

Vision and Imaging Applications on
EVE

User’s Guide

December 4, 2017

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain
the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also
referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and
conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI
components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI
regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of
such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the
patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information
of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express
and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for
any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its
products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI.
Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of
failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer
will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable
customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such
components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have
executed a special agreement specifically governing such use.

Only those TI components, which TI has specifically designated as military grade or “enhanced plastic”, are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have
not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-
designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive & Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications & Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers & Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energyapps
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics & Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright©
2017, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energyapps
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://e2e.ti.com/

2-2

Contents

Vision and Imaging Applications on EVE ... 2-1
1 Introduction ... 2-5

1.1 Directory Structure Overview ... 2-5
1.2 Apps with out using BAM .. 2-6
1.3 Apps utilizing BAM .. 2-6

2 iVISION API Reference ... 2-7
2.1 Data Processing APIs ... 2-7
2.2 Control API .. 2-8
2.3 Data Structures ... 2-8

2.3.1 IVISION_Params ... 2-8
2.3.2 IVISION_Point ... 2-9
2.3.3 IVISION_Rect .. 2-9
2.3.4 IVISION_Polygon ... 2-9
2.3.5 IVISION_BufPlanes ... 2-10
2.3.6 IVISION_BufDesc .. 2-11
2.3.7 IVISION_BufDescList .. 2-11
2.3.8 IVISION_InArgs ... 2-11
2.3.9 IVISION_OutArgs .. 2-12

3 Vision Applications ... 3-14
3.1 Block Statistics .. 3-14

3.1.1 Data Structures .. 3-14
3.1.2 Constraints ... 3-15

3.2 Median Filter ... 3-17
3.2.1 Data Structures .. 3-17
3.2.2 Constraints ... 3-19

3.3 Block sort U32 ... 3-20
3.3.1 Data Structures .. 3-21
3.3.2 Constraints ... 3-21

3.4 Image Pyramid .. 3-22
3.4.1 Data Structures .. 3-23
3.4.2 Constraints ... 3-24

3.5 FAST9 Corner Detection ... 3-25
3.5.1 Data Structures .. 3-25

3.6 FAST9 Best Feature to Front .. 3-26
3.6.1 Data Structures .. 3-27

3.7 Harris Corner Detection ... 3-29
3.7.1 Data Structures .. 3-30

3.8 RBrief Applet ... 3-35
3.8.1 Data Structures .. 3-35

3.9 Pyramid LK Tracker .. 3-36
3.9.1 Data Structures .. 3-36

3.10 Harris Best Feature to Front .. 3-40
3.10.1 Data Structures .. 3-40

3.11 Remap & Merge .. 3-43
3.11.1 Current Deliverables Scope ... 3-43
3.11.2 Interface ... 3-44
3.11.3 Data Structures .. 3-47
3.11.4 Constraints ... 3-51

3.12 Histogram of Orientaed Gradients (HOG).. 3-53
3.12.1 Data Structures .. 3-53

3.13 Gray-Level Co-occurrence Matrix (GLCM) .. 3-58
3.13.1 Data Structures .. 3-58
3.13.2 Constraints ... 3-59

3.14 Filter 2D .. 3-60
3.14.1 Data Structures .. 3-60
3.14.2 Constraints ... 3-62

3.15 YUV Padding .. 3-63
3.15.1 Data Structures .. 3-63

3.16 Software Image Signal processor (Soft ISP) ... 3-64
3.16.1 Data Structures .. 3-64
3.16.2 Constraints ... 3-69

3.17 Software Image Signal processor (Soft ISP) for Bayer sensor 3-70
3.17.1 Data Structures .. 3-71
3.17.2 Constraints ... 3-73

3.18 Hough Transform for lines ... 3-75
3.18.1 Data Structures .. 3-75
3.18.2 Constraints ... 3-77

3.19 Integral Image ... 3-78
3.19.1 Data Structures .. 3-78
3.19.2 Constraints ... 3-78

3.20 NMS (Non Maximum Suppression) ... 3-79
3.20.1 Data Structures .. 3-79
3.20.2 Constraints ... 3-81

3.21 Census transform .. 3-82
3.21.1 Data Structures .. 3-84
3.21.2 Constraints ... 3-85

3.22 Disparity calculation .. 3-87
3.22.1 Data Structures .. 3-91
3.22.2 Constraints ... 3-94
3.22.3 References... 3-94

3.23 Feature Matching .. 3-95
3.23.1 Data Structures .. 3-95
3.23.2 Constraints ... 3-98

3.24 Hough Transform for Circles ... 3-99
3.24.1 Data Structures .. 3-99
3.24.2 Recommendations ... 3-104
3.24.3 Constraints ... 3-104

3.25 YUV Scalar ... 3-105
3.25.1 Data Structures .. 3-105

3.26 Edge Detector ... 3-107
3.26.1 Data Structures .. 3-107

3.27 Morphology ... 3-109
3.27.1 Data Structures .. 3-110
3.27.2 Constraints ... 3-113

3.28 Bin Image to list... 3-114
3.28.1 Data Structures .. 3-114
3.28.2 Constraints ... 3-119

3.29 Template Matching .. 3-120
3.29.1 Data Structures .. 3-121
3.29.2 Constraints ... 3-124

3.30 CLAHE .. 3-125
3.30.1 Data Structures .. 3-125

4 Radar Applications ... 4-128
4.1 FFT (Fast Fourier Transform) .. 4-128

4.1.1 Data Structures .. 4-128
4.2 Beam Forming .. 4-137

4.2.1 Data Structures .. 4-137
4.3 Peak Detection .. 4-142

4.3.1 Data Structures .. 4-142
Appendix A: Compatibility Information ... 4-150
Appendix B: Remap Convert Table ... 4-151

Directory Structure Overview .. 4-151
Building process ... 4-151

2-4

Usage 4-151
How to use a converted map with the remap applet. ... 4-154
How to verify a converted map .. 4-156
Matlab utility to generate an example LUT for fish-eye lens transform 4-158

Appendix C: Template Matching Normalization Function 4-159
Introduction ... 4-159
Source code ... 4-159
Q-format 4-160

Appendix D: Radar Processing Data Flow .. 4-162
Introduction ... 4-162
Details 4-162

1 Introduction
This document describes the details about vision and imaging applications/applet on EVE subsystem. EVE
applets differ from EVE kernels as per below definition

EVE Kernels – These functions expect input and outout to be available in EVE subsystem memory. Since the
EVE subsystem has limited internal memory, these functions can only be used to operate on a smaller portion of
the image - mostly referred as blocks.

EVE Apps/Applets – These functions are built using EVE kernels and EDMA (part of EVE subsystem) to provide
a frame level functionality of the kernels. These functions use EDMA as a scratch resource and relieve in scratch
form. An EVE applet can be formed using single or multiple kernels. These Apps assume the entire availability of
EVE subsystem across frame process boundary.. Each of the applet is provided with a test application to
demonstrate its usage.

The recommended approach to create EVE applets is by using the algFramework (BAM), EVE starerware EDMA
utility functions and EVE Kernels. The examples like imagePyramid_u8 and fast9_best_feature_to_front
demonstrates this. The EDMA utility functions might not be able to address all the different use cases – in that
case user can bypass the EDMA utility function and directly use the lower layer EDMA functions provided by
starterware and create the custom EDMA utility

There are some apps, which are developed without algFramework (BAM) as well. These are the apps developed
before evolution of BAM.

1.1 Directory Structure Overview

After installation of EVE software, below directory structure will be present on your hard disk.

Primarily below directories are relevant for the applications, which are developed without using BAM

Sub-Directory Description

\inc Interface header file for the applets

\lib Library for the appltes

\src Source code of applets

\test Test bench code of applets

docs Documentation on applets

2-6

The applications, which are developed using BAM, have specific directory at top level with name of the applet and
rest all the relevant content is under the directory. Below is the directory structure for each app, which is
developed using BAM

Sub-Directory Description

\algo All the files/sub-directory related to application

\test All the files/sub-directory related to validation

algo\inc Interface header file for the applet

algo\lib Library of the applet

algo\src Source code for applet (some apps might not have source because of
proprietry reason)

test\testvecs Test vectors and test configuration

test\src Source code for test bench

test\elf_out Executable for test bench

1.2 Apps with out using BAM

The detailed documentation of apps without using BAM is available in apps_nonbam\docs directory

1.3 Apps utilizing BAM

BAM is a recommended alg framework to develop the applets. Detailed documentation of BAM is available in
algframework\docs\bam_userguide.pdf. This section describes details of each applet. It is recommended to read
BAM user guide because the processing sequence of the applet is defined in that. Also there might be frequent
refrences to BAM user guide in this section.

2 iVISION API Reference

This section outlines the key APIs and calling sequence of the applets. This information applies to all applets
and is not repeated in each applet section. The applet sections focuses on parameters of structure and the
functional behavior of applet
The interface used is called iVISION interface and it is based upon XDAIS.

Two additional APIs are defined on top of basic iALG interface exposed from XDAIS

algControl()

algProcess()

You must call these APIs in the following sequence:

algCreate()

algProcess() repeat the call as many number of slices/frame as present.

algDelete()

algControl() (if provided by the algorithm) can be called any time after calling the algCreate()API.

2.1 Data Processing APIs

Name

algProcess () – for processing a frame or a slice

Synopsis

int32_t algProcess (IVISION_Handle Handle, IVISION_InBufs *inBufs,

 IVISION_OutBufs *outBufs, IVISION_InArgs *inArgs,

 IVISION_OutArgs *outArgs));

Arguments

IVISION_Handle handle /* handle */

IVISION_InBufs * inBufs /* input Buffers */

IVISION_OutBufs * outBufs /* output Buffers */

IVISION_InArgs *inArgs /* input argumements */

IVISION_OutArgs *outArgs /* output arguments */

Return Value

int32_t /* status of the process call */

Description

This function does the processing of a frame or a slice/stripe of data.

Whether the processing is for a frame or a slice depends on the buffer descriptor

Preconditions

The following conditions must be true prior to calling this function; otherwise, its operation is undefined.

process() can only be called after a successful return from algCreate().

2-8

The buffers in inArgs and outArgs are owned by the calling application.

Postconditions

If the process operation is successful, the return value from this operation is equal to IALG_EOK; otherwise it is

equal to either IALG_EFAIL or an algorithm specific return value.

The buffers in inArgs and outArgs are owned by the calling application.

2.2 Control API

Name

algControl () – To provide/update control inofmration

Synopsis

int32_t algControl (IVISION_Handle Handle, IALG_Cmd cmd,

 const IALG_Params *inParams, IALG_Params *outParams);

Arguments

IVISION_Handle handle /* handle */

IALG_Cmd id /* Command id */

IALG_Params * inParams /* input Params for set kind of commands*/

IALG_Params * outParams /* output Params for get kind of commands */

Return Value

int32_t /* status of the process call */

Description

This function can be used to update/get parameters from the algorithm. It is an optional function and might not be
implemented by all the apps. Apps will document the usage of each comamnd in detail. Application may choose
to pass a pointer as NULL bassed on the the command

Preconditions

The following conditions must be true prior to calling this function; otherwise, its operation is undefined.

control() can only be called after a successful return from algCreate().

The buffers in params and status are owned by the calling application.

Postconditions

If the control operation is successful, the return value from this operation is equal to IALG_EOK; otherwise it is

equal to either IALG_EFAIL or an algorithm specific return value.

The buffers in inParams and outParams are owned by the calling application.

2.3 Data Structures

2.3.1 IVISION_Params

Description

This structure defines the basic creation parameters for all vision applications.
Fields

Field Data Type Input/
Output

Description

algParams IALG_Param

s

Input IALG Params

cacheWriteBack ivisionCac

heWriteBac

k

Input Function pointer for cache write back for
cached based system. If the system is not
using cache fordata memory then the pointer
can be filled with NULL. If the algorithm
recives a input buffer with
IVISION_AccessMode as
IVISION_ACCESSMODE_CPU and the
ivisionCacheWriteBack as NULL then the
algorithm will return with error

2.3.2 IVISION_Point

Description

This structure defines a 2-dimensional point
Fields

Field Data Type Input/
Output

Description

X XDAS_Int32 Input X (horizontal direction offset)

y XDAS_Int32 Input Y (vertical direction offset)

2.3.3 IVISION_Rect

Description

This structure defines a rectangle
Fields

Field Data Type Input/
Output

Description

topLeft XDAS_Int32 Input Top left co-ordinate of rectangle

width XDAS_Int32 Input Width of the rectangle

height XDAS_Int32 Input Height of the rectangle

2.3.4 IVISION_Polygon

Description

This structure defines a poylgon
Fields

2-10

Field Data Type Input/
Output

Description

numPoints XDAS_Int32 Input Number of points in the polygon

poits IVISION_Po

int*

Input Points of polygon

2.3.5 IVISION_BufPlanes

Description

This structure defines a generic plane descriptor
Fields

Field Data Type Input/
Output

Description

buf Void* Input Number of points in the polygon

width XDAS_UInt3

2

Input Width of the buffer (in bytes), This field can
be viewed as pitch while processing a ROI in
the buffer

height XDAS_UInt3

2

Input Height of the buffer (in lines)

frameROI IVISION_Re

ct

Input Region of the intererst for the current frame
to be processed in the buffer. Dimensions
need to be a multiple of internal block
dimenstions. Refer application specific
details for block dimensions supported for
the algorithm. This needs to be filled even if
bit-0 of IVISION_InArgs::subFrameInfo is set
to 1

subFrameROI IVISION_Re

ct

Input Region of the intererst for the current sub
frame to be processed in the buffer.
Dimensions need to be a multiple of internal
block dimenstions. Refer application specific
details for block dimensions supported for
the application. This needs to be filled only if
bit-0 of IVISION_InArgs::subFrameInfo is set
to 1

freeSubFrameROI IVISION_Re

ct

Input This ROI is portion of subFrameROI that can
be freed after current slice process call. This
field will be filled by the algorithm at end of
each slice processing for all the input buffers
(for all the output buffers this field needs to
be ignored). This will be filled only if bit-0 of
IVISION_InArgs::subFrameInfois set to 1

planeType XDAS_Int32 Input Content of the buffer -
for example Y component of NV12

Field Data Type Input/
Output

Description

accessMask XDAS_Int32 Input Indicates how the buffer was filled by the
producer, It is
IVISION_ACCESSMODE_HWA or
IVISION_ACCESSMODE_CPU

2.3.6 IVISION_BufDesc

Description

This structure defines the iVISION buffer descriptor
Fields

Field Data Type Input/
Output

Description

numPlanes Void* Input Number of points in the polygon

bufPlanes[IVISION_MAX

_NUM_PLANES]

IVISION_Bu

fPlanes

Input Description of each plane

formatType XDAS_UInt3

2

Input Height of the buffer (in lines)

bufferId XDAS_Int32 Input Identifier to be attached with the input
frames to be processed. It is useful when
algorithm requires buffering for input buffers.
Zero is not supported buffer id and a
reserved value

Reserved[2] XDAS_UInt3

2

Input Reserved for later use

2.3.7 IVISION_BufDescList

Description

This structure defines the iVISION buffer descriptor list. IVISION_InBufs and IVISION_OutBufs is of the same
type

Fields

Field Data Type Input/
Output

Description

Size XDAS_UInt3

2

Input Size of the structure

numBufs XDAS_UInt3

2

Input Number of elements of type
IVISION_BufDesc in the list

bufDesc IVISION_Bu

fDesc **

Input Pointer to the list of buffer descriptor

2.3.8 IVISION_InArgs

Description

2-12

This structure defines the iVISION input arugments
Fields

Field Data Type Input/
Output

Description

Size XDAS_UInt3

2

Input Size of the structure

subFrameInfo XDAS_UInt3

2

Input bit0 - Sub frame processing enable (1) or
disabled (0)
bit1 - First subframe of the picture (0/1)
bit 2 - Last subframe of the picture (0/1)
bit 3 to 31 – reserved

2.3.9 IVISION_OutArgs

Description

This structure defines the iVISION output arugments
Fields

Field Data Type Input/
Output

Description

Size XDAS_UInt3

2

Input Size of the structure

inFreeBufIDs[IVISION_

MAX_NUM_FREE_BUFFERS]

XDAS_UInt3

2

Input Array of bufferId's corresponding to the
input buffers that have been unlocked in the
Current process call.
The input buffers released by the algorithm
are indicated by their non-zero ID (previously
provided via IVISION_BufDesc#bufferId
A value of zero (0) indicates an invalid ID.
The first zero entry in array will indicate end
of valid inFreeBufIDs within the array hence
the application can stop searching the array
when it encounters the first zero entry.
If no input buffer was unlocked in the
process call, inFreeBufIDs[0] will have a
value of zero.

outFreeBufIDs

[IVISION_MAX_NUM_FREE

_BUFFERS]

XDAS_UInt3

2

Input Array of bufferId's corresponding to the
Output buffers that have been unlocked in
the
Current process call.
The output buffers released by the algorithm
are indicated by their non-zero ID (previously
provided via IVISION_BufDesc#bufferId
A value of zero (0) indicates an invalid ID.
The first zero entry in array will indicate end
of valid inFreeBufIDs within the array hence
the application can stop searching the array
when it encounters the first zero entry.
If no output buffer was unlocked in the
process call, inFreeBufIDs[0] will have a
value of zero.

Field Data Type Input/
Output

Description

reserved[2] XDAS_UInt3

2

 Reserved for future usage

3-14

3 Vision Applications

This section outlines the interface and feature details of different vision applications.

3.1 Block Statistics

This routine accepts an 8-bit grayscale input image of size imageWidth by imageHeight. The image is divided into

non-overlapping blocks of statBlockWidth by statBlockHeight. The kernel computes block statistics over these

non-overlapping blocks. The following statistics are computed
1. Minima(min_B)
2. Maxima(max_B)
3. Mean(mean_B)
4. Variance(variance_A)

The applet does not perform averaging during mean and variance computations. Hence mean output reported is
actually N*mean and variance is N^2*variance where N is the number of samples within a block (N =
statBlockWidth*statBlockHeight). User has to divide the outputs by N and N^2 respectively to arrive at mean and
variance.

For a given image frame or ROI of size M x N and block size of m x n, the ROI is divided into closely packed non-
overlapping blocks/cells. There will be Mo x No such blocks where

 Mo = floor(M/m)

 No = floor(N/n)

 Example scenario for an image of size 32 x 32 with 8 x 8 cell size is shown below

3.1.1 Data Structures

3.1.1.1 BLOCK_STATISTICS_TI_CreateParams

Description

This structure defines the creation parameters for block statistics applet.

Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Params Input Commom structure for vision modules

imageWidth uint16_t Input Width of the input image

imageHeight uint16_t Input Height of the input image

statBlockWidth uint16_t Input Block width for which the statistics has to be
calculated

statBlockHeight uint16_t Input Block height for which the statistics has to be
calculated

3.1.1.2 Block Statistics Applet Input and Output Buffer Indices

Description

The following buffer indices are used to refer to the various input and output buffers needed by the Block
Statistics applet.

Fields

Field Data Type Input/
Output

Description

BLOCK_STATISTICS_TI_B

UFDESC_IN_IMAGEBUFFER

enum Input

This buffer descriptor provides the input
grayscale image data required by applet.
The applet supports input of unsigned char
type.

BLOCK_STATISTICS_TI_B

UFDESC_OUT_MIN

enum Output

This buffer descriptor points to the block
minimum output buffer. The buffer is
expected to be of type uint8_t.

BLOCK_STATISTICS_TI_B

UFDESC_OUT_MAX

enum Output This buffer descriptor points to the block
maximum output buffer. The buffer is
expected to be of type uint8_t.

BLOCK_STATISTICS_TI_B

UFDESC_OUT_MEAN

enum Output This buffer descriptor points to the block
mean output buffer. The buffer is expected
to be of type uint16_t.

BLOCK_STATISTICS_TI_B

UFDESC_OUT_VARIANCE

enum Output This buffer descriptor points to the block
variance output buffer. The buffer is
expected to be of type uint32_t.

3.1.2 Constraints

 Number of pixels in a block (blockWidth x blockHeight) <= 256

 Number of blocks vertically (blockHeight/statBlockHeight) is <= 8

 Number of blocks horizontally (blockWidth/statBlockWidth) is <= 8

3-16

 Assumptions
o Input:

 An 8-bit grayscale input image: (uint8_t)
o Outputs:

 Block Minima: (uint8_t)
 Block Maxima: (uint8_t)
 Block Mean: (uint16_t). Instead of outputting mean, the kernel outputs N*mean.
 Block Variance: (uint32_t). Instead of outputting variance, the kernel provides N^2*variance.

Number of pixels within a cell is <= 256 is used to decide the precision of mean and variance

3.2 Median Filter

This routine accepts an 8-bit grayscale input image of size imageWidth by imageHeight with a stride of imagePitch.
The image is divided into overlapping blocks of blockWidth by blockHeight. The block overlap can be controlled by
stepSizeHorz and stepSizeVert parameters. Median output is computed over block windows, which slides by
'stepSizeHorz' pixel in horizontal and by stepSizeVert in vertical directions. Below figure shows the input picture format
with all control parameters.

The median filter output will be of dimension mxn where
 m = ((imageWidth - blockWidth)/stepSizeHorz) + 1 and
 n = ((imageHeight - blockHeight)/stepSizeVert) + 1.

If the total number of elements in a block is even then the lower median is reported.

3.2.1 Data Structures

3.2.1.1 medianFilter_CreateParams

Description

This structure defines the creation parameters for median filter applet.
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

imageWidth uint16_t Input Width of the input image

imageHeight uint16_t Input Height of the input image

blockWidth uint8_t Input Block width for which the median has to be
calculated

blockHeight uint8_t Input Block height for which the median has to be
calculated

3-18

Field Data Type Input/
Output

Description

stepSizeHorz uint16_t Input Horizontal step/jump b/w blocks

stepSizeVert uint16_t Input Vertical step/jump b/w blocks

minInputBufHeight uint16_t Output Minimum height expected for input buffer.
The algorihtm will access the extra lines after
valid imageHeight during processing, but the
image content there will not effect the final
output.

extraInputMem uint16_t Output Extra number of bytes required after the last
valid input pixel (for a buffer size of
imageWidth by imageHeight).

minOutputBufStride uint16_t Output Minimum output buffer stride (in bytes)
expected to be provided to hold the output
for the given input image dimension.

minOutputBufHeight uint16_t Output Minimum height of the output buffer to hold
processed output for the given input image
dimension.

3.2.1.2 Median Filter Applet Input and Output Buffer Indices

Description

The following buffer indices are used to refer to the various input and output buffers needed by the GLCM applet.
Fields

Field Data Type Input/
Output

Description

MEDIAN_FILTER_TI_BUFD

ESC_IN_IMAGEBUFFER

enum Input

This buffer descriptor provides the input
grayscale image data required by applet.
The applet supports input of unsigned char
type.

MEDIAN_FILTER_TI_BUFD

ESC_OUT_IMAGEBUFFER

enum Output

This buffer descriptor points to the median
filter output.

3.2.1.3 Median Filter Applet Control Command Indices

Description

This following Control Command indices are supported for Median Filter applet.
Fields

Field Description

TI_MEDIAN_FILTER_CONTROL_GET_BUF

_SIZE

The algorithm expects the input and output buffers to be satisfy
certain contraints. These details are communicated to the user
using a control call with this index. Given the input create time
parameters, the control call return the buffer constraints through
the output parameters of MEDIAN_FILTER_TI_CreateParams
structure.

3.2.2 Constraints

 The maximum filtering kernel size (blockHeight*blockWidth) that can be employed is restricted by the internal

memory of EVE. The kernel size has to be less than ~ 16kB (16, 351 bytes to be exact).

 Apart from the special case of 3x3 dense median filtering (blockHeight = blockWidth = 3 and stepSizeHorz =
stepSizeVert = 1), the current applet cannot be used for filtering with kernels of width (i.e. blockWidth) less
than 9.

 The applet will be functional for all filtering kernel sizes that satisfy the above constraint. For all kernel sizes
apart from 3x3 dense median filtering, the computation is based on Histogram sort approach. Hence, from a
performance point of view, it is recommended to be used for large kernel median filtering.

3-20

3.3 Block sort U32

This routine sorts elements whithin multiple blocks of N 32-bits unsigned integers, with N= 64, 128, 256, 512, 1024,
2048. The blocks can be arranged in a 1-D or 2-D fashion within a frame. Indeed the structure

BLOCK_SORT_U32_TI_CreateParams contains arguments such as blockWidth, blockHeight, imgFrameWidth,

imgFrameHeight, which enable different layout for the data.

Below are some example layouts which are supported:

 2-D frames of 2-D block with blockWidth=Nx, blockHeight= Ny

with N= Nx x Ny .

imgFrameWidth must be a multiple of blockWidth= Nx and imgFrameHeight must be a multiple of blockHeight=

Ny . Note that blockHeight= Ny can be equal to 1.

 1 frame= 1 block with imgFrameWidth= blockWidth=Nx, imgFrameHeight= blockHeight= Ny

This layout is referred as single block processing in the remaining of the document. Single block processing
is a special case of processing that is not supported with other functions. Other functions require at least 2
blocks of data to fill the pipeline. But this sorting function was customized to handle this corner case of single
block processing since very often applications only need to sort a small list of elements.

Pointers of the source and destination frames residing in external memory are normally passed through the

IVISION_InBufs and IVISION_OutBufs arguments of the algProcess() API.

However there is an exception in the case of single block processing: whenever the single block data already resides
in VCOP’s image buffer, it is possible to pass the location of the block to the function by setting the arguments
singleBlocksSrcAddr and singleBlocksDstAddr of BLOCK_SORT_U32_TI_CreateParams. When

algInit() API is called, the function recognizes that the locations are in VCOP’s image buffer and does the

appropriate setup such that algProcess() will bypass the EDMA transfers. The application must ensure that the

data to be sorted is generated into the location pointed by singleBlocksSrcAddr and must read the results from

singleBlocksDstAddr. By passing the EDMA transfers, whenever data is already in image buffer, allows for faster

processing time. Note that single block processing also works when the single data block is in external memory but
then, EDMA are used and will lengthen the processing time as it is not possible to hide data transfers behind
processing when only one block is processed.

blockWidth= Nx

imgFrameWidtth

blockHeight= Ny

imgFrameHeight

blockWidth= Nx

imgFrameWidtth

blockHeight= Ny imgFrameHeight

3.3.1 Data Structures

3.3.1.1 BLOCK_SORT_U32_TI_CreateParams

Description

This structure defines the creation parameters for block sort applet.
Fields

Field Data Type Input/
Output

Description

Size uint32_t Input Size of the structure

imageFrameWidth uint16_t Input Width of the input image

imageFrameHeight uint16_t Input Height of the input image

blockWidth uint16_t Input Block width of the blocks that are sorted

blockHeight uint16_t Input Block height of the blocks that are sorted

singleBlocksSrcAddr uint32_t Input Used for single block processing, which is
automatically detected when

imageFrameWidth= blockWidth and

imageFrameHeight= blockHeight .

Otherwise set it to 0.

singleBlocksDstAddr uint32_t Input Used for single block processing, which is
automatically detected when

imageFrameWidth= blockWidth and

imageFrameHeight= blockHeight.

Otherwise set it to 0.

3.3.2 Constraints

 The product blockWidth x blockHeight must be equal to 64, 128, 256, 512, 1024 or 2048 .

 imageFrameWidth must be multiple of blockWidth.

 imageFrameHeight must be multiple of blockHeight.

3-22

3.4 Image Pyramid

This routine accepts an 8-bit grayscale input image of size srcImageWidth by srcImageHeight with a stride of
srcImagePitch to produce up to 5 downscaled versions of the original image. Either 2x2 block averaging or 5x5
gaussian filtering can be used for the downscaling. The application chooses which technique will be used by setting
the parameter filterType of the structure IMAGE_PYRAMID_U8_TI_CreateParams.

Each output level of the pyramid is specified through the output buffer descriptor passed to handle->ivision-

>algProcess. The following example code shows how a 3 levels pyramid for a 320x240 image is setup:

inBufDesc.numPlanes = 1;

inBufDesc.bufPlanes[0].frameROI.topLeft.x = 0;

inBufDesc.bufPlanes[0].frameROI.topLeft.y = 0;

inBufDesc.bufPlanes[0].width= 320;

inBufDesc.bufPlanes[0].height= 240;

inBufDesc.bufPlanes[0].frameROI.width= 320;

inBufDesc.bufPlanes[0].frameROI.height= 240;

inBufDesc.bufPlanes[0].buf = (uint8_t *)input ;

outBufDesc.numPlanes = 3;

outBufDesc.bufPlanes[0].frameROI.topLeft.x= 0;

outBufDesc.bufPlanes[0].frameROI.topLeft.y= 0;

outBufDesc.bufPlanes[0].width= 160;

outBufDesc.bufPlanes[0].height= 120;

outBufDesc.bufPlanes[0].frameROI.width= 160;

outBufDesc.bufPlanes[0].frameROI.height= 120;

outBufDesc.bufPlanes[0].buf = (uint16_t *)output_level1;

outBufDesc.bufPlanes[1].frameROI.topLeft.x= 0;

outBufDesc.bufPlanes[1].frameROI.topLeft.y= 0;

outBufDesc.bufPlanes[1].width= 80;

outBufDesc.bufPlanes[1].height= 60;

outBufDesc.bufPlanes[1].frameROI.width= 80;

outBufDesc.bufPlanes[1].frameROI.height= 60;

outBufDesc.bufPlanes[1].buf = (uint16_t *)output_level2;

outBufDesc.bufPlanes[2].frameROI.topLeft.x= 0;

outBufDesc.bufPlanes[2].frameROI.topLeft.y= 0;

outBufDesc.bufPlanes[2].width= 40;

outBufDesc.bufPlanes[2].height= 30;

outBufDesc.bufPlanes[2].frameROI.width= 40;

outBufDesc.bufPlanes[2].frameROI.height= 30;

outBufDesc.bufPlanes[2].buf = (uint16_t *)output_level3;

status = handle->ivision->algProcess((IVISION_Handle)handle,

 &inBufs,&outBufs,&inArgs,(IVISION_OutArgs *)&outArgs);

When 5x5 gaussian filter is selected, the ROI must be padded with border pixels. The application is in charge of
creating these border pixels, which can be either real pixels coming from image region outside of the ROI or can be
mirrored pixels from the ROI.

The number of border pixels depend on the number of pyramid levels L and can be calculated using this formula:





L

l

lixelsnumBorderP
0

2*4

Basically, 5x5 gaussian filtering requires 4 border pixels across each dimension: 2 on the left side, 2 on the right side,
2 at the top and 2 at the bottom of the image. If there are multiple levels, gaussian filtering is applied multiple times so
the number of border pixels increase along with the number of levels. However due to downscaling by a factor of 2,
the number of border pixels contributed by each level increases by a factor of 2 when we use the original scale as
reference. The table below shows the number of border pixels per number of pyramid levels, using the formula:

L numBorderPixels

1 4

2 12

3 28

4 60

5 124

Basically, 5x5 gaussian filtering requires 4 border pixels across each dimension: 2 on the left side, 2 on the right

side, To translate the presence of border pixels when initializing the inBufDesc structure, the application must

take care of setting inBufDesc.bufPlanes[0].width and inBufDesc.bufPlanes[0].height such that they

include these border pixels. Also, inBufDesc.bufPlanes[0].buf points to the upper left corner of the entire

frame, border pixels included. inBufDesc.bufPlanes[0].frameROI.topLeft.x and

inBufDesc.bufPlanes[0].frameROI.topLeft.y are used to indicate where the ROI actually starts and are

no longer equal to 0 as it was the case in the 2x2 averaging. Please refer to the below figure for a pictorial
representation of the different dimensions discussed above:

For 5x5 gaussian, the previous example code showing how a 3 levels pyramid for a 320x240 image is setup, would

differ only in the way inBufDesc is setup, the remaining outBufDesc would have similar setup:

inBufDesc.numPlanes = 1;

inBufDesc.bufPlanes[0].frameROI.topLeft.x = 14;

inBufDesc.bufPlanes[0].frameROI.topLeft.y = 14;

inBufDesc.bufPlanes[0].width= 348;

inBufDesc.bufPlanes[0].height= 268;

inBufDesc.bufPlanes[0].frameROI.width= 320;

inBufDesc.bufPlanes[0].frameROI.height= 240;

inBufDesc.bufPlanes[0].buf = (uint8_t *)input ;

3.4.1 Data Structures

3.4.1.1 IMAGE_PYRAMID_U8_TI_CreateParams

Description

This structure defines the creation parameters for image pyramid applet.
Fields

inBufDesc.bufPlanes[0].

frameROI.topLeft.y=

numBorderPixels/2

inBufDesc.bufPlanes[0].height
inBufDesc.bufPlanes[0]

.frameROI.height

inBufDesc.bufPlanes[0].width

inBufDesc.bufPlanes[0]

.frameROI.width

inBufDesc.bufPlanes[0].frameROI.topLeft.x=

numBorderPixels/2

3-24

Field Data Type Input/
Output

Description

imgFrameWidth uint16_t Input Width of the input image

imgFrameHeight uint16_t Input Height of the input image

numLevels uint8_t Input Number of pyramid level, up to

IMGPYRAMID_MAX_NUM_LEVELS which

is 5 in current implementation

filterType uint8_t Input Type of filter to be chosen. Possible options
are
IMAGE_PYRAMID_U8_TI_2x2_AVERAGE
IMAGE_PYRAMID_U8_TI_5x5_GAUSSIAN

3.4.2 Constraints

 imgFrameWidth must be multiple of pow(2, numLevels-1)) and be greater or equal to 64.

 imgFrameHeight must be multiple of pow(2, numLevels-1) and be greater or equal to 32.

 numLevels <= 5 for 2x2 block averaging, numLevels <=4 for 5x5 gaussian

3.5 FAST9 Corner Detection

This routine accepts an 8-bit grayscale input image of size imageWidth by imageHeight with a stride of imagePitch.
The output of this routine is the list of corner points detected in the image in (Y,X) packed format with Y being the first
16 bit and X being the second 16 bit in memory. Since it can accept a partial image in a bigger image, the routine also
accept initial startX and startY co-ordinate position to provide the actual keypoint position in image. The pitch is
provided during execution time as part buffer descriptors. Please refer ivision section for more details.
This applet can execute at multiple levels (for pyramidal usecases) at a time. Max levels supported are 4. It is
important to note that the actual region processed by this applet can be lessor than the user provided input image
width and height. This is done in order to get best performance from the hardware. The actual region processed will be
returned as a part of outArgs. Please refer to data structures in next section for the details on input and output
parameters.

3.5.1 Data Structures

3.5.1.1 FAST9_CORNER_DETECT_TI_CreateParams

Description

This structure defines the creation parameters for FAST9 Corner detection
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

numLevels uint8_t Input Number of levels for which corners needs to
be detected

imgFrameWidth[] uint16_t Input Array of width of the input Image for all levels

imgFrameHeight[] uint16_t Input Array of height of the input Image for all
levels

excludeBorderX uint16_t input Border to be excluded in X direction. This
information will be helpful for applet to
improve performance by reducing the
effective imgFrameWidth. Even if this value
is set to zero, the activeImgWidth can be
lesser than
imgFrameWidth. Refer activeImgWidth
details provided below

excludeBorderY uint16_t Input Border to be excluded in Y direction. This
information will be helpful for applet to
improve performance by reducing the
effective imgFrameHeight. Even if this value
is set to zero, the activeImgHeight can be
lesser than
imgFrameHeight. Refer activeImgHeight
details provided below

3.5.1.2 FAST9_CORNER_DETECT_TI_InArgs

Description

This structure contains all the parameters which are given as an output by FAST9 corner

detect applet.
Fields

3-26

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

fast9Threshold[] uint8_t Input

Threshold on difference between intensity of
the central pixel and pixels of a circle
around this pixel for FAST9 corner detect
applet. This threshold should be provided for
all levels in pyramid.

levelMask uint8_t Input

This indicates which of the levels in pyramid
should be executed for a particular process
call. Kindly refer to
@IFAST9_CORNER_DECTECT_levelMask
for valid values

3.5.1.3 FAST9_CORNER_DETECT_TI_OutArgs

Description

This structure contains all the parameters which are given as an output by FAST9 corner detect applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

numCorners[] uint16_t Output Total number of Key points (corners)
detected for each input level

activeImgWidth[] uint16_t Output activeImgWidth is primarily <=
imgFrameWidth and decided by applet to
satisfy the internal DMA and kernel
requirements. This is the actual number of
horizontal pixels being processed. It is
exported for user as informative. This
information is returned for each input level.

activeImgHeight[] uint16_t Output activeImgHeight is primarily <=
imgFrameHeight and decided by applet to
satisfy the internal DMA and kernel
requirements. This is the actual number of
vertical lines being processed. It is exported
for user as informative. This information is
returned for each input level.

3.6 FAST9 Best Feature to Front

This routine accepts a corner list in (Y,X) packed format with Y being the first 16 bit and X being the second 16 bit in
memory along with a 8-bit grayscale input image of size imageWidth by imageHeight with a stride of imagePitch. The
output of this routine is the list of best N corner points (Y,X) in the same format as input. Although, input (Y,X) can be
16-bit, internally we are reducing the bit-depth of (Y,X) to 10 bit each. Hence, the (Y,X) co-ordinates has to be less
than < 1024. The criterion for best N features is Fast9 score. The maximum number of features that can be processed
is 2048, however user can set any value less than 2048. The number of features to be processed is accepted at

execution time but the maxFeature at create time. Internally this applet rounds up the number of features to be
processed to be power of 2 (64, 128, 256,…,2048). Functionality point of view, it allows any number of features but
performance will be considering as if the number of features are rounded up to next poer of 2, for example
performance of 129 features will be same as 256 features. There are 2 types of suppression currently supported (4-
way and 8-way suppression). In the case of 8-way suppression, max(1.3*best N, maxFeatures) features are used for
suppression. It can turn out that the number of non-suppressed feature points can be less than the user desired bestN
value. This information is provided as part of the outArgs.
 The performance will be varying based upon number of features, the score method used, the suppression method
used and details can be found in Data sheet.

3.6.1 Data Structures

3.6.1.1 FAST9_BEST_FEATURE_TO_FRONT_TI_CreateParams

Description

This structure defines the creation parameters for FAST9 Best Feature to Front
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

maxFeatures uint16_t Input Maximum number of features to be
processed

maxbestNFeatures uint16_t Input Maximum number of bestN features to be
processed for 8-way suppression

xyInIntMem uint8_t Input Flag to indicate if the XY list of key point
location is in DDR or DMEM

fast9Threshold uint8_t Input Threshold on difference between intensity of
the central pixel and pixels of a circle around
this pixel for FAST9 corner detection.

scoreMethod uint8_t Input Method of fast9 score to be computed:
FAST9_BFTF_TI_THRESH_METHOD and
FAST9_BFTF_TI_SAD_METHOD are
currently supported

3.6.1.2 FAST9_BEST_FEATURE_TO_FRONT_TI_InArgs

Description

This structure contains all the parameters which are given as input to FAST9 best feature to front applet.
Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_Pa

rams

Input

Commom structure for inArgs ivision
modules

suppressionMethod uint8_t Input Method of suppression to be used:
FAST9_BFTF_TI_SUPPRESSION_4WAY
and
FAST9_BFTF_TI_SUPPRESSION_8WAY
are currently supported

3-28

Field Data Type Input/
Output

Description

numFeaturesIn[] uint16_t Input Total number of Key points to be processed
for each level

bestNFeatures[] uint16_t Input Number of feature points locations (X,Y) to
output at each level

3.6.1.3 FAST9_BEST_FEATURE_TO_FRONT_TI_OutArgs

Description

This structure contains all the parameters which are given as output from FAST9 best feature to front applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

bestNFeaturesOut[] uint16_t Output Number of bestN features output at each
level.
It can be less than the user input value
bestNFeatures[]

3.7 Harris Corner Detection

This routine accepts an 8-bit grayscale input Region of Interest (ROI) of size imgFrameWidth by imgFrameHeight with
a stride of imagePitch. The output of this routine can be of two types based on the user configuration. One is the list
of corner points detected in the image in X,Y packed format with each X and Y being 16 bit quantity in memory. The
order of X and Y is also configurable. The second output format is in bin packed format where each pixel is
represented by a bit in outbut binary image. All set bits (having value “1”) are at the location where a corner point is
detected and having value “0” where no corner is detected. User also have option to configure the window size of
Harris Corner detect algorithm along with the method to be used for score calculation. The details of these
configurable parameters are described in later sections. The pitch is provided during execution time as part buffer
descriptors. Please refer ivision section for more details.This applet also returns the actual number of horizontal and
vertical pixels which are being accessed as part of outArgs. Please refer to data structures in next section for the
details on input and output parameters.

The applet performs these four different processing steps:

1. Compute horizontal and vertical gradients of the image using a 3x1 filter [-1 0 1] and 1x3 filter [-1 0
1]

t
respectively. This step requires a padding of 1 pixels around the frame. Please refer to VLIB’s

documentation of 2-D Gradient Filtering for further details on the behaviour of this step.
2. Compute 32-bits harris score from the horizontal and vertical image gradients, using a nxn averaging support

window (n can take value 3,5,7). This step requires a padding of (n-1)/2 pixels around the frame. Please refer
to VLIB’s documentation of Harris Corner Score for further details on the behaviour of this step.

3. Compute non maximum suppression using a nxn mask around each pixel and also perform thresholding.
Pixels that are not suppressed constitute the harris corners of the image. This step requires a padding of (n-
1)/2 pixels around the frame. Please refer to VLIB’s documentation of Non-Maxima Suppression for further
details on the behaviour of this step.

4. Generate a list of (X,Y) coordinates of the detected harris corners. This is the final output produced by the
applet.

Note that if we add the padding requirement of steps 1,2,3, this amounts to a padding of 1 + (n-1)/2 +(n-1)/2 = n pixels
around the frame (left, right, top, bottom). Horizontal padding is reflected by providing a pitch value at least 2n pixels
greater than the ROI’s image width and by setting the ROI’s top left corner to start n pixels away from the top left
corner of the frame.

Usage of this applet follows the calling sequence in 2 . The processing is performed by algProcess() for which input

and output buffer descriptors must be provided. The example code below shows how these descriptors are setup to
process a 320x240 ROI.

inArgs.subFrameInfo= 0;

inArgs.size= sizeof(IVISION_InArgs);

inBufDesc.numPlanes= 1;

/* ROI is shifted such that border pixels that extend out of the ROI are accessed during filtering */

inBufDesc.bufPlanes[0].frameROI.topLeft.x= n;

inBufDesc.bufPlanes[0].frameROI.topLeft.y= n;

/* Not that EDMA may access pixels outside of the specified image area due to some internal implementation

constraints. The area actually accessed from the topLeft corner will be given by outArgs.activeImgWidth and

outArgs.activeImgHeight. It is the application responsibiliy to ensure that inBufDesc.bufPlanes[0].width and

inBufDesc.bufPlanes[0].height are larger enough to enclose the area of dimensions activeImgWidth x

activeImgHeight whose top left corner is located at (frameROI.topLeft.x, frameROI.topLeft.y) .*/

inBufDesc.bufPlanes[0].width= 320 + 2n;

inBufDesc.bufPlanes[0].height= 240 + 2n;

inBufDesc.bufPlanes[0].frameROI.width= 320; /* same as createParams.imgFrameWidth */

inBufDesc.bufPlanes[0].frameROI.height= 240; /* same as createParams.imgFrameHeight */

inBufDesc.bufPlanes[0].buf = (uint8_t *)input;

outBufDesc.numPlanes= 1;

outBufDesc.bufPlanes[0].frameROI.topLeft.x= 0;

outBufDesc.bufPlanes[0].frameROI.topLeft.y= 0;

outBufDesc.bufPlanes[0].width= 2*createParams.maxNumCorners*sizeof(uint16_t);

outBufDesc.bufPlanes[0].height= 1;

outBufDesc.bufPlanes[0].frameROI.width= 2*createParams.maxNumCorners*sizeof(uint16_t);

3-30

(X0,Y0) (X1,Y1)

(X2,Y2)

(X3,Y3)

outBufDesc.bufPlanes[0].frameROI.height= 1;

outBufDesc.bufPlanes[0].buf= (uint16_t *)outXY;

status = handle->ivision->algProcess((IVISION_Handle)handle,

 &inBufs,&outBufs,&inArgs,(IVISION_OutArgs *)&outArgs);

The final list of (X,Y) coordinate of the detected corners is written out to the location pointed by

outBufDesc.bufPlanes[0].buf and the number of corners detected is returned in the member numCorners

HARRIS_CORNER_DETECTION_32_TI_outArgs structure passed to algProcess(). As the example above shows,

the size of the buffer pointed by outBufDesc.bufPlanes[0].buf must be equal to

2*createParams.maxNumCorners*sizeof(uint16_t) where createParams.maxNumCorners is the value used

to initialize the member maxNumCorners of the applet’s HARRIS_CORNER_DETECTION_32_TI_CreateParams

structure. The reason is that the coordinates are output in (X,Y) interleaved 16-bits format.

Note that the underlying processing is performed in a block-wise fashion. The dimensions of the processing block are

automatically determined by the function and are returned in the outputBlockWidth and outputBlockHeight

members in the structure HARRIS_CORNER_DETECTION_32_TI_outArgs passed to algProcess(). Normally the

application shouldn’t care about these values except when trouble shooting performance. Typical values for

outputBlockWidth x outputBlockHeight should be 32x30 or 36x32. Smaller output block dimensions might

cause performance degradation and can be corrected by modifying the macro symbols

HARRIS_CORNER_DETECTION_BLK_WIDTH and HARRIS_CORNER_DETECTION_BLK_HEIGHT in file

apps\harrisCornerDetection32\algo\src\harrisCornerDetection32_graph_int.h to values that exactly divide

imgFrameWidth and imageFrameHeight.

Also due to the block-based nature of the processing, the resulting (X,Y) coordinates list will not order the corners in a
raster-scan fashion. To illustrate the difference of order between block-based processing and raster-scan processing,
take the example below where 4 corners are detected. The frame is divided into processing blocks.

Normal raster scan processing will list the corners in the following order: (X0,Y0), (X2,Y2), (X1,Y1), (X3,Y3) whereas the
applet’s block-based processing will produce the following list: (X0,Y0), (X1,Y1), (X2,Y2), (X3,Y3)

3.7.1 Data Structures

3.7.1.1 HARRIS_CORNER_DETECTION_32_TI_OutputFormat

Description

The format in which Harris corner detect applet output is expected to appear.
Fields

Field Data Type Input/
Output

Description

HARRIS_CORNER_DETECTI

ON_32_TI_OUTPUT_FORMA

T_LIST

enum Input

Output is the list of corners detected by this
applet

Field Data Type Input/
Output

Description

HARRIS_CORNER_DETECTI

ON_32_TI_OUTPUT_FORMA

T_BINARY_PACK

enum Input

Output of corners in binary packed format
where a bit value of 1 indicates a corner at
that pixel location and 0 indicates its not a
corner
 Byte0 -> Bit0 (LSB of the byte in binary
image)
 Byte7 -> Bit7 (MSB of the byte in binary
image)
 pixels : 0 1 2 3 4 5 6 7 8 9 10 will be
present as
 Binary : 7 6 5 4 3 2 1 0 15 14 23 12 11 10
9 8 and so on

3.7.1.2 HARRIS_CORNER_DETECTION_32_TI_HarrisWindowSize

Description

Supported windows size for Harris Score.
Fields

Field Data Type Input/
Output

Description

HARRIS_CORNER_DETECTI

ON_32_TI_HARRIS_WINDO

W_7x7

enum Input

This enum is used to do Harris score
calculation for a 7x7 window

HARRIS_CORNER_DETECTI

ON_32_TI_HARRIS_WINDO

W_5x5

enum Input

This enum is used to do Harris score
calculation for a 5x5 window

HARRIS_CORNER_DETECTI

ON_32_TI_HARRIS_WINDO

W_3x3

enum Input

This enum is used to do Harris score
calculation for a 3x3 window

3.7.1.3 HARRIS_CORNER_DETECTION_32_TI_SuppressionMethod

Description

Method to be used for Suppression of corners.
Fields

Field Data Type Input/
Output

Description

HARRIS_CORNER_DETECTI

ON_32_TI_HARRIS_WINDO

W_7x7

enum Input

Use Non Maximum Suppresion in a window
of size 7x7

HARRIS_CORNER_DETECTI

ON_32_TI_HARRIS_WINDO

W_5x5

enum Input

Use Non Maximum Suppresion in a window
of size 5x5

HARRIS_CORNER_DETECTI

ON_32_TI_HARRIS_WINDO

W_3x3

enum Input

Use Non Maximum Suppresion in a window
of size 3x3

3.7.1.4 HARRIS_CORNER_DETECTION_32_TI_HarrisScoreMethod

Description

Method to be used for Harris Score Calculation.

3-32

Fields

Field Data Type Input/
Output

Description

HARRIS_CORNER_DETECTI

ON_32_TI_HARRIS_SCORE

_METHOD_A

enum Input

Score is defined as
 Harris Score = (Lamda1 * Lamda2) - k
(Lamda1+ Lamda2)^2. This method is used
 to detect only corners in the image

HARRIS_CORNER_DETECTI

ON_32_TI_HARRIS_SCORE

_METHOD_B

enum Input

Score is defined as
 Harris Score = (Lamda1+ Lamda2). This
method is used to detect both corners and
edges in the Image

3.7.1.5 HARRIS_CORNER_DETECTION_32_TI_CreateParams

Description

This structure defines the creation parameters for Harris Corner detection
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_

Params

Input Common structure for vision modules

imgFrameWidth uint16_t Input Width in bytes of the input ROI without taking
into account the padding

imgFrameHeight uint16_t Input Height in number of lines of the input ROI
without taking into account the padding

maxNumCorners uint8_t Input Maximum number of corners that the
function will return in the (X,Y) coordinates
list. If there are more corners detected by the

NMS steps, only the first maxNumCorners

are returned.

harrisScoreScalingFactor uint16_t Input Scaling factor in Q15 format used by harris
score kernel

nmsThresh int32_t Input Threshold used in non-maximum
suppression. For exact format of the
threshold kindly refer to harris score
documentation in kernels/docs/vlib_on_EVE
doc

qShift uint8_t Input Q shift that should be applied to detected
corner points

harrisWindowSize uint8_t Input Window size to be used for harris score
calculation. Considers a harrisWindowSize x
harrisWindowSize neighborhood to calculate
Harris Score. Kindly refer to
HARRIS_CORNER_DETECTION_32_TI_Ha
rrisWindowSize for valid values

Field Data Type Input/
Output

Description

harrisScoreMethod uint8_t Input Method to use for Harris Score calculation.
Refer to
HARRIS_CORNER_DETECTION_32_TI_Ha
rrisScoreMethod for valid values

suppressionMethod uint8_t Input Suppression method to be used for non
maximum suppression. Kindly refer to
HARRIS_CORNER_DETECTION_32_TI_Su
ppressionMethod for valid values

outputFormat uint8_t Input The format in which output is required.
Kindly refer to
HARRIS_CORNER_DETECTION_32_TI_O
utputFormat for supported formats

3.7.1.6 HARRIS_CORNER_DETECTION_32_TI_ControlInParams

Description

This structure defines the input control parameters passed to the algControl() API:

int32_t algControl (IVISION_Handle Handle, IALG_Cmd cmd,

 const IALG_Params *inParams, IALG_Params *outParams);

Used when parameter cmd is set to HARRIS_CORNER_DETECTION_SET_THRESHOLD, which instructs the

algControl() API to use inParams->nmsThreshold as the current threshold value for the NMS node.

Fields

Field Data Type Input/
Output

Description

algParams IALG_Par

ams

Input Common structure for IALG modules

nmsThreshold Int32_t Input New NMS threshold value that will be used

next time the algProcess() API is called.

3.7.1.7 HARRIS_CORNER_DETECTION_32_TI_ControlOutParams

Description

This structure defines the output control parameters passed to the algControl() API:

int32_t algControl (IVISION_Handle Handle, IALG_Cmd cmd,

 const IALG_Params *inParams, IALG_Params *outParams);

Used when parameter cmd is set to HARRIS_CORNER_DETECTION_GET_THRESHOLD, which instructs the

algControl() API to return the current threshold value for the NMS node into outParams->nmsThreshold.

Fields

Field Data Type Input/
Output

Description

3-34

Field Data Type Input/
Output

Description

algParams IALG_Par

ams

Input Common structure for IALG modules

nmsThreshold int32_t Output Current NMS threshold value used when the

algProcess() API is called.

3.7.1.8 HARRIS_CORNER_DETECTION_32_TI_outArgs

Description

This structure contains all the parameters which are given as an output by Harris corner detect applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

numCorners uint16_t Output Total number of Key points (corners)
detected

activeImgWidth uint16_t Output activeImgWidth is primarily =
imgFrameWidth + 14 and decided by applet
to satisfy the internal DMA and kernel
requirements. This is the actual number of
horizontal pixels being accessed by EDMA.
It is exported for user as informative

activeImgHeight uint16_t Output activeImgHeight is primarily =
imgFrameHeight + 14 and decided by applet
to satisfy the internal DMA and kernel
requirements. This is the actual number of
vertical lines being accessed by EDMA. It is
exported for user as informative

outputBlockWidth uint16_t Output Output block width in number of pixels
returned by BAM_createGraph(). That's
useful information to understand
performance.

outputBlockHeight uint16_t Output Output block height in number of pixels
returned by BAM_createGraph(). That's
useful information to understand
performance.

3.8 RBrief Applet

rBrief is a feature descriptor calculator. It generates a 256 bit feature vector for each feature which acts as a unique
signature for the feature. This applet accepts input image for multiple levels of image pyramid, along with the list of
coordinates (Y,X) of feature point and list of level id’s to indicate the correspondence of feature point to the level in
image pyramid. Y,X list is an list of 4 byte interger whose upper two bytes give Y coordinate and lower two byte gives
X coordinate in memory. The output of this applet is list of rBrief feature descriptor of size 32 byte per feature,
calculated around each of the points in the list of coordinate points.
All the execute time input to this applet comes from buffer descriptor. For further details of input and output buffers
kindly refer to the irbrief.h and ivision.h interface header files. Max levels supported is 4. Please refer to data
structures in next section for the details on input and output parameters.

3.8.1 Data Structures

3.8.1.1 RBRIEF_TI_CreateParams

Description

This structure defines the creation parameters for FAST9 Corner detection
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

maxNumFeatures uint8_t Input Number of max Features for which the
applet will be used. User can configure any
value <= RBRIEF_TI_MAXNUMFEATURES

orbPattern int8_t * Input This pattern defines the position of 256 pairs
of src and dst to create 256 bit rBRIEF
descriptor. Total size of this memory are has
to be 256*4. For Exact format of this pattern
- refer the User guide and test bench of this
applet

xyListInDmem uint8_t Input This flag indicates whether xy list is already
in DMEM, if not this applet will first copy the
list in DMEM. Value of 0 indidcates list is in
DDR and 1 indicates the list is in DMEM.

levelListInDmem uint8_t input This flag indicates whether level list is
already in DMEM, if not this applet will first
copy the list in DMEM. Value of 0 indidcates
list is in DDR and 1 indicates the list is in
DMEM

3.8.1.2 RBRIEF_TI_OutArgs

Description

This structure contains all the parameters which are given as an output by rBRIEF applet..
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

3-36

3.9 Pyramid LK Tracker

Pyramid LK tracker helps in tracking the corner points across the current frame, which were detected in previous
frame. For instance, the two input images can be two consecutive frames of a given video sequence. This routine
accepts image pyramids of two 8-bit grayscale input images namely previous frame and current frame each of which
has a dimension of imageWidth x image Height with a stride of imagePitch. Maximum number of levels supported is 4
including original resolution of input image. Also, the resolution of each pyramid level is assumed half across both
dimensions. That is, the resolution of other pyramid levels is as follows, (imageWidth x image Height)/4, (imageWidth
x image Height)/16 & (imageWidth x image Height)/64. It also accepts two more inputs, which corresponds to corner
points coordinates of two input images mentioned above. The user can has the following two options for providing an
initial estimate of the corner points coordinates for the current frame, 1) Pass the same buffer for the current frame
corner points coordinates, 2) Initialize the current frame corner points coordinates by adding the ego motion to the
previous frame corner points coordinates. Pyramid LK tracker updates the output buffer with the tracked corner points
updated coordinates for the current frame. The pitch is provided during execution time as part buffer descriptors.
Pyramid LK tracker also computes the SAD based eror measure for each of the key points for the last pyramid level
corresponding to original resolution. It sums up the absolute difference of the bilinear interpolated pixels of the patch
windows in the previous and current frame across the original location and tracked location respectively. Please refer
ivision section for more details. Please refer to the data structures in next section for the details on create time and
input parameters.

3.9.1 Data Structures

3.9.1.1 PYRAMID_LK_TRACKER Macros

Description

User provides the infomration about maximum values supported by some of control parameters.
Fields

Enumeration Description

PYRAMID_LK_TRACKER_TI_MAXLEVELS Maximum number of levels supported by the
applet. (Currently it is 8).
Constraint:: Both width and height of lowest
scale should be greater >= 9

PYRAMID_LK_TRACKER_TI_MAXLEVELS_PER_CALL Maximum number of levels that can be
processed in one ivion process call.

PYRAMID_LK_TRACKER_TI_MAX_SEARCH_RANGE Maximum search range in each diretcion
supported by Algorithm (Currently it is 18).

PYRAMID_LK_TRACKER_TI_MAXITERATION Maximum Iteration supported per level (currently
it is 20).

3.9.1.2 PYRAMID_LK_TRACKER_TI_CreateParams

Description

This structure defines the creation parameters for Pyramid LK tracker applet
Fields

Field Data Type Input/
Output

Description

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

imWidth uint16_t Input Width of the input image in bytes

imHeight uint16_t Input Height of the input image in bytes

numLevels uint16_t Input Number of pyramid levels over which the
corner points need to be tracked.
Constraint:: Both width and height of lowest
scale should be greater >= 9

maxItersLK[PYRAMID_LK

_TRACKER_TI_MAXLEVELS

]

uint16_t input Maximum number of iterations for the
iterative loop of pyramid LK tracker applet.
This value can be set individually for each
level.

minErrValue[PYRAMID_L

K_TRACKER_TI_MAXLEVEL

S]

uint16_t Input Minimum flow vector difference value at any
iteration of a given pyramid level. This input
is represented using Q10 format. If the
motion detected for a given point is less than
or equal to this threshold, then it is
considered as negligible motion and thereby
invokes exit from the iterative loop of
pyramid LK tracker. This value can be set
individually for each level.

searchRange[PYRAMID_L

K_TRACKER_TI_MAXLEVEL

S];

uint8_t Input Search range in pixel for each level

numKeyPoints uint16_t Input Maximum number of corners or key points
that need to be tracked.

3.9.1.3 PYRAMID_LK_TRACKER_TI_InArgs

Description

This structure contains all the parameters which are given as an input to the Pyramid LK tracker applet during
process calls.

Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

numKeyPoints uint16_t Input

Total number of corners or key points that
need to be tracked.

numLevels uint8_t Input

Total number of levels to be processed in the
current call.

startLevel uint8_t Input

Index of the first level that will be prossed in
the current call. For eaxample, when user is
processing total of 4 levelsthan this start
value should be set to 3 and the numLevels
needs to be set to 4.

SADthreshold uint16_t Input

Threshold for SAD to be applied to get the
number of points below the this thresold

3-38

3.9.1.4 PYRAMID_LK_TRACKER_TI_OutArgs

Description

This structure contains all the parameters which are given as an output of the Pyramid LK tracker applet during
process calls.

Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Ou

tArgs

Output

Common outArgs for all ivison based
modules

numValidPoints uint16_t Output

Total number of valid key points after
applying
SAD threshold. This value is calculated only
for the base level and is invalid if this applet
is called without the base level.

3.9.1.5 PYRAMID_LK_TRACKER Input Output Buffer Indices

Description

The following buffer indices are used to refer to the various input and output buffers needed by the pyramid LK
tracker algorithm.

Fields

Field Data Type Input/
Output

Description

PYRAMID_LK_TRACKER_TI

_CURR_IMAGE_BUF_IDX

enum Input

Buffer index for current input image data in
input buffer list

PYRAMID_LK_TRACKER_TI

_PREV_IMAGE_BUF_IDX

enum Input

Buffer index for Previous input image data in
input buffer list

PYRAMID_LK_TRACKER_TI

_IN_KEY_POINTS_BUF_ID

X

enum Input

Buffer index for key points co-ordinates in
packed XY format for previous frame in input
buffer list. X is upper 16 bit and Y is lower 16
bit in memory

PYRAMID_LK_TRACKER_TI

_EST_KEY_POINTS_BUF_I

DX

enum Input

Buffer index for estimated buffer co-
ordinates of key points in packed XY format
for current frame in input buffer list

PYRAMID_LK_TRACKER_TI

_OUT_KEY_POINTS_BUF_I

DX

enum Output

Buffer index for tracked co-ordinate of key
points in packed XY format for current frame
in output buffer list

PYRAMID_LK_TRACKER_TI

_OUT_ERR_MEASURE_BUF_

IDX

enum Output

Buffer index for error measure of key points
being tracked for current frame in output
buffer list

3.9.1.6 IPYRAMID_LK_TRACKER_ErrorType Error codes

Description

The following are error code returned by the pyramid LK tracker algorithm.

Fields

Field Data Type Input/
Output

Description

IPYRAMID_LK_TRACKER_E

RRORTYPE_MAXLEVELS_EX

CEEDED

enum Output

The number of levels requested by user are
 more than supported by algorithm

IPYRAMID_LK_TRACKER_E

RRORTYPE_MAXITERATION

_EXCEEDED

enum Output

The maximum number of iteration requested
by user are more than supported by
algorithm

IPYRAMID_LK_TRACKER_E

RRORTYPE_INSUFFICIENT

_BUFFERS

enum Output

The number of input/output buffers or size
 of them is not sufficient for algorithm

IPYRAMID_LK_TRACKER_E

RRORTYPE_NO_KEY_POINT

S

enum Output

Number of key points to be processed is
requested as zero

IPYRAMID_LK_TRACKER_E

RRORTYPE_NUMLEVELS_PE

R_CALL_EXCEEDED

enum Output

Number of Levels to be
 processed is requested as zero or greater
than than
PYRAMID_LK_TRACKER_TI_MAXLEVELS
_PER_CALL

IPYRAMID_LK_TRACKER_E

RRORTYPE_START_LEVEL_

EXCEEDED

enum Output

Start Level to be
 processed is requested is greater than or
equal to
PYRAMID_LK_TRACKER_TI_MAXLEVELS

IPYRAMID_LK_TRACKER_E

RRORTYPE_SEARCH_RANGE

_EXCEEDED

enum Output

Search range requiested is requested is
greater than or equal to
PYRAMID_LK_TRACKER_TI_MAX_SEARC
H_RANGE or
 lesss than 1.

IPYRAMID_LK_TRACKER_E

RRORTYPE_INSUFFICIENT

_IM_SIZE

enum Output

mage size (width or height) of the given
level is smaller than the minimum suported
image size 9

3-40

3.10 Harris Best Feature to Front

This applet prunes a list of feature points based on Harris score at each of the points. The points with maximum score
are returned as output.

The routine accepts an 8-bit grayscale input image pyramid and a list of feature points provided as YX co-ordinates in
packed format. Image planes and YX list for different pyramidal levels are expected to be provided in the same buffer
descriptor as different buffer planes. The applet computes Harris score for each of the YX point, across all levels,
using a 9x9 patch of the image around the point. It outputs a list of corner points in the image in YX packed format
along with a list containing information on pyramidal level at which the feature point is present. YX packed format
means that Y is upper 16 bit and X is lower 16 bit in memory

This applet can execute for a max of three pyramidal levels. Maximum number of input feature points across all levels
is currently restricted to 2048.

3.10.1 Data Structures

3.10.1.1 HARRIS_BEST_FEATURE_TO_FRONT_TI_CreateParams

Description

This structure defines the creation parameters for the Harris score based best feature to front applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

maxNumFeaturesIn uint16_t Input Number of max Features for which the
applet will be used. User need to make sure
that total features summed up across all
levels should be any value <=
HARRIS_BEST_FEATURE_TO_FRONT_TI
_MAXNUMFEATURES

bestNFeaturesOut uint16_t Input Number of best Features user want as out
User need to make sure that
bestNFeaturesOut < maxNumFeaturesIn

sensitivityParam uint16_t Input Value of sensitivity parameter (known as
kappa in literature). The format of this is
Q1.15. Which means for a value of 0.04 you
should set 0.04*pow(2,15) =~ 1310.

xyListInDmem Uint8_t input Flag to indicate whether the XY list input is in
ARP32 Data memory or not.

3.10.1.2 IHarris_BFFT_InBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

The below enums define the purpose of the input buffer.
Fields

Enumeration Description

HARRIS_BEST_FEATURE_TO_FRONT_TI_BUFDESC_I

N_IMAGEBUFFER

This buffer descriptor provides the actual image
data required by applet. This applet works on
multi level so user can provide multiple buffers.
Lets say this applet is used for 3 levels of image
pyramid. then user should provide inBufs-
>bufDesc[HARRIS_BEST_FEATURE_TO_FRONT_T

I_BUFDESC_IN_IMAGEBUFFER]->numPlanes = 3
and inBufs-
>bufDesc[HARRIS_BEST_FEATURE_TO_FRONT_T

I_BUFDESC_IN_IMAGEBUFFER]->bufPlanes[level]
contains the details of each planes buffer pointer
and dimensions

HARRIS_BEST_FEATURE_TO_FRONT_TI_BUFDESC_I

N_XY_LIST

This buffer descriptor (inBufs-
>bufDesc[HARRIS_BEST_FEATURE_TO_FRONT_T

I_BUFDESC_IN_XY_LIST]) should point to a buf
descriptor containing XY planes for different
levels. This applet works on multi level so user
can provide multiple buffers. Lets say this applet
is used for 3 levels of image pyramid. then user
should provide inBufs-
>bufDesc[HARRIS_BEST_FEATURE_TO_FRONT_T

I_BUFDESC_IN_XY_LIST]->numPlanes = 3 and
inBufs-
>bufDesc[HARRIS_BEST_FEATURE_TO_FRONT_T

I_BUFDESC_IN_XY_LIST]->bufPlanes[level]
contains the pointers to that particuar level's XY
list.

It is user responsbility to have the X and Y list to
have valid data which points in image region
excluding 4 pixels boarder on each side. The
applet doesn't perfrom any check for this
condition and the behavior is undefined if it is not
satisfied. Since it is a 1D buffer, The size of list
has to be indicated by inBufs-
>bufDesc[HARRIS_BEST_FEATURE_TO_FRO
NT_TI_BUFDESC_IN_XY_LIST]>bufPlanes[leve
l].
width* height for a 100 points - it should be
4*100 or 400*1

HARRIS_BEST_FEATURE_TO_FRONT_TI_BUFDESC_I

N_TOTAL

This indicates total number of input buffers
expected.

3.10.1.3 IHarris_BFFT_OutBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

Below enums define the purpose of out buffer.
Fields

Enumeration Description

3-42

Enumeration Description

HARRIS_BEST_FEATURE_TO_FRONT_TI_BUFDESC_O

UT_XY_LIST

This buffer descriptor (outBufs-
>bufDesc[HARRIS_BEST_FEATURE_TO_FRONT_T

I_BUFDESC_OUT_XY_LIST]) should point to a
plane capable of holding XY list of
bestNFeaturesOut. So the size of this buffer is
bestNFeaturesOut*(4) bytes

HARRIS_BEST_FEATURE_TO_FRONT_TI_BUFDESC_O

UT_LEVEL_ID

This buffer descriptor (outBufs-
>bufDesc[HARRIS_BEST_FEATURE_TO_FRONT_T

I_BUFDESC_IN_LEVEL_ID]) should point to a
plane capable of holding level corresponding to
XY list. So the size of this buffer is
bestNFeaturesOut*(1) bytes. There is 1:1
mapping in XY array and level array.

HARRIS_BEST_FEATURE_TO_FRONT_TI_BUFDESC_O

UT_TOTAL

This indicates total number of output buffers
expected.

3.11 Remap & Merge

The Remap and Merge Applet consists of two stages of processing namely Remap and Merge. During Remap, the
given source image is transformed by mapping each input pixel to a new position in the destination image and thereby
obtaining the remapped output, Remapped(i, j). The primary application of Remap is to correct lens distortion in the
source image provided by the camera input such as Fish Eye lens, which is widely used in automotive systems. In the
second stage which corresponds to merge, the remapped output is Alpha Blended with the user provided input merge
frame, Merge(i, j) using the alpha frame, α(i, j). The alpha frame denotes the factor of the merge frame considered at
every pixel while blending with the corresponding remapped output frame to obtain the final output frame, Out(i, j). The
remapped output frame and the merge frame could be of different formats. In such cases, an additional step of format
conversion is required to convert the remapped output frame format to that of merge frame provided by the user. The
following flow chart depicts the overall processing flow of the remap and merge applet. For an 8 bit input image, the
final output frame is obtatined as follows:

Out(i, j) = [α(i, j) * Remapped(i, j) + (16 - α(i, j)) * Merge(i, j)]/16

The function uses the user defined backmapping lookup table to find the corresponding input pixel for each output
pixel. Since fractional coordinates are allowed, mapped input pixels are bilinear-interpolated from neighboring pixel
values after being looked up.

3.11.1 Current Deliverables Scope

In the current deliverables of the Remap and Merge Applet, the Remap and Alpha Blending (Merge) functionality is
supported for YUV 420 SP and YUV 422 ILE with Format conversion supported between these two formats.
Therefore, with a YUV 420 SP input to Remap, the user can get either a YUV 420 SP or a YUV 422 ILE Alpha
Blended output depending on the Destination format the user sets. The output format should be same as that of the

Format Conversion

Yes

IN Format
 !=OUT Format

No

Transfer all the require blocks from DDR to
internal memory

Remap

Merge

Yes

Enable Merge
No

remapAndMerge a Block

Transfer output block from internal memory to
DDR

Input in
IN Format

LUT Alpha Frame to
Merge in

OUT
Format

Remapped
Output in
IN Format

Remapped
Output in

OUT Format

Final output
with OUT

Format

3-44

Merge Frame provided to the applet. The Remap functionality alone remains supported for an extended set of input
formats U8BIT, YUV422 ILE, YUV422 IBE and YUV420 SP. It is also possible to do a Remap and a Format
Conversion (without Merge) for YUV 420 SP and YUV 422 ILE.

