

Transport API Java Edition
V3.3.x

OPEN SOURCE PERFORMANCE TOOLS GUIDE
JAVA EDITION
Document Version: 3.3.0
Date of issue: 15 March 2019
Document ID: ETAJ330PETOO.190

Legal Information
© Thomson Reuters 2016 - 2019. All rights reserved.

Thomson Reuters, by publishing this document, does not guarantee that any information contained herein is and will remain accurate or that
use of the information will ensure correct and faultless operation of the relevant service or equipment. Thomson Reuters, its agents and
employees, shall not be held liable to or through any user for any loss or damage whatsoever resulting from reliance on the information
contained herein.

This document contains information proprietary to Thomson Reuters and may not be reproduced, disclosed, or used in whole or part without
the express written permission of Thomson Reuters.

Any Software, including but not limited to, the code, screen, structure, sequence, and organization thereof, and Documentation are protected
by national copyright laws and international treaty provisions. This manual is subject to U.S. and other national export regulations.

Nothing in this document is intended, nor does it, alter the legal obligations, responsibilities or relationship between yourself and Thomson
Reuters as set out in the contract existing between us.
Transport API Java Edition 3.3.x – Open Source Performance Tools Guide ii
ETAJ330PETOO.190

Contents

Contents
Chapter 1 Introduction .. 1
1.1 About this Manual ... 1
1.2 Audience ... 1
1.3 Programming Language.. 1
1.4 Acronyms and Abbreviations .. 2
1.5 References.. 2
1.6 Documentation Feedback ... 2
1.7 Document Conventions... 3

1.7.1 Typographic .. 3
1.7.2 Diagrams .. 3

Chapter 2 Open Source Performance Tool Suite Overview... 5
2.1 Overview ... 5
2.2 The Transport API Performance Tool Suite .. 5
2.3 Package Contents... 7

2.3.1 XML Files.. 7
2.3.2 Building and Running.. 8

2.4 What Gets Measured and Reported? ... 8
2.4.1 Latency ... 8
2.4.2 Throughput and Payload .. 8
2.4.3 Image Retrieval Time.. 8
2.4.4 CPU and Memory Usage.. 8

2.5 Recorded Results and Output... 9
2.5.1 Summary File.. 9
2.5.2 Statistics File... 9
2.5.3 Latency File .. 9

Chapter 3 Latency Measurement Details... 10
3.1 Time-slicing ... 10
3.2 Latency.. 11

Chapter 4 upacConsPerf ... 12
4.1 Overview ... 12
4.2 Threading and Scaling .. 12

4.2.1 Consumer Lifecycle .. 12
4.2.2 Diagram .. 14

4.3 Latency Measurement... 15
4.3.1 Consumer Latency.. 15
4.3.2 Posting Latency .. 15

4.4 upajConsPerf Configuration Options... 16
4.5 Input .. 18
4.6 Output ... 18

4.6.1 upajConsPerf Summary File Sample.. 19
4.6.2 upajConsPerf Statistics File Sample... 20
4.6.3 upajConsPerf Latency File Sample .. 21
4.6.4 upajConsPerf Console Output Sample... 21

Chapter 5 upajProvPerf ... 22
5.1 Overview ... 22
5.2 Threading and Scaling .. 22
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide iii
ETAJ330PETOO.190

5.3 Provider Lifecycle.. 22
5.4 Latency Measurement... 24
5.5 upajProvPerf Configuration Options.. 24
5.6 Input Files.. 27
5.7 Output ... 27

5.7.1 upajProvPerf Summary File Sample... 28
5.7.2 upajProvPerf Statistics File Sample.. 29
5.7.3 upajProvPerf Console Output Sample.. 29

Chapter 6 upajNIProvPerf ... 30
6.1 Overview ... 30
6.2 Threading and Scaling .. 30
6.3 Non-Interactive Provider Lifecycle .. 30
6.4 Latency Measurement... 32
6.5 upajNIProvPerf Configuration Options .. 32
6.6 Input Files.. 35
6.7 Output ... 35

6.7.1 upajNIProvPerf Summary File Sample ... 36
6.7.2 upajNIProvPerf Statistics File Sample .. 37
6.7.3 upajNIProvPerf Console Output Sample .. 37

Chapter 7 upajTransportPerf .. 38
7.1 Overview ... 38
7.2 Threading and Scaling .. 38
7.3 upajTransportPerf Life Cycle... 38
7.4 Message Payload.. 39
7.5 Latency Measurement... 40
7.6 upajTransportPerf Configuration Options.. 40
7.7 Input .. 43
7.8 Output ... 43

7.8.1 upajTransportPerf Summary File Sample... 43
7.8.2 upajTransportPerf Statistics File Sample.. 44
7.8.3 upajTransportPerf Console Output Sample.. 45

Chapter 8 Performance Measurement Scenarios... 46
8.1 Interactive Provider to Consumer, Through TREP.. 46
8.2 Interactive Provider to Consumer, Direct Connect.. 47
8.3 Non-Interactive Provider to Consumer, Through TREP.. 48
8.4 Consumer Posting on the TREP ... 49
8.5 Transport Performance, Direct Connect with TCP.. 50
8.6 Transport Performance, Direct Connect with TCP, Reflection.. 51
8.7 Transport Performance, Direct Connect with Multicast ... 52
8.8 Transport Performance, Direct Connect with Shared Memory ... 53

Chapter 9 Input File Details .. 54
9.1 Message Content File and Format.. 54

9.1.1 Encoding Fields .. 54
9.1.2 Sample Update Message ... 55

9.2 Item List File.. 56
9.2.1 Item Attributes... 56
9.2.2 Sample Item List File .. 57

Chapter 10 Output File Details ... 58
10.1 Overview ... 58
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide iv
ETAJ330PETOO.190

10.2 Output Files and Their Descriptions.. 58
10.3 Latency File... 59
10.4 File Import ... 60

Chapter 11 Performance Best Practices ... 61
11.1 Overview ... 61
11.2 Transport Best Practices... 61

11.2.1 rsslRead.. 61
11.2.2 rsslWrite, rsslFlush ... 61
11.2.3 Packing ... 62
11.2.4 High-water Mark ... 62
11.2.5 Direct Socket Write ... 63
11.2.6 Nagle’s Algorithm.. 63
11.2.7 System Send and Receive Buffers ... 63
11.2.8 Transport API Buffering .. 64
11.2.9 Compression... 65

11.3 Encoder and Decoder Best Practice: Single-Pass Encoding.. 65
11.4 Other Practices: JVM Priming ... 65

Appendix A Troubleshooting.. 66
A.1 Can’t Connect .. 66
A.2 Not Achieving Steady State ... 66
A.3 Consumer Tops Out but Not at 100% CPU ... 67
A.4 Initial Latencies Are High ... 67
A.5 Latency values Are Very High.. 67
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide v
ETAJ330PETOO.190

Transport API 3.3.x Java Edition – Open Source Performance Tools Guide vi
ETAJ330PETOO.190

List of Figures

Contents

Figure 1. Running Performance Example and Host Notation .. 3
Figure 2. Network Diagram Notation .. 4
Figure 3. Three Connection Options for the OMM-based Performance Tools... 5
Figure 4. Transport API Java Transport Perf ... 6
Figure 5. Directory Structure of the Performance Tools... 7
Figure 6. Time Slicing Algorithm .. 10
Figure 7. Refresh Publishing Algorithm.. 10
Figure 8. Latency RICs within a Tick.. 11
Figure 9. Timing Diagram for Latency Measurements ... 11
Figure 10. upajConsPerf Lifecycle ... 12
Figure 11. upajConsPerf Application Flow ... 14
Figure 12. upajProvPerf Lifecycle .. 22
Figure 13. upajProvPerf Application Flow .. 23
Figure 14. upajNIProvPerf Lifecycle... 30
Figure 15. upajNIProvPerf Application Flow... 31
Figure 16. upajTransportPerf Lifecycle 1 ... 38
Figure 17. upajTransportPerf Application Flow .. 39
Figure 18. Interactive Provider to Consumer on TREP .. 46
Figure 19. Interactive Provider to Consumer, Direct Connect.. 47
Figure 20. NIProv to Consumer on the TREP .. 48
Figure 21. Consumer Posting to TREP .. 49
Figure 22. Transport Performance, TCP Direct Connect ... 50
Figure 23. Transport Performance, TCP Direct Connect with Reflection... 51
Figure 24. Transport Performance, Multicast Direct Connect .. 52
Figure 25. TransportPerf, Shared Memory Direct Connect.. 53
Figure 26. Sample Excel Graph from ConsStats1.csv ... 60
Figure 27. Sample Excel Graph of Latencies Over a 15-second Steady State Interval from ConsLatency1.csv 60
Figure 28. ADS rmds.cnf .. 67

Transport API 3.3.x Java Edition – Open Source Performance Tools Guide vii
ETAJ330PETOO.190

List of Tables

Contents

Table 1: Acronyms and Abbreviations .. 2
Table 2: upajConsPerf Configuration Options... 16
Table 3: upajProvPerf Configuration Options.. 24
Table 4: upajNIProvPerf Configuration Options .. 32
Table 5: upajTransportPerf Configuration Options.. 40
Table 6: Item Attributes ... 56
Table 7: Performance Suite Applications and Associated Configuration Files ... 58

Chapter 1 Introduction
Chapter 1 Introduction

1.1 About this Manual

This guide introduces the Transport API Java Edition of the performance suite. It presents an overview of how the performance
suite applications work with the Thomson Reuters Enterprise Platform (TREP), how the applications themselves work, and
how the application tests are run. It also provides an overview of the basic concepts of writing performant Transport API
applications, as well as configuring both the applications and the Transport API for optimal performance.

The authors include Transport API architects and developers who encountered and resolved many of issues you might face.
Several of its authors have designed, developed, and maintained the Transport API product and other Thomson Reuters
products which leverage it. As such, this document is concise and addresses realistic scenarios and use cases.

This guide documents the general design and usage of the tools provided for measuring the performance of the Transport API
Java Edition. It describes how features of the API are used to send and receive data with high throughput and low latency. This
information applies both when the API is directly connected to itself as well as through TREP components, such as the
Advanced Data Hub (ADH) and Advanced Distribution Server (ADS).

1.2 Audience

This document is written to help programmers using the Transport API to take advantage of its features to achieve high
throughput and low latency with their applications. The information detailed herein assumes that the reader is a user or a
member of the programming staff involved in the design, code, and test phases for applications that will use the Transport API.
It is assumed that you are familiar with the data types, operational characteristics, and user requirements of real-time data
delivery networks, and that you have experience developing products using the Java programming language in a networked
environment. It is assumed that the reader has read the Transport API Java Developer’s Guide to have a basic familiarity with
the Transport API Transport and the interaction models of OMM Consumers, OMM Interactive Providers, and OMM Non-
Interactive Providers.

1.3 Programming Language

Transport API Java is written to the Java language. All code samples in this document and all example applications provided
with the product are written in Java.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 1
ETAJ330PETOO.190

Chapter 1 Introduction
1.4 Acronyms and Abbreviations

1.5 References

• Transport API Java Edition Developers Guide

• Transport API Java Edition RDM Usage Guide

• Transport API Java Edition Value Added Components Developers Guide

1.6 Documentation Feedback

While we make every effort to ensure the documentation is accurate and up-to-date, if you notice any errors, or would like to
see more details on a particular topic, you have the following options:

• Send us your comments via email at apidocumentation@thomsonreuters.com.

• Mark up the PDF using the Comment feature in Adobe Reader. After adding your comments, you can submit the entire
PDF to Thomson Reuters by clicking Send File in the File menu. Use the apidocumentation@thomsonreuters.com
address.

ACRONYM DEFINITION

ADH Advanced Data Hub

ADS Advanced Distribution Server

API Application Programming Interface

CPU Central Processing Unit

DMM Domain Message Model

EMA Elektron Message API

ESDK Elektron Software Developer Kit

ETA Elektron Transport API

NIP Non-Interactive Provider

OMM Open Message Model

RDM Reuters Domain Model

RFA Robust Foundation API

TREP Thomson Reuters Enterprise Platform

Table 1: Acronyms and Abbreviations
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 2
ETAJ330PETOO.190

mailto:apidocumentation@thomsonreuters.com
mailto:apidocumentation@thomsonreuters.com

Chapter 1 Introduction
1.7 Document Conventions

1.7.1 Typographic

• Java classes, methods, in-line code snippets, and types are shown in orange, Courier New font.

• Parameters, filenames, tools, utilities, and directories are shown in Bold font.

• Document titles and variable values are shown in italics.

• When initially introduced, concepts are shown in Bold, Italics.

• Longer code examples (one or more lines of code) are show in Courier New font against an orange background.
Comments in the code are in green font. For example:

1.7.2 Diagrams

Diagrams that depict a component in a performance scenario use the following format. The grey box represents one physical
machine, whereas blue or white boxes represent processes running on that machine.

Figure 1. Running Performance Example and Host Notation

/* decode contents into the filter list object */

if ((retVal = filterList.decode(decIter)) >= CodecReturnCodes.SUCCESS)

{

/* create single filter entry and reuse while decoding each entry */

FilterEntry filterEntry = CodecFactory.createFilterEntry();
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 3
ETAJ330PETOO.190

Chapter 1 Introduction
Diagrams that depict the interaction between components on a network use the following notation:

Figure 2. Network Diagram Notation
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 4
ETAJ330PETOO.190

Chapter 2 Open Source Performance Tool Suite Overview
Chapter 2 Open Source Performance Tool Suite Overview

2.1 Overview

The general idea behind the Open Source Performance Tool Suite is to provide a consistent set of platform test applications
that look and behave consistently across the Elektron APIs. The tool suite covers the various OMM-based API products and
allows Thomson Reuters’s internal and external clients to compare latency and throughput trade-offs of the various APIs and
their differing functionality sets.

TREP also offers the tools rmdsTestClient and sinkDrivenSrc for performance testing, focusing on throughput, latency, and
capacity of TREP components. The tool suite focuses on what can be done with each API and is meant to compliment other
platform tools.

All tools in the suite are provided as buildable open-source and demonstrate best practice and coding for performance with
their respective APIs. Future releases of API products will expand on these tests to include other areas of functionality (e.g.,
batch requesting, etc.). Clients can run these tools to determine performance results for their own environments, recreate
Thomson Reuters-released performance numbers generated using these tools, and modify the open source to tune and tweak
applications to best match their end-to-end needs.

These performance tools can generate reports comparing performance across all API products.

2.2 The Transport API Performance Tool Suite

The Transport API Java-based suite consists of an OMM consumer, OMM interactive provider, and OMM non-interactive
provider. These applications showcase optimal OMM content consumption and providing within the TREP. Additionally, the
Transport API provides a transport-only performance example which you can use to measure the performance of the
Transport API transport handling opaque, non-OMM content. Source code is provided for all performance tool examples, so
you can determine how functionality is coded and modify applications to suit your specific needs.

