important
programs, and EVERY MACRO-32 instruction should

by a line comment.

at
or
in
be

In BLISS-32 programs, line comments are generally not used,
because group comments are preferable. Since lines of BLISS-32
code are self-documenting (if they are written property), line
comments are unnecessary. Group comments should be placed before
most blocks to describe what will occur within each block.

Line comments (and group comments) are illustrated in the
following MACRO-32 example:

. ,
; Clear the data buffers.

CLRL R6 Clear buffer pointer
15$: · REPEAT ,

CLRL WAGOOD DATA [R6] Clear longword of good data buffer
CLRL WABAD DATA[R6] Clear longword of bad data buffer
AOBLSS #16, R6, 15$ Increment pointer and branch back

· UNTIL entire buffer is cleared ,

Compare expected and received data, one longword at a time. If
they do not match, store the expected and received values in the
good data buffer and bad data buffer, respectively, so they can be
printed later.

MOVL 4(AP), R2 Put byte count in R2.
MOVL 8 (AP) , R3 · Put address of received data in R3. ,
MOVL 12 (AP) , R4 · Put address of expected data in R4. ,
CL.RL Rl Clear error· count.
CLRL R5 Clear buffer pointer.

5-18

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

This example illustrates several concepts:

1. Every MACRO-32 instruction has a comment.

2. It is useful to indicate structured programming constructs
where applicable. Notice the REPEAT-UNTIL construct in
the example. IF-THEN-ELSE, WHILE-DO, CASE constructs, and
~o on, can be flagged similarly, enhancing readability.
Capitalize keywords and indent comments within a
construct.

3. Comments provide useful information. For example, the
last comment in the example says, "Clear buffer pointer."
It does NOT say "Clear R5," which would be useless to
anyone reading the code.

5.4.4 Help Files

5.4.4.1 Description of Help Files - A "help file" is a text file
that is referenced when the VDS HELP command is used. Text within
the file is displayed to the user. Arguments specified with the
HELP command are used to determine which portions of the text to
display.

A help file must be provided for every diagnostic program. For
program EVXYZ, the help file must be named EVXYZ.HLP. A us~r can
reference this file by typing 'HELP EVXYZ'.

The purpose of a diagnostic program's help file is to provide the
program user with a quick reference source that will summarize the
program's unique characteristics. Information contained in a help
file will include:

• A program abstract

• ATTACH procedures

5-19

CREATING A VDS DIAGNOSTIC PROGRAM

• A list containing the name and function of each program
section

• Descriptions of devices not supported by the VDS (devices
for which p-table descriptors reside in the diagnostic
program instead of in the VDS)

• A list containing the number and use of any user
selectable event flags referenced by the program

• A description of the program's "quick mode" operation

• Descriptions of tests requiring manual intervention

• The format of the program's summary message, if one exists

5.4.4.2 Creating Help Files - Help files consist of "keywords"
and associated text. Keywords are used by the VDS to locate the
proper text to display. For instance, if a user typed
HELP EVXYZ SECTIONS, the VDS would search the help file named
EVXYZ.HLP for the keyword "sections," and then display the text
following that keyword. There are two types of keywords, referred
to as "numbered keywords" and "qualifier keywords."

5.4.4.2.1 Numbered keywords - Each numbered keyword is preceded
by a number from 1 through 5. This number indicates the keyword's
"level." Levell is the highest level, and is used to indicate the
file's main topics. Keywords with larger numbers are considered
to be subtopics of those with smaller numbers. If the file
contains a level 1 keyword followed by several level 2 keywords,
followed by another level 1 keyword, then the level 2 keywords
between the first and second level 1 keywords are sUbtopics of the
first level 1 keyword. If the second level 1 keyword was followed
by another set of level 2 keywords, they are subtopics of the
second level 1 keyword. '

The level number must be the first character of a new line. There
must be one or more spaces or tabs between the level number and
the keyword.

When the user types a HELP command, the VDS will display the text
following the specified keyword. It will also display the
keywords (but not the text) of the next-lowest level subtopics
associated with the specified keyword. For example, suppose a
portion of a help file consisted of the following:

5-20

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

1 SECTIONS
Program EVXYZ contains the following sections. Type

HELP EVXYZ SECTIONS section-name

. for details on a particular section.
2 DEFAULT

(Text describing DEFAULT section.)

2 MANUAL
(Text describing MANUAL section.)

2 READ TESTS
(Text-describing READ_TESTS section.)

2 WRITE TESTS
(Text describing WRITE TESTS section.)

1 ATTACH

If the user typed 'HELP EVXYZ SECTIONS', the following would be
displayed:

SECTIONS

Program EVXYZ contains the following sections. Type

HELP EVXYZ SECTIONS section-name'

for details on a particular section.

Additional information available:

DEFAULT MANUAL READ TESTS WRITE TESTS

5-21

CREATING A VDS DIAGNOSTIC PROGRAM

Any time a topic is
displays the text
subtopics (keywords
the topic.

specified with a HELP command, the VDS
associated with the topic and lists the

with next higher level number) associated with

All of the subtopics of a topic are listed directly underneath the
topic in the help file. Thus all the level 3 subtopics associated
with a level 2 keyword would directly follow that level 2 keyword.

Thus in the above example, suppose the user typed, 'HELP EVXYZ
SECTIONS DEFAULT'. The VDS would display the text associated with
the level 2 keyword "default," and then would list any level 3
keywords that follow the text for "default." (The sample help file
above does not associate any level 3 keywords with "default.")

5.4.4.2.2 Qualifier keywords - It is unlikely that a diagnostic
program's help file will require qualifier keywords, since they
are only used to indicate command line qualifiers. They are not
preceded by a level number; instead, they beg in wi th the "I"
character. However, a level number is implicitly associated with
a quali.fier keyword; that number is one greater than the number
specified in the most recently specified numbered keyword. That
keyword should be 'Qualifiers'. This is illustrated in the
following example:

I START
Execute a previously loaded image.

Format:
START [qualifiers]

2 Qualifiers
ISECTION:section-name

Select a program section to be executed.
ITEST:first:last
Select a range of tests to be executed.

5-22

()

(

li

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

The '/' character must be the first character of a new line. The
keyword must immediately follow the '/'. Immediately following
the keyword there may be an additional string, as in
"/QUAL:string."

Note: If one qualifier keyword directly follows another-, with no
text in between, then the second qualifier keyword will be treated
as part of the text for the first. This is useful for qualifiers
of the form "/qual" and "/NOqual."

5.4.4.2.3 Text - Text must immediately follow the keyword with
which it is associated. It must start on a new line. Each line
of the text must be indented one space from the left margin. Text
associated with level 1 keywords should not extend beyond column
65. Text associated with keywords of any other level should not
extend beyond column 60. The text is more easily readable if it
does not exceed the length of the display screen (no scrolling
should occur).

5.4.4.3 Contents
programs must
assoc ia ted tex t:

of help files - Help
contain the following

files
level

for diagnostic
1 keywords and

• ATTACH - Describe the attach procedures for the program.
That is, list the set of ATTACH commands that are
necessary to create the proper links from the unit under
test to the processor.

• DEVICE - Under this keyword, include a level 2 keyword for
every device tested by the diagnostic program. Under each
level 2 keyword, provide either of the following:

For devices with p-table descriptors contained in the
VDS, the text should state, "Type HELP DEVICE
device-type for device description."

For devices with p-table descriptors contained in the
diagnostic program, provide a device description
similar to the device description that is obtained
from typing "HELP DEVICE device-type."

5-23

CREATING A VDS DIAGNOSTIC PROGRAM

• EVENT - List any user-selectable event flags referenced by
the program and describe their function.

• HELP - This text should contain an abstract of the
program. The text associated with the HELP keyword is
displayed when a user types 'HELP EVXYZ' without including
a keyword. In other words, this is the default keyword.

• QUICK - Describe the operation of the program when the
QUICK flag is set.

•

•

SECTIONS - List and describe each section of the
Be sure to include the DEFAULT section. If
section exists, clearly detail the actions that
performed by the user.

program.
a MANUAL
must be

SUMMARY - If the program contains a summary routine,
provide an explanation of the information displayed by
that routine.

The above keywords must appear in every help file.
should be added to provide information on
characteristics.

Other keywords
unique program

(

The keywords must be placed in the help file in alphabetical (
order.

A sample help file is provided in Appendix D.

5.5 RUN-TIME ENVIRONMENT CONSIDERATIONS

One of the main purposes of the VAX Diagnostic Supervisor, as
stated in Chapter 2, is to insulate the diagnostic program from
the various runtime environments that exist for diagnostic
programs.

Thus if all of the rules, guidelines, and conventions described in
this manual are followed, any diagnostic program written should be
capable of executing in any of the run-time environments under
which diagnostic programs are expected to run.

Possible run-time environments for VDS diagnostic programs include
(but are not limited to):

1. User mode
2. Standalone mode
3. Automated Product Test (APT)
4. Remote Diagnosis (APT/RD)

5-24

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

For details on any of these environments beyond what is provided
in this manual, contact the 32-Bit Systems Diagnostic Engineering
Group, who can provided related documents.

5.6 CUSTOMER-RUNNABLE DIAGNOSTICS (CRD)

For both the standalone mode and the user mode environments, a
system has been developed by which DIGITAL customers can easily
and automatically run diagnostic programs. This system is
referred to as Customer-Runnable Diagnostics (CRD). CRD provides
the following modes of operation:

• "Auto mode," in which the user can type one command (TEST)
which that cause a set of diagnostic programs to be
executed. This set of programs will completely test the
use r IS sys tem.

• "Menu mode," which allows the user to select (by menu) the
testing of specific devices.

CRD auto mode is provided only in the standalone mode run-time
environment. CRD menu mode is provided in both the standalone
mode and user mode environments.

Diagnostic programs that are to be executed under the CRD system
may have certain constraints placed on them. These constraints
may include limitations on maximum execution time, prohibition of
the use of ahy manual intervention (see Section 5.7.5), or other
run-time conditions. Constraints placed on programs running under
the CRD system are described in the document called VAX Diagnostic
Requirements for CRD. Any program that will be executed under the
CRD system must obey the rules set forth in that document.

5.7 CODING CONVENTIONS

5.7.1 Error Message Formats

As stated in Chapter 3, error messages are displayed by invoking
the $DS ERRxxxx services. Error messages cohsist of three levels.
They should adhere to standard formats.

The format of the first message level (the message header) is
controlled by the VDS.

The formats of the second and
by the programmer. These
contructed with the error
$DS ERRxxxx services and
$DS-ENDMESSAGE macros.

third message levels are controlled
parts of the error message are

reporting routines called by the
delimited by $DS BGNMESSAGE and

5-25

CREATING A VDS DIAGNOSTIC PROGRAM

When error reporting routines are constructed, messages should be
formatted as follows:

• Invalid contents of a register:

A message that reports invalid contents of a register
should indicate the expected contents, the actual
(received) contents, and an exclusive-OR (XOR) of
the expected and received values. Mnemonics of bits set
in the XOR value should be displayed. Indicate the radix
of all values displayed.

