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License

0.1 Acknowledgments in Publication

All publications resulting from the use of the FLASH Code must acknowledge the Flash Cen-
ter. Addition of the following text to the paper acknowledgments will be sufficient.

”The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center
at the University of Chicago.”

The users should visit the bibliography hosted at flash.uchicago.edu/site/publications/flash_pubs.shtml
to find the relevant papers to cite in their work.

This is a summary of the rules governing the dissemination of the ”Flash Code” by the Flash Center for
Computational Science to users outside the Center, and constitutes the License Agreement for users of the
Flash Code. Users are responsible for following all of the applicable rules described below.

0.2 Full License Agreement

Below is a summary of the rules governing the dissemination of the ”FLASH Code” by the Flash Center for
Computational Science to users outside the Center, and constitutes the License Agreement for users of the
FLASH Code. Users are responsible for following all of the applicable rules described below.

• Public Release. Publicly released versions of the FLASH Code are available via the Center’s website.
We expect to include any external contributions to the Code in public releases that occur after the end
of a negotiated time.

• Decision Process. At present, release of the FLASH Code to users not located at the University of
Chicago or at Argonne National Laboratory is governed solely by the Center’s Director and Manage-
ment Committee; decisions related to public release of the FLASH Code will be made in the same
manner.

• License and Distribution Rights. The University of Chicago owns the copyright to all Code developed
by the members of the Flash Center at the University of Chicago. External contributors may choose
to be included in the Copyright Assertion. The FLASH Code, or any part of the code, can only be
released and distributed by the Flash Center; individual users of the FLASH Code are not free to
re-distribute the FLASH Code, or any of its components, outside the Center. All users of the FLASH
Code must sign a hardcopy version of this License Agreement and send it to the Center. Distribution
of the FLASH Code can only occur once we receive a signed License Agreement.

• Modifications and Acknowledgments. Users may make modifications to the FLASH Code, and they are
encouraged to send such modifications to the Center. Users are not free to distribute the FLASH Code
to others, as noted in Section 3 above. As resources permit, we will incorporate such modifications in
subsequent releases of the FLASH Code, and we will acknowledge these external contributions. Note
that modifications that do not make it into an officially-released version of the FLASH Code will not
be supported by us.

i
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ii LICENSE

If a user modifies a copy or copies of the FLASH Code or any portion of it, thus forming a work based
on the FLASH Code, to be included in a FLASH release it must meet the following conditions:

– a)The software must carry prominent notices stating that the user changed specified portions of
the FLASH Code. This will also assist us in clearly identifying the portions of the FLASH Code
that the user has contributed.

– b)The software must display the following acknowledgement: ”This product includes software de-
veloped by and/or derived from the Flash Center for Computational Science (http://flash.uchicago.edu)
to which the U.S. Government retains certain rights.”

– c)The FLASH Code header section, which describes the origins of the FLASH Code and of its
components, must remain intact, and should be included in all modified versions of the code.
Furthermore, all publications resulting from the use of the FLASH Code, or any modified version
or portion of the FLASH Code, must acknowledge the Flash Center for Computational Science;
addition of the following text to the paper acknowledgments will be sufficient:
”The software used in this work was developed in part by the DOE NNSA ASC- and DOE Office of
Science ASCR-supported Flash Center for Computational Science at the University of Chicago.”
The Code header provides information on software that has been utilized as part of the FLASH
development effort (such as the AMR). The Center website includes a list of key scientific journal
references for the FLASH Code. We request that such references be included in the reference
section of any papers based on the FLASH Code.

• Commercial Use. All users interested in commercial use of the FLASH Code must obtain prior written
approval from the Director of the Center. Use of the FLASH Code, or any modification thereof, for
commercial purposes is not permitted otherwise.

• Bug Fixes and New Releases. As part of the FLASH Code dissemination process, the Center has set
up and will maintain as part of its website mechanisms for announcing new FLASH Code releases,
collecting requests for FLASH Code use, and collecting and disseminating relevant documentation.
We support the user community through mailing lists and by providing a bug report facility.

• User Feedback. The Center requests that all users of the FLASH Code notify the Center about all
publications that incorporate results based on the use of the code, or modified versions of the code or
its components. All such information can be sent to infoflash.uchicago.edu.

• Disclaimer. The FLASH Code was prepared, in part, as an account of work sponsored by an agency
of the United States Government. THE FLASH CODE IS PROVIDED “AS IS” AND NEITHER
THE UNITED STATES, NOR THE UNIVERSITY OF CHICAGO, NOR ANY CONTRIBUTORS
TO THE FLASH CODE, NOR ANY OF THEIR EMPLOYEES OR CONTRACTORS, MAKES ANY
WARRANTY, EXPRESS OR IMPLIED (INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE), OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETE-
NESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED
RIGHTS.

IN NO EVENT WILL THE UNITED STATES, THE UNIVERSITY OF CHICAGO OR ANY CON-
TRIBUTORS TO THE FLASH CODE BE LIABLE FOR ANY DAMAGES, INCLUDING DIRECT,
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM EXERCISE OF
THIS LICENSE AGREEMENT OR THE USE OF THE SOFTWARE.
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Chapter 1

Introduction

The FLASH code is a modular, parallel multiphysics simulation code capable of handling general compressible
flow problems found in many astrophysical environments. It is a set of independent code units put together
with a Python language setup tool to form various applications. The code is written in FORTRAN90 and
C. It uses the Message-Passing Interface (MPI) library for inter-processor communication and the HDF5 or
Parallel-NetCDF library for parallel I/O to achieve portability and scalability on a variety of different parallel
computers. FLASH4 has three interchangeable discretization grids: a Uniform Grid, and a block-structured
oct-tree based adaptive grid using the PARAMESH library, and a block-structured patch based adaptive grid
using Chombo. Both PARAMESH and Chombo place resolution elements only where they are needed most.1 The
code’s architecture is designed to be flexible and easily extensible. Users can configure initial and boundary
conditions, change algorithms, and add new physics units with minimal effort.

The Flash Center was founded at the University of Chicago in 1997 under contract to the United States
Department of Energy as part of its Accelerated Strategic Computing Initiative (ASCI) (now the Advanced
Simulation and Computing (ASC) Program). The scientific goal of the Center then was to address several
problems related to thermonuclear flashes on the surface of compact stars (neutron stars and white dwarfs),
in particular Type Ia supernovae, and novae. The software goals of the center were to develop new simulation
tools capable of handling the extreme resolution and physical requirements imposed by conditions in these
explosions and to make them available to the community through the public release of the FLASH code. Since
2009 the several new scienfic and computational code development projects have been added to the Center,
the notable one among them are: Supernova Models, High-Energy Density Physics (HEDP), Fluid-Structure
Interaction, and Implicit Solvers for stiff parabolic and hyperbolic systems with AMR.

The FLASH code has become a key hydrodynamics application used to test and debug new machine
architectures because of its modular structure, portability, scalability and dependence on parallel I/O li-
braries. It has a growing user base and has rapidly become a shared code for the astrophysics community
and beyond, with hundreds of active users who customize the code for their own research.

1.1 What’s New in FLASH4

This Guide describes the release version 4.4 of FLASH4. FLASH4 includes all the well tested capabilities
of FLASH3. There were a few modules in the official releases of FLASH2 which were added and tested by
local users, but did not have standardized setups that could be used to test them after the migration to
FLASH3. Those modules are not included in the official releases of FLASH3 or FLASH4, however, they are
being made available to download ”as is” from the Flash Center’s website. We have ensured that they have
been imported into FLASH4 to the extent that they conform to the architecture and compile. We cannot
guarantee that they work correctly; they are meant to be useful starting points for users who need their
functionality. We also welcome setups contributed by the users that can meaningfully test these units. If
such setups become available to us, the units will be released in future.

1The Chombo grid in FLASH has had limited testing, and supports only a limited set of physics units. At this time the use
of Chombo within FLASH for production is not recommended.

1
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In terms of the code architecture, FLASH4 closely follows FLASH3. The major changes from FLASH3
are several new capabilities in both physics solvers and infrastructure. Major effort went into the design of
the FLASH3 architecture to ensure that the code can be easily modified and extended by internal as well
as external developers. Each code unit in FLASH4, like in FLASH3 has a well defined interface and follows
the rules for inheritance and encapsulation defined in FLASH3. One of the largest achievements of FLASH3
was the separation of the discretized ‘grid’ architecture from the actual physics. This untangling required
changes in the deepest levels of the code, but has demonstrated its worth by allowing us to import a new
AMR package Chombo into the code.

Because of the increasing importance of software verification and validation, the Flash code group has
developed a test-suite application for FLASH3. The application is called FlashTest and can be used to
setup, compile, execute, and test a series of FLASH code simulations on a regular basis. FlashTest is
available without a license and can be downloaded from the Code Support Web Page. There is also a more
general open-source version of FlashTest which can be used to test any software in which an application is
configured and then executed under a variety of different conditions. The results of the tests can then be
visualized in a browser with FlashTestView, a companion to FlashTest that is also open-source.

Many but not all parts of FLASH4 are backwards compatible with FLASH2, and they are all compatible
with FLASH3. The Flash code group has written extensive documentation detailing how to make the
transition from FLASH2 to FLASH3 as smooth as possible. The user should follow the ”Name changes
from FLASH2 to FLASH3” link on the Code Support Web Page for help on transitioning to FLASH4 from
FLASH2. The transition from FLASH3 to FLASH4 does not require much effort from the users except in
any custom implementation they may have.

The new capabilities in FLASH4 that were not included in FLASH3 include

• 3T capabilities in the split and unsplit Hydro solvers. There is support for non-cartesian geometry and
the unsplit solver also supports stationary rigid body.

• Upwind biased constrained transport (CT) scheme in the unsplit staggered mesh MHD solver

• Full corner transport upwind (CTU) algorithm in the unsplit hydro/MHD solver

• Cylindrical geometry support in the unsplit staggered mesh MHD solver on UG and AMR. A couple
of MHD simulation setups using cylindrical geometry.

• Units for radiation diffusion, conduction, and heat exchange.

• Equation-of state unit includes table based multi-material multi-temperature implementation.

• The Opacities unit with the ability to use hot and cold opacities.

• The laser drive with threading for performance

• Ability to replicate mesh for multigroup diffusion or other similar applications.

• Several important solvers have been threaded at both coarse-grain (one block per thread) and fine-grain
(threads within a block) levels.

• Several new HEDP simulation setups.

• A new multipole solver

• Ability to add particles during evolution

The enhancements and bug fixes to the existing capabilities since FLASH4-beta release are :

• The HLLD Riemann solver has been improved to handle MHD degeneracy.

• PARAMESH’s handling for face-centered variables in order to ensure divergence-free magnetic fields
evolution on AMR now uses gr_pmrpDivergenceFree=.true. and gr_pmrpForceConsistency=.true.
by default.

http://flash.uchicago.edu/site/flashcode/user_support
http://flash.uchicago.edu/site/flashcode/user_support
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• The HEDP capabilities of the code have been exercised and are therefore more robust.

• Laser 3D in 2D ray tracing has been added. The code traces rays in a real 3D cylindrical domain using
a computational 2D cylindrical domain and is based on a polygon approximation to the angular part.

• In non-fixedblocksize mode, restart with particles did not work when starting with a different processor
count. This bug has now been fixed.

• All I/O implementations now support reading/writing 0 blocks and 0 particles.

• There is support for particles and face variables in PnetCDF

• Initializaton of of the computation domain has been optimized by eliminating unnecessary invocations
of PARAMESH’s “digital orrery” algorithm at simulation startup. It is possible to run the orrery in a
reduced communicator in order to speed up FLASH initialization.

• The custom region code and corresponding Grid API routines have been removed.

• PARAMESH4DEV is now the default PARAMESH implementation.

The new capabilities in FLASH4.2 . . . FLASH4.2.2 since FLASH4.0.1 include:

• New Core-Collapse Super Nova (CCSN) physics, with complete nuclear EOS routines, local neutrino
heating/cooling and multispecies neutrino leakage.

• New unsplit Hydro and MHD implementations, highly optimized for performance. These implemen-
tations are now the default option. We have retained the old implementations as an unsplit old
alternative for compatibility reasons.

• New support for 3T magnetohydrodynamics, designed for HEDP problems.

• A new magnetic resistivity implementation, SpitzerHighZ, for HEDP problems. We have also extended
the support for resistivity in cylindrical geometry in the unsplit solver.

• New threading capabilities for unsplit MHD, compatible with all threading strategies followed by the
code.

• New, improved multipole Poisson solver, implementing the algorithmic refinements described in http:
//dx.doi.org/10.1088/0004-637X/778/2/181 and http://arxiv.org/abs/1307.3135.

• Reorganization of the EnergyDeposition unit. A new feature has been included that allows Energy-
Deposition to be called once every n time steps.

The new capabilities in FLASH4.3 since FLASH4.2.2 include:

• The sink particles implementation now has support for particles to remain active when leaving the grid
domain (in case of outflow boundary conditions).

• New Proton Imaging unit: The new unit is a simulated diagnostic of the Proton Radiography used in
HEDP experiments.

• Flux-limited-diffusion for radiation (implemented in RadTransMain/MGD) is now available for astro-
physical problem setups:

– MatRad3 (matter+rad [2T] stored in three components) implementations for several Eos types:
Gamma, Multigamma, and (experimentally) Helmholtz/SpeciesBased.

– Implemented additional terms in FLD Rad-Hydro equations to handle streaming and transition-
to-streaming regimes better - including radiation pressure. This is currently available as a variant
of the unsplit Hydro solver code, under HydroMain/unsplit rad . We call this RADFLAH -
Radiation Flux-Limiter Aware Hydro. Setup with shortcut +uhd3tR instead of +uhd3t . This has
had limited testing, mostly in 1D spherical geometry.

http://dx.doi.org/10.1088/0004-637X/778/2/181
http://dx.doi.org/10.1088/0004-637X/778/2/181
http://arxiv.org/abs/1307.3135
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– New test setups under Simulation/SimulationMain/radflaHD: BondiAccretion, RadBlastWave

– Various fixes in Eos implementations.

– New ”outstream” diffusion solver boundary condition for streaming limit. (currently 1D spherical
only)

– Added Levermore-Pomraning flux limiter.

– More flexible setup combinations are now easily possible - can combine, e.g., species declared on
setup command line with SPECIES in Config files and initialized with Simulation initSpecies, by
setup with ManualSpeciesDirectives=True.

– Created an ”Immediate” HeatExchange implementation.

– EXPERIMENTAL: ExpRelax variant of RadTrans diffusion solver, implements the algorithm
described in Gittings et al (2008) for the RAGE code, good for handling strong matter-radiation
coupling; for one group (grey) only.

– EXPERIMENTAL: Unified variant of RadTrans diffusion solver, for handling several coupled
scalar equations with HYPRE.

– EXPERIMENTAL: More accurate implementation of flux limiting (and evaluation of diffusion
coeffs): apply limiter to face values, not cell centered values.

• Gravity can now be used in 3T simulations.

• Laser Energy Deposition: New ray tracing options added based on cubic interpolation techniques. Two
variants: 1) Piecewise Parabolic Ray Tracing (PPRT) and 2) Runge Kutta (RK) ray tracing.

• Introduction of new numerical tool units: 1) Interpolate: currently contains the routines to set up
and perform cubic interpolations on rectangular 1D,2D,3D grids, 2) Roots: (will) contain all routines
that solve f(x) = 0 (currently contains quadratic, cubic and quartic polynomial root solvers, 3) Runge
Kutta: sets up and performs Runge Kutta integration of arbitrary functions (passed as arguments).

• Unsplit Hydro/MHD: Local CFL factor using CFL VAR. (Declare a ”VARIABLE cfl” and initialize it
appropriately.)

• Unsplit Hydro/MHD: Significant reorganization.

– reorganized definition and use of scratch data. Memory savings.

– use hy memAllocScratch and friends.

– hy fullRiemannStateArrays (instead of FLASH UHD NEED SCRATCHVARS)

– New runtime parameter hy fullSpecMsFluxHandling, default TRUE. resulting in flux-corrected
handling for species and mass scalars, including USM.

– Use shockLowerCFL instead of shockDetect runtime parameter.

– Revived EOSforRiemann option.

– More accurate handling of geometric effects close to the origin in 1D spherical geometry.

Important changes in FLASH4.4 since FLASH4.3 include:

• The default Hydro implementation has changed from split PPM to unsplit Hydro. A new shortcut
+splitHydro can be used to request a split Hydro implementation.

• Updated values of many physical constants to 2014 CODATA values. This may cause differences from
previously obtained results. The previous values of constants provided by the PhysicalConstants unit
can be restored by replacing the file PhysicalCosntants˙init.F90 with an older version; the version
from FLASH4.3 is included as PhysicalConstants_init.F90.flash43. This should only be done to
reproduce previous simulation results to bit accuracy.
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• An improved Newton-Raphson search in the 3T Multi-type Eos implemention (MTMMMT, including
Eos based on IONMIX tables) can prevent some cases of convergence failure by bounding the search.
This implementation follows original improvements made to the Helmholtz Eos implementation by
Dean Townsley.

• Added new Poisson solvers (Martin-Cartwright Geometric Multigrid and BiPCGStab, which uses multi-
grid aspreconditioner). Combinations of homogeneous Dirichlet, Neumann, and periodic boundary
conditions are supported (although not yet “isolated” boundaries for self-gravity).

• Added the IncompNS physics unit, which provides a solver for incompressible flow problems on rectan-
gular domains. Multistep and Runge-Kutta explicit projection schemes are used for time integration.
Implementations on staggered grid arrangement for both uniform grid (UG) and adaptive mesh re-
finement (AMR) are provided. The new Poisson solvers are employed for AMR cases, whereas the
homogeneous trigonometric solver + PFFT can be used in UG. Typical velocity boundary conditions
for this problem are implemented.

• The ProtonImaging diagnostics code has been improved. Time resolved proton imaging is now possible,
where protons are traced through the domain during several time steps. The original version (tracing
of protons during one time step with fixed domain) is still available.

• The code for Radiation-Fluxlimiter-Aware Hydro has been updated. Smoothing of the flux-limiter
function within the enhanced Hydro implementation has been implemented and has been shown effec-
tive in increasing stability in 1D simulations.

• New Opacity implementations: BremsstrahlungAndThomson and OPAL. These are for gray opacities.

• In addition to the FLASH4.4 release, the publicly available Python module opacplot2 has received
significant development (credit to JT Laune). It can assist in handling EoS/opacity tables, and includes
command line tools to convert various table formats to IONMIX and to compare between different
tables. More information can be found in the Flash Center’s GitHub repository at https://github.
com/flash-center/opacplot2.

The following features are provided on an EXPERIMENTAL basis. They may only work in limited circum-
stances and/or have not yet been tested to our satisfaction.

• New Laser - Async communication (experimental).

• Electron-Entropy Advection in Hydro for non-ideal Eos.

• New cubic and quartic equation solvers have been added and are ready to be used. They return only
real cubic and quartic roots. The routines can be found in the flashUtilites/general section

• An alternative setup tool “setup alt” intended to be a compatible replacement with a cleaner structure.

1.2 External Contributions

Here we list some major contributions to FLASH4 from outside the Flash Center that are included in the
distribution. For completeness, we also list such contributions in FLASH3 which have long been included in
the release.

• Huang-Greengard based multigrid solver, contributed by Paul Ricker. This contribution was first
distributed in FLASH3. Reference: http://adsabs.harvard.edu/abs/2008ApJS..176..293R

• Direct solvers for Uniform Grid contributed by Marcos Vanella. The solvers have been in the release
since FLASH3. Reference: http://dx.doi.org/10.1002/cpe.2821

• Additional Poisson solvers (Martin-Cartwright Geometric Multigrid ported from FLASH2, and new
BiPCGStab), and Incompressible Navier-Stokes solver unit, from Marcos Vanella; added to the release
code in FLASH4.4.

https://github.com/flash-center/opacplot2
https://github.com/flash-center/opacplot2
http://adsabs.harvard.edu/abs/2008ApJS..176..293R
http://dx.doi.org/10.1002/cpe.2821
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• Hybrid-PIC code, contributed by Mats Holmström. The contribution has been in the distribution since
FLASH4-alpha. Reference: http://adsabs.harvard.edu/abs/2011arXiv1104.1440H

• Primordial Chemistry contributed by William Gray. This contribution was added in FLASH4.0. Ref-
erence: http://iopscience.iop.org/0004-637X/718/1/417/.

• Barnes Hut tree gravity solver contributed by Richard Wunsch. This contribution has been further
extended in FLASH 4.2.2 and in the current release and has been developed in collaboration with
Frantisek Dinnbier (responsible for periodic and mixed boundary conditions) and Stefanie Walch.

• Sink Particles contributed by Christoph Federrath et al. This contribution has received significant
updates over several release. Please refer to http://iopscience.iop.org/0004-637X/713/1/269/
for details.

• Since FLASH4.2.2, there is a new ’FromFile’ implementation of the Stir unit, contributed by Christoph
Federrath. The new implementations is sitting beside the older ’Generate’ implementation.

• New Flame and Turb units contributed by Dean Townsley, with code developed by Aaron Jackson and
Alan Calder. A corresponding paper (Jackson, Townsley, & Calder 2014) on modeling turbulent flames
has been published, see http://stacks.iop.org/0004-637X/784/i=2/a=174. More information can
be found in Section 17.6 and Section 17.7.

1.3 Known Issues in This Release

• The outflow boundary condition for face-centered variables in the use of solenoidal magnetic field
evolution on AMR fails to ensure the solenoidal constraint at the physical outflow boundaries. How-
ever, numerical solutions with respect to this error are still physically correct away from the outflow
boundaries. This issue may be resolved in future releases.

• The upwind-biased electric field implementation (i.e., E upwind=.true.) for the unsplit staggered
mesh solver in some cases fails to satisfy divergence-free magnetic field evolutions at restart. Users can
still use (i.e., E upwind=.false.) in most applications.

• The new multipole solver is missing the ability to treat a non-zero minimal radius for spherical geome-
tries, and the ability to specify a point mass contribution to the potential.

• The “Split” implementation of the diffusion solver is essentially meant for testing purposes. Moreover,
it has not been exercised with PARAMESH.

• Some configurations of hydrodynamic test problems with Chombo grid show worse than expected mass
and total energy conservation. Please see the Chombo section in the Hydro chapter of this Guide for
details.

• We have experienced the following abort when running IsentropicVortex problem with Chombo Grid:
”MayDay: TreeIntVectSet.cpp:1995: Assertion ‘bxNumPts != 0’ failed. !!!” We have been in contact
with the Chombo team to resolve this issue.

• The unsplit MHD solver doesn’t support the mode ”use GravPotUpdate=.true.” for 1D when self-
gravity is utilized. The solver will still work if it is set to be .false. In this case the usual reconstruction
schemes will be used in computing the gravitational accelerations at the predictor step (i.e., at the
n+1/2 step) rather than calling the Poisson solver to compute them.

• Time limiting due to burning, even though has an implementation, is turned off in most simulations
by keeping the value of parameter enucDtFactor very high. The implementation is therefore not well
tested and should be used with care.

• Mesh replication is only supported for parallel HDF5 and the experimental derived data type Parallel-
NetCDF (+pnetTypeIO) I/O implementations. Flash will fail at runtime if multiple meshes are in use
without using one of these I/O implementations.

http://adsabs.harvard.edu/abs/2011arXiv1104.1440H
http://iopscience.iop.org/0004-637X/718/1/417/
http://iopscience.iop.org/0004-637X/713/1/269/
http://stacks.iop.org/0004-637X/784/i=2/a=174
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Burn.txt
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• The unsplit staggered mesh MHD solver shows slight differences (of relative magnitudes of order 10−12)
in restart comparisons (e.g., sfocu comparison), when there are non-zero values of face-centered mag-
netic fields. With PARAMESH4DEV, the current default Grid implementation, we have observed this
problem only with the ‘force consistency’ flag (see Runtime Parameter gr pmrpForceConsistency)
turned on.

• In some cases with the default refinement criteria implementation, the refinement pattern at a given
point in time of a PARAMESH AMR simulation may be slightly different depending on how often plotfiles
and checkpoints are written; with resulting small changes in simulation results. The effect is expected
to also be present in previous FLASH versions. This is a side effect of Grid restrictAllLevels calls
that happen in IO to prepare all grid blocks for being dumped to file. We have determined that this can
only impact how quickly coarser blocks next to a refinement boundary are allowed to further derefine
when their better resolved neighbors also derefine, in cases where second-derivative criteria applied to
the block itself would allow such derefinement. Users who are concerned with this effect may want to
replace the call to amr restrict in Grid updateRefinement with a call to Grid restrictAllLevels,
at the cost of a slight increase in runtime.

• The PG compiler fails to compile source files which contain OpenMP parallel regions that reference
threadprivate data. This happens in the threaded versions of the Multipole solver and the within block
threaded version of split hydro. A workaround is to remove “default(none)” from the OpenMP parallel
region.

• Absoft compiler (gcc 4.4.4/Absoft Pro fortran 11.1.x86_64 with mpich2 1.4.1p1) generates in-
correctly behaving code with some files when used with any optimization. More specifically, we have
seen this behavior with gr markRefineDerefine.F90, but other files may be vulnerable too. An older
version (Absoft Fortran 95 9.0 EP/gcc 4.5.1 with mpich-1.2.7p1) works.

• The -index-reorder setup flag does not work in all the configurations. If you wish to use it please
contact the FLASH team.

• The -noclobber setup option will not force a rebuild of all necessary source files in a FLASH application
with derived data type I/O (+hdf5TypeIO or +pnetTypeIO). Do not use -noclobber with derived data
type I/O.

1.4 About the User’s Guide

This User’s Guide is designed to enable individuals unfamiliar with the FLASH code to quickly get acquainted
with its structure and to move beyond the simple test problems distributed with FLASH, customizing it to
suit their own needs. Code users and developers are encouraged to visit the FLASH code documentation
page for other references to supplement the User’s Guide.

Part I provides a rapid introduction to working with FLASH. Chapter 2 (Quick Start) discusses how to
get started quickly with FLASH, describing how to setup, build, and run the code with one of the included
test problems and then to examine the resulting output. Users unfamiliar with the capabilities of FLASH,
who wish to quickly ‘get their feet wet’ with the code, should begin with this section. Users who want to
get started immediately using FLASH to create new problems of their own will want to refer to Chapter 3
(Setting Up New Problems) and Chapter 5 (The FLASH Configuration Script).

Part II begins with an overview of both the FLASH code architecture and a brief overview of the
units included with FLASH. It then describes in detail each of the units included with the code, along
with their subunits, runtime parameters, and the equations and algorithms of the implemented solvers.
Important note: We assume that the reader has some familiarity both with the basic physics
involved and with numerical methods for solving partial differential equations. This familiarity
is absolutely essential in using FLASH (or any other simulation code) to arrive at meaningful solutions to
physical problems. The novice reader is directed to an introductory text, examples of which include

Fletcher, C. A. J. Computational Techniques for Fluid Dynamics (Springer-Verlag, 1991)

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_restrictAllLevels_F90.html
http://flash.uchicago.edu/site/flashcode/user_support
http://flash.uchicago.edu/site/flashcode/user_support
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Laney, C. B. Computational Gasdynamics (Cambridge UP, 1998)

LeVeque, R. J., Mihalas, D., Dorfi, E. A., and Müller, E., eds. Computational Methods for Astrophysical
Fluid Flow (Springer, 1998)

Roache, P. Fundamentals of Computational Fluid Dynamics (Hermosa, 1998)

Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd Edition (Springer, 1997)

The advanced reader who wishes to know more specific information about a given unit’s algorithm is directed
to the literature referenced in the algorithm section of the chapter in question.

Part VII describes the different test problems distributed with FLASH. Part VIII describes in more detail
the analysis tools distributed with FLASH, including fidlr and sfocu.
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Getting Started
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Chapter 2

Quick Start

This chapter describes how to get up-and-running quickly with FLASH with an example simulation, the
Sedov explosion. We explain how to configure a problem, build it, run it, and examine the output using IDL.

2.1 System requirements

You should verify that you have the following:

• A copy of the FLASH source code distribution (as a Unix tar file). To request a copy of the distribution,
click on the “Code Request” link on the FLASH Center web site. You will be asked to fill out a short
form before receiving download instructions. Please remember the username and password you use to
download the code; you will need these to get bug fixes and updates to FLASH.

• A F90 (Fortran 90) compiler and a C compiler. Most of FLASH is written in F90. Information available
at the Fortran Company web site can help you select an F90 compiler for your system. FLASH has been
tested with many Fortran compilers. For details of compilers and libraries, see the RELEASE-NOTES
available in the FLASH home directory.

• An installed copy of the Message-Passing Interface (MPI) library. A freely available implementation
of MPI called MPICH is available from Argonne National Laboratory.

• To use the Hierarchical Data Format (HDF) for output files, you will need an installed copy of the
freely available HDF library. The serial version of HDF5 is the current default FLASH format. HDF5
is available from the HDF Group (http://www.hdfgroup.org/) of the National Center for Supercom-
puting Applications (NCSA) at http://www.ncsa.illinois.edu. The contents of HDF5 output files
produced by the FLASH units are described in detail in Section 9.1.

• To use the Parallel NetCDF format for output files, you will need an installed copy of the freely
available PnetCDF library. PnetCDF is available from Argonne National Lab at
http://www.mcs.anl.gov/parallel-netcdf/. For details of this format, see Section 9.1.

• To use Chombo as the (Adaptive Mesh Refinement) AMR option, you will need an installed copy of
the library, available freely from Lawrence Berkeley National Lab at https://seesar.lbl.gov/anag/
chombo. The use of Chombo is described in Section 8.7

• To use the Diffuse unit with HYPRE solvers, you will need to have an installed copy of HYPRE,
available for free from Lawrence Livermore National Lab at
https://computation.llnl.gov/casc/hypre/software.html.

HYPRE is required for using several critical HEDP capabilities including multigroup radiation diffusion
and thermal conduction. Please make sure you have HYPRE installed if you want these capabilities.

11

http://flash.uchicago.edu
http://www.fortran.com/
http://www.mcs.anl.gov/mpi/mpich/
http://www.hdfgroup.org/
http://www.ncsa.illinois.edu
http://www.mcs.anl.gov/parallel-netcdf/
https://seesar.lbl.gov/anag/chombo
https://seesar.lbl.gov/anag/chombo
https://computation.llnl.gov/casc/hypre/software.html
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• To use the output analysis tools described in this section, you will need a copy of the IDL language from
ITT Visual Information Solutions. IDL is a commercial product. It is not required for the analysis of
FLASH output, but the fidlr3.0 tools described in this section require it. (FLASH output formats
are described in Section 9.9. If IDL is not available, another visual analysis option is ViSit, described
in Chapter 31.) The newest IDL routines, those contained in fidlr3.0, were written and tested with
IDL 6.1 and above. You are encouraged to upgrade if you are using an earlier version. Also, to use the
HDF5 version 1.6.2, analysis tools included in IDL require IDL 6.1 and above. New versions of IDL
come out frequently, and sometimes break backwards compatibility, but every effort will be made to
support them.

• The GNU make utility, gmake. This utility is freely available and has been ported to a wide variety of
different systems. For more information, see the entry for make in the development software listing at
http://www.gnu.org/. On some systems make is an alias for gmake. GNU make is required because
FLASH uses macro concatenation when constructing Makefiles.

• A copy of the Python language, version 2.2 or later is required to run the setup script. Python can
be downloaded from http://www.python.org.

2.2 Unpacking and configuring FLASH for quick start

To begin, unpack the FLASH source code distribution.

tar -xvf FLASHX.Y.tar

where X.Y is the FLASH version number (for example, use FLASH4-alpha.tar for FLASH version 4-alpha,
or FLASH3.1.tar for FLASH version 3.1). This will create a directory called FLASHX /. Type ‘cd FLASHX ’
to enter this directory. Next, configure the FLASH source tree for the Sedov explosion problem using the
setup script. Type

./setup Sedov -auto

This configures FLASH for the 2d Sedov problem using the default hydrodynamic solver, equation of state,
Grid unit, and I/O format defined for this problem, linking all necessary files into a new directory, called
‘object/’. For the purpose of this example, we will use the default I/O format, serial HDF5. In order
to compile a problem on a given machine FLASH allows the user to create a file called Makefile.h which
sets the paths to compilers and libraries specific to a given platform. This file is located in the directory
sites/mymachine.myinstitution.mydomain/. The setup script will attempt to see if your machine/platform
has a Makefile.h already created, and if so, this will be linked into the object/ directory. If one is not
created the setup script will use a prototype Makefile.h with guesses as to the locations of libraries on
your machine. The current distribution includes prototypes for AIX, IRIX64, Linux, Darwin, and TFLOPS
operating systems. In any case, it is advisable to create a Makefile.h specific to your machine. See
Section 5.6 for details.

Type the command cd object to enter the object directory which was created when you setup the Sedov
problem, and then execute make. This will compile the FLASH code.

cd object
make

If you have problems and need to recompile, ‘make clean’ will remove all object files from the object/
directory, leaving the source configuration intact; ‘make realclean’ will remove all files and links from
object/. After ‘make realclean’, a new invocation of setup is required before the code can be built.
The building can take a long time on some machines; doing a parallel build (make -j for example) can
significantly increase compilation speed, even on single processor systems.

Assuming compilation and linking were successful, you should now find an executable named flashX in
the object/ directory, where X is the major version number (e.g., 4 for X.Y = 4.0). You may wish to check
that this is the case.

If compilation and linking were not successful, here are a few common suggestions to diagnose the problem:

http://www.ittvis.com/
http://www.gnu.org/
http://www.python.org
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• Make sure the correct compilers are in your path, and that they produce a valid executable.

• The default Sedov problem uses HDF5 in serial. Make sure you have HDF5 installed. If you do not
have HDF5, you can still setup and compile FLASH, but you will not be able to generate either a
checkpoint or a plot file. You can setup FLASH without I/O by typing

./setup Sedov -auto +noio

• Make sure the paths to the MPI and HDF libraries are correctly set in the Makefile.h in the object/
directory.

• Make sure your version of MPI creates a valid executable that can run in parallel.

These are just a few suggestions; you might also check for further information in this guide or at the
FLASH web page.

FLASH by default expects to find a text file named flash.par in the directory from which it is run. This
file sets the values of various runtime parameters that determine the behavior of FLASH. If it is not present,
FLASH will abort; flash.par must be created in order for the program to run (note: all of the distributed
setups already come with a flash.par which is copied into the object/ directory at setup time). There is
command-line option to use a different name for this file, described in the next section. Here we will create
a simple flash.par that sets a few parameters and allows the rest to take on default values. With your text
editor, edit the flash.par in the object directory so it looks like Figure 2.1.

# runtime parameters

lrefine_max = 5

basenm = "sedov_"
restart = .false.
checkpointFileIntervalTime = 0.01

nend = 10000
tmax = 0.05

gamma = 1.4

xl_boundary_type = "outflow"
xr_boundary_type = "outflow"

yl_boundary_type = "outflow"
yr_boundary_type = "outflow"

plot_var_1 = "dens"
plot_var_2 = "temp"
plot_var_3 = "pres"

Figure 2.1: FLASH parameter file contents for the quick start example.

This example instructs FLASH to use up to five levels of adaptive mesh refinement (AMR) (through
the lrefine max parameter) and to name the output files appropriately (basenm). We will not be starting
from a checkpoint file (“restart = .false.” — this is the default, but here it is explicitly set for clarity).
Output files are to be written every 0.01 time units (checkpointFileIntervalTime) and will be created until
t = 0.05 or 10000 timesteps have been taken (tmax and nend respectively), whichever comes first. The ratio

http://flash.uchicago.edu/codesupport/
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of specific heats for the gas (gamma = γ) is taken to be 1.4, and all four boundaries of the two-dimensional
grid have outflow (zero-gradient or Neumann) boundary conditions (set via the [xy][lr] boundary type
parameters).

Note the format of the file – each line is of the form variable = value, a comment (denoted by a hash
mark, #), or a blank. String values are enclosed in double quotes ("). Boolean values are indicated in the
FORTRAN style, .true. or .false.. Be sure to insert a carriage return after the last line of text. A full
list of the parameters available for your current setup is contained in the file setup params located in the
object/ directory, which also includes brief comments for each parameter. If you wish to skip the creation of a
flash.par, a complete example is provided in the source/Simulation/SimulationMain/Sedov/ directory.

2.3 Running FLASH

We are now ready to run FLASH. To run FLASH on N processors, type

mpirun -np N flashX

remembering to replace N and X with the appropriate values. Some systems may require you to start MPI
programs with a different command; use whichever command is appropriate for your system. The FLASH4
executable accepts an optional command-line argument for the runtime parameters file. If “-par file file-
name” is present, FLASH reads the file specified on command line for runtime parameters, otherwise it reads
flash.par.

You should see a number of lines of output indicating that FLASH is initializing the Sedov problem,
listing the initial parameters, and giving the timestep chosen at each step. After the run is finished, you
should find several files in the current directory:

• sedov.log echoes the runtime parameter settings and indicates the run time, the build time, and the
build machine. During the run, a line is written for each timestep, along with any warning messages.
If the run terminates normally, a performance summary is written to this file.

• sedov.dat contains a number of integral quantities as functions of time: total mass, total energy, total
momentum, etc. This file can be used directly by plotting programs such as gnuplot; note that the
first line begins with a hash (#) and is thus ignored by gnuplot.

• sedov hdf5 chk 000* are the different checkpoint files. These are complete dumps of the entire sim-
ulation state at intervals of checkpointFileIntervalTime and are suitable for use in restarting the
simulation.

• sedov hdf5 plt cnt 000* are plot files. In this example, these files contain density, temperature, and
pressure in single precision. If needed, more variables can be dumped in the plotfiles by specifying them
in flash.par. They are usually written more frequently than checkpoint files, since they are the primary
output of FLASH for analyzing the results of the simulation. They are also used for making simulation
movies. Checkpoint files can also be used for analysis and sometimes it is necessary to use them since
they have comprehensive information about the state of the simulation at a given time. However, in
general, plotfiles are preferred since they have more frequent snapshots of the time evolution. Please
see Chapter 9 for more information about IO outputs.

We will use the xflash3 routine under IDL to examine the output. Before doing so, we need to set
the values of three environment variables, IDL DIR, IDL PATH and XFLASH3 DIR. You should usually have
IDL DIR already set during the IDL installation. Under csh the two additional variables can be set using
the commands

setenv XFLASH3 DIR "<flash home dir>/tools/fidlr3.0"
setenv IDL PATH "${XFLASH3 DIR}:$IDL PATH"

where <flash home dir> is the location of the FLASHX.Y directory. If you get a message indicating that
IDL PATH is not defined, enter
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setenv IDL PATH "${XFLASH3 DIR}":${IDL DIR}:${IDL DIR}/lib

where ${IDL DIR} points to the directory where IDL is installed. Fidlr assumes that you have a version of
IDL with native HDF5 support.

FLASH Transition

Please note! The environment variable used with FLASH3 onwards is XFLASH3 DIR. The
main routine name for interactive plotting is xflash3.

Now run IDL (idl or idl start linux) and enter xflash3 at the IDL> prompt. You should see the
main widget as shown in Figure 2.2.

Select any of the checkpoint or plot files through the File/Open Prototype... dialog box. This will define
a prototype file for the dataset, which is used by fidlr to set its own data structures. With the prototype
defined, enter the suffixes ’0000’, ’0005’ and ’1’ in the three suffix boxes. This tells xflash3 which files to
plot. xflash3 can generate output for a number of consecutive files, but if you fill in only the beginning
suffix, only one file is read. Click the auto box next to the data range to automatically scale the plot to
the data. Select the desired plotting variable and colormap. Under ‘Options,’ select whether to plot the
logarithm of the desired quantity and select whether to plot the outlines of the computational blocks. For
very highly refined grids, the block outlines can obscure the data, but they are useful for verifying that
FLASH is putting resolution elements where they are needed.

When the control panel settings are to your satisfaction, click the ‘Plot’ button to generate the plot. For
Postscript or PNG output, a file is created in the current directory. The result should look something like
Figure 2.3, although this figure was generated from a run with eight levels of refinement rather than the five
used in the quick start example run. With fewer levels of refinement, the Cartesian grid causes the explosion
to appear somewhat diamond-shaped. Please see Chapter 34 for more information about visualizing FLASH
output with IDL routines.

FLASH is intended to be customized by the user to work with interesting initial and boundary conditions.
In the following sections, we will cover in more detail the algorithms and structure of FLASH and the sample
problems and tools distributed with it.
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Figure 2.2: The main xflash3 widget.
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Figure 2.3: Example of xflash output for the Sedov problem with eight levels of refinement.
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Chapter 3

Setting Up New Problems

A new FLASH problem is created by making a directory for it under FLASH4/source/Simulation/SimulationMain.
This location is where the FLASH setup script looks to find the problem-specific files. The FLASH distri-
bution includes a number of pre-written simulations; however, most FLASH users will want to simulate their
own problems, so it is important to understand the techniques for adding a customized problem simulation.

Every simulation directory contains routines to initialize the FLASH grid. The directory also includes a
Config file which contains information about infrastructure and physics units, and the runtime parameters
required by the simulation (see Chapter 5). The files that are usually included in the Simulation directory
for a problem are:

Config Lists the units and variables required for the problem, defines run-
time parameters and initializes them with default values.

Makefile The make include file for the Simulation.
Simulation data.F90 Fortran module which stores data and parameters specific to the

Simulation.
Simulation init.F90 Fortran routine which reads the runtime parameters, and performs

other necessary initializations.
Simulation initBlock.F90 Fortran routine for setting initial conditions in a single block.
Simulation initSpecies.F90 Optional Fortran routine for initializing species properties if mul-

tiple species are being used.
flash.par A text file that specifies values for the runtime parameters. The

values in flash.par override the defaults from Config files.
In addition to these basic files, a particular simulation may include some files of its own. These files could

provide either new functionality not available in FLASH, or they may include customized versions of any
of the FLASH routines. For example, a problem might require a custom refinement criterion instead of the
one provided with FLASH. If a customized implementation of Grid markRefineDerefine is placed in the
Simulation directory, it will replace FLASH’s own implementation when the problem is setup. In general,
users are encouraged to put any modifications of core FLASH files in the SimulationMain directory in
which they are working rather than by altering the default FLASH routines. This encapsulation of personal
changes will make it easier to integrate Flash Center patches, and to upgrade to more recent versions of the
code. The user might also wish to include data files in the SimulationMain necessary for initial conditions.
Please see the LINKIF and DATAFILES keywords in Section 5.5.1 for more information on linking in datafiles
or conditionally linking customized implementations of FLASH routines.

The next few paragraphs are devoted to the detailed examination of the basic files for an example setup.
The example we describe here is a hydrodynamical simulation of the Sod shock tube problem, which has
a one-dimensional flow discontinuity. We construct the initial conditions for this problem by establishing
a planar interface at some angle to the x and y axes, across which the density and pressure values are
discontinuous. The fluid is initially at rest on either side of the interface. To create a new simulation,
we first create a new directory Sod in Simulation/SimulationMain and then add the Config, Makefile,
flash.par, Simulation initBlock.F90, Simulation init.F90 and Simulation data.F90 files. Since this
is a single fluid simulation, there is no need for a Simulation initSpecies file. The easiest way to construct
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these files is to use files from another setup as templates.

3.1 Creating a Config file

The Config file for this example serves two principal purposes; (1) to specify the required units and (2) to
register runtime parameters.

# configuration file for our example problem
REQUIRES Driver
REQUIRES physics/Eos/EosMain/Gamma
REQUIRES physics/Hydro

The lines above define the FLASH units required by the Sod problem. Note that we do not ask for particular
implementations of the Hydro unit, since for this problem many implementations will satisfy the requirements.
However, we do ask for the gamma-law equation of state (physics/Eos/EosMain/Gamma) specifically, since
that implementation is the only valid option for this problem. In FLASH4-alpha, the PARAMESH 4 Grid
implementation is passed to Driver by default. As such, there is no need to specify a Grid unit explicitly,
unless a simulation requires an alternative Grid implementation. Also important to note is that we have
not explicitly required IO, which is included by default. In constructing the list of requirements for a
problem, it is important to keep them as general as the problem allows. We recommend asking for specific
implementations of units as command line options or in the Units file when the problem is being setup, to
avoid the necessity of modifying the Config files. For example, if there was more than one implementation
of Hydro that could handle the shocks, any of them could be picked at setup time without having to modify
the Config file. However, to change the Eos to an implementation other than Gamma, the Config file would
have to be modified. For command-line options of the setup script and the description of the Units file see
Chapter 5.

After specifying the units, the Config file lists the runtime parameters specific to this problem. The names
of runtime parameters are case-insensitive. Note that no unit is constrained to use only the parameters defined
in its own Config file. It can legitimately access any runtime parameter registered by any unit included in
the simulation.

PARAMETER sim_rhoLeft REAL 1. [0 to ]
PARAMETER sim_rhoRight REAL 0.125 [0 to ]
PARAMETER sim_pLeft REAL 1. [0 to ]
PARAMETER sim_pRight REAL 0.1 [0 to ]
PARAMETER sim_uLeft REAL 0.
PARAMETER sim_uRight REAL 0.
PARAMETER sim_xangle REAL 0. [0 to 360]
PARAMETER sim_yangle REAL 90. [0 to 360]
PARAMETER sim_posn REAL 0.5

Here we define (sim rhoLeft), (sim pLeft) and (sim uLeft) as density, pressure and velocity to the left of
the discontinuity, and (sim rhoRight), (sim pRight) and (sim uRight) as density, pressure and velocity to
the right of the discontinuity. The parameters (sim xangle) and (sim yangle) give the angles with respect
to the x and y axes, and (sim posn) specifies the intersection between the shock plane and x axis. The
quantities in square brackets define the permissible range of values for the parameters. The default value
of any parameter (like sim_xangle) can be overridden at runtime by including a line (i.e. sim xangle =
45.0) defining a different value for it in the flash.par file.

3.2 Creating a Makefile

The file Makefile included in the Simulation directory does not have the standard Makefile format for
make/gmake. Instead, the setup script generates a complete compilation Makefile from the machine/system
specific one (see Section 5.6) and the unit Makefiles (see Section 5.7.3).
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In general, standard module and routine dependencies are figured out by the setup script or are inherited
from the directory structure. The Makefile for this example is very simple, it only adds the object file for
Simulation data to the Simulation unit Makefile. The additional object files such as Simulation_init.o
are already added in the directory above SimulationMain.

3.3 Creating a Simulation data.F90

The Fortran module Simulation data is used to store data specific to the Simulation unit. In FLASH4-
alpha there is no central ‘database’, instead, each unit stores its own data in its Unit data Fortran mod-
ule. Data needed from other units is accessed through that unit’s interface. The basic structure of the
Simulation data module is shown below:

module Simulation_data
implicit none

!! Runtime Parameters
real, save :: sim_rhoLeft, sim_rhoRight, sim_pLeft, sim_pRight
real, save :: sim_uLeft, sim_uRight, sim_xAngle, sim_yAngle, sim_posn
real, save :: sim_gamma, sim_smallP, sim_smallX

!! Other unit variables
real, save :: sim_xCos, sim_yCos, sim_zCos

end module Simulation_data

Note that all the variables in this data module have the save attribute. Without this attribute the storage
for the variable is not guaranteed outside of the scope of Simulation data module with many compilers.
Also notice that there are many more variables in the data module than in the Config file. Some of them,
such as ’sim smallX’ etc, are runtime parameters from other units, while others such as ’sim xCos’ are
simulation specific variables that are available to all routines in the Simulation unit. The FLASH4-alpha
naming convention is that variables that begin with sim are used or “belong” to the Simulation unit.

3.4 Creating a Simulation init.F90

The routine Simulation init is called by the routine Driver initFlash at the beginning of the simulation.
Driver initFlash calls Unit init.F90 routines of every unit to initialize them. In this particular case, the
Simulation init routine will get the necessary runtime parameters and store them in the Simulation data
Fortran module, and also initialize other variables in the module. More generally, all one-time initialization
required by the simulation are implemented in the Simulation init routine.

FLASH Transition

In FLASH2, the contents of the if (.firstcall.) clause are now in the Simulation init
routine in FLASH4.

The basic structure of the routine Simulation init should consist of

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_initFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_init_F90.html
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1. Fortran module use statement for the Simulation data

2. Fortran module use statement for the Unit_interfaces to access the interface
of the RuntimeParameters unit, and any other units being used.

3. Variable typing implicit none statement

4. Necessary #include header files

5. Declaration of arguments and local variables.

6. Calls to the RuntimeParameters unit interface to obtain the values of runtime
parameters.

7. Calls to the PhysicalConstants unit interface to initialize any necessary physical
constants.

8. Calls to the Multispecies unit interface to initialize the species’ properties, if
there multiple species are in use

9. Initialize other unit scope variables, packages and functions

10. Any other calculations that are needed only once at the beginning of the run.

In this example after the implicit none statement we include two files, "constants.h", and "Flash.h".
The "constants.h" file holds global constants defined in the FLASH code such as MDIM, MASTER PE, and
MAX STRING LENGTH. It also stores constants that make reading the code easier, such as IAXIS, JAXIS, and
KAXIS, which are defined as 1,2, and 3, respectively. More information is available in comments in the
distributed constants.h. A complete list of defined constants is available on the Code Support Web Page.

The "Flash.h" file contains all of the definitions specific to a given problem. This file is generated by
the setup script and defines the indices for the variables in various data structures. For example, the index
for density in the cell centered grid data structure is defined as DENS VAR. The "Flash.h" file also defines
the number of species, number of dimensions, maximum number of blocks, and many more values specific
to a given run. Please see Chapter 6 for complete description of the Flash.h file.

FLASH Transition

The defined constants in "Flash.h" file allows the user direct access to the variable index
in ‘unk.’ This direct access is unlike FLASH2, where the user would first have to get the
integer index of the variable by calling a data base function and then use the integer variable
idens as the variable index. Previously:

idens=dBaseKeyNumber(’dens’)
ucons(1,i) = solnData(idens,i,j,k)

Now, the syntax is simpler:

ucons(1,i) = solnData(DENS_VAR,i,j,k)

This new syntax also allows discovery of specification errors at compile time.

subroutine Simulation_init()

use Simulation_data
use RuntimeParameters_interface, ONLY : RuntimeParameters_get
implicit none

http://flash.uchicago.edu/site/flashcode/user_support
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#include "Flash.h"
#include "constants.h"

! get the runtime parameters relevant for this problem

call RuntimeParameters_get(’smallp’, sim_smallP)
call RuntimeParameters_get(’smallx’, sim_smallX)
call RuntimeParameters_get(’gamma’, sim_gamma)
call RuntimeParameters_get(’sim_rhoLeft’, sim_rhoLeft)
call RuntimeParameters_get(’sim_rhoRight’, sim_rhoRight)
call RuntimeParameters_get(’sim_pLeft’, sim_pLeft)
call RuntimeParameters_get(’sim_pRight’, sim_pRight)
call RuntimeParameters_get(’sim_uLeft’, sim_uLeft)
call RuntimeParameters_get(’sim_uRight’, sim_uRight)
call RuntimeParameters_get(’sim_xangle’, sim_xAngle)
call RuntimeParameters_get(’sim_yangle’, sim_yAngle)
call RuntimeParameters_get(’sim_posn’, sim_posn)

! Do other initializations
! convert the shock angle parameters

sim_xAngle = sim_xAngle * 0.0174532925 ! Convert to radians.
sim_yAngle = sim_yAngle * 0.0174532925

sim_xCos = cos(sim_xAngle)

if (NDIM == 1) then
sim_xCos = 1.
sim_yCos = 0.
sim_zCos = 0.

elseif (NDIM == 2) then
sim_yCos = sqrt(1. - sim_xCos*sim_xCos)
sim_zCos = 0.

elseif (NDIM == 3) then
sim_yCos = cos(sim_yAngle)
sim_zCos = sqrt( max(0., 1. - sim_xCos*sim_xCos - sim_yCos*sim_yCos) )

endif

end subroutine Simulation_init

3.5 Creating a Simulation initBlock.F90

The routine Simulation initBlock is called by the Grid unit to apply initial conditions to the physical
domain. If the AMR grid PARAMESH is being used, the formation of the physical domain starts at the lowest
level of refinement. Initial conditions are applied to each block at this level by calling Simulation initBlock.
The Grid unit then checks the refinement criteria in the blocks it has created and refines the blocks if the
criteria are met. It then calls Simulation initBlock to initialize the newly created blocks. This process
repeats until the grid reaches the required refinement level in the areas marked for refinement. The Uniform
Grid has only one level, with same resolution everywhere. Therefore, only one block per processor is created
and Simulation initBlock is called to initialize this single block. It is important to note that a problem’s
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Simulation initBlock routine is the same regardless of whether PARAMESH or Uniform Grid is being used.
The Grid unit handles these differences, not the Simulation unit.