Because applications from the Elektron APIs are fully compatible and use similar methodologies, you can run them stand-

alone within an API or mix them (e.g., a provider from Transport API and a consumer from RFA).1

Figure 3. Three Connection Options for the OMM-based Performance Tools

1. Tools from the RFA C++ and RFA Java APIs must be obtained from their respective distribution packages.

Performance
Interactive Provider

Performance
Consumer

Performance
Interactive Provider

ADH

ADS

Performance
Consumer

Performance Non-
Interactive Provider

ADH

ADS

Performance
Consumer
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 5
ETAJ330PETOO.190

Chapter 2 Open Source Performance Tool Suite Overview
In a typical OMM configuration, latency through the system is measured either one-way from a provider to consumer, or round-

trip from a consumer, through the system, and back.2 Latency information is encoded into a configurable number of update
messages which are then distributed over the course of each second. The consumer receives update messages, and if the
messages contain latency information, the consumer decodes them and measures the relative time taken to receive and
process the message and its payload.

You can use the Transport API transport-only performance tool (upajTransportPerf) to send non-OMM content uni- or bi-
directionally. Additionally, this application supports a “reflection” type mode used for round trip measurement.
upajTransportPerf measures latency in all of these configurations, and records independent statistics for each instance of the
application.

Figure 4. Transport API Java Transport Perf

2. Without a microsecond-resolution synchronization of clocks across machines, the one-way measurement implies that the provider and consumer
applications run on the same machine.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 6
ETAJ330PETOO.190

Chapter 2 Open Source Performance Tool Suite Overview
2.3 Package Contents

Performance examples are distributed as buildable source code with the Transport API package. Each example is distributed
in its own directory. The PerfTools root directory contains build.gradle. Each example project uses the XML Pull Parser
(XPP) as a dependent library, which you must download from Maven Central.

For more information about examples and their operations, readers can refer to the appropriate application sections in this
document. Readers can also refer to the Javadoc files and comments included in source.

Figure 5. Directory Structure of the Performance Tools

2.3.1 XML Files

The PerfTools directory includes the following XML files:

• 350k.xml: The list of 350,000 items loaded by the consumer (of content published by the non-interactive provider).

• MsgFile.xml: The default set of OMM messages.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 7
ETAJ330PETOO.190

Chapter 2 Open Source Performance Tool Suite Overview
2.3.2 Building and Running

To build and run performance examples, use the following Gradle tasks: runETAPerfConsumer, runETAPerfNIProvider,
runETAPerfProvider, and runETAPerfTransport (for details on running Gradle, refer to the ESDK Java Edition Migration
Guide).

The PerfTools directory includes all necessary support files (350k.xml, MsgData.xml, RDMFieldDictionary, and
enumtype.def).

2.4 What Gets Measured and Reported?

2.4.1 Latency

Each performance tool embeds timestamp information in its messages’ payloads. The tool uses these timestamps to
determine the overall time taken to send and process a message and its payload through the API and, where applicable, the
TREP. To ensure that the measurement captures end-to-end latency through the system, the timestamp is taken from the start
of the sender’s message and payload encoding, and is compared to the time at which the receiver completes its decoding of
the message and payload.

When measuring performance, it is important to consider whether or not a particular component acts as a bottleneck on the
system. Transport API C applications and TREP components provide higher throughput and lower latency than Transport API
Java and RFA-based applications. In general, Thomson Reuters recommends that you use a Transport API C performance
tool to drive and calculate the performance of other non-Transport API C-based performance tools. For example, if you want to
test the performance of the Transport API Java consumer, use the Transport API C interactive or non-interactive provider to
drive the publishing rather than a Transport API Java providing application.

2.4.2 Throughput and Payload

These tools allow you to control the rate at which messages are sent as well as the content in each message. This allows you
to measure throughput and latency using various rates and content, tailored to your specific needs.

2.4.3 Image Retrieval Time

The upajConsPerf tool measures the overall time taken to receive a full set of images for items requested through the system.
This time is measured from the start of the first request to the reception of the final expected image.

2.4.4 CPU and Memory Usage

Performance tools record a periodic sampling of CPU and Memory usage. This allows for consistent monitoring of resource
use and can be used to determine the impact of various features and application modifications.

Java 7 (Oracle JDK) introduced OperatingSystemMXBean which is a platform-specific management interface for the
operating system on which the Java virtual machine runs. The getCommittedVirtualMemorySize() method is used for
memory usage and the getProcessCpuLoad() method is used for CPU usage.

• CPU Usage Calculation: The getProcessCpuLoad() method of OperatingSystemMXBean with the calculation
getProcessCpuLoad() * 100 * N is used to determine CPU usage. N is the number of cores and is retrieved from the
getAvailableProcessors() method of OperatingSystemMXBean.

• Memory Usage Calculation: The getCommittedVirtualMemorySize() method of OperatingSystemMXBean with
the calculation getCommittedVirtualMemorySize() / 1048576.0 is used to determine memory usage.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 8
ETAJ330PETOO.190

Chapter 2 Open Source Performance Tool Suite Overview
2.5 Recorded Results and Output

The tools record their test results in the following files:

• Summary File

• Statistics File

• Latency File

2.5.1 Summary File

Each tool records the run’s summary to a single file, including:

• The run’s configuration

• Overall run results

If you use multiple threads, the file includes results for each thread as well as across all threads. For configuration details, refer
to the chapter specific to the application that you use.

An example of recorded summary content for upajConsPerf includes the average latency, update rate, and CPU/memory
usage for the application’s run time.

This summary information is output both to a file and to the console.

2.5.2 Statistics File

Each tool periodically records statistics relevant to that tool. For example, upajConsPerf records:

• Latency statistics for updates (and, when so configured, posted content)

• Number of request messages sent and refresh messages received

• Number of update messages received

• Number of generic messages sent and received

• Latency statistics for generic messages (when so configured)

Each tool records these statistics on a per-thread basis. If the tool is configured to use multiple threads, the tool generates a
file for each thread. For configuration details, refer to the chapter specific to the application that you use.

Each tool can configure statistics recording via the following options:

• writeIntervalStats: The interval (from 1 to n, in seconds) at which timed statistics are written to files and the
console.

• noDisplayStats: Prevents writing periodic stats to console.

2.5.3 Latency File

You can configure upajConsPerf and upajTransportPerf to record each individual latency measurement to a file. This is
useful for creating plot or distribution graphs, ensuring that recorded latencies are consistent, and for troubleshooting
purposes.

These latencies are recorded on a per-thread basis. If the tool is configured to use multiple threads, a file is generated for each
thread.

For further details on configuring this behavior, refer to the chapter specific to the application that you use.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 9
ETAJ330PETOO.190

Chapter 3 Latency Measurement Details
Chapter 3 Latency Measurement Details

3.1 Time-slicing

All applications follow a similar model for controlling time: time is divided into small intervals, referred to as “ticks.” During a
run, each application has a main loop that runs an iteration once per tick. In this loop, the application performs some periodic
action, and then waits until the next tick before starting the loop again.

For example, an application might observe the following loop:

1. Send out a burst of messages.

2. Wait until the time of the next tick. If network notification indicates that any connections have messages available, read
them and continue waiting.

Applications can configure this rate using their respective -tickRate option. This determines how many ticks occur per
second. For example, if you set the tick rate to 100, ticks occur at 10-millisecond intervals.

Applications adjust the message rate to fit the tick rate. For example, if an application wants to send 100,000 messages per
second with a tick rate of 100 ticks per second, the application will send 1,000 messages per tick. Adjusting the tick rate affects
the smoothness of message traffic by defining the amount of time between bursts:

Figure 6. Time Slicing Algorithm

Depending on the tool, spare time in the tick might be used to perform other actions. For example, after upajProvPerf or
upajNIProvPerf sends an update burst, the remaining time is used to send outstanding refreshes:

Figure 7. Refresh Publishing Algorithm

Applications always set tick times at fixed intervals as they progress, regardless of what the application does during the
interval. For example, if the tick rate is 100 (i.e., 10 ms intervals), and the time of the previous tick was 40ms, then the times of
the next ticks are 50 ms, 60 ms, etc... This helps maintain constant overall messaging rates: any irregularities in the timing of
the current tick are corrected in subsequent ticks.

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

re
fr

es
h

re
fr

es
h

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

re
fr

es
h

re
fr

es
h

re
fr

es
h

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

re
fr

es
h

re
fr

es
h

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

0ms0ms ticktick ticktick ticktick

TimeTime

ticktick

startup state steady state
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 10
ETAJ330PETOO.190

Chapter 3 Latency Measurement Details
3.2 Latency

Latency is measured using timestamps embedded in the messages sent by each application. The receiving application
compares this timestamp against the current time to determine the latency.

Each tool sends messages in bursts. To send timestamps, a message is randomly chosen from the message burst and the
timestamp is embedded. When this message is received, the receiving application compares it to the current time to determine
the latency.

Figure 8. Latency RICs within a Tick

Timestamps are high-resolution and non-decreasing. Because the source of this time varies across platforms and might not be
synchronized between multiple machines, update and generic message latency measurements require that the provider and
consumer run on the same machine. Posting latency measurements do not require this, as upajConsPerf generates both
sending and receiving timestamps.

Figure 9. Timing Diagram for Latency Measurements

The standard latency measurement is initiated by the provider, which encodes a starting time into an update. This timestamp is
included as a piece of data in the payload using a pre-determined latency FID. On the consumer side, the application
processes incoming updates and generic messages, decodes the payload, and looks for updates or generic messages which
include the latency FID (known as latency updates). After decoding a latency update or generic message, the consumer takes
a second timestamp and compares the two, outputting the difference as the measured latency for that particular update or
generic message.

Note: OMM performance tool timestamp information contains the number of microseconds since an epoch.a
upajTransportPerf timestamps are provided with nanosecond granularity.

a. UPA Java uses System.nanoTime()/1000 for microseconds.

get time

encode

Channel.write()/flush()

OS/transport

M
ea

sa
ur

ed
 L

a t
en

cy

Content Sender

OS/transport

Channel.read()

decode

get time

Content Receiver

write stats
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 11
ETAJ330PETOO.190

Chapter 4 upacConsPerf
Chapter 4 upacConsPerf

4.1 Overview

A typical OMM consumer application requests content and processes responses to those requests. Thus, the performance
consumer makes a large, configurable number of item requests and then processes refresh and update content corresponding
to those requests. While processing, the performance consumer decodes all content and collects statistics regarding the count
and latency of received messages.

The upajConsPerf implements an OMM Consumer using the Transport API Java Edition. It connects to a provider (such as
upajProvPerf or TREP), requests items, and processes the refresh and update messages it receives, calculating statistics
such as update rate and latency. Additionally, the consumer can send post messages through the system at a configured rate,
measuring the round-trip latency of posted content.

At startup, the consumer performs some administrative tasks, such as logging into the system, obtaining a source directory,
and maybe requesting a dictionary. After the consumer is satisfied that the correct service is available and that the provider is
accepting requests, the consumer begins requesting data. upajConsPerf uses Transport API Value-Add Administration
Domain Representations to complete its start-up tasks. For more information, refer to the Transport API Value Added
Components Developers Guide.

4.2 Threading and Scaling

The Transport API is designed to allow calls from multiple threads, such that applications can scale their work across multiple
cores. Applications can leverage this feature by creating multiple threads to handle multiple connections through the Transport
API. As such, each application enables global locking when calling Transport.initialize().

Configure upajConsPerf for multiple threads using the -threads command-line option. When multiple threads are configured,
each thread opens its own connection to the provider. upajConsPerf divides its list of items among the threads (you can use
the command line option, -commonItemCount, to request the same type and number of items on all connections).

The main thread monitors the other threads and collects and reports statistics from them.

4.2.1 Consumer Lifecycle

The lifecycle of upajConsPerf is divided into the following sections:

Figure 10. upajConsPerf Lifecycle
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 12
ETAJ330PETOO.190

Chapter 4 upacConsPerf
1. Application and Transport API Initialization.

upajConsPerf loads its configuration, initializes the Transport API, loads its item list using the specified file, and starts the
thread(s) which connect to the provider to perform the test.

• The main thread periodically collects and writes statistics from the connection thread(s) until the test is over. All
subsequent steps are performed by each thread.

• Connection: the connection thread connects to the provider. If the connection fails, it continually attempts to reconnect
until the connection succeeds. When the connection succeeds, the test begins and any subsequent disconnection
ends the test.

• Login: the connection thread provides its login requests and waits for the provider’s response.

• Directory: the connection thread opens a directory stream and searches for the configured service name.

• Startup state: when the service is available, the “startup” phase of the performance measurement begins. During this
phase, the connection thread continually performs the following actions:

- Sends bursts of requests, until all desired items have been requested.

- Reads from the transport, processing refresh, update, and generic message traffic from the provider.

The “startup” phase continues until all items receive a refresh containing an Open/OK state. All latency statistics recorded
up to this point are reported as “startup” statistics.

2. Steady state.

The connection thread continually performs the following actions:

• If configured for posting, the thread sends a burst of post messages.

• Reads from the transport, processing updates from the provider.

• If configured to do so, sends a burst of generic messages.

The “steady state” phase continues for the period of time specified in the command line. Latency statistics recorded during
this phase are reported as “steady state” statistics.

3. Application shutdown and cleanup.

The connection thread disconnects and stops. The main thread collects all remaining information from the connection
threads, cleans them up, and writes the final summary statistics. The main thread then uninitializes the Transport API, any
remaining resources, and exits.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 13
ETAJ330PETOO.190

Chapter 4 upacConsPerf
4.2.2 Diagram

Figure 11. upajConsPerf Application Flow
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 14
ETAJ330PETOO.190

Chapter 4 upacConsPerf
4.3 Latency Measurement

Provider applications encode the timestamp as part of their message payload. The initial timestamp is taken at the start of
encoding, and added as field TIM_TRK_1 (3902). When this field is detected, the upajConsPerf gets the current time and
computes the difference to measure latency.

4.3.1 Consumer Latency

 Consumer Latency Measurement Sequence:

1. Read the message from the API (received via the underlying transport).

2. Decode the message.

3. Check whether the payload contains latency information, if so:

• Get the current time (t2).

• Calculate the difference between timestamps.

• Store the result as part of the recorded output information.

4.3.2 Posting Latency

You can configure upajConsPerf to send on-stream posts in which case the consumer periodically sends bursts of post
messages for specified items in the item list file. You can also configure the tool to include latency information in its posts.
When configured in this manner, upajConsPerf adds latency information to random post messages. When the posted content
returns on the stream, upajConsPerf decodes the timestamp and measures the difference to determine posting latency.

 Posting Latency Measurement Sequence:

1. Get the current time (t1).

2. Obtain an output buffer using Channel.getBuffer().

3. Encode the message, including the time (t1).

4. Pass the message to the API, which then passes it to the underlying transport.

5. When processing received content, check to see whether the payload contains latency information, if so:

• Get the current time (t2).

• Calculate the difference between timestamps.

• Store the result in the recorded output information.