Example:

EXPECTED:
RECEIVED:
XOR:

5068(X)
0000(X)
5068(X) ;TIE,SAE,RIE,MSE,MAINT,FUNC=READ

• Reporting data comparison errors for buffers

When data comparison errors are detected in data transfer
buffers, the error message should include:

(

The base address of the failing device
The add~ess of the buffer C·
The size of the data transfer . -
The number of comparision errors
The buffer address and contents of all bad data

Example:

Device base address 60010500(X)
Expected buffer address 0E10 (X)
Received buffer address l0l0(X)
Transfer size 256 words
Words in error 4

Address: Expected: Received: XOR:

0E104 1010 1000 1000
0El10 1010 1000 1000
0EIC0 1010 1000 1000
0E1F0 1010 1000 1000

5-26

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

If there are a large number of errors, only display the
first eight.

• Register dumps

When dumping the contents of a set of registers, list the
registers in order of address. Display the register
mnemonic, the register's contents (and radix), and the bit
mnemonic for each set bit.

Example:

RPCS1
RPWC
RPBA
RPDA
RPCS2

(etc.)

144270(0)
777710(0)
001000(0)
001001(0)
040203(0)

5.7.2 Volume Verification

;SC,TRE,DVA,RDY,FUNC=WRITECHECK

;TRACK=2,SECTOR=1
;WCE,OR,UNIT=3

All diagnostic programs that write onto magnetic media must
provide a mechanism to ensure that a customer's data base is not
inadvertently destroyed.

Some disks provide that a portion of the medium (called
"maintenance tracks") is always reserved for diagnostic purposes.
If a diagnostic program writes only on the maintenance tracKs,
then the customer's data base will not be affected.

If a device being tested does not provide maintenance tracks, or
if the diagnostic program does not limit itself to only using the
maintenance tracks on a device that does provide them, then the
entire medium must be protected; a method must exist for
verifying that the medium loaded in the device under test may be
written on.

Thus, for devices that do not provide maintenance tracks,
diagnostic' programs must check the volume name of a storage medium
before executing any tests that will write on that medium. By
convention, media that contain no stored data and hence are
available for the writing of test patterns by diagnostic programs
are named "SCRATCH."

Volume verification must take place in a program's initialization
code.

5-27

CREATING A VDS DIAGNOSTIC PROGRAM

The program must read the storage medium's home block to determine
the medium's volume name. (Refer to the FILES-lIOn-Disk
Structure Specification for a description of the home block's
format.)

If the volume name is "SCRATCH," the medium may be used and
testing may thus begin.

If the volume name is anything other than "SCRATCH," the program
must ask the user (via the $DS ASKLOGICAL system service) if it is
all right to use the medium. If the response is "no" (the user
does not wish the medium to be used), then the program should
issue a $DS ABORT call. A DEFAULT RESPONSE MUST BE PROVIDED FOR
THE $DS ASKLOGICAL SERVICE, AND THE DEFAULT MUST BE "NO." This
will ensure that if the OPERATOR flag is cleared and a nonscratch
medium has been mistakenly placed in the unit under test, then the
medium will not be used.

The volume verification code should only be executed the first
time through the initialization code (use the $DS BPASS0 or
$DS BNPASS0 macro). Otherwise, the user would have to respond to
the-$DS_ASKLOGICAL question for every program pass.

(

Note: Previous editions of this guide have indicated that, when
asking the user if it is all right to use a nonscratch medium, the
user prompt passed to the $DS_ASKLOGICAL service must begin with a (..
null character. This null will force the VDS to check the user .
terminal for a response to the question, even if the program is
being run by a command file (script). (If the program is being
run by a command file, all responses are obtained from the command
file, unless the prompt string begins with a null.)

This is not a good practice, because it forces limitations onto
the user regarding how the program may be executed. It should be
the user's decision whether a question's response is to be fetched
from a script or from the terminal, not the programmer's decision.
Therefore, prompt strings should never be preceded with a null
character. (Refer to the VAX Diagnostic Supervisor User's Guide
for a description of command files.)

5.7.3 Long Silences

A "long silence" is a long period of time in which there is no
communication between the diagnostic program and the user.
Sometimes long silences are good and sometimes they are bad.

5-28

(

\~

(

(
'--

CREATING A VDS DIAGNOSTIC PROGRAM

A long silence is good when a diagnostic program is running for a
long period of time (either because the program's execution time
per pass is long, or because a large number of passes has been
selected by the user) and the user's terminal is a hardcopy
terminal. Long silences save paper and lessen the risk of paper
jams when no one is around.

On the other hand, a long silence is bad when a user is present at
the terminal, monitoring the program's progress. In this case the
user would like to be kept abreast of the program's status during
long executions in order to be assured that the program "is not
"hung." If a long silence occurs, the only way a user can monitor
program progress is to type a control-C, then SHOW STATUS, then
CONTINUE.

Thus a diaghostic program must have the capability of both
eliminating and providing long silences.

To eliminate long silences in programs with long execution times
per pass, the program should cause a message to be displayed at
least once per minute. An AST routine may be used for this
purpose. The message should be a simple, succinct indication to
the user that program execution is progressing properly.

To provide for long silences when the user desires them, a means
of disabling the above-mentioned AST routine should be provided.
For example, the AST routine should check the status of the
OPERATOR flag (by using the $DS BOPER or $DS BNOPER macros) and
only print the message if the flag-is set.

5.7.4 Hardware Preparation

"Hardware preparation" is the act of setting the device under test
in some physical state before testing begins. Hardware
preparation may include setting switches, connecting a cable,
loading a special medium into the device, and the like.

Ideally, diagnostic programs should be written so that no hardware
preparation has to take place. If this is not possible, hardware
preparation should be kept to an absolute minimum, since it
lengthens testing time and is a nuisance for the program user.

All hardware preparation should occur before the program is
started. If the program requests hardware preparation during
execution, it is referred to as "manual intervention" (see next
section) and is considered to be even more of a nuisance.

5-29

CREATING A VDS DIAGNOSTIC PROGRAM

If a program- detects a preparation error (hardware not set up
correctly), the $DS ERRPREP service should be used to report the
error.

5.7.5 Manual Intervention

The term "manual intervention" refers to user actions during
program execution. A program requiring manual intervention is one
requiring the program user to perform a duty at some point during
the program's execution. This duty might be as involved as adding
a piece of hardware to (or removing one from) the system under
test, or it might be a simpler action, such as typing a response
on the term inal.

Ideally, no diagnostic program should ever require manual
intervention, because manual intervention complicates the
operation of the program from the user's point of view.

If inclusion of manual intervention cannot be avoided, the
following rules must be followed:

1. If the manual intervention involves ANY actions OTHER THAN
responding to questions ~t the user terminal, the tests
that require these actions must be placed in a program
section called "MANUAL." E~amples of such actions are
setting a write-enable switch, connecting a cable, or
watching patterns generated by a program that tests video
display terminals.

Each test within the MANUAL section must use the $DS BOPER
or $DS BNOPER macro to determine if a user is presen~. If
a user is not present, the test must call the $DS ABORT
serviqe.

2. Communication with the user must be performed by using the
$DS ASKxxxx macros.

3. If $DS ASKxxxxmacros are included in the MANUAL section,
it is not necessary to provide default responses.

If $DS ASKxxxx macros are used anywhere OTHER THAN in
tests within the MANUAL section, default responses MUST be
provided. If default responses are included, and if the
user clears the OPERATOR flag, then the default responses
will automatically be used and the user will not have to
be present. (This is of course true for the DEFAULT
section, also.)

5-313

(

c

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

5.7.6 Quick Mode

"Quick mode" is a mode of program execution in which the main
objective is to provide a relatively fast execution time per pass.
It is a convenient mode to provide in programs having long
execution times. It should provide a fast pass/fail testing
capability, with little or no fault isolation. It will be
employed when a user wants a quick verification of hardware
integrity.

The decision of whether or not a diagnostic program will provide a
quick mode is one shared between the programmer and the program's
users. Specific functions of a particular program's quick mode
are also to be decided by mutual agreement between the programmer
and users.

If quick mode operation is provided, it is to be executed only if
the user selects it by setting the VDS control flag QUICK. The
program will use the $DS BQUICK or $DS BNQUICK macro to determine
the state of the QUICK flag.

5.7.7 Naming Symbols

For the sake of consistency from program to progtam, it is
important to obey certain conventions when creating names for
symbols. These conventions are as follows:

1. The dollar sign '$' character is included in all publicly
defined symbols located in the VDS and in all other system
level software provided by DIGITAL. To ,differentiate
private symbols (those available only to the program in
which they are defined) from public symbols, private
symbols should not include the '$' character. Since ALL
symbols defined in diagnostic programs are private, the
'$' should never be used.

Note: There is one exception to this rule; since p-table
descriptors are public, their names should include dollar
signs. See Section 3.2.3, P-Table Descriptors, for
details and examples.

2. To determine the characters allowed in a symbol name, and
the maximum length of a symbol name, refer to the
reference manual for the language in which the program is
being written.

5-31

CREATING A VDS DIAGNOSTIC PROGRAM

3. Global variable names are of the form:

Gt variab1ename

where "t ft is a letter indicating the variable type (see
Table 5-1).

4. Global arrays are of the form:

A_arrayname

5. Structure field names are of the form:

structure t fie1dname

where "t" is a letter indicating the variable type (see
Table 5-1).

6. Entry points to global routines havinq nonstandard calls
are of the form:

where reg isters R0 through Rn are not preserved by the
routine and thus must be saved by the caller.

7. When naming bits and bit fields in hardware registers, use
the bit mnemonics specified in the hardware documentation.

Table 5-1 contains letters used for data types.

5-32

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

Table 5-1 Letters Used to Indicate Data Types

Letter

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z

Data Type or Usage

Add ress
Byte integer
Single character
Double precision floating
Reserved to DIGITAL
Single precision floating
General value
Integer value for counters
Reserved for integer extensions
Reserved to customers for escape to other codes
Constant
Longword integer
Field mask
Numeric string (all byte forms)
Reserved to DIGITAL as an escape to other codes
Packed str ing
Quadword integer
Reserved for records (structure)
Field size
Text (character) string
Smallest unit of addressable storage
Field position (assembler); field reference (BLISS)
Word integer
Context dependent (generic)
Context dependent (generic)
Unspecified or nonstandard

Some examples of symbol names are:

A RP REG - Address of storage array for RPxx controller registers
RP REG L RPDS - Offset RPDS into array RP REG
GW-BYTE COUNT - Address of global word containing byte count

5.8 LINKING A DIAGNOSTIC PROGRAM

Before a diagnostic program is released, it must be linked as a
"system image," using the command line:

LINK/SYSTEM=512 EVXYZ1, EVXYZ2,

where EVXYZ1, EVXYZ2, and so on, are the source modules for
prog ram EVXYZ.

5-33

CREATING A~VDS DIAGNOSTIC PROGRAM

If the symbolic debugger for diagnostic programs (VDSDEBUG) is to
be used during program development, another linking procedure must
be used. Refer to the VAX Diagnostic Debugger User.' s GUide for a
description of that procedure.

5.9 DEBUGGING A DIAGNOSTIC PROGRAM

Two facilities are available for aiding in debugging diagnostic
programs.

The VDS command language provides several commands that are useful
for debugging programs. Commands are available for examining and
altering locations within the diagnostic program, setting
breakpoints, and "single-stepping" through the program. Refer to
the VAX Diagnostic Supervisor User's Guide for details.

More debugging capabilities are provided by the VAX Diagnostic
Debugger (VDSDEBUG) • This is a separate program that can run
under the VDS in conjunction with a diagnostic . program. It
provides such features as breakpoints, watchpoints, queue
traversal, referencing program locations by their symbolic names,
plus examining and depositing contents of program locations as
numeric data, character strings, or MACRO-32 instructions. Refer

(

to the VAX Dia<Jnostic Debugger User's Guide for details and (
operating instructlons. ~

5.10 QUALITY ASSURANCE

5.10.1 Quality Requirements

All diagnostic programs must meet certain quality standards.
Quality standards must be met in all of the following areas before
a program will be accepted as a usable product:

• Documentation quality - The diagnostic programmer must
provide accurate, detailed documentation that gives both
users and maintainers all the information they will need
to perform their jobs. Documentation must adhere to the
guidelines spelled out earlier in this chapter.

• Functional quality - The program must provide all of the
functional capabilities contained in the fUnctional
specification.

• Operational quality The program must operate in
accordance with the rules set forth in this manual.

5-34

l

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

5.10.1.1 Documentation Quality ~ Following is a list of the
documention that must be provided with every diagnostic program:

1. Documentation file - The documentation file must adhere to
the format presented in Appendix C.

2. Map file - For program EVXYZ, the map file EVXYZ.MAP
produced by the linker must be provided.

3. Listing file including cross-reference table - For program
EVXYZ, the listing file EVXYZ.LIS produced by the MACRO-32
assembler or BLISS-32 compiler must be provided. For
MACRO~32 programs, a cross-reference table must be
included. Within the listing, the guidelines spelled out
in Section 5.4.3, Source Code Documentation, must be
followed.

4. Help file - A help file must be provided. It must match
the format presented in Section 5.4.4, Help Files.

5.10.1.2 Functional Quality - The program developer must ensure
that all functions described in the program's functional
specification have been properly inplemented.

5.10.1.3 Operational Quality - To guarantee the execution quality
of a diagnostic program, the following steps must be performed:

1. Load and normal start

The following steps must be performed IN THE ORDER SHOWN:

1. Load the VDS.

2. Issue the proper ATTACH and SELECT commands.

3. Load and start the program with the LOAD and START
commands or the RUN command.

The program should execute without errors and stop after
one program pass.

5-35

CREATING A VDS DIAGNOSTIC PROGRAM

2. For EACH SECTION of the program, the following should be
performed:

• Trace mode

Issue the SET TRACE command, then START. Check that
test numbers and trace messages coincide with program
documentation for the section being executed.

• Multiple passes

Execute the section again, specifying a pass count of
at least 10.

3. For EACH TEST of the program, the following steps must be
performed:

• Reverse order testing

Execute each test, one at a ti~e, starting with the
highest-numbered test and ending with test number 1.
Allow each test to complete one pass.

• Multiple loop-on-test

Execute each test individually, specifying a pass
count of at least 10.

• Multiple loop-on-subtest

Execute each subtest of each test
specifying a pass count of at least 10.

• Control-C response

individually,

For each test, start the test and type control-C. A
response to the control-C should occur within three
seconds. When the VDS prompt is displayed, type
CONTINUE. The program must continue from where it was
interrupted and must successfully complete the pass.

• Event flags

Check that all event flags are used only as indicated
by the program's documentation.

• Power off

Shutoff the power for the device under test. The
program must display a message stating that the device
is without power.

5-36

(

(~

CREATING A VDS DIAGNOSTIC PROGRAM

• Write Protection

Write-protect the device under test. Tests that write
to the device should display messages indicating the
that device is write-protected.

• Off line

Place the device off-line. The program should state
that the device is off-line.

• Minimum hardware configuration

Set up a hardwore configuration that matches the
minimum hardware configuration specified in the
functional specification. All tests must execute on
this configuration.

• Maximum hardware configuration

Set up a hardware configuration that matches the
maximum hardware configuration specified in the
functional specification. All tests must execute on
this configuration, and all units of the device under
test must be tested.

• Module extender board

Place each logic module of the device under test on an
extender board, one at a time, and verify that each
test will execute successfully.

• Transportability

Repeat all of the steps in this section on every VAX
processor type on which the program is supposed to
run.

• Marginal testing

If the program
successfully
timing, and so
conditions.

has been specified to be executed
under marginal conditions (voltage,
on), then execute each test under these

• Error reporting and loop-on-error

Make sure that no $DS ERRxxxx macros are ever
executed when the cleanup code is run (Typing
ABORT will cause the cleanup code to be run.)

5-37

CREATING A VDS DIAGNOSTIC PROGRAM

Set the LOOP and HALT flags. Cause every error
reporting macro ($DS ERRxxxx) to be executed.
(This can be accomplished either by causing
hardware failures on the device under test or by
temporarily patching the program.)

For EVERY $DS_ERRxxxx macro, do the following:

1. CLEAR the IE1, IE2, and IE3 flags.

2. Make sure that all error messages are printed,
and that they are of the prope~ format (see
Section 5.7.1, Error Message Formats).

3. Make sure that the entire message has been
printed before the DS> prompt is displayed.

4. Clear the IE3 flag.

5. Type CONTINUE, and make sure that a loop
begins executing.

6. The $DS ERRxxxx macro should be reexecuted,
but this time the third level of the error
message should not be displayed.

7. When the DS> prompt appears, - clear the IE2
flag.

8. Type CONTINUE.

9. The $DS ERRxxxx macro should be reexecuted,
but thIs time the second and third levels of
the error message should not be displayed.

Hl. Clear the IE1 flag.

11. Type CONTINUE.

12. The $DS ERRxxxx macro should be reexecuted,
but this time none of the error message should
be displayed.

13. Set the IE1 flag and clear the HALT flag.

14. Type CONTINUE.

15. Allow the loop to execute several more times.

5-38

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

4. The following step must be performed for the DEFAULT
section.

• No operator

Clear the OPERATOR flag, then execute the DEFAULT
section for one pass. The program must execute
successfully, and the user must not be required to'
type any characters on the terminal or perform any
other form of manual intervention.

5. The following additional steps must be performed for
programs that execute in standalone mode:

• Memory Management on

•

•

Turn memory management on and execute each test for
several passes. Each test should execute successfully
unless the program is not supposed to be executed with
memory management turned on, in which case the program
should abort without errors.

Invalid address

Using the ATTACH command, specify an incorrect device
address. The program should display a message
indicating that an invalid address has been specified.

APT compatability

To verify that the program will execute under the APT
run-time environment, run the program under APT for
eight hours.

6. The following step must be performed for programs that
execute in user mode:

• Make sure that all units are properly deallocated
after the diagnostic program has finished. Issue the
following VDS and VMS commands:

1. ATTACH device-name
2. SELECT device-name
3. RUN program-name
4. Type control-C
5. ABORT
6. Type control-Y
7. SHOW DEVICE

5-39

CREATING A VDS DIAGNOSTIC PROGRAM

None of the devices that were tested, used for error
logging, or made use of in any way by the diagnostic
program should be still allocated~

7. The following steps must be performed for programs that
execute under CRD:

• Issue ATTACH and SELECT commands as indicated in the
program's "UUT Support Data File" for CRD.

• Clear all VDS flags, then set any flags indicated in
the UUT Support Data File.

• Run the program for one pass, specifying the section
indicated in the UUT Support Data File.

The time required to complete one pass should
match the time specified in the UUT Support Data
File.

The program
intervention.

should not request manual

• Purposely perform incorrect device preparation (as
indicated in the UUT Support Data File), and run the
program. The program should display an error message
describing the incorrect preparation.

• If the UUT Support Data File specifies certain
configurations of the device under test which should
not affect successful execution of the program, set up
these configurations and run the program. The
diagnostic program should execute successfully.

5.10.2 Automated Quality Assurance

In order to aid the programmer in ascertaining the quality of a
diagnostic program, the VDS provdes an automated quality assurance
feature, called "Auto-QA." This feature will automatically perform
some (but not all) of the quality assurance checks listed above.

Auto-QA is invoked by including the '/QA' qualifier with the. RUN
or START command. Operating instructions for Auto-QA are
described in the VAX Diagnostic Supervisor User's Guide.

Following
Auto-QA.
section.
performed

is a list of the quality assurance checks performed by
Note that Auto-QA only checks the DEFAULT program

Quality assurance of other program sections must be
manually.

5-40

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

1. Normal Start Check

This check will perform a normal load and execution of the
diagnostic program with the TRACE flag set.

The program must make an error-free pass, printing out the
normal trace messages and terminating with End-of-Pass.
If the program does not execute an error-free pass, an
appropriate QA error message will be printed. The trace
messages must be visually checked by the user.

This check also makes sure that the DEFAULT section does
not request input from the user. (The OPERATOR flag is
cleared.)

This check is equivalent to the following sequence of VDS
commands:

DS> CLEAR FLAG ALL
DS> SET FLAG TRACE
DS> RUN diagnostic-program-name
DS> CLEAR FLAG TRACE

2. Multiple Passes Check

This check will execute ten passes (by default) of the
diagnostic program. The program must make ten error-free
passes and terminate after the tenth pass. If this does
not happen, an error message will be printed.

The number of passes executed by the diagnostic program
can be changed by the user.

This check is equivalent to the following VDS command:

DS> START/PASS:10

3. Infinite Loop-On-Test Check

This check will execute each test in the diagnostic
program's DEFAULT section 100 times (by default). The
diagnostic must execute each test the given number of
times. If the diagnostic does not execute properly, an
error message will be printed.

The number of times each test is executed can be changed
by the user.

5-41

CREATING A VDS DIAGNOSTIC PROGRAM

This check is equivalent to the following VDS commands:

DS> START/PASS:100/TEST:1:1
DS> START/PASS:100/TEST:2:2

DS> START/PASS:100/TEST:n:n

where "n"
sec tion.

is the highest numbered test in the DEFAULT
The tests are executed in ascending order.

4. Infinite Loop-On-Subtest Check

This check will execute each subtest in each of the tests
in the diagnostic program's DEFAULT section 100 times (by
default). The program must loop on each subtest the given
number of times. If the prog ram does not execute
properly, an error message will be printed.

The number of times each subtest is executed can be
changed by the user.

This check is equivalent to the following Supervisor
commands:

DS> START/PASS:100/TEST:l:1/SUBTEST:1
DS> START/PASS: 100/TEST: 1: 1/8UBTEST: 2

DS> START/PASS:100/TEST:1:1/SUBTEST:m1
DS> START/PASS:100/TEST:2: 2/SUBTEST: 1
DS> START/PASS:100/TEST:2: 2/SUBTEST: 2

DS> START/PASS:100/TEST:2:2/SUBTEST:m2

.
DS> START/PASS:100/TEST:n:n/SUBTEST:1
DS> START/PASS:100/TEST:n:n/SUBTEST:2

DS> START/PASS:100/TEST:n:n/SUBTEST:mx

5-42

(

(

(

(

CREATING A VDS DIAGNOSTIC PROGRAM

where Un" is the
section, and "mx"

highest-numbered test in the DEFAULT
is the number of subtests in test "x."

The tests and subtests are executed in ascending order.

5. Run Individual Tests in Reverse Order Check

This check executes the tests in the diagnostic program's
DEFAULT section in reverse order. This check ensures that
a test does not depend on results from a previous test,
and that each test is a standalone entity. If the
diagnostic program does not execute properly, an error
message will be printed.

This check is equivalent to the following VDS command:

DS> START/TEST:n:n
DS> START/TEST:n-l:n-l

DS> START/TEST:l:l

where Un" starts at the highest numbered test
DEFAULT section, and descends to the first test.
the tests are executed in descending order.

5-43

in
That

the
is,

()

(

(

(

(

APPENDIX

APPENDIX A
TEMPLATE FOR THE VDS

DIAGNOSTIC PROGRAM HEADER MODULE

A.I HEADER MODULE TEMPLATE FOR MACRO-32 PROGRAMS

This is a template to aid in the development of the header module
of a VAX diagnostic program. It is not intended to be a tutorial
for writing the program.

Areas that must be deleted or replaced by the programmer are
enclosed between matching sets of triple stars.

Areas that may be optionally modified are enclosed between
matching sets of double stars.

Comments marked with one star are for information purposes and
should be deleted.

A-I

APPENDIX

.TITLE *** PROGRAM NAME ***
• IDENT /01/
• LIST MEB
.NLIST CND
.PSECT HEADER, LONG, NOWRT
.DEFAULT DISPLACEMENT, WORD

;* CHANGE ALIGNMENT TO PAGE FOR DEBUG
;* CHANGE THIS TO LONG FOR DEBUG

COPYRIGHT (C) 1983
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

; ++
FACILITY:

ABSTRACT:

ENVIRONMENT:

AUTHOR: *** NAME

MODIFIED BY:
i--

VAX DIAGNOSTIC.

*** Short description of program. ***

VAX DIAGNOSTIC SUPERVISOR.

DATE *** VERSION 01.

A-2

(

(

(

(

APPENDIX

• PAGE
.SBTTL DECLARATIONS

INCLUDE FILES:

• LIBRARY \SYS$LIBRARY:DIAG.MLB\ i VAX FAMILY DIAGNOSTIC LIBRARY.
i** Declare programmef-defined libraries here.
i* (Libraries ar~ searched in reverse to the order listed.)
i
i MACROS:
i
i*** USER MACROS (OPTIONAL). ***

EQUA'l'ED SYMBOLS:

$DS BGNMOD
$DS-DSSDEF

*** ENVIRONMENT ***
GLOBAL iSUPERVISOR SERVICE ENTRY VECTORS

i*** USER EQUATED SYMBOLS ***

A-3

APPENDIX

• PAGE
.SBTTL PROGRAM HEADER DATA BLOCK.

i++
FUNCTIONAL DESCRIPTION:

; --

i+

THE PROGRAM HEADER DATA BLOCK CONTAINS THE PARAMETERS WHICH
ALLOW THE DIAGNOSTIC SUPERVISOR TO CONTROL THE PROGRAM.
THE DIAGNOSTIC SUPERVISOR LOOKS FOR THE HEADER INFORMATION
BEGINNING AT VIRTUAL ADDRESS 200(HEX).

<***PROGNAME***>, REV=01, UPDATE=0, NUNIT=**l**

.SBTTL DISPATCH TABLE.

THE DISPATCH TABLE IS A COLLECTION OF ADDRESSES GENERATED AT THE
i BEGINNING OF EACH TEST AND GROUPED TOGETHER INTO A CONTIGUOUS

LIST BY THE LINKER. THIS IS DONE BY DEFINING A PSECT CALLED
DISPATCH.

i-

$DS_DISPATCH

A-4

(

(

(

APPENDIX

• PAGE
.SBTTL PROGRAM GLOBAL DATA SECTION •
• PSECT DATA, LONG

;++
; FUNCTIONAL DESCRIPTION:
;
;*** ALL DYNAMICALLY MODIFIED DATA SHOULD BE PLACED IN THIS SECTION. ***
;*** THIS IS THE ONLY PSECT WHICH WILL NORMALLY BE WRITE ENABLED. ***

; --

;+
; STATISTICS TABLE.
;-

$DS BGNSTAT
$DS=ENDSTAT

;*** OTHER GLOBAL DATA (OPTIONAL). ***

A-S

APPENDIX

• PAGE
.SBTTL PROGRAM TEXT SECTION.

i++
FUNCTIONAL DESCRIPTION:

i
i THIS SECTION CONTAIN!;) ALL OF THE DATA STRUCTURES THAT ARE MADE UP OF
i CHARACTER STRINGS.
; --

i+
i PROGRAM SECTION NAMES.
i-

$DS_SECTIO~ <*** SECTION NAMES ***>

i+
i DEVICE MNEMONICS LIST.
i-
T DEVICE:

- $DS_DEVTYP <*** DEVICES ***>

i+
i NAMES OF DEVICE REGISTERS AND BIT MNEMONICS
i-
;*** ASCII NAMES OF DEVICE REGISTERS AND THEIR BITS (OPTIONAL) FOR ***
i.*** USE WITH THE $DS CV"TREG MACRO ROUTINE. ***

i+
; FORMATTED ASCII OUTPUT STATEMENTS.
i-

i*** MESSAGES TO THE OPERATOR, ETC. (OPTIONAL). ***

i+
i STRINGS USED TO REPORT ERRORS
i-
i*** ERROR REPORT MESSAGES. (OPTIONAL) ***

A-6

(

(

(

(

APPENDIX

• PAGE
.SBTTL INITIALIZATION CODE.

;++
; FUNCTIONAL DESCRIPTION.

; THIS ROUTINE WILL BE EXECUTED.AT THE BEGINNING OF EACH pAsS.
;*** DESCRIPTION OF YOUR ROUTINE. ***

CALLING SEQUENCE:

THE DIAGNOSTIC SUPERVISOR CALLS THIS ROUTINE WITH A CALLG INSTRUCTION.

INPUT PARAMETERS:

** NONE **

IMPLICIT INPUTS:

** NONE **

OUTPUT PARAMETERS:

** NONE **

IMPLICIT OUTPUTS:

** NONE **
;

COMPLETION CODES:

** NONE **

SIDE EFFECTS:

** NONE **

; --

$DS BGNINIT
;*** DEVICE INITIALIZATION CODE. ***

$DS_ENDINIT

A-7

APPENDIX

• PAGE
.SBTTL CLEAN-UP CODE.

i++
i FUNCTIONAL DESCRIPTION:

i THIS ROUTINE IS EXECUTED AT THE COMPLETION OF THE LAST PROGRAM PASS.
i*** DESCRIPTION OF YOUR ROUTINE. ***

CALLING SEQUENCE:

THE DIAGNOSTIC SUPERVISOR CALLS THIS ROUTINE WITH A CALLG INSTRUCTION.

INPUT PARAMETERS:

** NONE **

IMPLICIT INPUTS:

** NONE **

OUTPUT PARAMETERS:

** NONE **

IMPLICIT OUTPUTS:

** NONE **

COMPLETION CODES:

** NONE **

SIDE EFFECTS:

** NONE **

; --

$DS BGNCLEAN
i*** DEVICE "SHUT-DOWN" CODE. ***

$DS ENDCLEAN

A-8

(

(

(

(

APPENDIX

• PAGE
.SBTTL SUMMARY REPORT CODE.

;++
FUNCTIONAL DESCRIPTION:

THIS ROUTINE ISSUES A SUMMARY REPORT UPON REQUEST FROM THE
; OPERATOR OR WHEN A $DS SUMMARY G CALL IS MADE.
;*** DESCRIPTION OF-YOUR ROUTINE. ***

CALLING SEQUENCE:

THE DIAGNOSTIC SUPERVISOR CALLS THIS ROUTINE WITH A CALLG INSTRUCTION.
;

INPUT PARAMETERS:

; ** NONE **

IMPLICIT INPUTS:

; ** NONE **

OUTPUT PARAMETERS:

** NONE **

IMPLICIT OUTPUTS:

** NONE **

COMPLETION CODES:

** NONE **

SIDE EFFECTS:

** NONE **

; --
$DS BGNSUMMARY

;*** SUMMARY REPORT CODE. (OPTIONAL) ***
$DS ENDSUMMARY

A-9

.SBTTL GLOBAL SUBROUTINES.

;*** OPTIONAL GLOBAL SUBROUTINES, SUCH AS ERROR REPORTING ROUTINES,
INTERRUPT SERVICE ROUTINES, CONDITION HANDLERS, ETC.

;++
FUNCTIONAL DESCRIPTION:

CALLING SEQUENCE:

** NONE **

INPUT PARAMETERS:

** NONE **

IMPLICIT INPUTS:

** NONE **

OUTPUT PARAMETERS:

** NONE **

IMPLICIT OUTPUTS:

; ** NONE **
;

COMPLETION CODES:

** NONE **

SIDE EFFECTS:

** NONE **

REGISTERS USED:

** NONE **
; -
.*** ,

$DS ENDMOD
• END

()

(

(

(

APPENDIX

A.2 HEADER MODULE TEMPLATE FOR BLISS-32 PROGRAMS

This is a template to aid in the development of the header module
of a VAX diagnostic program. It is not intended to be a tutorial
for writing the program.

Areas that must be deleted or replaced by the programmer are
enclosed between matching sets of triple stars.

Areas that may be optionally modified are enclosed between
matching sets of double stars.