The basic structure of the routine Simulation initBlock should be as follows:

1. A use statement for the Simulation data

2. One of more use statement to access other unit interfaces being used, for example
use Grid_interface, ONLY: Grid_putPointData

3. Variable typing implicit none statement

4. Necessary #include header files

5. Declaration of arguments and local variables.

6. Generation of initial conditions either from a file, or directly calculated in the
routine

7. Calls to the various Grid putData routines to store the values of solution vari-
ables.

We continue to look at the Sod setup and describe its Simulation initBlock in detail. The first part
of the routine contains all the declarations as shown below. The first statement in routine is the use
statement, which provides access to the runtime parameters and other unit scope variables initialized in
the Simulation_init routine. The include files bring in the needed constants, and then the arguments are
defined. The declaration of the local variables is next, with allocatable arrays for each block.

subroutine Simulation_initBlock(blockID)
! get the needed unit scope data
use Simulation_data, ONLY: sim_posn, sim_xCos, sim_yCos, sim_zCos,&

sim_rhoLeft, sim_pLeft, sim_uLeft, &
sim_rhoRight, sim_pRight, sim_uRight, &
sim_smallX, sim_gamma, sim_smallP

use Grid_interfaces, ONLY : Grid_getBlkIndexLimits, Grid_getCellCoords, &
Grid_putPointData

implicit none

! get all the constants
#include "constants.h"
#include "Flash.h"

! define arguments and indicate whether they are input or output
integer, intent(in) :: blockID

! declare all local variables.
integer :: i, j, k, n
integer :: iMax, jMax, kMax
real :: xx, yy, zz, xxL, xxR
real :: lPosn0, lPosn

! arrays to hold coordinate information for the block
real, allocatable, dimension(:) :: xCenter, xLeft, xRight, yCoord, zCoord

! array to get integer indices defining the beginning and the end
! of a block.
integer, dimension(2,MDIM) :: blkLimits, blkLimitsGC
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! the number of grid points along each dimension
integer :: sizeX, sizeY, sizeZ

integer, dimension(MDIM) :: axis
integer :: dataSize
logical :: gcell = .true.

! these variables store the calculated initial values of physical
! variables a grid point at a time.
real :: rhoZone, velxZone, velyZone, velzZone, presZone, &

enerZone, ekinZone

Note that FLASH promotes all floating point variables to double precision at compile time for maximum
portability. We therefore declare all floating point variables with real in the source code. In the next part
of the code we allocate the arrays that will hold the coordinates.

FLASH Transition

FLASH4-alpha supports blocks that are not sized at compile time to generalize the Uniform
Grid, and to be able to support different AMR packages in future. For this reason, the
arrays are not sized with the static NXB etc. as was the case in FLASH2. Instead they are
allocated on a block by block basis in Simulation initBlock. Performance is compromised
by the use of allocatable arrays, however, since this part of the code is executed only at
the beginning of the simulation, it has negligible impact on the overall execution time in
production runs.

! get the integer endpoints of the block in all dimensions
! the array blkLimits returns the interior end points
! whereas array blkLimitsGC returns endpoints including guardcells
call Grid_getBlkIndexLimits(blockId,blkLimits,blkLimitsGC)

! get the size along each dimension for allocation and then allocate
sizeX = blkLimitsGC(HIGH,IAXIS)
sizeY = blkLimitsGC(HIGH,JAXIS)
sizeZ = blkLimitsGC(HIGH,KAXIS)
allocate(xLeft(sizeX))
allocate(xRight(sizeX))
allocate(xCenter(sizeX))
allocate(yCoord(sizeY))
allocate(zCoord(sizeZ))

The next part of the routine involves setting up the initial conditions. This section could be code for
interpolating a given set of initial conditions, constructing some analytic model, or reading in a table of initial
values. In the present example, we begin by getting the coordinates for the cells in the current block. This
is done by a set of calls to Grid getCellCoords . Next we create loops that compute appropriate values for
each grid point, since we are constructing initial conditions from a model. Note that we use the blkLimits
array from Grid getBlkIndexLimits in looping over the spatial indices to initialize only the interior cells
in the block. To initialize the entire block, including the guardcells, the blkLimitsGC array should be used.

xCoord(:) = 0.0
yCoord(:) = 0.0
zCoord(:) = 0.0

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getCellCoords_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkIndexLimits_F90.html
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call Grid_getCellCoords(IAXIS, blockID, LEFT_EDGE, gcell, xLeft, sizeX)
call Grid_getCellCoords(IAXIS, blockID, CENTER, gcell, xCenter, sizeX)
call Grid_getCellCoords(IAXIS, blockID, RIGHT_EDGE, gcell, xRight, sizeX)
call Grid_getCellCoords(JAXIS, blockID, CENTER, gcell, yCoord, sizeY)
call Grid_getCellCoords(KAXIS, blockID, CENTER, gcell, zCoord, sizeZ)

!-----------------------------------------------------------------------------
! loop over all of the zones in the current block and set the variables.
!-----------------------------------------------------------------------------
do k = blkLimits(LOW,KAXIS),blkLimits(HIGH,KAXIS)

zz = zCoord(k) ! coordinates of the cell center in the z-direction
lPosn0 = sim_posn - zz*sim_zCos/sim_xCos ! Where along the x-axis

! the shock intersects
! the xz-plane at the current z.

do j = blkLimits(LOW,JAXIS),blkLimits(HIGH,JAXIS)
yy = yCoord(j) ! center coordinates in the y-direction
lPosn = lPosn0 - yy*sim_yCos/sim_xCos ! The position of the

! shock in the current yz-row.
dataSize = 1 ! for Grid put data function, we are

! initializing a single cell at a time and
! sending it to Grid

do i = blkLimits(LOW,IAXIS),blkLimits(HIGH,IAXIS)

xx = xCenter(i) ! center coordinate along x
xxL = xLeft(i) ! left coordinate along y
xxR = xRight(i) ! right coordinate along z

For the present problem, we create a discontinuity along the shock plane. We do this by initializing
the grid points to the left of the shock plane with one value, and the grid points to the right of the shock
plane with another value. Recall that the runtime parameters which provide these values are available to
us through the Simulation data module. At this point we can initialize all independent physical variables
at each grid point. The following code shows the contents of the loops. Don’t forget to store the calculated
values in the Grid data structure!

if (xxR <= lPosn) then
rhoZone = sim_rhoLeft
presZone = sim_pLeft

velxZone = sim_uLeft * sim_xCos
velyZone = sim_uLeft * sim_yCos
velzZone = sim_uLeft * sim_zCos

! initialize cells which straddle the shock. Treat them as though 1/2 of
! the cell lay to the left and 1/2 lay to the right.

elseif ((xxL < lPosn) .and. (xxR > lPosn)) then

rhoZone = 0.5 * (sim_rhoLeft+sim_rhoRight)
presZone = 0.5 * (sim_pLeft+sim_pRight)

velxZone = 0.5 *(sim_uLeft+sim_uRight) * sim_xCos
velyZone = 0.5 *(sim_uLeft+sim_uRight) * sim_yCos
velzZone = 0.5 *(sim_uLeft+sim_uRight) * sim_zCos
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! initialize cells to the right of the initial shock.
else

rhoZone = sim_rhoRight
presZone = sim_pRight

velxZone = sim_uRight * sim_xCos
velyZone = sim_uRight * sim_yCos
velzZone = sim_uRight * sim_zCos

endif
axis(IAXIS) = i ! Get the position of the cell in the block
axis(JAXIS) = j
axis(KAXIS) = k

! Compute the gas energy and set the gamma-values
! needed for the equation of state.

ekinZone = 0.5 * (velxZone**2 + velyZone**2 + velzZone**2)

enerZone = presZone / (sim_gamma-1.)
enerZone = enerZone / rhoZone
enerZone = enerZone + ekinZone
enerZone = max(enerZone, sim_smallP)

! store the variables in the current zone via the Grid_putPointData method

call Grid_putPointData(blockId, CENTER, DENS_VAR, EXTERIOR, axis, rhoZone)
call Grid_putPointData(blockId, CENTER, PRES_VAR, EXTERIOR, axis, presZone)
call Grid_putPointData(blockId, CENTER, VELX_VAR, EXTERIOR, axis, velxZone)
call Grid_putPointData(blockId, CENTER, VELY_VAR, EXTERIOR, axis, velyZone)
call Grid_putPointData(blockId, CENTER, VELZ_VAR, EXTERIOR, axis, velzZone)
call Grid_putPointData(blockId, CENTER, ENER_VAR, EXTERIOR, axis, enerZone)
call Grid_putPointData(blockId, CENTER, GAME_VAR, EXTERIOR, axis, sim_gamma)
call Grid_putPointData(blockId, CENTER, GAMC_VAR, EXTERIOR, axis, sim_gamma)

When Simulation initBlock returns, the Grid data structures for physical variables have the values
of the initial model for the current block. As mentioned before, Simulation initBlock is called for every
block that is created as the code refines the initial model.

3.6 Creating a Simulation freeUserArrays.F90

From within Simulation init, the user may create large allocatable arrays that are used for initialization
within Simulation initBlock or some other routine. An example would be a set of arrays that are used to
interpolate fields onto the blocks as they are being created. If these arrays use a lot of allocated memory,
the subroutine Simulation freeUserArrays gives the user a chance to free this memory using deallocate
statements. This subroutine is called after all initalization steps have been performed, and the default
implementation is a stub which does nothing. A customized version for a particular setup may be made by
copying the stub from the Simulation directory and editing it as need be.
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3.7 The runtime parameter file (flash.par)

The FLASH executable expects a flash.par file to be present in the run directory, unless another name
for the runtime input file is given as a command-line option. This file contains runtime parameters, and
thus provides a mechanism for partially controlling the runtime environment. The names of runtime param-
eters are case-insensitive. Copies of flash.par are kept in their respective Simulation directories for easy
distribution.

The flash.par file for the example setup is

# Density, pressure, and velocity on either side of interface
sim_rhoLeft = 1.
sim_rhoRight = 0.125

sim_pLeft = 1.
sim_pRight = 0.1
sim_uLeft = 0.
sim_uRight = 0.

# Angle and position of interface relative to x and y axes
sim_xangle = 0
sim_yangle = 90.
sim_posn = 0.5

# Gas ratio of specific heats
gamma = 1.4

geometry = cartesian

# Size of computational volume
xmin = 0.
xmax = 1.
ymin = 0.
ymax = 1.

# Boundary conditions

xl_boundary_type = "outflow"
xr_boundary_type = "outflow"

yl_boundary_type = "outflow"
yr_boundary_type = "outflow"

# Simulation (grid, time, I/O) parameters
cfl = 0.8
basenm = "sod_"
restart = .false.

# checkpoint file output parameters
checkpointFileIntervalTime = 0.2
checkpointFileIntervalStep = 0
checkpointFileNumber = 0

# plotfile output parameters
plotfileIntervalTime = 0.
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plotfileIntervalStep = 0
plotfileNumber = 0

nend = 1000
tmax = .2

run_comment = "Sod problem, parallel to x-axis"
log_file = "sod.log"
eint_switch = 1.e-4

plot_var_1 = "dens"
plot_var_2 = "pres"
plot_var_3 = "temp"

# AMR refinement parameters
lrefine_max = 6
refine_var_1 = "dens"

# These parameters are used only for the uniform grid
#iGridSize = 8 #defined as nxb * iprocs
#jGridSize = 8
#kGridSize = 1
iProcs = 1 #number or procs in the i direction
jProcs = 1
kProcs = 1

# When using UG, iProcs, jProcs and kProcs must be specified.
# These are the processors along each of the dimensions
#FIXEDBLOCKSIZE mode ::
# When using fixed blocksize, iGridSize etc are redundant in
# runtime parameters. These quantities are calculated as
# iGridSize = NXB*iprocs
# jGridSize = NYB*jprocs
# kGridSize = NZB*kprocs
#NONFIXEDBLOCKSIZE mode ::
# iGridSize etc must be specified. They constitute the global
# number of grid points in the physical domain without taking
# the guard cell into account. The local blocksize is calculated
# as iGridSize/iprocs etc.

In this example, flags are set to start the simulation from scratch and to set the grid geometry, boundary
conditions, and refinement. Parameters are also set for the density, pressure and velocity values on either
side of the shock, and also the angles and point of intersection of the shock with the “x” axis. Additional
parameters specify details of the run, such as the number of timesteps between various output files, and the
initial, minimum and final values of the timestep. The comments and alternate values at the end of the file
are provided to help configure uniform grid and variably-sized array situations.

When creating the flash.par file, another very helpful source of information is the setup params file
which gets written by the setup script each time a problem is setup. This file lists all possible runtime
parameters and their default values from the Config files, as well as a brief description of the parameters.
It is located in the object/ directory created at setup time.

Figure 3.1 shows the initial distribution of density for the 2-d Sod problem as setup by the example
described in this chapter.
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Figure 3.1: Image of the initial distribution of density in example setup.
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3.8 Running your simulation

You can run your simulation either in the object directory or in a separate run directory.
Running in the object directory is especially convenient for development and testing. The command for

starting a FLASH simulation may be system dependent, but typically you would type something like

mpirun -np N flash4

or

mpiexec -n N flash4

to start a run on N processing entities. On many systems, you can also simply use

./flash4

to start a run on 1 processing entity, i.e., without process-level parallelisation.
If you want to invoke FLASH in a separate run directory, the best way is to copy the flash4 binary

into the run directory, and then proceed as above. However, before starting FLASH you also need to do the
following:

• Copy a FLASH parfile, normally flash.par, into the run directory.

• If FLASH was configured with Paramesh4.0 in LIBRARY mode (this is not the default): copy the file
amr runtime parameters, into the run directory. This file should have been generated in the object
directory by running ./setup.

• Some code units use additional data or table files, which are also copied into the object directory by
./setup. (These files typically match one of the patterns *.dat or *_table*.) copy or move those
files into the run directory, too, if your simulation needs them.
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Part II

The FLASH Software System

33





Chapter 4

Overview of FLASH architecture

The files that make up the FLASH source are organized in the directory structure according to their func-
tionality and grouped into components called units. Throughout this manual, we use the word ‘unit’ to
refer to a group of related files that control a single aspect of a simulation, and that provide the user with an
interface of publicly available functions. FLASH can be viewed as a collection of units, which are selectively
grouped to form one application.

A typical FLASH simulation requires only a subset of all of the units in the FLASH code. When the user
gives the name of the simulation to the setup tool, the tool locates and brings together the units required
by that simulation, using the FLASH Config files (described in Chapter 5) as a guide. Thus, it is important
to distinguish between the entire FLASH source code and a given FLASH application. the FLASH units can
be broadly classified into five functionally distinct categories: infrastructure, physics, monitor, driver,
and simulation.

The infrastructure category encompasses the units responsible for FLASH housekeeping tasks such as
the management of runtime parameters, the handling of input and output to and from the code, and the
administration of the grid, which describes the simulation’s physical domain.

Units in the physics category such as Hydro (hydrodynamics), Eos (equation of state), and Gravity
implement algorithms to solve the equations describing specific physical phenomena.

The monitoring units Logfile, Profiler, and Timers track the progress of an application, while the
Driver unit implements the time advancement methods and manages the interaction between the included
units.

The simulation unit is of particular significance because it defines how a FLASH application will be
built and executed. When the setup script is invoked, it begins by examining the simulation’s Config file,
which specifies the units required for the application, and the simulation-specific runtime parameters. Initial
conditions for the problem are provided in the routines Simulation_init and Simulation_initBlock.
As mentioned in Chapter 3, the Simulation unit allows the user to overwrite any of FLASH’s default
function implementations by writing a function with the same name in the application-specific directory.
Additionally, runtime parameters declared in the simulation’s Config file override definitions of same-named
parameters in other FLASH units. These helpful features enable users to customize their applications,
and are described in more detail below in Section 4.1 and online in Architecture Tips. The simulation
unit also provides some useful interaces for modifying the behaviour of the application while it is running.
For example there is an interface Simulation adjustEvolution which is called at every time step. Most
applications would use the null implementation, but its implementation can be placed in the Simulation
directory of the application to customize behavior. The API functions of the Simulation unit are unique
in that except Simulation initSpecies, none of them have any default general implementations. At the
API level there are the null implementations, actual implementations exist only for specific applications.
The general implementations of Simulation initSpecies exist for different classes of applications, such as
those utilizing nuclear burning or ionization.

35
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FLASH Transition

Why the name change from “modules” in FLASH2 to “units” in FLASH3? The term
“module” caused confusion among users and developers because it could refer both to a
FORTRAN90 module and to the FLASH-specific code entity. In order to avoid this problem,
FLASH3 started using the word “module” to refer exclusively to an F90 module, and the
word “unit” for the basic FLASH code component. Also, FLASH no longer uses F90 modules
to implement units. Fortran’s limitation of one file per module is too restrictive for some of
FLASH4’s units, which are too complex to be described by a single file. Instead, FLASH4
uses interface blocks, which enable the code to take advantage of some of the advanced
features of FORTRAN90, such as pointer arguments and optional arguments. Interface
blocks are used throughout the code, even when such advanced features are not called for.
For a given unit, the interface block will be supplied in the file "Unit_interface.F90".
Please note that files containing calls to API-level functions must include the line use Unit,
ONLY: function-name1, function-name2, etc. at the top of the file.

4.1 FLASH Inheritance

FORTRAN90 is not an object-oriented language like Java or C++, and as such does not implement those
languages’ characteristic properties of inheritance. But FLASH takes advantage of the Unix directory struc-
ture to implement an inheritance hierarchy of its own. Every child directory in a unit’s hierarchy inherits
all the source code of its parent, thus eliminating duplication of common code. During setup, source files in
child directories override same-named files in the parent or ancestor directories.

Similarly, when the setup tool parses the source tree, it treats each child or subdirectory as inheriting all
of the Config and Makefile files in its parent’s directory. While source files at a given level of the directory
hierarchy override files with the same name at higher levels, Makefiles and configuration files are cumulative.
Since functions can have multiple implementations, selection for a specific application follows a few simple
rules applied in order described in Architecture Tips.

However, we must take care that this special use of the directory structure for inheritance does not
interfere with its traditional use for organization. We avoid any problems by means of a careful naming
convention that allows clear distinction between organizational and namespace directories.

To briefly summarize the convention, which is described in detail online in Architecture Tips, the top
level directory of a unit shares its name with that of the unit, and as such always begins with a capital letter.
Note, however, that the unit directory may not always exist at the top level of the source tree. A class
of units may also be grouped together and placed under an organizational directory for ease of navigation;
organizational directories are given in lower case letters. For example the grid management unit, called
Grid, is the only one in its class, and therefore its path is source/Grid, whereas the hydrodynamics unit,
Hydro, is one of several physics units, and its top level path is source/physics/Hydro. This method for
distinguishing between organizational directories and namespace directories is applied throughout the entire
source tree.

4.2 Unit Architecture

A FLASH unit defines its own Application Programming Interface (API), which is a collection of routines
the unit exposes to other units in the code. A unit API is usually a mix of accessor functions and routines
which modify the state of the simulation.

A good example to examine is the Grid unit API. Some of the accessor functions in this unit are
Grid getCellCoords, Grid getBlkData, and Grid putBlkData, while Grid fillGuardCells and
Grid updateRefinement are examples of API routines which modify data in the Grid unit.

A unit can have more than one implementation of its API. The Grid Unit, for example, has both an
Adaptive Grid and a Uniform Grid implementation. Although the implementations are different, they

http://flash.uchicago.edu/site/flashcode/user_support/tipsDoc.py?submit=tips_arch.txt
http://flash.uchicago.edu/site/flashcode/user_support/tipsDoc.py?submit=tips_arch.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getCellCoords_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_putBlkData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_fillGuardCells_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_updateRefinement_F90.html
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both conform to the Grid API, and therefore appear the same to the outside units. This feature allows users
to easily swap various unit implementations in and out of a simulation without affecting they way other
units communicate. Code does not have to be rewritten if the users decides to implement the uniform grid
instead of the adaptive grid.

4.2.1 Stub Implementations

Since routines can have multiple implementations, the setup script must select the appropriate implemen-
tation for an application. The selection follows a few simple rules described in Architecture Tips. The top
directory of every unit contains a stub or null implementation of each routine in the Unit’s API. The stub
functions essentially do nothing. They are coded with just the declarations to provide the same interface to
callers as a corresponding “real” implementation. They act as function prototypes for the unit. Unlike true
prototypes, however, the stub functions assign default values to the output-only arguments, while leaving
the other arguments unaltered. The following snippet shows a simplified example of a stub implementation
for the routine Grid getListOfBlocks.

subroutine Grid_getListOfBlocks(blockType, listOfBlocks, count)

implicit none

integer, intent(in) :: blockType
integer,dimension(*),intent(out) :: listOfBlocks
integer, intent(out) :: count

count=0
listOfBlocks(1)=0

return
end subroutine Grid_getListOfBlocks

While a set of null implementation routines at the top level of a unit may seem like an unnecessary added
layer, this arrangement allows FLASH to include or exclude units without the need to modify any existing
code. If a unit is not included in a simulation, the application will be built with its stub functions. Similarly,
if a specific implementation of the unit finds some of the API functions irrelevant, it need not provide
any implementations for them. In those situations, the applications include stubs for the unimplemented
functions, and full implementations of all the other ones. Since the stub functions do return valid values
when called, unexpected crashes from un-initialized output arguments are avoided.

The Grid updateRefinement routine is a good example of how stub functions can be useful. In the
case of a simulation using an adaptive grid, such as PARAMESH, the routine Driver evolveFlash calls
Grid_updateRefinement to update the grid’s spacing. The Uniform Grid however, needs no such routine be-
cause its grid is fixed. There is no error, however, when Driver_evolveFlash calls Grid_updateRefinement
during a Uniform Grid simulation, because the stub routine steps in and simply returns without doing any-
thing. Thus the stub layer allows the same Driver_evolveFlash routine to work with both the Adaptive
Grid and Uniform Grid implementations.

FLASH Transition

While the concept of “null” or “stub” functions existed in FLASH2, FLASH3 formalized it
by requiring all units to publish their API (the complete Public Interface) at the top level of
a unit’s directory. Similarly, the inheritance through Unix directory structure in FLASH4 is
essentially the same as that of FLASH2, but the introduction of a formal naming convention
has clarified it and made it easier to follow. The complete API can be found online at
http://flash.uchicago.edu/site/flashcode/user_support/.

http://flash.uchicago.edu/site/flashcode/user_support/tipsDoc.py?submit=tips_arch.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getListOfBlocks_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_updateRefinement_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_evolveFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/
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4.2.2 Subunits

One or more subunits sit under the top level of a unit. Among them the unit’s complete API is implemented.
The subunits are considered peers to one another. Each subunit must implement at least one API function,
and no two subunits can implement the same API function. The division of a unit into subunits is based
upon identifying self-contained subsets of its API. In some instances, a subunit may be completely excluded
from a simulation, thereby saving computational resources. For example, the Grid unit API includes a few
functions that are specific to Lagrangian tracer particles, and are therefore unnecessary to simulations that
do not utilize particles. By placing these routines in the GridParticles subunit, it is possible to easily
exclude them from a simulation. The subunits have composite names; the first part is the unit name, and
the second part represents the functionality that the subunit implements. The primary subunit is named
UnitMain, which every unit must have. For example, the main subunit of Hydro unit is HydroMain and that
of the Eos unit is EosMain.

In addition to the subunits, the top level unit directory may contain a subdirectory called localAPI.
This subdirectory allows a subunit to create a public interface to other subunits within its own unit; all
stub implementations of the subunit public interfaces are placed in localAPI. External units should not call
routines listed in the localAPI; for this reason these local interfaces are not shown in the general source
API tree.

A subunit can have a hierarchy of its own. It may have more than one unit implementation directories
with alternative implementations of some of its functions while other functions may be common between
them. FLASH exploits the inheritance rules described in Architecture Tips. For example, the Grid unit has
three implementations for GridMain: the Uniform Grid (UG), PARAMESH 2, and PARAMESH 4. The procedures
to apply boundary conditions are common to all three implementations, and are therefore placed directly
in GridMain. In addition, GridMain contains two subdirectories. One is UG, which has all the remaining
implementations of the API specific to the Uniform Grid. The other directory is organized as paramesh,
which in turn contains two directories for the package of PARAMESH 2 and another organizational directory
paramesh4. Finally, paramesh4 has two subdirectories with alternative implementations of the PARAMESH 4
package. The directory paramesh also contains all the function implementations that are common between
PARAMESH 2 and PARAMESH 4. Following the naming convention described in Architecture Tips, paramesh is
all lowercase, since it has child directories that have some API implementation. The namespace directories
Paramesh2, Paramesh4.0 andParamesh4dev contain functions unique to each implementation. An example
of a unit hierarchy is shown in Figure 4.1. The kernels are described below in Section 4.2.4.

4.2.3 Unit Data Modules, _init, and _finalize routines

Each unit must have a F90 data module to store its unit-scope local data and an Unit init file to initialize
it. The Unit init routines are called by the Driver unit once by the routine Driver initFlash at the start
of a simulation. They get unit specific runtime parameters from the RuntimeParameters unit and store
them in the unit data module.

Every unit implementation directory of UnitMain, must either inherit a Unit_data module, or have its
own. There is no restriction on additional unit scope data modules, and individual Units determine how best
to manage their data. Other subunits and the underlying computational kernels can have their own data
modules, but the developers are encouraged to keep these data modules local to their subunits and kernels
for clarity and maintainability of the code. It is strongly recommended that only the data modules in the
Main subunit be accessible everywhere in the unit. However, no data module of a unit may be known to
any other unit. This restriction is imposed to keep the units encapsulated and their data private. If another
part of the code needs access to any of the unit data, it must do so through accessor functions.

Additionally, when routines use data from the unit’s data module the convention is to indicate what
particular data is being used with the ONLY keyword, as in use Unit data, ONLY : un someData. See the
snippet of code below for the correct convention for using data from a unit’s FORTRAN Data Module.

subroutine Driver_evolveFlash()

use Driver_data, ONLY: dr_myPE, dr_numProcs, dr_nbegin, &
dr_nend, dr_dt, dr_wallClockTimeLimit, &

http://flash.uchicago.edu/site/flashcode/user_support/tipsDoc.py?submit=tips_arch.txt
http://flash.uchicago.edu/site/flashcode/user_support/tipsDoc.py?submit=tips_arch.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_initFlash_F90.html
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Figure 4.1: The unit hierarchy and inheritance.

dr_tmax, dr_simTime, dr_redshift, &
dr_nstep, dr_dtOld, dr_dtNew, dr_restart, dr_elapsedWCTime

implicit none

integer :: localNumBlocks

Each unit must also have a Unit_finalize routine to clean up the unit at the termination of a FLASH
run. The finalization routines might deallocate space or write out completion messages.

4.2.4 Private Routines: kernels and helpers

All routines in a unit that do not implement the API are classified as private routines. They are divided into
two broad categories: the kernel is the collection of routines that implement the unit’s core functionality
and solvers, and helper routines are supplemental to the unit’s API and sometimes act as a conduit to
its kernel. A helper function is allowed to know the other unit’s APIs but is itself known only locally
within the unit. The concept of helper functions allows minimization of the unit APIs, which assists in code
maintenance. The helper functions follow the convention of starting with an “un ” in their name, where “un”
is in some way derived from the unit name. For example, the helper functions of the Grid unit start with
gr , and those of Hydro unit start with hy . The helper functions have access to the unit’s data module,
and they are also allowed to query other units for the information needed by the kernel, by using their
accessor functions. If the kernel has very specific data structures, the helper functions can also populate
them with the collected information. An example of a helper function is gr_expandDomain, which refines an
AMR block. After refinement, equations of state usually need to be called, so the routine accesses the EOS
routines via Eos_wrapped.

The concept of kernels, on the other hand, facilitates easy import of third party solvers and software
into FLASH. The kernels are not required to follow either the naming convention or the inheritance rules
of the FLASH architecture. They can have their own hierarchy and data modules, and the top level of
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the kernel typically resides at leaf level of the FLASH unit hierarchy. This arrangement allows FLASH to
import a solver without having to modify its internal code, since API and helper functions hide the higher
level details from it, and hide its details from other units. However, developers are encouraged to follow the
helper function naming convention in the kernel where possible to ease code maintenance.

The Grid unit and the Hydro unit both provide very good examples of private routines that are clearly
distinguishable between helper functions and kernel. The AMR version of the Grid unit imports the PARAMESH
version 2 library as a vendor supplied branch in our repository. It sits under the lowest namespace directory
Paramesh2 in Grid hierarchy and maintains the library’s original structure. All other private functions in
the paramesh branch of Grid are helper functions and their names start with gr . In the Hydro unit the
entire hydrodynamic solver resides under the directory PPM, which was imported from the PROMETHEUS
code (see Section 14.1.2). PPM is a directional solver and requires that data be passed to it in vector form.
Routines like hy sweep and hy block are helper functions that collect data from the Grid unit, and put it
in the format required by PPM. These routines also make sure that data stay in thermodynamic equilibrium
through calls to the Eos unit. Neither PARAMESH 2, nor PPM has any knowledge of units outside their own.

4.3 Unit Test Framework

In keeping with good software practice, FLASH4 incorporates a unit test framework that allows for rigorous
testing and easy isolation of errors. The components of the unit test show up in two different places in
the FLASH source tree. One is a dedicated path in the Simulation unit, Simulation/SimulationMain/-
unitTest/UnitTestName, where UnitTestName is the name of a specific unit test. The other place is a
subdirectory called unitTest, somewhere in the hierarchy of the corresponding unit which implements a
function Unit unitTest and any helper functions it may need. The primary reason for organizing unit
tests in this somewhat confusing way is that unit tests are special cases of simulation setups that also need
extensive access to internal data of the unit being tested. By splitting the unit test into two places, it
is possible to meet both requirements without violating unit encapsulation. We illustrate the functioning
of the unit test framework with the unit test of the Eos unit. For more details please see Section 16.6.
The Eos unit test needs its own version of the routine Driver evolveFlash which makes a call to its
Eos unitTest routine. The initial conditions specification and unit test specific Driver evolveFlash are
placed in Simulation/SimulationMain/unitTest/Eos, since the Simulation unit allows any substitute
FLASH function to be placed in the specific simulation directory. The function Eos unitTest resides in
physics/Eos/unitTest, and therefore has access to all internal Eos data structures and helper functions.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_evolveFlash_F90.html


Chapter 5

The FLASH configuration script
(setup)

The setup script, found in the FLASH root directory, provides the primary command-line interface to
configuring the FLASH source code. It is important to remember that the FLASH code is not a single
application, but a set of independent code units which can be put together in various combinations to create
a multitude of different simulations. It is through the setup script that the user controls how the various
units are assembled.

The primary job of the setup script is to

• traverse the FLASH source tree and link necessary files for a given application to the object/ directory

• find the target Makefile.h for a given machine.

• generate the Makefile that will build the FLASH executable.

• generate the files needed to add runtime parameters to a given simulation.

• generate the files needed to parse the runtime parameter file.

More description of how setup and the FLASH4 architecture interact may be found in Chapter 4. Here
we describe its usage.

The setup script determines site-dependent configuration information by looking for a directory
sites/<hostname> where <hostname> is the hostname of the machine on which FLASH is running.1 Failing
this, it looks in sites/Prototypes/ for a directory with the same name as the output of the uname command.
The site and operating system type can be overridden with the -site and -ostype command-line options
to the setup command. Only one of these options can be used at one time. The directory for each site and
operating system type contains a makefile fragment Makefile.h that sets command names, compiler flags,
library paths, and any replacement or additional source files needed to compile FLASH for that specific
machine and machine type.

The setup script uses the contents of the problem directory and the site/OS type, together with a Units
file, to generate the object/ directory, which contains links to the appropriate source files and makefile
fragments. The Units file lists the names of all units which need to be included while building the FLASH
application. This file is automatically generated when the user commonly provides the command-line -auto
option, although it may be assembled by hand. When -auto option is used, the setup script starts with the
Config file of the problem specified, finds its REQUIRED units and then works its way through their Config
files. This process continues until all the dependencies are met and a self-consistent set of units has been
found. At the end of this automatic generation, the Units file is created and placed in the object/ directory,
where it can be edited if necessary. setup also creates the master makefile (object/Makefile) and several
FORTRAN include files that are needed by the code in order to parse the runtime parameters. After running
setup, the user can create the FLASH executable by running gmake in the object directory.

1if a machine has multiple hostnames, setup tries them all
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FLASH Transition

In FLASH2, the Units file was located in the FLASH root directory. In FLASH4, this file
is found in the object/ directory.

Save some typing

• All the setup options can be shortened to unambiguous prefixes, e.g. instead of
./setup -auto <problem-name> one can just say ./setup -a <problem-name> since
there is only one setup option starting with a.

• The same abbreviation holds for the problem name as well. ./setup
-a IsentropicVortex can be abbreviated to ./setup -a Isen assuming that
IsentropicVortex is the only problem name which starts with Isen.

• Unit names are usually specified by their paths relative to the source directory. How-
ever, setup also allows unit names to be prefixed with an extra “source/”, allowing
you to use the TAB-completion features of your shell like this

./setup -a Isen -unit=sou<TAB>rce/IO/IOM<TAB>ain/hd<TAB>f5

• If you use a set of options repeatedly, you can define a shortcut for them. FLASH4
comes with a number of predefined shortcuts that significantly simplify the setup
line, particularly when trying to match the Grid with a specific I/O implementation.
For more details on creating shortcuts see Section 5.3. For detailed examples of I/O
shortcuts please see Section 9.1in the I/O chapter.

Reduce compilation time

• To reuse compiled code when changing setup configurations, use the -noclobber setup
option. For details see Section 5.2.

5.1 Setup Arguments

The setup script accepts a large number of command line arguments which affect the simulation in various
ways. These arguments are divided into three categories:

1. Setup Options (example: -auto) begin with a dash and are built into the setup script itself. Many of
the most commonly used arguments are setup options.

2. Setup Variables (example: species=air,h2o) are defined by individual units. When writing a Config
file for any unit, you can define a setup variable. Section 5.4 explains how setup variables can be
created and used.

3. Setup Shortcuts (example: +ug) begin with a plus symbol and are essentially macros which automati-
cally include a set of setup variables and/or setup options. New setup shortcuts can be easily defined,
see Section 5.3 for more information.

Table 5.1 shows a list of some of the basic setup arguments that every FLASH user should know about.
A comprehensive list of all setup arguments can be found in Section 5.2 alongside more detailed descriptions
of these options.
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Table 5.1: List of Commonly Used Setup Arguments

Argument Description
-auto this option should almost always be set
-unit=<unit> include a specified unit
-objdir=<dir> specify a different object directory location
-debug compile for debugging
-opt enable compiler optimization
-n[xyb]b=# specify block size in each direction
-maxblocks=# specify maximum number of blocks per process
-[123]d specify number of dimensions
-maxblocks=# specify maximum number of blocks per process
+cartesian use Cartesian geometry
+cylindrical use cylindrical geometry
+polar use polar geometry
+spherical use spherical geometry
+noio disable IO
+ug use the uniform grid in a fixed block size mode
+nofbs use the uniform grid in a non-fixed block size mode
+pm2 use the PARAMESH2 grid
+pm40 use the PARAMESH4.0 grid
+pm4dev use the PARAMESH4DEV grid
+uhd use the Unsplit Hydro solver
+usm use the Unsplit Staggered Mesh MHD solver
+splitHydro use a split Hydro solver

5.2 Comprehensive List of Setup Arguments

-verbose=<verbosity>

Normally setup prints summary messages indicating its progress. Use the -verbose to make
the messages more or less verbose. The different levels (in order of increasing verbosity) are
ERROR,IMPINFO,WARN,INFO,DEBUG. The default is WARN.

-auto

Normally, setup requires that the user supply a plain text file called Units (in the object directory
2) that specifies the units to include. A sample Units file appears in Figure 5.1. Each line is
either a comment (preceded by a hash mark (#)) or the name of a an include statement of the
form INCLUDE unit. Specific implementations of a unit may be selected by specifying the complete
path to the implementation in question; If no specific implementation is requested, setup picks
the default listed in the unit’s Config file.

2Formerly, (in FLASH2) it was located in the FLASH root directory
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The -auto option enables setup to generate a “rough draft” of a Units file for the user. The
Config file for each problem setup specifies its requirements in terms of other units it requires. For
example, a problem may require the perfect-gas equation of state (physics/Eos/EosMain/Gamma)
and an unspecified hydro solver (physics/Hydro). With -auto, setup creates a Units file by
converting these requirements into unit include statements. Most users configuring a problem for
the first time will want to run setup with -auto to generate a Units file and then to edit it directly
to specify alternate implementations of certain units. After editing the Units file, the user must
re-run setup without -auto in order to incorporate his/her changes into the code configuration.
The user may also use the command-line option -with-unit=<path> in conjunction with the
-auto option, in order to pick a specific implementation of a unit, and thus eliminate the need to
hand-edit the Units file.

-[123]d

By default, setup creates a makefile which produces a FLASH executable capable of solving
two-dimensional problems (equivalent to -2d). To generate a makefile with options appropriate
to three-dimensional problems, use -3d. To generate a one-dimensional code, use -1d. These
options are mutually exclusive and cause setup to add the appropriate compilation option to the
makefile it generates.

-maxblocks=#

This option is also used by setup in constructing the makefile compiler options. It determines
the amount of memory allocated at runtime to the adaptive mesh refinement (AMR) block
data structure. For example, to allocate enough memory on each processor for 500 blocks, use
-maxblocks=500. If the default block buffer size is too large for your system, you may wish to try
a smaller number here; the default value depends upon the dimensionality of the simulation and
the grid type. Alternatively, you may wish to experiment with larger buffer sizes, if your system
has enough memory. A common cause of aborted simulations occurs when the AMR grid creates
greater than maxblocks during refinement. Resetup the simulation using a larger value of this
option.

-nxb=# -nyb=# -nzb=#

These options are used by setup in constructing the makefile compiler options. The mesh on
which the problem is solved is composed of blocks, and each block contains some number of cells.
The -nxb, -nyb, and -nzb options determine how many cells each block contains (not counting
guard cells). The default value for each is 8. These options do not have any effect when running
in Uniform Grid non-fixed block size mode.

[-debug|-opt|-test]

The default Makefile built by setup will use the optimized setting (-opt) for compilation and
linking. Using -debug will force setup to use the flags relevant for debugging (e.g., including -g
in the compilation line). The user may use the option -test to experiment with different combi-
nations of compiler and linker options. Exactly which compiler and linker options are associated
with each of these flags is specified in sites/<hostname>/Makefile* where <hostname> is the
hostname of the machine on which FLASH is running.
For example, to tell an Intel Fortran compiler to use real numbers of size 64 when the -test
option is specified, the user might add the following line to his/her Makefile.h:

FFLAGS_TEST = -real_size 64

-objdir=<dir>

Overrides the default object directory with <dir>. Using this option allows you to have different
simulations configured simultaneously in the FLASH4 distribution directory.

-with-unit=<unit>, -unit=<unit>

Use the specified <unit> in setting up the problem.
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#Units file for Sod generated by setup

INCLUDE Driver/DriverMain/Split
INCLUDE Grid/GridBoundaryConditions
INCLUDE Grid/GridMain/paramesh/interpolation/Paramesh4/prolong
INCLUDE Grid/GridMain/paramesh/interpolation/prolong
INCLUDE Grid/GridMain/paramesh/paramesh4/Paramesh4.0/PM4_package/headers
INCLUDE Grid/GridMain/paramesh/paramesh4/Paramesh4.0/PM4_package/mpi_source
INCLUDE Grid/GridMain/paramesh/paramesh4/Paramesh4.0/PM4_package/source
INCLUDE Grid/GridMain/paramesh/paramesh4/Paramesh4.0/PM4_package/utilities/multigrid
INCLUDE Grid/localAPI
INCLUDE IO/IOMain/hdf5/serial/PM
INCLUDE IO/localAPI
INCLUDE PhysicalConstants/PhysicalConstantsMain
INCLUDE RuntimeParameters/RuntimeParametersMain
INCLUDE Simulation/SimulationMain/Sod
INCLUDE flashUtilities/contiguousConversion
INCLUDE flashUtilities/general
INCLUDE flashUtilities/interpolation/oneDim
INCLUDE flashUtilities/nameValueLL
INCLUDE monitors/Logfile/LogfileMain
INCLUDE monitors/Timers/TimersMain/MPINative
INCLUDE physics/Eos/EosMain/Gamma
INCLUDE physics/Hydro/HydroMain/split/PPM/PPMKernel

Figure 5.1: Example of the Units file used by setup to determine which Units to include

-curvilinear

Enable code in PARAMESH 4 that implements geometrically correct data restriction for curvilinear
coordinates. This setting is automatically enabled if a non-cartesian geometry is chosen with
the -geometry flag; so specifying -curvilinear only has an effect in the Cartesian case.

-defines=<def>[,<def>]...

<def> is of the form SYMBOL or SYMBOL=value. This causes the specified pre-processor symbols
to be defined when the code is being compiled. This is mainly useful for debugging the code.
For e.g., -defines=DEBUG ALL turns on all debugging messages. Each unit may have its own
DEBUG UNIT flag which you can selectively turn on.

[-fbs|-nofbs]

Causes the code to be compiled in fixed-block or non-fixed-block size mode. Fixed-block mode is
the default. In non-fixed block size mode, all storage space is allocated at runtime. This mode is
available only with Uniform Grid.

-geometry=<geometry>

Choose one of the supported geometries cartesian, cylindrical, spherical, or polar. Some
Grid implementations require the geometry to be known at compile-time while others don’t.
This setup option can be used in either case; it is a good idea to specify the geometry here
if it is known at setup-time. Choosing a non-Cartesian geometry here automatically sets the
-gridinterpolation=monotonic option below.
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-gridinterpolation=<scheme>

Select a scheme for Grid interpolation. Two schemes are currently supported:

• monotonic
This scheme attempts to ensure that monotonicity is preserved in interpolation, so that
interpolation does not introduce small-scale non-monotonicity in the data.
The monotonic scheme is required for curvilinear coordinates and is automatically enabled
if a non-cartesian geometry is chosen with the -geometry flag. For AMR Grid imple-
mentations, This flag will automatically add additional directories so that appropriate data
interpolation methods are compiled it. The monotonic scheme is the default (by way of the
+default shortcut), unlike in FLASH2.

• native
Enable the interpolation that is native to the AMR Grid implementation (PARAMESH 2 or
PARAMESH 4) by default. This option is only appropriate for Cartesian geometries.

Change in Interpolation

Note that the default interpolation behavior has changed as of the FLASH3 beta release:
the native interpolation used to be default.

When to use native Grid interpolation

The monotonic interpolation method requires more layers of coarse guard cells next to a
coarse guard cell in which interpolation is to be applied. It may therefore be necessary to
use the native method if a simulation is set up to include fewer than four layers of guard
cells.

-makefile=<extension>

setup normally uses the Makefile.h from the directory determined by the hostname of the
machine and the -site and -os options. If you have multiple compilers on your machine you
can create Makefile.h.<extension> for different compilers. e.g., you can have a Makefile.h
and Makefile.h.intel and Makefile.h.lahey for the three different compilers. setup will still
use the Makefile.h file by default, but supplying -makefile=intel on the command-line causes
setup to use Makefile.h.intel instead.

-index-reorder

Instructs setup that indexing of unk and related arrays should be changed. This may be needed
in FLASH4 for compatibility with alternative grids. This is supported by both the Uniform Grid
as well as PARAMESH, and is currently required for the Chombo grid.

-makehide

Ordinarily, the commands being executed during compilation of the FLASH executable are sent to
standard out. It may be that you find this distracting, or that your terminal is not able to handle
these long lines of display. Using the option -makehide causes setup to generate a Makefile so
that gmake only displays the names of the files being compiled and not the exact compiler call
and flags. This information remains available in setup flags in the object/ directory.
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-noclobber

setup normally removes all code in the object directory before linking in files for a simulation.
The ensuing gmake must therefore compile all source files anew each time setup is run. The
-noclobber option prevents setup from removing compiled code which has not changed from the
previous setup in the same directory. This can speed up the gmake process significantly.

-os=<os>

If setup is unable to find a correct sites/ directory it picks the Makefile based on the operating
system. This option instructs setup to use the default Makefile corresponding to the specified
operating system.

-parfile=<filename>

This causes setup to copy the specified runtime-parameters file in the simulation directory to the
object directory with the new name flash.par

-particlemethods=TYPE=<particle type>[,INIT=<init method>][,MAP=<map method>][,ADV=<advance method>]

This option instructs setup to adjust the particle methods for a particular particle type. It
can only be used when a particle type has already been registered with a PARTICLETYPE
line in a Config file (see Section 6.6.1). A possible scenario for using this option in-
volves the user wanting to use a different passive particle initialization method without mod-
ifying the PARTICLETYPE line in the simulation Config file. In this case, an additional
-particlemethods=TYPE=passive,INIT=cellmass adjusts the initialization method associated
with passive particles in the setup generated Particles_specifyMethods() subroutine. Since
the specification of a method for mapping and initialization requires inclusions of appropriate im-
plementations of ParticlesMapping and ParticlesInitialization subunits, and the specifica-
tion of a method for time advancement requires inclusion of an appropriate implementation under
ParticlesMain, it is the user’s responsibility to adjust the included units appropriately. For exam-
ple a user may want want to override Config file defined particle type passive using lattice initial-
ization CellMassBins density based distribution method using the setup command line. Here the
user must first specify -without-unit=Particles/ParticlesInitialization/Lattice to ex-
clude the lattice initialization, followed by -with-unit=Particles/ParticlesInitialization/-
WithDensity/CellMassBins specification to include the appropriate implementation. In general,
using command line overrides of -particlemethods are not recommended, as this option increases
the chance of creating an inconsistent simulation setup. More information on multiple particle
types can be found in Chapter 20, especially Section 20.3.

-portable

This option causes setup to create a portable object directory by copying instead of linking to
the source files. The resulting object directory can be tarred and sent to another machine for
actual compilation.

-site=<site>

setup searches the sites/ directory for a directory whose name is the hostname of the machine
on which setup is being run. This option tells setup to use the Makefile of the specified site. This
option is useful if setup is unable to find the right hostname (which can happen on multiprocessor
or laptop machines). Also useful when combined with the -portable option.

-unitsfile=<filename>

This causes setup to copy the specified file to the object directory as Units before setting up
the problem. This option can be used when -auto is not used, to specify an alternate Units file.
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-with-library=<libname>[,args], -library=<libname>[,args]

This option instructs setup to link in the specified library when building the final executable. A
library is a piece of code which is independent of FLASH. Internal libraries are those libraries whose
code is included with FLASH. The setup script supports external as well as internal libraries.
Information about external libraries is usually found in the site specific Makefile. The additional
args if any are library-specific and may be used to select among multiple implementations. For
more information see Library-HOWTO.

-tau=<makefile>

This option causes the inclusion of an additional Makefile necessary for the operation of Tau,
which may be used by the user to profile the code. More information on Tau can be found at
http://acts.nersc.gov/tau/

-without-library=<libname>

Negates a previously specified -with-library=<libname>[,args]

-without-unit=<unit>

This removes all units specified in the command line so far, which are children of the specified unit
(including the unit itself). It also negates any REQUESTS keyword found in a Config file for
units which are children of the specified unit. However it does not negate a REQUIRES keyword
found in a Config file.