The time at the start of encoding is encoded as a timestamp in the payload as field TIM_TRK_2 (3903). When the payload
from the post returns from the platform, the consumer compares the timestamp to the current time to determine the posting
latency.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 15
ETAJ330PETOO.190

Chapter 4 upacConsPerf
4.4 upajConsPerf Configuration Options

COMMAND-LINE OPTION DEFAULT DESCRIPTION

-busyRead <none> Configures the application to continually read rather than use notifications.

-commonItemCount 0 If multiple consumer threads are created (see -threads), each thread
normally requests a unique set of items on its connection. This option
specifies the number of common items to be requested by all connections.

-connType socket Specifies the consumer’s connection type. upajConsPerf supports the
option socket.

-genericMsgLatencyRate 0 Controls the number of generic messages sent that contain latency
information. This must be greater than the tick rate (see -tickRate) and
less than the total generic message rate (see -genericMsgRate).

-genericMsgRate 0 Controls the number of generic messages sent per second. This cannot be
less than the tick rate, unless it is zero.

-h localhost Specifies the hostname to which the consumer connects.

-if <none> Configures interfaceName (a ConnectOptions parameter), which
configures the network interface card (NIC) through which the consumer
makes its connection. If your machine straddles networks, you can use this
setting to force the consumer to use a particular network.

-inputBufs 15 Configures numInputBufs (a ConnectOptions parameter) which
configures the size of the Transport API’s input queue. Use a setting large
enough to accommodate incoming data.

-itemCount 100000 Sets the total number of items requested by the consumer.

-itemFile 350k.xml Configures the name of the item list file.

-latencyFile <none> Specifies the name of the log file in which upajConsPerf logs the latency
retrieved from individual latency updates, generic messages, and posts. If
a name is not specified, logging is disabled.

-msgFile MsgData.xml Configures the name of the file used by the consumer to determine the
makeup of message payloads when posting (see -postingRate).

-noDisplayStats (no argument) Turns off printing statistics to the screen.

-outputBufs 5000 Configures guaranteedOutputBuffers (a ConnectOptions parameter)
which specifies the minimum guaranteed number of output buffers created
for each channel. Setting this parameter to an appropriate size can aid
performance if the consumer is posting messages (see
-postingRate). You should configure enough buffers so that the provider
does not run out of buffers while writing, but at the same time limit the
number so as to conserve memory and optimize performance.

-p 14002 Specifies the port number to which the consumer connects.

Table 2: upajConsPerf Configuration Options
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 16
ETAJ330PETOO.190

Chapter 4 upacConsPerf
-postingLatencyRate 0 Controls the number of posts sent per second that contain latency
information. This must be greater than the tick rate (see -tickRate) and
less than the total post message rate (see -postingRate).

-postingRate 0 Configures the consumer for posting. Sets the number of posting
messages the consumer sends, per second. This cannot be less than the
tick rate, unless it is zero.

-primeJVM (no argument) Enables JVM priming. Accomplished by sending a snapshot request for all
items before sending the actual streaming requests for the items. Latency
measurements are only taken for updates so the refreshes from the
snapshot requests are used to prime the JVM. This results in lower latency
values in the start-up state.

-reactor (no argument) Use the Value Added Reactor instead of the Transport API channel for
sending and receiving.

For details on Value Added Components, refer to the Transport API Value
Added Components Developers Guide.

-recvBufSize <none> Sets the size (in bytes) of the system receive buffer. When unspecified, the
OS setting is used.

-requestRate 500000 Sets the number of item requests sent (per second).

-sendBufSize <none> Sets the size (in bytes) of the system send buffer. When unspecified, the
OS setting is used.

-serviceName DIRECT_FEED Configures the name of the service used by the consumer to request
items. The consumer begins requesting items whenever this service is
found and appears ready.

-snapshot (no argument) Opens all items as snapshots, even if not specified in the item list file, and
exits upon receiving all the solicited images. This is different from setting
-steadyStateTime to 0 in that the requests are specifically made without
the "STREAMING" RequestMsg flag.

-statsFile ConsStats Configures the base name that the consumer uses when writing its test
statistics.

-steadyStateTime 300 Configures how long (in seconds) the consumer continues to run the test
after receiving the last expected image.

steadyStateTime has a second function: after beginning the test, if the
consumer does not receive all expected images within this segment of
time, the consumer times out. In this case, it exits and indicates that it did
not reach steady state.

-summaryFile ConsSummary.out Configures the name of the file to which the consumer writes its test
summary.

-threads <none> Sets the number of threads the consumer starts and the CPU core to
which each thread binds. Each specified thread starts its own connection
to the configured provider.

Example: “1,3” creates two threads to make consumer connections,
respectively bound to CPU cores 1 and 3.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 2: upajConsPerf Configuration Options (Continued)
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 17
ETAJ330PETOO.190

Chapter 4 upacConsPerf
4.5 Input

upajConsPerf requires the following files:

• Dictionary files to validate fields in the message data. RDMFieldDictionary and enumtype.def are provided with the
package.

• An XML file that describes the items that upajConsPerf should request and (when configured) which items to post. The
package includes a default file (350k.xml).

• If the consumer is posting, an XML file that describes post message data. The package includes a default file
(MsgData.xml) with this information.

For more details on input file information, refer to Chapter 9.

4.6 Output

upacConsPerf records statistics during a test such as:

• Item requests sent and images received

• Image retrieval time

• The update rate

• The post message rate

• The generic message rate

• Latency statistics

• CPU and memory usage

For more details on output file information, refer to Chapter 10.

-tickRate 1000 Sets the number of 'ticks' per second (the number of times per second the
main loop of the consumer occurs). Adjusting the tick rate changes the
size of request/post bursts; a higher tick rate results in smaller individual
bursts, creating smoother traffic.

-watchlist (no argument) Use the Value Added Reactor watchlist instead of the Transport API
channel for sending and receiving.

For details on Value Added Components, refer to the Transport API Value
Added Components Developers Guide.

-writeStatsInterval 5 Configures the frequency (in seconds) at which statistics are printed to the
screen and statistics file.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 2: upajConsPerf Configuration Options (Continued)
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 18
ETAJ330PETOO.190

Chapter 4 upacConsPerf
4.6.1 upajConsPerf Summary File Sample

--- TEST INPUTS ---

 Steady State Time: 90

 Connection Type: socket

 Hostname: localhost

 Port: 14002

 Service: DIRECT_FEED

 Thread Count: 1

 Output Buffers: 5000

 Input Buffers: 15

 Send Buffer Size: 0(use default)

 Recv Buffer Size: 0(use default)

 High Water Mark: 0(use default)

 Interface Name: (use default)

 Tcp_NoDelay: Yes

 Username: (use system login name)

 Item Count: 100000

 Common Item Count: 0

 Request Rate: 500000

 Request Snapshots: No

 Posting Rate: 0

 Latency Posting Rate: 0

 Item File: 350k.xml

 Data File: MsgData.xml

 Summary File: ConsSummary.out

 Stats File: ConsStats

 Latency Log File: testlatency

 Tick Rate: 1000

 Prime JVM: No

--- SUMMARY ---

Startup State Statistics:

 Sampling duration (sec): 1.222

 Latency avg (usec): 51661.7

 Latency std dev (usec): 63243.3

 Latency max (usec): 178689.0

 Latency min (usec): 388.0

 Avg update rate: 100930

Steady State Statistics:

 Sampling duration (sec): 93.079

 Latency avg (usec): 200.7

 Latency std dev (usec): 1898.5

 Latency max (usec): 57247.0

 Latency min (usec): 85.0

 Avg update rate: 100017
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 19
ETAJ330PETOO.190

Chapter 4 upacConsPerf
Code Example 1: upajConsPerf Summary File Sample

4.6.2 upajConsPerf Statistics File Sample

Code Example 2: upajConsPerf Statistics File Sample

Overall Statistics:

 Sampling duration (sec): 94.301

 Latency avg (usec): 1024.5

 Latency std dev (usec): 10253.4

 Latency max (usec): 178689.0

 Latency min (usec): 85.0

 CPU/Memory samples: 19

 CPU Usage max (%): 26.93

 CPU Usage min (%): 0.00

 CPU Usage avg (%): 14.12

 Memory Usage max (MB): 2191.73

 Memory Usage min (MB): 2191.73

 Memory Usage avg (MB): 2191.73

Test Statistics:

 Requests sent: 100000

 Refreshes received: 100000

 Updates received: 9430069

 Image retrieval time (sec): 1.222

 Avg image rate: 81813

 Avg update rate: 100029

UTC, Latency updates, Latency avg (usec), Latency std dev (usec), Latency max (usec), Latency min (usec),

 Images, Update rate, Post Latency updates, Post Latency avg (usec), Post Latency std dev (usec),

 Post Latency max (usec), Post Latency min (usec), CPU usage (%), Memory(MB)

2013-02-04 22:27:18, 33, 23798.1, 49182.1, 178689.0, 98.0, 100000, 66793, 0, 0.0, 0.0, 0.0, 0.0, 60.00,

 2191.73

2013-02-04 22:27:23, 52, 138.1, 25.7, 203.0, 85.0, 0, 99866, 0, 0.0, 0.0, 0.0, 0.0, 17.65, 2191.73

2013-02-04 22:27:28, 52, 139.3, 29.8, 194.0, 100.0, 0, 99900, 0, 0.0, 0.0, 0.0, 0.0, 4.48, 2191.73

2013-02-04 22:27:33, 45, 143.0, 28.3, 185.0, 100.0, 0, 99900, 0, 0.0, 0.0, 0.0, 0.0, 3.64, 2191.73

2013-02-04 22:27:38, 51, 111.0, 13.3, 164.0, 96.0, 0, 99900, 0, 0.0, 0.0, 0.0, 0.0, 33.33, 2191.73

2013-02-04 22:27:43, 51, 120.1, 12.3, 151.0, 102.0, 0, 99920, 0, 0.0, 0.0, 0.0, 0.0, 4.55, 2191.73

2013-02-04 22:27:48, 53, 121.7, 22.3, 180.0, 99.0, 0, 99900, 0, 0.0, 0.0, 0.0, 0.0, 1.59, 2191.73
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 20
ETAJ330PETOO.190

Chapter 4 upacConsPerf
4.6.3 upajConsPerf Latency File Sample

Code Example 3: upajConsPerf Latency File Sample

4.6.4 upajConsPerf Console Output Sample

Code Example 4: upajConsPerf Console Output Sample

Upd, 4593840028874, 4593840207563, 178689

Upd, 4593840060824, 4593840222878, 162054

Upd, 4593840102796, 4593840238698, 135902

Upd, 4593840145860, 4593840248835, 102975

Upd, 4593840194855, 4593840259678, 64823

Upd, 4593840207845, 4593840262530, 54685

Upd, 4593840235895, 4593840268813, 32918

Upd, 4593840384817, 4593840396570, 11753

Upd, 4593840600799, 4593840614346, 13547

Upd, 4593840816808, 4593840817652, 844

Upd, 4593840880804, 4593840882774, 1970

Upd, 4593840885270, 4593840886078, 808

Upd, 4593840888376, 4593840889229, 853

Upd, 4593840994747, 4593840995135, 388

Upd, 4593841061762, 4593841074479, 12717

Upd, 4593841091891, 4593841099836, 7945

005: Images: 100000, UpdRate: 66793, CPU: 0.00%, Mem: 2191.73MB

 Latency(usec): Avg:23798.1 StdDev:49182.1 Max:178689.0 Min: 98.0, Msgs: 33

 - Image retrieval time for 100000 images: 1.222s (81813 images/s)

010: Images: 0, UpdRate: 99866, CPU: 0.00%, Mem: 2191.73MB

 Latency(usec): Avg: 138.1 StdDev: 25.7 Max: 203.0 Min: 85.0, Msgs: 52

015: Images: 0, UpdRate: 99900, CPU: 0.00%, Mem: 2191.73MB

 Latency(usec): Avg: 139.3 StdDev: 29.8 Max: 194.0 Min: 100.0, Msgs: 52

020: Images: 0, UpdRate: 99900, CPU: 100.00%, Mem: 2191.73MB

 Latency(usec): Avg: 143.0 StdDev: 28.3 Max: 185.0 Min: 100.0, Msgs: 45

025: Images: 0, UpdRate: 99900, CPU: 0.00%, Mem: 2191.73MB

 Latency(usec): Avg: 111.0 StdDev: 13.3 Max: 164.0 Min: 96.0, Msgs: 51

030: Images: 0, UpdRate: 99920, CPU: 0.00%, Mem: 2191.73MB

 Latency(usec): Avg: 120.1 StdDev: 12.3 Max: 151.0 Min: 102.0, Msgs: 51

035: Images: 0, UpdRate: 99900, CPU: 0.00%, Mem: 2191.73MB

 Latency(usec): Avg: 121.7 StdDev: 22.3 Max: 180.0 Min: 99.0, Msgs: 53
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 21
ETAJ330PETOO.190

Chapter 5 upajProvPerf
Chapter 5 upajProvPerf

5.1 Overview

A typical interactive provider allows consuming applications, including TREP, to connect. Once connected, consumers log in
and request content. The interactive provider will respond, providing requested content when possible and a status indicating
some type of failure when not possible. While a provider in a production environment might get its data from an external source
or by performing a calculation on some other data, the performance provider generates its data internally.

upajProvPerf implements an OMM Interactive Provider using the Transport API. It starts a server which allows OMM
consumers to connect (either directly or through TREP), and provides customizable refresh messages and update messages
for requested items.

When a new connection is being established, the provider performs some administrative tasks, such as processing login
messages, handling directory requests, and (optionally) providing a dictionary. This application uses the Transport API Value
Add Administration Domain Representations to complete these tasks. For more information, refer to the Transport API Value
Added Components Developers Guide.

5.2 Threading and Scaling

The Transport API is designed to allow calls from multiple threads, such that applications can scale their work across multiple
cores by creating multiple threads to handle multiple connections through the Transport API. To support this multi-threading
feature, each application must enable global locking when calling Transport.initialize().

You can configure upajProvPerf for multiple threads by using the -threads command-line option. When multiple threads are
configured, consumer connections are balanced such that each thread receives an equal number of connections.

The main thread monitors the other threads and collects and reports statistics from them.

5.3 Provider Lifecycle

The lifecycle of upajProvPerf is divided into the following sections:

Figure 12. upajProvPerf Lifecycle
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 22
ETAJ330PETOO.190

Chapter 5 upajProvPerf
1. Application and Transport API Initialization.

upajProvPerf loads its configuration, initializes the Transport API, loads its dictionary and sample message data using
specified files, and starts one or more threads (as configured) to provide data to consumers.

The main thread has two roles:

• Accept consumer connections and pass them to one of the provider threads.

• Periodically collect and write statistics from the connection thread(s) until the test is over.

2. Handle Login, Directory, and Item Requests; Provide Updates.

The provider thread performs the following actions continually until its run time expires:

• Add new connections passed from the main thread.

• Send a burst of updates for items currently open on existing connections.

• Send a burst of generic messages (if configured to do so).

• Use available spare time to provide images for items that need them.

• Use available spare time to read from the transport, processing any Login, Directory, or Item requests.

