

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FJBE2150D ESBC[™] Rated NPN Silicon Transistor

ESBC Features (FDC655 MOSFET)

V _{CS(ON)}	Ι _C	Equiv. R _{CS(ON)}
0.131 V	0.5 A	0.261 Ω ⁽¹⁾

- · Low Equivalent On Resistance
- · Very Fast Switch: 150 kHz
- Squared RBSOA: Up to 1500 V
- Avalanche Rated
- Low Driving Capacitance, No Miller Capacitance (Typ. 12 pF Capacitance at 200 V)
- Low Switching Losses
- · Reliable HV Switch: No False Triggering due to High dv/dt Transients

Applications

- High-Voltage and High-Speed Power Switches
- Emitter-Switched Bipolar/MOSFET Cascode (ESBC[™])
- Smart Meters, Smart Breakers, **HV Industrial Power Supplies**
- Motor Drivers and Ignition Drivers

Description

The FJBE2150D is a low-cost, high-performance power switch designed to be used in an ESBC[™] configuration in applications such as: power supplies, motor drivers, smart grid, or ignition switches. The power switch is designed to operate up to 1500 volts and up to 3 amps, while providing exceptionally low on-resistance and very low switching losses.

The ESBC[™] switch is designed to be driven using off-theshelf power supply controllers or drivers. The ESBC^T MOSFET is a low-voltage, low-cost, surface-mount device that combines low-input capacitance and fast switching. The ESBC[™] configuration further minimizes the required driving power because it does not have Miller capacitance.

The FJBE2150D provides exceptional reliability and a large operating range due to its square Reverse-Bias-Safe-Operating-Area (RBSOA) and rugged design. The device is avalanche rated and has no parasitic transistors, so is not prone to static dv/dt failures.

The power switch is manufactured using a dedicated high-voltage bipolar process and is packaged in high-voltage HV-D2PAK rated at 2500 V creepage and clearance.

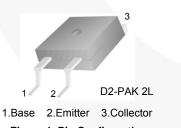
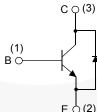



Figure 1. Pin Configuration

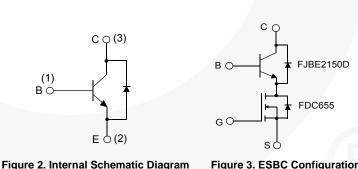


Figure 3. ESBC Configuration⁽²⁾

Ordering Information

Part Number	Marking	Package	Packing Method	
FJBE2150DTU	J2150D	D2-PAK 2L (TO-263 2L)	Tube	

Notes:

- 1. Figure of Merit.
- 2. Other Fairchild MOSFETs can be used in this ESBC application.

January 2016

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	1500	V
V _{CEO}	Collector-Emitter Voltage	800	V
V _{EBO}	Emitter-Base Voltage	12	V
۱ _C	Collector Current	2	Α
I _{CP}	Collector Current (Pulse)	3	Α
Ι _Β	Base Current	1	Α
I _{BP}	Base Current (Pulse)	2	Α
PD	Power Dissipation $(T_C = 25^{\circ}C)$	110	W
Τ _J	Operating and Junction Temperature Range	- 55 to +125	°C
T _{STG}	Storage Temperature Range	- 65 to +150	°C
EAS	Avalanche Energy (T _J = 25°C, 8 mH)	3.5	mJ

Thermal Characteristics⁽³⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Max.	Unit	
R _{θjc}	Thermal Resistance, Junction to Case	1.13	°C/W	
R _{θja}	Thermal Resistance, Junction to Ambient76.42°C/W			

Note:

