
 Previous Page Next Page

ExpressJS - Quick GuideExpressJS - Quick GuideExpressJS - Quick Guide
Advertisements

ExpressJS - OverviewExpressJS - OverviewExpressJS - Overview
ExpressJS is a web application framework that provides you with a simple API to build
websites, web apps and back ends. With ExpressJS, you need not worry about low level
protocols, processes, etc.

Express provides a minimal interface to build our applications. It provides us the tools that
are required to build our app. It is flexible as there are numerous modules available on
npm, which can be directly plugged into Express.

Express was developed by TJ Holowaychuk and is maintained by the Node.js
foundation and numerous open source contributors.

Unlike its competitors like Rails and Django, which have an opinionated way of building
applications, Express has no "best way" to do something. It is very flexible and pluggable.

Pug (earlier known as Jade) is a terse language for writing HTML templates. It −

Produces HTML

Supports dynamic code

Supports reusability (DRY)

It is one of the most popular template language used with Express.

What is Express?What is Express?What is Express?

Why Express?Why Express?Why Express?

PugPugPug

https://www.tutorialspoint.com/expressjs/expressjs_resources.htm
https://www.tutorialspoint.com/expressjs/expressjs_useful_resources.htm
https://nodejs.org/en/
https://www.googleadservices.com/pagead/aclk?sa=L&ai=C8vF-l5UsXO62J9q0yAP154zYDPm4o9ZU27bg8egHkfyC4wkQASCFtdsFYOWCgICYDqABofHiywPIAQKpAq0YrFdktE4-qAMByAPJBKoE7QFP0NljuJUvYXoVKRKYxCZPTWSQSPfIOVoEhnJc0KlVAKZvYFWAWZmqqzuMzd-n2Im1py8WfxbqSLxIbyRsCy4JQprZw3yaTlImp4ZB6JMZhDXDkACEdCGBv9ZG3n_jCASdjcZ6c_zsoK2qWLO3zomLIoSqTVqME00IhIUJj2LozE9tKS-k0MfCTzH3EePEGWn3EgXWGWb5rSH5QG1WQtetOq5tzbhfEaO4wWTtgFmBRFXjOtde02Pg1yexZHSe6ZSQeewa7C5c3qsm--tGyHciUlH-j3ZnePMmKE0sn7B3N6_bI_HwiXKPNJtUMcCgBgKAB8eOnTSoB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYArEJKLI2cEJJngyACgHYEww&ae=1&num=1&cid=CAASEuRof--GCbgjeZLzAqde74Um_g&sig=AOD64_1m0hRKu27b2bmnnY-rkAw8rrpmVQ&client=ca-pub-7133395778201029&adurl=http://clickserve.dartsearch.net/link/click%3F%26%26ds_e_adid%3D297074910715%26ds_e_matchtype%3Dcontent%26ds_e_device%3Dc%26ds_e_network%3Dd%26%26ds_url_v%3D2%26ds_dest_url%3Dhttps://www.iciciprulife.com/term-insurance-plans/buy-icici-term-insurance-online.html%3FUID%3D972%26cid%3DDisplay:Google:DM-GDN-Placement:Banner::iPS:Best-Term-1-Crore:490pm::Eng::972:cpc:::%26gclsrc%3Daw.ds%26%26keyword%3Dwww.tutorialspoint.com%26matchtype%3D%26gclid%3DEAIaIQobChMIrt7k7PTO3wIVWhpyCh31MwPLEAEYASAAEgJs_PD_BwE

MongoDB is an open-source, document database designed for ease of development and
scaling. This database is also used to store data.

Mongoose is a client API for node.js which makes it easy to access our database from our
Express application.

ExpressJS - EnvironmentExpressJS - EnvironmentExpressJS - Environment
In this chapter, we will learn how to start developing and using the Express Framework. To
start with, you should have the Node and the npm (node package manager) installed. If
you don’t already have these, go to the Node setup to install node on your local system.
Confirm that node and npm are installed by running the following commands in your
terminal.

node --version

npm --version

You should get an output similar to the following.

v5.0.0

3.5.2

Now that we have Node and npm set up, let us understand what npm is and how to use
it.

npm is the package manager for node. The npm Registry is a public collection of packages
of open-source code for Node.js, front-end web apps, mobile apps, robots, routers, and
countless other needs of the JavaScript community. npm allows us to access all these
packages and install them locally. You can browse through the list of packages available on
npm at npmJS .

There are two ways to install a package using npm: globally and locally.

Globally − This method is generally used to install development tools and CLI
based packages. To install a package globally, use the following code.

npm install -g <package-name>

Locally − This method is generally used to install frameworks and libraries. A
locally installed package can be used only within the directory it is installed. To
install a package locally, use the same command as above without the -g flag.

MongoDB and MongooseMongoDB and MongooseMongoDB and Mongoose

Node Package Manager(npm)Node Package Manager(npm)Node Package Manager(npm)

How to use npm?How to use npm?How to use npm?

https://www.tutorialspoint.com/nodejs/nodejs_environment_setup.htm
https://www.npmjs.com/

npm install <package-name>

Whenever we create a project using npm, we need to provide a package.json file, which
has all the details about our project. npm makes it easy for us to set up this file. Let us set
up our development project.

Step 1 − Start your terminal/cmd, create a new folder named hello-world and cd (create
directory) into it −

Step 2 − Now to create the package.json file using npm, use the following code.

npm init

It will ask you for the following information.

Just keep pressing enter, and enter your name at the “author name” field.

Step 3 − Now we have our package.json file set up, we will further install Express. To
install Express and add it to our package.json file, use the following command −

npm install --save express

To confirm that Express has installed correctly, run the following code.

ls node_modules #(dir node_modules for windows)

Tip − The --save flag can be replaced by the -S flag. This flag ensures that Express is
added as a dependency to our package.json file. This has an advantage, the next time
we need to install all the dependencies of our project we can just run the command npm
install and it will find the dependencies in this file and install them for us.

This is all we need to start development using the Express framework. To make our
development process a lot easier, we will install a tool from npm, nodemon. This tool

restarts our server as soon as we make a change in any of our files, otherwise we need to
restart the server manually after each file modification. To install nodemon, use the
following command −

npm install -g nodemon

You can now start working on Express.

ExpressJS - Hello WorldExpressJS - Hello WorldExpressJS - Hello World
We have set up the development, now it is time to start developing our first app using
Express. Create a new file called index.js and type the following in it.

var express = require('express');
var app = express();

app.get('/', function(req, res){
 res.send("Hello world!");
});

app.listen(3000);

Save the file, go to your terminal and type the following.

nodemon index.js

This will start the server. To test this app, open your browser and go to
http://localhost:3000 and a message will be displayed as in the following screenshot.

How the App Works?How the App Works?How the App Works?

The first line imports Express in our file, we have access to it through the variable Express.
We use it to create an application and assign it to var app.

This function tells what to do when a get request at the given route is called. The callback
function has 2 parameters, request(req) and response(res). The request object(req)
represents the HTTP request and has properties for the request query string, parameters,
body, HTTP headers, etc. Similarly, the response object represents the HTTP response that
the Express app sends when it receives an HTTP request.

This function takes an object as input and it sends this to the requesting client. Here we
are sending the string "Hello World!".

This function binds and listens for connections on the specified host and port. Port is the
only required parameter here.

S.No. Argument & Description

1 port

A port number on which the server should accept incoming requests.

2 host

Name of the domain. You need to set it when you deploy your apps to the cloud.

3 backlog

The maximum number of queued pending connections. The default is 511.

4 callback

An asynchronous function that is called when the server starts listening for
requests.

ExpressJS - RoutingExpressJS - RoutingExpressJS - Routing
Web frameworks provide resources such as HTML pages, scripts, images, etc. at different
routes.

The following function is used to define routes in an Express application −

app.get(route, callback)app.get(route, callback)app.get(route, callback)

res.send()res.send()res.send()

app.listen(port, [host], [backlog], [callback]])app.listen(port, [host], [backlog], [callback]])app.listen(port, [host], [backlog], [callback]])

app.method(path, handler)app.method(path, handler)app.method(path, handler)

This METHOD can be applied to any one of the HTTP verbs – get, set, put, delete. An
alternate method also exists, which executes independent of the request type.