+default

This shortcut specifies using basic default settings and is equivalent to the following:
--with-library=mpi +io +grid-gridinterpolation=monotonic

+noio

This shortcut specifies a simulation without IO and is equivalent to the following:
--without-unit=physics/sourceTerms/EnergyDeposition/EnergyDepositionMain/Laser/LaserIO
--without-unit=IO

+io

This shortcut specifies a simulation with basic IO and is equivalent to the following:
--with-unit=IO

+serialIO

This shortcut specifies a simulation using serial IO, it has the effect of setting the setup variable
parallelIO = False

+parallelIO

This shortcut specifies a simulation using serial IO, it has the effect of setting the setup variable
parallelIO = True

+hdf5

This shortcut specifies a simulation using hdf5 for compatible binary IO output, it has the effect
of setting the setup variable
IO = hdf5

+pnetcdf

This shortcut specifies a simulation using pnetcdf for compatible binary IO output, it has the
effect of setting the setup variable
IO = pnetcdf

http://flash.uchicago.edu/site/flashcode/user_support/flash_howtos/home.py?submit=Library-HOWTO.txt
http://acts.nersc.gov/tau/
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+hdf5TypeIO

This shortcut specifies a simulation using hdf5, with parallel io capability for compatible binary
IO output, and is equivalent to the following:
+io +parallelIO +hdf5 typeIO=True

+pnetTypeIO

This shortcut specifies a simulation using pnetcdf, with parallel io capability for compatible binary
IO output, and is equivalent to the following:
+io +parallelIO +pnetcdf typeIO=True

+nolog

This shortcut specifies a simulation without log capability it is equivalent to the following:
-without-unit=monitors/Logfile

+grid

This shortcut specifies a simulation with the Grid unit, it is equivalent to the following:
-unit=Grid

+ug

This shortcut specifies a simulation using a uniform grid, it is equivalent to the following:
+grid Grid=UG

+pm2

This shortcut specifies a simulation using Paramesh2 for the grid, it is equivalent to the following:
+grid Grid=PM2

+pm40

This shortcut specifies a simulation using Paramesh4.0 for the grid, it is equivalent to the following:
+grid Grid=PM40

+pm3

This shortcut (for backward compatibility) specifies a simulation using Paramesh4.0 for the grid,
it is equivalent to the following:
+pm40

+chombo_ug

This shortcut specifies a simulation using a Chombo uniform grid, it is equivalent to the
following:
-unit=Grid/GridMain/Chombo/UG -index-reorder Grid=Chombo -maxblocks=1 -nofbs
-makefile=chombo chomboCompatibleHydro=True

+chombo_amr

This shortcut specifies a simulation using a Chombo amr grid, it is equivalent to the following:
-unit=Grid/GridMain/Chombo/AMR -index-reorder Grid=Chombo -nofbs
-makefile=chombo chomboCompatibleHydro=True

+pm4dev_clean

This shortcut specifies a simulation using a version of Paramesh 4 that is closer to the version
available on sourceforge. It is equivalent to:
+grid Grid=PM4DEV ParameshLibraryMode=True

+pm4dev

This shortcut specifies a simulation using a modified version of Paramesh 4 that includes a more
scalable way of filling the surr blks array. It is equivalent to:
+pm4dev_clean FlashAvoidOrrery=True
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+8wave

This shortcut specifies a MHD simulation using the 8wave mhd solver, which only works with
the native interpolation. It is equivalent to:
--with-unit=physics/Hydro/HydroMain/split/MHD_8Wave +grid
-gridinterpolation=native

+usm

This shortcut specifies a MHD simulation using the unsplit staggered mesh hydro solver, if pure
hydro mode is used with the USM solver add +pureHydro in the setup line. It is equivalent to:
--with-unit=physics/Hydro/HydroMain/unsplit/MHD_StaggeredMesh
--without-unit=physics/Hydro/HydroMain/split/MHD_8Wave

+pureHydro

This shortcut specifies using pure hydro mode, it is equivalent to:
physicsMode=hydro

+splitHydro

This shortcut specifies a simulation using a split hydro solver and is equivalent to:
--unit=physics/Hydro/HydroMain/split -without-unit=physics/Hydro/HydroMain/unsplit
SplitDriver=True

+unsplitHydro

This shortcut specifies a simulation using the unsplit hydro solver and is equivalent to:
--with-unit=physics/Hydro/HydroMain/unsplit/Hydro_Unsplit

+uhd

This shortcut specifies a simulation using the unsplit hydro solver and is equivalent to:
--with-unit=physics/Hydro/HydroMain/unsplit/Hydro_Unsplit

+supportPPMUpwind

This shortcut specifies a simulation using a specific Hydro method that requires an increased
number of guard cells, this may need to be combined with -nxb=... -nyb=... etc. where
the specified blocksize is greater than or equal to 12 (==2*GUARDCELLS). It is equivalent to:
SupportPpmUpwind=True

+cube64

This shortcut specifies a simulation with a block size of 64**3, it is equivalent to:
-nxb=64 -nyb=64 -nzb=64

+cube32

This shortcut specifies a simulation with a block size of 32**3, it is equivalent to:
-nxb=32 -nyb=32 -nzb=32

+cube16

This shortcut specifies a simulation with a block size of 16**3, it is equivalent to:
-nxb=16 -nyb=16 -nzb=16

+ptio

This shortcut specifies a simulation using particles and IO for uniform grid, it is equivalent to:
+ug -with-unit=Particles

+rnf

This shortcut is used for checking FLASH with rectangular block sizes and non-fixed block size.
It is equivalent to:
-3d -nxb=8 -nyb=16 -nzb=32 -nofbs +ug
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+nofbs

This shortcut specifies a simulation using a uniform grid with a non-fixed block size. It is equivalent
to:
-nofbs +ug parallelIO=True

+curvilinear

This shortcut specifies a simulation using curvilinear geometry. It is equivalent to:
-curvilinear

+cartesian

This shortcut specifies a simulation using cartesian geometry. It is equivalent to:
-geometry=cartesian

+spherical

This shortcut specifies a simulation using spherical geometry. It is equivalent to:
-geometry=spherical

+polar

This shortcut specifies a simulation using polar geometry. It is equivalent to:
-geometry=polar

+cylindrical

This shortcut specifies a simulation using cylindrical geometry. It is equivalent to:
-geometry=cylindrical

+curv-pm2

This shortcut specifies a simulation using curvilinear coordinates along with Paramesh2, it is
equivalent to:
+pm2 -unit=Grid/GridMain/paramesh/Paramesh2
-with-unit=Grid/GridMain/paramesh/Paramesh2/monotonic

+spherical-pm2

This shortcut specifies a simulation using spherical coordinates along with Paramesh2, it is equiv-
alent to:
+pm2 +spherical

+ptdens

This shortcut specifies a simulation using passive particles initialized by density. It is equivalent
to:
-without-unit=Particles/ParticlesInitialization/Lattice
-without-unit=Particles/ParticlesInitialization/WithDensity/CellMassBins
-unit=Particles/ParticlesMain
-unit=Particles/ParticlesInitialization/WithDensity
-particlemethods=TYPE=passive,INIT=With_Density

+npg

This shortcut specifies a simulation using NO˙PERMANENT˙GUARDCELLS mode in
Paramesh4. It is equivalent to:
npg=True

+mpole

This shortcut specifies a smilulation using multipole gravity, it is equivalent to:
-with-unit=physics/Gravity/GravityMain/Poisson/Multipole
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+longrange

This shortcut specifies a simulation using long range active particles. It is equivalent to:
-with-unit=Particles/ParticlesMain/active/longRange/gravity/ParticleMesh

+gravPfftNofbs

This shortcut specifies a simulation using FFT based gravity solve on a uniform grid with no fixed
block size. It is equivalent to:
+ug +nofbs -with-unit=physics/Gravity/GravityMain/Poisson/Pfft

+gravMgrid

This shortcut specifies a simulation using a multigrid based gravity solve. It is equivalent to:
+pm40 -with-unit=physics/Gravity/GravityMain/Poisson/Multigrid

+gravMpole

This shortcut specifies a smilulation using multipole gravity, it is equivalent to:
-with-unit=physics/Gravity/GravityMain/Poisson/Multipole

+noDefaultMpole

This shortcut specifies a simulation *not* using the multipole based gravity solve. It is equivalent
to:
-without-unit=Grid/GridSolvers/Multipole

+noMgrid

This shortcut specifies a simulation *not* using the multigrid based gravity solve. It is equivalent
to:
-without-unit=physics/Gravity/GravityMain/Poisson/Multigrid

+newMpole

This shortcut specifies a simulation using the new multipole based gravity solve. It is equivalent
to:
+noMgrid +noDefaultMpole +gravMpole -with-unit=Grid/GridSolvers/Multipole_new

+mpi1

This shortcut specifies a simulation using the MPI-1 standard. It is equivalent to:
mpi1=True -defines=FLASH_MPI1

+mpi2

This shortcut specifies a simulation using the MPI-2 standard. It is equivalent to:
mpi2=True -defines=FLASH_MPI2

+mtmmmt

This shortcut specifies use of the MultiTemp/MultiType and Tabulated EOSes (for HEDP
simulations). It is equivalent to:
-unit=physics/Eos/EosMain/multiTemp/Multitype -unit=physics/Eos/EosMain/Tabulated
Mtmmmt=1

+3t

This shortcut sets a variable and a preprocessor symbol to request MultiTemp implementations
of some units. It is equivalent to:
ThreeT=1 -defines=FLASH_3T

+uhd3t

This shortcut specifies a simulation using unsplit hydro with MultiTemp EOS. It is equivalent to:
+3t -without-unit=physics/Hydro/HydroMain/split
-with-unit=physics/Hydro/HydroMain/unsplit/Hydro_Unsplit
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+usm3t

This shortcut specifies a simulation using unsplit MHD with MultiTemp EOS. It is equivalent to:
+3t -without-unit=physics/Hydro/HydroMain/split
--with-unit=physics/Hydro/HydroMain/unsplit/MHD_StaggeredMesh
--without-unit=physics/Hydro/HydroMain/split/MHD_8Wave

+mgd

This shortcut specifies a simulation using the MGD (magneto gas dynamic) radiative transfer
module. It is equivalent to:
-unit=physics/materialProperties/Opacity -unit=physics/RadTrans/RadTransMain/MGD

+laser

This shortcut specifies use of source terms for energy deposition. It is equivalent to:
-unit=physics/sourceTerms/EnergyDeposition/EnergyDepositionMain/Laser
-without-unit=Particles

+pic

This shortcut specifies use of proper particle units to perform PIC (particle in cell) method. It is
equivalent to:
+ug -unit=Grid/GridParticles/GridParticlesMove
-without-unit=Grid/GridParticles/GridParticlesMove/UG
-without-unit=Grid/GridParticles/GridParticlesMove/UG/Directional

Grid

This setup variable can be used to specify which gridding package to use in a simulation:
Name: Grid
Type: String
Values: PM4DEV, PM40, UG, PM2, Chombo

IO

This setup variable can be used to specify which IO package to use in a simulation:
Name: IO
Type: String
Values: hdf5, pnetcdf, MPIHybrid, MPIDump, direct

parallelIO

This setup variable can be used to specify which type of IO strategy will be used. A “parallel”
strategy will be used if the value is true, a “serial” strategy otherwise.
Name: parallelIO
Type: Boolean
Values: True, False

fixedBlockSize

This setup variable indicates whether or not a fixed block size is to be used. This variable should
not be assigned explicitly on the command line. It defaults to True, and the setup options -nofbs
and -fbs modify the value of this variable.
Name: fixedBlockSize
Type: Boolean
Values: True, False

nDim

This setup variable gives the dimensionality of a simulation. This variable should not be set
explicitly on the command line, it is automatically set by the setup options -1d, -2d, and -3d.
Name: nDim
Type: integer
Values: 1,2,3
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GridIndexOrder

This setup variable indicates whether the -index-reorder setup option is in effect. This variable
should not be assigned explicitly on the command line.
Name: GridIndexOrder
Type: Boolean
Values: True, False

nxb

This setup variable gives the number of zones in a block in the X direction. This variable should
not be assigned explicitly on the command line, it is automatically set by the setup option -nxb.
Name: nxb
Type: integer

nyb

This setup variable gives the number of zones in a block in the Y direction. This variable should
not be assigned explicitly on the command line, it is automatically set by the setup option -nyb.
Name: nyb
Type: integer

nzb

This setup variable gives the number of zones in a block in the Z direction. This variable should
not be assigned explicitly on the command line, it is automatically set by the setup option -nzb.
Name: nzb
Type: integer

maxBlocks

This setup variable gives the maximum number of blocks per processor. This variable should not
be assigned explicitly on the command line, it is automatically set by the setup option -maxblocks.
Name: maxBlocks
Type: integer

ParameshLibraryMode

If true, the setup script will generate file amr runtime parameters from template
amr runtime parameters.tpl found in either the object directory (preferred) or the setup script
(bin) directory. Selects whether Paramesh4 should be compiled in LIBRARY mode, i.e., with the
preprocessor symbol LIBRARY defined.
Name: ParameshLibraryMode
Type: Boolean
Values: True, False

PfftSolver

PfftSolver selects a PFFT solver variant when the hybrid (i.e., Multigrid with PFFT) Poisson
solver is used.
Name: PfftSolver
Type: String
Values: DirectSolver (default), HomBcTrigSolver, others (unsupported) if recognized in
source/Grid/GridSolvers/Multigrid/PfftTopLevelSolve/Config

SplitDriver

If True, a Split Driver implementation is requested.
Name: SplitDriver
Type: Boolean
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Mtmmmt

Automatically set True by +mtmmmt shortcut. When true, this option activates the MTMMMT
EOS.
Name: Mtmmmt
Type: Boolean

mgd_meshgroups

mgd˙meshgroups * meshCopyCount sets the MAXIMUM number of radiation groups that can be
used in a simulation. The ACTUAL number of groups (which must be less than mgd˙meshgroups
* meshCopyCount) is set by the rt˙mgdNumGroups runtime parameter.
Name: mgd_meshgroups
Type: Integer

species

This setup variable can be used as an alternative specifying species using the SPECIES Config file
directive by listing the species in the setup command. Some units, like the Multispecies Opacity
unit, will ONLY work when the species setup variable is set. This is because they use the species
name to automatically create runtime paramters which include the species names.
Name: species
Type: String, comma seperated list of strings (e.g., species=air,sf6)

ed_maxPulses

Name: ed_maxPulses
Type: integer
Remark: Maximum number of laser pulses (defaults to 5)

ed_maxBeams

Name: ed_maxBeams
Type: integer
Remark: Maximum number of laser beams (defaults to 6)

threadHydroBlockList

This is used to turn on block list OPENMP threading of hydro routines.
Name: threadHydroBlockList
Type: Boolean
Values: True, False

threadMpoleBlockList

This is used to turn on block list OPENMP threading of the multipole routine.
Name: threadMpoleBlockList
Type: Boolean
Values: True, False

threadRayTrace

This is used to turn on block list OPENMP threading of Enery Deposition source term routines.
Name: threadRayTrace
Type: Boolean
Values: True, False

threadHydroWithinBlock

This is used to turn on within block OPENMP threading of hydro routines.
Name: threadHydroWithinBlock
Type: Boolean
Values: True, False
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threadEosWithinBlock

This is used to turn on within block OPENMP threading of Eos routines.
Name: threadEosWithinBlock
Type: Boolean
Values: True, False

threadMpoleWithinBlock

This is used to turn on within block OPENMP threading of then multipole routine.
Name: threadMpoleWithinBlock
Type: Boolean
Values: True, False

Dependencies among libraries

If you have some libraries which depend on other libraries, create a lib/<libname>/Config
which declares the dependencies. Libraries can have their own Config files, but the format
is a little different. For details see Library-HOWTO.

5.3 Using Shortcuts

Apart from the various setup options the setup script also allows you to use shortcuts for frequently used
combinations of options. For example, instead of typing in

./setup -a Sod -with-unit=Grid/GridMain/UG

you can just type

./setup -a Sod +ug

The +ug or any setup option starting with a ‘+’ is considered as a shortcut. By default, setup looks at
bin/setup shortcuts.txt for a list of declared shortcuts. You can also specify a ”:” delimited list of files
in the environment variable SETUP SHORTCUTS and setup will read all the files specified (and ignore those
which don’t exist) for shortcut declarations. See Figure 5.2 for an example file.

The shortcuts are replaced by their expansions in place, so options which come after the shortcut override
(or conflict with) options implied by the shortcut. A shortcut can also refer to other shortcuts as long as
there are no cyclic references.

The “default” shortcut is special. setup always prepends +default to its command line thus making
./setup -a Sod equivalent to ./setup +default -a Sod. Thus changing the default IO to “hdf5/parallel”,
is as simple as changing the definition of the “default” shortcut.

Some of the more commonly used shortcuts are described below:

5.4 Setup Variables and Preprocessing Config Files

setup allows you to assign values to “Setup Variables”. These variables can be string-valued, integer-valued,
or boolean. A setup call like

./setup -a Sod Foo=Bar Baz=True

sets the variable “Foo” to string “Bar” and “Baz” to boolean True3. setup can conditionally include
and exclude parts of the Config file it reads based on the values of these variables. For example, the
IO/IOMain/hdf5/Config file contains

3All non-integral values not equal to True/False/Yes/No/On/Off are considered to be string values

http://flash.uchicago.edu/site/flashcode/user_support/flash_howtos/home.py?submit=Library-HOWTO.txt
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# comment line

# each line is of the form # shortcut:arg1:arg2:...:
# These shortcuts can refer to each other.

default:--with-library=mpi:-unit=IO/IOMain:-gridinterpolation=monotonic

# io choices
noio:--without-unit=IO/IOMain:
io:--with-unit=IO/IOMain:

# Choice of Grid
ug:-unit=Grid/GridMain/UG:
pm2:-unit=Grid/GridMain/paramesh/Paramesh2:
pm40:-unit=Grid/GridMain/paramesh/paramesh4/Paramesh4.0:
pm4dev:-unit=Grid/GridMain/paramesh/paramesh4/Paramesh4dev:

# frequently used geometries
cube64:-nxb=64:-nyb=64:-nzb=64:

Figure 5.2: A sample setup shortcuts.txt file

Table 5.5: Shortcuts for often-used options

Shortcut Description
+cartesian use cartesian geometry
+cylindrical use cylindrical geometry
+noio omit IO
+nolog omit logging
+pm2 use the PARAMESH2 grid
+pm40 use the PARAMESH4.0 grid
+pm4dev use the PARAMESH4DEV grid
+polar use polar geometry
+spherical use spherical geometry
+ug use the uniform grid in a fixed block size mode
+nofbs use the uniform grid in a non-fixed block size mode
+usm use the Unsplit Staggered Mesh MHD solver
+8wave use the 8-wave MHD solver
+splitHydro use a split Hydro solver

Table 5.6: Shortcuts for HEDP options

Shortcut Description
+mtmmmt Use the 3-T, multimaterial, multitype EOS
+uhd3t Use the 3-T version of Unsplit Hydro
+usm3t Use the 3-T version of Unsplit Staggered Mesh MHD
+mgd Use Multigroup Radiation Diffusion and Opacities
+laser Use the Laser Ray Trace package
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DEFAULT serial

USESETUPVARS parallelIO

IF parallelIO
DEFAULT parallel

ENDIF

The code sets IO to its default value of “serial” and then resets it to “parallel” if the setup variable
“parallelIO” is True. The USESETUPVARS keyword in the Config file instructs setup that the specified
variables must be defined; undefined variables will be set to the empty string.

Through judicious use of setup variables, the user can ensure that specific implementations are included
or the simulation is properly configured. For example, the setup line ./setup -a Sod +ug expands to
./setup -a Sod -unit=Grid/GridMain/ Grid=UG. The relevant part of the Grid/GridMain/Config file is
given below:

# Requires use of the Grid SetupVariable
USESETUPVARS Grid

DEFAULT paramesh

IF Grid==’UG’
DEFAULT UG

ENDIF
IF Grid==’PM2’

DEFAULT paramesh/Paramesh2
ENDIF

The Grid/GridMain/Config file defaults to choosing PARAMESH. But when the setup variable Grid is set to
“UG” through the shortcut +ug, the default implementation is set to “UG”. The same technique is used to
ensure that the right IO unit is automatically included.

See bin/Readme.SetupVars for an exhaustive list of Setup Variables which are used in the various Config
files. For example the setup variable nDim can be test to ensure that a simulation is configured with the
appropriate dimensionality (see for example Simulation/SimulationMain/unitTest/Eos/Config).

5.5 Config Files

Information about unit dependencies, default sub-units, runtime parameter definitions, library requirements,
and physical variables, etc. is contained in plain text files named Config in the different unit directories.
These are parsed by setup when configuring the source tree and are used to create the code needed to register
unit variables, to implement the runtime parameters, to choose specific sub-units when only a generic unit
has been specified, to prevent mutually exclusive units from being included together, and to flag problems
when dependencies are not resolved by some included unit. Some of the Config files contain additional
information about unit interrelationships. As mentioned earlier, setup starts from the Config file in the
Simulation directory of the problem being built.
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5.5.1 Configuration file syntax

Configuration files come in two syntactic flavors: static text and python. In static mode, configuration
directives are listed as lines in a plain text file. This mode is the most readable and intuitive of the two,
but it lacks flexibility. The python mode has been introduced to circumvent this inflexibility by allowing
the configuration file author to specify the configuration directives as a function of the setup variables with
a python procedure. This allows the content of each directive and the number of directives in total to be
amenable to general programming.

The rule the setup script uses for deciding which flavor of configuration file it’s dealing with is simple.
Python configuration files have as their first line ##python:genLines. If the first line does not match this
string, then static mode is assumed and each line of the file is interpreted verbatim as a directive.

If python mode is triggered, then the entire file is considered as valid python source code (as if it were a
.py). From this python code, a function of the form def genLines(setupvars) is located and executed to
generate the configuration directives as an array (or any iterable collection) of strings. The sole argument
to genLines is a dictionary that maps setup variable names to their corresponding string values.

As an example, here is a configuration file in python mode that registers runtime parameters named
indexed˙parameter˙x where x ranges from 1 to NP and NP is a setup line variable.

##python:genLines

# We define genLines as a generator with the very friendly "yield" syntax.
# Alternatively, we could have genLines return an array of strings or even
# one huge multiline string.
def genLines(setupvars):

# emit some directives that dont depend on any setup variables
yield """

REQUIRES Driver
REQUIRES physics/Hydro
REQUIRES physics/Eos
"""

# read a setup variable value from the dictionary
np = int(setupvars("NP")) # must be converted from a string
# loop from 0 to np-1
for x in xrange(np):

yield "PARAMETER indexed_parameter_\%d REAL 0." \% (x+1)

When setting up a problem with NP=5 on the setup command line, the following directives will be
processed:

REQUIRES Driver
REQUIRES physics/Hydro
REQUIRES physics/Eos
PARAMETER indexed_parameter_1 REAL 0.
PARAMETER indexed_parameter_2 REAL 0.
PARAMETER indexed_parameter_3 REAL 0.
PARAMETER indexed_parameter_4 REAL 0.
PARAMETER indexed_parameter_5 REAL 0.
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5.5.2 Configuration directives

The syntax of the configuration directives is described here. Arbitrarily many spaces and/or tabs may be
used, but all keywords must be in uppercase. Lines not matching an admissible pattern will raise an error
when running setup.

• # comment
A comment. Can appear as a separate line or at the end of a line.

• DEFAULT sub-unit
Every unit and sub-unit designates one implementation to be the “default”, as defined by the keyword
DEFAULT in its Config file. If no specific implementation of the unit or its sub-units is selected by
the application, the designated default implementation gets included. For example, the Config file
for the EosMain specifies Gamma as the default. If no specific implementation is explicitly included
(i.e., INCLUDE physics/Eos/EosMain/Multigamma), then this command instructs setup to include
the Gamma implementation, as though INCLUDE physics/Eos/EosMain/Gamma had been placed in
the Units file.

• EXCLUSIVE implementation...
Specifies a list of implementations that cannot be included together. If no EXCLUSIVE instruction is
given, it is perfectly legal to simultaneously include more than one implementation in the code. Using
“EXCLUSIVE *” means that at most one implementation can be included.

• CONFLICTS unit1[/sub-unit[/implementation...]] ...
Specifies that the current unit, sub-unit, or specific implementation is not compatible with the list of
units, sub-units or other implementations that follows. setup issues an error if the user attempts a
conflicting unit configuration.

• REQUIRES unit[/sub-unit[/implementation...]] [ OR unit[/sub-unit...]]...
Specifies a unit requirement. Unit requirements can be general, without asking for a specific imple-
mentation, so that unit dependencies are not tied to particular algorithms. For example, the statement
REQUIRES physics/Eos in a unit’s Config file indicates to setup that the physics/Eos unit is needed,
but no particular equation of state is specified. As long as an Eos implementation is included, the depen-
dency will be satisfied. More specific dependencies can be indicated by explicitly asking for an imple-
mentation. For example, if there are multiple species in a simulation, the Multigamma equation of state
is the only valid option. To ask for it explicitly, use REQUIRES physics/Eos/EosMain/Multigamma.
Giving a complete set of unit requirements is helpful, because setup uses them to generate the units
file when invoked with the -auto option.

• REQUESTS unit[/sub-unit[/implementation...]]
Requests that a unit be added to the Simulation. All requests are upgraded to a “REQUIRES” if
they are not negated by a ”-without-unit” option from the command line. If negated, the REQUEST
is ignored. This can be used to turn off profilers and other “optional” units which are included by
default.

• SUGGEST unitname unitname ...
Unlike REQUIRES, this keyword suggests that the current unit be used along with one of the specified
units. The setup script will print details of the suggestions which have been ignored. This is useful
in catching inadvertently omitted units before the run starts, thus avoiding a waste of computing
resources.

• PARAMETER name type [CONSTANT] default [range-spec]
Specifies a runtime parameter. Parameter names are unique up to 20 characters and may not contain
spaces. Admissible types include REAL, INTEGER, STRING, and BOOLEAN. Default values for REAL and
INTEGER parameters must be valid numbers, or the compilation will fail. Default STRING values must
be enclosed in double quotes ("). Default BOOLEAN values must be .true. or .false. to avoid
compilation errors. Once defined, runtime parameters are available to the entire code. Optionally, any
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parameter may be specified with the CONSTANT attribute (e.g., PARAMETER foo REAL CONSTANT 2.2).
If a user attempts to set a constant parameter via the runtime parameter file, an error will occur.

The range specification is optional and can be used to specify valid ranges for the parameters. The
range specification is allowed only for REAL, INTEGER, STRING variables and must be enclosed in ’[]’.

For a STRING variable, the range specification is a comma-separated list of strings (enclosed in quotes).
For a INTEGER, REAL variable, the range specification is a comma-separated list of (closed) intervals
specified by min ... max, where min and max are the end points of the interval. If min or max is
omitted, it is assumed to be −∞ and +∞ respectively. Finally val is a shortcut for val ... val.
For example

PARAMETER pres REAL 1.0 [ 0.1 ... 9.9, 25.0 ... ]
PARAMETER coords STRING "polar" ["polar","cylindrical","2d","3d"]

indicates that pres is a REAL variable which is allowed to take values between 0.1 and 9.9 or above
25.0. Similarly coords is a string variable which can take one of the four specified values.

• D parameter-name comment
Any line in a Config file is considered a parameter comment line if it begins with the token D. The
first token after the comment line is taken to be the parameter name. The remaining tokens are taken
to be a description of the parameter’s purpose. A token is delineated by one or more white spaces. For
example,

D SOME_PARAMETER The purpose of this parameter is whatever

If the parameter comment requires additional lines, the & is used to indicate continuation lines. For
example,

D SOME_PARAMETER The purpose of this parameter is whatever
D & This is a second line of description

You can also use this to describe other variables, fluxes, species, etc. For example, to describe a
species called ”xyz”, create a comment for the parameter “xyz species”. In general the name should
be followed by an underscore and then by the lower case name of the keyword used to define the name.

Parameter comment lines are special because they are used by setup to build a formatted list of
commented runtime parameters for a particular problem. This information is generated in the file
setup params in the object directory.

• VARIABLE name [TYPE: vartype] [eosmap-spec]
Registers variable with the framework with name name and a variable type defined by vartype. The
setup script collects variables from all the included units, and creates a comprehensive list with no
duplications. It then assigns defined constants to each variable and calculates the amount of storage
required in the data structures for storing these variables. The defined constants and the calculated
sizes are written to the file Flash.h.

The possible types for vartype are as follows:

– PER VOLUME
This solution variable is represented in conserved form, i.e., it represents the density of a con-
served extensive quantity. The prime example is a variable directly representing mass density.
Energy densities, momentum densities, and partial mass densities would be other examples (but
these quantities are usually represented in PER MASS form instead).

– PER_MASS
This solution variable is represented in mass-specific form, i.e., it represents quantities whose
nature is extensive quantity per mass unit. Examples are specific energies, velocities of material
(since they are equal to momentum per mass unit), and abundances or mass fractions (partial
density divided by density).
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– GENERIC
This is the default vartype and need not be specified. This type should be used for any variables
that do not clearly belong to one of the previous two categories.

In the current version of the code, the TYPE attribute is only used to determine which variables should
be converted to conservative form for certain Grid operations that may require interpolation (i.e.,
prolongation, guardcell filling, and restriction) when one of the runtime parameters
convertToConsvdForMeshCalls or convertToConsvdInMeshInterp is set true. Only variables of
type PER_MASS are converted: values are multiplied cell-by-cell with the value of the "dens" variable,
and potential interpolation results are converted back by cell-by-cell division by "dens" values after
interpolation.

Note that therefore

– variable types are irrelevant for uniform grids,

– variable types are irrelevant if neither convertToConsvdForMeshCalls nor
convertToConsvdInMeshInterp is true, and

– variable types (and conversion to and from conserved form) only take effect if a

VARIABLE dens ...

exists.

An eosmap-spec has the syntax EOSMAP: eos-role | ( [EOSMAPIN: eos-role] [EOSMAPOUT: eos-role ]),
where eos-role stands for a role as defined in Eos map.h. These roles are used within implementations
of the Eos wrapped interface, via the subroutines Eos getData and Eos putData, to map variables
from Grid data structures to the eosData array that Eos understands, and back. For example,

VARIABLE eint TYPE: PER_MASS EOSMAPIN: EINT

means that within Eos wrapped, the EINT VAR component of unk will be treated as the grid variable
in the “internal energy” role for the purpose of constructing input to Eos, and

VARIABLE gamc EOSMAPOUT: GAMC

means that within Eos wrapped, the GAMC VAR component of unk will be treated as the grid variable in
the EOSMAP GAMC role for the purpose of returning results from calling Eos to the grid. The specification

VARIABLE pres EOSMAP: PRES

has the same effect as

VARIABLE pres EOSMAPIN: PRES EOSMAPOUT: PRES

Note that not all roles defined in Eos map.h are necessarily meaningful or actually used in a given Eos
implementation. An eosmap-spec for a VARIABLE is only used in an Eos wrapped invocation when the
optional gridDataStruct argument is absent or has a value of CENTER.

• FACEVAR name [eosmap-spec]
This keyword has the same meaning for face-centered variables, that VARIABLE does for cell-centered
variables. It allocates space in the grid data structure that contains face-centered physical variables
for “name”. See Section 6.1 for more information

For eosmap-spec, see above under VARIABLE. An eosmap-spec for FACEVAR is only used when Eos wrapped
is called with an optional gridDataStruct argument of FACEX, FACEY, or FACEZ.

• FLUX name
Registers flux variable name with the framework. When using an adaptive mesh, flux conservation is
needed at fine-coarse boundaries. PARAMESH uses a data structure for this purpose, the flux variables
provide indices into that data structure. See Section 6.3 for more information.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_wrapped_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_getData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_putData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_wrapped_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_wrapped_F90.html
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• SCRATCHCENTERVAR name [eosmap-spec]
This keyword is used in connection with the grid scope scratch space for cell-centered data supported
by FLASH. It allows the user to ask for scratch space with “name”. The scratch variables do not
participate in the process of guardcell filling, and their values become invalid after a grid refinement
step. While users can define scratch variables to be written to the plotfiles, they are not by default
written to checkpoint files. Note this feature wasn’t available in FLASH2. See Section 6.4 for more
information.

• SCRATCHFACEVAR name [eosmap-spec]
This keyword is used in connection with the grid scope scratch space for face-centered data, it is
identical in every other respect to SCRATCHCENTERVAR.

• SCRATCHVAR name [eosmap-spec]
This keyword is used for specifying instances of general purpose grid scope scratch space. The same
space can support cell-centered as well as face-centered data. Like other scratch data structures, the
variables in this data structure can also be asked with “name” and do not participate in guardcell
filling.

For eosmap-spec, see above under VARIABLE. An eosmap-spec for SCRATCHVAR is only used when
Eos wrapped is called with an optional gridDataStruct argument of SCRATCH.

• MASS SCALAR name [RENORM: group-name] [eosmap-spec]
If a quantity is defined with keyword MASS SCALAR, space is created for it in the grid “unk” data
structure. It is treated like any other variable by PARAMESH, but the hydrodynamic unit treats it differ-
ently. It is advected, but other physical characteristics don’t apply to it. If the optional “RENORM”
is given, this mass-scalar will be added to the renormalization group of the accompanying group name.
The hydrodynamic solver will renormalize all mass-scalars in a given group, ensuring that all variables
in that group will sum to 1 within an individual cell. See Section 6.2

For eosmap-spec, see above under VARIABLE. An eosmap-spec for a MASS SCALAR may be used in an
Eos wrapped invocation when the optional gridDataStruct argument is absent or has a value of
CENTER.

Avoid Confusion!

It is inadvisable to name variables, species, and mass scalars with the same prefix, as post-
processing routines have difficulty deciphering the type of data from the output files. For
example, don’t create a variable “temp” to hold temperature and a mass scalar “temp”
indicating a temporary variable. Although the Flash.h file can distinguish between these
two types of variables, many plotting routines cannot.

• PARTICLETYPE particle-type INITMETHOD initialization-method MAPMETHOD map-method ADVMETHOD time-
advance-method
This keyword associates a particle type with mapping and initialization sub-units of Particles unit
to operate on this particle type during the simulation. Here, map-method describes the method used to
map the particle properties to and from the mesh (see Section 20.2), initialization-method describes the
method used to distribute the particles at initialization, and time-advance-method describes the method
used to advance the associated particle type in time (see Section 20.1, and in general Section 20.3). This
keyword has been introduced to facilitate inclusion of multiple particle types in the same simulation.
It imposes certain requirements on the use of the ParticlesMapping and ParticlesInitialization
subunits. Particles (of any type, whether called passive or anything else) do not have default methods
for initialization, mapping, or time integration, so a PARTICLETYPE directive in a Config file (or an
equivalent -particlemethods= setup option, see Table 5.4) is the only way to specify the appropriate
implementations of the Particles subunits to be used. The declaration should be accompanied by
appropriate “REQUESTS” or “REQUIRES” directives to specify the paths of the appropriate subunit

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_wrapped_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_wrapped_F90.html
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implementation directories to be included. For clarity, our technique has been to include this informa-
tion in the simulation directory Config files only. All the currently available mapping and initialization
methods have a corresponding identifier in the form of preprocessor definition in Particles.h. The
user may select any particle-type name, but the map-method , initialization-method and time-advance-
method must correspond to existing identifiers defined in Particles.h. This is necessary to navigate
the data structure that stores the particle type and its associated mapping and initialization methods.
Users desirous of adding new methods for mapping or initialization should also update the Particles.h
file with additional identifiers and their preprocessor definitions. Note, it is possible to use the same
methods for different particle types, but each particle type name must only appear once. Finally,
the Simulations Config file is also expected to request appropriate implementations of mapping and
initialization subunits using the keyword REQUESTS, since the corresponding Config files do not specify
a default implementation to include. For example, to include passive particle types with Quadratic
mapping, Lattice initialization,and Euler for advancing in time the following code segment should
appear in the Config file of the Simulations directory.

PARTICLETYPE passive INITMETHOD lattice MAPMETHOD quadratic ADVMETHOD Euler
REQUIRES Particles/ParticlesMain
REQUESTS Particles/ParticlesMain/passive/Euler
REQUESTS Particles/ParticlesMapping/Quadratic
REQUESTS Particles/ParticlesInitialization/Lattice

• PARTICLEPROP name type
This keyword indicates that the particles data structure will allocate space for a sub-variable “NAME -
PART PROP.” For example if the Config file contains

PARTICLEPROP dens

then the code can directly access this property as

particles(DENS_PART_PROP,1:localNumParticles) = densInitial

type may be REAL or INT, however INT is presently unused. See Section 6.6 for more information
and examples.

• PARTICLEMAP TO partname FROM vartype varname
This keyword maps the value of the particle property partname to the variable varname. vartype
can take the values VARIABLE, MASS SCALAR, SPECIES, FACEX, FACEY, FACEZ, or one of
SCRATCH types (SCRATCHVAR/ SCRATCHCENTERVAR, SCRATCHFACEXVAR. SCRATCH-
FACEYVAR, SCRATCHFACEZVAR) These maps are used to generate Simulation_mapParticlesVar,
which takes the particle property partname and returns varname and vartype. For example, to have a
particle property tracing density:

PARTICLEPROP dens REAL
PARTICLEMAP TO dens FROM VARIABLE dens

or, in a more advanced case, particle properties tracing some face-valued function Mag:

PARTICLEPROP Mag_x REAL
PARTICLEPROP Mag_y REAL
PARTICLEPROP Mag_z REAL
PARTICLEMAP TO Mag_x FROM FACEX Mag
PARTICLEMAP TO Mag_y FROM FACEY Mag
PARTICLEMAP TO Mag_z FROM FACEZ Mag

Additional information on creating Config files for particles is obtained in Section 20.3.2.

• SPECIES name [TO number of ions]
An application that uses multiple species uses this keyword to define them. See Section 6.2 for more



5.5. CONFIG FILES 65

information. The user may also specify an optional number of ions for each element, name. For
example, SPECIES o TO 8 creates 9 spaces in unk for Oxygen, that is, a single space for Oxygen and
8 spaces for each of its ions. This is relevant to simulations using the ionize unit. (Omitting the
optional TO specifier is equivalent to specifying TO 0).

• DATAFILES wildcard
Declares that all files matching the given wildcard in the unit directory should be copied over to the
object directory. For example,

DATAFILES *.dat

will copy all the “.dat” files to the object directory.

• KERNEL [subdir]
Declares that all subdirectories must be recursively included. This usually marks the end of the high
level architecture of a unit. Directories below it may be third party software or a highly optimized
solver, and are therefore not required to conform to FLASH architecture.

Without a subdir , the current directory (i.e., the one containing the Config file with the KERNEL
keyword) is marked as a kernel directory, so code from all its subdirectories (with the exception
of subdirectories whose name begins with a dot) is included. When a subdir is given, then that
subdirectory must exist, and it is treated as a kernel directory in the same way.

Note that currently the setup script can process only one KERNEL directive per Config file.

• LIBRARY name
Specifies a library requirement. Different FLASH units require different libraries, and they must inform
setup so it can link the libraries into the executable. Some valid library names are HDF5, MPI. Support
for external libraries can be added by modifying the site-specific Makefile.h files to include appropriate
Makefile macros. It is possible to use internal libraries, as well as switch libraries at setup time. To
use these features, see
Library-HOWTO.

• LINKIF filename unitname
Specifies that the file filename should be used only when the unit unitname is included. This keyword
allows a unit to have multiple implementations of any part of its functionality, even down to the
kernel level, without the necessity of creating children for every alternative. This is especially useful in
Simulation setups where users may want to use different implementations of specific functions based
upon the units included. For instance, a user may wish to supply his/her own implementation of
Grid markRefineDerefine.F90, instead of using the default one provided by FLASH. However, this
function is aware of the internal workings of Grid, and has different implementations for different grid
packages. The user could therefore specify different versions of his/her own file that are intended for
use with the different grids. For example, adding

LINKIF Grid_markRefineDerefine.F90.ug Grid/GridMain/UG
LINKIF Grid_markRefineDerefine.F90.pmesh Grid/GridMain/paramesh

to the Config file ensures that if the application is built with UG, the file
Grid markRefineDerefine.F90.ug will be linked in as Grid markRefineDerefine.F90, whereas if it
is built with Paramesh2 or Paramesh4.0 or Paramesh4dev, then the file Grid markRefineDerefine-
.F90.pmesh will be linked in as Grid markRefineDerefine.F90. Alternatively, the user may want to
provide only one implementation specific to, say, PARAMESH. In this case, adding

LINKIF Grid_markRefineDerefine.F90 Grid/GridMain/paramesh

to the Config file ensures that the user-supplied file is included when using PARAMESH (either version),
while the default FLASH file is included when using UG.

http://flash.uchicago.edu/site/flashcode/user_support/flash_howtos/home.py?submit=Library-HOWTO.txt
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• PPDEFINE sym1 sym2 ...
Instructs setup to add the PreProcessor symbols SYM1 and SYM2 to the generated Flash.h. Here
SYM1 is sym1 converted to uppercase. These pre-process symbols can be used in the code to distin-
guish between which units have been used in an application. For example, a Fortran subroutine could
include

#ifdef FLASH_GRID_UG
ug specific code

#endif

#ifdef FLASH_GRID_PARAMESH3OR4
pm3+ specific code

#endif

By convention, many preprocessor symbols defined in Config files included in the FLASH code distri-
bution start with the prefix “FLASH ”.

• USESETUPVARS var1, var2, . . .
This tells setup that the specified “Setup Variables” are being used in this Config file. The variables
initialize to an empty string if no values are specified for them. Note that commas are required if
listing several variables.

• CHILDORDER child1 child2 . . .
When setup links several implementations of the same function, it ensures that implementations of
children override that of the parent. Its method is to lexicographically sort all the names and allow
implementations occurring later to override those occurring earlier. This means that if two siblings
implement the same code, the names of the siblings determine which implementation wins. Although
it is very rare for two siblings to implement the same function, it does occur. This keyword permits the
Config file to override the lexicographic order by one preferred by the user. Lexicographic ordering
will prevail as usual when deciding among implementations that are not explicitly listed.

• GUARDCELLS num
Allows an application to choose the stencil size for updating grid points. The stencil determines the
number of guardcells needed. The PPM algorithm requires 4 guardcells, hence that is the default value.
If an application specifies a smaller value, it will probably not be able to use the default monotonic
AMR Grid interpolation; see the -gridinterpolation setup flag for additional information.

• SETUPERROR error message

This causes setup to abort with the specified error message. This is usually used only inside a
conditional IF/ENDIF block (see below).

• IF, ELSEIF, ELSE, ENDIF
A conditional block is of the following form:

IF cond
...

ELSEIF cond
...

ELSE
...

ENDIF

where the ELSEIF and ELSE blocks are optional. There is no limit on the number of ELSEIF blocks.
“...” is any sequence of valid Config file syntax. The conditional blocks may be nested. “cond” is any
boolean valued Python expression using the setup variables specified in the USESETUPVARS.
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• NONREP unktype name localmax globalparam ioformat
Declares an array of UNK variables that will be partitioned across the replicated meshes. Using various
preprocessor macros in Flash.h each copy of the mesh can determine at runtime its own subset of
indexes into this global array. This allows an easy form of parallelism where regular ”replicated” mesh
variables are computed redundantly across processors, but the variables in the ”non-replicated” array
are computed in parallel.

– unktype: must be either MASS_SCALAR or VARIABLE

– name: the name of this variable array. It is suggested that it be all capital letters, and must
conform to what the C preprocessor will consider as a valid symbol for use in a #define statement.

– localmax : a positive integer specifying the maximum number of elements from the global variable
array a mesh can hold. This is the actual number of UNK variables that are allocated on each
processor, though not all of them will necessarily be used.

– globalparam: the name of a runtime parameter which dictates the size of this global array of
variables.

– ioformat : a string representing how the elements of the array will be named when written to the
output files. The question mark character ? is used as a placeholder for the digits of the array
index. As an example, the format string x??? will generate the dataset names x001, x002, x003,
etc. This string must be no more than four characters in length.

The number of meshes is dictated by the runtime parameter meshCopyCount. The following constraint
must be satisfied or FLASH will fail at runtime:

globalparam ≤ meshCopyCount ∗ localmax

The reason for this restriction is that localmax is the maximum number of array elements a mesh can
be responsible for, and meshCopyCount is the number of meshes, so their product bounds the size of
the array.

Example:

Config file:

NONREP MASS_SCALAR A 4 numA a???
NONREP MASS_SCALAR B 5 numB b???

flash.par file:

meshCopyCount = 3
numA = 11
numB = 15

In this case two non-replicated mass-scalar arrays are defined, A and B. Their lengths are specified
by the runtime parameters numA and numB respectively. numB is set to its maximum value of 5 ∗
meshCopyCount = 15, but numA is one less than its maximum value of 4 ∗meshCopyCount = 12 so
at runtime one of the meshes will not have all of its UNK variables in use. The dataset names generated
by IO will take the form a001 ...a011 and b001 ...b015.



68 CHAPTER 5. THE FLASH CONFIGURATION SCRIPT (SETUP)

The preprocessor macros defined in Flash.h for these arrays will have the prefixes A_ and B_ respec-
tively. For details about these macros and how they will distribute the array elements across the meshes
see Section 6.7.

5.6 Creating a Site-specific Makefile

If setup does not find your hostname in the sites/ directory it picks a default Makefile based on the
operating system. This Makefile is not always correct but can be used as a template to create a Makefile
for your machine. To create a Makefile specific to your system follow these instructions.

• Create the directory sites/<hostname>, where <hostname> is the hostname of your machine.

• Start by copying os/<your os>/Makefile.h to sites/<hostname>

• Use bin/suggestMakefile.sh to help identify the locations of various libraries on your system. The
script scans your system and displays the locations of some libraries. You must note the location of
MPI library as well. If your compiler is actually an mpi-wrapper (e.g.mpif90), you must still define
LIB MPI in your site specific Makefile.h as the empty string.

• Edit sites/<hostname>/Makefile.h to provide the locations of various libraries on your system.

• Edit sites/<hostname>/Makefile.h to specify the FORTRAN and C compilers to be used.

Actual Compiler or MPI wrapper?

If you have MPI installed, you can either specify the actual compiler (e.g.f90) or the mpi-
wrapper (e.g.mpif90) for the “compiler” to be used on your system. Specifying the actual
compiler and the location of the MPI libraries in the site-specific Makefile allows you the pos-
sibility of switching your MPI implementation. For more information see Library-HOWTO.

Compilation warning

The Makefile.h must include a compiler flag to promote Fortran Reals to Double
Precision. FLASH performs all MPI communication of Fortran Reals using
MPI_DOUBLE_PRECISION type, and assumes that Fortran Reals are interoperable with C
doubles in the I/O unit.

5.7 Files Created During the setup Process

When setup is run it generates many files in the object directory. They fall into three major categories:

(a) Files not required to build the FLASH executable, but which contain useful information,

(b) Generated F90 or C code, and

(c) Makefiles required to compile the FLASH executable.

http://flash.uchicago.edu/site/flashcode/user_support/flash_howtos/home.py?submit=Library-HOWTO.txt
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5.7.1 Informational files

These files are generated before compilation by setup. Each of these files begins with the prefix setup_ for
easy identification.

setup call contains the options with which setup was called and the com-
mand line resulting after shortcut expansion

setup libraries contains the list of libraries and their arguments (if any) which
was linked in to generate the executable

setup units contains the list of all units which were included in the current
setup

setup defines contains a list of all pre-process symbols passed to the compiler
invocation directly

setup flags contains the exact compiler and linker flags

setup params contains the list of runtime parameters defined in the Config files
processed by setup

setup vars contains the list of variables, fluxes, species, particle properties,
and mass scalars used in the current setup, together with their
descriptions.

5.7.2 Code generated by the setup call

These routines are generated by the setup call and provide simulation-specific code.
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setup buildstamp.F90 contains code for the subroutine setup buildstamp which
returns the setup and build time as well as code for
setup systemInfo which returns the uname of the system
used to setup the problem

setup buildstats.c contains code which returns build statistics including the
actual setup call as well as the compiler flags used for the
build

setup getFlashUnits.F90 contains code to retrieve the number and list of flashUnits
used to compile code

setup flashRelease.F90 contains code to retrieve the version of FLASH used for the
build

Flash.h contains simulation specific preprocessor macros, which
change based upon setup unlike constants.h. It is de-
scribed in Chapter 6

Simulation mapIntToStr.F90 contains code to map an index described in Flash.h to a
string described in the Config file.

Simulation mapStrToInt.F90 contains code to map a string described in the Config file
to an integer index described in the Flash.h file.

Simulation mapParticlesVar.F90 contains a mapping between particle properties and grid
variables. Only generated when particles are included in a
simulation.

Particles specifyMethods.F90 contains code to make a data structure with information
about the mapping and initialization method for each type
of particle. Only generated when particles are included in a
simulation.

5.7.3 Makefiles generated by setup

Apart from the master Makefile, setup generates a makefile for each unit, which is “included” in the master
Makefile. This is true even if the unit is not included in the application. These unit makefiles are named
Makefile.Unit and are a concatenation of all the Makefiles found in unit hierarchy processed by setup.

For example, if an application uses Grid/GridMain/paramesh/paramesh4/Paramesh4.0, the file
Makefile.Grid will be a concatenation of the Makefiles found in

• Grid,

• Grid/GridMain,

• Grid/GridMain/paramesh,

• Grid/GridMain/paramesh/paramesh4, and

• Grid/GridMain/paramesh/paramesh4/Paramesh4.0

As another example, if an application does not use PhysicalConstants, then Makefile.Physical-
Constants is just the contents of PhysicalConstants/Makefile at the API level.

Since the order of concatenation is arbitrary, the behavior of the Makefiles should not depend on the
order in which they have been concatenated. The makefiles inside the units contain lines of the form:

Unit += file1.o file2.o ...

where Unit is the name of the unit, which was Grid in the example above. Dependency on data modules
files need not be specified since the setup process determines this requirement automatically.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_mapIntToStr_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_mapStrToInt_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_mapParticlesVar_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_specifyMethods_F90.html
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5.8 Setup a hybrid MPI+OpenMP FLASH application

There is the experimental inclusion of FLASH multithreading with OpenMP in the FLASH4 beta release.
The units which have support for multithreading are split hydrodynamics 14.1.2, unsplit hydrodynamics
14.1.3, Gamma law and multigamma EOS 16.2, Helmholtz EOS 16.3, Multipole Poisson solver (improved
version (support for 2D cylindrical and 3D cartesian)) 8.10.2.2 and energy deposition 17.4.

The FLASH multithreading requires a MPI-2 installation built with thread support (building with an
MPI-1 installation or an MPI-2 installation without thread support is possible but strongly discouraged).
The FLASH application requests the thread support level MPI_THREAD_SERIALIZED to ensure that the MPI
library is thread-safe and that any OpenMP thread can call MPI functions safely. You should also make
sure that your compiler provides a version of OpenMP which is compliant with at least the OpenMP 2.5
(200505) standard (older versions may also work but I have not checked).

In order to make use of the multithreaded code you must setup your application with one of the setup
variables threadBlockList, threadWithinBlock or threadRayTrace equal to True, e.g.

./setup Sedov -auto threadBlockList=True

./setup Sedov -auto threadBlockList=True +mpi1 (compatible with MPI-1 - unsafe!)

When you do this the setup script will insert USEOPENMP = 1 instead of USEOPENMP = 0 in the generated
Makefile. If it is equal to 1 the Makefile will prepend an OpenMP variable to the FFLAGS, CFLAGS, LFLAGS
variables.

Makefile.h variables

In general you should not define FLAGS, CFLAGS and LFLAGS in your Makefile.h. It is much
better to define FFLAGS_OPT, FFLAGS_TEST, FFLAGS_DEBUG, CFLAGS_OPT, CFLAGS_TEST,
CFLAGS_DEBUG, LFLAGS_OPT, LFLAGS_TEST and LFLAGS_DEBUG in your Makefile.h. The
setup script will then initialize the FFLAGS, CFLAGS and LFLAGS variables in the Makefile
appropriately for an optimized, test or debug build.

The OpenMP variables should be defined in your Makefile.h and contain a compiler flag to recognize
OpenMP directives. In most cases it is sufficient to define a single variable named OPENMP, but you may
encounter special situations when you need to define OPENMP_FORTRAN, OPENMP_C and OPENMP_LINK. If you
want to build FLASH with the GNU Fortran compiler gfortran and the GNU C compiler gcc then your
Makefile.h should contain

OPENMP = -fopenmp

If you want to do something more complicated like build FLASH with the Lahey Fortran compiler lf90
and the GNU C compiler gcc then your Makefile.h should contain

OPENMP_FORTRAN = --openmp -Kpureomp
OPENMP_C = -fopenmp
OPENMP_LINK = --openmp -Kpureomp

When you run the hybrid FLASH application it will print the level of thread support provided by the
MPI library and the number of OpenMP threads in each parallel region

[Driver_initParallel]: Called MPI_Init_thread - requested level 2, given level 2
[Driver_initParallel]: Number of OpenMP threads in each parallel region 4

Note that the FLASH application will still run if the MPI library does not provide the requested level
of thread support, but will print a warning message alerting you to an unsafe level of MPI thread support.
There is no guarantee that the program will work! I strongly recommend that you stop using this FLASH
application - you should build a MPI-2 library with thread support and then rebuild FLASH.
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Log file stamp safe unsafe (1) unsafe (2) unsafe (3)
Number of MPI tasks: 1 1 1 1
MPI version: 2 1 2 2
MPI subversion: 2 2 1 2
MPI thread support: T F F F
OpenMP threads/MPI task: 2 2 2 2
OpenMP version: 200805 200505 200505 200805
Is “ OPENMP” macro defined: T T T F

Table 5.7: Log file entries showing safe and unsafe threaded FLASH applications

We record extra version and runtime information in the FLASH log file for a threaded application. Table
5.7 shows log file entries from a threaded FLASH application along with example safe and unsafe values. All
cells colored red show unsafe values.

The FLASH applications in Table 5.7 are unsafe because

1. we are using an MPI-1 implementation.

2. we are using an MPI-2 implementation which is not built with thread support - the “MPI thread
support in OpenMPI” Flash tip may help.