3. Device mounted on FR-4 PCB, board size = 76.2 mm x 114.3 mm, land pattern 12.70 mm x 9.45 mm, trace size = 10 mil.

Electrical Characteristics⁽⁴⁾

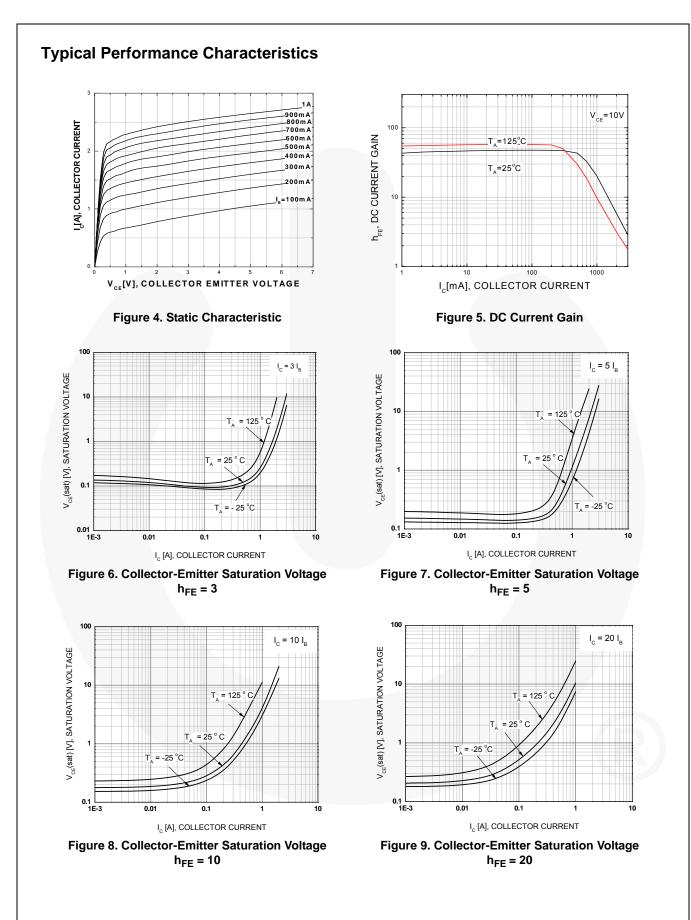
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = 0.5 mA, I _E = 0	1500	1689		V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 5 mA, I _B = 0	800	870		V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = 0.5 mA, I _C = 0	12.0	14.8		V
I _{CES}	Collector Cut-off Current	V _{CE} = 1500 V, V _{BE} = 0		0.01	100	μA
I _{CEO}	Collector Cut-off Current	V _{CE} = 800 V, I _B = 0		0.01	100	μA
I _{EBO}	Emitter Cut-off Current	V _{EB} = 12 V, I _C = 0		0.05	500	μA
h	DC Current Gain	V _{CE} = 3 V, I _C = 0.4 A	20	29	35	
h _{FE}	DC Current Gain	V _{CE} = 10 V, I _C = 5 mA	20	43		
		I _C = 0.25 A, I _B = 0.05 A		0.16		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 0.5 A, I _B = 0.167 A		0.12		V
		I _C = 1 A, I _B = 0.33 A		0.25		
V (act)	Page Emitter Saturation Voltage	I _C = 500 mA, I _B = 50 mA		0.74	1.20	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = 2 A, I _B = 0.4 A		0.85	1.20	v
CIB	Input Capacitance	V _{EB} = 10 V, I _C = 0, f = 1 MHz		745	1000	pF
C _{OB}	Output Capacitance	V _{CB} = 200 V, I _E = 0, f = 1 MHz		15		pF
f _T	Current Gain Bandwidth Product	I _C = 0.1 A, V _{CE} = 10 V		5		MHz
V _F	Diada Carvard Maltana	I _F = 0.4 A		0.76	1.20	v
	Diode Forward Voltage	I _F = 1 A		0.83	1.50	V

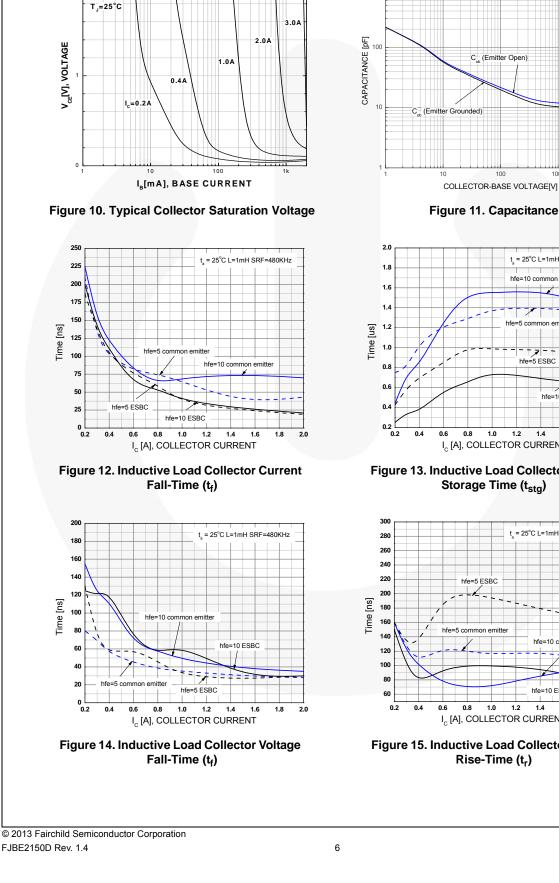
Note:

4. Pulse test: pulse width = 20 μ s, duty cycle≤ 10%.

FJBE2150D — ESBC[™] Rated NPN Silicon Transistor

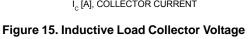

ESBC Configured Electrical Characteristics⁽⁵⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f _T	Current Gain Bandwidth Product	I _C = 0.1 A,V _{CE} = 10 V		25		MHz
lt _f	Inductive Current Fall Time	10 10 17 0		137		ns
t _s	Inductive Storage Time	$V_{GS} = 10 \text{ V}, \text{ R}_{G} = 47 \Omega,$ $V_{Clamp} = 500 \text{ V},$		350		ns
Vt _f	Inductive Voltage Fall Time	ne $t_p = 3.1 \mu s, I_C = 0.3 A,$		120		ns
Vt _r	Inductive Voltage Rise Time	I _B = 0.03 A, L _C = 1 mH, SRF = 480 kHz		100		ns
t _c	Inductive Crossover Time	SRF = 460 KHZ		137		ns
lt _f	Inductive Current Fall Time			35		ns
ts	Inductive Storage Time	V _{GS} = 10 V, R _G = 47 Ω, V _{Clamp} = 500 V,		980		ns
Vt _f	Inductive Voltage Fall Time	$t_p = 10 \ \mu s, \ I_C = 1 \ A,$		30		ns
Vt _r	Inductive Voltage Rise Time	$I_{B} = 0.2 \text{ A}, L_{C} = 1 \text{ mH},$		195		ns
t _c	Inductive Crossover Time	SRF = 480 kHz		210		ns
V _{CSW}	Maximum Collector Source Volt- age at Turn-off without Snubber	h _{FE} = 5, I _C = 2 A	1500			V
I _{GS(OS)}	Gate-Source Leakage Current	V _{GS} = ±20 V		1.0		nA
		V_{GS} = 10 V, I _C = 2 A, I _B = 0.67 A, h _{FE} = 3		2.210		v
		V_{GS} = 10 V, I _C = 1 A, I _B = 0.33 A, h _{FE} = 3		0.321		
V _{CS(ON)}	Collector-Source On Voltage	V_{GS} = 10 V, I _C = 0.5 A, I _B = 0.17 A, h _{FE} = 3		0.131		
		V_{GS} = 10 V, I _C = 0.3 A, I _B = 0.06 A, h _{FE} = 5		0.166		
V _{GS(th)}	Gate Threshold Voltage	V _{BS} = V _{GS} , I _B = 250 μA		1.9		V
C _{iss}	Input Capacitance $(V_{GS} = V_{CB} = 0)$	V _{CS} = 25 V, f = 1 MHz		470		pF
Q _{GS(tot)}	Gate-Source Charge V _{CB} = 0	V_{GS} = 10 V, I _C = 8 A, V _{CS} = 25 V		9		nC
r _{DS(ON)}		V _{GS} = 10 V, I _D = 6.3 A		21		
	Static Drain-Source On Resistance	V _{GS} = 4.5 V, I _D = 5.5 A		26		mΩ
	On Resistance	V _{GS} = 10 V, I _D = 6.3 A, T _J = 125°C		30		1

Note:

5. Used typical FDC655 MOSFET values in table. Values can vary if other Fairchild MOSFETs are used.



FJBE2150D — ESBC[™] Rated NPN Silicon Transistor

Typical Performance Characteristics (Continued)