Path is the route at which the request will run.

Handler is a callback function that executes when a matching request type is found on the
relevant route. For example,

var express = require('express');
var app = express();

app.get('/hello', function(req, res){
 res.send("Hello World!");
});

app.listen(3000);

If we run our application and go to localhost:3000/hello, the server receives a get
request at route "/hello", our Express app executes the callback function attached to
this route and sends "Hello World!" as the response.

We can also have multiple different methods at the same route. For example,

var express = require('express');
var app = express();

app.get('/hello', function(req, res){
 res.send("Hello World!");
});

app.post('/hello', function(req, res){
 res.send("You just called the post method at '/hello'!\n");
});

app.listen(3000);

To test this request, open up your terminal and use cURL to execute the following request
−

curl -X POST "http://localhost:3000/hello"

A special method, all, is provided by Express to handle all types of http methods at a
particular route using the same function. To use this method, try the following.

app.all('/test', function(req, res){
 res.send("HTTP method doesn't have any effect on this route!");
});

This method is generally used for defining middleware, which we'll discuss in the
middleware chapter.

Defining routes like above is very tedious to maintain. To separate the routes from our
main index.js file, we will use Express.Router. Create a new file called things.js and
type the following in it.

var express = require('express');
var router = express.Router();

router.get('/', function(req, res){
 res.send('GET route on things.');
});
router.post('/', function(req, res){
 res.send('POST route on things.');
});

//export this router to use in our index.js
module.exports = router;

Now to use this router in our index.js, type in the following before the app.listen function
call.

var express = require('Express');
var app = express();

var things = require('./things.js');

//both index.js and things.js should be in same directory
app.use('/things', things);

app.listen(3000);

RoutersRoutersRouters

The app.use function call on route '/things' attaches the things router with this route.
Now whatever requests our app gets at the '/things', will be handled by our things.js
router. The '/' route in things.js is actually a subroute of '/things'. Visit
localhost:3000/things/ and you will see the following output.

Routers are very helpful in separating concerns and keep relevant portions of our code
together. They help in building maintainable code. You should define your routes relating to
an entity in a single file and include it using the above method in your index.js file.

ExpressJS - HTTP MethodsExpressJS - HTTP MethodsExpressJS - HTTP Methods
The HTTP method is supplied in the request and specifies the operation that the client has
requested. The following table lists the most used HTTP methods −

S.No. Method & Description

1 GET

The GET method requests a representation of the specified resource. Requests
using GET should only retrieve data and should have no other effect.

2 POST

The POST method requests that the server accept the data enclosed in the
request as a new object/entity of the resource identified by the URI.

3 PUT

The PUT method requests that the server accept the data enclosed in the
request as a modification to existing object identified by the URI. If it does not

exist then the PUT method should create one.

4 DELETE

The DELETE method requests that the server delete the specified resource.

These are the most common HTTP methods. To learn more about the methods, visit
http://www.tutorialspoint.com/http/http_methods.htm .

ExpressJS - URL BuildingExpressJS - URL BuildingExpressJS - URL Building
We can now define routes, but those are static or fixed. To use the dynamic routes, we
SHOULD provide different types of routes. Using dynamic routes allows us to pass
parameters and process based on them.

Here is an example of a dynamic route −

var express = require('express');
var app = express();

app.get('/:id', function(req, res){
 res.send('The id you specified is ' + req.params.id);
});
app.listen(3000);

To test this go to http://localhost:3000/123. The following response will be displayed.

You can replace '123' in the URL with anything else and the change will reflect in the
response. A more complex example of the above is −

var express = require('express');
var app = express();

https://www.tutorialspoint.com/http/http_methods.htm

app.get('/things/:name/:id', function(req, res) {
 res.send('id: ' + req.params.id + ' and name: ' + req.params.name);
});
app.listen(3000);

To test the above code, go to http://localhost:3000/things/tutorialspoint/12345.

You can use the req.params object to access all the parameters you pass in the url. Note
that the above 2 are different paths. They will never overlap. Also if you want to execute
code when you get '/things' then you need to define it separately.

You can also use regex to restrict URL parameter matching. Let us assume you need the
id to be a 5-digit long number. You can use the following route definition −

var express = require('express');
var app = express();

app.get('/things/:id([0-9]{5})', function(req, res){
 res.send('id: ' + req.params.id);
});

app.listen(3000);

Note that this will only match the requests that have a 5-digit long id. You can use more
complex regexes to match/validate your routes. If none of your routes match the request,
you'll get a "Cannot GET <your-request-route>" message as response. This message
be replaced by a 404 not found page using this simple route −

var express = require('express');
var app = express();

Pattern Matched RoutesPattern Matched RoutesPattern Matched Routes

//Other routes here
app.get('*', function(req, res){
 res.send('Sorry, this is an invalid URL.');
});
app.listen(3000);

Important − This should be placed after all your routes, as Express matches routes from
start to end of the index.js file, including the external routers you required.

For example, if we define the same routes as above, on requesting with a valid URL, the
following output is displayed. −

While for an incorrect URL request, the following output is displayed.

ExpressJS - MiddlewareExpressJS - MiddlewareExpressJS - Middleware
Middleware functions are functions that have access to the request object (req), the
response object (res), and the next middleware function in the application’s request-
response cycle. These functions are used to modify req and res objects for tasks like
parsing request bodies, adding response headers, etc.

Here is a simple example of a middleware function in action −

var express = require('express');
var app = express();

//Simple request time logger
app.use(function(req, res, next){
 console.log("A new request received at " + Date.now());

 //This function call is very important. It tells that more processing is
 //required for the current request and is in the next middleware
 function/route handler.
 next();
});

app.listen(3000);

The above middleware is called for every request on the server. So after every request, we
will get the following message in the console −

A new request received at 1467267512545

To restrict it to a specific route (and all its subroutes), provide that route as the first
argument of app.use(). For Example,

var express = require('express');
var app = express();

//Middleware function to log request protocol
app.use('/things', function(req, res, next){
 console.log("A request for things received at " + Date.now());
 next();
});

// Route handler that sends the response
app.get('/things', function(req, res){
 res.send('Things');
});

app.listen(3000);

Now whenever you request any subroute of '/things', only then it will log the time.

One of the most important things about middleware in Express is the order in which they
are written/included in your file; the order in which they are executed, given that the route

Order of Middleware CallsOrder of Middleware CallsOrder of Middleware Calls

matches also needs to be considered.

For example, in the following code snippet, the first function executes first, then the route
handler and then the end function. This example summarizes how to use middleware
before and after route handler; also how a route handler can be used as a middleware
itself.

var express = require('express');
var app = express();

//First middleware before response is sent
app.use(function(req, res, next){
 console.log("Start");
 next();
});

//Route handler
app.get('/', function(req, res, next){
 res.send("Middle");
 next();
});

app.use('/', function(req, res){
 console.log('End');
});

app.listen(3000);

When we visit '/' after running this code, we receive the response as Middle and on our
console −

Start

End

The following diagram summarizes what we have learnt about middleware −

Now that we have covered how to create our own middleware, let us discuss some of the
most commonly used community created middleware.

Third Party MiddlewareThird Party MiddlewareThird Party Middleware

A list of Third party middleware for Express is available here . Following are some of the
most commonly used middleware; we will also learn how to use/mount these −

This is used to parse the body of requests which have payloads attached to them. To
mount body parser, we need to install it using npm install --save body-parser and to
mount it, include the following lines in your index.js −

var bodyParser = require('body-parser');

//To parse URL encoded data
app.use(bodyParser.urlencoded({ extended: false }))

//To parse json data
app.use(bodyParser.json())

To view all available options for body-parser, visit its github page.

It parses Cookie header and populate req.cookies with an object keyed by cookie names.
To mount cookie parser, we need to install it using npm install --save cookie-parser and to
mount it, include the following lines in your index.js −

var cookieParser = require('cookie-parser');
app.use(cookieParser())

It creates a session middleware with the given options. We will discuss its usage in the
Sessions section.