3. Shutdown and cleanup.

The provider thread stops. The main thread collects any remaining data from the connection threads, cleans them up, and
writes the final summary statistics. The main thread then cleans up the Transport API and remaining resources, and exits.

upajProvPerf should run long enough to allow connected consumers to complete their measurements.

Figure 13. upajProvPerf Application Flow
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 23
ETAJ330PETOO.190

Chapter 5 upajProvPerf
5.4 Latency Measurement

upajProvPerf encodes the timestamp as part of its message payload. The timestamp is taken at the start of encoding and
added as field TIM_TRK_1 (3902). Latency is measured after upajConsPerf completes decoding.

 Interactive Provider Latency Measurement Sequence:

1. Get the current time (t1).

2. Obtain an output buffer using Channel.getBuffer().

3. Encode the message, including time t1.

4. Pass the message to the API, which passes it to the underlying transport.

5. The consuming application receives the timestamp in the payload and compares it against the current time to calculate
latency.

5.5 upajProvPerf Configuration Options

upajProvPerf uses the following command line options:

COMMAND-LINE OPTION DEFAULT DESCRIPTION

-directWrite (no argument) Sets whether to use the WriteFlags.DIRECT_SOCKET_WRITE flag when
calling Channel.write(). This flag causes the write to attempt to bypass
the Transport API output queue, reducing latency but at a cost of throughput
capability.

-genericMsgLatencyRate 0 Sets the number of generic messages sent (per second) that contain latency
data. This number must be greater than the tick rate (see -tickRate) and
less than the total generic message rate (see -genericMsgRate).

-genericMsgRate 0 Sets the number of generic messages sent per second. This number cannot
be less than the tick rate (unless it is zero).

-highWaterMark 6000 Configures the quantity of data (in bytes) that the Transport API queues
before automatically flushing it to the network. Adjusting this might provide a
tradeoff of throughput vs. latency when writing large bursts of data.

-if <none> Sets interfaceName (a BindOptions parameter), which configures the NIC
that the provider uses for its server. If your machine straddles networks, you
can use this setting to force the provider to use a particular network.

-latencyFile <none> Specifies the name of the log file in which upajProvPerf logs the latency
retrieved from individual latency updates, generic messages, and posts.

If a name is not specified, logging is disabled.

-latencyUpdateRate 10 Sets the number of updates sent per second containing latency information.

Note: You must use a setting greater than the tick rate (see -tickRate) and
less than the total update rate (see -updateRate)

Table 3: upajProvPerf Configuration Options
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 24
ETAJ330PETOO.190

Chapter 5 upajProvPerf
-maxFragmentSize 6144 Sets maxFragmentSize (a BindOptions parameter) which specifies the
size of buffers. Messages less than this size are sent as a single buffer while
larger messages will be fragmented and reassembled into multiple buffers
by the Transport API.

-maxPackCount 1 Sets the number of buffers packed when sending refresh and update bursts.
A setting greater than 1 causes the provider to use the
Channel.packBuffer() method to pack messages, raising the maximum
throughput capability (at a potential cost to latency).

When packing, the provider attempts to pack the number of buffers specified
by -maxPackCount into a buffer of the length specified by -packBufSize.
The provider periodically displays averages of how many messages are
successfully packed.

-msgFile MsgData.xml Specifies the file that the provider uses to determine message content.

-noDisplayStats (no argument) Turns off printing statistics to the screen.

-openLimit 1000000 Configures the maximum number of items the provider allows each client to
open.

-outputBufs 5000 Sets guaranteedOutputBuffers (an BindOptions parameter) which
specifies the minimum guaranteed number of output buffers created for each
channel that a server accepts. Set this large enough so that the provider
does not run out of buffers while writing, but not so large that it wastes
memory and slows performance.

-p 14002 Specifies the port on which upajProvPerf listens for connections.

-packBufSize 6000 Configures the size (in bytes) of the buffer used for packing (used in
conjunction with -maxPackCount).

For more information, refer to Section 11.2.3 and the Transport API
Developers Guide.

-reactor Send and receive using the Value Added Reactor instead of the Transport
API channel.

For details on using Value Added Components, refer to the Transport Java
Edition API Value Added Components Developers Guide.

-recvBufSize <none> Configures the size (in bytes) of the system’s receive buffer size. When
unspecified, the OS setting is used.

-refreshBurstSize 10 After the provider completes an update burst, it uses the time before the next
burst to send any needed refreshes, monitoring the time to see whether the
next tick time has been reached. This option configures how often the
provider checks the time (in case checking is expensive for the system).

-runTime 360 Sets the length of time upajProvPerf runs (in seconds).

-sendBufSize <none> Configures the size of the system’s send buffer. When unspecified, the OS
setting is used.

-serviceId 1 Specifies the ID of the provider’s service.

-serviceName DIRECT_FEED Specifies the name of the provider’s service.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 3: upajProvPerf Configuration Options (Continued)
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 25
ETAJ330PETOO.190

Chapter 5 upajProvPerf
-statsFile ProvStats Specifies the base name used to write the provider's test statistics.

-summaryFile ProvSummary.out Specifies the base file name used to write the provider's test summary.

-tcpDelay (no argument) Configures tcp_nodelay (an BindOptions parameter) which sets whether
the underlying connection uses Nagle's algorithm, a method for batching
data and optimizing network bandwidth. By default, performance tools
disable Nagle's algorithm due to the increased latency from the buffering,
but this option enables it, which can raise throughput capability.

-threads <none> Sets the number of threads that the provider starts. Each thread acts as a
provider, and connected consumers are balanced among all threads.

-tickRate 1000 Sets the number of 'ticks' (cycles completed by the provider’s main loop) per
second. Adjusting the tick rate changes the size of update bursts: higher tick
rates result in smaller individual bursts, creating smoother traffic.

-updateRate 100000 Configures the number of updates sent per second, per connection.

Note: This cannot be less than the tick rate, unless it is zero.

-writeStatsInterval 5 Sets how often statistics are printed to the screen and statistics file (in
seconds).

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 3: upajProvPerf Configuration Options (Continued)
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 26
ETAJ330PETOO.190

http://apmblog.dynatrace.com/2014/07/24/understanding-application-performance-on-the-network-the-nagle-algorithm/
http://apmblog.dynatrace.com/2014/07/24/understanding-application-performance-on-the-network-the-nagle-algorithm/

Chapter 5 upajProvPerf
5.6 Input Files

upajConsPerf requires the following files:

• Dictionary files to validate fields in the message data. RDMFieldDictionary and enumtype.def are provided with the
package.

• An XML file that describes the items that upajConsPerf should request and (when configured) which items to post. The
package includes a default file (350k.xml).

• If the consumer is posting, an XML file that describes post message data. The package includes a default file
(MsgData.xml) with this information.

For more details on input file information, refer to Chapter 9.

5.7 Output

upajProvPerf records statistics during a test such as:

• Item requests received

• Updates sent

• Posts received and reflected

• CPU and memory usage

For more detailed output file information, refer to Chapter 10.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 27
ETAJ330PETOO.190

Chapter 5 upajProvPerf
5.7.1 upajProvPerf Summary File Sample

Code Example 5: upajProvPerf Summary File Sample

--- TEST INPUTS ---

 Steady State Time: 90 sec

 Port: 14002

 Thread Count: 1

 Output Buffers: 5000

 Max Fragment Size: 6144

 Send Buffer Size: 0(use default)

 Recv Buffer Size: 0(use default)

 Interface Name: (use default)

 Tcp_NoDelay: Yes

 Tick Rate: 1000

 Use Direct Writes: No

 High Water Mark: 0(use default)

 Summary File: ProvSummary.out

Write Stats Interval: 5

 Stats File: ProvStats

 Display Stats: ProvStats

 Update Rate: 100000

 Latency Update Rate: 10

 Refresh Burst Size: 10

 Data File: MsgData.xml

 Packing: No

 Service Name: DIRECT_FEED

 Service ID: 1

 OpenLimit: 1000000

--- OVERALL SUMMARY ---

Overall Statistics:

 Image requests received: 100000

 Posts received: 0

 Updates sent: 6824846

 Posts reflected: 0

 CPU/Memory samples: 18

 CPU Usage max (%): 32.18

 CPU Usage min (%): 0.00

 CPU Usage avg (%): 24.21

 Memory Usage max (MB): 2191.73

 Memory Usage min (MB): 2191.73

 Memory Usage avg (MB): 2191.73
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 28
ETAJ330PETOO.190

Chapter 5 upajProvPerf
5.7.2 upajProvPerf Statistics File Sample

Code Example 6: upajProvPerf Statistics File Sample

5.7.3 upajProvPerf Console Output Sample

Code Example 7: upajProvPerf Console Output Sample

UTC, Requests received, Images sent, Updates sent, Posts reflected, CPU usage (%), Memory(MB)

2016-03-11 17:45:49, 0, 0, 0, 0, 50.00, 2191.73

2016-03-11 17:45:54, 100000, 13001, 133916, 0, 0.00, 2191.73

2016-03-11 17:45:59, 0, 86999, 497796, 0, 0.00, 2191.73

2016-03-11 17:46:04, 0, 0, 499588, 0, 0.00, 2191.73

2016-03-11 17:46:09, 0, 0, 499598, 0, 0.00, 2191.73

2016-03-11 17:46:14, 0, 0, 499508, 0, 0.00, 2191.73

2016-03-11 17:46:19, 0, 0, 499594, 0, 0.00, 2191.73

005: UpdRate: 0, CPU: 0.00%, Mem: 2191.73MB

010: UpdRate: 26783, CPU: 0.00%, Mem: 2191.73MB

 - Received 100000 item requests (total: 100000), sent 13001 images (total: 13001)

015: UpdRate: 99559, CPU: 0.00%, Mem: 2191.73MB

 - Received 0 item requests (total: 100000), sent 86999 images (total: 100000)

020: UpdRate: 99917, CPU: 0.00%, Mem: 2191.73MB

025: UpdRate: 99919, CPU: 0.00%, Mem: 2191.73MB

030: UpdRate: 99901, CPU: 0.00%, Mem: 2191.73MB

035: UpdRate: 99918, CPU: 0.00%, Mem: 2191.73MB
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 29
ETAJ330PETOO.190

Chapter 6 upajNIProvPerf
Chapter 6 upajNIProvPerf

6.1 Overview

A Non-Interactive Provider (NIP) publishes content regardless of consumer requests by connecting to an ADH and publishing
content to the ADH cache. After login, an NIP publishes a service directory and then starts sending data for supported items.

upajNIProvPerf implements an OMM NIP using the Transport API Java Edition for use with the Advanced Data Hub (ADH) on
the TREP. It connects and logs into an ADH, publishes its service, and then provides images and updates.

When connecting, the NIP performs some administrative tasks, like processing system logins and publishing a directory
refresh. The upajNIProvPerf uses Transport API Value Add Administration Domain Representations to complete these tasks.
For more information, refer to the Transport API Value Added Components Developers Guide.

6.2 Threading and Scaling

You can configure upajNIProvPerf for multiple threads via the -threads command-line option. When you configure multiple
threads, each thread opens its own connection to the ADH, and the list of items is divided among all threads. You can use the
-commonItemCount option to control the number of items that will be sent across all threads.

The main thread monitors the other threads and then collects and reports their statistics.

6.3 Non-Interactive Provider Lifecycle

Figure 14. upajNIProvPerf Lifecycle

The lifecycle of upajNIProvPerf is divided into the following sections:

1. Application and Transport API Initialization.

In this phase upajNIProvPerf:

• Loads its configuration.

• Initializes the Transport API.

• Loads its dictionary, item list, and sample message data using the specified files.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 30
ETAJ330PETOO.190

Chapter 6 upajNIProvPerf
• Starts the thread(s) that will connect to the ADH to perform the test.

- The main thread begins cycling: periodically collecting and writing statistics from the connection thread(s).

- Connection threads connect to the ADH. If a connection fails, the thread continually attempts to reconnect until the
connection succeeds. Once the connection succeeds, the test begins and any subsequent disconnection ends the
test.

2. ADH Login and Directory.

The connection thread sends login requests and waits for the ADH response. After a successful login, the connection thread
publishes its service, followed by an item image to begin the publishing phase.

3. Provide OMM content.

The connection thread begins providing the items specified in its item list, continually performing the following actions:

• Send a burst of updates for open items.

• If refreshes are needed, use spare time in the tick to send them.

• Using any spare time left, read from the transport and process incoming messages.

4. Application shutdown and cleanup.

The connection thread disconnects and stops. The main thread collects any remaining information from the connection
threads, cleans them up, and writes the final summary statistics. The main thread then cleans up the Transport API and any
remaining resources and then exits.

Run upajNIProvPerf for a long enough period of time to allow for connected consumers to complete their measurements.

Figure 15. upajNIProvPerf Application Flow
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 31
ETAJ330PETOO.190

Chapter 6 upajNIProvPerf
6.4 Latency Measurement

The Transport API is designed to allow calls from multiple threads, such that applications can scale their work across multiple
cores. Applications can take advantage of this by creating multiple threads to handle multiple connections through the
Transport API. To support this multi-threading, each application enables global locking when calling
Transport.initialize().

upajNIProvPerf encodes a timestamp as part of its message payload. The timestamp is taken at the start of encoding and
added as field TIM_TRK_1 (3902). Latency is measured after upajConsPerf decodes the message and payload.

 Non-Interactive Provider Latency Measurement Sequence:

1. Get the current time (t1).

2. Obtain an output buffer using Channel.getBuffer().

3. Encode the message, including time t1.

4. Pass the message to the API, which passes it to underlying transport.

5. The consuming application receives a timestamp in the payload and compares it to the current time to calculate latency.

6.5 upajNIProvPerf Configuration Options

upajProvPerf uses the following command line options:

COMMAND-LINE OPTION DEFAULT DESCRIPTION

-connType socket Specifies the connection type used by the application. Supported
options are socket, http, encrypted, and reliableMCast.

-directWrite (no argument) Sets whether the WriteFlags.DIRECT_SOCKET_WRITE flag is used
when calling Channel.write(). Using this flag causes the write to
attempt to bypass the Transport API output queue, reducing latency but
at a cost of throughput capability.

-h localhost When using TCP socket connection types, specifies the hostname of
the machine on which the ADH (to which the provider connects) runs.

-highWaterMark 6000 Configures the Transport API’s "High-water Mark," the amount of data
(in bytes) that the Transport API queues before flushing it to the
network. Adjusting this might provides a trade-off of throughput vs.
latency when writing large bursts of data.

-if <none> Configures interfaceName (an ConnectOptions parameter), which
configures the NIC that the provider uses for its server. On computers
connected to multiple networks, you can use this parameter to force the
provider to use the desired network.

-itemFile 350k.xml Specifies the file that contains a list of items the provider will publish.

-latencyUpdateRate 10 Sets the number of updates with latency information sent per second.

Note: This must be greater than the tick rate (see -tickRate) but less
than the total update rate (see -updateRate).

Table 4: upajNIProvPerf Configuration Options
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 32
ETAJ330PETOO.190

Chapter 6 upajNIProvPerf
-maxPackCount 1 Sets the number of buffers packed when sending refresh and update
bursts. Specifying a count greater than 1 causes the provider to use the
Channel.packBuffer() method to pack messages, raising maximum
throughput capability but potentially having a negative affect on latency.