1000

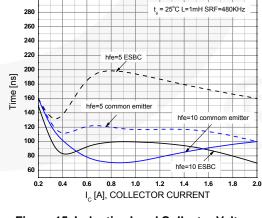
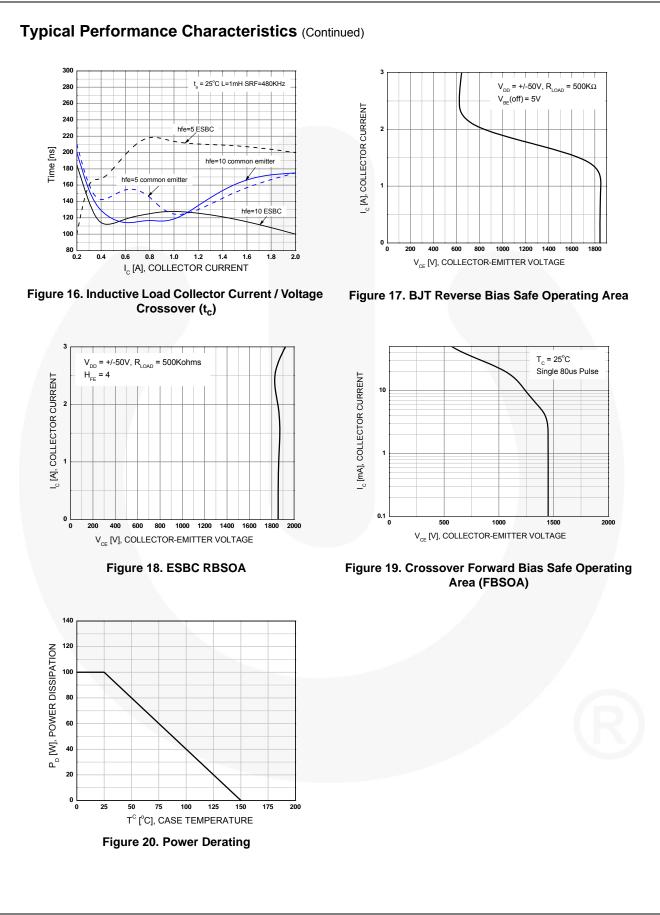
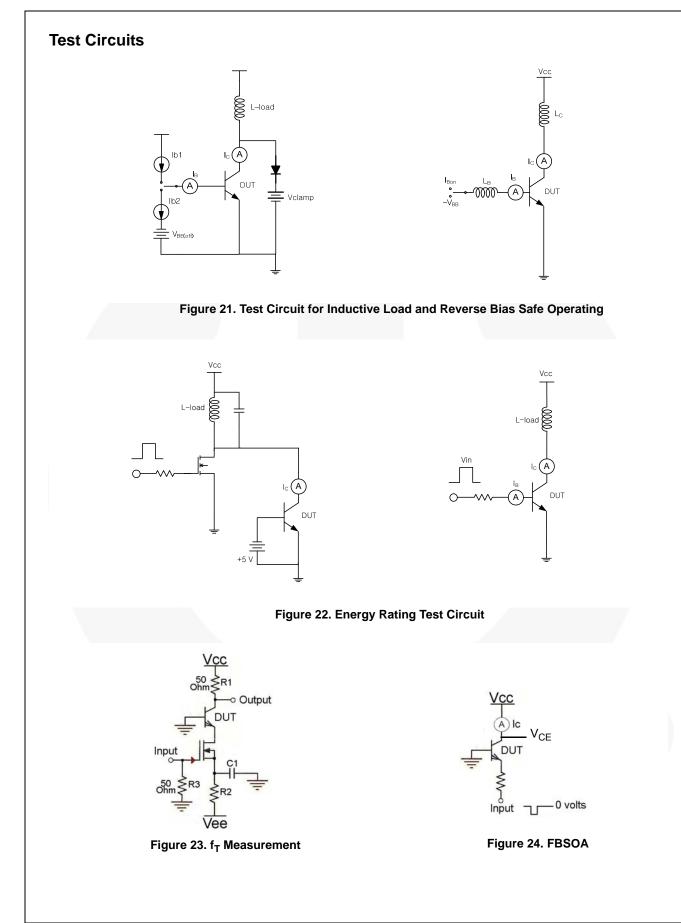

Rise-Time (t_r)

Figure 13. Inductive Load Collector Current Storage Time (tstg)


t = 25°C L=1mH SRF=480KHz hfe=10 common emitte fe=5 common emitt hfe=5 ESBC hfe=10 ESBC 1.2 1.4 1.6 1.8 2.0 I, [A], COLLECTOR CURRENT