3. we are using a compiler that does not define the macro _OPENMP when it compiles source files with
OpenMP support (see OpenMP standard). I have noticed that Absoft 64-bit Pro Fortran 11.1.3
for Linux x86 64 does not define this macro. We use this macro in Driver_initParallel.F90 to
conditionally initialize MPI with MPI_Init_thread. If you find that _OPENMP is not defined you should
define it in your Makefile.h in a manner similar to the following:

OPENMP_FORTRAN = -openmp -D_OPENMP=200805

MPI thread support in OpenMPI

A default installation of OpenMPI-1.5 (and earlier) does not provide any level of MPI
thread support. To include MPI thread support you must configure OpenMPI-1.5 with
--enable-mpi-thread-multiple or --enable-opal-multi-threads. We prefer to config-
ure with --enable-mpi-thread-multiple so that we can (in future) use the highest level of
thread support. The configure option is named --enable-mpi-threads in earlier versions
of OpenMPI.

MPI-IO issues when using a threaded FLASH application

The ROMIO in older versions of MPICH2 and OpenMPI is known to be buggy. We have
encountered a segmentation fault on one platform and a deadlock on another platform during
MPI-IO when we used OpenMPI-1.4.4 with a multithreaded FLASH application. We solved
the error by using OpenMPI-1.5.4 (it should be possible to use OpenMPI-1.5.2 or greater
because the release notes for OpenMPI-1.5.2 state “- Updated ROMIO from MPICH v1.3.1
(plus one additional patch).”. We have not tested to find the minimum version of MPICH2
but MPICH2-1.4.1p1 works fine. If it is not possible to use a newer MPI implementation
you can avoid MPI-IO altogether by setting up your FLASH application with +serialIO.

You should not setup a FLASH application with both threadBlockList and threadWithinBlock equal
to True - nested OpenMP parallelism is not supported. For further information about FLASH multithreaded
applications please refer to Chapter 38.
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5.9 Setup a FLASH+Chombo application

5.9.1 Overview

In FLASH4 we have introduced a new grid implementation that makes use of Chombo library (Section 8.7).
This allows us to create FLASH applications that use an adaptive patch-based mesh for the first time.

You can create a FLASH application using Chombo mesh with the standard FLASH setup script and
the designated shortcuts +chombo_ug or +chombo_amr. These shortcuts instruct the setup script to:

• Add the appropriate FLASH C++ source files that interact with Chombo library to the object di-
rectory. There are different C++ wrapper classes for a uniform grid (+chombo_ug) and adaptive grid
(+chombo_amr) configuration.

• Reorder the arrays so that FLASH blocks normally accessed with solnData(v,i,j,k) are now accessed
with solnData(i,j,k,v). This is a pre-processing step that is described in Section 5.2.

• Undefine the FIXEDBLOCKSIZE macro in Flash.h so that the code in FLASH source files does not assume
that blocks contain a fixed number of cells.

• Define a setup variable named chomboCompatibleHydro. This variable is used in Hydro Config files
to include a version of Hydro that is compatible with Chombo flux correction. At the current time we
have only implemented flux correction with Chombo library for Split Hydro.

• Use the Makefile header file named Makefile.h.chombo instead of Makefile.h.

The shortcuts are used in FLASH setup lines as follows:

./setup Sedov -auto +chombo_ug -parfile=test_chombo_ug_2d.par

./setup Sod -auto +chombo_amr -parfile=test_chombo_amr_2d.par

The setup lines for all the problems that we have ever tested can be found in the file
sites/code.uchicago.edu/flash_test/test.info.

5.9.2 Build procedure

A FLASH application that makes use of Chombo library has the following dependencies:

• C++ compiler

• Fortran compiler with C interoperability features

• MPI build of Chombo

• parallel HDF5

The mixed-language Fortran/C interoperability features are critical for this project. Not all Fortran
compilers have working C interoperability as this is a new feature that was introduced in the Fortran 2003
standard. Before spending time building Chombo and customizing FLASH Makefile headers, you should use
our standalone unit test to determine whether your compilers have the basic mixed-language functionality
needed by this project. The unit test is at source/Grid/GridMain/Chombo/wrapper/unit_tests/1 and
is independent of FLASH. It is a standalone Fortran application that uses the iso_c_binding function
c_f_pointer to construct a Fortran pointer object given a raw C memory address and a shape argument.
To build, enter this directory and execute make "compiler name", where ”compiler name” is gnu, intel,
ibm, sun.

Old compilers, such as gfortran version 4.1.2, will give a compile-time error because iso_c_binding
module is not available, and at least one version of gfortran, namely gfortran version 4.4.0, has an array
indexing run-time bug that is detected by this unit test. The array indexing bug is documented at GCC
bugzilla 40962 and gives the following incorrect answers shown in Figure 5.3.

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40962
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40962
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We expect to pick up the complete set of integer values
from 0 to 23 in contiguous memory locations
Fortran array element: 1 1 1 1. Expected: 0, actual: 0.
Fortran array element: 1 2 1 1. Expected: 1, actual: 1.
Fortran array element: 1 1 2 1. Expected: 2, actual: 2.
Fortran array element: 1 2 2 1. Expected: 3, actual: 3.
Fortran array element: 1 1 3 1. Expected: 4, actual: 4.
Fortran array element: 1 2 3 1. Expected: 5, actual: 5.
Fortran array element: 1 1 1 2. Expected: 6, actual: 3.
Fortran array element: 1 2 1 2. Expected: 7, actual: 4.
Fortran array element: 1 1 2 2. Expected: 8, actual: 5.
Fortran array element: 1 2 2 2. Expected: 9, actual: 6.
Fortran array element: 1 1 3 2. Expected: 10, actual: 7.
Fortran array element: 1 2 3 2. Expected: 11, actual: 8.
Fortran array element: 1 1 1 3. Expected: 12, actual: 6.
Fortran array element: 1 2 1 3. Expected: 13, actual: 7.
Fortran array element: 1 1 2 3. Expected: 14, actual: 8.
Fortran array element: 1 2 2 3. Expected: 15, actual: 9.
Fortran array element: 1 1 3 3. Expected: 16, actual: 10.
Fortran array element: 1 2 3 3. Expected: 17, actual: 11.
Fortran array element: 1 1 1 4. Expected: 18, actual: 9.
Fortran array element: 1 2 1 4. Expected: 19, actual: 10.
Fortran array element: 1 1 2 4. Expected: 20, actual: 11.
Fortran array element: 1 2 2 4. Expected: 21, actual: 12.
Fortran array element: 1 1 3 4. Expected: 22, actual: 13.
Fortran array element: 1 2 3 4. Expected: 23, actual: 14.
FAILURE! Picked up unexpected C++ assigned values

Figure 5.3: Unit test stdout for gfortran versions affected by GCC bug 40962.
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CXX = icpc
FC = ifort
MPI = TRUE
MPICXX = /home/cdaley/software/mpich2/1.3.1/intel/bin/mpicxx
USE_64 = TRUE
USE_HDF = TRUE
HDFINCFLAGS = -I/home/cdaley/software/hdf5/1.8.5-patch1/intel/include -DH5_USE_16_API
HDFLIBFLAGS = -L/home/cdaley/software/hdf5/1.8.5-patch1/intel/lib -lhdf5
HDFMPIINCFLAGS = -I/home/cdaley/software/hdf5/1.8.5-patch1/intel/include -DH5_USE_16_API
HDFMPILIBFLAGS = -L/home/cdaley/software/hdf5/1.8.5-patch1/intel/lib -lhdf5
USE_MT = FALSE
syslibflags = -lstdc++ -lz

Figure 5.4: Example macro definitions used to build Chombo in a FLASH-compatible way.

If this test fails at compile-time or run-time then FLASH-Chombo applications will not work! You can
save a lot of time and frustration by running this unit test before continuing with the build process.

In contrast to Paramesh, the Chombo source code is not included in the FLASH source tree. This means
that you, the user, must manually download and then build Chombo before building FLASH applications
that make use of Chombo. You should download version 3.0 or 3.1 of Chombo from
https://seesar.lbl.gov/anag/chombo/ as these are the only versions of Chombo that have been tested
with FLASH. Please refer to their user guide which is available from the same download page for help
building Chombo. It contains a very clear and detailed build procedure along with a Chombo support email
address that you can contact if you experience problems building Chombo.

You should build 1D,2D and 3D versions of Chombo library in a MPI configuration (MPI = TRUE) with
parallel HDF5 (USE_HDF = TRUE). A parallel HDF5 implementation means a HDF5 installation that is
configured with --enable-parallel. You can check whether you have a parallel HDF5 build using the
following command line:

grep "Parallel HDF5" /path/to/hdf5/lib/libhdf5.settings

You should also explicitly turn off Chombo memory tracking (USE_MT = FALSE) because it is a feature
that does not work with FLASH’s usage of Chombo. Note that it is not always sufficient to set USE_MT =
FALSE in your Make.defs.local; for Intel compiler we also had to remove USE_MT = TRUE from the default
compiler settings in ./lib/mk/compiler/Make.defs.Intel.

Only after you have successfully built and run the Chombo unit tests described in their user guide should
you have any expectation that FLASH will work with Chombo library. For your reference we show the
Make.defs.local macro definitions that we have used to build Chombo on a x86 64 machine in a FLASH-
compatible way in Figure 5.4 .

Compiling Chombo on IBM BG/P

The file src/BaseTools/ClockTicks.H from the Chombo-3.0 distribution needs to be modified
in order to compile Chombo on IBM BG/P. Change line 51 from

#elif defined(_POWER) || defined(_POWERPC) || defined(__POWERPC__)

to

#elif defined(_POWER) || defined(_POWERPC) || defined(__POWERPC__) ||
defined(__powerpc__)

https://seesar.lbl.gov/anag/chombo/
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At this stage you can optionally build and run the unit test source/Grid/GridMain/Chombo/wrapper/-
unit_tests/2. This is a standalone Fortran MPI application that uses Chombo library to create a dis-
tributed mesh over 4 MPI processes. It can be built by entering this directory and then executing the
command make all. We expect that this program will be helpful for debugging mixed-language program-
ming issues between FLASH and Chombo (especially on untested architectures / compiler combinations)
independently of a full-blown FLASH application. Note that you will need to edit the Makefile appropriately
for your installation of Chombo.

In order to build a FLASH application with Chombo you must create a custom FLASH Makefile.h
named Makefile.h.chombo. We use a new file named Makefile.h.chombo because it includes convenience
shell functions (described later) that will fail if a Chombo package is not available. At minimum the FLASH
Makefile.h.chombo must include definitions for the new macros CFLAGS_CHOMBO and LIB_CHOMBO. These
can be manually defined, but this is not recommended because it does not guarantee that FLASH’s C++
wrapper classes are built the same way as the Chombo library. Example macro definitions for a FLASH 2D
simulations are shown below:

CFLAGS_CHOMBO: -I/home/cdaley/flash/chomboForFlash/current/lib/include
-DCH_SPACEDIM=2 -DCH_Linux -DCH_IFC -DCH_MPI -DMPICH_SKIP_MPICXX
-ULAM_WANT_MPI2CPP -DMPI_NO_CPPBIND -DCH_USE_SETVAL -DCH_USE_COMPLEX
-DCH_USE_64 -DCH_USE_DOUBLE -DCH_USE_HDF5
-I/home/cdaley/software/hdf5/1.8.5-patch1/intel/include
-DH5_USE_16_API -DCH_FORT_UNDERSCORE
-I/home/cdaley/flash/chomboForFlash/current/lib/src/BaseTools
-DCH_LANG_CC

LIB_CHOMBO: -L/home/cdaley/flash/chomboForFlash/current/lib
-lamrtimedependent2d.Linux.64.mpicxx.ifort.DEBUG.MPI
-lamrtools2d.Linux.64.mpicxx.ifort.DEBUG.MPI
-lboxtools2d.Linux.64.mpicxx.ifort.DEBUG.MPI
-lbasetools2d.Linux.64.mpicxx.ifort.DEBUG.MPI -lstdc++

This is obviously hugely inconvenient because the macros must be kept in sync with the current Chombo
build and also the Chombo library names are dimension dependent. Our mechanism in FLASH4 to hide this
build complexity is to add shell functions in Makefile.h.chombo that extract:

• application dimensionality from Flash.h.

• information about the Chombo build from the make vars rule in the main Chombo Makefile for the
specified application dimensionality.

The shell functions appear in the Makefile.h.chombo in sites/code.uchicago.edu, so this file should
be used as your reference. A subset of this file is shown in Figure 5.5.

Notice that there are several temporary macros (_DIM, _MPI, _CPP, _LIB, _PHDF_INC, _PHDF_LIB)
that store information about the Chombo build at location CHOMBO_PATH. These temporary macros are later
used to give values for macros referenced in the actual FLASH Makefile.

You should now be ready to setup and build FLASH applications with Chombo mesh package.
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CHOMBO_PATH = /home/cdaley/flash/chomboForFlash/current

#----------------------------------------------------------------------------
# Extract dimensionality from Flash.h.
# The code in this section should not need to be modified.
#----------------------------------------------------------------------------

_DIM := \$(shell grep "define NDIM" Flash.h | cut -d " " -f 3)

#----------------------------------------------------------------------------
# Extract Chombo build information from the Makefile at CHOMBO_PATH.
# The code in this section should not need to be modified.
#----------------------------------------------------------------------------

_MPI := \$(shell make vars DIM=\${_DIM} -C \${CHOMBO_PATH}/lib | \
awk -F ’MPICXX=’ ’/^MPICXX/{print \$\$2}’)

ifeq (\$(strip \$(_MPI)),)
\$(error "Chombo MPICXX variable is empty")

endif

_CPP := \$(shell make vars DIM=\${_DIM} -C \${CHOMBO_PATH}/lib | \
awk -F ’CPPFLAGS=’ ’/^CPPFLAGS/{print \$\$2}’)

_LIB := \$(shell make vars DIM=${_DIM} -C \${CHOMBO_PATH}/lib | \
awk -F ’config=’ ’/^config/{print \$\$2}’)

_PHDF_INC := \$(shell make vars DIM=\${_DIM} -C \${CHOMBO_PATH}/lib | \
awk -F ’HDFMPIINCFLAGS=’ ’/^HDFMPIINCFLAGS/{print \$\$2}’)

_PHDF_LIB := \$(shell make vars DIM=${_DIM} -C \${CHOMBO_PATH}/lib | \
awk -F ’HDFMPILIBFLAGS=’ ’/^HDFMPILIBFLAGS/{print \$\$2}’)

#----------------------------------------------------------------------------
# Use Chombo build information to get consistent macro values for the FLASH build.
#----------------------------------------------------------------------------

# Use two passes of dirname to strip the bin/mpicxx
MPI_PATH := \$(shell dirname \$(shell dirname \$(shell which \$(_MPI))))
FCOMP = \${MPI_PATH}/bin/mpif90
CCOMP = \${MPI_PATH}/bin/mpicc
CPPCOMP = \${MPI_PATH}/bin/mpicxx
LINK = \${MPI_PATH}/bin/mpif90

CFLAGS_CHOMBO = -I\${CHOMBO_PATH}/lib/include \${_CPP} -DCH_LANG_CC
CFLAGS_HDF5 = \$(_PHDF_INC)

LIB_CHOMBO = -L\$(CHOMBO_PATH)/lib \
-lamrtimedependent\${_LIB} \
-lamrtools\${_LIB} \
-lboxtools\${_LIB} \
-lbasetools\${_LIB} \
-lstdc++
LIB_HDF5 = \$(_PHDF_LIB) -lz

Figure 5.5: gmake shell functions to build FLASH and Chombo consistently.
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Chapter 6

The Flash.h file

Flash.h is a critical header file in FLASH4 which holds many of the key quantities related to the particular
simulation. The Flash.h file is written by the setup script and should not be modified by the user. The
Flash.h file will be different for various applications. When the setup script is building an application, it
parses the Config files, collects definitions of variables, fluxes, grid vars, species, and mass scalars, and writes
a symbol (an index into one of the data structures maintained by the Grid unit) for each defined entity to
the Flash.h header file. This chapter explains these symbols and some of the other important quantities
and indices defined in the Flash.h file.

6.1 UNK, FACE(XYZ) Dimensions

Variables in a simulation are stored and manipulated by the Grid unit. The basic data structures in the Grid
unit are 5-dimensional arrays: unk, facex, facey, and facez. The array unk stores the cell-centered values of
various quantities (density, pressure, etc.). The facex, facey and facez variables store face-centered values
of some or all of the same quantities. Face centered variables are commonly used in Magnetohydrodynamics
(MHD) simulations to hold vector-quantity fields. The first dimension of each of these arrays indicates the
variable, the 2nd, 3rd, and 4th dimensions indicate the cell location in a block, and the 5th dimension is the
block identifier for the local processor. The size of the block, dimensions of the domain, and other parameters
which influence the Grid data structures are defined in Flash.h.

NXB,NYB,NZB

The number of interior cells in the x,y,z-dimension per block

MAXCELLS

The maximum of (NXB,NYB,NZB)

MAXBLOCKS

The maximum number of blocks which can be allocated in a single processor

GRID (IJK)LO

The index of the lowest numbered cell in the x,y,z-direction in a block (not including guard cells)

GRID (IJK)HI

The index of the highest numbered cell in the x,y,z-direction in a block (not including guard cells)

GRID (IJK)LO GC

The index of the lowest numbered cell in the x,y,z-direction in a block (including guard cells)

GRID (IJK)HI GC

The index of the highest numbered cell in the x,y,z-direction in a block (including guard cells)

79
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NGUARD

The number of guard cells in each dimension.

All of these constants have meaning when operating in FIXEDBLOCKSIZE mode only. FIXEDBLOCK-
SIZE mode is when the sizes and the block bounds are determined at compile time. In NONFIXED-
BLOCKSIZE mode, the block sizes and the block bounds are determined at runtime. PARAMESH always
runs in FIXEDBLOCKSIZE mode, while the Uniform Grid can be run in either FIXEDBLOCKSIZE or
NONFIXEDBLOCKSIZE mode. See Section 5.2 and Section 8.5.2 for more information.

6.2 Property Variables, Species and Mass Scalars

The unk data structure stores, in order, property variables (like density, pressure, temperature), the mass
fraction of species, and mass scalars 1. However, in FLASH4 the user does not need to be intimately aware
of the unk array layout, as starting and ending indices of these groups of quantities are defined in Flash.h.
The following pre-processor symbols define the indices of the various quantities related to a given cell. These
symbols are primarily used to perform some computation with all property variables, species mass fractions,
or all mass scalars.

NPROP VARS

The number of property variables in the simulation

NSPECIES

The total number of species in the simulation

NMASS SCALARS

The number of mass scalars in the simulation

NUNK VARS

The total number of quantities stored for each cell in the simulation. This equals NPROP VARS +
NSPECIES + NMASS SCALARS

PROP VARS BEGIN,PROP VARS END

The indices in the unk array used for property variable data

SPECIES BEGIN,SPECIES END

The indices in the unk array used for species data

MASS SCALARS BEGIN,MASS SCALARS END

The indices in the unk array used for mass scalars data

UNK VARS BEGIN,UNK VARS END

The low and high indices for the unk array

The indices where specific properties (e.g., density) are stored can also be accessed via pre-processor
symbols. All properties are declared in Config files and consist of 4 letters. For example, if a Config file
declares a “dens” variable, its index in the unk array is available via the pre-processor symbol DENS VAR
(append VAR to the uppercase name of the variable) which is guaranteed to be an integer. The same is
true for species and mass scalars. In the case of species, the pre-processor symbol is created by appending
SPEC to the uppercase name of the species (e.g., SF6 SPEC, AIR SPEC). Finally, for mass scalars, MSCALAR
is appended to the uppercase name of the mass scalars.

It is inadvisable to name variables, species, and mass scalars with the same prefix as post-processing
routines have difficulty deciphering the type of data from the output files. For example, don’t create

1See (14.9) for more information about mass scalars
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a variable “temp” to hold temperature and a mass scalar “temp” indicating a temporary variable. Al-
though the Flash.h file can distinguish between these two types of variables, many plotting routines such
as fidlr3.0cannot.

6.3 Fluxes

The fluxes are stored in their own data structure and are only necessary when an adaptive grid is in use. The
index order works in much the same way as with the unk data structure. There are the traditional property
fluxes, like density, pressure, etc. Additionally, there are species fluxes and mass scalars fluxes. The name of
the pre-processor symbol is assembled by appending FLUX to the uppercase name of the declared flux (e.g.,
EINT FLUX, U FLUX). For flux species and flux mass scalars, the suffix FLUX SPECIES and FLUX MSCALAR
are appended to the uppercase names of flux species and flux mass scalars, respectively, as declared in the
Config file. Useful defined variables are calculated as follows:

NPROP FLUX

The number of property variables in the simulation

NSPECIES FLUX

The total number of species in the simulation

NMASS SCALARS FLUX

The number of mass scalars in the simulation

NFLUXES

The total number of quantities stored for each cell in the simulation. This equals (NPROP FLUX +
NSPECIES FLUX + NMASS SCALARS FLUX)

PROP FLUX BEGIN,PROP FLUX END

The indices in the fluxes data structure used for property variable data

SPECIES FLUX BEGIN,SPECIES FLUX END

The indices in the fluxes data structure used for species data

MASS SCALARS FLUX BEGIN,MASS SCALARS FLUX END

The indices in the fluxes data structure used for mass scalars data

FLUXES BEGIN

The first index for the fluxes data structure

6.4 Scratch Vars

In FLASH4 the user is allowed to declare ‘scratch’ space for grid scope variables which resemble cell-centered
or face-centered in shape and are dimensioned accordingly, but are not advected or transformed by the usual
evolution steps. They do not participate in the guard-cell filling or regridding processes. For example
a user could declare a scratch variable to store the temperature change on the grid from one timestep
to another.They can be requested using keyword SCRATCHCENTERVAR for cell-centered scratch variables, or
SCRATCHFACEVAR for face-centered scratch variables. A special case is SCRATCHVAR, which has one extra
cell than the cell-centered variables along every dimension. We have provided this data structure to enable
the reuse of the same scratch space by both cell-centered and each of the face-centered variables. Simi-
lar to the mesh variables used in the evolution, the scratch data structures are 4-dimensional arrays per
block, where the first dimension enumerates the variables and the next three dimensions are the spatial
dimensions. Scratch variables are indexed by postpending one of SCRATCH GRID VAR, SCRATCH CENTER VAR
or SCRATCH FACEX/Y/Z VAR to the capitalized four letter variable defined in the Config file. Similarly to
property variables, NSCRATCH CENTER VARS, SCRATCH CENTER VARS BEGIN, and SCRATCH CENTER VARS END
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are defined to hold the number and endpoints of the cell-centered scratch variables. For face-centered scratch
variables the CENTER is in the above terms is replaced with FACEX/Y/Z while for SCRATCHVARS, the
CENTER is replace with GRID.

6.5 Fluid Variables Example

The snippet of code below shows a Config file and parts of a corresponding Flash.h file.

# Config file for explicit split PPM hydrodynamics.
# source/physics/Hydro/HydroMain/split/PPM

REQUIRES physics/Hydro/HydroMain/utilities
REQUIRES physics/Eos

DEFAULT PPMKernel

VARIABLE dens TYPE: PER_VOLUME # density
VARIABLE velx TYPE: PER_MASS # x-velocity
VARIABLE vely TYPE: PER_MASS # y-velocity
VARIABLE velz TYPE: PER_MASS # z-velocity
VARIABLE pres TYPE: GENERIC # pressure
VARIABLE ener TYPE: PER_MASS # specific total energy (T+U)
VARIABLE temp TYPE: GENERIC # temperature
VARIABLE eint TYPE: PER_MASS # specific internal energy

FLUX rho
FLUX u
FLUX p
FLUX ut
FLUX utt
FLUX e
FLUX eint

SCRATCHVAR otmp
SCRATCHCENTERVAR ftmp
.....

The Flash.h files would declare the property variables, fluxes and scratch variables as: (The setup script
alphabetizes the names.)

#define DENS_VAR 1
#define EINT_VAR 2
#define ENER_VAR 3
#define PRES_VAR 4
#define TEMP_VAR 5
#define VELX_VAR 6
#define VELY_VAR 7
#define VELZ_VAR 8

#define E_FLUX 1
#define EINT_FLUX 2
#define P_FLUX 3
#define RHO_FLUX 4
#define U_FLUX 5
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#define UT_FLUX 6
#define UTT_FLUX 7

#define OTMP_SCRATCH_GRID_VAR 1

#define FTMP_SCRATCH_CENTER_VAR 1

6.6 Particles

6.6.1 Particles Types

FLASH4 now supports the co-existence of multiple particle types in the same simulation. To facilitate
this ability, the particles are now defined in the Config files with PARTICLETYPE keyword, which is also
accompanied by an associated initialization and mapping method. The following example shows a Config
file with passive particles, and the corresponding generated Flash.h lines

Config file :

PARTICLETYPE passive INITMETHOD lattice MAPMETHOD quadratic ADVMETHOD rungekutta

REQUIRES Particles/ParticlesMain
REQUESTS Particles/ParticlesMain/passive/RungeKutta
REQUESTS Particles/ParticlesMapping/Quadratic
REQUESTS Particles/ParticlesInitialization/Lattice
REQUESTS IO/IOMain/
REQUESTS IO/IOParticles

Flash.h :

#define PASSIVE_PART_TYPE 1
#define PART_TYPES_BEGIN CONSTANT_ONE
#define NPART_TYPES 1
#define PART_TYPES_END (PART_TYPES_BEGIN + NPART_TYPES - CONSTANT_ONE)

One line desribing the type, initialization, and mapping methods must be provided for each type of
particle included in the simulation.

6.6.2 Particles Properties

Particle properties are defined within the particles data structure. The individual properties will be listed
in Flash.h if the Particles unit is defined in a simulation. The variables NPART_PROPS, PART_PROPS_BEGIN
and PART_PROPS_END indicate the number and location of particle properties indices. For example if a Config
file has the following specifications

PARTICLEPROP dens
PARTICLEPROP pres
PARTICLEPROP velx

then the relevant portion of Flash.h will contain
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#define DENS_PART_PROP 1
#define PRES_PART_PROP 2
#define VELX_PART_PROP 3
...
#define PART_PROPS_BEGIN CONSTANT_ONE
#define NPART_PROPS 3
#define PART_PROPS_END (PART_PROPS_BEGIN + NPART_PROPS - CONSTANT_ONE)

6.7 Non-Replicated Variable Arrays

For each non-replicated variable array defined in the Config file (see Section 5.5.1), various macros and con-
stants are defined to assist the user in retrieving the information from the NONREP line as well as determining
the distribution of array element variables across the meshes.

6.7.1 Per-Array Macros

For each non-replicated variable array FOO as defined by the following Config line:
NONREP unktype FOO localmax globalparam ioformat
the following will be placed into Flash.h:

• #define FOO_NONREP
An integer constant greater than zero to be used as an id for this array. The user should rarely ever
need to use this value. Instead, it is much more likely that the user would just query the preprocessor
for the existence of this symbol (via #ifdef FOO_NONREP) to enable sections of code.

• #define FOO_NONREP_LOC2UNK(loc)
Given the 1-based index into this mesh’s local subset of the global array, returns the UNK index where
that variable is stored.

• #define FOO_NONREP_MAXLOCS
The integer constant localmax as supplied in the Config file NONREP line.

• #define FOO_NONREP_RPCOUNT
The string literal value of globalparam from the NONREP line.

6.7.2 Array Partitioning Macros

These are the macros used to calculate the subset of indices into the global variable array each mesh is
responsible for:

• #define NONREP_NLOCS(mesh,meshes,globs)
Returns the number of elemenets in the mesh’s local subset. This value will always be less than or
equal to FOO ˙NONREP˙MAXLOCS.

• #define NONREP_LOC2GLOB(loc,mesh,meshes)
Maps an index into a mesh’s local subset to its index in the global array.

• #define NONREP_GLOB2LOC(glob,mesh,meshes)
Maps an index of the global array to the index into a mesh’s local subset. If the mesh provided does
not have that global element the result is undefined.

• #define NONREP_MESHOFGLOB(glob,meshes)
Returns the mesh that owns a given global array index.

Descriptions of arguments to the above macros:

• loc: 1-based index into the mesh-local subset of the global array’s indices.
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• glob: 1-based index into the global array.

• globs: Length of the global array. This should be the value read from the array’s runtime parameter
FOO ˙NONREP˙RPCOUNT.

• mesh: 0-based index of the mesh in question. For a processor, this is its rank in the MESH_ACROSS_COMM
communicator.

• meshes: The number of meshes. This should be the value of the runtime parameter meshCopyCount,
or equivalently the number of processors in the MESH_ACROSS_COMM communicator.

6.7.3 Example

In this example the global array FOO has eight elements, but there are three meshes, so two of the meshes
will receive three elements of the array and one will get two. How that distribution is decided is hidden from
the user. The output datasets will contain variables foo1 ...foo8.

Config:

NONREP MASS_SCALAR FOO 3 numFoo foo?

flash.par:

meshCopyCount = 3
numFoo = 8

Fortran 90:

\#include "Flash.h"\\
! this shows how to iterate over the UNKs corresponding to this
! processor’s subset of FOO
integer :: nfooglob, nfooloc ! number of foo vars, global and local
integer :: mesh, nmesh ! this mesh number, and total number of meshes
integer :: fooloc, fooglob ! local and global foo indices
integer :: unk\\
call Driver_getMype(MESH_ACROSS_COMM, mesh)
call Driver_getNumProcs(MESH_ACROSS_COMM, nmesh)
call RuntimeParameters_get(FOO_NONREP_RPCOUNT, nfooglob)
nfooloc = NONREP_NLOCS(mesh, nmesh, nfooglob)\\
! iterate over the local subset for this mesh
do fooloc=1, nfooloc

! get the location in UNK
unk = FOO_NONREP_LOC2UNK(fooloc)
! get the global index
fooglob = NONREP_LOC2GLOB(fooloc, mesh, nmesh)\\
! you have what you need, do your worst...

end do
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6.8 Other Preprocessor Symbols

The constants FIXEDBLOCKSIZE and NDIM are both included for convenience in this file. NDIM gives the
dimensionality of the problem, and FIXEDBLOCKSIZE is defined if and only if fixed blocksize mode is selected
at compile time.

Each Config file can include the PPDEFINE keyword to define additional preprocessor symbols. Each
“PPDEFINE symbol [value]” gets translated to a “#define symbol [value]”. This mechanism can be used
to write code that depends on which units are included in the simulation. See Section 5.5.1 for concrete
usage examples.
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Driver Unit
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Driver
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Split Unsplit

Figure 7.1: The Driver unit directory tree.

The Driver unit controls the initialization and evolution of FLASH simulations. In addition, at the high-
est level, the Driver unit organizes the interaction between units. Initialization can be from scratch or from
a stored checkpoint file. For advancing the solution, the drivers can use either an operator-splitting tech-
nique adapted to directionally split physics operators like split Hydro (Split), or a more generic “Unsplit”
implementation. The Driver unit also calls the IO unit at the end of every timestep to produce checkpoint
files, plot files, or other output.

7.1 Driver Routines

The most important routines in the Driver API are those that initialize, evolve, and finalize the FLASH
program. The file Flash.F90 contains the main FLASH program (equivalent to main() in C). The default
top-level program of FLASH, Simulation/Flash.F90, calls Driver routines in this order:

program Flash

implicit none

call Driver_initParallel()
call Driver_initFlash()
call Driver_evolveFlash( )
call Driver_finalizeFlash ( )
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end program Flash

Therefore the no-operation stubs for these routines in the Driver source directory must be overridden by
an implementation function in a unit implementation directory under the Driver or Simulation directory
trees, in order for a simulation to perform any meaningful actions. The most commonly used implementations
for most of these files are located in the Driver/DriverMain unit implementation directory, with a few
specialized ones in either Driver/DriverMain/Split or Driver/DriverMain/Unsplit.

7.1.1 Driver initFlash

The first of these routines is Driver initParallel, which initializes the parallel environment for the simu-
lation. New in FLASH4 is an ability to replicate the mesh where more than one copy of the discretized mesh
may exist with some overlapping and some non-overlapping variables. Because of this feature, the parallel
environment differentiates between global and mesh communicators. All the necessary communicators, and
the attendant meta-data is generated in this routine. Also because of this modification, runtime parameters
such as iProcs, jProcs etc, which were under the control of the Grid unit in FLASH3, are now under the
control of the Driver unit. Several new accessor interface allow other code units to query the driver unit for
this information. The Driver initFlash, the next routine, in general calls the initialization routines in each
of the units. If a unit is not included in a simulation, its stub (or empty) implementation is called. Having
stub implementations is very useful in the Driver unit because it allows the user to avoid writing a new
driver for each simulation. For a more detailed explanation of stub implementations please see Section 4.2.
It is important to note that when individual units are being initialized, order is often very important and
the order of initialization is different depending on whether the run is from scratch or being restarted from
a checkpoint file.

7.1.2 Driver evolveFlash

The next routine is Driver evolveFlash which controls the timestepping of the simulation, as well as the
normal termination of FLASH based on time. Driver evolveFlash checks the parameters tmax, nend
and zFinal to determine that the run should end, having reached a particular point in time, a certain
number of steps, or a particular cosmological redshift, respectively. Likewise the initial simulation time, step
number and cosmological redshift for a simulation can be set using the runtime parameters tmin, nbegin,
and zInitial. This version of FLASH includes versions of Driver evolveFlash for directionally-split and
unsplit staggered mesh operators.

7.1.2.1 Strang Split Evolution

The code in the Driver/DriverMain/Split unit implementation directory has been the default time update
method up to FLASH4.3, and can still be be used for many setups that can be configured with FLASH. The
routine Driver evolveFlash implements a Strang-split method of time advancement where each physics
unit updates the solution data for two equal timesteps – thus the sequence of calls to physics and other
units in each time step goes something like this: Hydro, diffusive terms, source terms, Particles, Gravity;
Hydro, diffusive terms, source terms, Particles, Gravity, IO (for output), Grid (for grid changes). The
hydrodynamics update routines take a “sweep order” argument since they must be directionally split to work
with this driver. Here, the first call usually uses the ordering x− y − z, and the second call uses z − y − x.
Each of the update routines is assumed to directly modify the solution variables. At the end of one loop
of timestep advancement, the condition for updating the mesh refinement pattern is tested if the adaptive
mesh is being used, and a refinement update is carried out if required.

7.1.2.2 Unsplit Evolution

The driver implementation in the Driver/DriverMain/Unsplit directory is the default since FLASH4.4.
It is required specifically for the two unsplit solvers: unsplit staggered mesh MHD solver (Section 14.3.3)
and the unsplit gas hydrodynamics solver (Section 14.1.3). This implementation in general calls each of the

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_initParallel_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_initFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_evolveFlash_F90.html
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physics routines only once per time step, and each call advances solution vectors by one timestep. At the
end of one loop of timestep advancement, the condition for updating the adaptive mesh refinement pattern
is tested and applied.

7.1.2.3 Super-Time-Stepping (STS)

A new timestepping method implemented in FLASH4 is a technique called Super-Time-Stepping (STS). The
STS is a simple explicit method which is used to accelerate restrictive parabolic timestepping advancements
(∆tCFL para ≈ ∆x2) by relaxing the CFL stability condition of parabolic equation system.

The STS has been proposed by Alexiades et al., (1996), and used in computational astrophysics and
sciences recenly (see Mignone et al., 2007; O’Sullivan & Downes, 2006; Commerçon et al., 2011; Lee, D. et
al, 2011) for solving systems of parabolic PDEs numerically. The method increases its effective time steps
∆tsts using two properties of stability and optimality in Chebychev polynomial of degree n. These properties
optimally maximize the time step ∆tsts by which a solution vector can be evolved. A stability condition is
imposed only after each time step ∆tsts, which is further subdivided into smaller Nsts sub-time steps, τi,

that is, ∆tsts =
∑Nsts

i=1 τi, where the sub-time step is given by

τi = ∆tCFL para
[
(−1 + νsts)cos

(π(2j − 1)
2Nsts

+ 1 + νsts
)]−1

, (7.1)

where ∆tCFL para is an explicit time step for a given parabolic system based on the CFL stability condition.
ν (nuSTS) is a free parameter less than unity. For ν → 0, STS is asymptotically Nsts times faster than the
conventional explicit scheme based on the CFL condition. During the Nsts sub-time steps, the STS method
still solves solutions at each intermediate step τi; however, such solutions should not be considered as
meaningful solutions.

Extended from the original STS method for accelerating parabolic timestepping, our STS method ad-
vances advection and/or diffusion (hyperbolic and/or parabolic) system of equations. This means that the
STS algorithm in FLASH invokes a single ∆tsts for both advection and diffusion, and does not use any
sub-cycling for diffusion based on a given advection time step. In this case, τi is given by

τi = ∆tCFL
[
(−1 + νsts)cos

(π(2j − 1)
2Nsts

+ 1 + νsts
)]−1

, (7.2)

where ∆tCFL can be an explicit time step for advection (∆tCFL adv) or parabolic (∆tCFL para) systems.
In cases of advection-diffusion system, ∆tCFL takes (∆tCFL para) when it is smaller than (∆tCFL adv);
otherwise, FLASH’s timestepping will proceed without using STS iterations (i.e., using standard explicit
timestepping that is either Strang split evolution or unsplit evolution.

Since the method is explicit, it works equally well on both a uniform grid and AMR grids without
modification. The STS method is first-order accurate in time.

Both directionally-split and unsplit hydro solvers can use the STS method, simply by invoking a runtime
parameter useSTS = .true. in flash.par. There are couple of runtime parameters that control solution
accuracy and stability. They are decribed in Table 7.1.

7.1.2.4 Runtime Parameters

The Driver unit supplies certain runtime parameters regardless of which type of driver is chosen. These are
described in the online Runtime Parameters Documentation page.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Driver.txt
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Table 7.1: Runtime parameters for STS

Variable Type Default Description
useSTS logical .false. Enable STS
nstepTotalSTS integer 5 Suggestion: ∼ 5 for hyperbolic; ∼ 10 for parabolic
nuSTS real 0.2 Suggestion: ∼ 0.2 for hyperbolic; ∼ 0.01 for parabolic. It

is known that a very low value of ν may result in unsta-
ble temporal integrations, while a value close to unity can
decrease the expected efficiency of STS.

useSTSforDiffusion logical .false. This setup will use the STS for overcoming small diffusion
time steps assuming ∆tCFL adv > ∆tCFL para. In im-
plementation, it will set ∆tCFL = ∆tCFL para in Eqn.
7.2. Do not allow to turn on this switch when there is no
diffusion (viscosity, conductivity, and magnetic resistivity)
used.

allowDtSTSDominate logical .false. If true, this will allow to have τi > ∆tCFL adv, which may
result in unstable integrations.

FLASH Transition

The Driver unit no longer provides runtime parameters, physical constants, or logfile man-
agement. Those services have been placed in separate units. The Driver unit also does not
declare boolean values to include a unit in a simulation or not. For example, in FLASH2,
the Driver declared a runtime parameter iburn to turn on and off burning.

if(iburn) then
call burning ....

end if

In FLASH4 the individual unit declares a runtime parameter that determines whether the
unit is used during the simulation e.g., the Burn unit declares useBurn within the Burn unit
code that turns burning on or off. This way the Driver is no longer responsible for knowing
what is included in a simulation. A unit gets called from the Driver, and if it is not included
in a simulation, a stub gets called. If a unit, like Burn, is included but the user wants to turn
burning off, then the runtime parameter declared in the Burn unit would be set to false.

7.1.3 Driver finalizeFlash

Finally, the the Driver unit calls Driver finalizeFlash which calls the finalize routines for each unit.
Typically this involves deallocating memory and any other necessary cleanup.

7.1.4 Driver accessor functions

In FLASH4 the Driver unit also provides a number of accessor functions to get data stored in the Driver
unit, for example Driver getDt, Driver getNStep, Driver getElapsedWCTime, Driver getSimTime.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_finalizeFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_getDt_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_getNStep_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_getElapsedWCTime_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_getSimTime_F90.html
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FLASH Transition

In FLASH4 most of the quantities that were in the FLASH2 database are stored in the Grid
unit or are replaced with functionality in the Flash.h file. A few scalars quantities like dt,
the current timestep number nstep, simulation time and elapsed wall clock time, however,
are now stored in the Driver data FORTRAN90 module.

The Driver unit API also defines two interfaces for halting the code, Driver abortFlash and
Driver abortFlashC.c. The ’c’ routine version is available for calls written in C, so that the user does not
have to worry about any name mangling. Both of these routines print an error message and call MPI Abort.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_abortFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_abortFlashC_c.html
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Figure 8.1: The Grid unit: structure of GridMain and GridBoundaryCondition subunits.
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Figure 8.2: The Grid unit: structure of GridParticles subunit.
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Figure 8.3: The Grid unit: structure of GridSolvers subunit.

8.1 Overview

The Grid unit has four subunits: GridMain is responsible for maintaining the Eulerian grid used to discretize
the spatial dimensions of a simulation; GridParticles manages the data movement related to active, and
Lagrangian tracer particles; GridBoundaryConditions handles the application of boundary conditions at
the physical boundaries of the domain; and GridSolvers provides services for solving some types of partial
differential equations on the grid. In the Eulerian grid, discretization is achieved by dividing the computa-
tional domain into one or more sub-domains or blocks, and using these blocks as the primary computational
entity visible to the physics units. A block contains a number of computational cells (nxb in the x-direction,
nyb in the y-direction, and nzb in the z-direction). A perimeter of guardcells, of width nguard cells in each
coordinate direction, surrounds each block of local data, providing it with data from the neighboring blocks
or with boundary conditions, as shown in Figure 8.4. Since the majority of physics solvers used in FLASH
are explicit, a block with its surrounding guard cells becomes a self-contained computational domain. Thus
the physics units see and operate on only one block at a time, and this abstraction is reflected in their design.

Therefore any mesh package that can present a self contained block as a computational domain to a client
unit can be used with FLASH. However, such interchangeability of grid packages also requires a careful design
of the Grid API to make the underlying management of the discretized grid completely transparent to outside
units. The data structures for physical variables, the spatial coordinates, and the management of the grid
are kept private to the Grid unit, and client units can access them only through accessor functions. This
strict protocol for data management along with the use of blocks as computational entities enables FLASH
to abstract the grid from physics solvers and facilitates the ability of FLASH to use multiple mesh packages.

Any unit in the code can retrieve all or part of a block of data from the Grid unit along with the
coordinates of corresponding cells; it can then use this information for internal computations, and finally
return the modified data to the Grid unit. The Grid unit also manages the parallelization of FLASH. It
consists of a suite of subroutines which handle distribution of work to processors and guard cell filling. When
using an adaptive mesh, the Grid unit is also responsible for refinement/derefinement and conservation of
flux across block boundaries.

FLASH can interchangeably use either a uniform or adaptive grid for most problems. Additionally, a
new feature in FLASH4 is an option to replicate the mesh; that is processors are assumed to be partitioned
into groups, each group gets a copy of the entire domain mesh. This feature is useful when it is possible
to decompose the computation based upon certain compute intensive tasks that apply across the domain.
One such example is radiation transfer with multigroup flux limited diffusion where each group needs an
implicit solve. Here the state variable of the mesh are replicated on each group of processors, while the
groups are unique. Thus at the cost of some memory redundancy, it becomes possible to compute a higher
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Figure 8.4: A single 2-D block showing the interior cells (shaded) and the perimeter of guard cells.

fidelity problem (see Chapter 24 for an example). Because of this feature, the parallel environment of the
simulation is now controlled by the Driver which differentiates between global communicators and mesh
communicators. The Grid unit queries the Driver unit for mesh communicators. In all other respects this
change is transparent to the Grid unit. Mesh replication can be invoked through the runtime parameter
meshCopyCount

The uniform grid supported in FLASH discretizes the physical domain by placing grid points at regular
intervals defined by the geometry of the problem. The grid configuration remains unchanged throughout the
simulation, and exactly one block is mapped per processor. An adaptive grid changes the discretization over
the course of the computation, and several blocks can be mapped to each computational processor. Two
AMR packages are currently supported in FLASH for providing adaptive grid capbility. The block-structured
oct-tree based AMR package, PARAMESH has been the work horse since the beginning of the code. Version
2 and Version 4 of paramesh are both supported, version 2 is kept mostly to enable cross checking against
FLASH2 results. FLASH4, for the first time, includes patch based Chombo as an alternative AMR package.
By default, PARAMESH 4 is chosen when setting up an application, unless another implementation is explicitly
specified. The use of paramesh 2 is deprecated, and Chombo has not so far been used for production at the
Flash Center.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Driver.txt
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FLASH Transition

The following two commands will create the same (identical) application: a simulation of a
Sod shock tube in 3 dimensions with PARAMESH 4 managing the grid.

./setup Sod -3d -auto

./setup Sod -3d -auto -unit=Grid/GridMain/paramesh/paramesh4/Paramesh4.0

However, if the command is changed to

./setup Sod -3d -auto -unit=Grid/GridMain/UG

the application is set up with a uniform grid instead. Additionally, because two different
grids types are supported in FLASH, the user must match up the correct IO alternative
implementation with the correct Grid alternative implementation. Please see Chapter 9 for
more details. Note that the setup script has capabilities to let the user set up shortcuts,
such as “+ugio”, which makes sure that the appropriate branch of IO is included when the
uniform grid is being used. Please see Section 5.3 for more information. Also see grid tips
for shortcuts useful for the Grid unit.

8.2 GridMain Data Structures

The Grid unit is the most extensive infrastructure unit in the FLASH code, and it owns data that most other
units wish to fetch and modify. Since the data layout in this unit has implications on the manageability and
performance of the code, we describe it in some detail here.

FLASH can be run with a grid discretization that assumes cell-centered data, face-centered data, or a
combination of the two. Paramesh and Uniform Grid store physical data in multidimensional F90 arrays;
cell-centered variables in unk, short for “unknowns”, and face-centered variables in arrays called facevarx,
facevary, and facevarz, which contain the face-centered data along the x, y, and z dimensions, respectively.
The cell-centered array unk is dimensioned as array(NUNK_VARS,nxb,nyb,nzb,blocks), where nxb, nyb, nzb
are the spatial dimensions of a single block, and blocks is the number of blocks per processor (MAXBLOCKS for
PARAMESH and 1 for UG). The face-centered arrays have one extra data point along the dimension they are
representing, for example facevarx is dimensioned as array(NFACE_VARS,nxb+1,nyb,nzb,blocks). Some
or all of the actual values dimensioning these arrays are determined at application setup time. The number
of variables and the value of MAXBLOCKS are always determined at setup time. The spatial dimensions
nxb,nyb,nzb can either be fixed at setup time, or they may be determined at runtime. These two modes
are referred to as FIXEDBLOCKSIZE and NONFIXEDBLOCKSIZE. Chombo, which is written in C++,
maintains its internal data very differently. However, through the wrapper layer provided by Grid, the Chombo
data structures mimic the data layout understood by the FLASH solvers. Details of Grid implementation
with Chombo are described in section Section 8.7

All values determined at setup time are defined as constants in a file Flash.h generated by the setup
tool. This file contains all application-specific global constants such as the number and naming of physical
variables, number and naming of fluxes and species, etc.; it is described in detail in Chapter 6.

For cell-centered variables, the Grid unit also stores a variable type that can be retrieved using the
Simulation getVarnameType routine; see Section 5.5.1 for the syntax and meaning of the optional TYPE
attribute that can be specified as part of a VARIABLE definition read by the setup tool.

In addition to the primary physical variables, the Grid unit has another set of data structures for storing
auxiliary fluid variables. This set of data structures provides a mechanism for storing such variables whose
spatial scope is the entire physical domain, but who do not need to maintain their guard cells updated
at all times. The data structures in this set include: SCRATCHCENTERVAR, which has the same shape as
the cell centered variables data structure; and SCRATCHFACEXVAR, SCRATCHFACEYVAR and SCRATCHFACEZVAR,
which have the same shape as the corresponding face centered variables data structures. Early releases of

http://flash.uchicago.edu/site/flashcode/user_support/tipsDoc.py?submit=tips_grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_getVarnameType_F90.html
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FLASH3 had SCRATCHVAR, dimensioned array(NSCRATCH_GRID_VARS,nxb+1,nyb+1,nzb+1,blocks), as the
only grid scope scratch data structure. For reasons of backward compatibility, and to maximize reusability
of space, SCRATCHVAR continues to exist as a supported data structure, though its use is deprecated. The
datastructures for face variables, though supported, are not used anywhere in the released code base. The
unsplit MHD solver StaggeredMesh discussed in Section 14.3.3 gives an example of the use of some of these
data structures. It is important to note that there is no guardcell filling for the scratch variables, and the
values in the scratch variables become invalid after a grid refinement step. While users can define scratch
variables to be written to the plotfiles, they are not by default written to checkpoint files. The Grid unit also
stores the metadata necessary for work distribution, load balancing, and other housekeeping activities. These
activities are further discussed in Section 8.5 and Section 8.6, which describe individual implementations of
the Grid unit.

8.3 Computational Domain

The size of the computational domain in physical units is specified at runtime through the (xmin, xmax),
(ymin, ymax), and (zmin, zmax) runtime parameters. When working with curvilinear coordinates (see below in
Section 8.11), the extrema for angle coordinates are specified in degrees. Internally all angles are represented
in radians, so angles are converted to radians at Grid initialization.

FLASH Transition

The convention for specifying the ranges for angular coordinates has changed from FLASH2,
which used units of π instead of degrees for angular coordinates.

The physical domain is mapped into a computational domain at problem initialization through routine
Grid initDomain in PARAMESH and Chombo, and Grid init in UG.When using the uniform grid UG, the
mapping is easy: one block is created for each processor in the run, which can be sized either at build time
or runtime depending upon the mode of UG use. 1 Further description can be found in Section 8.5. When
using the AMR grid PARAMESH, the mapping is non-trivial. The adaptive mesh gr createDomain function
creates an initial mesh of nblockx * nblocky * nblockz top level blocks, where nblockx, nblocky, and
nblockz are runtime parameters which default to 1.2 The resolution of the computational domain is usually
very coarse and unsuitable for computation after the initial mapping. The gr expandDomain routine remedies
the situation by applying the refinement process to the initial domain until a satisfactory level of resolution is
reached everywhere in the domain. This method of mapping the physical domain to computational domain
is effective because the resultant resolution in any section is related to the demands of the initial conditions
there.

1Note that the term processor, as used here and elsewhere in the documentation, does not necessarily correspond to a
separate hardware processor. It is also possible to have several logical “processors” mapped to the same hardware, which can
be useful for debugging and testing; this is a matter for the operating environment to regulate.

2The gr createDomain function also can remove certain blocks of this initial mesh, if this is requested by a non-default
Simulation defineDomain implementation.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_initDomain_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_defineDomain_F90.html
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FLASH Transition

FLASH2 supported only an AMR grid with paramesh 2. At initialization, it created the
coarsest level initial blocks covering the domain using an algorithm called “sequential” di-
vide domain. A uniform grid of blocks on processor zero was created, and until the first
refinement, all blocks were on processor zero. FLASH3 onwards the paramesh based imple-
mentation of the Grid uses a “parallel” domain creation algorithm that attempts to create
the initial domain in blocks that are distributed amongst all processors according to the
same Morton ordering used by PARAMESH.
First, the parallel algorithm computes a Morton number for each block in the coarsest level
uniform grid, producing a sorted list of Morton numbers for all blocks to be created. Each
processor will create the blocks from a section of this list, and each processor determines
how big its section will be. After that, each processor loops over all the blocks on the top
level, computing Morton numbers for each, finding them in the sorted list, and determin-
ing if this block is in its own section. If it is, the processor creates the block. Parallel
divide domain is especially useful in three-dimensional problems where memory constraints
can sometimes force the initial domain to be unrealistically coarse with a sequential divide
domain algorithm.

