

FC4SC User’s Guide

Functional Coverage for SystemC - User’s Guide

History 2

About FC4SC 2

Installation and Integration 2

Coverage Definitions 3
Covergroups 3
Coverpoints 5
Crosses 5
Bins 6
Tying everything together 7

Compilation flags 9
Disabling coverage 9
Continue on illegal hit 9

Coverage on custom classes 9

FC4SC API 9

UCISDB/XML Support 10

Reporting and Visualizing Coverage 10

Running unit tests 12

Running examples 13

Roadmap 14

References 15

AMIQ Consulting Apache License 2.0 1/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

Revision History

Version Date Comments

1.0 20.02.2018 First release.

1.1 04.09.2018 Minor text/code corrections and typo fixes

1.2 03.10.2018 Updates to the covergroup/coverpoint section related to the
new syntax for creating coverpoints

About FC4SC
FC4SC stands for Functional Coverage for SystemC. This library provides a functional coverage
collection mechanism similar to the one in SystemVerilog (see ​this table​ for similarities and
differences).

If you want to know more about the functional coverage you can read Section 19, of the
IEEE-1800 SystemVerilog standard​[1]​. The next excerpt should be revealing what functional
coverage is:

Functional coverage is a user-defined metric that measures how much of the design
specification has been exercised. It can be used to measure whether interesting scenarios,
corner cases, specification invariants, or other applicable design conditions have been
observed, validated, and tested.

Installation and Integration
First step is to download the source files from the ​dedicated GitHub repo​.

FC4SC is a C++11, header only, library. The self checking tests are using ​googletest​.

The API documentation can be generated using doxygen:

AMIQ Consulting Apache License 2.0 2/17

https://github.com/amiq-consulting/fc4sc/blob/master/doc/FC4SC_Feature_Comparison_SV_vs_FC4SC.pdf
http://www.github.com/amiq-consulting/fc4sc
https://github.com/google/googletest
https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

$> cd​ /path/to/fc4sc/doc
$> doxygen

Include the main header (i.e. ​fc.hpp​) in your sources to use FC4SC.

For example in my_file.cpp you should add next line:

// other headers...

#include "fc4sc.hpp"

// coverage definitions

and the following arguments when compiling (requires C++-11):

${CXX} my_file.cpp ${FLAGS} -I path_to_fc4sc/includes -std=c++11

Since the library relies heavily on templates you might see a small increase in compilation times
of your application.

Coverage Definitions

Covergroups
The covergroup class is the core element of a functional coverage model and represents a
construct that encapsulates a set of coverpoints and crosses.

To create a covergroup, you have to:

1) Define a class which extends fc4sc::covergroup.
2) Register your covergroup in the library in order for the collected coverage information to

appear in the coverage database. (*)
3) Declare the coverpoints and/or crosses as members of the covergroup.

Example:

#include "fc4sc.hpp"

class​ ​my_first_cvg​ : ​public​ covergroup {
 CG_CONS(my_first_cvg) {

// set options or type options for covergroup and nested coverpoints

AMIQ Consulting Apache License 2.0 3/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

 }

 ​// coverpoints and crosses instantiation
};

The “​CG_CONS” ​macro declares a constructor which delegates the ​covergroup​ constructor with
relevant contextual information in order to register this instance in the FC4SC library. Thus, the
following

CG_CONS(my_first_cvg)

gets expanded to:

using​ covergroup::sample(); ​// required in order to use “cvg_inst.sample()”
my_first_cvg(​string​ inst_name=​""​) : fc4sc::covergroup(​"my_first_cvg"​,
__FILE__, __LINE__, inst_name)

All this information is useful when generating the coverage report. You can skip the macro and
just call the parent constructor with the type given as argument and that would register the
instance :

my_first_cvg(​string​ inst_name=​""​) : fc4sc::covergroup(​"my_first_cvg"​)

Notice that the instance name is optional. That means that if you want to pass additional
parameters, you will need to either provide default values or declare another constructor that
calls this above one.

Example: default values:

CG_CONS(my_first_cvg, ​int​ weight=1, ​int​ some_param=42) {
 ​// handle arguments
}

Or just another constructor:

CG_CONS(my_first_cvg) {};

my_first_cvg(​string​ inst_name, ​int​ param) : my_first_cvg(inst_name) {
 ​// handle param
}

Lastly, the covergroup also provides a default ​sample()​ function which automatically samples all
the coverpoint elements nested inside it.