We have many other third party middleware in ExpressJS. However, we have discussed
only a few important ones here.

ExpressJS - TemplatingExpressJS - TemplatingExpressJS - Templating
Pug is a templating engine for Express. Templating engines are used to remove the
cluttering of our server code with HTML, concatenating strings wildly to existing HTML
templates. Pug is a very powerful templating engine which has a variety of features
including filters, includes, inheritance, interpolation, etc. There is a lot of ground to
cover on this.

To use Pug with Express, we need to install it,

npm install --save pug

Now that Pug is installed, set it as the templating engine for your app. You don't need to
'require' it. Add the following code to your index.js file.

body-parserbody-parserbody-parser

cookie-parsercookie-parsercookie-parser

express-sessionexpress-sessionexpress-session

http://expressjs.com/en/resources/middleware.html

app.set('view engine', 'pug');
app.set('views','./views');

Now create a new directory called views. Inside that create a file called first_view.pug,
and enter the following data in it.

doctype html
html
 head
 title = "Hello Pug"
 body
 p.greetings#people Hello World!

To run this page, add the following route to your app −

app.get('/first_template', function(req, res){
 res.render('first_view');
});

You will get the output as − Hello World! Pug converts this very simple looking markup to
html. We don’t need to keep track of closing our tags, no need to use class and id
keywords, rather use '.' and '#' to define them. The above code first gets converted to −

<!DOCTYPE html>
<html>
 <head>
 <title>Hello Pug</title>
 </head>

 <body>
 <p class = "greetings" id = "people">Hello World!</p>
 </body>
</html>

Pug is capable of doing much more than simplifying HTML markup.

Let us now explore a few important features of Pug.

Tags are nested according to their indentation. Like in the above example, <title> was
indented within the <head> tag, so it was inside it. But the <body> tag was on the same
indentation, so it was a sibling of the <head> tag.

We don’t need to close tags, as soon as Pug encounters the next tag on same or outer
indentation level, it closes the tag for us.

To put text inside of a tag, we have 3 methods −

Space seperated

Important Features of PugImportant Features of PugImportant Features of Pug

Simple TagsSimple TagsSimple Tags

h1 Welcome to Pug

Piped text

div

 | To insert multiline text,

 | You can use the pipe operator.

Block of text

div.

 But that gets tedious if you have a lot of text.

 You can use "." at the end of tag to denote block of text.

 To put tags inside this block, simply enter tag in a new line and

 indent it accordingly.

Pug uses the same syntax as JavaScript(//) for creating comments. These comments
are converted to the html comments(<!--comment-->). For example,

//This is a Pug comment

This comment gets converted to the following.

<!--This is a Pug comment-->

To define attributes, we use a comma separated list of attributes, in parenthesis. Class and
ID attributes have special representations. The following line of code covers defining
attributes, classes and id for a given html tag.

div.container.column.main#division(width = "100", height = "100")

This line of code, gets converted to the following. −

<div class = "container column main" id = "division" width = "100" height = "100"></div>

When we render a Pug template, we can actually pass it a value from our route handler,
which we can then use in our template. Create a new route handler with the following.

var express = require('express');
var app = express();

app.get('/dynamic_view', function(req, res){
 res.render('dynamic', {
 name: "TutorialsPoint",

CommentsCommentsComments

AttributesAttributesAttributes

Passing Values to TemplatesPassing Values to TemplatesPassing Values to Templates

 url:"http://www.tutorialspoint.com"
 });
});

app.listen(3000);

And create a new view file in views directory, called dynamic.pug, with the following code
−

html

 head

 title=name

 body

 h1=name

 a(href = url) URL

Open localhost:3000/dynamic_view in your browser; You should get the following output −

We can also use these passed variables within text. To insert passed variables in between
text of a tag, we use #{variableName} syntax. For example, in the above example, if we
wanted to put Greetings from TutorialsPoint, then we could have done the following.

html

 head

 title = name

 body

 h1 Greetings from #{name}

 a(href = url) URL

This method of using values is called interpolation. The above code will display the
following output. −

We can use conditional statements and looping constructs as well.

Consider the following −

If a User is logged in, the page should display "Hi, User" and if not, then the
"Login/Sign Up" link. To achieve this, we can define a simple template like −

html

 head

 title Simple template

 body

 if(user)

 h1 Hi, #{user.name}

 else

 a(href = "/sign_up") Sign Up

When we render this using our routes, we can pass an object as in the following program
−

res.render('/dynamic',{

 user: {name: "Ayush", age: "20"}

});

You will receive a message − Hi, Ayush. But if we don’t pass any object or pass one with
no user key, then we will get a signup link.

Pug provides a very intuitive way to create components for a web page. For example, if
you see a news website, the header with logo and categories is always fixed. Instead of

ConditionalsConditionalsConditionals

Include and ComponentsInclude and ComponentsInclude and Components

copying that to every view we create, we can use the include feature. Following example
shows how we can use this feature −

Create 3 views with the following code −

HEADER.PUG

div.header.

 I'm the header for this website.

CONTENT.PUG

html

 head

 title Simple template

 body

 include ./header.pug

 h3 I'm the main content

 include ./footer.pug

FOOTER.PUG

div.footer.

 I'm the footer for this website.

Create a route for this as follows −

var express = require('express');
var app = express();

app.get('/components', function(req, res){
 res.render('content');
});

app.listen(3000);

Go to localhost:3000/components, you will receive the following output −

include can also be used to include plaintext, css and JavaScript.

There are many more features of Pug. But those are out of the scope for this tutorial. You
can further explore Pug at Pug .

ExpressJS - Serving static filesExpressJS - Serving static filesExpressJS - Serving static files
Static files are files that clients download as they are from the server. Create a new
directory, public. Express, by default does not allow you to serve static files. You need to
enable it using the following built-in middleware.

app.use(express.static('public'));

Note − Express looks up the files relative to the static directory, so the name of the static
directory is not part of the URL.

Note that the root route is now set to your public dir, so all static files you load will be
considering public as root. To test that this is working fine, add any image file in your new
public dir and change its name to "testimage.jpg". In your views, create a new view and
include this file like −

html

 head

 body

 h3 Testing static file serving:

 img(src = "/testimage.jpg", alt = "Testing Image

You should get the following output −

http://jade-lang.com/

We can also set multiple static assets directories using the following program −

var express = require('express');
var app = express();

app.use(express.static('public'));
app.use(express.static('images'));

app.listen(3000);

We can also provide a path prefix for serving static files. For example, if you want to
provide a path prefix like '/static', you need to include the following code in your index.js
file −

var express = require('express');
var app = express();

app.use('/static', express.static('public'));

app.listen(3000);

Now whenever you need to include a file, for example, a script file called main.js residing
in your public directory, use the following script tag −

<script src = "/static/main.js" />

Multiple Static DirectoriesMultiple Static DirectoriesMultiple Static Directories

Virtual Path PrefixVirtual Path PrefixVirtual Path Prefix

This technique can come in handy when providing multiple directories as static files. These
prefixes can help distinguish between multiple directories.

ExpressJS - Form dataExpressJS - Form dataExpressJS - Form data
Forms are an integral part of the web. Almost every website we visit offers us forms that
submit or fetch some information for us. To get started with forms, we will first install the
body-parser(for parsing JSON and url-encoded data) and multer(for parsing multipart/form
data) middleware.

To install the body-parser and multer, go to your terminal and use −

npm install --save body-parser multer

Replace your index.js file contents with the following code −

var express = require('express');
var bodyParser = require('body-parser');
var multer = require('multer');
var upload = multer();
var app = express();

app.get('/', function(req, res){
 res.render('form');
});

app.set('view engine', 'pug');
app.set('views', './views');

// for parsing application/json
app.use(bodyParser.json());

// for parsing application/xwww-
app.use(bodyParser.urlencoded({ extended: true }));
//form-urlencoded

// for parsing multipart/form-data
app.use(upload.array());
app.use(express.static('public'));

app.post('/', function(req, res){
 console.log(req.body);
 res.send("recieved your request!");
});
app.listen(3000);

After importing the body parser and multer, we will use the body-parser for parsing json
and x-www-form-urlencoded header requests, while we will use multer for parsing
multipart/form-data.

Let us create an html form to test this out. Create a new view called form.pug with the
following code −

html

html

 head

 title Form Tester

 body

 form(action = "/", method = "POST")

 div

 label(for = "say") Say:

 input(name = "say" value = "Hi")

 br

 div

 label(for = "to") To:

 input(name = "to" value = "Express forms")

 br

 button(type = "submit") Send my greetings

Run your server using the following.

nodemon index.js

Now go to localhost:3000/ and fill the form as you like, and submit it. The following
response will be displayed −

Have a look at your console; it will show you the body of your request as a JavaScript
object as in the following screenshot −

The req.body object contains your parsed request body. To use fields from that object,
just use them like normal JS objects.

This is the most recommended way to send a request. There are many other ways, but
those are irrelevant to cover here, because our Express app will handle all those requests
in the same way. To read more about different ways to make a request, have a look at
this page.

ExpressJS - DatabaseExpressJS - DatabaseExpressJS - Database
We keep receiving requests, but end up not storing them anywhere. We need a Database
to store the data. For this, we will make use of the NoSQL database called MongoDB.

To install and read about Mongo, follow this link.

In order to use Mongo with Express, we need a client API for node. There are multiple
options for us, but for this tutorial, we will stick to mongoose . Mongoose is used for
document Modeling in Node for MongoDB. For document modeling, we create a Model
(much like a class in document oriented programming), and then we produce documents
using this Model (like we create documents of a class in OOP). All our processing will be
done on these "documents", then finally, we will write these documents in our database.

Now that you have installed Mongo, let us install Mongoose, the same way we have been
installing our other node packages −

npm install --save mongoose

Before we start using mongoose, we have to create a database using the Mongo shell. To
create a new database, open your terminal and enter "mongo". A Mongo shell will start,
enter the following code −

use my_db

A new database will be created for you. Whenever you open up the mongo shell, it will
default to "test" db and you will have to change to your database using the same
command as above.

To use Mongoose, we will require it in our index.js file and then connect to the mongodb
service running on mongodb://localhost.

var mongoose = require('mongoose');

mongoose.connect('mongodb://localhost/my_db');

Now our app is connected to our database, let us create a new Model. This model will act
as a collection in our database. To create a new Model, use the following code, before
defining any route −

Setting up MongooseSetting up MongooseSetting up Mongoose

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms/Sending_forms_through_JavaScript
https://www.tutorialspoint.com/mongodb/mongodb_environment.htm
http://mongoosejs.com/

var personSchema = mongoose.Schema({
 name: String,
 age: Number,
 nationality: String
});
var Person = mongoose.model("Person", personSchema);

The above code defines the schema for a person and is used to create a Mongoose Mode
Person.

Now, we will create a new html form; this form will help you get the details of a person
and save it to our database. To create the form, create a new view file called person.pug
in views directory with the following content −

html

head

 title Person

 body

 form(action = "/person", method = "POST")

 div

 label(for = "name") Name:

 input(name = "name")

 br

 div

 label(for = "age") Age:

 input(name = "age")

 br

 div

 label(for = "nationality") Nationality:

 input(name = "nationality")

 br

 button(type = "submit") Create new person

Also add a new get route in index.js to render this document −

app.get('/person', function(req, res){
 res.render('person');
});

Go to "localhost:3000/person" to check if the form is displaying the correct output.
Note that this is just the UI, it is not working yet. The following screenshot shows how the
form is displayed −

Saving DocumentsSaving DocumentsSaving Documents

We will now define a post route handler at '/person' which will handle this request

app.post('/person', function(req, res){
 var personInfo = req.body; //Get the parsed information

 if(!personInfo.name || !personInfo.age || !personInfo.nationality){
 res.render('show_message', {
 message: "Sorry, you provided worng info", type: "error"});
 } else {
 var newPerson = new Person({
 name: personInfo.name,
 age: personInfo.age,
 nationality: personInfo.nationality
 });

 newPerson.save(function(err, Person){
 if(err)
 res.render('show_message', {message: "Database error", type: "error"});
 else
 res.render('show_message', {
 message: "New person added", type: "success", person: personInfo});
 });
 }
});

In the above code, if we receive any empty field or do not receive any field, we will send
an error response. But if we receive a well-formed document, then we create a
newPerson document from Person model and save it to our DB using the
newPerson.save() function. This is defined in Mongoose and accepts a callback as
argument. This callback has 2 arguments – error and response. These arguments will
render the show_message view.

To show the response from this route, we will also need to create a show_message view.
Create a new view with the following code −

html

 head

 title Person

 body

 if(type == "error")

 h3(style = "color:red") #{message}

 else

 h3 New person,

 name: #{person.name},

 age: #{person.age} and

 nationality: #{person.nationality} added!

We will receive the following response on successfully submitting the
form(show_message.pug) −

We now have an interface to create persons.

Mongoose provides a lot of functions for retrieving documents, we will focus on 3 of those.
All these functions also take a callback as the last parameter, and just like the save
function, their arguments are error and response. The three functions are as follows −

This function finds all the documents matching the fields in conditions object. Same
operators used in Mongo also work in mongoose. For example,

Person.find(function(err, response){
 console.log(response);
});

Retrieving DocumentsRetrieving DocumentsRetrieving Documents

Model.find(conditions, callback)Model.find(conditions, callback)Model.find(conditions, callback)

This will fetch all the documents from the person's collection.

Person.find({name: "Ayush", age: 20},
 function(err, response){
 console.log(response);
});

This will fetch all documents where field name is "Ayush" and age is 20.

We can also provide projection we need, i.e., the fields we need. For example, if we want
only the names of people whose nationality is "Indian", we use −

Person.find({nationality: "Indian"}, "name", function(err, response){
 console.log(response);
});

This function always fetches a single, most relevant document. It has the same exact
arguments as Model.find().

This function takes in the _id(defined by mongo) as the first argument, an optional
projection string and a callback to handle the response. For example,

Person.findById("507f1f77bcf86cd799439011", function(err, response){
 console.log(response);
});

Let us now create a route to view all people records −

var express = require('express');
var app = express();

var mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/my_db');

var personSchema = mongoose.Schema({
 name: String,
 age: Number,
 nationality: String
});

var Person = mongoose.model("Person", personSchema);

app.get('/people', function(req, res){
 Person.find(function(err, response){
 res.json(response);
 });
});

app.listen(3000);

Model.findOne(conditions, callback)Model.findOne(conditions, callback)Model.findOne(conditions, callback)

Model.findById(id, callback)Model.findById(id, callback)Model.findById(id, callback)

Mongoose provides 3 functions to update documents. The functions are described below −

This function takes a conditions and updates an object as input and applies the changes to
all the documents matching the conditions in the collection. For example, following code
will update the nationality "American" in all Person documents −

Person.update({age: 25}, {nationality: "American"}, function(err, response){
 console.log(response);
});

It finds one document based on the query and updates that according to the second
argument. It also takes a callback as last argument. Let us perform the following example
to understand the function

Person.findOneAndUpdate({name: "Ayush"}, {age: 40}, function(err, response) {
 console.log(response);
});

This function updates a single document identified by its id. For example,

Person.findByIdAndUpdate("507f1f77bcf86cd799439011", {name: "James"},
 function(err, response){
 console.log(response);
});

Let us now create a route to update people. This will be a PUT route with the id as a
parameter and details in the payload.

var express = require('express');
var app = express();

var mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/my_db');

var personSchema = mongoose.Schema({
 name: String,
 age: Number,
 nationality: String
});

var Person = mongoose.model("Person", personSchema);

app.put('/people/:id', function(req, res){
 Person.findByIdAndUpdate(req.params.id, req.body, function(err, response){
 if(err) res.json({message: "Error in updating person with id " + req.params.id});

Updating DocumentsUpdating DocumentsUpdating Documents

Model.update(condition, updates, callback)Model.update(condition, updates, callback)Model.update(condition, updates, callback)

Model.findOneAndUpdate(condition, updates, callback)Model.findOneAndUpdate(condition, updates, callback)Model.findOneAndUpdate(condition, updates, callback)

Model.findByIdAndUpdate(id, updates, callback)Model.findByIdAndUpdate(id, updates, callback)Model.findByIdAndUpdate(id, updates, callback)

 res.json(response);
 });
});

app.listen(3000);

To test this route, enter the following in your terminal (replace the id with an id from your
created people) −

curl -X PUT --data "name = James&age = 20&nationality = American

"http://localhost:3000/people/507f1f77bcf86cd799439011

This will update the document associated with the id provided in the route with the above
details.

We have covered Create, Read and Update, now we will see how Mongoose can be used
to Delete documents. We have 3 functions here, exactly like update.

This function takes a condition object as input and removes all documents matching the
conditions. For example, if we need to remove all people aged 20, use the following syntax
−

Person.remove({age:20});

This functions removes a single, most relevant document according to conditions object.
Let us execute the following code to understand the same.

Person.findOneAndRemove({name: "Ayush"});

This function removes a single document identified by its id. For example,

Person.findByIdAndRemove("507f1f77bcf86cd799439011");

Let us now create a route to delete people from our database.

var express = require('express');
var app = express();

var mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/my_db');

var personSchema = mongoose.Schema({
 name: String,
 age: Number,
 nationality: String

Deleting DocumentsDeleting DocumentsDeleting Documents

Model.remove(condition, [callback])Model.remove(condition, [callback])Model.remove(condition, [callback])

Model.findOneAndRemove(condition, [callback])Model.findOneAndRemove(condition, [callback])Model.findOneAndRemove(condition, [callback])

Model.findByIdAndRemove(id, [callback])Model.findByIdAndRemove(id, [callback])Model.findByIdAndRemove(id, [callback])

});

var Person = mongoose.model("Person", personSchema);

app.delete('/people/:id', function(req, res){
 Person.findByIdAndRemove(req.params.id, function(err, response){
 if(err) res.json({message: "Error in deleting record id " + req.params.id});
 else res.json({message: "Person with id " + req.params.id + " removed."});
 });
});

app.listen(3000);

To check the output, use the following curl command −

curl -X DELETE http://localhost:3000/people/507f1f77bcf86cd799439011

This will remove the person with given id producing the following message −

{message: "Person with id 507f1f77bcf86cd799439011 removed."}

This wraps up how we can create simple CRUD applications using MongoDB, Mongoose and
Express. To explore Mongoose further, read the API docs.

ExpressJS - CookiesExpressJS - CookiesExpressJS - Cookies
Cookies are simple, small files/data that are sent to client with a server request and stored
on the client side. Every time the user loads the website back, this cookie is sent with the
request. This helps us keep track of the user’s actions.

The following are the numerous uses of the HTTP Cookies −

Session management

Personalization(Recommendation systems)

User tracking

To use cookies with Express, we need the cookie-parser middleware. To install it, use the
following code −

npm install --save cookie-parser

Now to use cookies with Express, we will require the cookie-parser. cookie-parser is a
middleware which parses cookies attached to the client request object. To use it, we will
require it in our index.js file; this can be used the same way as we use other middleware.
Here, we will use the following code.

var cookieParser = require('cookie-parser');
app.use(cookieParser());

cookie-parser parses Cookie header and populates req.cookies with an object keyed by
the cookie names. To set a new cookie, let us define a new route in your Express app like

http://mongoosejs.com/

−

var express = require('express');
var app = express();

app.get('/', function(req, res){
 res.cookie('name', 'express').send('cookie set'); //Sets name = express
});

app.listen(3000);

To check if your cookie is set or not, just go to your browser, fire up the console, and enter
−

console.log(document.cookie);

You will get the output like (you may have more cookies set maybe due to extensions in
your browser) −

"name = express"

The browser also sends back cookies every time it queries the server. To view cookies from
your server, on the server console in a route, add the following code to that route.

console.log('Cookies: ', req.cookies);

Next time you send a request to this route, you will receive the following output.

Cookies: { name: 'express' }

You can add cookies that expire. To add a cookie that expires, just pass an object with
property 'expire' set to the time when you want it to expire. For example,

//Expires after 360000 ms from the time it is set.
res.cookie(name, 'value', {expire: 360000 + Date.now()});

Another way to set expiration time is using 'maxAge' property. Using this property, we
can provide relative time instead of absolute time. Following is an example of this method.

//This cookie also expires after 360000 ms from the time it is set.
res.cookie(name, 'value', {maxAge: 360000});

To delete a cookie, use the clearCookie function. For example, if you need to clear a cookie
named foo, use the following code.

var express = require('express');
var app = express();

Adding Cookies with Expiration TimeAdding Cookies with Expiration TimeAdding Cookies with Expiration Time

Deleting Existing CookiesDeleting Existing CookiesDeleting Existing Cookies

app.get('/clear_cookie_foo', function(req, res){
 res.clearCookie('foo');
 res.send('cookie foo cleared');
});

app.listen(3000);

In the next chapter, we will see how to use cookies to manage sessions.

ExpressJS - SessionsExpressJS - SessionsExpressJS - Sessions
HTTP is stateless; in order to associate a request to any other request, you need a way to
store user data between HTTP requests. Cookies and URL parameters are both suitable
ways to transport data between the client and the server. But they are both readable and
on the client side. Sessions solve exactly this problem. You assign the client an ID and it
makes all further requests using that ID. Information associated with the client is stored
on the server linked to this ID.

We will need the Express-session, so install it using the following code.

npm install --save express-session

We will put the session and cookie-parser middleware in place. In this example, we will
use the default store for storing sessions, i.e., MemoryStore. Never use this in production
environments. The session middleware handles all things for us, i.e., creating the session,
setting the session cookie and creating the session object in req object.

Whenever we make a request from the same client again, we will have their session
information stored with us (given that the server was not restarted). We can add more
properties to the session object. In the following example, we will create a view counter for
a client.

var express = require('express');
var cookieParser = require('cookie-parser');
var session = require('express-session');

var app = express();

app.use(cookieParser());
app.use(session({secret: "Shh, its a secret!"}));

app.get('/', function(req, res){
 if(req.session.page_views){
 req.session.page_views++;
 res.send("You visited this page " + req.session.page_views + " times");
 } else {
 req.session.page_views = 1;
 res.send("Welcome to this page for the first time!");
 }
});
app.listen(3000);

What the above code does is, when a user visits the site, it creates a new session for the
user and assigns them a cookie. Next time the user comes, the cookie is checked and the
page_view session variable is updated accordingly.

Now if you run the app and go to localhost:3000, the following output will be displayed.

If you revisit the page, the page counter will increase. The page in the following
screenshot was refreshed 42 times.

ExpressJS - AuthenticationExpressJS - AuthenticationExpressJS - Authentication
Authentication is a process in which the credentials provided are compared to those on file
in a database of authorized users' information on a local operating system or within an

authentication server. If the credentials match, the process is completed and the user is
granted authorization for access.

For us to create an authentication system, we will need to create a sign up page and a
user-password store. The following code creates an account for us and stores it in memory.
This is just for the purpose of demo; it is recommended that a persistent storage
(database or files) is always used to store user information.

var express = require('express');
var app = express();
var bodyParser = require('body-parser');
var multer = require('multer');
var upload = multer();
var session = require('express-session');
var cookieParser = require('cookie-parser');

app.set('view engine', 'pug');
app.set('views','./views');

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));
app.use(upload.array());
app.use(cookieParser());
app.use(session({secret: "Your secret key"}));

var Users = [];

app.get('/signup', function(req, res){
 res.render('signup');
});

app.post('/signup', function(req, res){
 if(!req.body.id || !req.body.password){
 res.status("400");
 res.send("Invalid details!");
 } else {
 Users.filter(function(user){
 if(user.id === req.body.id){
 res.render('signup', {
 message: "User Already Exists! Login or choose another user id"});
 }
 });
 var newUser = {id: req.body.id, password: req.body.password};
 Users.push(newUser);
 req.session.user = newUser;
 res.redirect('/protected_page');
 }
});

app.listen(3000);

Now for the signup form, create a new view called signup.jade.

html
 head

SIGNUP.JADESIGNUP.JADESIGNUP.JADE

 title Signup
 body
 if(message)
 h4 #{message}
 form(action = "/signup" method = "POST")
 input(name = "id" type = "text" required placeholder = "User ID")
 input(name = "password" type = "password" required placeholder = "Password")
 button(type = "Submit") Sign me up!

Check if this page loads by visiting localhost:3000/signup.

We have set the required attribute for both fields, so HTML5 enabled browsers will not let
us submit this form until we provide both id and password. If someone tries to register
using a curl request without a User ID or Password, an error will be displayed. Create a
new file called protected_page.pug in views with the following content −

html
 head
 title Protected page
 body
 div Hey #{id}, How are you doing today?
 div Want to log out?
 div Logout

This page should only be visible if the user has just signed up or logged in. Let us now
define its route and also routes to log in and log out −

var express = require('express');
var app = express();
var bodyParser = require('body-parser');
var multer = require('multer');
var upload = multer();
var session = require('express-session');
var cookieParser = require('cookie-parser');

app.set('view engine', 'pug');
app.set('views','./views');

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));
app.use(upload.array());
app.use(cookieParser());
app.use(session({secret: "Your secret key"}));

var Users = [];

app.get('/signup', function(req, res){
 res.render('signup');
});

app.post('/signup', function(req, res){
 if(!req.body.id || !req.body.password){
 res.status("400");
 res.send("Invalid details!");
 } else {
 Users.filter(function(user){
 if(user.id === req.body.id){
 res.render('signup', {
 message: "User Already Exists! Login or choose another user id"});
 }
 });
 var newUser = {id: req.body.id, password: req.body.password};
 Users.push(newUser);
 req.session.user = newUser;
 res.redirect('/protected_page');
 }
});
function checkSignIn(req, res){
 if(req.session.user){
 next(); //If session exists, proceed to page
 } else {
 var err = new Error("Not logged in!");
 console.log(req.session.user);
 next(err); //Error, trying to access unauthorized page!
 }
}
app.get('/protected_page', checkSignIn, function(req, res){
 res.render('protected_page', {id: req.session.user.id})
});

app.get('/login', function(req, res){
 res.render('login');
});

app.post('/login', function(req, res){
 console.log(Users);
 if(!req.body.id || !req.body.password){
 res.render('login', {message: "Please enter both id and password"});
 } else {
 Users.filter(function(user){
 if(user.id === req.body.id && user.password === req.body.password){
 req.session.user = user;
 res.redirect('/protected_page');
 }
 });
 res.render('login', {message: "Invalid credentials!"});

 }
});

app.get('/logout', function(req, res){
 req.session.destroy(function(){
 console.log("user logged out.")
 });
 res.redirect('/login');
});

app.use('/protected_page', function(err, req, res, next){
console.log(err);
 //User should be authenticated! Redirect him to log in.
 res.redirect('/login');
});

app.listen(3000);

We have created a middleware function checkSignIn to check if the user is signed in. The
protected_page uses this function. To log the user out, we destroy the session.

Let us now create the login page. Name the view as login.pug and enter the contents −

html
 head
 title Signup
 body
 if(message)
 h4 #{message}
 form(action = "/login" method = "POST")
 input(name = "id" type = "text" required placeholder = "User ID")
 input(name = "password" type = "password" required placeholder = "Password")
 button(type = "Submit") Log in

Our simple authentication application is now complete; let us now test the application. Run
the app using nodemon index.js, and proceed to localhost:3000/signup.

Enter a Username and a password and click sign up. You will be redirected to the
protected_page if details are valid/unique −

Now log out of the app. This will redirect us to the login page −

This route is protected such that if an unauthenticated person tries to visit it, he will be
edirected to our login page. This was all about basic user authentication. It is always
recommended that we use a persistent session system and use hashes for password
transport. There are much better ways to authenticate users now, leveraging JSON tokens.

ExpressJS - RESTFul APIsExpressJS - RESTFul APIsExpressJS - RESTFul APIs
An API is always needed to create mobile applications, single page applications, use AJAX
calls and provide data to clients. An popular architectural style of how to structure and
name these APIs and the endpoints is called REST(Representational Transfer State).

HTTP 1.1 was designed keeping REST principles in mind. REST was introduced by Roy
Fielding in 2000 in his Paper Fielding Dissertations.

RESTful URIs and methods provide us with almost all information we need to process a
request. The table given below summarizes how the various verbs should be used and how
URIs should be named. We will be creating a movies API towards the end; let us now
discuss how it will be structured.

Method URI Details Function

GET /movies Safe,
cachable

Gets the list of all movies and their details

GET /movies/1234 Safe,
cachable

Gets the details of Movie id 1234

POST /movies N/A Creates a new movie with the details provided.
Response contains the URI for this newly created
resource.

PUT /movies/1234 Idempotent Modifies movie id 1234(creates one if it doesn't
already exist). Response contains the URI for this
newly created resource.

DELETE /movies/1234 Idempotent Movie id 1234 should be deleted, if it exists. Response
should contain the status of the request.

DELETE
or PUT

/movies Invalid Should be invalid. DELETE and PUT should specify
which resource they are working on.

Let us now create this API in Express. We will be using JSON as our transport data format
as it is easy to work with in JavaScript and has other benefits. Replace your index.js file
with the movies.js file as in the following program.

var express = require('express');
var bodyParser = require('body-parser');
var multer = require('multer');
var upload = multer();

var app = express();

app.use(cookieParser());
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));
app.use(upload.array());

//Require the Router we defined in movies.js
var movies = require('./movies.js');

index.jsindex.jsindex.js

//Use the Router on the sub route /movies
app.use('/movies', movies);

app.listen(3000);

Now that we have our application set up, let us concentrate on creating the API.

Start by setting up the movies.js file. We are not using a database to store the movies but
are storing them in memory; so every time the server restarts, the movies added by us
will vanish. This can easily be mimicked using a database or a file (using node fs module).

Once you import Express then, create a Router and export it using module.exports −

var express = require('express');
var router = express.Router();
var movies = [
 {id: 101, name: "Fight Club", year: 1999, rating: 8.1},
 {id: 102, name: "Inception", year: 2010, rating: 8.7},
 {id: 103, name: "The Dark Knight", year: 2008, rating: 9},
 {id: 104, name: "12 Angry Men", year: 1957, rating: 8.9}
];

//Routes will go here
module.exports = router;

Let us define the GET route for getting all the movies −

router.get('/', function(req, res){
 res.json(movies);
});

To test out if this is working fine, run your app, then open your terminal and enter −

curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X GET

localhost:3000/movies

The following response will be displayed −

[{"id":101,"name":"Fight Club","year":1999,"rating":8.1},

{"id":102,"name":"Inception","year":2010,"rating":8.7},

{"id":103,"name":"The Dark Knight","year":2008,"rating":9},

{"id":104,"name":"12 Angry Men","year":1957,"rating":8.9}]

We have a route to get all the movies. Let us now create a route to get a specific movie by
its id.

router.get('/:id([0-9]{3,})', function(req, res){
 var currMovie = movies.filter(function(movie){
 if(movie.id == req.params.id){
 return true;
 }

GET routesGET routesGET routes

 });
 if(currMovie.length == 1){
 res.json(currMovie[0])
 } else {
 res.status(404);//Set status to 404 as movie was not found
 res.json({message: "Not Found"});
 }
});

This will get us the movies according to the id that we provided. To check the output, use
the following command in your terminal −

curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X GET

localhost:3000/movies/101

You'll get the following response −

{"id":101,"name":"Fight Club","year":1999,"rating":8.1}

If you visit an invalid route, it will produce a cannot GET error while if you visit a valid
route with an id that doesn’t exist, it will produce a 404 error.

We are done with the GET routes, let us now move on to the POST route.

