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Preface

Efficient	R	Programming	is	about	increasing	the	amount	of	work	you	can	do	with	R	in	a	given
amount	of	time.	It’s	about	both	computational	and	programmer	efficiency.	There	are	many
excellent	R	resources	about	topics	such	as	visualization	(e.g.,	Chang	2012),	data	science	(e.g.,
Grolemund	and	Wickham	2016),	and	package	development	(e.g.,	Wickham	2015).	There	are
even	more	resources	on	how	to	use	R	in	particular	domains,	including	Bayesian	statistics,
machine	learning,	and	geographic	information	systems.	However,	there	are	very	few	unified
resources	on	how	to	simply	make	R	work	effectively.	Hints,	tips,	and	decades	of	community
knowledge	on	the	subject	are	scattered	across	hundreds	of	internet	pages,	email	threads,	and
discussion	forums,	making	it	challenging	for	R	users	to	understand	how	to	write	efficient
code.

In	our	teaching	we	have	found	that	this	issue	applies	to	beginners	and	experienced	users	alike.
Whether	it’s	a	question	of	understanding	how	to	use	R’s	vector	objects	to	avoid	for	loops,
knowing	how	to	set	up	your	.Rprofile	and	.Renviron	files,	or	the	ability	to	harness	R’s
excellent	C++	interface	to	do	the	heavy	lifting,	the	concept	of	efficiency	is	key.	The	book	aims
to	distill	tips,	warnings,	and	tricks	of	the	trade	into	a	single,	cohesive	whole	that	provides	a
useful	resource	to	R	programmers	of	all	stripes	for	years	to	come.

The	content	of	the	book	reflects	the	questions	that	our	students	from	a	range	of	disciplines,
skill	levels,	and	industries	have	asked	over	the	years	to	make	their	R	work	faster.	How	to	set
up	my	system	optimally	for	R	programming	work?	How	can	one	apply	general	principles
from	computer	science	(such	as	do	not	repeat	yourself,	aka	DRY)	to	the	specifics	of	an	R
script?	How	can	R	code	be	incorporated	into	an	efficient	workflow,	including	project
inception,	collaboration,	and	write-up?	And	how	can	one	quickly	learn	how	to	use	new
packages	and	functions?

The	book	answers	these	questions	and	more	in	10	self-contained	chapters.	Each	chapter	starts
with	the	basics	and	gets	progressively	more	advanced,	so	there	is	something	for	everyone	in
each	one.	While	more	advanced	topics	such	as	parallel	programming	and	C++	may	not	be
immediately	relevant	to	R	beginners,	the	book	helps	to	navigate	R’s	infamously	steep	learning
curve	with	a	commitment	to	starting	slow	and	building	on	strong	foundations.	Thus	even
experienced	R	users	are	likely	to	find	previously	hidden	gems	of	advice.	While	teaching	this
material,	we	commonly	hear	“Why	didn’t	anyone	tell	me	that	before?”

Efficient	programming	should	not	be	seen	as	an	optional	extra,	and	the	importance	of
efficiency	grows	with	the	size	of	projects	and	datasets.	In	fact,	this	book	was	devised	while
teaching	a	course	called	R	for	Big	Data,	when	it	quickly	became	apparent	that	if	you	want	to
work	with	large	datasets,	your	code	must	work	efficiently.	Even	with	small	datasets,	efficient
code	that	is	both	fast	to	write	and	fast	to	run	is	a	vital	component	of	successful	R	projects.	We



found	that	the	concept	of	efficient	programming	is	important	in	all	branches	of	the	R
community.	Whether	you	are	a	sporadic	user	of	R	(e.g.,	for	its	unbeatable	range	of	statistical
packages),	looking	to	develop	a	package,	or	working	on	a	large	collaborative	project	in
which	efficiency	is	mission-critical,	code	efficiency	will	have	a	major	impact	on	your
productivity.

Ultimately,	efficiency	is	about	getting	more	output	for	less	work	input.	To	take	the	analogy	of
a	car,	would	you	rather	drive	1,000	km	on	a	single	tank	(or	a	single	charge	of	batteries)	or
refuel	a	heavy,	clunky,	ugly	car	every	50	km?	Or	would	you	prefer	to	choose	an	altogether
more	efficient	vehicle	and	cycle?	In	the	same	way,	efficient	R	code	is	better	than	inefficient	R
code	in	almost	every	way:	it	is	easier	to	read,	write,	run,	share,	and	maintain.	This	book
cannot	provide	all	the	answers	about	how	to	produce	such	code,	but	it	certainly	can	provide
ideas,	example	code,	and	tips	to	make	a	start	in	the	right	direction	of	travel.
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Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Bold
Indicates	the	names	of	R	packages.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined	by
context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.



Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
https://github.com/csgillespie/efficient.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered	with
this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to	contact	us
for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For	example,
writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not	require
permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books	does
require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example	code	does
not	require	permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,	author,
publisher,	and	ISBN.	For	example:	“Efficient	R	Programming	by	Colin	Gillespie	and	Robin
Lovelace	(O’Reilly).	Copyright	2017	Colin	Gillespie,	Robin	Lovelace,	978-1-491-95078-4.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/csgillespie/efficient
mailto:permissions@oreilly.com
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How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/efficient-r-programming.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/efficient-r-programming
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
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Chapter	1.	Introduction

This	chapter	describes	the	wide	range	of	people	this	book	was	written	for,	in	terms	of	R	and
programming	experience,	and	how	you	can	get	the	most	out	of	it.	Anyone	setting	out	to
improve	efficiency	should	have	an	understanding	of	precisely	what	they	mean	by	the	term,
and	this	is	discussed	with	reference	to	algorithmic	and	programmer	efficiency	in	“What	Is
Efficiency?”,	and	with	reference	to	R	in	particular	in	“What	Is	Efficient	R	Programming?”	on
the	same	page.	It	may	seem	obvious,	but	it’s	also	worth	thinking	about	why	anyone	would
bother	with	efficient	code	now	that	powerful	computers	are	cheap	and	accessible.	This	is
covered	in	“Why	Efficiency?”.

This	book	happily	is	not	completely	R-specific.	Non	R–programming	skills	that	are	needed
for	efficient	R	programming,	which	you	will	develop	during	the	course	of	following	this
book,	are	covered	in	“Cross-Transferable	Skills	for	Efficiency”.	Atypically	for	a	book	about
programming,	this	section	introduces	touch	typing	and	consistency,	cross-transferable	skills
that	should	improve	your	efficiency	beyond	programming.	However,	this	is	first	and
foremost	a	book	about	programming	and	it	wouldn’t	be	so	without	code	examples	in	every
chapter.	Despite	being	more	conceptual	and	discursive,	this	opening	chapter	is	no	exception:
its	penultimate	section	(“Benchmarking	and	Profiling”)	describes	two	essential	tools	in	the
efficient	R	programmer’s	toolbox	and	how	to	use	them	with	a	couple	of	illustrative	examples.
The	final	thing	to	say	at	the	outset	is	how	to	use	this	book	in	conjunction	with	the	book’s
associated	package	and	its	source	code.	This	is	covered	in	“Book	Resources”.



Prerequisites
As	emphasized	in	the	next	section,	it’s	useful	to	run	code	and	experiment	as	you	read.	This
section,	found	at	the	beginning	of	each	chapter,	ensures	that	you	have	the	necessary	packages
for	each	chapter.	The	prerequisites	for	this	chapter	are:

A	working	installation	of	R	on	your	computer	(see	“Installing	and	Updating	RStudio”).

Install	and	load	the	microbenchmark,	profvis,	and	ggplot2	packages	(see	“Installing	R
Packages”	for	tips	on	installing	packages	and	keeping	them	up-to-date).	You	can	ensure
that	these	packages	are	installed	by	loading	them	as	follows:

library("microbenchmark")

library("profvis")

library("ggplot2")

The	prerequisites	needed	to	run	the	code	contained	in	the	entire	book	are	covered	in	“Book
Resources”	at	the	end	of	this	chapter.



Who	This	Book	Is	for	and	How	to	Use	It
This	book	is	for	anyone	who	wants	to	make	their	R	code	faster	to	type,	faster	to	run,	and
more	scalable.	These	considerations	generally	come	after	learning	the	very	basics	of	R	for
data	analysis;	we	assume	you	are	either	accustomed	to	R	or	proficient	at	programming	in
other	languages,	although	this	book	could	still	be	of	use	for	beginners.	Thus	the	book	should
be	useful	to	people	with	a	range	of	skill	levels,	who	can	broadly	be	divided	into	three	groups:

For	programmers	with	little	experience	with	R
This	book	will	help	you	navigate	the	quirks	of	R	to	make	it	work	efficiently:	it	is	easy	to
write	slow	R	code	if	you	treat	it	as	if	it	were	another	language.

For	R	users	with	little	experience	in	programming
This	book	will	show	you	many	concepts	and	tricks	of	the	trade,	some	of	which	are
borrowed	from	computer	science,	that	will	make	your	work	more	time	effective.

For	R	beginners	with	little	experience	in	programming
This	book	can	steer	you	to	get	things	right	(or	at	least	less	wrong)	at	the	outset.	Bad
habits	are	easy	to	gain	but	hard	to	lose.	Reading	this	book	at	the	outset	of	your
programming	career	could	save	you	many	hours	in	the	future	searching	the	web	for
issues	covered	in	this	book.

Identifying	which	group	you	best	fit	into	will	help	you	get	the	most	out	of	it.	For	everyone,	we
recommend	reading	Efficient	R	Programming	while	you	have	an	active	R	project	on	the	go,
whether	it’s	a	collaborative	task	at	work	or	simply	a	personal	project	at	home.	Why?	The
scope	of	this	book	is	wider	than	most	programming	textbooks	(Chapter	4	covers	project
management,	for	example)	and	working	on	a	project	outside	the	confines	of	it	will	help	put
the	concepts,	recommendations,	and	code	into	practice.	Going	directly	from	words	into	action
in	this	way	will	help	ensure	that	the	information	is	consolidated:	learn	by	doing.

If	you’re	an	R	novice	and	fit	into	the	final	category,	we	recommend	that	this	active	R	project
not	be	an	important	deliverable,	but	another	R	resource.	Though	this	book	is	generic,	it	is
likely	that	your	usage	of	R	will	be	largely	domain-specific.	For	this	reason,	we	recommend
reading	it	alongside	teaching	material	in	your	chosen	area.	Furthermore,	we	advocate	that	all
readers	use	this	book	alongside	other	R	resources	such	as	the	numerous	vignettes,	tutorials,
and	online	articles	that	the	R	community	has	produced	(described	in	the	following	tip).	At	a
bare	minimum,	you	should	be	familiar	with	data	frames,	looping,	and	simple	plots,	which	you
will	learn	from	these	resources.



RESOURCES	FOR 	LEARNING	R

There	are	many	places	to	find	generic	and	domain-specific	R	teaching	materials.	For	complete	beginners,	there	are	a
number	of	introductory	resources,	such	as	the	excellent	Student’s	Guide	to	R	and	the	more	technical	IcebreakeR	tutorial.

R	also	comes	preinstalled	with	guidance,	revealed	by	entering	help.start()	into	the	R	console,	including	the	classic
official	guide	An	Introduction	to	R,	which	is	excellent,	but	daunting	to	many.	Entering	vignette()	will	display	a	list	of
guides	packaged	within	your	R	installation	(and	hence	do	not	require	an	internet	connection).	To	see	the	vignette	for	a
specific	topic,	just	enter	the	vignette’s	name	into	the	same	command	(e.g.,	vignette(package	=	"dplyr",
"introduction"))	to	see	the	introductory	vignette	for	the	dplyr	package.

Another	early	port	of	call	should	be	the	Comprehensive	R	Archive	Network	(CRAN)	website.	The	Contributed
Documentation	page	contains	a	list	of	contributed	resources,	mainly	tutorials,	on	subjects	ranging	from	map	making	to
econometrics.	The	new	bookdown	website	contains	a	list	of	complete	(or	near	complete)	books	that	cover	domains	such
as	R	for	Data	Science	and	Authoring	Books	with	R	Markdown.	We	recommend	keeping	your	eye	on	the	R-o-sphere	via
the	R-Bloggers	website,	popular	Twitter	feeds,	and	CRAN-affiliated	email	lists	for	up-to-date	materials	that	can	be	used
in	conjunction	with	this	book.

http://bit.ly/studentguider
http://bit.ly/icebreakR
https://cran.r-project.org/index.html
https://cran.r-project.org/other-docs.html
http://bit.ly/mapsinR
http://bit.ly/econometricR
https://bookdown.org/
http://r4ds.had.co.nz/
https://bookdown.org/yihui/bookdown/
http://r-bloggers.com/
https://www.r-project.org/mail.html


What	Is	Efficiency?
In	everyday	life,	efficiency	roughly	means	working	well.	An	efficient	vehicle	goes	far	without
guzzling	gas.	An	efficient	worker	gets	the	job	done	fast	without	stress.	And	an	efficient	light
shines	brightly	with	a	minimum	of	energy	consumption.	In	this	final	sense,	efficiency	(η)	has
a	formal	definition	as	the	ratio	of	work	done	(W,	light	output)	per	unit	effort	(Q,	energy
consumption	in	this	case):

How	does	this	translate	into	programming?	Efficient	code	can	be	defined	narrowly	or
broadly.	The	first,	more	narrow	definition	is	algorithmic	efficiency:	how	fast	the	computer
can	undertake	a	piece	of	work	given	a	particular	piece	of	code.	This	concept	dates	back	to	the
very	origins	of	computing,	as	illustrated	by	the	following	quote	by	Ada	Lovelace	(1842)	in
her	notes	on	the	work	of	Charles	Babbage:

In	almost	every	computation	a	great	variety	of	arrangements	for	the	succession	of	the
processes	is	possible,	and	various	considerations	must	influence	the	selections	amongst
them	for	the	purposes	of	a	calculating	engine.	One	essential	object	is	to	choose	that
arrangement	which	shall	tend	to	reduce	to	a	minimum	the	time	necessary	for	completing
the	calculation.

The	second,	broader	definition	of	efficient	computing	is	programmer	productivity.	This	is	the
amount	of	useful	work	a	person	(not	a	computer)	can	do	per	unit	time.	It	may	be	possible	to
rewrite	your	code	base	in	C	to	make	it	100	times	faster.	But	if	this	takes	100	human	hours,	it
may	not	be	worth	it.	Computers	can	chug	away	day	and	night.	People	cannot.	Human
productivity	is	the	subject	of	Chapter	4.

By	the	end	of	this	book,	you	should	know	how	to	write	code	that	is	efficient	from	both
algorithmic	and	productivity	perspectives.	Efficient	code	is	also	concise,	elegant,	and	easy	to
maintain,	which	is	vital	when	working	on	large	projects.	But	this	raises	the	wider	question:
what	is	different	about	efficient	R	code	compared	with	efficient	code	in	any	other	language?



What	Is	Efficient	R	Programming?
The	issue	flagged	by	Ada	of	having	a	great	variety	of	ways	to	solve	a	problem	is	key	to
understanding	how	efficient	R	programming	differs	from	efficient	programming	in	other
languages.	R	is	notorious	for	allowing	users	to	solve	problems	in	many	ways.	This	is	due	to
R’s	inherent	flexibility,	in	which	almost	“anything	can	be	modified	after	it	is	created”
(Wickham	2014).	R’s	inventors,	Ross	Ihaka	and	Robert	Gentleman,	designed	it	to	be	this	way:
a	cell	in	a	data	frame	can	be	selected	in	multiple	ways	in	base	R	alone	(three	of	which	are
illustrated	later	in	this	chapter,	in	“Benchmarking	Example”).	This	is	useful	because	it	allows
programmers	to	use	the	language	as	best	suits	their	needs,	but	it	can	be	confusing	for	people
looking	for	the	right	way	of	doing	things	and	can	cause	inefficiencies	if	you	don’t	fully
understand	the	language.

R’s	notoriety	for	being	able	to	solve	a	problem	in	multiple	ways	has	grown	with	the
proliferation	of	community-contributed	packages.	In	this	book,	we	focus	on	the	best	way	of
solving	problems	from	an	efficiency	perspective.	Often	it	is	instructive	to	discover	why	a
certain	way	of	doing	things	is	faster	than	other	ways.	However,	if	your	aim	is	simply	to	get
stuff	done,	you	only	need	to	know	what	is	likely	to	be	the	most	efficient	way.	In	this	way,	R’s
flexibility	can	be	inefficient:	although	it	may	be	easier	to	find	a	way	of	solving	any	given
problem	in	R	than	other	languages,	solving	the	problem	with	R	may	make	it	harder	to	find	the
best	way	to	solve	that	problem,	as	there	are	so	many.	This	book	tackles	this	issue	head	on	by
recommending	what	we	believe	are	the	most	efficient	approaches.	We	hope	you	trust	our
views,	based	on	years	of	using	and	teaching	R,	but	we	also	hope	that	you	challenge	them	at
times	and	test	them	with	benchmarks	if	you	suspect	there’s	a	better	way	of	doing	things
(thanks	to	R’s	flexibility	and	ability	to	interface	with	other	languages,	there	may	well	be).

It	is	well	known	that	R	code	can	lack	algorithmic	efficiency	compared	with	low-level
languages	for	certain	tasks,	especially	if	it	was	written	by	someone	who	doesn’t	fully
understand	the	language.	But	it	is	worth	highlighting	the	numerous	ways	that	R	encourages
and	guides	efficiency,	especially	programmer	efficiency:

R	is	not	compiled,	but	it	calls	compiled	code.	This	means	that	you	get	the	best	of	both
worlds:	thankfully,	R	removes	the	laborious	stage	of	compiling	your	code	before	being
able	to	run	it,	but	provides	impressive	speed	gains	by	calling	compiled	C,	FORTRAN,
and	other	language	behind	the	scenes.

R	is	a	functional	and	object-orientated	language	(Wickham	2014).	This	means	that	it	is
possible	to	write	complex	and	flexible	functions	in	R	that	get	a	huge	amount	of	work
done	with	a	single	line	of	code.

R	uses	RAM	for	memory.	This	may	seem	obvious,	but	it’s	worth	saying:	RAM	is	much
faster	than	any	hard	disk	system.	Compared	with	databases,	R	is	therefore	very	fast	at
common	data	manipulation,	processing,	and	modeling	operations.	RAM	is	now	cheaper
than	ever,	meaning	the	potential	downsides	of	this	feature	are	further	away	than	ever.



R	is	supported	by	excellent	integrated	development	environments	(IDEs).	The
environment	in	which	you	program	can	have	a	huge	impact	on	programmer	efficiency
as	it	can	provide	help	quickly,	allow	for	interactive	plotting,	and	allow	your	R	projects	to
be	tightly	integrated	with	other	aspects	of	your	project	such	as	file	management,	version
management,	and	interactive	visualization	systems,	as	discussed	in	“RStudio”.

R	has	a	strong	user	community.	This	boosts	efficiency	because	if	you	encounter	a
problem	that	has	not	yet	been	solved,	you	can	simply	ask	the	community.	If	it	is	a	new,
clearly	stated,	and	reproducible	question	asked	on	a	popular	forum	such	as	Stack
Overflow	or	an	appropriate	R	list,	you	are	likely	to	get	a	response	from	an	accomplished
R	programmer	within	minutes.	The	obvious	benefit	of	this	crowd-sourced	support
system	is	that	the	efficiency	benefits	of	the	answer	will,	from	that	moment	on,	be
available	to	everyone.

Efficient	R	programming	is	the	implementation	of	efficient	programming	practices	in	R.	All
languages	are	different,	so	efficient	R	code	does	not	look	like	efficient	code	in	another
language.	Many	packages	have	been	optimized	for	performance	so,	for	some	operations,
achieving	maximum	computational	efficiency	may	simply	be	a	case	of	selecting	the
appropriate	package	and	using	it	correctly.	There	are	many	ways	to	get	the	same	result	in	R,
and	some	are	very	slow.	Therefore,	not	writing	slow	code	should	be	prioritized	over	writing
fast	code.

Returning	to	the	analogy	of	the	two	cars	sketched	in	the	preface,	efficient	R	programming	for
some	use	cases	can	simply	mean	trading	in	your	old,	heavy,	gas-guzzling	SUV	function	for	a
lightweight	velomobile.	The	search	for	optimal	performance	often	has	diminishing	returns,
so	it	is	important	to	find	bottlenecks	in	your	code	to	prioritize	work	for	maximum	increases
in	computational	efficiency.	Linking	back	to	R’s	notoriety	as	a	flexible	language,	efficient	R
programming	can	be	interpreted	as	finding	a	solution	that	is	fast	enough	in	terms	of
computational	efficiency	but	as	fast	as	possible	in	terms	of	programmer	efficiency.	After	all,
you	and	your	coworkers	probably	have	better	and	more	valuable	things	to	do	outside	work,
so	it	is	important	that	you	get	the	job	done	quickly	and	take	time	off	for	other	interesting
pursuits.

https://stackoverflow.com/
https://www.r-project.org/mail.html


Why	Efficiency?
Computers	are	always	getting	more	powerful.	Does	this	not	reduce	the	need	for	efficient
computing?	The	answer	is	simple:	no.	In	an	age	of	Big	Data	and	stagnating	computer	clock
speeds	(see	Chapter	8),	computational	bottlenecks	are	more	likely	than	ever	before	to	hamper
your	work.	An	efficient	programmer	can	“solve	more	complex	tasks,	ask	more	ambitious
questions,	and	include	more	sophisticated	analyses	in	their	research”	(Visser	et	al.	2015).

A	concrete	example	illustrates	the	importance	of	efficiency	in	mission-critical	situations.
Robin	was	working	on	a	tight	contract	for	the	UK’s	Department	for	Transport	to	build	the
Propensity	to	Cycle	Tool,	an	online	application	that	had	to	be	ready	for	national	deployment
in	less	than	four	months.	For	this	work,	he	developed	the	function	line2route()	in	the
stplanr	package	to	generate	routes	via	the	(CycleStreets)	API.	Hundreds	of	thousands	of
routes	were	needed,	but,	to	his	dismay,	code	slowed	to	a	standstill	after	only	a	few	thousand
routes.	This	endangered	the	contract.	After	eliminating	other	issues	and	via	code	profiling
(covered	in	“Code	Profiling”),	it	was	found	that	the	slowdown	was	due	to	a	bug	in
line2route():	it	suffered	from	the	vector	growing	problem,	discussed	in	“Memory
Allocation”.

The	solution	was	simple.	A	single	commit	made	line2route()	more	than	ten	times	faster	and
substantially	shorter.	This	potentially	saved	the	project	from	failure.	The	moral	of	this	story	is
that	efficient	programming	is	not	merely	a	desirable	skill	—	it	can	be	essential.

There	are	many	concepts	and	skills	that	are	language-agnostic.	Much	of	the	knowledge
imparted	in	this	book	should	be	relevant	to	programming	in	other	languages	(and	other
technical	activities	beyond	programming).	There	are	strong	reasons	for	focusing	on
efficiency	in	one	language,	however.	In	R,	simply	using	replacement	functions	from	a
different	package	can	greatly	improve	efficiency,	as	discussed	in	relation	to	reading	text	files
in	Chapter	5.	This	level	of	detail,	with	reproducible	examples,	would	not	be	possible	in	a
general-purpose	efficient	programming	book.	Skills	for	efficient	working,	which	apply
beyond	R	programming,	are	covered	in	the	next	section.

http://www.cyclestreets.net/
http://bit.ly/refactorline2route


Cross-Transferable	Skills	for	Efficiency
The	meaning	of	efficient	R	code,	as	opposed	to	generic	efficient	code,	should	be	clear	from
reading	the	preceding	two	sections.	However,	that	does	not	mean	that	the	skills	and	concepts
covered	in	this	book	are	not	transferable	to	other	languages	and	non-programming	tasks.
Likewise,	working	on	these	cross-transferable	skills	will	improve	your	R	programming	(as
well	as	other	aspects	of	your	working	life).	Two	of	these	skills	are	especially	important:	touch
typing	and	use	of	a	consistent	style.



Touch	Typing
The	other	side	of	the	efficiency	coin	is	programmer	efficiency.	There	are	many	things	that
will	help	increase	the	productivity	of	you	and	your	collaborators,	not	least	following	the
advice	of	Philipp	Janert	to	“think	more,	work	less”	(Janert	2010).	The	evidence	suggests	that
good	diet,	physical	activity,	plenty	of	sleep,	and	a	healthy	work-life	balance	can	all	boost	your
speed	and	effectiveness	at	work	(Jensen	2011;	Pereira	et	al.	2015;	Grant,	Spurgeon,	and
Wallace	2013).

While	we	recommend	that	the	reader	reflect	on	this	evidence	and	their	own	well-being,	this	is
not	a	self-help	book.	It	is	a	book	about	programming.	However,	there	is	one
nonprogramming	skill	that	can	have	a	huge	impact	on	productivity:	touch	typing.	This	skill
can	be	relatively	painless	to	learn,	and	can	have	a	huge	impact	on	your	ability	to	write,
modify,	and	test	R	code	quickly.	Learning	to	touch	type	properly	will	pay	off	in	small
increments	throughout	the	rest	of	your	programming	life	(of	course,	the	benefits	are	not
constrained	to	R	programming).

The	key	difference	between	a	touch	typist	and	someone	who	constantly	looks	down	at	the
keyboard,	or	who	uses	only	two	or	three	fingers	for	typing,	is	hand	placement.	Touch	typing
involves	positioning	your	hands	on	the	keyboard	with	each	finger	of	both	hands	touching	or
hovering	over	a	specific	letter	(Figure	1-1).	This	takes	time	and	some	discipline	to	learn.
Fortunately	there	are	many	resources	that	will	help	you	get	in	the	habit	early,	including	the
open	source	software	projects	Klavaro	and	TypeFaster.

https://sourceforge.net/projects/klavaro/
https://sourceforge.net/projects/typefaster/


Figure	1-1.	The	starting	position	for	touch	typing,	with	the	fingers	over	the	home	keys.	Source:	Wikipedia	under	the
Creative	Commons	license.

https://commons.wikimedia.org/wiki/File:QWERTY-home-keys-position.svg


Consistent	Style	and	Code	Conventions
Getting	into	the	habit	of	clear	and	consistent	style	when	writing	anything,	be	it	code	or	poetry,
will	have	benefits	in	many	other	projects,	programming	or	non-programming.	As	outlined	in
“Coding	Style”,	style	is	to	some	extent	a	personal	preference.	However,	it	is	worth	noting	the
conventions	we	use	at	the	outset	of	this	book,	to	maximize	its	readability.	Throughout	this
book	we	use	a	consistent	set	of	conventions	to	refer	to	code.

Package	names	are	in	bold,	e.g.,	dplyr.

Functions	are	in	a	code	font,	followed	by	parentheses,	like	plot()	or	median().

Other	R	objects,	such	as	data	or	function	arguments,	are	in	a	code	font	without
parentheses,	like	x	and	name.

Occasionally,	we’ll	highlight	the	package	of	the	function	using	two	colons,	like
microbenchmark::microbenchmark().	Note	that	this	notation	can	be	efficient	if	you	only
need	to	use	a	package’s	function	once,	as	it	avoids	attaching	the	package.

The	concepts	of	benchmarking	and	profiling	are	not	R-specific.	However,	they	are	done	in	a
particular	way	in	R,	as	outlined	in	the	next	section.



Benchmarking	and	Profiling
Benchmarking	and	profiling	are	key	to	efficient	programming,	especially	in	R.
Benchmarking	is	the	process	of	testing	the	performance	of	specific	operations	repeatedly.
Profiling	involves	running	many	lines	of	code	to	find	bottlenecks.	Both	are	vital	for
understanding	efficiency,	and	we	use	them	throughout	the	book.	Their	centrality	to	efficient
programming	practice	means	they	must	be	covered	in	this	introductory	chapter,	despite	being
seen	by	many	as	an	intermediate	or	advanced	R	programming	topic.

In	some	ways,	benchmarks	can	be	seen	as	the	building	blocks	of	profiles.	Profiling	can	be
understood	as	automatically	running	many	benchmarks	for	every	line	in	a	script	and
comparing	the	results	line	by	line.	Because	benchmarks	are	smaller,	easier,	and	more
modular,	we	cover	them	first.



Benchmarking
Modifying	elements	from	one	benchmark	to	the	next	and	recording	the	results	after	the
modification	enables	us	to	determine	the	fastest	piece	of	code.	Benchmarking	is	important	in
the	efficient	programmer’s	toolkit:	you	may	think	that	your	code	is	faster	than	mine,	but
benchmarking	allows	you	to	prove	it.	The	easiest	way	to	benchmark	a	function	is	to	use
system.time().	However,	it	is	important	to	remember	that	we	are	taking	a	sample.	We
wouldn’t	expect	a	single	person	in	London	to	be	representative	of	the	entire	UK	population;
similarly,	a	single	benchmark	provides	us	with	a	single	observation	on	our	function’s
behavior.	Therefore,	we’ll	need	to	repeat	the	timing	many	times	with	a	loop.

An	alternative	way	of	benchmarking	is	via	the	flexible	microbenchmark	package.	This	allows
us	to	easily	run	each	function	multiple	times	(by	default,	100)	in	order	to	detect	microsecond
differences	in	code	performance.	We	then	get	a	convenient	summary	of	the	results:	the
minimum/maximum	and	lower/upper	quartiles,	and	the	mean/median	times.	We	suggest
focusing	on	the	median	time	to	get	a	feel	for	the	standard	time	and	the	quartiles	to	understand
the	variability.



Benchmarking	Example
A	good	example	is	testing	different	methods	to	look	up	a	single	value	in	a	data	frame.	Note
that	each	argument	in	the	following	benchmark	is	a	term	to	be	evaluated	(for	multi-line
benchmarks,	the	term	to	be	evaluated	can	be	surrounded	by	curly	brackets,	{}).

library("microbenchmark")

df	=	data.frame(v	=	1:4,	name	=	letters[1:4])

microbenchmark(df[3,	2],	df[3,	"name"],	df$name[3])

#	Unit:	microseconds

#										expr					min				lq		mean	median				uq			max	neval	cld

#						df[3,	2]			17.99	18.96	20.16		19.38	19.77	35.14			100			b

#	df[3,	"name"]			17.97	19.13	21.45		19.64	20.15	74.00			100			b

#				df$name[3]			12.48	13.81	15.81		14.48	15.14	67.24			100			a

The	results	summarize	how	long	each	query	took:	the	minimum	(min);	lower	and	upper
quartiles	(lq	and	uq,	respectively);	and	the	mean,	median,	and	maximum	(max)	for	each	of	the
number	of	evaluations	(neval,	with	the	default	value	of	100	used	in	this	case).	cld	reports	the
relative	rank	of	each	row	in	the	form	of	compact	letter	display:	in	this	case,	df$name[3]
performs	best,	with	a	rank	of	a	and	a	mean	time	of	around	25%	lower	than	the	other	two
functions.

When	using	microbenchmark(),	you	should	pay	careful	attention	to	the	units.	In	the	previous
example,	each	function	call	takes	approximately	20	microseconds,	implying	around	50,000
function	calls	could	be	done	in	a	second.	When	comparing	quick	functions,	the	standard	units
are:

milliseconds	(ms)
One	thousand	functions	takes	a	second;

microseconds	(µs)
one	million	function	calls	takes	a	second;

nanoseconds	(ns)
one	billion	calls	takes	a	second.

We	can	set	the	units	we	want	to	use	with	the	unit	argument	(e.g.,	the	results	are	reported	in
seconds	if	we	set	unit	=	"s").

When	thinking	about	computational	efficiency,	there	are	(at	least)	two	in	measures:

Relative	time
df$name[3]	is	25%	faster	than	df[3,	"name"];

Absolute	time
df$name[3]	is	five	microseconds	faster	than	df[3,	"name"].

Both	measures	are	useful,	but	it	is	important	not	to	forget	the	underlying	time	scale.	It	makes



little	sense	to	optimize	a	function	that	takes	microseconds	if	there	are	operations	that	take
seconds	to	complete	in	your	code.



Profiling
Benchmarking	generally	tests	the	execution	time	of	one	function	against	another.	Profiling,
on	the	other	hand,	is	about	testing	large	chunks	of	code.

It	is	difficult	to	overemphasize	the	importance	of	profiling	for	efficient	R	programming.
Without	a	profile	of	what	took	longest,	you	will	have	only	a	vague	idea	of	why	your	code	is
taking	so	long	to	run.	The	following	example	(which	generates	Figure	1-2,	an	image	of	ice-
sheet	retreat	from	1985	to	2015)	shows	how	profiling	can	be	used	to	identify	bottlenecks	in
your	R	scripts:

library("profvis")

profvis(expr	=	{

		#	Stage	1:	load	packages

		#	library("rnoaa")	#	not	necessary	as	data	pre-saved

		library("ggplot2")

		#	Stage	2:	load	and	process	data

		out	=	readRDS("extdata/out-ice.Rds")

		df	=	dplyr::rbind_all(out,	id	=	"Year")

		#	Stage	3:	visualize	output

		ggplot(df,	aes(long,	lat,	group	=	paste(group,	Year)))	+

				geom_path(aes(colour	=	Year))

		ggsave("figures/icesheet-test.png")

},	interval	=	0.01,	prof_output	=	"ice-prof")

The	results	of	this	profiling	exercise	are	displayed	in	Figure	1-3.

For	more	information	about	profiling	and	benchmarking,	please	refer	to	the	Optimising	code
chapter	in	Advanced	R	by	Hadley	Wickham	(CRC	Press),	and	“Code	Profiling”	in	this	book.
We	recommend	reading	these	additional	resources	while	performing	benchmarks	and
profiles	on	your	own	code,	perhaps	based	on	the	following	exercises.

http://adv-r.had.co.nz/Profiling.html


Figure	1-2.	Visualization	of	North	Pole	ice-sheet	decline,	generated	using	the	code	profiled	using	the	profvis	package

Figure	1-3.	Profiling	results	of	loading	and	plotting	NASA	data	on	ice-sheet	retreat

Exercises
Consider	the	following	benchmark	to	evaluate	different	functions	for	calculating	the
cumulative	sum	of	all	the	whole	numbers	from	1	to	100:



x	=	1:100	#	initiate	vector	to	cumulatively	sum

#	Method	1:	with	a	for	loop	(10	lines)

cs_for	=	function(x){

		for(i	in	x){

				if(i	==	1){

						xc	=	x[i]

				}	else	{

						xc	=	c(xc,	sum(x[1:i]))

				}

		}

		xc

}

#	Method	2:	with	apply	(3	lines)

cs_apply	=	function(x){

		sapply(x,	function(x)	sum(1:x))

}

#	Method	3:	cumsum	(1	line,	not	shown)

microbenchmark(cs_for(x),	cs_apply(x),	cumsum(x))

#>	Unit:	nanoseconds

#>									expr				min					lq			mean	median					uq				max	neval

#>				cs_for(x)	248145	316292	386893	370505	436382	697258			100

#>		cs_apply(x)	157610	198157	255241	233324	306013	478394			100

#>				cumsum(x)				561			1131			1796			1422			2075		18284			100

1.	 Which	method	is	fastest	and	how	many	times	faster	is	it?

2.	 Run	the	same	benchmark,	but	with	the	results	reported	in	seconds,	on	a	vector	of	all
the	whole	numbers	from	1	to	50,000.	Hint:	also	use	the	argument	neval	=	1	so	that
each	command	is	only	run	once	to	ensure	that	the	results	complete	(even	with	a	single
evaluation,	the	benchmark	may	take	up	to	or	more	than	a	minute	to	complete,
depending	on	your	system).	Does	the	relative	time	difference	increase	or	decrease?
By	how	much?

3.	 Test	how	long	the	different	methods	for	subsetting	the	data	frame	df,	presented	in
“Benchmarking	Example”,	take	on	your	computer.	Is	it	faster	or	slower	at	subsetting
than	the	computer	on	which	this	book	was	compiled?

4.	 Use	system.time()	and	a	for()	loop	to	test	how	long	it	takes	to	perform	the
subsetting	operation	50,000	times.	Before	testing	this,	do	you	think	it	will	be	more	or
less	than	one	second	for	each	subsetting	method?	Hint:	the	test	for	the	first	method	is
shown	in	the	following	code:

#	Test	how	long	it	takes	to	subset	the	data	frame	50,000	times:

system.time(

		for(i	in	1:50000)	{

				df[3,	2]

		}

)

5.	 Bonus	exercise:	try	profiling	a	section	of	code	you	have	written	using	profvis.
Where	are	the	bottlenecks?	Were	they	where	you	expected?



Book	Resources



R	Package
This	book	has	an	associated	R	package	that	contains	datasets	and	functions	referenced	in	the
book.	The	package	is	hosted	on	GitHub	and	can	be	installed	using	the	devtools	package:

devtools::install_github("csgillespie/efficient")

The	package	also	contains	solutions	(as	vignettes)	to	the	exercises	found	in	this	book.	They
can	be	browsed	with	the	following	command:

browseVignettes(package	=	"efficient")

The	following	command	will	install	all	packages	used	to	generate	this	book:

devtools::install_github("csgillespie/efficientR")

https://github.com/csgillespie/efficient


Online	Version
We	are	grateful	to	O’Reilly	for	allowing	us	to	develop	this	book	online.	The	online	version
constitutes	a	substantial	additional	resource	to	supplement	this	book,	and	will	continue	to
evolve	in	between	reprints	of	the	physical	book.	The	book’s	code	also	represents	a	substantial
learning	opportunity	in	itself	as	it	was	written	using	R	Markdown	and	the	bookdown	package,
allowing	us	to	run	the	R	code	each	time	we	compile	the	book	to	ensure	that	it	works,	and
allowing	others	to	contribute	to	its	longevity.	To	edit	this	chapter,	for	example,	simply
navigate	to	https://github.com/csgillespie/efficientR/edit/master/01-introduction.Rmd	while
logged	into	a	GitHub	account.	The	full	source	of	the	book	is	available	at
https://github.com/csgillespie/efficientR	where	we	welcome	comments/questions	on	the	Issue
Tracker	and	Pull	Requests.

https://csgillespie.github.io/efficientR/
https://github.com/csgillespie/efficientR/edit/master/01-introduction.Rmd
http://bit.ly/newgithub
https://github.com/csgillespie/efficientR
https://github.com/csgillespie/efficientR/issues
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Chapter	2.	Efficient	Setup

An	efficient	computer	setup	is	analogous	to	a	well-tuned	vehicle.	Its	components	work	in
harmony.	It	is	well	serviced.	It’s	fast!

This	chapter	describes	the	setup	that	will	enable	a	productive	workflow.	It	explores	how	the
operating	system,	R	version,	startup	files,	and	IDE	can	make	your	R	work	faster.
Understanding	and	at	times	changing	these	setup	options	can	have	many	additional	benefits.
That’s	why	we	cover	them	at	this	early	stage	(hardware	is	covered	in	Chapter	3).	By	the	end	of
this	chapter,	you	should	understand	how	to	set	up	your	computer	and	R	installation	for
optimal	efficiency.	It	covers	the	following	topics:

R	and	the	operating	systems
System	monitoring	on	Linux,	Mac,	and	Windows

R	version
How	to	keep	your	base	R	installation	and	packages	up-to-date

R	start-up
How	and	why	to	adjust	your	.Rprofile	and	.Renviron	files

RStudio
An	IDE	to	boost	your	programming	productivity

BLAS	and	alternative	R	interpreters
Looks	at	ways	to	make	R	faster

Efficient	programming	is	more	than	a	series	of	tips:	there	is	no	substitute	for	in-depth
understanding.	However,	to	help	remember	the	key	messages	buried	among	the	details,	each
chapter	from	now	on	contains	a	Top	Five	Tips	section	after	the	pre-requisites.



Prerequisites
Only	one	package	needs	to	be	installed	to	run	the	code	in	this	chapter:

library("benchmarkme")



Top	Five	Tips	for	an	Efficient	R	Setup
1.	 Use	system	monitoring	to	identify	bottlenecks	in	your	hardware/code.

2.	 Keep	your	R	installation	and	packages	up-to-date.

3.	 Make	use	of	RStudio’s	powerful	autocompletion	capabilities	and	shortcuts.

4.	 Store	API	keys	in	the	.Renviron	file.

5.	 Consider	changing	your	BLAS	library.



Operating	System
R	supports	all	three	major	operating	system	(OS)	types:	Linux,	Mac,	and	Windows.1	R	is
platform-independent,	although	there	are	some	OS-specific	quirks,	such	as	in	relation	to	file-
path	notation	(see	“The	Location	of	Startup	Files”).

Basic	OS-specific	information	can	be	queried	from	within	R	using	Sys.info():

Sys.info()

#>	sysname					release																machine						user

#>	"Linux"					"4.2.0-35-generic"					"x86_64"					"robin"

Translated	into	English,	the	preceding	output	means	that	R	is	running	on	a	64-bit	(x86_64)
Linux	distribution	(4.2.0-35-generic	is	the	Linux	version)	and	that	the	current	user	is	robin.
Four	other	pieces	of	information	(not	shown)	are	also	produced	by	the	command,	the
meaning	of	which	is	well	documented	in	a	help	file	revealed	by	entering	?Sys.info	in	the	R
console.

TIP
The	assertive.reflection	package	can	be	used	to	report	additional	information	about	your	computer’s	operating
system	and	R	setup	with	functions	for	asserting	operating	system	and	other	system	characteristics.	The	assert_*()
functions	work	by	testing	the	truth	of	the	statement	and	erroring	if	the	statement	is	untrue.	On	a	Linux	system
assert_is_linux()	will	run	silently,	whereas	assert_is_windows()	will	cause	an	error.	The	package	can	also
test	for	the	IDE	you	are	using	(e.g.,	assert_is_rstudio()),	the	capabilities	of	R
(assert_r_has_libcurl_capability(),	etc.),	and	what	OS	tools	are	available	(e.g.,
assert_r_can_compile_code()).	These	functions	can	be	useful	for	running	code	that	is	designed	only	to	run	on
one	type	of	setup.



Operating	System	and	Resource	Monitoring
Minor	differences	aside,	R’s	computational	efficiency	is	broadly	the	same	across	different
operating	systems.2	Beyond	the	32-bit	versus	64-bit	issue	(covered	in	Chapter	3)	and	process
forking	(covered	in	Chapter	7)	another	OS-related	issue	to	consider	is	external	dependencies:
programs	that	R	packages	depend	on.	Sometimes	external	package	dependencies	must	be
installed	manually	(i.e.,	not	using	install.packages()).	This	is	especially	common	on	Unix-
based	systems	(Linux	and	Mac).	On	Debian-based	operating	systems	such	as	Ubuntu,	many	R
packages	can	be	installed	at	the	OS	level	to	ensure	that	external	dependencies	are	also
installed	(see	“Installing	R	Packages	with	Dependencies”).

Resource	monitoring	is	the	process	of	checking	the	status	of	key	OS	variables.	For
computationally	intensive	work,	it	is	sensible	to	monitor	system	resources	in	this	way.
Resource	monitoring	can	help	identify	computational	bottlenecks.	Alongside	R	profiling
functions	such	as	profvis	(see	“Code	Profiling”),	system	monitoring	provides	a	useful	tool
for	understanding	how	R	is	performing	in	relation	to	variables	reporting	the	OS	state,	such	as
how	much	RAM	is	in	use,	which	relates	to	the	wider	question	of	whether	more	is	needed
(covered	in	Chapter	3).

CPU	resources	allocated	over	time	is	another	common	OS	variable	that	is	worth	monitoring.
A	basic	use	case	is	to	check	whether	your	code	is	running	in	parallel	(see	Figure	2-1),	and
whether	there	is	spare	CPU	capacity	on	the	OS	that	could	be	harnessed	by	parallel	code.

Figure	2-1.	Output	from	a	system	monitor	(gnome-system-monitor	running	on	Ubuntu)	showing	the	resources	consumed	by
running	the	code	presented	in	the	second	of	the	Exercises	at	the	end	of	this	section.	The	first	increases	RAM	use,	the	second

is	single-threaded,	and	the	third	is	multithreaded.

System	monitoring	is	a	complex	topic	that	spills	over	into	system	administration	and	server
management.	Fortunately,	there	are	many	tools	designed	to	ease	monitoring	on	all	major
operating	systems.

On	Linux,	the	shell	command	top	displays	key	resource	use	figures	for	most
distributions.	htop	and	Gnome’s	System	Monitor	(gnome-system-monitor;	see	Figure	2-
1)	are	more	refined	alternatives,	which	use	command-line	and	graphical	user	interfaces,



respectively.	A	number	of	options,	such	as	nethogs,	monitor	internet	usage.

On	Mac,	the	Activity	Monitor	provides	similar	functionality.	This	can	be	initiated	from
the	Utilities	folder	in	Launchpad.

On	Windows,	the	Task	Manager	provides	key	information	on	RAM	and	CPU	use	by
process.	This	can	be	started	in	modern	Windows	versions	by	pressing	Ctrl-Alt-Del	or	by
clicking	the	taskbar	and	Start	Task	Manager.

Exercises
1.	 What	is	the	exact	version	of	your	computer ’s	operating	system?

2.	 Start	an	activity	monitor,	then	execute	the	following	code	chunk.	In	it,	lapply()	(or
its	parallel	version,	mclapply())	is	used	to	apply	the	function	median()	over	every
column	in	the	data	frame	object	X	(see	“The	Apply	Family”	for	more	on	the	apply
family	of	functions).	The	reason	this	works	is	that	a	data	frame	is	really	a	list	of
vectors,	with	each	vector	forming	a	column.	How	do	the	system	output	log	results	on
your	system	compare	to	those	presented	in	Figure	2-1?

#	Note:	uses	2+	GB	RAM	and	takes	several	seconds	depending	on	hardware

#	1:	Create	large	dataset

X	=	as.data.frame(matrix(rnorm(1e8),	nrow	=	1e7))

#	2:	Find	the	median	of	each	column	using	a	single	core

r1	=	lapply(X,	median)

#	3:	Find	the	median	of	each	column	using	many	cores

r2	=	parallel::mclapply(X,	median)

NOTE
mclapply	only	works	in	parallel	on	Mac	and	Linux.	In	Chapter	7	you’ll	learn	about	the	equivalent
function	parLapply()	that	works	in	parallel	on	Windows.

3.	 What	do	you	notice	regarding	CPU	usage,	RAM,	and	system	time	during	and	after
each	of	the	three	operations?

4.	 Bonus	question:	how	would	the	results	change	depending	on	operating	system?



R	Version
It	is	important	to	be	aware	that	R	is	an	evolving	software	project,	whose	behavior	changes
over	time.	In	general,	base	R	is	very	conservative	about	making	changes	that	break	backwards
compatibility.	However,	packages	occasionally	change	substantially	from	one	release	to	the
next;	typically	it	depends	on	the	age	of	the	package.	For	most	use	cases,	we	recommend
always	using	the	most	up-to-date	version	of	R	and	packages	so	you	have	the	latest	code.	In
some	circumstances	(e.g.,	on	a	production	server	or	working	in	a	team),	you	may
alternatively	want	to	use	specific	versions	that	have	been	tested	to	ensure	stability.	Keeping
packages	up-to-date	is	desirable	because	new	code	tends	to	be	more	efficient,	intuitive,	robust,
and	feature-rich.	This	section	explains	how.

TIP
Previous	R	versions	can	be	installed	from	CRAN’s	archive	or	previous	R	releases.	The	binary	versions	for	all
OSes	can	be	found	at	cran.r-project.org/bin/.	To	download	binary	versions	for	Ubuntu	Wily,	for	example,	see
https://cran.r-project.org/bin/linux/ubuntu/wily/.	To	pin	specific	versions	of	R	packages	you	can	use	the	packrat
package.	For	more	on	pinning	R	versions	and	R	packages,	see	the	following	articles	on	RStudio’s	website:	Using-
Different-Versions-of-R	and	rstudio.github.io/packrat/.

https://cran.r-project.org/bin/
https://cran.r-project.org/bin/linux/ubuntu/wily/
http://bit.ly/usingdiffR
https://rstudio.github.io/packrat/


Installing	R
The	method	of	installing	R	varies	for	Windows,	Linux,	and	Mac.

On	Windows,	a	single	.exe	file	(hosted	at	cran.r-project.org/bin/windows/base/)	will	install
the	base	R	package.

On	a	Mac,	the	latest	version	should	be	installed	by	downloading	the	.pkg	files	hosted	at
https://cran.r-project.org/bin/macosx/.

On	Linux,	the	installation	method	depends	on	the	distribution	of	Linux	installed,	though	the
principles	are	the	same.	We’ll	cover	how	to	install	R	on	Debian-based	systems,	with	links	at
the	end	for	details	on	other	Linux	distributions.	The	first	stage	is	to	add	the	CRAN	repository
to	ensure	that	the	latest	version	is	installed.	If	you	are	running	Ubuntu	16.04,	for	example,
append	the	following	line	to	the	file	/etc/apt/sources.list:

deb	http://cran.rstudio.com/bin/linux/ubuntu	xenial/

http://cran.rstudio.com	is	the	mirror	(which	can	be	replaced	by	any	of	those	listed	at
https://cran.r-project.org/mirrors.html)	and	xenial	is	the	release.	See	the	Debian	and	Ubuntu
installation	pages	on	CRAN	for	further	details.

Once	the	appropriate	repository	has	been	added	and	the	system	updated	(e.g.,	with	sudo	apt-
get	update),	r-base	and	other	r-	packages	can	be	installed	using	the	apt	system.	The
following	two	commands,	for	example,	would	install	the	base	R	package	(a	barebones	install)
and	the	package	RCurl,	which	has	an	external	dependency:

sudo	apt-get	install	r-cran-base	#	install	base	R

sudo	apt-get	install	r-cran-rcurl	#	install	the	rcurl	package

apt-cache	search	"^r-.*"	|	sort	will	display	all	R	packages	that	can	be	installed	from	apt
in	Debian-based	systems.	In	Fedora-based	systems,	the	equivalent	command	is	yum	list	R-
\*.

Typical	output	from	the	second	command	is	illustrated	in	the	following	example:

The	following	extra	packages	will	be	installed:

		libcurl3-nss

The	following	NEW	packages	will	be	installed

		libcurl3-nss	r-cran-rcurl

0	to	upgrade,	2	to	newly	install,	0	to	remove	and	16	not	to	upgrade.

Need	to	get	699	kB	of	archives.

After	this	operation,	2,132	kB	of	additional	disk	space	will	be	used.