When packing, the provider attempts to pack the number of buffers
specified by -maxPackCount into a buffer of the length specified by
-packBufSize. The provider periodically displays averages of how
many messages are successfully packed.

-msgFile MsgData.xml Specifies the file that determines the provider’s message content.

-noDisplayStats (no argument) Turns off printing statistics to the screen.

-outputBufs 5000 Configures guaranteedOutputBuffers (an ConnectOptions
parameter), which sets the minimum guaranteed number of output
buffers created for each channel. Set this value large enough so that the
provider does not run out of buffers while writing but low enough so as
not to waste memory and slow performance.

-p 14003 When using TCP socket connection types, specifies the port number
the provider uses to connect to the ADH.

-packBufSize 6000 Specifies the size of the buffer (in bytes) used for packing. Used in
conjunction with -maxPackCount.

-ra <none> When using a reliable multicast connection, configures the multicast
receive address.

-reactor Send and receive using the Value Added Reactor instead of the
Transport API channel.

For details on using Value Added Components, refer to the Transport
Java Edition API Value Added Components Developers Guide.

-recvBufSize <none> Configures the system receive buffer size. By default, the OS setting is
used.

-refreshBurstSize 10 After the provider completes an update burst, it uses the time before the
next burst to send any needed refreshes, monitoring the time to see
whether it is time for the next tick time.

This option configures how often the provider checks the time (in case
checking is expensive for the system).

-rp <none> When using reliable multicast connection type, configures the multicast
receive port.

-runTime 360 Sets the length of time for which upajNIProvPerf runs, in seconds.

-sa <none> When using reliable multicast connection type, configures the multicast
send address.

-sendBufSize <none> Configures the system send buffer size. By default, the OS setting is
used.

-serviceId 1 Specifies the provider’s service ID.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 4: upajNIProvPerf Configuration Options (Continued)
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 33
ETAJ330PETOO.190

Chapter 6 upajNIProvPerf
-serviceName DIRECT_FEED Specifies the provider’s service name.

-sp <none> When using reliable multicast connection type, configures the multicast
send port.

-statsFile NIProvStats Specifies the base filename used to write the provider's test statistics.

-summaryFile NIProvSummary.out Specifies the base filename used to write the provider's test summary.

-tcpDelay (no argument) Configures tcp_nodelay (a ConnectOptions parameter), an option
that sets whether the underlying connection uses Nagle's algorithm; a
method for more efficiently using network packet headers by batching
data. By default, upajNIProvPerf disables Nagle's algorithm due to the
increased latency from the buffering, but
-tcpDelay enables it, which can raise throughput capability.

-threads <none> Sets the number of threads started by the provider. Each thread opens
its own connection to the ADH, and the list of items is divided among all
threads.

-tickRate 1000 Sets the number of ticks per second (the number of cycles per second
made by the provider’s main loop). Adjusting the tick rate changes the
size of update bursts; higher tick rates result in smaller individual bursts
and smoother traffic.

-u <none> When using reliable multicast connection type, sets the unicast port.

-updateRate 100000 Sets the total number of updates sent per second, per connection.

Note: This cannot be less than the tick rate, unless it is 0.

-writeStatsInterval 5 Sets how often upacNIProvPerf prints statistics to the screen and
statistics file.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 4: upajNIProvPerf Configuration Options (Continued)
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 34
ETAJ330PETOO.190

Chapter 6 upajNIProvPerf
6.6 Input Files

upajNIProvPerf requires the following files:

• An XML file that describes upajNIProvPerf message data. By default, the package includes the file: MsgData.xml.

• Dictionary files to validate fields present in the message data. By default, the package includes the RDMFieldDictionary
and enumtype.def files.

• An XML file that describes the items that upajNIProvPerf should publish. By default, the package includes the file,
350k.xml.

For more detailed input file information, refer to Chapter 9.

6.7 Output

upajNIProvPerf records statistics during a test, such as:

• The number of sent images

• The number of sent updates

• CPU and memory usage

For more detailed output file information, refer to Chapter 10.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 35
ETAJ330PETOO.190

Chapter 6 upajNIProvPerf
6.7.1 upajNIProvPerf Summary File Sample

Code Example 8: upajNIProvPerf Summary File Sample

--- TEST INPUTS ---

 Run Time: 60 sec

 Connection Type: socket

 Hostname: oaklrh192

 Port: 14003

 Thread List: 1

 Output Buffers: 5000

 Max Fragment Size: 6144

 Send Buffer Size: 0(use default)

 Recv Buffer Size: 0(use default)

 High Water Mark: 0(use default)

 Interface Name: (use default)

 Username: (use system login name)

 Tcp_NoDelay: Yes

 Item Count: 100000

 Common Item Count: 0

 Tick Rate: 1000

 Use Direct Writes: No

 Summary File: NIProvSummary.out

 Stats File: NIProvStats

 Write Stats Interval: 5

 Display Stats: true

 Update Rate: 100000

 Latency Update Rate: 10

 Refresh Burst Size: 10

 Item File: 350k.xml

 Data File: MsgData.xml

 Packing: No

 Service ID: 1

 Service Name: NI_PUB

--- OVERALL SUMMARY ---

Overall Statistics:

 Images sent: 100000

 Updates sent: 5754945

 CPU/Memory samples: 12

 CPU Usage max (%): 27.41

 CPU Usage min (%): 0.00

 CPU Usage avg (%): 23.92

 Memory Usage max (MB): 2191.73

 Memory Usage min (MB): 2191.73

 Memory Usage avg (MB): 2191.73
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 36
ETAJ330PETOO.190

Chapter 6 upajNIProvPerf
6.7.2 upajNIProvPerf Statistics File Sample

Code Example 9: upajNIProvPerf Statistics File Sample

6.7.3 upajNIProvPerf Console Output Sample

Code Example 10: upajNIProvPerf Console Output Sample

UTC, Images sent, Updates sent, CPU usage (%), Memory (MB)

2013-03-11 18:20:37, 0, 42673, 361700, 66.67, 2191.73

2013-03-11 18:20:42, 0, 57327, 393174, 0.00, 2191.73

2013-03-11 18:20:47, 0, 0, 498371, 3.70, 2191.73

2013-03-11 18:20:52, 0, 0, 500400, 0.00, 2191.73

2013-03-11 18:20:57, 0, 0, 500100, 0.00, 2191.73

2013-03-11 18:21:02, 0, 0, 500200, 0.00, 2191.73

2013-03-11 18:21:07, 0, 0, 500100, 0.00, 2191.73

2013-03-11 18:21:12, 0, 0, 500200, 0.00, 2191.73

2013-03-11 18:21:17, 0, 0, 500100, 0.00, 2191.73

020: UpdRate: 100080, CPU: 0.00%, Mem: 2191.73MB

025: UpdRate: 100020, CPU: 0.00%, Mem: 2191.73MB

030: UpdRate: 100040, CPU: 0.00%, Mem: 2191.73MB

035: UpdRate: 100020, CPU: 0.00%, Mem: 2191.73MB

040: UpdRate: 100040, CPU: 0.00%, Mem: 2191.73MB

045: UpdRate: 100020, CPU: 0.00%, Mem: 2191.73MB
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 37
ETAJ330PETOO.190

Chapter 7 upajTransportPerf
Chapter 7 upajTransportPerf

7.1 Overview

upajTransportPerf measures the performance of the various API transport layers. upajTransportPerf does not use OMM
messages, instead sending opaque content with minimal encoding and decoding. To enforce the proper ordering of data,
upajTransportPerf embeds a sequence number in each buffer.

upajTransportPerf can act as a server or client. A typical use case is to start upajTransportPerf as a server and then start
upajTransportPerf as a client to connect to the server.

7.2 Threading and Scaling

The Transport API allows calls from multiple threads, such that applications can scale their work across multiple cores (via
multi-threading) to handle multiple connections. To support multi-threading, each application must enable global locking when
calling Transport.initialize() to ensure that shared resources in the Transport API are protected.

You can configure upajTransportPerf for multiple threads by using the -threads option. The result depends on whether the
application is run as a server or client.

• When running as a server, each thread is used to balance incoming connections (similar to upajProvPerf).

• When running as a client, each thread creates its own connection (similar to upajConsPerf).

The main thread monitors the other threads and collects and reports their statistics.

7.3 upajTransportPerf Life Cycle

The lifecycle of upajTransportPerf is divided into the following phases:

Figure 16. upajTransportPerf Lifecycle 1
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 38
ETAJ330PETOO.190

Chapter 7 upajTransportPerf
1. Application and Transport API initialization.

upajTransportPerf loads its configuration, initializes the Transport API, and starts the transport thread(s) that read and
write data. The main thread now:

• If acting as server, accepts client connections and passes them to one of the transport threads.

• If acting as client, connects out to server.

• Periodically collects and writes statistics from the transport thread(s) for the remainder of the test.

2. Publishing and receiving opaque content.

The transport thread performs the following actions until its run time expires:

• Adds new connections passed from the main thread.

• Sends bursts of messages on existing connections, as specified by command line arguments.

• Uses remaining time segments to read from the transport and process incoming data.

3. Application shutdown and cleanup.

The transport thread stops. The main thread collects any remaining data from the transport threads, cleans them up, and
writes the final summary statistics. Finally, the main thread uninitializes the Transport API, cleans up remaining resources,
and exits.

Figure 17. upajTransportPerf Application Flow

7.4 Message Payload

upajTransportPerf writes a message of the configured size obeying the following rules:

• The message starts with an 8-byte sequence number, which is checked by the receiver of the message.

• If the message contains a timestamp, the stamp is added after the sequence number as an 8-byte integer.

• The remainder of the message is set to zeros.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 39
ETAJ330PETOO.190

Chapter 7 upajTransportPerf
7.5 Latency Measurement

upajTransportPerf writes a timestamp (with nanosecond granularity) as part of the message payload (as described in Section
7.4). To determine latency, the receiving upajTransportPerf reads the timestamp and compares it to the current time.

 Transport Performance Latency Measurement Sequence:

1. Get the current time (t1).

2. Obtain an output buffer using Channel.getBuffer().

3. Encode the message, including time t1.

4. Pass the message to the API, which passes it to underlying transport.

To determine latency, the consuming application reads the timestamp from the payload and compares it against the current
time.

7.6 upajTransportPerf Configuration Options

COMMAND-LINE
OPTION

DEFAULT DESCRIPTION

-appType server Configures the type of application that upajTransportPerf simulates
(available settings include server or client).

-busyRead <none> Configures the application to continually read rather than use notifications.

-compressionLevel 5 When upajTransportPerf is configured to compress messages,

-compressionLevel sets the level of compression.

-compressionType <none> Sets the type of compression upajTransportPerf uses when compressing
messages. By default, upajTransportPerf does not compress its messages.

Example: zlib

-connType socket Specifies the connection type that the application uses. Supported options
are socket, http, encrypted, reliableMCast, and shmem.

-directWrite False Sets whether the WriteFlags.DIRECT_SOCKET_WRITE flag is used to call
rsslWrite.

Using this flag causes the write to attempt to bypass the Transport API output
queue, reducing latency but decreasing throughput capability.

-h localhost When using TCP socket or shared memory connection types, specifies the
hostname to which the client application connects.

-highWaterMark 6000 Configures the Transport API’s "High-water Mark," the amount of data (in
bytes) that the Transport API queues before flushing it to the network.
Adjusting this might provide a trade-off of throughput vs. latency when writing
large bursts of data.

Table 5: upajTransportPerf Configuration Options
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 40
ETAJ330PETOO.190

Chapter 7 upajTransportPerf
-if <none> Configures interfaceName (a ConnectOptions/BindOptions parameter),
which configures the NIC that the provider uses for its server. On computers
connected to multiple networks, you can use this parameter to force the
provider to use a specific network.

-inputBufs 50 Configures numInputBuffers (a ConnectOptions/BindOptions parameter),
which sets the size of the Transport API’s input queue. Use a value large
enough to accommodate incoming data and minimize network read
operations.

-latencyFile <none> Configures upajTransportPerf to log the latency of data from updates and
posts, and specifies the name of the file in which upajTransportPerf stores
the results.

-latencyMsgRate 10 Sets the number of messages that upajTransportPerf sends per second to
measure latency. This cannot be larger than -msgRate.

-maxFragmentSize 6144 Configures maxFragmentSize (a BindOptions parameter), which controls
the size (in bytes) of the buffers in the Transport API’s buffer pool.

-mcastStats (no argument) Enables upajTransportPerf to print multicast statistics.

To print multicast statistics, upajTransportPerf must also enable channel
locks in the Transport API.

-msgRate 100000 Sets the number of messages that upajTransportPerf sends per second.
-msgRate cannot be less than -latencyMsgRate as latency messages are a
type of message and hence included in this number.

For example: using -latencyMsgRate 1000 -msgRate 1000 sends 1000
messages per second with each message carrying latency data.

-msgSize 76 Configures the size (in bytes) of messages sent by upajTransportPerf.

-noDisplayStats (no argument) Turns off printing statistics to the screen.

-outputBufs 5000 Configures guaranteedOutputBuffers (a ConnectOptions/BindOptions
parameter), which sets the minimum guaranteed number of output buffers
created for each channel.

Tip: Set this value large enough so that the provider does not run out of
buffers while writing but low enough so as not to waste memory and
slow down performance.

-p 14002 When using TCP socket or shared memory connection types, specifies the
port number over which the consumer connects. This option applies to both
types of applications (server or client).

-pack No packing Sets the number of messages to pack in each buffer using
Channel.packBuffer().

-ra <none> When using the multicast connection type, configures the multicast receive
address.

-recvBufSize <none> Configures the system receive buffer size. By default, the OS setting is used.

COMMAND-LINE
OPTION

DEFAULT DESCRIPTION

Table 5: upajTransportPerf Configuration Options (Continued)
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 41
ETAJ330PETOO.190

Chapter 7 upajTransportPerf
-reflectMsgs False Sets upajTransportPerf to reflect back all received messages.

-rp <none> When using the multicast connection type, configures the multicast receive
port.

-runTime 300 Sets how long upajTransportPerf runs, in seconds.

-sa <none> When using the multicast connection type, configures the multicast send
address.

-sendBufSize <none> Configures the system send buffer size. By default, the OS setting is used.

-sp <none> When using the multicast connection type, configures the multicast send port.

-statsFile TransportStats Specifies the base name used in writing the application’s test statistics.

-summaryFile TransportSummary.out Specifies the name of the file to which upajTransportPerf writes the
application’s test summary.

-tcpDelay False Configures tcp_nodelay (a ConnectOptions/BindOptions parameter)
which sets whether the underlying connection uses Nagle's algorithm; a
method for more efficiently using network packet headers by batching data.

By default, upajTransportPerf disables Nagle's algorithm due to the
increased latency from buffering. -tcpDelay enables it, which can raise
throughput capability.

-threads <none> Sets the number of threads that the application creates and the CPU core to
which each thread binds.

-tickRate 1000 Sets the number of cycles (i.e., ticks) per second executed by the
upajTransportPerf main loop. Adjusting the tick rate changes the size of
request/post bursts: a higher tick rate results in smaller individual bursts and
smoother traffic.

-u <none> When using the multicast connection type, configures the unicast port.

-writeStatsInterval 5 Configures how often (in seconds) upajTransportPerf prints stats to screen
and to the statistics file.

COMMAND-LINE
OPTION

DEFAULT DESCRIPTION

Table 5: upajTransportPerf Configuration Options (Continued)
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 42
ETAJ330PETOO.190

Chapter 7 upajTransportPerf
7.7 Input

upajTransportPerf does not require input files.

7.8 Output

During the test, upajTransportPerf records the following statistics:

• Message rate (sent and received)

• Data rate (sent and received)

• Latency statistics

• CPU and memory usage

For more detailed output file information, refer to Section 10.

7.8.1 upajTransportPerf Summary File Sample

Note: The data sent rate is taken from Channel.write()’s bytesWritten parameter. This value includes any internal headers
used in transport, packing, and/or compression. The data received rate is based on message lengths returned from
Channel.read(), which does not indicate whether data was compressed and does not include any transport header
overhead. As a result, rates may differ between the sender and receiver.

--- TEST INPUTS ---

 Runtime: 180 sec

 Connection Type: socket

 Hostname: localhost

 Port: 14002

 App Type: client

 Thread Count: 1

 Busy Read: No

 Msg Size: 76

 Msg Rate: 100000

 Latency Msg Rate: 10

 Output Buffers: 5000

 Max Fragment Size: 6144

 Send Buffer Size: 0(use default)

 Recv Buffer Size: 0(use default)

 High Water Mark: 0(use default)

 Compression Type: none(0)

 Compression Level: 5

 Interface Name: (use default)

 Tcp_NoDelay: Yes

 Tick Rate: 1000

 Use Direct Writes: No

 Latency Log File: (none)

 Summary File: TransportSummary_24806.out

 Stats File: TransportStats
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 43
ETAJ330PETOO.190

Chapter 7 upajTransportPerf
Code Example 11: upajTransportPerf Summary File Sample

7.8.2 upajTransportPerf Statistics File Sample

Code Example 12: upajTransportPerf Statistics File Sample

 Write Stats Interval: 5

 Display Stats: Yes

 Packing: No

--- OVERALL SUMMARY ---

Statistics:

 Latency avg (usec): 19.896

 Latency std dev (usec): 160.616

 Latency max (usec): 5304.720

 Latency min (usec): 9.052

 Sampling duration(sec): 179.98

 Msgs Sent: 17998200

 Msgs Received: 17999300

 Data Sent (MB): 1355.99

 Data Received (MB): 1304.58

 Avg. Msg Sent Rate: 100000

 Avg. Msg Recv Rate: 100006

 Avg. Data Sent Rate (MB): 7.53

 Avg. Data Recv Rate (MB): 7.25

 CPU/Memory samples: 36

 CPU Usage max (%): 0.18

 CPU Usage min (%): 0.00

 CPU Usage avg (%): 0.00

 Memory Usage max (MB): 31.20

 Memory Usage min (MB): 21.93

 Memory Usage avg (MB): 28.90

 Process ID: 24806

UTC, Msgs sent, Bytes sent, Msgs received, Bytes received, Latency msgs received, Latency avg (usec),

 Latency std dev (usec), Latency max (usec), Latency min (usec), CPU usage (%), Memory (MB)

2013-05-14 06:35:59, 498000, 39342000, 499100, 37931600, 50, 206.135, 954.202, 5304.720, 9.902, 0.18,

 21.93

2013-05-14 06:36:04, 500000, 39500000, 500000, 38000000, 50, 14.107, 2.554, 19.491, 9.227, 0.00, 21.99

2013-05-14 06:36:09, 500000, 39500000, 500000, 38000000, 50, 14.836, 2.667, 19.105, 10.180, 0.00, 21.99

2013-05-14 06:36:14, 500000, 39500000, 500000, 38000000, 50, 14.720, 2.710, 19.046, 9.721, 0.00, 21.99

2013-05-14 06:36:19, 500000, 39500000, 500000, 38000000, 50, 14.434, 2.293, 19.497, 10.722, 0.00, 21.99

2013-05-14 06:36:24, 500000, 39500000, 500000, 38000000, 50, 14.133, 2.401, 19.122, 9.683, 0.00, 21.99

2013-05-14 06:36:29, 500000, 39500000, 500000, 38000000, 50, 14.878, 2.527, 19.159, 9.773, 0.00, 21.99

2013-05-14 06:36:34, 500000, 39500000, 500000, 38000000, 50, 14.874, 2.719, 20.240, 10.386, 0.00, 23.96

2013-05-14 06:36:39, 500000, 39500000, 500000, 38000000, 50, 14.460, 2.303, 19.820, 9.975, 0.00, 23.96
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 44
ETAJ330PETOO.190

Chapter 7 upajTransportPerf
7.8.3 upajTransportPerf Console Output Sample

Code Example 13: upajTransportPerf Console Output Sample

030:

 Sent: MsgRate: 100000, DataRate: 7.534MBps

 Recv: MsgRate: 100000, DataRate: 7.248MBps

 Latency (usec): Avg: 14.133 StdDev: 2.401 Max: 19.122 Min: 9.683, Msgs: 50

 CPU: 0.00% Mem: 21.99MB

035:

 Sent: MsgRate: 100000, DataRate: 7.534MBps

 Recv: MsgRate: 100000, DataRate: 7.248MBps

 Latency (usec): Avg: 14.878 StdDev: 2.527 Max: 19.159 Min: 9.773, Msgs: 50

 CPU: 0.00% Mem: 21.99MB

040:

 Sent: MsgRate: 100000, DataRate: 7.534MBps

 Recv: MsgRate: 100000, DataRate: 7.248MBps

 Latency (usec): Avg: 14.874 StdDev: 2.719 Max: 20.240 Min: 10.386, Msgs: 50

 CPU: 0.00% Mem: 23.96MB

045:

 Sent: MsgRate: 100000, DataRate: 7.534MBps

 Recv: MsgRate: 100000, DataRate: 7.248MBps

 Latency (usec): Avg: 14.460 StdDev: 2.303 Max: 19.820 Min: 9.975, Msgs: 50

 CPU: 0.00% Mem: 23.96MB

050:

 Sent: MsgRate: 100000, DataRate: 7.534MBps

 Recv: MsgRate: 100000, DataRate: 7.248MBps

 Latency (usec): Avg: 14.213 StdDev: 2.291 Max: 19.355 Min: 10.093, Msgs: 50

 CPU: 0.00% Mem: 29.23MB
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 45
ETAJ330PETOO.190

Chapter 8 Performance Measurement Scenarios
Chapter 8 Performance Measurement Scenarios

8.1 Interactive Provider to Consumer, Through TREP

You can measure interactive providers by connecting upajConsPerf to an ADS, the ADS to an ADH,1 and finally the ADH with
an instance of upajProvPerf. You can perform this test with caching enabled or disabled in the ADH or ADS, as upajProvPerf
acts as the cache of record in this scenario.

Figure 18. Interactive Provider to Consumer on TREP

 To run a basic performance measurement:

To run a basic performance measurement using a setup like the one pictured in Figure 18, run upajProvPerf and

upajConsPerf with the following commands:2

1. Via the RRCP backbone.
2. The options on these command lines assume TEST_FEED is the service being used and 17008 is the port number. Modify these example values as
necessary.

java com.thomsonreuters.upa.perftools.upajprovperf.upajProvPerf -p 17008 -serviceName TEST_FEED

java com.thomsonreuters.upa.perftools.upajconsperf.upajConsPerf -h adshost -p 14002 -serviceName

 TEST_FEED

adhhost

apphost

upajProvPerf
(listening on port

17008)

upajConsPerf

ADH

adshost

ADS
(listening on port

14002)

Multicast Backbone
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 46
ETAJ330PETOO.190

Chapter 8 Performance Measurement Scenarios
8.2 Interactive Provider to Consumer, Direct Connect

You can measure the interactive providers of data by connecting upajConsPerf directly to upajProvPerf.

Figure 19. Interactive Provider to Consumer, Direct Connect

 To run a basic performance measurement:

Using their default configuration options, you can run this test without any additional command-line options. Simply run the
provider and consumer applications as follows:

java com.thomsonreuters.upa.perftools.upajprovperf.upajProvPerf

java com.thomsonreuters.upa.perftools.upajconsperf.upajConsPerf

apphost

upajProvPerf
(listening on port

14002)

upajConsPerf
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 47
ETAJ330PETOO.190

Chapter 8 Performance Measurement Scenarios
8.3 Non-Interactive Provider to Consumer, Through TREP

You can measure non-interactive providers on TREP by connecting upajConsPerf to an ADS, the ADS with an ADH,3 and
finally the upajNIProvPerf to the ADH. The ADH must have caching enabled, because it acts as the cache of record in this
scenario.

Figure 20. NIProv to Consumer on the TREP

upajConsPerf may receive a Closed status if it requests an item not yet provided by upajNIProvPerf to the ADH cache. To
ensure the test completes successfully, you must do either one of the following:

1. Preload the ADH cache. upajNIProvPerf must have provided refreshes for all of its items to the ADH before
upajConsPerf connects to the ADS.

2. Configure the ADH to provide temporary refreshes in place of the uncached items. upajConsPerf knows to allow these
images, and does not count them towards the image retrieval time, due to their Suspect data state.

For more details on this configuration, refer to the ADH Software Installation Manual.

 To run a basic performance measurement:

To run a basic performance measurement using a setup like the one pictured in Figure 20, run upajNIProvPerf and

upajConsPerf with the following command-line options:4

3. Via the RRCP backbone.
4. These options assume the provided service is TEST_FEED. Modify the example’s values as necessary.

java com.thomsonreuters.upa.perftools.upajniprovperf.upajNIProvPerf -h adhhost -p 14003 -serviceName

 TEST_FEED

java com.thomsonreuters.upa.perftools.upajconsperf.upajConsPerf -h adshost -p 14002 -serviceName

 TEST_FEED

adhhost

apphost

upajNIProvPerf

upajConsPerf

ADH(listening on
port 14003)

adshost

ADS
(listening on port

14002)

Multicast Backbone
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 48
ETAJ330PETOO.190

Chapter 8 Performance Measurement Scenarios
8.4 Consumer Posting on the TREP

To measure posting performance on the TREP, connect the upajConsPerf to an ADS, the ADS to an ADH,5 and finally the
upajNIProvPerf to the ADH. The ADH must have caching enabled, because it acts as the cache of record in this scenario. As
the posted messages return from the TREP, the consumer can distinguish them via the presence of their PostUserInfo. When
configured to do so, upajConsPerf embeds timestamps in some of its posts which it uses to measure round-trip latency.

Figure 21. Consumer Posting to TREP

In this case, upajNIProvPerf provides service and items. Update traffic is optional. If you want to test posting without updates,
configure upajNIProvPerf by specifying -updateRate 0 -latencyUpdateRate 0 in the command line.

Additionally, if you want only posting traffic, you do not need to run a provider application. You can configure the TREP to
provide the necessary service information and refresh content. For more details on this configuration, refer to the ADH
Software Installation Manual.

 To run a basic performance measurement:

To run a basic performance measurement using a setup like the one pictured in Figure 21, run upajNIProvPerf and

upajConsPerf as follows:6

5. Via the RRCP backbone.
6. These options assume TEST_FEED is the service being provided. Modify the example values as necessary.

java com.thomsonreuters.upa.perftools.upajniprovperf.upajNIProvPerf -h adhhost -p 14003 -serviceName

 TEST_FEED

java com.thomsonreuters.upa.perftools.upajconsperf.upajConsPerf -h adshost -p 14002 -serviceName

 TEST_FEED -postingRate 10000 -postingLatencyRate 10

adhhost

apphost

upajNIProvPerf

upajConsPerf

ADH(listening on
port 14003)

adshost

ADS
(listening on port

14002)

Multicast Backbone
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 49
ETAJ330PETOO.190

Chapter 8 Performance Measurement Scenarios
8.5 Transport Performance, Direct Connect with TCP

You can measure the performance of the transport7 in a direct connect scenario. This test can determine the throughput and
latency you can achieve using different transport types supported in the Transport API. This scenario shows the TCP Socket
transport type.

Figure 22. Transport Performance, TCP Direct Connect

 To run a basic performance measurement:

To run a basic performance measurement using the setup pictured in Figure 22, run two instances of upajTransportPerf as
follows:

7. Other than timestamp and sequence number encoding and decoding, this application does not perform other content operations or inspections.

upajTransportPerf -p 15000 -runTime 900 -connType socket -msgRate 100000 -latencyMsgRate 1000

 -tickRate 1000 -appType server

upajTransportPerf -p 15000 -connType socket -runTime 60 -latencyMsgRate 0 -msgRate 0 -tickRate 1000

 -appType client
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 50
ETAJ330PETOO.190

Chapter 8 Performance Measurement Scenarios
8.6 Transport Performance, Direct Connect with TCP, Reflection

To measure latency across hosts, upajTransportPerf supports reflecting messages. When reflecting is enabled, instead of
upajTransportPerf producing its own messages, each read message is written back as-is to the same connection. Reflecting
is enabled by the -reflectMsgs command-line option and may be done by servers or clients.

Figure 23. Transport Performance, TCP Direct Connect with Reflection

 To run a Basic Performance Measurement:

To run a basic performance measurement using a setup like the one pictured in Figure 23, run two instances of
upajTransportPerf with the following command-line options:

upajTransportPerf -p 15000 -runTime 900 -connType socket -tickRate 1000 -appType server -reflectMsgs

upajTransportPerf –h apphost1 -p 15000 -connType socket -runTime 60 -tickRate 1000 -appType client

 -msgRate 100000 -latencyMsgRate 1000
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 51
ETAJ330PETOO.190

Chapter 8 Performance Measurement Scenarios
8.7 Transport Performance, Direct Connect with Multicast

Because of the nature of multicast, both applications are configured as clients. Also, this example uses separate ‘send’ and
‘receive’ networks.

Figure 24. Transport Performance, Multicast Direct Connect

 To run a basic performance measurement:

To run a basic performance measurement using a setup like the one pictured in Figure 24, run two instances of
upajTransportPerf as follows:

upajTransportPerf -runTime 90 -connType reliableMCast -u 12345 -sp 15001 -sa 235.1.1.3 -rp 15002

 -ra 235.1.1.4 -latencyMsgRate 1000 -msgRate 10000 -tickRate 1000 -appType client

upajTransportPerf -u 14006 -sp 15002 -sa 235.1.1.4 -rp 15001 -ra 235.1.1.3 -connType reliableMCast

 -runTime 60 -appType client -msgRate 0 -latencyMsgRate 0 -tickRate 1000
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 52
ETAJ330PETOO.190

Chapter 8 Performance Measurement Scenarios
8.8 Transport Performance, Direct Connect with Shared Memory

The following example uses a small maxFragmentSize to reduce the size of the shared memory segment and uses the
-threads option. The provider and consumer each use one thread: the provider thread is bound to core 0, and the consumer
thread is bound to core 1. Such a setup presumes the system has at least two cores.

Figure 25. TransportPerf, Shared Memory Direct Connect

 To run a basic performance measurement:

To run a basic performance measurement using a setup like the one pictured in Figure 25, run two instances of
upajTransportPerf as follows:

upajTransportPerf -p 15000 -runTime 90 -connType shmem -msgRate 10000 -latencyMsgRate 1000

 -tickRate 1000 -appType server -outputBufs 9000 -maxFragmentSize 256 –threads 0

upajTransportPerf -p 15000 -connType shmem -runTime 60 -latencyMsgRate 0 -msgRate 0 -tickRate 1000

 -appType client –threads 1
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 53
ETAJ330PETOO.190

Chapter 9 Input File Details
Chapter 9 Input File Details

9.1 Message Content File and Format

The message data XML file (MsgData.xml) provided with the Performance Suite describes sample data for the refreshes,
updates, and posts encoded by the tools. You can customize MsgData.xml to suit desired test scenarios.

The XML file must contain data for:

• One refresh message.

• At least one update message.

• At least one post message, if posting from upajConsPerf.

• At least one generic message, if configured for exchanging generic messages.

Refresh data provides the image for each item provided by upajProvPerf or upajNIProvPerf. When providing updates,
provider tools encode update messages in a round-robin manner for each item. Likewise, when posting, the upajConsPerf
encodes posts in a round-robin fashion for each item.

9.1.1 Encoding Fields

Performance tools can encode in their fields any of the primitive types supported by the Transport API.

For types such as Real.value(String) and Date.value(String), the input follows the conversion format of the Transport
API’s string conversion function (e.g. Real.value(String), Date.value(String)).

Each field must have the correct type for its ID according to the dictionary loaded by the tool. Fields are validated by the
message data parser.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 54
ETAJ330PETOO.190

Chapter 9 Input File Details
9.1.2 Sample Update Message

Code Example 14: Sample Update Message

<updateMsg>

 <dataBody>

 <fieldList entryCount="13">

 <fieldEntry fieldId="1025" dataType="RSSL_DT_TIME" data=" 14:40:32:000"/>

 <fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="52832000"/>

 <fieldEntry fieldId="115" dataType="RSSL_DT_ENUM" data="2"/>

 <fieldEntry fieldId="1000" dataType="RSSL_DT_RMTES_STRING" data="-"/>

 <fieldEntry fieldId="22" dataType="RSSL_DT_REAL" data="401.50"/>

 <fieldEntry fieldId="114" dataType="RSSL_DT_REAL" data="3.49"/>

 <fieldEntry fieldId="30" dataType="RSSL_DT_REAL" data="18"/>

 <fieldEntry fieldId="25" dataType="RSSL_DT_REAL" data="401.54"/>

 <fieldEntry fieldId="31" dataType="RSSL_DT_REAL" data="10"/>

 <fieldEntry fieldId="293" dataType="RSSL_DT_RMTES_STRING" data="NAS"/>

 <fieldEntry fieldId="3298" dataType="RSSL_DT_ENUM" data="43"/>

 <fieldEntry fieldId="296" dataType="RSSL_DT_RMTES_STRING" data="NAS"/>

 <fieldEntry fieldId="3297" dataType="RSSL_DT_ENUM" data="43"/>

 </fieldList>

 </dataBody>

</updateMsg>
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 55
ETAJ330PETOO.190

Chapter 9 Input File Details
9.2 Item List File

The Item List File configures the full list of items as requested by upacConsPerf or published by upacNIProvPerf. Each entry
specifies the item’s name and how it is requested. The file must contain enough entries to satisfy the number of items needed
by the respective tool.

The sample file 350k.xml contains 350,000 items, some of which allow posting.

9.2.1 Item Attributes

ATTRIBUTE NAME DEFAULT DESCRIPTION

domain (none, required) Specifies the domain from which the item is requested.

This must be set to MarketPrice.

genMsg “false” If set to true, generic messages are sent for this item (if generic messages are
enabled).

name (none, required) Specifies the name used in the MsgKey when requesting the item.

post “false” If set to true, upajConsPerf sends posts to this item (if posting is enabled).

snapshot “false” If set to true, upajConsPerf requests this item as a snapshot (i.e., without
setting the STREAMING flag on the request).

Table 6: Item Attributes
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 56
ETAJ330PETOO.190

Chapter 9 Input File Details
9.2.2 Sample Item List File

Code Example 15: Sample Item List File

<itemList>

 <item domain="MarketPrice" name="RDT1" post="true" genMsg="true" />

 <item domain="MarketPrice" name="RDT2" post="true" />

 <item domain="MarketPrice" name="RDT3" post="true" />

 <item domain="MarketPrice" name="RDT4" post="true" />

 <item domain="MarketPrice" name="RDT5" post="true" />

 <item domain="MarketPrice" name="RDT6" post="true" />

 <item domain="MarketPrice" name="RDT7" post="true" />

 <item domain="MarketPrice" name="RDT8" />

 <item domain="MarketPrice" name="RDT9" />

 <item domain="MarketPrice" name="RDT10" />

 <item domain="MarketPrice" name="RDT11" />

 <item domain="MarketPrice" name="RDT12" />

 <item domain="MarketPrice" name="RDT13" />

 <item domain="MarketPrice" name="RDT14" />

 <item domain="MarketPrice" name="RDT15" />

 <item domain="MarketPrice" name="RDT16" />

 <item domain="MarketPrice" name="RDT17" />

 <item domain="MarketPrice" name="RDT18" />

</itemList>
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 57
ETAJ330PETOO.190

Chapter 10 Output File Details
Chapter 10 Output File Details

10.1 Overview

Applications in the Performance Suite send similar output to the console and to files. Each application can configure its output
using the configuration parameters:

• writeIntervalStats (1 to n): The interval (in seconds) at which timed statistics are written to files.

• noDisplayStats: Disables statistics output to the console.

Providers and consumers output different statistics but in a similar fashion. Each application can be configured to output a
summary file, a statistics file, and in the case of the consumer, a latency file comprised of individual latencies for each received
latency item.

10.2 Output Files and Their Descriptions

You can configure the names of output files, though applications append the client number to their stats and latency files. So
for example, a horizontal scaling test with two consumer threads produces two statistics files: ConsStats1.csv and
ConsStats2.csv.

Default output filenames (and the associated parameters you use to generate the files) are as follows:

PARAMETER DEFAULT DESCRIPTION

-latencyFile (none) Specifies the filename of the latency file produced.

-statsFile ToolTypeStatsclient.csva

a. Where ToolType is either Cons, Prov, NIProv, or Transport.

Specifies the filename of the statistics file produced.

-summaryFile ToolTypeSummary.txt Specifies the filename of the summary file produced.

Table 7: Performance Suite Applications and Associated Configuration Files
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 58
ETAJ330PETOO.190

Chapter 10 Output File Details
10.3 Latency File

The latency file is a comma-separated value file containing individual latencies, in microseconds, for timestamps received
during the test. It is only created by upajConsPerf and upajTransportPerf.

The interval in seconds that statistics are written to the file is controlled by the writeStatsInterval configuration parameter,
which defaults to 5.

Code Example 16: Sample ConsLatency.csv Showing Update and Post latencies during a Test Run

Note: Due to the potentially large amount of output in scenarios that use a high latency message rate, this file is not produced
by default.

Message type, Send time, Receive time, Latency (usec)

Upd, 353725032296, 353725032521, 225

Upd, 353725045319, 353725045569, 250

Upd, 353725092300, 353725092521, 221

Pst, 353724892323, 353724894740, 2417

Pst, 353724925257, 353724926441, 1184

Pst, 353725105324, 353725106762, 1438

Upd, 353725359645, 353725359859, 214

Upd, 353725610354, 353725610619, 265
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 59
ETAJ330PETOO.190

Chapter 10 Output File Details
10.4 File Import

You can import output .csv files into data analysis software. For example, you can use Microsoft Excel and Microsoft Access to
import and quickly analyze your test results. Shown below are graphs created in Excel after importing a statistics .csv file for a
test run. Note that these are sample graphs and do not imply the real performance results of the tool suite.

Figure 26. Sample Excel Graph from ConsStats1.csv

Figure 27. Sample Excel Graph of Latencies Over a 15-second Steady State Interval from ConsLatency1.csv
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 60
ETAJ330PETOO.190

Chapter 11 Performance Best Practices
Chapter 11 Performance Best Practices

11.1 Overview

The Performance Test Tools Suite leverages a number of features of the Transport API to achieve high throughput and low
latency when sending and receiving messages. This section briefly describes test tool features, the features’ benefits, and how
the tools use them. For more details on each feature, refer to the Transport API Developers Guide.

11.2 Transport Best Practices

11.2.1 rsslRead

When calling Channel.read(), the ReadArgs.readRetVal parameter indicates whether more content is available for
immediate processing. Because this content might have already been read from the underlying transport, an I/O notifier might
not inform an application that this content is available. When the value is greater than TransportReturnCodes.SUCCESS (0),
the application should call Channel.read() again without waiting for further notification. Even if no message was returned,
Channel.read() can return a value greater than TransportReturnCodes.SUCCESS.

All applications follow a reading model that leverages the Transport API’s queuing and notification mechanisms to read quickly
without making unnecessary function calls:

1. Wait for notification on the descriptors associated with a channel using its preferred I/O notifier. The application will only
call Channel.read() on channels that indicate the presence of readable data.

2. Keep calling Channel.read() as long as the return value is greater than TransportReturnCodes.SUCCESS. Such return
values indicate that there is still data to process in the Transport API’s input buffer.

11.2.2 rsslWrite, rsslFlush

To make efficient use of underlying transport method calls, the Channel.write() method passes messages to an outbound
queue of the specified priority, rather than immediately writing the message to the network. Channel.write() indicates that
there is queued content by returning a value greater than TransportReturnCodes.SUCCESS.

The network write occurs if:

• The application calls Channel.flush().

• The WriteFlags.DIRECT_SOCKET_WRITE flag is passed into the Channel.write() method.

• The amount of queued data reaches a configurable highwater mark (i.e., using the -highWaterMark option), which
causes Channel.write() to pass queued content to the underlying transport.

You can use a simple algorithm to write large amounts of content efficiently while still maintaining low latency:

• Write all currently desired content via Channel.write(), relying on the highwater mark to periodically flush.

• When there is no more content to write, call Channel.flush() to flush any remaining data. After all data is written to
the network, Channel.flush() returns TransportReturnCodes.SUCCESS.

Note: A positive value returned from Channel.write() means there is queued content. It is not passed to the underlying
transport unless the application performs one of the previously mentioned actions.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 61
ETAJ330PETOO.190

Chapter 11 Performance Best Practices
Transport API Performance Tools observe the following model when writing message bursts:

1. Write the entire burst of messages using Channel.write().

2. After the burst finishes, check the return value from the last call to Channel.write(). If the value is greater than
TransportReturnCodes.SUCCESS, data remains in the Transport API’s output queue. Use the channel’s selector in
conjunction with an I/O notifier to notify the application when it can flush remaining data.

3. Call Channel.flush() on channels indicated by the notifier. Continue to invoke the notifier and Channel.flush() until all
data is successfully provided to the underlying transport.

Each application has a command-line option (-highWaterMark) for adjusting the high-water mark.

11.2.3 Packing

To efficiently use buffer space, reduce the number of writes to the transport,1 and improve throughput, applications can use the
Channel.packBuffer() method to pack multiple messages into a single buffer. Each call to Channel.packBuffer() adds
another message to the existing buffer. Though packing messages can help increase throughput, overall effects will vary
depending on the type of transport you use. In general:

• Slower transports benefit more than faster transports

• More saturated transports benefit more than less-saturated ones.

Because packing adds latency, it is important that you weigh the trade-offs when deciding to employ packing. For example, if
15 messages are packed into a single buffer, the first message will sit in the buffer longer before being written than the last
message added to the buffer. An application can reduce this latency by sending the packed buffer before it is full, often through
the use of a timing mechanism that indicates a latency threshold has been reached. In general, the more messages packed
into a buffer, the higher the latency penalty.

upajProvPerf and upajNIProvPerf perform the following steps when configured to pack buffers:

1. Get a packable buffer of a specified size, using Channel.getBuffer().

2. Encode messages into the buffer, calling Channel.packBuffer() after each message is encoded.

3. After the configured number of messages are packed or when the buffer is full, Channel.write() is called to pass the
packed buffer to the Transport API.

11.2.4 High-water Mark

Higher throughput is usually achieved by making a small number of large writes to the transport instead of doing a large
number of small writes. For example, writing one 6000-byte buffer is generally more efficient than writing 1000 six-byte buffers.
To achieve higher efficiencies, the Transport API employs the concept of a high-water mark. When the application calls
Channel.write(), the Transport API does not always immediately pass the buffer to the transport; instead, the Transport API

passes data to the transport after the size of its buffer reaches the high-water mark.2 Note that the high-water mark applies to
written data and not to the number of bytes requested in the call to rsslGetBuffer.

For example, assume a high-water mark of 6144 bytes. If an application gets a buffer, encodes 500 bytes of content, and
passes this to Channel.write(), the high-water mark will be triggered after thirteen buffers. At that point, the Transport API’s
output queue will contain thirteen buffers, each with approximately 500 bytes that it can pass to the underlying transport,
instead of passing one at a time.

You can configure each individual connection’s high-water mark. The application can also invoke data being passed to the
underlying transport by using the Channel.flush() routine or passing the WriteFlags.DIRECT_SOCKET_WRITE flag to
Channel.write().

1. Reducing underlying transport header overhead.
2. As previously noted, the application can invoke data being passed to the transport through the use of Channel.flush() or the
WriteFlags.DIRECT_SOCKET_WRITE flag.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 62
ETAJ330PETOO.190

Chapter 11 Performance Best Practices
Note the throughput and latency implications, and balance the use of the high-water mark and Channel.flush() accordingly:

• In high-throughput situations, it is better to make large writes to achieve higher efficiencies (i.e., in this case use the
high-water mark).

• In low-throughput situations, data might linger in Transport API queues for longer periods and thus incur latency (i.e.,
in this case, use Channel.flush()).

11.2.5 Direct Socket Write

The Channel.write() method can be instructed to attempt to pass data directly to the underlying transport by specifying the
WriteFlags.DIRECT_SOCKET_WRITE flag when calling Channel.write(). This flag causes the Transport API to check its
current outbound queue depths:

• If the queues are empty, the Transport API passes data directly to the underlying transport, bypassing all queuing logic
and delays.

• If the queues are not empty, the Transport API adds data to the appropriate queue, with queued content being passed
to the underlying transport in the appropriate order.3

Using this option can reduce latency,4 as the message might not get queued. However this option also reduces throughput
and increases CPU usage due to more frequent socket writes. You can offset the loss in throughput by packing buffers, though
doing so can increase packing latency.