AMIQ Consulting Apache License 2.0 4/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

Coverpoints
A coverpoint defines the following:

1. an expression to be sampled
2. a collection of bins containing values to be sampled
3. optionally, a boolean expression which conditions sampling

NOTE​: The ​Old coverpoint syntax​ is now deprecated and will be removed in the future because
of the following reasons:

1) It forced the user to manually bind a sample variable to the coverpoint (using
SAMPLE_POINT(...))​,​ ​which is error prone

2) A segmentation fault would be generated if ​SAMPLE_POINT(...); ​was declared after its
associated coverpoint is instantanted

3) It forced sampling of the coverpoint to be made on a variable, not supporting
complex/compound expressions

The new way to declare a coverpoint makes use of the ​COVERPOINT​ macro and is cleaner and
similar to the coverpoint definition in the ​SystemVerilog standard​. To create a coverpoint you
need to specify:

1. The data type of the expression to be sampled
2. The name of the coverpoint
3. The expression to be sampled
4. A list (can be empty) of bins templated by the same type as the type of the sample

expression.

The first 3 requirements are passed as arguments to the ​COVERPOINT​ macro and the list of bins
is contained in curly brackets, directly following the ​COVERPOINT​ macro.

Example:
COVERPOINT(​int,​ data_ready_cvp, sample_expression) {
 illegal_bin<​int​>(​"illegal_zero"​, 0),
 bin<​int​>(​"positive"​, interval(1,INT_MAX)),
 bin<​int​>(​"negative"​, interval(-1,INT_MIN))
};

This will create a coverpoint of type ​int​ with the name ​“data_ready_cvp”​ which will collect data
returned by evaluating the ​sample_expression​ each time the parent covergroup is sampled.

Additionally, a sample condition can be also provided. When a sample condition exists, the
coverpoint will only be sampled if the condition evaluates to ​true​.

AMIQ Consulting Apache License 2.0 5/17

https://standards.ieee.org/standard/1800-2017.html
https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

Example:
COVERPOINT(​int,​ data_ready_cvp, sample_expression, sample_expression != 0) {
 bin<​int​>(​"positive"​, interval(1,INT_MAX)),
 bin<​int​>(​"negative"​, interval(-1,INT_MIN))
};

This coverpoint definition is the same as the previous one, without the illegal bin and with the
additional constraint that sampling (for this coverpoint) will only take place when
sample_expression ​evaluates to non zero.

Crosses
A cross is the cartesian product of its member coverpoints’ bins. This means that sampling is
done on multiple values (1 for each coverpoint), and that a hit happens when each sampled
value is present in its coverpoint (i.e. for the first value, the first given coverpoint has a bin
containing that value etc.).

template​ <​typename​ ...T>
class​ ​cross​: ​public​ cvp_base

Crosses have similar behavior to coverpoints, main difference being that that they are defined
based on coverpoint instances rather than bins.

To create a cross you need to specify:

1. A pointer to the covergroup it belongs to
2. A name (optional)
3. 0 or more coverpoints, templated by the same types (see example)

Example:

// Inside a covergroup declaration

auto​ some_cross = cross<​int​, ​double​> (
 ​this​,
 &my_int_cvp, // decltype(my_int_cvp) == coverpoint<int>

 &my_double_cvp, // decltype(my_double_cvp) == coverpoint<double>

);

Bins
A bin is characterized by a name and contains and a set of interesting values and intervals
defined by the user. Each bin keeps a “hit counter” and is considered to be “hit” when sampled

AMIQ Consulting Apache License 2.0 6/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

with a value that is either directly contained inside the bin, or inside any interval contained by
the bin.

A bin is templated by the type of values/intervals it holds:

template​ <​typename​ T>
class​ ​bin​ : ​public​ bin_base

To create a bin you need to specify:

● The name of the bin
● A list of values or intervals of types (for a ​bin<T>​ instance):

○ T​ for a single value
○ interval<T>(T a, T b)​ for an interval of values

Example:

// Create a bin named "power_of_2" with value 1 V [2,3] V [4,7] V [8,15]

// (where V is reunion)

auto​ my_bin = bin<​int​>(
 ​"power_of_2"​,
 1,

 interval(2,3),

 interval(7,4), ​// order doesn’t matter
 interval(15,8)

);

You can also create ​illegal_bins​. When these get sampled, an exception is thrown and the
simulation will end. You can pass a flag (i.e. do a define) to the compiler to disable this
behaviour (the exception will be caught and an error message will be printed). Other than that,
illegal bins are used in the same way as regular bins, and they don’t contribute to coverage.

Example:

auto​ my_illegal_bin = illegal_bin<​int​>(​"illegal_zero"​, 0);

Another type of bin is ​ignore_bin​. ​This doesn’t change overall coverage (i.e. hits on ignored
bins don’t increase coverage percentage) and it doesn’t show up in the report. It can be used
with crosses to ignore certain configurations.

