
First Exercise

Start in the ReSharperWorkshop project. Create the 2 following classes:

Plan

Document

The Plan class should take a name (string), some documents (IEnumerable<Document>) and a security
classification (Basic.Support.SecurityClassification) in it's constructor and expose them as read-only
properties.

One solution could look like this:

Plan.cs

using System.Collections.Generic;

using Basic.Support;

namespace ResharperWorkshop

{

 public class Plan

 {

 private readonly string _name;

 private readonly IEnumerable<Document> _documents;

 private readonly SecurityClassification _securityClassification;

 public Plan(

 string name,

 IEnumerable<Document> documents,

 SecurityClassification securityClassification)

 {

 name = name;

 documents = documents;

 securityClassification = securityClassification;

 }

 public string Name

 {

 get { return _name; }

 }

 public IEnumerable<Document> Documents

 {

 get { return _documents; }

 }

 public SecurityClassification SecurityClassification

 {

 get { return _securityClassification; }

 }

 }

}

Document.cs

1 / 15

namespace ResharperWorkshop

{

 public class Document

 {

 }

}

Primary shortcuts

Shor tcut Key Combo

Focus Solution Explorer Ctrl + Alt + L

Locate in Solution Explorer Shift + Alt + L

Open context menu Shift + F10

Focus Code Window Esc

Focus Code Window (more stable) Alt + W , 1

Open menu underlined with Alt + <X>

2 / 15

Go to

Find the shortest sequence of keys to navigate to following items. See example below.

Example - Shortest Sequence

The shortest sequence of keys to navigate to

The file BlogEngine.NET/Custom/Themes/Standard/newsletter.html

would be:

Ctrl + Shift + T (Go to file)

n h t (matches newsletter.html)

1. The class IActivateHandlers interface in the Rebus namespace

2. The class CommentItem in the BlogEngine.Core.Data.Models namespace

3. The file blog.js file in the Scripts/Auto/ folder

4. The class BlogReader in the BlogEngine.Core.API.BlogML namespace

5. The declaration of the LoginRequired css class in the Content/Auto/Global.css file

6. The Page_Load method in the Account/account.master.cs file

7. The staticContent xml section in the BlogEngine.NET\Web.config file

8. The Application_PreRequestHandlerExecute method in the BlogEngine.NET\Global.asax file

9. The cancelReply method in the Scripts/Auto/blog.js file

10. The Add method of the BlogEngine.Core.Providers.BlogFileSystemProviderCollection class

11. The class that starts with U in the same namespace as XmlFileSystemProvider

Primary shortcuts

Shor tcut Key Combo

Go to Type Ctrl + T

Go to File Ctrl + Shift + T

Go to Symbol Shift + Alt + T

Go to Member (current file) Alt + \

Supporting shortcuts

Shor tcut Key Combo

Locate in Solution Explorer Shift + Alt + L

3 / 15

Code Analysis

Navigate to the ContextClass in the Context solution.

The class contains various ReSharper issues.

Hints shown as a short dotted green line beneath the code

Suggestions shown as a green squiggly line beneath the code

Dead code shown as faded grey text

Warnings shown as a blue squiggly line beneath the code

Errors shown as red text or red squiggly lines

Do the following

1. Navigate to the 2 errors and fix them. What's wrong?

2. Navigate through the suggestions in the file and see what ReSharper is suggesting. Do you agree?

3. Go through the hints of the file (no shortcut). Does it make sense to apply any of them?

Note: The inspection options can be changed either in the ReSharper options or directly through the Quick fix
menu. These can also be shared at solution level through source control, via the Resharper > Manage Options >
Import & Export feature which creates a .DotSettings file.

Primary shortcuts

Shor tcut Key Combo

Quick fix Alt + Enter

Go to next highlight (error, warning or suggestion) Alt + PageDown

Go to previous highlight (error, warning or suggestion) Alt + PageUp

Go to next error Alt + Shift + PageDown

Go to previous error Alt + Shift + PageUp

4 / 15

Generate Code

Open the GenerateCode class in the Basic project.

1. From the constructor of GenerateCode call a the non-existant private method like so: Create(name, tags)

2. Use Quick fix to create the method

3. From the Create method instantiate a non-existant class like so: new CodeCollection(name, tags)

4. Use Quick fix to create the class + constructor

5. Delete the constructor

6. Use Generate code to re-create the constructor

7. Use Quick fix to change the name field to be read-only

8. Delete the tags field

9. Generate a property for the tags field

10. Generate equality members for the class depending on the name field

11. Convert the tags property to a Property with backing field

12. Generate delegating methods for the Add method and the Count properties of the tags list

Primary shortcuts

Shor tcut Key Combo

Quick fix Alt + Enter

Generate code Alt + Insert

Supporting shortcuts

Shor tcut Key Combo

Go to next highlight (error, warning or suggestion) Alt + PageDown

Go to previous highlight (error, warning or suggestion) Alt + PageUp

5 / 15

Rename

Navigate to the H class the Basic project.