1000

10000

FJBE2150D — ESBC[™] Rated NPN Silicon Transistor

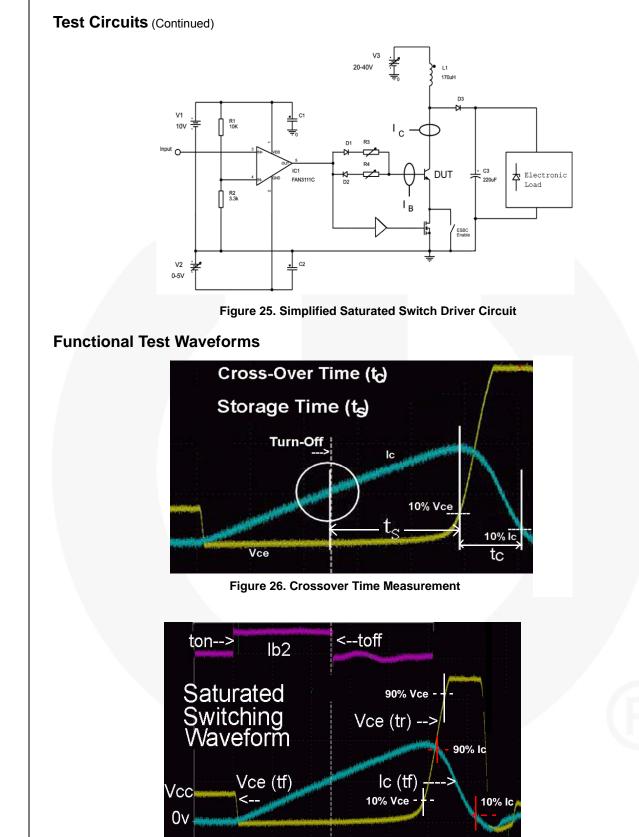
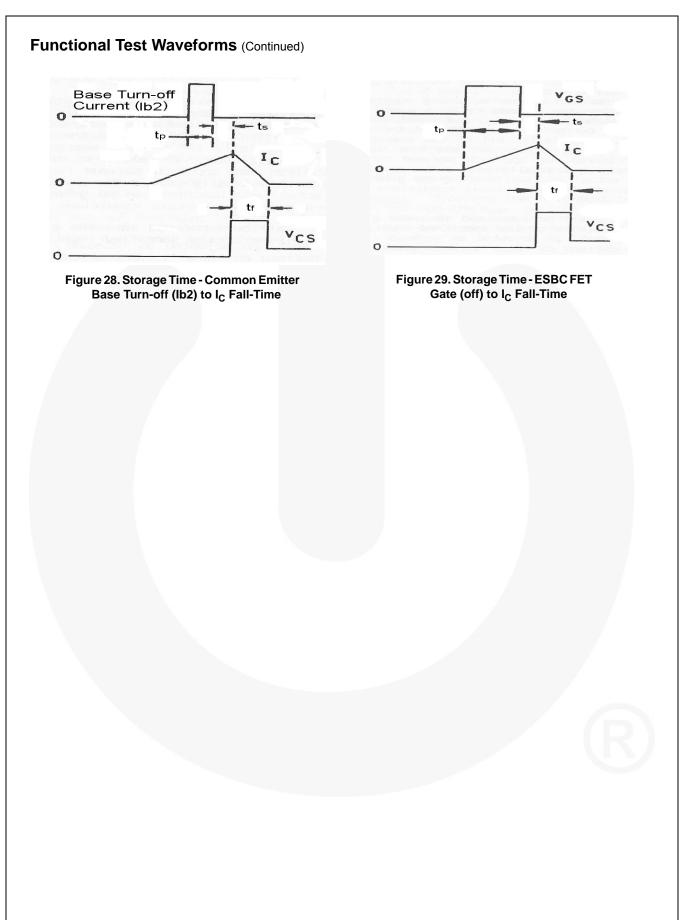
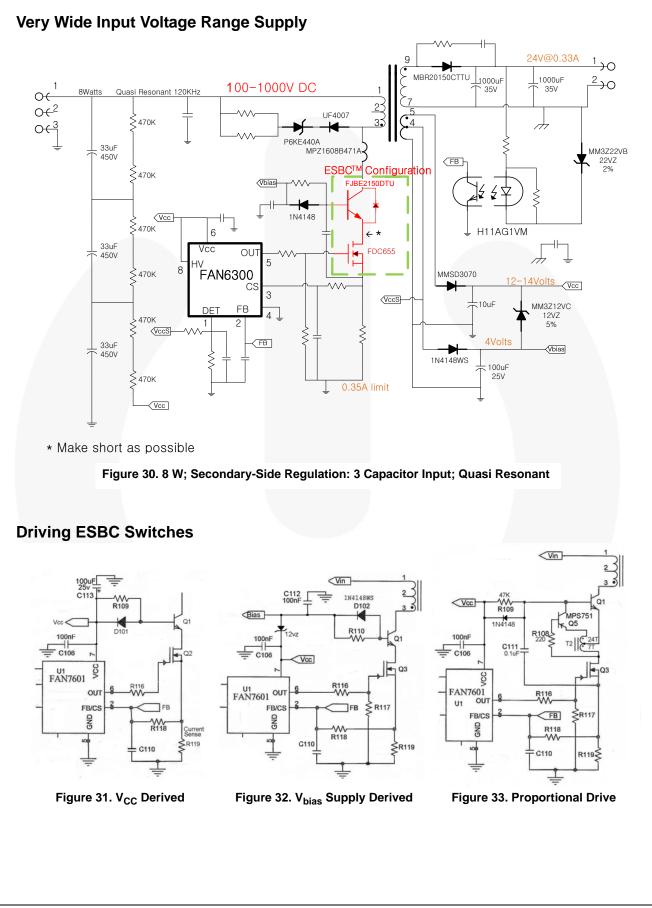
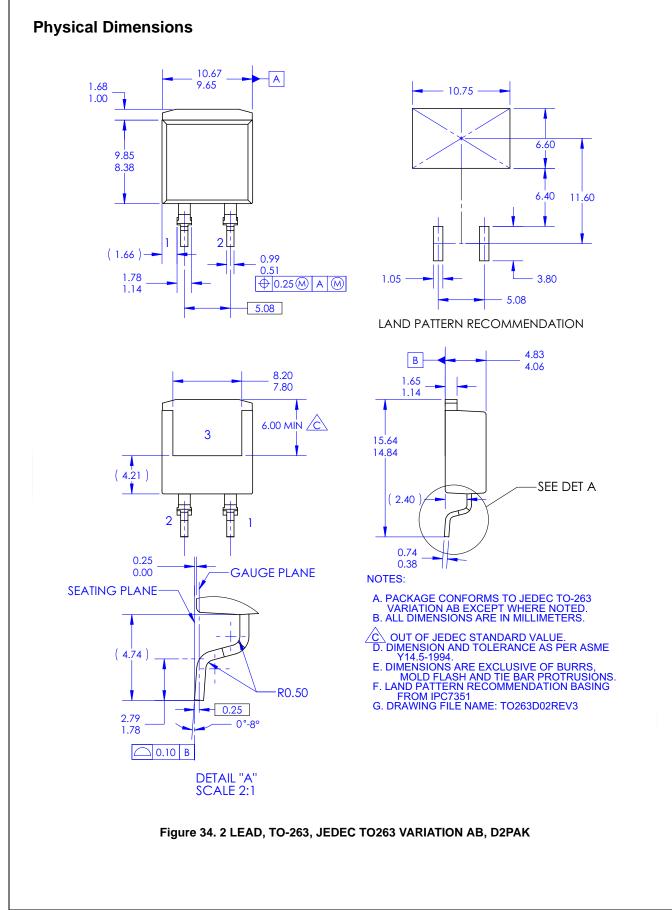





Figure 27. Saturated Switching Waveform

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

OPTOPLANAR[®]

PowerTrench®

Power Supply WebDesigner™

()_e

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX[™] ISOPLANAR™ Making Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ MotionGrid® MTi[®] MTx® MVN® mWSaver® OptoHiT™

PowerXS^{TI} Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™ Sync-Lock™

ESYSTEM GENERAL®* TinyBoost[®]

TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHtra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ 仙童[®]

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOLOGIC®

DISCLAIMER

FFTBench™

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized for swill stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC