
We are now Refinitiv, formerly the 
Financial and Risk business of 
Thomson Reuters. We’ve set a bold 
course for the future – both ours and 
yours – and are introducing our new 
brand to the world.

As our brand migration will be 
gradual, you will see traces of our 
past through documentation, videos, 
and digital platforms. 

Thank you for joining us on our  
brand journey.



 

Thomson Reuters Enterprise Platform

ESDK C/C++ 1.2.x
MIGRATION GUIDE

1 Overview

ESDK packages are specific to the product language (C/C++ or Java) and include both the ETA and EMA products. This 
Migration Guide describes migrating the ESDK C / C++ API from any prior version to Version 1.2 (or later). Because migration 
steps are specific to the ESDK package, migration steps are identical for both ETA and EMA.

With this release, the ESDK supports open sourcing and uses more standards-based, freely-available open source tools to 
provide additional flexibility and benefit.

In versions prior to 1.2, the ESDK APIs were built without a CMake harness (i.e., developers used the static build files with 
other utilities such as Visual Studio or Linux make to build the APIs). With the open-source version 1.2 ESDK release, 
developers use CMake to dynamically generate the build files.

2 Requirements and Limitations

The ESDK C/C++ package uses Google Test in its unit tests, and Google Test requires Python. While the ESDK automatically 
downloads Google Test whenever you run its unit tests, Google Test requires Python. If you want to run the ESDK unit tests, 
you must ensure your also have Python on your machine.

Thomson Reuters does not support 32-bit builds in EMA.

When you run CMake, CMake automatically attempts to clone the Elektron-SDK binary pack from GitHub. You must have 
Internet access for CMake to successfully clone the binaries in this manner. Alternatively, you can manually clone the binaries 
(if running CMake on a machine without Internet access). For details on manually cloning the binaries, refer to Section 3.

Note: Version 1.2 (and later) ESDK applications are more memory-use intensive when initializing the ETAC library and when 
loading the dictionary.
ESDK C/C++ v1.2.x Migration Guide – Feature Guide
ESKC121MG.180



    
3 Obtaining the Package

You have the following options in obtaining the SDK:

• You can download the package from GSG or the Developer Community Portal at the following URL:
https://developers.thomsonreuters.com/elektron/elektron-sdk-cc/downloads

• You can clone the package from the GitHub repository (at https://github.com/thomsonreuters/Elektron-SDK) by using the 
following command (where user.name is your GitHub username):

If you need to manually clone the binary pack, do so using the following command (clone the binary pack into the Elektron-
SDK directory).

git clone https://user.name@github.com/thomsonreuters/Elektron-SDK.git --branch master

Note: You need to manually clone the binary pack if you run CMake on a machine without access to GitHub via the Internet.

git clone https://user.name@github.com/thomsonreuters/Elektron-SDK-BinaryPack.git
        --branch master
ESDK C/C++ v1.2.x Migration Guide – Feature Guide 2
ESKC121MG.180

https://developers.thomsonreuters.com/elektron/elektron-sdk-cc/downloads
https://github.com/thomsonreuters/Elektron-SDK


    
4 Package Directory Changes

The following tables illustrates the ESDK package directory structure of Version 1.1.3 as compared against the new directory 
structure introduced in Version 1.2.

In Version 1.2:

• The CMake directory contains modules to support the CMake build harness

• The Elektron-SDK-BinaryPack presents libraries (prebuilt from non-open source code) as targets for the rest of the 
ESDK to use as linkable target objects. For details on accessing the binary pack, refer to the topic called Obtaining the 
Package.

• Previous libraries librsslRDM, librsslReactor, and librsslVAUtil are combined to a single library librsslVA.

• A new library librsslRelMcast is added (in Elektron-SDK-BinaryPack/Cpp-C/Eta/Libs) to account for the shared reliable 
multicast library. librsslRelMcast is dynamically loaded by librssl whenever Reliable Multicast transport is selected.

• DACS and ANSI libraries have been moved to directory Elektron-SDK-BinaryPack/Cpp-C/Eta/Utils.

Elektron SDK C/C++ Version 1.1.3 Package Elektron SDK C/C++ Version 1.2 Package

The ESDK C/C++ package prior to the version1.2 release, 
used the following high-level structure (included here for the 
sake of comparison):

Starting with Version 1.2, the ESDK C/C++ package uses a 
new directory structure that differs significantly from 
previous versions. The following diagram illustrates the new 
top-level directory structure:

Table 1: ESDK C/C++ Package Structures
ESDK C/C++ v1.2.x Migration Guide – Feature Guide 3
ESKC121MG.180



    
5 CMake

Prior versions of the ESDK provided the static build files Solution and vcxproj for Windows, and Makefile for Linux. However, 
ESDK Version 1.2 has changed to instead include CMake configuration files (CMakeLists.txt) in strategic directories. You 
must now use CMake to configure a build tree. CMake generates cleaner, more concise build environment files that 
correspond to users’ platform and OS. In addition, it enables the creation of build environments on platforms that users wish to 
leverage, even if unsupported by the ESDK product.

The ESDK package includes a top-level, entry point for CMake (CMakeLists.txt), which CMake uses when you run the 
program. From this master file, CMake processes all downstream CMakeLists.txt files in the source tree to generate 

associated Solution and vcxproj files1 (on Windows), or Makefile files (on Linux) in a build directory that you specify. After 
this process, you can then compile your ESDK in the same way as previous ESDK versions (i.e., by running Make on Linux or 
by using Visual Studio on Windows) or you can further configure your CMake output by customizing the CMake cache file 
named CMakeCache.txt. For details on configuring CMake output, refer to Section 5.4.

For both Windows and Linux, Thomson Reuters supports the use of CMake version 3.10 or greater. You can download CMake 
from https://cmake.org/download/.

1. CMake refers to such files as ‘targets’
ESDK C/C++ v1.2.x Migration Guide – Feature Guide 4
ESKC121MG.180

https://cmake.org/download/


    
5.1 Building with CMake on Windows

 To run CMake in a Windows environment:

1. Obtain the ESDK package (for details, refer to Section 3).

2. Extract the contents of the ESDK package.

3. Note the name of the top-level extracted directory (i.e., on Windows, the name might be something like 
Elektron-SDK1.2.0.win.rrg).

You will use this name in Step 5 as the sourceDir.

4. Open a command window: on the Windows menu, in Search programs and files, type cmd and press ENTER.

5. Issue the command: 

Where:

• sourceDir is the directory in which the top-level CMake entry point (CMakeLists.txt) resides. By default, when you 
build using the Solution and vcxproj files, output is sent to directory specified in SourceDir.

• buildDir is the CMake binary directory (for the CMake build tree).

• VisualStudioVersion is the Visual Studio generator (e.g., Visual Studio 11 2012 Win64).2

• option is a command line option and its associated value (e.g., -DBUILD_EMA_UNIT_TESTS=OFF). You can control 
aspects of how CMake builds the ESDK by using command line options (for further details on the use of options, refer 
to Section 5.3).

The cmake command builds all needed Solution and vcxproj files (and other related files) in the CMake build tree. 
Compiled output (after running make or from visual studio make) is located in its associated directories (i.e., example 
executables are in the Executables directory and libraries (e.g., libema.lib, librssl.lib) in the Libs directory).

cmake -HsourceDir -BbuildDir -G “VisualStudioVersion” [-Doption ... ]

2. For details on Visual Studio generators and a list of available generators, refer to:
https://cmake.org/cmake/help/v3.10/manual/cmake-generators.7.html?highlight=visual%20studio#visual-studio-generators

Note: If you do not explicitly specify Win64, by default cmake builds the 32-bit version.

Note: Do not load individual project files from Visual Studio. You must first load the top-level solution file (esdk.sln in the 
specified buildDir). After loading the full solution from esdk.sln, you can begin building individual projects.
ESDK C/C++ v1.2.x Migration Guide – Feature Guide 5
ESKC121MG.180

https://cmake.org/cmake/help/v3.10/manual/cmake-generators.7.html?highlight=visual%20studio#visual-studio-generators


    
5.2 Building with CMake on Linux

Thomson Reuters uses the default gnu compiler provided by CMake and included in the Linux distribution (which builds in 64-
bit; to build in 32-bit, refer to the CMake command options in Section 5.3). For supported OS and compilers, refer to the 
Compatability Matrix.