11.2.6 Nagle’s Algorithm

For TCP socket connection types, you can set the underlying transport to use Nagle’s Algorithm to combine small content
fragments into larger network frames. While this algorithm reduces transport overhead (optimizing bandwidth usage), it also
increases latency, especially when sending small messages at lower data rates.

To minimize latency, the Performance Tools use tcp_nodelay (a ConnectOptions parameter), which disables Nagle’s
Algorithm. However, you can reenable this feature using the -tcpDelay option. For further details, refer to each tool’s list of
available options.

11.2.7 System Send and Receive Buffers

For TCP socket connections, the OS uses system send and receive buffers for exchanging content. When the Transport API
flushes data to the underlying transport, it passes through these system buffers. During times of high throughput, the
application might provide data faster than the underlying transport can send it. If this happens, the system buffers can fill up,
and as a result, the underlying transport refuses to accept data. In this case, the transport accepts new data only after some of
its buffered content is sent and acknowledged.

If the user instructs the Transport API to pass queued data to the underlying transport but the OS cannot accept additional
content at the time, Channel.write() or Channel.flush() will return a positive return value. A positive value indicates that
content has been queued in the Transport API and the application should flush it at a subsequent time. However, this state is
not considered a failure condition, and the Transport API still has the data in its buffers. In this situation, the OP_WRITE
selection key can be added to the channel’s selector, which notifies the application when it can pass additional content to the
OS.

You can configure the system’s send and receive buffer sizes in the OS, as detailed in OS-specific documentation.
Additionally, the Transport API allows users to configure this via the ConnectOptions, BindOptions, and to dynamically
increase or decrease buffer size during runtime using the Channel.ioctl() call.

3. As determined by the various priorities with which the content was written and the flush strategy you configure.
4. As long as the underlying transport can accept the content.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 63
ETAJ330PETOO.190

Chapter 11 Performance Best Practices
11.2.8 Transport API Buffering

The Transport API uses various optimization techniques for efficient input and output of content, many revolving around pre-
allocated buffers which minimize memory creation and destruction. Pre-allocated buffers queue outbound data as well as read
large byte-streams from underlying transports.

When a connection is established, the maximum size buffer is negotiated, allowing the Transport API to create input and
output buffers that work well with respect to that connection. Because input and output strategies have different challenges,
these pre-allocated buffer pools are handled differently depending on whether they are input or output buffers.

11.2.8.1 Input Buffering

The Transport API input buffer is created as one large continuous block of memory, controlled by numInputBuffers
(configured via ConnectOptions or BindOptions). The number of bytes created in the input buffer is determined by the
configured value multiplied by the negotiated maxFragmentSize. Having one large block of memory allows Channel.read()
to get as many bytes from a single call to the underlying transport as possible. When the input buffer holds data, the Transport
API determines message boundaries and returns a single message to the user. As the application makes subsequent
Channel.read() calls, additional messages are dispatched from the input buffer. After fully processing the input buffer, the
Transport API goes back to the underlying transport to again fill the input buffer.

The intent is to have the Transport API read only when needed and to read as much as possible. The amount of data the
Transport API actually reads from the network depends on the number of input buffers and the amount of data that the OS has
available at that time.

11.2.8.2 Output Buffering

Output buffering is handled differently from input buffering. Because each buffer can be written as a different priority, a
continuous block of memory will not work. The Transport API creates the configured number of buffers, treating each buffer as
a separate entity. Such a division allows the use of multiple buffers simultaneously, as well as allowing buffers to co-exist in
different priority-based output queues.

You should configure the number of output buffers according to the application’s expected output load. The
guaranteedOutputBuffer setting controls the number of output buffers available exclusively to that channel, where all of
these buffers are created up-front. When the channel runs on a server application, you can also configure the
maxOutputBuffers, allowing the application to use buffers from the server’s shared buffer pool. The shared pool is grown on-
demand, but allows for connections under heavy load to temporarily grab a buffer for use. When returned to the shared pool,
another channel can then use this same buffer. This enables the server to balance the memory usage of pre-allocated
guaranteed output buffers with the traffic spike tolerance of a dynamic shared buffer pool.

Increasing the number of output buffers can improve performance when sending high volumes. An application should be
aware of trade-offs of using too much memory and thus potentially slowing the process. If the receiving process cannot keep
up with the send rate, a condition can develop for the sender where all output buffers are in use, waiting to be transmitted. The
number of output buffers can be dynamically grown using Channel.ioctl() or, more commonly, the connection is terminated
as a result.

11.2.8.3 Fragmentation

The negotiated maximum buffer size is the maximum size that the application will send in a single buffer. In cases where an
application uses Channel.getBuffer() to request a buffer with a size larger than the maximum, the requested size will be
returned to the user. When the content passes to Channel.write(), the Transport API fragments the content on behalf of the
application, breaking apart larger content into individual buffers whose individual sizes do not exceed the agreed upon
maximum. On the receiving side, the Transport API reassembles the fragments back into a single buffer containing all relevant
content.

This transport level fragmentation incurs multiple copies and potential memory allocations. To avoid such overhead,
applications should ensure that the maximum buffer size (BindOptions.maxFragmentSize) is large enough for commonly
sent messages to fit into a single buffer.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 64
ETAJ330PETOO.190

Chapter 11 Performance Best Practices
11.2.9 Compression

The Transport API supports the use of data compression. Generally, compressing data reduces the amount of data passed to
the underlying transport. But compression has some drawbacks to consider:

• Compression requires additional processing.5

• Compression copies data: as the user-provided buffer is read by the compression algorithm, output data is
compressed into a different buffer. As a result, compression will generally require more buffers from the Transport
API’s buffer pool.

upajTransportPerf exposes the option to enable compression using -compressionType and -compressionLevel.

11.3 Encoder and Decoder Best Practice: Single-Pass Encoding

Transport API Performance Tools encode data so as to minimize copying. Thus, the application encoding process begins by
starting with the top-level container and working down in a linear fashion.

For example, when encoding a Market Price message, the message header is encoded (Msg.encodeInit()), followed by the
field list payload (FieldList.encodeInit() … FieldList.encodeComplete()). After the payload is encoded, message
encoding is completed (Msg.encodeComplete()).

Encoding the field list prior to the message header would require it to be encoded into a temporary buffer which would then be
passed to the message encoder (Msg.encode()). This approach would incur multiple buffer allocations and copies to
complete encoding.

11.4 Other Practices: JVM Priming

The JVM performs just-in-time compilation and optimization of executing bytecode. This takes processing time and affects
latency values during the start-up state of performance applications. JVM priming reduces the impact of this start-up overhead
and can be enabled by using the -primeJVM option.

JVM priming is accomplished by sending a snapshot request for all items before sending the actual streaming requests for the
items. Latency measurements are only taken for updates so refreshes from the snapshot requests are used to prime the JVM.
This results in lower latency values in the start-up state.

5. Overhead will vary based on the type of compression used and the level of compression applied.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 65
ETAJ330PETOO.190

Appendix A Troubleshooting

A.1 Can’t Connect

There are many reasons why a consumer or provider might not be able to connect. Several common ones are listed below:

• Check the consumer’s and provider’s serviceName parameters. These must match. The consumer will wait until the
service is available and accepting requests.

• Check the ADH (adhmon) and ADS (adsmon) to see whether the desired service is up.

• Check the ADH’s configuration to make sure that the provider’s host is listed in the hostList configuration setting.

• Check that the provider is listening on the correct TCP Port.

• Check that the consumer is connecting to the correct hostName and TCP Port.

• In direct-connect mode, start the provider first, then start the consumer. Starting the consumer first results in a connection
timeout, which creates a (by default) 15 second delay until the client retries the connection attempt.

• When connecting through TREP, check that the desired service is up on both the ADH and ADS before starting the
consumer (or wait the appropriate amount of time.) Starting the consumer too quickly results in a connection retry after (by
default) 15 seconds.

A.2 Not Achieving Steady State

There are several reasons why a consumer might not reach a steady state:

• The steadyStateTime value may be too small. When publishing in latency mode or at high update rates, providers will
take longer to process image requests. For example, if steadyStateTime is set to 30s but the provider can publish only
2,500 images per second, the consumer times out before it receives its 100,000 images.

• The provider might be overloaded. If the provider is publishing at or near 100% CPU for its configured update rate, it will
be either unable or barely able to service incoming image requests, which causes images to trickle back to the consumer.

• The consumer might be overloaded.

• If using a non-interactive provider application, the provider and consumer watch lists might not match, resulting in the
consumer application requesting items that never appear in the ADH cache.
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 66
ETAJ330PETOO.190

A.3 Consumer Tops Out but Not at 100% CPU

In some cases, when connecting to TREP, the consumer appears to be overloaded even though no thread is using the
maximum CPU. Such a situation might be a symptom of a bottleneck on the ADS, which can be resolved by increasing the
size of the guaranteedOutputBuffers and maxOutputBuffers to 5,000 in rmds.cnf:

Figure 28. ADS rmds.cnf

While this may increase the overall throughput, it can also increase message latency.

A.4 Initial Latencies Are High

• Initial latencies during startup and immediately following the transition to steady state might be high. At high update rates,
the system processes its entire overhead for updates plus all refresh traffic, resulting in an increased workload and higher
latency. It can take several seconds for the system to “settle” following the transition to steady state. Increasing the
provider’s output buffers might help.

• The JVM performs just-in-time compilation and optimization of executing bytecode. This takes processing time and affects
latency values during the start-up state of performance applications. JVM priming is used to reduce the impact of this start-
up overhead. This feature can be enabled by using the -primeJVM option.

A.5 Latency values Are Very High

• Run the applications on the same machine.

• Use a reliable clock to gather timestamp information.

• Perform appropriate system-wide tuning.

• Consider packing messages into the same buffer. It is possible that the connection type cannot sustain the data rate when
sent as individual messages.

•

[...]

*ads*maxOutputBuffers : 5000

*ads*guaranteedOutputBuffers : 5000

[...]
Transport API 3.3.x Java Edition – Open Source Performance Tools Guide 67
ETAJ330PETOO.190

© 2016 - 2019 Thomson Reuters. All rights reserved.

Republication or redistribution of Thomson Reuters content, including by framing or
similar means, is prohibited without the prior written consent of Thomson Reuters.
'Thomson Reuters' and the Thomson Reuters logo are registered trademarks and
trademarks of Thomson Reuters and its affiliated companies.

Any third party names or marks are the trademarks or registered trademarks of the
relevant third party.

Document ID: ETAJ330PETOO.190
Date of issue: 15 March 2019

	Chapter 1 Introduction
	1.1 About this Manual
	1.2 Audience
	1.3 Programming Language
	1.4 Acronyms and Abbreviations
	1.5 References
	1.6 Documentation Feedback
	1.7 Document Conventions
	1.7.1 Typographic
	1.7.2 Diagrams

	Chapter 2 Open Source Performance Tool Suite Overview
	2.1 Overview
	2.2 The Transport API Performance Tool Suite
	2.3 Package Contents
	2.3.1 XML Files
	2.3.2 Building and Running

	2.4 What Gets Measured and Reported?
	2.4.1 Latency
	2.4.2 Throughput and Payload
	2.4.3 Image Retrieval Time
	2.4.4 CPU and Memory Usage

	2.5 Recorded Results and Output
	2.5.1 Summary File
	2.5.2 Statistics File
	2.5.3 Latency File

	Chapter 3 Latency Measurement Details
	3.1 Time-slicing
	3.2 Latency

	Chapter 4 upacConsPerf
	4.1 Overview
	4.2 Threading and Scaling
	4.2.1 Consumer Lifecycle
	4.2.2 Diagram

	4.3 Latency Measurement
	4.3.1 Consumer Latency
	4.3.2 Posting Latency

	4.4 upajConsPerf Configuration Options
	4.5 Input
	4.6 Output
	4.6.1 upajConsPerf Summary File Sample
	4.6.2 upajConsPerf Statistics File Sample
	4.6.3 upajConsPerf Latency File Sample
	4.6.4 upajConsPerf Console Output Sample

	Chapter 5 upajProvPerf
	5.1 Overview
	5.2 Threading and Scaling
	5.3 Provider Lifecycle
	5.4 Latency Measurement
	5.5 upajProvPerf Configuration Options
	5.6 Input Files
	5.7 Output
	5.7.1 upajProvPerf Summary File Sample
	5.7.2 upajProvPerf Statistics File Sample
	5.7.3 upajProvPerf Console Output Sample

	Chapter 6 upajNIProvPerf
	6.1 Overview
	6.2 Threading and Scaling
	6.3 Non-Interactive Provider Lifecycle
	6.4 Latency Measurement
	6.5 upajNIProvPerf Configuration Options
	6.6 Input Files
	6.7 Output
	6.7.1 upajNIProvPerf Summary File Sample
	6.7.2 upajNIProvPerf Statistics File Sample
	6.7.3 upajNIProvPerf Console Output Sample

	Chapter 7 upajTransportPerf
	7.1 Overview
	7.2 Threading and Scaling
	7.3 upajTransportPerf Life Cycle
	7.4 Message Payload
	7.5 Latency Measurement
	7.6 upajTransportPerf Configuration Options
	7.7 Input
	7.8 Output
	7.8.1 upajTransportPerf Summary File Sample
	7.8.2 upajTransportPerf Statistics File Sample
	7.8.3 upajTransportPerf Console Output Sample

	Chapter 8 Performance Measurement Scenarios
	8.1 Interactive Provider to Consumer, Through TREP
	8.2 Interactive Provider to Consumer, Direct Connect
	8.3 Non-Interactive Provider to Consumer, Through TREP
	8.4 Consumer Posting on the TREP
	8.5 Transport Performance, Direct Connect with TCP
	8.6 Transport Performance, Direct Connect with TCP, Reflection
	8.7 Transport Performance, Direct Connect with Multicast
	8.8 Transport Performance, Direct Connect with Shared Memory

	Chapter 9 Input File Details
	9.1 Message Content File and Format
	9.1.1 Encoding Fields
	9.1.2 Sample Update Message

	9.2 Item List File
	9.2.1 Item Attributes
	9.2.2 Sample Item List File

	Chapter 10 Output File Details
	10.1 Overview
	10.2 Output Files and Their Descriptions
	10.3 Latency File
	10.4 File Import

	Chapter 11 Performance Best Practices
	11.1 Overview
	11.2 Transport Best Practices
	11.2.1 rsslRead
	11.2.2 rsslWrite, rsslFlush
	11.2.3 Packing
	11.2.4 High-water Mark
	11.2.5 Direct Socket Write
	11.2.6 Nagle’s Algorithm
	11.2.7 System Send and Receive Buffers
	11.2.8 Transport API Buffering
	11.2.8.1 Input Buffering
	11.2.8.2 Output Buffering
	11.2.8.3 Fragmentation

	11.2.9 Compression

	11.3 Encoder and Decoder Best Practice: Single-Pass Encoding
	11.4 Other Practices: JVM Priming

	Appendix A Troubleshooting
	A.1 Can’t Connect
	A.2 Not Achieving Steady State
	A.3 Consumer Tops Out but Not at 100% CPU
	A.4 Initial Latencies Are High
	A.5 Latency values Are Very High

