llﬂflﬂl :THE SOIVER

The high-performance
easy-to-use equation
solver!

A must for those

who routinely work
with equations

IBM° VERSION

PC, XT® AT*& True Compatibles

Eureka: The Solver

Owner's Handbook

BORLAND INTERNATIONAL, INC.
4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066

Copyright ©1987
All Rights Reserved, First Printing, 1987
Printed in U.S.A.

09876543

Eureka: The Solver Owner’s Handbook

Table of Contents

INEPOUCHION oottt ettt b b e s ses santeesresereresenesasene 1
What Can You Do With FEurekaPcoocievivvirnereereceescie s e ssassnsens 1
Structure of This Manual ...t sessesssesessssesesessses 3
TYPOZIADPRY cecveviirerrnssrssssisssereis e stssasssssismnssssssssssssassseassnsnssssnss sesesissessesesessences 4
The Distribution DSk c.ccieeeierieriveieicteieereece et s e bs e anasans 4
Hardware and Software ReqUirementscccocovrencceninenenmncnensisesnncrscsnesersnsnees 5
ACKNOWIEAEZEIMENES oeeeriierecee ettt ese et e e s saesssns e st asnannnens 5
CHAPTER 1: OVEIVIEW .ot ensreessessssnnssae e sessssesessssessssassensesenss 7
Command Menus and Windowsccccecevevrinicieieceensieie e sesssssesse e esssssssns 8
The EItOrooviveieeerercrcencteere et te s tebes et es st st sassessasaes s s s enssssassssassasssasassessesnns 9
Equation File SYNtax ...t esesesss s esssesesssesssssesssesssens 9

VALIADLES ovvveereeeiiiee et e sr b b e rns 9

INIHAlZAtONS ..ocvvevv ettt ettt nne 10

Special SYMDOIS ..ot e 10

ReSErved WOIAS .o.cvovivveeircerinircereciiterereie e siesssssssesssssssesnssesesesassssssessssasesssenas 10
SoIVING EQUAtIONS ..occcveiiiiiniiciinreceienssisees e isesseiisiaessmss s ssisesesssesssssssas 1

How Eureka Calculates SOIHONS cc.cooeerveveeercinrrenrnieierinesenasenessnnsessssssssseens 1
Evaluating EQUAtiONS ccocveerceinninireeeiececiernmeiessiessescesessesensesessessssseneonsessesssisses 12
REPOTtiNg ..cociiviiriniiiiiiniciitii e e b 12
CHAPTER 2: Getting Startedcccooerrne. et ettt st r bt 13
Setting Up the Programoeieininineeneesesescnsiessssesesessssesseseesessssacses 14

Copying t0 a Floppy DisK ...ccccccereinieenierieiioiensnnesssnsesssssssssissssnsssssssssesessons
One Floppy Disk DIIVE ccovuvinrirensrciernaencensioeesensesssinsssessssessassssssesessorsens
TwO Floppy Disk DIIVES ..coueuieeieieierennisisenseseisiiressesseessnsseessssssassassssassssessaes
Copying 10 2 Hard DisKccoccvuverereivrnesennnssnrenenssnsnesssnsesssssssssssssssssssrsssssesssans
Copying t0 2 RAM DisK ..ottt seene e
Tutorial Part 1: Using the Menus and the EdItorcccevvuvmvvereeivneeceenenennenee
Starting EUrEKacc.cooevierivennenrniinieennnsssssssssnee e ssssnasessessmsssinnsessssesssesssass
What to Do If You Want Out of Eurekaccccouvrivevinriveinennrecnnennieeneeinennnnnns
Making a Selection From the Main Menucccoveeeverernnnnecrcnerenseescesesennens
Creating a Filecoevvvrveeveeccncnnenns eteres ettt et r ettt st et rn et et e s snananarats
Using the Eureka EQIOrcccccoevvvnmnnieensinnesessssnsenssssesmsressesssssssnsees
SAVING A Fle oottt ettt sttt b s s
Tutorial Part 2: Creating and Solving an Equation Filecccccoeeevvmnrivcrivnncnnns
Creating the Equation Filecoco.o.ooooiiiiiecece et
Writing an Equation ccoceeveveiicncnennnrcncniennnnenene ettt eneas
Writing @ COMMENT ...ccovrevirieirenitinireenreecneernesesesesssasssessesssresesessenersssons
Solving the EQUAtion Fileccoucoenninceereiencsissssssscssssmsisinsssssssesssnens
Modifying the Equation Filecccoeimmenererneisisneerennnsernenes
Plothing @ Graph .c.cccecveinvereeeeninennie st sesesesssecseesissassasessasessssisesesssnesesns
Printing @ REPOItcooveeiiieiriininiicicctnccissetc sttt ess e seass st ss e st
Tutorial Part 3: Using Special FEAtUIEscccvrveenrirernerseisernnesenseesesrssensessaseees
Writing @ DIFECHIVE ...ccvevrerrerieeeriericeeeeneeeecesessensaesesesiesssseseosessassasessssssssnnenes
Changing Default SEtHNEScccccoveerireeierieeeetirneesssiessnsssssssresesessesssssesessses
Selecting the Variables Option and Finding Other Roots
Evaluating the Solutioncccoevevienecieiennineerer s sesa s senesssssssesens
Using the Window Menucccvecerrreeerinneeernnnsesecnensnsesssssssssssesessssssssssesens
Saving the EQuation Fileccccoovueeicinienencctnenaeescsesesiseesesstssssasesessssssens
Leaving the Programcciiieienniisseninsnssssssssesssssssssssssosessssssseses
Wrap Up .o, et et be b b sh e ebaeren
Eureka EQItor SUMMATYccvvveeeveniniciieinrininisissssesissaersssssssssssesessssssssessssssssesns
General Editing TechniqUuesc.coeivimieneceeeienerevese e serssenresessssesasssssenees
Basic Features of the EQItOrcceivevireicinicseese et seseie st s snsaens
More About the Editor Commandsc.cccccvuneeieenrerrerneniinnsnsisieensesesesesesenens

CHAPTER 3: Modeling Tips and Techniquesc.cccccoconivenrererrenerrernessens 39
How Eureka WOrksccococvviiiviceninnncnereneceesinnssessssisssnseessssssssaresessssasesnes 39
Eureka’s Problem-Solving Methods c.occceemiieenrineceninrnninencenisnrereeeesesensanas 40
SOIVING TECHNIQUES ..veveerieerireiriecieie e tesserseeesetrese st sereessssssessesesenesssenasacens 40
Maximizing and MinimiZingceceeereenninesenrerninecsseseresiessesssessssassscesesnes 40
Continuing a SEATCho.cvcveeiiiecer sttt seast st nnesans 41
Modifying Constants and Variablesc.ccocoeemnervenenennenenneecresesensesnenens 41
Finding Alternate SOIIHONS ccccovvureiurinsinieereencietsrieceesenesseecesteseresesenssaennes 42
Running Problems from Batch Filesccooveiverveinnnecciinensee e ssereeeeresvenes 42
Interface with Data Files: Sample BASIC Input Filecccccooevnnrneereecnnnnnne. 43

ii Eureka: The Solver Owner's Handbook

Modeling Tips for Successful Problem-Solving
Helping Eureka Find Correct Solutions
About Error Messages .

CHAPTER 4: Menu Commands and Settings cerenressenersre i ssaesnasessanes 47
Main Menucovercieniecrenienrrieiesieseesesseesessene rreeteeeneetereeteeresaesa e ssanessesranenasasenta sae 48
The File COmMMANASccoooervrerrcrerereiensenesressssesneeessesessasssssssessssssssessssesesaressaresss D1
File v reeeetessereretesstsaerreserrerstenssenssenanes .51
LOad oot seras e sssesessssasaarersssresstsnesensresstesessssassasensrsrenes D1
New .o, e reveeereeraseeaare veteereennerarsriraes cevereessreenretaeeerae et aeessesanenaes 52
SAVE o seanne tereererreberaeneetesbestentestensennene RS),
WIite 10... oo eee e e ssenes treeterenee e stesesae st sernenentisesessatensases DO
Directory . . .53
Change dir - v ceveersrsenmserssnssserenns D4
Rename54
OS shell ..., creerreeeresare s teresreserares 55
QUIL e trersrc e sesseseserssens reeentreresere s besaaatens rrreeseerenes ISR 5 1
The Edit Command rererraer et saraseteas veereeenenerenes rrenerentereaeesensrasterenes 56
Edit oo ereveersusesressaessanserasernesernassarsasnasss errenrenaseseases DO
The Solve Commandccouvirivernrrrenrnnsnirrsesenenens rereeretsreberensasaare e st srresnne 57
Solve ..covrerereenne rrerrtereresaebe e rersraeaesten e 37
The Commands Commandsccovvuiuerereeriverenens crersaeeeseerenererta st aseenereanrasaerares 59
Commandsccevieiieirennnen e e rrereesenereressasssssesesstessrenensrsssrnrersasasesesnes D
Verify ...
Calculator
Find other
Iteratec........
The Report Commandsccececeeeveiennsisnunsissessessssesssssssssssesesens
Report ..ot rreres sttt sae e D I 63
GO et et etere b b bebebe et s e h e e R e b et et et b sere b e s enebesensen 64
Output ...cvvivninne S SOOI ¢ ”
Formattedcccovuvvvervrnnnnenee. revreretsnressereresorerraraeres erererererenssrernnens 65
CaAPUULE .oovrvireiirireneenrrnisresesrestsssstssssesssssssessassnsasssnsas SRR65
65

66

Log file namecceuu...... rereeresenssaressrenetenersrrsrerrsres rerereee et nenonensreresen
The Graph Commandsooeeverervnincccrnrenennnennne
Graph .
Plot ... veerraraen .
Output .
|] ettt ssan et et sn e snssranas creeeseessnssessrssans rerssss e seastssranes 68
Functionccceceeevnnnversennene reevesteserestsrestesnatesrerensrerans cersessseresssssesannanaressasessases B9
The Options Commandsccecvevevrrrecrnirennee vt rs s ssassnresessarenes verseserennsnsesens 70
OPLIONS ottt is s st sa st s ass s ssessasbasesssasas veeaneasas 70
Variablesccoene. ettt st e as st r et R e Eereeba e n R bR s naene rerersesseasnninasasaes 70
Settings resterenrereseerasresesnenane sttt as e ssaens resbessssstsaseenesaseses e 12

..... ssesreseassrssesiense

seeccssssenssscsrecne

Table of Contents il

COlOTS ottt esses st ssbsborebebenssasossssbsesssssarorsasseterensaersrsnn
Directories
Load setup
WIHE SEHUD vttt ettt sttt sioassen et e et ettt e esesersansenas
The Window Commands
WINOW vt eae e

CHAPTER 5: The Equation File: Syntax, Directives, and Functions 79
Contents of the Equation Filecccoinciiincnnnccncsesereeresesens 79
EQUALIONS c.eoveeiieriiineie ettt steessennes s csnatsesansesasssee e seses e sssarasssse seoseseseses 80
Initialization VAIUESc.ccoceeueveverecrireerrceetereeee et ser st en e s arns 81
User-defined FUNCHONS ...cooveeieeveciieieeiessesessrese s ssessssssssssesssssesssssssssesens 81
Directives
Comments
Notes On Equation File Syntax
Variable NAMEScoccveeecerreeieeeeeeieeersrersiesstesessssssesssessesssssesereretenssssesnsesens

Values and Precision ... ssessssssrsssssssesesssns
Mathematical Operators and Order of Evaluationccccocveeeisiviereinnnnnnnnas 83
SYNEAX RUIES covovurererecerserieieenieisssessietsesssesssasssessssassssasassesosssresssssssessssssassasnsassas 84
Special Symbols ...t s 85
DIHIECHIVES .ottt et sae st s s nenasseree st neessesanessemsmnentne 86
BCCULACY wovveuiniiriiniisi st ssstesesosestsstsresessssestssssssuesesassesssstsntssonssbessossssessssinissessne 88
CASEIOIA oot et sesaerene 88
complex (NUMDETS) .ocveeeeeeieier ettt er e s st b e resssesssresenas 88
QIS ovverereerr e eeeemmeeemseseeseseseessssessseemeseseesssesesssessseesessseseseseesessesseesess s esenees 89
BN ottt et ettt et et a et et ebs b ee s et as e se et st et era b e et b b es et ararasbtas 90
fINANIMOAE oottt et et s b s ae s s n et es e 90
NansmMOOth coovve et et 90
INCIIAE oottt s s s bbb st b et s bans 91
INEEVAL oo ettt a e s bee e 91
HStAEfault coovvvcciee ettt tesesse ettt et st 92
MAX(IMIZE) 1oveveeeererieriereierriresaesrtesessersesssssesesssssssssssessseseasssrsssssasssesssssassasnsssseness 92
MAXEINE cviiiiiiceceectiir e seeet st en et estesae e st et s s srs b se srnessaesassnessreeusenses 93
MN(IINEZE) ©ovvveerrreinrivreisreresiseress s sssssssaessstessassssessssesstsresesssessssssssesssssssseses 93
PENAIEY oottt bt a et s s 93
PlOtEfatlt voveveeeecercrrece e b st e e baee 94
TAAIUS cvoveeeecetieectee ettt es et sse b sse b bere s eae s s en b et e b nesertssarasnn 94

iv Eureka: The Solver Owner's Handbook

TOOSIZIL onreiicieinnitesecestssereert et erassenesststssassensssestraesesasstasersnsessnsontrunsssassasssssansans 94

SEHHNES vt s e e st e 95
SOIVE wovieiieietieietss s s s es s s sss st s st st sa st st st a bttt s s basa s enanis SR 95
SUDSHIEVEL ..ottt ettt a st 96
SYIEAX 1eoviiniiiiiiintc bbb s s b b s 96
UDILS (COMVEISION) 1.cureiveveeeierieeiesieerarsirseseannsssesessesssssssesssarsssasssessssmssssssssssesnes 97
EUreka FUNCHONS ...covcvucvriieiiecieniiissessssensresesse s ssssessssessssessssssessssesnssssssessns . 99
Financial FUNCHONS ccoovievieunicnmiiiessermniessisssssssssssessssassssssssssmsessssasessses 99
VAriablescccomiecieirrer sttt s 100
FUNCHONS .ottt e st evava et ettt ettt nsnsass e e ssene s 100
EXAMNPIE oottt ettt sttt 100
User-defined FUNCHONS ccoiviveeurieirnerennsniniersosesssenssensiesesnsesssssmmssssssrissnes 101
Relationship of Variables and Functions in Eurekaccoccoovcveeencrennnnes 101
Writing User-defined FUnctionsco.eoveevieveeesirerensneneresnesinssssssnenenns 102
Error MESSagesccivnrviiinienenienieniienenmeeesesisi e seans o enesesesesisesieseesncns 103
CHAPTER 6: Worked Examples —ccccccoovvinuncecnmninencnieineiencesnine e ncsennns 105
Problem 1 A Quick Demonstration of Eureka’s Mathematical Capabilities 107
Statement of the Problemcccccocoivrnrennervricrvininennrenens esseeeneinsassisraresaens 108
Classic IAENHEES ...cvocerrevereririninrreereneernnsarssssssnsissssssessssssessssssssnmsesssssssesass 108
Derivatives and INTEGIals ccoocvviveerrrecseerrereininrieceeereniesessetsniesessesesrenns 108
Maximizations and Minimizationsccecveionerneeeerciemomneresceeenraees 108
Complex Variablesccocoveeiiieiinecce il eereerenann 109
EqUALIONS ...ooeviiicereiticnrcrcrtntests e senee s cstaenesees et sen e s e sne e she s 109
Equation Files and Solutionsccccoeerereerennencsd rvelunesentananeeduntsaitonassnsansasaiens 1
Graphing the FUNCHONS ccovvieienernrrceiiissnessesnissmisessesnsssssssesssssssessescasses
Generating Reportsccovveciireeieneininienenininnioeestnieeresieseessesensensesmiesssensesiesees
Problem 2 Loan Payoffcccoccmiminineeinnene et ss et ssnn st ene s
Statement of the Problem
EQUAIONS ...ovcviuiiieiniccierieeinent ettt ettt s b e bbb e sea e sr b s b s

Equation File and Solution
Problem 3 Ladders in an Alley: Solving Simultaneous Nonlinear Equations 127

Statement of the Problem ..o 127
EQUAtIONS ...vvvveeiereseiesiesisesessstsssesssse e siesessesessssssestaessssesssassssessssenssesassassssnean 127
Equation File and SOItONcccocvienereeinieereinice e innseessssssans 127
Problem 4 Distribution of Line Chargesc.coerecrneinircrermnenesneinens 130
Statement of the Problemcccoooeerieiieiierseeee e 130
EQUALIONS .overveerieiiierceeitetietccenettisrsesee s rrsieseseesesasseseseestaesasneeseenesasensessessnsssene 131
Equation File and Solutionecccereiienenennrenccnrneei e seaeens 132
Problem 5 Radioactive DECAY ...c.ccvuvvrrierceeurmininrirecnnnnesessesnsssesessssmnessssesssesnes 134
Statement of the Problemcocooiivciiieccce e 134
EQUAatiONS .coeiiiiieiieeet e ettt ettt b ettt ea et sraneenes e saene 134
Equation File and Solutionccocevcieriniecniercencesnnneeeenmeseeseesceeaneee 135
Problem 6 Least-Squares Fit cocovriorieinenicinieecisecsenesesesesimeseseeseiennene 137

Table of Contents v

Statement Of the Problem ..ot steseresesessssresteessesstsssenens 137

Equations ... erereee e re e 137

Additional Techniques: Inputting Data From Another Program 139

Equation File and SOIUHOR cccoceruecereererierineenrcinie et miecseeseeesessesnnns 139
Problem 7 Motion of a Projectile in a Gravitational Field

With Air RESISTANCE ...oucverericerieereisinnsessessinsessssssesssinsssssasesesssssssessssssessssessesenas 141
Statement of the Problemcccveeerinmireinsennensinnsesenssssieesresessssssesescsesenes 141
EqUationscccouireieiniienieiniieeecnssesneeesnesnsens eveenresreessnententestesessnenestesesaran 141
Equation File and SOIUHONc.cocvuvicrierecrneniriernrersinessneesiessnsenesesesnssesessesenns 142

Problem 8 Charged Masses in a Gravitational Fieldccccovvvevrnenncen.n. 144
Statement of the Problemccocevencenecinnenncieiisesenieseesesenssesesssonns 144
EQUAtiONS ..cccoiviiieinnriiincsessibinsne s st sass s sessssenensesssaes 145
Equation File and Solutlon ... 146

Problem 9 Using the Built-in Polynomlal Function to Find Real

and Complex ROOLS cociviininrneienrirennrsesnsesesnannessesssssesnssssesssssmmsesesssssssssssesessssens 148
Statement of the Problem ereterer bt st tre s aesSreer et sa e R R e s aa e b tsennan 148
EqUations ...ttt ssresesees 148
Graphing the FUNCHONS ccceveerieiienierrecieisierensnersterssssssesssesesneesesnaessansesens 149
Equation File and SOIUtionSccccoevuvveveinenenininimiensnnesssssesesessssessssessseses 149

Problem 10 Maximization: Designing a Maximum-Square-Footage '

House Plan While Satisfying Several Constraintsccoeveevecrneunnrsereceeens 152
Statement of the Problem ... smeessmessssesesens 152
Equations ..., edseshe et et er e st st be bR s R st b eaes 152
Equation File and Solutlon ... 154

Problem 11 Maximization: Linear Programming in Manufacturing 158
Statement of the Problem
Equationsc..oeerrveenes crveseeiesaseraseR s RS AS e e AR RS T SRS RS Rs RS R bR s e et s
Equation File and Solution

Problem 12 Equity in a House: the paymt, pval and fval functions 161
Statement of the Problemccoorirniiennnceinenrcrnenn e setsnteeseeneienns 161
EQUALIONS .cveiiieienaerentnenerineeisictsnssssssecnsaessrcscsesesssssonsssacsenssassesessssessarssessassrae 161
Equation File and SOIUHONcovvvieeisenrerinniicsiienesesiteenieneeseenssseaensiessnessens 162

Problem 13 Probability in a Card Game c.ccovuveinmenincercncericrsccneicreenecnes 165
Statement of the Problemcccccenneveininencnnneerienssnsenersseeneseesssessscscenes 165
EQUAtiONSoccionineneieiisiineinencestiesenensssssssssnessssssesrassersstessessssssessssessessessssssesssses 165
Equation File and SOIIHONcvvvvrereeerernrinnicenenssnninecseeseseesesessssesseseseesessessnnes 166

Problem 14 Income Distribution: The integ Functionc.cccocoeeevneceneuennee 169
Statement of the Problemovieninrnicniecncneinnccercneseceseeesescrecssseen 169
EqQUALIONS ..o.cciviiiiitircininicnir i st sb e s nene 169
Equation File and SOIUtONccccocveieueiceniecunrnerrerenmnssensisaimessecssssanessescesessens 170

Problem 15 Chemical Calculationscoococeevvisiermrniseeiereninnesesssnsnieesessinenens 172
Statement of the Problemcccvieenrvernenrenrneseenreseseseese e eeeeesenes 172
EQUALIONS ..oeeeeeirievieecneneaensseerasanesesresesesssssionsssessesnessesesserestsstsesesnentessssesnss 173
Equation File and Solutioncccccevevnrivinvenninniennnnenssmeseseisnsessssesssessens 175

vi _ Eureka: The Solver Owner's Handbook

Using the $ include Directivecccocvevvvennveninenennisesionnnnesessmsesrnssssenns 175

Statement of the Problemccccoveveeireriirnsinnisiesienees et essse s 178
EqQUAtiONS oo ess s e resssiers s sas s 179
Equation File and SOIutionccccovrnennerinmnsnneiessrimsrssssssssrerssssn 179
EQUALIONS oottt ssstsnsisbssississssenssstsrsastsssastetssssnsssiss s sessossbenes 181
Equation File and SOIUHON ccceevevnieiersernivneesessesesseaeascsessnsesssinssessessssenes 182
Equationscccecveennens reerruent e ste s e sa st et s st s e e at st s e e s saanas e sreanebenren 184
Equation File and Solutionccceeoiniecestnenisinsese et eisenes 185
APPENDIX A: Eureka Quick Reference Tablecccccooeuvvivvcricene e 187
APPENDIX B: Eureka Editor Commandscccccccoceviviecrnivevnionrcrnninennnn, 191
Cursor Movement Commands c.cceuiieuveenuneeinsesssinissssesssesesssesesssesesesesesesns 192
Insert and Delete Commandsccooeeeviivciienreresnrineiesnenresssensssssiese s iesesesens 193
Block Commandscceeerrvemrererrernveneennsnerenens et ee bbb ettt bt aseb s erastebebees 194

BDS ettt ben st e re st sr e st a s s R R R e Rtk e R et et enersaranrateneaeres

Table of Contents vii

SUIIL +ovevrueereseseeseesssaruessonsuentrssessessessssssesessensosesessessaetsesssstssensestosessestossnsortsaosssnsnsases 207
BAIL coveereceere e s stcsee e se s et et seesaeresesas st be s sasbe s s e s e s b ket e b sn e sbeatshe s s bR s s rone 208
BANN oo e aE bt s b e e e Rt s aa bt esbsiese 208
APPENDIX D: ADOS Primerccoocovevievivcneiienieneericesneesseesassessesessassenses 209
What Is DOSP oottt ss st sse e bs et et a s e saans 209
How t0 L0ad & PrOZIamccccccvviveniireesriniresenesesesiorsisesesssissssesesssssesesessassssssssmaseses 210
DHIECIOTIES ..vvveeererieecerireeeeneererereeresereresterrseesensasstsnesnaressoneassseesnanesessssstsbenessssenessane 211
SUDITECOTIES ...vuveviveriiiieriiiersinre et ecsssse e seres e s saas s assseseesnse e sssasesesennnins 212
Where Am I? The $p $Z Prompt cccoevevieerennirenirieseeniiereeserencessaseessasesemessene 212
The AUTOEXEC.BAT File ...cocoveiireeeceeetvinr e srvencr st enstesesesaessssssnetsssssansans 213
Changing DIrECLOIIES cccceivvierererireirsrsecirisnssesesssarsssesssssssessssssesessessssasssssiesmens 214
APPENDIX E: Error MeSSagesccccccevinrrecnnnsseinnisiosonessssssssssesssessearesenss 217
Assignment Must Be to a Variable or Functionc..coeeeevvcvevneverersesironnnnne 217
Bad Function Call ...ttt ctsresre st s s esssesesesseressssasinenone 217
Cannot Complexify FIoor OF FTAC ..c.occvevereivereriiseeiieceininesesisrinnessnssnsesessssessssens 218
Cannot Have Complex Derivatives or Integralscoooeorvvvcvcierecervienninenenee 218
Circular Function Definition

Comma Expected

Command Not Understood

Constant EXPECtEd ccevrerieieneinnisessseessessesssesssssssssssssessssssessssssssassssssess

Dynamic Memory Depleted
Equations are Inconsistent

File Already EXiSIS ..cocoveverernreeerereereniinecnsieesssesseensesasssessseesessesionastaesocsessensecsecnee

File NOt FOUDNA ocviiieiiirieitetst ettt sn st sesesonesebesensasaesssssesessneses

File TOO LAIEE .voveeieieeeeeiereeeinteesietieeeesetetssessssssssassesssessstsnasensessssstssssasessnssanssssensssses

Function is Multiply Definedcccovereniivenreneneen et ssenne 220
Function is Undefinedcocvivereirrenninnncnsisinie e e eesssseseseesesseasssssees 220
Tdentifier EXPectedccooveirerireeiriineiceeetresisessees e resessssssssssssssessassessnssssesssssans 221
Identifier TOO LODE ..c.ocoveeeueirereniretneeireeesetreseeesseseeeeseseeeescesenssenseseasesesenesasasassnons 221
Incorrect Number of Function Argumentsc....occveeememeiserccenisesmseseeseemones 221
Invalid Function ATgUMENt ccocecuieieeirrnninisirenstreseesessessensseesessasiesesseesessesnes 221
Invalid Function Definitionccoeieecrreninnennseesinnennnsessssssessessssssssssesesssens 222
Invalid NUIMDET ...vovieriiecieiere sttt ieeseesr v s sesssse e sessesnssssesesssnses 222
Memory Heap OVErlow ...ttt seseensesseseetseeesnsssenansens 222
Must Differentiate With Respect to a Variableccocoevecrncnnnnncncennnne 222
Numeral or Operator Expectedcccoovenennninceiicrenineneccnienenesesesssessescessenes 222
Polynomial is Invalidc.ccvceveireiericrireereis it es st sn s s ssneanens 223
Printer NOt Readycccccvviriieiririccrer it sen et ssesesesessssnesessasinses 223
Quote Mark Expected coiirnirininecreeieeence ettt seeaeereseases e eeene 223
Relational Operator EXpectedocimcierveinnnnsinnnseisesssnsssssissessssssssssssssens 223
Second Argument Must Be a Variablecccooiiniciiinnnnececceceenn 223

viii Eureka: The Solver Owner's Handbook

String Space OVEIlOW cccuovvciiieiriirietcenircsse st ssenas st s st s naes 224

Sum is INVAHA ..oceceireriicnc s ssensssss s ssasssrsssessossssrsssesesssssesanens 224
Sum is TOO Large ..ottt ettt sn e naes 224
Syntax Error for Unit CONVEISIONccceceveeieieiesiessieseiesssinssesesssessenssssesssssenes 224
Too Few Arguments t0 Poly ..c.ocococveevinineriecniecse i s ssesssessss st ssssssssesssananes 224
Too Many Active Variableseienininennisnsisiessnsosnsssssssssssssessens 225
Too Many Constantsccccccevcvereetrereriverenenncstneiassseesaeseesssensrasasessenesseseresserase 225
Too Many FOrmulasccoeeiinenninincniiteeineessssieessssesessssssseessssessasisssesssssssens 225
Too Many FUnCHONScccccoeivreiniiiecrcernineerteesrerereeasnssessesseressessssarnersssessanens 225
Too Many Unit CONVEISIONS ..c..cccoveeeernseenrieresesesesssssssesessssesnssssesnesssssassesens 225
Too Many Variables ..o e sesessesese s sressesenesesens 226
Unable to Create File ...ttt st 226
Unexpected End of Filec.coovviverieceiicreeeccieeee st sssaesnns 226
Unexpected $ End DIreCtivecccoeivenrerniieeeriersensnssesesernisesnssssesssmesssasssssnens 226
Unmatched Parenthesescccvineiieiniinnniesniinsenesssissssssesssssensnsssssnns 226
Unrecognized CRATACtEL cccovvverveererscersiesnsersiensssssressssesesissssessesmssssssssasssns 227
Unrecognized Setting ValUeccoccieeiineriencnrniniessnsesssessssessssssvessessssessssnnss 227
Use of Uninitialized Variable ..o cssssissssaenns 227
Variable EXPECtedoovvoiviiiiieniseire st stesssesa s ssssssssss s asssssonasssssenes 227
Variable Has Not Been Initiaizedcccoocveverneininecnenissnnennnsesienssnssnesesnnes 227
APPENDIX F: Customizing Eurekac.cccocceeverenencccronesrnneessseensenne 229
RUNNING EINST oororeoereeeeece s seseeesesssessesssnsesssessssssssesssseseseessresseresessses 229
The Eureka Directory OPHON cocveeueirenreeseresisieissenssstansssesssissssssessssssens 230
The Text Editor Command Option ccoeveeeveersiissernessnsssssecesssnssesnenes 230
The Default Edit Mode Optionccccererveveeieneecesierieeee e ereee e senesssaes 231
The Screen Mode OPtOn cccvveeeueeerinisierenreensessssreensssssesesssssssesssesesesssnes 232
Default Display Modecccooeivcminemnininernecencenneessssessssssesssssessensssssseses 232
Color Display MOdeccooveveenmercenirieeierieneses et sessnss s sssssssassssansans 232
Black and White Display Mode cocvveerirecreniincrneseinessisnmennssennnes 232
Monochrome Display Modeccoceovivevinecsirenniieiecresiesrineessnrssesssesesnsens 233
Quitting the PrOZIamccoocoveveeireniennieisinessnnsssesis s snsssesssssssssessssssssssssesssananss 233
GLOSSARY ...ttt sssst e bt s sbstsst st bsa s s baste s sansenantesssasses 235
INDEX ottt st st es e e ssstssesae st eresestsr e er e sssensesas s ssebassessnsssesensens 240

Table of Contents ix

Eureka: The Solver Owner's Handbook

Introduction

Welcome to the world of streamlined problem solving. Eureka: The Solver is an
equation solver with a difference; this program solves systems of equations (linear,
nonlinear, and transcendental), and it also:

* Solves high-order polynomials

« Evaluates derivatives and definite integrals

* Minimizes and maximizes functions with or without constraints

Eureka makes it easy for you to solve your real-world mathematical problems
very quickly, without having to first learn numerical approximation techniques.

You don’t have to be a computer specialist to use Eureka. It was designed for
people like you—scientists, engineers, financial analysts, and all other profes-
sionals and students — people who need to solve equations and who would rather
use a computer instead of a calculator to do the solving.

What Can You Do With Eureka?

Eureka is a versatile tool designed for solving any problem that can be expressed as
a system of linear or nonlinear equations. Its capabilities range from solving the
simple to the very complex.

Without any special training, you can use Eureka to solve:

* Simple linear equations in one variable

*» Systems of linear equations

« Nonlinear equations or systems of equations
* Maximizations or minimizations of a variable
* High-order polynomials (real and complex)
 Derivatives and definite integrals

Eureka also:

« Works with inequalities

* Plots and prints the graphs of functions
» Converts units automatically

* Generates reports

Eureka contains several built-in functions, including:

« The familiar trigonometric functions
» The logarithmic and exponential functions
* Several useful statistical and financial functions

The program also includes a Calculator Mode, which has all the features of a
powerful hand-held calculator, that can also access Eureka’s built-in functions.

Eureka is very easy to work with. You don’t need programming knowledge or
experience to use it. You simply type in an equation file containing the equation(s)
to be solved, then use the Solve command to solve for the variables in your equa-
tions. The equations you enter use standard mathematical representations, very
similar to those you enter in a calculator when solving the same problems the hard
way.

If you get stuck while in Eureka, you can ask the program for on-screen help by
simply pressing a key.

The Eureka text editor, which you use to enter the equation file, is virtually
identical to Borland’s SideKick and Turbo Pascal editors. If you are familiar with
one of these editors, Eureka’s editor will be no problem for you. Or, if you have
ever used WordStar or a WordStar-like editor, you are already familiar with the
editing syntax and commands. For those who do not have experience with a similar
ASCII text editor, we have included several useful tables, a tutorial, and an appen-
dix covering the Eureka editor.

Eureka displays solutions on the screen in their own windows, along with infor-
mation about how confident it is that the solution is correct.

2 Eureka: The Solver Owner’s Handbook

After Eureka solves the equation file, you can plot graphs of the functions in the
file by simply specifying the function and the range you want plotted. Eureka will
display a graph of the function, with the coordinate axes scaled appropriately. You
can also print out the equation file, the solutions, and the graphs in the form of a
written report.

Structure of This Manual

This chapter, “Introduction,” tells you the basics about Eureka: what you can use
the program for, how to use the manual, and what hardware and software you need
to run the program. '

Chapter 1, “Overview, gives an overall picture of the different parts of Eureka
and how they fit together. Experienced software users can probably read this chap-
ter and get started right away with Eureka,

Chapter 2, “Getting Started,” shows you how to load Eureka, then gives a pro-
gressive tutorial designed to familiarize you with using the editor, creating and
solving problems, and incorporating some special techniques into your files.

Chapter 3, “Modeling Tips and Techniques, summarizes the tasks that Eureka
performs, describes the program’s advanced features, and gives some tips on mod-
eling.

Chapter 4, “Menu Commands and Settings,” describes each of the commands in

the main menu and the submenus, and explains the settings that you can change
with the Settings command.

Chapter 5, “The Equation File: Syntax, Directives, and Functions” describes
what you put into an equation file, shows you how to formulate the entries, tells
what directives are and shows how to use them in the file, introduces Eureka’s
built-in functions, provides detailed explanations of the built-in financial functions,
and explains what user-defined functions are and how to write them.

Chapter 6, “Worked Examples,” is a collection of solved equation files taken from
typical scientific, engineering, and financial problems.

Appendix A, “Quick Reference Table,” briefly explains many of Eureka’s func-
tions.

Appendix B, “Eureka Editor Commands,” summarizes the Eureka editor com-
mands.

Appendix C, “Built-in Functions,” describes Eureka’s built-in functions.

Appendix D, “A DOS Primer, contains basic information about DOS, with a
focus on creating and using directories.

Introduction 3

Appendix E, “Error Messages,” lists all Eureka error messages and their mean-
ings.

Appendix F, “Customizing Eureka,” tells you how to use the EINST program to
custom-install Eureka.

The Glossary gives definitions of key terms used in this manual.

The Index lists page references for program features, commands, and windows.

Typography

The body of this manual is set in this typeface — Roman. Special typefaces are used
for the following purposes:

Alternate Type This typeface is used to show something as it appears on the
screen or to show anything you must type.

< > Angle brackets indicate data that depends on your system and
should not be typed verbatim.

Italics Italics are used to introduce a new term; all new terms are
defined in the Glossary.

Mathematical expressions are set in Roman type according to standard textbook
notation except when they represent what you actually type into a Eureka equation
file; these are set in alternate type, and some mathematical operators appear differ-
ently. For instance, the multiplier symbol, X, is replaced with * in alternate type,
exponents (e.g. x°) are represented by a caret (x"2), and < and = are represented
by <= and > =. 4

The Distribution Disk

The Eureka distribution disk contains:

* EUREKA.EXE, the program itself.

* PROBI through PROB12, sample equation files.

+ README, a message you should read before loading Eureka.

+ README.COM, a program to assist you in reading README.

» EINST.COM, a program to customize Eureka keystrokes, set a path to your
files, set the default edit mode, and set the screen mode.

+ EUREKA.MAC, SuperKey macros for mathematical symbols (SuperKey is a
keyboard enhancer program from Borland International).

4 Eureka: The Solver Owner's Handbook

+ HELP.EKA, Eureka’s on-line help text.

¢ NDP.COM, a program that determines if an 8087 math coprocessor chip is
present in your computer.

» Sample equation files corresponding to the worked problems in Chapter 6
(various file names ending in .EKA.)

The file README contains important information about using Eureka. Before
loading and using EUREKA.EXE, you should look over the README file.

Hardware and Software Requirements

Eureka runs on the IBM PC family of computers, including the XT and AT, along
with most IBM compatibles.

Eureka requires:

* DOS 2.0 or higher
« At least 384K of RAM

Eureka will run on any 80-column monitor. A math co-processor chip (an 8087)
significantly enhances performance, but is not required. Eureka will display plots
in graphics mode if you have a CGA, EGA, or Hercules graphics card but a
graphics card is not required.

The Eureka program is in a file called EUREKA.EXE. It is not copy-protected,
so you can easily transfer it to a hard disk or RAM disk. However, you should
read Borland’s No-Nonsense License Agreement at the front of this manual for an
explanation of your responsibilities with respect to copying Eureka, and then sign
it and mail to us .

Acknowledgements

In this manual, references are made to several products:

» SideKick, Turbo Basic, and Turbo Pascal are trademarks of Borland Interna-
tional, Inc.

» WordStar is a trademark of MicroPro, Inc.

+ IBM PC, XT, and AT are trademarks of International Business Machines, Inc.

Introduction 5

Eureka: The Solver Owner’s Handbook

Overview

This chapter takes a brief look at Eureka: The Solver. If you are an experienced
software user, this chapter may be all you need to get going with Eureka. Check
Appendix A, “Quick Reference Table,” for more information.

If you are new to computers and software, you'll probably want to read this
chapter and then turn to Chapter 2 for the step-by-step tutorials.

This chapter summarizes the four typical steps that you and Eureka go through
to solve a problem, and explains features of each step:

 Edit (create an equation file for a problem)

« Solve (find a solution)

* Verify (verify the solution’s accuracy)

* Report (print the results)

All Eureka problems begin with the preparation of an equation file using the
Eureka editor. Chapter 5 details the contents, syntax, and format of an equation

file. Chapter 2 gives tutorials designed to familiarize you with preparing an equa-
tion file.

Command Menus and Windows

Eureka uses pull-down command menus and windows. If you have not used pull-
down menus before, you will find the following few comments helpful.

The main menu runs across the top of the screen. When the menu is active,
there is always one highlighted item. You can select an item by moving to it with
the arrow keys, then pressing Enter, or simply press the key corresponding to the
first letter in the item. For instance, to select Solve, you can simply press S. Each
time you select a menu item, Eureka either opens up a new menu or executes a
command.

If the main menu is not active, it is because some window or submenu is active.

Generally, when a window is active, all keyboard actions affect only that window.
In most cases, you can move around in the windows with the cursor keys. The most
important windows are:

+ Edit

* Progress

* Solution

* Verify

« Plot

e List

* Report

* Help

* Error message

These windows are fully described in Chapters 2 and 4. The following keys
affect windows:

Esc Either closes the active window or moves it to the background,
making another window or menu active.
Arrow Keys With Scroll-Lock on, move windows. With Scrofl-Lock on and Shift or

Num-Lock on, resize windows.

Fi Calls up a Help window that gives context-sensitive help.
Wherever you are in Eureka, you can press F/ and a help message
appears on the screen.

8 Eureka: The Solver Owner's Handbook

The Editor

Eureka features an ASCII editor for editing problem files. You can create and mod-
ify problem files with this editor while in Eureka, or with the ASCII editor of your
choice. The command syntax of the Eureka editor is described in Chapter 4.

To call up the editor and create a new file, select Edit from the main menu or
select New from the File menu.

To call up the editor and modify an existing file, select the File menu from the
main menu, select Load, and specify an existing equation file name. When you
press Enter, Eureka brings the named file into the Edit window.

To save a file for later modification or examination, select Save from the File
menu.

Equation File Syntax

An equation file consists of a collection of formulas, typically one per line, written
in standard mathematical notation. Eureka recognizes the following symbols:

Relational operators =< >
Arithmetic operators + —*/"()
Functions exp, In, sin, cos, abs

as well as variable names, numerical constants, and some special operators, func-
tions, and directives. The caret symbol (*) is the exponentiation operator, as in

X2 =x*xor53=5%5*5-=125

Variables

A variable name may be any sequence of letters, digits, and periods, starting with a
letter. Uppercase and lowercase are distinguished in variable names, but not in
built-in functions or file names.

Overview 9

Initializations

If you know an approximate solution in advance, we recommend that you enter the
approximate values as initializations. The notation

x = 12.75

means that Eureka should initially assign the value 12.75 to the variable x. Eureka -

will use its own default initialization (x := 1) if you give no value.

More information on the equation file syntax can be found in Chapter 5.

Special Symbols

The symbols that follow have special meanings within the Eureka program. The
symbols and their meanings are listed, along with reference to where you can find a
detailed explanation of each.

Symbol Where to Find an Explanation

1= Initialization or user-defined function, Chapter 5

$ Directives, Chapters 4 and 5

Commands/Calculator, Chapter 4

; Comments, Chapter 5

{} Comments, Chapter 5
Reserved Words

Eureka’s reserved words call up built-in functions. Look in Chapter 5 for direc-
tives, and in Appendix C for most built-in functions. Refer to Chapter 5 for defini-
tions of the financial functions, marked here with F. Directives are marked here
with a dollar sign ($).

10 Eureka: The Solver Owner's Handbook

Eureka Reserved Words

abs im pos

$ accuracy $ include F pval
atan2 $ initval $ radius

$ casefold integ re

$ complex $ listdefault $ rootsign
cos In $ settings
cosh logl0 sgn

$ digits $ max sin
deriv $ maxtime sinh

$ end $ min $ solve
exp ncum sqrt
fact F paymt $ substlevel

$ finanmode '$ penalty sum

$ finansmooth pi $ syntax
floor $ plotdefault tan
frac polar tanh

F fval poly $ units

Solving Equations

After preparing the equation file, you select Solve from the main menu. Eureka
solves the problem and displays the solutions to the equation file’s functions and
equations in the Solution window.

How Eureka Calculates Solutions

When Eureka solves a problem, it searches for a solution and then displays resul-
tant values for all of the relevant variables in the Solution window. If there are too

many variables to fit into the window, you can scroll through the Solution window
with PgUp and PgDn.

To determine the accuracy of a minimization or maximization solution, Eureka
computes a confidence level between 0 and 100. This is a rough indicator of how
well Eureka has performed. 100 is perfect. A confidence level between 93 and 100
means that Eureka successfully found a solution.

In some cases a solution may not exist or may not be unique. Read Chapters 3
and 5 for techniques that will help you avoid giving such problems to Eureka.

Overview 1]

Evaluating Equations

You use Verify from the Commands menu to evaluate expressions in the equation
file, using data from the Solution window. Use Verify to verify the accuracy of a
previously computed result.

When you select Verify, Eureka evaluates all expressions in the equation file.
The program ignores directives and initializations, solves no equations, and
changes no variable values. Eureka displays the results of the evaluation in the
Verify window.

When an equation or inequality appears in the equation file, Eureka evaluates
the left- and right-hand sides using data from the Solution window, then calculates
the difference between the two sides of the equation (or inequality). If the differ-
ence indicates that the equation or inequality is invalid, the program gives an error
message.

Reporting

When you need a hard copy of the solution and the equation file, select Report from
the main menu. From the Report menu, select the output device and appropriate
format, then select Go. The report contains a copy of the equation file, the Solution
window information, the last plot or table graphed, and the Verify window informa-
tion.

12 Eureka: The Solver Owner’'s Handbook

C H A P T E R 2

Getting Started

This chapter helps you get going with Eureka: The Solver through a progressive
tutorial. It also contains tables that summarize Eureka’s main menu, special func-
tion keys, and the editor commands.

If you are a novice personal computer user or are unfamiliar with menu-driven
software, we recommend that you take a few minutes to sit down at your computer
with this manual and follow through the tutorial. When you complete it, you will

know:

e How to load (and leave) Eureka

» How to create, solve, modify, and print out a problem

» How to work with some of the program’s special features

In the tutorial, you will first set up (load) the program so you can use it when and
how you want. Then you will read the text and follow the instructions given in the

tutorial, which gives you hands-on experience with using Eureka to solve a real
problem.

The tutorial first introduces you to Eureka’s menus and text editor, takes you
step-by-step through creating and solving a problem, then shows you how to imple-
ment some of Eureka’s special features.

Note: Any time you need help while in Eureka, just press F/ to bring up context-
sensitive help screens.

Setting Up the Program

Before you begin working with Eureka, you should make a copy of the distribution
disk. Use the copy as your working disk, and store the original in a safe place in
case anything should happen to the copy.

You don’t need to know much about your computer to use Eureka: All you need
to know is:

* How to turn the system on
+ How to handle and format a floppy disk
* How to start DOS

Appendix D, “A DOS Primer,” contains useful information about DOS.

Copying to a Floppy Disk

One Floppy Disk Drive

To copy the files from the distribution disk to another floppy disk using a system
with one disk drive: ‘

1. Insert your DOS disk in the disk drive. Type
DISKCOPY Enter

Your system will respond with
Insert Source diskette in Drive A and press Enter when ready
2. Take the DOS disk out of the disk drive and insert the Eureka disk, then
press Enter.
After reading the contents of the Eureka disk into memory, your system will
prompt you to
Insert Target diskette into Drive A and press any key when ready
3. Insert a blank, formatted floppy disk into the drive and press any key. When

your system finishes copying the contents of the Eureka disk from memory to
the new disk, it will ask if you want to

Copy another?