To perform Remap, two approaches are supported based on the Input block size being dynamic or constant, namely
the Bounding Box approach and the Tile approach. The Applet requires the user to populate and provide the
blockMapInfo, the REMAP_MERGE_TI_CreateParams and the Buffer Descriptors. In case the user enables the Tile
approach for Remap, the user also needs to provide outputBlkInfo and tileInfo. The
REMAP_MERGE_TI_CreateParams structure holds the configuration information for the Applet and needs to be
provided by the user during Initialization. The blockMapInfo, outputBlkInfo and tileInfo can be generated using the
convertMap() function. In the current deliverable, a sample utility based on convertMap() function can be used to
convert a (X,Y) table describing the geometric transformation into the blockMapInfo.
The documentation for the utility is available in Appendix B: Remap Convert Table.

The Applet can be summed up using the below diagram:

3.11.2 Interface

The REMAP_MERGE_TI_CreateParams structure holds the configuration information for the Applet and needs to be
provided by the user during Initialization. The structure includes the RemapParms structure which contains the
parameters to configure the Remap functionality alone. The create params structure also includes two parameters,
namely enableMerge and dstFormat, to determine if the alpha blending and format convert functionalities need to be
enabled.
The Buffer descriptors contain the addresses of the Input Image, the Merge Frame and Alpha frame (in case Merge is
enabled) and the Output Image.
Along with the REMAP_MERGE_TI_CreateParams and the Buffer descriptors, the user also needs to provide the
blockMapInfo consisting of the Back Mapping Lookup Table to lookup input pixels from either the input bounding box
or input tile. The pointer to the blockMapInfo is passed to the applet as REMAP_MERGE_TI_CreateParams.
RemapParams.maps.blockMap pointer. The constituents of the blockMapInfo are different for both the approaches
and are detailed below.

3.11.2.1 Interface for Bounding Box Approach

The blockMapInfo consists of the Back Mapping Lookup Table and the convertMapBlockInfo for every output block of
output block dimensions. The Back Mapping Lookup Table should have the integral and fractional index to the Input
pixel mapping to every output pixel of the output block. The convertMapBlockInfo has information of the bounding
block of the Input pixels mapped to every output block. This information is mostly the position (x, y) of the Input block
in the Input frame and its dimensions (width, height). The above explanation for the blockMapInfo is illustrated in the
below given diagram.

convertMapBlockInfo for Output block 0

Table lookup index: 3 * output block width * output block height bytes

convertMapBlockInfo for Output block 1

Table lookup index: 3 * output block width * output block height bytes

Remap and
Merge Applet

srcBufs

dstBuf

outputBlockInfo, tileInfo
only for Tile approach

 REMAP_MERGE_TI_CreateParams

blockMapInfo

convertMapBlockInfo for Output block 2

Table lookup index: 3 * output block width * output block height bytes

:

The Table Lookup index has the Input pixel Index for every output pixel. It is expected to be in the below format:

 16 bits are used for storing the Integer Index. The Integral Indexes will be stacked together for every pixel of the

output block size say N pixels.

 The Integral indexes will be followed by the Fractional indexes for every pixel in the output block.

 The fractional index will be an 8 bit index, of which 4 bits are allotted to x-frac and the remaining 4 bits are allotted

for y-frac.

3.11.2.2 Interface for Tile Approach

For the tile approach, blockMapInfo alone falls short of information for the applet. The applet expects specific
information at various stages of processing as explained below:

 Per Output block : outputBlockInfo

o outputBlockInfo consists of a single field, the number of input tiles mapped to an output block, per

output block.

o If ‘m’ is the number of output blocks, then there will be ‘m’ elements of 1 byte each.

o The pointer to the blockMapInfo is passed to the applet as REMAP_MERGE_TI_CreateParams

.RemapParams.maps. outputBlkInfo.

 Per Input Tile :tileInfo

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Integral Index for pixel 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Integral Index for pixel N

7 6 5 4 3 2 1 0

y-frac for pixel 1 x-frac for pixel 1

7 6 5 4 3 2 1 0

y-frac for pixel 1 x-frac for pixel 1

blockMapInfo

Table lookup index

For N pixels

For N pixels

3-46

o tileInfo indicates the position (top left x, y co-ordinates) of each input tile. It also has the number of

back-mapped pixels for a given input tile.

o If Ni is the number of tiles associated with the Output block ‘i’, and ‘m’ is the number of output blocks,

then there will be (N1 + N2 + N3 + … + Nm) tileInfos.

o The pointer to the blockMapInfo is passed to the applet as REMAP_MERGE_TI_CreateParams

.RemapParams.maps. tileInfo.

 Per Input Tile : blockMapInfo

o blockMapInfo consists of the tileLUTHeader and the Back Mapping Lookup Table for every input tile.

o The tileLUTHeader has information regarding the number of mapped input pixels in the tile. Of these

pixels, it also denotes the number of mapped pixels which can be considered for Chroma U

interpolation and those which can be considered for Chroma V interpolation.

o The Back Mapping Lookup Table consists of 2 bytes of Integral Index + 1 byte of fractional Index + 2

bytes of Scattered store offset per back-mapped pixel. Hence, there is 5 Byte of lookup information

per pixel in the Output frame as compared to the 3 Byte of information per pixel for the Bounding Box

approach leading to an increase of 2 Bytes/pixel in DDR bandwidth.

For a given Input tile associated to an Output block, if P is the number of pixels back-mapped from the Output block to
the Input Tile. Then the Look up Table will contain the following. This information should appear in an order of even
pixel positions followed by odd pixel positions. For definition of even and odd pixel position, please refer explaination
of sTileLutHeader.

For P pixels

3.11.3 Data Structures

3.11.3.1 Size

Description

This structure defines the width and height of the buffers.
Fields

Field Data Type Input/
Output

Description

width uint32_t Input Width of the block or region in pixels

height Size Input Height of the block or region in pixels

3-48

3.11.3.2 convertMapBlockInfo

Description

This structure is a part of the BlockInfo and is associated with each block based LUT for the Input Image. The
convertMap() function is expected to populate this structure.

Fields

Field Data Type Input/
Output

Description

inputBlockWidth uint16_t Input Width of mapped Input Image Block
corresponding to the LUT. For YUV 420 SP
and YUV 422 formats, this field should be
even

inputBlockWidthDiv2 uint16_t Input InputBlockWidth divided by two, to be used
by the Applet

inputBlockWidthQ16 uint16_t Input inputBlockWidth in Q16 format

inputBlockHeight uint16_t Input Height of mapped Input Image Block
corresponding to the LUT. For YUV 420 SP
format, this field should be even

inBlock_x uint16_t Input x-coordinate of the upper left corner of the
mapped Input Image block. For YUV 420 SP
and YUV 422 formats, this field should be
even

inBlock_y uint16_t Input y-coordinate of the upper left corner of the
mapped Input Image block. For YUV 420 SP
and YUV 422 formats, this field should be
even

Padding[10] uint16_t Input Padding to make the structure size to 32 B

3.11.3.3 sTileInfo

Description

This structure is a part of the tileInfo and is associated with each input tile.. The convertMap() function is expected
to populate this structure.

Fields

Field Data Type Input/
Output

Description

inBlock_x uint16_t Input x-coordinate of the upper left corner of the
mapped Input Image tile. This value should
be even.

inBlock_y uint16_t Input y-coordinate of the upper left corner of the
mapped Input Image tile. This value should
be even.

numPixels uint16_t Output Number of backmapped Pixels from Output
block to Input Tile.

3.11.3.4 sTileLutHeader

Description

This structure is a header to the Lookup indexes and is associated with each input tile. The convertMap() function
is expected to populate this structure. Sum of numEvenPixels and numOddPixels should be equal to numPixels
and it is user’s responsibility to adhere this. This redundant information is requested for some specific optimization

Fields

Field Data Type Input/
Output

Description

numPixels uint16_t Input number of backmapped pixels in a tile.

numEvenPixels uint16_t Input number of backmapped even pixels in a tile.
For YUV 420 SP, an even pixel refers to a
pixel in an even location along width and
height of output block. For YUV 422, an
even pixel refers to a pixel in an even
location along only the width of output block..

numOddPixels uint16_t Output number of backmapped odd pixels in a tile.
Odd pixels are the non-even pixels as
defined for maxNumEvenPixelsinTile.

3.11.3.5 sConvertMap

Description

This structure defines the parameters for used by the convert map function.
Fields

Field Data Type Input/
Output

Description

srcMap const void

*

Input Pointer to user defined mapping table

mapDim Size Input Dimensions of the region of interest for
which mapping table is converted to obtain
blockMap and transferInfo

srcImageDim Size Input Dimensions of the source image frame

isSrcMapFloat uint8_t Input Indicates if the user defined mapping table is
in Floating Point or Fixed Point

srcFormat Format Input Format of the source image frame. Format is
of type def uint8_t. Check the enumerated
type eFormat.

outputBlockDim Size Input Block dimensions of each output block. The
region of interest is divided into output
blocks of this dimension outputBlockDim

inputTileDim Size Input Tile dimensions of each Input Tile. Valid for
Tile approach.

3-50

Field Data Type Input/
Output

Description

outputBlkInfo uint8_t * Input Pointer to OutputBlkInfo having the list of
number of tiles for every output block. Valid
for Tile approach.

tileInfo sTileInfo* Input Pointer to tileInfo having the list tile
information for every input tile mapped to the
output block. Valid for Tile approach.

maxNumPixelsinTile uint16_t Input Maximum number of backmapped pixels in a
tile. Valid for Tile approach.

maxNumEvenPixelsinTile uint16_t Input Maximum number of backmapped even
pixels in a tile. For YUV 420 SP, an even
pixel refers to a pixel in an even location
along width and height of output block. For
YUV 422, an even pixel refers to a pixel in
an even location along only the width of
output block. Valid for Tile approach.

maxNumOddPixelsinTile uint16_t Input Maximum number of backmapped odd pixels
in a tile. Odd pixels are the non-even pixels
as defined for maxNumEvenPixelsinTile.
Valid for Tile approach.

tileInfoSize uint32_t Input Size of the tileInfo. Valid for Tile approach.

blockMap void * Output Pointer to block partitioned map containing
the blockMapInfo followed by the 16 bit TLU
indices for each pixel of the output block in
packed format.

qShift uint8_t Input Number of fractional bits used to represent Q
format number

maxInputBlockDim Size Input Dimensions of the largest input block
mapped to one of the output blocks. Valid for
BB approach.

maxInputBlockSize uint32_t Input Maximum size of the input block mapped to
one of the output blocks to be remapped in
the region of interest. Valid for BB approach.
If this field is not zero, the applet enables BB
approach for Remap

3.11.3.6 RemapParms

Description

This structure defines the parameters for remap merge applet.
Fields

Field Data Type Input/
Output

Description

Field Data Type Input/
Output

Description

interpolationLuma Interpolat

ion

Input Interpolation method for luma: Bilinear = 1 or
Nearest Neighbor = 0. Check the
enumerated type eInterpolation.

interpolationChroma Interpolat

ion

Input Interpolation method for chroma: Bilinear = 1
or Nearest Neighbor = 0. Check the
enumerated type eInterpolation.

rightShift uint8_t Input Amount of right shift to convert 16 bit to 8 bit

sat_high int32_t Input Upper bound saturation limit applied after
shift amount of 'rightShift'

sat_high_set int32_t Input Upper bound saturation value applied after
shift amount of 'rightShift'

sat_low int32_t Input Lower bound saturation limit applied after
shift amount of 'rightShift'

sat_low_set

int32_t Input Lower bound saturation value applied after
shift amount of 'rightShift'

maps sConvertMa

p

Input Parameters used during convert MAP
function

3.11.3.7 REMAP_MERGE_TI_CreateParams

Description

This structure defines the parameters for remap merge applet.
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Buffer descriptor list of source image frame,
for luma and chroma as needed.
MAX_NUM_PANES is set to 2.

remapParams RemapParms Input structure defines the parameters to perform
remap

enableMerge uint8_t Input User can enable/disable merge functionality
If enableMerge is set, the user needs to
provide the merge frame and alpha frame as
well

dstFormat Format Input Destination format; Supported formats are as
follows: U8BIT, YUV_422ILE (UYVY),
YUV_422IBE (YUYV), YUV 420 SP. Check
the enumerated type eFormat.

3.11.4 Constraints

 Output Block width and height must be a multiple of 2.

 Input Tile width and height must be a multiple of 2.

3-52

 Input Tile width should be less than 56.

 Alpha Blending is supported only for YUV 420 SP and YUV 422 ILE formats.

 Format Conversion is supported only from YUV 420 SP to YUV 422 ILE and vice-versa.

3.12 Histogram of Orientaed Gradients (HOG)

This applet accepts NV12 YUV (420 semi planner) and outputs HOG for given cell size. The below block diagram
gives high-level functionalities that this applet is performing. This Applet can generate HOG plane for multiple scales
together, In this case the user has to provide re-sized NV12 YUV for each scale.

To re-use the computation, this applet first performs quantum sum of the bin planes and optionaly forms cell sum if the
quantum size is not equal to cell size. The quantum sum size calculated using below formula

Quantum_size = HCF(cellSize, sreachStep, (blockSize - blockOverlap))

The implementation is more driven from pedestrian detection use case so some of the structures and variable name
indicate pedestrian detection, but this applet can be used for HOG feature computation for any other object detection
as well.

3.12.1 Data Structures

3.12.1.1 PD_FEATURE_PLANE_COMPUTATION_CreateParams

Description

This structure defines the creation parameters for HOG applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

imgFrameWidth uint16_t Input Max input width of image

imgFrameHeight uint16_t Input Max input height of image

leftPadPels uint16_t Input Number of pixels padded in the left of the
original image

topPadPels uint16_t Input Number of pixels padded in the top of the
original image

cellSize uint8_t input cell Size in Pixels for HOG computation

blockSize uint8_t Input Block size in Pixels.

blockOverlap uint8_t Input Block overlap in Pixels.

Gradient Orientation
binning

Bin planes
generation

Cell sum

Input Image
WxH Bytes

HOG Plane 2
(WxH)/(Cell_w x

Cell_h) x 2 x Bytes HOG Plane 1
(WxH)/(Cell_w x

Cell_h) x 2 x Bytes HOG Plane 0
(WxH)/(Cell_w x

Cell_h) x 2 x Bytes

HOG Plane N-1
(WxH)/(Cell_w x

Cell_h) x 2 x Bytes

3-54

Field Data Type Input/
Output

Description

sreachStep uint8_t Input Object model sreach step size (sliding
window offset) in pixels.

scaleSteps uint8_t Input Number of scales per octave.

maxNumScales uint8_t Input Maximum number of scales to be processed.

numBins uint8_t Input Number of Gradient orientation bins.

gradMagMethod uint8_t Input Gradient Magnitude comaputation Method,
Supported Values are
TI_PD_GRADIENT_MAGNITUDE_SAT_8BI
TS
TI_PD_GRADIENT_MAGNITUDE_9BITS.

enableCellSum uint8_t Input Parameter to enable cell sum if the quantum
sum generated is not equal to the cell size.

scaleRatioQ12 uint16_t Input scale ratio that needs to be used between
sucessive levels in Q12 format

additionalPlaneFLag uint32_t Input Deatils about addition planes other than
HOG planes
 bit - 0 Manitude plane |
 bit - 1 Y Plane |
 bit - 2 U and V Plane |
 bit 3-31 Unused|

outPutBufSize uint32_t Output This is output from control call. Gives the
number bytes in the output buffer.

outFormat uint8_t Input 0 - Planar Output, 1 - De-interleaved Output

scaleParams scalePrams

_t

Input Information about each input scale

3.12.1.2 PD_FEATURE_PLANE_COMPUTATION_outputMetaData

Description

This structure contains all the meta data containing informtion about the feature output (num scales, size, data
layout etc)

Fields

Field Data Type Input/
Output

Description

size uint32_t Output

Size of this stucture to validate the version
check

outBufSize uint32_t Total output buffer size in bytes

numScales uint8_t Output

Total number of (pyramid levles) fearture
scales in this output.

Field Data Type Input/
Output

Description

numPlanes uint8_t Output

Number of scales in each scale.

outFormat uint8_t Output

output layout information.

leftPadPels uint16_t Output

Number of pixels padded in the left of the
original image

topPadPels uint16_t Output

Number of pixels padded in the top of the
original image

scaleInfo PD_FEATURE

_PLANE_COM

PUTATION_s

caleMetaDa

ta

Output

Information about each scale feture plane.

3.12.1.3 PD_FEATURE_PLANE_COMPUTATION_scaleMetaData

Description

 This structure contains all the meta data containing informtion about the eache scale feature (width
height etc)

Fields

Field Data Type Input/
Output

Description

scaleOffset uint32_t Output

Offset from the base output pointer

orgImCols uint16_t Output

Image width in pixels.

orgImRows uint16_t Output

Image height in pixels

imCols uint16_t Output

Active image width in pixels.

imRows uint16_t Output

Active image height in pixels

startX uint16_t Output

Horizontal offset for active image.

startY uint16_t Output

Vertical offset for active image.

featCols uint16_t Output

Number of valid features in each row of a
feature plane.

featRows uint16_t Output

Number of feature rows per feture plane.

featPitch uint16_t Output

Offset between each line of a feture plane (in
Bytes).

3-56

Field Data Type Input/
Output

Description

planeOffset uint32_t Output

Offset between each feture plane (in Bytes).

3.12.1.4 scalePrams_t

Description

This structure contains the information about each scale
Fields

Field Data Type Input/
Output

Description

orgWidth uint16_t Input

Original Image width

orgHeight uint16_t Input

Original Image height

width uint16_t Input

Active/processing image width.

height uint16_t Input

Active/processing image height.

x uint16_t Input

Horizontal offset for the active image

y uint16_t Input

Vertical offset for the active image

3.12.1.5 PD_FEATURE_PLANE_COMPUTATION_InArgs

Description

This structure contains the parameters which controls the algorithm at process call level
Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input Commom structure for vision modules

numScales uint8_t Input

Number of scales to be processed in this
process call

3.12.1.6 HOG Applet Input Output Buffer Indices

Description

The following buffer indices are used to refer to the various input and output buffers needed by the HOG applet.
Fields

Field Data Type Input/
Output

Description

PD_FEATURE_PLANE_COM
PUTATION_BUFDESC_IN_IM
AGEBUFFER

enum Input

Buffer index for current input image data in
input buffer list

PD_FEATURE_PLANE_COM
PUTATION_BUFDESC_OUT_
FEATURE_PLANES_BUFFER

enum Output

Buffer index for Previous input image data in
input buffer list

3.12.1.7 HOG Gradient Magnitude Methods

Description

The following enum defines the gradient computations supported.
Fields

Field Data Type Input/
Output

Description

TI_PD_GRADIENT_MAGNITU
DE_SAT_8BITS

Enum Input

abs(x) + abs(y) staurated to 8 bit

TI_PD_GRADIENT_MAGNITU
DE_9BITS

Enum Output

abs(x) + abs(y) 9 bit

3-58

3.13 Gray-Level Co-occurrence Matrix (GLCM)

This applet computes gray-level co-occurrence matrices or gray tone spatial dependency matrices for a given 8-bit
input image for texture analysis. The applet first performs an image binning before voting into the GLCM matrix. The
parameter ‘numLevels’ specifies the number of gray-levels to use when scaling the grayscale values in input. For
example, if numLevels is 8, applet scales the values in input from value 0 to value 7. The number of gray-levels
(‘numLevels’) also determines the size of the output gray-level co-occurrence matrix. Any pixel value less than
parameter ‘lowPixelValue’ is clipped to ‘0’, whereas any pixel value higher than ‘hiPixelVal’ is clipped to ‘numLevels-1’.
All values in between are uniformly quantized.

The applet allows analyzing for each direction of analysis by specifying a pair of offsets (rowOffset, colOffset) between
the current pixel and neighbouring pixel.

The applet allows analyzing multiple directions of analysis by passing an array of rowOffsets and colOffsets. The
parameter ‘numDirections’ allows user to calculate co-occurrence matrix for multiple angle in single API call. Note that
clubbing multiple directions of ananlysis, leads to an approximate GLCM matrix as it would lead to ignoring of few
input image rows at the bottom and few image columns at the right. This mode is optimized for reduced data
bandwidth.

3.13.1 Data Structures

3.13.1.1 GLCM_TI_CreateParams

Description

This structure defines the creation parameters for the GLCM applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

imageWidth uint16_t Input Width in bytes for the input image

imageHeight uint16_t Input Height in number of lines for the input image

loPixelVal uint8_t Input Lowest pixel value in the image. All pixels
less than loPixelVal will be put into the first
bin (0).

hiPixelVal uint8_t input Highest pixel value in the image. All pixels
more than hiPixelVal will be binned into the
last bin (numLevels-1).

numLevels uint16_t Input Number of gray-levels to be used for GLCM
computation, The maximum numLevels
permitted by the applet is
GLCM_TI_MAXNUMLEVELS

Field Data Type Input/
Output

Description

numDirections uint16_t Input Number of directions over which analysis
need to be performed. At a time a maximum
of GLCM_MAX_NUM_DIRECTIONS
directions can be analysed together.The
directions of analysis is specified as a pair of
(row offset, column offset). Clubbing multiple
directions of analysis together can lead to
few pixels in the right and bottom border not
voting into the output GLCM.

rowOffset uint8_t Input Array of number of rows between the pixel of
interest and its neighbor. The array should
contain as many elements as numDirections.

colOffset uint8_t input Array of number of columns between the
pixel of interest and its neighbor. The array
should contain as many elements as
numDirections.

3.13.1.2 GLCM Applet Input and Output Buffer Indices

Description

The following buffer indices are used to refer to the various input and output buffers needed by the GLCM applet.
Fields

Field Data Type Input/
Output

Description

GLCM_TI_BUFDESC_IN_IM

AGEBUFFER

enum Input

This buffer descriptor provides the input
grayscale image data required by applet.
The grayscale image is binned into

numLevels gray-levels before voting into

the gray-level co-occurrence matrix

GLCM_TI_BUFDESC_OUT_G

LCM

enum Output

This buffer descriptor points to the output
GLCM matrix. The GLCM matrixes for
multiple angles of analysis are arranged
consecutively in memory. Each GLCM matrix

is of size numLevels x numLevels.

Each entry of the matrix is 16-bit precision

3.13.2 Constraints

Output data will be clipped to 16 bit.

Range of rowOffset, and colOffset shall be [-16, 16].

Output matrix is not be symmetrical i.e. GLCM(i, j) and GLCM(j, i) are different.

Only four angles (0, 45, 90, 135) are validated

Minimum input image height and width shall be 16

numLevels should be less than FLOOR(110/numDirections)

3-60

3.14 Filter 2D

This applet implements a generic filter. The routine accepts a YUV 420 input image and along with the filter mask that
needs to be applied. The output dimension of this applet is lesser than input dimension by the filter width and height. It
also supports enabling disabling contrast stretching.

3.14.1 Data Structures

3.14.1.1 FILTER_2D_CreateParams

Description

This structure defines the creation parameters for the filter applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

filterCoefWidth uint8_t Input Width of the filter coefficient mask

filterCoefHeight uint8_t Input Height of the filter coefficient mask

filterCoef uint8_t* Input Pointer Pointing to filter coefficients array of
filterCoefWidth x filterCoefHeight. For
separable filter first filterCoefWidth elements
will corrresponds to filter in Horizontal
direction and last filterCoefHeight elements
will corrresponds to filter in Vertical direction

separableFilter uint8_t input A value of 1 indicates filter is separable and
0 indicates its non-separable. Currently
supported method is seeprable Filter only

enableContrastStretch

ing

uint8_t input A value of 1 will enable contrast stretching
for Y component of image.

minVal uint8_t input This parameter is only used when
enableContrastStretching = 1. This is the
minimum pixel value to be used for
stretching the contrast

maxVal uint8_t input This parameter is only used when
enableContrastStretching = 1. This is the
maximum pixel value to be used for
stretching the contrast

minPercentileThreshol

d

uint8_t input This parameter is only used when
enableContrastStretching = 1. This is the
percentage to pixels used to determine the
minimum value from histogram. For
example a value of 1 means while
calculating the minimum value of histogram
we will find the minimum value which is
greater than 1% of pixels

Field Data Type Input/
Output

Description

maxPercentileThreshol

d

uint8_t input This parameter is only used when
enableContrastStretching = 1. This is the
percentage to pixels used to determine the
maximum value from histogram. For
example a value of 99 means while
calculating the maximum value of histogram
we will find the maximum value which is
lessor than 99% of pixels

3.14.1.2 IFILTER_2D_InBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

The below enums define the purpose of the input buffer.
Fields

Enumeration Description

FILTER_2D_TI_BUFDESC_IN_IMAGEBUFFER This buffer descriptor provides the actual image
data required by algorithm. This buffer is
expected to be in NV12 format with plane 0 as
Luma and plane 1 as Chroma component.

FILTER_2D_TI_BUFDESC_IN_TOTAL This indicates total number of input buffers
expected.

3.14.1.3 IFILTER_2D_OutBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

Below enums define the purpose of out buffer.
Fields

Enumeration Description

FILTER_2D_TI_BUFDESC_OUT_IMAGE_BUFFER This buffer will return filtered image in NV12
format with plane 0 as Luma and plane 1 as
Chroma component.

FILTER_2D_TI_BUFDESC_OUT_TOTAL This indicates total number of output buffers
expected.

3.14.1.4 FILTER_2D_InArgs

Description

This structure contains all the parameters which are given as an input to Filter at frame level.
Fields

Field Data Type Input/
Output

Description

3-62

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input Commom structure for in args of ivision
modules

minVal uint8_t input Minimum value of histogram above a certain
percen to be applied for current frame . This
field is only valid if enableContrastStretching
is set to 1 during create time

maxVal uint8_t input Maximum value of histogram below a certain
percent to be applied for current frame. This
field is only valid if enableContrastStretching
is set to 1 during create time

3.14.1.5 FILTER_2D_OutArgs

Description

This structure contains all the parameters which are given as an output by Filter at frame level.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Ou

tArgs

output Commom structure for in args of ivision
modules

minVal uint8_t output Minimum value of histogram above a certain
percent for the current frame processed. This
field is only valid if enableContrastStretching
is set to 1 during create time

maxVal uint8_t output Maximum value of histogram below a certain
percent for the current frame processed. This
field is only valid if enableContrastStretching
is set to 1 during create time

3.14.2 Constraints

Current implementation is validated for only seperable filter. For contrast stretching it is required that image width
is a multiple of 16 (2 times SIMD width)

3.15 YUV Padding

This applet accepts NV12 YUV (420 semi planner) and pads (extends) pixels in all four directions for user requested
amount of pixels. It uses VCOP and EDMA for left and right padding. It uses EDMA and DMEM for top and bottom
padding.

3.15.1 Data Structures

3.15.1.1 YUV PADDING Input and output Buffer IDs

Description

These macros define the IDs for input and output buffers with their properties
Fields

Field Description

YUV_PADDING_TI_IN_IMA

GE_BUF_IDX

Buffer index for input image data. This buffer
width has to be greater than or equal to the
processing width aligned to 64. This buffer
height has to be greater than or equal to the
processing height aligned to 64

YUV_PADDING_TI_OUT_IM

AGE_BUF_IDX

Buffer index for output image data. Both
input and output shall point to same memory
region with an offset for in place padding use
case. This buffer width has to be greater
than or equal to the processing width
aligned to 64 + left and right padding. This
buffer height has to be greater than or equal
to the processing height aligned to 64 + top
and bottom padding

3.15.1.2 YUV_PADDING_TI_CreateParams

Description

This structure defines the creation parameters for YUV PAddign applet
Fields

Field Data Type Input/
Output

Description

3-64

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

maxImageWidth uint16_t Input Maximum image width supported

topPadding uint16_t Input Number of row to be padded on top

leftPadding uint16_t Input Number of columns to be padded on left

rightPadding uint16_t input Number of columns to be padded on right

BottomPadding uint16_t Input Number of row to be padded on bottom

3.16 Software Image Signal processor (Soft ISP)

This applet performs the following operations on a 16-bit RAW or Companded input image from an
RCCC type sensor

 Decompanding

 Black Clamp and C Balance correction

 CFA Interpolation – RCCC to CCCC conversion

 Global Brithness and Contrast Enhancement (GBCE)

 Statistics Collection for Auto Exposure (AE)

 Extraction of R pixels

The decompanding, statistics collection and extraction of red (R) pixels are optional and can be enabled or disabled
for each frame. The decompanding functionality can be used to decompand sensor inputs companded using a three
segment piecewise linear transfer function. For GBCE, user can select between two methods – a simple GBCE and
an interpolated look-up method. While the interpolated GBCE gives better quality output, the simple GBCE is faster.

3.16.1 Data Structures

3.16.1.1 SOFT_ISP_TI_CreateParams

Description

RCCC

16 bit

C-balance &
Black Clamp

RCCC to
CCCC

[Statistics
Collection]

32 bit

DDR

[Decompand] GBCE
(Simple or

Interpolated
)

8 bit 16 bit 8 bit

[Extract R
pixels]

8 bit

DDR

DDR

This structure defines the creation parameters for the Soft ISP applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

imageWidth uint16_t Input Width in pixels for the input image

imageHeight uint16_t Input Height in number of lines for the input image

enableExtractR uint8_t

 Flag to indicate whether R pixels needs to
be extracted or not.

enableStats uint8_t input Flag to indicate whether Statistics Collector
needs to be enabled for the current object or
not.

statBlkWidth uint16_t input Block width at which statistics needs to be
collected.

statBlkHeight uint16_t input Block height at which statistics needs to be
collected.

minInputBufHeight uint16_t output Minimum height expected for input buffer.
The algorihtm will access the extra lines after
valid imageHeight during processing, but the
image content there will not effect the final
output.

extraInputMem uint16_t output Extra number of bytes required after the last
valid input pixel (for a buffer size of
imageWidth by imageHeight).

minOutputBufStride uint16_t output Minimum output buffer stride (in bytes)
expected to be provided to hold the output
for the given input image dimension.

minOutputBufHeight uint16_t output Minimum height of the output buffer to hold
processed output for the given input image
dimension.

statBufWidth uint16_t output Width of the statistics buffer in bytes.

statBufHeight uint16_t output Height of the statistics buffer

statBufStride uint16_t output Minimum stride required for the statistics
buffer.

3.16.1.2 SOFT ISP Applet Input and Output Buffer Indices

Description

The following buffer indices are used to refer to the various input and output buffers needed by the
SOFT ISP applet.

Fields

Field Data Type Input/
Output

Description

3-66

Field Data Type Input/
Output

Description

SOFT_ISP_TI_BUFDESC_I

N_RCCC_IMAGE

enum Input

This buffer descriptor (inBufs-
>bufDesc[SOFT_ISP_TI_BUFDESC_IN_RC
CC_IMAGE])provides the input RCCC image
data expected by applet. The input image is
expected to be of 16-bit per pixel.

SOFT_ISP_TI_BUFDESC_O

UT_CCCC_IMAGE

enum Output

This buffer descriptor (outBufs->bufDesc
[SOFT_ISP_TI_BUFDESC_OUT_CCCC_IM
AGE]) should point to a buffer capable of
holding the SOFT ISP output. The output is
in 8-bit per pixel format.

SOFT_ISP_TI_BUFDESC_O

UT_STATS_BUF

 Output This buffer descriptor should point to a buffer
capable of holding statistics from the input
image.

SOFT_ISP_TI_BUFDESC_O

UT_R_IMAGE

 Output This buffer descriptor should point to a buffer
for holding the R pixels extracted from the
input frame. The output R pixels values will
be of 8-bits per pixel.

3.16.1.3 SOFT ISP Applet Control Command Indices

Description

This following Control Command indices are supported for Soft ISP applet.
Fields

Field Description

TI_SOFT_ISP_CONTROL_GET_BUF_SIZE The algorithm expects the input and output buffers to be satisfy
certain contraints. These details are communicated to the user
using a control call with this index. Given the input create time
parameters, the control call return the buffer constraints through
the output parameters of SOFT_ISP_TI_CreateParams structure.

3.16.1.4 SOFT_ISP_TI_InArgs

Description

This structure contains all the parameters which are given as an output by SOFT ISP applet.
Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

Field Data Type Input/
Output

Description

updateToneCurve uint8_t Input

This flag indicates whether the GBCE tone
curve needs to be updated for the current
process call. If the flag is set to 1, the tone
curve at pGbceToneCurve will be used for
brightness and contrast enhancement. Else,
the tone curve from previous frame will be
reused. Note that for the very first frame this
flag needs to be set to 1. Also the flag needs
to be set whenever EVE is shared by any
other applet or algorithm (in between any
two process calls of soft ISP) even if the
GBCE tone curve has not changed.

pGbceToneCurve uint8_t* Input

This points to the buffer containing the tone
curve to be used for Global Brightness and
Contrast Enhancement (GBCE). The tone
curve needs to be of size 4*4096 bytes. The
original tone curve is of 4096 bytes and the
factor 4 indicates the replication required by
EVE.

sensorBitDepth uint8_t Input Maximum number of bits per input pixel.
Currently only a bit depth of 12-bits is
supported. (GBCE stage assumes this.)

rPosition uint8_t input Location of the R pixel in the RCCC paxel.
The location needs to be specified w.r.t the
pixel at (frameROI.topLeft.x,
frameROI.topLeft.y). Possible values are 1,
2, 3 and 4. 1 stands for RCCC, 2 for CRCC,
3 for CCRC and 4 for CCCR.

enableDecompand uint8_t input Flag to indicate whether sensor data needs
to be decompanded or not for the current
frame. The decompand the sensor data is
supported only if the companding is piece-
wise linear with 3 segments (or 2 knee-
points).

pout1 uint16_t input Sensor output at first knee-point in the piece-
wise linear response.

pout2 uint16_t input Sensor output at second knee-point in the
piece-wise linear response.

slope1 uint8_t input Slope of the decompanding piece-wise linear
curve between the two knee points.

slope2 uint16_t input Slope of the decompanding piece-wise linear
respose after the second knee point.

blackClamp uint16_t Input The dark current values to be subtracted
from each paxel. This is an array of 4 values.
The four values correspond to the 4
locations in a paxel.

cBalanceGain uint16_t Input Gain to be applied to each of the 4 pixels in
a paxel. An array of 4 16-bit values is
expected. The value to be programmed is
equal to the actual gain multiplied by
2^(cBalanceShift).

cBalanceShift uint8_t Input The shift (right shift) required to scale down
the cBalanceGain values.

3-68

Field Data Type Input/
Output

Description

enableExtractR Input Flag to indicate whether R pixels needs to
be extracted or not for the current frame.
This will have effect only if enableExtractR
was enabled during create time.

gbceMethod Input This indicates the method to be employed for
GBCE computation. There are two
supported methods - GBCE simple and
GBCE interpolated. In GBCE simple the
pixel value, if more than 12 bits, is truncated
to 12-bit before looking up in the LUT. In the
interpolated GBCE method, the output is the
result of bilinear interpolation from the two
nearby entries in the 12-bit LUT. The value 0
stands for simple GBCE and 1 for
interpolated GBCE.

enableStats Input Flag to indicate whether Statistics Collector
needs to be enabled for the current frame or
not. This will have eeffect only if enableStats
was enabled during create time.

saturationLimit Input Pixel value beyond which the pixel will be
considered as saturated during statistics
collection.

The GBCE tone curve maps 12-bit input to an 8-bit output. Such a tone curve would have 4096 entires. The tone
curve that needs to be send to the applet needs to be replicated 4 times. The resulting tone curve will have
4*4096 entires.

A group of eight entries needs to be repeated 4 times as shown below:

tc[0] tc[1] tc[2] tc[3] tc[4] tc[5] tc[6] tc[7] tc[0] tc[1] tc[2] tc[3] tc[4] tc[5] tc[6] tc[7] tc[0] tc[1] tc[2] tc[3] tc[4] tc[5] tc[6]
tc[7] tc[0] tc[1] tc[2] tc[3] tc[4] tc[5] tc[6] tc[7]

tc[8] tc[9] tc[10] tc[11] t[12] … tc[15] tc[8] tc[9] tc[10] tc[11] t[12] … tc[15] tc[8] tc[9] tc[10] tc[11] t[12] …
tc[15] tc[8] tc[9] tc[10] tc[11] t[12] … tc[15]

 : : : :

3.16.1.5 SOFT_ISP_TI_OutArgs

Description

This structure contains all the parameters which are given as an output by SOFT ISP applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

3.16.2 Constraints

 Input image pixel should be of 16-bit resolution with actual bit-depths varying from 12-bit to 16-bit. In case
of companded inputs, the restriction is only on the companded pixel. The decompanded pixel bit-depth
could be more than 16-bit.

 Image width and Image Height should be a multiple of 2.

 Statistics block width has to be a multiple of 16 and statistics block height has to be a multiple of 2.

 Depending on the input image width and image height, the input buffer might be expected to have
additional memory or pixels at the end of the buffer. The additional memory requirement is notified to the
user as the minimum input image height expected and additional bytes required apart from the minimum
height.

 Statistics at the boundary region of the image (right and bottom boaundaries) may not be valid. This is
indicated to user via the statBufStride parameter during the control call for getting the buffer sizes. In case
boundary data is invalid statBufWidth will be lesser than the statBufStride.

 The applet can handle only statistics block size that can be handled within the limited internal memory.
During create time this is indicated via the error code ISOFT_ISP_ERRORTYPE_STAT_BLK_TOO_BIG.

3-70

3.17 Software Image Signal processor (Soft ISP) for Bayer sensor

This applet performs the following operations on a 16-bit RAW Bayer type sensor

 CFA Interpolation – Bayer to RGB 16-bits

Note that although this ISP only includes the CFA interpolation, it can be easily extended to include other common
image processing module such as white balance, tone mapping, color correction, edge enhancement, etc.

The applet can handle all 4 bayer patterns:

Note that the input image must be prepadded with a border of 3 pixels wide on top, bottom, left and right of the region
of interest or include valid pixels.

DDR Bayer

CFA
interpolation
Bayer to RGB

16 bit - R

16 bit - G

16 bit - B

3.17.1 Data Structures

3.17.1.1 SOFT_ISP16_TI_CreateParams

Description

This structure defines the creation parameters for the Soft ISP applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

imageWidth uint16_t Input Width in pixels for the input image

imageHeight uint16_t Input Height in number of lines for the input image

bayerPattern int32_t

Input Enum indicating the bayer pattern passed as
input:
SOFT_ISP16_BAYER_PATTERN_GBRG,

SOFT_ISP16_BAYER_PATTERN_GRBG,

SOFT_ISP16_BAYER_PATTERN_BGGR,

SOFT_ISP16_BAYER_PATTERN_RGGB

3.17.1.2 SOFT ISP16 Applet Input and Output Buffer Indices

Description

The following buffer indices are used to refer to the various input and output buffers needed by the
SOFT ISP16 applet.

Fields

Field Data Type Input/
Output

Description

SOFT_ISP16_TI_BUFDESC

_IN

enum Input

This buffer descriptor (inBufs-
>bufDesc[SOFT_ISP16_TI_BUFDESC_IN])
provides the input Bayer image data
expected by applet. The input image is
expected to be of 16-bit per pixel.

SOFT_ISP16_TI_BUFDESC

_OUT

enum Output

This buffer descriptor (outBufs->bufDesc
[SOFT_ISP16_TI_BUFDESC_OUT]) should
point to a 3-planes buffer capable of holding
the SOFT ISP output for R, G, B planes. To
initialize each plane’s pointer, the calling
application must set outBufs->bufDesc
[SOFT_ISP16_TI_BUFDESC_OUT].numPla
nes to 3 and fill the structure outBufs-
>bufDesc
[SOFT_ISP16_TI_BUFDESC_OUT.bufPlane
s[i] for i=0, 1, 2.

3.17.1.3 SOFT ISP16 Applet Control Command Indices

Description

This following Control Command indices are supported for Soft ISP applet.
Fields

3-72

Field Description

TI_SOFT_ISP16_CONTROL_GET_BUF_SI

ZE

The algorithm expects the input and output buffers to be satisfy
certain contraints. These details are communicated to the user
using a control call with this index. Given the input create time
parameters, the control call return the buffer constraints through
the output parameters of SOFT_ISP_TI_CreateParams structure.

3.17.1.4 SOFT_ISP16_TI_InArgs

Description

This structure contains all the parameters which are given as an output by SOFT ISP16 applet.
Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

3.17.1.5 SOFT_ISP16_TI_OutArgs

Description

This structure contains all the parameters which are given as an output by SOFT ISP applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

activeImageWidth uint16_t Output Width in bytes of the area that will be
accessed by the EDMA when reading the
input frame. For this function, it should
always be equal to 2 *(imgFrameWidth + 6)
bytes .

activeImageHeight uint16_t Output Height in lines of the area that will be
accessed by the EDMA when reading the
input frame. For this function, it should
always be equal to (imgFrameHeight + 6)
lines .

outputBlockWidth uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockWidth is returned in this
parameter and will be a divisor of
imgFrameWidth.

outputBlockHeight uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockHeight is returned in this
parameter and will be a divisor of
imgFrameHeight.

3.17.2 Constraints

 Input image pixel should be of 16-bit resolution with actual bit-depths varying from 12-bit to 16-bit.

 Image width must be a multiple of 16 and Image height must be a multiple of 2.

3-74

3.18 Hough Transform for lines

This applet calculates the hough transform for a given set of edge points. This routine accepts an input list of edges in
packed for with respect to x and y with each x and y being 16 bit quantity. It also accepts the input image dimesnsion
along with the range of rho and theta for which transform needs to be calculated.

3.18.1 Data Structures

3.18.1.1 HOUGH_FOR_LINES_TI_CreateParams

Description

This structure defines the creation parameters for the Hough For lines applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

3.18.1.2 IHOUGH_FOR_LINES_InBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

The below enums define the purpose of the input buffer.
Fields

Enumeration Description

HOUGH_FOR_LINES_TI_BUFDESC_IN_XY_LIST This buffer descriptor (inBufs-
>bufDesc[HOUGH_FOR_LINES_TI_BUFDESC_
IN_XY_LIST])
 should point to a buf descriptor containing XY
list of the edge points in an image. This list is
 expected to be in packed 32 bit format with X
coordinate followed by Y coordinate for each
 edge point. Each X or Y is a 16 bit entry..

HOUGH_FOR_LINES_TI_BUFDESC_IN_TOTAL This indicates total number of input buffers
expected.

3.18.1.3 IHOUGH_FOR_LINES_OutBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

Below enums define the purpose of out buffer.
Fields

Enumeration Description

3-76

Enumeration Description

HOUGH_FOR_LINES_TI_BUFDESC_OUT_RHO_THETA_

SPACE

his buffer descriptor (outBufs-
>bufDesc[HOUGH_FOR_LINES_TI_BUFDESC_
OUT_RHO_THETA_SPACE]) should
 point to the output buffer which will contain the
list of rho and theta points for all the edge points
 by this applet. Each rho and theta is a 16 bit
entry packed in 32 bit format with rho followed by
theta.

HOUGH_FOR_LINES_TI_BUFDESC_OUT_TOTAL This indicates total number of output buffers
expected.

3.18.1.4 HOUGH_FOR_LINES_InArgs

Description

This structure contains all the parameters which are given as an output by Hough For Lines applet.
Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

listSize uint16_t Input

Size of the list of edge points in terms of
number of points.

thetaStart uint16_t Input

Starting theta in degrees for the region in
which lines are supposed to be detected.

thetaEnd uint16_t Input End theta in degrees for the region in which
lines are supposed to be detected

thetaStepSize uint8_t input Steps in which theta should be incremented
while moving from thetaMin to thetaMax.

rhoMaxLength uint16_t input Maximum rho value in rho theta space

imgWidth uint16_t input Image frame width.

imgHeight uint16_t input Image frame height

 : :

3.18.1.5 HOUGH_FOR_LINES_OutArgs

Description

This structure contains all the parameters which are given as an output by Hough For Lines applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

3.18.2 Constraints

 Theta Values should lie between 0 to 360 degrees

 Rho Max value should be less than HOUGH_FOR_LINES_TI_MAXRHOLENGTH

 List Size should be less than HOUGH_FOR_LINES_TI_MAXLISTSIZE.

3-78

3.19 Integral Image

This routine computes the integral image of an unsigned 8-bits image. The output data is in 32-bit unsigned format
allowing an input image of up to 16 Mpix without causing any overflow.

3.19.1 Data Structures

3.19.1.1 INTEGRAL_IMAGE_TI_CreateParams

Description

This structure defines the creation parameters for integral image applet.
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

imageFrameWidth uint16_t Input Width of the input image

imageFrameHeight uint16_t Input Height of the input image

3.19.1.2 INTEGRAL_IMAGE_TI_OutArgs

Description

This structure contains all the parameters which are given as an output by integral image applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Params Output

Commom structure for outArgs ivision
modules

blockWidth uint16_t Output The input frame is partitioned into blocks of
blockWidth x blockHeight that are processed
one after the other by the VCOP. The value
of blockWidth is returned in this parameter.

blockHeight uint16_t Output The input frame is partitioned into blocks of
blockWidth x blockHeight that are processed
one after the other by the VCOP. The value
of blockHeight is returned in this parameter.

3.19.2 Constraints

 imageFrameWidth must be multiple of 16.

 imageFrameHeight must be multiple of 8.
 imageFrameWifth x imageFrameHeight must be <= 16,777,216 pixels to avoid overflow.

3.20 NMS (Non Maximum Suppression)

This applet performs Non Maximum Suppression (NMS) along with thresholding on the input data given by the user
This routine accepts an input data and output a list of x and y coordinates in packed format of x and y.

3.20.1 Data Structures

3.20.1.1 NMS_TI_CreateParams

Description

This structure defines the creation parameters for the NMS applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

inputByteDepth uint8_t Input Describes the bit depth for the input data. It
can be 2 or 4 bytes. Refer
INMS_InputByteDepth for valid enteries

3.20.1.2 NMS_TI_InBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

The below enums define the purpose of the input buffer.
Fields

Enumeration Description

NMS_TI_BUFDESC_IN_IMAGEBUFFER This buffer descriptor (inBufs-
>bufDesc[NMS_TI_BUFDESC_IN_IMAGEBUFF
ER]) should point to a buf descriptor pointing to
input image data. Input image width and height
should be multiple of 8.

NMS_TI_BUFDESC_IN_TOTAL This indicates total number of input buffers
expected.

3.20.1.3 NMS_TI_OutBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

Below enums define the purpose of out buffer.
Fields

Enumeration Description

3-80

Enumeration Description

NMS_TI_BUFDESC_OUT_LIST_XY This buffer descriptor (outBufs-
>bufDesc[NMS_TI_BUFDESC_OUT_LIST_XY])
should point to the output buffer which will
contain XY list of the after NMS with
thresholding. This list is expected to be in
packed 32 bit format with X coordinate followed
by Y coordinate for each edge point. Each X or
Y is a 16 bit entry

NMS_TI_BUFDESC_OUT_TOTAL This indicates total number of output buffers
expected.

3.20.1.4 NMS_TI_ControlInArgs

Description

This structure contains all the parameters needed for control call of this applet.
Fields

Field Data Type Input/
Output

Description

imageBuf IVISION_In

Bufs

Input

This is the input buffer which is provided in
process call. Control function will determine
the region for which this kernel would be
running for the input dimensions givenby the
user. User is expected to allocate this much
memory for inout buffer

windowWidth uint8_t Input

Width of the window for NMS

windowHeight uint8_t Input Height of the window for NMS

3.20.1.5 NMS_TI_ControlOutArgs

Description

This structure contains all the parameters that are returned by control call of this applet.
Fields

Field Data Type Input/
Output

Description

effectiveImageWidth Uint16_t Output

effective image width for which this applet is
working. User should atleast allocate this
much memory

effectiveImageHeight Uint16_t Output

effective image height for which this applet is
working. User should atleast allocate this
much memory

3.20.1.6 NMS_TI_InArgs

Description

This structure contains all the parameters which are given as an output by NMS applet.
Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

nmsThreshold Int32_t Input

Threshold to be used with NMS.

windowWidth uint8_t Input

Width of the window for NMS

windowHeight uint8_t Input Height of the window for NMS

 : :

3.20.1.7 NMS_TI_OutArgs

Description

This structure contains all the parameters which are given as an output by NMS applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

numListPoints uint32_t Output

Number of points in the list after NMS and
thresholding

3.20.2 Constraints

 Width and Height should be multiple of 8

 Maximum width supported is 1920

3-82

3.21 Census transform

Overview
This applet computes the census transform of a 8-bits or 16-bits input frame. The function is generic enough to accept
any dimensions (winWidth x winHeight) for the support window. A support window is the rectangle delimiting the
neighbourhood within which each pixel is compared with the center pixel to produce a census codeword.
A census codeword is a bit string, composed of the boolean comparisons of the center pixel with each of its
neighborhood inside the support window. A bit ‘1’ indicates that the center pixel’s value is greater or equal than its
neighbor’s value, ‘0’ indicates the opposite. The bit string is produced in a raster scan format with bit #0
corresponding to the comparison with the upper left neighbor and the last bit corresponding to the comparison with the
lower right neighbor.
In theory, the bit string length should be windWidth * windHeight bits (note that center pixel comparison is included).
But bit string lengths that are not multiple of 8, are hard to manipulate because they don’t round up to an even number
of byte and would need concatenation for post processing. Thus the function produces a more friendly representation
by rounding up the bit string to a byte boundary. To achieve this, bits of value 0 are inserted at the end of each bit
string until a byte boundary is reached.

For example, let’s have this 3x3 pattern:

0 0 0
1 1 1
1 2 0

Applying a 3x3 census transform to the center pixel would produce the following bit string:

Note that bits #9 to #15 are 0 padding bits inserted to make the bit string align with a byte boundary.

Speed-up with downsampling

It is often desirable to keep a codeword length small in order to speed up processing and keep the amount of
memory to store the output low. For instance a 15x15 census window requires floor((15*15+7)/8)= 29 bytes per
codeword. The resulting census frame will be 29x larger than the input frame assuming 8-bits input element. Census
transform outputs are generally fed to some feature matching algorithm relying on hamming distance and codeword
sizes of 1, 2, 4 bytes are more manageable as they typically correspond to a processor’s data bandwidth. So a
codeword size of 29 bytes is certainly too big to be efficiently handled. As a mean to limit codeword’s size, this
function offers the option to downsample a support window in the horizontal or vertical direction through the setting of
parameters winHorzStep and winVertStep. The downside of downsampling is of course less information captured in
the codeword. Since neighbor pixels are usually highly correlated, the loss of information may be a small, whereas the
benefit in processing speed-up and memory saving is quiet significant.

To illustrate the concept, let’s have a 5x5 support window:

o o o

o X o

o o o

If winHorzStep= winVertStep= 1, the center pixel ‘X’ would have to be compared with each of its 25 neighbors,
producing a 4 bytes codeword (25 bits aligned to a byte boundary). But if winHorzStep= winVertStep= 2, then only the
neighbors represented by a ‘o’ are used to generate a codeword, which will be 2 bytes long.

Number of bytes per census codeword

Bit
#0

Bit
#1

Bit
#2

Bit
#3

Bit
#4

Bit
#5

Bit
#6

Bit
#7

Bit
#8

Bit
#9

Bit
#10

Bit
#11

Bit
#12

Bit
#13

Bit
#14

Bit
#15

1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

inB
ufD

esc[0].bufP
lanes[0].fram

eR
O

I.height=
 createP

aram
s,inageF

ram
eH

eight

inBufDesc[0].bufPlanes[0].frameROI.width= createParams.imageFrameWidth (in pixel)

inBufDesc[0].bufPlanes[0].buf

inBufDesc[0].bufPlanes[0].width in pixels

in
B

uf
D

es
c[

0]
.b

uf
P

la
ne

s[
0]

.h
ei

gh
t

inBufDesc[0].bufPlanes[0].buf +(inBufDesc[0].bufPlanes[0].frameROI.topLeft.y * inBufDesc[0].bufPlanes[0].width +
inBufDesc[0].bufPlanes[0].frameROI.topLeft.x) * numBytesPerPixel

In conclusion, the formula that gives the length of each bit string, in number of bytes is as follow:

numBytesPerCensus= (((winWidth + winHorzStep -1) / winHorzStep)*((winHeight + winVertStep -1) /

winVertStep) + 7)/8

So for a 15x15 census window and winHorzStep=2, winVertStep=2, a codeword length would be 8 bytes.
For output buffer user should allocate imageFrameWidth * imageFrameHeight * numBytesPerCensus.

Frame layout

The figure below shows to what dimensions the different members of the CENSUS_TI_CreateParams and
IVISION_BufDesc correspond to with respect to the input frame.

At creation time, the members createParams.imageFrameWidth and createParams.imageFrameHeight are

passed through the creation params structure CENSUS_TI_CreateParams. These values correspond to the actual
ROI’s width and height, depicted by the blue region in the figure above, which will be processed by algProccess().
Using the values, the underlying creation function (initiated by algInit) will allocate the onchip memory accordingly and
partition the frame in blocks. The dimensions of the blocks can be obtained after creation, by calling the algControl()
function, which will return controlOutParams->outputBlockWidth and controlOutParams->outputBlockHeight. Note that
for this function, the ROI’s width and height can be changed after creation since the ROI dimensions are passed to

inBufDesc[0].bufPlanes[0].frameROI.width and inBufDesc[0].bufPlanes[0].frameROI.height, which

are passed to algProcess(). Normally for other applets, the inBufDesc[]…frameROI.width and
inBufDesc[]….frameROI.height values must exactly match the values used in createParams.imageFrameWidth and

3-84

createParams.imageFrameHeight. In other words, once the ROI width and height are set at create time, it is not
possible to use different values at process time without causing errors. For this applet though, it is possible to re-
specify these values by just setting inBufDesc[0].bufPlanes[0].frameROI.width and
inBufDesc[0].bufPlanes[0].frameROI.height with new ones. The only constraint is that these new dimensions must be
multiple of controlOutParams->outputBlockWidth and controlOutParams->outputBlockHeight, which are returned by

algControl().

3.21.1 Data Structures

3.21.1.1 CENSUS_TI_CreateParams

Description

This structure defines the creation parameters for census transform applet.
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Param

s

Input Commom structure for vision modules

imageFrameWidth uint16_t Input Width of the input image’s ROI

imageFrameHeight uint16_t Input Height of the input image,s ROI

inputBitDepth uint8_t Input Bit depth of the input image (8 or 16)

winWidth uint8_t Input Width of the support window

winHeight uint8_t Input Height of the support window

winHorzStep uint8_t Input Horizontal step between each position in the
support window

winVertStep uint8_t Input Vertical step between each position in the
support window

3.21.1.2 CENSUS_TI_OutArgs

Description

This structure contains all the parameters which are produced as an output by the census transform applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Params Output

Commom structure for outArgs ivision
modules

activeImageWidth uint16_t Output Width in bytes of the area that will be
accessed by the EDMA when reading the
input frame. For this function, it should
always be equal to numBytesPerPixel
*(imgFrameWidth + winWidth – 1) bytes .

Field Data Type Input/
Output

Description

activeImageHeight uint16_t Output Height in lines of the area that will be
accessed by the EDMA when reading the
input frame. For this function, it should
always be equal to (imgFrameHeight +
winHeight – 1) lines .

outputBlockWidth uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockWidth is returned in this
parameter and will be a divisor of
imgFrameWidth.

outputBlockHeight uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockHeight is returned in this
parameter and will be a divisor of
imgFrameHeight.

numBytesPerCensus uint8_t Output Census transform codeword's length in bytes

3.21.1.3 CENSUS_TI_ControlOutParams

Description

This structure contains all the parameters which are produced as an output by the census transform applet’s
algControl() function.

Fields

Field Data Type Input/
Output

Description

algParams IALG_Params Output

Commom structure for algParams ivision
modules

outputBlockWidth uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockWidth is returned in this
parameter and will be a divisor of
imgFrameWidth.

outputBlockHeight uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockHeight is returned in this
parameter and will be a divisor of
imgFrameHeight.

3.21.2 Constraints

 imageFrameWidth must be multiple of 16.

 imageFrameHeight must be multiple of 8.

 inBufDesc[0].bufPlanes[0].width >= inBufDesc[0].bufPlanes[0].frameROI.width + createParams.winWidth - 1

 inBufDesc[0].bufPlanes[0].height >= inBufDesc[0].bufPlanes[0].frameROI.height + createParams.winHeight -
1

 inBufDesc[0].bufPlanes[0].frameROI.width must be multiple of controlOutParams->outputBlockWidth
 inBufDesc[0].bufPlanes[0].frameROI.height must be multiple of controlOutParams->outputBlockHeight

3-86

 inBufDesc[0].bufPlanes[0].frameROI.topLeft.x >= (createParams.winWidth – 1)/2 (to ensure correct values in
left and bottom band)

 inBufDesc[0].bufPlanes[0].frameROI.topLeft.y >= (createParams.winHeight – 1)/2 (to ensure correct values in
top and bottom band).

 inputBitDepth must be either 8 or 16.

3.22 Disparity calculation

Overview
This applet computes the disparity map for stereovision between two images. In order to respect the epipolar
constraint, it is assumed that the two images are from calibrated cameras or have been rectified, so that they are
vertically aligned in order for the horizontal lines of pixels to coincide. This way, the underlying correspondence search
is a 1-D problem instead of a 2-D problem.
The disparity algorithm uses horizontal block matching as correspondence matching. The correspondence matching is
carried out by matching one image with the other. There are two modes of matching direction: left to right or right to

left. The user of the function can set createParams.searchDir to either DISPARITY_TI_RIGHT_TO_LEFT or

DISPARITY_TI_LEFT_TO_RIGHT to select between the two modes.

When DISPARITY_TI_LEFT_TO_RIGHT is selected, each pixel’s neighborhood in the left image is compared with

many other neighborhood positions in the right image along the same epipolar line. A neighborhood is defined as a
rectangle of size winWidth x winHeight in which a cost value is calculated and aggregated. This process is called block
matching along epi-polar line. The figure below shows a pixel in the left image at coordinates (x,y) being compared
with pixels at coordinates (x, y) to (x – d +1, y) in the right image.

When DISPARITY_TI_RIGHT_TO_LEFT is selected, each pixel’s neighborhood in the right image is compared with

many other neighborhood positions in the left image along the same epipolar line.
In theory, either mode should produce the same output for the center region of the image that excludes left and right
bands of width numDisparities – 1 pixels. However due to occlusions or flat textures, the results may be different.
That’s why in some use cases, it is desirable to run the function along one search direction and then again along the
opposite direction. Then, post-processing can discard the output locations for which the disparity obtained using one
dirrection is too different from the other direction.

During block matching, the cost can be calculated either by using SAD (sum of absolute difference) if the input images
are intensity images or by hamming distance if the imput images are made up of census codewords. Current
implementation only supports hamming distance,
The output disparity map is a 8-bit frame in which each value corresponds to the displacement associated to the
minimum cost found during the horizontal block matching.
To restrict the search range, the applet accepts as parameter the number of disparities to search, numDisparities,
which typically ranges from 32 to 128. The smaller the number of disparities, the faster the execution time is. However
limiting the range of disparities to a small number might produce erroneous disparities for near objects. One way to
cope with this is to keep a wide range of disparities while reducing the number of disparities to search. This can be
done by setting the disparity step to some value greater than 1. The effect will be that the disparity range will be
downsampled, resulting in fewer disparities to calculate.
For instance, if numDisparities= 128 and disparityStep= 4, then only disparities 0,4,8,…,120 will be searched and the
computational cost will be the same as numDisparities= 32 and disparityStep= 1. Of course, the quality of the disparity
map will be degraded due to quantization effect so one needs to carefully consider this side effect, which can be
mitigated with interpolation in a later post-processing stage.
In addition to the disparity map, the applet can also output the minimum cost values but also values adjacent to the
minimum costs for the purpose of sub-pixel disparity estimation by parabola interpolation method, which can be
handled by a separate post-processing step.

numDisparities= d x

y

x x – d + 1

Left Right

3-88

inB
ufD

esc[idx].bufP
lanes[0].fram

eR
O

I.height= createP
aram

s,inageF
ram

eH
eight

inBufDesc[idx].bufPlanes[0].frameROI.width= createParams.imageFrameWidth (in pixels or codewords)

inBufDesc[idx].bufPlanes[0].buf

inBufDesc[idx].bufPlanes[0].width in pixels or codewords

in
B

uf
D

es
c[

id
x]

.b
uf

P
la

ne
s[

0]
.h

ei
gh

t

inBufDesc[idx].bufPlanes[0].buf +(inBufDesc[idx].bufPlanes[0].frameROI.topLeft.y * inBufDesc[idx].bufPlanes[0].width +
inBufDesc[idx].bufPlanes[0].frameROI.topLeft.x) * numBytesPerPixel

Frame layout

The information in this section is complemented by the document apps/disparity/docs/disparity_parameters.pdf.

The figure below shows to what dimensions the different members of the DISPARITY_TI_CreateParams and
IVISION_BufDesc correspond to with respect to the input left or right frame.

Figure 1. Frame layout of the disparity applet

For left frame, idx= DISPARITY_TI_BUFDESC_IN_LEFT_IMAGE (abreviated to LEFT in the remaining document)

and for right image, idx= DISPARITY_TI_BUFDESC_IN_RIGHT_IMAGE (abreviated to RIGHT in the remaining

document) and for right image.

As depicted by the above layout, the following constraints should be respected in order to avoid producing invalid
disparity outputs.

inBufDesc[LEFT].bufPlanes[0]

.width
≥ inBufDesc[LEFT].bufPlanes[0].frameROI.width

+ createParams.winWidth - 1 + createParams.numDisparities - 1

inBufDesc[LEFT].bufPlanes[0]

.height
≥ inBufDesc[LEFT].bufPlanes[0].frameROI.height

+ createParams.winHeight -1

inBufDesc[RIGHT].bufPlanes[0

].width
≥ inBufDesc[RIGHT].bufPlanes[0].frameROI.width

+ createParams.winWidth - 1 + createParams.numDisparities - 1

inBufDesc[RIGHT].bufPlanes[0

].height
≥ inBufDesc[RIGHT].bufPlanes[0].frameROI.height

+ createParams.winHeight -1

Note that frameROI.width and frameROI.height values are the same between left and right frames. If

createParams.searchDir= DISPARITY_TI_RIGHT_TO_LEFT, the extra term

createParams.numDisparities – 1 present in the ‘width’ constraints may be optional. If omitted, some

disparities in the right-hand side of the image will be invalid. If createParams.searchDir=

DISPARITY_TI_LEFT_TO_RIGHT, this extra term must be present.

If createParams.searchDir= DISPARITY_TI_RIGHT_TO_LEFT is selected and if desired output disparity range is

[0, numDisparities -1] then additional constraints are:
inBufDesc[LEFT].bufPlanes[0]

.frameROI.topLeft.x
≥ (createParams.winWidth – 1)/2

inBufDesc[LEFT].bufPlanes[0]

.frameROI.topLeft.y
≥ (createParams.winHeight – 1)/2

inBufDesc[RIGHT].bufPlanes[0

].frameROI.topLeft.x
≥ (createParams.winWidth – 1)/2

inBufDesc[RIGHT].bufPlanes[0

].frameROI.topLeft.y
≥ (createParams.winHeight – 1)/2

These constraints are actually similar to any constraints associated to a filtering type of function.

If createParams.searchDir= DISPARITY_TI_LEFT_TO_RIGHT is selected and if desired output disparity range is

[0, numDisparities -1] then the constraints become:
inBufDesc[LEFT].bufPlanes[0]

.frameROI.topLeft.x
≥ (createParams.winWidth – 1)/2 + createParams.numDisparities – 1

inBufDesc[LEFT].bufPlanes[0]

.frameROI.topLeft.y
≥ (createParams.winHeight – 1)/2

inBufDesc[RIGHT].bufPlanes[0

].frameROI.topLeft.x
≥ (createParams.winWidth – 1)/2

inBufDesc[RIGHT].bufPlanes[0

].frameROI.topLeft.y
≥ (createParams.winHeight – 1)/2

The figure below illustrates the constraints on the left image in case createParams.searchDir=

DISPARITY_TI_LEFT_TO_RIGHT:

The figure below illustrates the constraints on the right image in case createParams.searchDir=

DISPARITY_TI_LEFT_TO_RIGHT:

3-90

As you can observe, the main difference between the two cases DISPARITY_TI_RIGHT_TO_LEFT and

DISPARITY_TI_LEFT_TO_RIGHT is that for the later, topLeft.x of the left image has an additional term of

createParams.numDisparities – 1. This additional term is to guarantee valid disparities in the left side of the

image. The extra term can be smaller than createParams.numDisparities – 1 or even be 0, but then some

disparities will be wrong within a band of createParams.numDisparities – 1 pixels wide in the left-hand side of

the image. The figure below depicts such situation where the left pixel coordinates (x,y) has its x coordinates strictly
smaller than d – 1, resulting in comparison with pixel (x – d + 1, y) in the right image that falls outside of the frame.

If any of these constraints is not followed, the function will still execute but some outputs values along the border or
within either the left or right hand side of the output will be wrong.

At creation time, the members createParams.imageFrameWidth and createParams.imageFrameHeight are

passed through the creation params structure DISPARITY_TI_CreateParams. These values correspond to the actual

ROI’s width and height, depicted by the blue region in Figure 1, which will be processed by algProccess(). Using

the values, the underlying creation function (initiated by algInit) will allocate the onchip memory accordingly and
partition the frame in blocks. The dimensions of the blocks can be obtained after creation, by calling the

algControl() function, which will return controlOutParams->outputBlockWidth and controlOutParams-

>outputBlockHeight. Note that for this function, the ROI’s width and height can be changed after creation since the

ROI dimensions are passed to inBufDesc[0].bufPlanes[0].frameROI.width and

inBufDesc[0].bufPlanes[0].frameROI.height, which are passed to algProcess(). Normally for other applets,

the inBufDesc[]…frameROI.width and inBufDesc[]….frameROI.height values must exactly match the values

used in createParams.imageFrameWidth and createParams.imageFrameHeight. In other words, once the ROI

x

y

x

Left Right
x – d + 1

width and height are set at create time, it is not possible to use different values at process time without causing errors.
For this applet though, it is possible to re-specify these values by just setting

inBufDesc[0].bufPlanes[0].frameROI.width and inBufDesc[0].bufPlanes[0].frameROI.height with

new ones. The only constraint is that these new dimensions must be multiple of controlOutParams-

>outputBlockWidth and controlOutParams->outputBlockHeight, which are returned by algControl().

Application to stereo-vision
This function, along with remap to rectify lens distortions, image misalignments and census transform, forms a
complete stereovision algorithm. Example of such an application can be found in directory algorithms/stereoVision in
the EVE SW release. A DSP post-processing stage to clean up the disparity map from invalid, noisy outputs is also
available in the DSP APP release.

3.22.1 Data Structures

3.22.1.1 DISPARITY_TI_CreateParams

Description

This structure defines the creation parameters for disparity applet.
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Params Input Commom structure for vision modules

imageFrameWidth uint16_t Input Width in number of census codewords of
the ROI image for which the disparity
between left and right image will be
produced.

imageFrameHeight uint16_t Input Height in number of lines of the ROI
image for which the disparity between left
and right image will be produced.

inputBitDepth uint8_t Input Number of bits in each left and right
image's pixel or codewords (depending
whether costMethod=

DISPARITY_TI_SAD or

DISPARITY_TI_HAMMING_DIST).

Currently only 32-bits is supported.

winWidth uint8_t Input Width of the support window in which
costs are aggregated using either SAD or
hamming distance.

winHeight uint8_t Input Height of the support window in which
costs are aggregated using either SAD or
hamming distance.

numDisparities uint8_t Input Number of disparities for which the
costs are calculated. For each pixel, the
disparity corresponding to the minimum

cost is returned. When searchDir=

DISPARITY_TI_LEFT_TO_RIGHT,

disparity search is done by fixing a pixel
in left image and then searching for the
minimum cost pixel in the right image,
along the same epilpolar line.

Setting searchDir=

DISPARITY_TI_BOTH will also do the

search from" right image "to" left image.

3-92

Field Data Type Input/
Output

Description

disparityStep uint8_t Input Disparity step allows to down-sample the
number of disparities for which the cost is
calculated, resulting in faster computation
(but with some loss of quality).

costMethod uint8_t Input Currently only

DISPARITY_TI_HAM_DIST is

supported.

searchDir uint8_t Input DISPARITY_TI_RIGHT_TO_LEFT

DISPARITY_TI_LEFT_TO_RIGHT

outputCostType uint8_t Input DISPARITY_TI_MINCOST: output

the minimum cost value associated to
each pixel’s disparity value.
DISPARITY_TI_MIN_ADJACENT_CO

STS: output the minimum cost value

and the adjacent values associated to
each pixel’s disparity value. In total 3
cost planes are written out: the
minimum cost plane, the previous cost
plane and the next cost plane.