A-II

%TITLE '*** -title ***'
MODULE *** module name ***

IDENT =-, 131-00'
) =

BEGIN

++

APPENDIX

COPYRIGHT (c) 1983 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

!++
FACILITY: VAX-II DIAGNOSTIC

ABSTRACT: *** abstract ***

ENVIRONMENT: VAX-II DIAGNOSTIC SUPERVISOR

AUTHOR: *** your name ***, DATE: *** date ***, VERSION: V0l.0

MODIFIED BY:

A-12

(

l

(

APPENDIX

%SBTTL 'Declarations'

!++
TABLE OF CONTENTS:

!--

FORWARD ROUTINE
*** routine names ***

!++
EXTERNAL DECLARATIONS:

!--

EXTERNAL ROUTINE
*** routine names *** In module •••

!++
INCLUDE FILES:

!--
*** Declare user-defined libraries

LIBRARY 'SYS$LIBRARY:STARLET'i
LIBRARY 'SYS$LIBRARY:DIAG'i

and "require" files here ***
! VMS MACRO LIBRARY

!++
MACRO DEFINITIONS:

!--

MACRO
*** OPTIONAL USER-WRITTEN MACROS *** %i

!++
DIAGNOSTIC SUPERVISOR MACROS:

!--

$DS BGNMOD (ENV = *** environment ***)i
$DS-DISPATCHi
GLOBAL $DS DSSDEFi
$DS_DSADEF;

!++
PROGRAM SECTION NAMES:

!--

$DS SECTION (*** section names ***)i

!++
DEVICE MNEMONICS LIST:

!--

! VAX DIAGNOSTIC FAMILY LIBRARY

$DS_DEVTYP (STRINGS = (*** device types ***),
ADDRESSES = (*** addresses of PT-desc ***»i

A-13

APPENDIX

%SBTTL 'Program Header Data Block'

++
FUNCTIONAL DESCRIPTION:

The progra header data block contains the parameters which
allows the Diagnostic Supervisor to control the program.
The Diagnostic Supervisor looks for the header information
beginning at virtual address 200(HEX).

$DS_HEADER (PNAME ='*** program name ***',
REV = 1,
UPDATE = 0,
NUNIT = *** number of units ***)i

A-14

(I
J

(

(

(

APPENDIX

%SBTTL 'Program Global Data Section'

!++
! FUNCTIONAL DESCRIPTION:

!*** ALL DYNAMICALLY MODIFIED DATA SHOULD BE PLACED IN THIS SECTION. ***

!--

!++
! DEVICE REGISTER CONTENTS TABLE
!--

$DS BGNREG;
$DS=ENDREG;

!++
! STATISTICS TABLE.
!--

$DS BGNSTAT;
$DS=ENDSTAT;

!++
EQUATED SYMBOLS:

!--

GLOBAL LITERAL
*** enter literals ***

!++
OWN STORAGE:

!--

GLOBAL
*** enter variables ***

A-IS

APPENDIX

%SBTTL 'Program Text Section'

1++
FUNCTIONAL DESCRIPTION:

This section contains all the character strings.

!--

1++
NAMES OF DEVICE REGISTERS AND BIT MEMONICS:

!--

GLOBAL BIND

!++

!--

!++

1--

*** ascii names of device registers and their bits (optional)
for use with the $DS CVTREG macro rotine ***

FORMATTED ASCII OUTPUT STATEMENTS:

*** messages to the operator, etc. (optional) ***

STRINGS USED TO REPORT ERRORS

*** enter statements ***. ,

A-16

(

(

(

(

('-

APPENDIX

%SBTTL 'Initialization Code'

++
FUNCTIONAL DESCRIPTION:

This routine will be executed at the beginning of each pass
of the diagnostic.

FORMAL PARAMETERS:

** NONE **

IMPLICIT INPUTS:

** NONE **

IMPLICIT OUTPUTS:

** NONE **
COMPLETION CODES:

** NONE **

SIDE EFFECTS:

** NONE **

$DS_BGNINIT;
BEGIN

*** initialization code ***

END;
$DS_ENDINIT;

A-17

APPENDIX

%SBTTL 'Clean-up Code'

1++
FUNCTIONAL DESCRIPTION:

The cleanp-up code is executed at the completion of the last
program pass.
*** Description of your routine goes here. ***

FORMAL PARAMETERS:

** NONE **

IMPLICIT INPUTS:

** NONE **

IMPLICIT OUTPUTS:

** NONE **

COMPLETION CODES:

** NONE **

. SIDE EFFECTS:

** NONE **

$DS BGNCLEAN;
BEGIN

*** cleanup code ***

END;
$DS _ ENDC LEAN;

A-18

/

(

(

(

APPENDIX

%SBTTL 'Summary Report Code'

++
FUNCTIONAL DESCRIPTION:

This routine displays a summary report when the operator types
a SUMMARY command or when a $DS SUMMARY call is issued.

*** Description of the summary routine goes here. ***

FORMAL PARAMETERS:

** NONE **

IMPLICIT INPUTS:

** NONE **

IMPLICIT OUTPUTS:

** NONE **

COMPLETION CODES:

** NONE **

SIDE EFFECTS:

** NONE **

$DS BGNSUMMARY;
BEGIN

*** summary code ***

END;
$DS_ENDSUMMARY;

A-19

APPENDIX

*** Optional global subroutines, such as error reporting routines,
interropt service routines, condition handlers, etc, should
be placed here. ***

%SBTTL 'Global Subroutines'

++
FUNCTIONAL DESCRIPTION:

FORMAL PARAMETERS:

** NONE **

IMPLICIT INPUTS:

** NONE **

IMPLICIT OUTPUTS:

** NONE **

COMPLETION CODES:

** NONE **

SIDE EFFECTS:

** NONE **

REGISTERS USED:

%SBTTL 'Summary Report Code'

!++
FUNCTIONAL DESCRIPTION:

!

FORMAL PARAMETERS:

** NONE **

IMPLICIT INPUTS:

** NONE **

IMPLICIT OUTPUTS:

** NONE **

A-20

(

(

(

(

COMPLETION CODES:

** NONE **
SIDE EFFECTS:

** NONE **
REGISTERS USED:

** NoNE **

$DS_ENDMODi
END
ELUDOM

APPENDIX

A-21

()

(

(

(

(

APPENDIX

APPENDIX B
TEMPLATE FOR VDS

DIAGNOSTIC PROGRAM TEST MODULES

B.l TEST MODULE TEMPLATE FOR MACRO-32 PROGRAMS

This is a template to aid in the development of a test module of a
VAX diagnostic. It is not intended to be a tutorial for writing
the program.

Areas that must be deleted or replaced by the programmer are
enclosed between matching sets of triple stars.

Areas that may be optionally modified are enclosed between
matching sets of double stars.

Comments that contain only one star are for informational purposes
and should be deleted.

B-1

APPENDIX

• TITLE
.IDENT
• LIST

*** PROGRAM MODULE NAME ***
/01/ ;*** VERSION NUMBER ***
MEB

.NLIST CND

.DEFAULT DISPLACEMENT, WORD ;* CHANGE THIS TO LONG FOR DEBUG

;++
COPYRIGHT (C) 1980
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE,OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THES.E LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

;++

;++
FACILITY:

ABSTRACT:

ENVIRONMENT:

AUTHOR: *** NAME

MODIFIED BY:
i--

VAX DIAGNOSTIC.

*** Short description of this module. ***

VAX DIAGNOSTIC SUPERVISOR.

DATE *** VERSION 01.

B-2

(

(

()
/

(

APPENDIX

• PAGE
.SBTTL DECLARATIONS

i+
i INCLUDE FILES:
i-

• LIBRARY \SYS$LIBRARY:DIAG.MLB\ i VAX FAMILY DIAGNOSTIC LIBRARY
i** List programmer-defined libraries here.
i** (Libraries are searched in reverse order.)

i+
i MACROS:
i-

i*** PROGRAMMER-DEFINED MACROS (OPTIONAL). ***

i+
i EQUATED SYMBOLS:
i-

i *** SYMBOLS FOR LOCAL USE AND SUPERVISOR INTERFACE ***
i*** AND USER EQUATED SYMBOLS (OPTIONAL). ***

$DS_BGNMOD <*** ENVIRONMENT ***>, TEST=*** NUMBER OF FIRST TEST IN MODULE***

$DS CHDEF GLOBAL
$DS-DSSDEF GLOBAL

i+

CHANNEL SERVICE SYMBOLS (LEVEL 3)
SUPERVISOR SERVICE ENTRY VECTORS

i PROGRAMMER-DEFINED LOCAL AND GLOBAL STORAGE
i-

i+
i SECTION DEFINITIONS:
i-

$DS SECDEF <*** SECTION NAMES ***>

B-3

; ++

• PAGE
$DS_SBTTL

TEST DESCRIPTION:

APPENDIX

<*** TEST NAME ***>

THIS WILL CONTAIN A BRIEF DESCRIPTION OF WHAT IS BEING TESTED
AND HOW THE TEST IS IMPLEMENTED.

ASSUMPTIONS:

*** ASSUMPTIONS MADE BEFORE THE TEST IS RUN, SUCH AS
WHAT PARTS OF THE HARDWARE MUST BE FUCTIONING PROPERLY
BEFORE THIS TEST IS EXECUTED. ***

TEST STEPS:

*** DETAILED ,DISCRIPTION OF THE TEST AND TEST FLOW ***
1) FIRST STEP, INITIALIZATION
2) SECOND STEP
3) THIRD STEP

ERRORS:

*** DETAILED DISCRIPTION OF THE ERRORS DETECTABLE AND REPORTED ***
ERROR ~1:
ERROR ~2:

ERROR ~3:

(

DEBUG: (

; --

;+

THIS SECTION WILL CONTAIN INSTRUCTIONS ON HOW TO USE THIS
TEST IN DEBUGGING THE UNIT UNDER TEST.

<*** SECTION NAMES ***>,ALIGN=BYTE ;* CHANGE THIS TO
;* PAGE FOR DEBUG

; BLOCK COMMENTS TO EXPLAIN WHAT A SPECIFIC BLOCK OF CODE
; IS DOING
;-

B-4

(

(

;+

;-

;+

APPENDIX

SUBTEST DESCRIPTION:

*** BRIEF DESCRIPTION OF WHAT THE SUBTEST CHECKS ***

SUBTEST STEPS:

*** DETAILED FLOW OF TEST SEQUENCE ***

ERRORS:

*** BRIEF DESCRIPTION OF EACH OF THE ERRORS
THAT CAN BE DETECTED BY THIS TEST ***

DEBUG:

*** HELPFUL HINTS FOR TRACKING HARDWARE FAULTS ***

; BLOCK COMMENT
;-

$DS ENDSUB
$DS-ENDTEST
$DS-ENDMOD
.END

B-5

APPENDIX

B.2 TEST MODULE TEMPLATE FOR BLISS-32 PROGRAMS

This is a template to aid in the development of the header module
of a VAX diagnostic program. It is not intended to be a tutorial
for writing the program.

Areas that must be deleted or replaced by the programmer are
enclosed between matching sets of triple stars.

Areas that may be optionally modified are enclosed between
matching sets of double stars.