 To run CMake in a Linux environment:

1. Obtain the ESDK package (for details, refer to Section 3).

2. Extract the contents of the ESDK package.

3. Note the name of the top-level extracted directory (i.e., on Linux, the name might be something like 
Elektron-SDK1.2.0.linux.rrg).

You will use this name in the following steps as the sourceDir.

4. Run the LinuxSoLink script: at a command prompt (e.g., in a terminal window) from the sourceDir directory, issue the 
command:

5. At a command prompt (e.g., in a terminal window), issue the command from the directory immediately above sourceDir:

Where:

• sourceDir is the directory in which the top-level CMake entry point (CMakeLists.txt) resides. By default, when you 
build using Makefile files, output is sent to directory specified in sourceDir.

• buildDir is the CMake binary directory (for the CMake build tree).

• option is a command line option and its associated value (e.g., -DBUILD_EMA_UNIT_TESTS=OFF). You can control 
aspects of how CMake builds the ESDK by using command line options (for further details on the use of options, refer 
to Section 5.3).

The cmake command builds all needed Makefile files (and related dependencies) in the CMake build tree in their associated 
directories (i.e., example executables are in the Executables directory and libraries (e.g., libema.lib, librssl.lib) in the Libs 
directory). You open these files and build all libraries and examples in the same fashion as you did with prior ESDKs.

./LinuxSoLink

cmake -HsourceDir -BbuildDir [-Doption ...]

Note: By default, CMake builds the ESDK using the optimized build option. For the debug version, instead issue the 
command: cmake -HsourceDir -BbuildDir –DCMAKE_BUILD_TYPE=Debug
ESDK C/C++ v1.2.x Migration Guide – Feature Guide 6
ESKC121MG.180



    
5.3 CMake Build Configuration Options

When running the CMake command, you can use any of the following options:

Note: By default, all options are active except for BUILD_WITH_PREBUILT_ETA_EMA_LIBRARIES. Turning off certain options 
have a cascading affect on other options (for example, setting DBUILD_UNIT_TESTS=OFF in the command line also 
switches off the options BUILD_EMA_UNIT_TESTS and BUILD_ETA_UNIT_TESTS. To see whether a relationship exists 
between options, refer to the following option descriptions in Table 2.

Tip: If you want to only build the ETA library, turn off the following options: BUILD_ETA_APPLICATIONS, 
BUILD_EMA_LIBRARY, and BUILD_EMA_EXAMPLES

Option Description
Default 
Setting

BUILD_EMA_DOXYGEN Builds EMA reference documentation using Doxygen. Off

BUILD_EMA_EXAMPLES Builds all programs in Cpp-C/Ema/Examples. Turning 
this option off also turns off BUILD_EMA_PERFTOOLS, 
BUILD_EMA_TRAINING, and BUILD_UNIT_TESTS.

On

BUILD_EMA_LIBRARY Builds with the Ema library (libema) On

BUILD_EMA_PERFTOOLS Builds all programs in Cpp-C/Ema/Examples/Perftools On

BUILD_EMA_TRAINING Builds all programs in Cpp-C/Ema/Examples/Training On

BUILD_EMA_UNIT_TESTS Builds all unit tests for EMA (located in 
Cpp-C/Ema/Examples/Test/UnitTest) and downloads 
Google Test from https://github.com/google/googletest.a 
If you cannot download Google Test from GitHub, turn 
off this option.

On

BUILD_ETA_APPLICATIONS The top-level control option for all ETA Applications. 
Turning this option off also turns off 
BUILD_ETA_EXAMPLES, BUILD_ETA_PERFTOOLS, and 
BUILD_ETA_TRAINING.

On

BUILD_ETA_DOXYGEN Builds ETA reference documentation using Doxygen. Off

BUILD_ETA_EXAMPLES Builds all programs in
Cpp-C/Eta/Applications/Examples

On

BUILD_ETA_PERFTOOLS Builds all programs in
Cpp-C/Eta/Applications/Perftools

On

BUILD_ETA_TRAINING Builds all programs in Cpp-C/Eta/Applications/Training On

Table 2: CMake Command Options
ESDK C/C++ v1.2.x Migration Guide – Feature Guide 7
ESKC121MG.180

https://github.com/google/googletest


    
5.4 Customizing the CMake Configuration

To customize your CMake build, you must configure the CMakeCache.txt file in the build directory (buildDir). You can edit this 

file using either a text editor (i.e., vi) or the appropriate CMake UI3. After configuring the CMakeCache.txt file, for ease of use, 
Thomson Reuters recommends you use the UI to reconfigure the CMake build. For details on using the CMake UI, refer to 
CMake’s documentation (https://cmake.org/cmake/help/v3.10/).