3.22.1.2 DISPARITY_TI_OutArgs

Description

This structure contains all the parameters which are produced as an output by the disparity applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Para

ms

Output

Commom structure for outArgs ivision modules

activeImageWidthLeft uint16_t Output Width in bytes of the area that will be
accessed by the EDMA when reading the left
image frame.
When searchDir=
DISPARITY_TI_LEFT_TO_RIGHT

it is equal to (imgFrameWidth +

winWidth - 1)*inputBitDepth/8

bytes
and when When searchDir=

DISPARITY_TI_RIGHT_TO_LEFT, it is

equal to (imgFrameWidth + winWidth

– 1 + numDisparities -

1)*inputBitDepth/8 bytes

Field Data Type Input/
Output

Description

activeImageWidthRight uint16_t Output Width in bytes of the area that will be
accessed by the EDMA when reading the
right image frame. When searchDir=
DISPARITY_TI_LEFT_TO_RIGHT

it is equal to (imgFrameWidth +

winWidth – 1 + numDisparities -

1)*inputBitDepth/8

bytes
and when When searchDir=

DISPARITY_TI_RIGHT_TO_LEFT, it is

equal to (imgFrameWidth + winWidth

- 1)*inputBitDepth/8 bytes

activeImageHeight uint16_t Output Height in number of rows of the area that will
be accessed by the EDMA when reading the
right and left frame. For this function, it
should always be equal to (imgFrameHeight +
winHeight - 1)

outputBlockWidth uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockWidth is returned in this
parameter and will be a divisor of
imgFrameWidth.

outputBlockHeight uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockHeight is returned in this
parameter and will be a divisor of
imgFrameHeight.

3.22.1.3 DISPARITY_TI_ControlOutParams

Description

This structure contains all the parameters which are produced as an output by the disparity applet’s algControl()
function.

Fields

Field Data Type Input/
Output

Description

algParams IALG_Params Output

Commom structure for algParams ivision
modules

outputBlockWidth uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockWidth is returned in this
parameter and will be a divisor of
imgFrameWidth.

3-94

Field Data Type Input/
Output

Description

outputBlockHeight uint16_t Output The output frame will be written block-wise.
Each block will be of dimension
outputBlockWidth x outputBlockHeight. The
value of outputBlockHeight is returned in this
parameter and will be a divisor of
imgFrameHeight.

3.22.2 Constraints

 createParams.imageFrameWidth must be multiple of 32.

 createParams.numDisparities must be multiple of 8.

 All constraints listed in the frame layout section.

 inputBitDepth must be 32.

3.22.3 References

 http://chrisjmccormick.wordpress.com/2014/01/10/stereo-vision-tutorial-part-i/

 http://www.vision.caltech.edu/bouguetj/calib_doc/

http://chrisjmccormick.wordpress.com/2014/01/10/stereo-vision-tutorial-part-i/
http://www.vision.caltech.edu/bouguetj/calib_doc/

3.23 Feature Matching

This applet performs brute force search for matching features in one image/frame with features from another
image/frame. The matching is performed based on Hamming distance measure. The applet is hence suitable for
binary string based descriptors like ORB, BRIEF etc.

The input to the applet is two lists of feature descriptors – one for the first frame and one for the second frame. It takes
the descriptor of one feature in first list and is matched with all other features in second list using Hamming distance
as norm/metric for comparison. The index to one with minimum Hamming distance is reported as a match if the
minimum Hamming distance is lower than user specified threshold and satisfies the ratio test for match confidence
measure specified.

The quality of feature matching can be controlled by specifying a ‘matchConfidence’ parameter. For each feature

descriptor from first list, we find two best features matches from the second list – say with hamming distances of

minDist0 and minDist1. The descriptor from second list, which had the minimum hamming distance (minDist0), is

declared as a confident match only if it satisfies the below ratio test criteria:

minDist0 <= (1 – matchConfidence) * minDist1

3.23.1 Data Structures

3.23.1.1 FEATURE_MATCHING_TI_CreateParams

Description

This structure defines the creation parameters for the Feature Matching applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

descriptorLength Uint16_t Input Length of each feature descriptor in bytes.

3.23.1.2 FEATURE_MATCHING_TI_InBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

The below enums define the purpose of the input buffer.
Fields

Enumeration Description

FEATURE_MATCHING_TI_BUFDESC_IN_FEATURE1 This buffer descriptor should point to a buf
descriptor pointing to list of feature descriptors
for which correspondence needs to be found.
The input should be a byte array (uint8_t data
type).

FEATURE_MATCHING_TI_BUFDESC_IN_FEATURE2 This buffer descriptor should point to a buf
descriptor pointing to list of feature descriptors
from which correspondence needs to be
searched for. The input should be a byte array
(uint8_t data type).

3-96

Enumeration Description

FEATURE_MATCHING_TI_BUFDESC_IN_TOTAL This indicates total number of input buffers
expected.

3.23.1.3 FEATURE_MATCHING_TI_OutBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

Below enums define the purpose of out buffer.
Fields

Enumeration Description

FEATURE_MATCHING_TI_BUFDESC_OUT_CORRESPON

DENCE

This buffer descriptor should point to a buffer
capable of holding the list of indices from second
feature descriptor list which correspond to each
feature descriptor in the first list. The output
indices are of uint16_t data type.

FEATURE_MATCHING_TI_BUFDESC_OUT_TOTAL This indicates total number of output buffers
expected.

3.23.1.4 Control Command Indices

Description

This following Control Command indices are supported for Feature matching applet.
Fields

Field Description

FEATURE_MATCHING_TI_CONTROL_GET_

BUF_SIZE

The algorithm expects the input and output buffers to be satisfy
certain contraints. These details are communicated to the user
using a control call with this index. Given the input control
parameters in FEATURE_MATCHING_TI_CtrlParams, the control
call return the buffer constraints through the output parameters of
the same structure. This control call is optional in case user can
statically provide bigger input and output buffers. In case input
buffer can have extra space for upto 128 descriptors and space for
extra 128 indices (16-bit) in output buffer, the control call need not
be made. The data in the padded region of input buffers does not
affect the valid outputs. The data produced in extra region in
output buffer should be ignored.

3.23.1.5 FEATURE_MATCHING_TI_CtrlParams

Description

This structure contains all the parameters needed for control call of this applet.
Fields

Field Data Type Input/
Output

Description

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input

This is the input buffer which is provided in
process call. Control function will determine
the region for which this kernel would be
running for the input dimensions givenby the
user. User is expected to allocate this much
memory for inout buffer

numDescriptors1 uint16_t Input

Number of feature descriptors in feature
descriptor list 1.

numDescriptors2 uint16_t Input Number of feature descriptors in feature
descriptor list 2.

in1BufSize uint32_t Output Minimum buffer size in bytes required for
Feature 1 input buffer.

in2BufSize uint32_t Output Minimum buffer size in bytes required for
Feature 2 input buffer.

outBufSize uint32_t Output Buffer size in bytes required for
correspondence output.

3.23.1.6 FEATURE_MATCHING_TI_InArgs

Description

This structure contains all the parameters which are given as an input to Feature Matching applet during each
process call.

Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

minDistanceThres uint16_t Input Minimum distance between features for
declaring a match.

matchConfidence uint16_t Input Parameter to control ratio test used for
eliminating matches that are ambiguous - i.e.
the best match (minDist0) and next best
match (minDist1) are very close to one
another. A match is declared only if minDist0
<= (1 - matchConfidence)*minDist1. The
parameter value can vary from 0 to 1 and
should be provided in U1.15 format

3.23.1.7 FEATURE_MATCHING_TI_OutArgs

Description

This structure contains all the parameters which are given as an output by Feature Matching applet during each
process call.

Fields

Field Data Type Input/
Output

Description

3-98

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

3.23.2 Constraints

 The feature descriptors sizes should be in multiple of bytes. In case user wants to use the applet for
feature descriptor size that is not a clean multiple of 8 bits, user should pad extra 0 bits to each feature
descriptor to the next byte boundary in both feature descriptor lists.

Maximum feature descriptor size (descriptorLength) supported is 512 bytes.

3.24 Hough Transform for Circles

This applet implements circle detection using Hough transform for circles. For a given list of radii of circles to be
detected, the applet generates the Hough plane for each of the radius and reports the Hough space co-ordinates
(center co-ordinates) and the Hough space score for points in Hough space that have score greater than a user
specified threshold.

The applet takes two inputs buffer - an input image and corresponding edge map image. The edge map should to
be gray-scale image of same dimension as the input image of data type uint8_t, with each pixel indicating
whether the corresponding pixel in the input image is an edge (edge map value of 1) or not (edge map value 0).

Padding requirement in inputs: Based on the image dimensions, the applet expects additional padding in both
width and height dimensions in both input image and the edge map. The exact amount of padding is obtained by
making a control call.

Output format: The output is an array of detected circle information for each radius to be detected. This array is

present as part of the output argument structure (HOUGH_FOR_CIRCLES_TI_OutArgs). The actual number of

circles detected for each radius is provided as another array (numCircles) as part of the output argument

structure of the process call.

While detecting circles for a particular radius 'r', the Hough space for that particular radius will have complete
information only within the central region within a border of 'r' on each side. Hence the applet detects circles only
within this region. While performing detection for a list of radii, detection is performed only within the complete
region for the largest radius.

To achieve reasonable performance, each edge point votes into the Hough plane for a particular radii (r) only at a
point that is at a distance r in the direction of the gradient at the point. The direction of voting ideally depends on
the type of circle one is trying to detect. In case we have a bright circle in dark background, one needs to vote
exactly in the direction of the gradient. In case the circle to be detected is a dark circle in bright background,
voting should be done in a direction exactly opposite to the gradient. In the absence of information on type of
circle to be detected, the applet votes in both directions so as to be able to detect both types of circles.

The applet provides an option to user to vote into a down-scaled Hough space. Apart from original Hough space,
user can select to vote into a Hough space that's effectively downscaled by accumulating votes over either an
2x2 or 4x4 or an 8x8 grid. High down scale factors can give sharper peaks in Hough space and can help avoid
the need to non-maximum suppression within the radius plane.

3.24.1 Data Structures

3.24.1.1 HOUGH_FOR_CIRCLES_TI_CircleType

Description

The voting scheme in the Hough for circles implementation depends on the type of circle being analysed -
whether the circular object to be detected is 'bright' or 'dark'. By 'bright' we mean a bright circular object on a dark
background. The enum lists a possible set of options user can specify the type of circular objects to be detected
by the applet.

Enumerations

Enumeration Description

HOUGH_FOR_CIRCLES_TI_DARK Dark circular object on a bright background.

HOUGH_FOR_CIRCLES_TI_BRIGHT Bright circular object on a dark background.

3-100

Enumeration Description

HOUGH_FOR_CIRCLES_TI_ALL Both bright and dark circular objects.

3.24.1.2 HOUGH_FOR_CIRCLES_TI_HoughSpaceScaling

Description

The amount of downsampling to be performed in the output Hough space during analysis. In general, increasing
the amount of downsampling can lead to better chances of detection during thresholding but at the cost of
accuracy in the location of center co-ordinates. With higher downscaling in Hough space one may not be required
to perform non-maximum suppression within a radius plane.

Enumerations

Enumeration Description

HOUGH_FOR_CIRCLES_TI_NO_SCALING No down scaling in Hough space.

HOUGH_FOR_CIRCLES_TI_SCALE_2x2 Down-scaling the Hough space by accumulating hough votes over
a 2x2 grid.

HOUGH_FOR_CIRCLES_TI_SCALE_4x4 Down-scaling the Hough space by accumulating hough votes over
a 4x4 grid.

HOUGH_FOR_CIRCLES_TI_SCALE_8x8 Down-scaling the Hough space by accumulating hough votes over
a 8x8 grid.

3.24.1.3 HOUGH_FOR_CIRCLES_TI_CreateParams

Description

This structure defines the creation parameters for the Hough for circles applet.

Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

maxPercentageEdges uint8_t Input Maximum percentage of edge points that is
expected per frame. In case user does not
have this information apriori, set the value to
zero. If the value is set to zero the applet will
ask for worst case memory for it's internal
memtab.

circleType uint8_t Input This parameter specifies whether the applet
needs to detect 'bright' or 'dark' circular
object or both. Here 'bright' means bright
circular object on a dark background. Refer
to HOUGH_FOR_CIRCLES_TI_CircleType

Field Data Type Input/
Output

Description

houghSpaceScaling

uint8_t Input This parameter specifies the amount of
down-scaling to beperformed in output
hough space for analysis for every radius.
Refer to
HOUGH_FOR_CIRCLE_TI_HoughSpaceSc
aliing.

maxNumRadius uint8_t Input Maximum number of radius user wants to
work with. The maximum value supported is
HOUGH_FOR_CIRCLES_TI_MAX_RADIUS
.

3.24.1.4 HOUGH_FOR_CIRCLES_TI_InBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

The below enums define the purpose of the input buffer.

Fields

Enumeration Description

HOUGH_FOR_CIRCLES_TI_BUFDESC_IN_IMAGE This buffer descriptor (inBufs-
>bufDesc[HOUGH_FOR_CIRCLES_TI_BUFDE
SC_IN_IMAGE]) should point to a buffer
descriptor containing the image in which circles
need to be detected.

HOUGH_FOR_CIRCLES_TI_BUFDESC_IN_EDGEMAP This buffer descriptor (inBufs-
>bufDesc[HOUGH_FOR_CIRCLES_TI_BUFDE
SC_IN_EDGEMAP]) should point to a buffer
descriptor containing a 8 bit grayscale image
 indicating positions of the edge points in the
image. This buffer should be of same
dimensions as the input image and should have
one-to-one correspondence between pexels of
both input image and edge map image.

HOUGH_FOR_CIRCLES_TI_BUFDESC_IN_TOTAL This indicates total number of input buffers
expected.

3.24.1.5 HOUGH_FOR_CIRCLES_TI_CircleProperties

Description

This structure contains all the parameters needed for specifying properties of circles to be detected by this applet.

Fields

Field Data Type Input/
Output

Description

Radius uint8_t Input Radius of the circle to be detected. The
maximum value supported is
HOUGH_FOR_CIRCLES_TI_MAX_RADIUS

3-102

Field Data Type Input/
Output

Description

houghScoreThreshold uint8_t Input The threshold to be used in hough space to
declare a circle for the given radius.

3.24.1.6 HOUGH_FOR_CIRCLES_TI_InArgs

Description

This structure contains all the parameters which are given as an output by Hough for circles applet.

Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

numRadius uint8_t Input Number of different radii for which hough
transform based detection need to be
performed for the current frame.

circleProps HOUGH_FOR_

CIRCLES_TI

_CirclePro

perties

Input This parameter describes the properties to
be used for circle detection for each radius.

3.24.1.7 HOUGH_FOR_CIRCLES_TI_OutArgs

Description

This structure contains all the parameters which are given as an output by Hough for circles applet.
Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

circleInfo HOUGH_FOR_

CIRCLES_TI

_CircleInf

o

Output

Coordinates of the centers detected for all
radius for current frame

houghScore uint8_t Output Hough Score of the centers detected for all
radius

Remark

It is important to note that when circle type is HOUGH_FOR_CIRCLES_TI_CIRCLE_BOTH then the actual
number following arrays will contain double the number of radius requested with initial enteries being for the
BRIGHT circle followed by DARK circles. For example if circleType is
HOUGH_FOR_CIRCLES_TI_CIRCLE_BOTH and numRadius =3, numCircles array will contain 6 valid enteries
with first 3 for BRIGHT circles and next 3 for DARK circles. circleInfo and houghScore array also follow the same
behavior

3.24.1.8 HOUGH_FOR_CIRCLES_TI_ControlInArgs

Description

This structure contains all the parameters needed for control call of this applet. Control call is used to get the input
buffer requirement by this applet. It is important that input buffer is allocated with the correct size returned by
control call. The applet assumes that extra padded region for edgemap would be filled with zero by the user to
avoid voting for those points by this applet.

Fields

Field Data Type Input/
Output

Description

imageWidth uint16_t Input

Input image buffer width

imageHeight uint16_t Input

Input image buffer height.

maxRadius uint8_t Input

maxRadius

Remark

It is important that the extra padded region for edgemap should be filled with zero by the user to avoid voting for
those points by this applet

3.24.1.9 HOUGH_FOR_CIRCLES_TI_ControlOutArgs

Description

This structure contains all the parameters that are returned by control call of this applet. It is important that the
extra padded region for edgemap should be filled with zero by the user to avoid voting for those points by this
applet.

Fields

Field Data Type Input/
Output

Description

effImageWidth uint16_t Output

Effective image width needed by this applet.

effImageHeight uint16_t Output

Effective image height needed by this applet.

Remark

It is important that the extra padded region for edgemap should be filled with zero by the user to avoid voting for
those points by this applet

3-104

3.24.2 Recommendations

 Do not club analysis for very small radius with very large radius. The detection for small radii circles in

border of the pcitures will be missed due to larger border region (with no detection) dictated by the largest
radius in the list. Also performance for smaller radii will be poorer due to the presence of large radius.

 In case one does not want to decide the input buffer size dynamically by making the control call to get the
buffer size, the user can statically allocate the input buffer with 48*(image width +1) bytes extra.

 In case the type of circle to be detected in a particular application is know apriori to be either a 'bright' circle
or a 'dark' circle, it is recommended to set the circle type parameter accordingly. This will give faster
execution of applet since voting needs to be done only to one half the points when circle type is known.

 The Hough score threshold to be set depends on the radius of the circle to be detected. For larger radius
the threshold can be set higher.

 Non-maximum suppression is not performed on the output list that is provided. Suppression may not be
required with a Hough plane for a particular radius for large down-scale settings. Suppression would still be
required across the radius dimension.

3.24.3 Constraints

 Maximum number of different radii for which circle detection culd be performed in a single process call is limited to

HOUGH_FOR_CIRCLES_TI_MAX_NUM_RADIUS (32).

 The radii of circles that could be reliable detected by this applet ranges between
HOUGH_FOR_CIRCLES_TI_MIN_RADIUS (8) and HOUGH_FOR_CIRCLES_TI_MAX_RADIUS (40). These limits

are not hard limit. Since the Hough space has a bit-depth of 8 bits, for circles with larger radius, the Hough
score will be saturated to 255 and hence unique detection may or may not be possible based on the number
of votes in the neighborhood.

 Maximum number of circles detected for each radius is limited to
HOUGH_FOR_CIRCLES_TI_MAX_NUM_CIRCLE_PER_RADIUS (1000).

 The extra padded region for edgemap should be filled with zeros by the user to avoid voting for those
points by this applet.

3.25 YUV Scalar

This applet accepts NV12 YUV (420 semi planner) as iput and re-sizes the it with user requested scale ratio. It
supports both scale and scale down. Scale ratio shall be 0.25 =< Sclae ratio <= 2. User shall speficy the scale ratio in
Q12 format.

3.25.1 Data Structures

3.25.1.1 YUV_SCALAR_TI_CreateParams

Description

This structure defines the creation parameters for YUV Scalar applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

maxWidth uint16_t Input Maximum image width supported

maxHeight uint16_t Input Maximum image height supported

scaleRatioQ12 uint16_t Input re size / scale ratio in Q12 format

scalingMethod uint8_t input Scaling methos to be used. Refer
YUV_SCALAR_TI_ScalingMethods for
suported methods

fracQFmt uint6_t Input Q format for fraction pixel location
represenatation (as well as filter co-
efficients). Maximum supported values is 8

outStartX uint16_t Input Horizontal offset in the ouput image (Refer
the picture above)

outStartY uint16_t Input Vertical offset in the ouput image (Refer the
picture above)

Active region
Active region

Input Image
Output Image

InStartY

InStartX

OutStartY

OutStartX

3-106

3.25.1.2 YUV_SCALAR_TI_ScalingMethods

Description

This Enumaratior defines the scalling methods supported in YUV Scalar applet
Fields

Field Description

YUV_SCALAR_TI_METHOD_BI_LINEAR_INTERP
OLATION

Bi-Linear interpolation based scaling

YUV_SCALAR_TI_METHOD_MAX Maximum Value for this enumarator

3.25.1.3 YUV_SCALAR_TI_ControlInParams

Description

This structure contains all the input parameters which controls the applet after creation. In the case of
DiffOfGauss transform, it does not have any additional parameters than the default algParams from which it
inherits the content.

Fields

Field Data Type Input/
Output

Description

algParams IALG_Param

s

Input Common params for all IALG based
modules

3.25.1.4 YUV_SCALAR_TI_ControlOutParams

Description

This structure contains all the output parameters written by the control function the applet after creation. Mainly it
contains output block dimensions which can be queried graph creation. The application should use these values
to make sure that any ROI's width and height are multiple of the output block's width and height.

Fields

Field Data Type Input/
Output

Description

algParams IALG_Param

s

Output Common params for all IALG based
modules

outputBlockWidth uint16_t Output output block width

outputBlockHeight uint16_t Output output block height

3.25.1.5 YUV_SCALAR_TI Control Commands

Field Description

YUV_SCALAR_TI_GET_OUT
PUT_BLOCK_DIM

Get output block's dimensions (width &
height) derived during applet creation

3.26 Edge Detector

This applet implements a edge detector working at frame level. The routine accepts a gray scale input image and
along with the threshold required for edge detection. The output dimension of this applet is lesser than input
dimension by the 3x3. Output can be obtained in two different formats: one as a byte edge map whose each entry is
either 0 (for non-edge pixel) or 255 (for edge-pixel) , the second format is a binary bit packed format. Whose bit if 1
indicates and edge and if 0 indicates a non-edge pixel.

3.26.1 Data Structures

3.26.1.1 EDGE_DETECTOR_TI_Method

Description

Edge detection can be done using different methods. Following is the enum for all the supported methods by this
applet

Enumerations

Enumeration Description

EDGE_DETECTOR_TI_METHOD_SOBEL Use Sobel operator for edge Detection.

EDGE_DETECTOR_TI_METHOD_CANNY Use Canny edge detection method for edge detection

3.26.1.2 EDGE_DETECTOR_TI_OutputFormat

Description

The format in which edge detection output is expected.

Enumerations

Enumeration Description

EDGE_DETECTOR_TI_OUTPUT_FORMAT_B

YTE_EDGEMAP

Output edge map image whose each pixel value is 255 if its an
edge and 0 if its not an edge.

EDGE_DETECTOR_TI_OUTPUT_FORMAT_B

INARY_PACK

Output edge map as a binary image with following mapping
 Byte0 -> Bit0 (LSB of the byte in binary image)
 Byte7 -> Bit7 (MSB of the byte in binary image)

 pixels :0 1 2 3 4 5 6 7 8 9 10 will be present as
 Binary : 7 6 5 4 3 2 1 0 15 14 23 12 11 10 9 8 and so on

3.26.1.3 EDGE_DETECTOR_TI_NormType

Description

Which norm to be used for edge detection.

Enumerations

Enumeration Description

3-108

Enumeration Description

EDGE_DETECTOR_TI_NORM_L1 Use L1 Norm ie.Mag =abs(X)+abs(Y)

3.26.1.4 EDGE_DETECTOR_TI_InBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

The below enums define the purpose of the input buffer.

Fields

Enumeration Description

EDGE_DETECTOR_TI_BUFDESC_IN_IMAGE This buffer descriptor (inBufs-
>bufDesc[EDGE_DETECTOR_TI_BUFDESC_I
N_IMAGE]) should point to a buffer descriptor
containing image for which edge detection needs
to be performed.

EDGE_DETECTOR_TI_BUFDESC_IN_TOTAL This indicates total number of input buffers
expected.

3.26.1.5 EDGE_DETECTOR_TI_OutBufOrder

Description

User provides most of the infomration through buffer descriptor during process call. Below enums define the
purpose of out buffer.

Fields

Enumeration Description

EDGE_DETECTOR_TI_BUFDESC_OUT_IMAGE_BUFFER EDGE_DETECTOR_TI_BUFDESC_OUT_IMAG
E_BUFFER: This buffer will return edge
detected image based in the format specified by
the user using the enum. It is important to note
that when method used is Canny the output is
not the edges detectd. Instead output is an
image with each pixel classified into three states:
 Pixel value 0 : For non edge pixels
 Pixel value 1 : For Pixels which are above low
threshold and beloe the high threshold
 Pixel value 255 : For Pixels which are edge
pixels

EDGE_DETECTOR_TI_BUFDESC_OUT_TOTAL This indicates total number of output buffers
expected.

3.26.1.6 EDGE_DETECTOR_TI_CreateParams

Description

This structure contains all the parameters needed at create time for edge detector applet
Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

method uint8_t Input The method to be used for edge detection.
Refer to EDGE_DETECTOR_TI_Method
for supported methods

outputFormat uint8_t Input The output format for the edge detector
output. Refer to
EDGE_DETECTOR_TI_OutputFormat for
supported formats

normType uint8_t Input Which type of norm to use to calculate
magnitude. Refer to
EDGE_DETECTOR_TI_NormType for
supported norms

3.26.1.7 EDGE_DETECTOR_TI_InArgs

Description

This structure contains all the parameters which are given as an input to the applet at frame level
Fields

Field Description

iVisionInArgs Common InArgs for all ivison based modules

threshold1 If sobel edge detector is used then this is the only threshold
applied. But if Canny Edge detector is used then this is the
first threshold for the hysteresis procedure.

threshold2 If sobel edge detector is used then this field is a dont care. But
if
Canny Edge detector is used then this is the second threshold
for the hysteresis procedure.

3.27 Morphology

This applet performs grayscale and binary morphological filtering using a flat structuring element. The structuring
element can be a generic mask or it can be a rectangular or cross mask. In case the user wishes to provide a generic
structuring element, the element has to be provided as a mask of ones and zeros in an array of length se_width x
se_height, where se_width and se_height are the dimensions of the structuring element. The supported morphological
operations are dilation, erosion, opening, closing, top hat, bottom hat and morphological gradient.

In the case of grayscale morphology, the input and output images are assumed to be 8-bit grayscale images.

In the case of binary morphology, the input and output images are assumed to be inverted bit packed images. Each
byte of the image will hold 8 pixel values. To detail, if Pi is the pixel of image at location i along the width (horizontal
direction), then the image will ly in memory in the following format at ascending Bit locations:

 P7 P6 P0 P15 P14 P8 P23 P22 …. P16 P31 P30 …. P24 ……

3-110

3.27.1 Data Structures

3.27.1.1 MORPHOLOGY_TI_CreateParams

Description

 This structure defines the creation parameters for the Morphology applet.

Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules.

srcType uint8_t Input Describes the bit depth for the input data.
Refer MORPHOLOGY_TI_ImageType for
valid enteries.

3.27.1.2 MORPHOLOGY_TI_InBufOrder

Description

 User provides most of the information through buffer descriptor during process call. This enum defines the
purpose of the input buffer.

Fields

Enumeration Description

MORPHOLOGY_TI_BUFDESC_IN_IMAGEBUFFER This buffer descriptor (inBufs-
>bufDesc[MORPHOLOGY_TI_BUFDESC_IN_I
MAGEBUFFER]) should point to a buf
descriptor pointing to input image data. The
Input buffer should have worst case padding of
64 + 2*(se_height-1) + 1 rows. For Binary
morphology, the width and pitch is expected to
be in terms of number of bytes of the image.
Therefore, if the image has a P pixel width, the
width to be entered in the descriptor is P/8.

MORPHOLOGY_TI_BUFDESC_IN_SEBUFFER This buffer descriptor (inBufs-
>bufDesc[MORPHOLOGY_TI_BUFDESC_IN_S
EBUFFER]) should point to a buf descriptor
pointing to the input structuring element only if
the user is providing a generic mask.

MORPHOLOGY_TI_BUFDESC_IN_TOTAL This indicates total number of input buffers
expected.

3.27.1.3 MORPHOLOGY_TI_OutBufOrder

Description

 User provides most of the information through buffer descriptor during process call. This enum defines the
purpose of the output buffer.

Fields

Enumeration Description

MORPHOLOGY_TI_BUFDESC_OUT_BUFFER This buffer descriptor (outBufs-
>bufDesc[MORPHOLOGY_TI_BUFDESC_OUT
_BUFFER]) should point to the output buffer.
The output buffer should have worst case
padding of 64 rows. For Grayscale morphology,
the output buffer pitch should be a multiple of 64.
For Binary morphology, the width and pitch is
expected to be in terms of number of bytes of
the image. Therefore, if the image has a P pixel
width, the width to be entered in the descriptor is
P/8.

MORPHOLOGY_TI_BUFDESC_OUT_TOTAL This indicates total number of output buffers
expected.

3.27.1.4 MORPHOLOGY_TI_ImageType

Description

 This enum defines the type or bit depth of the input image.

Fields

Enumeration Description

MORPHOLOGY_TI_BINARY_IMAGE This denotes binary packed image.

MORPHOLOGY_TI_GRAYSCALE_IMAGE This denotes grayscale 8-bit image.

MORPHOLOGY_TI_IMAGE_TYPES_MAX This indicates total number of image types
supported.

3.27.1.5 MORPHOLOGY_TI_StructuringElementShape

Description

 This enum defines the type or shape of the structuring element.

Fields

Enumeration Description

MORPHOLOGY_TI_CUSTOM_SE This denotes generic mask.

MORPHOLOGY_TI_RECT_SE This denotes rectangular mask.

MORPHOLOGY_TI_CROSS_SE This denotes cross mask with the vertical strip
lying at (se_width-1)/2 and the horizontal strip
lying at (se_height-1)/2.

MORPHOLOGY_TI_SE_SHAPE_MAX This indicates total number of masks supported.

3.27.1.6 MORPHOLOGY_TI_Operation

Description

 This enum defines the morphological operation to be performed on the input image.

3-112

Fields

Enumeration Description

MORPHOLOGY_TI_DILATE This denotes dilation operation.

MORPHOLOGY_TI_ERODE This denotes erosion operation.

MORPHOLOGY_TI_OPEN This denotes open operation. It is Erosion
followed by Dilation on the image.

MORPHOLOGY_TI_CLOSE This denotes close operation. It is Dilation
followed by Erosion on the image.

MORPHOLOGY_TI_TOPHAT This denotes tophat operation. It is open(source)
subtracted from the source.

MORPHOLOGY_TI_BOTTOMHAT This denotes bottom hat operation. It is source
subtracted from the close(source).

MORPHOLOGY_TI_GRADIENT This denotes morphological gradient operation. It
is erosion(source) subtracted from the
dilation(source).

MORPHOLOGY_TI_OPERATION_MAX This indicates total number of operations
supported.

3.27.1.7 MORPHOLOGY_TI_InArgs

Description

 This structure contains all the parameters which are given as an input to the Morphology applet.

Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

morphologyOperation uint8_t Input

Denotes the morphological operation. Refer
MORPHOLOGY_TI_Operation for valid
enteries.

seShape uint8_t Input

Denotes the structuring element shape.
Refer
MORPHOLOGY_TI_StructuringElementSha
pe for valid enteries.

seWidth uint16_t Input Width of the structuring element. For
Grayscale morphology, maximum supported
width is 13. For Binary morphology, only
supported width is 3. In case of Cross mask,
this value should be odd.

Field Data Type Input/
Output

Description

seHeight uint16_t Input Height of the structuring element. For
Grayscale morphology, maximum supported
height is 13. For Binary morphology, only
supported height is 3. In case of Cross
mask, this value should be odd.

3.27.1.8 MORPHOLOGY_TI_OutArgs

Description

 This structure contains all the parameters which are given as an output by Morphology applet.

Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

3.27.2 Constraints

 Maximum width supported is 1920.

 For Grayscale Morphology, the maximum dimensions of the structuring element can be 13x13.

 For Binary Morphology, only a 3x3 structuring element is supported.

 For Cross Structuring Element, the SE width and SE height should be odd values.

3-114

3.28 Bin Image to list

This applet performs conversion of binary image to list. It also supports masking operation along with conversion of
binary image to list. When masking operation is enabled user can provide a mask along with the binary image with 0
at locations which it doesn’t want and 1 at other locations. In this case this applet will not take points for the list if mask
for that point is set as zero.

3.28.1 Data Structures

3.28.1.1 BIN_IMAGE_TO_LIST_TI_ErrorType

Description

 Errors returned by bin image to list applet.

Fields

Enumeration Description

BIN_IMAGE_TO_LIST_TI_ERRORTYPE_FORMAT_UNS

UPPORTED

Error returned when input data format given is
not supported

BIN_IMAGE_TO_LIST_TI_ERRORTYPE_QFORMAT_NO

T_FEASIBLE

Error returned if QFormat supplied by the user
cant be applied

BIN_IMAGE_TO_LIST_TI_ERRORTYPE_WIDTH_NON_

MULTIPLE_OF_8

Error returned when width is not multiple of 8

BIN_IMAGE_TO_LIST_TI_ERRORTYPE_IMAGE_DIME

NSION_UNSUPPORTED

Error returned when image dimension given is
not supported

BIN_IMAGE_TO_LIST_TI_ERRORTYPE_IMAGE_DIME

NSION_MISMATCH

Error returned when image dimension
mismatches

3.28.1.2 BIN_IMAGE_TO_LIST_TI_InputDataFormat

Description

 Supported input data format by this applet.

Fields

Enumeration Description

BIN_IMAGE_TO_LIST_TI_INPUT_DATA_FORMAT_BI

T_PACKED

Input data is bit packed format

3.28.1.3 BIN_IMAGE_TO_LIST_TI_Order

Description

Enums to select the order of x and y in the output buffer.

Fields

Enumeration Description

Enumeration Description

BIN_IMAGE_TO_LIST_TI_ORDER_XY Output will have X coordinate (upper 16 bit
)followed by Y coordinate (lower 16 bits) for
each edge point. Each X or Y is a 16 bit entry.

BIN_IMAGE_TO_LIST_TI_ORDER_YX Output will have Y coordinate (upper 16 bit
)followed by X coordinate (lower 16 bits) for
each edge point. Each X or Y is a 16 bit entry

3.28.1.4 BIN_IMAGE_TO_LIST_TI_InputMaskFormat

Description

Enums to select the format of input mask image

Fields

Enumeration Description

BIN_IMAGE_TO_LIST_TI_INPUT_MASK_FORMAT_BY

TE_MAP

Input mask is a byte mask with 1 at all byte
locations where user want to detect corners and
0 at other byte location

3.28.1.5 BIN_IMAGE_TO_LIST_ListSuppressionMethod

Description

Following enums should be used to select the method to be used when enableListSuppression in
BIN_IMAGE_TO_LIST_TI_CreateParams is enabled

Fields

Enumeration Description

BIN_IMAGE_TO_LIST_TI_LIST_SUPPRESSION_BY_

PERCENTAGE

In this method the list suppression is based on
the percentage of list elements user wants to
pick from all the detected number of points.
Percentage value should be provided via
suppressionValue parameter present in
BIN_IMAGE_TO_LIST_TI_InArgs. Value can
range from 1 ot 100

BIN_IMAGE_TO_LIST_TI_LIST_SUPPRESSION_BY_

MAX_VALUE

In this method the list suppression is based on
the max value given by the user. Final number of
list points detected will be less than the max
value provided by the user. Max value should be
provided via suppressionValue parameter
present in BIN_IMAGE_TO_LIST_TI_InArgs.

3.28.1.6 BIN_IMAGE_TO_LIST_TI_CreateParams

Description

 This structure defines the creation parameters for the this applet.