B-6

(

(

(

(

%TITLE '*** title ***'
MODULE *** module name ***

IDENT =-'(31-00'
) =

BEGIN

!++

APPENDIX

COPYRIGHT (c) 1983 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

!--

++
FACILITY: VAX-II DIAGNOSTIC

ABSTRACT: *** abstract ***

ENVIRONMENT: VAX-II DIAGNOSTIC SUPERVISOR

AUTHOR: *** your name ***, DATE: *** date ***, VERSION: V01.0

MODIFIED BY:

B-7

APPENDIX

!++
INCLUDE FILES:

!--

*** List a}l programmer-defined libraries and "require" files here. ***
LIBRARY 'SYS$LIBRARY:DIAG';

!++
SUPERVISOR MACROS

!--

$DS BGNMOD (ENV *** environment ***, TEST
$DS-DSADEF;
$DS-DSSDEF;
$DS=SECDEF (*** section names ***);

!++
EXTERNAL DECLARATIONS

!--

EXTERNAL ROUTINE
*** routine name ***

EXTERNAL
*** names ***

B-8

*** starting test number ***);

()

(

(

(

APPENDIX

%SBTTL '*** subtitle ***'
++

TEST DESCRIPTION:

*** This will contain a brief description of what is being tested
and how the test is implemented. ***

ASSUMPTIONS:

*** Assumptions made before the test is run, such as
which portions of the hardware must be functioning
properly before this test is executed. ***

TEST STEPS:
*** Detailed description of the test and test flow ***
1) *** First step, Initialization ***
2) *** Second step ***
3) *** Third step ***

ERRORS:

DEBUG:

*** Detailed description of the errors detectable and reported ***
Error 01: *** description ***
Error 02: *** description ***
Error 03: *** description ***

*** This section will contain instructions on how to use this
test in debugging the unit under test. ***

$DS_BGNTEST (SECTION = *** section names ***,
TEST = '*** test name ***');

1++

!--

*** Block comment to explain what a specific block
of code is doing ***

BEGIN

B-9

APPENDIX

%SBTTL ' ••• subtitle ***'

1++
SUBTEST DESCRIPTION:

*** Brief description of what the subtest checks ***

SUBTEST STEPS:

*** Detailed flow of test sequence ***

ERRORS:

*** Brief description of each of the possible errors detected ***

DEBUG:

*** Helpful hints for tracking hardware faults ***

~++
*** Block comment to explain what a specific block

of code is doing ***
!--

BEGIN
*** subtest code ***
END;

END;

$DS_ENDTEST;

$DS_ENDMOD;
END
ELUDOM

B-10

(

(

(

(

(

APPENDIX

APPENDIX C
TEMPLATE FOR DIAGNOSTIC PROGRAM

DOCUMENTATION FILE

This is a template for VAX diagnostic documentation files.
Everything to be changed, added, or deleted is enclosed in
matching double angle brackets, '«~I and '»'.

C-I

APPENDIX

IDENTIFICATION

Produc t code: zz-« maindec code, including version »

Product name: « program name »

Product date: « submission date »

Maintainer: « diagnostic engineering group »

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

(

The software described in this document is furnished under a (-_
license and may be used or copied only in accordance with the
terms of such license.

No responsibility is assumed
software on equipment that
affiliated companies.

for the use or reliability of
is not supplied by Digital or its

Copyright (c) « first year, current submission year (if
different) by Digital Equipment Corporation. All Rights Reserved.

The following are trademarks of Digital Equipment Corporation.

DEC DECsystem-10 DECSYSTEM-20

DECUS MASSBUS PDP

UNIBUS VAX VMS

« any additional trademarks

« Digital logo

C-2

(

1.0

2.0

3.0

4.0

5.0
5.1
5.2

6.0
6.1
6.2
6.3
6.4
6.5
6.6

/
6.7

(6.8

7.0

(

APPENDIX

Table of Contents

ABSTRACT

HARDWARE REQUIREMENTS

SOFTWARE REQUIREMENTS

PREREQUISITES

OPERATING INSTRUCTIONS •
Options
Event Flags

• 4

• • 4

• • • • 4

• • • • • 4

. • • . • . • • • • • 4
• • . • . • • • • 4

• • • 4

PROGRAM FUNCTIONAL DESCRIPTION • • • • • • • • • • • 5
Program Overview • • . • • • •• . 5
Program Size • • • • • • • •••••••••• 5
Program Run Times ••••••• ••••••• 5
Run-time Dynamics • • • • • • • • • •• • 5
Fault Detection •••••••.• 5
Performance During Hardware Failures • • •• • 5
Program Applications ••••••••••••••• 5
Test Descriptions •••••••••••••••• 5

MAINTENANCE HISTORY • 6

C-3

APPENDIX

C.l ABSTRACT

« program abstract; from 3 to 20 lines

C.2 HARDWARE REQUIREMENTS

« minimum hardware configuration; optional hardware

C.3 SOFTWARE REQUIREMENTS

« software environment, e.g. VAX Diagnostic Supervisor

C.4 PREREQUISITES

« hardware that should be verified before running this program

C.S OPERATING INSTRUCTIONS

« Refer to the "VAX-II Diagnostic System User's Guide"
(EK-DS780-UG-002) for instructions on how to load and start the
Diagnostic Supervisor and how to load and execute programs
under the Diagnostic Supervisor. The operator must ATTACH and
SELECT the device « e. g., KA780 before starting this program.

C.S.l Options

« any operator options, such as MANUAL section

C.S.2 Event Flags

« The following event flags are used by this program.

1. «event flag 1

2. «event flag 2

3. < < etc.

C-4

(

(

(

(

APPENDIX

C.6 PROGRAM FUNCTIONAL DESCRIPTION

C.6.l Program Overview

« purpose, strategy, transportability

C.6.2 Program Size

« names and sizes of all associated files

C.6.3 Program Run Times

« quick verify, default, with options

C.6.4 Run-time Dynamics

« memory allocations, side effects, sequence of testing on
mul til pe un i ts

C.6.S Fault Detection

« error resolution, error message formats, fault coverage (%)

C.6.6 Performance During Hardware Failures

« unsuspected traps, power failure

C.6.7 Program Applications

« field service
engineering

(RD) ,

C.6.8 Test Descriptions

manufacturing (APT) , customers,

« for each test/subtest, "Test description", "Test steps", and
"Debug aids"

C.7 MAINTENANCE HISTORY

« date, version: description of changes

C-5

()

()

(

(

APPENDIX

1 ATTACH

APPENDIX D
SAMPLE HELP FILE

The CPU must be attached.
information on a VAX-11/780.

Example:

Type "HELP DEVICE KA 780" for
A VAX-11/750 CPU is a KA750, etc.

ATTACH KA780 S81 KA0 NO NO 0 0

1 HELP

1

2

This program exercises the VAX native mode floating point
instruction set, which can be executed in any mode, i.e.,
non-priviledged instructions. The program is capable of
running under the Diagnostic Supervisor in either the
standalone environment or as a user task under VMS. It is also
designed to run on any member of the VAX family of computers.

DEVICE

KA730
Type "HELP DEVICE KA 730" for more information.

2 KA 750
Type "HELP DEVICE KA750" for more information.

2 KA780
Type "HELP DEVICE KA 780" for more information.

1 EVENT
The following event flags have the described effects on this
program:

Event Flag 2: Disable the interval timer ipterrupting during
instruction execution.

Event Flag 3: Enable the interval timer interrupting while page
faulting is also enabled.

Event Flag 4: Enable the continuation of a subtest after an
error (normally the subtest is aborted).

1 QUICK
The QUICK flag
page faulting
case is only
combination.

1 SECTIONS

2 DEFAULT

disables the exection of the instructions with
or interrupting, so that each instruction test
executed once for each addressing mode

D-1

APPENDIX

The DEFAULT section includes all of the tests making up the
other four sections.

2 F FLOATING
Single Precision Floating Point Instructions: MOVF, MNEGF,
CVTBF, CVTWF, CVTLF, CVTFB, CVTFW, CVTFL, CVTRFL, CMPF,
TSTF, ADDF2v ADDF3, SUBF2, SUBF3, MULF2, MULF3, DIVF2,
DIVF 3, EMODF, and POLYF.

2 D FLOATING
Dot~ble Precision Floating Point Instructions: MOVD,
CVTBD, CVTWD, CVTLD, CVTDB, CVTDW, CVTDL, CVTRDL,
CVTDF, CMPD, TSTD, ADDD2, ADDD3, SUBD2, SUBD3,
MULD3, DIVD2, DIVD3, EMODD, and POLYD.

4 G FLOATING

MNEGD,
CVTFD,
MULD2,

Extended Range Double Precision Floating Point
Instructions: MOVG, MNEGG, CVTBG, CVTWG, CVTLG, CVTGB,
CVTGW, CVTGL, CVTRGL, CVTFG, CVTGF, CMPG, TSTG, ADDG2,
ADDG3, SUBG2, SUBG3, MULG2, MULG3, DIVG2, DIVG3, EMODG, and
POLYG.

2 H FLOATING
Extended Range Quadruple Precision Floating
Instructions: MOVH, MNEGH, CVTBH, CVTWH, CVTLH,
CVTHW, CVTHL, CVTRHL, CVTFH, CVTDH, CVTGH, CVTHF,
CVTHG·, CMPH, TSTH, ADDH2, ADDH3, SUBH2, SUBH3,
MULH3, DIVH2, DIVH3, EMODH, and POLYH.

I SUMMARY

Point
CVTHB,
CVTHD,
MULH2,

The summary report gives an error count by test number. No
report is generated if there were no errors.

D-2

(')

/

c

(

(

(

$ALLOCATE, 3-25, 3-44
$ASCTIM, 4-106
$ASSIGN, 3-25, 3-43 to 3-44,

4-116 .
$BINTIM, 3-60, 4-123
$CANCEL, 3-48, 4-127
$CANTIM, 3-60, 4-129
$CLOSE, 3-71, 3-73, 4-1~0
$CLREF, 3-57, 4-142
$CONNECT, 3-71, 3-73, 4-147
$DASSGN, 3-43, 4-155
$DEALLOCATE, 3-44
$DEF, 3-13 to 3-14, 4-8
$DEFEND, 3-13
$DEFINI, 3-13, 4-9
$DISCONNECT, 3-71, 3-73, 4-156
$DS $ADD, 3-15, 4-11
$DS-$CASE, 3-15, 4-13
$DS-$COMPLEMENT, 3-15, 4-15
$DS-$DECIMAL, 3-15, 4-16
$DS-$END, 3-15, 4-18
$DS-$FETCH, 3-15, 4-19
$DS-$HEX, 3-15, 4-21
$DS-$INITIALIZE, 3-15, 4-23
$DS-$LITERAL~ 3-15, 4-26
$DS-$LOGICAL, 3-15, 4-27
$DS-$NAME, 3-15, 4-28
$DS-$OCTAL, 3-15, 4-31
$DS-$PRINTS, 3-51
$DS-$STORE, 3-15, 4-33
$DS-$STRING, 3-15, 4-35
$DS-ABORT, 3-27, 3-32, 3-36,

3=-39, 4-105, 5-28
$DS ASKADR, 3-52, 4-108
$DS-ASKDATA, 3-52, 4-108
$DS-ASKLGCL, 3-52, 4-108
$DS-ASKLOGICAL, 5-28
$DS-ASKSTR, 3-52, 4-108
$DS-ASKVLD, 3-52, 4-108
$DS ASKxxxx, 3-13, 3-27, 3-32,