If you use a text editor to alter the cache. you can update your CMake build tree simply by running the command:

BUILD_ETA_UNIT_TESTS Builds all unit tests for ETA (located in 
Cpp-C/Eta/TestTools/UnitTests) and downloads 
googletest from https://github.com/google/googletest.b

If you cannot download Google Test from GitHub, turn 
off this option.

On

BUILD_UNIT_TESTS Builds all unit test programs for both EMA (located in 
Cpp-C/Ema/Examples/Test/UnitTest) and ETA (located 
in Cpp-C/Eta/TestTools/UnitTests). Turning this option 
off also turns off BUILD_EMA_UNIT_TESTS and 
BUILD_ETA_UNIT_TESTS.

On

BUILD_32_BIT_ETA Forces a 32-bit build. This option builds only ETA and 
ETA examples that do not require the Binary Pack (thus 
VA examples such as VACons, VAProv, VANIProv, and 
WatchlistCons are not built). Also turns off EMA and 
associated examples.

Off

Note: This is used only for forcing 32-bit Linux builds.

Tip:  To force a 32-bit build in Windows, leave out the 
Win64 specification in the generator statement.

BUILD_WITH_PREBUILT_ETA_EMA_LIBRARIES Builds applications with the distributed (prebuilt) EMA 
and ETA libraries (as packaged with the ESDK obtained 
from the Developer Community Portal or GSG).

Do not use this option if you obtained your ESDK via 
GitHub.

Turning this option on turns off the BUILD_EMA_LIBRARY 
option.

Off

a. GitHub must be accessible from your machine (e.g., your machine must connect to the Internet and any proxies specified)
b. GitHub must be accessible from your machine (e.g., your machine must connect to the Internet and any proxies specified)

3. On Windows, the UI is accessed through the cmake-gui.exe binary, and on Linux you access this UI via the ccmake command.

cmake -HsourceDir -BbuildDir

Option Description
Default 
Setting

Table 2: CMake Command Options
ESDK C/C++ v1.2.x Migration Guide – Feature Guide 8
ESKC121MG.180

https://cmake.org/cmake/help/v3.10/
https://github.com/google/googletest


    
5.5 CMake Targets

Running CMake generates targets (conceptually this includes Visual Studio projects when running on Windows) that you can 

compile individually. CMake lists ESDK-specific targets in stdout.4 You can use CMake build configuration options to control 
the specific set of ESDK targets generated by CMake (for details, refer to Section 5.3).

For example, when setting BUILD_ETA_PERFTOOLS=ON (this is the default), CMake configures the following targets:

• ConsPerf_shared

• ConsPerf

• NIProvPerf_shared

• NIProvPerf

• ProvPerf_shared

• ProvPerf

• TransportPerf_shared

• TransportPerf

4. For non-ESDK targets, refer to CMake’s documentation and broader CMake developer community (both accessed from https://cmake.org/
documentation).
© 2018 Thomson Reuters. All rights reserved. 
Republication or redistribution of Thomson Reuters content, including
by framing or similar means, is prohibited without the prior written consent
of Thomson Reuters. 'Thomson Reuters' and the Thomson Reuters logo
are registered trademarks and trademarks of Thomson Reuters and its 
affiliated companies.

ESDK C/C++ v1.2.x Migration Guide – Feature Guide
Document Version: 1.2.1
ESKC121MG.180

https://cmake.org/documentation
https://cmake.org/documentation

	1 Overview
	2 Requirements and Limitations
	3 Obtaining the Package
	4 Package Directory Changes
	5 CMake
	5.1 Building with CMake on Windows
	5.2 Building with CMake on Linux
	5.3 CMake Build Configuration Options
	5.4 Customizing the CMake Configuration
	5.5 CMake Targets