Fields

Field Data Type Input/
Output

Description

3-116

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules.

inputDataFormat uint8_t Input Describes the format of the input data. It
could be a byte binary image or could be bit
packed binary image Refer
BIN_IMAGE_TO_LIST_TI_InputDataFormat
for valid supported enteries.

inputMaskFormat uint8 Input Describes the format of the mask to be
applied on the input data. It could be a byte
binary image or could be bit packed binary
image
 Refer
BIN_IMAGE_TO_LIST_TI_InputMaskFormat
for valid supported enteries

enableMasking uint8_t Input User can enable masking by separately
providing a byte mask buffer with 1 at
location where it wants to keep the points
and 0 at other places

enableListSuppression uint8_t Input User can enable suppression of the list by
setting the value of this parameter to be 1. If
list suppression is enable then based on
user defined method itnernally we will
uniformly downsample the image to reach
the number of points or the ratio given by the
user via BIN_IMAGE_TO_LIST_TI_InArgs

maxImageWidth Uint16_t Input Maximum image width for which this applet
will be used

maxImageHeight Uint16_t Input Maximum image height for which this applet
will be used

3.28.1.7 BIN_IMAGE_TO_LIST_TI_InBufOrder

Description

 User provides most of the information through buffer descriptor during process call. This enum defines the
purpose of the input buffer.

Fields

Enumeration Description

BIN_IMAGE_TO_LIST_TI_BUFDESC_IN_BUFFER This buffer descriptor (inBufs-
>bufDesc[BIN_IMAGE_TO_LIST_TI_BUFDESC
_IN_BUFFER]) should point to a buf descriptor
pointing to input binary image data which needs
to be converted to list. This buffer format is
decided by the inputFormat field in
createParams. Width should be multiple of 8

Enumeration Description

BIN_IMAGE_TO_LIST_TI_BUFDESC_IN_MASK_BUFF

ER

This buffer descriptor (inBufs-
>bufDesc[BIN_IMAGE_TO_LIST_TI_BUFDESC
_IN_MASK_BUFFER]) should point to a buf
descriptor pointing to the byte mask which needs
to be applied to the image. Byte mask should
contain 1 at location which you want to keep and
0 at other locations. This buffer is only required
if you are enabling masking using
enableMasking field of create params

BIN_IMAGE_TO_LIST_TI_BUFDESC_IN_TOTAL This indicates total number of input buffers
expected.

3.28.1.8 BIN_IMAGE_TO_LIST_TI_OutBufOrder

Description

 User provides most of the information through buffer descriptor during process call. This enum defines the
purpose of the output buffer.

Fields

Enumeration Description

BIN_IMAGE_TO_LIST_TI_BUFDESC_OUT_LIST_XY This buffer descriptor (outBufs-
>bufDesc[BIN_IMAGE_TO_LIST_TI_BUFDESC
_OUT_LIST]) should point to the output buffer
which will contain XY list after
BIN_IMAGE_TO_LIST with thresholding. This
list is expected to be in packed 32 bit format with
order of X and Y determined by inArgs
outputListOrder field. Size of this buffer should
be the worst case size which will be equal to
imageWidth * imageHeight * sizeof(uint32_t).
 If user given size of the buffer is less than the
above mentioned then applet will return a
warning saying not enough buffer. It is important
to note that for the cases when buffer is not
sufficient this applet behavior is undefined.
 Size of this buffer should be the worst cases
size if suppresion is disabled.
 If suppression is enabled and method is
BIN_IMAGE_TO_LIST_TI_LIST_SUPPRESSIO
N_BY_MAX_VALUE
 then buffer should be of maxSize + 128 to take
care of the extra buffer required by the applet

MORPHOLOGY_TI_BUFDESC_OUT_TOTAL This indicates total number of output buffers
expected.

3-118

3.28.1.9 BIN_IMAGE_TO_LIST_TI_InputDataFormat

Description

 This enum defines the format supported for binary input data.

Fields

Enumeration Description

BIN_IMAGE_TO_LIST_TI_INPUT_DATA_FORMAT_BI

T_PACKED

Indicates Input Data is a bit masked data

3.28.1.10 BIN_IMAGE_TO_LIST_TI_InputMaskFormat

Description

 This enum defines the format supported for mask to be used when enableMasking is enabled

Fields

Enumeration Description

BIN_IMAGE_TO_LIST_TI_INPUT_MASK_FORMAT_BY

TE_MAP

Indicates Input Data is a byte mask with 0 at
location which needs to be masked from the list
and 1 at other places

3.28.1.11 BIN_IMAGE_TO_LIST_TI_InArgs

Description

 This structure contains all the parameters which are given as an input to the this applet.

Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

outputListOrder uint8_t Input

The order of X and Y in output List. Refer
BIN_IMAGE_TO_LIST_TI_Order for valid
vlaues

outputListQFormat uint8_t Input

The Qformat in which output is expected.
The coordinates are shifted by
outputListQFormat
amount while packing the coordinates into
list

startX uint16_t Input

X offset to be added to each X coordinate

startY uint16_t Input

Y offset to be added to each Y coordinate

Field Data Type Input/
Output

Description

listSuppressionMethod uint8_t Input

This parameter is only valid if
enableListSuppression is enabled. User can
choose two kind of suppression method as
described in
BIN_IMAGE_TO_LIST_ListSuppressionMeth
od

suppressionValue uint32_t Input

This parameter is only valid if
enableListSuppression is enabled. This
parameter has different meaning based on
the listSuppressionMethod selected.
listSuppressionMethod =
BIN_IMAGE_TO_LIST_TI_LIST_SUPPRES
SION_BY_PERCENTAGE. This parameter
should tell the percentage of points which
should be picked from all the points
detected. A value of 0 will return all the
points as detected by the input binary image
.
listSuppressionMethod =
BIN_IMAGE_TO_LIST_TI_LIST_SUPPRES
SION_BY_MAX_VALUE. This parameter
should be Maximum number of list points
required. A value of 0 will return all the points
as detected by the input binary image.
Otherwise this value will be used to internally
uniformly select points from all the points
detected

3.28.1.12 BIN_IMAGE_TO_LIST_TI_OutArgs

Description

 This structure contains all the parameters which are given as an output by this applet.

Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

numListPoints uint32_t Output

Number of points in the the list

3.28.2 Constraints

 Image width should be multiple of 8.

3-120

3.29 Template Matching

This applet uses normalized cross correlation to find areas of an image that match (similar) to a template image.

Normalized cross correlation works as follow: given an input image f and a template image t of dimension

templateWidth x templateHeight, for every location (u,v) in the input image, it calculates the following value
c(u,v)

The index x and y iterates through the neighborhood patch of dimensions templateWidth x templateHeight,

centered around the position (u,v).
vuf ,

is the mean of the aforementioned neighborhood patch from the input

image and t is the mean of the template image.

The position (umax,vmax) that coincides with the location where the template best matches the area of the input image

corresponds to a local maximum for c(u,v).

Note that the term  
yx

tvyuxt
,

2)),((is a constant that can be precomputed in advance or even be ignored

as it doesn’t affect the location of the local maximum of c(u,v).

The template image t can also be normalized by subtracting its mean to produce a new template t’. Please refer to

the Appendix C: Template Matching Normalization Function for more details.

Taking into consideration these simplifications, the equation becomes:

The constant K can be set to  
yx

tvyuxt
,

2)),((or to 1 if the main goal is to find the local maximum.

Since EVE is a fixed-point processor, it does not directly compute c(u,v). Indeed in order to avoid doing any

division, it computes these two partial outputs:

2

, ,

, ,

)),((),var(_

),(')),((),(_









yx vu

yx vu

fyxfvudenom

vyuxtfyxfvuccnum

num_cc(u,v) is the numerator part of the cross-correlation c(u,v) and denom_var(u,v) is the the denominator

part, which almost corresponds to the variance of the neighborhood patch. In order to increase the precision, the
applets produce these two outputs as 32-bits number in Q format. The number of bits reserved for the fractional part is

provided as a parameter qShift to the applet.

In order to obtain the final result, the following post-processing must be performed:










yxyx vu

yx vu

tvyuxtfyxf

tvyuxtfyxf
vuc

,

22

, ,

, ,

)),(()),((

)),()(),((
),(

2

, ,

, ,

)),((

),(')),((
),(










yx vu

yx vu

fyxfK

vyuxtfyxf
vuc

),var(_

),(_
),(

vudenomK

vuccnum
vuc




The reason why the applet does not perform this final step is that DSP can efficiently implement it thanks to its
floating-point capability.

3.29.1 Data Structures

3.29.1.1 TEMPLATE_MATCHING_TI_CreateParams

Description

This structure defines the creation parameters for the Template Matching applet
Fields

Field Data Type Input/
Outp
ut

Description

visionParams IVISION_Pa

rams

Input Commom structure for vision modules

imgFrameWidth uint16_t Input Width in pixels of the unsigned 8-bits input image

imgFrameHeigh

t

uint16_t Input Height in number of lines of the unsigned 8-bits input
image

templateWidth uint16_t Input Width of the 16-bits 0-mean template in Q-format.

templateHeigh

t

uint16_t Input Height of the 16-bits 0-mean template in Q-format.

xDirJump uint8_t Input Jump in x direction while searching. Ignored at the
moment. Always behave as if xDirJump= 1.

yDirJump uint8_t Input Jump in y direction while searching. Ignored at the
moment. Always behave as if yDirJump= 1.

method uint8_t Input Template matching method. Currently only

TEMPLATE_MATCHING_TI_NCC supported.

qShift uint8_t Input Number of fractional bits of the Q-format used to format
the output. qShift=s means Q(32-s).s format.
For instance qShift=8, means Q24.8 format.
Note that the greater qShift is, the more precise the
outputs are but at the same time, it increases the risk of
overflow during computation, leading to incorrect results.

The following formula can be used to derive a safe value
for qShift, for which overflow does not occur:

qShift= min(7, (22 -
log2(templateWidth*templateHeight))/2);

A value greater than this recommended qShift value can
still work, depending on the pixels values of both the
template and input images. Please refer to appendix C for
further details on how the formula is derived.

3-122

3.29.1.2 TEMPLATE_MATCHING_TI_InBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

The below enums define the purpose of the input buffer.
Fields

Enumeration Description

TEMPLATE_MATCHING_TI_BUFDESC_IN This buffer descriptor provides the actual image
data required by algorithm. The data is
composed of unsigned 8-bits data

TEMPLATE_MATCHING_TI_BUFDESC_IN_TEMPLATE This buffer descriptor provides the template data
required by algorithm. The data is composed of
16-bits data in Q format of a 0-mean template. A
0-mean template is obtained by subtrating the
mean value from all the pixels.
The number of fractional bits used for the Q
format must match the parameter qShift passed
to

TEMPLATE_MATCHING_TI_CreateParams.

TEMPLATE_MATCHING_TI_BUFDESC_IN_TOTAL This indicates total number of input buffers
expected.

3.29.1.3 TEMPLATE_MATCHING_TI_OutBufOrder

Description

User provides most of the infomration through buffer descriptor during process call.

Below enums define the purpose of out buffer.
Fields

Enumeration Description

TEMPLATE_MATCHING_TI_BUFDESC_OUT This buffer is filled up by the algorithm and will
contain two planes:
- plane 0 contains the signed 32-bits numerator
values of the cross-correlation.
 - plane 1 contains the unsigned 32-bits
denominator values of the cross-correlation,
corresponding to the variance of the
neighborhood
of the input location associated to the cross-
correlation value.All the outputs value are in Q-
format with 'qShift' factional bits, where 'qShift' is
the parameter passed to
TEMPLATE_MATCHING_TI_CreateParams.

TEMPLATE_MATCHING_TI_BUFDESC_OUT_TOTAL This indicates total number of output buffers
expected.

3.29.1.4 Control Command Indices

Description

This following Control Command indices are supported for Template matching applet.

Fields

Field Description

TEMPLATE_MATCHING_TI_CONTROL_GET

_OUTPUT_BLOCK_DIM

During applet creation time, the optimum outblock width and
height are determined. It is possible to query these values after
the applet is created by calling the control function with this
command. The values are returned into the

TEMPLATE_MATCHING_TI_ControlOutParams structure.

3.29.1.5 TEMPLATE_MATCHING_TI_ControlInParams

Description

This structure contains all the parameters needed for control call of this applet.

Fields

Field Data Type Input/
Output

Description

algParams IALG_Params Input

Common params for all IALG based
modules.

3.29.1.6 TEMPLATE_MATCHING_TI_ControlOutParams

Description

This structure contains all the output parameters written by the control function the applet after creation. Mainly
it contains output block dimensions which can be queried after graph creation. The application should use these
values to make sure that any ROI's width and height are multiple of the output block's width and height.

Fields

Field Data Type Input/
Output

Description

algParams IALG_Params Output

Common params for all IALG based
modules.

outputBlockWidth uint16_t Output output block width

outputBlockHeight uint16_t Output output block height

3.29.1.7 TEMPLATE_MATCHING_TI_OutArgs

Description

This structure contains all the parameters which are given as an output by TEMPLATE Matching applet during
each process call.

Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Pa

rams

Output

Commom structure for outArgs ivision
modules

3-124

Field Data Type Input/
Output

Description

activeImgWidth uint16_t Output activeImgWidth is primarily =
imgFrameWidth + templateWidth - 1 and
decided by applet to satisfy the internal DMA
and kernel requirements. This is the actual
number of horizontal pixels being accessed
by EDMA. It is exported for user as
informative

activeImgHeight uint16_t Output activeImgHeight is primarily =
imgFrameHeight + templateHeight - 1 and
decided by applet to satisfy the internal DMA
and kernel requirements. This is the actual
number of vertical lines being accessed by
EDMA. It is exported for user as informative

outputBlockWidth uint16_t Output Output block width in number of pixels
returned by BAM_createGraph(). That's
useful information to understand
performance.

outputBlockheight uint16_t Output utput block height in number of rows
returned by BAM_createGraph(). That's
useful information to understand
performance.

3.29.2 Constraints

 The template dimension templateWidth x templateHeight must be smaller than
TEMPLATE_MATCHING_TI_MAX_TEMPLATE_DIM= 128*128= 16384 pixels.

3.30 CLAHE

This applet performs Contrast Limited Adaptive histogram equalization (CLAHE) on 8-bit input gray scale image to
improve its contrast. It differs from ordinary histogram equalization in the respect that the adaptive method computes
several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness
values of the image. It is therefore suitable for improving the local contrast and enhancing the definitions of edges in
each region of an image. Contrast limiting prevents the overamplificaation of noise.

3.30.1 Data Structures

3.30.1.1 CLAHE_TI_ErrorType

Description

 Error codes returned by the CLAHE algorithm.

Fields

Enumeration Description

CLAHE_TI_ERRORTYPE_INVALID_IMAGE_DIMS Image dimensions are beyond supported

CLAHE_TI_ERRORTYPE_INVALID_ROI_DIMS ROI dimensions are beyond image dimensions

CLAHE_TI_ERRORTYPE_INVALID_ROI_ALIGN ROI dimensions are not multiple of tile width or
height

CLAHE_TI_ERRORTYPE_INVALID_TILE_DIMS TILE dimensions are beyond supported value.
Please try smaller tile

CLAHE_TI_ERRORTYPE_INVALID_TILE_ALIGN TILE width and height are not aligned to 16

CLAHE_TI_ERRORTYPE_CLIP_LIMIT_BEYOND_RANGE Clip limit value is beyond supported

3.30.1.2 CLAHE_TI_InBufOrder

Description

 User provides most of the infomration through buffer descriptor during process call. Below enums define the
purpose of buffer. There are 2 input buffers descriptors.

Fields

Enumeration Description

CLAHE_TI_BUFDESC_IN_IMAGE_BUFFER This buffer descriptor provides the actual image
(Luma only) data required by algorithm.

CLAHE_TI_BUFDESC_IN_LUT_BUFFER This buffer descriptor provides the LUT for each
tile, that needs to be used for current frame
processing.

3.30.1.3 CLAHE_TI_OutBufOrder

Description

 User provides most of the infomration through buffer descriptor during process call. Below enums define the
purpose of buffer. There are 2 output buffer descriptors.

3-126

Fields

Enumeration Description

CLAHE_TI_BUFDESC_OUT_OBJ_BUFFER This buffer descriptor has the propsecced image
output

CLAHE_TI_BUFDESC_OUT_LUT_BUFFER This buffer descriptor has the LUT for each tile
that can be used for next frame

3.30.1.4 CLAHE_TI_CreateParams

Description

 This structure contains all the parameters which CLAHE applet uses at create time

Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input

 Common parmeters for all ivison based
modules

maxWidth uint16_t Input

The maximum output width.

maxWidth uint16_t Input

The maximum output height.

tileWidth uint16_t Input

Tile Width for Histogram computation. This
shall be multiple of 16 tileWidth*tileHeight s
ahll be less than or equal to 16128

tileHeight uint16_t Input

Tile Hight for Histogram computation. This
shall be multiple of 16 tileWidth*tileHeight s
ahll be less than or equal to 16128

3.30.1.5 CLAHE_TI_InArgs

Description

 This structure contains all the parameters which controls the applet at run time

Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

clipLimit uint16_t Input

Clip Limit for contrast adaptive contarst
control.

3.30.1.6 CLAHE_TI_outArgs

Description

 This structure contains all the parameters which are output from the applet

Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Ou

tArgs

Output

Common outArgs for all ivison based
modules

4-128

4 Radar Applications
This section outlines the interface and feature details of different radar applications

4.1 FFT (Fast Fourier Transform)

This applet performs N point FFT where N can take following values 64, 128, 256 512 and 1024 points. Input to this
applet is a list of signed complex number with real and imaginary data interleaved and stored in a 16 bit container.
Output of the FFT is also 16 bit signed complex number with real and imaginary data interleaved. The output data is
arranged in such a way so as to make next stage of radar processing which involves working across antenna easier.
The output of this applet is described using a custom structure FFT_TI_BufferDescriptor. Apart from the FFT this
applet also supports some radar specific pre and post processing of input and output data. The pre-processing
includes sign extension, zero padding, interference zero out, dc-offset removal and windowing. Post processing
includes Doppler correction.

4.1.1 Data Structures

4.1.1.1 FFT_TI_ErrorType

Description

 Error codes returned by the FFT algorithm.

Fields

Enumeration Description

FFT_TI_ERRORTYPE_UNSUPPORTED_FFT_DIMENSIO
N

 FFT is supported only for pre-defined number
of points described in FFT_TI_NumPoints. Any
other type will return error.

FFT_TI_ERRORTYPE_UNSUPPORTED_IRREGULARITY
FREQUENCY

The freqency of irregularity should not be in
such a way that jump from the base pointer to
the next pointer where irregularity occurs is
more than maxumum pitch supported by DMA

FFT_TI_ERRORTYPE_HORZ_FFT_DOPPLER_CORR_N
OTSUPPORTED

 For horizontal direction FFT doppler correction
is not supported

FFT_TI_ERRORTYPE_HORZ_FFT_NUM_CHUNK_INVAL
ID

Horizontal direction FFT only supports
numChunk
 equal to 1.

FFT_TI_ERRORTYPE_HORZ_FFT_DOPPLER_CORR_N
OTSUPPORTED

For horizontal direction FFT doppler correction
is not supported

FFT_TI_ERRORTYPE_VERT_FFT_DCOFFSET_NOTSUP
PORTED

For vertical direction FFT DC offset cacluation
and application is not supported

FFT_TI_ERRORTYPE_VERT_FFT_SIGN_EXTENSION_N
OTSUPPORTED

For vertical direction FFT sign extension is not
supported

FFT_TI_ERRORTYPE_VERT_FFT_INTERFERENCE_ZE
ROOUT_NOTSUPPORTED

For vertical direction FFT interference zero out
is not supported

Enumeration Description

FFT_TI_ERRORTYPE_VERT_FFT_UNSUPPORTED_PIT
CH

ertical direction FFT only supports a maximum
pitch of 32767 bytes

FFT_TI_ERRORTYPE_VERT_FFT_UNSUPPORTED_OF
FSET_BW_ANTENNAS

Vertical direction FFT offset between anetnnas
should be same as number of points in chunk
times size of each element.

FFT_TI_ERRORTYPE_VERT_FFT_UNSUPPORTED_FFT
_DIMENSION

Vertical direction FFT some of the higher
dimension FFT is not supported

FFT_TI_ERRORTYPE_VERT_FFT_UNSUPPORTED_IRR
EGULARITYFREQUENCY

Vertical direction FFT should not have irregular
offsetbetween antenna

FFT_TI_ERRORTYPE_VERT_FFT_INVALID_OUTPUT_PI
TCH

Unsupported output pitch for the vertical FFT

FFT_TI_ERRORTYPE_FFT_UNSUPPORTED_FFT_DIRE
CTION

Unsupported FFT direction

FFT_TI_ERRORTYPE_UNSUPPORTED_ZERO_PADDIN
G

Indicates unsupported zero padding amount.
Number of points for zero padding + number of
actual points should be power of 2 and should lie
between FFT_TI_NUM_POINTS_64 and
FFT_TI_NUM_POINTS_1024. Also number of
points for zero padding should be multiple of
VCOP_SIMD_WIDTH(8)

FFT_TI_ERRORTYPE_INVALID_DATABITS Unsupported FFT_TI_CreateParams-
>inDataValidBits field

4.1.1.2 FFT_TI_InBufOrder

Description

 User provides most of the information through buffer descriptor during process call. Below enums define the
purpose of buffer. There are maximum 3 input buffers descriptors.

Fields

Enumeration Description

FFT_TI_BUFDESC_IN_LISTBUFFER This buffer descriptor provides the pointer to a
buffer whose FFT needs to be calculated. This
buffer is described using the structure define
below. Kindly refer FFT_TI_BufferDescriptor to
 It is important to note that apart from the only
following enteries from this structure are used by
 this applet :
 bufDesc[]->bufPlanes[].buf
 bufDesc[]->bufPlanes[].accessMask

FFT_TI_BUFDESC_IN_WINDOWING_COEFF_BUF This buffer descriptor provides the pointer to a
buffer, which holds the windowing coefficients
used at windowing stage. The windowing
coefficients are 16-bit signed real numbers with
the size of array being equal to the dimension in
the direction of FFT. This buffer is only
required if windowing is enable by setting
FFT_TI_InArgs->enableWindowing to 1. This
buffer is of dimension [RANGE_DIM] when
 FFT direction is horizontal and of dimension
[DOPPLER_DIM] when FFT direction is vertical

4-130

Enumeration Description

FFT_TI_BUFDESC_IN_DOPPLER_CORRECTION_BUF This buffer descriptor provides the pointer to a
buffer which holds doppler correction array.
Each entry of this buffer is a complex number
with 16-bit signed real and imaginary parts
interleaved. This buffer is only required if doppler
correction is enable by setting FFT_TI_InArgs->
enableDopplerCorrection to 1. Doppler
correction is only done when FFT direction is
vertical. Dimension of this buffer should be
[NUM_ANTENNAS][DOPPLER_DIM]

4.1.1.3 FFT_TI_OutBufOrder

Description

 User provides most of the information through buffer descriptor during process call. Below enums, define

the purpose of out buffer.

Fields

Enumeration Description

FFT_TI_BUFDESC_OUT_BUFFER This buffer descriptor provides the output buffer
to store the data after FFT processing. This
buffer is described using the structure define
below. Kindly refer FFT_TI_BufferDescriptor in
outArgs to know the description of this buffer. It
is important to note that apart from the only
following enteries from this structure are used by
this applet :
 bufDesc[]->bufPlanes[].buf
 bufDesc[]->bufPlanes[].accessMask
 bufDesc[]->bufPlanes[].width : This field
indicates the pitch in bytes of the output buffer.
This field is used only when FFT direction is
FFT_TI_DIRECTION_VERTICAL. if the value for
this is set to zero then the pitch will be
calculated internally. For this case size of this
buffer should be same as size of input buffer. If
user wants to control the pitch of output buffer
then user should first call the Control call to
figure out the minimum pitch required and user
is expected to give pitch which is greater or
equal to the minimum pitch. The maximum
supported pitch is 32767 bytes.

4.1.1.4 FFT_TI_ControlCommand

Description

Control command can be used to get/set some of the parameters for this applet. User should call the ivision-
>algControl call with following command ID. This is an optional call. Below enums define the control commands
supported for this applet.

Fields

Enumeration Description

Enumeration Description

FFT_TI_CONTROL_GET_OUTPUT_BUFDESCRIPTOR This control command can be used to get the
dimension of the output buffer. User should
provide FFT_TI_InArgs as inParams and
FFT_TI_BufferDescriptor as outParams while
using this control command using ivision-
>algControl command API. This control
command should be called to know the memory
required for output buffer along with the pitch for
the output buffer

4.1.1.5 FFT_TI_Direction

Description

 The directions in which FFT can be calculated. Below enums define for this.

Fields

Enumeration Description

FFT_TI_DIRECTION_HORIZONTAL FFT is calculated along the direction of 1st
dimension (horizontal) of buffer

FFT_TI_DIRECTION_VERTICAL FFT is calculated along the direction of 2nd
dimension (vertical) of buffer

4.1.1.6 FFT_TI_NumPoints

Description

 The number of point in the direction of FFT. Below enums define for this.

Fields

Enumeration Description

FFT_TI_NUM_POINTS_1024 Number of point of along the direction of FFT is
1024

FFT_TI_NUM_POINTS_512 Number of point of along the direction of FFT is
512

FFT_TI_NUM_POINTS_256 Number of point of along the direction of FFT is
256

FFT_TI_NUM_POINTS_128 Number of point of along the direction of FFT is
128

FFT_TI_NUM_POINTS_64 Number of point of along the direction of FFT is
64

4.1.1.7 FFT_TI_ContainerFormat

Description

 Format of the input datatype. Below enums define for this

Fields

4-132

Enumeration Description

FFT_TI_CONTAINER_FORMAT_16BIT Each point of FFT (real and imaginary) is stored
in 16 bit container

4.1.1.8 FFT_TI_BufferDescriptor

Description

 This structure is used to describe the buffers (input/output) to this applet. This descriptor represents the buffer in
the unit of Antenna. We assume the same format across the antenna. Kindly refer section Appendix D: Radar
Processing Data Flow to see some of the examples to understand the usage of this structure

Fields

Field Data Type Input/
Output

Description

numChunks uint8_t Input

 If data for a single antenna cannot be
represented within a maximum supported
pitch then we will have to split the buffer into
smaller chunk such that each chunk can
represent the data of single antenna within
with a pitch. This field represents this
number of such chunks. For a regular FFT
case this field should be set to 1.
Note : It is important to note that when the
direction of FFT is
FFT_TI_DIRECTION_VERTICAL then the
maximum supported pitch is 32767 bytes.
Also when direction of FFT is horizontal
numChunk should be set to 1

numHorzPoints uint16_t Input

Number of contigous points in Horizontal
direction corresponding to a single antenna.
This is an array of size equal to numChunks
field in this structure. Horizontal direction
FFT
will be calculated along this dimension. For
regulator FFT case this will correspond to
the horizontal dimension of FFT

numVertPoints uint16_t Input

Number of contigous points in vertical
direction corresponding to a single antenna.
The contiguity is defined in terms of the
pitch field in this structure. Vertical
directionFFT will be calculated along this
dimension. For regulator FFT case this will
correspond to the vertical dimension of FFT

offsetBwAntennas uint32_t Input

Offset in terms of number of bytes to jump to
next antenna data from the current base
pointer. This field is also an array having
numChunks enteries. This should be word
aligned

Field Data Type Input/
Output

Description

offsetBwAntennas1 uint32_t Input

This field should be used only when there is
an irregularity in the offsetBwAntennas. This
offset is in terms of number of bytes to jump
to next antenna data from the current
antenna data pointer base at the point when
there is irregularity. This field is only used if
irregularityFrequency != 0. This field is also
an array having numChunks enteries. This
should be word aligned

irregularityFrequency uint16_t Input

This field is to indicate after how many
antenna there is a irregularity in
offsetBwAntennas. A value of zero will
assume a regular case where all the offset
between antennas are the same.
For example if the data is arranged as
shown bellow
 A0xxxxA1xxxxA2xxxxyyyy
 A3xxxxA4xxxxA5xxxxyyyy
 Here Ak represents antenna data
for a particular antenna and it will have
range number of samples in it. For the above
example following would be the values of
above parameters :
 irregularityFrequency = 2,
 offsetBwAntennas = xxxx
 offsetBwAntennas1 = A2 + xxxx + yyyy

pitch uint32_t Input

Offset in terms of number of bytes to jump to
the next doppler index corresponding to the
same antenna.. This field is also an array
having numChunks enteries. Pitch should be
word aligned

numAntennas uint16_t Input This field is meant for radar processing
usecase and should be set to one for normal
FFT calculation. This tells the total number of
anetnna data which is coming with the
buffer.

4.1.1.9 FFT_TI_CreateParams

Description

 This structure contains all the parameters needed at create time for this applet

Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Para
ms

Input

Common parmeters for all ivison based
modules

fftDirection uint8_t Input

The direction in which FFT should be
calculated. For supported values refer
FFT_TI_Direction enum

containerFormat uint8_t Input

This field is to indicate the container format
of input data type. For supported values
refer FFT_TI_ContainerFormat enum

4-134

4.1.1.10 FFT_TI_InArgs

Description

 This structure contains all the parameters which are given as an input to FFT applet at frame level

Fields

Field Data Type Input/
Output

Description

iVisionInArgs iVisionInArgs Input

Common InArgs for all ivision based
modules

bufDescription FFT_TI_Buffer
Descriptor

Input

The input buffers to this applet comes as
part of input buf descriptors, but the arrange
of data in these buffer is described using
FFT_TI_BufferDescriptor structure. This field
hold this structure which describes the input
buffers

enableDcOffset uint8_t Input

Set it to 1 to enable DC offset calculation
else set it to zero. DC offset will find the
average in both real and imaginary direction
and substract it from each input sample

enableInterferenceZeroOut uint8_t Input

Set it to 1 to enable interference zero out
else set it to zero. This will make any input
data point (both real and imaginary) greater
than threshold specified by
interferenceZeroOutThreshold to zero

enableWindowing uint8_t Input

Set it to 1 to enable Windowing else set it to
zero. Windowing operation will multiply each
point by the windowing coefficients before
the FFT

enableDopplerCorrection uint8_t Input Set it to 1 to enable doppler correction else
set it to zero. Dopper correction will do a
point to point complex multiplication of each
sample.

enableOverFlowDetection uint8_t Input Set it to 1 to enable overflow detection else
set it to zero. If enabled the applet will
return the scale factors to be applied at each
stage as part of outArgs. if scale factors
are zero for each stage then there is no
overflow detected

interferenceZeroOutThreshold uint16_t Input Threshold to be used for interference zero
out. This is the maximum absolute value of
the input data above which that sample
would be set to zero. This is only required if
enableInterferenceZeroOut is set to 1.

Field Data Type Input/
Output

Description

windowingScaleFactor uint16_t Input Scale factor to be used at windowing
operation. This factor is internally used to
right shift (along with rounding) the output
after multiplication by windowing coefficient.
Mathematically if x is the output and n is the
scaling factor then the output would be (x +
1 << (n - 1)) >> n. This is only required if
windowing is enabled by setting
enableWindowing = 1

dopplerCorrectionScaleFactor uint16_t Input Scale factor to be used while doing doppler
correction. This factor is internally used to
right shift (along with rounding) the output
after multiplication by doppler correction
coefficients. Mathematically if x is the output
and n is the scaling factor then the output
would be (x + 1 << (n - 1)) >> n. This is
only required if windowing is enabled by
setting enableDopplerCorrection = 1

numPointsZeroPadding uint16_t Input Number of points to be added to FFT for
zero padding. numFFTPoints +
numPointsZeroPadding should be
power of 2 and should lie between
FFT_TI_NUM_POINTS_64 and
FFT_TI_NUM_POINTS_1024. Also
numPointsZeroPadding should be multiple of
VCOP_SIMD_WIDTH (8).

numValidBits uint8_t Input Number of valid bits in input data. If
numValidBits is 16 then sign extension is
disabled

inDataRange uint8_t Input This field is to indicate range of input data
within the container format specified by
containerFormat field. This information will
be used to determine the stages in which
overflow detection should be applied. This
field is only required if
enableOverFlowDetection is enabled (set to
1).

reserved uint32_t Input This parameter is reserved parameters and
is for future use.

scaleFactors uint16_t Input Scale Factor to be used for each stage of
FFT. This factor is internally used to right
shift (along with rounding) the output after
multiplication by twiddle factor (in Q15).
Mathematically if x is the output and n is the
scaling factor then the output would be (x +
1 << (n + 15 - 1)) >> (n + 15). Each stage
of FFT grows by certain amount (1 bit or 2
bit for radix 2 or radix-4 respectively). Hence
to avoid overflow each stage scale factor
should be chosen such that input data is
within 15 bit. It is important to note that in our
implementation twiddle factors are stored in
Q15 format and hence if a particular stage
scale factos is n then its effective scaling
applied at output would be (15 + n)

4.1.1.11 FFT_TI_OutArgs

Description

4-136

 This structure contains all the parameters which are given as an output by FFT applet at frame level

Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_OutA
rgs

output Common outArgs for all ivison based
modules

bufDescription FFT_TI_Buffer
Descriptor

output The output buffers to this applet comes as
part of output buf descriptors, but the
arrange of data in these buffer is described
using FFT_TI_BufferDescriptor structure.
This field hold this structure which describes
the output buffer

scaleFactors uint16_t output This array returns the scale factors to be
applied at each stage when overflow
detection is enabled. If scaleFactors for each
stage is zero then no overflow has occured

4.2 Beam Forming

The purpose of this applet is to identify angular position of pre-detected object having range and velocity information. It
expects a list of range and Doppler co-ordinates for the detections along with corresponding radar cube data having
performed range and Doppler FFT. In order to find the angle, it also expects user to provide a steering vector
corresponding to the angle. For example, if we have a radar cube of dimension 8(antennas) x 512(range) x 256
(Doppler) and want to identify the angle of a detected position in within -45 to +45 degree with a step of 5 degree. This
would require 19 steering vectors because of 19 possible angles each of length 8 (antennas), also referred as steering
matrix of dimension 19 x 8.
This applet computes energy at each prescribed angle by using the steering matrix, computes the angle having
highest energy, and provides it to user as the angular position of the detection. The applet accepts list of detections in
a buffer defined by BEAM_FORMING_TI_Coordinate. This same buffer format is used for input and output hence it
has a placeholder for angle as well along with range and velocity information expected to be populated from user.

4.2.1 Data Structures

4.2.1.1 BEAM_FORMING_TI_ErrorType

Description

Error codes returned by the Beam forming applet algorithm.

Fields

Enumeration Description

BEAM_FORMING_TI_ERRORTYPE_UNSUPPORTED_C
ONFIGURATION

 Indicates an
 un-supported configuration

BEAM_FORMING_TI_ERRORTYPE_UNSUPPORTED_N
UM_DETECTIONS

Indicates that numDetection is above max
number of detections

BEAM_FORMING_TI_ERRORTYPE_UNSUPPORTED_S
TEERINGMATRIX_SIZE

Indicates that steering matrix size is more than
supported

BEAM_FORMING_TI_ERRORTYPE_UNSUPPORTED_C
OORDINATE_FORMAT

Indicates that the coordinate buffer pointer is not
supported for current configuration

4.2.1.2 BEAM_FORMING_TI_CoordinateBufFormat

Description

This enum is to select the type of format in which coordinate
buffer(BEAM_FORMING_TI_BUFDESC_IN_COORDINATE_BUF) is given to this applet.

Fields

Enumeration Description

BEAM_FORMING_TI_COORDINATE_BUF_FORMAT_1 In this format the pointer to coordinate buffer
points to the coordinates of each detection which
is stored as a list of coordinates structure
defined by BEAM_FORMING_TI_Coordinates
Angle field of this structure is optional

4-138

Enumeration Description

BEAM_FORMING_TI_COORDINATE_BUF_FORMAT_2 In this format the pointer to coordinate buffer
points to a buffer which holds the range and
doppler coordinate in interleave manner. Where
each range and doppler is 16 bit signed number
and stored such that range lies in the upper 16
bit and doppler coordinate types in lower 16 bit.

4.2.1.3 BEAM_FORMING_TI_Coordinates

Description

 This structure defines coordinates for a detection after the beam forming.

Fields

Field Data Type Input/
Output

Description

Velocity uint16_t Input

velocity for a particular detection.

Range uint16_t Input

Range dimension for a particular detection

Energy uint16_t Input

Energy calculated for a particular detection.

angleBin uint16_t Input

Bin number from the steering matrix
corresponding to a particular detection. User
is expected to do the mapping of bin to
angle. This field is not required to be
populated for this applet

4.2.1.4 BEAM_FORMING_TI_InBufOrder

Description

User provides most of the information through buffer descriptor during process call. Below enums define the
purpose of buffer. There are 3 input buffers descriptors. For optimal performance, all the buffers should be aligned
to 128 bytes boundary.

Fields

Enumeration Description

Enumeration Description

BEAM_FORMING_TI_BUFDESC_IN_ANTENNA_DATA_B
UF

This buffer descriptor provides the pointer to a
buffer which contains the antenna data. The data
in this buffer is expected to be arranged as
numAntennas x numDetections. Buffer is
expected to look as shown below :
 __|A0| A1| A2|........ |Ak |
 D0|
 D1|
 D2|
 |
 |
 Dn |

Here each entry is stored as 16-bit real and 16-
bit imaginary part interleaved together. It is
important to note that only following parameters
of this structure are used by this applet :
 bufDesc[]->bufPlanes[].buf
 bufDesc[]->bufPlanes[].accessMask

BEAM_FORMING_TI_BUFDESC_IN_COORDINATE_BUF This buffer descriptor is to provide the pointer to
the coordinate buffer, which can be given in
various different formats. Kindly refer
BEAM_FORMING_TI_CoordinateBufFormat for
various format supported by this applet

BEAM_FORMING_TI_BUFDESC_IN_STEERINGMATRIX
_BUF

This buffer descriptor provides the pointer to a
buffer holding steering matrix for beam forming.
Steering matrix dimension is expected to be
numAntennas x numAngles. Here each entry is
stored as 16-bit real and 16-bit imaginary part
interleaved together. Each row of steering
matrix ccorresponds to one bin/angle. The row
number is treated as ID for the angle, and
assigned to
BEAM_FORMING_TI_CreateParams->angleBin
field in output buffer. User is expected to do the
mapping of angleBin to actual angle.
 The steering matrix is expected to be arranged
 as follows
 Steering matrix bin_0
 Steering matrix bin_1
 :
 :
 Steering matrix bin_n

Where offset between steering matrix of different
bin is given by numAngles x numAntennas *
sizeof(int16_t) * 2.
As an example if user wants to detect from -20
to +20 degrees in azimuth and -10 to +10
degrees in elevation he should give a steering
matrix having 41 x 21 rows where each row
corresponds to the steering vector of a particular
 angle in azimuth or elevation. Final output will
give the row via
BEAM_FORMING_TI_Coordinates.angleBin
field. User can then map this angle bin to the
particular angle in azimuth or elevation

4.2.1.5 BEAM_FORMING_TI_OutBufOrder

Description

4-140

 User provides most of the information through buffer descriptor during process call. Below enums define the
purpose of out buffer. For optimal performance all the buffers should be aligned to 128 byte boundary.

Fields

Enumeration Description

BEAM_FORMING_TI_BUFDESC_OUT_BUFFER This buffer descriptor provides the output buffer
to store the data after Beam Forming. This buffer
contains the list of structure as defined in
BEAM_FORMING_TI_Coordinates for each
detection. It is important to note that only
following entries from this structure are used by
 this applet :
 bufDesc[]->bufPlanes[].buf
 bufDesc[]->bufPlanes[].accessMask

4.2.1.6 BEAM_FORMING_TI_CreateParams

Description

 This structure contains all the parameters which Beam Forming applet uses at create time

Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input

 Common parameters for all ivison based
modules

maxNumAntenna uint16_t Input

Maximum number of antennas in the system.

maxNumDetection uint16_t Input

Maximum number of detections. It is
important to note that maximum number
of detection supported is given by
BEAM_FORMING_TI_MAX_NUM_DETECTI
ONS macro

maxNumAngle uint16_t Input

Maximum number of angles

coordinateBufFormat uint8_t Input

This field is used to indicate the format of the
coordinate buffer. Kindly refer
BEAM_FORMING_TI_CoordinateBufFormat
enum for various supported formats

4.2.1.7 BEAM_FORMING_TI_InArgs

Description

 This structure contains all the parameters which controls the applet at run time

Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

Field Data Type Input/
Output

Description

numDetections uint16_t Input Number of detections

numAntennas uint16_t Input Number of antennas

numAngles uint16_t Input Number of angles/bin for beam forming

beamFormingScaling uint16_t Input Scaling (right shift with rounding) that needs
to be applied after doing complex matrix
multiplication for beam forming.
Mathematically if after complex multiplication
either real/imaginary part is x then final
output would be equal to (x + 1 << (n - 1))
>> n, where n is the scaling factor

energyScaling uint16_t Input Scaling (right shift with rounding) that needs
to be applied after calculating the energy in
32 bit to convert it to 16 bit. Mathematically if
after energy computation energy is x then
final output would be equal to (x + 1 << (n -
1)) >> n, where n is the scaling factor

4.2.1.8 BEAM_FORMING_TI_OutArgs

Description

 This structure contains all the parameters which are output from the applet

Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Ou

tArgs

Output

Common outArgs for all ivison based
modules

4-142

4.3 Peak Detection

The purpose of this applet is to identify the peaks in range and Doppler dimension, which provides the information
about the distance and velocity of the object. This applet expects a buffer which is computed by doing range and
Doppler FFT on the input radar cube data. The format of the input data is described later in the next section using
PEAK_DETECTION_TI_BUFDESC_IN_ANTENNA_DATA_BUF enum. Apart from peak detection, this applet also
supports configurable (enable/disable) TX decoding of the input data. TX decoding is used to separate individual
transmitter data from the linear combination of multiple transmitter data. The output of this applet is described using
PEAK_DETECTION_TI_OutBufOrder.
This applet computes the energy at each sample of input data cube and finds the peak using supported detection
methods (Kindly refer PEAK_DETECTION_TI_METHOD enum for list of supported methods).

4.3.1 Data Structures

4.3.1.1 PEAK_DETECTION_TI_ErrorType

Description

Error codes returned by the this applets.

Fields

Enumeration Description

PEAK_DETECTION_TI_ERRORTYPE_UNSUPPORTED_
CONFIGURATION

 Indicates an
 un-supported configuration

PEAK_DETECTION_TI_ERRORTYPE_UNSUPPORTED_
BUF_DESCRIPTOR

Indicates an un-supported buffer descriptor

PEAK_DETECTION_TI_ERRORTYPE_UNSUPPORTED_
NOISE_LENGTH

Indicates an un-supported noise length

PEAK_DETECTION_TI_ERRORTYPE_UNSUPPORTED_
DOPPLER_DIMENSION

Indicates an un-supported Doppler dimension

4.3.1.2 PEAK_DETECTION_TI_InBufOrder

Description

User provides most of the information through buffer descriptor during process call. Below enums define the
purpose of input buffer. For optimal performance all the buffers should be aligned to 128 byte boundary.

Fields

Enumeration Description

Enumeration Description

PEAK_DETECTION_TI_BUFDESC_IN_ANTENNA_DATA
_BUF

 This buffer descriptor provides the pointer to a
buffer which contains the radar cube data
(antenna data) after computing range and
Doppler FFT on them. The properties of
 this buffer is described using
PEAK_DETECTION_TI_BufferDescriptor
structure. Each input sample contains real and
imaginary data stored in interleave manner with
each entry being 16 signed number. Please
refer the description of this enum in
ipeak_detection_ti.h to understand the
arrangement of the data. It is important to note
that only following parameters of this structure
are used by this applet :
 bufDesc[]->bufPlanes[].buf
 bufDesc[]->bufPlanes[].accessMask

PEAK_DETECTION_TI_BUFDESC_IN_TOTAL Total number of input buffers

4.3.1.3 PEAK_DETECTION_TI_OutBufOrder

Description

User provides most of the information through buffer descriptor during process call. Below enums define the
purpose of output buffers. For optimal performance all the buffers should be aligned to 128 byte boundary.

Fields

Enumeration Description

PEAK_DETECTION_TI_BUFDESC_OUT_BUFFER This buffer will return different output based on
 the
PEAK_DETECTION_TI_CfarCaDbCreateParam
s.detectionMethod.
If detectionMethod ==
PEAK_DETECTION_TI_METHOD_CFARCA_D
B then,
 This buffer stores the list of range and doppler
coordinates for detected objects in interleaved
manner with range in the upper 16 bit and
doppler in lower 16 bit. Size of this buffer should
be the worst case size of the coordinates which
is range x doppler x 4. It is important to note that
only following entries from this structure are
used by this applet :
 bufDesc[]->bufPlanes[].buf
 bufDesc[]->bufPlanes[].accessMask

If detectionMethod ==
PEAK_DETECTION_TI_METHOD_ENERGY_O
UT then,
This buffer will store the energy which is actually
the sum of energy at each point for all the
antennas in log2 format. Each entry is 16bit
wide. size of this buffers should be range x
doppler x 2. It is important to note that only
following enteries from this structure are used by
 this applet :
 bufDesc[]->bufPlanes[].buf
 bufDesc[]->bufPlanes[].accessMask

4-144

Enumeration Description

PEAK_DETECTION_TI_BUFDESC_OUT_ENERGY_BUF
FER

This buffer stores the list of 16 bit container. It
is important to note that only following entries
from this structure are used by this applet :
 bufDesc[]->bufPlanes[].buf
 bufDesc[]->bufPlanes[].accessMask

PEAK_DETECTION_TI_BUFDESC_OUT_ANTENNA_DAT
A

This buffer is to store the antenna data
corresponding to each detection. This is an
optional buffer and is required only if user wants
to get the antenna data corresponding to the
detected object. The data in this buffer is
arranged as numAntennas x numDetections.
Buffer is expected to look as shown below :
 __|A0| A1| A2|........ |Ak |
 D0|
 D1|
 D2|
 |
 |
 Dn |

Here each entry is stored as 16-bit real and 16-
bit imaginary part interleaved together. It is
important to note that only following parameters
of this structure are used by this applet :
 bufDesc[]->bufPlanes[].buf
 bufDesc[]->bufPlanes[].accessMask

PEAK_DETECTION_TI_BUFDESC_OUT_TOTAL Total number of output buffers

4.3.1.4 PEAK_DETECTION_TI_METHOD

Description

Supported detection methods.

Fields

Enumeration Description

PEAK_DETECTION_TI_METHOD_CFARCA_DB Peak detection method use is Constant false
alarm rate, cell averaging in log domain. In this
method threshold level is calculated by
estimating the level of noise floor around the cell
under test (CUT). The cell under test (CUT) is
compared
 against an average noise floor. The noise cells
(which are used to compute the noise floor) are
located on either side of the CUT. The CUT is
separated from the noise cells by guard cells.
There are noiseLen noise samples on either side
of the CUT. Similarly there are guardLen
samples on either side of the CUT, separating it
from the noise samples. CFAR CA detector
equation is
 CUT > Threshold * NoiseFloor
 In log domain this becomes
 log(CUT) - Log(NoiseFloor) > log(Threshold)

Enumeration Description

PEAK_DETECTION_TI_METHOD_ENERGY_OUT In this method energy sum across all the
antennas is computed and returned via output
bufdescriptor with enumeration number
PEAK_DETECTION_TI_BUFDESC_OUT_BUFF
ER.

4.3.1.5 PEAK_DETECTION_TI_CFARCA_DIRECTION

Description

Supported directions for CFAR CA algorithm. Below enums define for this.

Fields

Enumeration Description

PEAK_DETECTION_TI_CFARCA_DIRECTION_RANGE CFAR CA will be applied along the range
dimension

4.3.1.6 PEAK_DETECTION_TI_BufferDescriptor

Description

 This structure is used to describe the buffers (input/output) to this applet. This descriptor represents the buffer in
the unit of Antenna. We assume the same format across the antenna. Kindly refer section Appendix D: Radar
Processing Data Flow to see some of the examples to understand the usage of this structure

Fields

Field Data Type Input/
Output

Description

numChunks uint8_t Input

 If data for a single antenna cannot be
represented within a maximum supported
pitch then we will have to split the buffer into
smaller chunk such that each chunk can
represent the data of single antenna within
with a pitch. This field represents this
number of such chunks.

numHorzPoints uint16_t Input

Number of contiguous points in Horizontal
direction corresponding to a single antenna.
This is an array of size equal to numChunks
field in this structure.

numVertPoints uint16_t Input

Number of contiguous points in vertical
direction corresponding to a single antenna.
The contiguity is defined in terms of the
pitch field in this structure.

offsetBwAntennas uint32_t Input

Offset in terms of number of bytes to jump to
next antenna data from the current base
pointer. This field is also an array having
numChunks entries. This should be word
aligned

pitch uint32_t Input

Offset in terms of number of bytes to jump to
the next sample corresponding to the same
antenna. This field is also an array having
numChunks entries. Pitch should be word
aligned

4-146

Field Data Type Input/
Output

Description

numAntennas uint16_t Input This field is meant for radar processing use
case and should be set to one for normal
FFT calculation. This tells the total number of
antenna data which is coming with the
buffer.

4.3.1.7 PEAK_DETECTION_TI_CfarCaDbCreateParams

Description

 This structure defines the create time parameter needed for CFAR CA DB detection algorithm.

Fields

Field Data Type Input/
Output

Description

maxNoiseLen uint16_t Input

Maximum noise length. Only required if
detectionMethod is

PEAK_DETECTION_TI_METHOD_CFARC
A_DB

maxGaurdLen uint16_t Input

Maximum gaurd length. Only required if
detectionMethod is

PEAK_DETECTION_TI_METHOD_CFARC
A_DB

4.3.1.8 PEAK_DETECTION_TI_CfarCaDbParams

Description

 This structure defines the parameter needed for CFAR CA DB detection algorithm.

Fields

Field Data Type Input/
Output

Description

noiseLen uint16_t Input

One sided noise Length. Noise Length
should be power of 2.

gaurdLen uint16_t Input

One sided guard Len. These are the
samples which are skipped from each side
of Cell Under Test (CUT) for calculating the
noise floor

constant1 uint16_t Input

Two parameters C1 and C2 used for
thresholding in CFAR CA detector.
The equation is CUT > AverageNoiseFloor *
C1/2^C2.

constant2 uint16_t Input

Two parameters C1 and C2 used for
thresholding in CFAR CA detector.
The equation is CUT > AverageNoiseFloor *
C1/2^C2

4.3.1.9 PEAK_DETECTION_TI_AlgoCreateParams

Description

 This structure defines the detection algorithm specific create parameters of all the supported detection methods
by this applet.

Fields

Field Data Type Input/
Output

Description

cfarCaDb PEAK_DETE
CTION_TI_Cf
arCaDbCreate
Params

Input

Create time parameter to be used if
detection method is
PEAK_DETECTION_TI_METHOD_CFARC
A_DB

4.3.1.10 PEAK_DETECTION_TI_AlgoParams

Description

 This union define the detection algorithm specific run time parameters of all the supported detection methods by
this applet.

Fields

Field Data Type Input/
Output

Description

cfarCaDb PEAK_DETE
CTION_TI_Cf
arCaDbParam
s

Input

Run time parameter to be used if detection
method is
PEAK_DETECTION_TI_METHOD_CFARC
A_DB

4.3.1.11 PEAK_DETECTION_TI_CreateParams

Description

 This structure defines the detection algorithm specific run time parameters of all the supported detection methods
by this applet.

Fields

Field Data Type Input/
Output

Description

cfarCaDb PEAK_DETE
CTION_TI_Cf
arCaDbParam
s

Input

Run time parameter to be used if detection
method is
PEAK_DETECTION_TI_METHOD_CFARC
A_DB

4.3.1.12 PEAK_DETECTION_TI_CreateParams

Description

 This structure contains all the parameters which this applet uses at create time

Fields

Field Data Type Input/
Output

Description

visionParams IVISION_Pa

rams

Input

Common parameters for all ivison based
modules

maxNumAntenna uint16_t Input

Maximum number of antennas in the system.

maxNumTx uint16_t Input

Maximum number of transmitter antennas in
system

4-148

Field Data Type Input/
Output

Description

maxRangeDimension uint16_t Input

Maximum range dimension

maxDopplerDimension uint16_t Input

Maximum Doppler dimension

detectionMethod uint8_t Input

Method to be used for detection of objects.
Refer
PEAK_DETECTION_TI_METHOD to know
the supported methods

enableAntennaDataOut uint8_t Input

If enabled the applet will extract the antenna
data corresponding to the detection and
returns as one of the output buffer
(PEAK_DETECTION_TI_BUFDESC_OUT_
ANTENNA_DATA)

algoCreateParams PEAK_DETE
CTION_TI_Alg
oCreateParam
s

Input

Algorithm specific create time parameter. For
supported algorithms refer
PEAK_DETECTION_TI_METHOD

4.3.1.13 PEAK_DETECTION_TI_InArgs

Description

 This structure contains all the parameters which controls the applet at run time

Fields

Field Data Type Input/
Output

Description

iVisionInArgs IVISION_In

Args

Input

Common inArgs for all ivison based modules

enableTxDecoding uint8_t Input Enable/Disable Tx decoding. A value of 1
enables tx decoding

numTx uint16_t Input Number of transmitters in the system

numRx uint16_t Input Number of receivers in the system

offsetBwTx uint16_t Input Offset in bytes between two transmitters

offsetBwRx uint16_t Input Offset in bytes between two receivers

txDecodingCoefficients int8_t Input Coefficients required for tx decoding. This is
only required if enableTxDecoding = 1. This
is a matrix ofnumTx X numTx elements. For
Tx decoding data received at each
transmitter is multiplied by Tx decoding
matrix to decode individual

bufDescription PEAK_DETE
CTION_TI_Bu
fferDescriptor

Input The input buffers to this applet comes as
part of input buf descriptors, but the arrange
of data in these buffer is described using
PEAK_DETECTION_TI_BufferDescriptor
structure. This field hold the structure which
describes the input buffers

Field Data Type Input/
Output

Description

algoParams PEAK_DETE
CTION_TI_Alg
oParams

Input This structure is to provide Algorithm specific
run time parameters. For supported
algorithms refer
PEAK_DETECTION_TI_METHOD

4.3.1.14 PEAK_DETECTION_TI_OutArgs

Description

 This structure contains all the parameters which are given as an output by this applet at frame leve

Fields

Field Data Type Input/
Output

Description

iVisionOutArgs IVISION_Ou

tArgs

Output

Common outArgs for all ivison based
modules

numDetections uint16_t Output

Number of detected objects

4-150

Appendix A: Compatibility Information
This section mentions the compatibility table with respect to previous release

Compatibility Parameters Settings (To achieve 1.18 compatibility)

Applet/algo

name Parameter type

Parameter name value

to be

set in

1.18 1.17 1.18

fft XDAS_UInt32 NA
bufDesc[FFT_TI_BUFDESC_OUT_BUFFER]-

>bufPlanes[0].width
0

Appendix B: Remap Convert Table
Introduction

This document describes the details about the utility remapConvertTable, used to convert any (X,Y) table of a
geometric transformation into the table format required by the remap applet.

Directory Structure Overview

The source files of the utility are located into the test folder of the remap_merge applet in apps/remap_merge/test/src.
The files that used to build the utility are:

With the main() entry point located in remapConvertTable_tb.c .

Building process

The makefile used to build the utility is located one directory above in apps/remap_merge/test and is named
makefileConvertTable. This makefile is referred by a master makefile located in directory apps so when the user build
the entire package from the root directory, the utility gets built as well. Hence, to build the executable, go to the root
directory of the EVE SW release and type one of the following commands between quotes:

- ‘gmake’: build the utility to run on the target in release mode. The resulting executable file named
remapConvertTable.eve.out is produced in directory apps/remap_merge/test/elf_out .

- ‘gmake TARGET_BUILD=debug’: build the utility to run on the target in debug mode. The resulting executable
file named remapConvertTable.eve.out is produced in directory apps/remap_merge/test/elf_out .

- ‘gmake TARGET_PLATFORM=PC’: build the utility to run on the PC in release mode. The resulting executable file
named remapConvertTable.eve.out.exe is produced in directory apps/remap_merge/test/elf_out .

- ‘gmake TARGET_PLATFORM=PC TARGET_BUILD=debug’: build the utility to run on the PC in debug mode. The
resulting executable file named remapConvertTable.eve.out.exe is produced in directory
apps/remap_merge/test/elf_out .

It is recommended to build the utility for PC since this table conversion is a step generally performed offline.

Usage

The utility takes various input arguments that are defined in a configuration file, instead of being passed through the
command line. It is possible to have several configuration files, each one containing up to 10 sets of use cases. A
master configutation list contained in the file remapConvertTable_config_list.txt, located in directory
apps\remap_merge\test\testvecs\config, lists all the configuration files to be executed. By default it contains one
configuration file ‘remapConvertTableFishEye.cfg’:

1 ../testvecs/config/remapConvertTableFishEye.cfg

0

Note that the last line must end with a ‘0’.

A configuration file has the following parameters:

4-152

 numTestCases: number of test cases listed in the configuration file. Up to 9 test cases can be specified in
a configuration file. Each test case can be parametrized with the following parameters: remapWidth#,
remapHeight#, inputMapFile#, inputMapFileFormat#, qShift#, outputMapFile#,
functionName#. Where # corresponds to the index of the test case: 0, 1, 2, 3 … 9 .

 remapWidth#: width of the output image resulting from the geometric transform. For instance if the
geometric transform rescales a 1080x720 image to 640x480 then remapWidth= 640.

 remapHeight#: height of the output image resulting from the geometric transform. For instance if the
geometric transform rescales a 1080x720 image to 640x480 then remapHeight= 480.

 blockWidth#: processing block width.

 blockHeight#: processing block height.

 inputMapFile#: Relative path of the file containing the (X,Y) coordinates map defining the geometric
transform. The path is relative to where the application is executed, e.g. the directory
apps\remap_merge\test\elf_out. The file must contain remapWidth x remapHeight pairs of (X,Y)
coordinates, listed in raster can format (lef to right, top to bottom), each one coded in 32-bits. The file
format is specified by the next parameter inputMapFileFormat.

 inputMapFileFormat#: Can have value 0, 1 or 2.

A value of 0 means that the inputMapFile is in binary format, with each X,Y coordinate occupying exactly
4 bytes (32 bits). So size of the file with this format would be 2 x 4 x remapWidth x remapHeight bytes.

A value of 1 means that the inputMapFile is in text format, with each X,Y separated by one more several
spaces as follow:

X0 Y0

X1 Y0

X2 Y0

…

XremapWidth-1 Y0

X0 Y1

…

XremapWidth-1 Y1

…

XremapWidth-1 YremapHeight-1

It is not possible to tell the size of the file in advance since each coordinate X,Y is in text format, with
variable number of digits.

A value of 2 means that the inputMapFIle is in text format, with each X,Y separated by a comma as
follow:

X0, Y0,

X1, Y0,

X2, Y0,

…

XremapWidth-1, Y0,

X0, Y1,

…

XremapWidth-1, Y1,

…

XremapWidth-1, YremapHeight-1,

Note that spaces are allowed after each comma.

The reader is encouraged to have a look at the example input maps inputMap_int.bin (file format 0),
inputMap_int.dat (file format 1) and inputMap_int.txt (file format 2) in directory
apps\remap_merge\test\testvecs\input.

 qShift#: number of bit shift that was applied to the the (X,Y) coordinates in order to support fractional
values. For instance with qShift=2, the coordinates (50.1, 100.7) must actually have been written in the
file as (round(2

2
 * 50.1), round(2

2
 * 100.7))= (round(200.4), round(402.8))= (200, 403).

 outputMapFile#: Relative path of the output of the utility, which is the converted map. The path is
relative to where the application is executed, e.g. the directory apps\remap_merge\test\elf_out. The file
format is specified by the next parameter outputMapFileFormat.

 outputFileFormat#: Can have value 0 or 1.

A value of 0 means the output is in binary format. The file format is explained in the next section.

A value of 1 means the output is in *.c format, meaning that the file can be directly compiled as C source
file with the other sources files of your application. The reader is encouraged to have a look at the
example output map outputMap_int1.c in directory apps\remap_merge\test\testvecs\output.

 functionName#: This is only applicable if outputFileFormat=1, meaning output file is a *.c file. The
*.c file will contain a definition of a function callable by the application to setup a structure and a pointer so
the remap applet can apply the geometric transformation specified in the *.c file. The name of the function
is defined here by the user so that it is possible to include several geometric transformations defined by
several *.c file into the build without encountering any multiple symbol linker errors.

Content of the example file remapConvertTable.cfg is provided here:

numTestCases = 4

remapWidth0 = 256
remapHeight0 = 128
blockWidth0 = 128
blockHeight0 = 8

qShift0 = 2
functionName0 = "fisheye_getLeftBlockMap"
inputMapFileFormat0 = 0
inputMapFile0 = " ../testvecs/input/fisheyeMap256x128.bin"
outputMapFileFormat0 = 0
outputMapFile0 = " ../testvecs/output/fisheyeMap256x128_conv.bin"

remapWidth1 = 256
remapHeight1 = 128
blockWidth1 = 128
blockHeight1 = 8

qShift1 = 2
functionName1 = "fisheye_getLeftBlockMap"
inputMapFileFormat1 = 0
inputMapFile1 = " ../testvecs/input/fisheyeMap256x128.bin"
outputMapFileFormat1 = 1
outputMapFile1 = " ../testvecs/output/fisheyeMap256x128_conv1.c"

remapWidth2 = 256
remapHeight2 = 128

4-154

blockWidth2 = 128
blockHeight2 = 8

qShift2 = 2
functionName2 = "fisheye_getLeftBlockMap"
inputMapFileFormat2 = 1
inputMapFile2 = " ../testvecs/input/fisheyeMap256x128.dat"
outputMapFileFormat2 = 1
outputMapFile2 = " ../testvecs/output/fisheyeMap256x128_conv2.c"

remapWidth3 = 256
remapHeight3 = 128
blockWidth3 = 128
blockHeight3 = 8

qShift3 = 2
functionName3 = "fisheye_getLeftBlockMap"
inputMapFileFormat3 = 2
inputMapFile3 = " ../testvecs/input/fisheyeMap256x128.txt"
outputMapFileFormat3 = 1
outputMapFile3 = " ../testvecs/output/fisheyeMap256x128_conv3.c"

How to use a converted map with the remap applet.

At creation time, the remap applet needs the following structure defined in file

apps/remap_merge/algo/inc/iremap_merge_ti.h to be initialized:

typedef struct
{
 IVISION_Params visionParams;
 RemapParms remapParams;
 uint8_t enableMerge;
 Format dstFormat;

} REMAP_MERGE_TI_CreateParams;

The member remapParams is defined as follow in kernels\vlib\vcop_remap\inc\remap_common.h:

typedef struct {
 Interpolation interpolationLuma;
 Interpolation interpolationChroma;
 uint8_t rightShift;
 int32_t sat_high;
 int32_t sat_high_set;
 int32_t sat_low;
 int32_t sat_low_set;
 sConvertMap maps;
 uint32_t reserved[3];
} RemapParms;

All the members in above structures can be initialized independently from the geometric transform except for the
member maps which is defined as structure sConvertMap:

typedef struct
{
 const void *srcMap;
 Size mapDim;
 Size srcImageDim;
 uint8_t isSrcMapFloat;
 Format srcFormat;
 Size outputBlockDim;
 Size inputTileDim;
 uint8_t *outputBlkInfo;
 sTileInfo *tileInfo;
 uint16_t maxNumPixelsinTile;

 uint16_t maxNumEvenPixelsinTile;
 uint16_t maxNumOddPixelsinTile;
 uint32_t tileInfoSize;
 Size maxInputBlockDim;
 uint32_t maxInputBlockSize;
 void *blockMap;
 uint8_t qShift;
} sConvertMap;

This structure depends on the geometric transform and members outputBlockDim, maxInputBlockDim,
maxInputBlockSize, maxnumPixelsInTile, qShift need to be initialized.

Fortunately, this structure can be automatically initialized using one of the following two ways:

1) The converted map was saved as a *.c file.

In this case, the application just needs to call the function contained in the generated *.c file and
whose name was specified in the config file.
In the example config file of the previous section, the function name was
stereovision_getLeftBlockMap(). To see the definition of the function, one can open the file
outputMap_int1.c and scroll down to the bottom:

void stereovision_getLeftBlockMap(unsigned char **pSrcBlkMap, unsigned int *blockMap_LEN,
sConvertMap *mapStruct){

 pSrcBlkMap= (unsigned char)&srcBlkMap[0];
 *blockMap_LEN= 1136064;
 mapStruct->outputBlockDim.width= 128;
 mapStruct->outputBlockDim.height= 8;
 mapStruct->maxInputBlockDim.width= 167;
 mapStruct->maxInputBlockDim.height= 26;
 mapStruct->maxInputBlockSize= 3072;
 mapStruct->maxNumPixelsinTile= 0;
 mapStruct->qShift= 2;
 return;

}

We can see that the third argument of the function call is a pointer to the sConvertMap structure,
which is automatically filled out.
The first argument of the function is a pointer to the location where the pointer to the converted map
will be stored. The second argument is the pointer to the location where the size of the converted
map will be stored to. Both are required when calling the process() function of remap().

An example of how this function is called from a top application can be found in the Vision SDK plugin
file remapMergeLink_algPlugIn.c:

At create time, stereovision_getRightBlockMap() is called at line 291:

stereovision_getRightBlockMap(&(pRemapMergeObj->srcBlkMap[channelId]),
 &(pRemapMergeObj->blockMapLen[channelId]),
 &(pAlgCreateParams->remapParams.maps));

The variable pRemapMergeObj->srcBlkMap[channelId] and pRemapMergeObj->blockMapLen[channelId]
are latter used right before process call at lines 576 to 578:

pInBufs->bufDesc[1]->bufPlanes[0].buf = (UInt8 *)pRemapMergeObj->srcBlkMap[channelId];
pInBufs->bufDesc[1]->bufPlanes[0].width = pRemapMergeObj->blockMapLen[channelId];
pInBufs->bufDesc[1]->bufPlanes[0].frameROI.width = pRemapMergeObj->blockMapLen[channelId];

…

status = AlgIvision_process(pRemapMergeObj->handle[channelId],
 pInBufs,
 pOutBufs,
 (IVISION_InArgs *)pInArgs,
 (IVISION_OutArgs *)pOutArgs
);

2) The converted map was saved as a binary file.

4-156

The structure of the converted map binary file is as follow:

Byte
Offset

Content

0 MAP_SIZE= Length of converted map in bytes

4 Converted map of size MAP_SIZE

This section contains the structure sConvertMap
as well as the array srcBlkmap

Total size of the file is 4 + MAP_SIZE bytes .

The following code shows how to read that binary file:

if ((fid= fopen(“convertedMap.bin,"rb"))== NULL) {
 PRINT_ERRORE_MSG();
 goto EXIT;
 }

 fread((void*)&lengthOfConvertedMap, 4, 1, fid); /* first we read MAP_SIZE into lengthOfConvertedMap */

 if ((convertedMap = (uint8_t*)malloc(lengthOfConvertedMap)) == NULL){ /* we allocate memory to store the
converted map */
 status= IALG_EFAIL;
 goto EXIT;
 }

 fread((void*)convertedMap, 1, lengthOfConvertedMap, fid); /* we read the converted map into the allocated
memory */
 fclose(fid);

 rectify_getBlockMap(&srcBlkMapRight, &blockMap_LEN, &rightParams->maps, convertedMapRight);

The function rectify_getBlockMap() is given below:

void rectify_getBlockMap(uint8_t **srcBlkMap, uint32_t *blockMap_LEN, sConvertMap *maps, uint8_t *convertedMap) {

 uint32_t i;
 uint8_t *p;
 p= (uint8_t*)maps;

 for (i=0; i< sizeof(sConvertMap);i++)
 *p++= *convertedMap++;

 p= (uint8_t*)blockMap_LEN;
 for (i=0; i< sizeof(*blockMap_LEN);i++)
 *p++= *convertedMap++;

 *srcBlkMap= convertedMap;
}

How to verify a converted map

To verify whether the converted map works well with remap, a test utility called remapExecute is provided in the same
directory apps\remap_merge\test\elf_out.
Like the convert table utility, it parses any configuration file listed in
apps\remap_merge\test\testvecs\config\remapConvertTable_config_list.txt .
The default content is:

1 ../testvecs/config/remapConvertTableFishEye.cfg
0

A configuration file has the following parameters:

 numTestCases: number of test cases listed in the configuration file. Up to 9 test cases can be specified in
a configuration file. Each test case can be parametrized with the following parameters: remapWidth#,
remapHeight#, originalMapFile#, convertedBinMapFile#, inputFile#,
outputFile#. Where # corresponds to the index of the test case: 0, 1, 2, 3 … 9 .

 remapWidth#: width of the output image resulting from the geometric transform. For instance if the
geometric transform rescales a 1080x720 image to 640x480 then remapWidth= 640.

 remapHeight#: height of the output image resulting from the geometric transform. For instance if the
geometric transform rescales a 1080x720 image to 640x480 then remapHeight= 480.

 originalMapFile#: Relative path of the file containing the (X,Y) coordinates map defining the
geometric transform. The file format must be binary. Basically it is the file that was passed to
convertTable as input. Relative path of the output of the utility, which is the converted map. The path is
relative to where the application is executed, e.g. the directory apps\remap_merge\test\elf_out. The file
must contain remapWidth x remapHeight pairs of (X,Y) coordinates, listed in raster can format (lef to right,
top to bottom), each one coded in 32-bits.

 convertedBinMapFile#: This is the output map file from convertTable, in binary format.

 inputFile#: this is the input pgm file, to which the geometric transform specified by
convertedBinMapFile# will be applied.

 outputFile#: the resulting image from remap applied to inputFile#.

The sample configuration file provided in the release has the following content:

numTestCases = 1

remapWidth0 = 256
remapHeight0 = 128
originalMapFile = " ../testvecs/input/fishEyeMap256x128.bin"
convertedBinMapFile = "output/fishEyeMap256x128_conv.bin"
inputFile = " ../testvecs/input/checkerboard256x128.pgm"
outputFile = " ../testvecs/output/fish_eye_checkerboard256x128.pgm"

The input file checkerboard256x128.pgm is a checker-board pattern:

After table conversion and remap execute, the output file fish_eye_checkerboard256x128.pgm should contain the
following image:

When executing in target mode, on EVM, the console window will also display performance measurements. The expected
printout for the fish eye lens example is:

4-158

TEST_REPORT_PROCESS_PROFILE_DATA : TSC cycles = 251782, SCTM VCOP BUSY cycles = 132096, SCTM VCOP
Overhead = 0
I/O Bytes : 0 (0 + 0) : 0 (0 + 0)
Graph create: 140449 ARP32 cycles | Execution (control + VCOP + EDMA): 7.68 VCOP cycles |
Execution (VCOP only): 4.03 VCOP cycles
: TSC cycles = 251782, SCTM VCOP BUSY cycles = 132096, SCTM VCOP Overhead = 0
I/O Bytes : 0 (0 + 0) : 0 (0 + 0)

Graph create: 101627 ARP32 cycles | Execution (control + VCOP + EDMA): 5.12 VCOP cycles/pixel |
Execution (VCOP only): 3.41 VCOP cycles/pixel

Please ignore the first line starting with TEST_REPORT_PROCESS_PROFILE_DATA.
What is important is the second line:

Graph create: 101627 ARP32 cycles | Execution (control + VCOP + EDMA): 5.12 VCOP cycles/pixel |
Execution (VCOP only): 3.41 VCOP cycles/pixel
Basically Graph create is the number of cycles to create the BAM graph corresponding to the remap algorithm. This is
a one-time event, which does not happen every frame, but would be part of the system initialization.
The execution cycles are of two types: the total execution time, which includes control + VCOP + EDMA cycles and VCOP
only execution time. If the frame is large, the total execution time should be pretty close to VCOP only execution time
because the impact of control overhead is less. With the fish eye example, since the image is small, the overhead is pretty
large: (5.12 – 3.41)/3.41= 50%.

If an error message such as:
Remap initialization error: decrease blockWidth and blockHeight values for the use case processed
by remapConvertTable
Error use case #0, stopped processing

is displayed then the parameters blockWidth and blockHeight in the convert table configuration file need to be

reduced.

Matlab utility to generate an example LUT for fish-eye lens transform

To help generating example LUTs, the matlab utility createFishEyeLUT.m is provided in directory
apps\remap_merge\test\utils. It allows to play around with creating LUTs that correspond to fish-eye geometric
transformation. User is free to modify the utility to generate LUT for other types of geometric transformation.
Dimensions of the generated map is set by the variables NC, NR, NPIX and derived as follow: image width is 2* NC *
NPIX and image height is 2 * NR * NPIX.
The utility will generate:

 The (X,Y) LUT map in binary format, 32-bits for X, 32-bits for Y, into
../testvecs/input/fishEyeMap<WIDTH>x<HEIGHT>.bin

 The (X,Y) LUT map in text format, into ../testvecs/input/fishEyeMap<WIDTH>x<HEIGHT>.txt

 The (X,Y) LUT map in dat format, into ../testvecs/input/fishEyeMap<WIDTH>x<HEIGHT>.dat

For testing purpose, synthetic input images are also generated to be used with remapExecute application:

 A gray checker board pattern of size W=2* NC * NPIX x H=2 * NR * NPIX into
../testvecs/input/checkerboard_gray_<WIDTH>x<HEIGHT>.pgm

 A gray checker board pattern of size W=2* NC * NPIX x H=2 * NR * NPIX into
../testvecs/input/checkerboard_gray<WIDTH>x<HEIGHT>.y

 A color checker board pattern of size W=2* NC * NPIX x H=2 * NR * NPIX into
../testvecs/input/checkerboard_color<WIDTH>x<HEIGHT>.yuv

Appendix C: Template Matching
Normalization Function

Introduction

This appendix contains an example function that implements the normalization step that must be applied to the template
image before passing it to the template matching applet.

This normalization step calculates the means of the template before subtracting it from every pixel values to produce the
normalized template. In addition to that, the output is produced in Q format.

Also the pseudo-variance of the template is calculated alongside and returned at the exit of the function. This pseudo-
variance corresponds to the constant K present in the normalized cross-correlation formula:

Source code

/* Calculate the mean and subtract it from every pixel */
uint32_t normalizeTemplate(
 int16_t *dst, /* Destination pointer to the 16-bits template output in Q format */
 uint8_t *src, /* Source pointer to the 8-bits template image */
 uint32_t width, /* width of the template in number of pixels */
 uint32_t height, /* height of the template in number of rows */
 uint32_t stride, /* stride of the template in number of pixels */
 uint8_t sizeQshift, /* Number of fractional bits used to represent
1/(templateWidth*templateHeight) */
 uint8_t qShift) /* Number of fractional bits used to represent the output */
 {

 int32_t tAver, sum= 0;
 uint32_t tVar, w, h;
 int32_t t_p;
 uint16_t qValDiffHalf, qShiftDiff, qValHalf;

 qShiftDiff= sizeQshift - qShift;
 qValDiffHalf= 1<<(qShiftDiff -1);
 qValHalf= 1<<(qShift - 1);

 memset(dst, 0, stride * height);

 /* Add all the pixel values together */
 for (h= 0; h < height; h++) {
 for (w= 0; w < width; w++) {
 sum += src[w + h*width];
 }
 }

 /* Caculate the mean by dividing the sum of all the pixels by the number of pixels in the
template, result has 'sizeQshift' fractional bits */
 tAver= ((sum<<sizeQshift) + (width*height)/2)/(width*height);
 tVar= 0;

2

, ,

, ,

)),((

),(')),((
),(










yx vu

yx vu

fyxfK

vyuxtfyxf
vuc

4-160

 for (h= 0; h < height; h++) {
 for (w= 0; w < width; w++) {
 /* Subtract the mean from every pixel values. Convert to Q format by left shifting the
input template valye by qShift and
 * right shifting the mean by qShiftDiff
 */
 t_p= (src[w + h*width]<<qShift) - ((tAver + qValDiffHalf)>>qShiftDiff);
 dst[w + h*stride]= t_p;
 /* Calculate the pseudo variance of the template, which represents the constant value
K used in the normalized cross-correlation
 * Result is in Q format
 * */
 tVar+= ((unsigned int)t_p*t_p + qValHalf) >> qShift;
 }
 }

 return tVar; /* Return the pseudo-variance */
}

Q-format

The function uses the parameters qShift and sizeQshift in order to increase the precision of the results.

sizeQshift is used when dividing the sum of the pixels by the number of pixels to produce the mean value:

A good value for sizeQshift is log2(templateWidth * templateHeight).

qShift is used for formatting the final output and the pseudo-variance into the corresponding Q format. If qShift= 8 then
the normalized template is formatted in Q8.8 format and the pseudo-variance in Q24.8 format.

A good value for qShift is qShift= min(7, (22 - log2(templateWidth*templateHeight))/2);

The following constraints were applied in order to derive the formula:

Constraint A means that at minimum, 9 bits are required to hold the result of the substraction between the 8-bits input and
the mean value. Since the mean value is in Q-format, an additional qShift bits are required. To meet EVE implementation
constraint, the total number of bits must fit within32 bits, that’s why we have (9 + qShift) bits < 32 .

 
ighttemplateHedthtemplateWi

sizeQshiftyxt
mean

yx






 ,
),(

2

, ,

, ,

)),((

),(')),((
),(










yx vu

yx vu

fyxfK

vyuxtfyxf
vuc

A: (9 + qShift) bits <= 32
bitsbits

B: (9 + qShift) bits <= 16 bits

C:
2 * (9 + qShift) + log2(templateWidth *

templateHeight bits) <= 40 bits

Constraint B is similar to constraint A since t’ represent the normalized template. The only difference is that the result of
the normalized template is stored in 16-bits, not 32-bits.

Constraint C is related to the fact that the internal registers of EVE are 40-bits and thus the final expression

must fit within 40 bits. Inside the expression, we have a summation of templateWidth * templateHeight elements, which
increase the number of bits by log2(templateWidth * templateHeight), and each elements of the summation is a product of
two values of bit depth (9 + qShift) bits.

Finally, we must respect these three constraints:

A: (9 + qShift) bits <= 32

B: (9 + qShift) bits <= 16

C: 2 * (9 + qShift) + log2(templateWidth * templateHeight bits) <= 40

which is equivalent to:

A: qShift <= 23

B: qShift <= 7

C: qShift <= (22 - log2(templateWidth*templateHeight))/2

Or qShift= min(23, 7, (22 - log2(templateWidth*templateHeight))/2)= min(7, (22 - log2(templateWidth*templateHeight))/2)

 
yx vu vyuxtfyxf

, ,),(')),((

4-162

Appendix D: Radar Processing Data Flow
Introduction

This Appendix describes the details of how to use various radar Applications (applets) on EVE to implement the radar
processing flow on EVE.

Details

Typical automotive radar systems need to identify objects with their world position and relative velocity to ego vehicle.
Figure 2 shows a main processing blocks of automotive radar signal processing chain. First step is to find the distance
of the object which can be found by doing an FFT in horizontal direction. Second step is to find the velocity of the
object by computing the FFT in vertical direction. The energy peaks after computing range and Doppler FFT will give
us distance and velocity of the object. Once we detect object next step is to find the angle of the object which can be
found using beam forming technique. There can be additional pre-processing steps like interference zero out, dc-offset
removal, windowing etc which can be applied before computing the FFT. Our implementation supports 1-6 processing
blocks as shown in Figure 2

Figure 2 : Automotive Radar processing Blocks with data representation

To achieve this flow three applets are provided as part of EVE SW offering as listed below

 FFT (both range and Doppler)

 Peak Detection

 Beam Forming

User shall call the above applets one after the other such that the output of one applet goes as an input to the next
one. Lets look at each of them one by one and see how they are connected.

1. Range and Doppler determination

The first step in radar processing is to find FFT of the input radar cube in horizontal direction, which will give the
distance (range) of the object followed by the FFT in vertical direction, which will give the velocity (Doppler) of the
object. This can be achieved by using FFT applet in two passes.

We will need to create two instances of FFT applet one configured in horizontal direction and the other configured in
vertical direction. The same can be achieved by creating two instances of FFT applet with different create time
parameters. User shall set the direction of the FFT using FFT_TI_CreateParams->fftdirection parameter during
instance creation of the FFT applet.

Input to the FFT applet is provided using FFT_TI_BufferDescriptor. In this section we will take one example and
describe what parameters needs to be provided for the buffer descriptor. For details of each parameter of using
FFT_TI_BufferDescriptor, please refer 4.1.1.8

Figure 3 below shows layout of the output of ARxx sensors in the memory. Here r is range dimension and d is
Doppler dimension. offsetBwAntenna indicates the offset from the one antenna to the next antenna. Here RxmTxn
represents data received by m

th
 receivers of n

th
 transmitter. For the cases when FFT is used as general purpose

FFT instead of radar specific FFT, user can visualize the same data with number of antennas as 1.

For this input following would be the configuration of the FFT_TI_BufferDescriptor :

numChunks = 1

numHorzPoints[0] = r (Range dimension)

numVertPoints = d (Doppler dimension)

offsetBwAntennas[0] = offsetBwAntenna

numAntennas = m x n (m transmitters and n receivers)

pitch[0] = offsetBwAntenna * numAntennas

irregularityFrequency = 0

4-164

Figure 3 : Output of ARxx sensor

This buffer is given as an input to the first instance of the FFT applet. Apart from the input, there are other parameters
like interference zero out, dc offset removal, windowing which user can enable /disable certain using inArgs of the
applet. Please refer 4.1.1.10 various parameters, which can be configured at run time.

The output of the FFT for this instance shall provide us FFT in range dimension. This output shall be given as an input
to the next instance of FFT which should be configured to be in vertical direction (Doppler dimension).

Figure 4 shows the output of range FFT. It is is also an input to Doppler FFT. This figure is just an example with three

chunks. Number of chunks shown in Figure 4 is just an example. In general depending on the configuration number of
chunks numChunks can be any number greater or equal to 1. As a user, one need not bother about the actual format
of this buffer as this can be directly given as an input to the next instance of the FFT (Doppler FFT). Also buffer1,
buffer2 and buffer3 can be placed anywhere in memory (even though they are shown side by side in the figure). The
number of horizontal point (n1,n2,n3) in each of the buffers would be dependent on the configuration and would be
determine by the algorithm itself. Typical values would be 8,16 32 etc.

Figure 4 : Output of Range FFT/ Input to Doppler FFT

The buffer descriptor for the output of range FFT (input to Doppler FFT) is as follows :

numChunks = 3

numHorzPoints[] = {n1,n2,n3}

4-166

numVertPoints = d

offsetBwAntennas[] = {n1 * 4,n2 * 4,n3 * 4}
*

numAntennas = m x n

pitch[] = { n1 * 4* numAntennas, n2 * 4* numAntennas , n3 * 4* numAntennas }
*

* multiplication by 4 in above example is because each element is a complex number with each real and imaginary of
2 bytes.

This buffer shall be given as an input to the Doppler FFT (Vertical direction FFT). The output of this instance is
arranged in such a manner so that it will help in processing other blocks in radar processing chain. The output of this
instance shall be as showin in Figure 5.

Figure 5 : Output of Doppler FFT

Following is the buffer descriptor of the output of Doppler FFT:

numChunks = 1

numHorzPoints[0] = q

numVertPoints = (r / q) * d

offsetBwAntennas[0] = q * 4

pitch[0] = q * 4 * numAntennas

numAntennas = k (= m xn)

 After the above two passes user shall get the FFT of input data in both range and Doppler dimension.

2. Peak detection :

Objective of Peak detection applet is to find the peaks in 2D FFT which was calculated in previous step. Input to peak
detection applet is the output of Doppler FFT as shown in Figure 5. Peak detection uses CFAR CA algorithm to detect
peaks. The applet first find the peaks in range dimension, followed by finding peaks only for the rows where range
peaks are found in Doppler dimension. This applet supports an optional tx-decoding step which can be used if the
samples from ARxx are multiplexed before transmitting. The user shall provide the coefficients for tx decoding in Q15
format by accounting the division factor along with the coefficients.

There are total 3 output buffers of this applet out of which one is optional (only required if user wants to use beam
forming applet). Buffer 0 and Buffer 1 are two output buffers which stores the list of the coordinates (Range, Doppler)
at which peak is detected and the energy corresponding to it. These buffers are enumerated as
PEAK_DETECTION_TI_BUFDESC_OUT_RANGE_DOPPLER_BUFFER and PEAK_DETECTION_TI_BUFDESC_OUT_ENERGY_BUFFER in
the output buffer descriptior. This applet also provides a mode to extract the input data for all the detected
coordinates, which can be used by the beam forming module. This buffer is shown in Figure 6 as buffer 2. In real
application it is expected that this conversion happens outside EVE as the processing is not very friendly to EVE
because of the random access patterns. To enable the data out in the same format as expected by beam forming
applet, user shall set PEAK_DETECTION_TI_CreateParams.enableAntennaDataOut = 1. If enabled one of the output
buffer will be as shown in Figure 6. The same is enumerated as
PEAK_DETECTION_TI_BUFDESC_OUT_ANTENNA_DATA in the output buffer descriptor.

Buffer0 range,doppler R D R D R D R D R D R D

Buffer1 Energy

Buffer2

D0

D1

Dn

D0 D1 D2 Dn

numAntennas

Figure 6 : Antenna Data out after Peak Detection

Here Dk denotes the k
th
 detection. For each detection numAntenna samples corresponding to each antenna are

extracted out from the original input data to this applet. This buffer is required for doing beam forming.

Peak Detection applet uses CFAR CA detector. In this algorithm threshold level is calculated by estimating the level of
noise floor around the cell under test (CUT). The cell under test (CUT) is compared against an average noise floor.
The noise cells (which are used to compute the noise floor) are located on either side of the CUT. The CUT is
separated from the noise cells by guard cells. There are noise samples of length noiseLen on either side of the CUT.

4-168

Similarly there are guardLen samples on either side of the CUT, separating it from the noise samples. Figure 7 shows
various parameters for CFAR CA algorithm.

CFAR CA detector equation is : CUT > Threshold * NoiseFloor.

Figure 7 : CFAR CA Detection

Following are the input parameters (inArgs) for the input to peak detection applet as shown in Figure 5 assuming the
tx and rx data is received as shown in Figure 3

PEAK_DETECTION_TI_InArgs.numTx = m

PEAK_DETECTION_TI_InArgs.numRx = n

PEAK_DETECTION_TI_InArgs.offsetBwTx = (4 * q * n)
*

PEAK_DETECTION_TI_InArgs.offsetBwRx = (4 * q)
*

PEAK_DETECTION_TI_InArgs.rangeDim = r

PEAK_DETECTION_TI_InArgs.dopplerDim = d

* multiplication by 4 in above example is because each element is a complex number with each real and imaginary of
2 bytes.

3. Beam Forming (Angle Estimation) :

The objective of this step is to find the angle of the detected objects in the previous step. Input to this applet is output
of the peak detection applet which includes Range,Doppler coordinates and corresponding antenna data for those
coordinates as shown in Figure 7 .
Beam forming applet supports two different kind of input buffers formats for range,Doppler coordinates. These are
enumatred as BEAM_FORMING_TI_COORDINATE_BUF_FORMAT_1 and
BEAM_FORMING_TI_COORDINATE_BUF_FORMAT_2. Format1 expects the input as a list of 4 elements range,
Doppler, angle and energy in a single buffer, whereas Format2 expects input in 2 different buffers one containing list
of range and Doppler coordinates and other containing the energy corresponding to them. If user wants to use the
output of peak detection applet as described in the previous section then user shall set
BEAM_FORMING_TI_CreateParams.coordinateBufFormat= BEAM_FORMING_TI_COORDINATE_BUF_FORMAT_2

Apart from the coordinate buffer the applet also expects an antenna data buffer as showin in Figure 6. This buffer has
dimension of numAntenna x numDetection and shall be provided as one of the input buffers to the beam forming
applet. This buffer is enumerated as BEAM_FORMING_TI_BUFDESC_IN_ANTENNA_DATA_BUF in the input buffer
descriptor.

Lets take an example in which user wants to detect angle in the range of -45 degrees to +45 dergrees at the resolution
of 1 degree. In this case there will be total of 90 angles at which user wants to estimate the angle of the object. Each
angle will corresponds to a steering vector of length equal to the number of antennas. So total dimension of steering
matrix will be 90 * numAntennas.

Output of the beam forming applet is a list of structure which is described using BEAM_FORMING_TI_Coordinates as
described in 4.2.1.3

	Vision and Imaging Applications on EVE
	1 Introduction
	1.1 Directory Structure Overview
	1.2 Apps with out using BAM
	1.3 Apps utilizing BAM

	2 iVISION API Reference
	2.1 Data Processing APIs
	2.2 Control API
	2.3 Data Structures
	2.3.1 IVISION_Params
	2.3.2 IVISION_Point
	2.3.3 IVISION_Rect
	2.3.4 IVISION_Polygon
	2.3.5 IVISION_BufPlanes
	2.3.6 IVISION_BufDesc
	2.3.7 IVISION_BufDescList
	2.3.8 IVISION_InArgs
	2.3.9 IVISION_OutArgs

	3 Vision Applications
	3.1 Block Statistics
	3.1.1 Data Structures
	3.1.1.1 BLOCK_STATISTICS_TI_CreateParams
	3.1.1.2 Block Statistics Applet Input and Output Buffer Indices

	3.1.2 Constraints

	3.2 Median Filter
	3.2.1 Data Structures
	3.2.1.1 medianFilter_CreateParams
	3.2.1.2 Median Filter Applet Input and Output Buffer Indices
	3.2.1.3 Median Filter Applet Control Command Indices

	3.2.2 Constraints

	3.3 Block sort U32
	3.3.1 Data Structures
	3.3.1.1 BLOCK_SORT_U32_TI_CreateParams

	3.3.2 Constraints

	3.4 Image Pyramid
	3.4.1 Data Structures
	3.4.1.1 IMAGE_PYRAMID_U8_TI_CreateParams

	3.4.2 Constraints

	3.5 FAST9 Corner Detection
	3.5.1 Data Structures
	3.5.1.1 FAST9_CORNER_DETECT_TI_CreateParams
	3.5.1.2 FAST9_CORNER_DETECT_TI_InArgs
	3.5.1.3 FAST9_CORNER_DETECT_TI_OutArgs

	3.6 FAST9 Best Feature to Front
	3.6.1 Data Structures
	3.6.1.1 FAST9_BEST_FEATURE_TO_FRONT_TI_CreateParams
	3.6.1.2 FAST9_BEST_FEATURE_TO_FRONT_TI_InArgs
	3.6.1.3 FAST9_BEST_FEATURE_TO_FRONT_TI_OutArgs

	3.7 Harris Corner Detection
	3.7.1 Data Structures
	3.7.1.1 HARRIS_CORNER_DETECTION_32_TI_OutputFormat
	3.7.1.2 HARRIS_CORNER_DETECTION_32_TI_HarrisWindowSize
	3.7.1.3 HARRIS_CORNER_DETECTION_32_TI_SuppressionMethod
	3.7.1.4 HARRIS_CORNER_DETECTION_32_TI_HarrisScoreMethod
	3.7.1.5 HARRIS_CORNER_DETECTION_32_TI_CreateParams
	3.7.1.6 HARRIS_CORNER_DETECTION_32_TI_ControlInParams
	3.7.1.7 HARRIS_CORNER_DETECTION_32_TI_ControlOutParams
	3.7.1.8 HARRIS_CORNER_DETECTION_32_TI_outArgs

	3.8 RBrief Applet
	3.8.1 Data Structures
	3.8.1.1 RBRIEF_TI_CreateParams
	3.8.1.2 RBRIEF_TI_OutArgs

	3.9 Pyramid LK Tracker
	3.9.1 Data Structures
	3.9.1.1 PYRAMID_LK_TRACKER Macros
	3.9.1.2 PYRAMID_LK_TRACKER_TI_CreateParams
	3.9.1.3 PYRAMID_LK_TRACKER_TI_InArgs
	3.9.1.4 PYRAMID_LK_TRACKER_TI_OutArgs
	3.9.1.5 PYRAMID_LK_TRACKER Input Output Buffer Indices
	3.9.1.6 IPYRAMID_LK_TRACKER_ErrorType Error codes

	3.10 Harris Best Feature to Front
	3.10.1 Data Structures
	3.10.1.1 HARRIS_BEST_FEATURE_TO_FRONT_TI_CreateParams
	3.10.1.2 IHarris_BFFT_InBufOrder
	3.10.1.3 IHarris_BFFT_OutBufOrder

	3.11 Remap & Merge
	3.11.1 Current Deliverables Scope
	3.11.2 Interface
	3.11.2.1 Interface for Bounding Box Approach
	3.11.2.2 Interface for Tile Approach

	3.11.3 Data Structures
	3.11.3.1 Size
	3.11.3.2 convertMapBlockInfo
	3.11.3.3 sTileInfo
	3.11.3.4 sTileLutHeader
	3.11.3.5 sConvertMap
	3.11.3.6 RemapParms
	3.11.3.7 REMAP_MERGE_TI_CreateParams

	3.11.4 Constraints

	3.12 Histogram of Orientaed Gradients (HOG)
	3.12.1 Data Structures
	3.12.1.1 PD_FEATURE_PLANE_COMPUTATION_CreateParams
	3.12.1.2 PD_FEATURE_PLANE_COMPUTATION_outputMetaData
	3.12.1.3 PD_FEATURE_PLANE_COMPUTATION_scaleMetaData
	3.12.1.4 scalePrams_t
	3.12.1.5 PD_FEATURE_PLANE_COMPUTATION_InArgs
	3.12.1.6 HOG Applet Input Output Buffer Indices
	3.12.1.7 HOG Gradient Magnitude Methods

	3.13 Gray-Level Co-occurrence Matrix (GLCM)
	3.13.1 Data Structures
	3.13.1.1 GLCM_TI_CreateParams
	3.13.1.2 GLCM Applet Input and Output Buffer Indices

	3.13.2 Constraints

	3.14 Filter 2D
	3.14.1 Data Structures
	3.14.1.1 FILTER_2D_CreateParams
	3.14.1.2 IFILTER_2D_InBufOrder
	3.14.1.3 IFILTER_2D_OutBufOrder
	3.14.1.4 FILTER_2D_InArgs
	3.14.1.5 FILTER_2D_OutArgs

	3.14.2 Constraints

	3.15 YUV Padding
	3.15.1 Data Structures
	3.15.1.1 YUV PADDING Input and output Buffer IDs
	3.15.1.2 YUV_PADDING_TI_CreateParams

	3.16 Software Image Signal processor (Soft ISP)
	3.16.1 Data Structures
	3.16.1.1 SOFT_ISP_TI_CreateParams
	3.16.1.2 SOFT ISP Applet Input and Output Buffer Indices
	3.16.1.3 SOFT ISP Applet Control Command Indices
	3.16.1.4 SOFT_ISP_TI_InArgs
	3.16.1.5 SOFT_ISP_TI_OutArgs

	3.16.2 Constraints

	3.17 Software Image Signal processor (Soft ISP) for Bayer sensor
	3.17.1 Data Structures
	3.17.1.1 SOFT_ISP16_TI_CreateParams
	3.17.1.2 SOFT ISP16 Applet Input and Output Buffer Indices
	3.17.1.3 SOFT ISP16 Applet Control Command Indices
	3.17.1.4 SOFT_ISP16_TI_InArgs
	3.17.1.5 SOFT_ISP16_TI_OutArgs

	3.17.2 Constraints

	3.18 Hough Transform for lines
	3.18.1 Data Structures
	3.18.1.1 HOUGH_FOR_LINES_TI_CreateParams
	3.18.1.2 IHOUGH_FOR_LINES_InBufOrder
	3.18.1.3 IHOUGH_FOR_LINES_OutBufOrder
	3.18.1.4 HOUGH_FOR_LINES_InArgs
	3.18.1.5 HOUGH_FOR_LINES_OutArgs

	3.18.2 Constraints

	3.19 Integral Image
	3.19.1 Data Structures
	3.19.1.1 INTEGRAL_IMAGE_TI_CreateParams
	3.19.1.2 INTEGRAL_IMAGE_TI_OutArgs

	3.19.2 Constraints

	3.20 NMS (Non Maximum Suppression)
	3.20.1 Data Structures
	3.20.1.1 NMS_TI_CreateParams
	3.20.1.2 NMS_TI_InBufOrder
	3.20.1.3 NMS_TI_OutBufOrder
	3.20.1.4 NMS_TI_ControlInArgs
	3.20.1.5 NMS_TI_ControlOutArgs
	3.20.1.6 NMS_TI_InArgs
	3.20.1.7 NMS_TI_OutArgs

	3.20.2 Constraints

	3.21 Census transform
	3.21.1 Data Structures
	3.21.1.1 CENSUS_TI_CreateParams
	3.21.1.2 CENSUS_TI_OutArgs
	3.21.1.3 CENSUS_TI_ControlOutParams

	3.21.2 Constraints

	3.22 Disparity calculation
	3.22.1 Data Structures
	3.22.1.1 DISPARITY_TI_CreateParams
	3.22.1.2 DISPARITY_TI_OutArgs
	3.22.1.3 DISPARITY_TI_ControlOutParams

	3.22.2 Constraints
	3.22.3 References

	3.23 Feature Matching
	3.23.1 Data Structures
	3.23.1.1 FEATURE_MATCHING_TI_CreateParams
	3.23.1.2 FEATURE_MATCHING_TI_InBufOrder
	3.23.1.3 FEATURE_MATCHING_TI_OutBufOrder
	3.23.1.4 Control Command Indices
	3.23.1.5 FEATURE_MATCHING_TI_CtrlParams
	3.23.1.6 FEATURE_MATCHING_TI_InArgs
	3.23.1.7 FEATURE_MATCHING_TI_OutArgs

	3.23.2 Constraints

	3.24 Hough Transform for Circles
	3.24.1 Data Structures
	3.24.1.1 HOUGH_FOR_CIRCLES_TI_CircleType
	3.24.1.2 HOUGH_FOR_CIRCLES_TI_HoughSpaceScaling
	3.24.1.3 HOUGH_FOR_CIRCLES_TI_CreateParams
	3.24.1.4 HOUGH_FOR_CIRCLES_TI_InBufOrder
	3.24.1.5 HOUGH_FOR_CIRCLES_TI_CircleProperties
	3.24.1.6 HOUGH_FOR_CIRCLES_TI_InArgs
	3.24.1.7 HOUGH_FOR_CIRCLES_TI_OutArgs
	3.24.1.8 HOUGH_FOR_CIRCLES_TI_ControlInArgs
	3.24.1.9 HOUGH_FOR_CIRCLES_TI_ControlOutArgs

	3.24.2 Recommendations
	3.24.3 Constraints

	3.25 YUV Scalar
	3.25.1 Data Structures
	3.25.1.1 YUV_SCALAR_TI_CreateParams
	3.25.1.2 YUV_SCALAR_TI_ScalingMethods
	3.25.1.3 YUV_SCALAR_TI_ControlInParams
	3.25.1.4 YUV_SCALAR_TI_ControlOutParams
	3.25.1.5 YUV_SCALAR_TI Control Commands

	3.26 Edge Detector
	3.26.1 Data Structures
	3.26.1.1 EDGE_DETECTOR_TI_Method
	3.26.1.2 EDGE_DETECTOR_TI_OutputFormat
	3.26.1.3 EDGE_DETECTOR_TI_NormType
	3.26.1.4 EDGE_DETECTOR_TI_InBufOrder
	3.26.1.5 EDGE_DETECTOR_TI_OutBufOrder
	3.26.1.6 EDGE_DETECTOR_TI_CreateParams
	3.26.1.7 EDGE_DETECTOR_TI_InArgs

	3.27 Morphology
	3.27.1 Data Structures
	3.27.1.1 MORPHOLOGY_TI_CreateParams
	3.27.1.2 MORPHOLOGY_TI_InBufOrder
	3.27.1.3 MORPHOLOGY_TI_OutBufOrder
	3.27.1.4 MORPHOLOGY_TI_ImageType
	3.27.1.5 MORPHOLOGY_TI_StructuringElementShape
	3.27.1.6 MORPHOLOGY_TI_Operation
	3.27.1.7 MORPHOLOGY_TI_InArgs
	3.27.1.8 MORPHOLOGY_TI_OutArgs

	3.27.2 Constraints

	3.28 Bin Image to list
	3.28.1 Data Structures
	3.28.1.1 BIN_IMAGE_TO_LIST_TI_ErrorType
	3.28.1.2 BIN_IMAGE_TO_LIST_TI_InputDataFormat
	3.28.1.3 BIN_IMAGE_TO_LIST_TI_Order
	3.28.1.4 BIN_IMAGE_TO_LIST_TI_InputMaskFormat
	3.28.1.5 BIN_IMAGE_TO_LIST_ListSuppressionMethod
	3.28.1.6 BIN_IMAGE_TO_LIST_TI_CreateParams
	3.28.1.7 BIN_IMAGE_TO_LIST_TI_InBufOrder
	3.28.1.8 BIN_IMAGE_TO_LIST_TI_OutBufOrder
	3.28.1.9 BIN_IMAGE_TO_LIST_TI_InputDataFormat
	3.28.1.10 BIN_IMAGE_TO_LIST_TI_InputMaskFormat
	3.28.1.11 BIN_IMAGE_TO_LIST_TI_InArgs
	3.28.1.12 BIN_IMAGE_TO_LIST_TI_OutArgs

	3.28.2 Constraints

	3.29 Template Matching
	3.29.1 Data Structures
	3.29.1.1 TEMPLATE_MATCHING_TI_CreateParams
	3.29.1.2 TEMPLATE_MATCHING_TI_InBufOrder
	3.29.1.3 TEMPLATE_MATCHING_TI_OutBufOrder
	3.29.1.4 Control Command Indices
	3.29.1.5 TEMPLATE_MATCHING_TI_ControlInParams
	3.29.1.6 TEMPLATE_MATCHING_TI_ControlOutParams
	3.29.1.7 TEMPLATE_MATCHING_TI_OutArgs

	3.29.2 Constraints

	3.30 CLAHE
	3.30.1 Data Structures
	3.30.1.1 CLAHE_TI_ErrorType
	3.30.1.2 CLAHE_TI_InBufOrder
	3.30.1.3 CLAHE_TI_OutBufOrder
	3.30.1.4 CLAHE_TI_CreateParams
	3.30.1.5 CLAHE_TI_InArgs
	3.30.1.6 CLAHE_TI_outArgs

	4 Radar Applications
	4.1 FFT (Fast Fourier Transform)
	4.1.1 Data Structures
	4.1.1.1 FFT_TI_ErrorType
	4.1.1.2 FFT_TI_InBufOrder
	4.1.1.3 FFT_TI_OutBufOrder
	4.1.1.4 FFT_TI_ControlCommand
	4.1.1.5 FFT_TI_Direction
	4.1.1.6 FFT_TI_NumPoints
	4.1.1.7 FFT_TI_ContainerFormat
	4.1.1.8 FFT_TI_BufferDescriptor
	4.1.1.9 FFT_TI_CreateParams
	4.1.1.10 FFT_TI_InArgs
	4.1.1.11 FFT_TI_OutArgs

	4.2 Beam Forming
	4.2.1 Data Structures
	4.2.1.1 BEAM_FORMING_TI_ErrorType
	4.2.1.2 BEAM_FORMING_TI_CoordinateBufFormat
	4.2.1.3 BEAM_FORMING_TI_Coordinates
	4.2.1.4 BEAM_FORMING_TI_InBufOrder
	4.2.1.5 BEAM_FORMING_TI_OutBufOrder
	4.2.1.6 BEAM_FORMING_TI_CreateParams
	4.2.1.7 BEAM_FORMING_TI_InArgs
	4.2.1.8 BEAM_FORMING_TI_OutArgs

	4.3 Peak Detection
	4.3.1 Data Structures
	4.3.1.1 PEAK_DETECTION_TI_ErrorType
	4.3.1.2 PEAK_DETECTION_TI_InBufOrder
	4.3.1.3 PEAK_DETECTION_TI_OutBufOrder
	4.3.1.4 PEAK_DETECTION_TI_METHOD
	4.3.1.5 PEAK_DETECTION_TI_CFARCA_DIRECTION
	4.3.1.6 PEAK_DETECTION_TI_BufferDescriptor
	4.3.1.7 PEAK_DETECTION_TI_CfarCaDbCreateParams
	4.3.1.8 PEAK_DETECTION_TI_CfarCaDbParams
	4.3.1.9 PEAK_DETECTION_TI_AlgoCreateParams
	4.3.1.10 PEAK_DETECTION_TI_AlgoParams
	4.3.1.11 PEAK_DETECTION_TI_CreateParams
	4.3.1.12 PEAK_DETECTION_TI_CreateParams
	4.3.1.13 PEAK_DETECTION_TI_InArgs
	4.3.1.14 PEAK_DETECTION_TI_OutArgs

	Appendix A: Compatibility Information
	Appendix B: Remap Convert Table
	Directory Structure Overview
	Building process
	Usage
	How to use a converted map with the remap applet.
	How to verify a converted map
	Matlab utility to generate an example LUT for fish-eye lens transform

	Appendix C: Template Matching Normalization Function
	Introduction
	Source code
	Q-format

	Appendix D: Radar Processing Data Flow
	Introduction
	Details