3-52 to 3-54, 5-30
$DS ATTACH, 3-22, 3-68, 4-120
$DS=BCOMPLETE, 3-41, 4-94
$DS BERROR, 3-41, 4-95
$DS-BGNCLEAN, 3-27, 4-37
$DS-BGNDATA, 3-29, 4-39

INDEX

$DS BGNINIT, 3-24, 4-41
$DS-BGNMESSAGE, 4-43
$DS-BGNMOD, 4-45
$DS-BGNREG, 4-47
$DS-BGNSERV, 3-49, 4-48
$DS-BGNSTAT, 3-28, 4-49
$DS-BGNSUB, 3-29, 3-31, 3-37,

4=-50
$DS BGNSUMMARY, 3-28, 4-51
$DS-BGNTEST, 3-29, 3-31, 3-37,

4=-53
$DS BITDEF, 4-264
$DS-BNCOMPLETE, 3-41, 4-94
$DS-BNERROR, 3-41, 4-95
$DS-BNOPER, 3~32, 3-41, 4-96,

5=-29 to 5-30
$DS BNPASS0, 3-26, 3-42, 4-97,

5=-28
$DS_BNQUICK, 3-41, 4-98, 5-31
$DS BOPER, 3-32, 3-41, 4-96,

5=-29 to 5-30
$DS_BPASS0, 3-26, 3-42, 4-97,

5-28
$DS BQUICK, 3-41, 4-98, 5-31
$DS-BREAK, 3-66, 4-126
$DS-CANWAIT, 3-60 to 3-61, 4-130
$DS-CFDEF, 4-265
$DS-CHANNEL, 3-24,

3=-48 to 3-49, 4-131
$DS CHCDEF, 4-266
$DS_CHMDEF, 4-267
$DS CKLOOP, 3-38 to 3-39, 4-99
$DS-CLI, 3-54, 4-55
$DS-CLIDEF, 4-268
$DS-CLRVEC, 3-50, 4-144
$DS-CNTRLC, 3-58, 3-65, 4-145
$DS-CVTREG, 3-51,4-149
$DS-DEFDEL, 4-277
$DS-DEVTYP, 3-23, 4-61
$DS-DISPATCH, 3..;.22, 4-73
$DS-DSDEF, 4-269
$DS-DSSDEF, 4-1, 4-270
$DS=ENDCLEAN, 3-27, 4-37
$DS ENDDATA, 3-29, 4~39
$DS-ENDINIT, 3-24, 4-41
$DS=ENDMESSAGE, 4-43

Index-1

$DS -ENDMOD, 4-45
$DS=ENDPASS, 4-158
$DS ENDREG, 4-47
$DS-ENDSERV, 3-49, 4-48
$DS-ENDSTAT, 3-28, 4-49
$DS ENDSUB, 3-29, 3-31,

3-37 to 3-38, 4-50
$DS ENDSUMMARY, 3-28, 4-51
$DS-ENDTEST, 3-29,

3=37 to 3-38, 4-53
$DS ERRDEF, 4-271
$DS-ERRDEV, 3-36, 4-159
$DS-ERRHARD, 3-36, 4-159
$DS ERRNUM, 4-92
$DS ERRPREP, 3-35, 4-159, 5-30
$DS-ERRSOFT, 3-35, 4-159
$DS-ERRSYS, 3-36, 4-159
$DS-ERRxxxx, 3-33, 3-36, 3-42,

3=-51
$DS ESCAPE, 3-42, 4-101
$DS-EXIT, 3-36, 3-42, 4-103
$DS-GETBUF, 3-54 to 3-56, 4-172
$DS-GETTERM, 4-179
$DS-GPHARD, 3-19, 3-24 to 3-25,

4=182
$DS HEADER, 3-22, 4-74
$DS-HELP, 3-54, 4-184
$DS-HPO DECL, 3-20, 4-272
$DS-HPODEF, 4-272
$DS-INITSCB, 3-50, 4-186
$DS-INLOOP, 3-39, 4-187
$DS LOAD, 3-66, 4-188
$DS MMOFF, 3-55, 4-191
$DS-MMON, 3-55, 4-191
$DS-PAGE, 4-76
$DS-PARDEF, 4-273
$DS-PARSE, 3-54, 4-197
$DS-PRINTB, 3-32, 3-51, 4-201
$DS-PRINTF, 3-51, 4-201
$DS-PRINTS, 3-28, 4-201
$DS-PRINTSIG, 3-64, 4-210
$DS-PRINTX, 3-33, 3-51, 4-201
$DS-PROBE, 3-50, 4-211
$DS PSLDEF, 4-275
$DS PTDDEF, 4-274
$DS-RELBUF, 3-56, 4-223
$DS-SBTTL, 4-84
$DS-SCBDEF, 4-276
$DS-SECDEF, 3-31, 4-86
$DS=SECTION, 3-23, 3-31, 4-87

INDEX

$DS SETIPL, 3-50, 4-233
$DS=SETMAP, 3-24, 3-48 to 3-49,

4-234
$DS SETVEC, 3-50, 4-242
$DS-SHOCHAN, 3-49, 4-245
$DS-STRING, 4-88
$DS-SUMMARY, 4-247
$DS-WAITMS, 3-60, 4-254
$DS-WAITUS, 3-61, 4-256
$FAB, 3-69, 4-63
$FAB INIT, 4-71
$FAB-STORE, 3-70, 4-71
$FAO; 3-51, 4-166
$FAOL, 4-166
$GET, 3-71, 3-73, 4-169
$GETCHN, 3-48, 4-175
$GETTIM, 3-60, 4-181
$HIBER, 3-60, 4-185
$OPEN, 3-71, 3-73, 4-193
$QIO, 2-7 to 2-8, 3-43 to 3-47,

3-57 to 3-58, 4-213
$QIO diagnostic buffer, 3-47
$QIOW, 3-44, 3-46 to 3-47,

3-57 to 3-58, 4-213
$RAB, 3-69, 4-77
$RAB INIT, 4-82
$RAB-STORE, 3-70, 4-82
$READ, 3-73, 4-218
$READEF, 3-57, 4-221
$SETAST, 3-58, 4-225
$SETEF, 3-57, 4-227
$SETEXP, 3-63
$SETIMR, 3-58, 3-60, 4-229
$SETPRT, 3-55, 4-239
$SETVEC, 3-64
$SSDEF, 3-63
$UNWIND, 3-64, 4-248
$WAITFR, 3-46, 3-57, 4-252
$WAK&, 3-60, 4-258
$WFLAND, 3-57, 4-260
$WFLOR, 3-57, 4-262
$XABFHC, 3-69, 4-90
$XABFHC_STORE, 3-70

ABORT command, 3-27
Action routines, 4-198, 4-200
Adapters

bus, 3-24, 3-48
displaying internal registers of,

3-49

Index-2

(

(

(

(

(

interrupts from, 3-28
mapping registers, 3-49
MASSBUS, 3-48
status of, 3-48
UNIBUS, 3-10, 3-48

Allocating devices, 3-25,
3-43 to 3-44

APT, 2-1, 3-4, 3-13, 3-65, 5-24
APT/RD, 2-2, 5-24
AST delivery, 3-58
AST routines, 3-47, 3-58, 3-60
ASTs, 3-47, 3-58
Asynchronous events, ·3-56
Asynchronous system traps

See ASTs
ATTACH command, 3-6 to 3-8,

3-11 to 3-13, 3-15, 3-22,
3-25, 3-52, 3-68

Auto-QA
See quality assurance

automated
Autosizer, 3-13

BIO, 3-69, 3-73
Block processing, 3-73
Breakpoint facility, 3-62
BRa, 3-73
Buffers, 3-4, 3-55

Channels, 3-28, 3-44, 3-48
assigning, 3-43
deassigning, 3-43

Character string descriptors,
4-7

Clean-up code, 3-1 to 3-2, 3-5,
3-25, 3-27 to 3-28,
3-35 to 3-36, 3-43, 3-62

CLEAR EVENT FLAGS, 3-57
Cluster exerciser, 2-10
Command language

creating a, 3-53
Condition handling, 3-3, 3-27,

3-50, 3-56, 3-61 to 3-64
CONTINUE command, 3-65
Control Flags

see VDS control flags
Control-C, 3-37, 3-65
control-C, 3-65
Control-C handler, 3-54,

3-65 to 3-66

INDEX

CRD, 3-13, 5-25
Customer service representatives,

1-9
Customer-Runnable Diagnostics

See CRD

Debugging a diagnostic program,
5-34

Degree of resolution, 1-8 to 1-9
DESELECT command, 3-44
Design specifications, 5-3
Device mnemonics list, 3-23
Diagnostic buffer

See $QIO diagnostic buffer
Diagnostic program header, 3-22
Diagnostic programs

user requirements
all users, 1-2
customer service reps.,

1-3 to 1-4
customers, 1-2 to 1-3
depending on product, 1-4
design engineers, 1-4
manufacturing, 1-4

users of, 1-2
uses of

detecting failing hardware,
1-1

during design of new products,
1-1

in manufacturing, 1-1
Dispatch Table, 3-22
Documentation, 5-8 to 5-12,

5-14 to 5-21, 5-23 to 5-24
in source code, 5-12,

5-14 to 5-19
Documentation files, 5-9 to 5-12

Error logging, 3-44
Error reporting

error messages, 3-32
message formats,

3-32 to 3-33, 5-25, 5-27
VDS control flags and, 3-34

Error reporting routines, 3-3,
3-33, 4-43 to 4-44,
4-161 to 4-162, 4-271

Errors
device-fatal, 3-36
hard, 3-35 to 3-36

Index-3

INDEX

soft, 3-35
system-fatal, 3-36

Errors
device-fatal, 3-36
preparation, 3-35
system-fatal, 3-36

Event flags, 3-46, 3-56, 3-58
Exception vectors, 3-50
Exceptions, 3-27, 3~56, 3-61,

3-64
BPT, 3-62
T-bit, 3-62

EXIT command, 3-44
Extended attribute block

see XAB

FAB, 3-68 to 3-69, 3-73
FAC, 3-69, 3-73
FAa directives, 4-166, 4-201,

4-204 to 4-205, 4-207 to 4-208
Fault detection, 5-4
Fault isolation, 1-8, 5-4
Field-replacable unit (FRU), 1-6
File access block

See FAB
Flags

see Event Flags
see VDS control flags

Format statements, 3-51
Formatted ASCII Output

See FAa
FRU, 1-9
Functional specifications, 5-2,

5-4, 5-35

see P-tables
Hardware preparation,

5-29 to 5-30
HELP command, 5-19
Help files, 3-54, 5-19

creating, 5-20, 5-22 to 5-24
description of, 5-19 to 5-20
keywords in, 5-20 to 5-24
text in, 5-23 to 5-24