AMIQ Consulting Apache License 2.0 7/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

 ​auto​ bin = ignore_bin<​int​>(​"uninteresting"​, 0);

At sample time FC4SC tries to identify a value as belonging to ignore_bins, then to
illegal_bins and last to ”normal” category.

Tying everything together
All that’s left now is to put everything together. Below is a complete example of a covergroup
containing 2 coverpoints and a cross between them.

class​ ​my_first_cvg​ : ​public​ covergroup {
public​:
 ​int​ value = 0;
 ​int​ flags = 0;
 CG_CONS(my_first_cvg) {}

 COVERPOINT(​int​, values_cvp, value) {
 bin<​int​>(​"low1"​, interval(1,6), 7), ​// intervals are inclusive
 bin<​int​>(​"med1"​, interval(10,16), 17),
 bin<​int​>(​"med2"​, interval(20,26), 27),
 bin<​int​>(​"high"​, interval(30,36), 37)
 };

 COVERPOINT(​int​, flags_cvp, flags) {
 bin<​int​>(​"zero"​, 0),
 bin<​int​>(​"one"​, 1),
 bin<​int​>(​"ten"​, 10),
 illegal_bin<​int​>(​"some_illegal_config"​, 3),
 ignore_bin<​int​>(​"uninteresting"​, 8)
 };

 ​// Cross (cartesian product) of the two coverpoints
 ​auto​ valid_data_cross = cross<​int​, ​int​> (​this​,
 &flags_cvp,

 &values_cvp

);
};

In the above example, ​values_cvp​ will sample the value of the ​value​ variable and
flags_cvp​, the ​flags​ variable. All that’s left to do is to trigger the sampling by calling
sample()​ whenever desired. Note that the sample expressions are always evaluated at the
call to the ​covergroup::sample()​, which means that you have to make sure the variables
are properly set before that.

AMIQ Consulting Apache License 2.0 8/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

Example:
my_first_cvg cvg_inst; ​// instantiate the covergroup
cvg_inst.value = 15; ​// assign values to the variables
cvg_inst.flags = 10;

cvg_inst.sample(); ​// sample the values

Compilation flags

Disabling coverage
Compile with ​-DFC4SC_DISABLE_SAMPLING ​to disable all sampling.

Continue on illegal hit
As mentioned above, by default, a simulation will stop on an illegal bin hit. To keep the

simulation running, compile with ​-DFC4SC_NO_THROW​ . You will still get an error message on
each hit.

Note: the report is not generated if the simulation stops early (i.e. on a hit of an illegal sample)

FC4SC API
Each coverage item offers the same functions that SystemVerilog provides with few exceptions
(see also ​this table​ for similarities).

Function Exception Description

void sample() -

double get_inst_coverage() -

double get_inst_coverage(int&, int&) -

AMIQ Consulting Apache License 2.0 9/17

https://docs.google.com/spreadsheets/d/151M0LqUS7cr7s8faoHbxLKH5QsG8ZZ812nMfZQObtOI/edit?usp=sharing
https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

void set_inst_name(const string&) -

void start() -

void stop() -

static double get_coverage(const
string& type)

Since you can’t inherit static methods, custom
covergroups won’t have the get_coverage(...)
methods specific to their types (i.e. all covergroups
will have the same method). To bypass this, you can
call the functions from a global object

fc4sc::global_access::get_coverage(const string&
type)

static double get_coverage(const
string& type, int&, int&)

fc4sc::global_access::get_coverage(const string&
type, int&, int&)

UCISDB/XML Support
The generated report is written in XML format, respecting the UCIS Schema​[2]​ (see UCIS
Standard, Chapter 9.8).

To generate such a file, call:

fc4sc::global::coverage_save (​std​::ofstream& stream)
fc4sc::global::coverage_save (​const​ ​std​::​string​& file_name)

Reporting and Visualizing Coverage
The collected functional coverage is saved to an UCISDB/XML file which can be loaded by an
HTML/JavaScript application to present the collected data into a human-, analysis-friendly way.

Open fc4sc/report/index.html and load the file:

AMIQ Consulting Apache License 2.0 10/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

Explanations:

1. Covergroup type (i.e. name of your class)
2. Instances of that type
3. Coverpoints of that covergroup
4. Bins of that coverpoint and their hitcount
5. Coverage percent of the coverpoint
6. Coverage percent of the covergroup instance

You can navigate or filter the coverage results using the menus:

AMIQ Consulting Apache License 2.0 11/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

Running unit tests
The library is tested using the googletest distribution. In order to be able to run the unit tests, the
following steps are required (we recommend version 1.8.0, as it was confirmed to work with
FC4SC):

1. Download & extract the googletest framework. The FC4SC provides a script for
automating this process

cd​ fc4sc/test
./fetch-googletest.sh

2. Build the googletest library. After downloading, from the ​fc4sc/test ​directory, run:

cd​ googletest
mkdir​ build && cd build
cmake​ -DBUILD_GTEST=ON BUILD_GTEST -DBUILD_SHARED_LIBS=ON ..
make

3. Now that the googletest framework has been built, FC4SC unit tests can be compiled
and run:

cd​ test/fc4sc # cd to the FC4SC unit test directory

AMIQ Consulting Apache License 2.0 12/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

make # compiles the unit tests

make run # runs the unit tests

Running examples
FC4SC also comes with a SystemC example design that was modified to collect functional
coverage.

To run:

1. Go to examples dir:

$> ​cd​ examples/fir

2. Build and run :

$> make

$> make run

Note: You must have a ​SYSTEMC_HOME​ variable set to where you installed SystemC
Note: Results will be written in ​coverage_results.xml

AMIQ Consulting Apache License 2.0 13/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

Roadmap
Here is a list of enhancements that are planned for future releases.

● Merge of different coverage databases
● Better filtering in crosses (binsof , intersect)
● Finish bin array implementation (needs more testing)
● Move to other output format. The current implementation uses the UCIS format in order

to be compatible with 3rd party vendors of functional coverage tools. In case you don’t
need this format other data formats (e.g. json) are more desirable.

● Possibility to use and customise default bins
● Automated translation of SystemVerilog coverage definitions. This is a nice to have for

SystemC models that are used for verification purposes and which can follow the same
functional coverage model.

AMIQ Consulting Apache License 2.0 14/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

References

[1] IEEE 1800 - 2012 SystemVerilog Standard
[2] ​Chapter 9.6, UCIS Standard
[3] ​How to Export Functional Coverage from SystemC to SystemVerilog

AMIQ Consulting Apache License 2.0 15/17

http://accellera.org/images/downloads/standards/ucis/UCIS_Version_1.0_Final_June-2012.pdf
https://www.amiq.com/consulting/2017/08/18/how-to-export-functional-coverage-from-systemc-to-systemverilog/
https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

Appendix

1. Old coverpoint syntax

template​ <​typename​ T>
class​ ​coverpoint​: ​public​ cvp_base

As shown above, coverpoints are templated with the type of the data to be sampled.

To create a coverpoint you need to specify:
A pointer to the covergroup it belongs to
A name (optional)
0 or more bins, templated by the same type (i.e. coverpoint<int> will only accept bin<int>
instances

Example:

// Inside a covergroup declaration

coverpoint<​int​> data_ready_cvp = coverpoint<​int​> (
 ​this​,
 illegal_bin<​int​>(​"illegal_zero"​, 0),
 bin<​int​>(​"positive"​, interval(1,INT_MAX)),
 bin<​int​>(​"negative"​, interval(-1,INT_MIN))
);

If you don’t specify a name, the coverpoint will take the instance name (e.g. above, it will be
named “data_ready_cvp”).

Using coverpoint in a covergroup
The covergroup is responsible with dispatching sampling values to the coverpoints/crosses.
Two things need to be done for this to happen:

1. Get data inside the covergroup
2. Dispatch it to coverpoints/crosses

For the first task, we declare fields inside the covergroup to hold those values:

int​ ​SAMPLE_POINT​(value,values_cvp);
int​ ​SAMPLE_POINT​(flags, flags_cvp);

AMIQ Consulting Apache License 2.0 16/17

https://www.apache.org/licenses/LICENSE-2.0

Functional Coverage for SystemC - User’s Guide

The ​SAMPLE_POINT​ macro does two things:

1. Declares a member of given type (first arg) and tells the coverpoint to look there when
sampled (second arg)

2. Tokenizes arguments such that the coverpoints name and sample variable show up in
the report

Now we just assign them when sampling:

void​ ​sample​(​int​ data, ​int​ flags) {
 this->value = data;

 this->flags = flags;

}

All that’s left to do is to trigger the sampling by calling ​sample()​ at the end of our function and
the library will take care of calling sample for each item:

covergroup::sample()

Complete function:

void​ ​sample​(​int​ data, ​int​ flags) {
 this->value = data;

 this->flags = flags;

 covergroup::sample();

}

AMIQ Consulting Apache License 2.0 17/17

https://www.apache.org/licenses/LICENSE-2.0