Do	you	want	to	continue?	[Y/n]

Further	details	are	provided	at	https://cran.r-project.org/bin/linux/	for	Debian,	Redhat,	and
Suse	OSs.	R	also	works	on	FreeBSD	and	other	Unix-based	systems.3

Once	R	is	installed,	it	should	be	kept	up-to-date.

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx/
https://cran.r-project.org/bin/linux/ubuntu/
https://cran.r-project.org/mirrors.html
https://cran.r-project.org/bin/linux/debian/
https://cran.r-project.org/bin/linux/ubuntu/
https://cran.r-project.org/bin/linux/


Updating	R
R	is	a	mature	and	stable	language,	so	well-written	code	in	base	R	should	work	on	most
versions.	However,	it	is	important	to	keep	your	R	version	relatively	up-to-date	for	the
following	reasons:

Bug	fixes	are	introduced	in	each	version,	making	errors	less	likely.

Performance	enhancements	are	made	from	one	version	to	the	next,	meaning	your	code
may	run	faster	in	later	versions.

Many	R	packages	only	work	on	recent	versions	on	R.

Release	notes	with	details	on	each	of	these	issues	are	hosted	at	https://cran.r-
project.org/src/base/NEWS.	R	release	versions	have	three	components	corresponding	to
major.minor.patch	changes.	Generally,	two	or	three	patches	are	released	before	the	next
minor	increment,	each	patch	is	released	roughly	every	three	months.	R	3.2,	for	example,	has
consisted	of	three	versions:	3.2.0,	3.2.1,	and	3.2.2.

On	Ubuntu-based	systems,	new	versions	of	R	should	be	automatically	detected	through
the	software	management	system,	and	can	be	installed	with	apt-get	upgrade.

On	Mac,	the	latest	version	should	be	installed	by	the	user	from	the	.pkg	files	mentioned
previously.

On	Windows,	the	installr	package	makes	updating	easy:

#	check	and	install	the	latest	R	version

installr::updateR()

For	information	about	changes	to	expect	in	the	next	version,	you	can	subscribe	to	R’s	NEWS
RSS	feed.	It’s	a	good	way	of	keeping	up-to-date.

https://cran.r-project.org/src/base/NEWS
http://bit.ly/RnewsRSS


Installing	R	Packages
Large	projects	may	need	several	packages	to	be	installed.	In	this	case,	the	required	packages
can	be	installed	at	once.	Using	the	example	of	packages	for	handling	spatial	data,	this	can	be
done	quickly	and	concisely	with	the	following	code:

pkgs	=	c("raster",	"leaflet",	"rgeos")	#	package	names

install.packages(pkgs)

In	the	previous	code,	all	the	required	packages	are	installed	with	two	—	not	three	—	lines,
which	reduces	typing.	Note	that	we	can	now	reuse	the	pkgs	object	to	load	them	all:

inst	=	lapply(pkgs,	library,	character.only	=	TRUE)	#	load	them

In	the	previous	code,	library(pkg[i])	is	executed	for	every	package	stored	in	the	text	string
vector.	We	use	library()	here	instead	of	require()	because	the	former	produces	an	error	if
the	package	is	not	available.

Loading	all	packages	at	the	beginning	of	a	script	is	good	practice	as	it	ensures	that	all
dependencies	have	been	installed	before	time	is	spent	executing	code.	Storing	package	names
in	a	character	vector	object	such	as	pkgs	is	also	useful	because	it	allows	us	to	refer	back	to
them	again	and	again.



Installing	R	Packages	with	Dependencies
Some	packages	have	external	dependencies	(i.e.,	they	call	libraries	outside	R).	On	Unix-like
systems,	these	are	best	installed	onto	the	operating	system,	bypassing	install.packages.	This
will	ensure	that	the	necessary	dependencies	are	installed	and	set	up	correctly	alongside	the	R
package.	On	Debian-based	distributions	such	as	Ubuntu,	for	example,	packages	with	names
starting	with	r-cran-	can	be	searched	for	and	installed	as	follows	(see	https://cran.r-
project.org/bin/linux/ubuntu/	for	a	list	of	these):

apt-cache	search	r-cran-	#	search	for	available	cran	Debian	packages

sudo	apt-get-install	r-cran-rgdal	#	install	the	rgdal	package	(with	dependencies)

On	Windows,	the	installr	package	helps	manage	and	update	R	packages	with	system-level
dependencies.	For	example,	the	Rtools	package	for	compiling	C/C++	code	on	Windows	can
be	installed	with	the	following	command:

installr::install.rtools()

https://cran.r-project.org/bin/linux/ubuntu/


Updating	R	Packages
An	efficient	R	setup	will	contain	up-to-date	packages.	This	can	be	done	for	all	packages	by
using:

update.packages()

The	default	for	this	function	is	for	the	ask	argument	to	be	set	to	TRUE,	giving	control	over
what	is	downloaded	onto	your	system.	This	is	generally	desirable	because	updating	dozens	of
large	packages	can	consume	a	large	proportion	of	available	system	resources.

TIP
To	update	packages	automatically,	you	can	add	the	line	utils::update.packages(ask	=	FALSE)	to	the	.Last
function	in	the	.Rprofile	startup	file	(see	the	next	section	for	more	on	.Rprofile).	Thanks	to	Richard	Cotton	for	this
tip.

An	even	more	interactive	method	for	updating	packages	in	R	is	provided	by	RStudio	via
Tools	→	Check	for	Package	Updates.	Many	such	time-saving	tricks	are	enabled	by	RStudio,
as	described	in	“Installing	and	Updating	RStudio”.	Next	(after	the	exercises),	we	take	a	look	at
how	to	configure	R	using	startup	files.

Exercises
1.	 What	version	of	R	are	you	using?	Is	it	the	most	up-to-date?

2.	 Do	any	of	your	packages	need	updating?



R	Startup
Every	time	R	starts,	a	couple	of	file	scripts	are	run	by	default,	as	documented	in	?Startup.
This	section	explains	how	to	customize	these	files,	allowing	you	to	save	API	keys	or	load
frequently	used	functions.	Before	learning	how	to	modify	these	files,	we’ll	take	a	look	at	how
to	ignore	them,	with	R’s	startup	arguments.	If	you	want	to	turn	custom	setup	on,	it’s	useful	to
be	able	to	turn	it	off	(e.g.,	for	debugging).

TIP
Some	of	R’s	startup	arguments	can	be	controlled	interactively	in	RStudio.	See	the	online	help	file	Customizing
RStudio	for	more	on	this.

http://bit.ly/customizeRstudio


R	Startup	Arguments
A	number	of	arguments	that	relate	to	startup	can	be	appended	to	the	R	startup	command	(R	in	a
shell	environment).	The	following	are	particularly	important:

--no-environ	and	--no-init
Tell	R	to	only	look	for	startup	files	(described	in	the	next	section)	in	the	current	working
directory.

--no-restore

Tells	R	not	to	load	a	file	called	.RData	(the	default	name	for	R	session	files)	that	may	be
present	in	the	current	working	directory.

--no-save

Tells	R	not	to	ask	the	user	if	they	want	to	save	objects	saved	in	RAM	when	the	session	is
ended	with	q().

Adding	each	of	these	will	make	R	load	slightly	faster,	meaning	that	slightly	less	user	input	is
needed	when	you	quit.	R’s	default	setting	of	loading	data	from	the	last	session	automatically	is
potentially	problematic	in	this	context.	See	Appendix	B	of	An	Introduction	to	R	for	more
startup	arguments.

TIP
A	concise	way	to	load	a	vanilla	version	of	R	with	all	of	the	preceding	options	enabled	is	with	an	option	of	the
same	name:

R	--vanilla

https://cran.r-project.org/doc/manuals/R-intro.pdf


An	Overview	of	R’s	Startup	Files
Two	files	are	read	each	time	R	starts	(unless	one	of	the	command-line	options	outlined
previously	is	used):

.Renviron
The	primary	purpose	of	which	is	to	set	environment	variables.	These	tell	R	where	to	find
external	programs,	and	can	hold	user-specific	information	that	needs	to	be	kept	secret,
typically	API	keys.

.Rprofile
A	plain	text	file	(which	is	always	called	.Rprofile,	hence	its	name)	that	simply	runs	lines
of	R	code	every	time	R	starts.	If	you	want	R	to	check	for	package	updates	each	time	it
starts	(as	explained	in	the	previous	section),	you	simply	add	the	relevant	line	somewhere
in	this	file.

When	R	starts	(unless	it	was	launched	with	--no-environ),	it	first	searches	for	.Renviron	and
then	.Rprofile,	in	that	order.	Although	.Renviron	is	searched	for	first,	we	will	look	at	.Rprofile
first	as	it	is	simpler	and,	for	many	setup	tasks,	more	frequently	useful.	Both	files	can	exist	in
three	directories	on	your	computer.

WARNING
Modification	of	R’s	startup	files	should	not	be	taken	lightly.	This	is	an	advanced	topic.	If	you	modify	your	startup
files	in	the	wrong	way,	it	can	cause	problems:	a	seemingly	innocent	call	to	setwd()	in	.Rprofile,	for	example,	will
break	devtools	build	and	check	functions.

Proceed	with	caution	and,	if	you	mess	things	up,	just	delete	the	offending	files!



The	Location	of	Startup	Files
Confusingly,	multiple	versions	of	startup	files	can	exist	on	the	same	computer,	only	one	of
which	will	be	used	per	session.	Note	also	that	these	files	should	only	be	changed	with	caution
and	if	you	know	what	you	are	doing.	This	is	because	they	can	make	your	R	version	behave
differently	than	other	R	installations,	potentially	reducing	the	reproducibility	of	your	code.

Files	in	three	folders	are	important	in	this	process:

R_HOME

The	directory	in	which	R	is	installed.	The	etc	subdirectory	can	contain	startup	files	read
early	on	in	the	startup	process.	Find	out	where	your	R_HOME	is	with	the	R.home()
command.

HOME

The	user ’s	home	directory.	Typically,	this	is	/home/username	on	Unix	machines	or
C:\Users\username	on	Windows	(since	Windows	7).	Ask	R	where	your	home	directory	is
with	Sys.getenv("HOME").

R’s	current	working	directory
This	is	reported	by	getwd().

It	is	important	to	know	the	location	of	the	.Rprofile	and	.Renviron	setup	files	that	are	being
used	out	of	these	three	options.	R	only	uses	one	.Rprofile	and	one	.Renviron	in	any	session;	if
you	have	an	.Rprofile	file	in	your	current	project,	R	will	ignore	.Rprofile	in	R_HOME	and	HOME.
Likewise,	.Rprofile	in	HOME	overrides	.Rprofile	in	R_HOME.	The	same	applies	to	.Renviron:	you
should	remember	that	adding	project-specific	environment	variables	with	.Renviron	will
deactivate	other	.Renviron	files.

To	create	a	project-specific	startup	script,	simply	create	an	.Rprofile	file	in	the	project’s	root
directory	and	start	adding	R	code	(e.g.,	via	file.edit(".Rprofile")).	Remember	that	this
will	make	.Rprofile	in	the	home	directory	be	ignored.	The	following	commands	will	open
your	.Rprofile	from	within	an	R	editor:

file.edit("~/.Rprofile")	#	edit	.Rprofile	in	HOME

file.edit(".Rprofile")	#	edit	project-specific	.Rprofile



WARNING
File	paths	provided	by	Windows	operating	systems	will	not	always	work	in	R.	Specifically,	if	you	use	a	path	that
contains	single	backslashes,	such	as	C:\\DATA\\data.csv,	as	provided	by	Windows,	this	will	generate	the	error:
Error:	unexpected	input	in	"C:\\".	To	overcome	this	issue,	R	provides	two	functions,	file.path()	and
normalizePath().	The	former	can	be	used	to	specify	file	locations	without	having	to	use	symbols	to	represent
relative	file	paths,	as	follows:	file.path("C:",	"DATA",	"data.csv").	The	latter	takes	any	input	string	for	a
filename	and	outputs	a	text	string	that	is	standard	(canonical)	for	the	operating	system.
normalizePath("C:/DATA/data.csv"),	for	example,	outputs	C:\\DATA\\data.csv	on	a	Windows	machine	but
C:/DATA/data.csv	on	Unix-based	platforms.	Note	that	only	the	latter	would	work	on	both	platforms,	so	standard
Unix	file	path	notation	is	safe	for	all	operating	systems.

Editing	the	.Renviron	file	in	the	same	locations	will	have	the	same	effect.	The	following	code
will	create	a	user-specific	.Renviron	file	(where	API	keys	and	other	cross-project	environment
variables	can	be	stored)	without	overwriting	any	existing	file.

user_renviron	=	path.expand(file.path("~",	".Renviron"))

file.edit(user_renviron)	#	open	with	another	text	editor	if	this	fails

TIP
The	pathological	package	can	help	find	where	.Rprofile	and	.Renviron	files	are	located	on	your	system,	thanks
to	the	os_path()	function.	The	output	of	example(Startup)	is	also	instructive.

The	location,	contents,	and	uses	of	each	is	outlined	in	more	detail	in	the	next	section.



The	.Rprofile	File
By	default,	R	looks	for	and	runs	.Rprofile	files	in	the	three	locations	described	previously,	in
a	specific	order.	.Rprofile	files	are	simply	R	scripts	that	run	each	time	R	runs.	They	can	be
found	within	R_HOME,	HOME,	and	the	project’s	home	directory	by	using	getwd().	To	check	if
you	have	a	sitewide	.Rprofile,	which	will	run	for	all	users	on	startup,	run:

site_path	=	R.home(component	=	"home")

fname	=	file.path(site_path,	"etc",	"Rprofile.site")

file.exists(fname)

The	preceding	code	code	checks	for	the	presence	of	Rprofile.site	in	that	directory.	As	outlined
previously,	the	.Rprofile	located	in	your	home	directory	is	user-specific.	Again,	we	can	test
whether	this	file	exists	using:

file.exists("~/.Rprofile")

We	can	use	R	to	create	and	edit	.Rprofile	(warning:	do	not	overwrite	your	previous	.Rprofile
—	we	suggest	you	try	project-specific	.Rprofile	first):

file.edit("~/.Rprofile")



Example	.Rprofile	File
Example	2-1	provides	a	taste	of	what	goes	into	.Rprofile.	Note	that	this	is	simply	a	usual	R
script,	but	with	an	unusual	name.	The	best	way	to	understand	what	is	going	on	is	to	create	this
same	script,	save	it	as	.Rprofile	in	your	current	working	directory,	and	then	restart	your	R
session	to	observe	what	changes.	To	restart	your	R	session	from	within	RStudio,	you	can
click	Session	→	Restart	R	or	use	the	keyboard	shortcut	Ctrl-Shift-F10.

Example	2-1.	Example	contents	of	.Rprofile
#	A	fun	welcome	message

message("Hi	Robin,	welcome	to	R")

#	Customize	the	R	prompt	that	prefixes	every	command

#	(use	"	"	for	a	blank	prompt)

options(prompt	=	"R4geo>	")

Let’s	quickly	explain	each	line	of	code.	The	first	simply	prints	a	message	in	the	console	each
time	a	new	R	session	is	started.	The	latter	modifies	the	console	prompt	in	the	console	(set	to	>
by	default).	Note	that	simply	adding	more	lines	to	the	.Rprofile	will	set	more	features.	An
important	aspect	of	.Rprofile	(and	.Renviron)	is	that	each	line	is	run	once	and	only	once	for
each	R	session.	That	means	that	the	options	set	within	.Rprofile	can	easily	be	changed	during
the	session.	The	following	command	run	midsession,	for	example,	will	return	the	default
prompt:

options(prompt	=	">	")

More	details	on	these	and	other	potentially	useful	.Rprofile	options	are	described
subsequently.	For	more	suggestions	of	useful	startup	settings,	see	examples	in
help("Startup")	and	online	resources	such	as	those	at	statmethods.net.	The	help	pages	for	R
options	(accessible	with	?options)	are	also	worth	a	read	before	writing	your	own	.Rprofile.

Ever	been	frustrated	by	unwanted	+	symbols	that	prevent	copied	and	pasted	multiline	functions
from	working?	These	potentially	annoying	+s	can	be	eradicated	by	adding	options(continue
=	"	")	to	your	.Rprofile.

Setting	options
The	function	options	used	previously	contains	a	number	of	default	settings.	Executing
options()	provides	a	good	indication	of	what	can	be	configured.	The	settings	that	can	be
configured	with	options()	are	often	related	to	personal	preference	(with	few	implications	for
reproducibility)	so	the	.Rprofile	in	your	home	directory	is	a	sensible	places	to	set	them	if	you
want	them	to	be	set	for	all	your	projects	that	have	no	project-specific	.Rprofile	file.	Other
illustrative	options	are	shown	here:

#	With	a	customized	prompt

options(prompt	=	"R>	",	digits	=	4,	show.signif.stars	=	FALSE,	continue	=	"		")

#	With	a	longer	prompt	and	empty	'continue'	indent	(default	is	"+	")

options(prompt	=	"R4Geo>	",	digits	=	3,	continue	=	"		")

http://www.statmethods.net/interface/customizing.html


The	first	option	changes	four	default	options	in	a	single	line:
The	R	prompt,	from	the	boring	>	to	the	exciting	R>

The	number	of	digits	displayed

Removing	the	stars	after	significant	p-values

Removing	the	+	in	multiline	functions

Try	to	avoid	adding	options	that	make	your	code	nonportable	to	the	startup	file.	For	example,
adding	options(stringsAsFactors	=	FALSE)	to	your	startup	script	has	additional	effects	for
read.table()	and	related	functions,	including	read.csv(),	making	them	convert	text	strings
into	characters	rather	than	into	factors,	as	is	the	default.	This	may	be	useful	for	you,	but	it	can
also	make	your	code	less	portable,	so	be	warned.

Setting	the	CRAN	mirror
To	avoid	setting	the	CRAN	mirror	each	time	you	run	install.packages(),	you	can
permanently	set	the	mirror	in	your	.Rprofile.

#	`local`	creates	a	new,	empty	environment

#	This	avoids	polluting	.GlobalEnv	with	the	object	r

local({

		r	=	getOption("repos")

		r["CRAN"]	=	"https://cran.rstudio.com/"

		options(repos	=	r)

})

The	RStudio	mirror	is	a	virtual	machine	run	by	Amazon’s	EC2	service,	and	it	syncs	with	the
main	CRAN	mirror	in	Austria	once	per	day.	Since	RStudio	is	using	Amazon’s	CloudFront,
the	repository	is	automatically	distributed	around	the	world,	so	no	matter	where	you	are	in	the
world,	the	data	doesn’t	need	to	travel	very	far,	and	is	therefore	fast	to	download.

The	fortunes	package
This	section	illustrates	the	power	of	.Rprofile	customization	with	reference	to	a	package	that
was	developed	for	fun.	The	following	code	could	easily	be	altered	to	automatically	connect	to
a	database,	or	to	ensure	that	the	latest	packages	have	been	downloaded.

The	fortunes	package	contains	a	number	of	memorable	quotes,	called	R	fortunes,	that	the
community	has	collected	over	many	years.	Each	fortune	has	a	number.	To	get	fortune	number
50,	for	example,	enter:

fortunes::fortune(50)

#>

#>	To	paraphrase	provocatively,	'machine	learning	is	statistics	minus	any

#>	checking	of	models	and	assumptions'.

#>				--	Brian	D.	Ripley	(about	the	difference	between	machine	learning	and

#>							statistics)

#>							useR!	2004,	Vienna	(May	2004)



It	is	easy	to	make	R	print	out	one	of	these	nuggets	of	truth	each	time	you	start	a	session	by
adding	the	following	to	.Rprofile:

if(interactive())

		try(fortunes::fortune(),	silent	=	TRUE)

The	interactive()	function	tests	whether	R	is	being	used	interactively	in	a	terminal.	The
fortune()	function	is	called	within	try().	If	the	fortunes	package	is	not	available,	we	avoid
raising	an	error	and	move	on.	By	using	::,	we	avoid	adding	the	fortunes	package	to	our	list
of	attached	packages.

TIP
Typing	search()	gives	the	list	of	attached	packages.	By	using	fortunes::fortune(),	we	avoid	adding	the
fortunes	package	to	that	list.	The	function	.Last(),	if	it	exists	in	the	.Rprofile,	is	always	run	at	the	end	of	the
session.	We	can	use	it	to	install	the	fortunes	package	if	needed.	To	load	the	package,	we	use	require(),	because
if	the	package	isn’t	installed,	the	require()	function	returns	FALSE	and	raises	a	warning.

.Last	=	function()	{

		cond	=	suppressWarnings(!require(fortunes,	quietly	=	TRUE))

		if(cond)

				try(install.packages("fortunes"),	silent	=	TRUE)

		message("Goodbye	at	",	date(),	"\n")

}

Useful	functions
You	can	use	.Rprofile	to	define	new	helper	functions	or	redefine	existing	ones	so	that	they’re
faster	to	type.	For	example,	we	could	load	the	following	two	functions	for	examining	data
frames:

#	ht	==	headtail

ht	=	function(d,	n	=	6)	rbind(head(d,	n),	tail(d,	n))

#	Show	the	first	5	rows	&	first	5	columns	of	a	data	frame

hh	=	function(d)	d[1:5,	1:5]

and	a	function	for	setting	a	nice	plotting	window:

nice_par	=	function(mar	=	c(3,	3,	2,	1),	mgp	=	c(2,	0.4,	0),	tck	=	-0.01,

																						cex.axis	=	0.9,	las	=	1,	mfrow	=	c(1,	1),	...)	{

				par(mar	=	mar,	mgp	=	mgp,	tck	=	tck,	cex.axis	=	cex.axis,	las	=	las,

								mfrow	=	mfrow,	...)

}

Note	that	these	functions	are	for	personal	use	and	are	unlikely	to	interfere	with	code	from
other	people.	For	this	reason,	even	if	you	use	a	certain	package	every	day,	we	don’t
recommend	loading	it	in	your	.Rprofile.	Shortening	long	function	names	for	interactive	(but
not	reproducible	code	writing)	is	another	option	for	using	.Rprofile	to	increase	efficiency.	If



you	frequently	use	View(),	for	example,	you	may	be	able	to	save	time	by	referring	to	it	in
abbreviated	form.	This	is	illustrated	in	the	following	line	of	code,	which	makes	it	faster	to
view	datasets	(although	with	IDE-driven	autocompletion,	outlined	in	the	next	section,	the	time
savings	is	less).

v	=	utils::View

Also	beware	of	the	dangers	of	loading	many	functions	by	default	as	it	may	make	your	code
less	portable.	Another	potentially	useful	setting	to	change	in	.Rprofile	is	R’s	current	working
directory.	If	you	want	R	to	automatically	set	the	working	directory	to	the	R	folder	of	your
project,	for	example,	you	would	add	the	following	line	of	code	to	the	project-specific
.Rprofile:

setwd("R")

Creating	hidden	environments	with	.Rprofile
Beyond	making	your	code	less	portable,	another	downside	of	putting	functions	in	your
.Rprofile	is	that	it	can	clutter	up	your	workspace:	when	you	run	the	ls()	command,	your
.Rprofile	functions	will	appear.	Also,	if	you	run	rm(list	=	ls()),	your	functions	will	be
deleted.	One	neat	trick	to	overcome	this	issue	is	to	use	hidden	objects	and	environments.
When	an	object	name	starts	with	.,	by	default	it	doesn’t	appear	in	the	output	of	the	ls()
function:

.obj	=	1

".obj"	%in%	ls()

#>	[1]	FALSE

This	concept	also	works	with	environments.	In	the	.Rprofile	file,	we	can	create	a	hidden
environment:

.env	=	new.env()

And	then	add	functions	to	this	environment:

.env$ht	=	function(d,	n	=	6)	rbind(head(d,	n),	tail(d,	n))

At	the	end	of	the	.Rprofile	file,	we	use	attach,	which	makes	it	possible	to	refer	to	objects	in
the	environment	by	their	names	alone:

attach(.env)



The	.Renviron	File
The	.Renviron	file	is	used	to	store	system	variables.	It	follows	a	similar	startup	routine	to	the
.Rprofile	file:	R	first	looks	for	a	global	.Renviron	file,	then	for	local	versions.	A	typical	use	of
the	.Renviron	file	is	to	specify	the	R_LIBS	path,	which	determines	where	new	packages	are
installed:

#	Linux

R_LIBS=~/R/library

#	Windows

R_LIBS=C:/R/library

After	setting	this,	install.packages()	saves	packages	in	the	directory	specified	by	R_LIBS.
The	location	of	this	directory	can	be	referred	back	to	subsequently	as	follows:

Sys.getenv("R_LIBS")

All	currently	stored	environment	variables	can	be	seen	by	calling	Sys.getenv()	with	no
arguments.	Note	that	many	environment	variables	are	already	preset	and	do	not	need	to	be
specified	in	.Renviron.	HOME,	for	example,	which	can	be	seen	with	Sys.getenv("HOME"),	is
taken	from	the	operating	system’s	list	of	environment	variables.	A	list	of	the	most	important
environment	variables	that	can	affect	R’s	behavior	is	documented	in	the	little-known	help
page	help("environment	variables").

To	set	or	unset	an	environment	variable	for	the	duration	of	a	session,	use	the	following
commands:

Sys.setenv("TEST"	=	"test-string")	#	set	an	environment	variable	for	the	session

Sys.unsetenv("TEST")	#	unset	it

Another	common	use	of	.Renviron	is	to	store	API	keys	and	authentication	tokens	that	will	be
available	from	one	session	to	another.4	A	common	use	case	is	setting	the	environment
variable	GITHUB_PAT,	which	will	be	detected	by	the	devtools	package	via	the	function
github_pat().	To	take	another	example,	the	following	line	in	.Renviron	sets	the	ZEIT_KEY
environment	variable,	which	is	used	in	the	diezeit	package:

ZEIT_KEY=PUT_YOUR_KEY_HERE

You	will	need	to	sign	in	and	start	a	new	R	session	for	the	environment	variable	(accessed	by
Sys.getenv())	to	be	visible.	To	test	if	the	example	API	key	has	been	successfully	added	as	an
environment	variable,	run	the	following:

Sys.getenv("ZEIT_KEY")

Using	the	.Renviron	file	for	storing	settings	such	as	library	paths	and	API	keys	is	efficient

https://cran.r-project.org/web/packages/diezeit/


because	it	reduces	the	need	to	update	your	settings	for	every	R	session.	Furthermore,	the	same
.Renviron	file	will	work	across	different	platforms,	so	keep	it	stored	safely.

Example	.Renviron	file
My	.Renviron	file	has	grown	over	the	years.	I	often	switch	between	my	desktop	and	laptop
computers,	so	to	maintain	a	consistent	working	environment,	I	have	the	same	.Renviron	file
on	all	of	my	machines.	As	well	as	containing	an	R_LIBS	entry	and	some	API	keys,	my
.Renviron	has	a	few	other	lines:

TMPDIR=/data/R_tmp/

When	R	is	running,	it	creates	temporary	copies.	On	my	work	machine,	the	default
directory	is	a	network	drive.

R_COMPILE_PKGS=3

Byte	compile	all	packages	(covered	in	Chapter	3).

R_LIBS_SITE=/usr/lib/R/site-library:/usr/lib/R/library

I	explicitly	state	where	to	look	for	packages.	My	university	has	a	sitewide	directory	that
contains	outdated	packages.	I	want	to	avoiding	using	this	directory.

R_DEFAULT_PACKAGES=utils,grDevices,graphics,stats,methods

Explicitly	state	the	packages	to	load.	Note	that	I	don’t	load	the	datasets	package,	but	I
ensure	that	methods	is	always	loaded.	Due	to	historical	reasons,	the	methods	package
isn’t	loaded	by	default	in	certain	applications	(e.g.,	Rscript).

Exercises
1.	 What	are	the	three	locations	where	the	startup	files	are	stored?	Where	are	these

locations	on	your	computer?

2.	 For	each	location,	does	a	.Rprofile	or	.Renviron	file	exist?

3.	 Create	a	.Rprofile	file	in	your	current	working	directory	that	prints	the	message
Happy	efficient	R	programming	each	time	you	start	R	at	this	location.

4.	 What	happens	to	the	startup	files	in	R_HOME	if	you	create	them	in	HOME	or	local	project
directories?



RStudio
RStudio	is	an	IDE	for	R.	It	makes	life	easy	for	R	users	and	developers	with	its	intuitive	and
flexible	interface.	RStudio	encourages	good	programming	practice.	Through	its	wide	range
of	features,	RStudio	can	help	make	you	a	more	efficient	and	productive	R	programmer.
RStudio	can,	for	example,	greatly	reduce	the	amount	of	time	spent	remembering	and	typing
function	names	thanks	to	intelligent	autocompletion.	Some	of	the	most	important	features	of
RStudio	include:

Flexible	window	pane	layouts	to	optimize	use	of	screen	space	and	enable	fast	interactive
visual	feedback

Intelligent	autocompletion	of	function	names,	packages,	and	R	objects

A	wide	range	of	keyboard	shortcuts

Visual	display	of	objects,	including	a	searchable	data	display	table

Real-time	code	checking,	debugging,	and	error	detection

Menus	to	install	and	update	packages

Project	management	and	integration	with	version	control

Quick	display	of	function	source	code	and	help	documents

The	preceding	list	of	features	should	make	it	clear	that	a	well	set-up	IDE	can	be	as	important
as	a	well	set-up	R	installation	for	becoming	an	efficient	R	programmer.5	As	with	R	itself,	the
best	way	to	learn	about	RStudio	is	by	using	it.	It	is	therefore	worth	reading	through	this
section	in	parallel	with	using	RStudio	to	boost	your	productivity.



Installing	and	Updating	RStudio
RStudio	is	a	mature,	feature-rich,	and	powerful	IDE	optimized	for	R	programming,	which	has
become	popular	among	R	developers.	The	Open	Source	Edition	is	completely	open	source
(as	can	be	seen	from	the	project’s	GitHub	rep).	It	can	be	installed	on	all	major	OSs	from	the
RStudio	website.

If	you	already	have	RStudio	and	would	like	to	update	it,	simply	click	Help	→	Check	for
Updates	in	the	menu.	For	fast	and	efficient	work,	keyboard	shortcuts	should	be	used	wherever
possible,	reducing	the	reliance	on	the	mouse.	RStudio	has	many	keyboard	shortcuts	that	will
help	with	this.	To	get	into	good	habits	early,	try	accessing	the	RStudio	Update	interface
without	touching	the	mouse.	On	Linux	and	Windows,	drop-down	menus	are	activated	with	the
Alt	key,	so	the	menu	item	can	be	found	with:	Alt-H-U.

On	Mac,	it	works	differently.	Cmd-?	should	activate	a	search	across	menu	items,	allowing	the
same	operation	to	be	achieved	with	Cmd-?	update.

NOTE
In	RStudio,	the	keyboard	shortcuts	differ	between	Linux	and	Windows	versions	on	one	hand	and	Mac	on	the
other.	In	this	section,	we	generally	only	use	the	Windows/Linux	shortcut	keys	for	brevity.	The	Mac	equivalent	is
usually	found	by	simply	replacing	Ctrl	and	Alt	with	the	Mac-specific	Cmd	button.

https://www.rstudio.com/products/rstudio/download/


Window	Pane	Layout
RStudio	has	four	main	window	panes	(see	Figure	2-2),	each	of	which	serves	a	range	of
purposes:

The	Source	pane
For	editing,	saving,	and	dispatching	R	code	to	the	console	(top	left).	Note	that	this	pane
does	not	exist	by	default	when	you	start	RStudio:	it	appears	when	you	open	an	R	script
(e.g.,	via	File	→	New	File	→	R	Script).	A	common	task	in	this	pane	is	to	send	code	on	the
current	line	to	the	console,	via	Ctrl/Cmd-Enter.

The	Console	pane
Any	code	entered	here	is	processed	by	R,	line	by	line.	This	pane	is	ideal	for	interactively
testing	ideas	before	saving	the	final	results	in	the	Source	pane	above.

The	Environment	pane	(top	right)
Contains	information	about	the	current	objects	loaded	in	the	workspace,	including	their
class,	dimension	(if	they	are	a	data	frame),	and	name.	This	pane	also	contains	tabbed
subpanes	with	a	searchable	history	that	was	dispatched	to	the	console	and	(if	applicable	to
the	project)	Build	and	Git	options.

The	Files	pane	(bottom	right)
Contains	a	simple	file	browser,	a	Plots	tab,	Help	and	Package	tabs,	and	a	Viewer	for
visualizing	interactive	R	output	such	as	those	produced	by	the	leaflet	package	and	HTML
widgets.



Figure	2-2.	RStudio	panels

Using	each	of	the	panels	effectively	and	navigating	between	them	quickly	is	a	skill	that	will
develop	over	time,	and	will	only	improve	with	practice.

Exercises
You	are	developing	a	project	to	visualize	data.	Test	out	the	multipanel	RStudio	workflow	by
following	these	steps:

1.	 Create	a	new	folder	for	the	input	data	using	the	Files	pane.

2.	 Type	downl	in	the	Source	pane	and	hit	Enter	to	make	the	function	download.file()
autocomplete.	Then	type	",	which	will	autocomplete	to	"",	paste	the	URL	of	a	file	to
download	(e.g.,	https://www.census.gov/2010census/csv/pop_change.csv)	and	a
filename	(e.g.,	pop_change.csv).

3.	 Execute	the	full	command	with	Ctrl-Enter:

download.file("https://www.census.gov/2010census/csv/pop_change.csv",

														"extdata/pop_change.csv")

4.	 Write	and	execute	a	command	to	read	the	data,	such	as

pop_change	=	read.csv("extdata/pop_change.csv",	skip	=	2)

5.	 Use	the	Environment	pane	to	click	on	the	data	object	pop_change.	Note	that	this	runs



the	command	View(pop_change),	which	launches	a	data	viewing	tab	in	the	top	left
panel,	for	interactively	exploring	data	frames	(see	Figure	2-3).

Figure	2-3.	The	data	viewing	tab	in	RStudio

6.	 Use	the	console	to	test	different	plot	commands	to	visualize	the	data,	saving	the	code
you	want	to	keep	back	into	the	Source	pane	as	pop_change.R.

7.	 Use	the	Plots	tab	in	the	Files	pane	to	scroll	through	past	plots.	Save	the	best	using	the
Export	drop-down	button.

The	previous	example	shows	how	understanding	of	these	panes	and	how	to	use	them
interactively	can	help	with	the	speed	and	productivity	of	your	R	programming.	Further,	there
are	a	number	of	RStudio	settings	that	can	help	ensure	that	it	works	for	your	needs.



RStudio	Options
A	range	of	project	options	and	global	options	are	available	in	RStudio	from	the	Tools	menu
(accessible	in	Linux	and	Windows	from	the	keyboard	via	Alt-T).	Most	of	these	are	self-
explanatory,	but	it	is	worth	mentioning	a	few	that	can	boost	your	programming	efficiency:

GIT/SVN	project	settings	allow	RStudio	to	provide	a	graphical	interface	to	your
version-control	system,	described	in	Chapter	9.

R	version	settings	allow	RStudio	to	point	to	different	R	versions/interpreters,	which	may
be	faster	for	some	projects.

Restore	.RData:	untick	this	default	to	prevent	loading	previously	created	R	objects.	This
will	make	R	start	more	quickly	and	also	reduce	the	chance	of	bugs	due	to	previously
created	objects.	For	this	reason,	we	recommend	you	untick	this	box.

Code-editing	options	can	make	RStudio	adapt	to	your	coding	style,	for	example,	by
preventing	the	autocompletion	of	braces,	which	some	experienced	programmers	may
find	annoying.	Enabling	Vim	mode	makes	RStudio	act	as	a	(partial)	Vim	emulator.

Diagnostic	settings	can	make	RStudio	more	efficient	by	adding	additional	diagnostics	or
by	removing	diagnostics	if	they	are	slowing	down	your	work.	This	may	be	an	issue	for
people	using	RStudio	to	analyze	large	datasets	on	older	low-spec	computers.

Appearance:	if	you	are	struggling	to	see	the	source	code,	changing	the	default	font	size
may	make	you	a	more	efficient	programmer	by	reducing	the	time	overhead	associated
with	squinting	at	the	screen.	Other	options	in	this	area	relate	more	to	aesthetics.	Settings
such	as	font	type	and	background	color	are	also	important	because	feeling	comfortable
in	your	programming	environment	can	boost	productivity.	Go	to	Tools	→	Global
Options	to	modify	these.



Autocompletion
R	provides	some	basic	autocompletion	functionality.	Typing	the	beginning	of	a	function
name,	such	as	rn	(short	for	rnorm()),	and	pressing	the	Tab	key	twice	will	result	in	the	full
function	names	associated	with	this	text	string	being	printed.	In	this	case,	two	options	would
be	displayed:	rnbinom	and	rnorm,	providing	a	useful	reminder	to	the	user	about	what	is
available.	The	same	applies	to	filenames	enclosed	in	quotation	marks:	typing	te	in	the	console
in	a	project	that	contains	a	file	called	test.R	should	result	in	the	full	name	"test.R"	being
autocompleted.	RStudio	builds	on	this	functionality	and	takes	it	to	a	new	level.

NOTE
The	default	settings	for	autocompletion	in	RStudio	work	well.	They	are	intuitive	and	are	likely	to	work	for	many
users,	especially	beginners.	However,	RStudio’s	autocompletion	options	can	be	modified	by	navigating	to	Tools
→	Global	Options	→	Code	→	Completion	in	RStudio’s	top-level	menu.

Instead	of	only	autocompleting	options	when	Tab	is	pressed,	RStudio	autocompletes	them	at
any	point.	Building	on	the	previous	example,	RStudio’s	autocompletion	triggers	when	the
first	three	characters	are	typed:	rno.	The	same	functionality	works	when	only	the	first
characters	are	typed,	followed	by	Tab:	automatic	autocompletion	does	not	replace	Tab
autocompletion	but	supplements	it.	Note	that	in	RStudio,	two	more	options	are	provided	to	the
user	after	entering	rn	and	pressing	the	Tab	key	compared	with	entering	the	same	text	into	base
R’s	console	described	in	the	previous	paragraph:	RNGkind	and	RNGversion.	This	illustrates
that	RStudio’s	autocompletion	functionality	is	not	case-sensitive	in	the	same	way	that	R	is.
This	is	a	good	thing	because	R	has	no	consistent	function	name	style!

RStudio	also	has	more	intelligent	autocompletion	of	objects	and	filenames	than	R’s	built-in
command	line.	To	test	this	functionality,	try	typing	US,	followed	by	the	Tab	key.	After	pressing
down	until	USArrests	is	selected,	press	Enter	so	it	autocompletes.	Finally,	typing	$	should
leave	the	following	text	on	the	screen	and	the	four	columns	should	be	shown	in	a	dropdown
box,	ready	for	you	to	select	the	variable	of	interest	with	the	down	arrow.

USArrests$	#	a	drop-down	menu	of	columns	should	appear	in	RStudio

To	take	a	more	complex	example,	variable	names	stored	in	the	data	slot	of	the	class
SpatialPolygonsDataFrame	(a	class	defined	by	the	foundational	spatial	package	sp)	are
referred	to	in	the	long	form	spdf@data$varname.6	In	this	case,	spdf	is	the	object	name,	data	is
the	slot,	and	varname	is	the	variable	name.	RStudio	makes	such	S4	objects	easier	to	use	by
enabling	autocompletion	of	the	short	form	spdf$varname.	Another	example	is	RStudio’s
ability	to	find	files	hidden	away	in	subfolders.	Typing	"te	will	find	test.R	even	if	it	is	located



in	a	subfolder	such	as	R/test.R.	There	are	a	number	of	other	clever	autocompletion	tricks	that
can	boost	R’s	productivity	when	using	RStudio,	which	are	best	found	by	experimenting	and
pressing	the	Tab	key	frequently	during	your	R	programming	work.



Keyboard	Shortcuts
RStudio	has	many	useful	shortcuts	that	can	help	make	your	programming	more	efficient	by
reducing	the	need	to	reach	for	the	mouse	and	point	and	click	your	way	around	code	and
RStudio.	These	can	be	viewed	by	using	a	little	known	but	extremely	useful	keyboard	shortcut
(this	can	also	be	accessed	via	the	Tools	menu):	Alt-Shift-K.

This	will	display	the	default	shortcuts	in	RStudio.	It	is	worth	spending	time	identifying	which
of	these	could	be	useful	in	your	work	and	practicing	interacting	with	RStudio	rapidly	with
minimal	reliance	on	the	mouse.	The	power	of	these	autocompletion	capabilities	can	be	further
enhanced	by	setting	your	own	keyboard	shortcuts.	However,	as	with	setting	.Rprofile	and
.Renviron	settings,	this	risks	reducing	the	portability	of	your	workflow.

Some	more	useful	shortcuts	are	listed	here.	There	are	many	more	gems	to	find	that	could
boost	your	R	writing	productivity:

Ctrl-Z/Shift-Z
Undo/Redo

Ctrl-Enter
Execute	the	current	line	or	code	selection	in	the	Source	pane

Ctrl-Alt-R
Execute	all	the	R	code	in	the	currently	open	file	in	the	Source	pane

Ctrl-Left/Right
Navigate	code	quickly,	word	by	word

Home/End
Navigate	to	the	beginning/end	of	the	current	line

Alt-Shift-Up/Down
Duplicate	the	current	line	up	or	down

Ctrl-D
Delete	the	current	line

To	set	your	own	RStudio	keyboard	shortcuts,	navigate	to	Tools	→	Modify	Keyboard
Shortcuts.

http://bit.ly/Rstudioshortcuts


Object	Display	and	Output	Table
It	is	useful	to	know	what	is	in	your	current	R	environment.	This	information	can	be	revealed
with	ls(),	but	this	function	only	provides	object	names.	RStudio	provides	an	efficient
mechanism	to	show	currently	loaded	objects	and	their	details	in	real-time:	the	Environment
tab	in	the	top-right	corner.	It	makes	sense	to	keep	an	eye	on	which	objects	are	loaded	and	to
delete	objects	that	are	no	longer	useful.	Doing	so	will	minimize	the	probability	of	confusion
in	your	workflow	(e.g.,	by	using	the	wrong	version	of	an	object)	and	reduce	the	amount	of
RAM	R	needs.	The	details	provided	in	the	Environment	tab	include	the	object’s	dimension	and
some	additional	details	depending	on	the	object’s	class	(e.g.,	size	in	MB	for	large	datasets).

A	very	useful	feature	of	RStudio	is	its	advanced	viewing	functionality.	This	is	triggered	either
by	executing	View(object)	or	by	double-clicking	on	the	object	name	in	the	Environment	tab.
Although	you	cannot	edit	data	in	the	Viewer	(this	should	be	considered	a	good	thing	from	a
data	integrity	perspective),	recent	versions	of	RStudio	provide	an	efficient	search	mechanism
to	rapidly	filter	and	view	the	records	that	are	of	most	interest	(see	Figure	2-3).



Project	Management
In	the	far	top-right	of	RStudio	there	is	a	diminutive	drop-down	menu	illustrated	with	R	inside
a	transparent	box.	This	menu	may	be	small	and	simple,	but	it	is	hugely	efficient	in	terms	of
organizing	large,	complex,	and	long-term	projects.

The	idea	of	RStudio	projects	is	that	the	bulk	of	R	programming	work	is	part	of	a	wider	task,
which	will	likely	consist	of	input	data,	R	code,	graphical	and	numerical	outputs,	and
documents	describing	the	work.	It	is	possible	to	scatter	each	of	these	elements	at	random
across	your	hard	disks,	but	this	is	not	recommended.	Instead,	the	concept	of	projects
encourages	reproducible	working,	such	that	anyone	who	opens	the	particular	project	folder
that	you	are	working	from	should	be	able	to	repeat	your	analyses	and	replicate	your	results.

It	is	therefore	highly	recommended	that	you	use	projects	to	organize	your	work.	It	could	save
hours	in	the	long	run.	Organizing	data,	code,	and	outputs	also	makes	sense	from	a	portability
perspective:	if	you	copy	the	folder	(e.g.,	via	GitHub),	you	can	work	on	it	from	any	computer
without	worrying	about	having	the	right	files	on	your	current	machine.	These	tasks	are
implemented	using	RStudio’s	simple	project	system,	in	which	the	following	things	happen
every	time	you	open	an	existing	project:

The	working	directory	automatically	switches	to	the	project’s	folder.	This	enables	data
and	script	files	to	be	referred	to	using	relative	file	paths,	which	are	much	shorter	than
absolute	file	paths.	This	means	that	switching	directories	using	setwd(),	a	common
source	of	error	for	R	users,	is	rarely,	if	ever,	needed.

The	last	previously	open	file	is	loaded	into	the	Source	pane.	The	history	of	R	commands
executed	in	previous	sessions	is	also	loaded	into	the	History	tab.	This	assists	with
continuity	between	one	session	and	the	next.

The	File	tab	displays	the	associated	files	and	folders	in	the	project,	allowing	you	to
quickly	find	your	previous	work.

Any	settings	associated	with	the	project,	such	as	Git	settings,	are	loaded.	This	assists	with
collaboration	and	project-specific	setup.

Each	project	is	different,	but	most	contain	input	data,	R	code,	and	outputs.	To	keep	things	tidy,
we	recommend	a	subdirectory	structure	resembling	the	following:

project/

		-	README.Rmd	#	Project	description

		-	set-up.R		#	Required	packages

		-	R/	#	For	R	code

		-	input	#	Data	files

		-	graphics/

		-	output/	#	Results

Proper	use	of	projects	ensures	that	all	R	source	files	are	neatly	stashed	in	one	folder	with	a
meaningful	structure.	This	way,	data	and	documentation	can	be	found	where	one	would	expect



them.	Under	this	system,	figures	and	project	outputs	are	first-class	citizens	within	the	project’s
design,	each	with	their	own	folder.

Another	approach	to	project	management	is	to	treat	projects	as	R	packages.	This	is	not
recommended	for	most	use	cases,	as	it	places	restrictions	on	where	you	can	put	files.
However,	if	the	aim	is	code	development	and	sharing,	creating	a	small	R	package	may	be	the
way	forward,	even	if	you	never	intend	to	submit	it	on	CRAN.	Creating	R	packages	is	easier
than	ever	before,	as	documented	in	Learning	R	by	Richard	Cotton	(O’Reilly)	and,	more
recently,	in	R	Packages	by	Hadley	Wickham	(O’Reilly).	The	devtools	package	helps	manage
R’s	quirks,	making	the	process	much	less	painful.	If	you	use	GitHub,	the	advantage	of	this
approach	is	that	anyone	should	be	able	to	reproduce	your	work	using
devtools::install_github("username/projectname"),	although	the	administrative	overhead
of	creating	an	entire	package	for	each	small	project	will	outweigh	the	benefits	for	many.

Note	that	a	set-up.R	or	even	a	.Rprofile	file	in	the	project’s	root	directory	enables	project-
specific	settings	to	be	loaded	each	time	people	work	on	the	project.	As	described	in	the
previous	section,	.Rprofile	can	be	used	to	tweak	how	R	works	at	startup.	It	is	also	a	portable
way	to	manage	R’s	configuration	on	a	project-by-project	basis.

Another	capability	that	RStudio	has	is	excellent	debugging	support.	Rather	than	re-invent	the
wheel,	I	would	like	to	direct	interested	readers	to	the	RStudio	website.

Exercises
1.	 Try	modifying	the	look	and	appearance	of	your	RStudio	setup.

2.	 What	is	the	keyboard	shortcut	to	show	the	other	shortcut?	(Hint:	it	begins	with	Alt-
Shift	on	Linux	and	Windows.)

3.	 Try	as	many	of	the	shortcuts	revealed	by	the	previous	step	as	you	like.	Write	down
the	ones	that	you	think	will	save	you	time,	perhaps	on	a	Post-it	note	to	go	on	your
computer.

http://shop.oreilly.com/product/0636920028352.do
http://shop.oreilly.com/product/0636920034421.do
http://bit.ly/debugRstudio


BLAS	and	Alternative	R	Interpreters
In	this	section,	we	cover	a	few	system-level	options	available	to	speed	up	R’s	performance.
Note	that	for	many	applications,	stability	rather	than	speed	is	a	priority,	so	these	should	only
be	considered	if	a)	you	have	exhausted	options	for	writing	your	R	code	more	efficiently	and
b)	you	are	confident	tweaking	system-level	settings.	This	should	therefore	be	seen	as	an
advanced	section:	if	you	are	not	interested	in	speeding	up	base	R,	feel	free	to	skip	to	the	next
section.

Many	statistical	algorithms	manipulate	matrices.	R	uses	the	Basic	Linear	Algebra	System
(BLAS)	framework	for	linear	algebra	operations.	Whenever	we	carry	out	a	matrix	operation,
such	as	transpose	or	finding	the	inverse,	we	use	the	underlying	BLAS	library.	By	switching	to
a	different	BLAS	library,	it	may	be	possible	to	speed	up	your	R	code.	Changing	your	BLAS
library	is	straightforward	if	you	are	using	Linux,	but	can	be	tricky	for	Windows	users.

The	two	open	source	alternative	BLAS	libraries	are	ATLAS	and	OpenBLAS.	The	Intel	MKL
is	another	implementation,	designed	for	Intel	processors	by	Intel	and	used	in	Revolution	R
(described	in	the	next	section),	but	it	requires	licensing	fees.	The	MKL	library	is	provided
with	the	Revolution	analytics	system.	Depending	on	your	application,	by	switching	your
BLAS	library,	linear	algebra	operations	can	run	several	times	faster	than	with	the	base	BLAS
routines.

If	you	use	Linux,	you	can	find	whether	you	have	a	BLAS	library	setting	with	the	following
function,	from	benchmarkme:

library("benchmarkme")

get_linear_algebra()

http://math-atlas.sourceforge.net/
https://github.com/xianyi/OpenBLAS
https://software.intel.com/en-us/intel-mkl


Testing	Performance	Gains	from	BLAS
As	an	illustrative	test	of	the	performance	gains	offered	by	BLAS,	the	following	test	was	run
on	a	new	laptop	running	Ubuntu	15.10	on	a	sixth-generation	Core	i7	processor,	before	and
after	OpenBLAS	was	installed.7

res	=	benchmark_std()	#	run	a	suite	of	tests	to	test	R's	performance

It	was	found	that	the	installation	of	OpenBLAS	led	to	a	two-fold	speed-up	(from	around	150
to	70	seconds).	The	majority	of	the	speed	gain	was	from	the	matrix	algebra	tests,	as	can	be
seen	in	Figure	2-4.	Note	that	the	results	of	such	tests	are	highly	dependent	on	the
particularities	of	each	computer.	However,	it	clearly	shows	that	programming	benchmarks
(e.g.,	the	calculation	of	3,500,000	Fibonacci	numbers)	are	now	much	faster,	whereas	matrix
calculations	and	functions	receive	a	substantial	speed	boost.	This	demonstrates	that	the	speed-
up	you	can	expect	from	BLAS	depends	heavily	on	the	type	of	computations	you	are
undertaking.

Figure	2-4.	Performance	gains	obtained	by	changing	the	underlying	BLAS	library	(tests	from	benchmark_std())



Other	Interpreters
The	R	language	can	be	separated	from	the	R	interpreter.	The	former	refers	to	the	meaning	of
R	commands,	and	the	latter	refers	to	how	the	computer	executes	the	commands.	Alternative
interpreters	have	been	developed	to	try	to	make	R	faster	and,	while	promising,	none	of	the
following	options	has	fully	taken	off.

Microsoft	R	Open,	formerly	known	as	Revolution	R	Open	(RRO),	is	the	enhanced
distribution	of	R	from	Microsoft.	The	key	enhancement	is	that	it	uses	multithreaded
mathematics	libraries,	which	can	improve	performance.

Rho	(previously	called	CXXR,	short	for	C++),	a	reimplementation	of	the	R	interpreter
for	speed	and	efficiency.	Of	the	new	interpreters,	this	is	the	one	that	has	the	most	recent
development	activity	(as	of	April	2016).

pqrR	(pretty	quick	R)	is	a	new	version	of	the	R	interpreter.	One	major	downside	is	that	it
is	based	on	R-2.15.0.	The	developer	(Radford	Neal)	has	made	many	improvements,	some
of	which	have	now	been	incorporated	into	base	R.	pqR	is	an	open	source	project
licensed	under	the	GPL.	One	notable	improvement	in	pqR	is	that	it	is	able	to	do	some
numeric	computations	in	parallel	with	each	other,	and	with	other	operations	of	the
interpreter,	on	systems	with	multiple	processors	or	processor	cores.

Renjin	reimplements	the	R	interpreter	in	Java,	so	it	can	run	on	the	Java	Virtual	Machine
(JVM).	Since	R	will	be	pure	Java,	it	can	run	anywhere.

Tibco	created	a	C++	based	interpreter	called	TERR.

Oracle	also	offers	an	R	interpreter	that	uses	Intel’s	mathematics	library	and	therefore
achieves	higher	performance	without	changing	R’s	core.

At	the	time	of	writing,	switching	interpreters	is	something	to	consider	carefully.	But	in	the
future,	it	may	become	more	routine.

http://www.revolutionanalytics.com/microsoft-r-open
https://github.com/rho-devel/rho
http://www.pqr-project.org/
http://www.renjin.org/
http://spotfire.tibco.com/


Useful	BLAS/Benchmarking	Resources
The	gcbd	package	benchmarks	performance	of	a	few	standard	linear	algebra	operations
across	a	number	of	different	BLAS	libraries	as	well	as	a	GPU	implementation.	It	has	an
excellent	vignette	summarizing	the	results.

Brett	Klamer	provides	a	nice	comparison	of	ATLAS,	OpenBLAS,	and	Intel	MKL	BLAS
libraries.	He	also	gives	a	description	of	how	to	install	the	different	libraries.

The	official	R	manual	section	on	BLAS.

Exercise
1.	 What	BLAS	system	is	your	version	of	R	using?

https://cran.r-project.org/web/packages/gcbd/
http://brettklamer.com/diversions/statistical/faster-blas-in-r/
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS
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All	CRAN	packages	are	automatically	tested	on	these	systems,	in	addition	to	Solaris.	R	has	also	been	reported	to	run	on
more	exotic	operating	systems,	including	those	used	in	smartphones	and	game	consoles	(Peng	2014).

Benchmarking	conducted	for	the	presentation	“R	on	Different	Platforms”	at	useR!	2006	found	that	R	was	marginally	faster
on	Windows	than	on	Linux	setups.	Similar	results	were	reported	in	an	academic	paper,	with	R	completing	statistical	analyses
faster	on	a	Linux	than	on	a	Mac	(Sekhon	2006).	In	2015	Revolution	R	supported	these	results	with	slightly	faster	run	times
for	certain	benchmarks	on	Ubuntu	than	Mac	systems.	The	data	from	the	benchmarkme 	package	also	suggests	that	running
code	under	the	Linux	OS	is	marginally	faster.

See	Jason	French’s	“Installing	R	in	Linux”	for	more	information	on	installing	R	on	a	variety	of	Linux	distributions.

See	vignette("api-packages")	from	the	httr	package	for	more	on	this.

Other	open	source	R	IDEs	exist,	including	RKWard,	Tinn-R,	and	JGR.	emacs	is	another	popular	software	environment.
However,	it	has	a	very	steep	learning	curve.

Slots	are	elements	of	an	object	(specifically,	S4	objects)	analogous	to	a	column	in	a	data.frame	but	referred	to	with	@	not
$.

OpenBLAS	was	installed	on	the	computer	via	sudo	apt-get	install	libopenblas-base,	which	is	automatically	detected
and	used	by	R.
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http://bit.ly/benchmarkRRO
http://bit.ly/installRlinux
https://cran.r-project.org/web/packages/httr/vignettes/api-packages.html
https://rkward.kde.org/
http://sourceforge.net/projects/tinn-r/
https://www.rforge.net/JGR/
https://www.gnu.org/software/emacs/


Chapter	3.	Efficient	Programming

Many	people	who	use	R	would	not	describe	themselves	as	programmers.	Instead,	they	tend	to
have	advanced	domain-level	knowledge	and	understand	standard	R	data	structures	such	as
vectors	and	data	frames,	but	have	little	formal	training	in	computing.	Sound	familiar?	In	that
case,	this	chapter	is	for	you.

In	this	chapter,	we	will	discuss	“big	picture”	programming	techniques.	We	cover	general
concepts	and	R	programming	techniques	about	code	optimization,	before	describing
idiomatic	programming	structures.	We	conclude	the	chapter	by	examining	relatively	easy
ways	of	speeding	up	code	using	the	compiler	package	and	parallel	processing	using	multiple
CPUs.



Prerequisites
In	this	chapter,	we	introduce	two	new	packages,	compiler	and	memoise.	The	compiler	package
comes	with	R,	so	it	will	already	be	installed.

library("compiler")

library("memoise")

We	also	use	the	pryr	and	microbenchmark	packages	in	the	exercises.



Top	Five	Tips	for	Efficient	Programming
1.	 Be	careful	never	to	grow	vectors.

2.	 Vectorize	code	whenever	possible.

3.	 Use	factors	when	appropriate.

4.	 Avoid	unnecessary	computation	by	caching	variables.

5.	 Byte	compile	packages	for	an	easy	performance	boost.



General	Advice
Low-level	languages	like	C	and	Fortran	demand	more	from	the	programmer.	They	force	you
to	declare	the	type	of	every	variable	used,	give	you	the	burdensome	responsibility	of	memory
management,	and	have	to	be	compiled.	The	advantage	of	such	languages,	compared	with	R,	is
that	they	are	faster	to	run.	The	disadvantage	is	that	they	take	longer	to	learn	and	cannot	be	run
interactively.

NOTE
The	Wikipedia	page	on	compiler	optimizations	gives	a	nice	overview	of	standard	optimization	techniques.

R	users	don’t	tend	to	worry	about	data	types.	This	is	advantageous	in	terms	of	creating
concise	code,	but	can	result	in	R	programs	that	are	slow.	While	optimizations	such	as	going
parallel	can	double	speed,	poor	code	can	easily	run	hundreds	of	times	slower,	so	it’s
important	to	understand	the	causes	of	slow	code.	These	are	covered	in	The	R	Inferno	by
Patrick	Burns	(Lulu.com),	which	should	be	considered	essential	reading	for	any	aspiring	R
programmer.

Ultimately,	calling	an	R	function	always	ends	up	calling	some	underlying	C/Fortran	code.	For
example,	the	base	R	function	runif()	only	contains	a	single	line	that	consists	of	a	call	to
C_runif().

function	(n,	min	=	0,	max	=	1)

		.Call(C_runif,	n,	min,	max)

A	golden	rule	in	R	programming	is	to	access	the	underlying	C/Fortran	routines	as	quickly	as
possible;	the	fewer	function	calls	required	to	achieve	this,	the	better.	For	example,	suppose	x
is	a	standard	vector	of	length	n.	Then

x	=	x	+	1

involves	a	single	function	call	to	the	+	function.	Whereas	the	for	loop

for(i	in	seq_len(n))

		x[i]	=	x[i]	+	1

has
n	function	calls	to	+

n	function	calls	to	the	[	function

n	function	calls	to	the	[<-	function	(used	in	the	assignment	operation)

https://en.wikipedia.org/wiki/Optimizing_compiler


A	function	call	to	for	and	to	the	:	operator

It	isn’t	that	the	for	loop	is	slow;	rather	it	is	because	we	have	many	more	function	calls.	Each
individual	function	call	is	quick,	but	the	total	combination	is	slow.

NOTE
Everything	in	R	is	a	function	call.	When	we	execute	1	+	1,	we	are	actually	executing	+(1,	1).

Exercise
1.	 Use	the	microbenchmark	package	to	compare	the	vectorized	construct	x	=	x	+	1	to

the	for	loop	version.	Try	varying	the	size	of	the	input	vector.



Memory	Allocation
Another	general	technique	is	to	be	careful	with	memory	allocation.	If	possible,	pre-allocate
your	vector	and	then	fill	in	the	values.

TIP
You	should	also	consider	preallocating	memory	for	data	frames	and	lists.	Never	grow	an	object.	A	good	rule	of
thumb	is	to	compare	your	objects	before	and	after	a	for	loop;	have	they	increased	in	length?

Let’s	consider	three	methods	of	creating	a	sequence	of	numbers.	Method	1	creates	an	empty
vector	and	gradually	increases	(or	grows)	the	length	of	the	vector:

method1	=	function(n)	{

		vec	=	NULL	#	Or	vec	=	c()

		for(i	in	seq_len(n))

				vec	=	c(vec,	i)

		vec

}

Method	2	creates	an	object	of	the	final	length	and	then	changes	the	values	in	the	object	by
subscripting:

method2	=	function(n)	{

		vec	=	numeric(n)

		for(i	in	seq_len(n))

				vec[i]	=	i

		vec

}

Method	3	directly	creates	the	final	object:

method3	=	function(n)	seq_len(n)

To	compare	the	three	methods,	we	use	the	microbenchmark()	function	from	the	previous
chapter:

microbenchmark(times	=	100,	unit	=	"s",

															method1(n),	method2(n),	method3(n))

Table	3-1	shows	the	timing	in	seconds	on	my	machine	for	these	three	methods	for	a	selection
of	values	of	n.	The	relationships	for	varying	n	are	all	roughly	linear	on	a	log-log	scale,	but
the	timings	between	methods	are	drastically	different.	Notice	that	the	timings	are	no	longer
trivial.	When	n	=	107,	method	1	takes	around	an	hour	whereas	method	2	takes	two	seconds	and
method	3	is	almost	instantaneous.	Remember	the	golden	rule:	access	the	underlying	C/Fortran
code	as	quickly	as	possible.

Table	3-1.	Time	in	seconds	to



Table	3-1.	Time	in	seconds	to
create	sequences.	When	n	=
107,	method	1	takes	around	an
hour	while	the	other	methods
take	less	than	three	seconds.

n Method	1 Method	2 Method	3

105 0.21 0.02 0.00

106 25.50 0.22 0.00

107 3827.00 2.21 0.00



Vectorized	Code

NOTE
Technically	x	=	1	creates	a	vector	of	length	1.	In	this	section,	we	use	vectorized	to	indicate	that	functions	work
with	vectors	of	all	lengths.

Recall	the	golden	rule	in	R	programming:	access	the	underlying	C/Fortran	routines	as
quickly	as	possible	—	the	fewer	functions	calls	required	to	achieve	this,	the	better.	With	this
mind,	many	R	functions	are	vectorized;	that	is,	the	function’s	inputs	and/or	outputs	naturally
work	with	vectors,	reducing	the	number	of	function	calls	required.	For	example,	the	code

x	=	runif(n)	+	1

performs	two	vectorized	operations.	First,	runif()	returns	n	random	numbers.	Second,	we
add	1	to	each	element	of	the	vector.	In	general,	it	is	a	good	idea	to	exploit	vectorized
functions.	Consider	this	piece	of	R	code	that	calculates	the	sum	of	log	(x):

log_sum	=	0

for(i	in	1:length(x))

		log_sum	=	log_sum	+	log(x[i])

WARNING
Using	1:length(x)	can	lead	to	hard-to-find	bugs	when	x	has	length	zero.	Instead,	use	seq_along(x)	or
seq_len(length(x)).

This	code	could	easily	be	vectorized	via

log_sum	=	sum(log(x))

Writing	code	this	way	has	a	number	of	benefits:

It’s	faster.	When	n	=	107	the	R	way	is	about	40	times	faster.

It’s	neater.

It	doesn’t	contain	a	bug	when	x	is	of	length	0.

As	with	the	general	example	in	“General	Advice”,	the	slowdown	isn’t	due	to	the	for	loop.
Instead,	it’s	because	there	are	many	more	functions	calls.

Exercises



1.	 Time	the	two	methods	for	calculating	the	log	sum.

2.	 What	happens	when	the	length(x)	=	0	(i.e.,	we	have	an	empty	vector)?

Example:	Monte	Carlo	integration
It’s	also	important	to	make	full	use	of	R	functions	that	use	vectors.	For	example,	suppose	we

wish	to	estimate	the	integral	∫ 	x2	dx	using	a	Monte	Carlo	method.	Essentially,	we	throw	darts
at	the	curve	and	count	the	number	of	darts	that	fall	below	the	curve	(as	in	Figure	3-1).

Monte	Carlo	integration
1.	 Initialize:	hits	=	0

2.	 for	i	in	1:N
a.	 Generate	two	random	numbers,	U1,	U2,	between	0	and	1

b.	 If	U2	<	U1
2,	then	hits	=	hits	+	1

3.	 end	for

4.	 Area	estimate	=	hits/N

Implementing	this	Monte	Carlo	algorithm	in	R	would	typically	lead	to	something	like:

monte_carlo	=	function(N)	{

		hits	=	0

		for	(i	in	seq_len(N))	{

				u1	=	runif(1)

				u2	=	runif(1)

				if	(u1	^	2	>	u2)

						hits	=	hits	+	1

		}

		return(hits	/	N)

}

In	R,	this	takes	a	few	seconds:

N	=	500000

system.time(monte_carlo(N))

#>				user		system	elapsed

#>			2.828			0.008			2.842

In	contrast,	a	more	R-centric	approach	would	be:

monte_carlo_vec	=	function(N)	mean(runif(N)^2	>	runif(N))

The	monte_carlo_vec()	function	contains	(at	least)	four	aspects	of	vectorization:

The	runif()	function	call	is	now	fully	vectorized.



We	raise	entire	vectors	to	a	power	via	^.

Comparisons	using	>	are	vectorized.

Using	mean()	is	quicker	than	an	equivalent	for	loop.

The	function	monte_carlo_vec()	is	around	30	times	faster	than	monte_carlo().

Figure	3-1.	Example	of	Monte	Carlo	integration.	To	estimate	the	area	under	the	curve,	throw	random	points	at	the	graph
and	count	the	number	of	points	that	lie	under	the	curve.

Exercise
1.	 Verify	that	monte_carlo_vec()	is	faster	than	monte_carlo().	How	does	this	relate	to

the	number	of	darts	(i.e.,	the	size	of	N)	that	is	used?



Communicating	with	the	User
When	we	create	a	function,	we	often	want	the	function	to	give	efficient	feedback	on	the
current	state.	For	example,	are	there	missing	arguments	or	has	a	numerical	calculation	failed?
There	are	three	main	techniques	for	communicating	with	the	user.



Fatal	Errors:	stop()
Fatal	errors	are	raised	by	calling	stop()	(i.e.,	execution	is	terminated).	When	stop()	is	called,
there	is	no	way	for	a	function	to	continue.	For	instance,	when	we	generate	random	numbers
using	rnorm(),	the	first	argument	is	the	sample	size,	n.	If	the	number	of	observations	to	return
is	less	than	1,	an	error	is	raised.	When	we	need	to	raise	an	error,	we	should	do	so	as	quickly
as	possible;	otherwise,	it’s	a	waste	of	resources.	Hence,	the	first	few	lines	of	a	function
typically	perform	argument	checking.

Suppose	we	call	a	function	that	raises	an	error.	What	then?	Efficient,	robust	code	catches	the
error	and	handles	it	appropriately.	Errors	can	be	caught	using	try()	and	tryCatch().	For
example,

#	Suppress	the	error	message

good	=	try(1	+	1,	silent	=	TRUE)

bad	=	try(1	+	"1",	silent	=	TRUE)

When	we	inspect	the	objects,	the	variable	good	just	contains	the	number	2:

good

#>	[1]	2

However,	the	bad	object	is	a	character	string	with	class	try-error	and	a	condition	attribute
that	contains	the	error	message:

bad

#>	[1]	"Error	in	1	+	\"1\"	:	non-numeric	argument	to	binary	operator\n"

#>	attr(,"class")

#>	[1]	"try-error"

#>	attr(,"condition")

#>	<simpleError	in	1	+	"1":	non-numeric	argument	to	binary	operator>

We	can	use	this	information	in	a	standard	conditional	statement:

if(class(bad)	==	"try-error")

		#	Do	something

Further	details	on	error	handling,	as	well	as	some	excellent	advice	on	general	debugging
techniques,	are	given	in	Advanced	R	by	Hadley	Wickham	(CRC	Press).



Warnings:	warning()
Warnings	are	generated	using	the	warning()	function.	When	a	warning	is	raised,	it	indicates
potential	problems.	For	example,	mean(NULL)	returns	NA	and	also	raises	a	warning.

When	we	come	across	a	warning	in	our	code,	it	is	important	to	solve	the	problem	and	not	just
ignore	the	issue.	While	ignoring	warnings	saves	time	in	the	short	term,	warnings	can	often
mask	deeper	issues	that	have	crept	into	our	code.

WARNING
Warnings	can	be	hidden	using	suppressWarnings().



Informative	Output:	message()	and	cat()
To	give	informative	output,	use	the	message()	function.	For	example,	in	the	poweRlaw
package,	the	message()	function	is	used	to	give	the	user	an	estimate	of	expected	run	time.
Providing	a	rough	estimate	of	how	long	the	function	takes	allows	the	user	to	optimize	their
time.	Similar	to	warnings,	messages	can	be	suppressed	with	suppressMessages().

Another	function	used	for	printing	messages	is	cat().	In	general,	cat()	should	only	be	used
in	print()/show()	methods.	For	example,	look	at	the	function	definition	of	the	S3	print
method	for	difftime	objects:	getS3method("print",	"difftime").

Exercise
1.	 The	stop()	function	has	an	argument	call.	that	indicates	if	the	function	call	should

be	part	of	the	error	message.	Create	a	function	and	experiment	with	this	option.



Invisible	Returns
The	invisible()	function	allows	you	to	return	a	temporarily	invisible	copy	of	an	object.
This	is	particularly	useful	for	functions	that	return	values	that	can	be	assigned,	but	are	not
printed	when	they	are	not	assigned.	For	example,	suppose	we	have	a	function	that	plots	the
data	and	fits	a	straight	line:

regression_plot	=	function(x,	y,	...)	{

		#	Plot	and	pass	additional	arguments	to	default	plot	method

		plot(x,	y,	...)

		#	Fit	regression	model

		model	=	lm(y	~	x)

		#	Add	line	of	best	fit	to	the	plot

		abline(model)

		invisible(model)

}

When	the	function	is	called,	a	scattergraph	is	plotted	with	the	line	of	best	fit,	but	the	output	is
invisible.	However,	when	we	assign	the	function	to	an	object	(i.e.,	out	=	regression_plot(x,
y)),	the	variable	out	contains	the	output	of	the	lm()	call.

Another	example	is	hist().	Typically,	we	don’t	want	anything	displayed	in	the	console	when
we	call	the	function:

hist(x)

However,	if	we	assign	the	output	to	an	object,	out	=	hist(x),	the	object	out	is	actually	a	list
containing,	inter	alia,	information	on	the	midpoints,	breaks,	and	counts.



Factors
Factors	are	much	maligned	objects.	While	at	times	they	are	awkward,	they	do	have	their	uses.
A	factor	is	used	to	store	categorical	variables.	This	data	type	is	unique	to	R	(or	at	least	not
common	among	programming	languages).	The	difference	between	factors	and	strings	is
important	because	R	treats	factors	and	strings	differently.	Although	factors	look	similar	to
character	vectors,	they	are	actually	integers.	This	leads	to	initially	surprising	behavior:

x	=	4:6

c(x)

#>	[1]	4	5	6

c(factor(x))

#>	[1]	1	2	3

In	this	case,	the	c()	function	is	using	the	underlying	integer	representation	of	the	factor.
Dealing	with	the	wrong	case	of	behavior	is	a	common	source	of	inefficiency	for	R	users.

Often,	categorical	variables	get	stored	as	1,	2,	3,	4,	and	5,	with	associated	documentation
elsewhere	that	explains	what	each	number	means.	This	is	clearly	a	pain.	Alternatively,	we
store	the	data	as	a	character	vector.	While	this	is	fine,	the	semantics	are	wrong	because	it
doesn’t	convey	that	this	is	a	categorical	variable.	It’s	not	sensible	to	say	that	you	should
always	or	never	use	factors,	since	factors	have	both	positive	and	negative	features.	Instead,	we
need	to	examine	each	case	individually.

As	a	general	rule,	if	your	variable	has	an	inherent	order	(e.g.,	small	versus	large)	or	you	have
a	fixed	set	of	categories,	then	you	should	consider	using	a	factor.



Inherent	Order
Factors	can	be	used	for	ordering	in	graphics.	For	instance,	suppose	we	have	a	dataset	where
the	variable	type	takes	one	of	three	values,	small,	medium,	or	large.	Clearly,	there	is	an
ordering.	Using	a	standard	boxplot()	call,

boxplot(y	~	type)

would	create	a	boxplot	where	the	x-axis	was	alphabetically	ordered.	By	converting	type	into	a
factor,	we	can	easily	specify	the	correct	ordering.

boxplot(y	~	factor(type,	levels	=	c("Small",	"Medium",	"Large")))

WARNING
Most	users	interact	with	factors	via	the	read.csv()	function,	where	character	columns	are	automatically
converted	to	factors.	This	feature	can	be	irritating	if	our	data	is	messy	and	we	want	to	clean	and	recode	variables.
Typically	when	reading	in	data	via	read.csv(),	we	use	the	stringsAsFactors	=	FALSE	argument.	Although	this
argument	can	be	added	to	the	global	options()	list	and	placed	in	the	.Rprofile,	this	leads	to	nonportable	code,	so
should	be	avoided.



Fixed	Set	of	Categories
Suppose	our	dataset	relates	to	months	of	the	year:

m	=	c("January",	"December",	"March")

If	we	sort	m	in	the	usual	way,	sort(m),	we	perform	standard	alphanumeric	ordering;	placing
December	first.	This	is	technically	correct,	but	not	that	helpful.	We	can	use	factors	to	remedy
this	problem	by	specifying	the	admissible	levels:

#	month.name	contains	the	12	months

fac_m	=	factor(m,	levels	=	month.name)

sort(fac_m)

#>	[1]	January		March				December

#>	12	Levels:	January	February	March	April	May	June	July	August	...	December

Exercise
1.	 Factors	are	slightly	more	space-efficient	than	characters.	Create	a	character	vector

and	corresponding	factor,	and	use	pryr::object_size()	to	calculate	the	space
needed	for	each	object.



The	Apply	Family
The	apply	functions	can	be	an	alternative	to	writing	for	loops.	The	general	idea	is	to	apply	(or
map)	a	function	to	each	element	of	an	object.	For	example,	you	can	apply	a	function	to	each
row	or	column	of	a	matrix.	A	list	of	available	functions	and	their	descriptions	is	given	in
Table	3-2.	In	general,	all	apply	functions	have	similar	properties:

Each	function	takes	at	least	two	arguments:	an	object	and	another	function.	The	function
is	passed	as	an	argument.

Every	apply	function	has	the	dots	(...)	argument,	which	is	used	to	pass	on	arguments	to
the	function	provided	to	the	FUN	argument.	sapply(list((1:3)^2,	2:7),	mean,	trim
=	0.4),	for	example,	passes	the	trip	argument	to	the	mean	function	call	for	each	vector
in	the	list.

Using	apply	functions	when	possible	can	lead	to	shorter,	more	succinct,	idiomatic	R	code.	In
this	section,	we	will	cover	the	three	main	functions,	apply(),	lapply(),	and	sapply().	Since
the	apply	functions	are	covered	in	most	R	textbooks,	we	just	give	a	brief	introduction	to	the
topic	and	provide	pointers	to	other	resources	at	the	end	of	this	section.

NOTE
Most	people	rarely	use	the	other	apply	functions.	For	example,	I	have	only	used	eapply()	once.	Students	in	my
class	uploaded	R	scripts.	Using	source(),	I	was	able	to	read	in	the	scripts	to	a	separate	environment.	I	then
applied	a	marking	scheme	to	each	environment	using	eapply().	Using	separate	environments,	I	avoided	object
name	clashes.

Table	3-2.	The	apply	family	of	functions	from
base	R

Function Description

apply Apply	functions	over	array	margins

by Apply	a	function	to	a	data	frame	split	by	factors

eapply Apply	a	function	over	values	in	an	environment

lapply Apply	a	function	over	a	list	or	vector

mapply Apply	a	function	to	multiple	list	or	vector	arguments

rapply Recursively	apply	a	function	to	a	list

tapply Apply	a	function	over	a	ragged	array



The	apply()	function	is	used	to	apply	a	function	to	each	row	or	column	of	a	matrix.	In	many
data	science	problems,	this	is	a	common	task.	For	example,	to	calculate	the	standard	deviation
of	the	row:

data("ex_mat",	package	=	"efficient")

#	MARGIN=1:	corresponds	to	rows

row_sd	=	apply(ex_mat,	1,	sd)

The	first	argument	of	apply()	is	the	object	of	interest.	The	second	argument	is	the	MARGIN.
This	is	a	vector	giving	the	subscripts	that	the	function	(the	third	argument)	will	be	applied
over.	When	the	object	is	a	matrix,	a	margin	of	1	indicates	rows,	and	2	indicates	columns.	So
to	calculate	the	column	standard	deviations,	the	second	argument	is	changed	to	2:

col_med	=	apply(ex_mat,	2,	sd)

Additional	arguments	can	be	passed	to	the	function	that	is	to	be	applied	to	the	data.	For
example,	to	pass	the	na.rm	argument	to	the	sd()	function,	we	have:

row_sd	=	apply(ex_mat,	1,	sd,	na.rm	=	TRUE)

The	apply()	function	also	works	on	higher	dimensional	arrays;	a	one-dimensional	array	is	a
vector,	a	two-dimensional	array	is	a	matrix.

The	lapply()	function	is	similar	to	apply().	The	main	differences	are	that	the	input	types	are
vectors	or	lists	and	the	return	type	is	a	list.	Essentially,	we	apply	a	function	to	each	element	of
a	list	or	vector.	The	functions	sapply()	and	vapply()	are	similar	to	lapply(),	but	the	return
type	is	not	necessarily	a	list.



Example:	Movies	Dataset
The	internet	movie	database	is	a	website	that	collects	movie	data	supplied	by	studios	and	fans.
It	is	one	of	the	largest	movie	databases	on	the	web	and	is	maintained	by	Amazon.	The
ggplot2movies	package	contains	about	60,000	movies	stored	as	a	data	frame:

data(movies,	package	=	"ggplot2movies")

Movies	are	rated	between	1	and	10	by	fans.	Columns	7	to	16	of	the	movies	dataset	gives	the
percentage	of	voters	for	a	particular	rating.

ratings	=	movies[,	7:16]

For	example,	4.5%	of	voters	rated	the	first	movie	a	1:

ratings[1,	]

#>			r1		r2		r3		r4			r5			r6			r7			r8		r9		r10

#>	1	4.5	4.5	4.5	4.5	14.5	24.5	24.5	14.5	4.5	4.5

We	can	use	the	apply()	function	to	investigate	voting	patterns.	The	function
nnet::which.is.max()	finds	the	maximum	position	in	a	vector,	but	breaks	ties	at	random;
which.max()	just	returns	the	first	value.	Using	apply(),	we	can	easily	determine	the	most
popular	rating	for	each	movie	and	plot	the	results:

popular	=	apply(ratings,	1,	nnet::which.is.max)

plot(table(popular))

Figure	3-2	highlights	the	fact	that	voting	patterns	are	clearly	not	uniform	between	1	and	10.
The	most	popular	vote	is	the	highest	rating,	10.	Clearly	if	you	went	to	the	trouble	of	voting
for	a	movie,	it	was	either	very	good	or	very	bad	(there	is	also	a	peak	at	1).	Rating	a	movie	7
is	also	a	popular	choice	(search	the	web	for	“most	popular	number”	and	you	will	see	that	7
dominates	the	rankings.)

http://imdb.com/


Figure	3-2.	Movie	voting	preferences



Type	Consistency
When	programming,	it	is	helpful	if	the	return	value	from	a	function	always	takes	the	same
form.	Unfortunately,	not	all	base	R	functions	follow	this	idiom.	For	example,	the	functions
sapply()	and	[.data.frame()	aren’t	type-consistent:

two_cols	=	data.frame(x	=	1:5,	y	=	letters[1:5])

zero_cols	=	data.frame()

sapply(two_cols,	class)		#	a	character	vector

sapply(zero_cols,	class)	#	a	list

two_cols[,	1:2]										#	a	data.frame

two_cols[,	1]												#	an	integer	vector

This	can	cause	unexpected	problems.	The	functions	lapply()	and	vapply()	are	type-
consistent,	as	are	dplyr::select()	and	dplyr:filter().	The	purrr	package	has	some	type-
consistent	alternatives	to	base	R	functions.	For	example,	you	can	use	map_dbl()	to	replace
Map(),	and	flatten_df()	to	replace	unlist().

Other	resources
Almost	every	R	book	has	a	section	on	the	apply	function.	Here	are	resources	we	feel	are	most
helpful:

Each	function	has	a	number	of	examples	in	the	associated	help	page.	You	can	directly
access	the	examples	using	the	example()	function.	For	example,	to	run	the	apply()
examples,	use	example("apply").

There	is	a	very	detailed	Stack	Overflow	answer	description	of	when,	where,	and	how	to
use	each	of	the	functions.

In	a	similar	vein,	Neil	Saunders	has	a	nice	blog	post	giving	an	overview	of	the	functions.

The	apply	functions	are	an	example	of	functional	programming.	Chapter	16	of	R	for
Data	Science	by	Grolemund	and	Wickham	(O’Reilly)	describes	the	interplay	between
loops	and	functional	programming	in	more	detail,	whereas	Advanced	R	by	Hadley
Wickham	(CRC	Press)	gives	a	more	in-depth	description	of	the	topic.

Exercises
1.	 Rewrite	the	sapply()	preceding	function	calls	using	vapply()	to	ensure	type

consistency.

2.	 How	would	you	make	subsetting	data	frames	with	[	type	consistent?	Hint:	look	at	the
drop	argument.

http://bit.ly/sapplyvlapply
http://bit.ly/introapplyR
http://shop.oreilly.com/product/0636920034407.do


Caching	Variables
A	straightforward	method	for	speeding	up	code	is	to	calculate	objects	once	and	reuse	the
value	when	necessary.	This	could	be	as	simple	as	replacing	sd(x)	in	multiple	function	calls
with	the	object	sd_x,	which	is	defined	once	and	reused.	For	example,	suppose	we	wish	to
normalize	each	column	of	a	matrix.	However,	instead	of	using	the	standard	deviation	of	each
column,	we	will	use	the	standard	deviation	of	the	entire	dataset:

apply(x,	2,	function(i)	mean(i)	/	sd(x))

This	is	inefficient	because	the	value	of	sd(x)	is	constant,	so	recalculating	the	standard
deviation	for	every	column	is	unnecessary.	Instead,	we	should	evaluate	once	and	store	the
result:

sd_x	=	sd(x)

apply(x,	2,	function(i)	mean(i)	/	sd_x)

If	we	compare	the	two	methods	on	a	100	row	by	1,000	column	matrix,	the	cached	version	is
around	100	times	faster	(Figure	3-3).

Figure	3-3.	Performance	gains	obtained	from	caching	the	standard	deviation	in	a	100	by	1000	matrix



A	more	advanced	form	of	caching	is	to	use	the	memoise	package.	If	a	function	is	called
multiple	times	with	the	same	input,	it	may	be	possible	to	speed	things	up	by	keeping	a	cache	of
known	answers	that	it	can	retrieve.	The	memoise	package	allows	us	to	easily	store	the	value	of
a	function	call	and	returns	the	cached	result	when	the	function	is	called	again	with	the	same
arguments.	This	package	trades	off	memory	versus	speed,	since	the	memoised	function	stores
all	previous	inputs	and	outputs.	To	cache	a	function,	we	simply	pass	the	function	to	the
memoise	function.

The	classic	memoise	example	is	the	factorial	function.	Another	example	is	to	limit	use	to	a
web	resource.	For	example,	suppose	we	are	developing	a	Shiny	(an	interactive	graphic)
application	in	which	the	user	can	fit	the	regression	line	to	data.	The	user	can	remove	points
and	refit	the	line.	An	example	function	would	be:

#	Argument	indicates	row	to	remove

plot_mpg	=	function(row_to_remove)	{

		data(mpg,	package	=	"ggplot2")

		mpg	=	mpg[-row_to_remove,	]

		plot(mpg$cty,	mpg$hwy)

		lines(lowess(mpg$cty,	mpg$hwy),	col	=	2)

}

We	can	use	memoise	to	speed	up	by	caching	results.	A	quick	benchmark

m_plot_mpg	=	memoise(plot_mpg)

microbenchmark(times	=	10,	unit	=	"ms",	m_plot_mpg(10),	plot_mpg(10))

#>	Unit:	milliseconds

#>												expr			min				lq		mean	median				uq			max	neval	cld

#>		m_plot_mpg(10)		0.04	4e-02		0.07		8e-02	8e-02			0.1				10		a

#>				plot_mpg(10)	40.20	1e+02	95.52		1e+02	1e+02	107.1				10			b

suggests	that	we	can	obtain	a	100-fold	speed-up.

Exercise
1.	 Construct	a	box	plot	of	timings	for	the	standard	plotting	function	and	the	memoised

version.



Function	Closures

WARNING
The	following	section	is	meant	to	provide	an	introduction	to	function	closures	with	example	use	cases.	See
Advanced	R	by	Hadley	Wickham	(CRC	Press)	for	a	detailed	introduction.

More	advanced	caching	is	available	using	function	closures.	A	closure	in	R	is	an	object	that
contains	functions	bound	to	the	environment	the	closure	was	created	in.	Technically,	all
functions	in	R	have	this	property,	but	we	use	the	term	function	closure	to	denote	functions
where	the	environment	is	not	in	.GlobalEnv.	One	of	the	environments	associated	with	a
function	is	known	as	the	enclosing	environment;	that	is,	where	the	function	was	created.	This
allows	us	to	store	values	between	function	calls.	Suppose	we	want	to	create	a	stopwatch	type
function.	This	is	easily	achieved	with	a	function	closure:

#	<<-	assigns	values	to	the	parent	environment

stop_watch	=	function()	{

		start_time	=	NULL

		start	=	function()	start_time	<<-	Sys.time()

		stop	=	function()	{

				stop_time	=	Sys.time()

				difftime(stop_time,	start_time)

		}

		list(start	=	start,	stop	=	stop)

}

watch	=	stop_watch()

The	object	watch	is	a	list	that	contains	two	functions.	One	function	for	starting	the	timer:

watch$start()

and	the	other	for	stopping	the	timer:

watch$stop()

Without	using	function	closures,	the	stopwatch	function	would	be	longer,	more	complex,	and
therefore	more	inefficient.	When	used	properly,	function	closures	are	very	useful
programming	tools	for	writing	concise	code.

Exercises
1.	 Write	a	stopwatch	function	without	using	function	closures.

2.	 Many	stopwatches	have	the	ability	to	measure	not	only	your	overall	time	but	also
your	individual	laps.	Add	a	lap()	function	to	the	stop_watch()	function	that	will
record	individual	times,	while	still	keeping	track	of	the	overall	time.



NOTE
A	related	idea	to	function	closures	is	nonstandard	evaluation	(NSE),	or	programming	on	the	language.	NSE	crops
up	all	the	time	in	R.	For	example,	when	we	execute	plot(height,	weight),	R	automatically	labels	the	x-	and	y-
axis	of	the	plot	with	height	and	weight.	This	is	a	powerful	concept	that	enables	us	to	simplify	code.	More	detail	is
given	in	the	“Nonstandard	evaluation”	section	of	Advanced	R	by	Hadley	Wickham.



The	Byte	Compiler
The	compiler	package,	written	by	R	Core	member	Luke	Tierney,	has	been	part	of	R	since
version	2.13.0.	The	compiler	package	allows	R	functions	to	be	compiled,	resulting	in	a	byte
code	version	that	may	run	faster.1	The	compilation	process	eliminates	a	number	of	costly
operations	the	interpreter	has	to	perform,	such	as	variable	lookup.

Since	R	2.14.0,	all	of	the	standard	functions	and	packages	in	base	R	are	precompiled	into	byte
code.	This	is	illustrated	by	the	base	function	mean():

getFunction("mean")

#>	function	(x,	...)

#>	UseMethod("mean")

#>	<bytecode:	0x48eec88>

#>	<environment:	namespace:base>

The	third	line	contains	the	bytecode	of	the	function.	This	means	that	the	compiler	package	has
translated	the	R	function	into	another	language	that	can	be	interpreted	by	a	very	fast
interpreter.	Amazingly,	the	compiler	package	is	almost	entirely	pure	R,	with	just	a	few	C
support	routines.



Example:	The	Mean	Function
The	compiler	package	comes	with	R,	so	we	just	need	to	load	the	package	in	the	usual	way:

library("compiler")

Next,	we	create	an	inefficient	function	for	calculating	the	mean.	This	function	takes	in	a
vector,	calculates	the	length,	and	then	updates	the	m	variable.

mean_r	=	function(x)	{

		m	=	0

		n	=	length(x)

		for(i	in	seq_len(n))

				m	=	m	+	x[i]	/	n

		m

}

This	is	clearly	a	bad	function	and	we	should	just	use	the	mean()	function,	but	it’s	a	useful
comparison.	Compiling	the	function	is	straightforward:

cmp_mean_r	=	cmpfun(mean_r)

Then	we	use	the	microbenchmark()	function	to	compare	the	three	variants:

#	Generate	some	data

x	=	rnorm(1000)

microbenchmark(times	=	10,	unit	=	"ms",	#	milliseconds

										mean_r(x),	cmp_mean_r(x),	mean(x))

#>	Unit:	milliseconds

#>											expr			min				lq		mean	median				uq		max	neval	cld

#>						mean_r(x)	0.358	0.361	0.370		0.363	0.367	0.43				10			c

#>		cmp_mean_r(x)	0.050	0.051	0.052		0.051	0.051	0.07				10		b

#>								mean(x)	0.005	0.005	0.008		0.007	0.008	0.03				10	a

The	compiled	function	is	around	seven	times	faster	than	the	uncompiled	function.	Of	course,
the	native	mean()	function	is	faster,	but	compiling	does	make	a	significant	difference
(Figure	3-4).



Figure	3-4.	Comparsion	of	mean	functions



Compiling	Code
There	are	a	number	of	ways	to	compile	code.	The	easiest	is	to	compile	individual	functions
using	cmpfun(),	but	this	obviously	doesn’t	scale.	If	you	create	a	package,	you	can
automatically	compile	the	package	on	installation	by	adding

ByteCompile:	true

to	the	DESCRIPTION	file.	Most	R	packages	installed	using	install.packages()	are	not
compiled.	We	can	enable	(or	force)	packages	to	be	compiled	by	starting	R	with	the
environment	variable	R_COMPILE_PKGS	set	to	a	positive	integer	value	and	specify	that	we
install	the	package	from	source:

##	Windows	users	will	need	Rtools

install.packages("ggplot2",	type	=	"source")

Or,	if	we	want	to	avoid	altering	the	.Renviron	file,	we	can	specify	an	additional	argument:

install.packages("ggplot2",	type	=	"source",	INSTALL_opts	=	"--byte-compile")

A	final	option	is	to	use	just-in-time	(JIT)	compilation.2	The	enableJIT()	function	disables
JIT	compilation	if	the	argument	is	0.	Arguments	1,	2,	or	3	implement	different	levels	of
optimization.	JIT	can	also	be	enabled	by	setting	the	environment	variable	R_ENABLE_JIT	to
one	of	these	values.

TIP
We	recommend	setting	the	compile	level	to	the	maximum	value	of	3.

The	impact	of	compiling	on	install	will	vary	from	package	to	package.	For	packages	that
already	have	lots	of	precompiled	code,	speed	gains	will	be	small	(R	Core	Team	2016).

WARNING
Not	all	packages	work	when	compiled	on	installation.
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Chapter	4.	Efficient	Workflow

Efficient	programming	is	an	important	skill	for	generating	the	correct	result,	on	time.	Yet
coding	is	only	one	part	of	a	wider	skillset	needed	for	successful	outcomes	for	projects
involving	R	programming.	Unless	your	project	is	to	write	generic	R	code	(i.e.,	unless	you	are
on	the	R	Core	Team),	the	project	will	probably	transcend	the	confines	of	the	R	world;	it	must
engage	with	a	whole	range	of	other	factors.	In	this	context,	we	define	workflow	as	the	sum	of
practices,	habits,	and	systems	that	enable	productivity.1	To	some	extent,	workflow	is	about
personal	preferences.	Everyone’s	mind	works	differently	so	the	most	appropriate	workflow
varies	from	person	to	person	and	from	one	project	to	the	next.	Project	management	practices
will	also	vary	depending	on	the	scale	and	type	of	the	project.	It’s	a	big	topic,	but	it	can
usefully	be	condensed	into	five	top	tips.



Prerequisites
This	chapter	focuses	on	workflow.	For	project	planning	and	management,	we’ll	use	the
DiagrammeR	package.	For	project	reporting,	we’ll	focus	on	R	Markdown	and	knitr,	which
are	bundled	with	RStudio	(but	can	be	installed	independently	if	needed).	We’ll	suggest	other
packages	that	are	worth	investigating,	but	are	not	required	for	this	particular	chapter.

library("DiagrammeR")



Top	Five	Tips	for	Efficient	Workflow
1.	 Start	without	writing	code	but	with	a	clear	mind	and	perhaps	a	pen	and	paper.	This

will	ensure	that	you	keep	your	objectives	at	the	forefront	of	your	mind	without
getting	lost	in	the	technology.

2.	 Make	a	plan.	The	size	and	nature	will	depend	on	the	project	but	timelines,	resources,
and	chunking	the	work	will	make	you	more	effective	when	you	start.

3.	 Select	the	packages	you	will	use	for	implementing	the	plan	early.	Minutes	spent
researching	and	selecting	from	the	available	options	could	save	hours	in	the	future.

4.	 Document	your	work	at	every	stage:	work	can	only	be	effective	if	it’s	communicated
clearly	and	code	can	only	be	efficiently	understood	if	it’s	commented.

5.	 Make	your	entire	workflow	as	reproducible	as	possible.	knitr	can	help	with	this	in
the	phase	of	documentation.



A	Project	Planning	Typology
Appropriate	project	management	structures	and	workflow	depend	on	the	type	of	project	you
are	undertaking.	The	following	typology	demonstrates	the	links	between	project	type	and
project	management	requirements.2

Data	analysis
Here,	you	are	trying	to	explore	datasets	to	discover	something	interesting/answer	some
questions.	The	emphasis	is	on	speed	of	manipulating	your	data	to	generate	interesting
results.	Formality	is	less	important	in	this	type	of	project.	Sometimes	this	analysis
project	may	only	be	part	of	a	larger	project	(the	data	may	have	to	be	created	in	a	lab,	for
example).	How	the	data	analysts	interact	with	the	rest	of	the	team	may	be	as	important	for
the	project’s	success	as	how	they	interact	with	each	other.

Package	creation
Here	you	want	to	create	code	that	can	be	reused	across	projects,	possibly	by	people
whose	use	cases	you	don’t	know	(if	you	make	it	publicly	available).	The	emphasis	in	this
case	will	be	on	clarity	of	user	interface	and	documentation,	meaning	style	and	code
review	are	important.	Robustness	and	testing	are	important	in	this	type	of	project,	too.

Reporting	and	publishing
Here	you	are	writing	a	report,	journal	paper,	or	book.	The	level	of	formality	varies
depending	upon	the	audience,	but	you	have	additional	worries	like	how	much	code	it
takes	to	arrive	at	the	conclusions,	and	how	much	output	the	code	creates.

Software	applications
This	could	range	from	a	simple	Shiny	app	to	R	being	embedded	in	the	server	of	a	much
larger	piece	of	software.	Either	way,	since	there	is	limited	opportunity	for	human
interaction,	the	emphasis	is	on	robust	code	and	gracefully	dealing	with	failure.

Based	on	these	observations,	we	recommend	thinking	about	which	type	of	workflow,	file
structure,	and	project	management	system	suits	your	project	best.	Sometimes	it’s	best	not	to
be	prescriptive,	so	we	recommend	trying	different	working	practices	to	discover	which
works	best,	time	permitting.3

There	are,	however,	concrete	steps	that	can	be	taken	to	improve	workflow	in	most	projects
that	involve	R	programming.	Learning	them	will,	in	the	long	run,	improve	productivity	and
reproducibility.	With	these	motivations	in	mind,	the	purpose	of	this	chapter	is	simple:	to
highlight	some	key	ingredients	of	an	efficient	R	workflow.	It	builds	on	the	concept	of	an
R/RStudio	project,	introduced	in	Chapter	2,	and	is	ordered	chronologically	throughout	the
stages	involved	in	a	typical	project’s	lifespan,	from	inception	to	publication:

Project	planning



This	should	happen	before	any	code	has	been	written,	to	avoid	time	wasted	using	a
mistaken	analysis	strategy.	Project	management	is	the	art	of	making	project	plans
happen.

Package	selection
After	planning	your	project,	you	should	identify	which	packages	are	most	suitable	to
getting	the	work	done	quickly	and	effectively.	With	rapid	increases	in	the	number	and
performance	of	packages,	it	is	more	important	than	ever	to	consider	the	range	of	options
at	the	outset.	For	example,	*_join()	from	dplyr	is	often	more	appropriate	than	merge(),
as	we’ll	see	in	Chapter	6.

Publication
This	final	stage	is	relevant	if	you	want	your	R	code	to	be	useful	for	others	in	the	long
term.	To	this	end,	“Publication”	touches	on	documentation	using	knitr	and	the	much
stricter	approach	to	code	publication	of	package	development.



Project	Planning	and	Management
Good	programmers	working	on	a	complex	project	will	rarely	just	start	typing	code.	Instead,
they	will	plan	the	steps	needed	to	complete	the	task	as	efficiently	as	possible:	“smart
preparation	minimizes	work”	(Berkun	2005).	Although	search	engines	are	useful	for
identifying	the	appropriate	strategy,	trial-and-error	approaches	(e.g.,	typing	code	at	random
and	Googling	the	inevitable	error	messages)	are	usually	highly	inefficient.

Strategic	thinking	is	especially	important	during	a	project’s	inception:	if	you	make	a	bad
decision	early	on,	it	will	have	cascading	negative	impacts	throughout	the	project’s	entire
lifespan.	So	detrimental	and	ubiquitous	is	this	phenomenon	in	software	development	that	a
term	has	been	coined	to	describe	it:	technical	debt.	This	has	been	defined	as	“not	quite	right
code	which	we	postpone	making	right”	(Kruchten,	Nord,	and	Ozkaya	2012).	Dozens	of
academic	papers	have	been	written	on	the	subject,	but	from	the	perspective	of	beginning	a
project	(i.e.,	in	the	planning	stage,	where	we	are	now),	all	you	need	to	know	is	that	it	is
absolutely	vital	to	make	sensible	decisions	at	the	outset.	If	you	do	not,	your	project	may	be
doomed	to	failure	of	incessant	rounds	of	refactoring.

To	minimize	technical	debt	at	the	outset,	the	best	place	to	start	may	be	with	a	pen	and	paper
and	an	open	mind.	Sketching	out	your	ideas	and	deciding	precisely	what	you	want	to	do,	free
from	the	constraints	of	a	particular	piece	of	technology,	can	be	a	rewarding	exercise	before
you	begin.	Project	planning	and	visioning	can	be	a	creative	process	not	always	well-suited	to
the	linear	logic	of	computing,	despite	recent	advances	in	project	management	software,	some
of	which	are	outlined	in	the	bullet	points	that	follow.

Scale	can	loosely	be	defined	as	the	number	of	people	working	on	a	project.	It	should	be
considered	at	the	outset	because	the	importance	of	project	management	increases
exponentially	with	the	number	of	people	involved.	Project	management	may	be	trivial	for	a
small	project,	but	if	you	expect	it	to	grow,	implementing	a	structured	workflow	early	on
could	avoid	problems	later.	On	small	projects	consisting	of	a	one-off	script,	project
management	may	be	a	distracting	waste	of	time.	Large	projects	involving	dozens	of	people,
on	the	other	hand,	require	much	effort	dedicated	to	project	management:	regular	meetings,
division	of	labor,	and	a	scalable	project	management	system	to	track	progress,	issues,	and
priorities	will	inevitably	consume	a	large	proportion	of	the	project’s	time.	Fortunately,	a
multitude	of	dedicated	project	management	systems	have	been	developed	to	cater	to	projects
across	a	range	of	scales.	These	include,	in	rough	ascending	order	of	scale	and	complexity,	the
following:

The	interactive	code-sharing	site	GitHub,	which	is	described	in	more	detail	in	Chapter	9

ZenHub,	a	browser	plugin	that	is	“the	first	and	only	project	management	suite	that	works
natively	within	GitHub”

Web-based	and	easy-to-use	tools	such	as	Trello

https://github.com/
https://www.zenhub.io/
https://trello.com/


Dedicated	desktop	project	management	software	such	as	ProjectLibre	and	GanttProject

Fully	featured,	enterprise	scale,	open	source	project	management	systems	such	as
OpenProject	and	redmine

Regardless	of	the	software	(or	lack	thereof)	used	for	project	management,	it	involves
considering	the	project’s	aims	in	the	context	of	available	resources	(e.g.,	computational	and
programmer	resources),	project	scope,	time	scales,	and	suitable	software.	And	these	things
should	be	considered	together.	To	take	one	example,	is	it	worth	the	investment	of	time	needed
to	learn	a	particular	R	package	that	is	not	essential	to	completing	the	project	but	which	will
make	the	code	run	faster?	Does	it	make	more	sense	to	hire	another	programmer	or	invest	in
more	computational	resources	to	complete	an	urgent	deadline?

Minutes	spent	thinking	through	such	issues	before	writing	a	single	line	can	save	hours	in	the
future.	This	is	emphasized	in	books	such	as	The	Art	of	Project	Management	by	Scott	Berkun
(O’Reilly)	and	the	“Guide	to	the	Project	Management	Body	of	Knowledge”	by	PMBoK	and
useful	online	resources	such	those	by	teamgantt.com	and	lasa.org.uk,	which	focus	exclusively
on	project	planning.	This	section	condenses	some	of	the	most	important	lessons	from	this
literature	in	the	context	of	typical	R	projects	(i.e.,	those	that	involve	data	analysis,	modeling,
and	visualization).

http://bit.ly/Projectlibre
http://bit.ly/ganttProject
http://bit.ly/openpro
http://www.redmine.org/
http://teamgantt.com/guide-to-project-management/
http://bit.ly/lasaprojman


Chunking	Your	Work
Once	a	project	overview	has	been	devised	and	stored,	in	mind	(for	small	projects,	if	you	trust
that	as	storage	medium!)	or	written,	a	plan	with	a	timeline	can	be	drawn	up.	The	up-to-date
visualization	of	this	plan	can	be	a	powerful	reminder	to	you	and	collaborators	of	the	progress
on	the	project	so	far.	More	importantly,	the	timeline	provides	an	overview	of	what	needs	to	be
done	next.	Setting	start	dates	and	deadlines	for	each	task	will	help	prioritize	the	work	and
ensure	that	you	are	on	track.	Breaking	a	large	project	into	smaller	chunks	is	highly
recommended,	making	huge,	complex	tasks	more	achievable	and	modular	(PMBoK	2000).
Chunking	the	work	will	also	make	collaboration	easier,	as	we	shall	see	in	Chapter	5.

The	tasks	that	a	project	should	be	split	into	will	depend	on	the	nature	of	the	work.	The	phases
illustrated	in	Figure	4-1	represent	a	rough	starting	point,	not	a	template.	The	programming
phase	will	usually	need	to	be	split	into	at	least	data	tidying,	processing,	and	visualization.

Figure	4-1.	Schematic	illustrations	of	key	project	phases	and	levels	of	activity	over	time,	based	on	the	“Guide	to	the	Project
Management	Body	of	Knowledge”	(PMBoK	2000)



Making	Your	Workflow	SMART
A	more	rigorous	(but	potentially	onerous)	way	to	project	plan	is	to	divide	the	work	into	a
series	of	objectives	and	track	their	progress	throughout	the	project’s	duration.	One	way	to
check	if	an	objective	is	appropriate	for	action	and	review	is	by	using	the	SMART	criteria:

Specific:	is	the	objective	clearly	defined	and	self-contained?

Measurable:	is	there	a	clear	indication	of	its	completion?

Attainable:	can	the	target	be	achieved?

Realistic:	have	sufficient	resources	been	allocated	to	the	task?

Time-bound:	is	there	an	associated	completion	date	or	milestone?

If	the	answer	to	each	of	these	questions	is	yes,	the	task	is	likely	to	be	suitable	to	include	in	the
project’s	plan.	Note	that	this	does	not	mean	all	project	plans	need	to	be	uniform.	A	project
plan	can	take	many	forms,	including	a	short	document,	a	Gantt	chart	(see	Figure	4-2),	or
simply	a	clear	vision	of	the	project’s	steps	in	mind.

Figure	4-2.	A	Gantt	chart	created	using	DiagrammeR	illustrating	the	steps	needed	to	complete	this	book	at	an	early	stage
of	its	development



Visualizing	Plans	with	R
Various	R	packages	can	help	visualize	the	project	plan.	Though	these	are	useful,	they	cannot
compete	with	the	dedicated	project	management	software	outlined	at	the	outset	of	this	section.
However,	if	you	are	working	on	a	relatively	simple	project,	it	is	useful	to	know	that	R	can
help	represent	and	keep	track	of	your	work.	Packages	for	plotting	project	progress	include:4

plan
Provides	basic	tools	to	create	burndown	charts	(which	concisely	show	whether	a	project
is	on	time	or	not)	and	Gantt	charts.

plotrix
A	general-purpose	plotting	package,	provides	basic	Gantt	chart-plotting	functionality.
Enter	example(gantt.chart)	for	details.

DiagrammeR
A	new	package	for	creating	network	graphs	and	other	schematic	diagrams	in	R.	This
package	provides	an	R	interface	to	simple	flowchart	file	formats	such	as	mermaid	and
GraphViz.

The	small	example	that	follows	(which	provides	the	basis	for	creating	charts	like	Figure	4-2)
illustrates	how	DiagrammeR	can	take	simple	text	inputs	to	create	informative	up-to-date	Gantt
charts.	Such	charts	can	greatly	help	with	the	planning	and	task	management	of	long	and
complex	R	projects,	as	long	as	they	do	not	take	away	valuable	programming	time	from	core
project	objectives.

library("DiagrammeR")

#	Define	the	Gantt	chart	and	plot	the	result	(not	shown)

mermaid("gantt

								Section	Initiation

								Planning											:a1,	2016-01-01,	10d

								Data	processing				:after	a1		,	30d")

In	this	example,	gantt	defines	the	subsequent	data	layout.	Section	refers	to	the	project’s
section	(useful	for	large	projects,	with	milestones),	and	each	new	line	refers	to	a	discrete	task.
Planning,	for	example,	has	the	code	a,	begins	on	the	first	day	of	2016,	and	lasts	for	10	days.
See	knsv.github.io/mermaid/gantt.html	for	more	detailed	documentation.

Exercises
1.	 What	are	the	three	most	important	work	chunks	of	your	current	R	project?

2.	 What	is	the	meaning	of	SMART	objectives	(see	Making	Your	Workflow	SMART)?

3.	 Run	the	code	chunk	at	the	end	of	this	section	to	see	the	output.

4.	 Bonus	exercise:	modify	this	code	to	create	a	basic	Gantt	chart	of	an	R	project	you	are

https://cran.r-project.org/web/packages/plan/
https://cran.r-project.org/web/packages/plotrix/index.html
http://rich-iannone.github.io/DiagrammeR/
https://github.com/knsv/mermaid
https://github.com/ellson/graphviz
http://knsv.github.io/mermaid/gantt.html


working	on.



Package	Selection
A	good	example	of	the	importance	of	prior	planning	to	minimize	effort	and	reduce	technical
debt	is	package	selection.	An	inefficient,	poorly	supported,	or	simply	outdated	package	can
waste	hours.	When	a	more	appropriate	alternative	is	available,	this	waste	can	be	prevented	by
prior	planning.	There	are	many	poor	packages	on	CRAN	and	much	duplication	so	it’s	easy	to
go	wrong.	Just	because	a	certain	package	can	solve	a	particular	problem	doesn’t	mean	that	it
should.

Used	well,	however,	packages	can	greatly	improve	productivity:	not	reinventing	the	wheel	is
part	of	the	ethos	of	open	source	software.	If	someone	has	already	solved	a	particular	technical
problem,	you	don’t	have	to	rewrite	their	code,	which	allows	you	to	focus	on	solving	the
applied	problem.	Furthermore,	because	R	packages	are	generally	(but	not	always)	written	by
competent	programmers	and	subject	to	user	feedback,	they	may	work	faster	and	more
effectively	than	the	hastily	prepared	code	you	may	have	written.	All	R	code	is	open	source	and
potentially	subject	to	peer	review.	A	prerequisite	of	publishing	an	R	package	is	that	developer
contact	details	must	be	provided,	and	many	packages	provide	a	site	for	issue	tracking.
Furthermore,	R	packages	can	increase	programmer	productivity	by	dramatically	reducing	the
amount	of	code	they	need	to	write	because	all	the	code	is	packaged	in	functions	behind	the
scenes.

Let’s	look	at	an	example.	Imagine	a	project	for	which	you	would	like	to	find	the	distance
between	sets	of	points	(origins,	o,	and	destinations,	d)	on	the	Earth’s	surface.	Background
reading	shows	that	a	good	approximation	of	great	circle	distance,	which	accounts	for	the
curvature	of	the	Earth,	can	be	made	by	using	the	Haversine	formula,	which	you	duly
implement,	involving	much	trial	and	error:

#	Function	to	convert	degrees	to	radians

deg2rad	=	function(deg)	deg	*	pi	/	180

#	Create	origins	and	destinations

o	=	c(lon	=	-1.55,	lat	=	53.80)

d	=	c(lon	=	-1.61,	lat	=	54.98)

#	Convert	to	radians

o_rad	=	deg2rad(o)

d_rad	=	deg2rad(d)

#	Find	difference	in	degrees

delta_lon	=	(o_rad[1]	-	d_rad[1])

delta_lat	=	(o_rad[2]	-	d_rad[2])

#	Calculate	distance	with	Haversine	formula

a	=	sin(delta_lat	/	2)^2	+	cos(o_rad[2])	*	cos(d_rad[2])	*	sin(delta_lon	/	2)^2

c	=	2	*	asin(min(1,	sqrt(a)))

(d_hav1	=	6371	*	c)	#	multiply	by	Earth's	diameter

#>	[1]	131

This	method	works	but	it	takes	time	to	write,	test,	and	debug.	It	would	be	much	better	to
package	it	up	into	a	function.	Or	even	better,	use	a	function	that	someone	else	has	written	and
put	in	a	package:



#	Find	great	circle	distance	with	geosphere

(d_hav2	=	geosphere::distHaversine(o,	d))

#>	[1]	131415

The	difference	between	the	hardcoded	method	and	the	package	method	is	striking.	One	is
seven	lines	of	tricky	R	code	involving	many	subsetting	stages	and	small,	similar	functions
(e.g.,	sin	and	asin),	which	are	easy	to	confuse.	The	other	is	one	line	of	simple	code.	The
package	method	using	geosphere	took	perhaps	100th	of	the	time	and	gave	a	more	accurate
result	(because	it	uses	a	more	accurate	estimate	of	the	diameter	of	the	Earth).	This	means	that
a	couple	of	minutes	searching	for	a	package	to	estimate	great	circle	distances	would	have
been	time	well	spent	at	the	outset	of	this	project.	But	how	do	you	search	for	packages?



Searching	for	R	Packages
Building	on	the	preceding	example,	how	can	you	find	out	if	there	is	a	package	to	solve	your
particular	problem?	The	first	stage	is	to	guess:	if	it	is	a	common	problem,	someone	has
probably	tried	to	solve	it.	The	second	stage	is	to	search.	A	simple	Google	query,	haversine
formula	R,	returned	a	link	to	the	geosphere	package	in	the	second	result	(a	hardcoded
implementation	was	first).

Beyond	Google,	there	are	also	several	sites	for	searching	for	packages	and	functions.
rdocumentation.org	provides	a	multifield	search	environment	to	pinpoint	the	function	or
package	you	need.	Amazingly,	the	search	for	haversine	in	the	Description	field	yielded	10
results	from	eight	packages:	R	has	at	least	eight	implementations	of	the	Haversine	formula!
This	shows	the	importance	of	careful	package	selection	as	there	are	often	many	packages	that
do	the	same	job,	as	we	will	see	in	the	next	section.	There	is	also	a	way	to	find	the	function
from	within	R,	with	RSiteSearch(),	which	opens	a	URL	in	your	browser	linking	to	a	number
of	functions	(40)	and	vignettes	(2)	that	mention	the	text	string:

#	Search	CRAN	for	mentions	of	haversine

RSiteSearch("haversine")

http://www.r-bloggers.com/great-circle-distance-calculations-in-r/
http://www.rdocumentation.org/


How	to	Select	a	Package
Due	to	the	conservative	nature	of	base	R	development,	which	rightly	prioritizes	stability	over
innovation,	much	of	the	innovation	and	performance	gains	in	the	R	ecosystem	have	occurred
in	recent	years	in	the	packages.	The	increased	ease	of	package	development	(Wickham	2015c)
and	interfacing	with	other	languages	(Eddelbuettel	et	al.	2011)	has	accelerated	their	number,
quality,	and	efficiency.	An	additional	factor	has	been	the	growth	in	collaboration	and	peer
review	in	package	development,	driven	by	code-sharing	websites	such	as	GitHub	and	online
communities	such	as	ROpenSci	for	peer	reviewing	code.

Performance,	stability,	and	ease	of	use	should	be	high	on	the	priority	list	when	choosing
which	package	to	use.	Another	more	subtle	factor	is	that	some	packages	work	better	together
than	others.	The	R	package	ecosystem	is	composed	of	interrelated	packages.	Knowing
something	of	these	interdependencies	can	help	you	select	a	package	suite	when	the	project
demands	a	number	of	diverse	yet	interrelated	programming	tasks.	The	tidyverse,	for	example,
contains	many	interrelated	packages	that	work	well	together,	such	as	readr,	tidyr,	and	dplyr.5
These	may	be	used	together	to	read,	tidy,	and	then	process	the	data,	as	outlined	in	the
subsequent	sections.

There	is	no	hard	and	fast	rule	about	which	package	you	should	use	and	new	packages	are
emerging	all	the	time.	The	ultimate	test	will	be	empirical	evidence:	does	it	get	the	job	done	on
your	data?	However,	the	following	criteria	should	provide	a	good	indication	of	whether	a
package	is	worth	an	investment	of	your	precious	time,	or	even	installing	on	your	computer:

Is	it	mature?
The	more	time	a	package	is	available,	the	more	time	it	will	have	for	obvious	bugs	to	be
ironed	out.	The	age	of	a	package	on	CRAN	can	be	seen	from	its	Archive	page	on	CRAN.
We	can	see	from	the	ggplot2	archive,	for	example,	that	ggplot2	was	first	released	on	the
June	10,	2007	and	that	it	has	had	29	releases.	The	most	recent	of	these	at	the	time	of
writing	was	ggplot2	2.1.0;	reaching	1	or	2	in	the	first	digit	of	package	versions	is
usually	an	indication	from	the	package	author	that	the	package	has	reached	a	high	level
of	stability.

Is	it	actively	developed?
It	is	a	good	sign	if	packages	are	frequently	updated.	A	frequently	updated	package	will
have	its	latest	version	published	recently	on	CRAN.	The	CRAN	package	page	for
ggplot2,	for	example,	said	Published:	2016-03-01,	which	was	less	than	six	months	old
at	the	time	of	writing.

Is	it	well	documented?

https://ropensci.org/
http://bit.ly/ggplot2archive


This	is	not	only	an	indication	of	how	much	thought,	care,	and	attention	has	gone	into	the
package,	it	also	has	a	direct	impact	on	its	ease	of	use.	Using	a	poorly	documented
package	can	be	inefficient	due	to	the	hours	spent	trying	to	work	out	how	to	use	it!	To
check	if	the	package	is	well	documented,	look	at	the	help	pages	associated	with	its	key
functions	(e.g.,	?ggplot),	try	the	examples	(e.g.,	example(ggplot)),	and	search	for
package	vignettes	(e.g.,	vignette(package	=	"ggplot2")).

Is	it	well	used?
This	can	be	seen	by	searching	for	the	package	name	online.	Most	packages	that	have	a
strong	user	base	will	produce	thousands	of	results	when	typed	into	a	generic	search
engine	such	as	Google.	More	specific	(and	potentially	useful)	indications	of	use	will
narrow	down	the	search	to	particular	users.	A	package	widely	used	by	the	programming
community	will	likely	be	visible	on	GitHub.	At	the	time	of	writing,	a	search	for	ggplot2
on	GitHub	yielded	over	400	repositories	and	almost	200,000	matches	in	committed	code!
Likewise,	a	package	that	has	been	adopted	for	use	in	academia	will	tend	to	be	mentioned
in	Google	Scholar	(again,	ggplot2	scores	extremely	well	in	this	measure,	with	over
5,000	hits).

An	article	in	simplystats	discusses	this	issue	with	reference	to	the	proliferation	of	GitHub
packages	(those	that	are	not	available	on	CRAN).	In	this	context,	well-regarded	and
experienced	package	creators	and	indirect	data	such	as	the	amount	of	GitHub	activity	are	also
highlighted	as	reasons	to	trust	a	package.

The	websites	of	MRAN	and	METACRAN	can	help	the	package-selection	process	by
providing	further	information	on	each	package	uploaded	to	CRAN.	METACRAN,	for
example,	provides	metadata	about	R	packages	via	a	simple	API	and	the	provision	of	badges	to
show	how	many	downloads	a	particular	package	has	per	month.	Returning	to	the	Haversine
example	given	previously,	we	could	find	out	how	many	times	two	packages	that	implement
the	formula	are	downloaded	each	month	with	the	following	URLs:

http://cranlogs.r-pkg.org/badges/last-month/geosphere,	downloads	of	geosphere:

http://cranlogs.r-pkg.org/badges/last-month/geoPlot,	downloads	of	geoPlot:

It	is	clear	from	the	results	reported	that	geosphere	is	by	far	the	more	popular	package,	so	is	a

http://bit.ly/ggplot2GH
http://bit.ly/trustRpackage
https://mran.revolutionanalytics.com/packages
http://www.r-pkg.org
http://www.r-pkg.org


sensible	and	mature	choice	for	dealing	with	distances	on	the	Earth’s	surface.



Publication
The	final	stage	in	a	typical	project	workflow	is	publication.	Although	it’s	the	final	stage	to	be
worked	on,	that	does	not	mean	you	should	only	document	after	the	other	stages	are	complete:
making	documentation	integral	to	your	overall	workflow	will	make	this	stage	much	easier
and	more	efficient.

Whether	the	final	output	is	a	report	containing	graphics	produced	by	R,	an	online	platform
for	exploring	results,	or	well-documented	code	that	colleagues	can	use	to	improve	their
workflow,	starting	it	early	is	a	good	plan.	In	every	case,	the	programming	principles	of
reproducibility,	modularity,	and	DRY	(don’t	repeat	yourself)	will	make	your	publications
faster	to	write,	easier	to	maintain,	and	more	useful	to	others.

Instead	of	attempting	a	comprehensive	treatment	of	the	topic,	we	will	touch	briefly	on	a
couple	of	ways	of	documenting	your	work	in	R:	dynamic	reports	and	R	packages.	There	is	a
wealth	of	material	on	each	of	these	online.	A	wealth	of	online	resources	exists	on	each	of
these;	to	avoid	duplication	of	effort,	the	focus	is	on	documentation	from	a	workflow-
efficiency	perspective.



Dynamic	Documents	with	R	Markdown
When	writing	a	report	using	R	outputs,	a	typical	workflow	has	historically	been	to	1)	do	the
analysis,	2)	save	the	resulting	graphics	and	record	the	main	results	outside	the	R	project,	and
3)	open	a	program	unrelated	to	R	such	as	LibreOffice	to	import	and	communicate	the	results
in	prose.	This	is	inefficient:	it	makes	updating	and	maintaining	the	outputs	difficult	(when	the
data	changes,	steps	1	to	3	will	have	to	be	done	again)	and	there	is	overhead	involved	in
jumping	between	incompatible	computing	environments.

To	overcome	this	inefficiency	in	the	documentation	of	R	outputs,	the	R	Markdown	framework
was	developed.	Used	in	conjunction	with	the	knitr	package,	we	have:

The	ability	to	process	code	chunks	(via	knitr)

A	notebook	interface	for	R	(via	RStudio)

The	ability	to	render	output	to	multiple	formats	(via	pandoc)

R	Markdown	documents	are	plain	text	and	have	the	file	extension	.Rmd.	This	framework
allows	for	documents	to	be	generated	automatically.	Furthermore,	nothing	is	efficient	unless
you	can	quickly	redo	it.	Documenting	your	code	inside	dynamic	documents	in	this	way
ensures	that	analysis	can	be	quickly	rerun.

NOTE
This	note	briefly	explains	R	Markdown	for	the	uninitiated.	R	markdown	is	a	form	of	Markdown.	Markdown	is	a
pure	text	document	format	that	has	become	a	standard	for	documentation	for	software.	It	is	the	default	format	for
displaying	text	on	GitHub.	R	Markdown	allows	the	user	to	embed	R	code	in	a	Markdown	document.	This	is	a
powerful	addition	to	Markdown,	as	it	allows	custom	images,	tables,	and	even	interactive	visualizations	to	be
included	in	your	R	documents.	R	Markdown	is	an	efficient	file	format	to	write	in	because	it	is	lightweight,	human,
and	computer-readable,	and	is	much	less	verbose	than	HTML	and	LaTeX.	The	first	draft	of	this	book	was	written
in	R	Markdown.

In	an	R	Markdown	document,	results	are	generated	on	the	fly	by	including	code	chunks.	Code
chunks	are	R	code	that	are	preceded	by	```{r,	options}	on	the	line	before	the	R	code,	and
```	at	the	end	of	the	chunk.	For	example,	suppose	we	have	the	code	chunk

```{r	eval	=	TRUE,	echo	=	TRUE}

(1:5)^2

```

in	an	R	Markdown	document.	The	eval	=	TRUE	in	the	code	indicates	that	the	code	should	be
evaluated,	while	echo	=	TRUE	controls	whether	the	R	code	is	displayed.	When	we	compile	the
document,	we	get



(1:5)^2

#>	[1]		1		4		9	16	25

R	Markdown	via	knitr	provides	a	wide	range	of	options	to	customize	what	is	displayed	and
evaluated.	When	you	adapt	to	this	workflow,	it	is	highly	efficient,	especially	as	RStudio
provides	a	number	of	shortcuts	that	make	it	easy	to	create	and	modify	code	chunks.	To	create
a	chunk	while	editing	an	.Rmd	file,	for	example,	simply	enter	Ctrl/Cmd-Alt-I	on	Windows	or
Linux	or	select	the	option	from	the	Code	drop-down	menu.

Once	your	document	has	compiled,	it	should	appear	on	your	screen	into	the	file	format
requested.	If	an	HTML	file	has	been	generated	(as	is	the	default),	RStudio	provides	a	feature
that	allows	you	to	put	it	up	online	rapidly.	This	is	done	using	the	rpubs	website,	a	store	of	a
huge	number	of	dynamic	documents	(which	could	be	a	good	source	of	inspiration	for	your
publications).	Assuming	you	have	an	RStudio	account,	clicking	the	Publish	button	at	the	top	of
the	HTML	output	window	will	instantly	publish	your	work	online,	with	a	minimum	of	effort,
enabling	fast	and	efficient	communication	with	many	collaborators	and	the	public.

An	important	advantage	of	dynamically	documenting	work	this	way	is	that	when	the	data	or
analysis	code	changes,	the	results	will	be	updated	in	the	document	automatically.	This	can
save	hours	of	fiddly	copying	and	pasting	of	R	output	between	different	programs.	Also,	if
your	client	wants	pages	and	pages	of	documented	output,	knitr	can	provide	them	with	a
minimum	of	typing	(e.g.,	by	creating	slightly	different	versions	of	the	same	plot	over	and
over	again).	From	a	delivery	of	content	perspective,	that	is	certainly	an	efficiency	gain
compared	with	hours	of	copying	and	pasting	figures!

If	your	R	Markdown	documents	include	time-consuming	processing	stages,	a	speed	boost	can
be	attained	after	the	first	build	by	setting	opts_chunk$set(cache	=	TRUE)	in	the	first	chunk	of
the	document.	This	setting	was	used	to	reduce	the	build	times	of	this	book,	as	can	be	seen	on
GitHub.

Furthermore,	dynamic	documents	written	in	R	Markdown	can	compile	into	a	range	of	output
formats	including	HTML,	PDF,	and	Microsoft’s	docx.	There	is	a	wealth	of	information	on	the
details	of	dynamic	report	writing	that	is	not	worth	replicating	here.	Key	references	are
RStudio’s	excellent	website	on	R	Markdown	hosted	at	rmarkdown.rstudio.com	and,	for	a	more
detailed	account	of	dynamic	documents	with	R,	Dynamic	Documents	with	R	and	Knitr	by
Yihui	Xie	(CRC	Press).

https://rpubs.com
http://bit.ly/before_scriptR
http://rmarkdown.rstudio.com/


R	Packages
A	strict	approach	to	project	management	and	workflow	is	treating	your	projects	as	R
packages.	This	approach	has	advantages	and	limitations.	The	major	risk	with	treating	a
project	as	a	package	is	that	the	package	is	quite	a	strict	way	of	organizing	work.	Packages	are
suited	for	code-intensive	projects	where	code	documentation	is	important.	An	intermediate
approach	is	to	use	a	dummy	package	that	includes	a	DESCRIPTION	file	in	the	root	directory
telling	project	users	which	packages	must	be	installed	for	the	code	to	work.	This	book	is
based	on	a	dummy	package	so	that	we	can	easily	keep	the	dependencies	up-to-date	(see	the
book’s	DESCRIPTION	file	online	for	insight	into	how	this	works).

Creating	packages	is	good	practice	in	terms	of	learning	to	correctly	document	your	code,
store	example	data,	and	even	(via	vignettes)	ensure	reproducibility.	But	it	can	take	a	lot	of
extra	time	so	should	not	be	taken	lightly.	This	approach	to	R	workflow	is	appropriate	for
managing	complex	projects	that	repeatedly	use	the	same	routines	that	can	be	converted	into
functions.	Creating	project	packages	can	provide	a	foundation	for	generalizing	your	code	for
use	by	others,	e.g.,	via	publication	on	GitHub	or	CRAN.	And	R	package	development	has	been
made	much	easier	in	recent	years	by	the	development	of	the	devtools	package,	which	is
highly	recommended	for	anyone	attempting	to	write	an	R	package.

The	number	of	essential	elements	of	R	packages	differentiates	them	from	other	R	projects.
Three	of	these	are	outlined	here	from	an	efficiency	perspective:

The	DESCRIPTION	file	contains	key	information	about	the	package,	including	which
packages	are	required	for	the	code	contained	in	your	package	to	work	(e.g.,	using
Imports:).	This	is	efficient	because	it	means	that	anyone	who	installs	your	package	will
automatically	install	the	other	packages	it	depends	on.

The	R/	folder	contains	all	the	R	code	that	defines	your	package’s	functions.	Placing	your
code	in	a	single	place	and	encouraging	you	to	make	your	code	modular	in	this	way	can
greatly	reduce	duplication	of	code	on	large	projects.	Furthermore,	the	documentation	of
R	packages	through	Roxygen	tags	such	as	#'	This	function	does	this...	makes	it
easy	for	others	to	use	your	work.	This	form	of	efficient	documentation	is	facilitated	by
the	roxygen2	package.

The	data/	folder	contains	example	code	for	demonstrating	to	others	how	the	functions
work	and	transporting	datasets	that	will	be	frequently	used	in	your	workflow.	Data	can	be
added	automatically	to	your	package	project	using	the	devtools	package,	with
devtools::use_data().	This	can	increase	efficiency	by	providing	a	way	of	distributing
small-to-medium-sized	datasets	and	making	them	available	when	the	package	is	loaded
with	the	function	data("data_set_name").

The	package	testthat	makes	it	easier	than	ever	to	test	your	R	code	as	you	go,	ensuring	that
nothing	breaks.	This,	combined	with	continuous	integration	services	such	as	that	provided	by
Travis,	makes	updating	your	code	base	as	efficient	and	robust	as	possible.	This,	and	more,	is

http://bit.ly/efficientRDESC
http://r-pkgs.had.co.nz/description.html
http://r-pkgs.had.co.nz/man.html#man-workflow


described	in	Testing	R	Code	by	Richard	Cotton	(CRC	Press).

As	with	dynamic	documents,	package	development	is	a	large	topic.	For	small	one-off	projects,
the	time	taken	in	learning	how	to	set	up	a	package	may	not	be	worth	the	savings.	However,
packages	provide	a	rigorous	way	of	storing	code,	data,	and	documentation	that	can	greatly
boost	productivity	in	the	long	run.	For	more	on	R	packages,	see	R	Packages	by	Hadley
Wickham	(O’Reilly);	the	online	version	provides	all	you	need	to	know	about	writing	R
packages	for	free.

http://r-pkgs.had.co.nz/
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The	Oxford	Dictionary’s	definition	of	workflow	is	similar,	with	a	more	industrial	feel:	“The	sequence	of	industrial,
administrative,	or	other	processes	through	which	a	piece	of	work	passes	from	initiation	to	completion.”

Thanks	to	Richard	Cotton	for	suggesting	this	typology.

The	importance	of	workflow	has	not	gone	unnoticed	by	the	R	community,	and	there	are	a	number	of	different	suggestions
to	boost	R	productivity.	Rob	Hyndman,	for	example,	advocates	the	strategy	of	using	four	self-contained	scripts	to	break	up
R	work	into	manageable	chunks:	load.R,	clean.R,	func.R,	and	do.R.

For	a	more	comprehensive	discussion	of	Gantt	charts	in	R,	please	refer	to	stackoverflow.com/questions/3550341.

An	excellent	overview	of	the	tidyverse,	formerly	known	as	the	hadleyverse,	and	its	benefits	is	available	from
barryrowlingson.github.io/hadleyverse.

1

2

3

4

5

http://robjhyndman.com/hyndsight/workflow-in-r/
http://bit.ly/ganttchartsR
https://barryrowlingson.github.io/hadleyverse


Chapter	5.	Efficient	Input/Output

This	chapter	explains	how	to	efficiently	read	and	write	data	in	R.	Input/output	(I/O)	is	the
technical	term	for	reading	and	writing	data:	the	process	of	getting	information	into	a
particular	computer	system	(in	this	case,	R)	and	then	exporting	it	to	the	outside	world	again
(in	this	case,	as	a	file	format	that	other	software	can	read).	Data	I/O	will	be	needed	on	projects
where	data	comes	from,	or	goes	to,	external	sources.	However,	the	majority	of	R	resources
and	documentation	start	with	the	optimistic	assumption	that	your	data	has	already	been	loaded,
ignoring	the	fact	that	importing	datasets	into	R	and	exporting	them	to	the	world	outside	the	R
ecosystem	can	be	a	time-consuming	and	frustrating	process.	Tricky,	slow,	or	ultimately
unsuccessful	data	I/O	can	cripple	efficiency	right	at	the	outset	of	a	project.	Conversely,
reading	and	writing	your	data	efficiently	will	make	your	R	projects	more	likely	to	succeed	in
the	outside	world.

The	first	section	introduces	rio,	a	meta	package	for	efficiently	reading	and	writing	data	in	a
range	of	file	formats.	rio	requires	only	two	intuitive	functions	for	data	I/O,	making	it	efficient
to	learn	and	use.	Next,	we	explore	in	more	detail	efficient	functions	for	reading	files	stored	in
common	plain	text	file	formats	from	the	readr	and	data.table	packages.	Binary	formats,
which	can	dramatically	reduce	file	sizes	and	read/write	times,	are	covered	next.

With	the	accelerating	digital	revolution	and	growth	in	open	data,	an	increasing	proportion	of
the	world’s	data	can	be	downloaded	from	the	internet.	This	trend	is	set	to	continue,	making
“Getting	Data	from	the	Internet”	on	downloading	and	importing	data	from	the	web	important
for	future-proofing	your	I/O	skills.	The	benchmarks	in	this	chapter	demonstrate	that	choice	of
file	format	and	packages	for	data	I/O	can	have	a	huge	impact	on	computational	efficiency.

Before	reading	in	a	single	line	of	data,	it	is	worth	considering	a	general	principle	for
reproducible	data	management:	never	modify	raw	data	files.	Raw	data	should	be	seen	as	read-
only,	and	contain	information	about	its	provenance.	Keeping	the	original	file	name	and
commenting	on	its	source	are	a	couple	of	ways	to	improve	reproducibility,	even	when	the
data	are	not	publicly	available.



Prerequisites
R	can	read	data	from	a	variety	of	sources.	We	begin	by	discussing	the	generic	package	rio
that	handles	a	wide	variety	of	data	types.	Special	attention	is	paid	to	CSV	files,	which	leads	to
the	readr	and	data.table	packages.	The	relatively	new	package	feather	is	introduced	as	a
binary	file	format	that	has	cross-language	support.

library("rio")

library("readr")

library("data.table")

library("feather")

We	also	use	the	WDI	package	to	illustrate	accessing	online	datasets:

library("WDI")



Top	Five	Tips	for	Efficient	Data	I/O
1.	 If	possible,	keep	the	names	of	local	files	downloaded	from	the	internet	or	copied

onto	your	computer	unchanged.	This	will	help	you	trace	the	provenance	of	the	data	in
the	future.

2.	 R’s	native	file	format	is	.Rds.	These	files	can	be	imported	and	exported	using
readRDS()	and	saveRDS()	for	fast	and	space-efficient	data	storage.

3.	 Use	import()	from	the	rio	package	to	efficiently	import	data	from	a	wide	range	of
formats,	avoiding	the	hassle	of	loading	format-specific	libraries.

4.	 Use	readr	or	data.table	equivalents	of	read.table()	to	efficiently	import	large	text
files.

5.	 Use	file.size()	and	object.size()	to	keep	track	of	the	size	of	files	and	R	objects
and	take	action	if	they	get	too	big.



Versatile	Data	Import	with	rio
rio	is	a	veritable	multitool	for	data	I/O.	rio	provides	easy-to-use	and	computationally	efficient
functions	for	importing	and	exporting	tabular	data	in	a	range	of	file	formats.	As	stated	in	the
package’s	vignette,	rio	aims	to	“simplify	the	process	of	importing	data	into	R	and	exporting
data	from	R.”	The	vignette	goes	on	to	to	explain	how	many	of	the	functions	for	data	I/O
described	in	R’s	Data	Import/Export	manual	are	outdated	(e.g.,	referring	to	WriteXLS	but	not
the	more	recent	readxl	package)	and	difficult	to	learn.

This	is	why	rio	is	covered	at	the	outset	of	this	chapter:	if	you	just	want	to	get	data	into	R	with	a
minimum	of	time	learning	new	functions,	there	is	a	fair	chance	that	rio	can	help	for	many
common	file	formats.	At	the	time	of	writing,	these	include	.csv,	.feather,	.json,	.dta,	.xls,	.xlsx,
and	Google	Sheets	(see	the	package’s	GitHub	page	for	up-to-date	information).	In	the
following	example,	we	illustrate	the	key	rio	functions	of	import()	and	export():

library("rio")

#	Specify	a	file

fname	=	system.file("extdata/voc_voyages.tsv",	package	=	"efficient")

#	Import	the	file	(uses	the	fread	function	from	data.table)

voyages	=	import(fname)

#	Export	the	file	as	an	Excel	spreadsheet

export(voyages,	"voc_voyages.xlsx")

There	was	no	need	to	specify	the	optional	format	argument	for	data	import	and	export
functions	because	this	is	inferred	by	the	suffix,	which,	in	the	previous	example,	is	.tsv	and
.xlsx,	respectively.	You	can	override	the	inferred	file	format	for	both	functions	with	the
format	argument.	You	could,	for	example,	create	a	comma-delimited	file	called
voc_voyages.xlsx	with	export(voyages,	"voc_voyages.xlsx",	format	=	"csv").	However,
this	would	not	be	a	good	idea	because	it	is	important	to	ensure	that	a	file’s	suffix	matches	its
format.

To	provide	another	example,	the	following	code	chunk	downloads	and	imports	as	a	data
frame	information	about	the	countries	of	the	world	stored	in	.json	(downloading	data	from
the	internet	is	covered	in	more	detail	in	“Getting	Data	from	the	Internet”):

caps	=	import("https://github.com/mledoze/countries/raw/master/countries.json")

TIP
The	ability	to	import	and	use	.json	data	is	becoming	increasingly	common	as	it	is	a	standard	output	format	for
many	APIs.	The	jsonlite 	and	geojsonio	packages	have	been	developed	to	make	this	as	easy	as	possible.

Exercises
1.	 The	final	line	in	the	preceding	code	chunk	shows	a	neat	feature	of	rio	and	some	other

packages:	the	output	format	is	determined	by	the	suffix	of	the	filename,	which	makes

https://cran.r-project.org/web/packages/rio/vignettes/rio.html
https://cran.r-project.org/doc/manuals/r-release/R-data.html
https://github.com/leeper/rio


for	concise	code.	Try	opening	the	voc_voyages.xlsx	file	with	an	editor	such	as
LibreOffice	Calc	or	Microsoft	Excel	to	ensure	that	the	export	worked,	before
removing	this	rather	inefficient	file	format	from	your	system:

file.remove("voc_voyages.xlsx")

2.	 Try	saving	the	the	voyages	data	frames	into	three	other	file	formats	of	your	choosing
(see	vignette("rio")	for	supported	formats).	Try	opening	these	in	external
programs.	Which	file	formats	are	more	portable?

3.	 As	a	bonus	exercise,	create	a	simple	benchmark	to	compare	the	write	times	for	the
different	file	formats	used	to	complete	the	previous	exercise.	Which	is	fastest?	Which
is	the	most	space-efficient?



Plain-Text	Formats
Plain-text	data	files	are	encoded	in	a	format	(typically	UTF-8)	that	can	be	read	by	humans	and
computers	alike.	The	great	thing	about	plain	text	is	its	simplicity	and	ease	of	use:	any
programming	language	can	read	a	plain-text	file.	The	most	common	plain-text	format	is	.csv,
comma-separated	values,	in	which	columns	are	separated	by	commas	and	rows	are	separated
by	line	breaks.	This	is	illustrated	in	the	simple	example	here:

Person,	Nationality,	Country	of	Birth

Robin,	British,	England

Colin,	British,	Scotland

There	is	often	more	than	one	way	to	read	data	into	R,	and	.csv	files	are	no	exception.	The
method	you	choose	has	implications	for	computational	efficiency.	This	section	investigates
methods	for	getting	plain-text	files	into	R,	with	a	focus	on	three	approaches:	base	R’s	plain-
text	reading	functions	such	as	read.csv();	the	data.table	approach,	which	uses	the	function
fread();	and	the	newer	readr	package,	which	provides	read_csv()	and	other	read_*()
functions	such	as	read_tsv().	Although	these	functions	perform	differently,	they	are	largely
cross-compatible,	as	illustrated	in	the	following	code	chunk,	which	loads	data	on	the
concentration	of	CO2	in	the	atmosphere	over	time:

WARNING
In	general,	you	should	never	“hand-write”	a	CSV	file.	Instead,	you	should	use	write.csv()	or	an	equivalent
function.	The	Internet	Engineering	Task	Force	has	the	CSV	definition	that	facilitates	sharing	CSV	files	between
tools	and	operating	systems.

df_co2	=	read.csv("extdata/co2.csv")

df_co2_dt	=	readr::read_csv("extdata/co2.csv")

#>	Warning:	Missing	column	names	filled	in:	'X1'	[1]

#>	Parsed	with	column	specification:

#>	cols(

#>			X1	=	col_integer(),

#>			time	=	col_double(),

#>			co2	=	col_double()

#>	)

df_co2_readr	=	data.table::fread("extdata/co2.csv")

NOTE
Note	that	a	function	derived	from	another	in	this	context	means	that	it	calls	another	function.	The	functions	such	as
read.csv()	and	read.delim(),	in	fact,	are	wrappers	around	read.table().	This	can	be	seen	in	the	source	code	of
read.csv(),	for	example,	which	shows	that	the	function	is	roughly	the	equivalent	of	read.table(file,	header	=
TRUE,	sep	=	",").

Although	this	section	is	focused	on	reading	text	files,	it	demonstrates	the	wider	principle	that

https://www.ietf.org/rfc/rfc4180.txt


the	speed	and	flexibility	advantages	of	additional	read	functions	can	be	offset	by	the
disadvantages	of	additional	package	dependency	(in	terms	of	complexity	and	maintaining	the
code)	for	small	datasets.	The	real	benefits	kick	in	on	large	datasets.	Of	course,	there	are	some
data	types	that	require	a	certain	package	to	load	in	R:	the	readstata13	package,	for	example,
was	developed	solely	to	read	in	.dta	files	generated	by	versions	of	Stata	13	and	above.

Figure	5-1	demonstrates	that	the	relative	performance	gains	of	the	data.table	and	readr
approaches	increase	with	data	size,	especially	for	data	with	many	rows.	Below	around	1	MB,
read.csv()	is	actually	faster	than	read_csv(),	while	fread()	is	much	faster	than	both,
although	these	savings	are	likely	to	be	inconsequential	for	such	smaller	datasets.

For	files	above	100	MB	in	size,	fread()	and	read_csv()	can	be	expected	to	be	around	five
times	faster	than	read.csv().	This	efficiency	gain	may	be	inconsequential	for	a	one-off	file
of	100	MB	running	on	a	fast	computer	(which	still	takes	less	than	a	minute	with	read.csv()),
but	could	represent	an	important	speed-up	if	you	frequently	load	large	text	files.

When	tested	on	a	large	(4	GB)	.csv	file,	it	was	found	that	fread()	and	read_csv()	were
almost	identical	in	load	times	and	that	read.csv()	took	about	five	times	longer.	This
consumed	more	than	10	GB	of	RAM,	making	it	unsuitable	to	run	on	many	computers	(see
“Random	Access	Memory”	for	more	on	memory).	Note	that	both	readr	and	base	methods	can
be	made	significantly	faster	by	prespecifying	the	column	types	at	the	outset	(see	the	following
code	chunk).	Further	details	are	provided	by	the	help	in	?read.table.

read.csv(file_name,	colClasses	=	c("numeric",	"numeric"))

In	some	cases	with	R	programming,	there	is	a	trade-off	between	speed	and	robustness.	This	is
illustrated	here	with	reference	to	differences	in	how	readr,	data.table,	and	base	R	handle
unexpected	values.	Figure	5-1	highlights	the	benefit	of	switching	to	fread()	and	(eventually)
to	read_csv()	as	the	dataset	size	increases.	For	a	small	(1	MB)	dataset,	fread()	is	about	five
times	faster	than	base	R.



Figure	5-1.	Benchmarks	of	base,	data.table,	and	readr	approaches	for	reading	CSV	files,	using	the	functions	read.csv(),
fread(),	and	read_csv(),	respectively.	The	facets	ranging	from	2	to	200	represent	the	number	of	columns	in	the	CSV	file.



Differences	Between	fread()	and	read_csv()
The	file	voc_voyages	was	taken	from	a	dataset	on	Dutch	naval	expeditions	and	used	with
permission	from	the	CWI	Database	Architectures	Group.	The	data	is	described	more	fully	at
monetdb.org.	From	this	dataset,	we	primarily	use	the	voyages	table,	which	lists	Dutch
shipping	expeditions	by	their	date	of	departure.

fname	=	system.file("extdata/voc_voyages.tsv",	package	=	"efficient")

voyages_base	=	read.delim(fname)

When	we	run	the	equivalent	operation	using	readr,

voyages_readr	=	readr::read_tsv(fname)

#>	Parsed	with	column	specification:

#>	cols(

#>			.default	=	col_character(),

#>			number	=	col_integer(),

#>			trip	=	col_integer(),

#>			tonnage	=	col_integer(),

#>			departure_date	=	col_date(format	=	""),

#>			cape_arrival	=	col_date(format	=	""),

#>			cape_departure	=	col_date(format	=	""),

#>			arrival_date	=	col_date(format	=	""),

#>			next_voyage	=	col_integer()

#>	)

#>	See	spec(...)	for	full	column	specifications.

#>	Warning:	2	parsing	failures.

#>		row												col			expected		actual

#>	4403	cape_arrival			date	like		2-01-01

#>	4592	cape_departure	date	like		8-05-17

a	warning	is	raised	regarding	row	2841	in	the	built	variable.	This	is	because	read_*()
decides	what	class	each	variable	is	based	on	the	first	1,000	rows,	rather	than	all	rows,	as	base
read.*()	functions	do.	Printing	the	offending	element:

voyages_base$built[2841]	#	a	factor.

#>	[1]	1721-01-01

#>	182	Levels:		1	784	1,86	1135	1594	1600	1612	1613	1614	1615	1619	...	taken	1672

voyages_readr$built[2841]	#	an	NA:	text	cannot	be	converted	to	numeric

#>	[1]	"1721-01-01"

Reading	the	file	using	data.table:

#	Verbose	warnings	not	shown

voyages_dt	=	data.table::fread(fname)

generates	five	warning	messages	stating	that	columns	2,	4,	9,	10,	and	11	were	Bumped	to	type
character	on	data	row	...,	with	the	offending	rows	printed	in	place	of	....	Instead	of
changing	the	offending	values	to	NA,	as	readr	does	for	the	built	column	(9),	fread()
automatically	converts	any	columns	it	considers	as	numeric	into	characters.	An	additional
feature	of	fread()	is	that	it	can	read-in	a	selection	of	the	columns,	either	by	their	index	or
name,	using	the	select	argument.	This	is	illustrated	in	the	following	code	by	reading	in	only

http://bit.ly/monetDBR


half	(the	first	11)	columns	from	the	voyages	dataset	and	comparing	the	result	to	using
fread()	on	all	columns.

microbenchmark(times	=	5,

		with_select	=	data.table::fread(fname,	select	=	1:11),

		without_select	=	data.table::fread(fname)

)

#>	Unit:	milliseconds

#>												expr			min				lq		mean	median				uq			max	neval

#>					with_select		9.52		9.58		9.68			9.71		9.74		9.86					5

#>		without_select	16.02	16.45	16.57		16.64	16.76	16.98					5

To	summarize,	the	differences	between	base,	readr,	and	data.table	functions	for	reading	in
data	go	beyond	code	execution	times.	The	functions	read_csv()	and	fread()	boost	speed
partially	at	the	expense	of	robustness	because	they	decide	column	classes	based	on	a	small
sample	of	available	data.	The	similarities	and	differences	between	the	approaches	are
summarized	for	the	Dutch	shipping	data	in	Table	5-1.

Table	5-1.	Comparison	of	the	classes	created	by
base,	readr,	and	data.table	for	a	selection	of

variables	in	the	voyages	dataset

Packages number boatname built departure_date

base integer factor factor factor

readr integer character character date

data.table integer character character character

Table	5-1	shows	four	main	similarities	and	differences	between	the	three	types	of	read
functions:

For	uniform	data	such	as	the	number	variable	in	Table	5-1,	all	reading	methods	yield	the
same	result	(integer,	in	this	case).

For	columns	that	are	obviously	characters	such	as	boatname,	the	base	method	results	in
factors	(unless	stringsAsFactors	is	set	to	TRUE),	whereas	fread()	and	read_csv()
functions	return	characters.

For	columns	in	which	the	first	1,000	rows	are	of	one	type	but	which	contain	anomalies,
such	as	built	and	departure_data	in	the	shipping	example,	fread()	coerces	the	result	to
characters.	read_csv()	and	siblings,	by	contrast,	keep	the	class	that	is	correct	for	the	first
1,000	rows	and	sets	the	anomalous	records	to	NA.	This	is	illustrated	in	Table	5-1,	where
read_tsv()	produces	a	numeric	class	for	the	built	variable,	ignoring	the	nonnumeric	text
in	row	2841.

read_*()	functions	generate	objects	of	class	tbl_df,	an	extension	of	the	data.frame



class,	as	discussed	in	“Efficient	Data	Processing	with	dplyr”.	fread()	generates	objects
of	class	data.table().	These	can	be	used	as	standard	data	frames	but	differ	subtly	in
their	behavior.

An	additional	difference	is	that	read_csv()	creates	data	frames	of	class	tbl_df	and	the
data.frame.	This	makes	no	practical	difference,	unless	the	tibble	package	is	loaded,	as
described	in	“Efficient	Data	Frames	with	tibble”	in	the	next	chapter.

The	wider	point	associated	with	these	tests	is	that	functions	that	save	time	can	also	lead	to
additional	considerations	or	complexities	in	your	workflow.	Taking	a	look	at	what	is	going
on	under	the	hood	of	fast	functions	to	increase	speed,	as	we	have	done	in	this	section,	can	help
you	understand	the	additional	consequences	of	choosing	fast	functions	over	slower	functions
from	base	R.



Preprocessing	Text	Outside	R
There	are	circumstances	when	datasets	become	too	large	to	read	directly	into	R.	Reading	in	a
4	GB	text	file	using	the	functions	tested	previously,	for	example,	consumes	all	available	RAM
on	a	16	GB	machine.	To	overcome	this	limitation,	external	stream	processing	tools	can	be
used	to	preprocess	large	text	files.	The	following	command,	using	the	Linux	command	line
shell	(or	Windows-based	Linux	shell	emulator	Cygwin)	command	split,	for	example,	will
break	a	large	multi-GB	file	into	many	1	GB	chunks,	each	of	which	is	more	manageable	for	R:

split	-b100m	bigfile.csv

The	result	is	a	series	of	files,	set	to	100	MB	each,	with	the	-b100m	argument	in	the	previous
code.	By	default,	these	will	be	called	xaa,	xab	and	could	be	read	in	one	chunk	at	a	time	(e.g.,
using	read.csv(),	fread(),	or	read_csv(),	described	in	the	previous	section)	without
crashing	most	modern	computers.

Splitting	a	large	file	into	individual	chunks	may	allow	it	to	be	read	into	R.	This	is	not	an
efficient	way	to	import	large	datasets,	however,	because	it	results	in	a	nonrandom	sample	of
the	data	this	way.	A	more	efficient,	robust,	and	scalable	way	to	work	with	large	datasets	is	via
databases,	covered	in	“Working	with	Databases”	in	the	next	chapter.

https://cygwin.com/install.html


Binary	File	Formats
There	are	limitations	to	plain-text	files.	Even	the	trusty	CSV	format	is	“restricted	to	tabular
data,	lacks	type-safety,	and	has	limited	precision	for	numeric	values”	(Eddelbuettel,	Stokely,
and	Ooms	2016).	Once	you	have	read	in	the	raw	data	(e.g.,	from	a	plain-text	file)	and	tidied	it
(covered	in	the	next	chapter),	it	is	common	to	want	to	save	it	for	future	use.	Saving	it	after
tidying	is	recommended	to	reduce	the	chance	of	having	to	run	all	the	data-cleaning	code
again.	We	recommend	saving	tidied	versions	of	large	datasets	in	one	of	the	binary	formats
covered	in	this	section	as	this	will	decrease	read/write	times	and	file	sizes,	making	your	data
more	portable.1

Unlike	plain-text	files,	data	stored	in	binary	formats	cannot	be	read	by	humans.	This	allows
space-efficient	data	compression,	but	means	that	the	files	will	be	less	language-agnostic.	R’s
native	file	format,	.Rds,	for	example,	may	be	difficult	to	read	and	write	using	external
programs	such	as	Python	or	LibreOffice	Calc.	This	section	provides	an	overview	of	binary
file	formats	in	R,	with	benchmarks	to	show	how	they	compare	with	the	plain-text	format	.csv
covered	in	the	previous	section.



Native	Binary	Formats:	Rdata	or	Rds?
.Rds	and	.RData	are	R’s	native	binary	file	formats.	These	formats	are	optimized	for	speed	and
compression	ratios.	But	what	is	the	difference	between	them?	The	following	code	chunk
demonstrates	the	key	difference	between	them:

save(df_co2,	file	=	"extdata/co2.RData")

saveRDS(df_co2,	"extdata/co2.Rds")

load("extdata/co2.RData")

df_co2_rds	=	readRDS("extdata/co2.Rds")

identical(df_co2,	df_co2_rds)

#>	[1]	TRUE

The	first	method	is	the	most	widely	used.	It	uses	the	save()	function,	which	takes	any	number
of	R	objects	and	writes	them	to	a	file,	which	must	be	specified	by	the	file	=	argument.
save()	is	like	save.image(),	which	saves	all	the	objects	currently	loaded	in	R.

The	second	method	is	slightly	less	used,	but	we	recommend	it.	Apart	from	being	slightly
more	concise	for	saving	single	R	objects,	the	readRDS()	function	is	more	flexible;	as	shown
in	the	subsequent	line,	the	resulting	object	can	be	assigned	to	any	name.	In	this	case,	we	called
it	df_co2_rds	(which	we	show	to	be	identical	to	df_co2,	loaded	with	the	load()	command),
but	we	could	have	called	it	anything	or	simply	printed	it	to	the	console.

Using	saveRDS()	is	good	practice	because	it	forces	you	to	specify	object	names.	If	you	use
save()	without	care,	you	could	forget	the	names	of	the	objects	you	saved	and	accidentally
overwrite	objects	that	already	exist.



The	Feather	File	Format
Feather	was	developed	as	a	collaboration	between	R	and	Python	developers	to	create	a	fast,
light,	and	language-agnostic	format	for	storing	data	frames.	The	following	code	chunk	shows
how	it	can	be	used	to	save	and	then	reload	the	df_co2	dataset	loaded	previously	in	both	R	and
Python:

library("feather")

write_feather(df_co2,	"extdata/co2.feather")

df_co2_feather	=	read_feather("extdata/co2.feather")

import	feather

import	feather

path	=	'data/co2.feather'

df_co2_feather	=	feather.read_dataframe(path)



Benchmarking	Binary	File	Formats
We	know	that	binary	formats	are	advantageous	from	space	and	read/write	time	perspectives,
but	how	much	so?	The	benchmarks	in	this	section,	based	on	large	matrices	containing
random	numbers,	are	designed	to	help	answer	this	question.	Figure	5-2	shows	that	the	relative
efficiency	gains	of	feather	and	Rds	formats,	compared	with	base	CSV.	From	left	to	right,
Figure	5-2	shows	benefits	in	terms	of	file	size,	read	times,	and	write	times.

In	terms	of	write	times,	Rds	files	perform	the	best,	occupying	just	over	a	quarter	of	the	hard
disk	space	compared	with	the	equivalent	CSV	files.	The	equivalent	feather	format	also
outperformed	the	CSV	format,	occupying	around	half	the	disk	space.

The	results	of	this	simple	disk	usage	benchmark	show	that	saving	data	in	a	compressed	binary
format	can	save	space	and,	if	your	data	will	be	shared	online,	data	download	time	and
bandwidth	usage	perspectives.	But	how	does	each	method	compare	from	a	computational
efficiency	perceptive?	The	read	and	write	times	for	each	file	format	are	illustrated	in	the
middle	and	right-hand	panels	of	Figure	5-2.

Figure	5-2.	Comparison	of	the	performance	of	binary	formats	for	reading	and	writing	datasets	with	20	columns	with	the
plain-text	format	CSV;	the	functions	used	to	read	the	files	were	read.csv(),	readRDS(),	and	feather::read_feather(),

respectively.	The	functions	used	to	write	the	files	were	write.csv(),	saveRDS(),	and	feather::write_feather().



The	results	show	that	file	size	is	not	a	reliable	predictor	of	data	read	and	write	times.	This	is
due	to	the	computational	overheads	of	compression.	Although	feather	files	occupied	more
disk	space,	they	were	roughly	equivalent	in	terms	of	read	times:	the	functions	read_feather()
and	readRDS()	were	consistently	around	10	times	faster	than	read.csv().	In	terms	of	write
times,	feather	excels:	write_feather()	was	around	10	times	faster	than	write.csv(),	whereas
saveRDS()	was	only	around	1.2	times	faster.

NOTE
Note	that	the	performance	of	different	file	formats	depends	on	the	content	of	the	data	being	saved.	The
benchmarks	here	showed	savings	for	matrices	of	random	numbers.	For	real-life	data,	the	results	would	be	quite
different.	The	voyages	dataset,	saved	as	an	Rds	file,	occupied	less	than	a	quarter	the	disk	space	as	the	original
TSV	file,	whereas	the	file	size	was	larger	than	the	original	when	saved	as	a	feather	file!



Protocol	Buffers
Google’s	Protocol	Buffers	offer	a	portable,	efficient,	and	scalable	solution	to	binary	data
storage.	A	recent	package,	RProtoBuf,	provides	an	R	interface.	This	approach	is	not	covered
in	this	book,	as	it	is	new,	advanced,	and	not	(at	the	time	of	writing)	widely	used	in	the	R
community.	The	approach	is	discussed	in	detail	in	a	paper	on	the	subject,	which	also	provides
an	excellent	overview	of	the	issues	associated	with	different	file	formats	(Eddelbuettel,
Stokely,	and	Ooms	2016).

https://developers.google.com/protocol-buffers/
http://bit.ly/RProtoBufapproach


Getting	Data	from	the	Internet
The	following	code	chunk	shows	how	the	functions	download.file2	and	unzip	can	be	used	to
download	and	unzip	a	dataset	from	the	internet.	R	can	automate	processes	that	are	often
performed	manually	(e.g.,	through	the	graphical	user	interface	of	a	web	browser)	with
potential	advantages	for	reproducibility	and	programmer	efficiency.	The	result	is	data	stored
neatly	in	the	data	directory	ready	to	be	imported.	Note	that	we	deliberately	kept	the	filename
intact	to	help	with	documentation,	enhancing	understanding	of	the	data’s	provenance,	so	future
users	can	quickly	find	out	where	the	data	came	from.	Note	also	that	part	of	the	dataset	is
stored	in	the	efficient	package.	Using	R	for	basic	file	management	can	help	create	a
reproducible	workflow,	as	illustrated	here:

url	=	"https://www.monetdb.org/sites/default/files/voc_tsvs.zip"

download.file(url,	"voc_tsvs.zip")	#	download	file

unzip("voc_tsvs.zip",	exdir	=	"data")	#	unzip	files

file.remove("voc_tsvs.zip")	#	tidy	up	by	removing	the	zip	file

This	workflow	equally	applies	to	downloading	and	loading	single	files.	Note	that	one	could
make	the	code	more	concise	by	replacing	the	second	line	with	df	=	read.csv(url).
However,	we	recommend	downloading	the	file	to	disk	so	that	if	for	some	reason	it	fails	(e.g.,
if	you	would	like	to	skip	the	first	few	lines),	you	don’t	have	to	keep	downloading	the	file	over
and	over	again.	The	following	code	downloads	and	loads	data	on	atmospheric	concentrations
of	CO2.	Note	that	this	dataset	is	also	available	from	the	datasets	package.

url	=	"https://vincentarelbundock.github.io/Rdatasets/csv/datasets/co2.csv"

download.file(url,	"extdata/co2.csv")

df_co2	=	read_csv("extdata/co2.csv")

There	are	now	many	R	packages	to	assist	with	the	download	and	import	of	data.	The
organization	rOpenSci	supports	a	number	of	these.	The	following	example	illustrates	this
using	the	WDI	package	(not	supported	by	rOpenSci)	to	accesses	World	Bank	data	on	CO2
emissions	in	the	transport	sector:

library("WDI")

WDIsearch("CO2")	#	search	for	data	on	a	topic

co2_transport	=	WDI(indicator	=	"EN.CO2.TRAN.ZS")	#	import	data

There	will	be	situations	where	you	cannot	download	the	data	directly	or	when	the	data	cannot
be	made	available.	In	this	case,	simply	providing	a	comment	relating	to	the	data’s	origin	(e.g.,
#	Downloaded	from	http://example.com)	before	referring	to	the	dataset	can	greatly	improve
the	utility	of	the	code	to	yourself	and	others.

There	are	a	number	of	R	packages	that	provide	more	advanced	functionality	than	simply
downloading	files.	The	CRAN	task	view	on	web	technologies	provides	a	comprehensive	list.
The	two	packages	for	interacting	with	web	pages	are	httr	and	RCurl.	The	former	package

https://ropensci.org/
https://cran.r-project.org/web/views/WebTechnologies.html


provides	(a	relatively)	user-friendly	interface	for	executing	standard	HTTP	methods	such	as
GET	and	POST.	It	also	provides	support	for	web	authentication	protocols	and	returns	HTTP
status	codes	that	are	essential	for	debugging.	The	RCurl	package	focuses	on	lower-level
support	and	is	particularly	useful	for	web-based	XML	support	or	FTP	operations.



Accessing	Data	Stored	in	Packages
Most	well-documented	packages	provide	some	example	data	for	you	to	play	with.	This	can
help	demonstrate	use	cases	in	specific	domains	that	use	a	particular	data	format.	The
command	data(package	=	"package_name")	will	show	the	datasets	in	a	package.	Datasets
provided	by	dplyr,	for	example,	can	be	viewed	with	data(package	=	"dplyr").

Raw	data	(i.e.,	data	that	has	not	been	converted	into	R’s	native	.Rds	format)	is	usually	located
within	the	subfolder	extdata	in	R,	which	corresponds	to	inst/extdata	when	developing
packages.	The	function	system.file()	outputs	file	paths	associated	with	specific	packages.	To
see	all	the	external	files	within	the	readr	package,	for	example,	you	could	use	the	following
command:

list.files(system.file("extdata",	package	=	"readr"))

#>	[1]	"challenge.csv"					"compound.log"						"epa78.txt"

#>	[4]	"example.log"							"fwf-sample.txt"				"massey-rating.txt"

#>	[7]	"mtcars.csv"								"mtcars.csv.bz2"				"mtcars.csv.zip"

Further,	to	look	around	to	see	what	files	are	stored	in	a	particular	package,	you	could	type	the
following,	taking	advantage	of	RStudio’s	intellisense	file	completion	capabilities	(using	copy
and	paste	to	enter	the	file	path):

system.file(package	=	"readr")

#>	[1]	"/home/robin/R/x86_64-pc-linux-gnu-library/3.3/readr"

Hitting	Tab	after	the	second	command	should	trigger	RStudio	to	create	a	miniature	pop-up
box	listing	the	files	within	the	folder,	as	illustrated	in	Figure	5-3.

Figure	5-3.	Discovering	files	in	R	packages	using	RStudio’s	intellisense
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Geographical	data,	for	example,	can	be	slow	to	read	in	external	formats.	A	large	.shp	or	.geojson	file	can	take	more	than
100	times	longer	to	load	than	an	equivalent	.Rds	or	.Rdata	file.

Since	R	3.2.3	the	base	function	download.file()	can	be	used	to	download	from	secure	(https://)	connections	on	any
operating	system.
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http://bit.ly/RProtoBufapproach


Chapter	6.	Efficient	Data	Carpentry

There	are	many	words	for	data	processing.	You	can	clean,	hack,	manipulate,	munge,	refine,
and	tidy	your	dataset,	ready	for	the	next	stage.	Each	word	says	something	about	perceptions
that	people	have	about	the	process:	data	processing	is	often	seen	as	dirty	work,	an	unpleasant
necessity	that	must	be	endured	before	the	real	fun	and	important	work	begins.	This	perception
is	wrong.	Getting	your	data	ship-shape	is	a	respectable	and	in	some	cases	vital	skill.	For	this
reason,	we	use	the	more	admirable	term	data	carpentry.

This	metaphor	is	not	accidental.	Carpentry	is	the	process	of	taking	rough	pieces	of	wood	and
working	with	care,	diligence,	and	precision	to	create	a	finished	product.	A	carpenter	does	not
hack	at	the	wood	at	random.	He	or	she	will	inspect	the	raw	material	and	select	the	right	tool
for	the	job.	In	the	same	way,	data	carpentry	is	the	process	of	taking	rough,	raw,	and	to	some
extent	randomly	arranged	input	data	and	creating	neatly	organized	and	tidy	data.	Learning	the
skill	of	data	carpentry	early	will	yield	benefits	for	years	to	come.	“Give	me	six	hours	to	chop
down	a	tree	and	I	will	spend	the	first	four	sharpening	the	axe,”	as	the	saying	goes.

Data	processing	is	a	critical	stage	in	any	project	involving	datasets	from	external	sources	(i.e.,
most	real-world	applications).	In	the	same	way	that	technical	debt,	discussed	in	Chapter	5,	can
cripple	your	workflow,	working	with	messy	data	can	lead	to	project	management	hell.

Fortunately,	done	efficiently,	at	the	outset	of	your	project	(rather	than	halfway	through	when	it
may	be	too	late)	and	using	appropriate	tools,	this	data	processing	stage	can	be	highly
rewarding.	More	importantly,	from	an	efficiency	perspective,	working	with	clean	data	will	be
beneficial	for	every	subsequent	stage	of	your	R	project.	So,	for	data-intensive	applications,
this	could	be	the	most	important	chapter	in	this	book.	In	it,	we	cover	the	following	topics:

Tidying	data	with	tidyr

Processing	data	with	dplyr

Working	with	databases

Data	processing	with	data.table



Prerequisites
This	chapter	relies	on	a	number	of	packages	for	data	cleaning	and	processing.	Check	that	they
are	installed	on	your	computer	and	load	them	with:

library("tibble")

library("tidyr")

library("stringr")

library("readr")

library("dplyr")

library("data.table")

RSQLite	and	ggmap	are	also	used	in	a	couple	of	examples,	though	they	are	not	central	to	the
chapter ’s	content.



Top	Five	Tips	for	Efficient	Data	Carpentry
1.	 Time	spent	preparing	your	data	at	the	beginning	can	save	hours	of	frustration	in	the

long	run.

2.	 Tidy	data	provides	a	concept	for	organizing	data,	and	the	package	tidyr	provides
some	functions	for	this	work.

3.	 The	data_frame	class	defined	by	the	tibble	package	makes	datasets	efficient	to	print
and	easy	to	work	with.

4.	 dplyr	provides	fast	and	intuitive	data	processing	functions;	data.table	has	unmatched
speed	for	some	data	processing	applications.

5.	 The	%>%	pipe	operator	can	help	clarify	complex	data	processing	workflows.



Efficient	Data	Frames	with	tibble
tibble	is	a	package	that	defines	a	new	data	frame	class	for	R,	the	tbl_df.	These	tibble	diffs	(as
their	inventor	suggests	they	should	be	pronounced)	are	like	the	base	class	data.frame	but	with
more	user-friendly	printing,	subsetting,	and	factor	handling.

NOTE
A	tibble	data	frame	is	an	S3	object	with	three	classes,	tbl_df,	tbl,	and	data.frame.	Since	the	object	has	the
data.frame	tag,	this	means	that	if	a	tbl_df	or	tbl	method	isn’t	available,	the	object	will	be	passed	on	to	the
appropriate	data.frame	function.

To	create	a	tibble	data	frame,	we	use	the	tibble	function:

library("tibble")

tibble(x	=	1:3,	y	=	c("A",	"B",	"C"))

#>	#	A	tibble:	3	×	2

#>							x					y

#>			<int>	<chr>

#>	1					1					A

#>	2					2					B

#>	3					3					C

The	previous	example	illustrates	the	main	differences	between	the	tibble	and	base	R
approaches	to	data	frames:

When	printed,	the	tibble	diff	reports	the	class	of	each	variable.	data.frame	objects	do
not.

Character	vectors	are	not	coerced	into	factors	when	they	are	incorporated	into	a	tbl_df,
as	can	be	seen	by	the	<chr>	heading	between	the	variable	name	and	the	second	column.
By	contrast,	data.frame()	coerces	characters	into	factors,	which	can	cause	problems
further	down	the	line.

When	printing	a	tibble	diff	to	screen,	only	the	first	10	rows	are	displayed.	The	number
of	columns	printed	depends	on	the	window	size.

Other	differences	can	be	found	in	the	associated	help	page:	help("tibble").

NOTE
You	can	create	a	tibble 	data	frame	row	by	row	using	the	tribble()	function.

Exercise

https://github.com/hadley/tibble


1.	 Create	the	following	data	frame:

df_base	=	data.frame(colA	=	"A")

Try	and	guess	the	output	of	the	following	commands:

print(df_base)

df_base$colA

df_base$col

df_base$colB

Now	create	a	tibble	data	frame	and	repeat	the	preceding	commands.



Tidying	Data	with	tidyr	and	Regular	Expressions
A	key	skill	in	data	analysis	is	understanding	the	structure	of	datasets	and	being	able	to	reshape
them.	This	is	important	from	a	workflow	efficiency	perspective:	more	than	half	of	a	data
analyst’s	time	can	be	spent	reformatting	datasets	(Wickham	2014b),	so	getting	it	into	a	suitable
form	early	could	save	hours	in	the	future.	Converting	data	into	a	tidy	form	is	also
advantageous	from	a	computational	efficiency	perspective	because	it	is	usually	faster	to	run
analysis	and	plotting	commands	on	tidy	data.

Data	tidying	includes	data	cleaning	and	data	reshaping.	Data	cleaning	is	the	process	of
reformatting	and	labeling	messy	data.	Packages	including	stringi	and	stringr	can	help	update
messy	character	strings	using	regular	expressions;	assertive	and	assertr	packages	can
perform	diagnostic	checks	for	data	integrity	at	the	outset	of	a	data	analysis	project.	A
common	data-cleaning	task	is	the	conversion	of	nonstandard	text	strings	into	date	formats	as
described	in	the	lubridate	vignette	(see	vignette("lubridate")).	Tidying	is	a	broader
concept,	however,	and	also	includes	reshaping	data	so	that	it	is	in	a	form	more	conducive	to
data	analysis	and	modeling.	The	process	of	reshaping	is	illustrated	by	Tables	6-1	and	6-2,
provided	by	Hadley	Wickham	and	loaded	using	the	following	code:

library("efficient")

data(pew)	#	see	?pew	-	dataset	from	the	efficient	package

pew[1:3,	1:4]	#	take	a	look	at	the	data

#>	#	A	tibble:	3	×	4

#>			religion	`<$10k`	`$10--20k`	`$20--30k`

#>						<chr>			<int>						<int>						<int>

#>	1	Agnostic						27									34									60

#>	2		Atheist						12									27									37

#>	3	Buddhist						27									21									30

Tables	6-1	and	6-2	show	a	subset	of	the	wide	pew	and	long	(tidy)	pewt	datasets,	respectively.
They	have	different	dimensions,	but	they	contain	precisely	the	same	information.	Column
names	in	the	wide	form	in	Table	6-1	became	a	new	variable	in	the	long	form	in	Table	6-2.
According	to	the	concept	of	tidy	data,	the	long	form	is	correct.	Note	that	correct	here	is	used
in	the	context	of	data	analysis	and	graphical	visualization.	Because	R	is	a	vector-based
language,	tidy	data	also	has	an	efficiency	advantage:	it’s	often	faster	to	operate	on	a	few	long
columns	than	several	short	ones.	Furthermore,	the	powerful	and	efficient	packages	dplyr	and
ggplot2	were	designed	around	tidy	data.	Wide	data,	however,	can	be	space	efficient,	and	is
common	for	presentation	in	summary	tables,	so	it’s	useful	to	be	able	to	transfer	between	wide
(or	otherwise	untidy)	and	tidy	formats.

Tidy	data	has	the	following	characteristics	(Wickham	2014b):
Each	variable	forms	a	column.

Each	observation	forms	a	row.

Each	type	of	observational	unit	forms	a	table.



Because	there	is	only	one	observational	unit	in	the	example	(religions),	it	can	be	described	in
a	single	table.	Large	and	complex	datasets	are	usually	represented	by	multiple	tables,	with
unique	identifiers	or	keys	to	join	them	together	(Codd	1979).

Two	common	operations	facilitated	by	tidyr	are	gathering	and	splitting	columns.



Make	Wide	Tables	Long	with	gather()
Gathering	means	making	wide	tables	long	by	converting	column	names	to	a	new	variable.
This	is	done	with	the	function	gather()	(the	inverse	of	which	is	spread()).	The	process	is
illustrated	in	Tables	6-1	and	6-2.	The	code	that	performs	this	operation	is	provided	in	the
following	code	block.	This	converts	a	table	with	18	rows	and	10	columns	into	a	tidy	dataset
with	162	rows	and	3	columns	(compare	the	output	with	the	output	of	pew,	shown	previously):

dim(pew)

#>	[1]	18	10

pewt	=	gather(data	=	pew,	key	=	Income,	value	=	Count,	-religion)

dim(pewt)

#>	[1]	162			3

pewt[c(1:3,	50),]

#>	#	A	tibble:	4	×	3

#>			religion			Income	Count

#>						<chr>				<chr>	<int>

#>	1	Agnostic				<$10k				27

#>	2		Atheist				<$10k				12

#>	3	Buddhist				<$10k				27

#>	4	Orthodox	$20--30k				23

The	previous	code	demonstrates	the	three	arguments	that	gather()	requires:

1.	 data,	a	data	frame	in	which	column	names	will	become	row	values.

2.	 key,	the	name	of	the	categorical	variable	into	which	the	column	names	in	the	original
datasets	are	converted.

3.	 value,	the	name	of	cell	value	columns.

As	with	other	functions	in	the	tidyverse,	all	arguments	are	given	using	bare	names,	rather	than
character	strings.	Arguments	2	and	3	can	be	specified	by	the	user,	and	have	no	relation	to	the
existing	data.	Furthermore,	an	additional	argument,	set	as	-religion,	was	used	to	remove	the
religion	variable	from	the	gathering,	ensuring	that	the	values	in	these	columns	are	the	first
column	in	the	output.	If	no	-religion	argument	is	specified,	all	column	names	are	used	in	the
key,	meaning	the	results	simply	report	all	180	column/value	pairs	resulting	from	the	input
dataset	with	10	columns	by	18	rows:

gather(pew)

#>	#	A	tibble:	180	×	2

#>								key				value

#>						<chr>				<chr>

#>	1	religion	Agnostic

#>	2	religion		Atheist

#>	3	religion	Buddhist

#>	4	religion	Catholic

#>	#	...	with	176	more	rows

Table	6-1.	First	six	rows	of	the
aggregated	Pew	dataset	from
Wickham	(2014a)	in	an	untidy



form

Religion <$10k $10–20k $20–30k

Agnostic 27 34 60

Atheist 12 27 37

Buddhist 27 21 30

Table	6-2.	Long	form
of	the	Pew	dataset
represented	in	the
previous	table

showing	the	minimum
values	for	annual
incomes	(includes
part-time	work)

Religion Income Count

Agnostic <$10k 27

Atheist <$10k 12

Buddhist <$10k 27

Agnostic $10–20k 34

Atheist $10–20k 27

Buddhist $10–20k 21

Agnostic $20–30k 60

Atheist $20–30k 37

Buddhist $20–30k 30



Split	Joint	Variables	with	separate()
Splitting	means	taking	a	variable	that	is	really	two	variables	combined	and	creating	two
separate	columns	from	it.	A	classic	example	is	age-sex	variables	(e.g.,	m0-10	and	f0-10	to
represent	males	and	females	in	the	0	to	10	age	band).	Splitting	such	variables	can	be	done	with
the	separate()	function,	as	illustrated	in	Tables	6-3	and	6-4	and	in	the	following	code	chunk.
See	?separate	for	more	information	on	this	function.

agesex	=	c("m0-10",	"f0-10")	#	create	compound	variable

n	=	c(3,	5)	#	create	a	value	for	each	observation

agesex_df	=	tibble(agesex,	n)	#	create	a	data	frame

separate(agesex_df,	col	=	agesex,	into	=	c("age",	"sex"))

#>	#	A	tibble:	2	×	3

#>					age			sex					n

#>	*	<chr>	<chr>	<dbl>

#>	1				m0				10					3

#>	2				f0				10					5

Table	6-
3.	Joined
age	and
sex

variables
in	one
column

agesex n

m0-10 3

f0-10 5

Table	6-4.
Age	and
sex

variables
separated
by	the
function
separate

sex age n

m 0-10 3

f 0-10 5



Other	tidyr	Functions
There	are	other	tidying	operations	that	tidyr	can	perform,	as	described	in	the	package’s
vignette	(vignette("tidy-data")).	The	wider	issue	of	manipulation	is	a	large	topic	with
major	potential	implications	for	efficiency	(Spector	2008)	and	this	section	only	covers	some
of	the	key	operations.	More	important	is	understanding	the	principles	behind	converting
messy	data	into	standard	output	forms.

These	same	principles	can	also	be	applied	to	the	representation	of	model	results.	The	broom
package	provides	a	standard	output	format	for	model	results,	easing	interpretation	(see	the
broom	vignette).	The	function	broom::tidy()	can	be	applied	to	a	wide	range	of	model	objects
and	return	the	model’s	output	in	a	standardized	data	frame	output.

Usually,	it	is	more	efficient	to	use	the	nonstandard	evaluation	version	of	variable	names,	as
these	can	be	autocompleted	by	RStudio.	In	some	cases,	you	may	want	to	use	standard
evaluation	and	refer	to	variable	names	using	quotation	marks.	To	do	this,	_	can	be	added	to
dplyr	and	tidyr	function	names	to	allow	the	use	of	standard	evaluation.	Thus	the	standard
evaluation	version	of	separate(agesex_df,	agesex,	c("sex",	"age"),	1)	is
separate_(agesex_df,	"agesex",	c("sex",	"age"),	1).

http://bit.ly/broomvignette


Regular	Expressions
Regular	expressions	(commonly	known	as	regex)	is	a	language	for	describing	and
manipulating	text	strings.	There	are	books	on	the	subject,	and	several	good	tutorials	on	regex
in	R,	such	as	Handling	and	Processing	Strings	in	R	by	Gaston	Sanchez	(Trowchez	Editions),
so	we’ll	just	scratch	the	surface	of	the	topic,	and	provide	a	taste	of	what	is	possible.	Regex	is	a
deep	topic.	However,	knowing	the	basics	can	save	a	huge	amount	of	time	from	a	data-tidying
perspective,	by	automating	the	cleaning	of	messy	strings.

In	this	section,	we	teach	both	stringr	and	base	R	ways	of	doing	pattern	matching.	The	former
provides	easy-to-remember	function	names	and	consistency.	The	latter	is	useful	to	know	as
you’ll	find	lots	of	base	R	regex	code	in	other	people’s	code	because	stringr	is	relatively	new
and	not	installed	by	default.	The	foundational	regex	operation	is	to	detect	whether	a	particular
text	string	exists	in	an	element,	which	is	done	with	grepl()	and	str_detect()	in	base	R	and
stringr,	respectively:

library("stringr")

x	=	c("Hi	I'm	Robin.",	"DoB	1985")

grepl(pattern	=	"9",	x	=	x)

#>	[1]	FALSE		TRUE

str_detect(string	=	x,	pattern	=	"9")

#>	[1]	FALSE		TRUE

NOTE
stringr	does	not	include	a	direct	replacement	for	grep().	You	can	use	which(str_detect())	instead.

Notice	that	str_detect()	begins	with	str_.	This	is	a	common	feature	of	all	stringr	functions.
This	can	be	efficient	because	if	you	want	to	do	some	regex	work,	you	just	need	to	type	str_
and	then	press	the	Tab	key	to	see	a	list	of	all	the	options.	The	various	base	R	regex	function
names,	by	contrast,	are	hard	to	remember,	including	regmatches(),	strsplit(),	and	gsub().
The	stringr	equivalents	have	more	intuitive	names	that	relate	to	the	intention	of	the	functions:
str_match_all(),	str_split(),	and	str_replace_all(),	respectively.

There	is	more	to	say	on	the	topic,	but	rather	than	repeat	what	has	been	said	elsewhere,	we	feel
it	is	more	efficient	to	direct	the	interested	reader	toward	existing	excellent	resources	for
learning	regex	in	R.	We	recommend	reading,	in	order:

The	Strings	chapter	of	R	for	Data	Science	by	Grolemund	and	Wickham	(O’Reilly)

The	stringr	vignette	(vignette("stringr"))

The	detailed	tutorial	on	regex	in	base	R	(Sanchez	2013)

For	more	advanced	topics,	reading	the	documentation	and	online	articles	about	the

http://r4ds.had.co.nz/strings.html
http://www.rexamine.com/blog/


stringi	package,	on	which	stringr	depends

Exercises
1.	 What	are	the	three	criteria	of	tidy	data?

2.	 Load	and	look	at	subsets	of	these	datasets.	The	first	is	the	Pew	datasets	we’ve	been
using	already.	The	second	reports	the	points	that	define,	roughly,	the	geographical
boundaries	of	different	London	boroughs.	What	is	untidy	about	each?

head(pew,	10)

#>	#	A	tibble:	10	×	10

#>			religion	<$10k	$10-20k	$20-30k	$30-40k	$40-50k	$50-75

#>						<chr>		<int>			<int>			<int>			<int>			<int>		<int>

#>	1	Agnostic					27						34						60						81						76				137

#>	2		Atheist					12						27						37						52						35					70

#>	3	Buddhist					27						21						30						34						33					58

#>	4	Catholic				418					617					732					670					638			1116

#>	#	...	with	6	more	rows,	and	3	more	variables:	`$75--100k`	<int>,

#>	#			`$100--150k`	<int>,	`>150k`	<int>

data(lnd_geo_df)

head(lnd_geo_df,	10)

#>																				name_date	population						x						y

#>	1															Bromley-2001					295535	544362	172379

#>	2															Bromley-2001					295535	549546	169911

#>	3															Bromley-2001					295535	539596	160796

#>	4															Bromley-2001					295535	533693	170730

#>	5															Bromley-2001					295535	533718	170814

#>	6															Bromley-2001					295535	534004	171442

#>	7															Bromley-2001					295535	541105	173356

#>	8															Bromley-2001					295535	544362	172379

#>	9		Richmond	upon	Thames-2001					172330	523605	176321

#>	10	Richmond	upon	Thames-2001					172330	521455	172362

3.	 Convert	each	of	the	preceding	datasets	into	tidy	form.

4.	 Consider	the	following	string	of	phone	numbers	and	fruits	from	“Stringr:	Modern,
Consistent	String	Processing”	by	Hadley	Wickham	(The	R	Journal):

strings	=	c("219	733	8965",	"329-293-8753	",	"banana",	"595	794	7569",

												"387	287	6718",	"apple",	"233.398.9187		",

												"482	952	3315",	"239	923	8115",	"842	566	4692",

												"Work:	579-499-7527",	"$1000",	"Home:	543.355.3679")

Write	functions	in	stringr	and	base	R	that	return:
A	logical	vector	reporting	whether	or	not	each	string	contains	a	number

Complete	words	only,	without	extraneous	nonletter	characters

str_detect(string	=	strings,	pattern	=	"[0-9]")

#>		[1]		TRUE		TRUE	FALSE		TRUE		TRUE	FALSE		TRUE		TRUE		TRUE		TRUE

#>	[12]		TRUE		TRUE

str_extract(strings,	pattern	=	"[A-z]+")

#>		[1]	NA							NA							"banana"	NA							NA							"apple"		NA

#>		[8]	NA							NA							NA							"Work"			NA							"Home"



Efficient	Data	Processing	with	dplyr
After	tidying	your	data,	the	next	stage	is	typically	data	processing.	This	includes	the	creation
of	new	data,	such	as	a	new	column	that	is	some	function	of	existing	columns,	or	data	analysis,
the	process	of	asking	directed	questions	of	the	data	and	exporting	the	results	in	a	user-
readable	form.

Following	the	advice	in	“Package	Selection”,	we	have	carefully	selected	an	appropriate
package	for	these	tasks:	dplyr,	which	roughly	means	data	frame	pliers.	dplyr	has	a	number	of
advantages	over	base	R	and	data.table	approaches	to	data	processing:

dplyr	is	fast	to	run	(due	to	its	C++	backend)	and	intuitive	to	type.

dplyr	works	well	with	tidy	data,	as	described	previously.

dplyr	works	well	with	databases,	providing	efficiency	gains	on	large	datasets.

Furthermore,	dplyr	is	efficient	to	learn	(see	Chapter	10).	It	has	a	small	number	of	intuitively
named	functions,	or	verbs.	These	were	partly	inspired	by	SQL,	one	of	the	longest	established
languages	for	data	analysis,	which	combines	multiple	simple	functions	(such	as	SELECT	and
WHERE,	roughly	analogous	to	dplyr::select()	and	dplyr::filter())	to	create	powerful
analysis	workflows.	Likewise,	dplyr	functions	were	designed	to	be	used	together	to	solve	a
wide	range	of	data	processing	challenges	(see	Table	6-5).

Table	6-5.	dplyr	verb	functions

dplyr	function(s) Description Base	R	functions

filter(),	slice() Subset	rows	by	attribute	(filter)	or	position	(slice) subset(),	[

arrange() Return	data	ordered	by	variable(s) order()

select() Subset	columns subset(),	[,	[[

rename() Rename	columns colnames()

distinct() Return	unique	rows !duplicated()

mutate() Create	new	variables	(transmute	drops	existing	variables) transform(),	[[

summarize() Collapse	data	into	a	single	row aggregate(),	tapply()

sample_n() Return	a	sample	of	the	data sample()

Unlike	the	base	R	analogues,	dplyr’s	data	processing	functions	work	in	a	consistent	way.	Each
function	takes	a	data	frame	object	as	its	first	argument	and	creates	another	data	frame.
Variables	can	be	called	directly	without	using	the	$	operator.	dplyr	was	designed	to	be	used



with	the	pipe	operator	%>%	provided	by	the	magrittr	package,	allowing	each	data	processing
stage	to	be	represented	as	a	new	line.	This	is	illustrated	in	the	following	code	chunk,	which
loads	a	tidy	country-level	dataset	of	greenhouse	gas	emissions	from	the	efficient	package,
and	then	identifies	the	countries	with	the	greatest	absolute	growth	in	emissions	from	1971	to
2012:

library("dplyr")

data("ghg_ems",	package	=	"efficient")

top_table	=

		ghg_ems	%>%

		filter(!grepl("World|Europe",	Country))	%>%

		group_by(Country)	%>%

		summarize(Mean	=	mean(Transportation),

												Growth	=	diff(range(Transportation)))	%>%

		top_n(3,	Growth)	%>%

		arrange(desc(Growth))

The	results,	illustrated	in	Table	6-6,	show	that	the	US	has	the	highest	growth	and	average
emissions	from	the	transport	sector,	followed	closely	by	China.	The	aim	of	this	code	chunk	is
not	for	you	to	somehow	read	it	and	understand	it;	it	is	to	provide	a	taster	of	dplyr’s	unique
syntax,	which	is	described	in	more	detail	throughout	the	duration	of	this	section.

Table	6-6.	The	top	three
countries	in	terms	of
average	CO2	emissions
from	transport	since
1971,	and	growth	in
transport	emissions
over	that	period
(MTCO2e/yr)

Country Mean Growth

United	States 1462 709

China 214 656

India 85 170

Building	on	the	learning	by	doing	ethic,	the	remainder	of	this	section	works	through	these
functions	to	process	and	begin	to	analyze	a	dataset	on	economic	equality	provided	by	the
World	Bank.	The	input	dataset	can	be	loaded	as	follows:

#	Load	global	inequality	data

data(wb_ineq)

dplyr	is	a	large	package	and	can	be	seen	as	a	language	in	its	own	right.	Following	the	walk
before	you	run	principle,	we’ll	start	simply,	by	filtering	and	aggregating	rows.



Renaming	Columns
Renaming	data	columns	is	a	common	task	that	can	make	writing	code	faster	by	using	short,
intuitive	names.	The	dplyr	function	rename()	makes	this	easy.

Note	that	in	this	code	block	the	variable	name	is	surrounded	by	back-quotes	(`).	This	allows	R
to	refer	to	column	names	that	are	nonstandard.	Note	also	the	syntax:	rename	takes	the	data
frame	as	the	first	object	and	then	creates	new	variables	by	specifying	new_variable_name	=
original_name.

library("dplyr")

wb_ineq	=	rename(wb_ineq,	code	=	`Country	Code`)

To	rename	multiple	columns,	the	variable	names	are	simply	separated	by	commas.	The	base
R	and	dplyr	way	of	doing	this	is	illustrated	in	an	older	version	of	the	dataset	(not	run)	to	show
how	long,	clunky,	and	inefficient	names	can	be	converted	into	short	and	lean	ones.

#	The	dplyr	way	(rename	two	variables)

wb_ineq	=	rename(wb_ineq,

	top10	=	`Income	share	held	by	highest	10%	[SI.DST.10TH.10]`,

	bot10	=	`Income	share	held	by	lowest	10%	[SI.DST.FRST.10]`)

#	The	base	R	way	(rename	five	variables)

names(wb_ineq)[5:9]	=	c("top10",	"bot10",	"gini",	"b40_cons",	"gdp_percap")



Changing	Column	Classes
The	class	of	R	objects	is	critical	to	performance.	If	a	class	is	incorrectly	specified	(e.g.,	if
numbers	are	treated	as	factors	or	characters),	this	will	lead	to	incorrect	results.	The	class	of
all	columns	in	a	data	frame	can	be	queried	using	the	function	str()	(short	for	display	the
structure	of	an	object),	as	illustrated	in	the	following	code,	with	the	inequality	data	loaded
previously.1

vapply(wb_ineq,	class,	character(1))

#>					Country								code								Year			Year	Code							top10							bot10

#>	"character"	"character"			"integer"	"character"			"numeric"			"numeric"

#>								gini				b40_cons		gdp_percap

#>			"numeric"			"numeric"			"numeric"

This	shows	that	although	we	loaded	the	data	correctly,	all	columns	are	seen	by	R	as
characters.	This	means	we	cannot	perform	numerical	calculations	on	the	dataset:
mean(wb_ineq$gini)	fails.

Visual	inspection	of	the	data	(e.g.,	via	View(wb_ineq))	clearly	shows	that	all	columns	except
for	1	to	4	(Country,	Country	Code,	Year,	and	Year	Code)	should	be	numeric.	We	can	reassign
the	classes	of	the	numeric	variables	one	by	one:

wb_ineq$gini	=	as.numeric(wb_ineq$gini)

mean(wb_ineq$gini,	na.rm	=	TRUE)	#	now	the	mean	is	calculated

#>	[1]	40.5

However,	the	purpose	of	programming	languages	is	to	automate	tasks	and	reduce	typing.	The
following	code	chunk	reclassifies	all	of	the	numeric	variables	using	data.matrix(),	which
converts	the	data	frame	to	a	numeric	matrix:

cols_to_change=	5:9	#	column	ids	to	change

wb_ineq[cols_to_change]	=	data.matrix(wb_ineq[cols_to_change])

vapply(wb_ineq,	class,	character(1))

#>					Country								code								Year			Year	Code							top10							bot10

#>	"character"	"character"			"integer"	"character"			"numeric"			"numeric"

#>								gini				b40_cons		gdp_percap

#>			"numeric"			"numeric"			"numeric"

As	is	so	often	the	case	with	R,	there	are	many	ways	to	solve	the	problem.	The	following	code
is	a	one-liner	using	unlist(),	which	converts	list	objects	into	vectors:

wb_ineq[cols_to_change]	=	as.numeric(unlist(wb_ineq[cols_to_change]))

Another	one-liner	to	achieve	the	same	result	uses	dplyr’s	mutate_each	function:

wb_ineq	=	mutate_each(wb_ineq,	"as.numeric",	cols_to_change)

As	with	other	operations,	there	are	other	ways	of	achieving	the	same	result	in	R,	including	the



use	of	loops	via	apply()	and	for().	These	are	shown	in	the	chapter ’s	source	code.

https://github.com/csgillespie/efficientR


Filtering	Rows
dplyr	offers	an	alternative	way	of	filtering	data,	using	filter().

#	Base	R:	wb_ineq[wb_ineq$Country	==	"Australia",]

aus2	=	filter(wb_ineq,	Country	==	"Australia")

filter()	is	slightly	more	flexible	than	[:	filter(wb_ineq,	code	==	"AUS",	Year	==
1974),	works	as	well	as	filter(wb_ineq,	code	==	"AUS"	&	Year	==	1974),	and	takes	any
number	of	conditions	(see	?filter).	filter()	is	slightly	faster	than	base	R.2	By	avoiding	the
$	symbol,	dplyr	makes	subsetting	code	concise	and	consistent	with	other	dplyr	functions.	The
first	argument	is	a	data	frame	and	subsequent	raw	variable	names	can	be	treated	as	vector
objects,	which	are	a	defining	feature	of	dplyr.	In	the	next	section,	we’ll	learn	how	this	syntax
can	be	used	alongside	the	%>%	pipe	command	to	write	clear	data	manipulation	commands.

There	are	dplyr	equivalents	of	many	base	R	functions,	but	these	usually	work	slightly
different.	The	dplyr	equivalent	of	aggregate,	for	example,	is	to	use	the	grouping	function
group_by	in	combination	with	the	general-purpose	function	summarize	(not	to	be	confused
with	summary	in	base	R),	as	we	shall	see	in	“Data	Aggregation”.



Chaining	Operations
Another	interesting	feature	of	dplyr	is	its	ability	to	chain	operations	together.	This	overcomes
one	of	the	aesthetic	issues	with	R	code:	you	can	end	up	with	very	long	commands	with	many
functions	nested	inside	one	another	to	answer	relatively	simple	questions.	Combined	with	the
group_by()	function,	pipes	can	help	condense	thousands	of	lines	of	data	into	something
human-readable.	Here’s	how	you	could	use	the	chains	to	summarize	average	Gini	indexes	per
decade,	for	example:

wb_ineq	%>%

		select(Year,	gini)	%>%

		mutate(decade	=	floor(Year	/	10)	*	10)	%>%

		group_by(decade)	%>%

		summarize(mean(gini,	na.rm	=	TRUE))

#>	#	A	tibble:	6	×	2

#>			decade	`mean(gini,	na.rm	=	TRUE)`

#>				<dbl>																						<dbl>

#>	1			1970																							40.1

#>	2			1980																							37.8

#>	3			1990																							42.0

#>	4			2000																							40.5

#>	#	...	with	2	more	rows

Often	the	best	way	to	learn	is	to	try	and	break	something,	so	try	running	the	preceding
commands	with	different	dplyr	verbs.	By	way	of	explanation,	this	is	what	happened:

1.	 Only	the	columns	Year	and	gini	were	selected,	using	select().

2.	 A	new	variable,	decade,	was	created	(e.g.,	1989	becomes	1980).

3.	 This	new	variable	was	used	to	group	rows	in	the	data	frame	with	the	same	decade.

4.	 The	mean	value	per	decade	was	calculated,	illustrating	how	average	income
inequality	was	greatest	in	1992	but	has	since	decreased	slightly.

Let’s	ask	another	question	to	see	how	dplyr	chaining	workflow	can	be	used	to	answer
questions	interactively:	what	are	the	five	most	unequal	years	for	countries	containing	the	letter
g?	Here’s	how	chains	can	help	organize	the	analysis	needed	to	answer	this	question	step	by
step:

wb_ineq	%>%

		filter(grepl("g",	Country))	%>%

		group_by(Year)	%>%

		summarize(gini	=	mean(gini,	na.rm		=	TRUE))	%>%

		arrange(desc(gini))	%>%

		top_n(n	=	5)

#>	Selecting	by	gini

#>	#	A	tibble:	5	×	2

#>				Year		gini

#>			<int>	<dbl>

#>	1		1980		46.9

#>	2		1993		46.0

#>	3		2013		44.5

#>	4		1981		43.6

#>	#	...	with	1	more	rows



The	preceding	function	consists	of	six	stages,	each	of	which	corresponds	to	a	new	line	and
dplyr	function:

1.	 Filter	out	the	countries	we’re	interested	in	(any	selection	criteria	could	be	used	in
place	of	grepl("g",	Country)).

2.	 Group	the	output	by	year.

3.	 Summarize,	for	each	year,	the	mean	Gini	index.

4.	 Arrange	the	results	by	average	Gini	index.

5.	 Select	only	the	top	five	most	unequal	years.

To	see	why	this	method	is	preferable	to	the	nested	function	approach,	take	a	look	at	the	latter.
Even	after	indenting	properly,	it	looks	terrible	and	is	almost	impossible	to	understand!

top_n(

		arrange(

				summarize(

						group_by(

								filter(wb_ineq,	grepl("g",	Country)),

								Year),

						gini	=	mean(gini,	na.rm		=	TRUE)),

				desc(gini)),

		n	=	5)

This	section	has	provided	only	a	taste	of	what	is	possible	with	dplyr	and	why	it	makes	sense
from	code-writing	and	computational-efficiency	perspectives.	For	a	more	detailed	account	of
data	processing	with	R	using	this	approach,	we	recommend	R	for	Data	Science	by	Grolemund
and	Wickham	(O’Reilly).

Exercises
1.	 Try	running	each	of	the	preceding	chaining	examples	line	by	line,	so	the	first	two

entries	for	the	first	example	look	like	this:

wb_ineq

#>	#	A	tibble:	6,925	×	9

#>							Country		code		Year	`Year	Code`	top10	bot10		gini	b40_cons

#>									<chr>	<chr>	<int>							<chr>	<dbl>	<dbl>	<dbl>				<dbl>

#>	1	Afghanistan			AFG		1974						YR1974				NA				NA				NA							NA

#>	2	Afghanistan			AFG		1975						YR1975				NA				NA				NA							NA

#>	3	Afghanistan			AFG		1976						YR1976				NA				NA				NA							NA

#>	4	Afghanistan			AFG		1977						YR1977				NA				NA				NA							NA

#>	#	...	with	6,921	more	rows,	and	1	more	variables:	gdp_percap	<dbl>

followed	by:

wb_ineq	%>%

		select(Year,	gini)

#>	#	A	tibble:	6,925	×	2

#>				Year		gini



#>			<int>	<dbl>

#>	1		1974				NA

#>	2		1975				NA

#>	3		1976				NA

#>	4		1977				NA

#>	#	...	with	6,921	more	rows

Explain	in	your	own	words	what	changes	each	time.

2.	 Use	chained	dplyr	functions	to	answer	the	following	question:	in	which	year	did
countries	without	an	a	in	their	name	have	the	lowest	level	of	inequality?



Data	Aggregation
Data	aggregation	involves	creating	summaries	of	data	based	on	a	grouping	variable,	in	a
process	that	has	been	referred	to	as	split-apply-combine.	The	end	result	usually	has	the	same
number	of	rows	as	there	are	groups.	Because	aggregation	is	a	way	of	condensing	datasets,	it
can	be	a	very	useful	technique	for	making	sense	of	large	datasets.	The	following	code	finds
the	number	of	unique	countries	(country	being	the	grouping	variable)	from	the	ghg_ems
dataset	stored	in	the	efficient	package:

#	Package	available	from	github.com/csgillespie/efficient

data(ghg_ems,	package	=	"efficient")

names(ghg_ems)

#>	[1]	"Country"								"Year"											"Electricity"				"Manufacturing"

#>	[5]	"Transportation"	"Other"										"Fugitive"

nrow(ghg_ems)

#>	[1]	7896

length(unique(ghg_ems$Country))

#>	[1]	188

Note	that	while	there	are	almost	8,000	rows,	there	are	fewer	than	200	countries.	Thus	factors
would	have	been	a	more	space-efficient	way	of	storing	the	country	data.

To	aggregate	the	dataset	using	dplyr,	you	divide	the	task	in	to	two	parts:	group	the	dataset	first
and	then	summarize,	as	illustrated	next.3

library("dplyr")

group_by(ghg_ems,	Country)	%>%

		summarize(mean_eco2	=	mean(Electricity,	na.rm		=	TRUE))

#>	#	A	tibble:	188	×	2

#>							Country	mean_eco2

#>									<chr>					<dbl>

#>	1	Afghanistan							NaN

#>	2					Albania					0.641

#>	3					Algeria				23.015

#>	4						Angola					0.791

#>	#	...	with	184	more	rows

NOTE
The	previous	example	relates	to	wider	programming:	how	much	work	should	one	function	do?	The	work	could
have	been	done	with	a	single	aggregate()	call.	However,	the	Unix	philosophy	states	that	programs	should	“do
one	thing	well,”	which	is	how	dplyr’s	functions	were	designed.	Shorter	functions	are	easier	to	understand	and
debug.	But	having	too	many	functions	can	also	make	your	call	stack	confusing.

To	reinforce	the	point,	this	operation	is	also	performed	in	the	following	code	on	the	wb_ineq
dataset:

data(wb_ineq,	package	=	"efficient")

countries	=	group_by(wb_ineq,	Country)

summarize(countries,	gini	=	mean(gini,	na.rm		=	TRUE))

#>	#	A	tibble:	176	×	2

#>							Country		gini

#>									<chr>	<dbl>

http://bit.ly/basicsofunix


#>	1	Afghanistan			NaN

#>	2					Albania		30.4

#>	3					Algeria		37.8

#>	4						Angola		50.6

#>	#	...	with	172	more	rows

Note	that	summarize	is	highly	versatile,	and	can	be	used	to	return	a	customized	range	of
summary	statistics:

summarize(countries,

		#	number	of	rows	per	country

		obs	=	n(),

		med_t10	=	median(top10,	na.rm		=	TRUE),

		#	standard	deviation

		sdev	=	sd(gini,	na.rm		=	TRUE),

		#	number	with	gini	>	30

		n30	=	sum(gini	>	30,	na.rm		=	TRUE),

		sdn30	=	sd(gini[	gini	>	30	],	na.rm		=	TRUE),

		#	range

		dif	=	max(gini,	na.rm		=	TRUE)	-	min(gini,	na.rm		=	TRUE)

		)

#>	#	A	tibble:	176	×	7

#>							Country			obs	med_t10		sdev			n30		sdn30			dif

#>									<chr>	<int>			<dbl>	<dbl>	<int>		<dbl>	<dbl>

#>	1	Afghanistan				40						NA			NaN					0					NA				NA

#>	2					Albania				40				24.4		1.25					3		0.364		2.78

#>	3					Algeria				40				29.8		3.44					2		3.437		4.86

#>	4						Angola				40				38.6	11.30					2	11.300	15.98

#>	#	...	with	172	more	rows

To	showcase	the	power	of	summarize()	used	on	a	grouped_df,	the	previous	code	reports	a
wide	range	of	customized	summary	statistics	per	country:

The	number	of	rows	in	each	country	group

Standard	deviation	of	Gini	indices

Median	proportion	of	income	earned	by	the	top	10%

The	number	of	years	in	which	the	Gini	index	was	greater	than	30

The	standard	deviation	of	Gini	index	values	over	30

The	range	of	Gini	index	values	reported	for	each	country

Exercises
1.	 Refer	back	to	the	greenhouse	gas	emissions	example	at	the	outset	of	section

“Efficient	Data	Processing	with	dplyr”,	in	which	we	found	the	top	three	countries	in
terms	of	emissions	growth	in	the	transport	sector.
a.	 Explain	in	words	what	is	going	on	in	each	line.

b.	 Try	to	find	the	top	three	countries	in	terms	of	emissions	in	2012	—	how	is	the
list	different?



2.	 Explore	dplyr’s	documentation,	starting	with	the	introductory	vignette,	accessed	by
entering	vignette("introduction").

3.	 Test	additional	dplyr	verbs	on	the	wb_ineq	dataset.	(More	vignette	names	can	be
discovered	by	typing	vignette(package	=	"dplyr").)

https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html


Nonstandard	Evaluation
The	final	thing	to	say	about	dplyr	does	not	relate	to	the	data	but	to	the	syntax	of	the	functions.
Note	that	many	of	the	arguments	in	the	code	examples	in	this	section	are	provided	as	raw
names;	they	are	raw	variable	names	not	surrounded	by	quotation	marks	(e.g.,	Country	rather
than	"Country").	This	is	called	nonstandard	evaluation	(NSE)	(see	vignette("nse")).	NSE
was	used	deliberately,	with	the	aim	of	making	the	functions	more	efficient	for	interactive	use.
NSE	reduces	typing	and	allows	autocompletion	in	RStudio.

This	is	fine	when	using	R	interactively.	But	when	you’d	like	to	use	R	noninteractively,	code	is
generally	more	robust	using	standard	evaluation	because	it	minimizes	the	chance	of	creating
obscure	scope-related	bugs.	Using	standing	evaluation	also	avoids	having	to	declare	global
variables	if	you	include	the	code	in	a	package.	For	this	reason,	most	functions	in	tidyr	and
dplyr	have	two	versions:	one	that	uses	NSE	(the	default)	and	another	that	uses	standard
evaluation	and	requires	the	variable	names	to	be	provided	in	quotation	marks.	The	standard
evaluation	versions	of	functions	are	denoted	with	the	affix	_.	This	is	illustrated	in	the
following	code	with	the	gather()	function,	used	previously:

#	1:	Default	NSE	function

group_by(cars,	cut(speed,	c(0,	10,	100)))	%>%	summarize(mean(dist))

#>	#	A	tibble:	2	×	2

#>			`cut(speed,	c(0,	10,	100))`	`mean(dist)`

#>																								<fctr>								<dbl>

#>	1																						(0,10]									15.8

#>	2																				(10,100]									49.0

#	2:	Standard	evaluation	using	quote	marks

group_by_(cars,	"cut(speed,	c(0,	10,	100))")	%>%	summarize_("mean(dist)")

#>	#	A	tibble:	2	×	2

#>			`cut(speed,	c(0,	10,	100))`	`mean(dist)`

#>																								<fctr>								<dbl>

#>	1																						(0,10]									15.8

#>	2																				(10,100]									49.0

#	3:	Standard	evaluation	using	formula,	tilde	notation

#	(recommended	standard	evaluation	method)

group_by_(cars,	~cut(speed,	c(0,	10,	100)))	%>%	summarize_(~mean(dist))

#>	#	A	tibble:	2	×	2

#>			`cut(speed,	c(0,	10,	100))`	`mean(dist)`

#>																								<fctr>								<dbl>

#>	1																						(0,10]									15.8

#>	2																				(10,100]									49.0



Combining	Datasets
The	usefulness	of	a	dataset	can	sometimes	be	greatly	enhanced	by	combining	it	with	other
data.	If	we	could	merge	the	global	ghg_ems	dataset	with	geographic	data,	for	example,	we
could	visualize	the	spatial	distribution	of	climate	pollution.	For	the	purposes	of	this	section,
we	join	ghg_ems	to	the	world	data	provided	by	ggmap	to	illustrate	the	concepts	and	methods
of	data	joining	(also	referred	to	as	merging).

library("ggmap")

world	=	map_data("world")

names(world)

#>	[1]	"long"						"lat"							"group"					"order"					"region"				"subregion"

Visually	compare	this	new	dataset	of	the	world	with	ghg_ems	(e.g.,	via	View(world);
View(ghg_ems)).	It	is	clear	that	the	column	region	in	the	former	contains	the	same
information	as	Country	in	the	latter.	This	will	be	the	joining	variable;	renaming	it	in	world
will	make	the	join	more	efficient.

world	=	rename(world,	Country	=	region)

ghg_ems$All	=	rowSums(ghg_ems[3:7])

TIP
Ensure	that	both	joining	variables	have	the	same	class	(combining	character	and	factor	columns	can	cause
havoc).

How	large	is	the	overlap	between	ghg_ems$Country	and	world$Country?	We	can	find	out
using	the	%in%	operator,	which	finds	out	how	many	elements	in	one	vector	match	those	in
another	vector.	Specifically,	we	will	find	out	how	many	unique	country	names	from	ghg_ems
are	present	in	the	world	dataset:

unique_countries_ghg_ems	=	unique(ghg_ems$Country)

unique_countries_world	=	unique(world$Country)

matched	=	unique_countries_ghg_ems	%in%	unique_countries_world

table(matched)

#>	matched

#>	FALSE		TRUE

#>				20			168

This	comparison	exercise	has	been	fruitful:	most	of	the	countries	in	the	co2	dataset	exist	in	the
world	dataset.	But	what	about	the	20	country	names	that	do	not	match?	We	can	identify	these	as
follows:

(unmatched_countries_ghg_ems	=	unique_countries_ghg_ems[!matched])

#>		[1]	"Antigua	&	Barbuda"										"Bahamas,	The"

#>		[3]	"Bosnia	&	Herzegovina"							"Congo,	Dem.	Rep."



#>		[5]	"Congo,	Rep."																"Cote	d'Ivoire"

#>		[7]	"European	Union	(15)"								"European	Union	(28)"

#>		[9]	"Gambia,	The"																"Korea,	Dem.	Rep.	(North)"

#>	[11]	"Korea,	Rep.	(South)"								"Macedonia,	FYR"

#>	[13]	"Russian	Federation"									"Saint	Kitts	&	Nevis"

#>	[15]	"Saint	Vincent	&	Grenadines"	"Sao	Tome	&	Principe"

#>	[17]	"Trinidad	&	Tobago"										"United	Kingdom"

#>	[19]	"United	States"														"World"

It	is	clear	from	the	output	that	some	of	the	nonmatches	(e.g.,	the	European	Union)	are	not
countries	at	all.	However,	others	such	as	Gambia	and	the	United	States	clearly	should	have
matches.	Fuzzy	matching	can	help	find	which	countries	do	match,	as	illustrated	by	the	first
nonmatching	country	here:

(unmatched_country	=	unmatched_countries_ghg_ems[1])

#>	[1]	"Antigua	&	Barbuda"

unmatched_world_selection	=	agrep(pattern	=	unmatched_country,

				unique_countries_world,	max.distance	=	10)

unmatched_world_countries	=	unique_countries_world[unmatched_world_selection]

What	just	happened?	We	verified	that	the	first	unmatching	country	in	the	ghg_ems	dataset	was
not	in	the	world	country	names.	So	we	used	the	more	powerful	agrep	to	search	for	fuzzy
matches	(with	the	max.distance	argument	set	to	10).	The	results	show	that	the	country
Antigua	&	Barbuda	from	the	ghg_ems	data	matches	two	countries	in	the	world	dataset.	We	can
update	the	names	in	the	dataset	we	are	joining	to	accordingly:

world$Country[world$Country	%in%	unmatched_world_countries]	=

		unmatched_countries_ghg_ems[1]

This	code	reduces	the	number	of	country	names	in	the	world	dataset	by	replacing	both
“Antigua”	and	“Barbuda”	with	“Antigua	&	Barbuda”.	This	would	not	work	the	other	way
around:	how	would	one	know	whether	to	change	“Antigua	&	Barbuda”	to	“Antigua”	or	to
“Barbuda”?

Thus	fuzzy	matching	is	still	a	laborious	process	that	must	be	complemented	by	human
judgment.	It	takes	a	human	to	know	for	sure	that	United	States	is	represented	as	USA	in	the
world	dataset,	without	risking	false	matches	via	agrep.



Working	with	Databases
Instead	of	loading	all	the	data	into	RAM,	as	R	does,	databases	query	data	from	the	hard	disk.
This	can	allow	a	subset	of	a	very	large	dataset	to	be	defined	and	read	into	R	quickly,	without
having	to	load	it	first.	R	can	connect	to	databases	in	a	number	of	ways,	which	are	briefly
touched	on	below.	The	subject	of	databases	is	a	large	area	undergoing	rapid	evolution.	Rather
than	aiming	at	comprehensive	coverage,	we	will	provide	pointers	to	developments	that	enable
efficient	access	to	a	wide	range	of	database	types.	An	up-to-date	history	of	R’s	interfaces	to
databases	can	be	found	in	the	README	of	the	DBI	package,	which	provides	a	common
interface	and	set	of	classes	for	driver	packages	(such	as	RSQLite).

RODBC	is	a	veteran	package	for	querying	external	databases	from	within	R,	using	the	Open
Database	Connectivity	(ODBC)	API.	The	functionality	of	RODBC	is	described	in	the
package’s	vignette	(see	vignette("RODBC")),	and	today	its	main	use	is	to	provide	an	R
interface	to	SQL	Server	databases,	which	lack	a	DBI	interface.

The	DBI	package	is	a	unified	framework	for	accessing	databases	that	allows	for	other	drivers
to	be	added	as	modular	packages.	Thus	new	packages	that	build	on	DBI	can	be	seen	partly	as	a
replacements	of	RODBC	(RMySQL,	RPostgreSQL,	and	RSQLite)	(see
vignette("backend")	for	more	on	how	DBI	drivers	work).	Because	the	DBI	syntax	applies	to
a	wide	range	of	database	types,	we	use	it	here	with	a	worked	example.

Imagine	you	have	access	to	a	database	that	contains	the	ghg_ems	dataset.

#	Connect	to	a	database	driver

library("RSQLite")

con	=	dbConnect(SQLite(),	dbname	=	ghg_db)	#	Also	username	&	password	arguments

dbListTables(con)

rs	=	dbSendQuery(con,	"SELECT	*	FROM	`ghg_ems`	WHERE	(`Country`	!=	'World')")

df_head	=	dbFetch(rs,	n	=	6)	#	extract	first	6	row

The	preceding	code	chunk	shows	how	the	function	dbConnect	connects	to	an	external	database
—	in	this	case,	a	MySQL	database.	The	username	and	password	arguments	are	used	to
establish	the	connection.	Next,	we	query	which	tables	are	available	with	dbListTables,	query
the	database	(without	yet	extracting	the	results	to	R)	with	dbSendQuery,	and,	finally,	load	the
results	into	R	with	dbFetch.

TIP
Be	sure	never	to	release	your	password	by	entering	it	directly	into	the	command.	Instead,	we	recommend	saving
sensitive	information	such	as	database	passwords	and	API	keys	in	.Renviron,	described	in	Chapter	2.	Assuming
you	had	saved	your	password	as	the	environment	variable	PSWRD,	you	could	enter	pwd	=	Sys.getenv("PSWRD")
to	minimize	the	risk	of	exposing	your	password	through	accidentally	releasing	the	code	or	your	session	history.

Recently	there	has	been	a	shift	to	the	noSQL	approach	to	storing	large	datasets.	This	is

http://bit.ly/DBIREADME


illustrated	by	the	emergence	and	uptake	of	software	such	as	MongoDB	and	Apache	Cassandra
that	have	R	interfaces	via	packages	mongolite	and	RJDBC,	which	can	connect	to	Apache
Cassandra	data	stores	and	any	source	compliant	with	the	Java	Database	Connectivity	(JDBC)
API.

MonetDB	is	a	recent	alternative	to	relational	and	noSQL	approaches	that	offers	substantial
efficiency	advantages	for	handling	large	datasets	(Kersten	et	al.	2011).	A	tutorial	on	the
MonetDB	website	provides	an	excellent	introduction	to	handling	databases	from	within	R.

There	are	many	wider	considerations	in	relation	to	databases	that	we	will	not	cover	here:	who
will	manage	and	maintain	the	database?	How	will	it	be	backed	up	locally	(local	copies	should
be	stored	to	reduce	reliance	on	the	network)?	What	is	the	appropriate	database	for	your
project?	These	issues	can	have	major	effects	on	efficiency,	especially	on	large,	data-intensive
projects.	However,	we	will	not	cover	them	here	because	it	is	a	fast-moving	field.	Instead,	we
direct	the	interested	reader	toward	resources	on	the	subject,	including:

The	website	for	sparklyr,	a	recently	created	package	for	efficiently	interfacing	with	the
Apache	Spark	stack.

db-engines.com/en/,	a	website	comparing	the	relative	merits	of	different	databases.

The	databases	vignette	from	the	dplyr	package.

Getting	started	with	MongoDB	in	R,	an	introductory	vignette	on	nonrelational	databases
and	map	reduce	from	the	mongolite	package.

http://bit.ly/mongoliteR
http://bit.ly/RJDBCpackage
http://bit.ly/monetDBR
http://spark.rstudio.com/
http://db-engines.com/en/
http://bit.ly/MongoDBR


Databases	and	dplyr
To	access	a	database	in	R	via	dplyr,	you	must	use	one	of	the	src_*()	functions	to	create	a
source.	Continuing	with	the	SQLite	example	previously	given,	you	would	create	a	tbl	object
that	can	be	queried	by	dplyr	as	follows:

library("dplyr")

ghg_db	=	src_sqlite(ghg_db)

ghg_tbl	=	tbl(ghg_db,	"ghg_ems")

The	ghg_tbl	object	can	then	be	queried	in	a	similar	way	as	a	standard	data	frame.	For
example,	suppose	we	wished	to	filter	by	Country.	Then	we	use	the	filter()	function	as
before:

rm_world	=	ghg_tbl	%>%

		filter(Country	!=	"World")

In	this	code,	dplyr	has	actually	generated	the	necessary	SQL	command,	which	can	be
examined	using	explain(rm_world).	When	working	with	databases,	dplyr	uses	lazy
evaluation:	the	data	is	only	fetched	at	the	last	moment	when	it’s	needed.	The	SQL	command
associated	with	rm_world	hasn’t	yet	been	executed;	this	is	why	tail(rm_world)	doesn’t	work.
By	using	lazy	evaluation,	dplyr	is	more	efficient	at	handling	large	data	structures	because	it
avoids	unnecessary	copying.	When	you	want	your	SQL	command	to	be	executed,	use
collect(rm_world).

The	final	stage	when	working	with	databases	in	R	is	to	disconnect:

dbDisconnect(conn	=	con)

Exercises
Follow	the	worked	example	here	to	create	and	query	a	database	on	land	prices	in	the	UK
using	dplyr	as	a	frontend	to	an	SQLite	database.	The	first	stage	is	to	read	in	the	data:

#	See	help("land_df",	package="efficient")	for	details

data(land_df,	package	=	"efficient")

The	next	stage	is	to	create	an	SQLite	database	to	hold	the	data:

#	install.packages("RSQLite")	#	Requires	RSQLite	package

my_db	=	src_sqlite("land.sqlite3",	create	=	TRUE)

land_sqlite	=	copy_to(my_db,	land_df,	indexes	=	list("postcode",	"price"))

1.	 What	class	is	the	new	object	land_sqlite?

2.	 Why	did	we	use	the	indexes	argument?	
From	the	preceding	code,	we	can	see	that	we	have	created	a	tbl.	This	can	be	accessed



using	dplyr	in	the	same	way	as	any	data	frame	can.	Now	we	can	query	the	data.	You
can	use	SQL	code	to	query	the	database	directly	or	use	standard	dplyr	verbs	on	the
table.

#	Method	1:	using	sql

tbl(my_db,	sql('SELECT	"price",	"postcode",	"old/new"		FROM	land_df'))

#>	Source:			query	[??	x	3]

#>	Database:	sqlite	3.8.6	[land.sqlite3]

#>

#>				price	postcode	`old/new`

#>				<int>				<chr>					<chr>

#>	1		84000		CW9	5EU									N

#>	2	123500	TR13	8JH									N

#>	3	217950	PL33	9DL									N

#>	4	147000	EX39	5XT									N

#>	#	...	with	more	rows

3.	 How	would	you	perform	the	same	query	using	select()?	Try	it	to	see	if	you	get	the
same	result	(hint:	use	backticks	for	the	old/new	variable	name).

#>	Source:			query	[??	x	3]

#>	Database:	sqlite	3.8.6	[land.sqlite3]

#>

#>				price	postcode	`old/new`

#>				<int>				<chr>					<chr>

#>	1		84000		CW9	5EU									N

#>	2	123500	TR13	8JH									N

#>	3	217950	PL33	9DL									N

#>	4	147000	EX39	5XT									N

#>	#	...	with	more	rows



Data	Processing	with	data.table
data.table	is	a	mature	package	for	fast	data	processing	that	presents	an	alternative	to	dplyr.
There	is	some	controversy	about	which	is	more	appropriate	for	different	tasks.4	Which	is
more	efficient	to	some	extent	depends	on	personal	preferences	and	what	you	are	used	to.	Both
are	powerful	and	efficient	packages	that	take	time	to	learn,	so	it	is	best	to	learn	one	and	stick
with	it,	rather	than	have	the	duality	of	using	two	for	similar	purposes.	There	are	situations	in
which	one	works	better	than	another:	dplyr	provides	a	more	consistent	and	flexible	interface
(e.g.,	with	its	interface	to	databases,	demonstrated	in	the	previous	section),	so	for	most
purposes	we	recommend	learning	dplyr	first	if	you	are	new	to	both	packages.	dplyr	can	also
be	used	to	work	with	the	data.table	class	used	by	the	data.table	package	so	you	can	get	the
best	of	both	worlds.

data.table	is	faster	than	dplyr	for	some	operations	and	offers	some	functionality	unavailable
in	other	packages,	however,	and	has	a	mature	and	advanced	user	community.	data.table
supports	rolling	joins,	which	allow	rows	in	one	table	to	be	selected	based	on	proximity
between	shared	variables	(typically	time)	and	non-equi	joins	where	join	criteria	can	be
inequalities	rather	than	equal	to.

This	section	provides	a	few	examples	to	illustrate	how	data.table	is	unique	and	(at	the	risk	of
inflaming	the	debate	further)	some	benchmarks	you	can	use	to	explore	which	is	more
efficient.	As	emphasized	throughout	the	book,	efficient	code	writing	is	often	more	important
than	efficient	execution	on	many	everyday	tasks,	so	to	some	extent	it’s	a	matter	of	preference.

The	foundational	object	class	of	data.table	is	the	data.table.	Like	dplyr’s	tbl_df,
data.table’s	data.table	objects	behave	in	the	same	way	as	the	base	data.frame	class.
However,	the	data.table	paradigm	has	some	unique	features	that	make	it	highly
computationally	efficient	for	many	common	tasks	in	data	analysis.	Building	on	subsetting
methods	using	[	and	filter(),	mentioned	previously,	we’ll	see	data.tables’s	unique
approach	to	subsetting.	Like	base	R,	data.table	uses	square	brackets	but	(unlike	base	R	but
like	dplyr)	uses	nonstandard	evaluation,	so	you	need	not	refer	to	the	object	name	inside	the
brackets:

library("data.table")

data(wb_ineq_renamed)	#	from	the	efficient	package

wb_ineq_dt	=	data.table(wb_ineq_renamed)	#	convert	to	data.table	class

aus3a	=	wb_ineq_dt[Country	==	"Australia"]

NOTE
Note	that	the	square	brackets	do	not	need	a	comma	to	refer	to	rows	with	data.table	objects;	in	base	R,	you
would	write	wb_ineq_renamed[wb_ineq_renamed$Country	==	"Australia",].

http://bit.ly/datatablerollingjoins
http://bit.ly/non-equijoins


To	boost	performance,	you	can	set	keys,	analogous	to	primary	keys	in	databases.	These	are
supercharged	rownames	that	order	the	table	based	on	one	or	more	variables.	This	allows	a
binary	search	algorithm	to	subset	the	rows	of	interest,	which	is	much,	much	faster	than	the
vector	scan	approach	used	in	base	R	(see	vignette("datatable-keys-fast-subset")).
data.table	uses	the	key	values	for	subsetting	by	default	so	the	variable	does	not	need	to	be
mentioned	again.	Instead,	using	keys,	the	search	criteria	is	provided	as	a	list	(invoked	in	the
following	code	chunk	with	the	concise	.()	syntax,	which	is	synonymous	with	list()).

setkey(wb_ineq_dt,	Country)

aus3b	=	wb_ineq_dt[.("Australia")]

The	result	is	the	same,	so	why	add	the	extra	stage	of	setting	the	key?	The	reason	is	that	this
one-off	sorting	operation	can	lead	to	substantial	performance	gains	in	situations	where
repeatedly	subsetting	rows	on	large	datasets	consumes	a	large	proportion	of	computational
time	in	your	workflow.	This	is	illustrated	in	Figure	6-1,	which	compares	four	methods	of
subsetting	incrementally	larger	versions	of	the	wb_ineq	dataset.

Figure	6-1	demonstrates	that	data.table	is	much	faster	than	base	R	and	dplyr	at	subsetting.	As
with	using	external	packages	used	to	read	in	data	(see	“Plain-Text	Formats”),	the	relative
benefits	of	data.table	improve	with	dataset	size,	approaching	a	~70-fold	improvement	on
base	R	and	a	~50-fold	improvement	on	dplyr	as	the	dataset	size	reaches	half	a	gigabyte.
Interestingly,	even	the	nonkey	implementation	of	the	data.table	subset	method	is	faster	than
the	alternatives.	This	is	because	data.table	creates	a	key	internally	by	default	before
subsetting.	The	process	of	creating	the	key	accounts	for	the	~10	fold	speed-up	in	cases	where
the	key	has	been	pregenerated.

This	section	has	introduced	data.table	as	a	complimentary	approach	to	base	and	dplyr
methods	for	data	processing.	It	offers	performance	gains	due	to	its	implementation	in	C	and
the	use	of	keys	for	subsetting	tables.	data.table	offers	much	more,	however,	including:	highly
efficient	data	reshaping,	dataset	merging	(also	known	as	joining,	as	with	left_join()	in
dplyr),	and	grouping.	For	further	information	on	data.table,	we	recommend	reading	the
package’s	datatable-intro,	datatable-reshape,	and	datatable-reference-semantics
vignettes.

http://bit.ly/keysfastbinary
http://bit.ly/datatableintro
http://bit.ly/datatablereshape
http://bit.ly/datatablerefsem


Figure	6-1.	Benchmark	illustrating	the	performance	gains	to	be	expected	for	different	dataset	sizes
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str(wb_ineq)	is	another	way	to	see	the	contents	of	an	object,	but	produces	more	verbose	output.

Note	that	filter	is	also	the	name	of	a	function	used	in	the	base	stats	library.	Typically,	packages	avoid	using	names
already	taken	in	base	R,	but	this	is	an	exception.

The	equivalent	code	in	base	R	is	e_ems	=	aggregate(ghg_ems$Electricity,	list(ghg_ems$Country),	mean,	na.rm	=
TRUE,	data	=	ghg_ems);	nrow(ghg_ems).

One	question	on	the	Stack	Overflow	website	titled	“data.table	vs	dplyr”	illustrates	this	controversy	and	delves	into	the
philosophy	underlying	each	approach.
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Chapter	7.	Efficient	Optimization

Donald	Knuth	is	a	legendary	American	computer	scientist	who	developed	a	number	of	the	key
algorithms	that	we	use	today	(see,	for	example,	?Random).	On	the	subject	of	optimization,	he
gave	this	advice:

The	real	problem	is	that	programmers	have	spent	far	too	much	time	worrying	about
efficiency	in	the	wrong	places	and	at	the	wrong	times;	premature	optimization	is	the	root	of
all	evil	(or	at	least	most	of	it)	in	programming.

Knuth’s	point	is	that	it	is	easy	to	undertake	code	optimization	inefficiently.	When	developing
code,	the	causes	of	inefficiencies	may	shift	so	that	what	originally	caused	slowness	at	the
beginning	of	your	work	may	not	be	relevant	at	a	later	stage.	This	means	that	time	spent
optimizing	code	early	in	the	developmental	stage	could	be	wasted.	Even	worse,	there	is	a
trade-off	between	code	speed	and	code	readability;	we’ve	already	made	this	trade-off	once	by
using	readable	(but	slow)	R	compared	with	verbose	C	code!

For	this	reason,	this	chapter	is	part	of	the	latter	half	of	the	book.	The	previous	chapters
deliberately	focused	on	concepts,	packages,	and	functions	to	increase	efficiency.	These	are
(relatively)	easy	ways	of	saving	time	that,	once	implemented,	will	work	for	future	projects.
Code	optimization,	by	contrast,	is	an	advanced	topic	that	should	only	be	tackled	once	low
hanging	fruit	for	efficiency	gains	have	been	taken.

In	this	chapter	we	assume	that	you	already	have	well-developed	code	that	is	mature
conceptually	and	has	been	tried	and	tested.	Now	you	want	to	optimize	this	code,	but	not
prematurely.	The	chapter	is	organized	as	follows.	First,	we	begin	with	general	hints	and	tips
about	optimizing	base	R	code.	Code	profiling	can	identify	key	bottlenecks	in	the	code	in	need
of	optimization,	and	this	is	covered	in	the	next	section.	“Parallel	Computing”	discusses	how
parallel	code	can	overcome	efficiency	bottlenecks	for	some	problems.	The	final	section
explains	how	Rcpp	can	be	used	to	efficiently	incorporate	C++	code	into	an	R	analysis.

https://en.wikiquote.org/wiki/Donald_Knuth


Prerequisites
In	this	chapter,	some	of	the	examples	require	a	working	C++	compiler.	The	installation
method	depends	on	your	operating	system:

Linux
A	compiler	should	already	be	installed.	Otherwise,	install	r-base	and	a	compiler	will	be
installed	as	a	dependency.

Mac
Install	Xcode.

Windows
Install	Rtools.	Make	sure	you	select	the	version	that	corresponds	to	your	version	of	R.

The	packages	used	in	this	chapter	are:

library("microbenchmark")

library("ggplot2movies")

library("profvis")

library("Rcpp")

http://cran.r-project.org/bin/windows/


Top	Five	Tips	for	Efficient	Optimization
1.	 Before	you	start	to	optimize	you	code,	ensure	that	you	know	where	the	bottleneck

lies;	use	a	code	profiler.

2.	 If	the	data	in	your	data	frame	is	all	of	the	same	type,	consider	converting	it	to	a
matrix	for	a	speed	boost.

3.	 Use	specialized	row	and	column	functions	whenever	possible.

4.	 The	parallel	package	is	ideal	for	Monte	Carlo	simulations.

5.	 For	optimal	performance,	consider	rewriting	key	parts	of	your	code	in	C++.



Code	Profiling
Often	you	will	have	working	code,	but	simply	want	it	to	run	faster.	In	some	cases,	it’s	obvious
where	the	bottleneck	lies.	Sometimes	you	will	guess,	relying	on	intuition.	A	drawback	of	this
is	that	you	could	be	wrong	and	waste	time	optimizing	the	wrong	piece	of	code.	To	make	slow
code	run	faster,	it	is	important	to	first	determine	where	the	slow	code	lives.	This	is	the
purpose	of	code	profiling.

The	Rprof()	function	is	a	built-in	tool	for	profiling	the	execution	of	R	expressions.	At
regular	time	intervals,	the	profiler	stops	the	R	interpreter,	records	the	current	function	call
stack,	and	saves	the	information	to	a	file.	The	results	from	Rprof()	are	stochastic.	Each	time
we	run	a	function	R,	the	conditions	have	changed.	Hence,	each	time	you	profile	your	code,	the
result	will	be	slightly	different.

Unfortunately,	Rprof()	is	not	user-friendly.	For	this	reason,	we	recommend	using	the	profvis
package	for	profiling	your	R	code.	profvis	provides	an	interactive	graphical	interface	for
visualizing	code-profiling	data	from	Rprof().



Getting	Started	with	profvis
After	installing	profvis	(e.g.,	with	install.packages("profvis")),	it	can	be	used	to	profile	R
code.	As	a	simple	example,	we	will	use	the	movies	dataset,	which	contains	information	on
about	60,000	movies.	First,	we’ll	select	movies	that	are	classed	as	comedies,	then	plot	the	year
the	movie	was	made	verus	the	movie	rating	and	draw	a	local	polynomial	regression	line	to
pick	out	the	trend.	The	main	function	from	the	profvis	package	is	profvis(),	which	profiles
the	code	and	creates	an	interactive	HTML	page	of	the	results.	The	first	argument	of
profvis()	is	the	R	expression	of	interest.	This	can	be	many	lines	long:

library("profvis")

profvis({

		data(movies,	package	=	"ggplot2movies")	#	Load	data

		movies	=	movies[movies$Comedy	==	1,]

		plot(movies$year,	movies$rating)

		model	=	loess(rating	~	year,	data	=	movies)	#	loess	regression	line

		j	=	order(movies$year)

		lines(movies$year[j],	model$fitted[j])	#	Add	line	to	the	plot

})

The	previous	code	provides	an	interactive	HTML	page	(the	Figure	7-1).	On	the	left	side	is	the
code	and	on	the	right	is	a	flame	graph	(the	horizontal	direction	is	time	in	milliseconds	and	the
vertical	direction	is	the	call	stack).

Figure	7-1.	Output	from	profvis

The	left-hand	panel	gives	the	amount	of	time	spent	on	each	line	of	code.	It	shows	that	the
majority	of	time	is	spent	calculating	the	loess()	smoothing	line.	The	bottom	line	of	the	right
panel	also	highlights	that	most	of	the	execution	time	is	spent	on	the	loess()	function.
Traveling	up	the	function,	we	see	that	loess()	calls	simpleLoess(),	which	in	turn	calls	the
.C()	function.

The	conclusion	from	this	graph	is	that	if	optimization	were	required,	it	would	make	sense	to
focus	on	the	loess()	and	possibly	the	order()	function	calls.



Example:	Monopoly	Simulation
Monopoly	is	a	board	game	that	originated	in	the	United	States	over	100	years	ago.	The
objective	of	the	game	is	to	go	around	the	board	and	purchase	squares	(properties).	If	other
players	land	on	your	properties,	they	have	to	pay	a	tax.	The	player	with	the	most	money	at	the
end	of	the	game	wins.	To	make	things	more	interesting,	there	are	Chance	and	Community
Chest	squares.	If	you	land	on	one	of	these	squares,	you	draw	a	card,	which	may	send	you	to
other	parts	of	the	board.	The	other	special	square	is	Jail.	One	way	of	entering	Jail	is	to	roll
three	successive	doubles.

The	efficient	package	contains	a	Monte	Carlo	function	for	simulating	a	simplified	game	of
monopoly.	By	keeping	track	of	where	a	person	lands	when	going	around	the	board,	we	obtain
an	estimate	of	the	probability	of	landing	on	a	certain	square.	The	entire	code	is	around	100
lines	long.	In	order	for	profvis	to	fully	profile	the	code,	the	efficient	package	needs	to	be
installed	from	source:

devtools::install_github("csgillespie/efficient",	args	=	"--with-keep.source")

The	function	can	then	be	profiled	via	the	following	code,	which	results	in	Figure	7-2.

library("efficient")

profvis(simulate_monopoly(10000))

Figure	7-2.	Code	profiling	for	simulating	the	game	of	Monopoly

The	output	from	profvis	shows	that	the	vast	majority	of	time	(around	65%)	is	spent	in	the



move_square()	function.

In	Monopoly,	moving	around	the	board	is	complicated	by	the	fact	that	rolling	a	double	(a	pair
of	1s,	2s,	…,	6s)	is	special:

Roll	two	dice	(total1):	total_score	=	total1.

If	you	get	a	double,	roll	again	(total2)	and	total_score	=	total1	+	total2.

If	you	get	a	double,	roll	again	(total3)	and	total_score	=	total1	+	total2	+	total3.

If	roll	three	is	a	double,	go	to	Jail;	otherwise,	move	total_score.

The	function	move_square()	captures	this	logic.	Now	that	we	know	where	the	code	is	slow,
how	can	we	speed	up	the	computation?	In	the	next	section,	we	will	discuss	standard	techniques
that	can	be	used.	We	will	then	revisit	this	example.



Efficient	Base	R
In	R,	there	is	often	more	than	one	way	to	solve	a	problem.	In	this	section,	we	highlight
standard	tricks	or	alternative	methods	that	may	improve	performance.



The	if()	Versus	ifelse()	Functions
ifelse()	is	a	vectorized	version	of	the	standard	control-flow	function	if(test)	if_yes
else	if_no	that	works	as	follows:

ifelse(test,	if_yes,	if_no)

In	the	preceding	imaginary	example,	the	return	value	is	filled	with	elements	from	the	if_yes
and	if_no	arguments	that	are	determined	by	whether	the	element	of	test	is	TRUE	or	FALSE.	For
example,	suppose	we	have	a	vector	of	exam	marks.	ifelse()	could	be	used	to	classify	them
as	pass	or	fail:

marks	=	c(25,	55,	75)

ifelse(marks	>=	40,	"pass",	"fail")

#>	[1]	"fail"	"pass"	"pass"

If	the	length	of	the	test	condition	is	equal	to	1	(i.e.,	length(test)	==	1),	then	the	standard
conditional	statement

mark	=	25

if(mark	>=	40)	{

		"pass"

}	else	{

		"fail"

}

is	around	five	to	ten	times	faster	than	ifelse(mark	>=	40,	"pass",	"fail").

An	additional	quirk	of	ifelse()	is	that	although	it	is	more	programmer	efficient,	as	it	is	more
concise	and	understandable	than	multiline	alternatives,	it	is	often	less	computationally
efficient	than	a	more	verbose	alternative.	This	is	illustrated	with	the	following	benchmark,	in
which	the	second	option	runs	about	20	times	faster,	despite	the	results	being	identical:

marks	=	runif(n	=	10e6,	min	=	30,	max	=	99)

system.time({

		result1	=	ifelse(marks	>=	40,	"pass",	"fail")

})

#>				user		system	elapsed

#>			4.293			0.351			4.667

system.time({

		result2	=	rep("fail",	length(marks))

		result2[marks	>=	40]	=	"pass"

})

#>				user		system	elapsed

#>			0.192			0.052			0.244

identical(result1,	result2)

#>	[1]	TRUE

There	is	talk	on	the	R-devel	email	list	of	speeding	up	ifelse()	in	base	R.	A	simple	solution	is
to	use	the	if_else()	function	from	dplyr,	although,	as	discussed	in	the	same	thread,	it	cannot
replace	ifelse()	in	all	situations.	For	our	exam	result	test	example,	if_else()	works	fine

http://bit.ly/ifelsespeed


and	is	much	faster	than	base	R’s	implementation	(although	it	is	still	around	three	times	slower
than	the	hardcoded	solution):

system.time({

		result3	=	dplyr::if_else(marks	>=	40,	"pass",	"fail")

})

#>				user		system	elapsed

#>			1.065			0.188			1.253

identical(result1,	result3)

#>	[1]	TRUE



Sorting	and	Ordering
Sorting	a	vector	is	relatively	quick;	sorting	a	vector	of	length	107	takes	around	0.01	seconds.
If	you	only	sort	a	vector	once	at	the	top	of	a	script,	then	don’t	worry	too	much	about	this.
However,	if	you	are	sorting	inside	a	loop	or	in	a	Shiny	application,	then	it	can	be	worthwhile
thinking	about	how	to	optimize	this	operation.

There	are	currently	three	sorting	algorithms,	c("shell",	"quick",	"radix"),	that	can	be
specified	in	the	sort()	function,	with	radix	being	a	new	addition	to	R	3.3.	Typically,	the
radix	(the	nondefault	option)	is	the	most	computationally	efficient	option	for	most	situations
(it	is	around	20%	faster	when	sorting	a	large	vector	of	doubles).

Another	useful	trick	is	to	partially	order	the	results.	For	example,	if	you	only	want	to	display
the	top	10	results,	then	use	the	partial	argument	(i.e.,	sort(x,	partial	=	1:10)).	For	very
large	vectors,	this	can	give	a	three-fold	speed	increase.



Reversing	Elements
The	rev()	function	provides	a	reversed	version	of	its	argument.	If	you	wish	to	sort	in
increasing	order,	sort(x,	decreasing	=	TRUE)	is	marginally	(around	10%)	faster	than
rev(sort(x)).



Which	Indices	are	TRUE?
To	determine	which	index	of	a	vector	or	array	is	TRUE,	we	would	typically	use	the	which()
function.	If	we	want	to	find	the	index	of	just	the	minimum	or	maximum	value	(i.e.,	which(x
==	min(x))),	then	using	the	efficient	which.min()/which.max()	variants	can	be	orders	of
magnitude	faster	(see	Figure	7-3).

Figure	7-3.	Comparison	of	which.min()	with	which()



Converting	Factors	to	Numerics
A	factor	is	just	a	vector	of	integers	with	associated	levels.	Occasionally,	we	want	to	convert	a
factor	into	its	numerical	equivalent.	The	most	efficient	way	of	doing	this	(especially	for	long
factors)	is:

as.numeric(levels(f))[f]



Logical	AND	and	OR
The	logical	AND	(&)	and	OR	(|)	operators	are	vectorized	functions	and	are	typically	used
during	multicriteria	subsetting	operations.	The	following	code,	for	example,	returns	TRUE	for
all	elements	of	x	greater	than	0.4	or	less	than	0.6:

x	<	0.4	|	x	>	0.6

#>	[1]		TRUE	FALSE		TRUE

When	R	executes	this	comparison,	it	will	always	calculate	x	>	0.6	regardless	of	the	value	of
x	<	0.4.	In	contrast,	the	nonvectorized	version,	&&,	only	executes	the	second	component	if
needed.	This	is	efficient	and	leads	to	neater	code:

#	We	only	calculate	the	mean	if	data	doesn't	contain	NAs

if(!anyNA(x)	&&	mean(x)	>	0)	{

		#	Do	something

}

compared	to

if(!anyNA(x))	{

		if(mean(x)	>	0)	{

				#	do	something

		}

}

However,	care	must	be	taken	not	to	use	&&	or	||	on	vectors	because	it	only	evaluates	the	first
element	of	the	vector,	giving	the	incorrect	answer.	This	is	illustrated	here:

x	<	0.4	||	x	>	0.6

#>	[1]	TRUE



Row	and	Column	Operations
In	data	analysis,	we	often	want	to	apply	a	function	to	each	column	or	row	of	a	dataset.	For
example,	we	might	want	to	calculate	the	column	or	row	sums.	The	apply()	function	makes
this	type	of	operation	straightforward.

#	Second	argument:	1	->	rows.	2	->	columns

apply(data_set,	1,	function_name)

There	are	optimized	functions	for	calculating	row	and	column	sums/means	(rowSums(),
colSums(),	rowMeans(),	and	colMeans())	that	should	be	used	whenever	possible.	The	package
matrixStats	contains	many	optimized	row/column	functions.



is.na()	and	anyNA()
To	test	whether	a	vector	(or	other	object)	contains	missing	values,	we	use	the	is.na()
function.	Often	we	are	interested	in	whether	a	vector	contains	any	missing	values.	In	this	case,
anyNA(x)	is	more	efficient	than	any(is.na(x)).



Matrices
A	matrix	is	similar	to	a	data	frame:	it	is	a	two-dimensional	object	and	subsetting,	and	other
functions	work	in	the	same	way.	However,	all	matrix	elements	must	have	the	same	type.
Matrices	tend	to	be	used	during	statistical	calculations.	The	lm()	function,	for	example,
internally	converts	the	data	to	a	matrix	before	calculating	the	results;	any	characters	are	thus
recoded	as	numeric	dummy	variables.

Matrices	are	generally	faster	than	data	frames.	For	example,	the	datasets	ex_mat	and	ex_df
from	the	efficient	package	each	have	1,000	rows	and	100	columns	and	contain	the	same
random	numbers.	However,	selecting	rows	from	the	data	frame	is	about	150	times	slower
than	a	matrix,	as	illustrated	here:

data(ex_mat,	ex_df,	package	=	"efficient")

microbenchmark(times	=	100,	unit	=	"ms",	ex_mat[1,	],	ex_df[1,	])

#>	Unit:	milliseconds

#>									expr					min						lq			mean		median						uq		max	neval

#>		ex_mat[1,	]	0.00252	0.00368	0.0565	0.00531	0.00593	5.08			100

#>			ex_df[1,	]	0.77058	0.87406	1.0894	0.96771	1.10045	6.36			100

TIP
Use	the	data.matrix()	function	to	efficiently	convert	a	data	frame	into	a	matrix.

The	integer	data	type
Numbers	in	R	are	usually	stored	in	double-precision	floating-point	format,	which	is
described	in	detail	in	A	First	Course	in	Statistical	Programming	with	R	(Braun	and	Murdoch
2007)	and	“What	Every	Computer	Scientist	Should	Know	About	Floating-Point	Arithmetic”
(Goldberg).	The	term	double	refers	to	the	fact	that	on	32-bit	systems	(for	which	the	format
was	developed)	two	memory	locations	are	used	to	store	a	single	number.	Each	double-
precision	number	is	accurate	to	about	17	decimal	places.

NOTE
When	comparing	floating-point	numbers,	we	should	be	particularly	careful	because	y	=	sqrt(2)	*	sqrt(2)	is	not
exactly	2	—	it’s	almost	2.	Using	sprintf("%.17f",	y)	will	give	you	the	true	value	of	y	(to	17	decimal	places).

Integers	are	another	numeric	data	type.	Integers	primarily	exist	to	be	passed	to	C	or	Fortran
code.	You	will	not	need	to	create	integers	for	most	applications.	However,	they	are
occasionally	used	to	optimize	subsetting	operations.	When	we	subset	a	data	frame	or	matrix,
we	are	interacting	with	C	code	and	might	be	tempted	to	use	integers	with	the	purpose	of
speeding	up	our	code.	For	example,	if	we	look	at	the	arguments	for	the	head	function

https://goo.gl/ZA5R8a


args(head.matrix)

#>	function	(x,	n	=	6L,	...)

#>	NULL

TIP
Using	the	:	operator	automatically	creates	a	vector	of	integers.

we	see	that	the	default	argument	for	n	is	6L	rather	than	simply	6	(the	L	is	short	for	literal	and
is	used	to	create	an	integer).	This	gives	a	tiny	speed	boost	(around	0.1	microseconds!).

x	=	runif(10)

microbenchmark(head(x,	6.0),	head(x,	6L),	times	=	1000000)

#	Unit:	microseconds

#								expr			min				lq		mean	median				uq				max	neval	cld

#		head(x,	6)	7.067	8.309	9.058		8.686	9.098	105266	1e+06			a

#	head(x,	6L)	6.947	8.219	8.933		8.594	9.007	106307	1e+06			a

Because	this	function	is	ubiquitous,	this	low-level	optimization	is	useful.	In	general,	if	you	are
worried	about	shaving	microseconds	off	your	R	code	run	time,	you	should	probably	consider
switching	to	another	language.

Integers	are	more	space-efficient.	The	following	code	compares	the	size	of	an	integer	vector
to	that	of	a	standard	numeric	vector:

pryr::object_size(1:10000)

#>	40	kB

pryr::object_size(seq(1,	10000,	by	=	1.0))

#>	80	kB

The	results	show	that	the	integer	version	is	roughly	half	the	size.	However,	most	mathematical
operations	will	convert	the	integer	vector	into	a	standard	numerical	vector,	as	illustrated	in
the	following	code	chunk:

is.integer(1L	+	1)

#>	[1]	FALSE

Further	storage	savings	can	be	obtained	using	the	bit	package.

Sparse	matrices
Another	data	structure	that	can	be	stored	efficiently	is	a	sparse	matrix.	This	is	simply	a	matrix
where	most	of	the	elements	are	zero.	Conversely,	if	most	elements	are	nonzero,	the	matrix	is
considered	dense.	The	proportion	of	nonzero	elements	is	called	the	sparsity.	Large,	sparse
matrices	often	crop	up	when	performing	numerical	calculations.	Typically,	our	data	isn’t
sparse,	but	the	resulting	data	structures	we	create	may	be	sparse.	There	are	a	number	of
techniques/methods	used	to	store	sparse	matrices.	Methods	for	creating	sparse	matrices	can
be	found	in	the	Matrix	package.1



As	an	example,	suppose	we	have	a	large	matrix	in	which	the	diagonal	elements	are	nonzero:

library("Matrix")

N	=	10000

sp	=	sparseMatrix(1:N,	1:N,	x	=	1)

m	=	diag(1,	N,	N)

Both	objects	contain	the	same	information,	but	the	data	is	stored	differently.	Because	we	have
the	same	value	multiple	times	in	the	matrix,	we	only	need	to	store	the	value	once	and	link	it	to
multiple	matrix	locations.	The	matrix	object	stores	each	individual	element,	whereas	the
sparse	matrix	object	only	stores	the	location	of	the	nonzero	elements.	This	is	much	more
memory-efficient,	as	illustrated	in	the	following	code:

pryr::object_size(sp)

#>	161	kB

pryr::object_size(m)

#>	800	MB

Exercises
1.	 Create	a	vector,	x.	Benchmark	any(is.na(x))	against	anyNA().	Do	the	results	vary

with	the	size	of	the	vector?

2.	 Examine	the	following	function	definitions	to	give	you	an	idea	of	how	integers	are
used:

tail.matrix()

lm()

3.	 Construct	a	matrix	of	integers	and	a	matrix	of	numerics.	Using
pryr::object_size(),	compare	the	objects.

4.	 How	does	the	function	seq.int(),	which	was	used	in	the	tail.matrix()	function,
differ	from	the	standard	seq()	function?

NOTE
A	related	memory-saving	idea	is	to	replace	logical	vectors	with	vectors	from	the	bit	package,	which	take	up	just
over	1/30th	of	the	space	(but	you	can’t	use	NAs).



Example:	Optimizing	the	move_square()	Function
Figure	7-2	shows	that	our	main	bottleneck	in	simulating	the	game	of	Monopoly	is	the
move_square()	function.	Within	this	function,	we	spend	around	50%	of	the	time	creating	a
data	frame,	20%	calculating	row	sums,	and	the	remainder	on	comparison	operations.	This
piece	of	code	can	be	optimized	fairly	easily	(while	still	retaining	the	same	overall	structure)
by	incorporating	the	following	improvements:2

Instead	of	using	seq(1,	6)	to	generate	the	six	possible	values	of	rolling	a	die,	use	1:6.
Also,	instead	of	a	data	frame,	use	a	matrix	and	perform	a	single	call	to	the	sample()
function:

matrix(sample(1:6,	6,	replace	=	TRUE),	ncol	=	2)

Overall,	this	revised	line	is	around	25	times	faster;	most	of	the	speed	boost	came	from
switching	to	a	matrix.

Use	rowSums()	instead	of	apply().	The	apply()	function	call	is	already	faster	because
we	switched	from	a	data	frame	to	a	matrix	(around	three	times).	Using	rowSums()	with	a
matrix	gives	a	10-fold	speed	boost.

Use	&&	in	the	if	condition;	this	is	about	twice	as	fast	as	&.

Impressively,	the	refactored	code	runs	20	times	faster	than	the	original	code.	Compare
Figures	7-2	and	7-4	with	the	main	speed	boost	coming	from	using	a	matrix	instead	of	a	data
frame.



Figure	7-4.	Code	profiling	of	the	optimized	code

Exercise
1.	 The	move_square()	function	shown	in	Figure	7-4	uses	a	vectorized	solution.

Whenever	we	move,	we	always	roll	six	dice,	then	examine	the	outcome	and
determine	the	number	of	doubles.	However,	this	is	potentially	wasteful,	since	the
probability	of	getting	one	double	is	1/6	and	two	doubles	is	1/36.	Another	method	is	to
only	roll	additional	dice	if	and	when	they	are	needed.	Implement	and	time	this
solution.



Parallel	Computing
This	section	provides	a	brief	foray	into	the	word	of	parallel	computing.	It	only	looks	at
methods	for	parallel	computing	on	shared	memory	systems.	This	simply	means	computers	in
which	multiple	CPU	cores	can	access	the	same	block	(i.e.,	most	laptops	and	desktops	sold
worldwide).	This	section	provides	a	flavor	of	what	is	possible;	for	a	fuller	account	of	parallel
processing	in	R,	see	Parallel	R	by	McCallum	and	Weston	(O’Reilly).

The	foundational	package	for	parallel	computing	in	R	is	parallel.	In	recent	R	versions	(since
R	2.14.0),	this	comes	preinstalled	with	base	R.	The	parallel	package	must	still	be	loaded
before	use,	however,	and	you	must	manually	determine	the	number	of	available	cores
manually	as	illustrated	in	the	following	code:

library("parallel")

no_of_cores	=	detectCores()

NOTE
The	value	returned	by	detectCores()	turns	out	to	be	operating-system	and	chip-maker	dependent;	see
help("detectCores")	for	full	details.	For	most	standard	machines,	detectCores()	returns	the	number	of
simultaneous	threads.

http://shop.oreilly.com/product/0636920021421.do


Parallel	Versions	of	Apply	Functions
The	most	commonly	used	parallel	applications	are	parallelized	replacements	of	lapply(),
sapply(),	and	apply().	The	parallel	implementations	and	their	arguments	are	shown	in	the
following	code	example:

parLapply(cl,	x,	FUN,	...)

parApply(cl	=	NULL,	X,	MARGIN,	FUN,	...)

parSapply(cl	=	NULL,	X,	FUN,	...,	simplify	=	TRUE,	USE.NAMES	=	TRUE)

The	key	point	is	that	there	is	very	little	difference	in	arguments	between	parLapply(),	and
apply(),	so	the	barrier	to	using	(this	form)	of	parallel	computing	is	low,	assuming	you	are
proficient	with	the	apply	family	of	functions.	Each	of	these	functions	has	an	argument	cl,
which	is	created	by	a	makeCluster()	call.	This	function,	among	other	things,	specifies	the
number	of	processors	to	use.



Example:	Snakes	and	Ladders
Parallel	computing	is	ideal	for	Monte	Carlo	simulations.	Each	core	independently	simulates	a
realization	from	the	model.	At	the	end,	we	gather	up	the	results.	In	the	efficient	package,	there
is	a	function	that	simulates	a	single	game	of	Snakes	and	Ladders:	snakes_ladders().3

The	following	code	illustrates	how	to	simulate	N	games	using	sapply():

N	=	10^4

sapply(1:N,	snakes_ladders)

Rewriting	this	code	to	make	use	of	the	parallel	package	is	straightforward.	Begin	by	making	a
cluster	object:

library("parallel")

cl	=	makeCluster(4)

Then	simply	swap	sapply()	for	parSapply():

parSapply(cl,	1:N,	snakes_ladders)

It	is	important	to	stop	the	created	clusters,	as	this	can	lead	to	memory	leaks,4	as	illustrated	in
the	following	code:

stopCluster(cl)

If	we	achieved	perfect	parallelization	and	used	a	four	(or	more)	core,	then	we	would	obtain	a
four-fold	speed	up	(we	set	makeCluster(4)).	However,	we	rarely	get	this.

On	a	multiprocessor	computer,	this	can	lead	to	a	four-fold	speed-up.	However,	it	is	rare	to
achieve	this	optimal	speed-up	since	there	is	always	communication	between	threads.



Exit	Functions	with	Care
Always	call	stopCluster()	to	free	resources	when	you	finish	with	the	cluster	object.
However,	if	the	parallel	code	is	within	a	function	call	that	results	in	an	error,	the
StopCluster()	command	would	be	omitted.

The	on.exit()	function	handles	this	problem	with	a	minimum	of	fuss;	regardless	of	how	the
function	ends,	on.exit()	is	always	called.	In	the	context	of	parallel	programming,	we	will
have	something	similar	to:

simulate	=	function(cores)	{

		cl	=	makeCluster(cores)

		on.exit(stopCluster(cl))

		#	Do	something

}

TIP
Another	common	use	of	on.exit()	is	with	the	par()	function.	If	you	use	par()	to	change	graphical	parameters
within	a	function,	on.exit()	ensures	that	these	parameters	are	reset	to	their	previous	value	when	the	function	ends.



Parallel	Code	under	Linux	and	OS	X
If	you	are	using	Linux	or	OS	X,	then	another	way	of	running	code	in	parallel	is	to	use	the
mclapply()	and	mcmapply()	functions:

#	This	will	run	on	Windows,	but	will	only	use	1	core

mclapply(1:N,	snakes_ladders)

These	functions	use	forking;	that	is,	creating	a	new	copy	of	a	process	running	on	the	CPU.
However,	Windows	does	not	support	this	low-level	functionality	in	the	way	that	Linux	does.
The	main	advantage	of	mclapply()	is	that	you	don’t	have	to	start	and	stop	cluster	objects.	The
big	disadvantage	is	that	on	Windows	machines,	you	are	limited	to	a	single	core.



Rcpp
Sometimes	R	is	just	slow.	You’ve	tried	every	trick	you	know,	and	your	code	is	still	crawling
along.	At	this	point,	you	could	consider	rewriting	key	parts	of	your	code	in	another,	faster
language.	R	has	interfaces	to	other	languages	via	packages,	such	as	Rcpp,	rJava,	rPython,
and	recently	V8.	These	provide	R	interfaces	to	C++,	Java,	Python,	and	JavaScript,
respectively.	Rcpp	is	the	most	popular	of	these	(Figure	7-5).

Figure	7-5.	Downloads	per	day	from	the	RStudio	CRAN	mirror	of	packages	that	provide	R	interfaces	to	other	languages

C++	is	a	modern,	fast,	and	very	well-supported	language	with	libraries	for	performing	many
kinds	of	computational	tasks.	Rcpp	makes	incorporating	C++	code	into	your	R	workflow
easy.

Although	C/Fortran	routines	can	be	used	using	the	.Call()	function,	this	is	not	recommended
because	using	.Call()	can	be	a	painful	experience.	Rcpp	provides	a	friendly	API	that	lets	you
write	high-performance	code,	bypassing	R’s	tricky	C	API.	Typical	bottlenecks	that	C++
addresses	are	loops	and	recursive	functions.

C++	is	a	powerful	programming	language	about	which	entire	books	have	been	written.	This
section	therefore	is	focused	on	getting	started	and	providing	a	flavor	of	what	is	possible.	It	is



structured	as	follows.	After	ensuring	that	your	computer	is	set	up	for	Rcpp,	we	proceed	by	=
creating	a	simple	C++	function,	to	show	how	C++	compares	with	R	(“A	Simple	C++
Function”).	This	is	converted	into	an	R	function	using	cppFunction()	in	“The	cppFunction()
Command”.

The	remainder	of	the	chapter	explains	C++	data	types	(“C++	Data	Types”),	illustrates	how	to
source	C++	code	directly	(“The	sourceCpp()	Function”),	explains	vectors	(“Vectors	and
Loops”)	and	Rcpp	sugar	(“C++	with	Sugar	on	Top”),	and	finally	provides	guidance	on
further	resources	on	the	subject	(“Rcpp	Resources”).



A	Simple	C++	Function
To	write	and	compile	C++	functions,	you	need	a	working	C++	compiler	(see	“Prerequisites”).
The	code	in	this	chapter	was	generated	using	version	0.12.7	of	Rcpp.

Rcpp	is	well	documented,	as	illustrated	by	the	number	of	vignettes	on	the	package’s	CRAN
page.	In	addition	to	its	popularity,	many	other	packages	depend	on	Rcpp,	which	can	be	seen
by	looking	at	the	Reverse	Imports	section.

To	check	that	you	have	everything	needed	for	this	chapter,	run	the	following	piece	of	code
from	the	course	R	package:

efficient::test_rcpp()

A	C++	function	is	similar	to	an	R	function:	you	pass	a	set	of	inputs	to	a	function,	some	code	is
run,	and	a	single	object	is	returned.	However,	there	are	some	key	differences:

In	the	C++	function,	each	line	must	be	terminated	with	;.	In	R,	we	use	;	only	when	we
have	multiple	statements	on	the	same	line.

We	must	declare	object	types	in	the	C++	version.	In	particular,	we	need	to	declare	the
types	of	the	function	arguments,	the	return	values,	and	any	intermediate	objects	we
create.

The	function	must	have	an	explicit	return	statement.	Similar	to	R,	there	can	be	multiple
returns,	but	the	function	will	terminate	when	it	hits	its	first	return	statement.

You	do	not	use	assignment	when	creating	a	function.

Object	assignment	must	use	the	=	sign.	The	<-	operator	isn’t	valid.

One-line	comments	can	be	created	using	//.	Multiline	comments	are	created	using
/*...*/.

Suppose	we	want	to	create	a	function	that	adds	two	numbers	together.	In	R,	this	would	be	a
simple	one-line	affair:

add_r	=	function(x,	y)	x	+	y

In	C++,	it	is	a	bit	more	long-winded:

/*	Return	type	double

	*	Two	arguments,	also	doubles

	*/

double	add_cpp(double	x,	double	y)	{

		double	value	=	x	+	y;

		return	value;

}

https://cran.r-project.org/web/packages/Rcpp/


If	we	were	writing	a	C++	program,	we	would	also	need	another	function	called	main().	We
would	then	compile	the	code	to	obtain	an	executable.	The	executable	is	platform-dependent.
The	beauty	of	using	Rcpp	is	that	it	makes	it	very	easy	to	call	C++	functions	from	R	and	the
user	doesn’t	have	to	worry	about	the	platform,	compilers,	or	the	R/C++	interface.



The	cppFunction()	Command
If	we	pass	the	C++	function	created	in	the	previous	section	as	a	text	string	argument	to
cppFunction()

library("Rcpp")

cppFunction('

		double	add_cpp(double	x,	double	y)	{

				double	value	=	x	+	y;

				return	value;

		}

')

Rcpp	will	magically	compile	the	C++	code	and	construct	a	function	that	bridges	the	gap
between	R	and	C++.	After	running	the	code	shown	previously,	we	now	have	access	to	the
add_cpp()	function

add_cpp

#>	function	(x,	y)

#>	.Primitive(".Call")(<pointer:	0x2b9e590670e0>,	x,	y)

and	can	call	the	add_cpp()	function	in	the	usual	way:

add_cpp(1,	2)

#>	[1]	3

We	don’t	have	to	worry	about	compilers.	Also,	if	you	include	this	function	in	a	package,	users
don’t	have	to	worry	about	any	of	the	Rcpp	magic.	It	just	works.



C++	Data	Types
The	most	basic	type	of	variable	is	an	integer,	int.	An	int	variable	can	store	a	value	in	the
range	–32768	to	+32767.	To	store	floating-point	numbers,	there	are	single-precision	numbers
(float)	and	double-precision	numbers	(double).	A	double	takes	twice	as	much	memory	as	a
float	(in	general,	we	should	always	work	with	double-precision	numbers	unless	we	have	a
compiling	reason	to	switch	to	floats).	For	single	characters,	we	use	the	char	data	type.

NOTE
There	is	also	something	called	an	unsigned	int,	which	goes	from	0	to	65,535	and	a	long	int	that	ranges	from	0	to

231	−	1.

A	pointer	object	is	a	variable	that	points	to	an	area	of	memory	that	has	been	given	a	name.
Pointers	are	a	very	powerful	—	but	primitive	—	facility	contained	in	the	C++	language.	They
can	be	very	efficient	because	since	rather	than	passing	large	objects	around,	we	pass	a	pointer
to	the	memory	location;	in	other	words,	rather	than	pass	the	house,	we	just	give	the	address.
We	won’t	use	pointers	in	this	chapter,	but	mention	them	for	completeness.	Table	7-1	gives	an
overview.

Table	7-1.	Overview	of	key	C++
object	types

Type Description

char A	single	character

int An	integer

float A	single-precision	floating-point	number

double A	double-precision	floating-point	number

void A	valueless	quantity



The	sourceCpp()	Function
The	cppFunction()	is	great	for	getting	small	examples	up	and	running.	But	it	is	better
practice	to	put	your	C++	code	in	a	separate	file	(with	file	extension	.cpp)	and	use	the	function
call	sourceCpp("path/to/file.cpp")	to	compile	them.	However,	we	do	need	to	include	a	few
headers	at	the	top	of	the	file.	The	first	line	we	add	gives	us	access	to	the	Rcpp	functions.	The
file	Rcpp.h	contains	a	list	of	function	and	class	definitions	supplied	by	Rcpp.	This	file	will	be
located	where	Rcpp	is	installed.	The	include	line

#include	<Rcpp.h>

causes	the	compiler	to	replace	that	line	with	the	contents	of	the	named	source	file.	This	means
that	we	can	access	the	functions	defined	by	Rcpp.	To	access	the	Rcpp	functions,	we	would
have	to	type	Rcpp::function_1.	To	avoid	typing	Rcpp::,	we	use	the	namespace	facility:

using	namespace	Rcpp;

Now	we	can	just	type	function_1();	this	is	the	same	concept	that	R	uses	for	managing
function	name	collisions	when	loading	packages.	Above	each	function	we	want	to	export/use
in	R,	we	add	the	tag:

//	[[Rcpp::export]]

NOTE
Similar	to	packages	and	the	library()	function	in	R,	we	access	additional	functions	via	#include.	A	standard
header	to	include	is	#include	<math.h>,	which	contains	standard	mathematics	functions.

This	would	give	the	complete	file:

#include	<Rcpp.h>

using	namespace	Rcpp;

//	[[Rcpp::export]]

double	add_cpp(double	x,	double	y)	{

		double	value	=	x	+	y;

		return	value;

}

There	are	two	main	benefits	with	putting	your	C++	functions	in	separate	files.	First,	we	have
the	benefit	of	syntax	highlighting	(RStudio	has	great	support	for	C++	editing).	Second,	it’s
easier	to	make	syntax	errors	when	the	switching	between	R	and	C++	in	the	same	file.	To	save
space,	we’ll	omit	the	headers	for	the	remainder	of	the	chapter.



Vectors	and	Loops
Let’s	now	consider	a	slightly	more	complicated	example.	Here	we	want	to	write	our	own
function	that	calculates	the	mean.	This	is	just	an	illustrative	example:	R’s	version	is	much
better	and	more	robust	to	scale	differences	in	our	data.	For	comparison,	let’s	create	a
corresponding	R	function	—	this	is	the	same	function	we	used	in	Chapter	3.	The	function
takes	a	single	vector	x	as	input	and	returns	the	mean	value,	m:

mean_r	=	function(x)	{

		m	=	0

		n	=	length(x)

		for(i	in	1:n)

				m	=	m	+	x[i]	/	n

		m

}

This	is	a	very	bad	R	function;	we	should	just	use	the	base	function	mean()	for	real-world
applications.	However,	the	purpose	of	mean_r()	is	to	provide	a	comparison	for	the	C++
version,	which	we	will	write	in	a	similar	way.

In	this	example,	we	will	let	Rcpp	smooth	the	interface	between	C++	and	R	by	using	the
NumericVector	data	type.	This	Rcpp	data	type	mirrors	the	R	vector	object	type.	Other
common	classes	are	IntegerVector,	CharacterVector,	and	LogicalVector.

In	the	C++	version	of	the	mean	function,	we	specify	the	argument	types:	x	(NumericVector)
and	the	return	value	(double).	The	C++	version	of	the	mean()	function	is	a	few	lines	longer.
Almost	always,	the	corresponding	C++	version	will	be,	possibly	much,	longer.	In	general,	R
optimizes	for	reduced	development	time;	C++	optimizes	for	fast	execution	time.	The
corresponding	C++	function	for	calculating	the	mean	is:

double	mean_cpp(NumericVector	x)	{

		int	i;

		int	n	=	x.size();

		double	mean	=	0;

		for(i=0;	i<n;	i++)	{

				mean	=	mean	+	x[i]	/	n;

		}

		return	mean;

}

To	use	the	C++	function,	we	need	to	source	the	file	(remember	to	put	the	necessary	headers
in):

sourceCpp("src/mean_cpp.cpp")

Although	the	C++	version	is	similar,	there	are	a	few	crucial	differences.
1.	 We	use	the	.size()	method	to	find	the	length	of	x.

2.	 The	for	loop	has	a	more	complicated	syntax.



for	(variable	initialisation;	condition;	variable	update	)	{

		//	Code	to	execute

}

In	this	example,	the	loop	initializes	i	=	0	and	will	continue	running	until	i	<	n	is
false.	The	statement	i++	increases	the	value	of	i	by	1;	essentially	it’s	just	a	shortcut
for	i	=	i	+	1.

3.	 Similar	to	i++,	C++	provides	other	operators	to	modify	variables	in	place.	For
example,	we	could	rewrite	part	of	the	loop	as

mean	+=	x[i]	/	n;

The	previous	code	adds	x[i]	/	n	to	the	value	of	mean.	Other	similar	operators	are	-
=,	*=,	/=,	and	i--.

4.	 A	C++	vector	starts	at	0,	not	1.

To	compare	the	C++	and	R	functions,	we’ll	generate	some	normal	random	numbers:

x	=	rnorm(1e4)

Then	call	the	microbenchmark()	function	(the	results	are	plotted	in	Figure	7-6).

#	com_mean_r	is	the	compiled	version	of	mean_r

z	=	microbenchmark(

		mean(x),	mean_r(x),	com_mean_r(x),	mean_cpp(x),

		times	=	1000

)

In	this	simple	example,	the	Rcpp	variant	is	around	100	times	faster	than	the	corresponding
pure	R	version.	This	sort	of	speed-up	is	not	uncommon	when	switching	to	an	Rcpp	solution.
Notice	that	the	Rcpp	version	and	standard	base	function	mean()	run	at	roughly	the	same
speed;	after	all,	the	base	R	function	is	written	in	C.	However,	mean()	uses	a	more	sophisticated
algorithm	when	calculating	the	mean	to	ensure	accuracy.



Figure	7-6.	Comparison	of	mean	functions

Exercises
Consider	the	following	piece	of	code:

double	test1()	{

		double	a	=	1.0	/	81;

		double	b	=	0;

		for	(int	i	=	0;	i	<	729;	++	i)

				b	=	b	+	a;

		return	b;

}

1.	 Save	the	function	test1()	in	a	separate	file.	Make	sure	it	works.

2.	 Write	a	similar	function	in	R	and	compare	the	speed	of	the	C++	and	R	versions.

3.	 Create	a	function	called	test2(),	in	which	the	double	variables	have	been	replaced
by	float.	Do	you	still	get	the	correct	answer?

4.	 Change	b	=	b	+	a	to	b	+=	a	to	make	your	code	more	like	C++.

5.	 (Difficult!)	What’s	the	difference	between	i++	and	++i?



Matrices
Each	vector	type	has	a	corresponding	matrix	equivalent:	NumericMatrix,	IntegerMatrix,
CharacterMatrix,	and	LogicalMatrix.	We	use	these	types	in	a	similar	way	to	how	we	used
NumericVectors.	The	main	differences	are:

When	we	initialize,	we	need	to	specify	the	number	of	rows	and	columns:

//	10	rows,	5	columns

NumericMatrix	mat(10,	5);

//	Length	10

NumericVector	v(10);

We	subset	using	()	—	i.e.,	mat(5,	4).

The	first	element	in	a	matrix	is	mat(0,	0)	—	remember	that	indexes	start	with	0,	not	1.

To	determine	the	number	of	rows	and	columns,	we	use	the	.nrow()	and	.ncol()
methods.



C++	with	Sugar	on	Top
Rcpp	sugar	brings	a	higher	level	of	abstraction	to	C++	code	written	using	the	Rcpp	API.
What	this	means	in	practice	is	that	we	can	write	C++	code	in	the	style	of	R.	For	example,
suppose	we	wanted	to	find	the	squared	difference	of	two	vectors;	a	squared	residual	in
regression.	In	R,	we	would	use

sq_diff_r	=	function(x,	y)	(x	-	y)^2

Rewriting	the	function	in	standard	C++	would	give

NumericVector	res_c(NumericVector	x,	NumericVector	y)	{

		int	i;

		int	n	=	x.size();

		NumericVector	residuals(n);

		for(i	=	0;	i	<	n;	i++)	{

				residuals[i]	=	pow(x[i]	-	y[i],	2);

		}

		return	residuals;

}

With	Rcpp	sugar,	we	can	rewrite	this	code	to	be	more	succinct	and	have	more	of	an	R	feel:

NumericVector	res_sugar(NumericVector	x,	NumericVector	y)	{

		return	pow(x	-	y,	2);

}

In	the	previous	C++	code,	the	pow()	function	and	x-y	are	valid	due	to	Rcpp	sugar.	Other
functions	that	are	available	include	the	d/q/p/r	statistical	functions,	such	as	rnorm()	and
pnorm().	The	sweetened	versions	aren’t	usually	faster	than	the	C++	versions,	but	typically
there’s	very	little	difference	between	the	two.	However,	with	the	sugared	variety,	the	code	is
shorter	and	is	constantly	being	improved.

Exercises
1.	 Construct	an	R	version	(using	a	for	loop	rather	than	the	vectorized	solution),

res_r(),	and	compare	the	three	function	variants.

2.	 In	the	previous	example,	res_sugar()	is	faster	than	res_c().	Do	you	know	why?



Rcpp	Resources
The	aim	of	this	section	was	to	provide	an	introduction	to	Rcpp.	One	of	the	selling	points	of
Rcpp	is	that	there	is	a	great	deal	of	documentation	available.

The	Rcpp	website.

The	original	Journal	of	Statistical	Software	paper	describing	Rcpp	and	the	follow-up
book	Seamless	R	and	C++	Integration	with	Rcpp	by	Eddelbuettel	and	Francois.

Hadley	Wickham	provides	a	very	readable	chapter	on	Rcpp	in	Advanced	R	that	goes	into
a	bit	more	detail	than	this	section.

The	Rcpp	section	on	the	Stack	Overflow	website.	Questions	are	often	answered	by	the
Rcpp	authors.

http://www.rcpp.org/
https://stackoverflow.com/questions/tagged/rcpp


References
Braun,	John,	and	Duncan	J	Murdoch.	2007.	A	First	Course	in	Statistical	Programming	with	R.
Vol.	25.	Cambridge	University	Press	Cambridge.

Goldberg,	David.	1991.	“What	Every	Computer	Scientist	Should	Know	About	Floating-Point
Arithmetic.”	ACM	Computing	Surveys	(CSUR)	23	(1).	ACM:	5–48.

McCallum,	Ethan,	and	Stephen	Weston.	2011.	Parallel	R.	O’Reilly	Media.

Eddelbuettel,	Dirk,	and	Romain	François.	2011.	“Rcpp:	Seamless	R	and	C++	Integration.”
Journal	of	Statistical	Software	40	(8):	1–18.

Eddelbuettel,	Dirk.	2013.	Seamless	R	and	C++	Integration	with	Rcpp.	Springer.

Wickham,	Hadley.	2014a.	Advanced	R.	CRC	Press.

Technically	this	isn’t	in	base	R;	it’s	a	recommended	package.

Solutions	are	available	in	the	efficient	package	vignette.

The	idea	for	this	example	came	to	one	of	the	authors	after	a	particularly	long	and	dull	game	of	Snakes	and	Ladders	with
his	son.

See	github.com/npct/pct-shiny/issues/292	for	a	real-world	example	of	the	dangers	of	not	stopping	created	cores.
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Chapter	8.	Efficient	Hardware

This	chapter	is	odd	for	a	book	on	R	programming.	It	contains	very	little	code,	and	yet	the
chapter	has	the	potential	to	speed	up	your	algorithms	by	orders	of	magnitude.	This	chapter
considers	the	impact	that	your	computer	has	on	your	time.

Your	hardware	is	crucial.	It	will	not	only	determine	how	fast	you	can	solve	your	problem,	but
also	whether	you	can	even	tackle	the	problem	of	interest.	This	is	because	everything	is	loaded
in	RAM.	Of	course,	having	a	more	powerful	computer	costs	money.	The	goal	is	to	help	you
decide	whether	the	benefits	of	upgrading	your	hardware	are	worth	that	extra	cost.

We	begin	this	chapter	with	a	background	section	on	computer	storage	and	memory	and	how	it
is	measured.	Then	we	consider	individual	computer	components,	and	conclude	with	renting
machines	in	the	cloud.



Prerequisites
This	chapter	will	focus	on	assessing	your	hardware	and	the	benefit	of	upgrading.	We	will	use
the	benchmarkme	package	to	quantify	the	effect	of	changing	your	CPU.

library("benchmarkme")



Top	Five	Tips	for	Efficient	Hardware
1.	 Use	the	package	benchmarkme	to	assess	your	CPU’s	number-crunching	ability;	is	it

worth	upgrading	your	hardware?

2.	 If	possible,	add	more	RAM.

3.	 Double-check	that	you	have	installed	a	64-bit	version	of	R.

4.	 Cloud	computing	is	a	cost-effective	way	of	obtaining	more	computer	power.

5.	 Solid-state	drives	typically	won’t	have	much	impact	on	the	speed	of	your	R	code	but
will	increase	your	overall	productivity	because	I/0	is	much	faster.



Background:	What	Is	a	Byte?
A	computer	cannot	store	“numbers”	or	“letters.”	The	only	thing	a	computer	can	store	and
work	with	is	bits.	A	bit	is	binary;	it	is	either	a	0	or	a	1.	In	fact,	from	a	physics	perspective,	a	bit
is	just	a	blip	of	electricity	that	either	is	or	isn’t	there.

In	the	past,	the	ASCII	character	set	dominated	computing.	This	set	defines	128	characters
including	0	to	9,	upper	and	lowercase	alphanumeric,	and	a	few	control	characters	such	as	a
new	line.	Storing	these	characters	required	7	bits	because	27	=	128,	but	8	bits	were	typically
used	for	performance	reasons.	Table	8-1	gives	the	binary	representation	of	the	first	few
characters.

Table	8-1.	The	bit
representation	of	a	few
ASCII	characters

Bit	representation Character

01000001 A

01000010 B

01000011 C

01000100 D

01000101 E

01010010 R

The	limitation	of	only	having	256	characters	led	to	the	development	of	Unicode,	a	standard
framework	aimed	at	creating	a	single	character	set	for	every	reasonable	writing	system.
Typically,	Unicode	characters	require	16	bits	of	storage.

Eight	bits	is	one	byte,	or	ASCII	character.	So	two	ASCII	characters	would	use	two	bytes	or	16
bits.	A	pure	text	document	containing	100	characters	would	use	100	bytes	(800	bits).	Note	that
markup,	such	as	font	information	or	metadata,	can	impose	a	substantial	memory	overhead:	an
empty	.docx	file	requires	about	3,700	bytes	of	storage.

When	computer	scientists	first	started	to	think	about	computer	memory,	they	noticed	that	210	=
1024	≃	103	and	220	=	1,048,576	≃	106,	so	they	adopted	the	shorthand	of	kilo-	and	megabytes.
Of	course,	everyone	knew	that	it	was	just	a	short	hand,	and	it	was	really	a	binary	power.	When
computers	became	more	widespread,	foolish	people	like	you	and	me	just	assumed	that	kilo
actually	meant	103	bytes.

Fortunately,	the	IEEE	Standards	Board	intervened	and	created	conventional,	internationally
adopted	definitions	of	the	International	System	of	Units	(SI)	prefixes.	So	a	kilobyte	(kB)	is	103

http://bit.ly/asciicode8bit


=	1000	bytes	and	a	megabyte	(MB)	is	106	bytes	or	103	kilobytes	(see	Table	8-2).	A	petabyte	is
approximately	100	million	drawers	filled	with	text.	Astonishingly,	Google	processes	around
20	petabytes	of	data	every	day.

Table	8-2.	Data-conversion	table.	Source:
http://physics.nist.gov/cuu/Units/binary.html

Factor Name Symbol Origin Derivation

210 kibi Ki Kilobinary: (210)1

220 mebi Mi Megabinary: (210)2

230 gibi Gi Gigabinary: (210)3

240 tebi Ti Terabinary: (210)4

250 pebi Pi Petabinary: (210)5

Even	though	there	is	now	an	agreed	upon	standard	for	discussing	memory,	not	everyone
follows	it.	Microsoft	Windows,	for	example,	uses	1	MB	to	mean	220	B.	Even	more	confusing,
the	capacity	of	a	1.44	MB	floppy	disk	is	a	mixture,	1	MB	=	103	×	210	B.	Typically	RAM	is
specified	in	kibibytes,	but	hard-drive	manufacturers	follow	the	SI	standard!

http://physics.nist.gov/cuu/Units/binary.html


Random	Access	Memory
Random	access	memory	(RAM)	is	a	type	of	computer	memory	that	can	be	accessed	randomly:
any	byte	of	memory	can	be	accessed	without	touching	the	preceding	bytes.	RAM	is	found	in
computers,	phones,	tablets,	and	even	printers.	The	amount	of	RAM	R	has	access	to	is
incredibly	important.	Since	R	loads	objects	into	RAM,	the	amount	of	RAM	you	have	available
can	limit	the	size	of	dataset	you	can	analyze.

Even	if	the	original	dataset	is	relatively	small,	your	analysis	can	generate	large	objects.	For
example,	suppose	we	want	to	perform	standard	cluster	analysis.	The	built-in	dataset
USAarrests	is	a	data	frame	with	50	rows	and	four	columns.	Each	row	corresponds	to	a	state	in
the	US:

head(USArrests,	3)

#>									Murder	Assault	UrbanPop	Rape

#>	Alabama			13.2					236							58	21.2

#>	Alaska				10.0					263							48	44.5

#>	Arizona				8.1					294							80	31.0

If	we	want	to	group	states	that	have	similar	crime	statistics,	a	standard	first	step	is	to	calculate
the	distance	or	similarity	matrix:

d	=	dist(USArrests)

When	we	inspect	the	object	size	of	the	original	dataset	and	the	distance	object	using	the	pryr
package:

pryr::object_size(USArrests)

#>	5.23	kB

pryr::object_size(d)

#>	14.3	kB

We	have	managed	to	create	an	object	that	is	three	times	larger	than	the	original	dataset.

NOTE
The	distance	object	d	is	actually	a	vector	that	contains	the	distances	in	the	upper	triangular	region.

In	fact,	the	object	d	is	a	symmetric	n	×	n	matrix,	where	n	is	the	number	of	rows	in	USAarrests.
Clearly,	as	n	increases,	the	size	of	d	increases	at	a	rate	of	O(n2).	So	if	our	original	dataset
contained	10,000	records,	the	associated	distance	matrix	would	contain	almost	108	values.	Of
course,	since	the	matrix	is	symmetrical,	this	corresponds	to	around	50	million	unique	values.



TIP
A	rough	rule	of	thumb	is	that	your	RAM	should	be	three	times	the	size	of	your	dataset.

Another	benefit	of	having	more	onboard	RAM	is	that	the	garbage	collector,	a	process	that
runs	periodically	to	free	up	system	memory	occupied	by	R,	is	called	less	often.	It	is
straightforward	to	determine	how	much	RAM	you	have	using	the	benchmarkme	package:

benchmarkme::get_ram()

#>	16.3	GB

It	is	sometimes	possible	to	increase	your	computer ’s	RAM.	On	a	computer	motherboard,
there	are	typically	two	to	four	RAM	or	memory	slots.	If	you	have	free	slots,	then	you	can	add
more	memory.	RAM	comes	in	the	form	of	dual	in-line	memory	modules	(DIMMs)	that	can	be
slotted	into	the	motherboard	spaces	(see	Figure	8-1	for	an	example).

Figure	8-1.	Three	DIMM	slots	on	a	computer	motherboard	used	for	increasing	the	amount	of	available	RAM.	Source:
Wikimedia

However,	it	is	common	that	all	slots	are	already	taken.	This	means	that	to	upgrade	your
computer ’s	memory,	some	or	all	of	the	DIMMs	will	have	to	be	removed.	To	go	from	8	GB	to
16	GB,	for	example,	you	may	have	to	discard	the	two	4	GB	RAM	cards	and	replace	them	with
two	8	GB	cards.	Increasing	your	laptop/desktop	from	4	GB	to	16	GB	or	32	GB	is	cheap	and
should	definitely	be	considered.	As	R	Core	member	Uwe	Ligges	states:

fortunes::fortune(192)

#>

#>	RAM	is	cheap	and	thinking	hurts.

#>				--	Uwe	Ligges	(about	memory	requirements	in	R)

#>							R-help	(June	2007)

It	is	a	testament	to	the	design	of	R	that	it	is	still	relevant	and	its	popularity	is	growing.	Ross
Ihaka,	one	of	the	originators	of	the	R	programming	language,	made	a	throw-away	comment
in	2003:

fortunes::fortune(21)

#>

https://www.wikimedia.org/


#>	I	seem	to	recall	that	we	were	targeting	512k	Macintoshes.	In	our	dreams

#>	we	might	have	seen	16Mb	Sun.

#>				--	Ross	Ihaka	(in	reply	to	the	question	whether	R&R	thought	when	they

#>							started	out	that	they	would	see	R	using	16G	memory	on	a	dual	Opteron

#>							computer)

#>							R-help	(November	2003)

Considering	that	a	standard	smartphone	now	contains	1	GB	of	RAM,	the	fact	that	R	was
designed	for	“basic”	computers	but	can	scale	across	clusters	is	impressive.	R’s	origins	on
computers	with	limited	resources	helps	explain	its	efficiency	at	dealing	with	large	datasets.

Exercises
The	following	two	exercises	aim	to	help	you	determine	if	it	is	worthwhile	to	upgrade	your
RAM.

1.	 R	loads	everything	into	memory	(i.e.,	your	computer ’s	RAM).	How	much	RAM	does
your	computer	have?

2.	 Using	your	preferred	search	engine,	how	much	does	it	cost	to	double	the	amount	of
available	RAM	on	your	system?



Hard	Drives:	HDD	Versus	SSD
You	are	using	R	because	you	want	to	analyze	data.	The	data	is	typically	stored	on	your	hard
drive,	but	not	all	hard	drives	are	equal.	Unless	you	have	a	fairly	expensive	laptop,	your
computer	probably	has	a	standard	hard	disk	drive	(HDD).	HDDs	were	first	introduced	by	IBM
in	1956.	Data	is	stored	using	magnetism	on	a	rotating	platter,	as	shown	in	Figure	8-2.	The
faster	the	platter	spins,	the	faster	the	HDD	can	perform.	Many	laptop	drives	spin	at	either
5,400	or	7,200	RPM	(revolutions	per	minute).	The	major	advantage	of	HDDs	is	that	they	are
cheap,	making	a	1	TB	laptop	standard.

NOTE
In	the	authors’	experience,	having	an	SSD	drive	doesn’t	make	too	much	of	a	difference	to	R.	However,	the
reduction	in	boot	time	and	general	tasks	makes	an	SSD	drive	a	wonderful	purchase.

Figure	8-2.	A	standard	2.5”	hard	drive,	found	in	most	laptops.	Source:	Wikimedia

Solid-state	drives	(SSDs)	can	be	thought	of	as	large	but	more	sophisticated	versions	of	USB
sticks.	They	have	no	moving	parts,	and	information	is	stored	in	microchips.	Since	there	are
no	moving	parts,	reading/writing	is	much	quicker.	SSDs	have	other	benefits:	they	are	quieter,

https://en.wikipedia.org/wiki/Hard_disk_drive


allow	faster	boot	time	(no	spin	up	time),	and	require	less	power	(more	battery	life).

The	read/write	speed	for	a	standard	HDD	is	usually	in	the	region	of	50	to	100	MB/s	(usually
closer	to	50	MB).	For	SSDs,	speeds	are	typically	over	200	MB/s.	For	top-of-the-range	models
this	can	approach	500	MB/s.	If	you’re	wondering,	read/write	speeds	for	RAM	are	around	2	to
20	GB/s.	So	at	best,	SSDs	are	at	least	one	order	of	magnitude	slower	than	RAM,	but	still	faster
than	standard	HDDs.

TIP
If	you	are	unsure	about	what	type	of	hard	drive	you	have,	then	time	how	long	your	computer	takes	to	reach	the
login	screen.	If	it	is	less	than	five	seconds,	you	probably	have	an	SSD.



Operating	Systems:	32-Bit	or	64-Bit
R	comes	in	two	versions:	32-bit	and	64-bit.	Your	operating	system	also	comes	in	two
versions,	32-bit	and	64-bit.	Ideally,	you	want	64-bit	versions	of	both	R	and	the	operating
system.	Using	a	32-bit	version	of	either	has	severe	limitations	on	the	amount	of	RAM	R	can
access.	So	when	we	suggest	that	you	should	just	buy	more	RAM,	this	assumes	that	you	are
using	a	64-bit	operating	system,	with	a	64-bit	version	of	R.

NOTE
If	you	are	using	an	OS	version	from	the	last	five	years,	it	is	unlikely	to	be	a	32-bit	OS.

A	32-bit	machine	can	access	at	most	only	4	GB	of	RAM.	Although	some	CPUs	offer	solutions
to	this	limitation,	if	you	are	running	a	32-bit	operating	system,	then	R	is	limited	to	around	3
GB	of	RAM.	If	you	are	running	a	64-bit	operating	system	but	only	a	32-bit	version	of	R,	then
you	have	access	to	slightly	more	memory	(but	not	much).	Modern	systems	should	run	a	64-bit
operating	system,	with	a	64-bit	version	of	R.	Your	memory	limit	is	now	measured	as	8	TB	for
Windows	machines	and	128	TB	for	Unix-based	OSes.	An	easy	method	for	determining	if	you
are	running	a	64-bit	version	of	R	is	to	run

.Machine$sizeof.pointer

which	will	return	8	if	you	a	running	a	64-bit	version	of	R.

To	find	precise	details,	consult	the	R	help	pages	help("Memory-limits")	and	help("Memory").

Exercises
These	exercises	aim	to	condense	the	previous	section	into	the	key	points.

1.	 Are	you	using	a	32-bit	or	64-bit	version	of	R?

2.	 If	you	are	using	Windows,	what	are	the	results	of	running	the	command
memory.limit()?



Central	Processing	Unit
The	central	processing	unit	(CPU),	or	the	processor,	is	the	brain	of	a	computer.	The	CPU	is
responsible	for	performing	numerical	calculations.	The	faster	the	processor,	the	faster	R	will
run.	The	clock	speed	(or	clock	rate,	measured	in	hertz)	is	the	frequency	with	which	the	CPU
executes	instructions.	The	faster	the	clock	speed,	the	more	instructions	a	CPU	can	execute	in	a
section.	CPU	clock	speed	for	a	single	CPU	has	been	fairly	static	in	the	last	couple	of	years,
hovering	around	3.4	GHz	(see	Figure	8-3).

Figure	8-3.	CPU	clock	speed.	The	data	for	this	figure	was	collected	from	web-forum	and	Wikipedia.	It	is	intended	to
indicate	general	trends	in	CPU	speed.

Unfortunately,	we	can’t	simply	use	clock	speeds	to	compare	CPUs,	since	the	internal
architecture	of	a	CPU	plays	a	crucial	role	in	determining	its	performance.	The	R	package
benchmarkme	provides	functions	for	benchmarking	your	system	and	contains	data	from
previous	benchmarks.	Figure	8-4	shows	the	relative	performance	for	over	150	CPUs.



Figure	8-4.	CPU	benchmarks	from	the	R	package,	benchmarkme.	Each	point	represents	an	individual	CPU	result.

Running	the	benchmarks	and	comparing	your	CPU	to	others	is	straightforward	using	the
benchmarkme	package.	After	loading	the	package,	we	can	benchmark	your	CPU

res	=	benchmark_std()

and	compare	the	results	to	other	users:

plot(res)

#	Upload	your	benchmarks	for	future	users

upload_results(res)

You	get	the	model	specifications	of	the	top	CPUs	using	get_datatable(res).



Cloud	Computing
Cloud	computing	uses	networks	of	remote	servers,	instead	of	a	local	computer,	to	store	and
analyze	data.	It	is	now	becoming	increasingly	popular	to	rent	cloud	computing	resources.



Amazon	EC2
Amazon	Elastic	Compute	Cloud	(EC2)	is	one	of	a	number	of	providers	of	this	service.	EC2
makes	it	(relatively)	easy	to	run	R	instances	in	the	cloud.	Users	can	configure	the	operating
system,	CPU,	hard	drive	type,	the	amount	of	RAM,	and	where	the	project	is	physically	located.

If	you	want	to	run	a	server	in	the	Amazon	EC2	cloud,	you	have	to	select	the	system	you	are
going	to	boot	up.	There	are	a	vast	array	of	prepackaged	system	images.	Some	of	these	images
are	just	basic	operating	systems,	such	as	Debian	or	Ubuntu,	which	require	further
configuration.	There	is	also	an	Amazon	machine	image	that	specifically	targets	R	and
RStudio.

Exercise
1.	 To	assess	whether	you	should	consider	cloud	computing,	find	out	how	much	it	would

cost	to	rent	a	machine	comparable	to	your	laptop	in	the	cloud	for	one	year.

http://www.louisaslett.com/RStudio_AMI/


Chapter	9.	Efficient	Collaboration

Large	projects	inevitably	involve	many	people.	This	poses	risks	but	also	creates	opportunities
for	improving	computational	efficiency	and	productivity,	especially	if	project	collaborators
are	reading	and	committing	code.	This	chapter	provides	guidance	on	how	to	minimize	the
risks	and	maximize	the	benefits	of	collaborative	R	programming.

Collaborative	working	has	a	number	of	benefits.	A	team	with	a	diverse	skillset	is	usually
stronger	than	a	team	with	a	very	narrow	focus.	It	makes	sense	to	specialize:	clearly	defining
roles	such	as	statistician,	frontend	developer,	system	administrator,	and	project	manager	will
make	your	team	stronger.	Even	if	you	are	working	alone,	dividing	the	work	into	discrete
branches	in	this	way	can	be	useful,	as	discussed	in	Chapter	4.

Collaborative	programming	provides	an	opportunity	for	people	to	review	each	other ’s	code.
This	can	be	encouraged	by	using	a	uniform	style	with	many	comments,	as	described	in
“Coding	Style”.	Like	using	a	clear	style	in	human	language,	following	a	style	guide	has	the
additional	advantage	of	making	your	code	more	understandable	to	others.

When	working	on	complex	programming	projects	with	multiple	interdependencies,	version
control	is	essential.	Even	on	small	projects,	tracking	the	progress	of	your	project’s	code	base
has	many	advantages	and	makes	collaboration	much	easier.	Fortunately,	it	is	now	easier	than
ever	before	to	integrate	version	control	into	your	project,	using	RStudio’s	interface	to	the
version	control	software	git	and	online	code-sharing	websites	such	as	GitHub.	This	is	the
subject	of	“Version	Control”.

The	final	section,	“Code	Review”,	addresses	the	question	of	working	in	a	team	and
performing	code	reviews.



Prerequisites
This	chapter	deals	with	coding	standards	and	techniques.	The	only	packages	required	for	this
chapter	are	lubridate	and	dplyr.	These	packages	are	used	to	illustrate	good	practices.



Top	Five	Tips	for	Efficient	Collaboration
1.	 Maintain	a	consistent	coding	style.

2.	 Think	carefully	about	your	comments	and	keep	them	up	to	date.

3.	 Use	version	control	whenever	possible.

4.	 Use	informative	commit	messages.

5.	 Don’t	be	afraid	to	elicit	feedback	from	colleagues.



Coding	Style
To	be	a	successful	programmer,	you	need	to	use	a	consistent	programming	style.	There	is	no
single	correct	style,	but	using	multiple	styles	in	the	same	project	is	wrong	(Baath	2012).	To
some	extent,	good	style	is	subjective	and	up	to	personal	taste.	There	are,	however,	general
principles	that	most	programmers	agree	on,	such	as:

Use	modular	code

Comment	your	code

Don’t	Repeat	Yourself	(DRY)

Be	concise,	clear,	and	consistent

Good	coding	style	will	make	you	more	efficient	even	if	you	are	the	only	person	who	reads	it.
When	your	code	is	read	by	multiple	readers	or	you	are	developing	code	with	coworkers,
having	a	consistent	style	is	even	more	important.	There	are	a	number	of	R	style	guides	online
that	are	broadly	similar,	including	one	by	Google,	Hadley	Whickham,	and	Richie	Cotton.	The
style	followed	in	this	book	is	based	on	a	combination	of	Hadley	Wickham’s	guide	and	our
own	preferences	(we	follow	Yihui	Xie	in	preferring	=	to	<-	for	assignment,	for	example).

In	line	with	the	principle	of	automation	(automate	any	task	that	can	save	time	by	automating),
the	easiest	way	to	improve	your	code	is	to	ask	your	computer	to	do	it	using	RStudio.

https://google.github.io/styleguide/Rguide.xml
http://adv-r.had.co.nz/Style.html
http://bit.ly/Rcodestyle


Reformatting	Code	with	RStudio
RStudio	can	automatically	clean	up	poorly	indented	and	formatted	code.	To	do	this,	select	the
lines	that	need	to	be	formatted	(e.g.,	via	Ctrl-A	to	select	the	entire	script),	then	automatically
indent	it	with	Ctrl-I.	The	shortcut	Ctrl-Shift-A	will	reformat	the	code,	adding	spaces	for
maximum	readability.	An	example	is	provided	here:

#	Poorly	indented/formatted	code

if(!exists("x")){

x=c(3,5)

y=x[2]}

This	code	chunk	works	but	is	not	pleasant	to	read.	RStudio	automatically	indents	the	code
after	the	if	statement	as	follows:

#	Automatically	indented	code	(Ctrl-I	in	RStudio)

if(!exists("x")){

		x=c(3,5)

		y=x[2]}

This	is	a	start,	but	it’s	still	not	easy	to	read.	This	can	be	fixed	in	RStudio	as	illustrated	in	the
following	code	chunk	(these	options	can	be	seen	in	the	Code	menu,	accessed	with	Alt-C	on
Windows/Linux	computers):

#	Automatically	reformat	the	code	(Ctrl-Shift-A	in	RStudio)

if(!exists("x"))	{

		x	=	c(3,	5)

		y	=	x[2]

}

Note	that	some	aspects	of	style	are	subjective;	for	example,	we	would	not	leave	a	space	after
the	if	and	).



Filenames
Filenames	should	use	the	.R	extension	and	should	be	lowercase	(e.g.,	load.R).	Avoid	spaces.
Use	a	dash	or	underscore	to	separate	words.

#	Good	names

normalize.R

load.R

#	Bad	names

Normalize.r

load	data.R

Section	1.1	of	Writing	R	Extensions	provides	more	detailed	guidance	on	filenames,	such	as
avoiding	non-English	alphabetic	characters	as	they	cannot	be	guaranteed	to	work	across
locales.	While	the	guidelines	are	strict,	the	guidance	aids	in	making	your	scripts	more
portable.

http://bit.ly/Rpackstructure


Loading	Packages
Library	function	calls	should	be	at	the	top	of	your	script.	When	loading	an	essential	package,
use	library	instead	of	require	since	a	missing	package	will	then	raise	an	error.	If	a	package
isn’t	essential,	use	require	and	appropriately	capture	the	warning	raised.	Package	names
should	be	surrounded	with	quotation	marks.

#	Good

library("dplyr")

#	Non-standard	evaluation

library(dplyr)

Avoid	listing	every	package	you	may	need;	instead	just	include	the	packages	you	actually	use.
If	you	find	that	you	are	loading	many	packages,	consider	putting	all	packages	in	a	file	called
packages.R	and	using	source	appropriately.



Commenting
Comments	can	greatly	improve	the	efficiency	of	collaborative	projects	by	helping	everyone
to	understand	what	each	line	of	code	is	doing.	However,	comments	should	be	used	carefully;
plastering	your	script	with	comments	does	not	necessarily	make	it	more	efficient,	and	too
many	comments	can	be	inefficient.	Updating	heavily	commented	code	can	be	a	pain	—	not
only	will	you	have	to	change	all	the	R	code,	you’ll	also	have	to	rewrite	or	delete	all	the
comments!

Ensure	that	your	comments	are	meaningful.	Avoid	using	verbose	English	to	explain	standard
R	code.	The	following	comment,	for	example,	adds	no	useful	information	because	it	is
obvious	by	reading	the	code	that	i	is	being	set	to	1:

#	Setting	x	equal	to	1

x	=	1

Instead,	comments	should	provide	context.	Imagine	that	x	was	being	used	as	a	counter	(in
which	case	it	should	probably	have	a	more	meaningful	name,	like	counter,	but	we’ll	continue
to	use	x	for	illustrative	purposes).	In	that	case,	the	comment	could	explain	your	intention	for
its	future	use:

#	Initialize	counter

x	=	1

The	previous	example	illustrates	that	comments	are	more	useful	if	they	provide	context	and
explain	the	programmer’s	intention	(McConnell	2004).	Each	comment	line	should	begin	with
a	single	hash	(#),	followed	by	a	space.	Comments	can	be	toggled	(turned	on	and	off)	in	this
way	with	Ctrl-Shift-C	in	RStudio.	The	double	hash	(##)	can	be	reserved	for	R	output.	If	you
follow	your	comment	with	four	dashes	(#	----)	RStudio	will	enable	code	folding	until	the
next	instance	of	this.



Object	Names
“When	I	use	a	word,”	Humpty	Dumpty	said,	in	a	rather	scornful	tone,	“it	means	just	what	I
choose	it	to	mean	—	neither	more	nor	less.”
Lewis	Carroll,	Through	the	Looking	Glass,	Chapter	6

It	is	important	for	objects	and	functions	to	be	named	consistently	and	sensibly.	To	take	a	silly
example,	imagine	if	all	objects	in	your	projects	were	called	x,	xx,	xxx,	etc.	The	code	would
run	fine.	However,	it	would	be	hard	for	other	people,	and	a	future	you,	to	figure	out	what	was
going	on,	especially	when	you	got	to	the	object	xxxxxxxxxx!

For	this	reason,	giving	a	clear	and	consistent	name	to	your	objects,	especially	if	they	are
going	to	be	used	many	times	in	your	script,	can	boost	project	efficiency	(if	an	object	is	only
used	once,	its	name	is	less	important,	a	case	where	x	could	be	acceptable).	Following
discussion	in	“The	State	of	Naming	Conventions	in	R”	by	Rasmus	Baath	and	elsewhere,	we
suggest	an	underscore_separated	style	for	function	and	object	names.1	Unless	you	are
creating	an	S3	object,	avoid	using	a	.	in	the	name	(this	will	help	avoid	confusing	Python
programmers!).	Names	should	be	concise	yet	meaningful.

In	functions,	the	required	arguments	should	always	be	first,	followed	by	optional	arguments.
The	special	...	argument	should	come	last.	If	your	argument	has	a	boolean	value,	use
TRUE/FALSE	instead	of	T/F	for	clarity.

WARNING
It’s	tempting	to	use	T/F	as	shortcuts.	But	it	is	easy	to	accidentally	redefine	these	variables	(e.g.,	F	=	10).	R	raises
an	error	if	you	try	to	redefine	TRUE/FALSE.

While	it’s	possible	to	write	arguments	that	depend	on	other	arguments,	try	to	avoid	using	this
idiom	as	it	makes	understanding	the	default	behavior	harder	to	understand.	Typically,	it’s
easier	to	set	an	argument	to	have	a	default	value	of	NULL	and	check	its	value	using	is.null()
than	by	using	missing().	Where	possible,	avoid	using	names	of	existing	functions.

http://bit.ly/Rnamingcon


Example	Package
The	lubridate	package	is	a	good	example	of	a	package	that	has	a	consistent	naming	system,
which	makes	it	easy	for	users	to	guess	its	features	and	behavior.	Dates	are	encoded	in	a
variety	of	ways,	but	the	lubridate	package	has	a	neat	set	of	functions	consisting	of	the	three
letters,	year,	month,	and	day.	For	example:

library("lubridate")

ymd("2012-01-02")

dmy("02-01-2012")

mdy("01-02-2012")



Assignment
The	two	most	common	ways	of	assigning	objects	to	values	in	R	is	with	<-	and	=.	In	most	(but
not	all)	contexts,	they	can	be	used	interchangeably.	Regardless	of	which	operator	you	prefer,
consistency	is	key,	particularly	when	working	in	a	group.	In	this	book	we	use	the	=	operator
for	assignment,	as	it’s	faster	to	type	and	more	consistent	with	other	languages.

The	one	place	where	a	difference	occurs	is	during	function	calls.	Consider	the	following
piece	of	code	used	for	timing	random	number	generation:

system.time(expr1	<-	rnorm(10e5))

system.time(expr2	=	rnorm(10e5))	#	error

The	first	lines	will	run	correctly	and	create	a	variable	called	expr1.	The	second	line	will	raise
an	error.	When	we	use	=	in	a	function	call,	it	changes	from	an	assignment	operator	to	an
argument	passing	operator.	For	further	information	about	assignment,	see	?assignOps.



Spacing
Consistent	spacing	is	an	easy	way	of	making	your	code	more	readable.	Even	a	simple
command	such	as	x	=	x	+	1	takes	a	bit	more	time	to	understand	when	the	spacing	is
removed	(i.e.,	x=x+1).	You	should	add	a	space	around	the	operators	+,	-,	\,	and	*.	Include	a
space	around	the	assignment	operators,	<-	and	=.	Additionally,	add	a	space	around	any
comparison	operators	such	as	==	and	<.	The	latter	rule	helps	avoid	bugs:

#	Bug.	x	now	equals	1

x[x<-1]

#	Correct.	Selecting	values	less	than	-1

x[x	<	-1]

The	exceptions	to	the	space	rule	are	:,	::,	and	:::,	as	well	as	$	and	@	symbols	for	selecting
subparts	of	objects.	As	with	English,	add	a	space	after	a	comma:

z[z$colA	>	1990,	]



Indentation
Use	two	spaces	to	indent	code.	Never	mix	tabs	and	spaces.	RStudio	can	automatically	convert
the	tab	character	to	spaces	(see	Tools	->	Global	options	->	Code).



Curly	Braces
Consider	the	following	code:

#	Bad	style,	fails

if(x	<	5)

{

y}

else	{

		x}

Typing	this	straight	into	R	will	result	in	an	error.	An	opening	curly	brace,	{,	should	not	go	on
its	own	line	and	should	always	be	followed	by	a	line	break.	A	closing	curly	brace	should
always	go	on	its	own	line	(unless	it’s	followed	by	an	else,	in	which	case	the	else	should	go
on	its	own	line).	The	code	inside	curly	braces	should	be	indented	(and	RStudio	will	enforce
this	rule),	as	shown	in	the	following	code	chunk:

#	Good	style

if(x	<	5){

		x

}	else	{

		y

}

Exercise
1.	 Look	at	the	difference	between	your	style	and	RStudio’s	based	on	a	representative	R

script	that	you	have	written	(see	“Coding	Style”).	What	are	the	similarities?	What	are
the	differences?	Are	you	consistent?	Write	these	down	and	think	about	how	you	can
use	the	results	to	improve	your	coding	style.



Version	Control
When	a	project	gets	large,	complicated,	or	mission	critical,	it	is	important	to	keep	track	of
how	it	evolves.	In	the	same	way	that	Dropbox	saves	a	backup	of	your	files,	version	control
systems	keep	a	backup	of	your	code.	The	only	difference	is	that	version	control	systems	back
up	your	code	forever.

The	version	control	system	we	recommend	is	Git,	a	command-line	application	created	by
Linus	Torvalds,	who	also	invented	Linux.2	The	easiest	way	to	integrate	your	R	projects	with
Git,	if	you’re	not	accustomed	to	using	a	shell	(e.g.,	the	Unix	command	line),	is	with	RStudio’s
Git	tab	in	the	top	right-hand	window	(see	Figure	9-1).	This	shows	that	a	number	of	files	have
been	modified	(as	illustrated	with	the	blue	M	symbol)	and	that	some	are	new	(as	illustrated
with	the	yellow	?	symbol).	Checking	the	tick-box	will	enable	these	files	to	be	committed.



Commits
Commits	are	the	basic	units	of	version	control.	Keep	your	commits	atomic:	each	one	should
only	do	one	thing.	Document	your	work	with	clear	and	concise	commit	messages,	and	use	the
present	tense	(e.g.,	add	analysis	functions).

Committing	code	only	updates	the	files	on	your	local	branch.	To	update	the	files	stored	on	a
remote	server	(e.g.,	on	GitHub),	you	mush	push	the	commit.	This	can	be	done	using	git	push
from	a	shell	or	using	the	green	up	arrow	in	RStudio,	as	illustrated	in	Figure	9-1.	The	blue
down	arrow	will	pull	the	latest	version	of	the	repository	from	the	remote.3

Figure	9-1.	The	Git	tab	in	RStudio



Git	Integration	in	RStudio
How	do	you	enable	this	functionality	on	your	installation	of	RStudio?	RStudio	can	be	a	GUI
Git	only	if	Git	has	been	installed	and	RStudio	can	find	it.	You	need	a	working	installation	of
Git	(e.g.,	installed	through	apt-get	install	git	Ubuntu/Debian	or	via	GitHub	Desktop	for
Mac	and	Windows).	RStudio	can	be	linked	to	your	Git	installation	via	Tools	→	Global
Options	in	the	Git/SVN	tab.	This	tab	also	provides	a	link	to	a	help	page	on	RStudio/Git.

Once	Git	has	been	linked	to	your	RStudio	installation,	it	can	be	used	to	track	changes	in	a	new
project	by	selecting	Create	a	git	repository	when	creating	a	new	project.	The	tab
illustrated	in	Figure	9-1	will	appear,	allowing	functionality	for	interacting	with	Git	via
RStudio.

RStudio	provides	a	useful	GUI	for	navigating	past	commits.	This	allows	you	to	see	the	entire
history	of	your	project.	To	navigate	and	view	the	details	of	past	commits,	click	on	the	Diff
button	in	the	Git	pane,	as	illustrated	in	Figure	9-2.

Figure	9-2.	The	Git	history	navigation	interface

http://bit.ly/installGHdesk
http://bit.ly/gitsvnrstudio


GitHub
GitHub	is	an	online	platform	that	makes	sharing	your	work	and	collaborating	on	code	easy.
There	are	alternatives	such	as	GitLab.	The	focus	here	is	on	GitHub	as	it’s	by	far	the	most
popular	among	R	developers.	Also,	through	the	command	devtools::install_github(),
preview	versions	of	a	package	can	be	installed	and	updated	in	an	instant.	This	makes	GitHub
packages	a	great	way	to	access	the	latest	functionality.	And	GitHub	makes	it	easy	to	get	your
work	out	there	to	the	world	for	efficiently	collaborating	with	others,	without	the	restraints
placed	on	CRAN	packages.

To	install	the	GitHub	version	of	the	benchmarkme	package,	for	example,	you	would	enter

devtools::install_github("csgillespie/benchmarkme")

Note	that	csgillespie	is	the	GitHub	user	and	benchmarkme	is	the	package	name.	Replacing
csgillespie	with	robinlovelace	in	the	previous	code	would	install	Robin’s	version	of	the
package.	This	is	useful	for	fast	collaboration	with	many	people,	but	you	must	remember	that
GitHub	packages	will	not	update	automatically	with	the	command	update.packages	(see
“Updating	R	Packages”).

WARNING
Although	GitHub	is	fantastic	for	collaboration,	it	can	end	up	creating	more	problems	than	it	solves	if	your
collaborators	are	not	Git-literate.	In	one	project,	Robin	eventually	abandoned	using	GitHub	after	his	collaborator
found	it	impossible	to	work	with.	More	time	was	being	spent	debugging	Git/GitHub	than	actually	working.	Our
advice	therefore	is	to	never	impose	Git	and	always	ensure	that	other	lines	of	communication	(e.g.,	phone	calls,
emails)	are	open	because	different	people	prefer	different	ways	of	communicating.

https://about.gitlab.com/


Branches,	Forks,	Pulls,	and	Clones
Git	is	a	large	program	that	takes	a	long	time	to	learn	in-depth.	However,	getting	to	grips	with
the	basics	of	some	of	its	more	advanced	functions	can	make	you	a	more	efficient
collaborator.	Using	and	merging	branches,	for	example,	allows	you	to	test	new	features	in	a
self-contained	environment	before	they	are	used	in	production	(e.g.,	when	shifting	to	an
updated	version	of	a	package	that	is	not	backwards	compatible).	Instead	of	bogging	you	down
with	a	comprehensive	discussion	of	what	is	possible,	this	section	cuts	to	the	most	important
features	for	collaboration:	branches,	forks,	pulls,	and	clones.	For	a	more	detailed	description
of	Git’s	powerful	functionality,	we	recommend	the	Jenny	Bryan’s	book,	Happy	Git	and
GitHub	for	the	useR.

Branches	are	distinct	versions	of	your	repository.	Git	allows	you	jump	seamlessly	between
different	versions	of	your	entire	project.	To	create	a	new	branch	called	test,	you	need	to	enter
the	shell	and	use	the	Git	command	line:

git	checkout	-b	test

This	is	equivalent	to	entering	two	commands:	git	branch	test	to	create	the	branch	and	then
git	checkout	test	to	checkout	that	branch.	Checkout	means	switch	into	that	branch.	Any
changes	will	not	affect	your	previous	branch.	In	RStudio,	you	can	jump	quickly	between
branches	using	the	drop-down	menu	in	the	top	right	of	the	Git	pane.	This	is	illustrated	in
Figure	9-1:	see	the	master	text	followed	by	a	down	arrow.	Clicking	on	this	will	allow	you	to
select	other	branches.

Forks	are	like	branches,	but	they	exist	on	other	people’s	computers.	You	can	fork	a	repository
on	GitHub	easily,	as	described	on	the	site’s	help	pages.	If	you	want	an	exact	copy	of	this
repository	(including	the	commit	history),	you	can	clone	this	fork	to	your	computer	using	the
command	git	clone	or	by	using	a	Git	GUI	such	as	GitHub	Desktop.	This	is	preferable	from
a	collaboration	perspective	than	cloning	the	repository	directly,	because	any	changes	can	be
pushed	back	online	easily	if	you	are	working	from	your	own	fork.	You	cannot	push	to	forks
that	you	have	not	created,	unless	someone	has	granted	you	access.	If	you	want	your	work	to
be	incorporated	into	the	original	fork,	you	can	use	a	pull	request.	Note:	if	you	don’t	need	the
project’s	entire	commit	history,	you	can	simply	download	a	zip	file	containing	the	latest
version	of	the	repository	from	GitHub	(at	the	top	right	of	any	GitHub	repository).

A	pull	request	(PR)	is	a	mechanism	on	GitHub	by	which	your	code	can	be	added	to	an	existing
project.	One	of	the	most	useful	features	of	a	PR	from	a	collaboration	perspective	is	that	it
provides	an	opportunity	for	others	to	comment	on	your	code,	line	by	line,	before	it	gets
merged.	This	is	all	done	online	on	GitHub,	as	discussed	in	GitHub’s	online	help.	Following
feedback,	you	may	want	to	refactor	code	written	by	you	or	others.

http://happygitwithr.com/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/merging-a-pull-request/


Code	Review
What	is	a	code	review?4	Simply	put,	when	we	have	finished	working	on	a	piece	of	code,	a
colleague	reviews	our	work	and	considers	questions	such	as:

Is	the	code	correct	and	properly	documented?

Could	the	code	be	improved?

Does	the	code	conform	to	existing	style	guidelines?

Are	there	any	automated	tests?	If	so,	are	they	sufficient?

A	good	code	review	shares	knowledge	and	best	practices.

A	lightweight	code	review	can	take	a	variety	of	forms.	For	example,	it	could	be	as	simple	as
emailing	around	some	code	for	comments,	or	“over	the	shoulder,”	where	someone	literally
looks	over	your	shoulder	while	you	code.	More	formal	techniques	include	paired
programming	where	two	developers	work	side	by	side	on	the	same	project.

Regardless	of	the	review	method	being	employed,	there	a	number	of	points	to	remember.
First,	as	with	all	forms	of	feedback,	be	constructive.	Rather	than	pointing	out	flaws,	give
suggested	improvements.	Closely	related	is	giving	praise	when	appropriate.	Second,	if	you
are	reviewing	a	piece	of	code,	set	a	timeframe	or	the	number	of	lines	of	code	you	will	review.
For	example,	you	will	spend	one	hour	to	review	a	piece	of	code,	or	review	a	maximum	of
400	lines.	Third,	a	code	review	should	be	performed	before	the	code	is	merged	into	a	larger
code	base;	fix	mistakes	as	soon	as	possible.

Many	R	users	don’t	work	on	a	team	or	in	a	group;	instead,	they	work	by	themselves.
Practically,	there	isn’t	usually	anyone	nearby	to	review	their	code.	However,	there	is	still	the
option	of	an	unoffical	code	review.	For	example,	if	you	have	hosted	code	on	an	online
repository	such	as	GitHub,	users	will	naturally	give	feedback	on	our	code	(especially	if	you
make	it	clear	that	you	welcome	feedback).	Another	good	place	is	Stack	Overflow	(covered	in
detail	in	Chapter	10).	This	site	allows	you	to	post	answers	to	other	users	questions.	When	you
post	an	answer,	if	your	code	is	unclear,	this	will	be	flagged	in	comments	below	your	answer.
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One	notable	exception	are	packages	in	Bioconductor,	where	variable	names	are	camelCase.	In	this	case,	you	should	match
the	existing	style.

We	recommend	10	Years	of	Git:	An	Interview	with	Git	Creator	Linus	Torvalds	from	Linux.com	for	more	information	on
this	topic.

For	a	more	detailed	account	of	this	process,	see	GitHub’s	help	pages.

This	section	is	being	written	with	small	teams	in	mind.	Larger	teams	should	consult	a	more	detailed	text	on	code	review.
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Chapter	10.	Efficient	Learning

As	with	any	vibrant	open	source	software	community,	R	is	fast	moving.	This	can	be
disorienting	because	it	means	that	you	can	never	finish	learning	R.	On	the	other	hand,	it	makes
R	a	fascinating	subject	because	there	is	always	more	to	learn.	Even	experienced	R	users	keep
finding	new	functionality	that	helps	solve	problems	more	quickly	and	elegantly.	Therefore,
learning	how	to	learn	is	one	of	the	most	important	skills	to	have	if	you	want	to	learn	R	in-
depth.	We	emphasize	depth	of	learning	because	it	is	more	efficient	to	learn	something
properly	than	to	Google	it	repeatedly	every	time	you	forget	how	it	works.

This	chapter	aims	to	equip	you	with	concepts,	guidance,	and	tips	that	will	accelerate	your
transition	from	an	R	hacker	to	an	R	programmer.	This	inevitably	involves	effective	use	of	R’s
help,	reading	R	source	code,	and	use	of	online	material.



Prerequisties
The	only	package	used	in	this	section	is	swirl:

library("swirl")



Top	Five	Tips	for	Efficient	Learning
1.	 Use	R’s	internal	help	(e.g.,	with	?,	??,	vignette(),	and	apropos()).	Try	swirl.

2.	 Read	about	the	latest	developments	in	established	outlets	such	as	the	Journal	for
Statistical	Software,	the	R	Journal,	R	lists,	and	the	blogosphere.

3.	 If	stuck,	ask	for	help!	A	clear	question	posted	in	an	appropriate	place,	using
reproducible	code,	should	get	a	quick	and	enlightening	answer.

4.	 For	more	in-depth	learning,	nothing	can	beat	immersive	R	books	and	tutorials.	Do
some	research	and	decide	which	resources	you	should	use.

5.	 One	of	the	best	ways	to	consolidate	learning	is	to	write	it	up	and	pass	on	the
knowledge;	telling	the	story	of	what	you’ve	learned	with	also	help	others.



Using	R’s	Internal	Help
Sometimes	the	best	place	to	look	for	help	is	within	R	itself.	Using	R’s	help	has	three	main
advantages	from	an	efficiency	perspective:

It’s	faster	to	query	R	from	inside	your	IDE	than	to	switch	context	and	search	for	help	on
a	different	platform	(e.g.,	the	internet,	which	has	countless	distractions).

It	works	offline.

Learning	to	read	R’s	documentation	(and	source	code)	is	a	powerful	skill	in	itself	that
will	improve	your	R	programming.

The	main	disadvantage	of	R’s	internal	help	is	that	it	is	terse	and	in	some	cases	sparse.	Do	not
expect	to	always	be	able	to	find	the	answer	in	R,	so	be	prepared	to	look	elsewhere	for	more
detailed	help	and	context.	From	a	learning	perspective,	becoming	acquainted	with	R’s
documentation	is	often	better	than	finding	the	solution	from	a	different	source	because	it	was
written	by	developers,	largely	for	developers.	Therefore,	with	R	documentation	you	learn
about	functions	from	the	horse’s	mouth.	R	help	also	sometimes	sheds	light	on	a	function’s
history	through	references	to	academic	papers.

As	you	look	to	learn	about	a	topic	or	function	in	R,	it	is	likely	that	you	will	have	a	search
strategy	of	your	own,	ranging	from	broad	to	narrow:

1.	 Searching	R	and	installed	packages	for	help	on	a	specific	topic.

2.	 Reading	up	on	packages	vignettes.

3.	 Getting	help	on	a	specific	function.

4.	 Looking	into	the	source	code.

In	many	cases,	you	may	already	have	gone	through	stages	1	and	2.	Often	you	can	stop	at	stage
3	and	simply	use	the	function	without	worrying	about	exactly	how	it	works.	In	every	case,	it	is
useful	to	be	aware	of	this	hierarchical	approach	to	learning	from	R’s	internal	help,	so	you	can
start	with	the	big	picture	(and	avoid	going	down	a	misguided	route	early	on)	and	then	quickly
focus	in	on	the	functions	that	are	most	related	to	your	task.

To	illustrate	this	approach	in	action,	imagine	that	you	are	interested	in	a	specific	topic:
optimization.	The	remainder	of	this	section	will	work	through	stages	1	to	4	outlined
previously	as	if	we	wanted	to	find	out	more	about	this	topic,	with	occasional	diversions	from
it	to	see	how	specific	help	functions	work	in	more	detail.	The	final	method	of	learning	from
R’s	internal	resources	covered	in	this	section	is	swirl,	a	package	for	interactive	learning.



Searching	R	for	Topics
A	wide	boundary	search	for	a	topic	in	R	will	often	begin	with	a	search	for	instances	of	a
keyword	in	the	documentation	and	function	names.	Using	the	example	of	optimization,	you
could	start	with	a	search	for	a	text	string	related	to	the	topic	of	interest:

#	help.search("optim")	#	or,	more	concisely

??optim

Note	that	the	??	symbol	is	simply	a	useful	shorthand	version	of	the	function	help.search().	It
is	sometimes	useful	to	use	the	full	function	rather	than	the	shorthand	version,	because	it
allows	you	to	specify	a	number	of	options.	To	search	for	all	help	pages	that	mention	the	more
specific	term	“optimization”	in	the	title	or	alias	of	the	help	pages,	for	example,	the	following
command	would	be	used:

help.search(pattern	=	"optimisation|optimization",

				fields	=	c("title",	"concept"))

This	will	return	a	short	(and	potentially	more	efficiently	focused)	list	of	help	pages	than	the
wide-ranging	??optim	call.	To	make	the	search	even	more	specific,	we	can	use	the	package
argument	to	constrain	the	search	to	a	single	package.	This	can	be	very	useful	when	you	know
that	a	function	exists	in	a	specific	package	but	you	cannot	remember	what	it	is	called:

help.search(pattern	=	"optimisation|optimization",

				fields	=	c("title",	"concept"),	package	=	"stats")

Another	function	for	searching	R	is	apropos().	It	prints	to	the	console	any	R	objects
(including	hidden	functions,	those	beginning	with	.,	and	datasets)	whose	name	matches	a
given	text	string.	Because	it	does	not	search	R’s	documentation,	it	tends	to	return	fewer	results
than	help.search().	Its	use	and	typical	outputs	can	be	seen	in	the	following	examples:

apropos("optim")

#>	[1]	"constrOptim"	"optim"							"optimHess"			"optimise"				"optimize"

apropos("lm")[1:6]	#	show	only	first	six	results

#>	[1]	".__C__anova.glm"						".__C__anova.glm.null"	".__C__diagonalMatrix"

#>	[4]	".__C__generalMatrix"		".__C__glm"												".__C__glm.null"

To	search	all	R	packages,	including	those	you	have	not	installed	locally,	for	a	specific	topic,
there	are	a	number	of	options.	For	obvious	reasons,	this	requires	internet	access.	The	most
rudimentary	way	to	see	what	packages	are	available	from	CRAN,	if	you	are	using	RStudio,	is
to	use	its	autocompletion	functionality	for	package	names.	To	take	an	example,	if	you	are
looking	for	a	package	for	geospatial	data	analysis,	you	could	do	worse	than	enter	the	text
string	geo	as	an	argument	into	package	installation	function	(e.g.,	install.packages(geo))
and	pressing	the	Tab	key	when	the	cursor	is	between	the	o	and	the	)	in	the	example.	The
resulting	options	are	shown	in	Figure	10-1.	Selecting	one	from	the	drop-down	menu	will



result	in	it	being	completed	with	surrounding	quotation	marks,	as	necessary.

Figure	10-1.	Package	name	autocompletion	in	action	in	RStudio	for	packages	beginning	with	geo



Finding	and	Using	Vignettes
Some	packages	contain	vignettes.	These	are	pieces	of	long-form	documentation	that	allow
package	authors	to	go	into	detail	explaining	how	the	package	works	(Wickham	2015c).	In
general,	they	are	high	quality.	Because	they	can	be	used	to	illustrate	real-world	use	cases,
vignettes	can	be	the	best	way	to	understand	functions	in	the	context	of	broader	explanations
and	longer	examples	than	are	provided	in	function	help	pages.	Although	many	packages	lack
vignettes,	they	deserve	a	subsection	of	their	own	because	they	can	boost	the	efficiency	with
which	package	functions	are	used	in	an	integrated	workflow.

NOTE
If	you	are	frustrated	because	a	certain	package	lacks	a	vignette,	you	can	create	one.	This	can	be	a	great	way	of
learning	about	and	consolidating	your	knowledge	of	a	package.	To	create	a	vignette,	first	download	the	source
code	of	a	package	and	then	use	devtools::use_vignette().	To	add	a	vignette	to	the	efficient	package	used	in
this	book,	for	example,	you	could	clone	the	repo	(e.g.,	using	the	command	git	clone
git@github.com:csgillespie/efficient).	Once	you	have	opened	the	repo	as	a	project	(e.g.,	in	RStudio),	you
could	create	a	vignette	called	“efficient-learning”	with	the	command	use_vignette("efficient-learning").

To	browse	any	vignettes	associated	with	a	particular	package,	we	can	use	the	handy	function
browseVignettes():

browseVignettes(package	=	"benchmarkme")

This	is	roughly	equivalent	to	vignette(package	=	"benchmarkme")	but	opens	a	new	page	in	a
browser	and	lets	you	navigate	all	the	vignettes	in	that	particular	package.	For	an	overview	of
all	vignettes	available	from	R	packages	installed	on	your	computer,	try	browsing	all	available
vignettes	with	browseVignettes().	You	may	be	surprised	at	how	many	hidden	gems	there	are
in	there!

How	best	to	use	vignettes	depends	on	the	vignette	in	question	and	your	aims.	In	general,	you
should	expect	to	spend	longer	reading	vignettes	than	other	types	of	R	documentation.	The
Introduction	to	dplyr	vignette	(opened	with	vignette("introduction",	package	=
"dplyr")),	for	example,	contains	almost	4,000	words	of	prose,	example	code,	and	outputs
that	illustrate	how	its	functions	work.	We	recommend	working	through	the	examples	and
typing	the	example	code	in	order	to	learn	by	doing.

Another	way	to	learn	from	package	vignettes	is	to	view	their	source	code.	You	can	find	where
vignette	source	code	lives	by	looking	in	the	vignette/	folder	of	the	package’s	source	code.
dplyr’s	vignettes,	for	example,	can	be	viewed	(and	edited)	online.	A	quick	way	to	view	a
vignette’s	R	code	is	with	the	edit()	function:

v	=	vignette("introduction",	package	=	"dplyr")

http://r-pkgs.had.co.nz/vignettes.html
https://github.com/hadley/dplyr/tree/master/vignettes


edit(v)



Getting	Help	on	Functions
All	functions	have	help	pages.	These	contain,	at	a	minimum,	a	list	of	the	input	arguments	and
the	nature	of	the	output	that	can	be	expected.	Once	a	function	has	been	identified	(e.g.,	using
one	of	the	methods	outlined	in	“Searching	R	for	Topics”),	its	help	page	can	be	displayed	by
prefixing	the	function	name	with	?.	Continuing	with	the	previous	example,	the	help	page
associated	with	the	command	optim()	(for	general-purpose	optimization)	can	be	invoked	as
follows:

#	help("optim")	#	or,	more	concisely:

?optim

In	general,	help	pages	describe	what	functions	do,	not	how	they	work.	This	is	one	of	the
reasons	that	function	help	pages	are	thought	(by	some)	to	be	difficult	to	understand.	In
practice,	this	means	that	the	help	page	does	not	describe	the	underlying	mathematics	or
algorithm	in	detail	—	its	aim	is	to	describe	the	interface.

A	help	page	is	divided	into	a	number	of	sections.	The	help	for	optim()	is	typical	in	that	it	has
a	title	(general-purpose	optimization)	followed	by	short	Description,	Usage,	and	Arguments
sections.	The	Description	is	usually	just	a	sentence	or	two	explaining	what	it	does.	Usage
shows	the	arguments	that	the	function	needs	to	work.	And	Arguments	describes	what	kind	of
objects	the	function	expects.	Longer	sections	typically	include	Details	and	Examples,	which
provide	some	context	and	provide	(usually	reproducible)	examples	of	how	the	function	can
be	used,	respectively.	The	typically	short	Value,	References,	and	See	Also	sections	facilitate
efficient	learning	by	explaining	what	the	output	means,	where	you	can	find	academic
literature	on	the	subject,	and	related	functions.

optim()	is	a	mature	and	heavily	used	function	so	it	has	a	long	help	page;	you’ll	probably	be
glad	to	know	that	not	all	help	pages	are	this	long!	With	so	much	potentially	overwhelming
information	in	a	single	help	page,	the	placement	of	the	short,	dense	sections	at	the	beginning
is	efficient	because	it	helps	you	to	understand	the	fundamentals	of	a	function	in	few	words.
Learning	how	to	read	and	quickly	interpret	such	help	pages	will	greatly	help	your	ability	to
learn	R.	Take	some	time	to	study	the	help	for	optim()	in	detail.

It	is	worth	discussing	the	contents	of	the	Usage	section	in	particular,	because	this	contains
information	that	may	not	be	immediately	obvious:

optim(par,	fn,	gr	=	NULL,	...,

						method	=	c("Nelder-Mead",	"BFGS",	"CG",	"L-BFGS-B",	"SANN",	"Brent"),

						lower	=	-Inf,	upper	=	Inf,	control	=	list(),	hessian	=	FALSE)

This	contains	two	pieces	of	critical	information:
1.	 The	essential	arguments	that	must	be	provided	for	the	function	to	work	(par	and	fn

in	this	case,	as	gr	has	a	default	value)	before	the	...	symbol;	and



2.	 optional	arguments	that	control	how	the	function	works	(method,	lower,	and	hessian
in	this	case).	...	are	optional	arguments	whose	values	depend	on	the	other	arguments
(which	will	be	passed	to	the	function	represented	by	fn	in	this	case).	Let’s	see	how
this	works	in	practice	by	trying	to	run	optim()	to	find	the	minimum	value	of	the
function	y	=	x4	-	x2:

fn	=	function(x)	{

		x^4	-	x^2

}

optim(par	=	0,	fn	=	fn)

#>	Warning	in	optim(par	=	0,	fn	=	fn):	one-dimensional	optimization

#>	by	Nelder-Mead	is	unreliable:	use	"Brent"	or	optimize()	directly

#>	$par

#>	[1]	0.707

#>

#>	$value

#>	[1]	-0.25

#>

#>	$counts

#>	function	gradient

#>							58							NA

#>

#>	$convergence

#>	[1]	0

#>

#>	$message

#>	NULL

The	results	show	that	the	minimum	value	of	fn(x)	is	found	when	x	=	0.707..	(1	/	√2),	with	a
minimum	value	of	-0.25.	It	took	58	iterations	of	the	function	call	for	optim()	to	converge	on
this	value.	Each	of	these	output	values	is	described	in	the	Values	section	of	the	help	pages.
From	the	help	pages,	we	could	guess	that	providing	the	function	call	without	specifying	par
(i.e.,	optim(fn	=	fn))	would	fail,	which	indeed	it	does.

The	most	helpful	section	is	often	the	Examples.	These	lie	at	the	bottom	of	the	help	page	and
show	precisely	how	the	function	works.	You	can	either	copy	and	paste	the	code,	or	actually
run	the	example	code	using	the	example	command	(it	is	well	worth	running	these	examples
due	to	the	graphics	produced):

example(optim)

NOTE
When	a	package	is	added	to	CRAN,	the	example	part	of	the	documentation	is	run	on	all	major	platforms.	This
helps	ensure	that	a	package	works	on	multiple	systems.

Another	useful	section	in	the	help	file	is	See	Also:.	In	the	optim()	help	page,	it	links	to
optimize(),	which	may	be	more	appropriate	for	this	use	case.



Reading	R	Source	Code
R	is	open	source.	This	means	that	we	view	the	underlying	source	code	and	examine	any
function.	Of	course	the	code	is	complex,	and	diving	straight	into	the	source	code	won’t	help
that	much.	However,	watching	the	GitHub	R	source	code	mirror	will	allow	you	to	monitor
small	changes	that	occur.	This	gives	a	nice	entry	point	into	a	complex	code	base.	Likewise,
examining	the	source	of	small	functions	such	as	NCOL	is	informative	(e.g.,
getFunction("NCOL")).

TIP
Subscribing	to	the	R	NEWS	blog	is	an	easy	way	of	keeping	track	of	future	changes.

Many	R	packages	are	developed	in	the	open	on	GitHub	or	r-forge.	Select	a	few	well-known
packages	and	examine	their	sources.	A	good	package	to	start	with	is	drat.	This	is	a	relatively
simple	package	developed	by	Dirk	Eddelbuettel	(author	of	Rcpp)	that	only	contains	a	few
functions.	It	gives	you	an	excellent	pointer	into	software	development	by	one	of	the	key	R
package	writers.

A	shortcut	for	browsing	R’s	source	code	is	provided	by	the	RStudio	IDE:	clicking	on	a
function	and	then	pressing	the	F2	key	will	open	its	source	code	in	the	file	editor.	This	works
both	for	functions	that	exist	in	R	and	its	packages	and	functions	that	you	created	in	another	R
script	(so	long	as	it	is	within	your	project	directory).	Although	reading	source	code	can	be
interesting	in	itself,	it	is	probably	best	done	in	the	context	of	a	specific	question,	such	as	“how
can	I	use	a	function	name	as	an	argument	in	my	own	function?”	(looking	at	the	source	code	of
apply()	may	help	here).

https://github.com/wch/r-source/
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/
https://github.com/eddelbuettel/drat


swirl
swirl	is	an	interactive	teaching	platform	for	R.	It	offers	a	number	of	extensions	and,	for	the
pioneering,	the	ability	for	others	to	create	custom	extensions.	The	learning	curve	and	method
will	not	work	for	everyone,	but	this	package	is	worth	flagging	as	a	potent	self-teaching
resource.	In	some	ways,	swirl	can	be	seen	as	the	ultimate	internal	R	help	as	it	allows	dedicated
learning	sessions,	based	on	multiple	choice	questions,	all	within	a	usual	R	session.	To	enter
the	swirl	world,	just	enter	the	following.	The	resultant	instructions	will	explain	the	rest:

library("swirl")

swirl()



Online	Resources
The	R	community	has	a	strong	online	presence,	providing	many	resources	for	learning.	Over
time,	there	has	fortunately	been	a	tendency	for	R	resources	to	become	more	user	friendly	and
up-to-date.	Many	resources	that	have	been	on	CRAN	for	many	years	are	dated	by	now	so	it’s
more	efficient	to	navigate	directly	to	the	most	up-to-date	and	efficient-to-use	resources.

Cheat	sheets	are	short	documents	summarizing	how	to	do	certain	things.	RStudio,	for
example,	provides	excellent	cheat	sheets	on	dplyr,	rmarkdown,	and	the	RStudio	IDE	itself.

The	R-project	website	contains	six	detailed	official	manuals,	plus	a	giant	PDF	file	containing
documentation	for	all	recommended	packages.	These	include	An	Introduction	to	R,	The	R
Language	Definition,	and	R	Installation	and	Administration,	all	of	which	are	recommended
for	people	wanting	to	learn	general	R	skills.	If	you	are	developing	a	package	and	want	to
submit	it	to	CRAN,	the	Writing	R	Extensions	manual	is	recommended	reading,	although	it	has
to	some	extent	been	superseded	by	R	Packages	by	Hadley	Wickham	(O’Reilly),	the	source
code	of	which	is	available	online.	While	these	manuals	are	long,	they	contain	important
information	written	by	experienced	R	programmers.

For	more	domain-specific	and	up-to-date	information	on	developments	in	R,	we	recommend
checking	out	academic	journals.	The	R	Journal	regularly	publishes	articles	describing	new	R
packages,	as	well	as	general	programming	hints.	Similarly,	the	articles	in	the	Journal	of
Statistical	Software	have	a	strong	R	bias.	Publications	in	these	journals	are	generally	of	very
high	quality	and	have	been	rigorously	peer	reviewed.	However,	they	may	be	rather	technical
for	R	novices.

The	wider	community	provides	a	much	larger	body	of	information,	of	more	variable	quality,
than	the	official	R	resources.	The	Contributed	Documentation	page	on	R’s	home	page
contains	dozens	of	tutorials	and	other	resources	on	a	wide	range	of	topics.	Some	of	these	are
excellent,	although	many	are	not	kept	up-to-date.	An	excellent	resource	for	browsing	R	help
pages	online	is	provided	by	rdocumentation.org.

Lower	grade	but	more	frequently	released	information	can	be	found	on	the	blogosphere.
Central	to	this	is	R-bloggers,	a	blog	aggregator	of	content	contributed	by	bloggers	who	write
about	R	(in	English).	It	is	a	great	way	to	get	exposed	to	new	and	different	packages.	Similarly,
monitoring	the	#rstats	Twitter	tag	keeps	you	up-to-date	with	the	latest	news.

There	are	also	mailing	lists,	Google	groups,	and	the	Stack	Exchange	Q&A	sites.	Before
requesting	help,	read	a	few	other	questions	to	learn	the	format	of	the	site.	Make	sure	you
search	previous	questions	so	you	are	not	duplicating	work.	Perhaps	the	most	important	point
is	to	remember	that	people	aren’t	under	any	obligation	to	answer	your	question.	One	of	the
fantastic	things	about	the	open	source	community	is	that	you	can	ask	questions	and	one	of
core	developers	may	answer	your	question	for	free	—	but	remember,	everyone	is	busy!

http://www.rstudio.com/resources/cheatsheets/
http://bit.ly/dplyrcheatsheet
http://bit.ly/rmdcheatsheet
http://bit.ly/rstudioidecheatsheet
https://cran.r-project.org/manuals.html
http://bit.ly/introtoR
http://bit.ly/Rlangdef
http://bit.ly/Rinstalladmin
http://bit.ly/writingRextensions
https://github.com/hadley/r-pkgs
https://journal.r-project.org/
https://www.jstatsoft.org/
https://cran.r-project.org/other-docs.html
http://www.rdocumentation.org
http://www.r-bloggers.com/
http://bit.ly/rstatshashtag


Stack	Overflow
The	number	one	place	on	the	internet	for	getting	help	on	programming	is	Stack	Overflow.
This	website	provides	a	platform	for	asking	and	answering	questions.	Through	site
membership,	questions	and	answers	are	voted	up	or	down.	Users	of	Stack	Overflow	earn
reputation	points	when	their	question	or	answer	is	up-voted.	Anyone	(with	enough	reputation)
can	edit	a	question	or	answer.	This	helps	the	content	remain	relevant.

Questions	are	tagged.	The	R	questions	can	be	found	under	the	R	tag.	The	R	page	contains
links	to	official	documentation,	free	resources,	and	various	other	links.	Members	of	the	Stack
Overflow	R	community	have	tagged,	using	r-faq,	a	few	question	that	often	crop	up.

http://www.stackoverflow.com
http://stackoverflow.com/questions/tagged/r
https://stackoverflow.com/tags/r/info


Mailing	Lists	and	Groups
There	are	many	mailing	lists	and	Google	groups	focused	on	R	and	particular	packages.	The
main	list	for	getting	help	is	R-help.	This	is	a	high-volume	mailing	list,	with	around	a	dozen
messages	per	day.	A	more	technical	mailing	list	is	R-devel.	This	list	is	intended	for	questions
and	discussion	about	code	development	in	R.	The	discussion	on	this	list	is	very	technical.	It’s	a
good	place	to	be	introduced	to	new	ideas,	but	it’s	not	the	place	to	ask	about	these	ideas!	There
are	many	other	special-interest	mailing	lists	covering	topics	such	as	high-performance
computing	to	ecology.	Many	popular	packages	also	have	their	own	mailing	list	or	Google
group	(e.g.,	ggplot2	and	shiny).	The	key	piece	of	advice	is	before	mailing	a	list,	read	the
relevant	mailing	archive	and	check	that	your	message	is	appropriate.

https://www.r-project.org/mail.html


Asking	a	Question
A	great	way	to	get	specific	help	on	a	difficult	topic	is	to	ask	for	help.	However,	asking	a	good
question	is	not	easy.	Three	common	mistakes,	and	ways	to	avoid	them,	are	outlined	here:

1.	 Asking	a	question	that	has	already	been	asked;	make	sure	that	you’ve	properly
searched	for	the	answer	before	posting.

2.	 The	answer	to	the	question	can	be	found	in	R’s	help:	make	sure	that	you’ve	properly
read	the	relevant	help	pages	before	asking.

3.	 The	question	does	not	contain	a	reproducible	example;	create	a	simple	version	of
your	data,	show	the	code	you’ve	tried,	and	display	the	result	you	are	hoping	for.

Your	question	should	contain	just	enough	information	that	your	problem	is	clear	and	can	be
reproducible,	while	at	the	same	time	avoids	unnecessary	details.	Fortunately	there	is	a	Stack
Overflow	question	—	How	to	make	a	great	R	reproducible	example?	—	that	provides
excellent	guidance.	Additional	guides	that	explain	how	to	create	good	programming	questions
are	provided	by	Stack	Overflow	and	the	R	mailing	list	posting	guide.

http://bit.ly/Rreproducible
https://stackoverflow.com/help/how-to-ask
https://www.r-project.org/posting-guide.html


Minimal	Dataset
What	is	the	smallest	dataset	you	can	construct	that	will	reproduce	your	issue?	Your	actual
dataset	may	contain	105	rows	and	104	columns,	but	to	get	your	idea	across	you	might	only
need	four	rows	and	three	columns.	Making	small	example	datasets	is	easy.	For	example,	to
create	a	data	frame	with	two	numeric	columns	and	a	column	of	characters,	use	the	following:

set.seed(1)

example_df	=	data.frame(x	=	rnorm(4),	y	=	rnorm(4),	z	=	sample(LETTERS,	4))

Note	that	the	call	to	set.seed	ensures	that	anyone	who	runs	the	code	will	get	the	same	random
number	stream.	Alternatively,	you	can	use	one	of	the	many	datasets	that	come	with	R	-
library(help	=	"datasets").

If	creating	an	example	dataset	isn’t	possible,	then	use	dput	on	your	actual	dataset.	This	will
create	an	ASCII	text	representation	of	the	object	that	will	enable	anyone	to	recreate	the	object:

dput(example_df)

#>	structure(list(

#>		x	=	c(-0.626453810742332,	0.183643324222082,	-0.835628612410047,

#>		1.59528080213779),

#>		y	=	c(0.329507771815361,	-0.820468384118015,	0.487429052428485,

#>		0.738324705129217),

#>		z	=	structure(c(3L,	4L,	1L,	2L),	.Label	=	c("J",	"R",	"S",	"Y"),

#>		class	=	"factor")),

#>		.Names	=	c("x",	"y",	"z"),	row.names	=	c(NA,	-4L),	class	=	"data.frame")



Minimal	Example
What	you	should	not	do	is	simply	copy	and	paste	your	entire	function	into	your	question.	It’s
unlikely	that	your	entire	function	doesn’t	work,	so	just	simplify	it	to	the	bare	minimum.	The
aim	is	to	target	your	actual	issue.	Avoid	copying	and	pasting	large	blocks	of	code;	remove
superfluous	lines	that	are	not	part	of	the	problem.	Before	asking	your	question,	can	you	run
your	code	in	a	clean	R	environment	and	reproduce	your	error?



Learning	In	Depth
In	the	age	of	the	internet	and	social	media,	many	people	feel	lucky	if	they	have	time	to	go	for
a	walk,	let	alone	sit	down	to	read	a	book.	But	it	is	undeniable	that	learning	R	in	depth	is	a
time-consuming	activity.	Reading	a	book	or	a	large	tutorial	(and	completing	the	practical
examples	contained	within)	may	not	be	the	most	efficient	way	to	solve	a	particular	problem	in
the	short	term,	but	it	can	be	one	of	the	best	ways	to	learn	R	programming	properly,	especially
in	the	long	run.

In-depth	learning	differs	from	shallow,	incremental	learning	because	rather	than	discovering
how	a	specific	function	works,	you	find	out	how	systems	of	functions	work	together.	To	take
a	metaphor	from	civil	engineering,	in-depth	learning	is	about	building	strong	foundations	on
which	a	wide	range	of	buildings	can	be	constructed.	In-depth	learning	can	be	highly	efficient
in	the	long	run	because	it	will	pay	back	over	many	years,	regardless	of	the	domain-specific
problem	you	want	to	use	R	to	tackle.	Shallow	learning,	to	continue	the	metaphor,	is	more	like
erecting	many	temporary	structures:	they	can	solve	a	specific	problem	in	the	short	term,	but
they	will	not	be	durable.	Flimsy	dwellings	can	be	swept	away.	Shallow	memories	can	be
forgotten.

Having	established	that	time	spent	deep	learning	can,	counterintuitively,	be	efficient,	it	is
worth	thinking	about	how	to	deep	learn.	This	varies	from	person	to	person.	It	does	not
involve	passively	absorbing	sacred	information	transmitted	year	after	year	by	the	R	gods.	It	is
an	active,	participatory	process.	To	ensure	that	memories	are	rapidly	actionable	you	must
learn	by	doing.	Learning	from	a	cohesive,	systematic,	and	relatively	comprehensive	resource
will	help	you	to	see	the	many	interconnections	between	the	different	elements	of	R
programming	and	how	they	can	be	combined	for	efficient	work.

There	are	a	number	of	such	resources,	including	this	book.	Although	the	understandable
tendency	will	be	to	use	it	incrementally,	dipping	in	and	out	of	different	sections	when	different
problems	arise,	we	also	recommend	reading	it	systematically	to	see	how	the	different
elements	of	efficiency	fit	together.	It	is	likely	that	as	you	work	progressively	through	this
book,	in	parallel	with	solving	real-world	problems,	you	will	realize	that	the	solution	is	not	to
have	the	right	resource	at	hand	but	to	be	able	to	use	the	tools	provided	by	R	efficiently.	Once
you	hit	this	level	of	proficiency,	you	should	have	the	confidence	to	address	most	problems
encountered	from	first	principles.	Over	time,	your	first	port	of	call	should	move	away	from
Google	and	even	R’s	internal	help	to	simply	giving	it	a	try.	Informed	trial	and	error,	and
intelligent	experimentation,	can	be	the	best	approach	to	both	learning	and	solving	problems
quickly,	once	you	are	equipped	with	the	tools	to	do	so.	That’s	why	this	is	the	last	section	in	the
book.

If	you	have	already	worked	through	all	the	examples	in	this	book,	or	if	you	want	to	learn
areas	not	covered	in	it,	there	are	many	excellent	resources	for	extending	and	deepening	your
knowledge	of	R	programming	for	fast	and	effective	work,	and	to	do	new	things	with	it.
Because	R	is	a	large	and	ever-evolving	language,	there	is	no	definitive	list	of	resources	for



taking	your	R	skills	to	new	heights.	However,	the	following	list,	in	rough	ascending	order	of
difficulty	and	depth,	should	provide	plenty	of	material	and	motivation	for	in-depth	learning	of
R.

1.	 Free	webinars	and	online	courses	provided	by	RStudio	and	DataCamp.	Both
organizations	are	well	regarded	and	keep	their	content	up-to-date,	but	there	are	likely
other	sources	of	other	online	courses.	We	recommend	that	you	test	pushing	your
abilities,	rather	than	going	over	the	same	material	covered	in	this	book.

2.	 R	for	Data	Science	(Grolemund	and	Wickham	2016),	a	free	book	introducing	many
concepts	and	tidy	packages	for	working	with	data	(a	free	online	version	is	available
from	r4ds.had.co.nz).

3.	 R	Programming	for	Data	Science	(Peng	2014),	which	provides	in-depth	coverage	of
analysis	and	visualization	of	datasets.

4.	 Advanced	R	Programming	(Wickham	2014a),	an	advanced	book	that	looks	at	the
internals	of	how	R	works	(free	from	adv-r.had.co.nz).

http://www.rstudio.com/resources/webinars/
https://www.datacamp.com/community/open-courses
http://r4ds.had.co.nz/
http://adv-r.had.co.nz/


Spread	the	Knowledge
The	final	thing	to	say	on	the	topic	of	efficient	learning	relates	to	the	old	(~2000	years	old!)
saying	docendo	discimus:

by	teaching	we	learn

This	means	that	passing	on	information	is	one	of	the	best	ways	to	consolidate	your	learning.	It
was	largely	by	helping	others	learn	R	that	we	became	proficient	R	users.

Demand	for	R	skills	is	growing,	so	there	are	many	opportunities	to	teach	R.	Whether	it’s
helping	your	colleague	use	apply()	or	writing	a	blog	post	on	solving	certain	problems	in	R,
teaching	others	R	can	be	a	rewarding	experience.	Furthermore,	spreading	the	knowledge	can
be	efficient:	it	will	improve	your	own	understanding	of	the	language	and	benefit	the	entire
community,	providing	positive	feedback	to	the	movement	toward	open	source	software	in
data-driven	computing.

Assuming	you	have	completed	this	book,	the	only	remaining	thing	to	say	is	“Well	done!	You
are	now	an	efficient	R	programmer.”	We	hope	you	direct	your	newly	found	skills	toward	the
greater	good	and	pass	on	the	wisdom	to	others	along	the	way.

https://en.wikipedia.org/wiki/Docendo_discimus
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Appendix	A.	Package	Dependencies

The	book	uses	datasets	stored	in	the	efficient	GitHub	package,	which	can	be	installed	(after
devtools	has	been	installed)	as	follows:

devtools::install_github("csgillespie/efficient",

																									args	=	"--with-keep.source")

The	book	depends	on	the	following	CRAN	packages:

Name Title Version

assertive.reflection Assertions	for	Checking	the	State	of	R	(Cotton	2016a) 0.0.3

benchmarkme Crowd	Sourced	System	Benchmarks	(Gillespie	2016) 0.3.0

bookdown Authoring	Books	with	R	Markdown	(Xie	2016a) 0.1

cranlogs Download	Logs	from	the	RStudio	CRAN	Mirror	(Csardi	2015) 2.1.0

data.table Extension	of	Data.frame	(Dowle	et	al.	2015) 1.9.6

devtools Tools	to	Make	Developing	R	Packages	Easier	(H.	Wickham	and	Chang	2016a) 1.12.0

DiagrammeR Create	Graph	Diagrams	and	Flowcharts	Using	R	(Sveidqvist	et	al.	2016) 0.8.4

dplyr A	Grammar	of	Data	Manipulation	(Wickham	and	Francois	2016) 0.5.0

drat Drat	R	Archive	Template	(Carl	Boettiger	et	al.	2016) 0.1.1

efficient Becoming	an	Efficient	R	Programmer	(Gillespie	and	Lovelace	2016) 0.1.1

feather R	Bindings	to	the	Feather	API	(H.	Wickham	2016a) 0.3.0

formatR Format	R	Code	Automatically	(Xie	2016b) 1.4

fortunes R	Fortunes	(Zeileis	and	R	community	2016) 1.5.3

geosphere Spherical	Trigonometry	(Hijmans	2016) 1.5.5

ggmap Spatial	Visualization	with	ggplot2	(Kahle	and	Wickham	2016) 2.6.1

ggplot2 An	Implementation	of	the	Grammar	of	Graphics	(H.	Wickham	and	Chang	2016b) 2.1.0

ggplot2movies Movies	Data	(H.	Wickham	2015a) 0.0.1

knitr A	General-Purpose	Package	for	Dynamic	Report	Generation	in	R	(Xie	2016c) 1.14

lubridate Make	Dealing	with	Dates	a	Little	Easier	(Grolemund,	Spinu,	and	Wickham	2016) 1.5.6

microbenchmark Accurate	Timing	Functions	(Mersmann	2015) 1.4.2.1



profvis Interactive	Visualizations	for	Profiling	R	Code	(Chang	and	Luraschi	2016) 0.3.2

pryr Tools	for	Computing	on	the	Language	(H.	Wickham	2015b) 0.1.2

Rcpp Seamless	R	and	C++	Integration	(Eddelbuettel	et	al.	2016) 0.12.7

readr Read	Tabular	Data	(Wickham,	Hester,	and	Francois	2016) 1.0.0

rio A	Swiss-Army	Knife	for	Data	I/O	(Chan	and	Leeper	2016) 0.4.12

RSQLite SQLite	Interface	for	R	(Wickham,	James,	and	Falcon	2014) 1.0.0

tibble Simple	Data	Frames	(Wickham,	Francois,	and	Müller	2016) 1.2

tidyr Easily	Tidy	Data	with	spread()	and	gather()	Functions	(H.	Wickham	2016b) 0.6.0
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