1. Rename variable e -> lastIndex

2. Rename parameter j -> arrayLength

3. Rename method A -> BuildRandomArray

4. Rename variable d -> index

Figure out what variables (and rename them) should have the following names of the remaining b , c , H , g and
f

random

numbers

swapIndex

temp

ArrayShuffler

Primary shortcuts

Shor tcut Key Combo

Refactor: Rename Ctrl + R , Ctrl + R

Supporting shortcuts

Shor tcut Key Combo

Refactor this Ctrl + Shift + R

Highlight usages Alt + Shift + F11

6 / 15

Introduce and Inline variables

Open the Variables class in the Basic project.

In the IntroduceVariable method introduce the following variables

1. 0 to firstPage

2. numberOfPages - 1 to lastPage

3. Math.Min(Math.Max(firstPage, page), lastPage) to currentPage

4. currentPage * itemsPerPage to firstItemInPage

5. ((currentPage + 1) * itemsPerPage) - 1 to lastItemInPage

6. new[] { firstItemInPage, lastItemInPage } to itemRange

In the InlineVariable method:

7. Inline all the variables one at a time and watch the effects.

Primary shortcuts

Shor tcut Key Combo

Refactor this Ctrl + Shift + R

Refactor: Introduce variable Ctrl + R , Ctrl + V

Refactor: Inline variable Ctrl + R , Ctrl + I

7 / 15

Import Completion

Open the ImportCompletion class in the `Basic project.

In the Import method:

1. Instantiate a new DataProcessor() using Impor t completion to import the Basic.Support.Proc
namespace

2. Change the Console.WriteLine call to output list.FirstOrDefault() (extension method) instead of list -
using Impor t completion to import the System.Linq namespace

3. Instantiate a System.Threading.Timeout

4. Instantiate a System.Security.SecureString

In the IntroduceVariableImportCompletionCombo method, find the shortest keysequence for writing the
following statements using Impor t completion followed by Introduce variable. (see example below)

5. var stringBuilder = new StringBuilder();

6. var dictionary = new HybridDictionary();

7. var collection = new BlockingCollection<ConcurrentQueue<Guid>>();

8. var compressionMode = CompressionMode.Compress;

Example - Impor t/Introduce combo

Combining Import completion and Introduce variable.

Shortest key sequence for writing in a file where the System.Text namespace is not imported:

var stringBuilder = new StringBuilder();

would be:

n e w Space

s b u i (matches S tringBui lder)

Tab (Activate Statement completion/Import completion)

((completes statement)

Ctrl + R , Ctrl + V (introduce variable)

Enter (picks var in type selector)

Enter (picks stringBuilder in name selector)

Primary shortcuts

Shor tcut Key Combo

Refactor: Introduce variable Ctrl + R , Ctrl + V

Import completion Tab (when the correct type is selected in the intellisense window)

Refactor this Ctrl + Shift + R

8 / 15

Find Usages and Highlight

Investigate the following using Find usages

1. Where is the ZipDirectory method from the FileSystemUtilities class used?

2. Which .cs file uses the CheckRightsForAdminSettingsPage method in the WebUtils class?

3. From which .cs files can the SaveToDatastore method of the XmlBlogProvider class be invoked? (multiple
Find usages)

Navigate to the BlogEngine.Core.Pager class and look at the Reset method (note: there is more than 1 Pager
class)

4. Try to reason about what happens to the page parameter within the constructor

5. Try again with Find usages

6. Try again with Highlight usages

7. What works better? Nothing, Find usages or Highlight usages

Navigate to the RewriteDefault method in the UrlRewrite class. Using Highlight usages or Find usages
figure out

8. What is the last line that the path local variable is used in?

9. What is the last line that the url local variable is used in?

10. What is the last line that the page local variable is used in?

Navigate to the BlogEngine.Core.Blog class

10. Try to reason about who calls the Blog constructor

11. Try again with Highlight usages

12. Try again with Find usages

13. What works better? Nothing, Find usages or Highlight usages

Primary shortcuts

Shor tcut Key Combo

Find usages Shift + F12

Highlight usages Shift + Alt + F11

Remove Highlight Esc

Supporting shortcuts

Shor tcut Key Combo

Go to next usage Ctrl + Alt + PageDown

Go to previous usage Ctrl + Alt + PageUp

9 / 15

Solution Explorer Refactorings

Open the Tennis.cs file in the ReSharperWorkshop solution. This file contains an implementation of the
variations of the rules of Tennis in different tournaments.