HUB, 3 - 7, 3-10

I/O function encoding, 3-45
I/O methods

in level 1 programs, 2-7
in level 2 programs, 2-8
in level 2R programs, 2-8
in level 3 programs, 2-8
in level 4 programs, 2-9
in level 5 programs, 2-9
logical I/O, 2-7 to 2-8
physical I/O, 2-7 to 2-8
virtual I/O, 2-7 to 2-8

I/O status block, 3-46
Implicit inputs, 5-14
Implicit outputs, 5-15
Initialization code,

3-1 to 3-2, 3-5, 3-19,
3-24 to 3-26, 3-36,
3-'42 to 3-43, 3-54

Interrupt service routines,
3-3,3-42,3-49,3-60 to 3-61

Interrupts, 3-48, 3-60 to 3-61,
4-138

IPL, 3-50

Guidelines for writing diag.
level 1 guidelines, 2-12
level 2 guidelines, 2-13
level 2R guidelines, 2-12
level 3 guidelines,

progs.Level 1 programs, 2-6 to 2-7,
2-12

2-13 to 2-14
level 4 guidelines,

2-14 to 2-15
level 5 guidelines, 2-15

Halt-on-error, 3-34
Hardcore, 1-6 to 1-7,
Hardware environments,

2-5 to 2-6

2-5 to 2-6

Hardware Parameter Tables

Level 2 programs, 2-8, 2-13
Level 2R programs, 2-7 to 2-8,

2-11 to 2-12, 3-24 to 3-25,
3-43, 3-54, 3-57 to 3-59,
3-66 to 3~67

Level 3 programs, 2-8,
2-10 to 2-14, 3-48, 3-55,
3-57 to 3-59, 3-66 to 3-67

Level 4 programs, 2-9 to 2-10,
2-14 to 2-15

Level 5 programs, 2-6,
2~9 to 2-10, 2-15

Linking a diagnositic program,

Index-4

(

(

()

c .. r

(

3-4
Linking a diagnostic program,

5-33
Logical unit number, 3-25
Looping, 3-2, 3-5, 3-34,

3-36 to 3-37
and the $DS BREAK macro, 3-66
characteristics of,

3-38 to 3-39
program,

loop boundaries, 3-37 to 3-38
defaults for, 3-37

nesting loops, 3-39 to 3-40
user-specified, 3-40

Looping, 3-36
Loops, 1-9

Macro-instructions, 1-12
Macro-programs, 1-12
Macros

program control, 3-5
program structure, 3-5
symbol definition, 3-6
system service, 3-6

Manual intervention, 3-32, 5~30
Manufacturing, 2-1
Mechanism array, 3-63
Memory allocation, 3-55 to 3-56
Memory layout, 3-4 to 3-5
Memory management, 3-54 to 3-55
Micro-instructions, 1-12
Micro-programs, 1~12

P-tables, 3-6
and the $ALLOCATE service,

3-44
construction of by VDS, 3-6
contents of, 3-8, 3-52
control-Cs and, 3-65
device's link, 3-7
device-dependent fielqs of,

3-8, 3-11, 3-13
creating names for, 3-19,

5-31
device-independent fields of,

3-8, 3-13 to 3-14
format of, 3-8
getting a unit's p-table,

3-24 to 3-25
HUB link, 3-7
logical unit number and, 3-25

INDEX

p-table descriptors,
3-11 to 3-12, 3-19
and device allocation, 3-25
and device mnemonics list,

3-23
creating, 3-13, 3-15
location of, 3-12, 5-20,

5-23
referencing from a diagnostic

3-19
UNIBUS adapters and, 3-10
vector specification, 4-243

Passes, 3-23, 3-25 to 3-28,
3-36, 3-41 to 3-42, 4-97

Prerelease of diagnostic programs,
5."..4

Program development phases
consultation phase, 5-1 to 5-2
design implementation phase,

5-3 to 5-4
design phase, 5-3
design verification phase, 5-5
functional specification phase,

5-2
planning phase, 5-2

Program loops, 3-36
program sections table, 3-23
Project plans, 5-1 to 5-2, 5-4

Quadword descriptors, 4-7
Quality assurance, 5-5

automated, 5-40 to 5-43
quality requirements

documentation quality, 5-35
functional quality, 5-35
operational quality,

5-35 to 5-36, 5-38, 5-40
Quick mode, 3-41, 5-31

RAB, 3-68, 3-73
RAC, 3-70 to 3-71
Random-by-RFA, 3~71, 3-73
Reading Files,3~70
Recotd access block

See RAB
Record management services

See RMS
Record processing, 3-71 to 3~73
Record processing, 3-70
RFA, 3-71

Index-5

INDEX

RMS, 3-66 to 3-71, 3-73
ROP, 3-73
RUN command, 3-1, 3-23, 3-40,

3-54
Run-time enviroments

user mode, 1-5
Run-time environments, 1-5

networks, 1-6
standalone mode, 1-5
user mode, 1-5

Runtime environments
considerations when programming,

5-24

SCB, 3-10, 3-50, 3-64,
4-242 to 4-243

Scope loops, 3-36
Sections, 3-31

DEFAULT, 3-32, 5-30, 5-39
MANUAL, 5-30

SELECT command, 3-23, 3-25, 3-44
SEQ, 3-70 to 3-71
Sequential record access, 3-70
SET EVENT FLAGS, 3-57
SET MM OFF, 3-55
SET MM ON, 3-55
Signal array, 3-63 to 3-64
Single-step facility, 3-62
Size of a diagnostic program,

3-4
Source modules

header module, 5-5 to 5-6
test modules, 5-5, 5-7

SS$ CONTINUE, 3-64
SS$-RESIGNAL, 3-64
Standalone mode, 2-1, 3-4,

3-24, 3-48, 3-50,
3-55 to 3-57, 3-59 to 3-60,
3-62, 3-64, 3-66, 5-24

Standalone mode, 3-61
START command, 3-1, 3-23, 3-40,

3-54
Subpasses, 3-23 to 3-24
SUBTEST qualifier, 3-40
Subtests, 3-29

characteristics of, 3-29
global, 3-31
legal and illegal uses of,

3-29
looping in, 3-37

numbering of, 3-29
user-specified looping on,

3-40
SUMMARY command, 3-28
Summary routine, 3-1, 3-3,

3-25, 3...;28, 3-42, 3-51
Symbols

dollars signs in, 5-31
naming, 5-31 to 5-33
private, 5-31
public, 5-31

Synchronizing I/O Completion,
3-46

Synchronous events, 3-56
System Control Block

See SCB
System under test (SUT), 1-6

Testing
bottom-up, 1-11 to 1-12
parallel, 1-10
serial, 1-10
testing CPU cluster, 2-10
testing peripheral devices,

2-11 to 2-12
top-down, 1-11 to 1-12

Testing goals, 1-7 to 1-9
Testing scope, 1-7
Tests, 3-1 to 3-2, 3-5, 3-29

and sections, 3-31
and subtests, 3-29, 3-31
characteristics of, 3-29
Dispatch Table and, 3-22
global routines in, 3-29
input arguments, 3-29
manual intervention in, 3-32
parallel, 3-3, 3-24
passes and, 3-23
serial, 3-3, 3-23 to 3-24
subpasses and, 3-23
types of

exercisers, 1-10
function tests, 1-10, 2-13,

3-29
logic tests, 1-10, 2-13,

3-29
Tests, looping in, 3-37
Timing, 3-59
Timing facilities, 3-60

Index-6

(

(

(

(

Unit under test
See UUT

Unwinding, 3-64
Use r mo de, 2 -1 , 3 - 4, 3 - 9 , 3 - 2 5 ,

3-28, 3-36, 3-43,
3-54 to 3-57, 3-59 to 3-60,
3-62 to 3-63, 3-66, 5-24

UUT, 1-6 to 1-7, 3-2, 3-6,
3-29, 3-35 to 3-36, 3-38,
3-43, 3-52

Value register, 3-15, 3-17,
4-11, 4-13, 4-16, 4-19, 4-21,
4-26, 4-31, 4-33

VAX Diagnostic Debugger, 5-34
VAX diagnostic strategy

program levels, 2-4 to 2-7
VDS

human interface, 2-2
program interface, 2-2
purposes of, 2-3

VDS Control Flags
IE2, 4-201
IE3, 4-201
IES, 4-201

VDS control flags, 3-51
HALT, 3-34
IES, 3-28
LOOP, 3-34, 3-36 to 3-37
OPERATOR, 3-32, 3-41, 3-53,

5-28 to 5-30, 5-39
QUICK, 3-41, 5-31

Vectors, 4-138, 4-243
VMS privileges, 3-36, 3-47

XAB, 3-68

INDEX

Index-7

(

(

VAX DIAGNOSTIC DESIGN GUIDE Reader's Comments

Your comments and suggestions will help us in our continuous effort to improve the quality and
usefulness of our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well
written, etc? Is it easy to use? _______ ~--------------------

What features are most useful? ___________________________ _

What faults or errors have you found in the manual? _________ -------_---

Does this manual satisfy the need you think it was intended to satisfy? ____________ _

Does it satisfy your needs? ____ - _____ Why? ______________ --__

Please send me the current copy of the Documentation Products Directory, which contains information
on the remainder of DIGITAL's technical documentation.

Name------______________ Street _____________________ _

Title City __ ----------------
Company State/Country _______________ _
Department Zip ___________________ _

Additional copies of this document are available from:

Digital Equipment Corporation
Accessories and Supplies Group
P.O. Box CS2008
Nashua, New Hampshire 03061

Attention: Documentation Products
Telephone: 1-800-258-1710

Order No. ___ E_K_-1_V_A_X_D_-_T_M ______ _

ZKO

(

,--- Fold Here --

·----------------------------------00 Not Tear - Fold Here and Staple---

mDmDoma

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD, MA.

POSTAGE WILL BE PAID BY ADDRESSEE

32-Bit Systems Diagnostic Engineering, TWO/F17
Digital Equipment Corporation
1925 Andover Street
Tewksbury, MA 01876

IIIIII No Postage
Necessary

if Mailed in the
United States

(

~.

(
~

"

...

'.

1,

..
,
~

•

,

(
-'.

'. :'~

')

EK-1 VAXD-TM-003

VAX Diagnostic
Design Guide

IMPORTANT

To automatically receive updates of this manual, fill out the following information:

Internal: External:

Name ____________________ _ Name ________________________ ___
Group ________________________ _ Title ________________________ _
Mail Stop __________________ _ Company _______________________ __
DTN __________________________ _ Street ______________________ __

City _________________________ _

State/Country _______________ _
Zip ______________________ __

,
?

.--- Fold Here --.

(

·----------------------------------00 Not Tear - Fold Here and Staple--

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD. MA.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Educational Services/Quality Assurance
12 Crosby Drive, BU/E08
Bedford, MA 01730

I II II I No Postage
Necessary

if Mailed in the
United States

1.:(1
'-......