Type
N Enter

14 Eureka: The Solver Owner's Handbook

Two Floppy Disk Drives

To copy the files from the Eureka disk to another floppy disk using a system with
two disk drives:

1. Insert the Eureka disk in Drive A and a blank, formatted disk in Drive B.

2. Type
COPY A:*.* B: Enter

Copying to a Hard Disk

To copy the files from the distribution disk to a hard disk:

1. Insert the Eureka disk in Drive A. If you use directories, note the full path
name of the directory in which you want the program to reside.

2. Type
COPY A:*.* C:<full path name> Enter

(assuming your hard disk is Drive C).

Copying to a RAM Disk

If your system has a RAM disk, you can use it to speed up the program’s access
time. This means you must copy the Eureka program to the RAM disk each and
every time you boot the computer, unless you use an AUTOEXEC.BAT file. (See
the next paragraph for how to modify the AUTOEXEC.BAT file.) Type

COPY A:EUREKA.EXE D: Enter
(assuming that your RAM disk is on Drive D) each time you want to load Eureka.

If you already have an AUTOEXEC.BAT file, you can automate this process by
putting a reference to EUREKA.EXE in the AUTOEXEC.BAT file. For instance,
assuming your hard disk is Drive C,

1. Use your word processor to bring the AUTOEXEC.BAT file to the screen. (It
should be in the root directory.)

2. Find the line that copies programs from their home directories to Drive D.

Getting Started 15

3. Add
C:<full path name>\EUREKA.EXE

to this line. For example, if EUREKA.EXE is in a directory called
EUREKA, the line will look like this:

COPY C:\EUREKA\EUREKA.EXE D:
4. Save the updated AUTOEXEC.BAT file.

You can also create an AUTOEXEC.BAT file if you don’t already have one. For
more information, see Appendix D.

Tutorial Part 1: Using the Menus and the Editor

This first part of the tutorial explains how to use Eureka’s menus and submenus,
and how to create and save a file. It tells you how to:

» Start Eureka
» Understand Eureka’s program screens

* Write a new file
* Save the file

Starting Eureka

Eureka requires no installation. Once the program is in your computer (either on a
floppy disk in the disk drive, or on your hard disk), all you need to do is call it up.

For a floppy-disk system, make sure your working disk (the floppy disk with the
copied version of Eureka on it) is in the desired drive (typically Drive A, which we
will refer to in this manual).

Then to start the program, log on to the drive or directory that contains the
working disk and type

EUREKA Enter

16 Eureka: The Solver Owner’s Handbook

After a few moments, the Eureka opening screen appears (Figure 2-1).

Eureka: The Solver
[Edit Solva Cossands Report Graph Options ux.mJ
Edit Solution
Report Uerify
EHelp [-Zoon [i-Mext [B-Goto HEIINE-Size/wove RS -Exit
. /

Figure 2-1 Opening Screen

What to Do If You Want Out of Eureka

Before you begin pressing keys on the keyboard and getting into Eureka, it’s a good
idea to know how to get out.

The Escape (Esc) key always returns you to Eureka’s previous active state. Since
you are starting at the opening screen, pressing Esc from within one of Eureka’s
program screens will eventually bring you back to the opening screen. The main
menu bar is always visible; you can’t escape past it (unless you exit the program by
pressing F Q.)

As Figure 2-1 shows, the opening screen is made up of two features: the main
menu and the status line.Once the opening screen appears, you can use any Eureka
feature: select an item from the main menu and then make a selection from a
submenu.

Look over the screen on your display and compare it to Figure 2-1. Note that the
main menu remains on the screen virtually all the time you use Eureka; so does the
status line. What appears on the status line varies from time to time; this is
explained later.

Getting Started ’ 17

A menu presents a list of options from which you can choose. When you select an
item from the main menu, that item’s pull-down menu extends from the main
menu. Each pull-down menu contains a group of related functions. The File menu,
for instance, lists operations concerned with files — making them, saving them, and
so on.

The status line lists keys that perform special functions in Eureka. For instance,
* FI displays a window of context-sensitive help text.
* F5 “zooms” the active window to fill the screen.

Different keys are active under different circumstances, so the keys displayed on
the status line change from time to time. You’'ll see this in the tutorials and in the
worked examples in Chapter 6.

Table 2-1 summarizes Eureka’s main menu options, and Table 2-2 lists the spe-
cial function keys.

18 Eureka: The Solver Owner's Handbook

Table 2-1

Main Menu Summary

Entry Option’ Description
FILE Load Bring an existing file to the screen
New Open a new file for editing
Save Write the current file to disk
Write to.. Save the current file under the file name you
specify
Directory List files in the specified directory
Change dir Change the active drive/directory
Rename Rename a file
OS shell Temporarily exit to DOS,
Quit Leave Eureka and return to DOS
EDIT Create a new file or modify an existing file
SOLVE Find the value of the specified variable(s)
COMMANDS Verify Evaluate both sides of the equation and compare
the result
Calculator Open a window in which arithmetic functions
can be solved
Find other +Search another area for the value of the specified
variable
Iterate Continue iterating the value of the specified
variable
REPORT Go Print/save a report about an equation file
Output Specify output device
Formatted Put report into formatted form
Capture Log your work to a file on disk
Log file name Specify name for capture file
GRAPH Plot Plot a graph of a user-defined function
Output Specify output device
List Generate a table of values for a user-defined
function
Function Enter function to allow plotting or graphing
OPTIONS Variables Change value of variable(s) or constants
Settings Open a submenu of user-modifiable settings
Colors Change window colors
Directories Specify where Eureka looks for its files
Load setup Let a predefined group of settings be used
Write setup Save a group of settings as a file
WINDOWS Open Open the specified window
Close Close the active window
Next Open and make active the next window
Zoom Expand the active window to fill the screen
Tile Make all open windows visible and of equal size
Stack Stack open windows at largest possible size
Goto Go to the active window

Getting Started

Table 2-2 Summary of Special Function Keys

Function Keys Description

Fi Display help text

F2 Save current file

F3 In editor, open new file

F5 Zoom active window

Alt-F5 Text zoom for plot (graph) window
Fé6 Change active window

F7 Go to active window (in editor, Block begin)
F8 In editor, Block end

Alt-X Exit Eureka

Alt-E Go to Edit window

Alt-S Solve the equation file

Alt-C Activate the calculator

Alt-P Insert pi character

Esc Return to previous activity
Ctrl-Break Interrupt a solve

Arrow keys and PgUp, Move/scroll through screen

PgDn

Scroll-Lock, Num-Lock,
and arrow keys

Scroll-Lock
and arrow keys

Resize window

Move window to new position

Making a Selection From the Main Menu

There are two ways to select a menu item: the cursor method and the initial letter
method.

20

¢ The cursor method: Move to the right or left with the Right arrow and Left arrow
keys. When the item you are interested in is highlighted, press Enter to open a
pull-down menu containing details about that item. Use the Up arrow and
Down arrow keys to move the highlight bar up and down in the menu; press
Enter to select an item from the menu.

* The initial letter method: Press the key for the first letter of the item. For
instance, to select File, press F (lowercase or uppercase); the File pull-down
menu will appear (Figure 2-2). To select Save from the File menu, press S.

Fureka: The Solver Owner’s Handbook

~

Eureka: The Solver
Cossands Report Craph Options lliulm—|

Solution

Report Verify

L @H-Help [-Zoow [[Mext [Fi-Coto HITIM-Size/wove AS-Exit

Figure 2-2 File Menu

Creating a File

Although Eureka allows you to use any ASCII text editor you like, we will use the
one supplied with the program to write a sample file.

To create a file, you need to start at the main menu. Select New by pressing F N.
Figure 2-3 shows the Edit window as it should appear after you have entered some
text into the file.

Getting Started 21

- ™
Eureka: The Solver
L File Edit Solve Cosmands Report Graph Options Window

Edit Selution
C:NONAME. Line 2 Col 1 I
Here is some text in the file.

Report Verify

EH-Help [B-Save [E-New [5-Zoow [[3-Next [fi-Beg Blk [{3-End Bik SEIM-Size/mave
S

Figure 2-3 Edit Window

You can think of 2 window as a place where things happen —where you interact
directly with the program.

* Some windows display a prompt, requesting more information;

+ Others display the results of a particular operation;

« Still others, such as the Edit window, let you enter data or text.

Using the Eureka Editor

Notice the information at the top of the window on your screen:

* “C:NONAME” displays the active drive and the file’s name.
* “Line 17 and “Col 1” refer to the position of the cursor; it is on the first line, in
the first space or column.

.

“Insert” tells you the editor is in Insert mode, not Overwrite typing mode.
* “Indent” shows that automatic line indention is available.

To write something into your new file, you type text just as you would if you
were using a typewriter, remembering to press Enter at the end of every line.
(Eureka’s editor has no word-wrap feature.) Then, to move the cursor around in the
text, you can use the cursor keys on the numeric keypad or the PgUp and PgDn keys.

Table 2-3 summarizes selected editor commands you may find useful while

working through the tutorials. The editor is discussed in greater detail at the end of
this chapter and in Appendix B.

22 Eureka: The Solver Owner's Handbook

Table 2-3 Summary of Editor Commands

To Move the Cursor

One space right

To first letter of word on right
To right end of line

One space left

To first letter of word on left
To left end of line

One line up, same column
One screen up, same column
To top of present screen
Beginning of file

One line down, same column
One screen down, same column
To bottom of present screen
To end of file

To Delete Text

One character, where cursor rests

One character, immediately left of cursor
Whole word, immediately right of cursor
Whole line, where cursor rests

To Insert Text
In between existing text
Write over (replace) existing text

Ctrl-D or Right arrow
Ctrl-F or Ctrl-Right arrow
Ctrl-Q D or End

Ctrl-S or Left arrow

Ctrl- A or Ctrl-Left arrow
Ctrl-Q S or Home

Ctrl-E or Up arrow
Ctrl-R or PgUp
Ctrl-Home

Ctrl-QR

Ctrl-X or Down arrow
Ctrl-C or PgDn

Ctrl-End

Ctrl-Q C

Ctrl-G or Del
Backspace
Cul-T

Ctrl-Y

Ctrl-V or Ins (toggle Insert ON)

Ctrl-V or Ins (toggle Insert OFF,
Overwrite ON)

Now that you understand how to use the Eureka Editor, write something in
your file. For example, you could type

I'm learning how to use Eureka, and Enter

soon my problem-solving problems will Enter

be over. Enter
Saving A File

With some text in your file (although it doesn’t contain any equations yet), this is a
good time to save it and then continue working; Select Save from the File menu.
When prompted, enter TRIAL as the name for your file.

A Eureka file name follows standard DOS conventions: one to eight characters
with an optional one-to-three-letter extension. In a file name, you can use any
letters or numbers, and the symbol —.

Getting Started 23

You can use either uppercase or lowercase letters in the file name; when it
comes to file names, Eureka is not case sensitive. (That means that Eureka doesn’t
know the difference between uppercase and lowercase letters; for example, the file
names TEST, test, and Test all look the same to Eureka.)

Although the file doesn’t disappear from the screen, a copy of it has been saved
to disk, under the name TRIAL. To bring this saved file to the screen, you would
use the Load command on the File menu.

Tutorial Part 2: Creating and Solving an Equation File

This part of the tutorial demonstrates how to use Eureka to solve a real problem
and print a report. It tells you how to:

* Create a problem file

* Solve the problem

* Modify the equation file to contain a user-defined function

* Plot the graph of the function

« Print a report about the problem

The first step is to write an equation file. When you create an equation file, you
assemble the various parts of a problem in a way that Eureka understands. An

equation file contains one or more equations and any initializations, directives,
functions, and comments that are required.

You will write an equation file that contains an equation and a comment. You will
then solve it, modify it to contain a user-defined function, and plot a graph of that
function.

Creating the Equation File

To write the equation file, ask Eureka to load in the file named TRIAL; type
FL

Eureka will ask you the

Load file name

Enter the name of the file you created earlier:
TRIAL Enter

24 Eureka: The Solver Owner's Handbook

A window appears containing the file you previously saved. However, you can
only look at the file from this window; you can’t make any changes to what you see
because you are not yet in the Edit window. To edit the file, select the Edit option
from the main menu: press E.

In the next step, you will create a typical equation file containing an equation
and a comment.

Writing an Equation

You write equations, one per line, in standard mathematical syntax and notation,
with a few special symbols. For now, all you need to know about equation syntax is

that:

+ The exponentiation operator is the caret symbol, ~. For instance, x to the third
power is written as x"3.

 Multiplication is not performed implicitly.
» Multiplication is denoted with an asterisk, * (3 times z is written as 3 * z).
(For more information about equation file syntax, refer to Chapter 5.)

The equation you will solve resembles a polynomial; it may or may not have
three roots. After solving for the first root, you will use some special techniques to
determine if there are other roots.

Enter the following equation to be solved:
X3 +3*x2-2%*x-cos(x) =0 ’

Double check that you have typed the equation correctly. If you make a mistake,
use the editor commands given in Table 2-3 to correct it.

Writing a Comment

Comments must either be set off by a semicolon (;) or appear between braces ({ }).
To enter a comment, press Enter (to skip a line, improving legibility), then type
{ Test of equation solving }
You can set off the comment with a semicolon instead:

; Test of equation solving

The text you entered into the file during the first part of the tutorial can also be
converted to a comment. Eureka can’t solve the equation file if you just leave the
text as is, so if you don’t want to set it off as a comment, delete it. To erase or delete
lines of text, see the editor commands in Table 2-3.

Getting Started - 25

Solving the Equation File

When the file contains only comments (appropriately set off) and the equation,
return to the main menu and select Solve. Eureka will first look directly, then
iteratively, for an answer to the problem. While Eureka searches for an answer, a
Progress window appears on the screen. It displays the amount of time the pro-
gram is using to find the solution, the current amount of error, and the current
solution.

As Eureka iterates, it modifies the current variable values, then checks to see if
the modified values yield the desired function value. The current amount of error is
a measure of the difference between the desired function value and the function
value calculated by using the current variable values.

When the program finds a solution, the Progress window disappears and the
Solution window (Figure 2-4) takes its place.

The Solution window displays the values Eureka has found for the indicated
variables. For the equation file TRIAL, Eureka determines x to be equal to
0.77442927. :

The Progress window is useful if you want to interrupt a lengthy solving process.
To interrupt a Solve and examine the current variable values:

* Press Ctrl-Break
« Examine the current solution

« Resume solving by selecting Iterate from the Commands menu

Notice that the keys listed on the status line change as soon as the Solution
window appears. The new keys affect only the currently active window.

To move the cursor in the Solution window ("scroll the window”), use the arrow
and PgUp and PgDn keys (just as in the Edit window).

After the Solution window appears, you can still tell Eureka to continue looking
for solutions by selecting Iterate from the Commands menu.

Often the solution process is so quick that you do not see the Progress window.
For minimization and maximization problems, after you select Solve, you will see
interim iterative solutions in the Progress window.

26 Eureka: The Solver Owner’s Handbook

Eureka: The Solver
File Edit Solve Commands Report Graph Optiong Window]

Edit Solution —==——3
C:TRIAL. Live 3 Col 27 C:SOLUTION. Line 1
Solution:
x*3 ¢+ 3% x"2-2%x-costx) =8
{Test of equation solving} Variables Values
x = . 77442927
fMaxinum error is 3.5234838e-12
Report Verify

E-Help [B-Save [E-Mew [B-Zoow [J3-Mext [f-Beg Blk [i-End BIk SIIA-Size/move

Figure 2-4 Solution Window

Modifying the Equation File

You have determined one root of the equation to be 0.77442927. But what about the
other roots this equation may have?

You need to examine a graph of the equation to see if the other roots exist. The
Eureka plotting feature allows you to graph the equation and determine if there are
other values of x for which the function fx) = 0.

If you try to use either the plotting or table (list) feature now, you will find they
are inactive; verify this by pressing Esc then G to select the Graph menu.

Look closely at the Graph menu. Plot, Output, and List are dim, meaning that
you cannot use them yet. You can only access the Function option; Plot, Output,
and List are unavailable because they have no user-defined function to work with.

In order for you to use Plot (or List), an equation file must

« include at least one user-defined function and

* have been solved

or else you must enter a user-defined function directly into the program using the
Function option. Let’s modify the file to incorporate a user-defined function and
then solve it.

Getting Started ' 27

First get back into the Edit window by pressing Fé until the Edit window is
active (indicated by double bars around it). Then press F7 to go to the window. Use

the editing commands listed in Table 2-3 to change your equation file so it looks
like this:

f(x) :=x3+3*x2-2%*x - cos(x)
f(x) =0

{ Test of equation solving }
(The symbol : = indicates that f(x) is a user-defined function.)

Return to the main menu screen, then solve the problem again by pressing Esc,
then S.

Once you've verified that the solution is the same (x = 0.77442927), continue on
to the next step and plot the function.

Plotting a Graph

Re-select the Graph option from the main menu by pressing G. All the options are
now available because the equation file contains a user-defined function. (None of
the options are dim, and you can move the highlight bar up and down throughout
the whole menu.)

Select the Plot option by pressing P. Now set the left and right endpoints of the
plot’s horizontal (x) axis; when the Left endpoint prompt appears, type —4 Enter;
when the Right endpoint prompt appears, type 4 Enter.

(If you hadn’t responded to these prompts, Eureka would have plugged in the
default values for Plot (—2 and 10), and would have plotted and displayed a differ-
ent section of the function.)

Since Eureka automatically scales the vertical (y) axis, a graph of the function
appears immediately (Figure 2-5). Notice that several different sized point-like
characters have been used to draw the plot. This has the effect of smoothing out the
curve: If one type of character were used exclusively, the plot would appear to be
much more jagged.

If you have a graphics card in your computer, you can press the Zoom key (F5) to
see the plot in graphics mode.

To see a larger-scale version of the plot, with scaled axes, press Alt-F5 (To then
return to the smaller version, press Alt-F5 again.)

28 Eureka: The Solver Owner's Handbook

Eureka: The Solver
I File Rdit Solve Counands Report Craph Options '] i-lml“

it Solution ——————
C:TRIAL. Line 2 Col 48 I csowrion. Line t
Plat
fix) :=x"3+3=x] ¢
£(x) =8 168.} Values
{Test of equation | 77442927

is 3.5234838e-12

M erify
(1] -12.9 4.08
EHelp E-Zoow [i-Next JIRIE-Size/move [ERER-Exit
. S/

Figure 2-5 First Plot Screen

This plot shows that there are at least two roots to the equation. One root is

close to —4. A region from about —15 to 1.5 may contain two roots, the
0.77442927 value already solved for, as well as a third root.

To examine this region more closely, select the Plot option again, but this time

use —4 and 1 as the left and right endpoints. This generates the plot shown in
Figure 2-6.

This second graph shows what the two roots must be. In the next part of this

tutorial, after printing a report, you will select Variables from the Options pull-
down menu to solve for the other two roots more exactly.

Eureka: The Solver
[File Edit Solve Comazands Report Craph Options [} il‘lﬂ“
Edit Solution
C:TRIAL. Line 2 Col 48 “ C:SOLUTION. Line 1
Plot

Fx) i=x"3 ¢ 3nx] ¢
f(x)=8 18.9 Values
{Test of equation | e . 7442927

is 3.5234838e-12

- I B
-4.80 *t..1.m

erify —————

EHttelp [-Zoom [Mext FHIN-Size/move RS -Exit

Figure 2-6 Second Plot Screen

Getting Started 29

Printing a Report

Now you will print a report that includes the original equation file with the latest
solution and plot.

Select Report from the main menu. The Report menu offers several ways to store
or print an equation file:

Output lets you send the report to one of three places: to a file for saving, or
to the printer or the screen for printing.
Formatted lets you specify a left margin and page breaks.

Use the arrow keys to select Qutput and then press Enter to display a menu of
the output choices.

To select the printer, press P. To select a formatted report, move the cursor to
Formatted and toggle to yes with Enter. To print the report, use the Up arrow key to
highlight Go and then press Enter. This sends the formatted report to your printer.

Tutorial Part 3: Using Special Features

This part of the tutorial gives instructions for using some of Eureka’s special fea-
tures on the equation file. This tutorial tells you how to:

* Use the editor to add to the equation file, write a directive, and tailor settings to
fit the current equation file

+ Change default settings

* Select the Variables option and find other roots

* Evaluate the equation

¢ Save the equation file

+ Use the Window menu to manipulate windows

* Leave the program

30 Eureka: The Solver Owner's Handbook

Writing a Directive

Now you will add a directive to the equation file TRIAL. A directive is a command
that overrides the defaults for various conditions.

For instance, although the default for solved variables is eight digits, you can use
the digits directive to cause Eureka to display up to 13 digits (the internal limit).

All directives follow the general format of the example directive shown in this
tutorial. To find out more about directives, refer to Chapter 5.

To change the number of displayed digits from eight (the default value) to ten,
for example, add the following line to your equation file:

$ digits = 10

Changing Default Settings

This is a good time to change additional settings. Most of the settings that you can
change with a directive can also be changed directly on the screen, using the main
menu Options command.

In general, you change the settings by entering a number or by pressing Enter to
toggle between yes and no. Specific conditions that apply to the individual settings
are described on page 72 and in Chapter 5 under Directives.

The accuracy setting is an example of one you can change with a directive or
with the Settings command. Accuracy affects Eureka’s iterative solution searches
by defining how much a solution is subject to its attendant constraints.

A constraint is a condition that a solution must meet in order to be valid. For
instance, in our equation file TRIAL,

flz) = 0
is a constraint.

Eureka will solve for x iteratively, and the smaller the accuracy setting is, the
closer Eureka will try to make the left-hand side to the right-hand side of the
equation.

(The penalty setting also affects the relative importance of the constraints in an
equation file; see the description of penalty on page 93.)

Getting Started 31

To change the accuracy setting in TRIAL, first select Options from the main
menu, then select Settings from the Options pull-down menu. Next, select Accu-
racy setting: Highlight Accuracy and press Enter. Then type

1.0e-10 Enter
This new setting replaces the default value of 1.0e —7. This smaller number

increases the accuracy of the solution when Eureka resolves any constraints that
may exist in the equation file.

Now select Solve from the main menu. Eureka will solve the modified equation
file TRIAL, taking into account the directive to display ten decimal places and the
new, tighter accuracy requirement. The Solution window should read

X = .7744292653

Selecting the Variables Option and Finding Other Roots

With Variables from the Options menu, you can restart Eureka’s search for a solu-
tion to TRIAL, starting at a value you specify. This is helpful if you have found a
local minimum or maximum and want Eureka to search other regions.

Select the Variables option: press Esc O V.

The variables window lists the current solution for x as 0.7744292653. To start
Eureka searching for a root in a different region of the x axis, you must enter a new
value for the variable x. The new value must be close to the value you believe the
alternate root to be.

When you plotted the equation file, you saw that there is another root to the
equation very close to —4. To find the root that lies just above —4, type Enter -4
Enter, then press Esc Esc C to activate the Commands menu and select Find other.
This second solution should be

x = -3.620186934

You can solve for the third root by repeating the substitution procedure just
described, using a value for x close to — 1. The third solution should be

x = -0,3288122319

32 Eureka: The Solver Owner’s Handbook

Evaluating the Solution

You can use Verify to check the validity of any one of the solutions. This command
evaluates each side of the solved equation individually and then compares the two
sides; the difference between the two results should ideally be 0.

Eureka may find an unwanted or inappropriate solution (such as a negative root,
when the value you need must be greater than zero). With the Verify command,
you can identify such solutions. Knowing which solutions do not apply, you can
modify the file so that Eureka finds the appropriate solutions.

To use Verify, press Esc, then type C V to select Verify from the Commands
menu. The Verify window appears (Figure 2-7). The Verify command does not find
a new solution; rather, it evaluates each side of the already-solved equation, then
compares and displays the results.

Notice that the left-hand side of the equation has been evaluated to be a very
small number, which results in an error of the same amount. (You may need to
move the cursor down to display the amount of difference.) In this case, the amount
of error is minuscule, so you can disregard it.

-

Eureka: The Solver
[File Edit Solve Commands Report Graph Options]

Edit 1 Solution
C:TRIAL. Live S Col 1 C:SOLUTION. Live 1
Solation:
£(x) := x"3 + 3 = x"2 - 2 * x - cos(x)
f(x)=-8 Variables Values
$ digits = 10 Verify
C:VERIFY. Live 8 = -.32898122319
{Test of equation solvjvaluation of formulas: :
Forsulas Values
£ (x) = . 6868808001
L] = . 6088000088
difference = . aapesaseeL
FHtelp 8 Zoon [FMext [[-Goto FEM-Size/move TBR-Exit

Figure 2-7 Verify Window

Using the Window Menu

The Window menu allows you to manipulate Eureka’s windows. You can open,
close, rearrange, and move back and forth between windows by selecting items on
this menu.

Getting Started 33

Open and Close do exactly what they say: Open opens and makes active the
window you specify, and Close closes the active window and removes it from the
screen. Next is also easy to use; it moves from window to window, making each

" window active in turn. (The function key Fé does exactly the same thing.)

Goto simply moves to the active window.

The other items on the Window menu —Zoom, Tile, and Stack—allow you to
enlarge, shrink, and rearrange your windows.

Let’s play around a little with the four windows that are currently on screen:
Edit, Solution, Plot, and Verify. Suppose you'd like the Plot window to be larger.
Press F6 until the Plot window is active. Press the Scroll-Lock and Num-Lock keys.
Now press the Up darrow key until the window is as big as you want it, then press
Esc. If you just want a window to be as big as the entire screen, select Zoom and
the window will expand to fill the screen. (The function key F5, the Zoom key, does
the same thing.) To “dezoom” the window, press F5 again.

Now let’'s move the Verify window to a different spot on the screen. Press F6
until the Verify window is active, then press the Scroll-Lock key. Use the four arrow
keys to push the window around the screen.

Finally, you can arrange all the windows at once. Select Tile, and all the win-
dows will line up neatly side by side in a tile-like pattern, each the same size. Now
select Stack. All the windows will pile atop each other in a neat stack in the center
of the screen. When windows are either stacked or tiled, you can move from one
window to the other by pressing F6 as usual. When windows are stacked, press Fé
to “shuffle” them until the window you are interested in is on top.

Saving the Equation File

This marks the end of the tutorial. If you want to experiment with the equation file
TRIAL (perhaps change other settings, or add directives, or print a report contain-
ing all three solutions), you should save it now.

To save the file, press Esc to return to the main menu, then type F S to select Save
from the File menu.

Leaving the Program

Finally, to leave the Eureka program, select Quit from the main menu to return to
DOS, or press Alt-X.

34 Eureka: The Solver Owner's Handbook

Wrap Up

This tutorial has introduced basic features of Eureka:

* You have learned how to create, edit, solve, and save an equation file; how to
move between and manipulate windows; and how to return to DOS.

* You have learned that the usual sequence of operations is to write a problem,
set options, solve the problem, and then evaluate the solution.

* You have learned how to produce both a graph and a written report.

But these are just basics; you will find that Chapter 3 describes useful special
features, and Chapter 6 offers several worked examples. The example files can also
be found on the Eureka disk. In addition, there are twelve other example files on
disk under the file names PROBI1 through PROBI2.

(Note: PROBI10 is an example that demonstrates the use of special IBM charac-
ters. If you have the APL character ROM installed, you will not be able to use this
example.)

You might want to experiment with these files since they illustrate some of
Eureka’s important mathematical capabilities, such as maximizations and minimi-
zations, not shown in the tutorial. In addition, a close reading of Chapters 4, 5, and
6 will show you how to fine-tune your equation file.

When you feel fairly proficient with the program, you may want to try running
some problems in batch mode. See page 42 for information.

Eureka Editor Summary

This section explains some of the editor’s basic features, and gives some tips about
using the editor. For descriptions of all the editor commands, refer to Appendix B.
To change any of Eureka’s default editor keystrokes, use the EINST program
(described in Appendix F).

Eureka’s editor is an ASCII text editor. It does not introduce non-ASCII charac-
ters into the file being worked on. For this reason, files created with Eureka are
compatible with other programs.

Getting Started 35

General Editing Techniques

If you have used a word processing program before, using the editor to create and
modify a Eureka file will be very simple.

If you have never used a word processing program, Eureka’s text editor will be
easy for you to learn. One purpose of the tutorials in this chapter is to give you
some practice with Eureka’s editor before you dig in and start solving problems.

Basically, you use Eureka’s editor like you do a typewriter, except that what you
type appears in the Edit window rather than on a piece of paper.

When you want to move the cursor to a new location in your file, you use Control
commands.

¢ Ctrl-C means to hold down Ctrl on your keyboard while you press C.
* Ctrl-Home means to hold down Ctrl on your keyboard while you press Home.

The Eureka editor works very much like the Turbo Pascal editor or like Word-
Star in non-document mode, using many of the same Control commands.

Basic Features of the Editor

Two typing modes

The editor has two typing modes: Insert and Overwrite. In Insert mode, anything
you type is inserted at the cursor position. In Overwrite mode, pressing a key
replaces the current character at the cursor position with the new typed character.
By default, the editor operates in Insert mode (you can change the default with the
EINST program; see Appendix F), To switch modes, press Ins or Ctrl-V.

No word-wrap
Unlike a more standard word processing program, the editor does not have word-
wrap. You must press Enter at the end of every line.

Autoindent

The editor has an autoindent feature that allows subsequent lines to automatically
indent. If you leave several spaces at the start of a line, use Ctrl-O | to indent
subsequent lines the same amount. This command sequence is a toggle, so you
only need to press Ctrl-O [again to stop indenting.

The F5 ZOOM key

Sometimes you may want to see more than the area covered by the current Eureka
window. You can “zoom” the screen, temporarily blanking out all windows and
menus by pressing F5. Zooming the Edit window converts the entire screen into an
editor environment. To return to the previous screen, with all windows and menus
intact, press F5 again.

36 Eureka: The Solver Owner's Handbook

Editing ASCII files
In addition to the equation file, you can edit files created by another ASCII editor,
the report files Eureka generates, and any setup files you create.

Scroll-Lock and the F6 key

To move the Edit window, you must first activate the window by pressing Fé. To
move the window, press Scroll-Lock then use the cursor arrow keys. When the Edit
window is in its new position, reactivate the window by again pressing Scroll-Lock.

More About the Editor Commands

Cursor movement commands control the position of the cursor in the file. You can
edit your file by using only the cursor keys, PgUp and PgDn; the rest of the com-
mands listed here are handy but not critical for small files.

Word left Ctri-Left arrow or Ctrl-A
Moves the cursor to the beginning of the word to the left.
Word right Ctrl-Right arrow or Ctrl-F

Moves the cursor to the beginning of the word to the right.

Insert and delete commands let you insert and delete text and control the typing
mode.

Delete character to left Backspace
This is the “backspace” key immediately above the Enter key. It moves one charac-
ter to the left and deletes the character there.

Delete character under cursor Del or Ctrl-G
Deletes the character under the cursor and moves any characters that are to the
right of the cursor over one position to the left. This command does not work across

line breaks.

Delete word right Ctrl-T
Deletes the word to the right of the cursor. This command works across line breaks.
Delete line Ctrl-Y

Deletes the line containing the cursor and moves any lines below one line up.

Insert mode on/off Ins or Ctrl-V
This command lets you toggle between Insert mode (the default) and Overwrite
mode while entering text. In Insert mode, new text is tucked in at the cursor
position and existing text is moved over to the right. In Overwrite mode, new
characters replace existing characters as you type over them.

Getting Started 37

38

Eureka: The Solver Owner's Handbook

H A P T E R 3

Modeling Tips and Techniques

This chapter covers some of the techniques you can use with Eureka to solve
problems. It also discusses Eureka’s problem-solving method. The last section
gives some tips for successful modeling.

The techniques covered include:

maximizing and minimizing

continuing a search

modifying constants and variables

finding alternate solutions

running problems from batch files

interface with data files (sample BASIC input file)

How Eureka Works

This section discusses the inner workings of Eureka, covering both the program’s
strengths in solving many types of difficult problems and its limitations with regard
to the phrasing of equations.

For examples of the solutions Eureka finds for real problems, refer to Chapter 6.
For more information about error messages, turn to Appendix E.

39

Eureka’s Problem-Solving Methods

After reading in an equation file, Eureka sorts out the relevant variables and for-
mulas. It then performs symbolic manipulations and substitutions to eliminate any
_ extraneous variables. If the problem cannot be solved directly, Eureka recasts it as
a minimization problem.

Eureka minimizes functions by the steepest-descent method. This method
involves starting at some initial point, and proceeding along a path which is always
in the direction of the most rapid decrease for the function.

If there are constraints, the solution path goes from the initial point to the con-
straint manifold, and then lies on the constraint manifold until Eureka finds a
solution.

Mathematically speaking, the solution process is actually more complicated than
this description suggests. The manifold of points has a Riemannian metric which is
derived from the Hessian of the function being minimized. The constraints are
enforced by adding a penalty function.

Many problems have multiple solutions. Eureka’s search method finds one at a
time. The program can find other solutions if you insert different starting values or
if you add constraints that exclude undesirable solutions. You can also use the Find
other command, which directs Eureka to sample distant points in hopes of finding
another promising search region.

There is no known efficient algorithm that always yields the solutions to all
problems. Eureka does its best, but its solution path will occasionally get trapped
in a region far from the actual solution.

Because some variables are eliminated before the search begins, it is not neces-
sary to initialize them. Only the active variables influence the search process.

Solving Techniques

This section covers the various solving techniques you can use with Eureka.

Maximizing and Minimizing

In addition to solving equations, Eureka can solve maximization and minimization
problems. This means that, instead of just finding any values for the variables
which satisfy the given constraints, Eureka can find values for the variables which

40 Eureka: The Solver Owner’s Handbook

satisfy the constraints, and maximize or minimize some variable among all possible
values of the variables which satisfy the constraints.

Maximization or minimization is thus an additional requirement imposed upon a
set of equations or inequalities. You impose this requirement by inserting either
the max or min directive in the equation file. Max and min work on variables, not
on functions; if you need to maximize or minimize a function, you first need to
define a variable equal to the function, then direct Eureka to max(or min)imize the
variable.

For instance, suppose you want to find the maximum value of a profit function,
where the relationships between the variables are expressed by

Profit(x,y) :=4*x +2*x*y-3*y410

Before Eureka can maximize this relationship, you need to add the proviso that
P = Profit(x,y)

Then the program can follow the directive

$ max(P)

Continuing a Search

If Eureka is unable to solve a set of equations directly, it uses an iterative method.
With the iterative method, the program obtains better and better approximations
until a solution satisfies certain preprogrammed convergence criteria. If you think
Eureka gave up too soon on a given problem, you can select Iterate from the
Commands menu, and the program will continue to look for solutions.

You can interrupt a search by pressing Ctrl-Break. Eureka will then give the
current values of the variables as the solution.

Modifying Constants and Variables

Sometimes Eureka finds a solution other than the intended one, or gets off the
track looking for a solution. Usually this is due to an inadequate initialization. It is
possible to restart the iterative procedure with new initial values by using the
Variables command on the Options menu.

When you select the Variables command, a window opens showing the equation
file variables and constants that can be modified. You select one with the cursor
keys, then type in a new value to replace the current value.

Modeling Tips and Techniques 4

Finding Alternate Solutions

Many systems of equations have several distinct solutions. Normally, Eureka is
satisfied when it finds one solution. To find other solutions, select Find other from
the Commands menu. This causes Eureka to try to find a solution different from
the one already obtained. You can use the Find other command repeatedly to find
multiple solutions.

You can also use the Find other command to find other local minima to a mini-
mization problem or to find other local maxima to a maximization problem.

Running Problems from Batch Files

In solving a large number of problems, it may be more convenient to run them
directly from DOS or from a batch file rather than from the Eureka pull-down
menus. The syntax for doing this is

>Eureka ProblemFile OutputFile

where

>
is the DOS prompt, and
ProblemFile

is the problem file name.
OutputFile

is the output file to be created.
The output is the same as an unformatted Eureka report.

Some interactive capabilities, such as plotting, are not available when you run
Eureka from DOS.

42 Eureka: The Solver Owner's Handbook

Interface with Data Files: Sample BASIC Input File

Because Eureka uses standard ASCII files, it can take input from a wide variety of
ASCII programs.

For example, suppose you are working in Borland’s Turbo Basic, and have
twenty points in an x-y plane. These are stored in arrays X(I) and Y(I), where I runs
from 1 to 20, the X(I) are the points’ x-coordinates, and the Y(I) are the respective
y-coordinates.

The following Turbo Basic program will create a file called PROBLEM and
write the data on that file in a format suitable for Eureka to solve:

cls
defdbl a-z
dim X(20), Y(20)
A=5
B =1.2
for i =1to20
X(i) = i/10 - 1
Y(i) = A * exp(-B * X(i)72) + 0.001 * rnd
next i

open "0", 1, "PROBLEM"
print #1, "$ substlevel = 0"
print #1, "F(X) := A * exp(-B * X"2)"
print #1, "A := 4"
print #1, "B := 1"
for i = 1to 20
print #1, "F("; X(i); ") = "; Y(i)
next i
close #1

This Turbo Basic program will create the following Eureka equation file:

$ substlevel = 0
F(X) := A * exp(-B * X2)

A:=4

B:=1 :
F(-.9) = 1.892596768501327
F(-.8) = 2.319901816869821
F(-.7) =

2.777704759459417

Refer to Chapter 6, Problem 6, for an example problem in which this technique
can be quite useful.

Modeling Tips and Techniques 43

Modeling Tips for Successful Problem-Solving

This section provides some tips on how to set up problems in ways that Eureka can

handle well.

Helping Eureka Find Correct Solutions

Sometimes Eureka does not find the correct solution or gives an inaccurate solu-
tion. When this happens, you can

44

1
2.

4.

Try a different initialization.

Use the Find other command. This is especially useful for finding other local
minima to a minimization problem, or other local maxima to a maximization
problem.

Adjust the accuracy setting (select Options/Settings). Often more accurate
solutions can be obtained by merely changing the accuracy to be closer to
zero.

Reformulate the problem.

More general considerations to keep in mind when formulating your problem
include:

1
i

When setting up an equation file, it is important to remember to include all
the constraints.

Variables are not always positive. For instance, if you want to minimize
(x + 1/x), you probably want to require that x > 0.

Put in starting values when possible. Otherwise, Eureka may start its search
at some random point that is very far from the solution and thus may not find
the solution.

Use soft constraints where appropriate.

A hard constraint is a condition that absolutely must be met for the solution
to be useful; a soft constraint is more flexible. The following minimization
has only a hard constraint:

The constraint on x, to be equal to or less than 10, corresponds to a curve
with infinite slope. If this were a cost curve, it would be untenable.

Eureka: The Solver Owner’'s Handbook

To alleviate this difficulty, you might recast the problem as:

—_
N
~

twtytz
0+z

< £ X O
VVA"S
[T TR TR §

1
0
0
The slope now has a definable limit.

4. Assign names to constants.
Instead of this user-defined function containing numeric constants,

f(x) := 4.7 * exp(-2.1 * x + 1)

use this modification, inserting letters for the constants:
f(x)
A =

= A * exp(-B *x ¢+ 1)
B = :

4.7
2.1

This does not create extra work for Eureka, and it makes it easier for you to
rerun the equation file with different parameters.

5. Try setting the substlevel setting to different values.

Eureka tries to be clever about making symbolic substitutions before it does
a numerical search.Usually, this speeds up the numerical search, but some-
times the substitutions convert the problem to a form in which the search is
more difficult. In these cases, sometimes it helps to lower substlevel —the
number of substitutions Eureka is allowed to make during a search.
Substlevel can have any value from 0 to 6, with 6 as the default. If substlevel
= 0, Eureka performs no substitutions. This can be useful (see Chapter 6,
Problem 6 for an example where substlevel = 0 produces the solution to a
complicated problem).

6. Avoid using badly scaled variables and functions.

For example,
x =17
and

0.0000001 * x = 0.0000007

have the same solution mathematically, but computers sometimes cannot
handle equations such as the second one very well because the difference in
scale between the constant (0.0000001) and the variable (x = 7) is several
orders of magnitude.

Eureka might conclude that x = 1 is a good approximation, since the differ-
ence between the right- and left-hand sides is only 0.0000006.

Refer to Chapter 6, Problem 15, for an example in which poorly scaled vari-
ables and functions cause Eureka great difficulty in solving a problem.

Modeling Tips and Techniques 45

About Error Messages

If Eureka encounters a syntax error in the equation file, it displays an appropriate
error message. If this happens when you tell Eureka to Solve an equation file, refer
to Appendix E for an explanation of the error message, then modify the equation
file as necessary to correct the error.

Sometimes floating-point errors occur in the process of finding a solution. Float-
ing-point errors do not necessarily invalidate a solution; they may mean only that
Eureka used inappropriate numbers in the search. For example, in solving

1x =10

Eureka may try x = 0 before the correct solution of x = 0.1. Because division by
zero results in floating-point overflow, the solution appears with a message:

Warning: floating point overflow

Similarly, Eureka may try to take a square root of a negative number while
searching for a solution and issue a warning to that effect.

If a floating-point error does occur, it’s a good idea to use the Verify or Iterate
commands to validate the solution.

46 Eureka: The Solver Owner's Handbook

C H A P T E R 4

Menu Commands and Settings

This chapter describes Eureka’s commands and settings that you select from the
main menu or a submenu.

The descriptions are arranged first by main menu item (Commands, Graph,
Report, and so on). Then, under each menu item heading, the descriptions are
arranged in the order they appear on the menu.

Each description includes the name of the command or setting, followed by a
discussion of the command’s or setting’s purpose, effect, and notable features.

The menu commands provide a way for you to direct the program and to make
things happen. A command specifies a particular kind of operation that the com-
puter is to perform. For instance, the File/Save command instructs Eureka to
incorporate all newly entered text into the current file in memory and then save it
(write it to disk).

Settings are those program parameters that you can change in the equation file,
such as the number of digits displayed for values. Settings remain in effect
throughout the entire work session. When you exit Eureka, the settings revert to
their default values. You can save default settings with the Write setup command.

47

Main Menu

The main menu displays the fundamental program commands and setting groups:

File

Edit

Solve
Commands
Report

Graph

Options
Windows

a group of commands that perform operations on files; also allows
you to access DOS.

allows you to create a new file, or change an existing one.
finds the value of the variable(s) in the equation file.

a group of commands that perform operations that supplement
Solve.

a group of commands that produce a report based on the current
equation file.

a group of commands that generate plots or tables of values for the
current equation file.

allows you to change default settings or selected variables.

a group of commands that allow you to move and manipulate win-
dows.

To select a command, type either the first letter of its name or cursor to the
command you want and press Enter.

In most cases you select a setting in the same way. However, in some instances
you select a setting by toggling a word (such as YES or NO) with the Enter key. The
screen menu will prompt you for the correct response.

Table 4-1 summarizes the functions of the menu commands and settings, also in
order of screen appearance.

Following Table 4-1, complete descriptions of each command and setting round
out this section.

48

Eureka: The Solver Owner's Handbook

Table 4-1 Main Menu And Submenu Summary

Entry Option Description
FILE Load Bring an existing file to the screen
New Open a new file for editing
Save Write the current file to disk
Write to.. Save the current file under the file name you specify
Directory List files in the specified directory
Change dir Change the active drive/directory
Rename Rename a file
OS shell Temporarily exit to DOS
Quit Leave Eureka and return to DOS
EDIT Create a new file or modify an existing file
SOLVE Find the value of the specified variable(s)
COMMANDS Verify Evaluate both sides of the equation and compare the
result
Calculator Open a window in which arithmetic functions can
be solved
Find other Search another area for the value of the specified
variable
Iterate Continue iterating the value of the specified variable
REPORT Go Print/save a report about an equation file
Output Specify output device
Formatted Put report into formatted form
Capture Log your work to a file on disk
Log file name Specify name for capture file
GRAPH Plot Plot a graph of a user-defined function
Output Specify output device
List Generate a table of values for a user-defined
function
Function Enter function to allow plotting or graphing
OPTIONS Variables Change value of variables(s) or constants
Settings Open a submenu of user-modifiable settings
accuracy Set stopping point for iterative searches
casefold Let upper and lowercase letters define different
variables
complex Let variables be complex numbers
digits Set number of displayed digits
finanmode Set odd period as beginning or end
finansmooth ~ Make financial functions smooth
initval Initialize variable
list_first Set first table value
list—inc Set increment for table
list_num Number of values in table
listdefault Override the default list settings

Menu Commands and Settings

49

Table 4-1 Main Menu And Submenu Summary, continued

maxtime Set time limit for solving

penalty Determine relative weight of constraints

plot_left Set left endpoint of plot

plot_right Set right endpoint of plot

plotdefault Override the default plot endpoints

radius Set range of solve search

rootsign Set roots all negative or positive

substlevel Set level of internal substitution in solving

syntax Set syntax for arithmetic expressions
Colors Change window colors
Directories Specify where Eureka looks for its files
Load setup Let a predefined group of settings be used
Write setup Save a group of settings as a file

WINDOWS Open Open the specified window

Close Close the active window
Next Open and make active the next window
Zoom Expand the active window to fill the screen
Tile Make all open windows visible and of equal size
Stack Stack open windows at largest possible size
Goto Go to the active window

50 Eureka: The Solver Owner’s Handbook

The File Commands

7 ™
Eureka: The Solver
| Edit Solve Commands ‘Report ~Graph Options Window I
— — Edit Solution
Kew
Save
Write to..
Birectory
Change dir
Remane
0S shell
Quit
Report Verify
FHtelp [B-Zoow [[3Mext [-Coto IIIR-Size/uove IERS-Exit
Figure 4-1 The File Menu

File

Press F

Function Enables you to select one of the File commands from the File
menu.

Description The File commands, in order of appearance in the File menu, are:
Load, New, Save, Write to..., Directory, Change dir, Rename, OS
shell, and Quit.

The File commands are described in the order they appear on
the menu.

Load

Press FL

Function Brings a copy of an existing file from disk to the screen, or names
the edit buffer with a new file name.

Description When you select Load, a prompt appears

Load File name

Menu Commands and Settings 51

Type the name of the desired file, followed by Enter. You can
specify a file on another drive or in another directory by specifying
the full path name (for example, B:\PROBLEMS\FILENAME).
You can also use wildcards (* or ?) to see a list of files; you can then
choose the file you want to load. For example, you could type
*.EKA to see all files with the .EKA extension.

Once you have entered the file name, Eureka reads the file from
disk (or opens a new file if there is no existing file by that name)
and displays it in the Edit window. Select Edit to activate the
Eureka editor.

New

Press FN

Function Opens a new unnamed file for editing and activates the Eureka
editor.

Description When you select New, Eureka opens the Edit window. You can
then create a new equation file. When you want to save the file,
select Save or Write to...

Save

Press FS

Function Incorporates your latest changes to the named file in the Edit win-
dow and writes a copy of the changed file to disk.

Description 'When you select Save, Eureka writes a copy of the file in the Edit

52

window to the current directory or to another directory/drive if you
specify a path name. The file remains on the screen so you can
continue editing or solve the equations.

Save does not save plots or tables that you generate with the
Graph command. To save a copy of a plot or table, use the Report
command.

Save creates a backup file with the extension .BAK each time you

save a file. If for some reason your original file is corrupted, you can
always load the .BAK file.

Eureka: The Solver Owner's Handbook

Write to...

Press FW
Function Allows you to give a name to the file you are editing and save it to
disk.
Description Write to... offers an easy way to make files that are variations of
each other. When you select Write to... a prompt appears
New name
To save a file incorporating your current changes, type a name
and then press Enter. You can make changes to your file as many
times as you like, each time saving the variations to disk under a
different file name.
Directory
Press FD
Function Displays all or some of the files and subdirectories on the current
directory or disk.
Description 'When you select Directory, a prompt appears

Enter mask

The term mask, as used in Eureka, refers to a group of characters
that you type in order to search selectively for a file (or group of
files) or some other object.

To view the contents of the current directory, press Enter. A win-
dow appears, listing all the files in the directory. To view only cer-
tain files in the directory, type an appropriate mask followed by
Enter. Eureka displays a selected listing to be displayed. Pressing
Esc returns you to the main menu.

With a mask, you can screen the contents of a directory by using
the two DOS wildcards: the asterisk (*) and the question mark (7).

The * wildcard tells the computer to find all matching character
strings, starting from the position of the *. For example, you could
use * to display all files starting with the letters AN by typing
AN* * as the mask. Or, to search for a file that starts with Math and
ends with the extension CAL, you would type Math*.CAL as the
mask.

Menu Commands and Settings 53

The ? wildcard works similarly to the * wildcard, except ? finds
only one character at a time. For example, to search for the follow-
ing files

AMTI120PA

AMT430PB
AMT890PA

you would enter the mask AMT?POP?; Eureka will list these files
(and any others with the same characters in the first, second, third,
sixth, and seventh positions).

You can also view a list of files in any other directory by specify-
ing the path name of the directory.

To view all the files in a subdirectory, move the cursor to the
subdirectory name in the file list and press Enter.

Change dir

Press FC

Function Changes the current drive/directory.
Description When you select Change dir, a prompt appears

Enter dir name

To change the current drive/directory, type the full path name of
the desired directory (and the drive name if you are changing
drives), followed by Enter. The usual drives are A, B, or C, unless
you have a RAM disk or are using a network (in that case, the
directory can be D: or higher).

Eureka will now look for files on the new directory. If the
requested directory does not exist, Eureka will display an error
message.

Rename
Press FR
Function Renames the file in the Edit window.
Description When you select Rename, a prompt appears:
Enter name
54 Eureka: The Solver Owner’s Handbook

OS shell

Enter a new name for the file in the Edit window, then press
Enter. Eureka renames the file in memory only. Use Save to save the
file with the new name to disk.

Press
Function
Description

Quit

FO
Allows you to access DOS without removing Eureka from memory.

When you select OS shell, Eureka disappears from the screen (but
not from memory), and the DOS prompt (>) comes up.

To execute any DOS command, type the command followed by
Enter.

To return to Eureka, type EXIT.

Press
Function

Description

FQ

Leaves Eureka and returns to DOS.

When you select Quit, you will be returned to DOS. If you have
not saved the file in the Edit window, Eureka will ask you if you

want to save it. If you don’t save, any changes you've made to it will
be lost.

Menu Commands and Settings 55

The Edit Command

Edit

Eureka: The Solver
| File Edit Solve Comsands Report Graph Options l

Edit
C:TRIAL. Line 5 Col 1
F(x) i= x*3 + 3 % x*2 - 2 * x - cos(x)
f(x) = @
$ digits = 18

{Test of equation solvimg)

EHelp [Zoow Mext [H-toto FEII-Size/wove et

Figure 4-2 Typical Edit Screen

Press

Function

Description

56

E

Activates the Eureka editor. Using the editor, you can either modify
an existing file or create a new one.

When you select Edit, the Edit window becomes active. You can
create a new equation file or edit an existing one.

To create a new file, just type in your file. When you want to save
it, select Write To... from the File menu.

To edit an existing file, select Load from the File menu, then
type the file’s name (using its full path name if necessary) followed
by Enter.

The editor uses a combination of standard control character
sequences and predefined function keys for editing. It is virtually
identical to Borland’s Turbo Pascal and SideKick editors. To switch
between Insert and Overwrite modes, press Ins.

More detailed information about the editor can be found in
Chapter 2 and Appendix B.

Eureka: The Solver Owner’s Handbook

The Solve Command

Eureka: The Solver
File Edit Solve Coumands Report Graph Options

Edit Solution
C:TRIAL. Live 5 Col 1 C:SOLUTION. Live 1
Solution:
f(x) == x*3 + 3 % x*2 - 2 * x - cos(x)
f(x) = 8 Variables Values
S digits = 18
x = -.3288122319

{Test of equation solving)

E-help [B-Zoom [-Mext {-coto HYIIM-Size/wove ER-Exit

Figure 4-3 Typical Solve Screen

Solve

Press S

Function Finds a value for each variable in an equation file that satisfies the
constraints of the equation file.

Description For each variable, Solve finds the first value that satisfies the con-

straints of an equation. If a problem cannot be solved directly (by
plugging in a formula), it is recast as a minimization. Eureka then
checks for a user-supplied initialization value (using the value 1 if
none is supplied) and begins to iterate toward a minimum. Once
Eureka finds a solution, the Solution window displays all variables
and their solved values. y

You can interrupt a search for a solution by pressing Ctrl-Break.
Eureka then gives the current values of the variables. To continue
the search, press Esc and select Iterate from the Commands menu.

Many problems have multiple solutions. Eureka’s search method
finds only one at a time. You can find other solutions by using dif-
ferent starting values, by adding constraints that exclude undesir-
able solutions, or by using the Find other command on the
Commands menu.

Menu Commands and Settings 57

58

Eureka can find the roots of polynomials. Consider an equation
file containing a function defined as a polynomial in one variable:

p(x) : = poly(x,1,0,0,0,1)

Applying Solve to the file causes Eureka to find all of the roots of
p(x) as well as to solve for whatever other variables appear in the
file.

Eureka: The Solver Owner’s Handbook

The Commands Commands

Y
Eureka: The Solver
l File Riit Solve Report Graph Optioms Window]

Bt =
C:TRIAL. Line 5] Calculator
Find other
£(x) := x*3 ¢+ 3 ® x"2 - 2 »| Iterate
t(x) = 8

{Test of equation solving)

Solution
C:SOLUTION. Line 1
Solution:

Variables Values

x = -.3288122319

[-telr (200 [Next [Fi-Goto HUIIR-Size/wave (YIS -Exit

Figure 4-4 The Commands Menu

Commands

Press C

Function The Commands menu contains commands that perform mathemat-
ical operations on elements in the equation file.

Description The commands, in order of appearance in the Commands menu,
are: Verify, Calculator, Find other, and Iterate.

Verify
Press cy
Function Evaluates all expressions in an equation file and compares the

results on an equation-by-equation basis.

Description You use the Verify command primarily to verify the accuracy of a
previously computed result. A typical command cycle for solving
problems is:

* Edit (to create a problem)
¢ Solve (to find a solution)

Menu Commands and Settings 59

Calculator

* Verify (to verify the accuracy)
* Report (to print the results)

When you select Verify, Eureka goes through all equations and
inequalities in the equation file and evaluates every expression,
substituting in the previously solved values for variables. During
an evaluation, Eureka ignores all directives and initializations,
solves none of the equations, and changes none of the variable
values.

When the evaluation is complete, Eureka displays the results
with any discrepancies in the Verify window.

If the difference indicates that an equation or inequality is
invalid (the difference is greater than that allowed by the accuracy
setting), the difference is flagged as an error.

For example, if a file contains the following obviously incorrect
equation

1/3 = 10 * exp(1)
the Verify window shows this result:

1/3 = 0.33333
10 * exp(1) = 27.18282
difference (error) = -26.84948

Press

Function

Description

60

ccC

Lets you perform arithmetic calculations in display-calculator fash-
ion.

The Calculator command acts as a shortcut: use it to evaluate an
arithmetic expression when you don’t want to make a new equation

file.

Eureka’s Calculator can handle any built-in function as long as it
does not require an undefined variable.

When you select Calculator from the Commands menu, an
empty Calculator window appears on the screen. Type in an
expression such as

10 * exp(l) - 7

followed by Enter, and Eureka displays the value of the expression.

Eureka: The Solver Owner's Handbook

Find other

An arithmetic expression is limited to one line of 29 characters,
unless you expand the window with the arrow keys after pressing
Scroll-Lock and Num-Lock.

If there is a syntax error in the arithmetic expression, an error
message appears.
If you have solved an equation file, you can insert variable names

from the file into expressions in the Calculator, such as the variable
Depth shown in the example below:

sin(Depth2)

The pound symbol (#) has a special meaning in the Calculator: it
contains the value of the previously evaluated expression.

Press

Function

Description

Iterate

CF

Tells Eureka to find another solution to the equation file, different
from the one that Solve just generated.

While Eureka is normally satisfied when it finds one solution to an
equation file, many systems of equations have several distinct solu-
tions. The solution you need may not be the first one that Eureka
finds. When you select Find other, Eureka tries to find a solution
that is different from the solution(s) already obtained.

You can use Find other repeatedly to find multiple solutions. For
example, Find other can find additional local minima to a minimi-
zation problem. (Note: In such a minimization problem, you can
also use the Variable setting to help Eureka start a new search in a
different range of numbers.)

Press
Function

Description

cl
Continues solving a problem that has been Solved at least once.

Sometimes, Eureka is unable to solve a set of equations directly. If
this occurs, the program uses an iterative method to obtain better
and better approximations until the solutions satisfy certain conver-
gence criteria. However, you may think that the program has given
up too soon, settling for a solution that meets the accuracy require-

Menu Commands and Settings 6!

62

ments, but stops short of the best solution. If you think this has
happened, select the Iterate command and Eureka will continue
solving where it left off.

You can also use the Iterate command to resume a search that
has been interrupted with Ctrl-Break.

Eureka: The Solver Owner's Handbook

The Report Commands

7
Eureka: The Solver
| File Rdit Selve Commands Report| Eraph Options Window |
Bt —
C:TRiAL. Line § Col 1 Output: Screen
R Foruatted: YES
f(x) = x"3 + 3 % x*2 - 2 % x - cos(x) | Capture: OFF
fix) = @ Log file name: EUREKA.LOG
$ digits = 18
x = -.3288122319
{Test of equation solving)
EHHelp [5-Zoow [3-Mext [f-Goto SEIINE-Size/wove [YEER-Exit
.. /
Figure 4-5 The Report Menu
Report
Press R
Function Enables you to select one of the Report commands from the Report

menu. The Report commands prepare a report of the solved equa-
tion file and then send it to a specified output device. Reports are
formatted for a standard 66-line, 80-column printer.

A report consists of:

.

a header with date, time, and file name information
the equation file

the solution (as displayed in the Solution window)
the evaluation (as displayed in the Verify window)
the most recently generated graph or table

Description The Report commands, in order of appearance in the Reports
menu, are: Go, Output, Formatted, Capture, and Log file name.

Menu Commands and Settings 63

Go

Press
Function

Description

Output

RG
Sends a report in the specified format to the previously specified
output device.

You use Go after you have set the format and output device for the
report (use the Formatted and Output commands to set these
report features). See Chapter 6 for examples of finished reports.

Press
Function

Description

64

RO <s,forp>

Determines where Eureka sends a report: to the screen (s), to a file
(F), or to a printer (p).

Select one of three possible values for output by highlighting the
option you want, then pressing Enter. The report destinations are:
* Screen— (the default) sends the report to the screen

* File—sends the report to a disk file

* Printer—sends the report to a printer

When you select File, then select Go, a prompt appears:
Output fiie name

Type a file name just as you would for an equation file. The
report is saved to disk.

Once saved as a file, you can edit a report like an equation file
with the Eureka editor or any ASCII text editor. However, no
mathematical operations (such as Solve) can be performed on a
report file,

Eureka: The Solver Owner’s Handbook

Formatted

Press RF <yorn>

Function Determines whether or not a report is formatted. Default is yes.

Description A formatted report is designed to go to a printer from your com-
puter and has the following features:

e 1/2-inch left margin (rather than printing flush with the edge

of the paper)

* incorporates page breaks
If you intend to edit the report with a different text editor before
printing it, you should select Formatted/no.

To toggle between Formatted/yes (the default) and Formatted/
no, press Enter.

When Eureka sends a formatted report to a printer, printing
starts at the top of the page. If you want blank lines at the top of the
page, position the printer appropriately.

Capture

Press RC

Function Automatically writes work session into a file periodically.

Description Capture is useful for automatically saving your work to guard
against power failures. It is also useful when you want to solve a
series of problems and save all your work to a file. When you select
Capture, you toggle Capture on and off. With Capture on, your
work will be continuously saved to the file name specified by Log
file name.

Log file name

Press RL

Function Specifies a file name to be used by the Capture command; the

default name is EUREKA.LOG.

Menu Commands and Settings 65

The Graph Commands

™
Bureka: The Solver

l File Edit Solve Consands Report Options Hil‘mJ

Edit Plot

C:TRIAL. Line 5 Col 1 Output: Screen
List
F(x) = x*"3 + 3% x*2 - 2% x - cos(x) Function f
£(x) = B
$ digits = 18
= ~.3288122319

{Test of equation solving)}
E-Help [-Zoow Fi-Mext [f-Goto [DEIM-Size/wove - Exit

Figure 4-6 The Graph Menu

Graph

Press G

Function Enables vou to select one of the commands from the Graph menu.
The Graph commands generate and display on-screen plots of func-
tions and tables of values.

Description The Graph commands, in order of appearance in the Graph menu,
are: Plot, Output, List, and Function.

Plot

Press GP

Function Plots a function on the screen.

Description Eureka can plot functions on the screen, even on a computer with-
out a graphics card. Eureka can only plot user-defined functions of
exactly one variable. For example, the function sin(x) + 0.1 X x
can be plotted if the following definition of the function appears in
the equation file:

f(x) := sin(x) + 0.1 * x
66 Eureka: The Solver Owner’s Handbook

When you select the Graph menu, the Plot command is available
only if at least one user-defined function of a single variable
appears in the just-solved equation file. If the Plot command is not
available, it is displayed in half intensity on the Graph menu.

If no appropriate function exists in the equation file or if there is
no just-solved equation file, you can use the Function command to
write a function directly to Eureka.

If more than one user-defined, single-variable function appears
in the equation file, a list of choices appears, prompting you to
select the name of the function you intend to plot.

When you have selected the function to be plotted, a prompt
appears immediately, requesting the left and right endpoints (lower
and upper limits of the variable).

Enter the left value, then press Enter and repeat for the right
value. If you hit Enter without selecting lower and upper limits to
the variable, Eureka either resorts to its default values, —2 and 10,
or whatever values you have specified in the Settings menu for
plotleft and plot_right. Eureka scales the vertical axis automati-
cally.

Using your selection of left and right endpoints for the horizontal
axis, Eureka displays the plot in a window on the screen; you can
save the plot in a report with the Report commands.

You can change the default values for several settings that gov-
ern the plot (see plotleft, plot_right, and plotdefault under the
Options/Settings menu). If you have a graphics card in your com-
puter, you can see a graphic display of your plot by pressing the
Zoom key (F5).

Output

Press GO <sorp>

Function Determines where Eureka sends a plot: to the screen (s) or the
printer (p).

Description - By default, Eureka will send your plot to the screen. If you press P,

Eureka sends the plot to a printer (must be Epson-compatible).

Menu Commands and Settings 67

List

Press

Function

Description

68

GL

Computes a table of values for a function, then displays the table on

screen.

The List command creates a two-column table (a set of ordered
pairs of numbers) for a function. The table represents the same
information that would appear in a graph of the function but with
greater precision.

The List command, like Plot, acts on user-defined functions of
one variable. Eureka prompts you for:

1. the first value of the function argument
2. the increment

3. the number of points (200 is the maximum allowed)

For example, given the function flx) : = x*, with:

First point: 3
Increment: 1
Number of values: 5

Eureka returns the following table:

x fx)

3 9.000
4 16.000
5 25.000
6 36.000
7 49.000

You can use the Report menu to save your tables in report files or
print them as hard copy.

You can change the default values for several settings that gov-
ern the list (see list_first, list_inc, and list_num on page 73).

Eureka: The Solver Owner’s Handbook

Function

Press

Function

Description

GF

Allows you to enter a function of one variable that can then be
plotted or listed.

If an equation file does not contain a user-defined function, this
command provides an alternate way to list or plot an equation. You
can use this feature by itself or in conjunction with an equation file.

When you select Function, a prompt appears:

Enter function

Type the appropriate function name; for example, fx), followed
by Enter. Another prompt appears:

Enter function definition
Type the definition (for example, x°3), followed by Enter.

The function name and the definition are each limited to 18
characters.

When you have entered the function name and definition, use
the cursor keys to move to the Plot or List options.

If your equation file contains a user-defined function, you can
bypass the Function command and go directly to Plot or List.

Menu Commands and Settings 69

The Options Commands

Options

Eureka: The Solver
I File Edit Solve Commands Report Craph Window |
Edit Variables |
C:TRIAL. Line S Col 1 Settings
Colors

F(x) = x*3 + 3 * x"2 - 2 % x - cos(x) Directories

f(x) = 8 Load setap

S digits = 18 Write setup

{Test of equation solviwng} Version 6.98h
EHHelp [3-Zoow [I-Mext [-Goto FEM-Size/wove - Exit

Figure 4-7 The Options Menu

Press

Function

Description

Variables

o

Enables you to select one of the commands from the Options menu.

The Options commands allow you to temporarily change some of
Eureka’s internal information and screen appearance, as well as
write or read a setup file. Settings remain in effect throughout the
work session. When you exit Eureka, the settings revert to their
default values (unless you select Write setup).

The Options commands, in order of appearance in the Options
menu, are: Variables, Settings, Colors, Directories, Load setup, and
Write setup.

Press

Function

70

ov

Lets you restart Eureka’s solving procedure using a new initial
value; it also lets you change the value of a constant.

Eureka: The Solver Owner’s Handbook

Description After Eureka solves an equation file, select Variables to display a
window of any active variables and constants.

To modify any of the displayed items:
1. Use the cursor keys to select the desired item. Press Enter.
2. Type in a new value.

3. Press Enter.

To reactivate the main menu and re-solve the problem, press Esc
Esc, then press S. If the problem has already been solved, press Esc
Esc C | to reactivate the main menu.

The Variables command is useful when the first solution Eureka
finds is not the one you want. (Problems often have more than one
solution, though only one may be appropriate.)

For example, in the case of a polynomial, Eureka starts from
some initial solution and iterates toward a final solution. While
most equations are readily solved this way, others are not. This is
because an initialization value might be selected that leads Eureka
off into a local minima that is not the true solution. Whenever you
suspect this is the case, use Variables to re-examine the problem.

This is an example of a situation where you could use the Vari- -
ables command:

Suppose that Eureka is to minimize (exp{x) — a X 2) for various
values of a. You could type this into the equation file:

a
$ min(y)

After the solution appears, choosing Variables reveals that x and
y are active variables and that a is a constant.

y = gexp(x) -a*2)

Note: If g had been initialized to 3 (@ : = 3) rather than set equal
to 3, it would appear as an additional active variable and not as a
constant.

If you change a to some other value and select Iterate, Eureka
can find a minimum value for y using the new value of a.

Using the Variables command, a whole sequence of problems can
be solved without changing the equation file.

Menu Commands and Settings 71

Settings

Press

Function

Description

72

(O

Lets you alter selected settings for the current equation file.

When you select Settings, a submenu appears, listing each modi-
fiable setting, the setting’s current default value, and the value’s
type (real number, integer, and so on). One of the settings is high-
lighted.

To make a selection from this menu:

1. Use the arrow keys to highlight the setting you plan to

change.

2. Type the new value for the setting (or press Enter for yes/no
toggles).

3. Press Esc.

Enter the new value in the same format as the default value, which
is the middle item in the highlighted line.

For example, to set complex, press Enter to toggle it to yes.

A number of settings can be changed from the Options/Settings
menu item. You can also change most of these settings by inserting
a directive in the equation file. There are six settings that cannot be
changed via this menu: include, maximize, minimize, settings, solve,
and unit conversions. See Chapter 5, “Directives,” for information
about these directives.

The settings that can be controlled from the Settings menu are:

accuracy listdefault
casefold maxtime
complex penalty
digits plot_left

finanmode plot_right
finansmooth plotdefault

initval radius
list_first rootsign
list_inc substlevel
list_num syntax

Eureka: The Solver Owner’'s Handbook

All of these settings except list_first, list_inc, listnum, plot_left,
and plot_right can be used as directives (see “Directives” in Chap-
ter 5 for more information about these settings).

The seven non-directive settings are described as follows:
listdefault Options: <yes or no>
Default: no

Determines whether values specified for list_first, list_inc, and
list_num are used. When set to yes, these values are used; when
no, you are prompted to enter values.

list_first Options: <any negative or positive number >
Default: 0.000000

Sets a new default value for the first variable to be solved for in a
table of values for the listed function.

list_inc Options: <any negative or positive number >
Default: 0.500000

Sets a new default value for the increment between values to be
solved for in a table of values for the function.

list.num Options: <the integers 1 through 200>
Default: 10

Sets a new default value for the number of values to be solved for
in a table of values for the function.

plotdefault Options: <yes or no>
Default: no

¢+ Determines whether values specified for plot_left and plot_right
are used. When set to yes, these values are used; when no, you are
prompted to enter values.

plot_left Options: <any negative or positive number >
Default: —2

Sets a new default value for the left-most point at which the plot
of the function begins.

plot_right Options: <any negative or positive number >
Default: 10 '

Sets a new default value for the right-hand side of the plot of the
function. The value must be greater than the value set for plot_left.

Menu Commands and Settings 73

Colors

Press
Function

Description

Directories

ocC
Lets you change the window colors.

When you select Colors, Eureka calls up a windows menu to the
center of the screen. Move the highlighted bar up and down in the
window with the arrow keys. When the block highlights the name
of the window to be changed, press Enter. A blank sample version of
the selected window appears on the screen.

To change the window’s colors, use the up and down arrow keys
to select background, text, or margin (items in the status line), then
use the left and right arrow keys to toggle the color of the selected
item in the sample window. When the item displays in the color
you want, press Enter.

To save these changes in a setup file, select Write setup.

Press
Function

Descriptioﬁ

74

oD .
Determines where Eureka stores its files.

When you select Directories, Eureka presents you with a list of two
kinds of files: Eureka dir and Problem files. Use the arrow keys to
highlight a selection and press Enter. Eureka then prompts you for
the path name of the directory where you want to store your files.
For instance, suppose you want to store your equation files in a
subdirectory called C:\EUREKA\PROBLEMS and the Eureka
program itself in a directory C:\EUREKA. Enter the full path
name for each type of file. From now on, your equation files will be
automatically saved in the C:\EUREKA\PROBLEMS directory
when you select Write to.. or Save on the Files menu, and Eureka
will look for its program, help, and setup files in the Eureka direc-
tory.

Eureka: The Solver Owner’s Handbook

Load setup

Press oL
Function Brings a file (created with the Write setup command) containing
various setup parameters to the screen. These setup parameters
will be used until you exit Eureka.
Description When you select Load setup, a prompt appears
Enter file name
Type the full path name of the desired file, followed by Enter. If
you specify no extension, the extension .EKA is automatically
appended.
Write setup
Press ow
Function Saves a file containing various screen and printer parameters.
Description When you select Write setup, Eureka saves the current setup file

to disk. By default, Eureka looks for a file named INITIAL.EKA
when it is first loaded. If you want to use a standard set of setup
parameters when you load Eureka, name your file INITIAL.EKA.
If you specify no extension, the file name extension .EKA is auto-
matically appended.

The modifiable Setup parameters include those for window size,
placement, and screen colors.

Menu Commands and Settings 75

The Window Commands

- ™
Bureka: The Solver
L File Bdit Solve Commands Report Graph Options I
Etelp [§BZoonm [iNext [coto HEUAN-Size/move IR Exit
S
Figure 4-8 The Window Menu

Window

Press w

Function Selects one of the commands from the Window menu. These com-
mands allow you to move and manipulate on-screen windows.

Description The Window commands, in order of appearance on the Window
menu, are: Open, Close, Next, Zoom, Tile, Stack, and Goto.

Open

Press wo

Function Opens the specified window.

Description Opens one of Eureka’s windows. When you select Open, Eureka
presents you with a menu of all of Eureka’s windows. Move the
cursor down to the window you want to open, then press Enter.

If several windows are currently displayed on the screen, you
can move between them by pressing Fé.

76 Eureka: The Solver Owner’s Handbook

Close

Press wc

Function Closes the currently active window.

Description When you select Close, Eureka closes the currently active window
and removes it from the screen. If you have several windows open,
you can select Close repeatedly until all on-screen windows are
closed.

Next

Press WN

Function Opens and makes active the next on-screen window.

Description Use Next to move back and forth between on-screen windows. If
you select Next repeatedly, Eureka will activate each window in
turn, moving in a clockwise direction.

The function key F6 does exactly the same thing as the Next
command.

Zoom

Press wZ

Function Expands the active window to fill the screen.

Description Use Zoom when you want the window you are currently working
with to fill the screen. This might come in handy when you are
working with an equation file that is too long to see with the default
size Edit window. To “dezoom” the window, select Zoom again. The
F5 key does exactly the same thing as the Zoom command.

Tile

Press WT

Function Makes all open windows visible and of equal size.

Description The Tile command rearranges all on-screen windows so that that

are aligned side by side in a tile-like pattern, each the same size.

Menu Commands and Settings 77

Stack

Press WS

Function Stacks all on-screen windows on top of each other.

Description The Stack command stacks all on-screen windows atop each other
in the center of the screen. Windows are expanded to fill the entire
screen.

You can move back and forth between windows by pressing Fé or
by selecting the Next command. This “reshuffles” the windows so
that the selected window is on top.

Goto

Press WG

Function Puts the cursor in the last active window.

Description The F7 key does the same thing as Goto.

78

Eureka: The Solver Owner's Handbook

H A P T E R 5

The Equation File:
Syntax, Directives, and Functions

This chapter describes the equation file:

.

what goes into an equation file

what the syntax of an equation file must be

what the equation file directives are and what they do

what built-in and user-defined functions are; how they are alike, how they differ
what causes Eureka to return an error message

Chapter 2 explains the Eureka editor and how to create the equation file; it

includes a discussion of predefined keys and illustrations of the Edit window, the
Solution window, and the Verify window. Chapter 3 provides tips for writing good
equation files. Appendix C describes all the built-in functions.

Contents of the Equation File

An equation file must contain one or more equations, as well as initialization values
and user-defined functions when needed. It may also contain directives and com-
ments.

79

Equations

Equations are mathematical statements that consist of two expressions (sometimes
more) connected by an equal sign (=) or a relational operator (< or >). The
following are examples of equations that can be used in a Eureka equation file:

y=x3+2*x+x-4
sin((x + 2 * pi)/3) > cos((x - pi)/4)
Y2 -x<x2+2*x*y

An expression is composed of one or more terms connected by an algebraic
operator.
A term is either a numeric value, a variable name, or a function.

The argument of a function may in turn be a variable, a constant, or a term.

Algebraic operators are:

* _multiply
/ divide

+ add

— subtract

raise to the power

Typically, you write one equation per line. However, you can use a colon (:) to
separate equations appearing on the same line. The colon is useful when you want
to define the constraints that limit a variable. For example, you could enter the
constraint

0<x
and
X=2%*y

in an equation file as the following two equations:

0<x:x=2%*y

Eureka uses standard algebraic notation to describe equations (also called for-
mulas) and- applies standard algebraic operator precedence (exponents first, right-
to-left; multiplication and division next, left-to-right; addition and subtraction last,

left-to-right).

There can be up to twenty equations in any one equation file.

80 Eureka: The Solver Owner’s Handbook

Initialization Values

Initialization sets specific values, either for a variable or for the starting point of an
iterative search.

An initialization differs from an equation in that Eureka is not required to keep a
variable at the initial value. An initialization value should be slightly higher than
the value being sought.

Initializations are flagged with the symbol : = and are written one per line. The
symbol : = means “is initially set at the value

For example, x : = 3 means x is initially set at the value 3. Eureka will plug the
value 3 for x into the equation file and evaluate all related expressions, then con-
tinue to modify the value of x (from the initial value of 3) and plug in the modified
value until some value of x solves the equations.

Initialization values only affect formulas that Eureka solves iteratively and not
directly (by algorithm).

If you do not set an initial value for a variable, Eureka uses the default value, 1.

User-defined Functions

User-defined functions satisfy two needs: They provide a way to define complicated
functions, and they allow Eureka to generate plots and tables.

Like initialization values, user-defined functions are also flagged by the symbol
:= and are written one per line. In the case of user-defined functions, the symbol
:= reads “is defined as .” User-defined functions differ from initialization values in
that the left-hand expression is a function of some variable(s), and is not just a vari-
able or term.

For example, the following are bona fide, user-defined functions:

f(x,y) := (x°2)/4 + (y2)/3
g(z) :=z3+2*z22+5%z-13

The first of these two user-defined functions reads:

2

2
the function f of x and y is defined as xT + L

3

Eureka’s built-in polynomial and differential functions (poly and deriv) must be
written as user-defined functions.

You can use up to ten (but no more) user-defined functions in an equation file.

The Equation File: Syntax, Directives, and Functions 8l

Directives

Directives are commands to Eureka to do something out of the ordinary. Defini-
tions of each Eureka directive are given later in this chapter.

Directives begin with a dollar sign ($) character, and are written one per line in
the equation file; for example,
$ digits = 5

$ include "molewts"
$ rootsign = yes

The settings directive allows you to enter a cluster of directives without begin-
ning each one with a $; this directive is explained fully under “Settings” in this
chapter (see page 95).

There is no limit to the number of directives that you can use in any one equa-
tion file.

Comments

Comments typically describe the purpose of a particular file or individual lines.
Use either a semicolon (;) or braces ({ }) to delimit comments. Some examples of
comments include:

; This is a comment
X2 +2 *t2=5; this part, after the semicolon, is a comment

{ This is also a comment }
{ Mortgage payments for new building site }

. Notes On Equation File Syntax

Variable Names

Variable names are limited to 60 characters; all characters are significant. The first
character in a variable name must be a letter. The remaining characters in the
variable name (up to a total of 60) may be any alphanumeric.

82 Eureka: The Solver Owner’s Handbook

By default, variables are case sensitive; you can alter this sensitivity with a
$ casefold directive or setting. (Case sensitive means that Eureka sees variations
like TEST, test, Test, and TEst as four different, unique variable names.)

Values and Precision

A value can be entered as a real number, a variable name, or an expression.

A real number entry can be 0, or it can have an absolute value between
le — 308 and le + 308.

You can specify numeric values in either standard decimal notation or scientific
notation. Internally, Eureka maintains 16 decimal places.

Eureka ignores leading zeroes. Also, commas have no numeric significance; they
are used to separate arguments in functions.

Mathematical Operators and Order of Evaluation

The following symbols specify the standard arithmetic operators:

+ addition

— subtraction

* multiplication
division
exponentiation

~ complex conjugate of function

Arithmetic expressions are evaluated in the following order and direction:

Operator Order of Evaluation Direction

~, exp, sin, etc. 1 (first) left-to-right
" 2 . right-to-left
*, / 3 . left-to-right
+, — 4 . left-to-right
=,<,>,<><=,>=5(last) left-to-right

The Equation File: Syntax, Directives, and Functions 83

For example, Eureka evaluates the following expression:
~U*V-x*y/z+ABC ’
as

X *y
z

[(~v) * V] - t+ (A)"(BC)

See the description of the syntax directive in this chapter for more information
about parentheses in order of evaluation.

Syntax Rules

Eureka is fairly lenient about what it considers to be a syntactically correct equa-
tion file. You need not enter the different parts of the equation file in any specific
order as long as each equation, comment, directive, initialization, and user-defined
function is properly set up.

Eureka follows these syntax rules:
1. All spaces and tabs are ignored. Blank lines are permitted.

2. Multiple formula relations are allowed, as with
t=r2=x21+y2
or
0<x<1

3. A colon (:) can be used to separate formulas on the same line. For example,
the above multiple relations are equivalent to
T=r2:r2=x21+%y2
and
0<x:x<l1
4. In units conversion, the colon is used in conjunction with an arrow (—>),

formed by typing a dash followed by a greater-than symbol. Units conversion
requires two directives: units and end

$units
cm —> in : x / 2.54
$end

84 Eureka: The Solver Owner's Handbook

Comments may either be inserted to the right of a semicolon (;) on any line
or enclosed in braces ({ }), as in

r'2 = x2 + y2 ; This is a comment
or

{ This file solves the ideal gas law, }
{ using mks units }

Mixing the two notations for comments can have unpredictable results and is

not recommended.

An underscore character (-) means that the formula continues to the next
line, as in

The underscore character is unnecessary if the upper line is an incomplete
formula, as in

z=(x-a)2+
(y - b)2

A tilde (~) gives the complex conjugate of a function, as in
z = re(z) + im(z) * sqrt(-1)
~z = re(z) - im(z) * sqrt(-1)
abs(z) = sqrt(z * ~z2)
Variables may be initialized with any valid arithmetic expression, such as
x := exp(1l) * 3.14159/2

A directive is a line that has a dollar sign ($) as its first nonspace character.

Special Symbols

Most equation files consist of ordinary ASCII characters, but there are a few spe-
cial IBM graphics characters that Eureka recognizes. These special symbols and
their decimal values are:

square root sign (251)

greek letters (224 through 238, except 236)

divide sign (246)

greater-than-or-equal, less-than-or-equal (242, 243)

two (253)

one half, one quarter (171, 172)

pi (227) (You can also get the pi symbol by pressing Alt-P.)

The Equation File: Syntax, Directives, and Functions 85

To use a special symbol in an equation file, hold down Alt and Shift while typing
the symbol’s value on the numeric keypad to the right of the keyboard (the one set
up like a 10-key adding machine). For SuperKey users, the file EUREKA.MAC on
the distribution disk contains macros for these special symbols.

Directives

A directive is a command to the Eureka program; it is embedded within an equa-
tion file and affects only that file. Most directives in Eureka affect the settings that
are user controlled. There are a few others that perform different kinds of func-
tions.

You can also change some settings from the Options menu. The settings stay in
effect until you exit Eureka. You can also use the Load setup and Write setup
commands to save and load settings. You can only make permanent setting changes
within a given equation file by using directives.

The only directives (settings) that cannot be changed from the Options menu
are: include, maximize, minimize, settings, solve, and unit conversions.

A directive consists of the symbol $ followed by the directive name, an equal
sign (usually), and some value. For example, you can set the setting syntax to 2 in
an equation file with the directive

$ syntax = 2

You can use the settings directive to enter a subgroup of the directives (those
which affect Eureka’s internal default settings) in an alternate format, illustrated
here:

$ settings

syntax = 2

digits = 10

accuracy = le-13

penalty = 50
$ end

This format is convenient for changing multiple settings, since only two $ sym-
bols are required. You can include as many directives as you need between settings

and end.

If you have a group of non-default settings common to a number of problems,
you can store them in a separate file. You can then insert this separate settings file
into an equation file with the include directive.

86 Eureka: The Solver Owner's Handbook

For instance, the following directive would include a settings file called
DEFAULTS:

$ include "DEFAULTS"

The directives are individually described in alphabetical order on the following
pages. Each description includes the directive name, syntax (exactly how to type
it), default value, function, and any pertinent remarks.

The Equation File: Syntax, Directives, and Functions 87

accuracy

Syntax
Default
Function

Description

casefold

$ accuracy = <value>

0000001 (L0e — 7)
Specifies a value that must be met before an iterative search stops.

When Eureka reports a solution, it is not necessarily exact. In most
cases, Eureka’s iterative procedure searches for a solution until the
accuracy matches the accuracy setting value.

The default value (0000001) results in an answer that is accurate
to six or seven decimal places. Eureka can achieve greater accuracy
if you set the accuracy directive to a smaller value, such as

$ accuracy = 1.0e - 12
However, there are tradeoffs to using very small values for the

accuracy. Smaller values increase computer processing time and
could undermine the overall reliability of the solution procedure.

Syntax
Default

Function

Description

$ casefold = <yes or no>

No
Changes Eureka’s sensitivity to the case of variable names.

The default allows uppercase and lowercase letters to be used as
different, unique characters; by default, Eureka considers pressure
and Pressure to be two different variables.

If you change casefold to yes, Eureka will consider the upper-
case and lowercase versions of any letter as only one variable.

Key words (directives, and so on) and built-in functions are
never affected by casefold and are not case sensitive. For example,
the exponential function can be written exp(x), Exp(x), or EXP(x).

complex (numbers)

Syntax
Default

Function

88

$ complex = <yes or no>

No
Makes all variables complex.

Eureka: The Solver Owner's Handbook

Description When complex = no, Eureka cannot solve equations whose solu-
tions have a non-zero imaginary component, except for polynomials
solved with the poly function.

For example, it is impossible to solve the following equation
without using complex numbers, since its solutions arex = (3 + 1)
andx = (3 — i)

X2 -6*x+10 =0

However, Eureka can find a complex solution if you change the
mode to complex, either from the Settings menu or by putting the
complex directive in the equation file.

While Eureka is operating in complex mode, the functions exp,
In, sin, cos, tan, and sqrt refer to their analytic continuations. (A
branch cut is used for In, sqrt, and exponentiation.)

Re and im are the real and imaginary parts, respectively. The
tilde (~) gives the complex conjugate. By this definition,

z = re(z) + im(z) * sqrt(-1)

~z = re(z) - im(z) * sqrt(-1)

abs(z) = sqrt(z * ~z)

When maximizing or minimizing a complex function, Eureka
uses only the real part.

Similarly, <, >, and polar refer only to the real parts of the
expressions they operate on. Usually, however, these expressions
are arranged so as to be real, as in

abs(z) < 100

The best way to obtain complex constants is to assign an imagi-
nary value to some variable (typically ¢ or I). The following example
illustrates this technique:

i = sqrt(—1)

z2 =2+ 3%

digits

Syntax $ digits = <integer from 1 to 13>

Default 8

Function Sets the number of digits displayed for solved variables.

Description The digits directive tells Eureka to display only the specified num-

ber of digits for values in the Solution window.

The Equation File: Syntax, Directives, and Functions 89

This directive only affects the way in which Eureka displays real
numbers and is unrelated to the underlying accuracy of the solu-

tions. ‘

end

Syntax $ end

Default None

Function Completes a list of directives begun with either a settings or units
directive.

Description See the descriptions for settings and units.

finanmode

Syntax $ finanmode = <begin or end>

Default End

Function Sets the odd financial period (if there is one) to be at either the end

or the beginning of the series of periods used for calculations made
with the financial functions.

Description Changing finanmode to begin puts the odd period at the beginning
and results in slightly different values for the functions pval, paymt,

and fodl.

finansmooth

Syntax $ finansmooth = <yes or no>

Default No

Function Determines whether the pval, paymt, and fval functions -are
smooth.

Description The financial functions, pval, paymt, and fval, are discontinuous as
functions of time. This is because the value of a loan contract
changes at the end (or beginning) of each period, every time a
payment is made. These discontinuities make solving for the time
variable difficult or impossible.

90 Eureka: The Solver Owner's Handbook

include

You can use the finansmooth directive to circumvent this prob-
lem. When you set finansmooth to yes, pval, paymt, and foal
become smooth functions. These smoothed functions are exactly
correct if the time is an integer; if time is not an integer, they return
interpolated values which may differ somewhat from the true
values.

Syntax

Default
Function

Description

initval

$ include "<filename>"

None
Inserts a second file into the body of a first.

The way files are included in Eureka is similar to the way they are
commonly included in programming languages. This directive is
provided as an editing convenience. When Eureka processes an
equation file with an include directive, it replaces the directive with
the named file. This keeps your equation files from becoming
unnecessarily large and unwieldy.

Include files are primarily useful for storing unit conversions and
set-up options separately, so they can easily be used in a number of
problems. They are also useful for storing frequently used data,
such as chemical molecular weights for a series of stoichiometry
problems.

Include files can be nested.

Syntax
Default

Function

Description

$ initval = <value>

1

Provides an alternative way to initialize the starting value for a
variable.

To start the solution procedure, Eureka requires a starting value for
every variable. If a variable is not given an explicit initialization in
the problem file, it is initialized with the default value, 1.

If some variables in the equation file are not explicitly initialized
in the file, and if you include initval in the file, Eureka will use the
initval value to initialize those variables.

The Equation File: Syntax, Directives, and Functions 91

listdefault

Syntax $ listdefault = <yes or no>

Default No

Function Lets you override the default values for the List function.

Description If you set listdefault to no, a series of prompts appears in response
to the List command. These prompts allow you to override the
default values set for List.

If you set listdefault to yes, Eureka automatically plugs in the
default values for list_first, list_inc, and list_num, and generates
the corresponding table.

Note: list_first, list_inc, and list num are not directives. See
Chapter 4 under the Settings menu.

max(imize)

Syntax $ max (variable)

Default None

Function Maximizes the specified variable.

Description When the max directive is in an equation file and you select Solve,

92

Eureka finds a maximum for the specified variable. For example,
with the following in an equation file

y=+-X2-4+%x+3
$ max (y)

Eureka will find the value of x that yields the maximum value of
y. Without a max directive, Eureka solves for the roots of y: the
value(s) of x that yield a zero value for y [—2 + sqrt(7)].

You can use the max directive only once in an equation file, and
you cannot use both max and min in the same file.

Eureka: The Solver Owner’'s Handbook

maxtime

Syntax $ maxtime = (positive integer)

Default 200

Function Sets a limit, in seconds, to the amount of time Eureka spends solv-
ing an equation.

Description When you place the maxtime directive in an equation file, you set a
limit to the amount of time Eureka spends seeking a solution.

min(imize)

Syntax $ min (variable)

Default None

Function Minimizes the specified variable.

Description When you place the min directive in an equation file, it supersedes
the Solve command (which searches for roots —zeroes —of equa-
tions). Eureka will find a minimum value for the specified variable
or function rather than a solution for all variables that make equa-
tions in the file equal zero.

For example, with the following in an equation file

y=x2+4%x+3

$ min (y)

Eureka will find the value for x that yields the minimum value of
y. Without the min directive, Eureka would solve for those values of
x which makey = 0 (—3 and —1).

You can use the min directive only once in an equation file, and
you cannot use both max and min in the same file.

penalty

Syntax $ penalty = <any positive real>

Default 30

Function Sets a weight (relative importance) for the constraints affecting an
equation.

Description Eureka uses the value of penalty to calculate the effect of the con-

straints in an equation file. Changing the default affects the relative
strength of the constraint criteria.

The Equation File: Syntax, Directives, and Functions 93

plotdefault

Syntax $ plotdefault = <yes or no>

Default No

Function Lets you override the default values for the Plot command.

Description If you set plotdefault to no, a series of prompts appears in response
to the Plot command, allowing you to override the default values
set for Plot.

If you set plotdefault to yes, Eureka automatically plugs in the
default values for plot_left and plot_right, and generates the corre-
sponding plot. The default values for plot_left and plot_right are
—2 and 10, respectively.

Note: plot_left and plot_right are not directives. See Chapter 4,
page 72 for more information.

radius

Syntax $ radius = <none, or any positive real number>

Default None

Function Sets a limit to the range over which Eureka seeks a solution.

Description If you set radius to no, Eureka will search an indefinite range of
numbers, limited only by its internal constraints, accuracy, and the
maxtime directive.

If you set radius to a real number, Eureka will only search a
range of numbers that are equal to or less than the number speci-
fied.

rootsign

Syntax $ rootsign = <pos or neg>

Default Pos

Function Toggles between displaying the roots of an even-powered number
as negative or positive numbers.

Description If you set rootsign to pos, Eureka displays roots of even powers as
all positive values; if you set it to neg, Eureka displays the roots as
all negative values.

94 Eureka: The Solver Owner’s Handbook

settings

Syntax $ settings
<directive>
<directive>
$ en<‘1

Default None

Function Allows you to enter several directives in a series without having to
set each one off with a $ symbol.

Description You can think of the settings directive as the first, or opening, step
in a three-step process for changing multiple settings.

The second step is to type in the directives for the settings that
are changing (without typing in the initial $ symbol each time).

The final step is to close the change session by typing in the end
directive.

If you have a group of frequently used settings, you can store
them in a separate file. You can then introduce this separate Set-
tings file into an equation file with the include directive.

Refer to the description of the include directive in this chapter
for more information.

solve

Syntax $ solve (variable)

Default All

Function Specifies which variable in an equation file Eureka will solve for.
Description By default, Eureka solves for all variables in an equation file. How-

ever, you can use the solve directive to tell Eureka to solve for only
the designated variable and ignore the rest.

The Equation File: Syntax, Directives, and Functions 95

substlevel

Syntax
Default

Function

Description

syntax

$ substlevel = <0, 1, 2, 3, 4, 5, or 6>
6

Sets the maximum amount of internal variable substitutions
Eureka can perform when solving an equation file.

The default, 6, allows Eureka to make the maximum number of
substitutions during a Solve process. Substitution level 5 allows
Eureka to make fewer substitutions; level 4 allows less than level 5,
and so on down to substitution level 0, which allows no substitu-
tions.

Syntax
Default

Function

Description

96

$ syntax = <0, 1, or 2>
0

Specifies one of three possible options for the syntax of arithmetic
expressions used in the equation file.
There are three options for the syntax of arithmetic expressions:

0: The default syntax, which requires the * symbol to represent
multiplication. The default syntax allows scientific notation.

1: Does not allow scientific notation, because a number placed
before a variable is treated as a multiplier.

2: Does not allow scientific notation, for the same reason as syn-
tax level 1. Also restricts variables to one letter each, rather than
the default choice of up to 60 alphanumeric characters.

Examples of each syntax level

Syntax = 0: The default syntax is the standard used throughout
this manual.

Syntax = 1: Scientific notation (such as 2.3¢ — 4 to represent
0.00023) is not allowed because Eureka interprets it as 2.3 X (a
variable called ¢) — 4. A number before a variable name is inter-
preted as a multiplier.

Eureka: The Solver Owner’'s Handbook

For example, when syntax = 1, Eureka treats the expression

2.7 water

as an abbreviation for

2.7 * water

As when syntax = 0, Eureka ignores spaces. However, the pro-
gram still treats a character string (such as dog34) as a variable
name,

Syntax = 2: Variables are restricted to a single letter. All juxtapo-
sitions of numbers and variables are treated as products.

For example, a problem to find the intersection of two hyper-
bolas in the x — y plane could be formulated as:

$ syntax = 2

X2 — 4xy + 3y2 =7

2xy — by +3 =10

{ exact solution is x = 2, y = 3 }

When syntax = 2, variable names must be distinct from function
names; otherwise, an expression such as f(x + 1) is ambiguous
(i-e., is f a variable multiplying x + 1, or is it a function of x + 17).

If the equation file contains a user-defined function, the function
definition must precede the first use of the function.

Refer to the section “Notes On Equation File Syntax” (page 82)
for more information about writing equations using the default syn-
tax level.

units (conversion)

Syntax

Default
Function

Description

$ units

<unitl> -> <unit2> : <formula>

$ en&

No automatic conversion
Defines unit conversions.

Eureka can automatically associate units to variables, and then
convert the values of the variables to other units in the Solution
window.

The Equation File: Syntax, Directives, and Functions 97

98

For example, the variable dist can appear in the equation file
expressed in feet, but can be converted to meters and yards when
Eureka solves for its value.

The units conversion directive lets you define as many unit con-
versions as needed. For example,

$ units

cm ~> in : x/2.54

F. =>C. : (x - 32) *5/9

feet -> yds : x/3

km/hr -> mi/hr : 0.6214 * x

$ end

Each line after $ units gives a formula for converting from one
unit of measurement to another.

The first formula converts from centimeters (cm) to inches (in); x
is simply a dummy variable. The formula states that if x is in centi-
meters, dividing x by 2.54 will convert it from centimeters to
inches.

The names for the units can be any sequence of characters,
including punctuation and math symbols, as long as the symbol
does not include a hyphen (-) or a colon (:). Eureka ignores blanks.
The syntax for expressions is the standard Eureka syntax.

You associate units with the variables in the initialization state-
ment. For example, the initialization

dist := 122.7 [cm]
initializes the variable dist to 122.7 centimeters. When solving for
dist, Eureka first gives the solution in centimeters, then converts
the value in centimeters to any other units for which a units con-
version directive exists.

Here is a typical solution for this example:

110.0235 cm
43.3163 in

dist

Eureka can invert any simple unit conversion. If the equation
file contains the formula for converting from centimeters to inches,
it is not necessary to also give the formula for converting from
inches to centimeters.

Eureka: The Solver Owner’'s Handbook

Eureka Functions

Besides providing a wide variety of standard mathematical and special built-in
functions, Eureka also allows you to define and use your own functions. Most of the
built-in functions need little explanation; they are described in Appendix C. How-
ever, the financial functions require some in-depth explanation; they are discussed
in detail in this chapter. After the section about financial functions in this chapter,
we give an explanation of user-defined functions.

Financial Functions

Eureka has three functions for performing interest-rate calculations: fval, paymt,
and poval. :

These functions are designed for situations in which a person enters into a con-
tract by which a fixed sum is paid at regular intervals. We assume that money earns
interest at some fixed rate, with the interest compounded in each interval.

In general, there are five variables involved in these financial calculations:

n number of payment intervals
i interest rate per payment interval
poal present value of the contract

paymt payment at the end of each interval
fval future value of the contract

Given any four of these five variables, Eureka can solve for the fifth. The vari-
ables are related by the financial functions in the following ways:

pval = poal(i;n,paymtfoal)
paymt = paymt(in,pval foal)
Jval = foal(in,poal paymt)

n and i can be derived directly from the values of the other variables using Solve.

~ The Equation File: Syntax, Directives, and Functions 99

Variables

The number of payment intervals, n, is normally an integer, but it can be any
positive number.

If n is not an integer, there is a fractional period that is assumed to occur before
all other periods. Interest is compounded at the end of, but not during, the frac-
tional period. The finanmode directive can place the fractional period at the begin-
ning or end of the series.

i, the interest rate, should not be converted to a percentage rate.

For example, i = 0.12 if the interest rate is 12%. The interest is compounded at
the end of each payment interval.

Functions

pval, paymt, and fval all represent money that changes hands. By convention, the
number is positive for money received and negative for money paid out.

pual, the present value, is defined as the principal: the money received (loaned)
at the beginning of the contract. In the case of a home mortgage, pval is the price of
the home minus the down payment.

paymt, the payment, is the money received at the end of each payment interval.
If the person pays the money out, as with a home mortgage, paymt is a negative
amount.

fval, the future value, is the money received at the end of the contract. In the
case of a home mortgage, fval is either zero or a negative number that represents
the balloon payment.

Example
A typical use of the financial functions would be to compute the payments on a
mortgage.

For example, suppose a house costs $100,000; the interest rate is 12%; and the
mortgage is for a period of 30 years. Assume that the down payment is 10%, there is
no balloon payment, and payments and interest compounding are monthly.

Using paymt, the monthly payment can be calculated as follows:
paymt(0.12/12,30 x 12,90000,0)

where 0.12/12 is the monthly interest rate, 30 X 12 is the number of payments,
90000 is the amount of principal, and 0 is no balloon.

Note: The last argument would be non-zero only if there were a balloon payment
at the end of the 30 years.

100 Eureka: The Solver Owner’s Handbook

By default, Eureka assumes that payments are made at the end of each interval
rather than at the beginning. This is because the settings parameter finanmode has
the following default value:

finanmode = end

You can change this setting to begin either from the Options/Settings pull-down
menu or by directive in the equation file.

Because banks often have their own unique methods for computing interest
rates, Eureka’s built-in financial functions may vary slightly from any particular
bank’s methods.

User-defined Functions

Eureka deals primarily with variables and the relationships among them. It is often
convenient to think of variables as functions of one another, and Eureka does so
with its set of built-in functions.

You can add to Eureka’s set of functions by defining your own for a given equa-
tion file; these are known as user-defined functions. The following discussion
describes the relationship between variables and functions and then explains var-
ious aspects of user-defined functions.

Relationship of Variables and Functions in Eureka

Consider an equation with one or more variables in which it is possible to solve for
one variable in terms of the others. This solved variable could, in effect, be
expressed as a function of the other variables. However, to Eureka, it is still just a
variable.

For example, the function sin(x) + cos(x) can be maximized by maximizing f
where

f = sinfx) + cos(x)
Here, f can be conceived as a variable that happens to be related to x.
In another example, the equation
@ +y =25
might be transformed by Eureka internally to either
x = sqr{25 — y°)
or

y = sqrt(25 — x%)

The Equation File: Syntax, Directives, and Functions o]

In other words, x can be considered as a function of y, or y as a function of x. To a
user, however, x and y are simply related variables.

Eureka recognizes two types of functions:

* built-in functions (such as cos and sin)

» user-defined functions

" Built-in functions have no values unless arguments are supplied, and it makes no
sense for Eureka to solve for them.

User-defined functions describe configurations of variables that you wish to cap-
ture in shorthand fashion.

Note: User-defined functions affect only the equation files in which they are
defined.

Writing User-defined Functions

The symbol : = flags a user-defined function as in

trig(x) := sin(x) + cos(x)

This example defines a new function called trig that acts in the same way as a
built-in function. The variable x is a dummy variable that merely serves to define

the function and is unrelated to any other x that may occur elsewhere in the equa-
tion file.

When an equation file contains this user-defined function, trig(x), you can insert
trig(7)
or
trig{a * b + 3)
into an equation rather than inserting the lengthier expressions
(sin(7) + cos(7))
or
(sin(a * b + 3) + cos(a * b + 3))
The lexical rules regarding function names are the same as those for variable
names (begin with a letter or certain special characters, limited to 60 alphanumeric
characters). Although you can give the same name to a variable and a function, this

practice is not recommended. You can define a function of several variables (or
even no variables).

102 . Eureka: The Solver Owner’s Handbook

For instance, defining a function by

gas(x,y) :=xty*z+10
causes the expression 2 * gas(3,¢ + 1) to be treated as

2* (3+(a+1)*z+10)

For most equation solving purposes, user-defined functions are essentially edit-
ing conveniences. However, several Eureka features require user-defined func-
tions:

 making plots or tables

* finding roots of polynomials

+ solving differential calculus problems

Error Messages

When writing user-defined functions, keep in mind that Eureka returns an error if:
You use a function without defining it somewhere in the equation file.
2. You redefine a function in the equation file.

3. A function calls for a certain number of arguments, but you use it with a
different number of arguments than those defined, as in

f(x,y,z) := x2 -y2+ 22
f(a,b) = 100

4. You define a function in a circular way, as in

f(x) := x°2 + 3 * g(x)
g(x) := f(x +1) -7 *x

The Equation File: Syntax, Directives, and Functions 103

104 Eureka: The Solver Owner’s Handbook

6

Worked Examples

This chapter provides several worked problems. These examples are designed to
demonstrate Eureka’s power in solving a variety of mathematical problems. The
problems are contained on your distribution disk under the following file names:

Problem 1 Quick Demo

Problem 2 Loan Payoff

Problem 3 Ladders in an Alley

Problem 4 Distribution of Line Charges
Problem 5 Radioactive Decay

Problem 6 Least-Squares Fit

Problem 7 Motion of a Projectile

Problem 8 Charged Masses

Problem 9 Using the Poly Function
Problem 10 Maximization (House Design)
Problem 11 Maximization (Linear Program)
Problem 12 Equity in a House

Problem 13 Probability in a Card Game

CLASSICS.EKA,
DERINT.EKA,
MAXMIN.EKA,
COMPLEX.EKA

CARLOAN.EKA
LADDERS.EKA
LINECHG.EKA
DECAY.EKA
LSQRFIT.EKA
PROJCTL.EKA
MASSCHG.EKA
POLYNOM.EKA
HOUSE.EKA
LINPROG.EKA
EQUITY.EKA
CARDS.EKA

105

Problem 14 Income Distribution (Integ Function) INTEG.EKA

Problem 15 Chemical Calculations CHEMBAL.EKA,
CHEMEQILEKA,
CHEMEQ2.EKA,
CHEMEQ3.EKA

The first series of problems demonstrate Eureka’s basic features:

* solving systems of nonlinear (and linear) equations

* solving and plotting user-defined functions

* calculating a least-squares fit

» solving transcendental functions

Later problems incorporate some of Eureka’s special capabilities and built-in
functions:

* maximizations and minimizations

* definite integrals

* factorials

« polynomial solutions

« financial calculations

If you want to get an idea of how to set up and solve problems with Eureka, or if
you want to see how we have incorporated some of Eureka’s capabilities and fea-
tures into an assortment of problems, we suggest you look over and study some or
all of the examples in this chapter. They include a sampling from a variety of fields

and topics: chemistry, finance, probability, physics, electrostatics, and economics, to
name a few.

Each worked problem consists of:

* a statement of the problem
« an explanation of the model equations

* a copy of the report generated after Eureka solves the problem

All of the reports contain the equation file and the contents of Eureka’s Solution
window for the problem. Some reports also include the contents of Eureka’s Verify
window, comparing the solution values with the original equations and constraints.
Other reports include a two-column table (generated with Eureka’s Graph/List
command) that compares values of a specified function from the equation file with
the function variable.

Remember — Eureka: The Solver is designed to help you solve a whole world of
mathematical problems: This chapter presents but a small sample of what Eureka
can do!

106 .) " Eureka: The Solver Owner's Handbook

Problem 1
A Quick Demonstration of Eureka’s
Mathematical Capabilities

This problem (CLASSICS.EKA, DERINT.EKA, MAXMIN.EKA, and COM-
PLEX.EKA on the distribution disk) highlights some of Eureka’s capabilities. It
demonstrates how Eureka:

* quickly solves basic mathematical identities

* calculates and plots definite integrals and derivatives

* solves integral problems

* maximizes or minimizes functions over a given range

* solves for complex variables
This example is broken into four sets of problems, covering four topics:

* classic identities
* integrals and derivatives
¢ minimizations and maximizations

* complex variables

In the first set of problems, Classic Identities, Eureka solves a few trigonometric
and transcendental equations. You already know the solutions to the equations; our
purpose in demonstrating how Eureka handles them is to familiarize you with how
fast (and how well) the equation solver works.

The second set of problems, Derivatives and Integrals, illustrates how you use
Eureka’s built-in integ and deriv functions, and shows how to set up user-defined
functions (delimited with the := symbol) so Eureka can plot them.

Maximizations and Minimizations, the third set of problems, demonstrates how
to incorporate Eureka’s max and min directives in your equation files. Maximiza-
tions (and minimizations) are not an easy task for a computer program, especially
when the variables are subject to certain constraints. However, as you will see in
this set of problems, Eureka solves them with ease.

The final set of problems, Complex Variables, shows how Eureka solves for both
the real (re) and imaginary (im) part of problems such as

v+ 1 = 0ande™™ = theta.

Worked Examples 107

Statement of the Problem

Suppose you were given the following (admittedly simple) problems to solve with a
hand-held calculator. How long would it take you to solve for the given variables,
verify that your answers were appropriate, and plot the functions requested?

Classic Identities

1

Solve for x where In(x) = 1; plot the function for
0l <x<5

Solve for y where sin(y/2) = 1
Solve for z where tan(z/4) = 1

Plot F(a) = sin(a)/a for —10 < a < 10
Solve for j where F(j) = 1/2

Derivatives and Integrals

5.

Given the following functions A, B, C, and D:
Ax) = (cos(x))*

B(x) = sin(x)

Clx) = cos(x/2)

D(x) = Alx) + B(x) + Cx)

o

® £ o

lns]

Plot D(x) for —10 < x < 10

Calculate the integral of A(x) for0 < x < 5
Calculate the integral of D(x) for 0 < x < 5
Find a zero of dA(x)/dx

Find a zero of dB(x)/dx

Find a zero of dC(x)/dx

Find two zeroes of dD(x)/dx: one negative, one non-negative

Maximizations and Minimizations

6.

108

For the function F(a) in problem 4:

a.

b. Find the maximum value of F(a) over the range —10 < a < —4

Find the minimum value of F(g) over the range 0.1 < a < 10

Eureka: The Solver Owner's Handbook

7. At what point x > 0 does the integral of [sin(a) da] reach the value 1?

8. Maximization: at what point x > 0 does the integral of [sin(a) da] reach a
maximum value?

9. Maximization: at what point ¢ on the range — 4 to 4 does sin(c) reach a maxi-
mum? ‘
10. Minimization: at what point a on the range — 4 to 4 does sin(a) reach a mini-
mum?
11. Plot sin(g) over the range —4 < a < 4

Complex Variables

12. Solve for the variables x, y, and theta in the following equations:

=
y¥+1=0
exp(x X pi) = theta (pi = 3.1415926)

Would you look forward to solving, evaluating and plotting these functions with
only the aid of a calculator and a pencil? Probably not.

Not only can Eureka solve for the given variables; the equation solver can also
plot the requested functions and evaluate the solutions (flagging any that don’t
satisfy the given constraints). Not only that, Eureka will generate complete, for-
matted written reports giving the original problems, the solutions, the evaluations
and the plots. And you never have to lift a pencil.

Equations

For the given problems, Eureka will solve these corresponding equations:

1. Lx):= In()
L(A) = 1.00000
2. S(x):= sin(x/2.0)
S(B) = 1.00000
3. T := tan(x/4.0)
T(C) = 1.00000
4. F(x):= sin(x)/x
F(j1) = 0.50000 : j1 < 0
F(j2) = 0.50000: 72 > 0

Worked Examples 109

10.

110

Afx) := (cos(x))’

B(x) : = sin(x)

Clx) := cos(x/2)

D(x) := Ax) + B(x) + Cx)
D(ddl) = 0:0 <ddl < 10
D(dd2) = 0:dd2 .= -1
Ap(x) := deriv((cos(x)y’, x)
Bp(x) : = deriv(sin(x), x)
Cplx) : = deriv(cos(x/2), x)
Dp(x) : = deriv(D(x), x)
Ap(ap) = 0

Bp(bp) = 0

Cplcp) = 0

Dp(dp) = 0

Dintl = integ(D(x),x,0,5)
Aintl = integ(A(x),x,0,5)

Eureka will solve for ap, bp, cp, dp, dd1, dd2, Aintl, and Dintl. Those equa-
tions containing the : = symbol are “user-defined” functions; refer to Chap-
ter 5 for more information about these and other special Eureka functions.

F(z) := sin(z)/z

$ min (K)
K = Fz)
0l <z<10

$ max (L)

L = F@)

-10<z< —4

1.000 = integ(sin(a), a, 0, w/2)
w2 =x

$ max (I)

I = MaxInt(x)

MaxInt(a) : = integ(sin(a), a, 0, x)
$ max (z)

z = S(c)

S(c) : = sin{c)

—-4<c<4

d=2

$ min (y)
y = S()
S(a) : = sin(a)

Eureka: The Solver Owner’s Handbook

-4 <qg<4

b=2a
1. S(a) := sin(a)
2. ©= -1
y2+1=0

exp(x X pi) = theta : pi = 3.1415926

To solve these problems, select one of the equation files (use File/Load from the
main menu), then select Solve.

Equation Files and Solutions

The print-outs that follow show the equation files and Eureka’s solutions for the
examples in this problem.

Graphing the Functions

Eureka also offers the ability to plot functions of one variable. To graph any one of
the functions in these problems:

« Solve the equation file.

« Select the Graph option from the main menu.

* From the Graph menu, choose Plot.

* Select one function from the mini-menu listing of all user-defined functions.

+ Enter values for the left and right x axis endpoints.

Eureka will automatically plot the function.

Generating Reports

You can also direct Eureka to generate your own written reports; after solving an
equation file (also evaluating the solutions, if you choose) and plotting a function,
select Report from the main menu. Eureka will place the report on screen, write it
to a disk file, or send it directly to your printer, as you choose.

Note: We used Borland’s SideKick to capture the “zoomed” plots and insert
them in the reports that follow.

Worked Examples i

Kkkhkhkkhkkhhkkkkkhhkhkhkkkkkkkhhhkhhkhkkkkhkhdhrdhkohkkkkkkhkhkrkkkkkkdkhhkkk

Eureka: The Solver, Version 1.0
Thursday February 12, 1987, 10:13 am.
Name of input file: CLASSICS.EKA

dkdkkkkkhkkhkhhkkhkkkhhhhkhkhkhhkhhdhhhkhkkhhrhhhkhkhkhhhhhhhhhdkkhhhhhhkhhhir

; These examples show how Eureka quickly
; solves some classic problems

L(x) := In(x)
L(A) = 1.00000
; plot L(x) for 0.1 < x <5

S(x) := sin(x/2.0)
S(B) = 1.00000

T(x) := tan(x/4.0)
T(C) = 1.00000

; After solving this equation file, plot
; the function F(x) for -10 < x < 10

F(x) :
F(31)
F(j2)

hkkkhkkkkkkhkhkkkhhkhkhhkhhkhhhkhkhkhkkkkhkhkhhkhkhkhhkhhkkhkhkkhkkkkkkkkk

sin(x)/x
0.50000 : j1 <O
0.50000 : j2 > 0

Solution:

Variables Values

A = 2.7182818
B = 3.1524423
C = 3.1416042
jl = -1.8954943
j2 = 1.8954943

Maximum error is .000014714291

kkkhkhkkhkkkhhhhhkhkhhkhhhhkhkhkhkhhd Ak kAR AT RARIF AR AR AR A A I d Ak khhkhhddrdk bk bk khhrd

112 Eureka: The Solver Owner's Handbook

1.871

.180.° 5.80

-2.58

AEEKKKIKAKKKRAKIAK ARk bk ARk khhhkbhkhhhhhhhhhhkrkkhkkkkhhkkkhkkhhkhkdirkikx

18.2¢

-38.8 L
-18.2

kkkkkkkkhkkhkkhhkhkkkhkkhkkkkhkhkhkhkkdhkhkhkhhkhkkkkkkkhhrkkhkkhkhhhkdhdhhkhkhkr

Worked Examples 13

-.289

s I e e s e s e e e e s s sl s e s

-.31

KAKKKKRAKRKKK KKK KRKRERKKRIKRKRRARRRRKRRAK LRI IR KRR KR Ik IhRRkRhkhkhhhhhhihkhkh

14

Eureka: The Solver Owner's Handbook

TRKKRKKKEARKKRKKRIKK KK KKK RRRRKKKRARAAAR IR IRAI AR IR AR KRR b kkkhhkkkkkdkdk

Eureka: The Solver, Version 1.0
Thursday February 12, 1987, 11:23 am.
Name of input file: DERINT.EKA

khkkkkkkhkhkkkhkkkkhhhkhkhhkhkkkhkhhkhkhkkhkkkhkkkhkhkkkhkhkkhkhkkkhkkkhkkkkkkkhkkkk

; These problems demonstrate how to use
; Eureka's INTEG and DERIV functions, and
; include examples of plotting the

functions
A(x) := (cos(x))"2
B(x) := sin(x)
C(x) := cos(x/2)
D(x) := A(x) + B(x) + C(x)
D(dd1l) = 0 : 0 < ddl < 10
D(dd2) = 0 : dd2 := -1
Ap(x) := deriv((cos(x))"2, x)
Bp(x) := deriv(sin(x), x)
Cp(x) := deriv(cos(x/2), x)
Dp(x) := deriv(D(x), x)
Ap(ap) = 0
Bp(bp) = 0
Cp(cp) = 0
Dp(dp) = O
Dintl = integ(D(x),x,0,5)
Aintl = integ(A(x),x,0,5)

dhkhkkkhkhhkkkkkhkhkkkkhkkhkhkhhkkhhkhkkhkkkhkkhkhhkkhkkhkhkhhkkkkkkkhhkkkkkkkhkdk

Sotution:

Variables Values

Aintl = 2.3639947
ap = 1.5707964
bp = 1.5707964
cp = -1.8097622e-10
dd1 = 3.6612084
dd2 = -2.2077911
Dintl = 4.2772768
dp = -349.75174

Maximum error is .067092381

Worked Examples

15

e T T T T T T

Evaluation of formulas:

Formulas Values

D(dd1) = -6.1014156e-08

0 = .00000000
difference (error) = -6.1014156e-08
0 = .00000000

dd1l = 3.6612084
difference = -3.6612084

10 = 10.000000

ddl = 3.6612084
difference = -6.3387916

D(dd2) = 4.0720587e-08

0 = .00000000
difference (error) = 4.0720587e-08
dd2 = -2.2077911
Ap(ap) = 8.7422780e-08

0 = .00000000

difference (error) = 8.7422780e-08

Bp (bp) = -4,3711390e-08

0 = .00000000
difference (error) = -4.3711390e-08
Cp(cp) = 4.5244055e-11

0 = .00000000
difference (error) = 4.5244055e-11
Dp (dp) = -.067092381

0 = .00000000
difference (error) = -.067092381
Dintl = 4.2772768
integ(D(x),X... = 4.2772768
difference = .00000000

Aintl = 2.3639947
integ(A(x),x... = 2.3639947
difference = .00000000

Maximum error is .067092381

16

Eureka: The Solver Owner’'s Handbook

KRKKKKKAKRKKKAKRIRRK AR IAAR KRR EAK AR KK A KRR T KkI R kR Xk hkhhhhkhkkhhkkhhkkhkkhkkkkk

»
2.56
. 'o_
e . .
- - .- -) 14 .t hd
e) ._.. o : +
-18.8 ° . * * 10.8
. ...
-1.92

khkkkkkkkkkkkdhkkkkkhkkhkkhkhkkhhkkkkhkkhkkhkkkhkkhkhkkkhkkkkkhkkdkkhkki

2.411
. ., . '_ ...
- S R . .
) .. . R . s
: o'o_o. " . ", seee’
. . [
] - - T
~-18.8. . .o . - 10.8
-2.81

Khkkkkkhkkkkkkkkkkkkkhkkkhkkkhkkhkhkhkhkkkhkhkhkkkkkkkhkhkkhhkkkkkkkhkkkk

Worked Examples 17

kkkkkkhkkhkhkhkhkkkkhhkhhkkkrkkhhhhkhkrkkkkhkhkhkkkhkdhhhhrhrhkrdxrhdhhkkkkkdhkx

Eureka: The Solver, Version 1.0
Thursday February 12, 1987, 11:48 am.
Name of input file: MAXMIN.EKA

kkkkkkkhkkkhhhhhkkkkkhhhkhkkkdhhkhhkkhhhhhkhkkhkhhkkhkhkkkkkhkkhkkkkkkhkkx

These examples illustrate how to use
Eureka's $max and $min directives to
maximize and minimize any variable that
is defined to be the result of a given
function. One of these examples also
demonstrates how to solve an integral
equation with Eureka.

NOTE: To solve any one of these examples,
remove the ";" symbol at the beginning of
each equation line for that example.
Eureka will only solve for ONE $min or
$max in an equation file. To solve a
different example, first reinsert the ";"
symbols from the previously-solved
example.

Part 1: A well-known example:
F(z) := sin(z)/z

-

-

Problem 1-a:

; $min (K)

: K = F(z)
:0.1<z<10
; Problem 1-b:
i § max (L)

i L= F(2)

; =10 <z < -4

~

Part 2: Integral of Sin(x) dx

Problem 2-a:

Solving an integral equation: at what
point x > 0 does the integral of
[sin(a) da] reach the value 1?

(Let w/2 equal x.)

~e we ms we W

; 1.000 = integ(sin(a), a, 0, w/2)

w/2 = x

Problem 2-b:

Maximization: at what point x > O does
the integral of [sin(a) da] reach a
maximum value?

.. we we wo

$max (I)
I = MaxInt(a)
MaxInt(a) := integ(sin(a), a, 0, x)

~. me e

Part 3: Max and Min of Sin(x)

.

118 Eureka: The Solver Owner’s Handbook

Problem 3-a:

Maximization: at what point ¢ on the
range -4 to 4 does sin(c) reach a
maximum? (Note: The function S(c) is
included for plotting purposes - Eureka
does not need it to solve for ¢ or z.)

~e we me we we =o

$max (z2)

z = S(c)

S(c) := sin(c)
-4 <c<4

d = 2*c

~e we me we me

Problem 3-b:

Minimization: at what point a on the
range -4 to 4 does sin(a) reach a
minimum? (Note: The function S(a) is
included for plotting purposes - Eureka
does not need it to solve for a or y.)

.o we we w0 we we

; $min (y)

iy = S(a)

; S(a) := sin(a)
s -4 <ac<4

; b = 2%a

khkkkkkkkhhhkkhkkhkhhkhhkhkkhkkhhhkhhkhkkhhkhhhhhkhhhkhkkhkhkkkkkkkkkhkkhkrkhkk

Solution: (1-a)

Variables Values

K = -.21723363
z = 4.4934066
Confidence level = 98.9%

A1l constraints satisfied.

KEKKKRKK A KKK R IR I ARKIRRhhhhhkhkhkkkkhkkdhrkkkhhrrhkhkhhkdhkkkkkhkhhhhhkhkd

1.86}
. .' - o« .{_
“19.8 . ° . 1w
T 289 |

Fhkkkkkkhkhkkkhhhkhhkhkhkhhhhhhkhkrrhhdhbhdhhkhkhkkdhkhkkkkbkhkkdkkkhhhdhhix

Worked Examples

119

1.86}
-.
L] L]
- ‘.
PR, L] L 3
.‘. ... - L]
. " . . . 18.8-
.. .. L -

-.311
kkkkkkkkkkkhkkkkkhkkkhkkhkkkkkkhkhkhkkkhkkkhkhkkkkkhkkkkkhkhkkkkkkkkkkkkkkkikkk
Solution: (2-a)

Variables Values
w = 3.1415882
X = 1.5707941

Maximum error is 2.2415074e-06

kkkkkkkkkkkkhkkhhhkhhkhkhhkhkkhdhhkkkkhhhhkhhkhhkhkkkkkhkhkhhkhkrhrhrkdhhxk

Evaluation of formulas:
Formulas Values
1.000 1.0000000

integ(sin(a)... .99999776
difference (error) = 2.2415074e-06

w/2 = 1.5707941
X = 1.5707941
difference = .00000000

Maximum error is 2.2415074e-06

kkkkkkkkkhhkhkhkhkkhkkkdkkhkhhhkkdkhkhhkdhdkkhhkhhkdkkhhkkkkhkhkkkhkhkkkdkkhi

120 Eureka: The Solver Owner's Handbook

Solution: (2-b)

Variables Values

1 2.0000000

3.1415927

X

Confidence level = 100.0%
A1l constraints satisfied.

dhkkkkkkkkkhkkRkkkhkhhhkkhhhkhrkkhrkkdhkdkkikhkkkkkkkhkhkdkhdrkhhkk kdddkhkkhkkk ik

Solution: (3-a)

Variables Values

c = 1.5707963
d = 3.1415927
z = 1.0000000
Confidence level = 98.7%

A1l constraints satisfied.

khkkkkkhkkkkhkkkhhhhkhhhkhhkkhkhkhkhkkkhkkhhkkkhkhhkkhhkhkkkhhkhkkkhkhkkkkkrkrk

S

1.18¢1

-1.18

—t
4.9.

R R L R s e L e et S e e s e s et e st s

Solution: (3-b)

Variables Values

a = -1.5707963
b = -3.1415926
y = -1.00000000
Confidence level = 98.7%

A11 constraints satisfied.

kkkkkkkkhkkkhkkkhkkhhkhhkhkhhhkhhhhhkhkhhkhkkhhkhhkhkhhhkkkkkhhrkkkhhkkkrhkhkkd

Worked Examples

121

AEAAAKEXRAKRKA KA Ak Ak hhhhdhhhhkhhhkhkhbhkhdbhhhrdkrrkhkhkkrkhhhkkhhrkkkhkkkdk
Eureka: The Solver, Version 1.0

Thursday February 12, 1987, 1:35 pm.
Name of input file: COMPLEX.EKA

dhkkkkkkhkkhkhkhkkhkhkkkhhhhkhkhhdhhdhhkhhkhkhhkdhhhhdhhdkhkhkhdhhkhkhdhkhkkdk

; This example demonstrates how Eureka
; solves for complex variables

$ complex = yes

-1
1:=0

+ "

X2
y2
exp(x*pi) = theta
pi = 3.1415926

Fhkkkkhkkkkkkkdkdhhkhhhkkkdhkkhhkrhkdhhhdhrhdhhkhhhhrhkhkkhhhrkhkrhhkkhdrkrkkdkkrx

Solution:

Variables Values

re pi = 3.1415926
im pi = .00000000
re theta = -1.00000000
im theta = 5.3589793e-08
re x = 6.1257423e-17
im X = 1.0000000
re y = 1.0783729e-27
imy = 1.0000000

e e L e e e e e e e e e e e B S e s

122 Eureka: The Solver Owner's Handbook

Problem 2
Loan Payoff

This problem (CARLOAN.EKA on the distribution disk) demonstrates how to set
up equations for a financing situation and use Eureka’s Graph/List capability to
generate a list of function values vs. the variable, time.

Statement of the Problem

The car you purchased cost $10,900. When you bought it, you made a down pay-
ment of $2,900 and financed the rest ($8,000) for 48 months at 13.5% annually.
Now it is a year and a half later, and you are thinking about buying a new car.

* How much would it cost to pay off the loan?

« How long should you continue to make payments?

These questions can be answered by a few mathematical calculations. To start
with, define some terms:

Pay = periodic payment

Int = interest per period

Prin = principal amount borrowed

ntot = the total number of periods for the original loan

n = the number of periods actually paid before payoff

FofP = the future value of the principal at month n, given a present value

FofA = the future value of a payment series at month n, given a periodic
payment

Using these terms, you first need to calculate the original payment. You could
use the built-in function paymt, but this time you are going to use the actual
mathematical formula to see how it is done.

Once you know the monthly payment, you need to find the remainder of the
principal at a given month, then subtract the value of the sum of remaining pay-
ments.

To do this, use the time at which you borrowed the money as a reference point.
From this point, find the future value of the principal (FofP) at the time of the
payoff and the future value of the payment series (FofA) at the time of the payoff.
After subtracting FofA from FofP, you have the payoff amount.

By making the formula for PayOff a function of n, you can generate a list of 20
possible payoff points with the Eureka Graph/List function. This can help you
make your decision.

Worked Examples 123

Equations

The first step when setting up the equations for this problem is to define the
variables and assign values to them. The variables are:

Monthly interest (IntM) is 13.5 annual percentagé rate divided by 12 months per
year:

IntM = (13.5/100)/12 = 0.01125

Principal, the amount borrowed:

Prin = 8,000.00
Total number of payments for the loan:
ntot = 48

Monthly payment (to be calculated from given variables):

PayM
The equations required for solving the two questions posed by this problem are:
Calculate the monthly payment:

PayM = Prin X IntM x (1 + IntM)™ ~ /(1 + IntM) —1)

Calculate the future value of the original loan amount at the specified time n,
where n indicates one of the 48 months:

FofP(n) := (Prin X (1 + IntM)")

Calculate the future value of the payments at the same specified month, n:
FofA(n) = (PayM X ((1 + IntM)" — 1)/IntM)

{Note that these two calculations are made from user-defined functions.)

Finally, for a given month, n, calculate the Payoff: What is the principal that
remains outstanding after the payment n?

PayOffin) := FofP(n) — FofA(n)

Equation File and Solution

The equation file and solution for this problem appear in the print-out that follows,
along with the table generated using Eureka’s Graph/List command. The table lists
the function, Payoff, vs. months 15 through 34.

124 Eureka: The Solver Owner's Handbook

KKK KKK A KA AAAKAAAAARKARAKRKRKIAARRA A A AREAAAAKRARARRR AR AR Rk hhhkhkkhk
Eureka: The Solver, Version 1.0

Thursday November 6, 1986, 5:47 am.

Name of input file: CARLOAN.EKA

P e T e T S T s e e S R s s e S et i

$ finansmooth = yes

IntM = .01125
Prin = 8000.00
ntot = 48

n = (1+IntM)"ntot

PayM = Prin * IntM * ((1+IntM)"ntot) / ((1+IntM)"ntot - 1)
FofP(n) := (Prin * (1+IntM)°n)

FofA(n) := (PayM * ((1+IntM)™n - 1) / IntM)

Pay0ff(n) := FofP(n) - FofA(n)

Kkkhkkhhkkkhkkhkkhkhkkhhkhkhkkkhkkkhkkhhkkhkhkkhkkkhhkhhkkkhkkhhkkkhhkhhkkhhkhhkhkk

Solution:

Variables Values

IntM = .011250000
ntot = 48.000000
PayM = 216.61058
Prin = 8000.0000
n = 1.7108410

kkkkhkkkkkkrkkkhkhkhkhkhkhhkkhhkkhkkkkkhkkkkhhkhhhkhhkkkkkkkkhikhkkkk

Worked Examples

125

List of function values.

n
15.000000
16.000000
17.000000
18.000000
19.000000
20.000000
21.000000
22.000000
23.000000
24.000000
25.000000
26.000000
27.000000
28.000000
29.000000
30.000000
31.000000
32.000000
33.000000
34.000000

PayOff(n)

5943,
5793.
5642.
5489.
5334,
5177.
5019.
4859.
4697.
4533.
4368.
4200.
4031.
3860.
3686.
3511.
3334.
3155.
2974.
2791.

7392
9957
5676
4359
5814
9849
6267
4869
5455
7823
1768
7082
3556
0977
9133
7804
6774
5819
4716
3239

FKRKKKKIKKKRKERRAKRAIRRKRA AR ARAIKRKK A AR kAR AR AR hFh I Ak Ak hhhkrkhkhhdhkhhhhd

126

Eureka: The Solver Owner's Handbook

Problem 3
Ladders in an Alley: Solving Simultaneous
Nonlinear Equations

This problem (LADDERS.EKA on the distribution disk) demonstrates Eureka’s
ability to quickly and accurately solve simultaneous nonlinear equations.

Statement of the Problem

You have two ladders, one 35 feet long, the other 45 feet long. You need to arrange
them in an alley between two skyscrapers so that they cross 10 feet above the
ground. How wide should the alley be?

Equations

First, assign variables to all the known and desired quantities:

width of the alley
height of the 45-foot ladder at the wall
height of the 35-foot ladder at the wall

= the point on the ground immediately below where the ladders meet.

1

x
a
b
h

Equation File and Solution

The print-out that follows shows the equation file and solution for this problem.

Notice the initialization values for the four variables. If you have a general idea
about the region where the solution(s) lie, it's a good idea to start Eureka off within
or close to that region. Eureka solves problems such as this one by iteration, getting
closer and closer to an error-free solution. However, the default value for all initial-
izations is 1.

When you are confident that the solution(s) are significantly larger (or smaller)
than 1, you can initialize the variables with some plausible values, then tell Eureka
to Solve. This way, Eureka will not spend a lot of time covering unproductive

ground.

Worked Examples 127

When you are confident that the solution(s) are significantly larger (or smaller)
than 1, you can initialize the variables with some plausible values, then tell Eureka

to Solve. This way, Eureka will not spend a lot of time covering unproductive
ground.

If Eureka’s first round of iterations produces an unsatisfactory solution, you can

use other techniques to get the program re-solving in a different region. These
other techniques are covered in Chapters 3 and 5 of this manual.

128 Eureka: The Solver Owner's Handbook

s s T e e e e e e e s e e s e e S s 2 TS

Eureka: The Solver, Version 1.0
Thursday November 6, 1986, 6:47 am.
Name of input file: LADDERS.EKA

hEARKRKRKRKAKRKRKKKhkIAIkkhkhhkhhhkhkhkkhhhhkhkhkhkkhkkhhkhkkhhkhhkkkkhkkkkkkk

; This example demonstrates how Eureka can solve
; a system of nonlinear equations iteratively, after
; you initialize the iteration.

; System of nonlinear equations:

X2 + a2 = 4572
X2 + b2 = 3572
y/10 = x/b
(x-y)/10 = x/a
; Initializations:
x := 10
y := 10
a := 20
b :=20
; constraints:
a>0
b>0
x>0
x>y
y>0

; Exact solutions are: x = 31.817459 , y = 21.818934
; and a = 31.822151 , b = 14,582500

kkkkhkhhkkkkkhkkhkkhkkhhkhkkkhkhhkkkkkhkkhkkkkhkkhhhkhkhkhkkkkhkkhkkhkhkhkkhkkhhkk
Solution:

Variables Values

a = 31.822151
b = 14.582500
X = 31.817459
y = 21.818934

Maximum error is 6.8212103e-13

kkkkkkkhhkkhkhkhkkhhhhkhkhkkhhkhkkkkkhhkhkhkkkhkhkkkhkhhkhkkrkkkkhkhhkkhk

Worked Examples 129

Problem 4
Distribution of Line Charges

This problem in electrostatics (LINECHG.EKA on the distribution disk) illus-
trates Eureka’s ability to solve several simultaneous nonlinear equations.

Statement of the Problem

A system of several parallel positive line charges is aligned along an axis within an
electric field so that the total force exerted on each line charge is zero.

As shown in Figure 6-1, a line charge is fixed at the origin, lying on the z axis.
Three free-line charges lie on the x — z plane (positive x) parallel to the first. The
electric field is constant in magnitude and aligned in the negative x direction. From
physics, you know that the force on a charge is proportional to the electric field and
like charges repel.

The problem is to distribute the line charges along the x axis so that the sum of
forces on each of the three free charges equals zero.

Iy
Y axis

v

Figure 6-1 Line Charges in Equilibrium
This problem requires you to solve a set of nonlinear equations. (An interesting

note: The same equations which govern this problem also apply to the distribution
of dislocations under uniform shear stress in the study of the fracture of solids.)

130 Eureka: The Solver Owner's Handbook

Equations

From basic electrostatic theory, you know that the electric field produced by a line
charge varies

* inversely with the first power of the distance from the line, and
* linearly with the charge density of the line

The field produced by a line charge at some point p (or infinitesimal length p)
has the form

E(linecharge) = 2l/r
where

I = charge density along the line (assumed to be invariant)
and
~ r = distance from point p to the line

The force F from a line charge at point p is the field at p multiplied by the probe’s
line charge density:

F=2rxl

In this example, you have an array of line charges. Each line charge produces a
field that affects all its neighbors; the line charge, in turn, is affected by all its
neighbors and the constant field, E(constant).

The force acting on any of the movable lines, Fi, is the sum of each other line’s

individual force acting on that line (where Xi — Xj = r({i — j)):

Fa =1X Ea(l) =1 x @Ql/rla — 0) + 2l/r@@a — b) + 2ljrla — ¢))
Fb =1 X Eb() =1 x @Qlrb — 0) + 2lprb — a) + 2lfrb — ¢))
Fc =1 X Ecl) =1 x @Qlric — 0) + 2lfric — a) + 2l/rc — b))

Fi = (sum[jnei, 0 < j < 3] 2I/X, — X)) — E(constant) X

for each infinitesimal length of the line (assuming each line has the same charge

density,).

To find the solution to this problem, derive a set of coupled equations that must
be solved if the force on each line charge is zero. Using the notation in Figure 6-1,
derive the following equations:

1/fa — b) + 1/@a — ¢) + 1/a = E(constant)/®
1/b — a) + 1/b — ¢) + 1/b = E(constant)/l’
1/c — a) + 1/c — b) + 1/c = E(constant)/’

For simplicity, select values for E(constant) and I such that E(constant)/l* = 1,
then solve the resulting set of equations.

Worked Examples 131

Equation File and Solution

The print-out that follows shows the equation file and solution for this problem.

Notice that although Eureka generates solutions for @, b, and ¢, the order of the
variables is not the same in the solution as it is in the equation file. This is because
the equations are symmetrical with respect to interchange of the variables, and
Eureka’s solution process happens to produce the given order.

132 Eureka: The Solver Owner’'s Handbook

TRIKKKKIERKKKRKKKRIKRKRRRK AR AR IRk A kA Ak AR Ak hhhhkhhhhhhhhhhkhkkhhkkkkhkdkhdhk

Eureka: The Solver, Version 1.0
Saturday November 8, 1986, 1:28 pm.
Name of input file: LINECHG.EKA

Kkkhkkhkhkhkdkhkkhkhhhhkkhhkkkrhkkkkkkhkkkhkhkkhhkhhhkhhkkhkhkhhhkhkkkkhhdhdhik

: This example demonstrates Eureka's ability to solve
; @ system of nonlinear equations. These equations

; represent the net force on each line charge in a

; system of 4 parallel, coplanar line charges aligned in
; an electric field.

1/(a-b) + 1/(a-c) + 1/a 1

1/(b-a) + 1/(b-c) + 1/b 1

1/(c-a) + 1/(c-b) + 1/c =1

L e e L e s e e T T e e e e I e T s et

Solution:

Variables Values

a = 3.8793852
b = 46791111
c = 1.6527036

Maximum error is -1.1102230e-15

khkkkkkkkkhhkhkkkhhkhhkkkhkkhkkkhhkhhkkkkkhhkhkkkhhhkhkrhhhhhkhhkhkhkrhdkdhhdhkx

Worked Examples

133

Problem 5
Radioactive Decay

In this problem (DECAY.EKA on the distribution disk), you use Eureka to solve a
transcendental function of time.

Statement of the Problem

Radioactive elements, such as uranium, decay according to an exponential law.
This means that the rate of decay is constant and proportional to the amount of the
material.

In the case of uranium-238, a given amount of uranium will decay into lighter
elements at a rate such that half of it will have decayed every 10 million years. If
100 kilograms of uranium-238 sits for 10 million years, at the end of that period
only 50 kilograms of radioactive material will remain. At the end of another 10
million years, 25 kilograms of radioactive uranium will be left.

This time period for the uranium to be reduced to half its original amount is
called the half-life. Given 100 kilograms of uranium-238, how much radioactive
material will remain after 1,000,000 years?

Equations

The rate of mass decrease as a function of time is proportional to the mass of
radioactive substance at that time. Symbolically, in terms of differential calculus,

dm/dt = —km

where
m = mass
t = time

k = proportionality constant

According to the laws of calculus, the only functions to satisfy this formula are of
the form m = a X exp(—k¢) where a is some constant. HalfLife and k are related
by the formula

k = In(2)/HalfLife

134 Eureka: The Solver Owner’s Handbook

Mathematically, the following formula gives the amount of a radioactive sub-
stance at any particular time:

Mass(time) = InitMass x 2. “m/He1fo
where

InitMass = initial mass (or weight) of the substance
Mass(years) = mass of the substance after a given time; in this case, years
HalfLife = half-life of the substance

Equation File and Solution

The print-out that follows shows the equation file and solution for this problem.

Because a user-defined function is entered for mass as a function of years, you
can use Eureka’s Graph/List capability to generate a list of the remaining radioac-
tive mass vs. time. This list, covering the period from 500,000 to 5,250,000 years
elapsed in increments of 250,000 years, completes the print-out.

Worked Examples 135

kkkkkkkkhkhkkhkkkkhkkhkkhhkkkhhkhkhkkhkhkhkhkhhkkhkhkkhkhkhkhkhhkkhkrkdhkhhkhkhkkhik

Eureka: The Solver, Version 1.0
Wednesday January 28, 1987, 11:30 am.
Name of input file: DECAY.EKA

kkkhkhkkhkrhhhkkhkhkkhkkhkhkhkhkhkrkhrkhkhkhkkkhkkhkkhkkhhkkhkhkhkhkikhkkhkhkkikk

This problem demonstrates how to solve a user-defined
transcendental function of time.

The problem is to calculate MassUnknwn, the mass of
100 kg Uranium 238 after one million years.

Mass(Years) := InitMass * 2 = (- Years / HalfLife)
InitMass = 100

HalfLife = 10 * 1le6

MassUnknwn = Mass(1e6)

hhkkkkhkkkhRkkkhkhhhkkhkhkkhkhkhhkhkhkkkhhkkhkkhkkhhkhkhkrhkkrikhkhhhhkhkk

Solution:

Variables Values

HalfLife = 10000000.
InitialMass = 100.00000
MassUnknwn = 93.303299

List of function values.

Mass
X Mass (x)

500000.00 96.593633
750000.00 94934212
1000000.0 93.303299
1250000.0 91.700404
1500000.0 90.125046
1750000.0 88.576752
2000000.0 87.055056
2250000.0 85.559503
2500000.0 84.089642
2750000.0 82.645032
3000000.0 81.225240
3250000.0 79.829839
3500000.0 78.458410
3750000.0 77.110541
4000000.0 75.785828
4250000.0 74.483873
4500000.0 73.204285
4750000.0 71.946679
5000000.0 70.710678
5250000.0 69.495911

R R Rt R R e L e e e e e e e e e e e e s T e T

136 Eureka: The Solver Owner's Handbook

Problem 6
Least-Squares Fit

This problem (LSQRFIT.EKA on the distribution disk) demonstrates how you can
direct Eureka to find values for the constants in a function so that the function
closely fits predetermined data points. You do this by limiting the program’s substi-
tution level (using the substlevel directive) during a Solve.

Statement of the Problem

You have a set of points (x,y) from empirical data, and you know that the data
ideally should fit a curve of the form

y = f) =

where A, B and N are constants. You need to determine those values for A, B, and N
that produce the best-fit curve for your data.

The data points are:

x, Y,
1 149
2 2.35
3 4.96
4 8.59
5 19.80

Equations

Normally, in the process of solving a problem, Eureka makes symbolic substitu-
tions in the equation file. However, you can limit the number of times the program
will substitute for terms in the file by adding a substlevel directive to the file.
Setting substlevel to 0 directs Eureka to make no substitutions; this is the tech-
nique you will use here.

In this problem, you need to tell Eureka three things:

« the general form of the equation
+ the data points (x,y)
* the level of substitution (none)

Worked Examples 137

This user-defined function represents the general form of the equation:
flx) = exp(Ax” + B)

These equations give Eureka the empirical data points with the y values given as
functions of x:

f1) = 149
f@) = 235
f(3) = 426
f4) = 859
f(5) = 19.80

This directive sets the level of substitution to zero:
$ substlevel = 0

For Eureka to successfully find a unique solution for the problem, the number of
equations (data points) must equal or exceed the number of unknown constants in
the user-defined equation. Notice that there are five equations (f{1), fi2), A3), fi4),
and f(5)) in this problem and three unknowns (A, B, and N).

If you do not set the substitution level to zero, Eureka will solve for those values
of the three unknowns (A, B and N) which satisfy the first three equations (f{1) =
149, f(2) = 2.35, and f(3) = 4.26) without looking at the equations for f(4) and

1)

With the substitution level at zero, Eureka looks at all the given equations
(fx) = y) and automatically minimizes the least-squares function F where

Fleg) = (&) =) + (&) = u)f + (fle) = 0
+ (fix) — y) + (flx) — y))
This function, F, represents the sum of the vertical (ordinate) distances of the
points (x_y) from the points (x(n), f(x(n)) on the plot of the sought function. Mini-

mizing this sum is equivalent to finding the best-fitting curve to match the plotted
data.

You could enter up to 20 data points into a problem of this type, although the
computations involved would make the Solve process quite lengthy. Ten data
points (or less, where possible) is a more practical limit.

138 ’ Eureka: The Solver Owner’s Handbook

Additional Techniques: Inputting Data From Another Program

This is the type of problem where you can make good use of Eureka’s ability to
solve problems created in another software environment. For example, if you have
a Turbo Basic program that generates the points x ,y used in this problem and
those point values are stored in two arrays, X(I) and Y(I), you can write a Turbo
Basic program that creates the Eureka equation file for this problem.

The following Turbo Basic program will create a file called PROBLEM and
write the data from the arrays into the file in a format suitable for Eureka to solve.

OPEN "0", 1, "PROBLEM"

PRINT #1, "$ substievel = O"

PRINT #1, "f(x) := exp(A * (x'N) + B)"

FORI=1T0 5

PRINT #1, using "\\#\ \##£.##"; "F("; X(I);"):="; Y(I)
NEXT 1

CLOSE #1

END

Equation File and Solution

The equation file, the solution, and a list of calculated values for this problem
appear in the print-out that follows.

Worked Examples 139

KkhkkhkkkhkhkhhhkhhkkhkkhkhhhhkRhkhhhkkrk kR AhRARA kR A Ik ARA AR bR Ak khkhhdhhkrdd

Eureka: The Solver, Version 1.0
Sunday November 9, 1986, 3:33 pm.
Name of input file: LSQRFIT.EKA

khkkkkkkkhkkhhhhkhkhkhkhkhhkhhkhhhkkhhhhkhhkhhkhkhkhkhhkhkkkkhkkhkkkkkk

; This example demonstrates Eureka's ability to find

; values for constants in a function that make the

; function best fit empirical data. Because the equation
; file includes a § substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of

; the required form) that best matches the points

i (x, f(x)) given.

; In this example, the function is
; f(x) := EXP(A * XN + B)
; where the ideal solution is A = 0.25, B = 0.15 and

iN=1.5
f(x) := EXP(A * X'N + B)
f(1) = 1.49
f(2) = 2.35
f(3) = 4.26
f(4) = 8.59
f(5) = 19.01

$ substlevel = 0
e s e e T e e e T T s 2T T e s
Solution:

Variables Values

A = .25247836
B = .14432763
N = 1.4951057

Maximum error is -.00011769096

S T L T e T T e e e T e T

List of function values.

X f(x)
.00000000 1.1552625
1.0000000 1.4870674
2.0000000 2.3537876
3.0000000 4,2597419
4,0000000 8.5891228
5.0000000 19.010163
6.0000000 45,722423
7.0000000 118.62542
8.0000000 330.10583
9.0000000 980.76072
10.000000 3099.2752

E R s L e T T e e e e e 2 e T

140 Eureka: The Solver Owner's Handbook

Problem 7
Motion of a Projectile in a Gravitational Field

with Air Resistance

This is a problem in elementary dynamics (PROJCTL.EKA on the distribution
disk). You are to find the motion of a projectile in the atmosphere; air resistance and
gravity eventually bring the projectile to earth. This problem demonstrates
Eureka’s ability to solve transcendental functions as well as automatically convert
units of measurement.

Statement of the Problem

Consider a projectile that is fired into the air at an angle A with an initial velocity
Vinit.

If you neglect air resistance, it is easy to show that the path of the projectile is a
parabola. With air resistance, the path is a more complicated function (which you
derive below). Eventually, the projectile will hit the ground after it has travelled a
distance R (the range). In this problem, you find the range (R) and the total flight
time (T').

Equations

You will consider the x and y coordinates separately. The initial conditions are:

x(t) = Owhent = 0
y{t) = Owhent =0
x'(0) = Vinit(0)cos(A) = U
y'(0) = Vinit(0)sin(A) = V

where 1" and y” are the first time derivatives (that is, the velocity).
The equations of motion are:

mx" = —kmax' ‘
my" = —kmy' — mg (the y-deceleration)

The first of these equations states that the x-deceleration is proportional to the
velocity; this is due to air resistance.

The second equation states that the y-deceleration (remember, the projectile is
fired upwards) has two terms —an air resistance term and a gravitational term.

The constant k, the drag coefficient, measures the strength of the resistance; g is
the acceleration of gravity; and m is the mass of the projectile.

Worked Examples 141

These differential equations can each be solved by integrating twice; the results
are:

x(t) = (UK) x (1 —e™™)
y@®) = gt/k + (kV + @/k) x 1 —e™)

where U and V are the horizontal and vertical components, respectively, of the
projectile’s initial velocity, Vinit.

The total flight time, T, can be calculated from the equation for y() by noting
that y = 0 at the end of the flight; therefore, y(t=T) = 0. Solving for T, you get

y(T) = 0 = (@T/k) + (kV + g/k") x (1 — e™™)
T=—(kV + glgh) x (1 -e™)

The range, R, is the distance travelled in the x direction at t = T, so
R=(Uk x(1-¢e™
For typical ballistics problems involving artillery:

* drag coefficient = 0.1 X (1/sec)

« 1,000 ft/s < Vinit < 3,000 ft/s (30,000 cm/sec < Vinit < 90,000 cm/sec)
» acceleration of gravity = 980 cm/(sec’)

Let Vinit = 50,000 cm/sec, and let A = 45 degrees, then

U =V = 35355 cm/sec
T = ((0.1 x 35,355) + 980)/(980 x 0.1) X (1 — e~ ") sec
R = (35355/01) X (1 — ¢ *"cem

You will use Eureka to solve for Tand R.

Equation File and Solution

The print-out that follows shows the equation file and solution for this problem. To
simplify the equation for T, we show the calculation of an intermediate constant

c=(k*V+ag)/(g*Kk)
as a separate line. We also use Eureka’s unit conversion directive, so the solution
will be displayed in several convenient units.

You can experiment with this problem and see how varying the initial parame-
ters alters the solution. In particular, notice that a significant change to the drag
coefficient changes the range of the projectile significantly, while flight time
changes slowly.

For example, changing k from 0.1 to 0.001 increases the range by more than 7
times (to 15 miles), but only increases the flight time to 71 seconds.

142 Eureka: The Solver Owner’s Handbook

kkkkhkhhhkkhkkhhkkkhhhhhkhhkkdkhhhkhkkhkhhhkhkhkkkkhkhhkhhkkkkhkhhhkkkkkkhkkkkkk

Eureka: The Solver, Version 1.0
Saturday November 8, 1986, 2:22 pm.
Name of input file: PROJCTL.EKA

LR e R R R R T L R e e e R e L R e e e T s s e

; This example demonstrates solving a typical ballistics
; problem, and Eureka's unit-conversion capability.

c = ((k*v + g)/(g*k)) ; intermediate constant to
; simplify equation for T
k = 0.1 ; drag coefficient
V = 35355
V := 35355 [cm/sec] ; define units of initial velocity
g = 980 ; force of gravity
T = ¢*(1 - exp(-k*T)) ; solve for total flight time
T := 40 [sec]
R = (V/k)*(1 - exp(-k*T)) ; solve for projectile's range
R:=1 [cm]
$ units

cm -> feet : x / (2.54%12)

cm/sec -> feet/sec : x / (2.54*12)

feet -> miles : x / 5280

feet/sec -> miles/hour : x / (5280/3600)
$ end

R R L e R e et R e e e s TS S T s s d]

Solution:

" Variables Values

c = 46.076531
g = 980.00000
k = .10000000
R 349848.99 cm

11477.985 feet
2.1738608 miles

nouow

T = 45,594195 sec

35355.000 cm/sec
1159.9409 feet/sec
790.86883 miles/hour

wonon

Maximum error is 7.1054274e-15

Fhkkkkkkkhhkdkhkhkhhkkkhkkdhkhkkkhhhhkkkhkhkkhkrkkhkkkhdhhhkkkkkkkkkhkhkhkhhrhdd

Worked Examples

143

Problem 8
Charged Masses in a Gravitational Field

This is a typical problem in electrostatics (MASSCHG.EKA on the distribution
disk), illustrating Eureka’s ability to find the minimum of a function.

Statement of the Problem

Four negatively charged mass points (for example, pith balls) are constrained to a
vertical line (for example, by a non-conducting wire) in a gravitational field. The
lowest ball rests on the ground. The problem is to find the equilibrium positions of

the other three balls.

As shown in Figure 6-2, the balls lie along the y axis and gravity acts in the
negative y direction. The charges repel each other, but the balls are also pulled
together by gravity.

The problem is to find the positions where the gravitational pull and electrostatic
repulsion balance.

ball #3 |
& .
E
& ball #2
—& < X(3) =2
x(2) =Y
ball #1
ball #0 Ix(1) =X | |

Figure 6-2 Charged Balls

144 Eureka: The Solver Owner's Handbook

Equations

You will solve this problem by minimizing the total potential energy of the system.
The total potential energy of the system is the sum of the gravitational and electro-
static potential energies of each ball. ‘

The gravitational potential energy of a ball is equal to its mass multiplied by its
distance from the ground multiplied by the acceleration of gravity. This value is
zero at the ground and increases with increasing height.

The electrostatic potential energy of a ball due to the charge of another is just
the charge of the first ball multiplied by the electrostatic potential produced by the
other one.

The total potential energy of a ball is the sum of the potential energies due to
each of the other balls in the system. This value is defined to be zero for the ball on
the ground and positive for all other balls.

Thus, if the four balls are numbered 0 to 3, with number 0 being the ball on the
ground, and if

* the masses are m tom,

* the charges aree toe,

» the distances from the origin are x_ to x, (with x, being zero),

then the following equations express the electrostatic potential energies E, of each
ball:

E,=0

E =ele/ +efx,—x)+ efx, — 1)l
E,=ele/x, + e/x, — x) + efx, — 1,)]
E, =¢le/x, + efx, — x) + e/fx, — x,)]

The individual gravitational potential energies, G(i), have the following form:
G, = mgx,

i i

where g is the acceleration of gravity (980 cm/sec”). The total potential energy of
the system, T, is just the sum of all the E, and G;:

3
-3k

i=o

In order to find the solution, you will use Eureka to find the values for x(i) that
minimize T.

Worked Examples 145

Assume that the balls all have a mass of 1 gm and a charge of 80 esu. To avoid the
use of subscripts, we will use x, y, and z for the distances x,. After combining
common terms, the expression for T is:

T=980 X (x +y +2) + 6400 X [1/x + 1Ly + 1/z + 2/y — x)
+ 2/z — x) + 2/z — y)]

Since we are using the CGS system, T is measured in ergs, and x, ¢, and z are in
centimeters.

Equation File and Solution

The print-out that follows shows the equation file used to minimize T. Notice that
you must supply the additional constraints z > y > x > Oand T > 0, and initial
values for x, y, and z. Without these constraints and initial values, Eureka can get
lost.

146 Eureka: The Solver Owner's Handbook

e e e e ey s e e e e et s s d g

Eureka: The Solver, Version 1.0
Sunday December 7, 1986, 6:23 pm.
Name of input file: MASSCHG.EKA

kkkkkkkkkkkkhkkkhkkhkkkkhkhhkkhkhdkkhhkkhhkkkkkkhkhkkkkkkhrkhkkkkhkkhkkk

$ min (T)

T =980%(x +y+2z) + 6400%(1/x + 1/y + 1/z + 2/(y-x) +
2/(z-x) + 2/(z-y))

>0
:= 29000

N<S NNS<< X X — -
TRV
x

Kkkkkkhhkkkhkkhkkkhkkkhhrhhhhkhkhkkkkhhhkhkhkhkhkhhhhkkkkrhhkkkkrki

Solution:

Variables Values

T = 29900.376

X = 1.5793519 cm
y = 4,6531267 cm
z = 9.0228156 cm
Confidence level = 96.6%

A1l constraints satisfied.

hkkkkhkhkhhkhkhkhkkkkhhhhhhhkkhkhkhkhkkkhkhhhkkhkhhhhhhkhkhkkhhkhkkkkikkikk

Worked Examples 147

Problem 9
Using the Built-in Polynomial Function
to Find Real and Complex Roots

This problem (POLYNOM.EKA on the distribution disk) demonstrates how to use
Eureka’s built-in poly function to find the roots of nth degree polynomials in one
variable and illustrates methods for plotting polynomial functions. The poly func-
tion can find real and complex roots, and, with the Graph/Plot option, can plot the
function over a specified, definite range.

Statement of the Problem

Consider the following functions of x:
Rx) =" — 2" — 13" + 14 + 24
Sx) =x2"—2c+5
Tx) =2° +3x + 9
Ur) = 2" — 2> + 13¢* — 3x + 45
Vx) = 22° — 5¢° — 3x — 36
W) = 3"+ 52° — Tx + 24
Px) =+*+1

The problem is to find all roots of these polynomials. One of these functions has
all real roots, two have all complex roots, and four have a combination of real and
complex roots. When you use poly, it is not necessary to change the Complex
setting to yes in order to find the complex roots; Eureka can solve all these prob-
lems with a single Solve command.

Equations

To use the poly function in Eureka, you only need to enter one equation for each
polynomial function to be solved; these are user-defined functions designated by
the symbol : = .

Each user-defined function states, in terms that Eureka understands, that “some
function of x is defined as the polynomial in x that has the following listed coeffi-
cients”

148 Eureka: The Solver Owner's Handbook

When setting up a poly function, remember to:

* first list the variable (typically x, but can be any valid variable)
e then list all coefficients of x; start with the highest degree of x, then the next
highest, and so on to the constant.

If a polynomial has no coefficient for a given degree of x, then you must enter 0
into the poly function for that degree’s position, so that Eureka can keep track of
each degree of the variable.

For example, using the functions of x given above, the user-defined functions
would be written as:

R(x) := poly(x, 1, —2, —13, 14, 24)

S(x) := poly(x, 1, —2, 5)

T(x) := poly(x, 2, 3, 9)

Ux) := poly(x, 2, —1, 13, —3, 45)

Vix) := poly(x, 2, —5, —3, —36)

W(x) : = poly(x, 3,0, 5, 0, —7, 24)

P(x) := poly(x,1,0,0,0,1)
Graphing the Functions

Eureka also offers the ability to plot functions of one variable. To graph one of the
functions in this problem:
* Solve the equation file.
« Select the Graph option from the main menu.
e From the Graph pull-down menu, choose Plot.
* Select one function from the mini-menu listing of all user-defined functions.
+ Enter values for the left and right x axis endpoints.

Eureka will automatically plot the function.

Equation File and Solutions

The print-out that follows shows the equation file and Eureka’s solutions for the
seven polynomials in this problem.

Worked Examples " 149

kdkkkkhkkdkkhkhhkhkhkkhkhhkdhkkhhkkhhkhkhhhkhkhkkhkhdhhhhhhkhdkkhkhkdkdkrhkhhdkhkx

Eureka: The Solver, Version 1.0
Saturday November 8, 1986, 8:44 pm.
Name of input file: POLYNOM.EKA

Jededededededededededede sk gk de ke de ke ke de ek dede ke de ek ke ke de ek ke ke ek kb kkkk ke k ke ke hkohk ke ok dokkok

This problem demonstrates Eureka's built-in Poly
function, which finds the roots of n-th order
polynomials of one variable.

-~ e

For polynomials in one variable with compiex roots,
you do not need to change the Complex setting to
yes - Eureka can automatically find complex roots
when using the Poly function.

~e ms me we

; all real roots

i R(x) = (1*x74 -~ 2*x"3 - 13*x°2 + 14*x + 24)

R(x) := poly(x,1,-2,-13,14,24)

; all complex roots - Eureka solves for the real part
; of the root being < or = 1

S(x) := poly(x,1,-2,5)

T(x) := poly(x,2,3,9)

; complex and real roots
U(x) := poly(x,2,-1,13,-3,45)

V(x) := poly(x,2,-5,-3,-36)

; some coefficients are zero - they still must be entered
; into the list for Poly

W(x) := poly(x,3,0,5,0,-7,24)

P(x) := poly(x,1,0,0,0,0,1)

kkkkhkkkkkkhkkhkkhkkhhhhkhkhhhhhkhhkkkkhkhkkkkkkhkhkkkkhkkkkkkkhkhkhkkkkhkkkk

150 Eureka: The Solver Owner’s Handbook

Fhkkdkkkkkkkhhkkdkkhkhkhhhkkhkkhkhkdhh bbb hkkhhhkhbhkkhkhhhkhkhkkkhhdkhkhkhhkikkk

Roots to the polynomial R

Real part Imaginary part
1 -1.0000000 00000000
2 -3.0000000 00000000
3 2.0000000 00000000
4 4.0000000 .00000000
Roots to the polynomial §
Real part Imaginary part
1 1.0000000 2.0000000
2 1.0000000 -2.0000000
Roots to the polynomial T
Real part Imaginary part
1 -.75000000 1.9843135
2 -.75000000 -1.9843135
Roots to the polynomial U

Real part Imaginary part
1 1.0000000 2.0000000
2 1.0000000 -2.0000000
3 -.74999999 1.9843135
4 -.74999999 -1.9843135
Warning: Some roots inaccurate.
Roots to the polynomial V
Real part Imaginary part
1 4.0000000 .00000000
2 -.75000000 1.9843135
3 -.75000000 -1.9843135
Roots to the polynomial W
Real part Imaginary part
3 -1.4464361 00000000
2 -.28746570 1.7610191
1 -.28746570 -1.7610191
4 1.0106838 .84598193
5 1.0106838 -.84598193
Roots to the polynomial P
Real part Imaginary part
1 -1.0000000 00000000
2 -.30901699 .95105652
3 -.30901699 -.95105652
4 .80901699 .58778525
5 .80901699 -.58778525

*hkhkhhkhhkhkhhhhhkhhhkhhhkhkhkhhhhhhhkhhhhdhhhhkkhhkddikdhhkhihhhddkhkkdhkdkd

Worked Examples

151

Problem 10
Maximization: Designing a Maximum-Square-Footage
House Plan While Satisfying Several Constraints

This problem (HOUSE.EKA on the distribution disk) shows how to use Eureka to
maximize a variable that is a nonlinear function of several other variables, while
satisfying constraints placed on the function and on the variables.

Statement of the Problem

In this problem, you are to design an L-shaped house with as much square footage
{floor area) as possible, within the limitations imposed by city codes and certain
aesthetic considerations. A rectangular second story will be built above the largest
part of the first floor, extending from the back wall but only overlapping half of the
front wing,

Limitations and Constraints
1. The foundation must encompass no more than 3000 square feet.

2. The width of the front wing (dimensions xy, where x is width) must be within
one-third to one-half of the total house width. The total house width is b, and
the dimensions of the back wing are ab.

3. The front and back wings will not be disproportionately sized.

4. The house will sit on a 90 x 150-foot lot with 10 foot minimum setbacks on
either side and 25 foot minimum setbacks front and back.

5. Leave at least 1,500 square feet in the inside corner of the L for a pool and
patio. '

Equations

These equations state (1) the purpose of the problem (to maximize the total floor
area of the house you design) and (2) the limitations and constraints.

Areas
Area of first floor (covered by foundation):
B = (xy + ab) sq ft

152 Eureka: The Solver Owner's Handbook

Maximum foundation area allowed by city code:
B < 3,000 sq ft

Area of second floor (located above front wing of first floor, leaving room for a
balcony at front of house):

A2 = xzsq ft

Total area of house (sum of areas of first and second floors):

A=(xy +ab+ xz) =B + xzsqft

Aesthetic constraints

Front wing width is to be between one-third and one-half of total house width b:

x > b/3
x < b2

The patio/pool area will occupy the area bordered by the inner walls of the two
wings. The dimensions of this area are (b — x) feet by (y) feet, and the total patio/
pool area must be at least 1,500 sq ft:

y X (b — x> 1,500

The house width (b) must be less than the lot width (90 ft) minus the two 10-foot
setbacks, but it must be at least 40 feet wide:

b < 68
b > 40

The total house length (y + @) must be less than the lot length (150 ft) minus the
two 25-foot setbacks, but it must be at least 56 ft long:

y +a < 100
y +a > 56

The second story, length (z), must leave half of the extending part of the front
wing uncovered:

z=a+ y

The smaller, back-wing extension must extend out at least half as far as the front-
wing extension (so the wings will not be disproportionate):

a > y/2

Worked Examples 153

Equation File and Solution

The print-out that follows shows the equation file and solution for this maximiza-
tion problem, along with an evaluation of all the solutions found.

Note the directive $ max (A); that is, the command for Eureka to find the maxi-
mum combined first- and second-floor area possible within the listed constraints.

Also note that the equation file includes initial values for b and y. Since this
problem contains many conditions that the few variables must satisfy, it is a good
idea to get Eureka started in the right direction with some good first guesses.

If you run this problem on your computer, you may notice that it seems to take a
relatively long time to reach the solutions. This is normal for a problem like this,
which contains many constraints for just a few variables. Watch the Progress win-
dow for information about how Eureka is handling the problem.

154 ' Eureka: The Solver Owner's Handbook

kkkkkhkkkhkkhkhkhkhkhhkhkhkhkkhkhhkkhkhhkhkhhkkhhkhkhkhhhhhkkhkkhhkrkhhkk

Eureka: The Solver, Version 1.0
Saturday November 8, 1986, 9:02 pm.
Name of input file: HOUSE.EKA

kkkkkkkhkhhhhkhkkhkkdhhkhkhhkkkkhkkkhkhkhhhkdkhkkihhhkhkhkhhhhhkhkhihkhhhhhhhhkhhhhhx

This problem illustrates maximizing a nonlinear
function while satisfying several constraints on the
function and on the variables. Notice that we maximize
a variable, A, which is related to the other variables
X, ¥, z, a and b according to the first equation.

~e we we we ws

$ max (A)

; maximize area within limits of city code
A = (x*y + a*b + x*z) = B + x*z

B = (x*y + a*b)

B < 3000

; aesthetic constraints

x > b/3

x < b/2

; leave room for patio/pool
y*(b-x) > 1500

; set-backs and more aesthetics
b<68 : b> 40

y+a < 100 : y+ta > 56
z=a+tyl2

a>y/2

; initial values
b:=68
y:=56

khkkkkkkkhkkhhkhkkhkkhkhkhhkhkhkhhhkhkkhkkhkdkhkkhkhkhkhhhdhkhkhhhdkkkkhkhhhhhrrht

Worked Examples

155

dkkkhkhkkkkkhkhhhhkhkkhkhkhkhkkkkhkhkhkkkkkkhdkhkdkkhhkhkhkkhkhkhkhhhkhkhkkdkkkihi

Solution:

Variables Values

A

"

Confidence level

4500.0000
23.677311
3000.0000
63.351788
31.675894
47.354622

47.354622

= 92.3%

A1l constraints satisfied.

Evaluation of formulas:

Formulas

A
(x*y+a*btx*z)
difference

Btx*z
difference

B
(x*y+a*b)
difference

B
3000
difference

[T

Values

4500.0000
4500.0000
00000000

4500.0000
00000000

3000.0000
3000.0000
00000000

3000.0000
3000.0000
-4.9408300e-08

kkkkkhkhkhkkdhkkhhhkhkhkkhkkhhhhkkhkkhhhkhhkkkdkhhdhhdhhidhdhihdhikdddhikdkikhihk

156

Eureka: The Solver Owner’s Handbook

KAKKRKRKRKKFIKRKKRRRK KKK RRK IR ARk RNk hhhkhrkkhkhhkhhhkkkhhhrhrkhhhhhk

X
b/3
difference

X
b/2

difference
y*(b-x)

1500
difference

difference

40
difference

yta
100
difference

yta
56
difference

z
aty/2
difference

a
y/2
difference

b
y

non

(error) = -4,0927262e-12

wnonon onon nowon

(error) = -1.0976464e-10

31.675894
21.117263
10.558631

31.675894
31.675894
-2.9878677e-10

1500.0000
1500.0000

63.351788
68.000000
-4,6482119
63.351788
40.000000
23.351788

70.031933
100.00000
-28.968067

70.031933
56.000000
15.031933

47 .354622
47.354622
00000000

23.677311
23.677311

63.351788
47 .354622

Maximum error is -1.0976464e-10

kkkkkhhhkkhkkhhhhhhkkkhkRkhkhkkhhkkkkhhkhkhhkhhkdkkkkhhhkkhkhhhhhkhkhhhhkiks

Worked Examples

157

Problem 11
Maximization: Linear Programming
in Manufacturing

This example, a problem in linear programming (LINPROG.EKA on the distribu-
tion disk) demonstrates Eureka’s ability to solve simultaneous linear equations in
multiple variables and to maximize the objective function in order to reach an
optimum solution.

Statement of the Problem

Suppose a company makes two types of widgets, one wooden and one plastic. To
make a wooden widget, the producer uses machine A for 2 hours, machine B for 1
hour and machine C for 1 hour. To make a plastic widget requires 1 hour of machin-
ing on A, 2 hours on B, and 1 hour on C. The maximum amount of time (per month)
available on machine A is 180 hours; on B, 160 hours; and on C, 100 hours. The
profit on each wooden widget is $4.00 and on each plastic one $6.00.

Assuming that all widgets made will sell, how many of each type should the
company make in order to maximize the monthly profit?

Equations

Hours Machine Machine Machine Profit
A B C (per unit)

To make wooden widgets 2 1 B | $4.00

To make plastic widgets 1 2 1 $6.00

Available per month 180 160 100 -

Profit Function (the Objective Function)

First, assign variables to each model of widget, with x being the monthly manu-
factured amount of the wooden variety and y being the same for the plastic wid-
gets. Monthly profit is then the sum of the individual profits:

Profit = 4x + 6y

158 Eureka: The Solver Owner's Handbook

This is the objective function that you are going to maximize. To maximize the
objective function, use Eureka’s built-in maximization function. Add the max
directive to the file:

$ max (Profit)
Remember that the max directive can be used only once per equation file.

To avoid a solution which says that only the higher-profit plastic model will be
manufactured, set

x > 0 ; wooden widgets
y > 0 ; plastic widgets

Since the total time on machine A can’t exceed 180 hours per month and the
manufacturing processes require 2 hours of machine A’s time for a wooden widget
or 1 hour for a plastic widget, write the following constraint to represent the time
limitation:

2*x+y«< 180
Similarly, write constraints for the manufacturing time on machines B and C:

X + 2 %y < 160 ; total time on machine B can't exceed 160 hours per month
X +y < 100 ; total time on machine C can't exceed 100 hours per month

Equation File and Solution

The print-out that follows shows the equation file and solution for this problem.

Notice that we have started Eureka off with some initial values for x and y. We
chose initial values that represented the maximum possible value for each variable
that would satisfy the manufacturing-time constraints. Although this is not neces-
sary, it may help to speed up Eureka’s search for a solution; the default value for
both x and y at the beginning of the search is 1.0.

Notice also that we did not set the Profit function up as a user-defined function;
we used the equal sign (=) for an assignment operator, not the colon-equals opera-
tor (:=). This is an important distinction; if you were to write the objective func-
tion as Profit := (4 *x + 6 * y), Eureka would interpret that as meaning that Profit is
a variable to be maximized (due to the max directive) and it merely has a starting
point value of 4 * x + 6 * y. The result would be that Eureka maximizes Profit to the
rather high value of 1.1529215 * 1020 (dollars).

Worked Examples 159

LR s R R s e e e R e S s e e R S e e Lt st

Eureka: The Solver, Version 1.0
Saturday November 8, 1986, 9:06 pm.
Name of input file: LINPROG.EKA

R R R R et e e e R e e bt s

This example, a problem in linear programming, demon-
strates Eureka's ability to solve simultaneous linear
equations in multiple variables, and to maximize the
objective function in order to reach an optimum
solution.

.o ws we e wo

Equations

Profit function (the objective function)

Profit = (4*x) + (6*y)
$ max (Profit)

X >‘0 ; wooden widgets
y > 0 ; plastic widgets
X := 90
y := 80

2*x + y < 180 ; total time on machine A can't exceed 180
X + 2*y < 160 ; total time on machine B can't exceed 160
X +y < 100 ; total time on machine C can't exceed 100

FRIEIAIKRREA K IR IRAE IR ARARARR KA LRI RARRENAAIAKNARR A AR ARA IR I AR hhkhdhkk

Solution:

Variables Values

Profit = 520.00000
X = 40.000000
y = 60.000000
Confidence level = 93.1%

A1l constraints satisfied.

R e R R e e e e e e e S R s e s e e e e T e

160 Eureka: The Solver Owner’s Handbook

Problem 12
Equity in a House: the paymt, pval and fval functions

This example (EQUITY.EKA on the distribution disk) is a simple problem in
finance. Using some of Eureka’s built-in functions, you will calculate the growth in
the equity in a house purchased with a mortgage.

Statement of the Problem

Suppose you purchase a house on January 1 for $200,000, using a $20,000 down
payment and a 13% 30-year fixed-rate mortgage for $180,000. Assume that the
mortgage interest compounds monthly and that your payments are made monthly.
Use Eureka to calculate:

1. Your monthly payments.
2. How long it will take for your equity in the house to increase to $100,000.

Equations

Eureka has several built-in functions that are useful in financial calculations. These
functions compute the key values in interest-rate calculations. In this example, you

will use the paymt and fval functions.

paymt calculates the payment in each interval on the loan, using as inputs the
interest rate, the number of intervals, and the present and final value of the loan.

fval calculates the future value of a loan, using as inputs the present value, the
payment per interval, the number of intervals until the future date, and the inter-
est rate.

These are the input parameters:

number of payment intervals N =30 x 12 = 360 months
interest rate per interval 1 = .13/12

price of house P = 200,000

down payment D = 20,000

value of mortgage (principal) pval = 180,000

amount of balloon payment due B =0

Worked Examples 161

You need to calculate the size of the monthly payments (mp) and the number of
months (time) until the equity is $100,000. The monthly payment can be found by
simply plugging the input parameters into paymt in the following order:

mp = paymt(I, N, P-D, B) which leads to
mp = paymt(0.13/12, 30 * 12, 180000, 0) ‘

where the final 0 is the final value of the mortgage after 30 years (in this example,
there is no balloon payment).

Equity in the house is simply the difference between what the house is worth
and what you still owe the bank. The equity will be $100,000 at some future time
that can be calculated using the fval function:

Future Value of Mortgage = fval(l, time, L, mp)
which gives
100,000 = 200,000 + fval(.13/12, time, 180000, mp)

You can now solve these two equations for mp and time to determine the regular
monthly payment and the elapsed time (in months) until the equity reaches
$100,000.00.

Equation File and Solution

The Eureka equation file corresponding to these equations is shown in the print-
out that follows.

Notice that the first entry in the equation file is a directive (set off with the $
symbol) to set finansmooth to on. This is necessary because financial functions are
typically discontinuous in time. With finansmooth on, Eureka automatically
smooths out the discontinuities and converts the financial function to a smooth
curve instead of a series of step functions.

162 Eureka: The Solver Owner's Handbook

Fedededode de e dede e de e e dede o de e e de ook e de e e de e de e e de de e e e e de Aok ke dede e ke ok e de ok e de de e e e e e ok e e e de ok

Eureka: The Solver, Version 1.0
Tuesday February 10, 1987, 5:33 pm.
Name of input file: EQUITY.EKA

Kkkkdhdkdkkhkdkdhkhkhhhhhkhkhhhkhhkhkhkhhhhhhkihikhkhhhhdkhikihhhkrhhhkkrdkhhik

“e me mo me me mo me

o

. me wme

~e we ms wo we me

This problem shows how to use Eureka's
built-in financial function PAYMT to
calculate monthly payments for a 30-year,
$180,000.00 mortgage, with a $20,000.00
down payment and a yearly interest rate
of 13%.

This problem also demonstrates using

the built-in function FVAL to calculate
when the equity reaches $100,000.00, and
calculates the balance of the loan at
any given time.

Note: this problem incorporates zero
market appreciation.

finansmooth = yes

variables assigned to the given data:
DownPay = 20000

Loan = 180000

Duration = 30 * 12

determining monthly interest rate from
the annual rate

Yrate = 0.13

Mrate = Yrate / 12

finding the monthly payment
Payment = PAYMT(Mrate,Duration,
Loan, 0)

formula for determining Equity at a
given time:
FutureValue (GivenMonth) : =FVAL (Mrate, _
GivenMonth, Loan, Payment)
Equity(GivenMonth) := DownPay + Loan + FVAL(Mrate,_
GivenMonth, Loan, Payment)
Equity(HowSoon) = 100000

formula for determining total amount
paid at the end of the life of the
Toan

TotalPaid = Payment * Duration

Amount still owed on loan at any given
month
AmtOwed(GivenMonth) := Loan + DownPay - Equity(GivenMonth)

Worked Examples

163

Solution:

Variables Values

DownPay = 20000.000
Duration = 360.00000
HowSoon = 287.10773
Loan = 180000.00
Mrate = .010833333
Payment = -1991.1591
TotalPaid = -716817.29
Yrate = .13000000

Maximum error is .011900878

List of function values.

Equity

X Equity(x)
12.000000 20524.427
24,000000 21121.243
36.000000 21800.438
48.000000 22573.385
60.000000 23453.023
72.000000 24454 ,080

84.000000 25593.315
96.000000 26889.801
108.00000 28365.245

120.00000 30044.348
132.00000 31955.222
144.00000 34129.859

156.00000 36604.665
168.00000 39421.076
180.00000 42626.243

192.00000 46273.827
204.00000 50424.896
216.00000 55148.947
228.00000 60525.071
240.00000 66643.275

252.00000 73605.989
264.00000 81529.784
276.00000 90547.320
288.00000 100809.57
300.00000 112488.34
312.00000 125779.17
324.00000 140904.55
336.00000 158117.74
348.00000 177706.90
360.00000 200000.00

khkkkkkhkkdkhkkkkkhkhkhkhkkkkkkhkhhhhhkhthhdhhkkhkdhhhhkdhrdhhhkhhkdhdhdkidkiik

164 Eureka: The Solver Owner's Handbook

Problem 13
Probability in a Card Game

This problem (CARDS.EKA on the distribution disk) illustrates Eureka’s built-in
factorial function, fact, and demonstrates how to set up a user-defined function.

Statement of the Problem

In a game of Bridge, find the probability that a trump suit with six trumps out-
standing will split three-three.

For those who do not play Bridge, here is a synopsis of how to play the game:

There are 13 cards dealt to each of 4 players. Of these, 13 of the cards are
trumps. When a player says s/he is hoping for a three-three trump split, it is
because s/he controls 2 of the hands and 7 of the trumps, with the remaining 6
trumps divided between the remaining 2 hands in an unknown manner. The
trumps are said to split three-three if there are exactly 3 trumps in each of the

unknown hands.

Equations

Stating the problem in different terms, we can ask how many combinations of N
choose M exist for this problem, where N choose M represents the number of
unique ways to choose a subset of size M from a set of N items.

In standard mathematical notation, this is expressed as a “combinatorial coeffi-

cient” (CofNandM) where

(V)

CofNendM = 3y > (@ — 30

If you (perhaps naively) assume that the probability of distributing six things
randomly yields a three-three split, the equation for the (approximate) probability
is:

ProbApprox = C(6,3) / 2°

Worked Examples 165

If you assume that the probability of random distribution does not yield a three-
three split, the exact probability for an even split is:

_C(26,13)
ProbExact = ————C(2 0.10) X C(6,3)
Equation File and Solution

The print-out that follows shows the equation file and solution for this problem.

166 Eureka: The Solver Owner's Handbook

kkkkhkkkkhkkhhkkkhkkkkkkhhkhhkhhhhkhkdhkkhhhkrkkhhhhhihdhdkkddkddkkiikikikkik

Eureka: The Solver, Version 1.0
Saturday November 8, 1986, 10:46 pm.
Name of input file: CARDS.EKA

hhkkhkhkhkkhkkhhkkkhhkkhkkkkhkkkhkkkhkkkkkkhkkkkhkhkkkkhkhkhkkhhkkkkkhkhkrkkkkkkkk

This example demonstrates how to use Eureka's built-in
FACT function (FACT(x) = x factorial). The problem
is:

In a Bridge game, one player controls 7 trump cards.
We must determine the probability that the remaining

6 trump cards are evenly distributed (3 and 3) among
the other two players. We calculate both the
approximate and the exact probability in this example.

A(x) := FACT(x)
Cé

= A(6)
C3 = A(3)
C10 = A(10)
C20 = A(20)
€26 = A(26)
C13 = A(13)

; The combinatorial coefficients for total available
; cards and cards per remaining hand:

Coféand3 = A(6) / (A(3) * A(6-3))
Cof20and10 = A(20) / (A(10) * A(20-10))
Cof26and13 = A(26) / (A(13) * A(26-13))

; approximate probability of 3-3 split:
ProbApprox = Cof6and3 / 2°6

; exact probability of 3-3 split:
ProbExact = Cof6and3 * Cof20and10 / Cof26andl3

; The correct answers are

: ProbApprox = .3125
: ProbExact = .355279503

Worked Examples 167

Solution:

Variables Values

C10 = 3628800.0
C13 = 6.2270208e+09
€20 = 2.4329020e+18
C26 = 4,0329146e+26
C3 = 6.0000000
c6 = 720.00000
Cof20and10 = 184756.00
Cof26and13 = 10400600,
Cof6and3 = 20.000000
ProbApprox = .31250000
ProbExact = .35527950

KEAKKEKRKIRKIIAKRI AT IR AAARRARIIRAARA R IR RAhhkhkhhrrhrhkkkkhrhkhkhkkhhdikdk

168

Eureka: The Solver Owner's Handbook

Problem 14
Income Distribution: The integ Function

This problem (INTEG.EKA on the distribution disk) demonstrates how to use
Eureka’s built-in integ function to calculate the definite integral of functions.

Statement of the Problem

In the study of income distributions, one useful quantitative measure is the
Lorentz Curve, a function relating the cumulative percentage of income recipients
(x) to the cumulative percentage of income (y). The equality of income distribution
given by the line x = y represents the ideal state, where income is evenly distrib-
uted among the whole population: 10% of the people receive 10% of the income,
30% receive 30%, and so on.

A more realistic, non-ideal income distribution is the function
y = (20/21)x* + (121

The coefficient of inequality measures the degree of deviation from equality; this
coefficient is defined as the area between the income-distribution curve and the
diagonal (x = y), divided by the area under the diagonal. When all incomes are
evenly and equally distributed, the coefficient of inequality becomes zero.

The problem: For the income-distribution function given above, what is the
coefficient of inequality?

Equations

To solve this problem, you must integrate two functions from 0 to 1 (0 to 100%),
then calculate a quotient using the two integrals. With Eureka’s built-in integ
function, this is an easy exercise. From the definition of the coefficient of inequality
given above, define the numerator (Num) and denominator (Denom) as the inte-
grals of the two functions given:

Num is the difference between the definite integral of the diagonal (x = y) and
the definite integral of the function (y(x)):

Num = [integral(x) — integral((20/21)x* + (1/21)x)] fromx = Otox = 1
Denom is the definite integral of the function:
y=xfromx =0tox =1

Worked Examples 169

The coefficient of inequality is the quotient
CoeffInEq = Num/Denom

Using the integ function, this is how you set up the two integrals:

Num = integ(x, x, 0, 1) - integ((20/21)*x"2 + (1/21)*x, x, 0, 1)
Denom = integ(x, x, 0, 1)

Equation File and Solution

The print-out that follows shows the equation file and the solution for the problem.
The table at the end of the print-out shows the result of selecting Graph/List.

170

Eureka: The Solver Owner's Handbook

e e e e e e e ke e e e e ke e e e ke e e e e o e e e e ke e e e e e ke e o o e o e ok e e e e e e e e e ek e ke dede ke

Eureka: The Solver, Version 1.0
Saturday November 8, 1986, 11:40 am.
Name of input file: INTEG.EKA

Kkhkkhhhkkhkkhhkkhhkhkhkhhhhhkkhkrhkhhhkhkhhkhkhkhkhhhkkkhhkhkhhhhbkkhkkhhkiris

; This problem demonstrates how to use Eureka's built-in
; INTEG function to perform definite integrals. The
; example comes from the study of income distributions.

; income distribution function (Lorentz curve - non-ideal)
y(x) := (20/21)*x2 + (1/21)*x -

Num = INTEG(x, x, 0, 1) - INTEG((20/21)*x"2 + (1/21)*x, x, 0, 1)
Denom = INTEG(x, x, 0, 1)

; coefficient of inequality:
CoeffInEq = Num/Denom

khkkkkkkkhkkhhkkhkhkkhkkkkkkhkhkkhkhkkkhkkkkkkkkkhkkkhkhkkkkhkkkkkkhkkkkkhkkkkkkkkkhk
Solution:

Variables Values

CoefflnEq = 0.31746032
Denom = 0.5000000
Num = 0.15873016

List of function values.

X y(x)
.00000000 .00000000
.10000000 .014285714
.20000000 .047619048

.30000000 .10000000
.40000000 .17142857
50000000 .26190476
60000000 .37142857
.70000000 50000000
.80000000 .64761905
90000000 .81428571
1.0000000 1.0000000

hkkkkkkhkkhhkhkkkkhkkkhkkhhkkkkkhhkhkkkhkkhkkkhkkhkkkkhkikrkkhddkhhhkikkkikdikk

Worked Examples

171

Problem 15
Chemical Calculations

This problem (CHEMBAL.EKA, CHEMEQLEKA, CHEMEQ2.EKA, and
CHEMEQ3.EKA on the distribution disk) illustrates how you can use Eureka to
solve problems in chemistry, from the simple-but-tedious (balancing chemical
equations) to the more sophisticated (calculating equilibrium concentrations).

The first part of this problem:

« demonstrates Eureka’s ability to solve some simple systems of linear equa-
tions

« identifies a situation where the include directive would be useful

« gives a quick method for balancing chemical equations and determining

unknown stoichiometric quantities

The second part of the problem gives three examples of calculating equilibrium
concentrations, including a classic difficult problem where poorly-scaled variables
hamper Eureka’s solution process.

Part I: The Reaction of Iron Sulfide with Oxygen to Produce Iron Oxide and
Sulfur Dioxide

This problem in stoichiometry (CHEMBAL.EKA on the distribution disk) asks
you to find out how much of a reactant is needed for a chemical reaction to produce
a certain amount of product.

Statement of the Problem

Consider the chemical reaction between FeS and O,, written here as an unbal-
anced chemical equation:

FeS + O, =+ Fe,O, + SO,

How much iron sulfide (in grams) is required to produce 100 grams of iron oxide
in this reaction?

To solve this problem, you will first need to balance the chemical equation. In
addition, you will need to convert the given mass information (in this case, 100
grams of Fe,O) into its molar equivalent.

A mole is defined as the formula weight (in grams) of an element or compound. It
is also, by definition, the mass of a specified number of molecules of a substance.
The specified number is Avogadro’s number (6.0221 X 10* molecules.)

172 Eureka: The Solver Owner’s Handbook

Once you know the ratios between the different substances in the reaction and
the given number of moles (of product, in this case), you can determine the num-
ber of moles of other substances that satisfy the given requirement.

Equations

You can assign variables for all the unknown amounts in the unbalanced chemical
equation and set up the following algebraic expression to represent the balanced
state:

a*(Fe+S)+b* (0*%2) -c*(Fe*2+0%3)-d*(S+0%2) =0

Since elements cannot just appear or disappear, the net amounts of each element
must be the same on each side of the balanced equation. This means that the
variables for each of the elements have the following relationships:

for Fe,a = 2c
forS,a =d
forO,2b = 3¢ + 2d

The solutions to these variables will yield a balanced chemical equation, which
specifies the number of moles of reactants used in the chemical reaction and the
number of moles of products that result.

The next step is to write an equation for converting the given information (100
grams of Fe O,) into moles.

Remember that chemical symbols (Fe, K, Ca, Na, O, S, and so on) are just that—
symbols —and can be manipulated just like variables in equations. You can com-
bine these symbols with each other and with constants representing mass, valence,
atomic number, or any other property that you need to factor in when solving
chemical equations.

For example, consider Fe,O, and the following definitions:

mFe = mass of one mole of Fe (55.847 grams)

zFe = atomic number of Fe (26)

vFe = valence of Fe (2 or 3; depends on particular compound)
mO = mass of one mole of O (15.9994 grams)

z0 = atomic number of O (8)

00 = valence of O (typically, —2)

mFe, 0O, = mass of one mole of Fe,O, = (mFe X 2) + (mO X 3)
similarly,

mFeS = mFe + mS
mSO, = mS + (mO X 2)

Worked Examples 173

To convert measured amounts of substances into their molar equivalents, you
divide the measured amount by the mole weight:

100.00 gm of Fe, O, _ 100.00
159.69 gm/mole ~ 159.69

= 0.6262 moles of Fe,O,

The amount of each substance used or produced in the chemical reaction can be
represented by a “how much?” variable, written by adding h to the beginning of
each chemical formula. In this example, “how much Fe,O,?” is represented by
hFe,0, and is the given quantity—100 grams. Similarly, hFeS represents “how
much FeS?”, the amount (in grams) of FeS used, and hO, represents the amount of
O, consumed. '

In terms of the variables in this problem, the number of moles of Fe 0, is calcu-

lated by

howmuch Fe,0, _ hFe,0,
mass of one mole of Fe,0, mFe,0,

where mFe,O, = 159.69 and hFe,O, is the given, 100 grams.

You can see that the number of moles of Fe,O, produced is equal to the number
of moles of FeS supplied. This can be rephrased as:

a moles of FeS produce ¢ moles of Fe,O,
so the ratio of (moles of FeS):(moles of Fe,0,) is the ratio a:c. The equation for this

18

moles of FeS a

moles of Fe,0, ¢

which leads to the equation
¢ X (moles of FeS) = a X (moles of Fe,0)
By substituting the number of moles equation from above, you get

hFeS o hFe,O,
mFeS * mFe,0O,

c X

Eureka will solve for the variables a and ¢ in the first part of this problem; mFeS
and mFe O, are constants and hFe,O, is the given, so you can easily solve for the
unknown quantity, hFeS.

174) Eureka: The Solver Owner's Handbook

Equation File and Solution

The print-out that follows shows the Eureka equation file and solution for this
problem.

Eureka will solve this system of linear equations and give values fora, b, ¢, and d
that balance the chemical equation.

To get Eureka started, you assign a value to one of the variables and see what
solutions the program finds. This is not necessary, but it helps to keep the solutions
for a, b, ¢, and d as whole numbers.

You can see from the equation for the variable b that ¢ should be an even number
so b will be an integer; that is why we set ¢ equal to 2.

Besides giving a value to one of the variables, you must include the values for the
given amount of product (100 grams of Fe,O,) and the constant values. In this case,
the constant values are the mole weights of the elements Fe, O, and S.

Using the $ include Directive

You can experiment with this problem, or similar ones, to explore Eureka’s useful-
ness in stoichiometry. If you plan to be solving many problems such as this one, you
will probably find it helpful to create a separate file containing the mole weights for
all the elements that you will be dealing with. Keeping such a file as a permanent
part of your Eureka problem disk, you could use the include directive in your
equation file to call up the mole weight information when it is needed instead of
entering it over and over.

Worked Examples 175

kkkkkkhkhhkkhkkhkkkkhhhkhkhkkkkkhhrkhkkkhkhkhkhk Ak khkhhkdhkrdhhhdrbhrkrbdhrkkkdr

Eureka: The Solver, Version 1.0
Thursday November 6, 1986, 6:11 am.
Name of input file: CHEMBAL.EKA

*hhkkkhkkdkkdkhhdhkkhkhhkkkikhkhkhkhkhhkhhkhkkdkhkdhhkkhhkhhkkhkkkkihkhhdkkhkkdkhhk

This is an example of balancing a chemical equation
and then finding the amount of reactant, FeS, needed to
yield 100.00 grams of Fe203 product

the unbalanced chemical equation:
FeS + 02 --> Fe203 + S02

; algebraic expression for the balanced equation:
; a*FeS + b*02 --> c*Fe203 + d*S02

a = 2%c

d=a

b*2 = 3*c + 2*d
¢ = 2.000

; mole weights (grams/mole)

mFe = 55.847

mS = 28.086

m0 = 15,9994

mFeS = mFe + mS
mFe203 = mFe*2 + m0*3
m02 = m0*2

mS02 = mS + m0*2

; amount of product required is 100 grams
hFe203 = 100.00

; ratio of moles of FeS to moles of Fe203 is a:c
c*(hFeS/mFeS) = a*(hFe203/mFe203)

; correct answer isa=d=4,b=7,¢c=2

176 Eureka: The Solver Owner's Handbook

ek e e e e e e ke e e e e e e e e e e e e e e e ok e ok ke e e e de e e e e e o e e e e e e o e e o ok e e e e e e de e ok e e e de e

Solution:

Variables Values

a =
b =
c =
d =
hFe203 =
hFeS =
mFe =
mFe203 =
mFeS =
mo =
m02 =
mS =

mS02 =

ddkkkkhkkkkkhkhkhkkkhkhhkhkhkhhkhkhkkdhhrhhhkhkhhrkhkhkhkhkhhhhhkhkhihhdhhkhhhihkidhhhid

Worked Examples

4.0000000
7.0000000
2.0000000
4.0000000
100.00000
105.11847
55.847000
159.69220
83.933000
15.999400
31.998800
28.086000
60.084800

177

Part II: Calculating Chemical Equilibrium Concentrations

The second part of this problem (CHEMEQLEKA, CHEMEQ2.EKA, and
CHEMEQ3.EKA on the distribution disk) demonstrates Eureka’s ability to solve
high-order polynomials by finding equilibrium concentrations for the reactants and
products in some sample reversible chemical reactions.

Statement of the Problem

Many chemical reactions do not proceed to completion (that is, all the available
reactants are not converted into products) because the reaction is reversible. Some
of the products actually react chemically and convert back into their original con-
stituents.

Some examples of such reversible reactions are:

H,(gas) + I(gas) < 2HI(gas)
N,(gas) + 3H,(gas) <> 2NH (gas)

When the rate of forward reaction (in these examples, the combining action of
the gases) and the rate of decomposition reach a balance, the chemical reaction is
said to be in equilibrium.

At equilibrium at a given temperature, such a reversible chemical reaction can
be characterized by an equilibrium constant, K_. The equilibrium constant is the
ratio of two numbers: The first is a product of the concentrations of all the sub-
stances on the right-hand side of the chemical equation, and the second is a prod-
uct of the concentrations of all the substances on the left-hand side. (If a substance
in the chemical equation has a coefficient a, then the concentration for that sub-
stance is raised to the ath power when calculating K for the reversible reaction.)

Laboratory scientists have determined K_ s for many reactions at specific tem-
peratures. If you know the K_ for a reaction and have enough additional informa-
tion about the reactants or the products, you can determine the equilibrium
concentrations of all the substances involved in the reaction.

First Example
Consider the reaction of carbon monoxide (CO) and steam:
CO + H,O o CO, + H,

At 800°C, the K_ for this reaction is 1.2. If you put 2.0 moles of CO and 2.0 moles
of H,O into a 10-liter container at 800°C, what will be the equilibrium concentra-
tions of all the substances?

|78 Eureka: The Solver Owner's Handbook

Equations

The first step in setting up this problem is to write out a table that lists the starting
and equilibrium concentrations for the substances involved.

Starting Concentration Equilibrium Concentration
Cco 0.2 moles/L 0.2 — X moles/L
H,0 0.2 moles/L 0.2 — X moles/L
Co, 0 X moles/L
H 0 X moles/L

2

By definition of the equilibrium constant,
_ ¢CO, X cH,
“ "~ ¢CO X cH,0

Substituting in the values for K and the four concentrations from the table
yields

- X)X
12 = 02 - X)(0.2 — X)

X2

12 = —2
02 — X

You will rewrite these equations as a second-order polynomial and let Eureka
solve for X; then, knowing X, Eureka will calculate the equilibrium concentrations
of all the reactants and products.

Equation File and Solution

The print-out that follows shows the equation file and the solution for this problem.

Note that we have given an initial value to X in the equation file (X : = 0.19). We
made an assumption that at least 5% of the original substances were converted into
products. Although it was not theoretically necessary to provide Eureka with that
starting point, it turned out to be a practical action. Without a reasonable initial
value for X, Eureka is capable of finding some solutions that are unique but wrong
(such as concentrations less than 0). The easiest way to avoid such solutions is to
provide Eureka with a reasonable starting point of where you expect the answer to
be, if possible.

Worked Examples 179

e e e e e e e e e e v e e e I e e I e de e ke e ke e e e e e e e e e e e e e e e e dede e dedede e de de e e de e deded de e e de e dede dede ke

Eureka: The Solver, Version 1.0
Thursday November 6, 1986, 6:23 am.
Name of input file: CHEMEQL.EKA

Fede dede e e e e o e e e e e o e e e e ok ok e e e e e e e e e e e o 3 e e e e e e e e e e e e oo e ok e e e e e e e e e e e de e ke

Chemical Equilibrium Calculations - First Examplie
This problem demonstrates solving a second-order
polynomial in order to calculate equilibrium

concentrations in a reversible chemical reaction

- me we we

; The reaction is: CO0 + H20 <===> C02 + H2
; At 800 degrees C, the Keq for this reaction is 1.2

cC02 = X ; equil. conc. of C02
cH2 = X ; equil. conc. of H2
cC0 = 0.2 - X ; equil. conc., of CO
cH20 = 0.2 - X ; equil. conc. of H20

Keq = (cC02 * cH2) / (cCO * cH20)
2= X2/ (0.2 - X)2

— .

initial value given for X
:= 0.19

>< =

; correct answers are: c¢C02 = cH2 = X = .104555
; ¢CO = cH20 = 0.2 - X = .0954451

e e e e e e e e e e ok e e e e ok sk ke ok ek e de s ke de ke e e e e ke de e ek de ke ke ke ke e ek ke dedede e e ke ek ke ke ke kk ke ek

Solution:

Variables Values

cCo = .095445115
cC02 = .10455488
cH2 = .10455488
cH20 = .095445115
X = .10455488

Maximum error is -1.0924639e-10

ek de ke dde e g Fe g K de de ke e e de e de e g de e de g ok 9 e de e e dede dedode e e de ke de ke e e dede e dedede de e dededededededede ke dededede dede

180 Eureka: The Solver Owner's Handbook

Second Example

Consider the reversible reaction of nitrogen (N,) and hydrogen (H,) to form
ammonia: '
N,(gas) + 3H,(gas) <> 2NH (gas)

Empirical evidence shows that log(base 10) of K,, the equilibrium constant for
the forward reaction of N, and H, to form NH,, is 2.914 at 25°C.

_ 102914
K, = 10

ONH)' oo
3
cN, X (cH,)

In this problem, you start with .1 mole of N, and .3 moles of H, in a 10-liter flask at
25°C:

Starting Concentration Final Concentration
N, 0.1 moles/L (0.1 — X) moles/L
H, 0.3 moles/L. (0.3 — 3X) moles/L
NH 0.0 moles/L 2X moles/L

What will be the concentrations of all the constituents at equilibrium?

Equations

The following polynomial results from substituting the concentration values from
the table into the equation for K:

@2x)’ e _
01 — X)(0.3 — 3X)) 0 =K

which simplifies to
0 = (K x 27(0.1 — X)) — (2X)*

Worked Examples 18l

Equation File and Solution

The equation file and solution for this problem appea‘r in the print-buf that follows.

Notice the constraints placed on the value X (which represents the equilibrium
concentration of NH,):

* X > 0 (There must be some NH, produced)
* X < 0.1 (You can’t have more products than the reactants)

182 Eureka: The Solver Owner's Handbook

e s e e e e e e e ok ke e o ke e e vk s ok e ok vk o ok e e e e ke ke e ok e sk ke ek e ke e ke ke ok e ke ek ek ek ko ke ke ek ke ke ko

Eureka: The Solver, Version 1.0
Thursday November 6, 1986, 6:27 am.
Name of input file: CHEMEQZ2.EKA

e e e e e e ke e e e Sk e e o ke ok ko ok ke e e e e e ke e ok ke ke e e e e o e e ke e e de e e de ke e ok e de ek e ek de ek e ke ek e

Chemical Equilibrium Calculations - Second example
This is an example of solving a fourth-degree
polynomial, in order to find the equilibrium
concentrations of N2, H2 and NH3 in the reversible
chemical reaction

N2 + 3H2 <===> 2NH3
at 25 degrees C, where log(base 10) of K(f) (the
equilibrium constant for the forward reaction) is
2.914.

me me me me we we we we me

K = 10°(2.914)

cN2 = 0.1 - X ; equil. conc. of N2
cH2 = 0.3 - 3*X ; equil. conc of H2
cNH3 = 2*X ; equil. conc. of NH3

; equation for equilibrium concentrations:
: K = (cNH3)"2 / (cM2* (cH2)"3)

4*(X2) = K * (0.1 - X) * (0.3 - 3*X)"3

; constraints so Eureka finds appropriate roots

0<X<0.1
khhhkhkkdkhkhkkhkhkhkhhidkhhhhkhkkhkhkkhkhkhhhkhhkhhhhkkhkkkdehkkkkhrrkkhkhkkhkkrkhkkhrhst
Solution:

Variables Values

cH2 = .091649822
cN2 = .030549941
CNH3 = .13890012
K = 820.35154
X = .069450059

Maximum error is -4.2344429e-10

dkkdkdkkkkkkkhkkkkkhhkkhhhkhkhkdhhhhkhkhkhkdkhkhkkhkhhhhhhkkhkkdkhkrdhrhhdhkdkhhhtr

Worked Examples

183

Third Example

This example is a classic case of poorly scaled variables and equations and
clearly demonstrates where and how things could go wrong in your equation files.

Consider the dissociation of hydrogen peroxide at 800°C to yield water (H,0)
and oxygen (O,):

2 X H,0,<2 X HO + O,

At 800°C, the Keq for this reaction is 3.6 X 10°. If you start with 0.1 mole of

H,O, in a 10-liter container at 800°C, what will be the equilibrium concentrations
of all the substances?

Equations
Starting Concentration Equilibrium Concentration
cH,0, 0.01 moles/L 0.01 — 2X moles/L
0, 0 moles/L X moles/L
cH,0 0 moles/L 2X moles/L
c0,(cH,0)*

K =
e (cH,0,)

X)2X)*
36 X 10° = —-——(—-~—~—
(0.01 — 2X7

R S
(0.01 — 2X7

Since 3.6 X 10” is a very large number with respect to the other quantities in
this problem, the equation is poorly scaled. Eureka runs into difficulty when trying
to solve an equation that spans so many orders of magnitude (14 in this case). For
example, Eureka might find a solution that yields an evaluation difference of 10°.
Because 10° is relatively tiny compared to 10°, Eureka might be satisfied with the
solution, even though that solution would be patently wrong.

Given these problems inherent with spanning large orders of magnitude, it
would seem that you could convert both sides of the equation to the natural logs
and ask Eureka to solve the following:

Tn (3.6 * 10713) = In (4) + 1n (X"3) - In ((0.001 - (2 * X))2)

184 Eureka: The Solver Owner’s Handbook

However, rewriting the original equation to this form does not work well,
because Eureka must calculate each of the natural logs used; the problem in this
form becomes unworkable.

Your best approach to this quandary is to formulate an intermediate equation
that spans fewer orders of magnitude. To accomplish this, create the following set
of intermediate variables and equations:

1. substitute Keq = W3 so W = 36°(1/3) * 1074
Y = (0.01 — (2* X))
W3 =4X3/Y2s0 W=X*((2/Y) " (2/3))

2. substitute B = (Y/2)(2/3) sOB * W = X

3. set constraints and initializations

0<X<0.005,W>0,B8>0,
X :=0.0001

By redefining the problem as B * W = X, you create a situation where the difference
between the largest and smallest values is on the order of 10" (from 10* to 107°),
which Eureka is able to solve in just a few seconds.

Note: It is important to set up the equations in the order shown on the next
page. If you present the equations in a different order, Eureka gives an “Equations
are inconsistent” error message and cannot solve the problem.

Equation File and Solution

The print-out that follows shows the equation file and Eureka’s solution for this
problem.

Worked Examples 185

hhkhhkkhkhhhkhkhkAkhkkAhkARK ARk KREIT KA KKK Rk hkhkhkrkrkrhkkkkkkkkhkhhkkkkdhkkhk

Eureka: The Solver, Version 1.0
Thursday November 6, 1986, 6:32 am.
Name of input file: CHEMEQ3.EKA

kkhkkkkkhkhkhkkhkkhkkhkhkkkkhkkhkhkkkkhhkhhkkhkkkkhkhhkkkkkhkhkkkkhhkhkhkhkkkk

; Chemical Equilibrium Calculation - Third Example

; This example demonstrates how to handle a poorly-scaled
; problem. The original equation was

; Keq = 3.6 * 10713

;Y = (0.01 - (2*X))

;. 4*X3 /Y2 = Keq

; To reduce the total span of 14 orders of magnitude,
; substitute W (= Keq™(1/3)) and B (= (Y/2)"(2/3))

W =36°(1/3) * 1074
Keq = W3

B*W = X

(Y/2)~(2/3)
0.01 - (2*X))

<

v

0

< 0.005
0

:= 0.0001
>0

O >xX £ > X
v

; Solution is X = 0.0043698957, Y = 0.0012602085
; B =1.3234379e-07, W = 33019.272, Keq = 3.6 * 10713

KEKKKEKKRAEK AR TAAIIIRKARAIA KKK I R Ak I I hhh bk dkhkkhkhhkhkhhhhhhhkkd
Solution:

Variables Values

B = 1.3234379e-07
Keq = 3.6000000e+13
W = 33019.272
X = 0.0043698957
Y = 0.0012602085

Maximum error is 1.5178830e-18
Warning: floating point overflow

*hkkkkkkhhkhkhkhhkkhkhkkkkhkkhkkkhkkkkkkhkkhkkkkkkhkkkkhkkhkhkkhkhhkhhkhkhkihkkhkrkk

186 . Eureka: The Solver Owner’s Handbook

A

Eureka Quick Reference Table

This appendix provides brief explanations, in alphabetical order, for many of

Eureka’s features.

Built-in functions

Calculator operations

abs(x)

atan2(x1,x2)

cos(x)

cosh(x)

deriv(x1,x2)

exp(x)

fact(x)

floor(x)

frac(x)
fval(i,n,pval,paymt)
im(x)
integ(exp,var,x1,x2 <n>)
In(x)

log10(x)

msqrt(x)

ncum(x)
paymt(i,n,pval,fval)
pi()

polar(x1,x2)
poly(x,series)
pos(x)
pval(i,n,paymt,fval)
re(x)

sgn(x)

sin(x)

sinh(x)

sqrt(x)
sum(exp,varx1,x2 <n>)
tan(x)

Press C C to select Calculator from the Commands
menu. Press Num-Lock, then use the number pad keys
located at the right of your keyboard to make entries,
then press Enter. Eureka works just like a hand-held
scientific calculator to solve arithmetic and built-in

functions.

187

Default settings

Directives

Directory

Edit an equation file

Equation file format

188

Change default settings in one of two ways:
1. Embed directives in the equation file.
2. Change settings from the Options menu:

Press O S to select Settings from the Options menu.
Scroll through the menu and change the desired set-
tings by pressing Enter to toggle between yes and no,
or by entering an appropriate number. Then press Esc.
Load and save setup files with Load setup and Write
setup.

accuracy, casefold, complex, digits, finanmode, finan-
smooth, include, initval, listdefault, max, maxtime,
min, penalty, plotdefault, radius, rootsign, setting,
solve, substlevel, syntax, unit

Press F D from the main menu, enter optional directory
mask, and press Enter (* and ? are wildcards). By
default, Eureka will list all files in the directory.
Select Edit to input the equation you want to solve.
The editor works like the Turbo Pascal and SideKick
editors or WordStar in non-document mode. A brief
listing of editor commands follows:

Word left Ctri-Left arrow or
Ctrl-A

Word right Ctrl-Right arrow or
Ctrl-F

Delete character to left Backspace

Delete character under cursor Ctrl-G

Delete word to right of cursor Ctrl-T

Delete line - Ctrl-Y

Insert mode on/off Ins or Ctrl-V
Equations. Equations are written one per line in stan-

dard mathematical syntax and notation. Multiplication

is not implicit.

* multiplication operator

- exponentiation operator

:= user-defined functions and initializations
used to separate formulas on the same line

—~ indicates formula continued on following line

Eureka: The Solver Owner's Handbook

File names

Find other roots, modify
variables and constants

Function keys

List a table of values

Eureka Quick Reference Table

Directives. Directives begin with a dollar sign and fol-
low the general format of the directive shown here:

$ digits = 6

Comments. Comments must be set off by a semicolon
(;) or appear between braces ({ }).

Press F L to select Load from the File menu, then enter
a file name. File names follow DOS conventions (up to
eight characters, and may also include an optional 1 to
3 character extension).

Use the Write to... option on the File menu to make
an alternate version of the current file.

Press O V from the main menu to select Variables from
the Options menu. Enter a value, and press Enter.
Press Esc twice to return to the main menu, then
choose Iterate from the Command menu to solve for
the new variable. In seeking another root, the value
should be close to but not greater than that of the sec-
ond root. Press Esc, then press S to return to the main -
menu and Solve.

Fi Display help text

F2 Save the current file

F3 New file

F5 Zoom to full screen editor

Alt-F5 Text zoom in plot window

Fé Change active window

F7 Go to active window or block
Begin (edit function)

F8 Block end (edit function)

Esc Select menu

Ctrl-Break Interrupt solve

Up arrow, Down arrow,
Left arrow, Right arrow,
PgUp, PgDn,

Alt-X

Move/scroll through the screen

Exit Eureka

Press G L from the main menu to select List from the
Graph menu. Respond to the prompts by entering the
function (if necessary) and the initial value, incre-
ment, and number of values; then press Enter. See
comment under “Plot a graph”

189

Load a file

Plot a graph

Print a report

Quit the program
Return to DOS
Return to main menu

Save a file

Select menu items

Settings
Start the program

Solve a problem

Verify a solution

190

Press F L from the main menu to select Load from the
File menu. At the prompt, type in the name of the file
to be loaded; press Enter.

Press G P from the main menu to select Plot from the
Graph menu. Respond to the prompts by entering the
left and right endpoints and then press Enter.

(Note: A file must have at least one user-defined
function or you must enter one with the Function com-
mand before you can select Plot or List.)

Press R O to select the Output option from the Report
menu. Indicate the desired output device and whether
you want a formatted header (Enter toggles between
the various choices). Select Go and press Enter.

Press Q from the File menu, or press Alt-X.

Press F O to select OS Shell from the File menu.
From a window or submenu, press Esc.

Press F S from the main menu to select Save from the
File menu. This saves a copy of your file on your active

drive.

Cursor Method Move cursor to desired menu item
and press Enter.

Initial Letter Method Type the capital letter of the
desired option. For example, to select the Calculator
option on the Commands menu, you would press CC.
In addition to those listed under “Directives:”
list_first, list_num, list_inc, plot_left, plot_right.

Log on to the drive or directory containing the pro-
gram and type EUREKA Enter.

Press S from the main menu to select Solve.
To solve the problem another time, press C [from the

main menu to select the Iterate command from the
Commands menu. '

To look in a different region for an answer, press C F
from the main menu to select the Find other command
from the Commands menu.

Press C V from the main menu to select Verify from the
Commands menu.

Eureka: The Solver Owner's Handbook

A P P E N D I X B

Eureka Editor Commands

All Eureka editor commands are described in this appendix. Each description con-
sists of:

¢ a heading defining the command

* the keystrokes that activate the command

* a brief explanation of what the command does

If there are two ways of giving a command, that is, one using the IBM cursor

keys and the other using Ctrl, both ways are listed, with the IBM cursor key
method listed first. ,

If you are familiar with WordStar or the Turbo Pascal and SideKick editors, you
should have no trouble with the Eureka editor, since it is virtually identical to these
editors.

For hands-on practice with using the editor, see the tutorials in Chapter 2. To
change default editor keystrokes, use the EINST program, described in Ap-
pendix F.

191

Cursor Movement Commands

These commands control the position of the cursor in the file. You can manage
fairly well with just the cursor keys and PgUp and PgDn; the other commands are
handy but may not be critical for small files.

Character left Left arrow or Ctrl-S
Moves the cursor one character to the left without affecting the character there.
This command does not work across line breaks; when the cursor reaches the left
edge of the window, it stops.

Character right Right arrow or Ctrl-D
Moves the cursor one character to the right without affecting the character there.
This command does not work across line breaks; when the cursor reaches the right
edge of the window, the text starts scrolling horizontally until the cursor reaches
the extreme right of the line in column 250, where it stops.

Line down Down arrow or Ctrl-X
Moves the cursor to the line below. If the cursor is on the second-to-the-last line,
the window scrolls up one line.

Line up Up arrow or Ctrl-E
Moves the cursor up to the line above. If the cursor is on the top line, the window
scrolls down one line.

Page down PgDn or Ctrl-C
Moves the cursor one page (window) down with an overlap of one line. The cursor
moves one window less one line forward in the text.

Page up PgUp or Ctrl-R
Moves the cursor one page (window) up with an overlap of one line. The cursor
moves one window less one line backward in the text.

To end of file Ctrl-PgDn or Ctrl-Q C
Moves the cursor to the last character of the text.
To top of file Ctrl-PgUp or Ctrl-Q R

Moves the cursor to the first character of the text.

To last cursor position Ctrl-QP
Moves the cursor to the last position it occupied. This command is useful, for
example, to move back to the last position after a Find/Replace operation.

To left margin Home or Ctrl-Q S
Moves the cursor all the way to the left edge of the window (column 1).
To right end of line End or Ctrl-Q D

Moves the cursor to the end of the line; in other words, to the position following the
last printable character on the line. Trailing blanks are always removed from all
lines to save space.

192 Eureka: The Solver Owner's Handbook

To top of window Ctrl-Home or Ctrl-Q E
Moves the cursor to the top of the editor window.

To bottom of window Ctrl-End or Ctrl-Q X
Moves the cursor to the bottom of the editor window.
Word left Ctrl-Left arrow or Ctrl-A

Moves the cursor to the beginning of the word to the left. A word is defined as a
sequence of characters delimited by one of the following characters: space < > | ;

SO *+ =78,

Word right Ctri-Right arrow or Ctrl-F
Moves the cursor to the beginning of the word to the right. A word is defined as a
sequence of characters delimited by one of the following characters: space < > , ;

O *+-/8.

Insert and Delete Commands

These commands let you insert and delete text by character, word, and line, and
control the Insert/Overwrite typing mode.

Delete character to left Backspace
This is the backspace key just above Enter. It moves one character to the left and
deletes the character there. Any characters to the right of the cursor are moved to

the left.

Delete character under cursor Del or Ctrl-G
Deletes the character under the cursor and moves any characters to the right of the
cursor one position to the left. This command does not work across line breaks.

Delete word right Curl-T
Deletes the word to the right of the cursor. A word is deﬁned in “Word left” under
cursor movement commands.

Delete to end of line Cul-QY
Deletes all text from the cursor position right to the end of the line.

Insert mode on/off Ins or Ctrl-V
This command lets you switch between insert, the default, and overwrite mode
while entering text. The current mode is displayed on the status line of the editor
window. In Insert mode, new text is tucked in at the cursor position, and existing
text is moved to the right. Overwrite mode is convenient for replacing old text with
new. In this mode, existing characters are replaced by the new characters typed
over them.

Eureka Editor Commands 193

Line deletion Ctrl-Y
Deletes the line containing the cursor and moves any lines below one line up. The
cursor moves to the left edge of the window. Be careful; there is no way to restore a
deleted line.

Line insertion , Ctrl-N
Inserts a line break at the cursor position. The cursor remains stationary.

Block Commands

Block commands allow you to maneuver chunks of text. A block can be any amount
of text from a single character to an entire file. A block is marked by placing a
“begin block” marker before the first character and an “end block” marker after the
last character of the desired portion of text. So marked, a block can be copied,
moved, deleted, or written as a file.

Block copy Ctrl-K C
Places a copy of a marked block starting at the cursor position. The original block is
left unchanged.

Block move Ctrl-K vV
Moves a marked block from its original position to the cursor position. The block
disappears from its original position.

Block delete Ctrl-KY
Deletes a marked block. Be careful; no provision exists for restoring a deleted block
of text.

Hide/display block Ctrl-K H
This command causes the visual marking of a block to be toggled off and on. The
copy, move, delete, and write to a file block manipulation commands work only
when the block is visibly marked.

Mark block begin Ctrl-K B
Marks the beginning of a block. The marker itself is not visible on the screen, and
the block only becomes visibly marked (displayed in lower-intensity text) when the
end block marker is set. You can also use the begin block marker as a reference
pointin your text and jump directly to it with the Ctrl-Q B command.

Mark block end Ctrl-K K
Marks the end of a block. As above, the marker itself is not visible on the screen,
and the block only becomes visible after the begin block marker is set. You can also
use the begin block marker as a reference point in your text and jump directly to it
with the Ctrl-Q K command.

194 Eureka: The Solver Owner's Handbook

Mark single word Ctl-KT
Mark a single word as a block. If the cursor is placed within a word, the word is
marked; if the cursor is not on a word, the word to its left is marked. A word is as
defined in “Word left” under cursor commands.

Read block from disk Ctrl-KR
This command is used to read a file into the current text at the cursor position,
exactly as if it were a block that was being copied or moved.

Write block to disk Ctrl-K W
This command is used to write a previously marked block to a file. The block is left
unchanged, and the markers remain in place. When you use this command, you are
prompted for the name of the file to write to. If the file name specified already
exists, a warning is given before the existing file is overwritten.

Miscellaneous Editing Commands

Abort operation Ctrl-U
Abort the current editing operation when it pauses for input (for example, when

Search and replace asks “Replace Y/N?” or during the entry of a file name for a
block read).

Control character prefix ‘ “Ctrl-P
The editor allows you to enter control characters into the file by prefixing the
desired control character with Ctrl-P. Control characters are displayed as half-
intensity capital letters.

For instance, to cause an Epson printer to print condensed type, enter Ctrl-P
Ctrl-O. Consult your printer’s manual for more information about printing control
commands. You can also use Ctrl-B (for bold) or Ctrl-S (for underline) to emphasize
text. These are toggle characters, so you turn off bold, for example, by entering
Ctrl-P Ctrl-B after the last character that should be printed in bold.

Find Ctrl-Q F
This command lets you search for a string of characters. A prompt appears above
the status line, requesting a search string. If you make an error while typing the
string, use the Backspace key to back up and correct it. The string may contain any
characters, including control characters. Control characters are entered into the
search string with the Ctrl-P prefix. To find a line break, search for Ctrl-M Ctrl-|.

After the search string has been specified, you are asked for search options.
Enter the required options (if any), then press Enter to start the search. If the text
contains a target matching the search string, the cursor is positioned at the end of

Eureka Editor Commands 195

the target. To repeat the search operation, use the repeat last find command, Ctrl-L.
The following options are available (and need not be entered in uppercase):

B Search backwards from the current cursor position towards the beginning of
the file

n n = an integer. Type the number of occurrences of the string for which the
search should take place, counted from the current cursor position.

U Ignore uppercase or lowercase. Regard uppercase and lowercase alphabeti-
cals as equivalent.

W Search for whole words only. Skip matching patterns that are embedded in
other words.

Find and replace Ctrl-Q A
This command lets you search for a string of characters, and then replace it with
another. A prompt appears above the status line, requesting a search string. A
further prompt requests the replacement string. In nearly every other respect, this
commands functions like Find, described previously. There are two additional
options:

G Global search and replace. Search and replace throughout the entire text, irre-

spective of the current cursor position.

N Replace without asking. Does not stop and query whether or not the replace
should be carried out at every occurrence of the search string.

Page break Ctrl-P Ctrl-L
Inserts a page break (an ASCII form feed) at the cursor position.
Repeat last find Ctrl-L

Repeats the last Find or Find and replace operation exactly as if all the information
had been re-entered.

Restore error message Ctrl-QW
Redisplay last error message.
Restore line Ctrl-QL

Restores a line to its original state regardless of what changes you have made;
however, you cannot have left the line for the command to be effective.

Tab Tab or Ctrl-1
Moves the cursor eight spaces to the right (hard tabs) or moves cursor to next
column based on spacing in the line above (soft tabs).

Tab mode toggle Crl-OT
Toggles tabs on and off.
Set tab Ctrl-O |

Sets tab at cursor position.

196 Eureka: The Solver Owner's Handbook

. C

Built-in Functions

Eureka’s built-in functions are described in alphabetical order in this appendix.
The standard mathematical and other functions are listed below:

Standard Mathematical Functions
abs
atan2
cos
cosh
exp
fact
In
logl0
pi()
sm
sinh
tan
tanh

Other Functions
deriv
floor
frac
fval
im
integ
ncum
paymt
polar
poly
pos
pval
re

sgn
sqrt
sum

197

The following notations are used in describing the functions:

expr . must be an expression

series series of values or expressions
var variable identifier

x value or expression

abs Absolute Value abs(x)

This function returns the absolute value of x. If x is positive, x is returned. If x is
negative, —x is returned.

Examples

abs(5) returns 5
abs(-15.5) returns 15.5

atan2 Arc Tangent atan2(x1,x2)

This trigonometric function returns the inverse tangent of x1/x2. This is the angle,
in radians, formed by x2 and x1. This function offers an extension to the usual Arc
Tangent in that it applies to all four quadrants. The rules that one used in deter-
mining 6 = atan2 (x1, x2) are as follows:

Quadrant

I ifxl and x2 > 0,then 0 < 8 < w2

1I ifxl >0andx2 < 0, thenw2 <8 <m
111 ifxl and x2 < 0, then—w < 8§ < —7w 2
v ifx1 <0andx2 > 0, then—mw R <068<0

The quadrants progress counterclockwise, with I at the upper right-hand corner.
Example
atan2(1,-1) returns 2.35619449

cos Cosine cos(x)

This trigonometric function returns the cosine of x. x is assumed to be the angle in
radians.

Example
cos(1) returns 0.54030231

198 Eureka: The Solver Owner’s Handbook

cosh Hyperbolic Cosine cosh(x)

This function returns the hyperbolic cosine of x.

Example
cosh(2) returns 3.76219569

deriv Partial Derivative deriv(x1x2)

This function returns the partial derivative of the first argument with respect to the
second. The second argument must be a variable. For example, solving

deriv(x™3 + 5 * x,x)
1

z
X

= 1.00000000

z = 8.00000000

The derivative of x* + 5x is 3x* + 5, which has the value 8 whenx = L If other
variables besides x were to appear in the expression, they would be treated as
constants in the derivative to be evaluated. For example, solving

z = deriv(x"3 + y2 + 5 * x,Xx)

x=1
y=2

gives
x = 1.00000000
y = 2.00000000
z = 8.00000000

However, while Eureka makes substitutions internally in order to solve equa-
tions, such substitutions do not affect derivatives. For instance, solving

y=x3+5%*x
z = deriv(y,x)
X =

gives
x = 1.00000000
y = .6.00000000
z = 0.00000000

Built-in Functions _ 199

This result occurs because deriv treats x and y as independent variables. To
differentiate an expression that occurs frequently, you should define an appropriate
function. Here this function could be

f(x) : =x3+56*x
z

= deriv(f(x),x)
x=1
gives

x = 1.00000000
= 8.00000000

exp Exponentiation exp(x)

This exponential function raises the number e to the power x.
Examples

exp(0) returns 1.00000000
exp(1) returns 2.71828183

fact Factorial fact(x)

This function calculates the factorial of the positive integer specified by x. The
integer x must be less than or equal to 170.

Examples

fact(6) returns 720.000000
fact(3) returns 6.00000000

floor Floor floor(x)

This function rounds x down to the nearest integer.
Examples

floor(-2.5) returns -3.00000000
floor(2.999 + 2.999) returns 5.00000000

200 Eureka: The Solver Owner's Handbook

frac Fraction frac(x)

This function returns as a positive number the part of x that is not an integer.
Examples

frac(2.5) returns 0.50000000
frac(1.33 + 1.55) returns 0.88000000

foal Future Value foal(in,pvalpaymt)

This financial function returns the future value of a mortgage or similar contract
(the money received at the end of a contract). n is normally an integer representing
the number of payment intervals; i is the interest rate per payment expressed in
hundredths; poal and paymt are described elsewhere in this section. fval is either
zero or a negative number representing the balloon payment. See page 99 in
Chapter 5 for more details.

Example

If you borrow $250,000 at 10% and make ten annual payments of $35,000, how
much money do you owe the lender at the end of the contract?

fval(0.10,10,250000,-35000) returns -90625.75

im Imaginary Number im(x)

This function returns the imaginary part of a complex number. (Note: The complex
number setting must be set to yes.)

Example

$ complex = yes
im(3 + 2 * sqrt(-1)) returns 2

integ Integral integ(exp,var,x1,x2 <n>)

This function returns the integral of the first argument with respect to the second.
The second argument must be a variable. The third argument is the lower limit of

integration, and the fourth argument is the upper limit. Improper integrals are not
allowed.

Built-in Functions 201

This function returns the definite integral for the variable (var) varied in the
specified expression between the limits x1 and x2. Integ uses Simpson’s Rule to
compute the integral. <n> is the number of subdivisions used for the integral. If
n is not specified, 10 subdivisions are used. (See deriv for more discussion of differ-
ential calculus.)

Expressions can also be integrated with respect to a given variable. For exam-
ple, solving

z
pi

integ(sin(x),x,0,pi)
3.14159265359

gives the integral of sin(x) as x goes from 0 to pi:

3.14159265359
1.23900000
2.00000000

pi
X
Z

In this case, the value for x is meaningless because it is not subject to any
constraints. As with derivatives, variables other than the variables of integration
are treated as constants, but functions can be used. The last two arguments to
integ, lower and upper limits of integration, can be arbitrary expressions.

Example
integ(x2 + 3 * x + 4,x,2,7) = y

returns the area under the function * + 3x + 4, between

x =2and x =7, or y = 199.16666667 .

In Natural Logarithm In(x)

This function returns the natural logarithm (base e = 2.71828183) of x. x must be
greater than 0.

Examples

Tn(exp(1)) returns 1
1n(15) returns 2.70805020

logl0 Logarithm base 10 loglO(x)

This function returns the logarithm base 10 of x. x must be greater than 0.
Example

log10(1) = 0
log10(12) = 1.0791812

202 Eureka: The Solver Owner’s Handbook

msqrt Negative Square Root msqri(x)

This function returns the negative (minimum or minus) square root of x.
Example

msqrt(9) returns -3

neum Normal Cumulative ncum(x)

This function returns the probability that a normal random variable will be below
its mean plus x standard deviations. It can also be expressed as

ncum(x) = '\]—(%"Tj '(}_c%xg(— £/2) dt

ncum is the basic tool used in analyzing the variance of normal distributions in
statistics and probability. The importance of the normal distribution is primarily
due to the Central Limit Theorem. This theorem states that any sum of indepen-
dent random variables approximates a normal random variable, with the approxi-
mation becoming more accurate as more variables are summed. In the
experimental sciences, the deviation from theory and experiment can be explained
as an error which is the sum of error contributions from many sources. The result-
ing error is usually quite well approximated as a random variable.

As an example of the use of ncum, consider a chemist who is measuring pollut-
ants in the air. After taking a number of readings, s/he computes the average pollen
concentration at 150 parts per million (ppm), with a standard deviation of 10 ppm.
The probability of making a reading less than 170 ppm is ncum(+2), since 170 is 2
standard deviations above 150. Also, the chemist can be very confident that a read-
ing will be less than 150 + 10x where

ncum(x) = 0.99
Example
ncum(1) returns 0.84134456

Built-in Functions 203

paymt Payment paymt(i,n,pval foal)

This financial function returns the payment on a mortgage or similar contract. n is
normally an integer representing the number of payment intervals; i is the interest
rate per payment expressed in hundredths; pval and fval are described elsewhere
in this section. See the section on financial functions in Chapter 5 for more details.

pi pi pi()

This function returns the value of pi (3.14159265359)

polar Polar Coordinate polar(x1,x2)

This function returns the angle in the rectangular to polar coordinate conversion in
radians. The conversion

x = r X cos(theta)
y = r X sin(theta)

is inverted by

r = sqrtle® + y°)
theta = polar(x,y)

except for the restriction

— a7 < theta < 7
7 = 3.14159265359

If z is complex, these transformations are equivalent to

x = re(z)
y = im(z)
r = abs(z)

theta = im(In(z))

Polar{x,y) is the same as the Fortran function atan2(y,x), and is the same as the
arc tangent of y/x with the quadrant chosen carefully (see arctan2 for more details).

Example
polar(-1,0) returns 3.14159265

204 Eureka: The Solver Owner's Handbook

poly Polynomial poly(x,series)

This function returns the value of the polynomial of x using the specified series of
coefficients. Coefficients are listed in descending order of the variable exponent.
For example, the following polynomial equation

4+ 3% -+ 20 +1
would be expressed as follows:

p(x) := poly(x, 1, 3, -1, 2, 1)

Applying Solve to a file containing poly causes Eureka to find all the roots, as
well as solve for whatever other variables are in the file.

A root to a polynomial is a complex number that yields zero when plugged into
the polynomial. A polynomial of degree n always has exactly n roots, counting
repetitions. Since the polynomial here has real coefficients, the roots are either real
or occur in complex conjugate pairs. The above polynomial has the following roots:

No. Real Part Imaginary

1 —0.29105149 0.00000000
2 0.50677653 1.00258931
3 0.50677653 —1.00258931
4 -2.72250157 0.00000000

pos Positive pos(x)

This function returns the positive value of x.

Examples

pos(1.2) returns 1.20000000
pos(-12) returns 0.00000000

Built-in Functions 205

pval Present Value pval(i,n,paymt,foal)

This financial function returns the present value on a mortgage or similar contract.
(For a mortgage, this is the amount of the loan minus the down payment.) n is
normally an integer representing the number of payment intervals; i is the interest
rate per payment expressed in hundredths; paymt and fval are described else-
where in this section. See page 99 in Chapter 5 for more details.

re Real Number re(x)

This function returns the real part of a complex number. (Note: Complex numbers
must be set to yes.)

Example

$ complex = yes
re(3 + 2 * sqrt{-1) returns 3

sgn Sign sgn(x)

This function returns 1 if x > 0 or if x = 0; otherwise, it returns —1 ifx < 0.

Examples

sgn(10) returns 1
sgn(0) returns 1
sgn{-1) returns -1

sin Sine sin(x)

This trigonometric function returns the sine of x. x is the angle in radians.

Example
sin(1) returns 0.84147098

206 » Eureka: The Solver Owner's Handbook

sinh Hyperbolic Sine sinh(x)

This function returns the hyperbolic sine of x.
Example
sinh(1) returns 1.17520119

sqrt Square Root sqri(x)

This function returns the positive square root of the argument x.

Example
sqrt(81) returns 9.00000000

sum Sum sum(exp,var,x1,x2)

This function returns the sum of the series defined by replacing the variable in the
second argument in the function of the first argument over the range expressed in
the third and fourth arguments, or

S s

z=1

where f(x) = ex
x = var
1=xl1
n = x2

The second argument must be a variable. The third argument is the lower limit
of the summation, and the fourth argument is the upper limit.

Example

sum(4 * x,x,1,3) returns 24

Built-in Functions 207

tan Tangent tan(x)

This trigonometric function returns the tangent of x, where x is an angle measured
in radians.

Examples

tan(0) returns 0.00000000
tan(1) returns 1.55740772

tanh Hyperbolic Tangent tanh(x)

This trigonometric function returns the hyperbolic tangent of x.
Example
tanh(1) returns 0.76159416

208 Eureka: The Solver Owner's Handbook

A P P E N D | X D

A DOS Primer

If you are new to computers or to DOS, you may have trouble understanding
certain terms used in this manual. This appendix provides you with a brief over-
view of the following DOS concepts and functions:

* What DOS is and does

» The proper way to load a program

¢ Directories, subdirectories, and the path command

e Using AUTOEXEC.BAT files

This information is by no means a complete explanation of the DOS operating

system. If you need more details, please refer to the MS-DOS™ or PC-DOS™
user’s manual that came with your computer system.

Eureka runs under the MS-DOS or PC-DOS operating system, version 2.0 or
later.

What Is DOS?

DOS is shorthand for Disk Operating System. MS-DOS is Microsoft’s version of
DOS, while PC-DOS is IBM’s rendition. DOS is the traffic coordinator, manager,
and operator for the transactions that occur between the parts of the computer
system and the computer system and you. DOS operates in the background, taking

209

care of many of the menial computer tasks you wouldn’t want to have to think
about — for instance, the flow of characters between your keyboard and the com-
puter, between the computer and your printer, and between your disk(s) and inter-
nal memory (RAM).

Other DOS transactions are ones that you initiate by entering commands on the
DOS command line; in other words, immediately after the DOS prompt. Your
DOS prompt looks like one of the following:

A>

B>
c>

The capital letter refers to the active disk drive (the one DOS and you are using
right now). For instance, if the prompt is A>, it means you are working with the
files on drive A, and that commands you give DOS will refer to this drive. When
you want to switch to another disk, making it the active disk, all you do is type the
letter of the disk, followed by a colon and Enter. For instance, to switch to drive B,
just type B:Enter.

There are a few commands that you will use often with DOS, if you haven’t
already, such as

DEL or ERASE To erase a file

DIR To see a list of files on the logged disk
COPY To copy files from one disk to another
EUREKA To load Eureka: The Solver

DOS doesn’t care whether you type in uppercase or lowercase letters, or a
combination of both, so you can enter your commands however you like.

We'll assume you know how to use the first three commands listed; if you don't,
refer to your DOS manual. Next, we will explain the proper way to load a program
like Eureka: The Solver, and that involves the last command — EUREKA.

How to Load a Program

On your distribution disk, you'll find the main Eureka program, under the file
name EUREKA.EXE. This program file is necessary for all functions, so you
always need it when you first start the program. A file name with the “last name” or
extension .COM or .EXE means a program file that you can load and run (use) by
typing only its “first name” on the DOS command line. So, to invoke Eureka, you
simply type EUREKA and press Enter, and Eureka will be loaded into your com-
puter’s memory.

210 : Eureka: The Solver Owner's Handbook

There’s one thing you need to remember about loading Eureka and other similar
programs: You must be logged onto the disk and directory where the program is
located in order to load it otherwise, unless you have set up a DOS path (described
shortly), DOS won’t know where to find the program. (In DOS 3.0, however,you
can load a program by giving the full path name.)

For instance, if your distribution disk with the EUREKA.EXE program is in
drive A but the prompt you see on your screen is B>, DOS won’t know what
you're talking about if you type EUREKA and press Enter, and will give you the
message “Bad command or file name.”

It’s as if you were shuffling through the “School Records” file in your file cabinet
looking for information about your home finances. You're in the wrong place. So if
you happen to get that DOS message, simply switch to drive A by typing A: and
then press Enter. Then type EUREKA and press Enter to load Eureka.

You can set up a “path” to the Eureka files so that DOS can find them, using the
DOS path command. See the section on the AUTOEXEC.BAT file for more infor-
mation. ‘

Directories

A directory is a convenient way to organize your floppy or hard disk files. Directo-
ries allow you to subdivide your disk into sections, much the way you might put
groups of manila file folders into separate file boxes. For instance, you might want
to put all your file folders having to do with finance — for instance, a bank statement
file, an income tax file, or the like —into a box labeled “Finances.”

On your computer, it would be convenient to make a directory to hold all your
Eureka files, another for your SideKick files, another for your letters, and so on.
That way, when you type DIR on the DOS command line, you don’t have to wade
through hundreds of file names lookmg for the file you want. You'll get a hstlng of
only the files on the directory you're currently logged onto.

Although you can make directories on either floppy or hard disks, they are used
most often on hard disks. This is because a hard disk can hold a greater volume of
data, so there is a greater need for organization and compartmentalization.

When you're at the DOS level, rather than in Eureka or another program, you
can tell DOS to create directories, move files around between directories, and
display which files are in a particular directory.

In the exémples that follow, we assume you are using a hard disk system, and
that you are logged on to the hard disk so that the prompt you see on your screen is
C>. If you want to create directories on your floppy disks, just substitute A or B

A DOS Primer 211

To make a directory for your Eureka files, do the following;

1. At the C> prompt, type MKDIR EUREKA and press Enter. The MKDIR
command tells DOS to make a directory called EUREKA.

2. Type CHDIR EUREKA and press Enter. The CHDIR command tells DOS to
move you into the EUREKA directory.

3. Now, put the Eureka disk you want to copy from into one of your floppy
drives —let’s say A for this example —and type COPY A:*.* Enter. (The aster-
isks are wildcards that stand for all files.) The COPY command tells DOS to
copy all files on the A drive to the EUREKA directory on the C drive. As each
file on the disk is copied, you will see it listed on the screen.

That’s all there is to it. Treat a directory the same way you would a disk drive: To
load Eureka, you must be in the EUREKA directory before typing Eureka and
pressing Enter, or DOS won't be able to find the program.,

Subdirectories

If you are someone who really likes organization, you can further subdivide your
directories into subdirectories. You can create as many directories and subdirec-
tories as you like — just don’t forget where you put your files!

A subdirectory is created the same way as a directory. To create a subdirectory
from the EUREKA directory (for instance, for storing your equation files), do the
following:

1. Be sure you are in the EUREKA directory.

2. Type MKDIR FILES Enter.

3. Type CHDIR FILES. You are now in the FILES subdirectory.
4. Copy your equation files to the new subdirectory.

If you do put your files in a subdirectory, you can let Eureka know where they
are by using the EINST program (see Appendix F).

Where Am I? The $p $g Prompt

You probably have noticed that when you change directories, you still see the C>
prompt; there is no evidence of what directory or subdirectory you are in. This can
be confusing, especially if you leave your computer for a while. It’s easy to forget
where you were when you left.

212 ' Eureka: The Solver Owner’s Handbook

DOS gives you an easy way to find out. Just type
prompt=$p $g

and from now on (until you turn your computer off or reboot), the prompt will show
you exactly where you are. Try it. If you are still in the FILES subdirectory, your
DOS prompt should look like

C:\EUREKA\FILES >

The AUTOEXEC.BAT File

To avoid typing the prompt command (discussed in the previous section) to see
“where you are” every time you turn on your computer, you can set up an
AUTOEXEC.BAT file to do it for you each time you turn on your computer.

The AUTOEXEC.BAT file is a useful tool to set your computer to do things
automatically. There are many more things it can do, but rather than go into great
detail here, we suggest referring to your DOS manual for more information. We
will show you how to create an AUTOEXEC.BAT file that will automatically
change your prompt so you know where you are in your directory structure, set a
path to the Eureka directory, and change to the EUREKA directory.

The DOS path command tells your computer where to look for commands it
doesn’t recognize. DOS only recognizes programs in the current (logged) direc-
tory, unless there is a path to the directory containing pertinent programs or files.
In the following example, we will set a path to the EUREKA directory.

If you have an AUTOEXEC.BAT file in your root directory, your computer will
do everything in that file when you first turn your computer on. (The root directory
is where you see the C> or C:\ prompt, with no directory names following it.)

Here’s how to create an AUTOEXEC.BAT file.

1. Type CHDIR \ Enter to get to the root directory.

2. Type COPY CON AUTOEXEC.BAT Enter. This tells DOS to copy whatever
you type next into a file called AUTOEXEC.BAT.

3. Type

PROMPT=$P $G
PATH=C:\EUREKA
CHDIR EUREKA
Ctrl-Z

The Ctrl-Z sequence saves your commands in the AUTOEXEC.BAT file.

To test your new AUTOEXEC.BAT file, reboot your computer by holding down
the Ctrl and Alt keys and then pressing Del. You should see C:\EUREKA>.

A DQOS Primer 213

Changing Directories

How do you get from one directory to another? It depends on where you want to
go. The basic DOS command for changing directories is CHDIR. Use it like this:

* To move from one directory to another: For example, to change from the
EUREKA directory to one called WP, type the following from the EUREKA
directory:

C:\EUREKA> CHDIR \WP Enter

Notice the backslash (\) before the directory name. Whenever you are moving
from one directory to another unrelated directory, type the name of the directory,
preceded by a backslash.

* To move from a directory to its subdirectory: For example, to move from the
EUREKA directory to the FILES subdirectory, type the following from the
EUREKA directory:

C:\EUREKA> CHDIR FILES Enter

In this case, you did not need the backslash, because the FILES directory is a
direct offshoot of the EUREKA directory. In fact, DOS would have misunder-
stood what you meant if you had used the backslash in this case. If you had

included the backslash, DOS would have thought that FILES was a directory off
the main (root) directory.

* To move from a subdirectory to its parent directory: For example, to move from
the FILES subdirectory to the EUREKA directory, type the following from the
FILES subdirectory:

C:\EUREKA\FILES> CHDIR .. Enter
DOS will move you back to the EUREKA directory. Any time you want to
move back to the parent directory, type two periods after the CHDIR command.

* To move to the root directory: The root directory is the original directory. It is the
parent {or grandparent) of all directories (and subdirectories). When you are in
the root directory, you see this prompt: C:\ >.

To move to the root directory from any other directory, simply type
CHDIR \ Enter

The backslash without a directory name signals DOS that you want to return
to the root directory.

214 Eureka: The Solver Owner's Handbook

This appendix has presented only a quick look at DOS and some of its functions.
Once you're familiar with the information given here, you may want to study your
DOS manual and discover the many things you can do with your computer’s oper-
ating system. There are many other DOS functions not mentioned here that can
simplify and enhance your computer use.

A DOS Primer 215

216 Eureka: The Solver Owner's Handbook

A P P E N D I X E

Error Messages

The various error messages you may encounter while using Eureka are described
in alphabetical order in this appendix. These messages appear in the Error win-
dow. When applicable, a line reference may also appear with the error message.
The line reference specifies the line in the equation file that contains the error.
However, when you use the Calculator, only the word ERROR appears, although
the cause of the problem may be one described in this appendix.

Assignment Must Be to a Variable or Function

Cause: Syntax problem. Attempting to solve an equation file in which an assign-
ment (using : =) has been made to something other than a recognizable variable or
function.

Solution: Edit the file to provide a legitimate variable or function, as required.

Bad Function Call

Cause: Internal error. Generated if Eureka attempts to solve an incorrectly defined
function.

Solution: Quit Eureka, then reactivate it.

217

Cannot Complexify Floor or Frac

Cause: Setting error. The active equation file includes the floor or frac function,
but either the complex setting or complex directive has been set to yes.

Solution: Change the setting or directive to no.

Cannot Have Complex Derivatives or Integrals

Cause: Setting error. The active equation file includes the deriv or integ function,
but either the complex setting or complex directive has been set to yes.

Solution: Change the setting or directive to no.

Circular Function Definition

Cause: Attempting to solve an equation file that contains a tautological function

definition; that is, one that does not produce an assignable value. An example of

this is:
f(x) :
g(x) :

X2 + 3 * g{x)
f{x +1) -7 *x

Solution: Rewrite the incorrect definition.

Comma Expected

Cause: Syntax problem. In attempting to solve the equation file, Eureka has
encountered an equation that lacks one or more commas between values or con-
stants that are function arguments.

Solution: Edit the equation so that it contains the correct number of commas.

218 Eureka: The Solver Owner’s Handbook

Command Not Understood

Cause: Syntax error. In attempting to solve an equation file, Eureka has encoun-
tered an unintelligible directive (to the left of the equal sign); for example:

$'ccomplex = yes
Solution: Restore the directive to its proper form:

$ complex = yes

Constant Expected

Cause: Attempting to solve an equation file in which something other than a recog-
nizable constant appears where one is syntactically expected.

Solution: Edit the file to provide a legitimate constant.

Dynamic Memory Depleted

Cause: Memory problem. The area allocated to Eureka has been filled.
Solution: Quit Eureka, then reactivate it.

Equations are Inconsistent

Cause: Attempting to solve an equation file in which the equations do not follow
the correct sequence.

Solution: Edit the equations so they follow the correct syntax.

File Already Exists

Cause: In using the Rename command, you have entered a file name that already
exists.

Solution: Select Rename again, but enter a name not currently in use.

Error Messages ‘ 219

File Not Found

Cause: In attempting to use Load to bring a file to the screen, no file name has
been found to match the one entered. '

Solution: Doublecheck the file name and try again, remembering extensions.

File Too Large

Cause: Attempting to use Save on a file that will not fit in the available disk space.

Solution: Cut down the size of the file, or if possible, save to another memory
device (such as a different data disk).

Function is Multiply Defined

Cause: Syntax error. Attempting to solve an equation file in which the same func-
tion definition is used more than once. For example:

f(a) :
f(b) :

pos(x +y)
pos(z)

Solution: Edit the equation file to eliminate redundant version(s) of the function
definition:

f(a) :
g(b) :

pos(x + y)
pos(z)

Function is Undefined

Cause: Syntax problem. Attempting to solve an equation file that contains an equa-
tion with an undefined function.

Solution: Edit the equation so that it contains an appropriate built-in function or
correctly stated user-defined function.

220 Eureka: The Solver Owner's Handbook

Identifier Expected

Cause: Syntax problem. Attempting to solve an equation file that lacks a variable
name where one should syntactically appear.

Solution: Edit the file to include the necessary character.

Identifier Too Long

Cause: A variable name is too long.

Solution: Edit the file to eliminate redundant characters or recast the formula as
necessary.

Incorrect Number of Function Arguments

Cause: Syntax problem. Attempting to solve an equation file that contains a func-
tion with a different number of arguments than those indicated in the function
definition.

Solution: Edit the function to contain the correct number of arguments.

Invalid Function Argument

Cause: Attempting to solve an equation file containing a function with an improper
argument. For example, replacing either of the plus signs in this equation with an
equal sign:

frac(x + 2.5 + 0.33).

Solution: Edit the necessary function arguments.

Error Messages 22

Invalid Function Definition

Cause: Syntax problem. Attempting to solve an equation file that contains an
improperly defined function, such as a numeral appearing between the paren-
theses.

Solution: Edit the function definition so that it is properly formed.

Invalid Number

Cause: In attempting to solve the equation file, Eureka has encountered an illegal
symbolic value. For instance, while e (indicating scientific notation) is allowed, it
may be entered incorrectly.

Solution: Edit the equation file so that it contains a legal symbolic value.

Memory Heap Overflow

Cause: Attempting to solve an equation file that contains an equation requiring
more memory than is available in RAM on your computer.

Solution: Recast the equation or get more RAM for your computer.

Must Differentiate With Respect to a Variable

Cause: Attempting to solve an equation file that uses the deriv function incorrectly.

Solution: Recast the deriv function.

Numeral or Operator Expected

Cause: Attempting to solve an equation file that contains something other than a
numeral or operator where, syntactically, one should appear.

Solution: Edit the file to correct the character(s).

222 Eureka: The Solver Owner’s Handbook

Polynomial is Invalid

Cause: An internal error is generated if Eureka attempts to solve an invalid poly-
nomial.

Solution: Exit Eureka, then reactivate it.

Printer Not Ready

Cause: Hardware problem. In attempting to use the Report Go command to print a
report, some difficulty with the printer has been encountered.

Solution: Check that the printer is on, select is on, ribbon and paper are properly
feeding and in place, cables are tight, and so on.

Quote Mark Expected

Cause: Syntax error. Attempting to solve an equation file that lacks a quotation
mark where one should appear around a file name specified by the include direc-
tive.

Solution: Edit the file to insert the necessary quotation mark.

Relational Operator Expected

Cause: Syntax error. In attempting to solve the equation file, Eureka has encoun-
tered an equation lacking an expected relational operator (< or >).

Solution: Edit the incomplete equation so that it contains such a relational oper-
ator.

Second Argument Must Be a Variable

Cause: Attempting to solve an equation file containing a function in which the
second argument must be a variable (such as deriv or integ) but is not. ’

Solution: Recast the function argument as a variable.

Error Messages : 223

String Space Overflow

Cause: The memory area allocated to storing strings is full.

Solution: Quit Eureka, then reactivate it.

Sum is Invalid

Cause: Internal error. In attempting to solve the sum function, Eureka has encoun-
tered an internal problem.

Solution: Quit Eureka, then reactivate it.

Sum is Too Large

Cause: Attempting to solve for the sum function when the spread between the
initial and final endpoints overtaxes Eureka’s internal capacity.

Solution: Recast the function.

Syntax Error for Unit Conversion

Cause: Attempting to solve an equation file that contains an incorrectly formulated
unit conversion.

Solution: Reformulate the incorrect syntax.

Too Few Arguments to Poly

Cause: Syntax problem. Attempting to solve an equation file that includes the poly
function but with only one argument (minimum requirement is two arguments).

Solution: Edit the function to contain the correct number of arguments.

224 Eureka: The Solver Owner’s Handbook

Too Many Active Variables

Cause: Attempting to solve an equation file having more than twenty active vari-
ables.

Solution: Recast the file so that it contains twenty or fewer active variables.

Too Many Constants

Cause: Attempting to solve an equation file that causes Eureka to handle more
than 200 constants. While an equation file may have only a relatively small number
of constants, the solving process itself may sometimes cause Eureka to generate a
large number of internal substitution constants and thus cause this message to
appear.

Solution: Set the substlevel setting to 0.

Too Many Formulas

Cause: Attempting to solve an equation file with more than twenty equations.

Solution: Recast the equation file so that it contains no more than twenty equa-
tions. Note: Solving in complex mode causes Eureka to actually handle three times
the number of equations that appear in the file: the original equation, one for imag-
inary numbers, and one for real numbers.

Too Many Functions

Cause: Attempting to solve an equation file with more than ten user-defined func-
tions.

Solution: Recast the file so that it contains ten or fewer functions.

Too Many Unit Conversions

Cause: Attempting to solve an equation file having more than ten unit conversions.

Solution: Recast the file so that it contains ten or fewer such conversions.

Error Messages 225

Too Many Variables

Cause: Attempting to solve an equation file having more than twenty variables.

Solution: Recast the file so that it contains twenty or fewer variables.

Unable to Create File

Cause: Attempting to use Edit to start a new file when, for any of a number of
reasons (for example, the data disk is read-only), this is impossible.

Solution: Ascertain the reason for the failure, then use Edit again.

Unexpected End of File

Cause: Attempting to solve an equation file in which the expected terminating
character (for example, a closing }) is missing.

Solution: Edit the file to supply a recognizable termination character.

Unexpected $ End Directive

Cause: Attempting to solve an equation file that includes an end directive where,
syntactically, one should not appear.

Solution: Edit the file to reposition the end directive.

Unmatched Parentheses

Cause: Syntax problem. Attempting to solve an equation file containing an expres-
sion or comment that lacks either an initial or terminal parenthesis or curly
bracket.

Solution: Edit the file so that all parenthetical expressions are correctly enclosed
by a pair of symbols. '

226 Eureka: The Solver Owner's Handbook

Unrecognized Character

Cause: Attempting to solve an equation file that contains a character other than a
letter, identifier, operator, or numeral in a position where it might be something
other than part of a variable name or comment.

Solution: Edit the file to supply a recognizable character.

Unrecognized Setting Value

Cause: Attempting to solve an equation file in which a directive appears that
assigns an unknown setting value (for example, $ initval = four, where a numeral
is expected).

Solution: Edit the directive to include a legitimate setting value ($ initval = 4).

Use of Uninitialized Variable

Cause: Syntax problem. Attempting to solve an equation file in which no assign-
ment of a value (using : =) has been made to a variable that must be initialized.

Solution: Edit the file to provide an appropriate initialization.

Variable Expected

Cause: Attempting to solve an equation file that contains something other than an
identifiable variable where, syntactically, one should appear.

Solution: Edit the file to correct the erroneous variable.

Variable Has Not Been Initialized

Cause: Syntax problem. The active equation file contains a variable that has not
been properly initialized.

Solution: Edit the file so that the variable is initialized.

Error Messages 227

228 Eureka: The Solver Owner's Handbook

A p P E N D X F

Customizing Eureka

The program EINST.COM lets you do four things:

* set up a path to your help and setup files

* customize your keyboard to use with Eureka’s editor

* modify the default edit modes

* set the screen mode (default, color, black and white, or monochrome)

If you want to store your help (HELP.EKA) and/or setup (INITIAL.EKA —
created with Write setup on the Options menu) files on a directory other than the

one where you have EUREKA.EXE, or if you are running DOS 2.0, you will need
to use the Eureka directory option to set a path to those files.

If you don’t like Eureka’s default editor keystrokes, or if you want the Eureka
editor to behave more like your own text editor, you can use the Text editor com-
mand option to customize the editor keystrokes to your liking,

Finally, you can use the Default editor mode option to set several defaults for
the editor: insert or overwrite mode, tabs, and autoindenting,.

Running EINST

To get started, type EINST at the DOS prompt. The first menu lets you select
Eureka directory, Text editor commands, Default edit modes, or Quit. You can

229

either press the highlighted capital letter of the option you want, or use the Up and
Down arrow keys to move to your selection and then press Enter. For instance,
press D to modify the Default edit modes. Pressing Esc will eventually return you
to the main screen.

The Eureka Directory Option

The Eureka directory option is really only useful for hard disk users. You'll use this
option to specify a path to your help and setup files (HELP.EKA and INITIAL.
EKA), so that they will be accessible from wherever you call up Eureka. (INITIAL.
EKA is the file created when you select Write setup from the Options menu.)

When you select the Eureka directory option, you're prompted to enter the full
path to the directory where you are storing your files. For example, if you want to
keep the files in a subdirectory off a directory called EUREKA, you might type for
your path name

C:\EUREKA\FILES

After entering a path, press Enter to accept it and the main menu will redisplay.
When you exit the program, you're prompted whether or not to save the changes.
Once you save the path, the location is written to disk. (Note that the status line at
the bottom of the screen tells you which keystrokes to use when you're in this
screen.)

The Text Editor Command Option

This option allows you to change the default keys that you use while in the Eureka
editor. Press T to modify the editor commands. The help line at the top of the
screen shows you which keys to use to move around and make changes. Most of
these commands are simply cursor movement commands; however, the R option is
useful if you make a lot of changes, then decide you want to restore the keystrokes
to their factory defaults. '

Notice that you can only modify the secondary, or highlighted, keystrokes; the
other keystrokes cannot be changed.

To change a keystroke, move the selection bar to the key you want to change,
then press Enter. You'll then see a selection bar next to the command you want to
redefine. Press the key(s) you want to use. If you take another look at the top of the
screen, you'll see the help line now lists the available commands:

<« backspace C clear R restore <« accept edit <Scroll Lock> literal

230 Eureka: The Solver Owner’s Handbook

Use the Backspace key to backspace and/or delete something in the keystroke
box. The C option clears, or erases, the whole box. Use R to restore the original
keystrokes before exiting from the screen. Press Enter to accept the keystroke modi-
fication you've made. And finally, the <Scroll Lock> is a toggle that lets you
alternate between command and literal modes.

To explain the <Scroll Lock> option, let’s take a look at the Enter key, which
is used to modify and accept the editing of a key command. But suppose you
want to change the Find String command from <CtrlQ > < CtlF > to <CtrlQ>
< Enter>. To do so, you would have to toggle Scroll-Lock to literal mode, so that
when you press the Enter key, it will be interpreted literally as part of the new
keystroke you are entering. Follow these steps:

1. Make sure <Scroll Lock> is toggled to command mode (check the upper
right-hand corner of your screen).

Then press Enter at the Find String command line.
Press Backspace to delete the < CtrlF > part of the string.

Now toggle Scroll-Lock > to literal and press Enter.

AT R o

Again, toggle Scroll-Lock to command mode and then press Enter to accept.

After you've defined a new keystroke(s) for 2 command, press Enter to accept it.
If you're finished making changes, press Esc to exit. If you still have more changes
to make, use the arrow keys to scroll up and down the list and select your next
command. At this point, if you've accidentally assigned a keystroke sequence that’s
been used as a control character sequence in the primary command column, the
message

Command conflicts need to be corrected. Press Esc

will flash across the screen. Any duplicated sequences will be highlighted, so you
can easily search for any disallowed items and reselect a sequence. If you change
your mind, you can use the R option to restore the factory default key definitions.

The Default Edit Mode Option

Press D to bring up the Default edit modes menu. There are three editor modes
that can be installed: Insert mode, Autoindent mode, and Tabs.

Use this menu to set the editor’s modes to the settings you prefer. You'll still be
able to toggle them ON/OFF from inside the editor; this menu is used to deter-
mine whether they start ON or OFF when you first load Eureka.

Customizing Eureka 23|

With Insert mode on, anything you enter at the keyboard is inserted at the
cursor position, pushing any text to the right of the cursor further right. Toggling
Insert mode off allows you to overwrite text at the cursor.

With Autoindent mode on, the cursor returns to the starting column of the pre-
vious line. When toggled off, the cursor always returns to column one.

Toggle on Tab mode when you want to insert tabs; toggle off and the tab is
automatically set to the beginning of the first word in the previous line.

When you load Eureka, the default values for all three modes are on. You can
change the defaults to suit your preferences and save them back to Eureka. Of
course, you'll still be able to toggle these modes from inside Eureka’s editor.

Either use the arrow keys to move the selection bar to the option and then press
Enter or else press the key that corresponds to the highlighted capital letter of the
option.

The Screen Mode Option

Press S to select Screen mode from the installation menu. A pull-down menu will
appear from which you can select the screen mode Eureka will use during opera-
tion. Your options include

e Default

¢ Color

 Black and white
* Monochrome

Default Display Mode

By default, Eureka will always operate in the mode that is active when you load it.

Color Display Mode

Eureka will use color mode with 80 X 25 characters no matter what mode is
active, switching back to the active mode when you exit.

Black and White Display Mode

Eureka will use black and white mode with 80 X 25 characters no matter what
mode is active, switching back to the active mode when you exit.

232 Eureka: The Solver Owner’'s Handbook

Monochrome Display Mode

Eureka will use monochrome mode no matter what mode is active, switching back
to the active mode when you exit.

Quitting the Program

Once you have finished making all desired changes, select Quit (or press Esc) at the
main menu. The message “Save changes to EUREKA.EXE?” will appear at the
bottom of the screen. If you press Y (for Yes), all of the changes you have made will
be permanently installed into Eureka. (Of course, you can always run this program
again if you want to change them.) If you press N (for No), your changes will be
ignored and you will be returned to the DOS prompt.

If you decide you want to restore the original Eureka factory defaults, simply
copy EUREKA.EXE from your master disk onto your work disk.

233

234 Eureka: The Solver Owner's Handbook

Glossary

absolute value: The value of a positive or negative number when the sign has been
removed. For instance, the absolute value of both —2 and +2 is 2.

argument: A variable or expression representing a value in the definition of a built-
in or user-defined function.

comment: In Eureka, statements used to help you identify or document various
equation file components. Comments are set off by a semicolon (;) or are enclosed
in curly brackets ({like this}); Eureka ignores comments when solving an equation

file.

confidence level: A rating that appears in the Solution window when Eureka solves
a minimization or maximization problem. The confidence level reveals the degree
of certainty Eureka feels about the found solution.

constraint: A condition that must be met for an equation to be satisfactorily solved.
The accuracy and penalty settings can alter the relative strength of a constraint.

default: The value or instruction Eureka uses until you enter a different value. For
example, Eureka automatically solves a variable to eight decimal places; that is the
default value. You can change selected default values that are listed in the main
menu’s Options pull-down menu. You can change nearly all the defaults by includ-
ing a directive in the equation file.

directive: A command to Eureka, embedded within an equation file, that affects
only that file. For example, $ complex = yes means variables are solved for as
complex numbers.

235

equation file: The file that contains the problem to be solved. It must contain an
equation or inequality and, where pertinent, initialization values and user-defined
functions. It may also include directives and comments.

error message: A message that appears in the error message window on the
Eureka screen if you type something that is incorrect or inappropriate. Appendix E
lists Eureka’s error messages and describes how to correct or avoid errors.

file name extension: An optional 1 to 3 character extension to a file name. As
shown in these examples, a period separates the file name and the extension:
FINANCE.TOM, FORMULA.]1, and FORMULA.165. Extensions are convenient
for identifying different file versions, or for identifying file ownership.

floating-point error: A warning message that may appear when Eureka has solved
for an extremely large number or when a number is divided by zero. It does not
necessarily mean the solution is erroneous.

header: A standardized format for the information appearing at the beginning of a
Eureka report. The Eureka report headers include the date, time, and file name.

help message: A message that appears in the Help window when you press F1.
Help messages explain the current area of the program, whether it is a highlighted
menu item, window, or other Eureka feature.

identifier: Name for a variable.

initialization: The process of setting initial values for variables or the starting point
of an iterative search. Initializations are flagged with the symbol : =.

list: A table of values for a function, generated with Eureka’s Graph/List command.

mask: A way to search selectively for a file. In Eureka, wildcard characters (both
the asterisk (*) and question mark (?)) are used in combination with fragments of
file names as masks. The asterisk finds all character strings starting from the posi-
tion of the wildcard character; the ? finds only single characters.

math co-processor: A peripheral chip that is used in PCs to speed up mathemati-
cal operations.

path name: A listing of the complete DOS path to a particular file, starting with
the root directory and including all directories leading up to the file. For example,
the path name \TOM\FINANCE\PROB.21 refers to a file called PROB.21 that is
located in the finance directory. The finance directory is, in turn, a subdirectory of
TOM, which is a subdirectory of the root directory (\).

Progress window: A window that opens when you select Solve. It displays the
amount of time the program is taking to find the solution, the current amount of
error, and the current solution. When Eureka finds a solution, the Progress window
disappears and the Solution window opens.

236 Eureka: The Solver Owner's Handbook

RAM disk: A software program that causes a definable portion of RAM memory to
be treated as an additional disk drive (usually D:).

report file: A Eureka file that contains a report about an equation file. Such a file
can be edited using the Eureka editor, but cannot be solved.

Solution window: A window that displays the values Eureka has found for the
indicated variables, as well as a rating expressing the degree of confidence Eureka
has in the solution(s).

status line: The line at the bottom of the program screen that provides information
about the special function keys that are currently available.

steepest descent method: A method of minimizing functions that starts at an initial
point and proceeds along a path that is always in the direction of the most rapid
decrease for the function.

user-defined function: A one-variable function defined by the user in an equation
file or with the Graph Function command. Such a function is essential for a plot to
be generated.

verify window: Displays the results of evaluating both sides of the equations in a
file separately, and then comparing the results. Eureka must solve an equation file
before it can evaluate it.

Glossary 237

238 Eureka: The Solver Owner’'s Handbook

)

__—~

2
-
- -
¢

M

4‘

Software

For the dealer nearest you
or to order by phone
Call (800) 543-7543

4585 Scotts Valley Drive
Scotts Valley, CA 95066

ﬂ

" THE DESKTOP

S’"f”'c = ORGANIZER

Whether you’re running WordStar® Lotus® dBASE,
or any other program, SideKick puts all these desktop
accessories at your fingertips—Instantly!

A full-screen WordStar-like Editor 1o jot A Monthly Calendar from 1901 through
down notes and edit files up to 25 pages 2099.

long. Appointment Calendar to remind you
A Phone Directory for names, addresses, of important meetings and appointments.

and telephone numbers. Finding a name or a

number is a snap. A full-featured Calculator ideal for

business use. It also performs decimal

An Autodialer for all your phone calls. It will to hexadecimal to binary conversions.
An ASCII Table for easy reference.

look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3° Here's SideKick running over Lotus 1-2-3. In the
From bottom to top: SideKick’s “Menu Window,” ASCI SideKick Notepad you'll notice data that's been imported
Table, Notepad, Calculator, Appointment Calendar, Monthly directly from the Lotus screen. In the upper right you can
Calendar, and Phone Dialer. see the Calculator.
The Critics’ Choice

“In a simple, beautiful implementation of WordStar's “SideKick is by far the best we've seen. It is also
block copy commands, SideKick can transport all the least expensive.” .
or any part of the display screen (even an area —Ron Mansfield, ENTREPRENEUR
overlaid by the notepad display) to the notepad.” “ o)

—_Charles Petzold, PC MAGAZINE If you use a PC, get SideKick. You'll soon become

dependent on it.”

“SideKick deserves a place in every PC.” —derry Pournelle, BYTE

—~Gary Ray, PC WEEK
Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: 1BM PC, XT, AT, PCjr and true compatibles. PC-DOS (MS-DO0S) 2.0 or greater. 128K RAM. One disk
drive. A Hayes-compatible modem, IBM PCjr internal modem, or AT&T Modem 4000 is required for the autodialer function.

SideKick is a registered trademark of Borland International, Inc. dBASE is a registered trademark of

ES R Ashton-Tate. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp.
= D AT&T is a registered trademark of American Telephone & Telegraph-Company. Lotus and 1-2-3 are
INTERNATIONA L (egistered trademarks of Lotus Development Corp. WordStar is a registered trademark of MicroPro

International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.
Copyright 1987 Borland International BOR0060C

SIDEKICK

The Organizer For The Computer Age!

Traveling SideKick is BinderWare,” both a binder you take with you when you travel
and a software program—which includes a Report Generator—that generates and
prints out all the information you'll need to take with you.

Information like your phone list, your client list,
your address book, your calendar, and your
appointments. The appointment or calendar files
you're already using in your SideKick® can auto-
matically be used by your Traveling SideKick. You
don’t waste time and effort reentering information
that's already there.

One keystroke prints out a form like your address
book. No need to change printer paper;

What's inside Traveling SideKick

ON ‘BABKFLAP FOﬂUSEINANYOF"E

you simply punch three holes, fold and clip

the form into your Traveling SideKick binder, and
you're on your way. Because Traveling SideKick is
CAD (Computer-Age Designed), you don't fool
around with low-tech tools like scissors, tape, or
staples. And because Traveling SideKick is
electronic, it works this year, next year, and all the
“next years” after that. Old-fashioned daytime
organizers are history in 365 days.

What the software program and its -
Report Generator do for you before
you go—and when you get back

Before you go:

ORGANIZER SECTIONS.

- ADDRESS BOOK SECTION
PREPRINTED ADDRESS FORMS WITH TABBED
DMIDERS FOR EASY REFERENCE.

mscmmsws SECTION
TO STORE ALL EXTRA PREPRINTED FORMS AND
'COMMONLY-USED REOO DS,

ROLLER BALLPOINT
BLACK PEN THAT FITS IN FLAP FOR EASY ACCESS.

WE”CE BECT!ON

CONTAINS THAT SHOW AREA CODES.
TIME ZONES, YOu FREE NUMBERS FOR TRAVE..
ATIONS, METRIC CONVERSION CHARTS.

ICE SECTION
MUL“-USE LEDGER FORMS, RECEIPT LOG AND
STOHAGE ENVELOPE, CREDIT CARD INFORMATION.

AR SECTION

VEARLV MONTHLY, WEEKLY, AND DALY

EMENT CALENDARS SUPPLEM
YOV Pﬁ!N‘f OUT WITH TRAVELING SIDEKICK.
PENDING SECTION
A “TO BE CONTINUED" SECTION FOR CURRENT
PROJECTS, MEETING NOTES, ET
CALCULATOR
IN ONE OF TWO BUSINESS-CARD-SIZE STORAGE
POCKETS.

“TRAVELING SIDEKICK SOFTWARE
‘GENERATES, UPDATES, AND PRINTS YOUR
ADDRESS AND CALENDAR FILES.

Suggested Retail Price: $69.95 (not copy protected)

o Prints out your calendar,
appointments, addresses, phone
directory, and whatever other
information you need from your
data files

When you return:

o Lets you quickly and easily enter all
the new names you obtained while
you were away into your
SideKick data files

It can also:

e Sort your address book by contact,
zip code or company name

e Print mailing labels

¢ Print information selectively

o Search files for existing addresses
or calendar engagements

Minimum system configuration: IBM PC, XT, AT, Portable, PCjr, 3270 and true compatibles. PC-DOS (MS-DOS) 2.0 or later.
256K RAM mimimum.

INTERNATIONAL gojang inernational

Sidekick, BinderWare and Traveling SideKick are registered trademarks of Borland
International, Inc. IBM, AT, XT, and PCjr are registered trademarks of International Business
Machines Corp. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987
BOR 0083A

THE PRODUCTIVITY

s”P f"”f y; BOOSTER

RAM-resident
Increased productivity for IBM°PCs or compatibles

SuperKey’s simple macros are electronic shortcuts to success.
By letting you reduce a lengthy paragraph into a single keystroke
of your choice, SuperKey eliminates repetition.

SuperKey turns 1,000 keystrokes into 1!
SuperKey can record lengthy keystroke sequences and play them back at the touch of a single key.
Instantly. Like magic.

In fact, with SuperKey's simple macros, you can turn “Dear Customer: Thank you for your inquiry.
We are pleased to let you know that shipment will be made within 24 hours. Sincerely,” into the
one keystroke of your choice!

SuperKey keeps your confidential files—confidential!
Without encryption, your files are open secrets. Anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).

With SuperKey you can encrypt any file, even while running another program. As long as you keep
the password secret, only you can decode your file correctly. SuperKey also implements the U.S.
government Data Encryption Standard (DES).

& RAM resident—accepts new macro files E{ Keyboard buffer increases 16 character
even while running other programs keyboard “type-ahead” buffer to 128

M Pull-down menus characters

& Superfast file encryption ™ Real-time delay causes macro playback

& Choice of two encryption schemes to pause for specified interval

@ On-line context-sensitive help & Transparent display macros allow

o One-finger mode reduces key creation of menus on top of application
commands to single keystroke o Br(;gran;s d format control usi

™ Screen OFF/ON blanks out and restores "f?xgd?’n 3,' ‘?caria%rlg?ﬁgﬂjnsm using
screen to protect against "burm in” ™ Command stack recalls last 256

o E:;ttf)la?(; complete reorganization of characters entered

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: iBM PC, XT, AT, PCr, and true compatibles. PC-DOS (MS-DOS)
20 or greater. 128K RAM. One disk drive.

= = BORLAND SuperKey is a registered trademark of Borland International, Inc. (BM, XT, AT, and PCjr are
= registered trademarks of International Business Machines Corp. MS-DOS is a registered

INTERNATIONAL trademark of Microsoft Corp. BOR 0062C

If you use an IBM® PC, you need

Lightnin

Turbo Lightning teams up
with the Random House
Concise Word List to
check your spelling as
you type!

Turbo Lightning, using the
80,000-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a
“beep.” At the touch of a key,
Turbo Lightning opens a
window on top of your
application program and
suggests the correct spelling.
Just press one key and the
misspelled word is instantly
replaced with the correct word.

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you
choose just the right word from
a list of alternates, so you
don't say the same thing the
same way every time. Once
Turbo Lightning opens the
Thesaurus window, you see a
list of alternate words; select
the word you want, press
ENTER and your new word will
instantly replace the original
word. Pure magic!

If you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

The Turbo Lightning Thesaurus

Suggested Retail Price: $99.95 (not copy protected)

0

®

You can teach Turbo
Lightning new words

You can teach your new Turbo
Lightning your name, business
associates’ names, street
names, addresses, correct
capitalizations, and any
specialized words you use
frequently. Teach Turbo
Lightning once, and it

knows forever.

Turbo Lightning is the
engine that powers
Borland’s Turbo Lightning
Library®

Turbo Lightning brings
electronic power to the
Random House Concise Word
List and Random House
Thesaurus. They're at your
fingertips—even while you're
running other programs. Turbo
Lightning will also “drive”
soon-to-be-released
encyclopedias, extended
thesauruses, specialized
dictionaries, and many other
popular reference works. You
get a head start with this

first volume in the Turbo
Lightning Library.

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles with 2 floppy disk drives. PC-DOS (MS-DOS) 2.0 or greater.

256K RAM. Hard disk recommended.

INTERNATIONAL

= B3 BORLAND Turbo Lightning and Turbo Lightning Library are registered trademarks of Borfand International, Inc.
= IBM, XT, AT, and PCjr are registered trad of Ir ional Business Machines Corp. Random

House is a registered lrademark of Random House, Inc.

Copyright 1987 Borland Internationat
BOR 00708

Your Development Toolbox and Technical Reference Manual for Turbo Lightning®

L I/ 6 H T N | N &

Lightning Word Wizard includes complete, commented Turbo
Pascal® source code and all the technical information you’ll
need to understand and work with Turbo Lightning’s “engine.”
More than 20 fully documented Turbo Pascal procedures
reveal powerful Turbo Lightning engine calls. Harness the full power
of the complete and authoritative Random House® Concise
Word List and Random House Thesaurus.

Turbo Lightning’s “Reference The ultimate collection of word
Manual” games and crossword solvers!

Developers can use the versatile on-line The excitement, challenge, competition,
examples to harness Turbo Lightning’s and education of four games and three

power to do rapid word searches. Lightning solver utilities—puzzles, scrambles, spell-

Word Wizard is the forerunner of the data- searches, synonym-seekings, hidden words,

base access systems that will incorporate crossword solutions, and more. You and

and engineer the Turbo Lightning Library® your friends (up to four people total) can

of electronic reference works. set the difficulty level and contest the high-
speed smarts of Lightning Word Wizard!

Turbo Lightning—Critics’ Choice
“Lightning’s good enough to make programmers and users cheer, executives of other

software companies weep.” Jim Seymour, PC Week
“The real future of Lightning clearly lies not with the spelling checker and thesaurus currently
included, but with other uses of its powerful look-up engine.” Ted Silveira, Profiles
“This newest product from Borland has it all.” Don Roy, Computing Now!

Minimum system configuration: 1BM PC, XT, AT, PCjr, Portable, and true compatibles. 256K RAM minimum. PC-DOS (MS-DOS) 2.0
or greater. Turbo Lightning software required. Optional—Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code.

% BORLAND Suggested Retail Price: $69.95

INTERNATIONAL (not copy protected)

Turbo Pascal, Turbo Lightning and Turbo Lightning Library are registered trademarks and Lightning Word Wizard is a trademark of Borland international, Inc. Random
House is a registered trademark of Random House, Inc. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a
registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR0087B

REFLEN, s

The high-performance database manager
that’s so advanced it’s easy to use!

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists,
customer files, or even your company’s budgets—Reflex is the database manager for you!

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends
database management with business graphics. Because a picture is often worth a 1000 words, Reflex
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see.

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports.
You can use database files created with Reflex or transferred from Lotus 1-2-32 dBASE?® PFS: Filep
and other applications.

Reflex: The Critics’ Choice

“.. . if you use a PC, you should know about Reflex . . . may be the best bargain in software today.”
Jerry Pournelle, BYTE
“Everyone agrees that Reflex is the best-looking database they've ever seen.”
Adam B. Green, InfoWorld

“The next generation of software has officially arrived.” Peter Norton, PC Week

Reflex: don’t use your PC without it!
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of
Borland's award-winning Reflex.

Suggested Retail Price: $149.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules
Monochrome Graphics CArd, or equivalent. PC-DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE,
or PFS: File optional.

Reflex is a trademark of Borland/Analytica Inc. Lotus 1-2-3 is a registered trademark of Lotus
A Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: File is a
B — BORLA“D registered trademark of Software Publishing Corporation. 1BM, XT, AT, and IBM Color Graphics
% Adapter are registered trademarks of International Business Machines Corporation. Hercules
INTERNATIONAL Graphics Card is a trademark of Hercules Computer Technology. MS-DOS is a registered
trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0066C

REFLEX :

Includes 22 “instant templates” covering a broad range of
business applications (listed below). Also shows you how to
customize databases, graphs, crosstabs, and reports. It’s an invaluable
analytical tool and an important addition to another one of
our best sellers, Reflex: The Analyst 1.1.

Fast-start tutorial examples:

Learn Reflex® as you work with practical business applications. The Reflex Workshop Disk supplies
databases and reports farge enough to illustrate the power and variety of Reflex features. Instructions in each
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple
steps to adapt the files to your own needs.

22 practical business applications:

Workshop's 22 “instant templates” give you a wide range of analytical tools:
Administration * Tracking Manufacturing Quality Assurance
« Scheduling Appointments * Analyzing Product Costs

* Planning Conference Facilities . " . .
. ; / Accounting and Financial Planning
Managing a Project e Tracking Petty Cash

* Creating a Mailing System Enteri
. ; I « Entering Purchase Orders
Managing Employment Applications * Organizing Outgoing Purchase Orders

Sales and Marketing * Analyzing Accounts Receivable
* Researching Store Check inventory ~* Maintaining Letters of Credit
* Tracking Sales Leads * Reporting Business Expenses
o Summarizing Sales Trends Managing Debits and Credits
* Analyzing Trends Examining Leased Inventory Trends
. . Tracking Fixed Assets
Production and Operations * Planning Commercial Real Estate Investment

» Summarizing Repair Turnaround

Wgether you're a newcomer learning Reflex basics or an experienced “power user” looking for tips, Reflex
Workshop will help you quickly become an expert database analyst. :

Minimum system configuration: IBM PC, AT, and XT, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 384K RAM minimum. Requires Reflex: The
Analyst, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card or equivalent.

= = ‘ mu"p Suggested Retail Price: $69.95

INTERNATIONAL (not copy protected)

Reflex is a registered trademark and Reflex Workshop is a trademark of Borland/Analytica, Inc. IBM, AT, and XT are registered trademarks of International Bdsines’s .
Machines Corp. Hercules is a trademark of Hercules Computer Technology. MS-DOS is a registered trademark of Microsoft Corp.

BOR 0088A

Version 3.0 with 8087 support and BCD reals
Free MicroCalc Spreadsheet With Commented Source Code!

FEATURES:

One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct them, and instantly
recompiles. You're off and running in

record time.

Built-in Interactive Editor: WordStar*like
easy editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

MicroCale: A sample spreadsheet on your disk
with ready-to-compile source code.

IBM® PC Version: Supports Turtle Graphics,
color, sound, full tree directories, window
routinés, input/output redirection, and

much more.

THE CRITICS’ CHOICE:

“Language deal of the century . .. Turbo Pascal:
it introduces a new programming environment
and runs like magic.”

—Jeff Duntemann, PC Magazine

“Most Pascal compilers barely fit on a disk, but
Turbo Pascal packs an editor, compiler, linker,
and run-time library into just 39K bytes of
random access memory.”

—Dave Garland, Popular Computing

“What [think the computer industry is headed
for: well-documented, standard, plenty of
good features, and a reasonable price.”

—Jerry Pournelle, BYTE

LOOK AT TURBO NOW!

™ More than 500,000 users worldwide.

M Turbo Pascal is the de facto industry
standard.

M Turbo Pascal wins PC MAGAZINE'S
award for technical excellence.

[Turbo Pascal named “Most
Significant Product of the Year” by
PC WEEK.

M Turbo Pascal 3.0—the fastest Pascal
development environment on the
planet, period.

Suggested Retail Price: $99.95; CPIM*-80 version without 8087 and BCD: $69.95

Features for 16-bit Systems: 8087 math co-processor support for intensive calculations.
Binary Coded Decimals (BCD): efiminates round-off error! A must for any serious business application.

Minimum system configuration: 128K RAM minimum. Includes 8087 & BCD features for 16-bit MS-DOS 2.0 or later and
CP/M-86 1.1 or later. CP/M-80 version 2.2 or later 48K RAM minimum (8087 and BCD features not available). 8087

version requires 8087 or 80287 co-processor.

X BORLAND

INTERNATIONAL

Turbo Pascal is a registered trademark of Borland International, Inc. CP/M is a registered trademark
of Digital Research Inc. IBM is a registered trademark of International Business Machines Corp.
MS-DOS s a registered trademark of Microsoft Corp. WordStar is a registered trademark of
MicroPro International. Copyright 1987 Borland International BOR 00618

TURBO PASCAL
VERSION 2.0

Learn Pascal From The Folks Who Created
The Turbo Pascal® Family

Borland International proudly presents Turbo Tutor, the perfect complement
to your Turbo Pascal compiler. Turbo Tutor is really for everyone—
even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine points.
The manual and program disk focus on the whole spectrum of Turbo
Pascal programming techniques.

® For the Novice: It gives you a concise history of Pascal, tells you how to write a
simple program, and defines the basic programming terms you need to know.

e Programmer’s Guide: The heart of Turbo Pascal. The manual covers the fine points
of every aspect of Turbo Pascal programming: program structure, data types, control
structures, procedures and functions, scalar types, arrays, strings, pointers, sets, files,
and records.

e Advanced Concepts: If you're an expert, you'll love the sections detailing such topics as
linked lists, trees, and graphs. You'll also find sample program examples for PC-DOS and
MS-DOS®

10,000 lines of commented source code, demonstrations of 20 Turbo Pascal features, multiple-
choice quizzes, an interactive on-line tutor, and more!

Turbo Tutor may be the only reference work about Pascal and programming you'll ever need!
Suggested Retail Price: $39.95 (not copy protected)

Minimum system configuration: Turbo Pascal 3.0. PC-DOS (MS-DOS) 2.0 or later. 192K RAM minimum (CP/M-80
version 2.2 or later: 64K RAM minimum).

E3 Turbo Pascal and Turbo Tulor are registered ademarks: of Borland International Inc. CP/M is a
= registered trademark of Digital Research Inc. MS-DOS is a'registered trademark of Microsoft Corp.

INTERNATIONAL Copyright 1987 Borland Internationa BOR 0064C

| TURBO PASCAL .
DATABASE TOOLBOX
Is The Perfect Complement To Turbo Pascal’

It contains a complete library of Pascal procedures that
allows you to sort and search your data and build powerful database
applications. It’s another set of tools from Borland that will give
even the beginning programmer the expert’s edge.

THE TOOLS YOU NEED!

TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it
possible to access records in a file using key words instead of numbers. Now available with
complete source code on disk, ready to be included in your programs.

TURBO SORT: The fastest way to sort data using the QUICKSORT algorithm—the method
preferred by knowledgeable professionals. Includes source code.

GINST (General Installation Program): Gets your programs up and running on other
terminals. This feature alone will save hours of work and research. Adds tremendous value
to all your programs.

GET STARTED RIGHT AWAY—FREE DATABASE!

Included on every Toolbox diskette is the source code to a working database which
demonstrates the power and simplicity of our Turbo Access search system. Modify it to suit
your individual needs or just compile it and run.

THE CRITICS’ CHOICE!

“The tools include a B+ tree search and a sorting system. I've seen stuff like this, but not as
well thought out, sell for hundreds of dollars.” —Jerry Pournelle, BYTE MAGAZINE

“The Turbo Database Toolbox is solid enough and useful enough to come recommended.”
—Jeff Duntemann, PC TECH JOURNAL

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: 128K RAM and one disk drive (CP/M-80: 48K). 16-bit systems: Turbe Pascal 2.0 or greater for
MS-DOS or PC-DOS 2.0 or greater. Turbo Pascal 2.1 or greater for CP/M-86 1.0 or greater. 8-bit systems: Turbo Pascal 2.0 or
greater for CP/M-80 2.2 or greater.

=2 BORLAND Turbo Pascal and Turbo Database Toolbox are registered trademarks of Borland International
= Inc. CP/M is a registered trademark of Digital Research, Inc. MS-DOS is a registered

INTERNATIONAL trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0063D

GRAPHIXTOOLBOX'

A Library of Graphics Routines for Use with Turbo Pascal®

High-resolution graphics for your IBM" PC, AT, XT,” PCjr", true PC compatibles, and the Heath
Zenith Z-100.” Comes complete with graphics window management.

Even if you're new to Turbo Pascal programming, the Turbo Pascal Graphix Toolbox will get you started
right away. It's a collection of tools that will get you right into the fascinating world of high-resolution
business graphics, including graphics window management. You get immediate, satisfying results. And
we keep Royalty out of American business because you don't pay any—even if you distribute your own
compiled programs that include all or part of the Turbo Pascal Graphix Toolbox procedures.

What you get includes:

Full graphics window management.
Two different font styles for graphic labeling.

o Complete commented source code on disk.
o Tools for drawing simple graphics.
o Tools for drawing complex graphics, including Choice of line-drawing styles. _
curves with optional smoothing. Routines that will let you quickly plot functions
* Routines that let you store and restore graphic and model experimental data.
images to and from disk. And much, much more . . .
« Tools allowing you to send screen images to
Epson®-compatible printers.

“While most people only tak about low-cost personal computer software, Borland has been doing
something about it. And Borland provides good technical support as part of the price.”
John Markov & Paul Freiberger, syndicated columnists.

If you ever plan to create Turbo Pascal programs that make use of business graphics or scientific
graphics, you need the Turbo Pascal Graphix Toolbox.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr, true compatibles and the Heath Zenith Z-100. Turbo Pascal 3.0 or later. 192K
RAM minimum. Two disk drives and an IBM Color Graphics Adapter (CGA), IBM Enhanced Graphics Adapter (EGA), Hercules Graphics
Card or compatible.

> Turbo Pascal and Turbo Graphix Toolbox are registered trademarks of Borland International,
= RLA"D Inc. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines
INTERNATIONGRAL Corporation. Hercules Graphics Card is a rademark of Hercules Computer Technolagy. Heath
Zenith Z-100 is a trademark of Zenith Dala Systems. Epson is a registered trademark of

Epson Corp. Copyright 1987 Borland Intemational BOR 0068C

EDITOR TOOLBOX'

It’s All You Need To Build Your Own Text Editor
Or Word Processor

Build your own lightning-fast editor and incor- Create your own word processor. We provide all
porate it into your Turbo Pascal® programs. the editing routines. You plug in the features you want.
Turbo Editor Toolbox gives you easy-to-install You could build a WordStar®-like editor with pull-down
modules. Now you can integrate a fast and powerful menus like Microsoft's® Word, and make it work as fast
editor into your own programs. You get the source as WordPerfect®

code, the manual, and the know-how.

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for
two sample editors:

Simple Editor A complete editor ready to include in your programs. With windows, block commands, and
memory-mapped screen routines.

MicroStar A full-blown text editor with a complete pull-down menu user interface, plus a lot more.
Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

« Wordwrap

¢ UN-delete last tine

¢ Auto-indent

« Find and Find/Replace with options

* Set left and right margin

* Block mark, move, and copy

o Tab, insert and overstrike modes, : '
centering, etc. MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

[V RAM-based editor. You can edit very large (M Muitiple windows. See and edit up to eight
files and-yet editing is lightning fast. documents—aor up to eight parts of the same
Memory-mapped screen routines. In- document—all at the same time.
stant paging, scrolling, and text display. IE/ Multitasking. Automatically save your -
Keyboard installation. Change control text. Plug in a digital clock, an appointment
keys from WordStar-like commands to any that alarm—see how it's done with MicroStar's
you prefer. “background” printing.

Best of all, source code is included for everything in the Editor Toolbox.
Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, 3270, PCjr, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 192K RAM.
You must be using Turbo Pascal 3.0 for IBM and compatibies.

= Turbo Pascal and Turbo Editor Toolbox are registered trademarks of Borland International, Inc.

= ; RLAND WordStar is a registered trademark of MicroPro International Corp. Word and MS-DOS are
= ’ registered trademarks of Microsoft Corp. WordPerfect is a trademark of Satellite Software
INTERNATIONAL International. 1BM, XT, AT, and PCir are registered trademarks of International Business Machines

Corp. BOR 00678

GAME WORKS

Secrets And Strategies Of The Masters Are
Revealed For The First Time

Explore the world of state-of-the-art computer games with Turbo GameWorks. Using
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal® Or, for instant excitement, play the three
great computer games we’ve included on disk—compiled and ready to run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your way to
becoming a master chess player. Explore the complete Turbo Pascal source code and discover the secrets of
Turbo Chess.

“What impressed me the most was the fact that with this program you can become a computer chess analyst.
You can add new variations to the program at any time and make the program play stronger and stronger chess.
There’s no limit to the fun and enjoyment of playing Turbo GameWorks Chess, and most important of all, with this
chess program there’s no limit to how it can help you improve your game.”

—George Koltanowski, Dean of American Chess, former President of
the United Chess Federation, and syndicated chess columnist.

TURBO BRIDGE

Now play the world’s most popular card game—abridge. Play one-on-one with your computer or against up to
three other opponents. With Turbo Pascal source code, you can even program your own bidding or scoring
conventions.

“There has never been a bridge program written which plays at the expert level, and the ambitious user will
enjoy tackling that challenge, with the format already structured in the program. And for the inexperienced player,
the bridge program provides an easy-to-follow format that allows the user to start right out playing. The user can
‘play bridge’ against real competition without having to gather three other people.”

—Kit Woolsey, writer of several articles and books on bridge,
and twice champion of the Blue Ribbon Pairs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku—the exciting strategy game also
known as Pente In this battle of wits, you and the computer take turns placing X's and O’s on a grid of 19X19
squares until five pieces are lined up in a row. Vary the game if you like, using the source code available on your
disk.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PCjr, and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 192K
RAM minimum. To edit and compile the Turbo Pascal source code, you must be using Turbo Pascal 3.0 for IBM PCs and
compatibles.

= Turbo Pascal and Turbo GameWorks are registered irademarks of Borland International, Inc.
= Pente is a registered trademark of Parker Brothers. IBM, XT, AT, and PCjr are registered
trademarks of International Business Machines Corporation. MS-DQS is a registered trademark
INTERNATIONAL " y N N
of Microsoft Corporation. Copyright 1987 Borland International BOR0065C

TURBO PASCAL

NUMERIGAL METHODS TOOLBOX

New from Borland’s Scientific & Engineering Division!

A complete collection of Turbo Pascal’ routines and programs

New from Borland’s Scientific & Engineering Division, Turbo Pascal Numerical Methods Toolbox
implements the latest high-level mathematical methods to solve common scientific and engineering
problems. Fast.

So every time you need to calculate an integral, work with Fourier Transforms or incorporate any of the
classical numerical analysis tools into your programs, you don’t have to reinvent the wheel. Because
the Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs that
gives you applied state-oi-the-art math tools. It also includes two graphics demo programs, Least
Squares Fit and Fast Fourier Transforms, to give you the picture along with the numbers.

The Numerical Methods Toolbox is a must for you if you're involved with any type of scientific or
engineering computing. Because it comes with complete source code, you have total control of
your application.

What Numerical Methods Toolbox will do for you now:

m Find solutions to equations ® Matrix operations: inversions, determinants
® Interpolations and eigenvalues
® Calculus: numerical derivatives and ® Differential equations

integrals m |east squares approximations

m Fourier transforms

5 free ways to look at “Least Squares Fit”!

As well as a free demo “Fast Fourier Transforms,” you also get “Least Squares Fit" in 5
different forms—which gives you 5 different methods of fitting curves to a collection of data points.
You instantly get the picture! The 5 different forms are:

1. Power 4. 5-term Fourier
2. Exponential 5. 5-term
3. Logarithm Polynomial

They're all ready to compile and run “as is.” To modify or add graphics to your own programs,
you simply add Turbo Graphix Toolbox® to your software library. Our Numerical Methods Toolbox is
designed to work hand-in-hand with our Turbo Graphix Toolbox to make professional graphics in
your own programs an instant part of the picture!

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 256K. Turbo Pascal 2.0 or later.
The graphics modules require a graphics monitor with an 1BM CGA, IBM EGA, or Hercules compatible adapter card, and require the Turbo
Graphix Toolbox. MS-DOS generic version will not support Turbo Graphix Toolbox routines. An 8087 or 80287 numeric co-processor is
not required, but recommended for optimal performance.

Turbo Pascal Numerical Methods Toolbox is a trademark and Turbo Pascal and Turbo Graphix
Toolbox are registered trademarks of Borland International, Inc. 1BM, XT, and AT are

= BORLA"D registered trademarks of International Business Machines Corp. MS-DOS is a registered

= trademark of Microsoft Corp. Hercules is a trademark of Hercules Computer Technology.
INTERNATIONAL Apple is a registered trademark of Apple Computer, inc. Macintosh is a trademark of Mclntosh
Laboratory, Inc. licensed to Apple Computer. Copyright 1987 Borland International BOR 0219A

the natural language of Artificial Intelligence

Turbo Prolog brings fifth-generation supercomputer
power to your IBM°PC!

Turbo Prolog takes
programming into a new,
natural, and logical
environment

With Turbo Prolog,

because of its natural,

logical approach, both

people new to programming
and professional programmers
can build powerful applica-
tions such as expert systems,
customized knowledge

bases, natural language
interfaces, and smart ,
information management systems.

Turbo Prolog is a declarative language which
uses deductive reasoning to solve
programming problems.

Turbo Prolog’s development system
includes:

O A complete Prolog compiler that is a variation
of the Clocksin and Mellish Edinburgh
standard Prolog.

[0 A full-screen interactive editor.

O Support for both graphic and text windows.

[0 All the tools that let you build your own
expert systems and Al applications with
unprecedented ease.

== BORLAND

= —~—=~ INTERNATIONAIL

Turbo Prolog provides
a fully integrated pro-
gramming environment
like Borland’s Turbo
Pascal? the de facto
worldwide standard.

You get the
complete Turbo
Prolog programming
system

You get the 200-page
manual you're holding,
software that includes
the lightning-fast Turbo
Prolog six-pass
compiler and interactive editor, and the
free GeoBase natural query language
database, which includes commented
source code on disk, ready to-compile.
(GeoBase is a complete database designed
and developed around U.S. geography.
You can modify it or use it “as is.”)

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PCijr
and true compatibies. PC-DOS (MS-D0S) 2.0 or ater. 384K RAM
minimum.

Suggested Retail Price: $99.95
(not copy protected) :

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark of Borland Intemational, Inc.
IBM, AT, XT, and PCjr are registered trademarks of Interationat Business Machines Corp. MS-DOS is a

registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0016D

TURBO PROLOG
TOOLBOX

Enhances Turbo Prolog with more than 80 tools
and over 8,000 lines of source code

Turbo Prolog, the natural language of Artificial Intelligence, is the
most popular Al package in the world with more than 100,000 users.
Our new Turbo Prolog Toolbox extends its possibilities.

The Turbo Prolog Toolbox ehhances Turbo Prolog—our 5Sth-generation computer programming
language that brings supercomputer power to your IBM PC and compatibles—with its more than 80
tools and over 8,000 lines of source code that can be incorporated into your programs, quite easily.

Turbo Prolog Toolbox features include:
Business graphics generation: boxes, circles, ellipses, bar charts, pie charts, scaled graphics
Complete communications package: supports XModem protocol ‘
File transfers from Reflex® dBASE llI® Lotus 1-2-3° Symphony®
A unique parser generator: construct your own compiler or query language
Sophisticated user-interface design tools
40 example programs
Easy-to-use screen editor: design your screen layout and 1/0
Calculated fields definition
Over 8,000 lines of source code you can incorporate into your own programs

@] &]]] & @ & &

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT or true compatibles. PC-DOS (MS-DOS) 2.0 or later. Requires Turbo Prolog 1.10
or higher. Dual-floppy disk drive or hard disk. 512K.

Turbo Prolog Toolbox and Turbo Prolog are trademarks of Borland International, Inc. Reflex
is a registered trademark of Borland/Analytica, Inc. dBASE Il is a registered trademark of

= 2 BORLA“D Ashton-Tate. Lotus 1-2-3 and Symphony are registered trademarks of Lotus Development
= Corp. IBM, XT, and AT are registered trademarks of International Business Machines Corp.

INTERNATIONAL MS-DOS is a registered trademark of Microsoft Corp. BOR 0240

TURBO BASIG

The high-speed BASIC you’ve been waiting for!

You probably know us for our Turbo Pascal® and Turbo Prolog.° Well, we’ve done
it again! We’ve created Turbo Basic, because BASIC doesn’t have to be slow.

If BASIC taught you how to walk, Turbo Basic will teach you how to run!

With Turbo Basic, your only speed is “Full Speed Ahead”! Turbo Basic is a complete development envir-

onment with an amazingly fast compiler, an interactive editor and a trace debugging system. And because
Turbo Basic is also compatible with BASICA, chances are that you already know how to use Turbo Basic.

Turbo Basic ends the basic confusion

There's now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is right,
the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing Borland
family of programming languages we call the “Turbo Family.” And hundreds of thousands of users are
already using Borland’s languages. So, welcome to a whole new generation of smart PC users!

Free spreadsheet included with source code!
Yes, we've included MicroCalc,” our sample spreadsheet, complete with source code. So you can get
started right away with a “real program.” You can compile and run it “as is,” or modify it.

A technical look at Turbo Basic

™ Full recursion supported executable program, with separate windows
™ Standard IEEE floating-point format for editing, messages, tracing, and execution
™ Floating-point support, with full 8087 copro- = Compile and run-time errors place you in

cessor integration. Software emulation if no source code where error occurred

8087 present ™ Access to local, static and global variables
& Program size limited only by available ™ New long integer (32-bit) data type

memory (no 64K limitation) ™ Full 80-bit precision
™ EGA, CGA, MCGA and VGA support ™ Pull-down menus
& Full integration of the compiler, editor, and ™ Full window management

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: 1BM PC, AT XT PS/2 or true compatibles. 320K. One floppy drive. PC-DOS (MS-DOS) 2.0 or fater.

E Turbo Basic, Turbo Prolog and Turbo Pascal are registered trademarks and MicroCaic is a trade-

= RLAND mark of Borland International, Inc. Other brand and product names are trademarks o registered
INTERNATIONAL trademarks of their respective holders.

Copyright 1987 Borland International : BOR 02658

SIDERICK: ez

Macintosh™

The most complete and comprehensive collection of
desk accessories available for your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick—Outlook™; The Outliner
and MacPlan™ The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Outliner
» |t's the desk accessory with more power than a stand-alone outliner
» A great desktop publishing tool, Outlook lets you incorporate both text and graphics
into your outlines
« Works hand-in-hand with MacPlan
= Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
= |ntegrates spreadsheets and graphs
= Does both formulas and straight numbers
» Graph types include bar charts, stacked bar charts, pie charts and line graphs
s Includes 12 example templates free!
» Pastes graphics and data right into Outlook creating professional memos and reports, complete
with headers and footers.

& File Edit Uiew Special lWorksheet
E Forecast

SideKick: The Desktop Organizer,
Release 2.0 now includes

Outlook: The Outliner

MacPlan: The Spreadsheet

Mini word processor

Calendar

PhoneLog

Analog clock

Alarm system

Calculator

Report generator MacPian does both spreadsheels and business

Telecommunications {new version now graphs. Paste them into your Outlook files and

supports XModem file transfer protocol) generate professional reports.

B 13675 Saks A
B 1594% saks B
B 2561% TotlRevenes
0%

W 0% Expmses

O 031% Later

0 466% Matwiak

B 621% ovrheat

E) 1.18% Tolu Expenses
B ox

W 1843% Netbrofit

RRARARRARRRR

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One 800K or two 400K drives are recommended.
With one 400K drive, a limited number of desk accessories will be installable per disk.

= 2. BORLA“D SideKick is a registered trademark and Outiook and MacPlan are trademarks of Borland
= International, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. ficensed to Apple

INTERNATIONAL Computer, Inc. Copyright 1987 Borland International BOR 00690

®
nﬂ."m THE DATABASE
= MANAGER
The easy-to-use relational database that thinks like a spreadsheet.

Reflex for the Mac lets you crunch numbers by entering formulas and link
databases by drawing on-screen lines.

§ free ready-to-use templates are included on the examples disk:

@ A sample 1040 tax application with Sched-
ule A, Schedule B, and Schedule D, each
contained in a separate report document.

® A portfolio analysis application with linked
databases of stock purchases, sales, and
dividend payments.

® A checkbook application.

| A client billing application set up for a law
office, but easily customized by any
professional who bills time.
| A parts explosion application that breaks
down an object into its component parts
for cost analysis.

Reflex for the Mac accomplishes all of these tasks without programming—using
spreadsheet-like formulas. Some other Reflex for the Mac features are:

® Visual database design. = Data types which include variable length text, number,

® “What you see is what you get” report and form layout integer, automatically incremented sequence number,
with pictures. date, time, and logical.

& Automatic restructuring of database files when data = Up to 255 fields per record.
types are changed, or fields are added and deleted. ® Up to 16 files simultaneously open.

& Display formats which include General, Decimal, m Up to 16 Mac fonts and styles are selectable for
Scientific, Dollars, Percent. individual fields and labels.

After opening the “Overview” window, you The link lines you draw establish both You can have multipie windows open
draw link lines between databases directly visual and electronic relationships between simultaneously to view all members of a
onto your Macintosh screen. your databases. linked set—which are interactive and truly

relational.
Critic’s Choice
“.. . a powerful relational database . . . uses a visual approach to information management.” /nfoWorld
“. .. gives you a lot of freedom in report design; you can even import graphics.” A-+ Magazine

“.. . bridges the gap between the pretty programs and the power programs.” Stewart Alsop, PC Letter

- - - - *
= BORLAND Suggested Retail Price: $99.95
= INTERNATIONAL (not copy protected)
Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive. Second external drive recommended.
Reflex is a registered trademark of Borland/Analytica, Inc. Macintosh is a trad of Mcintosh Laboratory, Inc. and is used with express permission of ils owner.

Copyright 1987 Borland International BOR0149A

TURBO

p Ascﬂl MAGINTOSH

The ultimate Pascal development environment

Borland’s new Turbo Pascal for the Mac is so incredibly fast that it can
compile 1,420 lines of source code in the 7.1 seconds it took you to read this!

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac
to compile at least 60,000 more lines of source code!

Turbo Pascal for the Mac does both Windows and “Units”

The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called “Units,”
which can be linked to any Turbo Pascal program. This “modular pathway” gives you “pieces” which can
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the
time it takes to develop large programs.

Turbo Pascal for the Mac is so compatible with Lisa® that they should be living together
Routines from Macintosh Programmer’s Workshop Pascal and Inside Macintosh can be compiled and run
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File
System of the Macintosh.

The 27-second Guide to Turbo Pascal for the Mac
o Compilation speed of more than 12,000 lines Workshop Pascal (with minimal changes)
per minute ® Compatibility with Hierarchical File System of
o “Unit* structure lets you create programs in your Mac
modular. form ® Ability to define default volume and folder names-
® Multiple editing windows—up to 8 at once used in compiler directives
e Compilation options include compiling to disk or e Search and change features in the editor speed up
memory, or compile and run and simplify alteration of routines
® No-.need to switch between programs to compile o Ability to use all available Macintosh memory
or run a program without limit
& Streamlined development and debugging o “Units" included to call all the routines provided by
e Compatibility with Macintosh Programmer’s Macintosh Toolbox

Suggested Retail Price: $99.95* (not copy protected)

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive.

Turbo Pascal and SideKick are registered trademarks of Borland International, Inc. and Reflex is a

2 BORLA"D registered trademark of Borland/Analytica, inc. Macintosh is a trademark of Mclntosh Laboratories, Inc. licensed
= 1o Apple Computer with its express permission. Lisa is a registered trademark of Apple Computer, Inc. Inside
E INTERNATIONAL Macintosh is a copyright of Apple Computer, Inc.
Copyright 1987 Borland International BOR 0167A

TURBO PASGAL®

TUTOR

From the folks who created Turbo Pascal. Borland’s new
Turbo Pascal Tutor is everything you need to start pro-
gramming in Turbo Pascal on the Macintosh!™ It takes

you from the bare basics to advanced programming in a

simple, easy-to-understand fashion.

No gimmicks. It's all here.

The manual, the Tutor application, and 30 sample
programs provide a step-by-step tutorial in three
phases: programming in Pascal, programming on
the Macintosh, and programming in Turbo Pascal
on the Macintosh. Here’s how the manual is set
up:

Turbo Pascal for the Absolute Novice
delivers the basics—a concise history of Pascal,
key terminology, your first program. '

A Programmer’s Guide to Turbo Pascal
covers Pascal specifics—program structure,
procedures and functions, arrays, strings, and so
on. We've also included Turbo Typist, a textbook
sample program.

Advanced Programming

takes you a step higher into stacks, queues,
binary trees, linked structures, writing large pro-
grams, and more.

Using the Power of the Macintosh
discusses the revolutionary hardware and soft-
ware features of this machine. It introduces the
600-plus utility routines in the Apple Toolbox.

Programming the Macintosh in Turbo Pascal
shows you how to create true Macintosh pro-
grams that use graphics, pull-down menus, dia-
log boxes, and so on. Finally, MacTypist, a com-
plete stand-alone application featuring animated
graphics, builds on Turbo Typist and demon-
strates what you can do with all the knowledge
you've just acquired.

The disk contains the source code for all the
sample programs, including Turbo Typist, MacTy-
pist, and Turbo Tutor. The Tutor’s split screen lets
you run a procedure and view its source code
simultaneously. After running it, you can take a
test on the procedure. !If you're stuck for an
answer, a Hint option steers you in the right
direction.

memory management
resources and resource files
QuickDraw

events

windows

controls

(] fe] [e] e (= €]

Macintosh topics included are

™ menus

™ desk accessory support
™ dialogs

™ File Manager

™ debugging

Suggested Retail Price: $69.95

Minimum system requirements: Any Macintosh with at least 512K of RAM. Requires Turbo Pascal

53% BORLAND

INTERNATIONAL

Turbo Pascal and Turbo Tutor are registered trademarks of Borland Internalional, Inc. Other brand and product names
are lrademarks of registered trademarks of their respective holders Copyright 1987 Borland imernational. BOR 0381

TURBO &

Includes freé
MicroCalc spreadsheet
with sourcé code

A complete interactive development environment

With Turbo C, you can expect what only Borland delivers:

Quality, Speed, Power and Price. And with its compilation

speed of more than 7000 lines a minute, Turbo C makes
everything else look like an exercise in slow motion.

Turbo C: The C compiler for both amateurs and professionals

If you're just beginning and you've “kinda wanted to learn C,” now’s your chance to do it the easy way.
Turbo C's got everything to get you going. If you're already programming in C, switching to Turbo C will
considerably increase your productivity and help make your programs both smaller and faster.

Turbo C: a complete interactive development environment
Like Turbo Pascal® and Turbo Prolog,” Turbo C comes with an interactive editor that will show
you syntax errors right in your source code. Developing, debugging, and running a Turbo C

program is a snap!

& Compiler: One-pass compiler generating native in-
line code, linkable object modules and assembler.
The object module format is compatible with the
PC-DOS linker. Supports small, medium, compact,
large, and huge memory model libraries. Can mix
models with near and far pointers. Includes
floating point emulator (utilizes 8087/80287 if
installed).

& Interactive Editor: The system includes a powerful,
interactive full-screen text editor. If the compiler
detects an error, the editor automatically positions
the cursor appropriately in the source code.

Technical Specifications

g Development Environment: A powerful “Make" is
included so that managing Turbo C program
development is easy. Borland’s fast “Turbo
Linker” is also included. Also includes pull-down
menus and windows. Can run from the environ-
ment or generate an executable file.

& Links with relocatable object modules created
using Borland's Turbo Prolog into a
single program.

g AN%I cgmpatible.

Start-up routine source code included.

(& Both command line and integrated environment

versions included.

“Sieve” benchmark (25 iterations)

Turbo € Microsoft® C Latfice C
Compile time 389 16.37 13.90
Compile and link time 994 29.06 27.79
Execution time 577 9.51 13.79
Object code size 274 297 301
Price $99.95 $450.00 $500.00

Benchmark run on a 6 Mhz IBM AT using Turbo C version 1.0 and the Turbo Linker version 1.0; Microsoft C version 4.0 and the
MS overlay linker version 3.51; Lattice C version 3.1 and the MS object linker version 3.05.

Suggested Retail Price: $99.95* (not copy protected)

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. One floppy drive. 320K.

253 BORLAND
EINTERNAT/ONAL

Turbo C and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of Borland
International, Inc. Microsoft C and MS-DOS are registered trademarks of Microsoft Corp. Lattice C
is a registered trademark of Lattice, Inc. IBM, XT, angd AT are registered trademarks of International

Business Machines Corp. BOR 0243

Borland
Software

or to order by phone
Call (800) 543-7543

%

BORLAND

INTERNATIONAL

4585 Scotts Valley Drive
Scotts Valley, CA 95066

Index

A

Accuracy setting, 31-32, 44, 88
ASCII files, importing to Eureka, 43
AUTOEXEC.BAT, 15, 213

B

BASIC problem file, 43, 139
Batch file problems, 42
Branch cut, 89

C

Calculator command, 2, 60
Capture command, 65
CARDS.EKA, 165168
CARLOAN.EKA, 123
Change dir command, 54
CHEMBAL.EKA, 172-177
CHEMEQ.EKA, 177-186
Chemistry problems, 172-186
CLASSICS.EKA, 108
Close command, 77
Colors, changing, 74, 75
Colors command, 74
Commands menu, 59-62
Comments, 25, 82, 85
COMPLEX.EKA, 109
Complex numbers, 89

examples, 107, 109, 148-151
Confidence level, Eureka’s, 11
Constants, 45, 71

complex, 89

example, 137-140
Constraints on solving, 31-32, 41, 44, 93

D

DECAY.EKA, 134-136

Decimal places displayed, 31, 89
DERINT.EKA, 108

Deriv function (example), 107, 108
Derivatives, 107, 108

Digits directive, 31, 89
Directives, 31, 72, 82, 86-98, 230
Directories, changing, 53, 54, 74, 211-213
Directories command, 74
Directory command, 53

DOS, 209-215

DOS shell, 55

E

Edit command, 56
Editor, 2, 9, 21-23, 28, 35-37, 56, 191-196
customizing, 229-233
key summary, 23, 37, 192-196
EINST.COM, 229-233
.EKA files, 105-186, see also Problem files
Equation file,
capturing, 65
creating, 21, 24
directories for, 53-54
loading, 51, 52
renaming, 54
saving, 23, 34, 52-53
syntax, 9-10, 79-87, 96
comments, 25, 82, 85
directives, 31, 82, 86
functions, 102
initialization, 10, 4041, 44, 71, 81
order of evaluation, 83
reserved words, 10
symbols, 9, 10, 25, 80, 83-85, 96
units conversion, 84, 97
values, 83
variables, 9, 82
Equations,
accuracy of, 31-32, 4346, 88
confidence level, Eureka’s, 11
constraints on, 31, 41, 44, 93
directives in, 31, 72, 82, 86-98
evaluating, 12, 33, 59
functions in, 27-29, 41, 45, 58, 66—69,
81
graphing, 27
integral (example), 107-109
modeling tips for, 4446
nonlinear, 127-129, 130-133
report of, 12
roots, finding other, 29, 32, 40, 42, 44,
61
roots, polynomial, 58, 148-151
simultaneous, 127-129, 130-133,
158-160
solving, 11, 26, 31, 40-42, 57, 93-95
batch problems, 42
iterative search, 26, 31, 41, 61
Progress window and, 26
range searched, 94
selected variables, 95
time spent, 93

Eureka: The Solver Owner's Handbook

transcendental (examples), 108,
134136, 141-143

trigonometric (example), 108

Verify command and, 12, 33, 59
EQUITY.EKA, 161-164
Error messages, 46, 217-227
EUREKA.LOG, 65
EUREKA.MAC, 86
Evaluating equations, see Verify command

F

Fact function (example), 165-168
Factorial, see Fact function
File menu, 51-55
Files on Eureka disk, 4
Financial functions, 90, 99-101
examples, 123-126, 161-164
Finansmooth directive (example), 162
Find other command, 32, 40, 42, 61
Floating point error, 46
Formatted command, 65
Function command, 69
Functions
built-in, 99-101, 197-208
complex, 89
definite integrals, 107-109, 169-171
financial, 90, 99-101
examples, 123-126, 161-164
lists, 68, 92
maximizing/minimizing, 41, 92-93
examples, 107, 144-147, 152-157,
158-160
nonlinear, 152-157
plotting, 27-29, 6669
polynomial, 58, 148151
poorly scaled, 45
transcendental, 134-136, 141-143
trigonometric, 89
user-defined, 27, 81, 101-103, 107-108
variables and, 101, 152-157
Fval function (example), 161-164

G

Go command, 64

Goto command, 78
Graphs, see Plots

Graph menu, 27-29, 66-69
Graphic card, and plots, 28

Index

H

Hard copy, see Report
Help, 13
HOUSE.EKA, 152-157

I

Imaginary numbers, 89, 107, 109, 148-151
Include directive (example), 175
Include files, 91
INITIAL.EKA, 75
Initialization values, 81, 91
Installation, 14-16

Floppy disk, 14

Hard disk, 15

RAM disk, 15
INTEG.EKA, 169-171
Integ function (examples), 107-109,

169-171

Integrals (examples), 107-109, 169-171
Iterate command, 26, 41
Iterative searches, 31, 41

K

Keys, in Eureka, 8, 18, 20
summary, 20, 23

L

LADDERS.EKA, 127-129

Least squares fit (example), 137-140
LINECHG.EKA, 130-133

Linear programming (example), 158-160
LINPROG.EKA, 158-160

List command, 68

Load command, 51

Load setup command, 75

Loading Eureka, 14-16

Loan problem, 123

LSQRFIT.EKA, 137-140

M

Main menu, 48

MASSCHG.EKA, 144-147

Math coprocessor chip, 5

Mathematical symbols in Eureka, 4, 9, 25,
83-85, 96

Max directive, 41, 92, 107, 108

examples, 152-157, 158-160

Maximization, see

Minimization/maximization problems

MAXMIN.EKA, 108
Menus, 8, 17, 19, 47-78
selecting from, 20
summary, 19, 49
Min directive, 41, 93, 107, 108
example, 144-147
Minimization/maximization problems, 11,
26, 40-42, 92-93,
examples, 107, 108, 144-147, 152-157,
158-160
Modeling tips, 4446

N

NDP.COM, 5

New command, 52

Next command, 77

Nonlinear equations, simultaneous
(examples), 127-129, 130-133

o

Open command, 76

Operators, see Mathematical symbols
Options menu, 31, 70-75, 86

Order of evaluation, 83

OS Shell command, 55

Output command, 64, 67

P

Paymt function (example), 161-164
Penalty setting, 31, 93
Plot command, 66, 94
Plots, 27-29, 6669
graphics mode, 28
zooming, 28
Poly function (example), 148-151
POLYNOM.EKA, 148-151
Polynomials, roots to, 58, 148-151
Printing, 12, 30, 63-65, 67-68
plots, 67
reports, 63
tables, 68
Problem files (EKA) 105-186
CARDS.EKA, 165-168
CARLOAN.EKA, 123-126
CHEMBAL.EKA, 172-177
CHEMEQ.EKA, 172-186
CLASSICS.EKA, 108-114
COMPLEX.EKA, 108-122
DECAY.EKA, 134-136
DERINT.EKA, 108-117
EQUITY.EKA, 161-164
HOUSE.EKA, 152-157

INTEG.EKA, 169-171
LADDERS.EKA, 127-129
LINECHG.EKA, 130-133
LINPROG.EKA, 158-160
LSQRFIT.EKA, 137-140
MASSCHG.EKA, 144-147
MAXMIN.EKA, 108-121
POLYNOM.EKA, 148-151
PROJCTL.EKA, 141-143
Progress window, 26
PROJCTL.EKA, 141-143
Pval function (example), 161-164

Q

Quick reference, 187-190
Quit command, 55
Quitting Eureka, 17, 34, 55

R

RAM disk, Eureka with, 15

Rename command, 54

Report, 12, 30, 63-65

Report menu, 63-65

Reserved words, 10

Roots, alternate, 29-32, 42, 44
positive/negative, 94

S

Save command, 52
Scientific notation, 96-97
Screen mode, installing, 232
Settings command, 31, 47, 95
Setup, saving, 75
Solve command, 11, 26, 57
Solving equations, see Equations, solving
Solving, Eureka’s method, 40
Stack command, 78
Substitutions, symbolic, 45, 96
Substlevel setting, 45

example, 137-140
SuperKey macros, 86
Symbols, see Mathematical symbols

T

Tile command, 77
Transcendental, equations (examples), 108,
134-136, 141-143
Trigonometric functions, 89
example, 108
Turbo Basic problem file, 43, 139
Tatorials, 13-34

Eureka: The Solver Owner’'s Handbook

U

Units conversion, 84, 97
example, 141-143
User-defined functions, 27, 81, 101-103,
107-108

v

Variables,

complex, 89, 107, 109

functions and, 101, 152-157

initializing, 10, 40, 41, 44, 71, 81, 91

maximizing/minimizing, 92-93,

152-157

modifying, 41

names, 82, 88

polynomial, 58

poorly scaled, 45, 184

solving for selected, 95
Variables command, 32, 41, 70
Verify command, 12, 33, 59

w

Window menu, 33-34, 76-78
Windows
closing, 34, 77
expanding, 37, 77
moving, 34
opening, 34, 76
saving setup of, 75
tiling, 34, 77
zooming, 34, 77
Write setup command, 75
Write to... command, 53

Z

Zoom command, 77

Index

FURENA:
THE SOLVER

The solution to
your most complex
equations—in seconds!

IBM’ VERSION

PC, XT® AT*& True Compatibles

f you’re a scientist, engineer, financial analyst, student,
teacher, or any other professional working with equations,
Eureka: The Solver can do your Algebra, Trigonometry and

Calculus problems in a snap.
= Generate a report, then send the output

Eureka also handles maximization and
minimization problems, plots functions,
generates reports, and saves an incredible
amount of time. Even if you're not a com-
puter specialist, Eureka can help you solve
your real-world mathematical problems
fast, without having to learn numerical
approximation techniques. Using Borland's
famous pull-down menu design and
context-sensitive help screens, Eureka is
easy to learn and easy to use—as simple
as a hand-held calculator.

X + exp(X) = 10 solved instantly
instead of eventually!

Imagine you have to “solve for X,"
where X + exp(X) = 10, and you don't
have Eureka: The Solver. What you do have

is a problem, because it's going to take a
lot of time guessing at “X." With Eureka,
there's no guessing, no dancing in the
dark—you get the right answer, right now.
(PS: X = 2.0705799, and Eureka solved
that one in .4 of a second!)

How to use Eureka: The Solver

It's easy.

1. Enter your equation into the
full-screen editor

2. Select the “Solve” command

3. Look at the answer

4. You're done

You can then tell Eureka to
= Evaluate your solution
= Plot a graph

to your printer, disk file or screen

® Or all of the above

Some of Eureka’s key features

“You can key in:

A formula or formulas

A series of equations—and solve for
all variables

Constraints (like X has to be
<or=

A function to plot

Unit conversions

Maximization and minimization
problems

Interest Rate/Present Value
calculations

Variables we call “What happens?,”
like “What happens if | change this
variable to 21 and that variable to 277"

Eureka: The Solver includes:

A full-screen editor

Pull-down menus

Context-sensitive Help

On-screen calculator

Automatic 8087 math co-processor
chip support

Powerful financial functions

Built-in and user-defined math and

financial functions

Ability to generate reports complete
with plots and lists

Polynomial finder

Inequality solutions

Minimum system requirements: IBM PC, AT, XT, Portable, 3270 and true compatibles. PC-DOS

(MS-DOS) 2.0 and later. 384K.

Eureka: The Solver is a trademark of Borland International, Inc. IBM, AT, and XT are registered trademarks of International

Business Machines Corp. MS-DOS is a registered trademark of Microsoft Corp.

Copyright 1986 Borland International

g__

BORLAND

INTERNATIONAL

BOR 0236

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CA 95066

ISBN 0-87524-15k-5

-