In the Solution Explorer do the following:

1. Split up the Tennis.cs file using Refactor this - Move types into matching files

2. Create Tournament and Models folders using Generate file (Solution Explorer)

3. Move files into the folder structure shown below using either
Cut / Paste + Refactor this - Adjust namespaces

Refactor this - Move to folder

4. Which method do you like better?

Tournament

TournamentAustralianOpen.cs

TournamentDouble.cs

TournamentUSOpen.cs

ITournamentRules.cs

Models

TennisGame.cs

TennisSet.cs

TennisMatch.cs

Tip: If you want to start over on this task - simply copy the contents of original.txt into a Tennis.cs file, or
revert the file from source control with git checkout Tennis.cs

Primary shortcuts

Shor tcut Key Combo

Refactor this Ctrl + Shift + R

Generate item (Solution Explorer) Alt + Insert

Refactor: Move to file/folder Ctrl + R , Ctrl + O

Supporting shortcuts

Shor tcut Key Combo

Locate in Solution Explorer Shift + Alt + L

10 / 15

Move Code

Navigate to the OutOfOrderMethods class in the Basic project.

1. Reorder the methods alphabetically using move code.

In the E method:

2. Move the calculation of theOtherNumber into the first if block.

3. Move the try / catch block out of the first if block.

4. Change following expressions to mention variable names before constants:
13 * theNumber should be theNumber * 13

42 == theNumber should be theNumber == 42

null != data should be data != null

Primary shortcuts

Shor tcut Key Combo

Move code up Ctrl + Shift + Alt + Up

Move code down Ctrl + Shift + Alt + Down

Move code in Ctrl + Shift + Alt + Right

Move code out Ctrl + Shift + Alt + Left

Supporting shortcuts

Shor tcut Key Combo

Go to next class member Alt + Down

Go to previous class member Alt + Up

11 / 15

Navigate Hierarchies

Navigate to the Navigate method of the NavigateHierachies class.

1. Examine the Type Hierarchy of IEntity

2. What is the difference between Go to implementation and Go to derived on the IPet.Speak method?

3. Where does Go to implementation on IEntity.Id followed by Go to base take you? Why?

Navigate to the RebusHierarchyLesson class. Using hierarchy navigation (Go to declaration / Go to
implementation / Go to base / Go to derived) figure out the following:

(Remember that you can consult the Type Hierachy)

4. From SimpleHandlerActivator - how can you get to IActivateHandlers

5. From IActivateHandlers - how can you get to WindsorContainerAdapter

6. From WindsorContainerAdapter - how can you get to IContainerAdapter

Without leaving RebusHierarchyLesson figure out the following from the Lesson method.

Hint: Go to derived shows a list of possible navigation targets for whatever's under the caret.

7. Using Type Hierachy , which class implementing IActivateHandlers does not implement
IContainerAdapter

8. Number of classes and interfaces implementing IActiveHandlers

9. Out of the these - how many implement the GetHandlerInstancesFor<T>

10. Number of classes and interfaces implementing IHandleMessages<T>

Tip: If you navigate to a file and want to go back to where you were, you can either use Close current file or Go
back (Visual Studio) .

Primary shortcuts

Shor tcut Key Combo

Go to declaration F12

Go to implementation Ctrl + F12

Go to base Alt + Home

Go to derived Alt + End

Show type hierarchy Ctrl + E , Ctrl + H

Supporting shortcuts

12 / 15

Shor tcut Key Combo

Inspect this Ctrl + Shift + Alt + A

Close current file Ctrl + F4

Go back (Visual Studio) Ctrl + - (minus symbol above P)

13 / 15

Inspect This

Navigate to the Inspector class in the Basic project.

Tip: Remember that the inspection window can be docked and that Show Preview on the Right is useful.

1. Explore the value destination of importantValue in the Main method. Where does it end up?

2. Explore the value origin of the value variable in the Main method. What values are printed?

Primary shortcuts

Shor tcut Key Combo

Inspect this Ctrl + Shift + Alt + A

14 / 15

First Exercise Revisited

Repeat the first exercise, but try to incorporate the things you've learned in the previous exercises. Below you'll find
a list of the shortcuts that might be helpful for faster flows.

Problem

Start in the ReSharperWorkshop project. Create the 2 following classes:

Plan

Document

The Plan class should take a name (string), some documents (IEnumerable<Document>) and a security
classification (Basic.Support.SecurityClassification) in it's constructor and expose them as read-only
properties.

Primary shortcuts

Shor tcut Key Combo

Quick fix Alt + Enter

All fixes Ctrl + .

Generate file (Solution Explorer) Alt + Ins

Generate code Alt + Ins

Import completion Tab

Go to next suggestion Alt + PageDown

Go to previous suggestion Alt + PageUp

Go to next error Shift + Alt + PageDown

Go to previous error Shift + Alt + PageUp

15 / 15