Use the following route to handle the POSTed data −

router.post('/', function(req, res){
 //Check if all fields are provided and are valid:
 if(!req.body.name ||
 !req.body.year.toString().match(/^[0-9]{4}$/g) ||
 !req.body.rating.toString().match(/^[0-9]\.[0-9]$/g)){

 res.status(400);
 res.json({message: "Bad Request"});
 } else {
 var newId = movies[movies.length-1].id+1;
 movies.push({
 id: newId,
 name: req.body.name,
 year: req.body.year,
 rating: req.body.rating
 });
 res.json({message: "New movie created.", location: "/movies/" + newId});
 }
});

This will create a new movie and store it in the movies variable. To check this route, enter
the following code in your terminal −

curl -X POST --data "name = Toy%20story&year = 1995&rating = 8.5" http://localhost:3000/movies

The following response will be displayed −

{"message":"New movie created.","location":"/movies/105"}

POST routePOST routePOST route

To test if this was added to the movies object, Run the get request for /movies/105
again. The following response will be displayed −

{"id":105,"name":"Toy story","year":"1995","rating":"8.5"}

Let us move on to create the PUT and DELETE routes.

The PUT route is almost the same as the POST route. We will be specifying the id for the
object that'll be updated/created. Create the route in the following way.

router.put('/:id', function(req, res){
 //Check if all fields are provided and are valid:
 if(!req.body.name ||
 !req.body.year.toString().match(/^[0-9]{4}$/g) ||
 !req.body.rating.toString().match(/^[0-9]\.[0-9]$/g) ||
 !req.params.id.toString().match(/^[0-9]{3,}$/g)){

 res.status(400);
 res.json({message: "Bad Request"});
 } else {
 //Gets us the index of movie with given id.
 var updateIndex = movies.map(function(movie){
 return movie.id;
 }).indexOf(parseInt(req.params.id));

 if(updateIndex === -1){
 //Movie not found, create new
 movies.push({
 id: req.params.id,
 name: req.body.name,
 year: req.body.year,
 rating: req.body.rating
 });
 res.json({message: "New movie created.", location: "/movies/" + req.params.id});
 } else {
 //Update existing movie
 movies[updateIndex] = {
 id: req.params.id,
 name: req.body.name,
 year: req.body.year,
 rating: req.body.rating
 };
 res.json({message: "Movie id " + req.params.id + " updated.",
 location: "/movies/" + req.params.id});
 }
 }
});

This route will perform the function specified in the above table. It will update the object
with new details if it exists. If it doesn't exist, it will create a new object. To check the
route, use the following curl command. This will update an existing movie. To create a new
Movie, just change the id to a non-existing id.

PUT routePUT routePUT route

curl -X PUT --data "name = Toy%20story&year = 1995&rating = 8.5"

http://localhost:3000/movies/101

Response

{"message":"Movie id 101 updated.","location":"/movies/101"}

Use the following code to create a delete route. −

router.delete('/:id', function(req, res){
 var removeIndex = movies.map(function(movie){
 return movie.id;
 }).indexOf(req.params.id); //Gets us the index of movie with given id.

 if(removeIndex === -1){
 res.json({message: "Not found"});
 } else {
 movies.splice(removeIndex, 1);
 res.send({message: "Movie id " + req.params.id + " removed."});
 }
});

Check the route in the same way as we checked the other routes. On successful
deletion(for example id 105), you will get the following output −

{message: "Movie id 105 removed."}

Finally, our movies.js file will look like the following.

var express = require('express');
var router = express.Router();
var movies = [
 {id: 101, name: "Fight Club", year: 1999, rating: 8.1},
 {id: 102, name: "Inception", year: 2010, rating: 8.7},
 {id: 103, name: "The Dark Knight", year: 2008, rating: 9},
 {id: 104, name: "12 Angry Men", year: 1957, rating: 8.9}
];
router.get('/:id([0-9]{3,})', function(req, res){
 var currMovie = movies.filter(function(movie){
 if(movie.id == req.params.id){
 return true;
 }
 });

 if(currMovie.length == 1){
 res.json(currMovie[0])
 } else {
 res.status(404); //Set status to 404 as movie was not found
 res.json({message: "Not Found"});
 }
});
router.post('/', function(req, res){
 //Check if all fields are provided and are valid:
 if(!req.body.name ||

DELETE routeDELETE routeDELETE route

 !req.body.year.toString().match(/^[0-9]{4}$/g) ||
 !req.body.rating.toString().match(/^[0-9]\.[0-9]$/g)){
 res.status(400);
 res.json({message: "Bad Request"});
 } else {
 var newId = movies[movies.length-1].id+1;
 movies.push({
 id: newId,
 name: req.body.name,
 year: req.body.year,
 rating: req.body.rating
 });
 res.json({message: "New movie created.", location: "/movies/" + newId});
 }
});

router.put('/:id', function(req, res) {
 //Check if all fields are provided and are valid:
 if(!req.body.name ||
 !req.body.year.toString().match(/^[0-9]{4}$/g) ||
 !req.body.rating.toString().match(/^[0-9]\.[0-9]$/g) ||
 !req.params.id.toString().match(/^[0-9]{3,}$/g)){
 res.status(400);
 res.json({message: "Bad Request"});
 } else {
 //Gets us the index of movie with given id.
 var updateIndex = movies.map(function(movie){
 return movie.id;
 }).indexOf(parseInt(req.params.id));

 if(updateIndex === -1){
 //Movie not found, create new
 movies.push({
 id: req.params.id,
 name: req.body.name,
 year: req.body.year,
 rating: req.body.rating
 });
 res.json({
 message: "New movie created.", location: "/movies/" + req.params.id});
 } else {
 //Update existing movie
 movies[updateIndex] = {
 id: req.params.id,
 name: req.body.name,
 year: req.body.year,
 rating: req.body.rating
 };
 res.json({message: "Movie id " + req.params.id + " updated.",
 location: "/movies/" + req.params.id});
 }
 }
});

router.delete('/:id', function(req, res){
 var removeIndex = movies.map(function(movie){
 return movie.id;
 }).indexOf(req.params.id); //Gets us the index of movie with given id.

 if(removeIndex === -1){
 res.json({message: "Not found"});

 } else {
 movies.splice(removeIndex, 1);
 res.send({message: "Movie id " + req.params.id + " removed."});
 }
});
module.exports = router;

This completes our REST API. Now you can create much more complex applications using
this simple architectural style and Express.

ExpressJS - ScaffoldingExpressJS - ScaffoldingExpressJS - Scaffolding
Scaffolding allows us to easily create a skeleton for a web application. We manually
create our public directory, add middleware, create separate route files, etc. A scaffolding
tool sets up all these things for us so that we can directly get started with building our
application.

The scaffolder we will use is called Yeoman. It is a scaffolding tool built for Node.js but
also has generators for several other frameworks (like flask, rails, django, etc.). To install
Yeoman, enter the following command in your terminal −

npm install -g yeoman

Yeoman uses generators to scaffold out applications. To check out the generators available
on npm to use with Yeoman, you can click on this link . In this tutorial, we will use the
'generator-Express-simple'. To install this generator, enter the following command in your
terminal −

npm install -g generator-express-simple

To use this generator, enter the following command −

yo express-simple test-app

You will be asked a few simple questions like what things you want to use with your app.
Select the following answers, or if you already know about these technologies then go
about choosing how you want them to be.

express-simple comes with bootstrap and jquery

[?] Select the express version you want: 4.x

[?] Do you want an mvc express app: Yes

[?] Select the css preprocessor you would like to use: sass

[?] Select view engine you would like to use: jade

[?] Select the build tool you want to use for this project: gulp

[?] Select the build tool you want to use for this project: gulp

[?] Select the language you want to use for the build tool: javascript

 create public/sass/styles.scss

 create public/js/main.js

 create views/layout.jade

http://yeoman.io/generators/

 create views/index.jade

 create views/404.jade

 create app.js

 create config.js

 create routes/index.js

 create package.json

 create bower.json

identical .bowerrc

identical .editorconfig

identical .gitignore

identical .jshintrc

 create gulpfile.js

I'm all done. Running bower install & npm install for you to install the

required dependencies. If this fails, try running the command yourself.

It will then create a new application for you, install all the dependencies, add few pages to
your application(home page, 404 not found page, etc.) and give you a directory structure
to work on.

This generator creates a very simple structure for us. Explore the many generators
available for Express and choose the one that fits you right. Steps to working with all
generators is the same. You will need to install a generator, run it using Yeoman; it will ask
you some questions and then create a skeleton for your application based on your
answers.

ExpressJS - Error HandlingExpressJS - Error HandlingExpressJS - Error Handling
Error handling in Express is done using middleware. But this middleware has special
properties. The error handling middleware are defined in the same way as other
middleware functions, except that error-handling functions MUST have four arguments
instead of three – err, req, res, next. For example, to send a response on any error, we
can use −

app.use(function(err, req, res, next) {
 console.error(err.stack);
 res.status(500).send('Something broke!');
});

Till now we were handling errors in the routes itself. The error handling middleware allows
us to separate our error logic and send responses accordingly. The next() method we
discussed in middleware takes us to next middleware/route handler.

For error handling, we have the next(err) function. A call to this function skips all
middleware and matches us to the next error handler for that route. Let us understand this
through an example.

var express = require('express');
var app = express();

app.get('/', function(req, res){
 //Create an error and pass it to the next function
 var err = new Error("Something went wrong");
 next(err);
});

/*
 * other route handlers and middleware here
 *
 */

//An error handling middleware
app.use(function(err, req, res, next) {
 res.status(500);
 res.send("Oops, something went wrong.")
});

app.listen(3000);

This error handling middleware can be strategically placed after routes or contain
conditions to detect error types and respond to the clients accordingly. The above program
will display the following output.

ExpressJS - DebuggingExpressJS - DebuggingExpressJS - Debugging
Express uses the Debug module to internally log information about route matching,
middleware functions, application mode, etc.

To see all internal logs used in Express, set the DEBUG environment variable to Express:*
when starting the app −

DEBUG = express:* node index.js

https://www.npmjs.com/package/debug

The following output will be displayed.

These logs are very helpful when a component of your app is not functioning right. This
verbose output might be a little overwhelming. You can also restrict the DEBUG variable to
specific area to be logged. For example, if you wish to restrict the logger to application and
router, you can use the following code.

DEBUG = express:application,express:router node index.js

Debug is turned off by default and is automatically turned on in production environment.
Debug can also be extended to meet your needs, you can read more about it at its npm
page.

ExpressJS - Best PracticesExpressJS - Best PracticesExpressJS - Best Practices
Unlike Django and Rails which have a defined way of doing things, file structure, etc.,
Express does not follow a defined way. This means you can structure the application the
way you like. But as your application grows in size, it is very difficult to maintain it if it
doesn't have a well-defined structure. In this chapter, we will look at the generally used
directory structures and separation of concerns to build our applications.

First, we will discuss the best practices for creating node and Express applications.

Always begin a node project using npm init.

https://www.npmjs.com/package/debug

Always install dependencies with a --save or --save-dev. This will ensure that if
you move to a different platform, you can just run npm install to install all
dependencies.

Stick with lowercase file names and camelCase variables. If you look at any npm
module, its named in lowercase and separated with dashes. Whenever you require
these modules, use camelCase.

Don’t push node_modules to your repositories. Instead npm installs everything on
development machines.

Use a config file to store variables

Group and isolate routes to their own file. For example, take the CRUD operations
in the movies example we saw in the REST API page.

Let us now discuss the Express’ Directory Structure.

Express does not have a community defined structure for creating applications. The
following is a majorly used project structure for a website.

test-project/
 node_modules/
 config/
 db.js //Database connection and configuration
 credentials.js //Passwords/API keys for external services used by your app
 config.js //Other environment variables
 models/ //For mongoose schemas
 users.js
 things.js
 routes/ //All routes for different entities in different files
 users.js
 things.js
 views/
 index.pug
 404.pug
 ...
 public/ //All static content being served
 images/
 css/
 javascript/
 app.js
 routes.js //Require all routes in this and then require this file in
 app.js
 package.json

There are other approaches to build websites with Express as well. You can build a website
using the MVC design pattern. For more information, you can visit the following links.

Directory StructureDirectory StructureDirectory Structure

WebsitesWebsitesWebsites

https://code.tutsplus.com/tutorials/build-a-complete-mvc-website-with-expressjs--net-
34168

and,

https://www.terlici.com/2014/08/25/best-practices-express-structure.html .

APIs are simpler to design; they don't need a public or a views directory. Use the following
structure to build APIs −

test-project/
 node_modules/
 config/
 db.js //Database connection and configuration
 credentials.js //Passwords/API keys for external services used by your app
 models/ //For mongoose schemas
 users.js
 things.js
 routes/ //All routes for different entities in different files
 users.js
 things.js
 app.js
 routes.js //Require all routes in this and then require this file in
 app.js
 package.json

You can also use a yeoman generator to get a similar structure.

ExpressJS - ResourcesExpressJS - ResourcesExpressJS - Resources
This chapter lists down the various resources we used for this tutorial.

The most important link is of course the Express API docs −
https://expressjs.com/en/4x/api.html

The guides provided on the Express website on different aspects are also quite
helpful −

Routing

Middleware

Error Handling

Debugging

A list of useful books and blogs on Express is available at
https://expressjs.com/en/resources/books-blogs.html

A list of mostly used middleware with Express is available at
https://expressjs.com/en/resources/middleware.html

These blogs with Express tips and tricks may prove helpful −

RESTful APIsRESTful APIsRESTful APIs

https://code.tutsplus.com/tutorials/build-a-complete-mvc-website-with-expressjs--net-34168
https://www.terlici.com/2014/08/25/best-practices-express-structure.html
https://github.com/trwalker/generator-express-rest-api
https://expressjs.com/en/4x/api.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/writing-middleware.html
https://expressjs.com/en/guide/error-handling.html
https://expressjs.com/en/guide/debugging.html
https://expressjs.com/en/resources/books-blogs.html
https://expressjs.com/en/resources/middleware.html

 Previous Page Next Page

https://derickbailey.com/categories/tips-and-tricks/

https://scotch.io/tutorials/learn-to-use-the-new-router-in+-expressjs-4

Application structure − https://www.terlici.com/2014/08/25/best-practices-
express-structure.html

RESTful APIs −

https://www.thepolyglotdeveloper.com/2015/10/create-a-simple-restful-
api-with-node-js/

https://scotch.io/tutorials/build-a-restful-api-using-node-and-express-4

https://devcenter.heroku.com/articles/mean-apps-restful-api

https://pixelhandler.com/posts/develop-a-restful-api-using-nodejs-with-
express-and-mongoose

http://cwbuecheler.com/web/tutorials/2014/restful-web-app-node-express-
mongodb/

For advanced authentication, use PassportJS − http://passportjs.org

Advertisements

https://www.tutorialspoint.com/expressjs/expressjs_resources.htm
https://www.tutorialspoint.com/expressjs/expressjs_useful_resources.htm
https://derickbailey.com/categories/tips-and-tricks/
https://scotch.io/tutorials/learn-to-use-the-new-router-in-expressjs-4
https://www.terlici.com/2014/08/25/best-practices-express-structure.html
https://www.thepolyglotdeveloper.com/2015/10/create-a-simple-restful-api-with-node-js/
https://scotch.io/tutorials/build-a-restful-api-using-node-and-express-4
https://devcenter.heroku.com/articles/mean-apps-restful-api
https://pixelhandler.com/posts/develop-a-restful-api-using-nodejs-with-express-and-mongoose
http://cwbuecheler.com/web/tutorials/2014/restful-web-app-node-express-mongodb/
http://passportjs.org/

FAQ's Cookies Policy Contact
© Copyright 2018. All Rights Reserved.

Enter email for newsletter go

https://www.tutorialspoint.com/index.htm
https://www.tutorialspoint.com/about/faq.htm
https://www.tutorialspoint.com/about/about_privacy.htm#cookies
https://www.tutorialspoint.com/about/contact_us.htm