8.4 Boundary Conditions

Much of the FLASH3 code within the Grid unit that deals with implementing boundary conditions has
been organized into a separate subunit, GridBoundaryConditions. Note that the following aspects are still
handled elsewhere:

• Recognition of bounday condition names as strings (in runtime parameters) and constants (in the source
code); these are defined in RuntimeParameters mapStrToInt and in constants.h, respectively.

• Handling of periodic boundary conditions; this is done within the underlying GridMain implementation.
When using PARAMESH, the subroutine gr createDomain is responsible for setting the neighbors of top-
level blocks (to either other top-level blocks or to external boundary conditions) at initialization, after
Nblockx × Nblocky × Nblockz root blocks have been created. periodic (wrap-around) boundary
conditions are initially configured in this routine as well. If periodic boundary conditions are set in the
x-direction, for instance, the first blocks in the x-direction are set to have as their left-most neighbor
the blocks that are last in the x-direction, and vice versa. Thus, when the guard cell filling is performed,
the periodic boundary conditions are automatically maintained.

• Handling of user-defined boundary conditions; this should be implemented by code under the
Simulation directory.

• Low-level implementation and interfacing, such as are part of the PARAMESH code.

• Behavior of particles at a domain boundary. This is based on the boundary types described below, but
their handling is implemented in GridParticles.

Although the GridBoundaryConditions subunit is included in a setup by default, it can be excluded
(if no Config file “REQUIRES” it) by specifying -without-unit=Grid/GridBoundaryConditions. This will
generally only make sense if all domain boundaries are to be treated as periodic. (All relevant runtime
parameters xl boundary type etc. need to be set to "periodic" in that case.)

8.4.1 Boundary Condition Types

Boundary conditions are determined by the physical problem. Within FLASH, the parallel structure of
blocks means that each processor works independently. If a block is on a physical boundary, the guard

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/RuntimeParameters/RuntimeParameters_mapStrToInt_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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cells are filled by calculation since there are no neighboring blocks from which to copy values. Boundaries
are selected by setting runtime parameters such as xl boundary type (for the ‘left’ X–boundary) to one
of the supported boundary types (Section 8.4.1) in flash.par. Even though the runtime parameters for
specifying boundary condition types are strings, the Grid unit understands them as defined integer constants
defined in the file constants.h, which contains all global constants for the code. The translation from
the string specified in “flash.par” to the constant understood by the Grid unit is done by the routine
RuntimeParameters mapStrToInt.

ab boundary type Description

periodic Periodic (‘wrap-around’)

reflect
Non-penetrating boundaries; plane symmetry, the normal vector
components change sign

outflow Zero-gradient boundary conditions; allows shocks to leave the domain

diode
like outflow, but fluid velocities are never allowed to let matter
flow into the domain: normal velocity components are forced to
zero in guard cells if necessary

axisymmetric
like reflect, but both normal and toroidal vector components
change sign. Typically used with cylindrical geometry (R-Z) for
the Z symmetry axis.

eqtsymmetric

like reflect for velocities but the magnetic field components,
poloidal and toroidal, change sign. The sign of the normal mag-
netic field component remains the same. Typically used with
cylindrical geometry (R-Z) for the R axis to emulate equatorial
symmetry.

hydrostatic-f2 Hydrostatic boundary handling as in FLASH2. See remark in text.

hydrostatic-f2+nvrefl,
hydrostatic-f2+nvout,
hydrostatic-f2+nvdiode

Variants of hydrostatic-f2, where the normal velocity is han-
dled specially in various ways, analogous to reflect, outflow,
and diode boundary conditions, respectively. See remark in text.

user-defined or
user

The user must implement the desired boundary behavior; see
text.

Table 8.1: Hydrodynamical boundary conditions supported by FLASH. Boundary type ab may be replaced
with a={x,y,z} for direction and b={l,r} for left/right edge. All boundary types listed except the last (user)
have an implementation in GridBoundaryConditions.

To use any of the hydrostatic-f2* boundary conditions, the setup must include Grid/GridBoundary-
Conditions/Flash2HSE. This must usually be explicitly requested, for example with a line

REQUIRES Grid/GridBoundaryConditions/Flash2HSE

in the simulation directory’s Config file.
Note that the grav boundary type runtime parameter is used by some implementations of the Gravity

unit to define the type of boundary for solving a self-gravity (Poisson) problem; see Gravity init. This
runtime parameter is separate from the ab boundary type ones interpreted by GridBoundaryConditions,
and its recognized values are not the same (although there is some overlap).

8.4.2 Boundary Conditions at Obstacles

The initial coarse grid of root blocks can be modified by removing certain blocks. This is done by providing a
non-trivial implementation of Simulation defineDomain. Effectively this creates additional domain bound-
aries at the interface between blocks removed and regions still included. All boundary conditions other than

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/RuntimeParameters/RuntimeParameters_mapStrToInt_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Gravity.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Gravity/Gravity_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_defineDomain_F90.html
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ab boundary type Constant Remark
isolated — used by Gravity only for grav boundary type
— DIRICHLET used for multigrid solver
— GRIDBC MG EXTRAPOLATE for use by multigrid solver
— PNEUMANN (for use by multigrid solver)
hydrostatic HYDROSTATIC Hydrostatic, other implementation than FLASH2
hydrostatic+nvrefl HYDROSTATIC NVREFL Hydrostatic variant, other impl. than FLASH2
hydrostatic+nvout HYDROSTATIC NVOUT Hydrostatic variant, other impl. than FLASH2
hydrostatic+nvdiode HYDROSTATIC NVDIODE Hydrostatic variant, other impl. than FLASH2

Table 8.2: Additional boundary condition types recognized by FLASH. Boundary type ab may be replaced
with a={x,y,z} for direction and b={l,r} for left/right edge. These boundary types are either reserved for
implementation by users and/or future FLASH versions for a specific purpose (as indicate by the remarks),
or are for special uses within the Grid unit.

periodic are possible at these additional boundaries, and are handled there in the same way as on external
domain boundaries. This feature is only available with PARAMESH. See the documentation and example in
Simulation defineDomain for more details and some caveats.

8.4.3 Implementing Boundary Conditions

Users may need to implement boundary conditions beyond those provided with FLASH3, and the Grid-
BoundaryConditions subunit provides several ways to achieve this. Users can provide an implementation
for the user boundary type; or can provide or override an implementation for one of the other recognized
types.

The simple boundary condition types reflect, outflow, diode are implemented in the
Grid bcApplyToRegion.F90 file in Grid/GridBoundaryConditions. A users can add or modify the handling
of some boundary condition types in a version of this file in the simulation directory, which overrides the
regular version. There is, however, also the interface Grid bcApplyToRegionSpecialized which by default
is only provided as a stub and is explicitly intended to be implemented by users.
A Grid bcApplyToRegionSpecialized implementation gets called before Grid bcApplyToRegion and can
decide to either handle a specific combination of boundary condition type, direction, grid data structure,
etc., or leave it to Grid bcApplyToRegion. These calls operate on a region of one block’s cells at a time.
FLASH will pass additional information beyond that needed for handling simple boundary conditions to
Grid bcApplyToRegionSpecialized, in particular a block handle through which an implementation can
retrieve coordinate information and access other information associated with a block and its cells.

The GridBoundaryConditions subunit also provides a simpler kind of interface if one includes Grid/-
GridBoundaryConditions/OneRow in the setup. When using this style of interface, users can implement
guard cell filling one row at a time. FLASH passes to the implementation one row of cells at a time,
some of which are interior cells while the others represent guard cells outside the boundary that are to be
modified in the call. A row here means a contiguous set of cells along a line perpendicular to the bound-
ary surface. There are two versions of this interface: Grid applyBCEdge is given only one fluid variable
at a time, but can also handle data structures other than unk; whereas Grid applyBCEdgeAllUnkVars
handles all variables of unk along a row in one call. Cell coordinate information is included in the call argu-
ments. FLASH invokes these functions through an implementation of Grid bcApplyToRegionSpecialized
in Grid/GridBoundaryConditions/OneRow which acts as a wrapper. GridBoundaryConditions/OneRow
also provides a default implementation of Grid applyBCEdge (which implements the simple boundary con-
ditions) and Grid applyBCEdgeAllUnkVars (which calls Grid applyBCEdge) each. Another implementation
of Grid applyBCEdgeAllUnkVars can be found in GridBoundaryConditions/OneRow/Flash2HSE, this one
calls Grid applyBCEdge or, for FLASH2-type hydrostatic boundaries, the code for handling them. These
can be used as templates for overriding implementations under Simulation. It is not recommended to try
to mix both Grid bcApplyToRegion*-style and Grid applyBCEdge*-style overriding implementations in a
simulation directory, since this could become confusing.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Gravity.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_defineDomain_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_bcApplydiscretionary {-}{}{}Todiscretionary {-}{}{}Region_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_bcApplyToRegionSpecialized_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_bcApplyToRegionSpecialized_F90.html
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http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_bcApplyToRegionSpecialized_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_applyBCEdge_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_applyBCEdgeAllUnkVars_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_bcApplyToRegionSpecialized_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_applyBCEdge_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_applyBCEdgeAllUnkVars_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_applyBCEdgeAllUnkVars_F90.html
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Note that in all of these cases, i.e., whether boundary guard cell filling for a boundary type is implemented
in Grid bcApplyToRegion, Grid bcApplyToRegionSpecialized, Grid applyBCEdge, or
Grid applyBCEdgeAllUnkVars, the implementation does not fill guard cells in permanent data storage (the
unk array and similar data structures) directly, but operates on buffers. FLASH3 fills some parts of the
buffers with current values for interior cells before the call, and copies updated guardcell data from some
(other) parts of the buffers back into unk (or similar) storage after the handling routine returns.

All calls to handlers for boundary conditions are for one face in a given dimension at a time. Thus for
each of the IAXIS, JAXIS, and KAXIS dimensions there can be up to two series of calls, once for the left, i.e.,
“LOW,” and once for the right, i.e., “HIGH,” face. PARAMESH 4 makes additional calls for filling guard cells in
edge and corner regions of blocks, these calls result in additional Grid bcApplyToRegion* invocations for
those cells that lie in diagonal directions from the block interior.

The boundary condition handling interfaces described so far can be implemented (and will be used!)
independent of the Grid implementation chosen. At a lower level, the various implementations of GridMain
have different ways of requesting that boundary guard cells be filled. The GridBoundaryConditions subunit
collaborates with GridMain implementations to provide to user code uniform interfaces that are agnostic of
lower-level details. However, it is also possible — but not recommended — for users to replace a routine
that is located deeper in the Grid unit. For PARAMESH 4, the most relevant routine is amr 1blk bcset.F90,
for PARAMESH 2 it is tot bnd.F90, and for uniform grid UG it is gr bcApplyToAllBlks.F90.

8.4.3.1 Additional Concerns with PARAMESH 4

Boundary condition handling has become significantly more complex in FLASH3. In part this is so be-
cause PARAMESH 4 imposes requirements on guard cell filling code that do not exist in the other GridMain
implementations:

1. In other Grid implementations, filling of domain boundary guard cells is under control of the “user” (in
this context, the user of the grid implementation, i.e., FLASH): These cells can be filled for all blocks at
a time that is predictable to the user code, as a standard part of handling Grid fillGuardCells, only.
With PARAMESH 4, the user-provided amr 1blk bcset routine can be called from within the depths of
PARAMESH on individual blocks (and cell regions, see below) during guard cell filling and at other times
when the user has called a PARAMESH routine. It is not easy to predict when and in which sequence
this will happen.

2. PARAMESH 4 does not want all boundary guard cells filled in one call, but requests individual regions in
various calls.

3. PARAMESH 4 does not let the user routine amr 1blk bcset operate on permanent storage (unk etc.)
directly, but on (regions of) one-block buffers.

4. PARAMESH 4 occasionally invokes amr 1blk bcset to operate on regions of a block that belongs to a
remote processor (and for which data has been cached locally). Such block data is not associated with
a valid local blockID, making it more complicated for user code to retrieve metadata that may be
needed to implement the desired boundary handling.

Some consequences of this for FLASH3 users:

• User code that implements boundary conditions for the grid inherits the requirement that it must be
ready to be called at various times (when certain Grid routines are called).

• User code that implements boundary conditions for the grid inherits the requirement that it must
operate on a region of the cells of a block, where the region is specified by the caller.

• Such user code must not assume that it operates on permanent data (in unk etc.). Rather, it must be
prepared to fill guardcells for a block-shaped buffer that may or may not end up being copied back to
permanent storage.

User code also is not allowed to make certain PARAMESH 4 calls while a call to amr 1blk bcset is active,
namely those that would modify the same one-block buffers that the current call is working on.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_bcApplyToRegion_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_bcApplyToRegionSpecialized_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_applyBCEdge_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_applyBCEdgediscretionary {-}{}{}AllUnkVars_F90.html
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• The user code must not assume that the block data it is acting on belongs to a local block. The data
may not have a valid blockID. The code will be passed a “block hande” which can be used in some
ways, but not all, like a valid blockID.

Caveat Block Handles

See the README file in Grid/GridBoundaryConditions for more information on how a block
handle can be used.

8.5 Uniform Grid

The Uniform Grid has the same resolution in all the blocks throughout the domain, and each processor has
exactly one block. The uniform grid can operate in either of two modes: fixed block size (FIXEDBLOCK-
SIZE) mode, and non-fixed block size (NONFIXEDBLOCKSIZE) mode. The default fixed block size grid
is statically defined at compile time and can therefore take advantage of compile-time optimizations. The
non-fixed block size version uses dynamic memory allocation of grid variables.

8.5.1 FIXEDBLOCKSIZE Mode

FIXEDBLOCKSIZE mode, also called static mode, is the default for the uniform grid. In this mode, the block
size is specified at compile time as NXB×NYB×NZB. These variables default to 8 if the dimension is defined
and 1 otherwise – e.g.for a two-dimensional simulation, the defaults are NXB= 8, NYB= 8, NZb= 1. To change
the static dimensions, specify the desired values on the command line of the setup script; for example

./setup Sod -auto -3d -nxb=12 -nyb=12 -nzb=4 +ug

The distribution of processors along the three dimensions is given at run time as iprocs × jprocs × kprocs
with the constraint that this product must be equal to the number of processors that the simulation is using.
The global domain size in terms of number of grid points is NXB ∗ iprocs× NYB ∗ jprocs× NZB ∗ kprocs. For
example, if iprocs = jprocs = 4 and kprocs = 1, the execution command should specify np = 16 processors.

mpirun -np 16 flash3

When working in static mode, the simulation is constrained to run on the same number of processors when
restarting, since any different configuration of processors would change the domain size.

At Grid initialization time, the domain is created and the communication machinery is also generated.
This initialization includes MPI communicators and datatypes for directional guardcell exchanges. If we view
processors as arranged in a three-dimensional processor grid, then a row of processors along each dimension
becomes a part of the same communicator. We also define MPI datatypes for each of these communicators,
which describe the layout of the block on the processor to MPI. The communicators and datatypes, once
generated, persist for the entire run of the application. Thus the MPI SEND/RECV function with specific
communicator and its corresponding datatype is able to carry out all data exchange for guardcell fill in the
selected direction in a single step.

Since all blocks exist at the same resolution in the Uniform Grid, there is no need for interpolation while
filling the guardcells. Simple exchange of correct data between processors, and the application of boundary
conditions where needed is sufficient. The guard cells along the face of a block are filled with the layers
of the interior cells of the block on the neighboring processor if that face is shared with another block, or
calculated based upon the boundary conditions if the face is on the physical domain boundary. Also, because
there are no jumps in refinement in the Uniform Grid, the flux conservation step across processor boundaries
is unnecessary. For correct functioning of the Uniform Grid in FLASH, this conservation step should be
explicitly turned off with a runtime parameter flux correct which controls whether or not to run the flux
conservation step in the PPM Hydrodynamics implementation. AMR sets it by default to true, while UG
sets it to false. Users should exercise care if they wish to override the defaults via their “flash.par” file.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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8.5.2 NONFIXEDBLOCKSIZE mode

Up ot version 2, FLASH always ran in a mode where all blocks have exactly the same number of grid points
in exactly the same shape, and these were fixed at compile time. FLASH was limited to use the fixed block
size mode described above. With FLASH3 this constraint was eliminated through an option at setup time.
The two main reasons for this development were: one, to allow a uniform grid based simulation to be able to
restart with different number of processors, and two, to open up the possibility of using other AMR packages
with FLASH. Patch-based packages typically have different-sized block configurations at different times.
This mode, called the “NONFIXEDBLOCKSIZE” mode, can currently be selected for use with Uniform
Grid, and is the default mode with Chombo. To run an application in “NONFIXEDBLOCKSIZE” mode,
the “-nofbs” option must be used when invoking the setup tool; see Chapter 5 for more information. For
example:

./setup Sod -3d -auto -nofbs

Note that NONFIXEDBLOCKSIZE mode requires the use of its own IO implementation, and a convenient
shortcut has been provided to ensure that this mode is used as in the example below:

./setup Sod -3d -auto +nofbs

In this mode, the blocksize in UG is determined at execution from runtime parameters iGridSize,
jGridSize and kGridSize. These parameters specify the global number of grid points in the computa-
tional domain along each dimension. The blocksize then is (iGridSize/iprocs) × (jGridSize/jprocs) ×
(kGridSize/kprocs).

Unlike FIXEDBLOCKSIZE mode, where memory is allocated at compile time, in the NONFIXEDBLOCKSIZE
mode all memory allocation is dynamic. The global data structures are allocated when the simulation
initializes and deallocated when the simulation finalizes, whereas the local scratch space is allocated and
deallocated every time a unit is invoked in the simulation. Clearly there is a trade-off between flexibility
and performance as the NONFIXEDBLOCKSIZE mode typically runs about 10-15% slower. We support both
to give choice to the users. The amount of memory consumed by the Grid data structure of the Uniform
Grid is nvar× (2 ∗ nguard+ nxb)× (2 ∗ nguard+ nyb)× (2 ∗ nguard+ nzb) irrespective of the mode. Note
that this is not the total amount of memory used by the code, since fluxes, temporary variables, coordinate
information and scratch space also consume a large amount of memory.

The example shown below gives two possible ways to define parameters in flash.par for a 3d problem
of global domain size 64× 64× 64, being run on 8 processors.

iprocs = 2
jprocs = 2
kprocs = 2
iGridSize = 64
jGridSize = 64
kGridSize = 64

This specification will result in each processor getting a block of size 32×32×32. Now consider the following
specification for the number of processors along each dimension, keeping the global domain size the same.

iprocs = 4
jprocs = 2
kprocs = 1

In this case, each processor will now have blocks of size 16× 32× 64.

8.6 Adaptive Mesh Refinement (AMR) Grid with Paramesh

The default package in FLASH is PARAMESH (MacNeice et al. 1999) for implementing the adaptive mesh
refinement (AMR) grid. PARAMESH uses a block-structured adaptive mesh refinement scheme similar to others
in the literature (e.g., Parashar 1999; Berger & Oliger 1984; Berger & Colella 1989; DeZeeuw & Powell 1993).

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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Figure 8.5: A simple computational domain showing varying levels of refinement in a total of 16 blocks.
The dotted lines outline the guard cells for the block marked with a circle.

It also shares ideas with schemes which refine on an individual cell basis (Khokhlov 1997). In block-structured
AMR, the fundamental data structure is a block of cells arranged in a logically Cartesian fashion. “Logically
Cartesian” implies that each cell can be specified using a block identifier (processor number and local block
number) and a coordinate triple (i, j, k), where i = 1 . . . nxb, j = 1 . . . nyb, and k = 1 . . . nzb refer to the x-,
y-, and z-directions, respectively. It does not require a physically rectangular coordinate system; for example
a spherical grid can be indexed in this same manner.

The complete computational grid consists of a collection of blocks with different physical cell sizes, which
are related to each other in a hierarchical fashion using a tree data structure. The blocks at the root of the
tree have the largest cells, while their children have smaller cells and are said to be refined. Three rules
govern the establishment of refined child blocks in PARAMESH. First, a refined child block must be one-half as
large as its parent block in each spatial dimension. Second, a block’s children must be nested; i.e., the child
blocks must fit within their parent block and cannot overlap one another, and the complete set of children
of a block must fill its volume. Thus, in d dimensions a given block has either zero or 2d children. Third,
blocks which share a common border may not differ from each other by more than one level of refinement.

A simple two-dimensional domain is shown in Figure 8.5, illustrating the rules above. Each block contains
nxb× nyb× nzb interior cells and a set of guard cells. The guard cells contain boundary information needed
to update the interior cells. These can be obtained from physically neighboring blocks, externally specified
boundary conditions, or both. The number of guard cells needed depends upon the interpolation schemes
and the differencing stencils used by the various physics units (usually hydrodynamics). For the explicit
PPM algorithm distributed with FLASH, four guard cells are needed in each direction, as illustrated in
Figure 8.4. The blocksize while using the adaptive grid is fixed at compile time, resulting in static memory
allocation. The total number of blocks a processor can manage is determined by MAXBLOCKS, which can be
overridden at setup time with the setup ...-maxblocks=# argument. The amount of memory consumed
by the Grid data structure of code when running with PARAMESH is NUNK VARS × (2 ∗ nguard + nxb) × (2 ∗
nguard+nyb)×(2∗nguard+nzb)×MAXBLOCKS. PARAMESH also needs memory to store its tree data structure
for adaptive mesh management, over and above what is already mentioned with Uniform Grid. As the levels
of refinement increase, the size of the tree also grows.

PARAMESH handles the filling of guard cells with information from other blocks or, at the boundaries
of the physical domain, from an external boundary routine (see Section 8.4). If a block’s neighbor exists
and has the same level of refinement, PARAMESH fills the corresponding guard cells using a direct copy
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Figure 8.6: Flux conservation at a jump in refinement. The fluxes in the fine cells are added and replace
the coarse cell flux (F).

from the neighbor’s interior cells. If the neighbor has a different level of refinement, the data from the
neighbor’s cells must be adjusted by either interpolation (to a finer level of resolution) or averaging (to a
coarser level)—see Section 8.6.2 below for more information. If the block and its neighbor are stored in
the memory of different processors, PARAMESH handles the appropriate parallel communications (blocks are
never split between processors). The filling of guard cells is a global operation that is triggered by calling
Grid fillGuardCells.

Grid Interpolation is also used when filling the blocks of children newly created in the course of automatic
refinement. This happens during Grid updateRefinement processing. Averaging is also used to regularly
update the solution data in at least one level of parent blocks in the oct-tree. This ensures that after leaf
nodes are removed during automatic refinement processing (in regions of the domain where the mesh is
becoming coarser), the new leaf nodes automatically have valid data. This averaging happens as an initial
step in Grid fillGuardCells processing.

PARAMESH also enforces flux conservation at jumps in refinement, as described by Berger and Colella
(1989). At jumps in refinement, the fluxes of mass, momentum, energy (total and internal), and species
density in the fine cells across boundary cell faces are summed and passed to their parent. The parent’s
neighboring cell will be at the same level of refinement as the summed flux cell because PARAMESH limits
the jumps in refinement to one level between blocks. The flux in the parent that was computed by the
more accurate fine cells is taken as the correct flux through the interface and is passed to the corresponding
coarse face on the neighboring block (see Figure 8.6). The summing allows a geometrical weighting to be
implemented for non-Cartesian geometries, which ensures that the proper volume-corrected flux is computed.

8.6.1 Additional Data Structures

PARAMESH maintains much additional information about the mesh. In particular, oct-tree related informa-
tion is kept in various arrays which are declared in a F90 module called “tree”. It includes the physical
coordinate of a block’s center, its physical size, level of refinement, and much more. These data structures
also acts as temporary storage while updating refinement in the grid and moving the blocks. This metadata
should in general not be accessed directly by application code. The Grid API contains subroutines for
accessing the most important pars of this metadata on a block by block basis, like Grid getBlkBoundBox,
Grid getBlkCenterCoords, Grid getBlkPhysicalSize, Grid getBlkRefineLevel, and Grid getBlkType.

FLASH has its own oneBlock data structure that stores block specific information. This data structure
keeps the physical coordinates of each cell in the block. For each dimension, the coordinates are stored for
the LEFT_EDGE, the RIGHT_EDGE and the center of the cell. The coordinates are determined from “cornerID”

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_fillGuardCells_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_updateRefinement_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_fillGuardCells_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkBoundBox_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkCenterCoords_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkPhysicalSize_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkRefineLevel_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkType_F90.html
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which is also a part of this data structure.
The concept of cornerID was introduced in FLASH3; it serves three purposes. First, it creates a unique

global identity for every cell that can come into existence at any time in the course of the simulation. Second,
it can prevent machine precision error from creeping into the spatial coordinates calculation. Finally, it can
help pinpoint the location of a block within the oct-tree of PARAMESH. Another useful integer variable is the
concept of a stride. A stride indicates the spacing factor between one cell and the cell directly to its right
when calculating the cornerID. At the maximum refinement level, the stride is 1, at the next higher level
it is 2, and so on. Two consecutive cells at refinement level n are numbered with a stride of 2lrefine max−n

where 1 ≤ n ≤ lrefine max.
The routine Grid getBlkCornerID provides a convenient way for the user to retrieve the location of a

block or cell. A usage example is provided in the documentation for that routine. The user should retrieve
accurate physical and grid coordinates by calling the routines Grid getBlkCornerID, Grid getCellCoords,
Grid getBlkCenterCoords and Grid getBlkPhysicalSize, instead of calculating their own from local block
information, since they take advantage of the cornerID scheme, and therefore avoid the possibility of intro-
ducing machine precision induced numerical drift in the calculations.

8.6.2 Grid Interpolation (and Averaging)

The adaptive grid requires data interpolation or averaging when the refinement level (i.e., mesh reso-
lution) changes in space or in time. 3 If during guardcell filling a block’s neighbor has a coarser level of
refinement, the neighbor’s cells are used to interpolate guard cell values to the cells of the finer block. Inter-
polation is also used when filling the blocks of children newly created in the course of automatic refinement.
Data averaging is used to adapt data in the opposite direction, i.e., from fine to coarse.

In the AMR context, the term prolongation is used to refer to data interpolation (because it is used
when the tree of blocks grows longer). Similarly, the term restriction is used to refer to fine-to-coarse data
averaging.

The algorithm used for restriction is straightforward (equal-weight) averaging in Cartesian coordinates,
but has to take cell volume factors into account for curvilinear coordinates; see Section 8.11.5.

PARAMESH supports various interpolation schemes, to which user-specified interpolation schemes can be
added. FLASH4 currently allows to choose between two interpolation schemes:

1. monotonic

2. native

The choice is made at setup time, see Section 5.2.
The versions of PARAMESH supplied with FLASH4 supply their own default interpolation scheme, which

is used when FLASH4 is configured with the -gridinterpolation=native setup option (see Section 5.2).
The default schemes are only appropriate for Cartesian coordinates. If FLASH4 is configured with curvi-
linear support, an alternative scheme (appropriate for all supported geometries) is compiled in. This so-
called “monotonic” interpolation attempts to ensure that interpolation does not introduce small-scale non-
monotonicity in the data. The order of “monotonic” interpolation can be chosen with the interpol order
runtime parameter. See Section 8.11.5 for some more details on prolongation for curvilinear coordinates. At
setup time, monotonic interpolation is the default interpolation used.

8.6.2.1 Interpolation for mass-specific solution variables

To accurately preserve the total amount of conserved quantities, the interpolation routines have to be applied
to solution data in conserved, i.e., volume-specific, form. However, many variables are usually stored in
the unk array in mass-specific form, e.g., specific internal and total energies, velocities, and mass fractions.
See Section 5.5.1 for how to use the optional TYPE attribute in a Config file’s VARIABLE definitions to inform
the Grid unit which variables are considered mass-specific.

FLASH4 provides three ways to deal with this:
3Particles and Physics units may make additional use of interpolation as part of their function, and the algorithms may

or may not be different. This subsection only discusses interpolation automatically performed by the Grid unit on the fluid
variables in a way that should be transparent to other units.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkCornerID_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkCornerID_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getCellCoords_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkCenterCoords_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkPhysicalSize_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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1. Do nothing—i.e., assume that ignoring the difference between mass-specific and conserved form is a
reasonable approximation. Depending on the smoothness of solutions in regions where refinement,
derefinement, and jumps in refinement level occur, this assumption may be acceptable. This behavior
can be forced by setting the convertToConsvdInMeshInterp runtime parameter to .false.

2. Convert mass-specific variables to conserved form in all blocks throughout the physical domain be-
fore invoking a Grid function that may result in some data interpolation or restriction (refinement,
derefinement, guardcell filling); and convert back after these functions return. Conversion is done by
cell-by-cell multiplication with the density (i.e., the value of the “dens” variable, which should be
declared as

VARIABLE dens TYPE: PER_VOLUME

in a Config file).

This behavior is available in both PARAMESH 2 and PARAMESH 4. It is enabled by setting the
convertToConsvdForMeshCalls runtime parameter and corresponds roughly to FLASH2 with
conserved_var enabled.

3. Convert mass-specific variables to conserved form only where and when necessary, from the Grid user’s
point of view as part of data interpolation. Again, conversion is done by cell-by-cell multiplication with
the value of density. In the actual implementation of this approach, the conversion and back-conversion
operations are closely bracketing the interpolation (or restriction) calls. The implementation avoids
spurious back-and-forth conversions (i.e., repeated successive multiplications and divisions of data by
the density) in blocks that should not be modified by interpolation or restriction.

This behavior is available only for PARAMESH 4. As of FLASH4, this is the default behavior whenever
available. It can be enabled explicitly (only necessary in setups that change the default) by setting the
convertToConsvdInMeshInterp runtime parameter.

8.6.3 Refinement

8.6.3.1 Refinement Criteria

The refinement criterion used by PARAMESH is adapted from Löhner (1987). Löhner’s error estimator was
originally developed for finite element applications and has the advantage that it uses a mostly local calcu-
lation. Furthermore, the estimator is dimensionless and can be applied with complete generality to any of
the field variables of the simulation or any combination of them.

FLASH Transition

FLASH4 does not define any refinement variables by default. Therefore simulations using
AMR have to make the appropriate runtime parameter definitions in flash.par, or in the
simulation’s Config file. If this is not done, the program generates a warning at startup,
and no automatic refinement will be performed. The mistake of not specifying refinement
variables is thus easily detected. To define a refinement variable, use refine var # (where
# stands for a number from 1 to 4) in the flash.par file.

Löhner’s estimator is a modified second derivative, normalized by the average of the gradient over one
computational cell. In one dimension on a uniform mesh, it is given by

Ei =
| ui+1 − 2ui + ui−1 |

| ui+1 − ui | + | ui − ui−1 | +ε[| ui+1 | +2 | ui | + | ui−1 |]
, (8.1)

where ui is the refinement test variable’s value in the ith cell. The last term in the denominator of this
expression acts as a filter, preventing refinement of small ripples, where ε should be a small constant.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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When extending this criterion to multidimensions, all cross derivatives are computed, and the following
generalization of the above expression is used
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where the sums are carried out over coordinate directions, and where, unless otherwise noted, partial deriva-
tives are evaluated at the center of the i1i2i3-th cell.

The estimator actually used in FLASH4’s default refinement criterion is a modification of the above, as
follows:

Ei =
| ui+2 − 2ui + ui−2 |

| ui+2 − ui | + | ui − ui−2 | +ε[| ui+2 | +2 | ui | + | ui−2 |]
, (8.3)

where again ui is the refinement test variable’s value in the ith cell. The last term in the denominator of
this expression acts as a filter, preventing refinement of small ripples, where ε is a small constant.

When extending this criterion to multidimensions, all cross derivatives are computed, and the following
generalization of the above expression is used
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where again the sums are carried out over coordinate directions, where, unless otherwise noted, partial
derivatives are actually finite-difference approximations evaluated at the center of the iX iJ iK-th cell, and

¯|upq| stands for an average of the values of |u| over several neighboring cells in the p and q directions.
The constant ε is by default given a value of 10−2, and can be overridden through the refine filter #

runtime parameters. Blocks are marked for refinement when the value of EiX iY iZ
for any of the block’s

cells exceeds a threshold given by the runtime parameters refine cutoff #, where the number # matching
the number of the refine var # runtime parameter selecting the refinement variable. Similarly, blocks are
marked for derefinement when the values of EiX iY iZ

for all of the block’s cells lie below another threshold
given by the runtime parameters derefine cutoff #.

Although PPM is formally second-order and its leading error terms scale as the third derivative, we
have found the second derivative criterion to be very good at detecting discontinuities and sharp features
in the flow variable u. When Particles (active or tracer) are being used in a simulation, their count in a
block can also be used as a refinement criterion by setting refine on particle count to true and setting
max particles per blk to the desired count.

8.6.3.2 Refinement Processing

Each processor decides when to refine or derefine its blocks by computing a user-defined error estimator for
each block. Refinement involves creation of either zero or 2d refined child blocks, while derefinement involves
deletion of all of a parent’s child blocks (2d blocks). As child blocks are created, they are temporarily placed
at the end of the processor’s block list. After the refinements and derefinements are complete, the blocks are
redistributed among the processors using a work-weighted Morton space-filling curve in a manner similar
to that described by Warren and Salmon (1987) for a parallel treecode. An example of a Morton curve is
shown in Figure 8.7.

During the distribution step, each block is assigned a weight which estimates the relative amount of time
required to update the block. The Morton number of the block is then computed by interleaving the bits of
its integer coordinates, as described by Warren and Salmon (1987). This reordering determines its location

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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Figure 8.7: Morton space-filling curve for adaptive mesh grids.

along the space-filling curve. Finally, the list of all blocks is partitioned among the processors using the
block weights, equalizing the estimated workload of each processor. By default, all leaf-blocks are weighted
twice as heavily as all other blocks in the simulation.

8.6.3.3 Specialized Refinement Routines

Sometimes, it may be desirable to refine a particular region of the grid independent of the second derivative
of the variables. This criterion might be, for example, to better resolve the flow at the boundaries of
the domain, to refine a region where there is vigorous nuclear burning, or to better resolve some smooth
initial condition. For curvilinear coordinates, regions around the coordinate origin or the polar z-axis may
require special consideration for refinement. A collection of methods that can refine a (logically) rectangular
region or a circular region in Cartesian coordinates, or can automatically refine by using some variable
threshold, are available through the Grid markRefineSpecialized. It is intended to be called from the
Grid markRefineDerefine routine. The interface works by allowing the calling routine to pick one of the
routines in the suite through an integer argument. The calling routine is also expected to populate the data
structure specs before making the call. A copy of the file Grid markRefineDerefine.F90 should be placed
in the Simulation directory, and the interface file Grid_interface.F90 should be used in the header of the
function.

Warning

This collection of specialized refinement routines have had limited testing. The routine that
refines in a specified region has been tested with some of the setups included in the release.
All the other routines should be used mostly as guidelines for the user’s code.

FLASH3.2 added additional support in the standard implementation of refinement routine
Grid markRefineDerefine for enforcing a maximum on refinement based on location or simulation time.
These work by effectively lowering the absolute ceiling on refinement level represented by lrefine max. See
the following runtime parameters:

• gr lrefineMaxRedDoByLogR

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_markRefineSpecialized_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_markRefineDerefine_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_markRefineDerefine_F90.html
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• gr lrefineMaxRedRadiusFact

• gr lrefineMaxRedDoByTime

• gr lrefineMaxRedTimeScale

• gr lrefineMaxRedTRef

• gr lrefineMaxRedLogBase

8.7 Chombo

We have included an experimental Grid implementation which makes use of Chombo library in FLASH4.
Since this is very much a work in progress it should not be considered as production grade yet. We expect
new developments and improvement to happen at a rapid pace, so please contact us if you would like to use
the latest snapshots of our Chombo integration in FLASH before our next major code release.

Most flash.par parameters relevant to the Grid unit will continue to work; the differences are de-
scribed later in this section. There are some important restrictions to be aware of when using this Grid
implementation.

• Only Cartesian geometries are handled.

• Only cell-centered solution variables are supported, i.e. those variables defined with keywords VARIABLE
and SCRATCHCENTERVAR in Config files.

FLASH does not include the source code for Chombo library and so Chombo must be independently
downloaded and then built using the instructions given in Section 5.9. Please also see the restrictions in
Hydro Section 14.1.5 and I/O Section 9.12.

Our integration of FLASH with Chombo is slightly unusual because we do not use the higher-level Chombo
classes for solving time-dependent problems on an AMR mesh. The reason is that these higher level classes
also ”drive” the simulation, that is, control the initialization and evolution of simulations. These are tasks
that already happen in a FLASH application in the Driver unit. Our approach is therefore to use the
lower-level Chombo classes so that Chombo library is only responsible for Grid related tasks.

The actual patch-based mesh is allocated and managed in Chombo library. Each individual patch is stored
in contiguous memory locations with the slowest varying dimension being the solution variable. This has
allowed us to create a Grid_getBlkPtr that builds a 4D Fortran pointer object from the memory address of
the first element of a specified patch. The patch is treated as a standard FLASH block in the physics units
of FLASH. The Grid unit obtains the memory address and other metadata such as patch size, coordinates,
index limits, cell spacing and refinement level through non-decorated C++ function calls which query Chombo
objects.

8.7.1 Using Chombo in a UG configuration

This is a Grid implementation that operates in the same way as the standard FLASH uniform grid mode
in which there is one block per MPI process. The parameters accepted are identical to those described for
a non fixed blocksize uniform grid in Section 8.5.2. The only difference is that the checkpoint file is written
in Chombo file layout rather than FLASH file layout. Setup a simulation using:

./setup Sedov -auto +chombo_ug -parfile=test_chombo_ug_2d.par

8.7.2 Using Chombo in a AMR configuration

The real motivation for integrating Chombo into FLASH is for its adaptive mesh which is patch-based rather
than an oct-tree like Paramesh. It has several desirable features including:

• refinement can happen cell-by-cell rather than block-by-block.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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• blocks (or patches in Chombo terminology) are not limited to a fixed number of cells.

• refinement jumps of greater than 2 can happen between neighboring blocks.

A major difference in the generated meshes is that there is no longer the concept of “LEAF” blocks which
cover the global domain. This was useful in Paramesh because a union of the space covered by the children
of a block cover is exactly equal to the space covered by the parent block. It is therefore possible to evolve
solution only on leaf blocks. Such complete overlap is not guaranteed in Chombo, in fact it rarely happens.
Therefore, to be compatible with Chombo, physics units must evolve a solution on all blocks. For reference,
the LEAF definition in Flash.h for FLASH-Chombo application now means all blocks.

A FLASH application with Chombo uses the refinement criteria similar to the one described in Section
8.6.3. The slight modification is that the iX iY iZ-th cell is tagged when EiX iY iZ

exceeds a threshold value.
Recall that in the Paramesh, the entire block is tagged for refinement when the error estimator of any of
cells within a block exceeds a given threshold. As a further extension to this cell tagging procedure we
also tag all cells within a small radius of a given tagged cell. The tagging radius is set using the runtime
parameter tagradius; a value of 1 means that 1 cell to the left and right of a tagged cell in each dimension
is also tagged. Values below the default value of 2 may cause problems because of introduction of fine-coarse
interfaces in regions of the domain where there are steep gradients. For example, a Sod problem does not
converge in Riemann solver when the value is 0.

The runtime parameters are described below:

• lrefine max Used in an identical way to Paramesh. It is still a unit-based parameter and not zero-
based. Defaults to 1.

• igridsize,jgridsize,kgridsize The global number of cells on the coarsest level of the adaptive mesh.
Varying igridsize gives the same level of control as the unused Paramesh parameters lrefine_min
and nblockx. Defaults to 16.

• maxBlockSize The maximum number of cells along a single dimension of a block. Defaults to 16.

• BRMeshRefineBlockFactor The minimum number of cells along a single dimension of a block. See
BRMeshRefine class in Chombo user-guide. Defaults to 8.

• BRMeshRefineFillRatio Overall grid efficiency to be generated. If this number is set low, the grids
will tend to be larger and less filled with tags. If this number is set high, the grids will tend to be
smaller and more filled with tags. See BRMeshRefine class in Chombo user-guide. Defaults to 0.75.

• BRMeshRefineBufferSize Proper nesting buffer size. This will be the minimum number of level
l cells between any level l+1 cell and a level l-1 cell. See BRMeshRefine class in Chombo user-guide.
Defaults to 1.

• verbosity The verbosity of debugging output written to local log files - higher values mean progres-
sively more debugging output. As a rough guide 0 means no debugging output, 2 means debugging
output from FLASH objects, and values above 2 add debugging output from Chombo objects. Defaults
to 0.

• refRatio The refinement jump between fine-coarse levels, typically 2, 4 or 8. Defaults to 2.

• restrictBeforeGhostExchange Invokes a full mesh restriction before guard cells are exchanged. This
is to make the guard cell exchange behave the same way as Paramesh guard cell exchange. We do not
know yet if it is necessary. Defaults to True.

• tagRadius The radius of cells around a tagged cell that should also be tagged. Defaults to 2.

Set convertToConsvdForMeshCalls runtime parameter to .true. to interpolate mass specific solution
variables (see Section 8.6.2.1). We have not yet added code for convertToConsvdInMeshInterp runtime
parameter and so it should not be used.

Setup a simulation using:

./setup Sedov -auto +chombo_amr -parfile=test_chombo_amr_2d.par

The GridParticles and GridSolvers sub-unit do not interoperate with Chombo yet.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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8.8 GridMain Usage

The Grid unit has the largest API of all units, since it is the custodian of the bulk of the simulation data, and
is responsible for most of the code housekeeping. The Grid init routine, like all other Unit init routines,
collects the runtime parameters needed by the unit and stores values in the data module. If using UG, the
Grid init also creates the computational domain and the housekeeping data structures and initializes them.
If using AMR, the computational domain is created by the Grid initDomain routine, which also makes a call
to mesh package’s own initialization routine. The physical variables are all owned by the Grid unit, and it
initializes them by calling the Simulation initBlock routine which applies the specified initial conditions to
the domain. If using an adaptive grid, the initialization routine also goes through a few refinement iterations
to bring the grid to desired initial resolution, and then applies the Eos function to bring all simulation
variables to thermodynamic equilibrium. Even though the mesh-based variables are under Grid’s control,
all the physics units can operate on and modify them.

A suite of get/put accessor/mutator functions allows the calling unit to fetch or send data by the block.
One option is to get a pointer Grid getBlkPtr, which gives unrestricted access to the whole block and the
client unit can modify the data as needed. The more conservative but slower option is to get some portion of
the block data, make a local copy, operate on and modify the local copy and then send the data back through
the “put” functions. The Grid interface allows the client units to fetch the whole block (Grid getBlkData),
a partial or full plane from a block (Grid getPlaneData), a partial or full row (Grid getRowData), or a
single point (Grid getPointData). Corresponding “put” functions allow the data to be sent back to the
Grid unit after the calling routine has operated on it. Various getData functions can also be used to fetch
some derived quantities such as the cell volume or face area of individual cells or groups of cells. There are
several other accessor functions available to query the housekeeping information from the grid. For example
Grid getListOfBlocks returns a list of blocks that meet the specified criterion such as being “LEAF” blocks
in PARAMESH, or residing on the physical boundary.

FLASH Transition

The Grid getBlkData and Grid putBlkData functions replace the dBaseGetData and
dBasePutData functions in FLASH2. The bulk of the dBase functionality from FLASH2
is now handled by the Grid unit. For example, the global mesh data structures “unk” and
“tree” now belong to Grid, and any information about them is queried from it. However,
dBase and Grid are not identical. dBase was a central storage for all data, whereas in
FLASH4 some of the data, such as simulation parameters like dt and simulation time are
owned by the Driver unit instead of the Grid unit.

FLASH Transition

In FLASH2, variables nxb, nyb and nzb traditionally described blocksize. From FLASH3
on, the symbols NXB, NYB, and NYB are intended not to be used directly except in the Grid
unit itself. The variables like iHi gc and iHi etc. that marked the endpoints of the blocks
were replaced in FLASH3 with in their new incarnation (GRID_IHI_GC etc. ) Again, these
new variables are used only in sizing arrays in declaration headers. Even when they are used
for array sizing, they are enclosed in preprocessor blocks that can be eliminated at compile
time. This separation was done to compartmentalize the FLASH3 code. The grid layout is
not required to be known in any other unit (with the exception of IO). FLASH3 provides
an API function Grid getBlkIndexLimits that fetches the block endpoints from the Grid
unit for each individual block. The fetched values are then used as do loop end points in all
〈i, j, k〉 loops in all the client units. When working in NONFIXEDBLOCKSIZE mode, the same
fetched values are also used to size and allocate arrays. We have retained GRID_IHI_GC
etc. for array sizing as compile time option for performance reasons. Statically allocated
arrays allow better compiler optimization.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_initDomain_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_initBlock_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkPtr_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getPlaneData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getRowData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getPointData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getListOfBlocks_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_putBlkData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkIndexLimits_F90.html
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In addition to the functions to access the data, the Grid unit also provides a collection of routines that
drive some housekeeping functions of the grid without explicitly fetching any data. A good example of such
routines is Grid fillGuardCells. Here no data transaction takes place between Grid and the calling unit.
The calling unit simply instructs the Grid unit that it is ready for the guard cells to be updated, and doesn’t
concern itself with the details. The Grid fillGuardCells routine makes sure that all the blocks get the
right data in their guardcells from their neighbors, whether they are at the same, lower or higher resolution,
and if instructed by the calling routine, also ensures that EOS is applied to them.

In large-scale, highly parallel FLASH simulations with AMR, the processing of Grid fillGuardCells
calls may take up a significant part of available resource like CPU time, communication bandwidth, and
buffer space. It can therefore be important to optimize these calls in particular. From FLASH3.1, -
Grid fillGuardCells provides ways to

• operate on only a subset of the variables in unk (and facevarx, facevary, and facevarz), by masking
out other variables;

• fill only some the nguard layers of guard cells that surround the interior of a block (while possibly
excepting a “sweep” direction);

• combine guard cell filling with EOS calls (which often follow guard cell exchanges in the normal flow of
execution of a simulation in order to ensure thermodynamical consistency in all cells, and which may
also be very expensive), by letting Grid fillGuardCells make the calls on cells where necessary;

• automatically determine masks and whether to call EOS, based on the set of variables that the calling
code actually needs updated. by masking out other variables.

These options are controlled by OPTIONAL arguments, see Grid fillGuardCells for documentation. When
these optional arguments are absent or when a Grid implementation does not support them, FLASH falls
back to safe default behavior which may, however, be needlessly expensive.

Another routine that may change the global state of the grid is Grid updateRefinement. This function
is called when the client unit wishes to update the grid’s resolution. again, the calling unit does not need to
know any of the details of the refinement process.

FLASH Transition

As mentioned in Chapter 4, FLASH allows every unit to identify scalar variables for check-
pointing. In the Grid unit, the function that takes care of consolidating user specified
checkpoint variable is Grid sendOutputData. Users can select their own variables to check-
point by including an implementation of this function specific to their requirements in their
Simulation setup directory.

8.9 GridParticles

FLASH is primarily an Eulerian code, however, there is support for tracing the flow using Lagrangian
particles. In FLASH4 we have generalized the interfaces in the Lagrangian framework of the Grid unit
in such a way that it can also be used for miscellaneous non-Eulerian data such as tracing the path of a
ray through the domain, or tracking the motion of solid bodies immersed in the fluid. FLASH also uses
active particles with mass in cosmological simulations, and charged particles in a hybrid PIC solver. Each
particle has an associated data structure, which contains fields such as its physical position and velocity, and
relevant physical attributes such as mass or field values in active particles. Depending upon the time advance
method, there may be other fields to store intermediate values. Also, depending upon the requirements of
the simulation, other physical variables such as temperature etc. may be added to the data structure.
The GridParticles subunit of the Grid unit has two sub-subunits of its own. The GridParticlesMove
sub-subunit moves the data structures associated with individual particles when the particles move between
blocks; the actual movement of the particles through time advancement is the responsibility of the Particles

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_fillGuardCells_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_fillGuardCells_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/discretionary {-}{}{}Grid_fillGuardCells_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/discretionary {-}{}{}Grid_fillGuardCells_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_fillGuardCells_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_updateRefinement_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_sendOutputData_F90.html
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Figure 8.8: The Grid unit: structure of GridParticles subunit.

unit. Particles move from one block to another when their time advance places them outside their current
block. In AMR, the particles can also change their block through the process of refinement and derefinement.
The GridParticlesMap sub-subunit provides mapping between particles data and the mesh variables. The
mesh variables are either cell-centered or face-centered, whereas a particle’s position could be anywhere in
the cell. The GridParticlesMap sub-subunit calculates the particle’s properties at its position from the
corresponding mesh variable values in the appropriate cell . When using active particles, this sub-subunit
also maps the mass of the particles onto the specified mesh variable in appropriate cells. The next sections
describe the algorithms for moving and mapping particles data.

8.9.1 GridParticlesMove

FLASH4 has implementations of three different parallel algorithms for moving the particles data when
they are displaced from their current block. FLASH3 had an additional algorithm, Perfect Tree Level
which made use of the oct-tree structure. However, because in all performance experiments it performed
significantly worse than the other two algorithms, it is not supported currently in FLASH4. The simplest
algorithm, Directional algorithm is applicable only to the uniform grid when it is configured with one
block per processor. This algorithm uses directional movement of data, and is easy because the directional
neighbors are trivially known. The movement of particles data is much more challenging with AMR even
when the grid is not refining. Since the blocks are at various levels of refinement at any given moment, a
block may have more than one neighbor along one or more of its faces. The distribution of blocks based on
space-filling curve is an added complication since the neighboring blocks along a face may reside at a non-
neighboring processor The remaining two algorithmss included in FLASH4 implement GridParticlesMove
subunit for the adaptive mesh; Point to Point and Sieve, of which only the Sieve algorithm is able to
move the data when the mesh refines. Thus even when a user opts for the PointToPoint implementation for
moving particles with time evolution, some part of the Sieve implementation must necessarily be included
to successfully move the data upon refinement.
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Figure 8.9: Moving one particle to a neighbor on the corner.

8.9.1.1 Directional Move

The Directional Move algorithm for moving particles in a Uniform Grid minimizes the number of com-
munication steps instead of minimizing the volume of data moved. Its implementation has the following
steps:

1. Scan particle positions. Place all particles with their x coordinate value greater than the block bounding
box in the Rightmove bin, and place those with x coordinate less than block bounding box in Leftmove
bin.

2. Exchange contents of Rightbin with the right block neighbor’s Leftbin contents, and those of the Leftbin
with left neightbor’s Rightbin contents.

3. Merge newly arrived particles from step 2 with those which did not move outside their original block.

4. Repeat steps 1-3 for the y direction.

5. Repeat step 1-2 for the z direaction.

At the end of these steps, all particles will have reached their destination blocks, including those that move
to a neighbor on the corner. Figure 8.9 illustrates the steps in getting a particle to its correct destination.

8.9.1.2 Point To Point Algorithm

As a part of the data cached by Paramesh, there is wealth of information about the neighborhood of all the
blocks on a processor. This information includes the processor and block number of all neighbors (face and
corners) if they are at the same refinement level. If those neighbors are at lower refinement level, then the
neighbor block is in reality the current block’s parent’s neighbor, and the parent’s neighborhood information
is part of the cached data. Similarly, if the neighbor is at a higher resolution then the current blocks neighbor
is in reality the parent of the neighbor. The parent’s metadata is also cached, from which information about
all of its children can be derived. Thus it is possible to determine the processor and block number of the
destination block for each particle. The PointToPoint implementation finds out the destinations for every
particles that is getting displaced from its block. Particles going to local destination blocks are moved first.
The remaining particles are sorted based on their destination processor number, followed by a couple of
global operations that allow every processor to determine the number of particles it is expected to receive
from all of the other processors. A processor then posts asynchronous receives for every source processor
that had at least one particle to send to it. In the next step, the processor cycles through the sorted list of
particles and sends them to the appropriate destinations using synchronous mode of communition.
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8.9.1.3 Sieve Algorithm

The Sieve algorithm does not concern itself with the configuration of the underlying mesh at any time. It
also does not distinguish between data movements due to time evolution or regridding, and is therefore the
only usable implementation when the particles are displaced as a consequence of mesh refinement. The sieve
implementation works with two bins, one collects particles that have to be moved off-processor, and the
other receives particles sent to it by other processors. The following steps broadly describe the algorithm:

1. For each particle, find if its current position is on the current block

2. If not, find if its current position is on another block on the same processor. If it is move the particle
to that block, otherwise put it in the send bin.

3. Send contents of the send bin to the designated neighbor, and receive contents of another neighbor’s
send bin into my receive bin.

4. Repeat step 2 on the contents of the receive bin, and step 3 until all particles are at their destination.

5. For every instance of step 3, the designated send and receive neighbors are different from any of the
previous steps.

In this implementation, the trick is to use an algorithm to determine neighbors in such a way that all the
particles reach their destination in minimal number of hops. Using MyPE + n ∗ (−1)n+1 as the destina-
tion processor and MyPE + n ∗ (−1)n as the source processor in modulo numProcs arithmetic meets the
requirements. Here MyPE is the local processor number and numProcs is the number of processors.

8.9.2 GridParticlesMapToMesh

FLASH4 provides support for particles that can experience forces and contribute to the problem dynamics.
These are termed active particles, and are described in detail in Chapter 20. As these particles may move
independently of fluid flow, it is necessary to update the grid by mapping an attribute of the particles to the
cells of the grid. We use these routines, for example, during the PM method to assign the particles’ mass
to the particle density solution variable pden. The hybrid PIC method uses its own variation for mapping
appropriate physical quantities to the mesh.

In general the mapping is performed using the grid routines in the GridParticlesMapToMesh directory
and the particle routines in the ParticlesMapping directory. Here, the particle subroutines map the par-
ticles’ attribute into a temporary array which is independent of the current state of the grid, and the grid
subroutines accumulate the mapping from the array into valid cells of the computational domain. This
means the grid subroutines accumulate the data according to the grid block layout, the block refinement
details, and the simulation boundary conditions. As these details are closely tied with the underlying grid,
there are separate implementations of the grid mapping routines for UG and PARAMESH simulations.

The implementations are required to communicate information in a relatively non-standard way. Gen-
erally, domain decomposition parallel programs do not write to the guard cells of a block, and only use
the guard cells to represent a sufficient section of the domain for the current calculation. To repeat the
calculation for the next time step, the values in the guard cells are refreshed by taking updated values from
the internal section of the relevant block. In FLASH4, PARAMESH refreshes the values in the guard cells
automatically, and when instructed by a Grid fillGuardCells call.

In contrast, the guard cell values are mutable in the particle mapping problem. Here, it is possible that a
portion of the particle’s attribute is accumulated in a guard cell which represents an internal cell of another
block. This means the value in the updated guard cell must be communicated to the appropriate block.
Unfortunately, the mechanism to communicate information in this direction is not provided by PARAMESH or
UG grid. As such, the relevant communication is performed within the grid mapping subroutines directly.

In both PARAMESH and UG implementations, the particles’ attribute is “smeared” across a temporary
array by the generic particle mapping subroutine. Here, the temporary array represents a single leaf block
from the local processor. In simulations using the PARAMESH grid, the temporary array represents each LEAF
block from the local processor in turn. We assign a particle’s attribute to the temporary array when that

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_fillGuardCells_F90.html
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particle exists in the same space as the current leaf block. For details about the attribute assignment schemes
available to the particle mapping sub-unit, please refer to Section 20.2.

After particle assignment, the Grid sub-unit applies simulation boundary conditions to those temporary
arrays that represent blocks next to external boundaries. This may change the quantity and location of
particle assignment in the elements of the temporary array. The final step in the process involves accumu-
lating values from the temporary array into the correct cells of the computational domain. As mentioned
previously, there are different strategies for UG and PARAMESH grids, which are described in Section 8.9.2.1
and Section 8.9.2.2, respectively.

FLASH Transition

The particle mapping routines can be run in a custom debug mode which can help spot data
errors (and even detect possible bugs). In this mode we inspect data for inconsistencies. To
use, append the following line to the setup script:

-defines=DEBUG_GRIDMAPPARTICLES

8.9.2.1 Uniform Grid

The Uniform Grid algorithm for accumulating particles’ attribute on the grid is similar to the particle redis-
tribution algorithm described in Section 8.9.1.1. We once again apply the concept of directional movement
to minimize the number of communication steps:

1. Take the accumulated temporary array and iterate over all elements that correspond to the x-axis guard
cells of the low block face. If a guard cell has been updated, determine its position in the neighboring
block of the low block face. Copy the guard cell value and a value which encodes the destination cell
into the send buffer.

2. Send the buffer to the low-side processor, and receive a buffer from the high-side processor. For pro-
cessors next to a domain boundary assume periodic conditions because all processors must participate.
If the simulation does not have periodic boundary conditions, there is still periodic communication at
the boundaries, but the send buffers do not contain data.

3. Iterate over the elements in the receive buffer and accumulate the values into the local temporary array
at the designated cells. It is possible to accumulate values in cells that represent internal cells and
guard cells. A value accumulated in a guard cell will be repacked into the send buffer during the next
directional (y or z) sweep.

4. Repeat steps 1-3 for the high block face.

5. Repeat steps 1-4 for the y-axis, and then the z-axis.

When the guard cell’s value is packed into the send buffer, a single value is also packed which is a 1-
dimensional representation of the destination cell’s N-dimensional position. The value is obtained by using
an array equation similar to that used by a compiler when mapping an array into contiguous memory. The
receiving processor applies a reverse array equation to translate the value into N-dimensional space. The use
of this communication protocol is designed to minimize the message size.

At the end of communication, each local temporary buffer contains accumulated values from guard cells
of another block. The temporary buffer is then copied into the solution array.

8.9.2.2 Paramesh Grid

There are two implementations of the AMR algorithms for accumulating particles’ attribute on the grid. They
are inspired by a particle redistribution algorithms Sieve and Point to Point described in Section 8.9.1.3
and Section 8.9.1.2 respectively.



8.9. GRIDPARTICLES 123

The MoveSieve implementation of the mapping algorithm uses the same back and forth communication
pattern as Sieve to minimize the number of message exchanges. That is, processor MyPE sends to MyPE+
n ∗ (−1)n+1 and receives from MyPE + n ∗ (−1)n, where, MyPE is the local processor number and n is the
count of the buffer exchange round. As such, this communication pattern involves a processor exchanging
data with its nearest neighbor processors first. This is appropriate here because the block distribution
generated by the space filling curve should be high in data locality, i.e., nearest neighbor blocks should be
placed on the same processor or nearest neighbor processors.

Similarly, the Point to Point implementation of the mapping algorithm exploits the cached neighbor-
hood knowledge, and uses a judicious combination of global communications with asynchronous receives
and synchronous sends, as described in Section 8.9.1.2. Other than their communication patterns, the two
implementations are very similar as described below.

1. Accumulate the temporary array values into the central section of the corresponding leaf block.

2. Divide the leaf block guard cells into guard cell regions. Determine whether the neighbor(s) to a
particular guard cell region exist on the same processor.

3. If a neighbor exists on the same processor, the temporary array values are accumulated into the central
cells of that leaf block. If the neighbor exists off processor, all temporary array values corresponding
to a single guard cell region are copied into a send buffer. Metadata is also packed into the send buffer
which describes the destination of the updated values.

4. Repeat steps 1-3 for each leaf block.

5. Carry out data exchange with off-processor destinations as described in the Section 8.9.1.3 or Sec-
tion 8.9.1.2

The guard cell region decomposition described in Step 2 is illustrated in Figure 8.10. Here, the clear
regions correspond to guard cells and the gray region corresponds to internal cells. Each guard cell region
contains cells which correspond to the internal cells of a single neighboring block at the same refinement.

Figure 8.10: A single 2-D block showing how guard cells are divided into regions.

We use this decomposition as it makes it possible to query public PARAMESH data structures which contain
the block and process identifier of the neighboring block at the same refinement. However, at times this is not
enough information for finding the block neighbor(s) in a refined grid. We therefore categorize neighboring
blocks as: Existing on the same processor, existing on another processor and the block and process ID are



124 CHAPTER 8. GRID UNIT

known, and existing on another processor and the block and process ID are unknown. If the block and
process identifier are unknown we use the FLASH4 corner ID. This is a viable alternative as the corner ID
of a neighboring block can always be determined.

The search process also identifies the refinement level of the neighboring block(s). This is important as
the guard cell values cannot be directly accumulated into the internal cells of another block if the blocks are
at a different refinement levels. Instead the values must be operated on in processes known as restriction
and prolongation (see Section 8.6.2). We perform these operations directly in the GridParticlesMapToMesh
routines, and use quadratic interpolation during prolongation.

Guard cell data is accumulated in blocks existing on the same processor, or packed into a send buffer
ready for communication. When packed into the send buffer, we keep values belonging to the same guard
cell region together. This enables us to describe a whole region of guard cell data by a small amount of
metadata. The metadata consists of: Destination block ID, destination processor ID, block refinement level
difference, destination block corner ID (IAXIS, JAXIS, KAXIS) and start and end coordinates of destination
cells (IAXIS, JAXIS, KAXIS). This is a valid technique because there are no gaps in the guard cell region,
and is sufficient information for a receiving processor to unpack the guard cell data correctly.

We size the send / receive buffers according to the amount of data that needs to be communicated
between processors. This is dependent upon how the PARAMESH library distributes blocks to processors.
Therefore, in order to size the communication buffers economically, we calculate the number of guard cells
that will accumulate on blocks belonging to another processor. This involves iterating over every single
guard cell region, and keeping a running total of the number of off-processor guard cells. This total is added
to the metadata total to give the size of the send buffer required on each processor. We use the maximum
of the send buffer size across all processors as the local size for the send / receive buffer. Choosing the
maximum possible size prevents possible buffer overflow when an intermediate processor passes data onto
another processor.

After the point to point communication in step 6, the receiving processor scans the destination processor
identifier contained in each metadata block. If the data belongs to this processor it is unpacked and accu-
mulated into the central cells of the relevant leaf block. As mentioned earlier, it is possible that some guard
cell sections do not have the block and processor identifier. When this happens, the receiving processor
attempts to find the same corner ID in one of its blocks by performing a linear search over each of its leaf
blocks. Should there be a match, the guard cells are copied into the matched block. If there is no match, the
guard cells are copied from the receive buffer into the send buffer, along with any guard cell region explicitly
designated for another processor. The packing and unpacking will continue until all send buffers are empty,
as indicated by the result of the collective communication.

It may seem that the algorithm is unnecessarily complicated, however, it is the only viable algorithm
when the block and process identifiers of the nearest block neighbors are unknown. This is the situation
in FLASH3.0, in which some data describing block and process identifiers are yet to be extracted from
PARAMESH. As an aside, this is different to the strategy used in FLASH2, in which the entire PARAMESH tree
structure was copied onto each processor. Keeping a local copy of the entire PARAMESH tree structure on
each processor is an unscalable approach because increase in the levels of resolution increases the meta-data
memory overhead, which restricts the size of active particle simulations. Therefore, Point to Point method is
a better option for larger simulations, and significantly, simulations that run on massively parallel processing
(MPP) hardware architectures.

In FLASH3.1 we added a routine which searches non-public PARAMESH data to obtain all neighboring
block and process identifiers. This discovery greatly improves the particle mapping performance because we
no longer need to perform local searches on each processor for blocks matching a particular corner ID.

As another consequence of this discovery, we are able to experiment with alternative mapping algorithms
that require all block and process IDs. From FLASH3.1 on we also provide a non-blocking point to point
implementation in which off-processor cells are sent directly to the appropriate processor. Here, processors
receive messages at incremented positions along a data buffer. These messages can be received in any order,
and their position in the data buffer can change from run to run. This is very significant because the mass
accumulation on a particular cell can occur in any order, and therefore can result in machine precision
discrepancies. Please be aware that this can actually lead to slight variations in end-results between two
runs of the exact same simulation.
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8.10 GridSolvers
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Figure 8.11: The Grid unit: structure of GridSolvers subunit.

The GridSolvers unit groups together subunits that are used to solve particular types of differential equa-
tions. Currently, there are two types of solvers: a parallel Fast Fourier Transform package (Section 8.10.1)
and various solvers for the Poisson equation (Section 8.10.2).

8.10.1 Pfft

Pfft is a parallel frame work for computing a Fast Fourier Transform (FFT) on uniform grids. It can also
be combined with the Multigrid solver described below in Section 8.10.2.6 to let the composite solver scale
to thousands of processors.

Pfft has a layered architecture where the lower layer contains functions implementing basic tasks and
primary data structures. The upper layer combines pieces from the lowest layer to interface with FLASH
and create the parallel transforms. The computational part of Pfft is handled by sequential 1-dimensional
FFT’s, which can be from a native, vendor supplied scientific library, or from public domain packages. The
current distribution of FLASH uses fftpack from NCAR for the 1-D FFTs, since that package also contains
transforms that are useful with non-periodic boundary conditions.

The lowest layer has three distinct components. The first component redistributes data. It includes
routines for distributed transposes for two and three dimensional data. The second component provides a
uniform interface for FFT calls to hide the details of individual libraries. The third component is the data
structures. There are global data structures to keep track of the type of transform, number of data dimen-
sions, and physical and transform space information about each dimension. The dimensional information
includes the start and end point of data (useful when the dimension is spread over more than one processor),
the MPI communicator, the coordinates of the node in the processor grid etc. The structures also include
pointers to the trigonometric tables and work space needed by the sequential FFT calls.

The upper layer of PFFT combines the lower layer routines to create end-to-end transforms in a variety of
ways. The available one dimensional transforms include real-to-complex, complex-to-complex, sine and cosine
transforms. They can be combined to create two or three dimensional tranforms for different configuration of
the domain. The two dimensional transforms support parallelization of one dimension (or a one dimensional
grid of processors). The three dimensional transforms support one or two dimensional grid of processors.
All transforms must have at least one dimension within the processor at all times. The data distribution
changes during the computation. However, a complete cycle of forward and inverse transform restores the
data distribution.

The computation of a forward three dimensional FFT in parallel involves following steps :

1. Compute 1-D transforms along x.
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2. Reorder, or transpose from x-y-z to y-z-x

3. Compute 1-D transforms along y. If the transform along x was real-to-complex, this one must be a
complex-to-complex transform.

4. Transpose from y-z-x to z-x-y

5. Compute 1-D FFTs along z. If the transform along x or y was real-to-complex, this must be a
complex-to-complex transform.

The inverse transform can be computed by carrying out the steps described above in reverse order. The
more commonly used domain decomposition in FFT based codes assumes a one dimensional processor grid:

N1 ×N2 ×N3/P, (8.5)

where N1 × N2 × N3 is the global data size and P is the number of processors. Here, the first transpose
is local, while the second one is distributed. The internode communication is limited to one distributed
transpose involving all the processors. However, there are two distinct disadvantages of this distribution of
work:

• The size of the problem imposes an upper limit on the number of processors, in that the largest
individual dimension is also the largest number of active processors. A three dimensional problem is
forced to have modest individual dimensions to fit in the processor memory.

• As the machine size grows, the internode exchanges become long range, and the possibility of contention
grows.

We have chosen a domain decomposition where each subdomain is a column of size

N1 ×N2/P1 ×N3/P2 (8.6)
P = P1 × P2.

With this distribution both the transposes are distributed in parallel. The data exchange along any one
processor grid dimension is a collection of disjointed distributed transposes. Here, the contention and com-
munication range is reduced, while the volume of data exchange is unaltered. The distributed transposes
are implemented using collective MPI operation alltoall. In a slabwise distribution, the upper limit on the
number of processors is determined by the smallest of < N1, N2, N3 >, where as in our distribution, the
upper limit on the number of processors is the smallest of < N1 ∗N2, N2 ∗N3, N1 ∗N3 >.

8.10.1.1 Using Pfft

Pfft can only be used with a pencil grid, with the constraint that the number of processors along the IAXIS
must be 1. This is because all one dimensional transforms are computed locally within a processor. However,
FLASH contains a set of data movement subroutines that generate a usable pencil grid from any UG grid
or any level of a PM grid. These routines are briefly explained in Section 8.10.1.2.

During the course of a simulation, Pfft can be used in two different modes. In the first mode, every
instance of Pfft use will be exactly identical to every other instance in terms of domain size and the type of
transforms. In this mode, the user can set the runtime parameter pfft setupOnce to true, which enables
the FLASH initialization process to also create and initialize all the data structures of Pfft. The finalization
of the Pfft subunit is also done automatically by the FLASH shutdown process in this mode. However, if a
simulation needs to use Pfft in different configurations at different instances of its use, then each set of calls
to Grid pfft for computing the transforms must be preceded by a call to Grid pfftInit and followed by a
call to Grid pfftFinalize. In addition, the runtime parameter pfft setupOnce should be set to false. A
few other helper routines are available in the subunit to allow the user to query Pfft about the dimensioning
of the domain, and also to map the Mesh variables from the unk array to and from Pfft compatible (single
dimensional) arrays. Pfft also provides the location of wave numbers in the parallel domain; information
that users can utilize to develop their own customized PDE solvers using FFT based techniques.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_pfft_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_pfftInit_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_pfftFinalize_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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8.10.1.2 Pfft data movement subroutines

Mesh reconfiguration subroutines are available to generate a pencil grid for the Pfft unit from another mesh
configuration. Two different implementations are available at Grid/GridSolvers/Pfft/MeshReconfiguration/-
PtToPt and Grid/GridSolvers/Pfft/MeshReconfiguration/Collective, with the PtToPt implementa-
tion being the default. Both implementations are able to generate an appropriate pencil grid in UG and
PM mode. The pencil processor grid is automatically selected, but can be overridden by passing optional
arguments to Grid_pfftInit. In UG mode they are invoked when the number of processors in the IAXIS of
the FLASH grid is greater than one, and in PM mode they are always invoked. In PM mode they generate a
pencil grid from a single level of the AMR grid, which may be manually specified or automatically selected
as the maximum level that is fully-refined (i.e. has blocks that completely cover the computational domain
at this level).

The pencil grid processor topology is stored in an MPI communicator, and the communicator may contain
fewer processors than are used in the simulation. This is to ensure the pencil grid points are never distributed
too finely over the processors, and naturally handles the case where the user may wish to obtain a pencil
grid at a very coarse level in the AMR grid. If there are more blocks than processors then we are safe to
distribute the pencil grid over all processors, otherwise we must remove a number of processors. Currently,
we eliminate those processors that own zero FLASH blocks at this level, as this is a simple calculation that
can be computed locally.

Both mesh reconfiguration implementations generate a map describing the data movement before moving
any grid data. The map is retained between calls to the Pfft routines and is only regenerated when the grid
changes. This avoids repeating the same global communications, but means communication buffers are left
allocated between calls to Pfft.

In the Collective implementation, the map coordinates are used to specify where the FLASH data is
copied into a send communication buffer. Two MPI_Alltoall calls then move this data to the appropriate
pencil processor at coordinates (J,K). Here, the first MPI_Alltoall moves data to processor (J,0), and the
second MPI_Alltoall moves data to processor (J,K). The decision to use MPI_Alltoalls simplifies the
MPI communication, but leads to very large send / receive communication buffers on each processor which
consume:

Memory(bytes) = sizeof(REAL) * total grid points at solve level * 2

The PtToPt implementation consumes less memory compared to the Collective implementation, and
communicates using point to point MPI messages. It is based upon using nodes in a linked list which contain
metadata (a map) and a communication buffer for a single block fragment. There are two linked lists: one for
the FLASH block fragments and one for Pfft block fragments. Metadata information about each FLASH block
fragment is placed in separate messages and sent using MPI_Isend to the appropriate destination pencil grid
processor.

Each destination pencil grid processor repeatedly invokes MPI_Iprobe using MPI_ANY_SOURCE, and creates
a node in its Pfft list whenever it discovers a message. The MPI message is received into a metadata region
of the freshly allocated node, and a communication buffer is also allocated according to the size specified in
the metadata. The pencil processor continues probing for messages until the cumulative size of its node’s
communication buffers is equal to the pencil grid points it has been assigned. At this stage, grid data is
communicated by traversing the Pfft list and posting MPI_Irecvs, and then traversing the FLASH list and
sending block fragment using MPI_Isends. After performing MPI_Waits, the received data in the nodes of
the Pfft list is copied into internal Pfft arrays.

Note, the linked list is constructed using an include file stored at flashUtilities/datastructures/-
linkedlist. The file is named ut_listMethods.includeF90 and is meant to be included in any Fortran90
module to create lists with nodes of a user-defined type. Please see the README file, and the unit test
example at flashUtilities/datastructures/linkedlist/UnitTest.

8.10.1.3 Unit Test

The unit test for Pfft solver solves the following equation:

∇2(F) = −13.0 ∗ cos 2x ∗ sin 3y (8.7)
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The simplest analytical solution of this equation assuming no constants is

F = cos 2x ∗ sin 3y (8.8)

We discretize the domain by assuming xmin, ymin, zmin = 0, and xmax, ymax, zmax = 2π. The equation
satisfies periodic boundary conditions in this formulation and FFT based poisson solve techniques can be
applied. In the unit test we initialize one variable of the solution data with the function F , and another one
with the right hand side of (8.7). We compute the forward real-to-complex transform of the solution data
variable that is initialized with the right hand side of (8.7). This variable is then divided by (ki

2 +kj
2 +kk

2)
where ki, kj and kk are the wavenumbers at any point i,j,k in the domain. An inverse complex-to-real
transform after the division should give the function F as result. Hence the unit test is considered successful
if both the variables have matching values within the specified tolerance.

8.10.2 Poisson equation

The GridSolvers subunit contains several different algorithms for solving the general Poisson equation for
a potential φ(x) given a source ρ(x)

∇2φ(x) = αρ(x) . (8.9)

Here α is a constant that depends upon the application. For example, when the gravitational Poisson
equation is being solved, ρ(x) is the mass density, φ(x) is the gravitational potential, and α = 4πG, where
G is Newton’s gravitational constant.

8.10.2.1 Multipole Poisson solver (original version)

This section describes the multipole Poisson solver that has been included in all the past releases of FLASH.
It is included in the current release also, however, certain limitations found in this solver lead to a new
implementation described in Section 8.10.2.2. This version is retained in FLASH4, because the new version
is missing the ability to treat a non-zero minimal radius for spherical geometries and the ability to specify
a point mass contribution to the potential. This will be implemented for the next coming release.

The multipole Poisson solver is appropriate for spherical or nearly-spherical source distributions with
isolated boundary conditions (Müller (1995)). It currently works in 1D and 2D spherical, 2D axisymmetric
cylindrical (r, z), and 3D Cartesian and axisymmetric geometries. Because of the imposed symmetries, in the
1D spherical case, only the monopole term (` = 0) makes sense, while in the axisymmetric and 2D spherical
cases, only the m = 0 moments are used (i.e., the basis functions are Legendre polynomials).

The multipole algorithm consists of the following steps. First, find the center of mass xcm

xcm =
∫

d3xxρ(x)∫
d3x ρ(x)

. (8.10)

We will take xcm as our origin. In integral form, Poisson’s ((8.9)) is

φ(x) = − α

4π

∫
d3x′

ρ(x′)
|x− x′|

. (8.11)

The Green’s function for this equation satisfies the relationship

1
|x− x′|

= 4π

∞∑
`=0

∑̀
m=−`

1
2` + 1

r`
<

r`+1
>

Y ∗
`m(θ′, ϕ′)Y`m(θ, ϕ) , (8.12)

where the components of x and x′ are expressed in spherical coordinates (r, θ, ϕ) about xcm, and

r< ≡ min{|x|, |x′|} (8.13)
r> ≡ max{|x|, |x′|} .
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Here Y`m(θ, ϕ) are the spherical harmonic functions

Y`m(θ, ϕ) ≡ (−1)m

√
2` + 1

4π

(`−m)!
(` + m)!

P`m(cos θ)eimϕ . (8.14)

P`m(x) are Legendre polynomials. Substituting (8.12) into (8.11), we obtain

φ(x) = −α

∞∑
`=0

∑̀
m=−`

1
2` + 1

{
Y`m(θ, ϕ)× (8.15)

[
r`

∫
r<r′

d3x′
ρ(x′)Y ∗

`m(θ′, ϕ′)
r′`+1

+
1

r`+1

∫
r>r′

d3x′ρ(x′)Y ∗
`m(θ′, ϕ′)r′`

]}
.

In practice, we carry out the first summation up to some limiting multipole `max. By taking spherical
harmonic expansions about the center of mass, we ensure that the expansions are dominated by low-multipole
terms, so that for a given value of `max, the error created by neglecting high-multipole terms is minimized.
Note that the product of spherical harmonics in (8.15) is real-valued∑̀

m=−`

Y ∗
`m(θ′, ϕ′)Y`m(θ, ϕ) =

2` + 1
4π

[
P`0(cos θ)P`0(cos θ′) + (8.16)

2
∑̀
m=1

(`−m)!
(` + m)!

P`m(cos θ)P`m(cos θ′) cos (m(ϕ− ϕ′))

]
.

Using a trigonometric identity to split up the last cosine in this expression and substituting for the inner
sums in (8.15), we obtain

φ(x) = − α

4π

∞∑
`=0

P`0(cos θ)
[
r`µeo

`0(r) +
1

r`+1
µei

`0(r)
]
−

α

2π

∞∑
`=1

∑̀
m=1

P`m(cos θ)
[
(r` cos mϕ)µeo

`m(r) + (r` sinmϕ)µoo
`m(r) + (8.17)

cos mϕ

r`+1
µei

`m(r) +
sinmϕ

r`+1
µoi

`m(r)
]

.

The even (e)/odd (o), inner (i)/outer (o) source moments in this expression are defined to be

µei
`m(r) ≡ (`−m)!

(` + m)!

∫
r>r′

d3x′ r′`ρ(x′)P`m(cos θ′) cos mϕ′ (8.18)

µoi
`m(r) ≡ (`−m)!

(` + m)!

∫
r>r′

d3x′ r′`ρ(x′)P`m(cos θ′) sinmϕ′ (8.19)

µeo
`m(r) ≡ (`−m)!

(` + m)!

∫
r<r′

d3x′
ρ(x′)
r′`+1

P`m(cos θ′) cos mϕ′ (8.20)

µoo
`m(r) ≡ (`−m)!

(` + m)!

∫
r<r′

d3x′
ρ(x′)
r′`+1

P`m(cos θ′) sinmϕ′ . (8.21)

The procedure is thus to compute the moment integrals ((8.18) − (8.21)) for a given source field ρ(x), and
then to use these moments in (8.17) to compute the potential.

In practice, the above procedure must take account of the fact that the source and the potential are
assumed to be cell-averaged quantities discretized on a block-structured mesh with varying cell size. Also,
because of the radial dependence of the multipole moments of the source function, these moments must be
tabulated as functions of distance from xcm, with an implied discretization. The solver allocates storage for
moment samples spaced a distance ∆ apart in radius

µei
`m,q ≡ µei

`m(q∆) µeo
`m,q ≡ µeo

`m((q − 1)∆) (8.22)

µoi
`m,q ≡ µoi

`m(q∆) µoo
`m,q ≡ µoo

`m((q − 1)∆) . (8.23)
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The sample index q varies from 0 to Nq (µeo
`m,0 and µoo

`m,0 are not used). The sample spacing ∆ is chosen to
be one-half the geometric mean of the x, y, and z cell spacings at the highest level of refinement, and Nq is
chosen to be large enough to span the diagonal of the computational volume with samples.

Determining the contribution of individual cells to the tabulated moments requires some care. To re-
duce the error caused by the grid geometry, in each cell ijk an optional subgrid can be establish (see
mpole subSample) consisting of N ′ points at the locations x′i′j′k′ , where

x′i′ = xi + (i′ − 0.5(N ′ − 1))
∆xi

N ′ , i′ = 0 . . . N ′ − 1 (8.24)

y′j′ = yj + (j′ − 0.5(N ′ − 1))
∆yj

N ′ , j′ = 0 . . . N ′ − 1 (8.25)

z′k′ = zk + (k′ − 0.5(N ′ − 1))
∆zk

N ′ , k′ = 0 . . . N ′ − 1 , (8.26)

and where xijk is the center of cell ijk. (For clarity, we have omitted ijk indices on x′ as well as all block
indices.) For each subcell, we assume ρ(x′i′j′k′) ≈ ρijk and then apply

µei
`m,q≥q′ ← µei

`m,q≥q′ +
(`−m)!
(` + m)!

∆xi∆yj∆zk

N ′3
r′

`
i′j′k′ρ(x′i′j′k′)P`m(cos θ′i′j′k′) cos mϕ′i′j′k′ (8.27)

µoi
`m,q≥q′ ← µoi

`m,q≥q′ +
(`−m)!
(` + m)!

∆xi∆yj∆zk

N ′3
r′

`
i′j′k′ρ(x′i′j′k′)P`m(cos θ′i′j′k′) sinmϕ′i′j′k′ (8.28)

µeo
`m,q≤q′ ← µeo

`m,q≤q′ +
(`−m)!
(` + m)!

∆xi∆yj∆zk

N ′3
ρ(x′i′j′k′)

r′`+1
i′j′k′

P`m(cos θ′i′j′k′) cos mϕ′i′j′k′ (8.29)

µoo
`m,q≤q′ ← µoo

`m,q≤q′ +
(`−m)!
(` + m)!

∆xi∆yj∆zk

N ′3
ρ(x′i′j′k′)

r′`+1
i′j′k′

P`m(cos θ′i′j′k′) sinmϕ′i′j′k′ , (8.30)

where

q′ =
⌊ |x′i′j′k′ |

∆

⌋
+ 1 (8.31)

is the index of the radial sample within which the subcell center lies. These expressions introduce (hopefully)
small errors when compared to ((8.18)) − (8.21), because the subgrid volume elements are not spherical.
These errors are greatest when r′ ∼ ∆x; hence, using a subgrid reduces the amount of source affected by
these errors. An error of order ∆2 is also introduced by assuming the source profile within each cell to be
flat. Note that the total source computed by this method (µei

`m,Nq
) is exactly equal to the total implied by

ρijk.
Another way to reduce grid geometry errors when using the multipole solver is to modify the AMR

refinement criterion to refine all blocks containing the center of mass (in addition to other criteria that may
be used, such as the second-derivative criterion supplied with PARAMESH). This ensures that the center-of-
mass point is maximally refined at all times, further restricting the volume which contributes errors to the
moments because r′ ∼ ∆x.

The default value of N ′ is 1; note that large values of this parameter very quickly increase the amount of
time required to evaluate the multipole moments (as N ′3). In order to speed up the moment summations,
the sines and cosines in ((8.27)) − (8.30) are evaluated using trigonometric recurrence relations, and the
factorials are pre-computed and stored at the beginning of the run.

When computing the cell-averaged potential, we again employ a subgrid, but here the subgrid points fall
on cell boundaries to improve the continuity of the result. Using N ′ + 1 subgrid points per dimension, we
have

x′i′ = xi + (i′ − 0.5N ′))
∆xi

N ′ , i′ = 0 . . . N ′ (8.32)

y′j′ = yj + (j′ − 0.5N ′))
∆yj

N ′ , j′ = 0 . . . N ′ (8.33)

z′k′ = zk + (k′ − 0.5N ′))
∆zk

N ′ , k′ = 0 . . . N ′ . (8.34)

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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The cell-averaged potential in cell ijk is then

φijk =
1

N ′3

∑
i′j′k′

φ(x′i′j′k′) , (8.35)

where the terms in the sum are evaluated via (8.17) up to the limiting multipole order `max.

8.10.2.2 Multipole Poisson solver (improved version)

The multipole Poisson solver is based on a multipolar expansion of the source (mass for gravity, for example)
distribution around a conveniently chosen center of expansion. The angular number L entering this expansion
is a measure of how detailed the description of the source distribution will be on an angular basis. Higher L
values mean higher angular resolution with respect to the center of expansion. The multipole Poisson solver
is thus appropriate for spherical or nearly-spherical source distributions with isolated boundary conditions.
For problems which require high spatial resolution throughout the entire domain (like, for example, galaxy
collision simulations), the multipole Poisson solver is less suited, unless one is willing to go to extremely
(computationally unfeasible) high L values. For stellar evolution, however, the multipole Poisson solver is
the method of choice.

The new implementation of the multipole Poisson solver is located in the directory

source/Grid/GridSolvers/Multipole_new.

This implementation improves upon the original implemention in many ways: i) efficient memory layout
ii) elimination of numerical over- and underflow errors for large angular momenta when using astrophysical
(dimensions ≈ 109) domains iii) elimination of subroutine call overhead (1 call per cell), iv) minimization of
error due to non-statistical distributions of moments near the multipolar origin. The following paragraphs
explain the new approach to the multipole solver and an explanation of the above improvements. Details
about the theory of the new implementation of the Poisson solver can be found in Couch et al. (2013).

The multipole Poisson solver is appropriate for spherical or nearly-spherical source distributions with
isolated boundary conditions. It currently works in 1D spherical, 2D spherical, 2D cylindrical, 3D Cartesian
and 3D cylindrical. Symmetries can be specified for the 2D spherical and 2D cylindrical cases (a horizontal
symmetry plane along the radial axis) and the 3D Cartesian case (assumed axisymmetric property). Because
of the radial symmetry in the 1D spherical case, only the monopole term (` = 0) contributes, while for the
3D Cartesian axisymmetric, the 2D cylindrical and 2D spherical cases only the m = 0 moments need to be
used (the other m 6= 0 moments effectively cancel out).

The multipole algorithm consists of the following steps. First, the center of the multipolar expansion
xcen is determined via density-squared weighted integration over position:

xcen =
∫

xρ2(x) dx∫
ρ2(x) dx

. (8.36)

We will take xcen as our origin. In integral form, Poisson’s equation (8.9) becomes

φ(x) = − α

4π

∫
ρ(x′)
|x− x′|

dx′. (8.37)

The inverse radial distance part can be expanded in terms of Legendre polynomials

1
|x− x′|

=
∞∑

`=0

x`
<

x`+1
>

P`(cos γ), (8.38)

where x< (x>) indicate the smaller (larger) of the magnitudes and γ denotes the angle between x and x′.
Note, that this definition includes those cases where both magnitudes are equal. The expansion is always
convergent if cos γ < 1. Expansion of the Legendre polynomials in terms of spherical harmonics gives

P`(cos γ) =
4π

2` + 1

+∑̀
m=−`

Y ∗
`m(θ′, φ′)Y`m(θ, φ), (8.39)
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where θ, φ and θ′, φ′ are the spherical angular components of x and x′ about xcen. Defining now the regular
R`m and irregular I`m solid harmonic functions

R`m(x<) =

√
4π

2` + 1
x`

<Y`m(θ, φ) (8.40)

I`m(x>) =

√
4π

2` + 1
Y`m(θ, φ)

x`+1
>

, (8.41)

we can rewrite Eq.(8.37) in the form

φ(x) = − α

4π

∫ ∑
`m

R`m(x<)I∗`m(x>)ρ(x′) dx′, (8.42)

where the summation sign is a shorthand notation for the double sum over all the allowed ` and m values.
In FLASH both the source and the potential are assumed to be cell-averaged quantities discretized on a
block-structured mesh with varying cell size. The integration must hence be replaced by a summation over
all leaf cells

φ(q) = − α

4π

∑
q′

∑
`m

R`m(q<)I∗`m(q>)m(q′), (8.43)

where m denotes the cell’s mass. Note, that the symbol q stands for cell index as well as its defining distance
position from the expansion center in the computational domain. This discrete Poisson equation is incorrect.
It contains the divergent q′ = q term on the rhs. The q′ = q contribution to the potential corresponds to
the cell self potential φSelf (q) and is divergent in our case because all the cell’s mass is assumed to be
concentrated at the cell’s center. The value of this divergent term can easily be calculated from Eq.(8.38)
by setting cos γ = 1:

φSelf (q) = m(q)
L + 1

xq
, (8.44)

where m is the cell’s mass, L the highest angular number considered in the expansion and xq the radial
distance of the cell center from the expansion center. To avoid this divergence problem, we evaluate the
potentials on each face of the cell and form the average of all cell face potentials to get the cell center
potential. Eq.(8.43) will thus be replaced by

φ(q) =
1

nF

∑
F

φ(xF ) (8.45)

and
φ(xF ) = − α

4π

∑
q′

∑
`m

R`m([q′, xF ]<)I∗`m([q′, xF ]>)m(q′), (8.46)

where xF is the cell face radial distance from the expansion center and [q′, xF ]< denotes the larger of the
magnitudes between the cell center radial distance q′ and the cell face radial distance xF . Splitting the
summation over cells in two parts

φ(xF ) = − α

4π

 ∑
q′≤xF

∑
`m

[R`m(q′)m(q′)] I∗`m(xF ) +
∑

q′>xF

∑
`m

R`m(xF ) [I∗`m(q′)m(q′)]

 , (8.47)

and defining the two moments

MR
`m(xF ) =

∑
q′≤xF

R`m(q′)m(q′) (8.48)

M I
`m(xF ) =

∑
q′>xF

I`m(q′)m(q′), (8.49)
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we obtain

φ(xF ) = − α

4π

[∑
`m

MR
`m(xF )I∗`m(xF ) +

∑
`m

M I∗
`m(xF )R`m(xF )

]
(8.50)

and using vector notation

φ(xF ) = − α

4π

[
MR(xF ) · I∗(xF ) + MI∗(xF ) ·R(xF )

]
. (8.51)

We now change from complex to real formulation. We state this for the regular solid harmonic functions,
the same reasoning being applied to the irregular solid harmonic functions and all their derived moments.
The regular solid harmonic functions can be split into a real and imaginary part

R`m = Rc
`m + i Rs

`m. (8.52)

The labels ’c’ and ’s’ are shorthand notations for ’cosine’ and ’sine’, reflecting the nature of the azimuthal
function of the corresponding real spherical harmonics. When inserting (8.52) into (8.51) all cosine and sine
mixed terms of the scalar products cancel out. Also, due to the symmetry relations

Rc
`,−m = (−1)mRc

`m (8.53)
Rs

`,−m = −(−1)mRs
`m (8.54)

we can restrict ourselves to the following polar angle number ranges

c : ` ≥ 0 , ` ≥ m ≥ 0 (8.55)
s : ` ≥ 1 , ` ≥ m ≥ 1. (8.56)

The real formulation of (8.51) becomes then

φ(xF ) = − α

4π

{[
MRc(xF )
MRs(xF )

]
·∆

[
Ic(xF )
Is(xF )

]
+
[

MIc(xF )
MIs(xF )

]
·∆

[
Rc(xF )
Rs(xF )

]}
, (8.57)

which, when compared to (8.51), shows, that all vectors now contain a cosine and a sine section. The ∆
matrix is a diagonal matrix whose elements are equal to 2 for m 6= 0 and 1 otherwise, i.e.:

∆ = diag(2− δm0). (8.58)

The recursion relations for calculating the solid harmonic vectors are

Rc
00 = 1 (8.59)

Rc
`` = −

xRc
`−1,`−1 − yRs

`−1,`−1

2`
(8.60)

Rs
`` = −

yRc
`−1,`−1 + xRs

`−1,`−1

2`
(8.61)

R
c/s
`m =

(2`− 1)zR
c/s
`−1,m − r2R

c/s
`−2,m

(` + m)(`−m)
, 0 ≤ m < ` (8.62)

and

Ic
00 =

1
r

(8.63)

Ic
`` = −(2`− 1)

xIc
`−1,`−1 − yIs

`−1,`−1

r2
(8.64)

Is
`` = −(2`− 1)

yIc
`−1,`−1 + xIs

`−1,`−1

r2
(8.65)

I
c/s
`m =

(2`− 1)zI
c/s
`−1,m −

[
(`− 1)2 −m2

]
I

c/s
`−2,m

r2
, 0 ≤ m < ` (8.66)
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in which x, y, z are the cartesian location coordinates of the cell face and r2 = x2 + y2 + z2. For geometries
depending on polar angles one must first calculate the corresponding cartesian coordinates for each cell
before applying the recursions. In FLASH, the order of the two cosine and sine components for each solid
harmonic vector is such that ` precedes m. This allows buildup of the vectors with maximum number of unit
strides. The same applies of course for the assembly of the moments. For 2D cylindrical and 2D spherical
geometries only the m = 0 parts of both recursions are needed, involving only the cartesian z coordinate and
r2. Symmetry along the radial axes of these 2D geometries inflicts only the sign change z → −z, resulting
in the symmetry relations Rc

`0 → Rc
`0 for even ` and Rc

`0 → −Rc
`0 for odd `, the same holding for the

irregular solid harmonic vector components. Thus symmetry in 2D can effectively be treated by halving the
domain size and multiplying each even ` moments by a factor of 2 while setting the odd ` moments equal
to 0. For 3D cartesian geometries introduction of symmetry is far more complicated since all m components
need to be taken into account. It is not sufficient to simply reduce the domain to the appropriate size and
multiply the moments by some factor, but rather one would have to specify the exact symmetry operations
intended (generators of the symmetry group Oh or one of its subgroups) in terms of their effects on the
x, y, z cartesian basis. The resulting complications in calculating symmetry adapted moments outweighs the
computational gain that can be obtained from it. Options for 3D symmetry are thus no longer available in
the improved FLASH multipole solver. The ’octant’ symmetry option from the old multipole solver, using
only the monopole ` = 0 term, was too restrictive in its applicability (exact only for up to angular momenta
` = 3 due to cancellation of the solid harmonic vector components).

From the above recursion relations (8.59-8.66), the solid harmonic vector components are functions of
xiyjzk monomials, where i + j + k = ` for the R and (formally) i + j + k = −(` + 1) for the I. For large
astrophysical coordinates and large ` values this leads to potential computational over- and underflow. To
get independent of the size of both the coordinates and ` we introduce a damping factor Dx, Dy,Dz for the
coordinates for each solid harmonic type before entering the recursions. D will be chosen such that for the
highest specified ` = L we will have approximately a value close to 1 for both solid harmonic components:

R
c/s
Lm ≈ 1 (8.67)

I
c/s
Lm ≈ 1. (8.68)

This ensures proper handling of size at the solid harmonic function evaluation level and one does not have
to rely on size cancellations at a later stage when evaluating the potential via Eq.(8.57). We next state the
evaluation of the damping factor D. Due to the complicated nature of the recursions, the first step is to find
solid harmonic components which have a simple structure. To do this, consider a cell face with x, y = 0 and
z 6= 0. Then r2 = z2, |z| = r and only the m = 0 components are different from zero. An explicit form can
be stated for the absolute values of these components in terms of r:

|R`0| =
r`

`!
(8.69)

|I`0| =
`!

r`+1
. (8.70)

Since r =
√

x2 + y2 + z2, damping of the coordinates with D results in a damped radial cell face distance
Dr. Inserting this result into (8.69) and (8.70) and imposing conditions (8.67) and (8.68) results in

DR =
1
r

L
√

L! ≈ 1
r

L

e
2L
√

2πL (8.71)

DI =
1
r

L+1
√

L! ≈ 1
r

L

e

2L+2

√
2πe2

L
, (8.72)

where the approximate forms are obtained by using Stirling’s factorial approximation formula for large L.
In FLASH only the approximate forms are computed for DR and DI to avoid having to deal with factorials
of large numbers.

From the moment defining equations (8.48) and (8.49) we see, that the moments are sums over subsets
of cell center solid harmonic vectors multiplied by the corresponding cell mass. From Eq.(8.57) it follows
that for highest accuracy, the moments should be calculated and stored for each possible cell face. For high
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refinement levels and/or 3D simulations this would result in an unmanageable request for computer memory.
Several cell face positions have to be bundled into radial bins Q defined by lower and upper radial bounds.
Once a cell center solid harmonic vector pair R(q) and I(q) for a particular cell has been calculated, its
radial bin location q → Q is determined and its contribution is added to the radial bin moments MR(Q)
and MI(Q). The computational definition of the radial bin moments is

MR(Q) =
∑
q≤Q

R(q)m(q) (8.73)

MI(Q) =
∑
q≥Q

I(q)m(q), (8.74)

where q ≤ Q means including all cells belonging to Q and all radial bins with lower radial boundaries than
Q. The two basic operations of the multipole solver are thus: i) assembly of the radial bin moments and
ii) formation of the scalar products via Eq.(8.57) to obtain the potentials. The memory declaration of the
moment array should reflect the way the individual moment components are addressed and the most efficient
layout puts the angular momentum indices in rows and the radial bin indices in columns.

How do we extract moments MR(x) and MI(x) at any particular position x inside the domain (and, in
particular, at the cell face positions xF ), which are ultimately needed for the potential evaluation at that
location? Assume that the location x corresponds to a particular radial bin x → Q. Consider the three
consecutive radial bins Q− 1, Q and Q + 1, together with their calculated moments:

MR(Q− 1) MR(Q) MR(Q + 1)
MI(Q− 1) MI(Q) MI(Q + 1) (8.75)

Let us concentrate on the Q bin, whose lower and upper radial limits are shown as solid vertical lines. The
radial distance corresponding to x splits the Q bin into two parts: the left fractional part, denoted Rfrac,
and the right fractional part, denoted Ifrac. Since both MR(Q−1) and MI(Q+1) are completely contained
respectively in MR(Q) and MI(Q), the moments at x be approximately evaluated as:

MR(x) = MR(Q− 1) + Rfrac

[
MR(Q)−MR(Q− 1)

]
(8.76)

MI(x) = MI(Q + 1) + Ifrac

[
MI(Q)−MI(Q + 1)

]
, (8.77)

The extraction of the moments via (8.76) and (8.77) is of course an approximation that relies on the sta-
tistically dense distribution of the individual cell center moments inside each radial bin. For bins which are
reasonably far away from the expansion center this statistical approximation is valid but for those close to
the expansion center the statistical distribution does not hold and calculating the moments via the above
scheme introduces a large statistical error. The way out of this problem is to move from a statistical radial
bin description around the expansion center to a more discrete one, by constructing very narrow isolated
radial bins. The code is thus forced to analyze the detailed structure of the geometrical domain grid sur-
rounding the expansion center and to establish the inner radial zone of discrete distributed radial bins. The
statistical radial bins are then referred to as belonging to the outer radial zone(s).

While the structure of the inner radial zone is fixed due to the underlying geometrical grid, the size of
each radial bin in the outer radial zones has to be specified by the user. There is at the moment no automatic
derivation of the optimum (accuracy vs memory cost) bin size for the outer zones. There are two types of
radial bin sizes defined for the FLASH multipole solver: i) exponentially and/or ii) logarthmically growing:

exponential bin size upper radial limit = s ·∆r ·Qt (8.78)

logarithmic bin size upper radial limit = s ·∆r · e
tQ − 1
et − 1

. (8.79)

In these definitions, ∆r is a small distance ’atomic’ (basic unit) radial measure, defined as half the geometric
mean of appropriate cell dimensions at highest refinement level, s is a scalar factor to optionally increase
or decrase the atomic unit radial measure and Q = 1, 2, . . . is a local bin index counter for each outer zone.
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The atomic radial distance ∆r is calculated for each individual domain geometry as follows:

Domain Geometry ∆r
3D cartesian 1

2
3
√

∆x∆y∆z

3D cylindrical 1
2

√
∆R∆z

2D cylindrical 1
2

√
∆R∆z

2D spherical 1
2∆R

1D spherical 1
2∆R

, (8.80)

where ∆x,∆y, ∆z are the usual cartesian cell dimensions and ∆R is the radial cell dimension. Note, that
since ∆r measures a basic radial unit along the radial distance from the expansion center (which, for approx-
imate spherical problems, is located close to the domain’s geometrical origin), only those cell dimensions for
calculating each ∆r are taken, which are directly related to radial distances from the geometrical domain
origin. For 3D cylindrical domain geometries for example, only the radial cylindrical and z-coordinate cell
dimensions determine the 3D radial distance from the 3D cylindrical domain origin. The angular coordinate
is not needed. Likewise for spherical domains only the radial cell coordinate is of importance. Definitions
(8.78) and (8.79) define the upper limit of the radial bins. Hence in order to obtain the true bin size for the
Q-th bin one has to subtract its upper radial limit from the corresponding one of the (Q− 1)-th bin:

Q-th exponential bin size = s ·∆r ·
[
Qt − (Q− 1)t

]
(8.81)

Q-th logarithmic bin size = s ·∆r · et(Q−1). (8.82)

In principle the user can specify as many outer zone types as he/she likes, each having its own exponential
or logarithmic parameter pair {s, t}.

Multithreading of the code is currently enabled in two parts: 1) during moment evaluation and 2) during
potential evaluation. The threading in the moment evaluation section is achieved by running multiple threads
over separate, non-conflicting radial bin sections. Moment evaluation is thus organized as a single loop over
all relevant radial bins on each processor. Threading over the potential evaluation is done over blocks, as
these will address different non-conflicting areas of the solution vector.

The improved multipole solver was extensively tested and several runs have been performed using large
domains (> 1010) and extremely high angular numbers up to L = 100 for a variety of domain geometries.
Currently, the following geometries can be handled: 3D cartesian, 3D cylindrical, 2D cylindrical, 2D spherical
and 1D spherical. The structure of the code is such that addition of new geometries, should they ever be
needed by some applications, can be done rapidly.

8.10.2.3 Multipole Poisson solver unit test (MacLaurin spheroid)

The first unit test for the multipole Poisson solver is based on the MacLaurin spheroid analytical gravitational
solution given in section 30.3.4. The unit test sets up a spheroid with uniform unit density and determines
both the analytical and numerical gravitational fields. The absolute relative error based on the analytical
solution is formed for each cell and the maximum of all the absolute errors is compared to a predefined error
tolerance value for a particular uniform refinement level. The multipole unit test runs in 2D cylindrical, 2D
spherical, 3D cartesian and 3D cylindrical geometries and threaded multipole unit tests are also available.

8.10.2.4 Tree Poisson Solver

The tree solver is based on the Barnes & Hut (1986, Nature, 324, 446) tree code for calculation of gravity
forces in N-body simulations. However, it is more general and it includes some more modern features
described for instance in Salmon & Warren (1994, J. Comp. Phys, 136, 155), Springel (2005, MNRAS, 364,
1105) and other works. It builds a global octal tree over the whole computational domain, communicates
its part to all processors and uses it for calculations of various physical problems provided as separate units
in source/physics directory. The global tree is an extension of the AMR mesh octal tree down to individual
cells. The communication of the tree is implemented so that only parts of the tree that are needed for the
calculation of the potential on a given processor are sent to it. The calculation of physical problems is done
by walking the tree for each grid cell (hereafter point-of-calculation) and evaluating whether the tree node
should be used for calculation or whether its children should be open.
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The tree solver is connected to physical units by several wrapper subroutines that are called at specific
places of the tree build and tree walk, and that call corresponding subroutines of physical units. In this
way, physical units can include arbitrary quantity into the tree, and then, use it to calculate some other
physical quantity by integrating contributions of all tree nodes during the tree walk. In this version, the
only working unit implementation is physics/Gravity/GravityMain/Poisson/BHTree, which calculates
the gravitational potential.

The tree solver algorithm consists of four parts. The first one, communication of block properties, is
called only if the AMR grid changes. The other three, building of the tree, communication of the tree and
calculation of the potential, are called in each time-step.

Communication of block properties. In recent version, each processor needs to know some basic infor-
mation about all blocks in the simulation. It includes arrays: nodetype, lrefine and child. These arrays
are distributed from each processor to all the other processors. They can occupy a substantial amount of
memory on large number of processors (memory required for statically allocated arrays of the tree solver can
be calculated by a script tree mem use.py).

Building the tree. The global tree is constructed from bottom and the process consists of three steps.
In the first one, the so-called block-tree is constructed in each leaf block on a given processor. The block-
trees are 1-dimensional dynamically allocated arrays (see Figure 8.12) and pointers to them are stored in
array gr bhTreeArray. In the second step, top nodes of block-trees (corresponding to whole blocks) are
distributed to all processors and stored in array gr bhTreeParentTree. In the last step, higher nodes
of the parent tree are calculated by each processor and stored in the gr bhTreeParentTree array. At
the end, each processor holds information about the global tree down to the level of leaf blocks. Dur-
ing the whole process of tree building, 5 subroutines providing the interface to physical units are called:
gr bhFillBotNode, gr bhAccBotNode, gr bhAccNode, gr bhNormalizeNode and gr bhPostprocNode (see
their auto-documentation and source code for details). Each of them calls a corresponding subroutine of
all physical units with a name where the first two letters ’gr’ are replaced with the name of the unit (e.g.
Gravity bhFillBotNode).

Figure 8.12: Example of a block-tree in case of nxb=nyb=nzb=8 and in case physical units do not store any
further information to tree nodes (masses and mass centre positions are included by the tree solver itself).

Communication of the tree. Most of the tree data is contained on the bottom levels in individual block-
trees. In order to save memory and communication time, only parts of block-trees that are needed on a given
processor are sent to it. The procedure consists of three steps. In the first one, a level down to which each
block-tree has to be sent to each processor is determined. For a given block-tree, it is done by evaluating the
criterion for the node acceptance (traditionally called multipole acceptance criterion, shortly MAC) for all
blocks on a remote processor, searching for the maximum level down to which the evaluated node will be
needed on a given remote processor. In the second step, information about the block-tree levels which are
going to be communicated is sent to all processors. This information is needed for allocation of arrays in

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Gravity/Gravity_bhFillBotNode_F90.html
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which block-trees are stored on remote processors. In the third step, the block-tree arrays are allocated, all
block-trees for a given processor are packed into a single message and the messages are communicated.

The MAC is implemented in subroutine gr bhMAC which includes only a simple geometrical MAC used
also by Barnes & Hut. The node is accepted for calculation if

Snode

D
< gr bhTreeLimAngle , (8.83)

where Snode is the node size (defined as the largest edge of the corresponding cuboid) and D is the distance
between the node and the point-of-calculation. Additionally, gr bhMAC checks that the point-of-calculation
is not located within the node itself enlarged by factor gr bhTreeSafeBox. On the top of that, gr bhMAC
calls MACs of physical units and the node is accepted only if all criteria are fulfilled.

Tree walk. The tree is traversed from the top to the bottom, evaluating MAC of each node and in case it is
not fulfilled, continuing the tree walk with its children. If the node’s MAC is fulfilled, the node is accepted for
the calculation and subroutine gr bhBotNodeContrib or gr bhNodeContrib is called, depending on whether
it is a bottom-most node (i.e. a single grid cell) or higher node, respectively. These subroutines only call the
corresponding subroutines of physical units (e.g., Gravity bhNodeContrib). This is the most CPU-intensive
part of the tree solver, it usually takes more than 90% of the total tree solver time. It is completely parallel
and it does not include any communication (apart from sending some statistics to the main processor at the
end).

The tree solver includes several implementations of the tree walk. The default algorithm is the Barnes-
Hut like tree walk in which the whole tree is traversed from the top down to nodes fulfilling MAC for each cell
separately. This algorithm is used in case the runtime parameter gr bhUnifiedTreeWalk is true (default).
If it this parameter is set to false, another algorithm is used in which instead of walking the whole tree for
each cell individually, MAC is at first evaluated for whole mesh block (interacting with some node). If the
node is accepted and if the node is a parent node (i.e. corresponding to whole mesh block), the node is
accepted for all cells of the block and the contribution of the node is added to them. However, the node
contribution is calculated separately for each cell, because the distance between the node and individual cells
differs. The third tree walk algorithm is an implementation of the so called SumSquare MAC described by
Salmon & Warren (1994). The tree is traversed using the priority queue, taking contribution of the most
important nodes first. This algorithm provides much better error control, however, the implementation in
this code version is highly experimental.

The tree solver supports isolated and periodic boundary conditions that can be set independently in each
direction. In the latter case, when a node is considered for MAC evaluation and eventually calculation by
calling Gravity bhNodeContrib, periodic copies of the node are checked, and the minimum distance among
the node periodic copies is taken in account. This allows for instance to calculate gravitational potential
with periodic boundary conditions using the Ewald method (see description of the Gravity unit).

8.10.2.5 Tree Poisson solver unit test

The unit test for the tree gravity solver calculates the gravitational potential of the Bonnor-Ebert sphere
(Bonnor, W. B., 1956, MNRAS, 116, 351) and compares it to the analytical potential. The density distri-
bution and the analytical potential are calculated by the python script bes-generator.py. The simulation
setup only reads the file with radial profiles of these quantities and sets it on the grid. It also normalizes
the analytical potential (adds a constant to it) so that the minimum values of the analytical and numerical
potential are the same. The error of the gravitational potential calculated by the tree code is stored in the
field array PERR (written into the PlotFile). The maximum absolute and relative errors are written into
the log file.

8.10.2.6 Multigrid Poisson solver

This section of the User’s Guide is taken from a paper by Paul Ricker, “A Direct Multigrid Poisson Solver
for Oct-Tree Adaptive Meshes” (2008). Dr. Ricker wrote an original version of this multigrid algorithm for
FLASH2. The Flash Center adapted it to FLASH3.

Structured adaptive mesh refinement provides some challenges for the implementation of effective, parallel
multigrid methods. In the case of patch-based meshes, Huang & Greengard (2000) presents an algorithm

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Gravity/Gravity_bhNodeContrib_F90.html
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which works by using the coarse-grid solution to impose boundary values on the fine grid. Discontinuities
in the solution caused by jumps in refinement are resolved through iterative calculation of the residual and
subsequent correction. While this is not a multigrid method in the standard sense, it still provides significant
convergence acceleration.

The adaptation of this method to the FLASH grid structure (Ricker, 2008) requires a few modifications.
The original formulation required that there be shared points between the coarse and fine patches. Contrast
this with finite-volume, nested-cell, cell-averaged grids as used in FLASH(Figure 8.13). This is overcome
by the exchange of guardcells from coarse to fine using monotonic interpolation (Section 8.6.2) and external
boundary extrapolation for the calculation of the residual.

Figure 8.13: Contrast between jumps of refinement in meshes used in the original paper (left) and the
oct-tree adapted method (right).

Another difference between the method of (Ricker 2008) and Huang & Greengard is that an oct-tree
undoubtedly has neighboring blocks of the same refinement, while a patch-based mesh would not. This
problem is solved through uniform prolongation of boundaries from coarse-to-fine, with simple relaxation
done to eliminate the slight error introduced between adjacent cells.

One final change between the two methods is that the original computes new sources at the boundary
between corrections, while the propagation here is done through nested solves on various levels.

The entire algorithm requires that the PARAMESH grid be reset such that all blocks at refinement above
some level ` are set as temporarily nonexistent. This is required so that guardcell filling can occur at only
that level, neglecting blocks at a higher level of refinement. This requires some global communication by
PARAMESH.

The method requires three basic operators over the solution φ on the grid: taking the residual, restricting
a fine-level function to coarser-level blocks, and prolonging values from the coarse level to the faces of fine
level blocks in order to impose boundary values for the fine mesh problems.

The residual is calculated such that:

R(x) ≡ 4πGρ(x)−∇2φ̃(x) . (8.84)

This is accomplished through the application of the finite difference laplacian, defined on level ` with
length-scales ∆x`, ∆y` and ∆z`.

D`φ̃
b`
ijk ≡ 1

∆x2
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(
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)
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1
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)
. (8.86)

The restriction operator R` for block interior zones (i, j, k) is:

(R`φ̃)P(c),`
ijk ≡ 1

2d

∑
i′j′k′

φ̃c,`+1
i′j′k′ , (8.87)

where the indices (i′, j′, k′) refer to the zones in block c that lie within zone (i, j, k) of block P(c). We apply
the restriction operator throughout the interiors of blocks, but its opposite, the prolongation operator I`,
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need only be defined on the edges of blocks, because it is only used to set boundary values for the direct
single-block Poisson solver:

(I`φ̃)c,`+1
i′j′k′ ≡

2∑
p,q,r=−2

αi′j′k′pqrφ̃
P(c),`
i+p,j+q,k+r (8.88)

When needed, boundary zone values are set as for the difference operator. We use conservative quartic
interpolation to set edge values, then solve with homogeneous Dirichlet boundary conditions after using
second-order boundary-value elimination. The coefficients α determine the interpolation scheme. For the
−x face in 3D,

α1/2,j′k′pqr = βpγj′qγk′r (8.89)
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Interpolation coefficients are defined analogously for the other faces. Note that we use half-integer zone
indices to refer to averages over the faces of a zone; integer zone indices refer to zone averages.

8.10.2.7 The direct solver

In the case of problems with Dirichlet boundary conditions, a d-dimensional fast sine transform is used. The
transform-space Green’s Function for this is:

G`
ijk = −16πG

[
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(
kπ
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)]−1

. (8.90)

However, to be able to use the block solver in a general fashion, we must be able to impose arbitrary
boundary conditions per-block. In the case of nonhomogenous Dirichlet boundary values, boundary value
elimination may be used to generalize the solver. For instance, at the −x boundary:

ρ1jk → ρ1jk −
2

∆x2
`

φ(x1/2, yj , zk) . (8.91)

For periodic problems only the coarsest block must be handled differently; block adjacency for finer levels
is handled naturally. The periodic solver uses a real-to-complex FFT with the Green’s function:
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(8.92)

This solve requires that the source be zero-averaged; otherwise the solution is non-unique. Therefore
the source average is subtracted from all blocks. In order to decimate error across same-refinement-level
boundaries, Gauss-Seidel relaxations to the outer two layers of zones in each block are done after applying
the direct solver to all blocks on a level. With all these components outlined, the overall solve may be
described by the following algorithm:

1. Restrict the source function 4πGρ to all levels. Subtract the global average for the periodic case.

2. Interpolation step: For ` from 1 to `max,
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(a) Reset the grid so that ` is the maximum refinement level

(b) Solve D`φ̃
b`
ijk = 4πGρb`

ijk for all blocks b on level `.

(c) Compute the residual Rb`
ijk = 4πGρb`

ijk −D`φ̃
b`
ijk

(d) For each block b on level ` that has children, prolong face values for φ̃b`
ijk onto each child block.

3. Residual propagation step: Restrict the residual Rb`
ijk to all levels.

4. Correction step: Compute the discrete L2 norm of the residual over all leaf-node blocks and divide
it by the discrete L2 norm of the source over the same blocks. If the result is greater than a preset
threshold value, proceed with a correction step: for each level ` from 1 to `max,

(a) Reset the grid so that ` is the maximum refinement level

(b) Solve D`C
b`
ijk = Rb`

ijk for all blocks b on level `.

(c) Overwrite Rb`
ijk with the new residual Rb`

ijk −D`C
b`
ijk for all blocks b on level `.

(d) Correct the solution on all leaf-node blocks b on level `: φ̃b`
ijk → φ̃b`

ijk + Cb`
ijk.

(e) For each block b on level ` that has children, interpolate face boundary values of Cb`
ijk for each

child.

5. If a correction step was performed, return to the residual propagation step.

The above procedure requires storage for φ̃, C, R, and ρ on each block, for a total storage requirement
of 4nxnynz values per block. Global communication is required in computing the tolerance-based stopping
criterion.

8.10.2.8 A Hybrid Poisson Solver: Interfacing PFFT with Multigrid

We can improve the performance of the Multigrid solver in Section 8.10.2.6 by replacing single block FFTs
with a parallel FFT at a specified coarse level, where, the coarse level is any level which is fully refined, i.e.
containing blocks that completely cover the computational domain. Currently, we automatically select the
maximum refinement level that is fully refined.

There is load imbalance in the Multigrid solver because each processor performs single block FFTs on the
blocks it owns. At the coarse levels there are relatively few blocks compared to available processors which
means many processors are effectively idle during the coarse level solves. The introduction of PFFT, and
creation of a hybrid solver, eliminates some of the coarse level solves.

The performance characteristics of the hybrid solver are described in “Optimization of multigrid based
elliptic solver for large scale simulations in the FLASH code” (2012) which is available online at http:
//onlinelibrary.wiley.com/doi/10.1002/cpe.2821/pdf. Performance results are obtained using the
PFFT PoissonFD unit test.

8.10.3 Using the Poisson solvers

The GridSolvers subunit solves the Poisson equation ((8.9)). Two different elliptic solvers are supplied with
FLASH: a multipole solver, suitable for approximately spherical source distributions, and a multigrid solver,
which can be used with general source distributions. The multipole solver accepts only isolated boundary
conditions, whereas the multigrid solver supports Dirichlet, given-value, Neumann, periodic, and isolated
boundary conditions. Boundary conditions for the Poisson solver are specified using an argument to the
Grid solvePoisson routine which can be set from different runtime parameters depending on the physical
context in which the Poisson equation is being solved. The Grid_solvePoisson routine is the primary entry
point to the Poisson solver module and has the following interface

call Grid_solvePoisson (iSoln, iSrc, bcTypes(6), bcValues(2,6), poisfact) ,

http://onlinelibrary.wiley.com/doi/10.1002/cpe.2821/pdf
http://onlinelibrary.wiley.com/doi/10.1002/cpe.2821/pdf
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_solvePoisson_F90.html


142 CHAPTER 8. GRID UNIT

Table 8.3: Runtime parameters used with poisson/multipole.

Variable Type Default Description
mpole lmax integer 10 Maximum multipole moment
quadrant logical .false. Use symmetry to solve a single quadrant in 2D ax-

isymmetric cylindrical (r, z) coordinates, instead
of a half domain.

where iSoln and iSrc are the integer-valued indices of the solution and source (density) variables, respectively.
bcTypes(6) is an integer array specifying the type of boundary conditions to employ on each of the (up to)
6 sides of the domain. Index 1 corresponds to the -x side of the domain, 2 to +x, 3 to -y, 4 to +y, 5 to -z,
and 6 to +z. The following values are accepted in the array

bcTypes Type of boundary condition
0 Isolated boundaries
1 Periodic boundaries
2 Dirichlet boundaries
3 Neumann boundaries
4 Given-value boundaries

Not all boundary types are supported by all solvers. In this release, bcValues(2,6) is not used and can
be filled arbitrarily. Given-value boundaries are treated as Dirichlet boundaries with the boundary values
subtracted from the outermost interior cells of the source; for this case the solution variable should contain
the boundary values in its first layer of boundary cells on input to Grid_solvePoisson. It should be noted
that if PARAMESH is used, the values must be set for all levels. Finally, poisfact is real-valued and indicates
the value of α multiplying the source function in ((8.9)).

When solutions found using the Poisson solvers are to be differenced (e.g., in computing the gravitational
acceleration), it is strongly recommended that for AMR meshes, quadratic (or better) spatial interpolation at
fine-coarse boundaries is chosen. (For PARAMESH, this is automatically the case by default, and is handled
correctly for Cartesian as well as the supported curvilinear geometries. But note that the default interpolation
implementation may be changed at configuration time with the ’-gridinterpolation=. . . ’ setup option;
and with the default implementation, the interpolation order may be lowered with the interpol order
runtime parameter.) If the order of the gridinterpolation of the mesh is not of at least the same order as
the differencing scheme used in places like Gravity accelOneRow, unphysical forces will be produced at
refinement boundaries. Also, using constant or linear grid interpolation may cause the multigrid solver to
fail to converge.

8.10.3.1 Multipole (original version)

The poisson/multipole sub-module takes two runtime parameters, listed in Table 8.3. Note that storage
and CPU costs scale roughly as the square of mpole lmax, so it is best to use this module only for nearly
spherical matter distributions.

8.10.3.2 Multipole (improved version)

To include the new multipole solver in a simulation, the best option is to use the shortcut +newMpole at
setup command line, effectively replacing the following setup options :

-with-unit=Grid/GridSolvers/Multipole_new
-with-unit=physics/Gravity/GravityMain/Poisson/Multipole
-without-unit=Grid/GridSolvers/Multipole

The improved multipole solver currently accepts only two setup parameters, either one switching on multi-
threading:

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Gravity/Gravity_accelOneRow_F90.html
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• threadBlockList: enables multithreaded compilation and execution.

• threadWithinBlock: enables multithreaded compilation and execution.

The names of these two setup parameters are missleading, since there is only one universal threading strategy
used. The use of these two setup parameters is a temporary solution and will be replaced in near future by
only one setup parameter.

The improved multipole solver takes several runtime parameters, whose functions are explained in detail
below, together with comments about expected time and memory scaling.

• mpole Lmax: The maximum angular moment L to be used for the multipole Poisson solver. Depending
on the domain geometry, the memory and time scaling factors due to this variable alone are: i) 3D
cartesian, 3D cylindrical → (L + 1)(L + 1), ii) 3D cartesian axisymmetric, 2D cylindrical, 2D spherical
→ (L+1), iii) 1D spherical→ 1. Assuming no memory limitations, the multipole solver is numerically
stable for very large L values. Runs up to L = 100 for 3D cartesian domains have been performed.
For 2D geometries, L = 1000 was the maximum tested.

• mpole 2DSymmetryPlane: In 2D coordinates, this runtime parameter enables the user to specify a
plane of symmetry along the radial part of the domain coordinates. In effect, this allows a reduction
of the computational domain size by one half. The code internally computes the multipole moments
as if the other symmetric part is present, i.e. no memory or execution time savings can be achieved by
this runtime parameter.

• mpole 3DAxisymmetry: Forces rotational invariance around the main (z) axis in 3D cartesian domains.
The assumed rotational invariance in the (x, y) plane effectively cancels all m 6= 0 multipole moments
and one can restrict the calculation to the m = 0 multipole moments only. The time and memory
savings compared to a asymmetric 3D cartesian run is thus about a factor of (L+1). For 3D cylindrical
domains, rotational invariance in the (x, y) plane is equivalent of setting up the corresponding 2D
cylindrical domain, hence this runtime parameter is not honored for 3D cylindrical domains, and the
user is informed about the 3D to 2D cylindrical domain reduction possibility.

• mpole DumpMoments: This parameter is meant mainly for debugging purposes. It prints the entire
moment array for each radial bin for each time step. This option should be used with care and for
small problems only. The output is printed to a text file named ’<basenm> dumpMoments.txt’, where
< basenm > is the base name given for the output files.

• mpole PrintRadialInfo: This parameter enables showing all detailed radial bin information at each
time step. This option is especially useful for optimizing the radial bin sizes. The output is written to
the text file ’<basenm> printRadialInfo.txt’.

• mpole IgnoreInnerZone: Controls switching on/off the radial inner zone. If it is set .true., the inner
zone will not be recognized and all inner zone radii will be treated statistically. This parameter is
meant only for performing some error analysis. For production runs it should always be at its default
value of false. Otherwise errors will be introduced in calculating the moments near the expansion
center.

• mpole InnerZoneSize: The size defining the discrete inner zone. The size is given in terms of the
inner zone smallest (atomic) radius, which is determined at each time step by analyzing the domain
grid structure around the multipolar origin (expansion center). Only very rarely will this value ever
have to be changed. The default setting is very conservative and only under unusual circumstances
(ex: highly nonuniform grid around the expansion center) this might be necessary. This value needs to
be an integer, as it is used by the code to define dimensions of certain arrays. Note, that by giving this
runtime parameter a large integer value (¿ 1000 for domain refinement levels up to 5) one can enforce
the code to use only non-statistical radial bins.

• mpole InnerZoneResolution: Defines the inner zone radial bin size for the inner zone in terms of the
inner zone smallest (atomic) radius. Two inner zone radii will be considered different, if they are more

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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than this resolution value apart. A very tiny number (for example 10−8) will result in a complete
separation of all inner zone radii into separate radial bins. The default value of 0.1 should never be
surpassed, and any attempt to do so will stop the program with the appropriate information to the
user. Likewise with a meaningless resolution value of 0.

• mpole MaxRadialZones: The maximum number of outer radial zones to be used. In contrast to the
inner radial zone, the outer radial zones are much more important for the user. Their layout defines the
performance of the multipole solver both in cpu time spent and accuracy of the potential obtained at
each cell. The default value of 1 outer radial zone at maximum refinement level leads to high accuracy,
but at the same time can consume quite a bit of memory, especially for full 3D runs. In these cases the
user can specify several outer radial zones each having their own radial bin size determination rule.

• mpole ZoneRadiusFraction n: The fraction of the maximum domain radius defining the n-th outer
zone maximum radial value. The total number of fractions given must match the maximum number
of outer radial zones specified and the fractions must be in increasing order and less than unity as we
move from the 1st outer zone upwards. The last outer zone must always have a fraction of exactly 1.
If not, the code will enforce it.

• mpole ZoneType n: String value containing the outer radial zone type for the n-th outer zone. If
set to ’exponential’, the radial equation r(Q) = s · ∆r · Qt, defining the upper bound radius of the
Q-th radial bin in the n-th outer zone, is used. If set to ’logarithmic’, the radial equation r(Q) =
s · ∆r · (eQt − 1)/(et − 1) is used. In these equations Q is a local radial bin counting index for each
outer zone and s, t are parameters defining size and growth of the outer zone radial bins (see below).

• mpole ZoneScalar n: The scalar value s in the n-th outer radial zone equation r(Q) = s ·∆r · Qt or
r(Q) = s ·∆r · (eQt − 1)/(et − 1). The scalar is needed to be able to increase (or decrease) the size of
the first radial bin with respect to the default smallest outer zone radius ∆r.

• mpole ZoneExponent n: The exponent value t in the n-th outer radial zone equations r(Q) = s ·∆r ·Qt

or r(Q) = s ·∆r · (eQt−1)/(et−1). The exponent controls the growth (shrinkage) in size of each radial
bin with increasing bin index. For the first equation, growing will occur for t > 1, shrinking for t < 1
and same size for t = 1. For the logarithmic equation, growing will occur for t > 0, shrinking for t < 0,
but the same size option t = 0 will not work because the denominator becomes undefined. The same
size option must hence be treated using the exponential outer zone type choice.

• Runtime parameter types, defaults and options:

Parameter Type Default Options
mpole Lmax integer 0 > 0
mpole 2DSymmetryPlane logical false true
mpole 3DAxisymmetry logical false true
mpole DumpMoments logical false true
mpole PrintRadialInfo logical false true
mpole IgnoreInnerZone logical false true
mpole InnerZoneSize integer 16 > 0
mpole InnerZoneResolution real 0.1 less than 0.1 and > 0.0
mpole MaxRadialZones integer 1 > 1
mpole ZoneRadiusFraction n real 1.0 less than 1.0 and > 0.0
mpole ZoneType n string ”exponential” ”logarithmic”
mpole ZoneScalar n real 1.0 > 0.0
mpole ZoneExponent n real 1.0 > 0.0 (exponential)

real - any 6= 0 (logarithmic)

8.10.3.3 Tree Poisson solver

The tree gravity solver can be included by setup or a Config file by requesting
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physics/Gravity/GravityMain/Poisson/BHTree

The current implementation works only in 3D Cartesian coordinates, and blocks have to be logically cubic
(i.e., nxb=nyb=nzb). Physical dimensions of blocks can be arbitrary, however, some multipole acceptance
criteria can provide inaccurate error estimates with non-cubic blocks. The computational domain can have
arbitrary dimensions, and there can be more blocks with lrefine=1 (i.e., nblockx, nblocky and nblockz
can have different values).

Runtime parameters gr bhPhysMACTW and gr bhPhysMACComm control whether MACs of physical units
are used in tree walk and communication, respectively. If one of them (or both) is set .false., only purely
geometric MAC is used for a corresponding part of the tree solver. It is not allowed to set gr bhPhysMACTW
= .false. and gr bhPhysMACComm = .true..

Runtime parameter gr bhTreeLimAngle allows to set the limit opening angle for the purely geometrical
MAC. Another condition controlling the acceptance of the node for the calculations is that the point-of-
calculation must lie out of the box obtained by increasing the considered node by factor gr bhTreeSafeBox.

Parameter gr bhUseUnifiedTW controls whether the Barnes-Hut like tree walk algorithm is used (.true.)
or whether an alternative algorithm is used which checks the MAC only once for whole block for interactions
with parent blocks (.false.; see 8.10.2.4 for more details). The latter one is 10 − 20% faster, however, it
may lead to higher errors at block boundaries, in particular if the gravity modules calculates the potential
which is subsequently differentiated to obtain gravitational acceleration. The tree walk algorithm base on
the priority queue is used if grv bhMAC is set to "SumSquare".

Variable Type Default Description
gr bhPhysMACTW logical .false. whether physical MAC should be used in tree walk
gr bhPhysMACComm logical .false. whether physical MAC should be used in communication
gr bhTreeLimAngle real 0.5 limiting opening angle
gr bhTreeSafeBox real 1.2 relative size of restricted volume around node where the

point-of-calculation is not allowed to be located
gr bhUseUnifiedTW logical .true. whether Barnes-Hut like tree walk algorithm should be used
gr bhTWMaxQueueSize integer .true. maximum length of the priority queue

8.10.3.4 Multigrid

The Grid/GridSolvers/Multigrid module is appropriate for general source distributions. It solves Poisson’s
equation for 1, 2, and 3 dimensional problems with Cartesian geometries. It only supports the PARAMESH
Grid with one block at the coarsest level. For any other mesh configuration it is advisable to use the hybrid
solver, which switches to a uniform grid exact solve when the specified level of coarsening has been achieved.
In most use cases for FLASH, the multigrid solver will be used to solve for Gravity (see: Chapter 19). It
may be included by setup or Config by including:

physics/Gravity/GravityMain/Poisson/Multigrid

The multigrid solver may also be included stand-alone using:

Grid/GridSolvers/Multigrid

In which case the interface is as described above. The supported boundary conditions for the module are
periodic, Dirichlet, given-value, and isolated. Due to the nature of the FFT block solver, the same type of
boundary condition must be used in all directions. Therefore, only the value of bcTypes(1) will be considered
in the call to Grid_solvePoisson.

The multigrid solver requires the use of two internally-used grid variables: isls and icor. These are
used to store the calculated residual and solved-for correction, respectively. If it is used as a Gravity solver
with isolated boundary conditions, then two additional grid variables, imgm and imgp, are used to store the
image mass and image potential.
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Table 8.4: Runtime parameters used with
Grid/GridSolvers/Multigrid.

Variable Type Default Description
mg MaxResidualNorm real 1× 10−6 Maximum ratio of the norm of the

residual to that of the right-hand side
mg maxCorrections integer 100 Maximum number of iterations to

take
mg printNorm real .true. Print the norm ratio per-iteration
mpole lmax integer 4 The number of multipole moments

used in the isolated case

8.10.3.5 Hybrid (Multigrid with PFFT)

The hybrid solver can be used in place of the Multigrid solver for problems with

• all-periodic

• 2 periodic and 1 Neumann

• 1 periodic and 2 Neumann

boundary conditions, if the default PFFT solver variant (called DirectSolver) is used. To use the hybrid
solver in this way, add Grid/GridSolvers/Multigrid/PfftTopLevelSolve to your setup line or request the
solver in your Simulation Config file (see e.g. unitTest/PFFT PoissonFD). The following setup lines create
a unit test that uses first the hybrid solver and then the standard Multigrid solver

./setup unitTest/PFFT_PoissonFD -auto -3d -parfile=flash_pm_3d.par -maxblocks=800 +noio

./setup unitTest/PFFT_PoissonFD -auto -3d -parfile=flash_pm_3d.par -maxblocks=800 +noio
--without-unit=Grid/GridSolvers/Multigrid/PfftTopLevelSolve
--with-unit=Grid/GridSolvers/Multigrid

It is also possible to select a different PFFT solver variant. In that case, different combinations of
boundary conditions for the Poisson problem may be supported. The HomBcTrigSolver variant supports the
largest set of combinations of boundary conditions. Use the PfftSolver setup variable to choose a variant.
Thus, appending PfftSolver=HomBcTrigSolver to the setup chooses the HomBcTrigSolver variant. When
using the hybrid solver with the PFFT variants HomBcTrigSolver or SimplePeriodicSolver, the runtime
parameter gr pfftDiffOpDiscretize should be set to 1.

The Multigrid runtime parameters given in the previous section also apply.

8.10.4 HYPRE

As a part of implicit time advancement we end up with a system of equations that needs to be solved at
every time step. In FLASH4 the HYPRE linear algebra package is used to solve these systems of equations.
Therefore it is necessary to install Hypre if this capability of FLASH is to be used.

Grid advanceDiffusion is the API function which solves the system of equations. This API is provided
by both the split and unsplit solvers. The unsplit solver uses HYPRE to solve the system of equations and
split solver does a direct inverse using Thomas algorithm. Note that the split solver relies heavily on PFFT
infrastructure for data exchange and a significant portion of work in split Grid advanceDiffusion involves
PFFT routines. In the unsplit solver the data exchange is implicitly done within HYPRE and is hidden.

The steps in unsplit Grid advanceDiffusion are as follows:

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_advanceDiffusion_F90.html
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• Setup HYPRE grid object

• Exchange Factor B

• Set initial guess

• Compute HYPRE Matrix M such that B = MX

• Compute RHS Vector B

• Compute matrix A

• Solve system AX = B

• Update solution (in FLASH4)

Mapping UG grid to HYPRE matrix is trivial, however mapping PARAMESH grid to a HYPRE matrix
can be quite complicated. The process is simplified using the grid interfaces provided by HYPRE.

• Struct Grid interface

• SStruct Grid interface

• IJ System interface

The choice of an interface is tightly coupled to the underlying grid on which the problem is being solved.
We have chosen the SSTRUCT interface as it is the most compatible with the block structured AMR mesh
in FLASH4. Two terms commonly used in HYPRE terminology are part and box. We define these terms in
equivalent FLASH4 terminology. A HYPRE box object maps directly to a leaf block in FLASH4. The block
is then defined by it’s extents. In FLASH4 this information can be computed easily using a combination
of Grid getBlkCornerID and Grid getBlkIndexLimits.All leaf blocks at a given refinement level form a
HYPRE part. So number of parts in a typical FLASH4 grid would be give by,

nparts = leaf block(lrefine max) - leaf block(lrefine min) + 1

So, if a grid is fully refined or UG, nparts = 1. However, there could still be more then one box object.

Setting up the HYPRE grid object is one of the most important step of the solution process. We use
the SSTRUCT interface provided in HYPRE to setup the grid object. Since the HYPRE Grid object is
mapped directly with FLASH4 grid, whenever the FLASH4 grid changes the HYPRE grid object needs to
be updated. Consequentlywith AMR the HYPRE grid setup might happen multiple times.

Setting up a HYPRE grid object is a two step process,

• Creating stenciled relationships.

• Creating Graph relationships.

Stenciled relationships typically exist between leaf blocks at same refinement level (intra part) and graph
relationships exist between leaf blocks at different refinement levels (inter part). The fine-coarse boundary
is handled in such a way that fluxes are conserved at the interface (see Chapter 18 for details). UG does not
require any graph relationships.

Whether a block needs a graph relationship depends on the refinement level of it’s neighbor. While this
information is not directly available in PARAMESH, it is possible to determine whether the block neighbor
is coarser or finer. Combining this information with the constraint of at best a factor of two jump in re-
finement at block boundaries, it is possible to compute the part number of a neighbor block, which in turn
determines whether we need a graph. Creating a graph involves creating a link between all the cells on the



148 CHAPTER 8. GRID UNIT

block boundary.

Once the grid object is created, the matrix and vector objects are built on the grid object. The diffusion
solve needs uninterpolated data from neighbor blocks even when there is a fine-coarse boundary, therefore
it cannot rely upon the guardcell fill process. A two step process is used to handle this situation,

• Since HYPRE has access to X(at n, i.e., initial guess), the RHS vector B can be computed as MX
where M is a modified Matrix.

• Similarly the value of Factor B can be shared across the fine-coarse boundary by using
Grid conserveFluxes,the fluxes need to be set in a intuitive to way to achieve the desired effect.

With the computation of Vector B (RHS), the system can be solved using HYPRE and UNK can be
updated.

8.10.4.1 HYPRE Solvers

In FLASH4 we use the HYPRE PARCSR storage format as this exposes the maximum number of iterative
solvers.

Table 8.5: Solvers, Preconditioners combinations used with
Grid/GridSolvers/HYPRE.

Solver Preconditioner
PCG AMG, ILU(0)
BICGSTAB AMG, ILU(0)
GMRES AMG, ILU(0)
AMG -
SPLIT -

Parallel runs: One issue that has been observed is that there is a difference in the results produced
by HYPRE using one or more processors. This would most likely be due to use of CG (krylov subspace
methods), which involves an MPI SUM over the dot product of the residue. We have found this error to be
dependent on the type of problem. One way to get across this problem is to use direct solvers in HYPRE like
SPLIT. However we have noticed that direct solvers tend to be slow. THe released code has an option to use
the SPLIT solver, but this solver has not been extensively tested and was used only for internal debugging
purposes and the usage of the HYPRE SPLIT solver in FLASH4 is purely experimental.

Customizing solvers: HYPRE exposes a lot more parameters to tweak the solvers and preconditioners
mentioned above. We have only used those which are applicable to general diffusion problems. Although in
general these settings might be good enough it is by no means complete and might not be applicable to all
class of problems. Use of additional HYPRE parameters might require direct manipulation of FLASH4 code.

Symmetric Positive Definite (SPD) Matrix: PCG has been noticed to have convergence issues
which might be related to (not necessarily),

• A non-SPD matrix generated due to round of errors (only).

• Use of BoomerAMG as PC (refer to HYPRE manual).
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The default settings use PCG as the solver with AMG as preconditioner. The following parameters can
be tweaked at run time,

Table 8.6: Runtime parameters used with
Grid/GridSolvers/HYPRE.

Variable Type Default Description
gr hyprePCType string "hypre amg" Algebraic Multigrid as Preconditioner
gr hypreMaxIter integer 10000 Maximum number of iterations
gr hypreRelTol real 1× 10−8 Maximum ratio of the norm of the

residual to that of the initial residue
gr hypreSolverType string "hypre pcg" Type of linear solver, Preconditioned

Conjugate gradient
gr hyprePrintSolveInfo boolean FALSE enables/disables some basic solver in-

formation (for e.g number of itera-
tions)

gr hypreInfoLevel integer 1 Verbosity level of solver diagnostics
(refer HYPRE manual).

gr hypreFloor real 1× 10−12 Used to floor the end solution.
gr hypreUseFloor boolean TRUE whether to apply gr hypreFloor to

floor results from HYPRE.

8.11 Grid Geometry

FLASH can use various kinds of coordinates (“geometries”) for modeling physical problems. The available
geometries represent different (orthogonal) curvilinear coordinate systems.

The geometry for a particular problem is set at runtime (after an appropriate invocation of setup) through
the geometry runtime parameter, which can take a value of "cartesian", "spherical", "cylindrical",
or "polar". Together with the dimensionality of the problem, this serves to completely define the nature
of the problem’s coordinate axes (Table 8.7). Note that not all Grid implementations support all geome-
try/dimension combinations. Physics units may also be limited in the geometries supported, some may only
work for cartesian coordinates.

The core code of a Grid implementation is not concerned with the mapping of cell indices to physical
coordinates; this is not required for under-the-hood Grid operations such as keeping track of which blocks are
neighbors of which other blocks, which cells need to be filled with data from other blocks, and so on. Thus
the physical domain can be logically modeled as a rectangular mesh of cells, even in curvilinear coordinates.

There are, however, some areas where geometry needs to be taken into consideration. The correct
implementation of a given geometry requires that gradients and divergences have the appropriate area
factors and that the volume of a cell is computed properly for that geometry. Initialization of the grid as
well as AMR operations (such as restriction, prolongation, and flux-averaging) must respect the geometry
also. Furthermore, the hydrodynamic methods in FLASH are finite-volume methods, so the interpolation
must also be conservative in the given geometry. The default mesh refinement criteria of FLASH4 also
currently take geometry into account, see Section 8.6.3 above.

A convention: in this section, Small letters x, y, and z are used with their usual meaning in designating
coordinate directions for specific coordinate systems: i.e., x and y refer to directions in cartesian coordinates,
and z may refer to a (linear) direction in either cartesian or cylindrical coordinates.

On the other hand, capital symbols X, Y , and Z are used to refer to the (up to) three directions of any
coordinate system, i.e., the directions corresponding to the IAXIS, JAXIS, and KAXIS dimensions in FLASH4,
respectively. Only in the cartesian case do these correspond directly to their small-letter counterparts. For
other geometries, the correspondence is given in Table 8.7.
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Table 8.7: Different geometry types. For each geometry/dimensionality combination, the “support” column
lists the Grid implementations that support it: pm4 stands for PARAMESH 4.0 and PARAMESH 4dev, pm2 for
PARAMESH 2, UG for Uniform Grid implementations, respectively.

name dimensions support axisymmetric X-coord Y -coord Z-coord
cartesian 1 pm4,pm2,UG n x
cartesian 2 pm4,pm2,UG n x y
cartesian 3 pm4,pm2,UG n x y z
cylindrical 1 pm4,UG y r
cylindrical 2 pm4,pm2,UG y r z
cylindrical 3 pm4,UG n r z φ
spherical 1 pm4,pm2,UG y r
spherical 2 pm4,pm2,UG y r θ
spherical 3 pm4,pm2,UG n r θ φ
polar 1 pm4,UG y r
polar 2 pm4,pm2,UG n r φ
”polar + z”
(cylindrical with a dif-
ferent ordering of coordi-
nates)

3 — n r φ z

8.11.1 Understanding Curvilinear Coordinates

In the context of FLASH, curvilinear coordinates are most useful with 1-d or 2-d simulations, and this is
how they are commonly used. But what does it mean to apply curvilinear coordinates in this way? Physical
reality has three spatial dimensions (as far as the physical problems simulated with FLASH are concerned).
In cartesian coordinates, it is relatively straightforward to understand what a 2-d (or 1-d) simulation means:
“Just leave out one (or two) coordinates.” This is less obvious for other coordinate systems, therefore some
fundamental discussion follows.

A reduced dimensionality (RD) simulation can be naively understood as taking a cut (or, for 1-d, a
linear probe) through the real 3-d problem. However, there is also an assumption, not always explicitly
stated, that is implied in this kind of simulation: namely, that the cut (or line) is representative of the 3-d
problem. This can be given a stricter meaning: it is assumed that the physics of the problem do not depend
on the omitted dimension (or dimensions). A RD simulation can be a good description of a physical system
only to the degree that this assumption is warranted. Depending on the nature of the simulated physical
system, non-dependence on the omitted dimensions may mean the absence of force and/or momenta vector
components in directions of the omitted coordinate axes, zero net mass and energy flow out of the plane
spanned by the included coordinates, or similar.

For omitted dimensions that are lengths — z and possibly y in cartesian, and z in cylindrical and polar
RD simulations — one may think of a 2-d cut as representing a (possibly very thin) layer in 3-d space
sandwiched between two parallel planes. there is no a priori definition of the thickness of the layer, so it is
not determined what 3-d volume should be asigned to a 2-d cell in such coordinates. We can thus arbitrarily
assign the length “1” to the edge length of a 3-d cell volume, making the volume equal to the 2-d area. We
can understand generalizations of “volume” to 1-d, and of “face areas” to 2-d and 1-d RD simulations with
omitted linear coordinates, in an equivalent way: just set the length of cell edges along omitted dimensions
to 1.

For omitted dimensions that are angles — the θ and φ coordinates on spherical, cylindrical, and polar
geometries — it is easier to think of omitting an angle as the equivalent of integrating over the full range
of that angle coordinate (under the assumption that all physical solution variables are independent of that
angle). Thus omitting and angle φ in these geometries implies the assumption of axial symmetry, and this
is noted in Table 8.7. Similarly, omitting both φ and θ in spherical coordinates implies an assumption
of complete spherical symmetry. When φ is omitted, a 2-d cell actually represents the 3-d object that is
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generated by rotating the 2-d area around a z-axis. Similarly, when only r is included, 1-d cells (i.e., r
intervals) represent hollow spheres or cylinders. (If the coordinate interval begins at rl = 0.0, the sphere or
cylinder is massive instead of hollow.)

As a result of these considerations, the measures for cell (and block) volumes and face areas in a simulation
depends on the chosen geometry. Formulas for the volume of a cell dependent on the geometry are given in
the geometry-specific sections further below.

As discussed in Figure 8.6, to ensure conservation at a jump in refinement in AMR grids, a flux correction
step is taken. The fluxes leaving the fine cells adjacent to a coarse cell are used to determine more accurately
the flux entering the coarse cell. This step takes the coordinate geometry into account in order to accurately
determine the areas of the cell faces where fine and coarse cells touch. By way of example, an illustration is
provided below in the section on cylindrical geometry.

8.11.2 Choosing a Geometry

The user chooses a geometry by setting the geometry runtime parameter in flash.par. The default is
"cartesian" (unless overridden in a simulation’s Config file). Depending on the Grid implementation used
and the way it is configured, the geometry may also have to be compiled into the program executable and
thus may have to be specified at configuration time; the setup flag -geometry should be used for this
purpose, see Section 5.2.

The geometry runtime parameter is most useful in cases where the geometry does not have to be specified
at compile-time, in particular for the Uniform Grid. The runtime parameter will, however, always be
considered at run-time during Grid initialization. If the geometry runtime parameter is inconsistent with
a geometry specified at setup time, FLASH will then either override the geometry specified at setup time
(with a warning) if that is possible, or it will abort.

This runtime parameter is used by the Grid unit and also by hydrodynamics solvers, which add the
necessary geometrical factors to the divergence terms. Next we describe how user code can use the runtime
parameter’s value.

8.11.3 Getting Geometry Information in Program Code

The Grid unit provides an accessor Grid getGeometry property that returns the geometry as an inte-
ger, which can be compared to the symbols {CARTESIAN, SPHERICAL, CYLINDRICAL, POLAR} defined in
"constants.h" to determine which of the supported geometries we are using. A unit writer can therefore
determine flow-control based on the geometry type (see Figure 8.14). Furthermore, this provides a mechanism
for a unit to determine at runtime whether it supports the current geometry, and if not, to abort.

Coordinate information for the mesh can be determined via the Grid getCellCoords routine. This
routine can provide the coordinates of cells at the left edge, right edge, or center. The width of cells
can be determined via the Grid getDeltas routine. Angle values and differences are given in radians.
Coordinate information for a block of cells as a whole is available through Grid getBlkCenterCoords and
Grid getBlkPhysicalSize.

The volume of a single cell can be obtained via the Grid getSingleCellVol or the Grid getPointData
routine. Use the Grid getBlkData, Grid getPlaneData, or Grid getRowData routines with argument
dataType=CELL_VOLUME To retrieve cell volumes for more than one cell of a block. To retrieve cell face
areas, use the same Grid get*Data interfaces with the appropriate dataType argument.

Note the following difference between the two groups of routines mentioned in the previous two para-
graphs: the routines for volumes and areas take the chosen geometry into account in order to return geometric
measures of physical volumes and faces (or their RD equivalents). On the other hand, the routines for coor-
dinate values and widths return values for X, Y , and Z directly, without converting angles to (arc) lengths.

8.11.4 Available Geometries

Currently, all of FLASH’s physics support one-, two-, and (with a few exceptions explicitly stated in the
appropriate chapters) three-dimensional Cartesian grids. Some units, including the FLASH Grid unit and
PPM hydrodynamics unit (Chapter 15), support additional geometries, such as two-dimensional cylindrical

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getGeometry_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getCellCoords_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getDeltas_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkCenterCoords_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkPhysicalSize_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getSingleCellVol_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getPointData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlkData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getPlaneData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getRowData_F90.html
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#include "constants.h"

integer :: geometry

call Grid_getGeometry(geometry)

select case (geometry)

case (CARTESIAN)

! do Cartesian stuff here ...

case (SPHERICAL)

! do spherical stuff here ...

case (CYLINDRICAL)

! do cylindrical stuff here ...

case (POLAR)

! do polar stuff here ...

end select

Figure 8.14: Branching based on geometry type

(r, z) grids, one/two-dimensional spherical (r)/(r, θ) grids, and two-dimensional polar (r, φ) grids. Some
specific considerations for each geometry follow.

The following tables use the convention that rl and rr stand for the values of the r coordinate at the “left”
and “right” end of the cell’s r-coordinate range, respectively (i.e., rl < rr is always true), and ∆r = rr − rl;
and similar for the other coordinates.

8.11.4.1 Cartesian geometry

FLASH uses Cartesian (plane-parallel) geometry by default. This is equivalent to specifying

geometry = "cartesian"

in the runtime parameter file.

Cell Volume in Cartesian Coordinates
1-d ∆x

2-d ∆x∆y

3-d ∆x∆y∆z

8.11.4.2 Cylindrical geometry

To run FLASH with cylindrical coordinates, the geometry parameter must be set thus:
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Figure 8.15: Diagram showing two fine cells and a coarse cell at a jump in refinement in the cylindrical ‘z’
direction. The block boundary has been cut apart here for illustrative purposes. The fluxes out of the fine
blocks are shown as f 1 and f 2. These will be used to compute a more accurate flux entering the coarse
flux f 3. The area that the flux passes through is shown as the annuli at the top of each fine cell and the
annulus below the coarse cell.

geometry = "cylindrical"

Cell Volume in Cylindrical Coordinates

1-d π(r2
r − r2

l )

2-d π(r2
r − r2

l )∆z

3-d 1
2 (r2

r − r2
l )∆z∆φ

As in other non-cartesian geometries, if the minimum radius is chosen to be zero (xmin = 0.), the left-
hand boundary type should be reflecting. Of all supported non-cartesian geometries, the cylindrical is in 2-d
most similar to a 2-d coordinate system: it uses two linear coordinate axes (r and z) that form a rectangular
grid physically as well as logically.

As an illustrative example of the kinds of considerations necessary in curved coordinates, Figure 8.15
shows a jump in refinement along the cylindrical ‘z’ direction. When performing the flux correction step at
a jump in refinement, we must take into account the area of the annulus through which each flux passes to
do the proper weighting. We define the cross-sectional area through which the z-flux passes as

A = π(r2
r − r2

l ) . (8.93)

The flux entering the coarse cell above the jump in refinement is corrected to agree with the fluxes leaving
the fine cells that border it. This correction is weighted according to the areas

f3 =
A1f1 + A2f2

A3
. (8.94)

For fluxes in the radial direction, the cross-sectional area is independent of the height, z, so the corrected
flux is simply taken as the average of the flux densities in the adjacent finer cells.

8.11.4.3 Spherical geometry

One or two dimensional spherical problems can be performed by specifying
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geometry = "spherical"

in the runtime parameter file.

Cell Volume in Spherical Coordinates

1-d 4
3π(r3

r − r3
l )

2-d 2
3π(r3

r − r3
l )(cos(θl)− cos(θr))

3-d 1
3 (r3

r − r3
l )(cos(θl)− cos(θr))∆φ

If the minimum radius is chosen to be zero (xmin = 0.), the left-hand boundary type should be reflecting.

8.11.4.4 Polar geometry

Polar geometry is a 2-D subset of 3-D cylindrical configuration without the “z” coordinate. Such geometry
is natural for studying objects like accretion disks. This geometry can be selected by specifying

geometry = "polar"

in the runtime parameter file.

Cell Volume in Polar Coordinates
1-d π(r2

r − r2
l )

2-d 1
2 (r2

r − r2
l )∆φ

3-d 1
2 (r2

r − r2
l )∆φ∆z (not supported)

As in other non-cartesian geometries, if the minimum radius is chosen to be zero (xmin = 0.), the
left-hand boundary type should be reflecting.

8.11.5 Conservative Prolongation/Restriction on Non-Cartesian Grids

When blocks are refined, we need to initialize the child data using the information in the parent cell in a
manner which preserves the cell-averages in the coordinate system we are using. When a block is derefined,
the parent block (which is now going to be a leaf block) needs to be filled using the data in the child blocks
(which are soon to be destroyed). The first procedure is called prolongation. The latter is called restriction.
Both of these procedures must respect the geometry in order to remain conservative. Prolongation and
restriction are also used when filling guard cells at jumps in refinement.

8.11.5.1 Prolongation

When using a supported non-Cartesian geometry, FLASH has to use geometrically correct prolongation
routines. These are located in:

• source/Grid/GridMain/paramesh/Paramesh2/monotonic (for PARAMESH 2)

• source/Grid/GridMain/paramesh/interpolation/Paramesh4/prolong (for PARAMESH 4)

These paths will be be automatically added by the setup script when the -gridinterpolation=monotonic
option is in effect (which is the case by default, unless -gridinterpolation=native was specified). The
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“monotonic” interpolation scheme used in both cases is taking geometry into consideration and is appropriate
for all supported geometries.

FLASH Transition

Some more specific PARAMESH 2 interpolation schemes are included in the distribution and
might be useful for compatibility with FLASH2:

• source/Grid/GridMain/paramesh/Paramesh2/quadratic cartesian (for cartesian
coordinates)

• source/Grid/GridMain/paramesh/Paramesh2/quadratic spherical (for spherical
coordinates)

Other geometry types and prolongation schemes can be added in a manner analogous to the
ones implemented here.
These routines could be included by specifying the correct path in your Units file, or by
using appropriate -unit= flags for setup. However, their use is not recommended.

8.11.5.2 Restriction

The default restriction routines understand the supported geometries by default. A cell-volume weighted
average is used when restricting the child data up to the parent. For example, in 2-d, the restriction would
look like

〈f〉i,j =
Vic,jc 〈f〉ic,jc + Vic+1,jc 〈f〉ic+1,jc + Vic,jc+1 〈f〉ic,jc+1 + Vic+1,jc+1 〈f〉ic+1,jc+1

Vi,j
, (8.95)

where Vi,j is the volume of the cell with indices, i, j, and the ic, jc indices refer to the children.

8.12 Unit Test

The Grid unit test has implementations to test Uniform Grid and PARAMESH. The Uniform Grid version
of the test has two parts; the latter portion is also tested in PARAMESH. The test initializes the grid with a
sinusoid function sin(x)×cos(y)×cos(z), distributed over a number of processors. Knowing the configuration
of processors, it is possible to determine the part of the sinusoid on each processor. Since guardcells are filled
either from the interior points of the neighboring processor, or from boundary conditions, it is also possible
to predict the values expected in guard cells on each processor. The first part of the UG unit test makes
sure that the actual received values of guard cell match with the predicted ones. This process is carried out
for both cell-centered and face-centered variables.

The second part of the UG test, and the only part of the PARAMESH test, exercises the get and put data
functions. Since the Grid unit has direct access to all of its own data structures, it can compare the values
fetched using the getData functions against the directly accessible values and report an error if they do not
match. The testing of the Grid unit is not exhaustive, and given the complex nature of the unit, it is difficult
to devise tests that would do so. However, the more frequently used functions are exercised in this test.
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Figure 9.2: The IO unit: IOParticles subunit tree.

FLASH uses parallel input/output (IO) libraries to simplify and manage the output of the large amounts
of data usually produced. In addition to keeping the data output in a standard format, the parallel IO
libraries also ensure that files will be portable across various platforms. The mapping of FLASH data-
structures to records in these files is controlled by the FLASH IO unit. FLASH can output data with two
parallel IO libraries, HDF5 and Parallel-NetCDF. The data layout is different for each of these libraries.
Since FLASH3 we also offer direct serial FORTRAN IO, which can be used as a last resort if no parallel
library is available. However, FLASH post-processing tools such as fidlr (Chapter 34) and sfocu (Chapter 32)
do not support the direct IO format.

Note:

This release supports both HDF5 and Parallel-NetCDF, including particle IO for both im-
plementations.

Various techniques can be used to write the data to disk when running a parallel simulation. The first
is to move all the data to a single processor for output; this technique is known as serial IO. Secondly, each
processor can write to a separate file, known as direct IO. As a third option, each processor can use parallel
access to write to a single file in a technique known as parallel IO. Finally, a hybrid method can be used where
clusters of processors write to the same file, though different clusters of processors output to different files.
In general, parallel access to a single file will provide the best parallel IO performance unless the number of
processors is very large. On some platforms, such as Linux clusters, there may not be a parallel file system,
so moving all the data to a single processor is the only solution. Therefore FLASH supports HDF5 libraries
in both serial and parallel forms, where the serial version collects data to one processor before writing it,
while the parallel version has every processor writing its data to the same file.
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9.1 IO Implementations

FLASH4 supports multiple IO implementations: direct, serial and parallel implementations as well as support
for different parallel libraries. In addition, FLASH4 also supports multiple (Chapter 8) Grid implementa-
tions. As a consequence, there are many permutations of the IO API implementation, and the selected
implementation must match not only the correct IO library, but also the correct grid. Although there are
many IO options, the setup script in FLASH4 is quite ‘smart’ and will not let the user setup a problem
with incompatible IO and Grid unit implementations. Table 9.1 summarizes the different implementation of
the FLASH IO unit in the current release.

Table 9.1: IO implementations available in FLASH. All implemen-
tations begin at the /source directory.

Implementation Path Description
IO/IOMain/HDF5/parallel/PM Hierarchical Data Format (HDF) 5 output. A single HDF5

file is created, with each processor writing its data to the
same file simultaneously. This relies on the underlying
MPIIO layer in HDF5. This particular implementation
only works with the PARAMESH grid package.

IO/IOMain/hdf5/parallel/UG Hierarchical Data Format (HDF) 5 output. A single HDF5
file is created, with each processor writing its data to the
same file simultaneously. This relies on the underlying
MPIIO layer in HDF5. This particular implementation
only works with the Uniform Grid.

IO/IOMain/hdf5/parallel/NoFbs Hierarchical Data Format (HDF) 5 output. A single HDF5
file is created, with each processor writing its data to
the same file simultaneously. All data is written out as
one block. This relies on the underlying MPIIO layer in
HDF5. This particular implementation only works in non-
fixedblocksize mode.

IO/IOMain/hdf5/serial/PM Hierarchical Data Format (HDF) 5 output. Each processor
passes its data to processor 0 through explicit MPI sends
and receives. Processor 0 does all of the writing. The re-
sulting file format is identical to the parallel version; the
only difference is how the data is moved during the writ-
ing. This particular implementation only works with the
PARAMESH grid package.

IO/IOMain/hdf5/serial/UG Hierarchical Data Format (HDF) 5 output. Each processor
passes its data to processor 0 through explicit MPI sends
and receives. Processor 0 does all of the writing. The re-
sulting file format is identical to the parallel version; the
only difference is how the data is moved during the writ-
ing. This particular implementation only works with the
Uniform Grid.

IO/IOMain/pnetcdf/PM ParallelNetCDF output. A single file is created with
each processor writing its data to the same file simul-
taneously. This relies on the underlying MPI-IO layer
in PNetCDF. This particular implementation only works
with the PARAMESH grid package.
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Table 9.1: FLASH IO implementations (continued).

Implementation path Description
IO/IOMain/pnetcdf/UG ParallelNetCDF output. A single file is created with each

processor writing its data to the same file simultaneously.
This relies on the underlying MPI-IO layer in PNetCDF.
This particular implementation only works with the Uni-
form Grid.

IO/IOMain/direct/UG Serial FORTRAN IO. Each processor writes its own data
to a separate file. Warning! This choice can lead to many
many files! Use only if neither HDF5 or Parallel-NetCDF
is available. The FLASH tools are not compatible with the
direct IO unit.

IO/IOMain/direct/PM Serial FORTRAN IO. Each processor writes its own data
to a separate file. Warning! This choice can lead to many
many files! Use only if neither HDF5 or Parallel-NetCDF
is available. The FLASH tools are not compatible with the
direct IO unit.

IO/IOMain/chombo Hierarchical Data Format (HDF) 5 output. The sub-
routines provide an interface to the Chombo I/O routines
that are part of the standard Chombo release. This im-
plementation can only be used in applications built with
Chombo Grid. The Chombo file layout is incompatible with
tools, such as fidlr and sfocu, that depend on FLASH
file layout.

FLASH4 also comes with some predefined setup shortcuts which make choosing the correct IO signif-
icantly easier; see Chapter 5 for more details about shortcuts. In FLASH4 HDF5 serial IO is included by
default. Since PARAMESH 4.0 is the default grid, the included IO implementations will be compatible with
PARAMESH 4.0. For clarity, a number or examples are shown below.

An example of a basic setup with HDF5 serial IO and the PARAMESH grid, (both defaults) is:

./setup Sod -2d -auto

To include a parallel implementation of HDF5 for a PARAMESH grid the setup syntax is:

./setup Sod -2d -auto -unit=IO/IOMain/hdf5/parallel/PM

using the already defined shortcuts the setup line can be shortened to

./setup Sod -2d -auto +parallelio

To set up a problem with the Uniform Grid and HDF5 serial IO, the setup line is:

./setup Sod -2d -auto -unit=Grid/GridMain/UG -unit=IO/IOMain/hdf5/serial/UG

using the already defined shortcuts the setup line can be shortened to

./setup Sod -2d -auto +ug

To set up a problem with the Uniform Grid and HDF5 parallel IO, the complete setup line is:

./setup Sod -2d -auto -unit=Grid/GridMain/UG -unit=IO/IOMain/hdf5/parallel/UG

using the already defined shortcuts the setup line can be shortened to
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./setup Sod -2d -auto +ug +parallelio

If you do not want to use IO, you need to explicitly specify on the setup line that it should not be
included, as in this example:

./setup Sod -2d -auto +noio

To setup a problem using the Parallel-NetCDF library the user should include either

-unit=IO/IOMain/pnetcdf/PM or -unit=IO/IOMain/pnetcdf/UG

to the setup line. The predefined shortcut for including the Parallel-NetCDF library is

+pnetcdf

Note that Parallel-NetCDF IO unit does not have a serial implementation.
If you are using non-fixedblocksize the shortcut

+nofbs

will bring in both Uniform Grid,set the mode to nonfixed blocksize, and choose the appropriate IO.

Note:

Presently, nonfixed blocksize is only supported by HDF5 parallel IO.

In keeping with the FLASH code architecture, the F90 module IO data stores all the data with IO unit
scope. The routine IO init is called once by Driver initFlash and initializes IO data and stores any
runtime parameters. See Chapter 10.

9.2 Output Files

The IO unit can output 4 different types of files: checkpoint files, plotfiles, particle files and flash.dat, a text
file holding the integrated grid quantities. FLASH also outputs a logfile, but this file is controlled by the
Logfile Unit; see Chapter 25 for a description of that format.

There are a number of runtime parameters that are used to control the output and frequency of IO files.
A list of all the runtime parameters and their descriptions for the IO unit can be found online all of them.
Additional description is located in Table 9.2 for checkpoint parameters, Table 9.3 for plotfile parameters,
Table 9.4 for particle file parameters, Table 9.5 for flash.dat parameters, and Table 9.6 for genereal IO
parameters.

9.2.1 Checkpoint files - Restarting a Simulation

Checkpoint files are used to restart a simulation. In a typical production run, a simulation can be interrupted
for a number of reasons— e.g., if the machine crashes, the present queue window closes, the machine runs
out of disk space, or perhaps (gasp) there is a bug in FLASH. Once the problem is fixed, a simulation can
be restarted from the last checkpoint file rather than the beginning of the run. A checkpoint file contains
all the information needed to restart the simulation. The data is stored at full precision of the code (8-byte
reals) and includes all of the variables, species, grid reconstruction data, scalar values, as well as meta-data
about the run.

The API routine for writing a checkpoint file is IO writeCheckpoint. Users usually will not need to
call this routine directly because the FLASH IO unit calls IO writeCheckpoint from the routine IO output
which checks the runtime parameters to see if it is appropriate to write a checkpoint file at this time. There
are a number of ways to get FLASH to produce a checkpoint file for restarting. Within the flash.par, runtime
parameters can be set to dump output. A checkpoint file can be dumped based on elapsed simulation time,
elapsed wall clock time or the number of timesteps advanced. A checkpoint file is also produced when

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_initFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_writeCheckpoint_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_output_F90.html


162 CHAPTER 9. IO UNIT

the simulation ends, when the max simulation time tmax, the minimum cosmological redshift, or the total
number of steps nend has been reached. A user can force a dump to a checkpoint file at another time by
creating a file named .dump checkpoint in the output directory of the master processor. This manual action
causes FLASH to write a checkpoint in the next timestep. Checkpoint files will continue to be dumped after
every timestep as long as the code finds a .dump checkpoint file in the output directory, so the user must
remember to remove the file once all the desired checkpoint files have been dumped. Creating a file named
.dump restart in the output directory will cause FLASH to output a checkpoint file and then stop the

simulation. This technique is useful for producing one last checkpoint file to save time evolution since the
last checkpoint, if the machine is going down or a queue window is about to end. These different methods
can be combined without problems. Each counter (number of timesteps between last checkpoint, amount
of simulation time single last checkpoint, the change in cosmological redshift, and the amount of wall clock
time elapsed since the last checkpoint) is independent of the others, and are not influenced by the use of a
.dump checkpoint or .dump restart.

Runtime Parameters used to control checkpoint file output include:

Table 9.2: Checkpoint IO parameters.

Parameter Type Default value Description

checkpointFileNumber INTEGER 0 The number of the initial checkpoint file.
This number is appended to the end of the
filename and incremented at each subse-
quent output. When restarting a simula-
tion, this indicates which checkpoint file to
use.

checkpointFileIntervalStep INTEGER 0 The number of timesteps desired between
subsequent checkpoint files.

checkpointFileIntervalTime REAL 1. The amount of simulation time desired be-
tween subsequent checkpoint files.

checkpointFileIntervalZ REAL HUGE(1.) The amount of cosmological redshift change
that is desired between subsequent check-
point files.

rolling_checkpoint INTEGER 10000 The number of checkpoint files to keep
available at any point in the simulation.
If a checkpoint number is greater than
rolling_checkpoint, then the checkpoint
number is reset to 0. There will be at most
rolling_checkpoint checkpoint files kept.
This parameter is intended to be used when
disk space is at a premium.

wall_clock_checkpoint REAL 43200. The maximum amount of wall clock time
(seconds) to elapse between checkpoints.
When the simulation is started, the current
time is stored. If wall_clock_checkpoint
seconds elapse over the course of the sim-
ulation, a checkpoint file is stored. This is
useful for ensuring that a checkpoint file is
produced before a queue closes.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Driver.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Driver.txt
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Table 9.2: Checkpoint IO parameters (continued).

Parameter Type Default value Description
restart BOOLEAN .false. A logical variable indicating whether the

simulation is restarting from a checkpoint
file (.true.) or starting from scratch
(.false.).

FLASH is capable of restarting from any of the checkpoint files it produces. The user should make sure
that the checkpoint file is valid (e.g., the code did not stop while outputting). To tell FLASH to restart, set the
restart runtime parameter to .true. in the flash.par. Also, set checkpointFileNumber to the number
of the file from which you wish to restart. If plotfiles or particle files are being produced set plotfileNumber
and particleFileNumber to the number of the next plotfile and particle file you want FLASH to output.
In FLASH4 plotfiles and particle file outputs are forced whenever a checkpoint file is written. Sometimes
several plotfiles may be produced after the last valid checkpoint file. Resetting plotfileNumber to the first
plotfile produced after the checkpoint from which you are restarting will ensure that there are no gaps in
the output. See Section 9.2.2 for more details on plotfiles.

9.2.2 Plotfiles

A plotfile contains all the information needed to interpret the grid data maintained by FLASH. The data in
plotfiles, including the grid metadata such as coordinates and block sizes, are stored at single precision to
preserve space. This can, however, be overridden by setting the runtime parameters plotfileMetadataDP
and/or plotfileGridQuantityDP to true to set the grid metadata and the quantities stored on the grid
(dens, pres, temp, etc.) to use double precision, respectively. Users must choose which variables to output
with the runtime parameters plot var 1, plot var 2, etc., by setting them in the flash.par file. For
example:

plot_var_1 = "dens"
plot_var_2 = "pres"

Currently, we support a number of plotvars named plot var n up to the number of UNKVARS in a given
simulation. Similarly, scratch variables may be output to plot files Section 9.6. At this time, the plotting of
face centered quantities is not supported.

FLASH Transition

In FLASH2 a few variables like density and pressure were output to the plotfiles by default.
Because FLASH4 supports a wider range of simulations, it makes no assumptions that
density or pressure variables are even included in the simulation. In FLASH4 a user must
define plotfile variables in the flash.par file, otherwise the plotfiles will not contain any
variables.

The interface for writing a plotfile is the routine IO writePlotfile. As with checkpoint files, the user
will not need to call this routine directly because it is invoked indirectly through calling IO output when,
based on runtime parameters, FLASH4 needs to write a plotfile. FLASH can produce plotfiles in much the
same manner as it does with checkpoint files. They can be dumped based on elapsed simulation time, on
steps since the last plotfile dump or by forcing a plotfile to be written by hand by creating a.dump plotfile
in the output directory. A plotfile will also be written at the termination of a simulation as well.

If plotfiles are being kept at particular intervals (such as time intervals) for purposes such as visualiza-
tion or analysis, it is also possible to have FLASH denote a plotfile as “forced”. This designation places

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Driver.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_writePlotfile_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_output_F90.html


164 CHAPTER 9. IO UNIT

the word forced between the basename and the file format type identifier (or the split number if splitting is
used). These files are numbered separately from normal plotfiles. By default, plotfiles are considered forced
if output for any reason other than the change in simulation time, change in cosmological redshift, change
in step number, or the termination of a simulation from reaching nend , zFinal, or tmax. This option can
be disabled by setting ignoreForcedPlot to true in a simulations flash.par file. The following runtime
parameters pertain to controlling plotfiles:

Table 9.3: Plotfile IO parameters.

Parameter Type Default value Description

plotFileNumber INTEGER 0 The number of the starting (or restarting)
plotfile. This number is appended to the file-
name.

plotFileIntervalTime REAL 1. The amount of simulation time desired be-
tween subsequent plotfiles.

plotFileIntervalStep INTEGER 0 The number of timesteps desired between
subsequent plotfiles.

plotFileIntervalZ INTEGER HUGE(1.) The change in cosmological redshift desired
between subsequent plotfiles.

plot var 1, ...,
plot var n

STRING "none" Name of the variables to store in a plotfile.
Up to 12 variables can be selected for storage,
and the standard 4-character variable name
can be used to select them.

ignoreForcedPlot BOOLEAN .false. A logical variable indicating whether or not
to denote certain plotfiles as forced.

forcedPlotfileNumber INTEGER 0 An integer that sets the starting number for
a forced plotfile.

plotfileMetadataDP BOOLEAN .false. A logical variable indicating whether or
or not to output the normally single-
precision grid metadata fields as double pre-
cision in plotfiles. This specifically affects
coordinates, block size, and bounding
box.

plotfileGridQuantityDP BOOLEAN .false. A logical variable that sets whether or not
quantities stored on the grid, such as those
stored in unk, are output in single precision
or double precision in plotfiles.

9.2.3 Particle files

When Lagrangian particles are included in a simulation, the ParticleIO subunit controls input and output
of the particle information. The particle files are stored in double precision. Particle data is written to the
checkpoint file in order to restart the simulation, but is not written to plotfiles. Hence analysis and metadata
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about particles is also written to the particle files. The particle files are intended for more frequent dumps.
The interface for writing the particle file is IO writeParticles. Again the user will not usually call this
function directly because the routine IO output controls particle output based on the runtime parameters
controlling particle files. They are controlled in much of the same way as the plotfiles or checkpoint files
and can be dumped based on elapsed simulation time, on steps since the last particle dump or by forcing a
particle file to be written by hand by creating a .dump particle file in the output directory. The following
runtime parameters pertain to controlling particle files:

Table 9.4: Particle File IO runtime parameters.

Parameter Type Default value Description

particleFileNumber INTEGER 0 The number of the starting (or restarting)
particle file. This number is appended to the
end of the filename.

particleFileIntervalTime REAL 1. The amount of simulation time desired be-
tween subsequent particle file dumps.

particleFileIntervalStep INTEGER 0 The number of timesteps desired between
subsequent particle file dumps.

particleFileIntervalZ REAL HUGE(1.) The change in cosmological redshift desired
between subsequent particle file dumps.

FLASH Transition

From FLASH3 on each particle dump is written to a separate file. In FLASH2 the particles
data structure was broken up into real and integer parts, where as in FLASH3 all particle
properties are real values. See Section 9.9 and Chapter 20 for more information about the
particles data structure in FLASH4. Additionally, filtered particles are not implemented in
FLASH4.

All the code necessary to output particle data is contained in the IO subunit called IOParticles. When-
ever the Particles unit is included in a simulation the correct IOParticles subunit will also be included.
For example as setup:

./setup IsentropicVortex -2d -auto -unit=Particles +ug

will include the IO unit IO/IOMain/hdf5/serial/UG and the correct IOParticles subunit
IO/IOParticles/hdf5/serial/UG. The shortcuts +parallelio, +pnetcdf, +ug will also cause the setup
script to pick up the correct IOParticles subunit as long as a Particles unit is included in the simulation.

9.2.4 Integrated Grid Quantities – flash.dat

At each simulation time step, values which represent the overall state (e.g., total energy and momen-
tum) are computed by calculating over all cells in the computations domain. These integral quantities
are written to the ASCI file flash.dat. A default routine IO writeIntegralQuantities is provided to
output standard measures for hydrodynamic simulations. The user should copy and modify the routine

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_writeParticles_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_writeIntegralQuantities_F90.html
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IO_writeIntegralQuantities into a given simulation directory to store any quantities other than the de-
fault values. Two runtime parameters pertaining to the flash.dat file are listed in the table below.

Table 9.5: flash.dat runtime parameters.

Parameter Type Default value Description

stats file STRING "flash.dat" Name of the file to which the integral quan-
tities are written.

wr integrals freq INTEGER 1 The number of timesteps to elapse be-
tween outputs to the scalar/integral data file
(flash.dat)

9.2.5 General Runtime Parameters

There are several runtime parameters that pertain to the general IO unit or multiple output files rather than
one particular output file. They are listed in the table below.

Table 9.6: General IO runtime parameters.

Parameter Type Default value Description
basenm STRING "flash " The main part of the output filenames. The

full filename consists of the base name, a se-
ries of three-character abbreviations indicat-
ing whether it is a plotfile, particle file or
checkpoint file, the file format, and a 4-digit
file number. See Section 9.8 for a description
of how FLASH output files are named.

output directory STRING "" Output directory for plotfiles, particle files
and checkpoint files. The default is the
directory in which the executable sits.
output directory can be an absolute or rel-
ative path.

memory stat freq INTEGER 100000 The number of timesteps to elapse be-
tween memory statistic dumps to the log file
(flash.log).

useCollectiveHDF5 BOOLEAN .true. When using the parallel HDF5 implementa-
tion of IO, will enable collective mode for
HDF5.

summaryOutputOnly BOOLEAN .false. When set to .true. write an integrated grid
quantities file only. Checkpoint, plot and
particle files are not written unless the user
creates a .dump plotfile, .dump checkpoint,
.dump restart or .dump particle file.
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9.3 Restarts and Runtime Parameters

FLASH4 outputs the runtime parameters of a simulation to all checkpoint files. When a simulation is
restarted, these values are known by the RuntimeParameters unit while the code is running. On a restart,
all values from the checkpoint used in the restart are stored as previous values in the lists kept by the
RuntimeParameters unit. All current values are taken from the defaults used by FLASH4 and any simulation
parameter files (e.g., flash.par). If needed, the previous values from the checkpoint file can be obtained
using the routines RuntimeParameters getPrev.

9.4 Output Scalars

In FLASH4, each unit has the opportunity to request scalar data to be output to checkpoint or plot-
files. Because there is no central database, each unit “owns” different data in the simulation. For ex-
ample, the Driver unit owns the timestep variable dt, the simulation variable simTime, and the simula-
tion step number nStep. The Grid unit owns the sizes of each block, nxb, nyb, and nzb. The IO unit
owns the variable checkpointFileNumber. Each of these quantities are output into checkpoint files. In-
stead of hard coding the values into checkpoint routines, FLASH4 offers a more flexible interface whereby
each unit sends its data to the IO unit. The IO unit then stores these values in a linked list and writes
them to the checkpoint file or plotfile. Each unit has a routine called “Unit sendOutputData”, e.g.,
Driver sendOutputData and Grid sendOutputData. These routines in turn call IO setScalar. For ex-
ample, the routine Grid sendOutputData calls

IO_setScalar("nxb", NXB)
IO_setScalar("nyb", NYB)
IO_setScalar("nzb", NZB)

To output additional simulation scalars in a checkpoint file, the user should override one of the “Unit -
sendOutputData” or Simulation_sendOutputData.

After restarting a simulation from a checkpoint file, a unit might call IO getScalar to reset a variable
value. For example, the Driver unit calls IO getScalar("dt", dr dt) to get the value of the timestep
dt reinitialized from the checkpoint file. A value from the checkpoint file can be obtained by calling
IO getPrevScalar. This call can take an optional argument to find out if an error has occurred in finding
the previous value, most commonly because the value was not found in the checkpoint file. By using this
argument, the user can then decide what to do if the value is not found. If the scalar value is not found and
the optional argument is not used, then the subroutine will call Driver abortFlash and terminate the run.

9.5 Output User-defined Arrays

Often in a simulation the user needs to output additional information to a checkpoint or plotfile which is
not a grid scope variable. In FLASH2 any additional information had to be hard coded into the simulation.
In FLASH4, we have provided a general interface IO writeUserArray and IO readUserArray which allows
the user to write and read any generic array needed to be stored. The above two functions do not have
any implementation and it is up to the user to fill them in with the needed calls to the HDF5 or pnetCDF
C routines. We provide implementation for reading and writing integer and double precision arrays with
the helper routines io h5write generic iarr, io h5write generic rarr, io ncmpi write generic iarr,
and io ncmpi write generic rarr. Data is written out as a 1-dimensional array, but the user can write
multidimensional arrays simply by passing a reference to the data and the total number of elements to write.
See these routines and the simulation StirTurb for details on their usage.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/RuntimeParameters/RuntimeParameters_getPrev_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_sendOutputData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_sendOutputData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_setScalar_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_sendOutputData_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_getScalar_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_getPrevScalar_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_abortFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_writeUserArray_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_readUserArray_F90.html
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9.6 Output Scratch Variables

In FLASH4 a user can allocate space for a scratch or temporary variable with grid scope using one of the
Config keywords SCRATCHVAR, SCRATCHCENTERVAR, SCRATCHFACEXVAR,SCRATCHFACEYVAR or SCRATCHFACEZ-
VAR (see Section 5.5.1). To output these scratch variables, the user only needs to set the values of the runtime
parameters plot grid var 1, plot grid var 2, etc., by setting them in the flash.par file. For example to
output the magnitude of vorticity with a declaration in a Config file of SCRATCHVAR mvrt:

plot_grid_var_1 = "mvrt"

Note that the post-processing routines like fidlr do not display these variables, although they are present
in the output file. Future implementations may support this visualization.

9.7 Face-Centered Data

Face-centered variables are now output to checkpoint files, when they are declared in a configuration file.
Presently, up to nine face-centered variables are supported in checkpoint files. Plotfile output of face-centered
data is not yet supported.

9.8 Output Filenames

FLASH constructs the output filenames based on the user-supplied basename, (runtime parameter basenm)
and the file counter that is incremented after each output. Additionally, information about the file type and
data storage is included in the filename. The general checkpoint filename is:

basename s0000

{
hdf5
ncmpi

}
chk 0000 ,

where hdf5 or ncmpi (prefix for PnetCDF) is picked depending on the particular IO implementation, the
number following the “s” is the split file number, if split file IO is in use, and the number at the end of
the filename is the current checkpointFileNumber. (The PnetCDF function prefix ”ncmpi” derived from the
serial NetCDF calls beginning with ”nc”)

The general plotfile filename is:

basename s0000

{
hdf5
ncmpi

}
plt

{
crn
cnt

}
0000 ,

where hdf5 or ncmpi is picked depending on the IO implementation used, crn and cnt indicate data stored
at the cell corners or centers respectively, the number following “s” is the split file number, if used, and the
number at the end of the filename is the current value of plotfileNumber. crn is reserved, even though
corner data output is not presently supported by FLASH4’s IO.

FLASH Transition

In FLASH2 the correct format of the names of the checkpoint, plotfile and particle file were
necessary in order to read the files with the FLASH fidlr visualization tool. In FLASH4 the
name of the file is irrelevant to fidlr3.0 (see Chapter 34). We have kept the same naming
convention for consistency but the user is free to rename files. This can be helpful during
post-processing or when comparing two files.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
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9.9 Output Formats

HDF5 is our most most widely used IO library although Parallel-NetCDF is rapidly gaining acceptance
among the high performance computing community. In FLASH4 we also offer a serial direct FORTRAN IO
which is currently only implemented for the uniform grid. This option is intended to provide users a way to
output data if they do not have access to HDF5 or PnetCDF. Additionally, if HDF5 or PnetCDF are not
performing well on a given platform the direct IO implementation can be used as a last resort. Our tools,
fidlr and sfocu (Part X), do not currently support the direct IO implementation, and the output files from
this mode are not portable across platforms.

9.9.1 HDF5

HDF5 is supported on a large variety of platforms and offers large file support and parallel IO via MPI-IO.
Information about the different versions of HDF can be found at http://www.ncsa.illinois.edu/. The
IO in FLASH4 implementations require HDF5 1.4.0 or later. Please note that HDF5 1.6.2 requires IDL 1.6
or higher in order to use fidlr3.0 for post processing.

Implementations of the HDF5 IO unit use the HDF application programming interface (API) for organizing
data in a database fashion. In addition to the raw data, information about the data type and byte ordering
(little- or big-endian), rank, and dimensions of the dataset is stored. This makes the HDF format extremely
portable across platforms. Different packages can query the file for its contents without knowing the details
of the routine that generated the data.

FLASH provides different HDF5 IO unit implementations – the serial and parallel versions for each
supported grid, Uniform Grid and PARAMESH. It is important to remember to match the IO implementation
with the correct grid, although the setup script generally takes care of this matching. PARAMESH 2, PARAMESH
4.0, and PARAMESH 4dev all work with the PARAMESH (PM) implementation of IO. Nonfixed blocksize IO has
its own implementation in parallel, and is presently not supported in serial mode. Examples are given below
for the five different HDF5 IO implementations.

./setup Sod -2d -auto -unit=IO/IOMain/hdf5/serial/PM (included by default)

./setup Sod -2d -auto -unit=IO/IOMain/hdf5/parallel/PM

./setup Sod -2d -auto -unit=Grid/GridMain/UG -unit=IO/IOMain/hdf5/serial/UG

./setup Sod -2d -auto -unit=Grid/GridMain/UG -unit=IO/IOMain/hdf5/parallel/UG

./setup Sod -2d -auto -nofbs -unit=Grid/GridMain/UG -unit=IO/IOMain/hdf5/parallel/NoFbs

The default IO implementation is IO/IOMain/hdf5/serial/PM. It can be included simply by adding
-unit=IO to the setup line. In FLASH4, the user can set up shortcuts for various implementations. See
Chapter 5 for more information about creating shortcuts.

The format of the HDF5 output files produced by these various IO implementations is identical; only
the method by which they are written differs. It is possible to create a checkpoint file with the parallel
routines and restart FLASH from that file using the serial routines or vice-versa. (This switch would require
resetting up and compiling a code to get an executable with the serial version of IO.) When outputting with
the Uniform Grid, some data is stored that isn’t explicitly necessary for data analysis or visualization, but
is retained to keep the output format of PARAMESH the same as with the Uniform Grid. See Section 9.9.1.3
for more information on output data formats. For example, the refinement level in the Uniform Grid case is
always equal to 1, as is the nodetype array. A tree structure for the Uniform Grid is ‘faked’ for visualization
purposes. In a similar way, the non-fixedblocksize mode outputs all of the data stored by the grid as though
it is one large block. This allows restarting with differing numbers of processors and decomposing the domain
in an arbitrary fashion in Uniform Grid.

Parallel HDF5 mode has two runtime parameters useful for debugging: chkGuardCellsInput and chk-
GuardCellsOutput. When these runtime parameters are true, the FLASH4 input and output routines read
and/or output the guard cells in addition to the normal interior cells. Note that the HDF5 files produced
are not compatible with the visualization and analysis tools provided with FLASH4.

http://www.ncsa.illinois.edu/
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
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9.9.1.1 Collective Mode

By default, the parallel mode of HDF5 uses an independent access pattern for writing datasets and performs
IO without aggregating the disk access for writing. Parallel HDF5 can also be run so that the writes to
the file’s datasets are aggregated, allowing the data from multiple processors to be written to disk in fewer
operations. This can greatly increase the performance of IO on filesystems that support this behavior.
FLASH4 can make use of this mode by setting the runtime parameter useCollectiveHDF5 to true.

FLASH Transition

We recommend that HDF5 version 1.6 or later be used with the HDF5 IO implementations
with FLASH4. While it is possible to use any version of HDF5 1.4.0 or later, files produced
with versions predating version 1.6 will not be compatible with code using the libraries post
HDF5 1.6.

Caution

If you are using version HDF5 >= 1.8 then you must explicitly use HDF5 1.6 API bind-
ings. Either build HDF5 library with “–with-default-api-version=v16” configure option or
compile FLASH with the C preprocessor definition H5 USE 16 API. Our preference is to set
CFLAGS HDF5 Makefile.h variable, e.g., for a GNU compilation:

CFLAGS_HDF5 = -I\${HDF5_PATH}/include -DH5_USE_16_API

9.9.1.2 Machine Compatibility

The HDF5 modules have been tested successfully on the ASC platforms and on a Linux clusters. Performance
varies widely across the platforms, but the parallel version is usually faster than the serial version. Experience
on performing parallel IO on a Linux Cluster using PVFS is reported in Ross et al. (2001). Note that for
clusters without a parallel filesystem, you should not use the parallel HDF5 IO module with an NFS mounted
filesystem. In this case, all of the information will still have to pass through the node from which the disk is
hanging, resulting in contention. It is recommended that a serial version of the HDF5 unit be used instead.

9.9.1.3 HDF5 Data Format

The HDF5 data format for FLASH4 is identical to FLASH2 for all grid variables and datastructures used to
recreate the tree and neighbor data with the exception that bounding box, coordinates, and block size
are now sized as mdim, or the maximum dimensions supported by FLASH’s grids, which is three, rather than
ndim. PARAMESH 4.0 and PARAMESH 4dev, however, do requires a few additional tree data structures to be
output which are described below. The format of the metadata stored in the HDF5 files has changed to
reduce the number of ‘writes’ required. Additionally, scalar data, like time, dt, nstep, etc., are now stored
in a linked list and written all at one time. Any unit can add scalar data to the checkpoint file by calling
the routine IO setScalar. See Section 9.4 for more details. The FLASH4 HDF5 format is summarized in
Table 9.7.

Table 9.7: FLASH HDF5 file format.

Record label Description of the record
Simulation Meta Data: included in all files

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_setScalar_F90.html
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Table 9.7: HDF5 format (continued).

Record label Description of the record
sim info Stores simulation meta data in a user defined C structure.

Structure datatype and attributes of the structure are de-
scribed below.

typedef struct sim_info_t {
int file_format_version;
char setup_call[400];
char file_creation_time[MAX_STRING_LENGTH];
char flash_version[MAX_STRING_LENGTH];
char build_date[MAX_STRING_LENGTH];
char build_dir[MAX_STRING_LENGTH];
char build_machine[MAX_STRING_LENGTH];
char cflags[400];
char fflags[400];
char setup_time_stamp[MAX_STRING_LENGTH];
char build_time_stamp[MAX_STRING_LENGTH];

} sim_info_t;

sim_info_t sim_info;

sim info.file format version: An integer giving the version number of the HDF5 file
format. This is incremented anytime changes are made to
the layout of the file.

sim info.setup call: The complete syntax of the setup command used when
creating the current FLASH executable.

sim info.file creation time: The time and date that the file was created.

sim info.flash version: The version of FLASH used for the current simulation.
This is returned by routine setup_flashVersion.

sim info.build date: The date and time that the FLASH executable was com-
piled.

sim info.build dir: The complete path to the FLASH root directory of the
source tree used when compiling the FLASH executable.
This is generated by the subroutine setup buildstats
which is created at compile time by the Makefile.

sim info.build machine: The name of the machine (and anything else returned from
uname -a) on which FLASH was compiled.

sim info.cflags: The c compiler flags used in the given simulation. The
routine setup buildstats is written by the setup script
at compile time and also includes the fflags below.

sim info.fflags: The f compiler flags used in the given simulation.
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Table 9.7: HDF5 format (continued).

Record label Description of the record
sim info.setup time stamp: The date and time the given simulation was setup. The

routine setup buildstamp is created by the setup script
at compile time.

sim info.build time stamp: The date and time the given simulation was built. The
routine setup buildstamp is created by the setup script
at compile time.

RuntimeParameter and Scalar data
Data are stored in linked lists with the nodes of each entry for each type listed below.

typedef struct int_list_t {
char name[MAX_STRING_LENGTH];
int value;

} int_list_t;

typedef struct real_list_t {
char name[MAX_STRING_LENGTH];
double value;

} real_list_t;

typedef struct str_list_t {
char name[MAX_STRING_LENGTH];
char value[MAX_STRING_LENGTH];

} str_list_t;

typedef struct log_list_t {
char name[MAX_STRING_LENGTH];
int value;

} log_list_t;

int_list_t *int_list;
real_list_t *real_list;
str_list_t *str_list;
log_list_t *log_list;

integer runtime parameters int list t int list(numIntParams)

A linked list holding the names and values of all the integer
runtime parameters.

real runtime parameters real list t real list(numRealParams)

A linked list holding the names and values of all the real
runtime parameters.

string runtime parameters str list t str list(numStrParams)

A linked list holding the names and values of all the string
runtime parameters.
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Table 9.7: HDF5 format (continued).

Record label Description of the record
logical runtime parameters log list t log list(numLogParams)

A linked list holding the names and values of all the logical
runtime parameters.

integer scalars int list t int list(numIntScalars)

A linked list holding the names and values of all the integer
scalars.

real scalars real list t real list(numRealScalars)

A linked list holding the names and values of all the real
scalars.

string scalars str list t str list(numStrScalars)

A linked list holding the names and values of all the string
scalars.

logical scalars log list t log list(numLogScalars)

A linked list holding the names and values of all the logical
scalars.

Grid data: included only in checkpoint files and plotfiles
unknown names character*4 unk names(nvar)

This array contains four-character names corresponding to
the first index of the unk array. They serve to identify the
variables stored in the ‘unknowns’ records.

refine level integer lrefine(globalNumBlocks)

This array stores the refinement level for each block.

node type integer nodetype(globalNumBlocks)

This array stores the node type for a block. Blocks with
node type 1 are leaf nodes, and their data will always be
valid. The leaf blocks contain the data which is to be used
for plotting purposes.

gid integer gid(nfaces+1+nchild,globalNumBlocks)

This is the global identification array. For a given block,
this array gives the block number of the blocks that neigh-
bor it and the block numbers of its parent and children.

coordinates real coord(mdim,globalNumBlocks)

This array stores the coordinates of the center of the block.
coord(1,blockID) = x-coordinate
coord(2,blockID) = y-coordinate
coord(3,blockID) = z-coordinate
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Table 9.7: HDF5 format (continued).

Record label Description of the record

block size real size(mdim,globalNumBlocks)

This array stores the dimensions of the current block.
size(1,blockID) = x size
size(2,blockID) = y size
size(3,blockID) = z size

bounding box real bnd box(2,mdim,globalNumBlocks)

This array stores the minimum (bnd box(1,:,:)) and
maximum (bnd box(2,:,:)) coordinate of a block in each
spatial direction.

which child (Paramesh4.0 and
Paramesh4dev only! )

integer which child(globalNumBlocks)

An integer array identifying which part of the parents’ vol-
ume this child corresponds to.

variable real unk(nxb,nyb,nzb,globalNumBlocks)

nx = number of cells/block in x
ny = number of cells/block in y
nz = number of cells/block in z

This array holds the data for a single variable. The record
label is identical to the four-character variable name stored
in the record unknown names. Note that, for a plot file
with CORNERS=.true. in the parameter file, the informa-
tion is interpolated to the cell corners and stored.

Particle Data: included in checkpoint files and particle files
localnp integer localnp(globalNumBlocks)

This array holds the number of particles on each processor.

particle names character*24 particle labels(NPART PROPS)

This array contains twenty four-character names corre-
sponding to the attributes in the particles array. They
serve to identify the variables stored in the ’particles’
record.

tracer particles real particles(NPART PROPS, globalNumParticles

Real array holding the particles data structure. The first
dimension holds the various particle properties like, veloc-
ity, tag etc. The second dimension is sized as the total
number of particles in the simulation. Note that all the
particle properties are real values.
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9.9.1.4 Split File IO

On machines with large numbers of processors, IO may perform better if, all processors write to a limited
number of separate files rather than one single file. This technique can help mitigate IO bottlenecks and
contention issues on these large machines better than even parallel-mode IO can. In addition this technique
has the benefit of keeping the number of output files much lower than if every processor writes its own file.
Split file IO can be enabled by setting the outputSplitNum parameter to the number of files desired (i.e.
if outputSplitNum is set to 4, every checkpoint, plotfile and parfile will be broken into 4 files, by processor
number). This feature is only available with the HDF5 parallel IO mode, and is still experimental. Users
should use this at their own risk.

9.9.2 Parallel-NetCDF

Another implementation of the IO unit uses the Parallel-NetCDF library available at
http://www.mcs.anl.gov/parallel-netcdf/. At this time, the FLASH code requires version 1.1.0 or
higher. Our testing shows performance of PNetCDF library to be very similar to HDF5 library when using
collective I/O optimizations in parallel I/O mode.

There are two different PnetCDF IO unit implementations. Both are parallel implementations, one
for each supported grid, the Uniform Grid and PARAMESH. It is important to remember to match the
IO implementation with the correct grid. To include PnetCDF IO in a simulation the user should add
-unit=IO/IOMain/pnetcdf..... to the setup line. See examples below for the two different PnetCDF IO
implementations.

./setup Sod -2d -auto -unit=IO/IOMain/pnetcdf/PM

./setup Sod -2d -auto -unit=Grid/GridMain/UG -unit=IO/IOMain/pnetcdf/UG

The paths to these IO implementations can be long and tedious to type, users are advised to set up
shortcuts for various implementations. See Chapter 5 for information about creating shortcuts.

To the end-user, the PnetCDF data format is very similar to the HDF5 format. (Under the hood the data
storage is quite different.) In HDF5 there are datasets and dataspaces, in PnetCDF there are dimensions and
variables. All the same data is stored in the PnetCDF checkpoint as in the HDF5 checkpoint file, although
there are some differences in how the data is stored. The grid data is stored in multidimensional arrays, as
it is in HDF5. These are unknown names, refine level, node type, gid, coordinates, proc number, block size
and bounding box. The particles data structure is also stored in the same way. The simulation metadata,
like file format version, file creation time, setup command line, etc., are stored as global attributes. The
runtime parameters and the output scalars are also stored as attributes. The unk and particle labels are
also stored as global attributes. In PnetCDF, all global quantities must be consistent across all processors
involved in a write to a file, or else the write will fail. All IO calls are run in a collective mode in PnetCDF.

9.9.3 Direct IO

As mentioned above, the direct IO implementation has been added so users can always output data even if the
HDF5 or pnetCDF libraries are unavailable. The user should examine the two helper routines io_writeData
and io_readData. Copy the base implementation to a simulation directory, and modify them in order to
write out specifically what is needed. To include the direct IO implementation add the following to your
setup line:

-unit=IO/IOMain/direct/UG or -unit=IO/IOMain/direct/PM

9.9.4 Output Side Effects

In FLASH4 when plotfiles or checkpoint files are output by IO output, the grid is fully restricted and user
variables are computed prior to writing the file. IO writeCheckpoint and IO writePlotfile by default,
do not do this step themselves. The restriction can be forced for all writes by setting runtime parameter
alwaysRestrictCheckpoint to true and the user variables can always be computed prior to output by
setting alwaysComputeUserVars to true.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://www.mcs.anl.gov/parallel-netcdf/
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_output_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_writeCheckpoint_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_writePlotfile_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
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9.10 Working with Output Files

The checkpoint file output formats offer great flexibility when visualizing the data. The visualization program
does not have to know the details of how the file was written; rather it can query the file to find the number
of dimensions, block sizes, variable data etc that it needs to visualize the data. IDL routines for reading
HDF5 and PnetCDF formats are provided in tools/fidlr3/. These can be used interactively though the
IDL command line (see Chapter 34). In addition, ViSit version 10.0 and higher (see Chapter 31) can natively
read FLASH4 HDF5 output files by using the command line option -assume_format FLASH.

9.11 Unit Test

The IO unit test is provided to test IO performance on various platforms with the different FLASH IO
implementations and parallel libraries.

FLASH Transition

The IO unit test replaces the simulation setup io benchmark in FLASH2.

The unitTest is setup like any other FLASH4 simulation. It can be run with any IO implementation
as long as the correct Grid implementation is included. This unitTest writes a checkpoint file, a plotfile,
and if particles are included, a particle file. Particles IO can be tested simply by including particles in the
simulation. Variables needed for particles should be uncommented in the Config file.

Example setups:

#setup for PARAMESH Grid and serial HDF5 io
./setup unitTest/IO -auto

#setup for PARAMESH Grid with parallel HDF5 IO (see shortcuts docs for explanation)
./setup unitTest/IO -auto +parallelIO (same as)
./setup unitTest/IO -auto -unit=IO/IOMain/hdf5/parallel/PM

#setup for Uniform Grid with serial HDF5 IO, 3d problem, increasing default number of zones
./setup unitTest/IO -3d -auto +ug -nxb=16 -nyb=16 -nzb=16 (same as)
./setup unitTest/IO -3d -auto -unit=Grid/GridMain/UG -nxb=16 -nyb=16 -nzb=16

#setup for PM3 and parallel netCDF, with particles
./setup unitTest/IO -auto -unit=Particles +pnetcdf

#setup for UG and parallel netCDF
./setup unitTest/IO -auto +pnetcdf +ug

Run the test like any other FLASH simulation:

mpirun -np numProcs flash3

There are a few things to keep in mind when working with the IO unit test:

• The Config file in unitTest/IO declares some dummy grid scope variables which are stored in the unk
array. If the user wants a more intensive IO test, more variables can be added. Variables are initialized
to dummy values in Driver_evolveFlash.

• Variables will only be output to the plotfile if they are declared in the flash.par (see the example
flash.par in the unit test).
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• The only units besides the simulation unit included in this simulation are Grid, IO, Driver, Timers,
Logfile, RuntimeParameters and PhysicalConstants.

• If the PARAMESH Grid implementation is being used, it is important to note that the grid will not refine
on its own. The user should set lrefine_min to a value > 1 to create more blocks. The user could
also set the runtime parameters nblockx, nblocky, nblockz to make a bigger problem.

• Just like any other simulation, the user can change the number of zones in a simulation using -nxb=-
numZones on the setup line.

9.12 Chombo

In FLASH4 we introduced a new Grid implementation that depends on Chombo library (see Section 8.7). An
application built with this Grid implementation will include IO/IOMain/chombo by default. No other I/O
implementation is compatible with Chombo Grid implementation. As before, I/O can be excluded from an
application using the +noio setup shortcut.

Data files are written in standard Chombo file layout in HDF5 format. The visualization tool VisIt
supports Chombo file layout, but other tools, such as fidlr and sfocu, are incompatible with Chombo file
layout.

9.13 Derived data type I/O

In FLASH4 we introduced an alternative I/O implementation for both HDF5 and Parallel-NetCDF which is
a slight spin on the standard parallel I/O implementations. In this new implementation we select the data
from the mesh data structures directly using HDF5 hyperslabs (HDF5) and MPI derived datatypes (Parallel-
NetCDF) and then write the selected data to datasets in the file. This eliminates the need for manually
copying data into a FLASH allocated temporary buffer and then writing the data from the temporary buffer
to disk.

You can include derived data type I/O in your FLASH application by adding the setup shortcuts
+hdf5TypeIO for HDF5 and +pnetTypeIO for Parallel-NetCDF to your setup line. If you are using the
HDF5 implementation then you need a parallel installation of HDF5. All of the runtime parameters intro-
duced in this chapter should be compatible with derived data type I/O.

A nice property of derived data type I/O is that it eliminates a lot of the I/O code duplication which
has been spreading in the FLASH I/O unit over the last decade. The same code is used for UG, NoFBS
and Paramesh FLASH applications and we have also shared code between the HDF5 and Parallel-NetCDF
implementations. A technical reason for using the new I/O implementation is that we provide more infor-
mation to the I/O libraries about the exact data we want to read from / write to disk. This allows us to take
advantage of recent enhancements to I/O libraries such as the nonblocking APIs in the Parallel-NetCDF
library. We discuss experimentation with this API and other ideas in the paper “A Case Study for Scientific
I/O: Improving the FLASH Astrophysics Code” www.mcs.anl.gov/uploads/cels/papers/P1819.pdf

The new I/O code has been tested in our internal FLASH regression tests from before the FLASH4
release and there are no known issues, however, it will probably be in the release following FLASH4 when
we will recommend using it as the default implementation. We have made the research ideas from our case
study paper usable for all FLASH applications, however, the code still needs a clean up and exhaustive
testing with all the FLASH runtime parameters introduced in this chapter.

www.mcs.anl.gov/uploads/cels/papers/P1819.pdf
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Chapter 10

Runtime Parameters Unit

source

RuntimeParameters

RuntimeParametersMain

Figure 10.1: The RuntimeParameters unit directory tree.

The RuntimeParameters Unit stores and maintains a global linked lists of runtime parameters that are
used during program execution. Runtime parameters can be added to the lists, have their values modified,
and be queried. This unit handles adding the default runtime parameters to the lists as well as reading any
overwritten parameters from the flash.par file.

10.1 Defining Runtime Parameters

All parameters must be declared in a Config file with the keyword declaration PARAMETER. In the Config
file, assign a data type and a default value for the parameter. If possible, assign a range of valid values for
the parameter. You can also provide a short description of the parameter’s function in a comment line that
begins with D.

#section of Config file for a Simulation
D myParameter Description of myParameter
PARAMETER myParameter REAL 22.5 [20 to 60]

To change the runtime parameter’s value from the default, assign a new value in the flash.par for the
simulation.

#snippet from a flash.par
myParameter = 45.0

See Section 5.5 for more information on declaring parameters in a Config file.

10.2 Identifying Valid Runtime Parameters

The values of runtime parameters are initialized either from default values defined in the Config files, or from
values explicitly set in the file flash.par. Variables that have been changed from default are noted in the
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=======================================================
RuntimeParameters:
=======================================================
pt_numx = 10 [CHANGED]
pt_numy = 5 [CHANGED]
checkpointfileintervalstep = 0

Figure 10.2: Section of output log showing runtime parameters values

physics/Eos/EosMain/Multigamma
gamma [REAL] [1.6667]

Valid Values: Unconstrained
Ratio of specific heats for gas

physics/Hydro/HydroMain
cfl [REAL] [0.8]

Valid Values: Unconstrained
Courant factor

Figure 10.3: Portion of a setup params file from an object directory.

simulation’s output log. For example, the RuntimeParameters section of the output log shown in Figure 10.2
indicates that pt numx and pt numy have been read in from flash.par and are different than the default
values, whereas the runtime parameter checkpointFileIntervalStep has been left at the default value of
0.

After a simulation has been configured with a setup call, all possible valid runtime parameters are listed
in the file setup params located in the object directory (or whatever directory was chosen with -objdir=)
with their default values. This file groups the runtime parameters according to the units with which they
are associated and in alphabetical order. A short description of the runtime parameter, and the valid range
or values if known, are also given. See Figure 10.3 for an example listing.

10.3 Routine Descriptions

The Runtime Parameters unit is included by default in all of the provided FLASH simulation examples,
through a dependence within the Driver unit. The main FLASH initialization routine (Driver initFlash)
and the initialization code created by setup handles the creation and initialization of the runtime parameters,
so users will mainly be interested in querying parameter values. Because the RuntimeParameters routines
are overloaded functions which can handle character, real, integer, or logical arguments, the user must make
sure to use the interface file RuntimeParameters_Interfaces in the calling routines.

The user will typically only have to use one routine from the Runtime Parameters API,
RuntimeParameters get. This routine retrieves the value of a parameter stored in the linked list in the
RuntimeParameters data module. In FLASH4 the value of runtime parameters for a given unit are stored
in that unit’s Unit data Fortran module and they are typically initialized in the unit’s Unit init routine.
Each unit’s ’init’ routine is only called once at the beginning of the simulation by Driver initFlash. For
more documentation on the FLASH code architecture please see Chapter 4. It is important to note that
even though runtime parameters are declared in a specific unit’s Config file, the runtime parameters linked

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_initFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/RuntimeParameters/RuntimeParameters_get_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_initFlash_F90.html
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list is a global space and so any unit can fetch a parameter, even if that unit did not declare it. For example,
the Driver unit declares the logical parameter restart, however, many units, including the IO unit get
restart parameter with the RuntimeParameters get interface. If a section of the code asks for a runtime
parameter that was not declared in a Config file and thus is not in the runtime parameters linked list, the
FLASH code will call Driver abortFlash and stamp an error to the logfile. The other RuntimeParameter
routines in the API are not generally called by user routines. They exist because various other units within
FLASH need to access parts of the RuntimeParameters interface. For example, the input/output unit IO
needs RuntimeParameters set. There are no user-defined parameters which affect the RuntimeParameters
unit.

FLASH Transition

FLASH no longer distinguishes between contexts as in FLASH2. All runtime parameters
are stored in the same context, so there is no need to pass a ‘context’ argument.

10.4 Example Usage

An implementation example from the IO init is straightforward. First, use the module containing definitions
for the unit (for init subroutines, the usual use Unit data, ONLY: structure is waived). Next, use the
module containing interface definitions of the RuntimeParameters unit, i.e., use RuntimeParameters_-
interface, ONLY:. Finally, read the runtime parameters and store them in unit-specific variables.

subroutine IO_init()

use IO_data
use RuntimeParamters_interface, ONLY : RuntimeParameters_get
implicit none

call RuntimeParameters_get(’plotFileNumber’,io_plotFileNumber)
call RuntimeParameters_get(’checkpointFileNumber’,io_checkpointFileNumber)

call RuntimeParameters_get(’plotFileIntervalTime’,io_plotFileIntervalTime)
call RuntimeParameters_get(’plotFileIntervalStep’,io_plotFileIntervalStep)
call RuntimeParameters_get(’checkpointFileIntervalTime’,io_checkpointFileIntervalTime)
call RuntimeParameters_get(’checkpointFileIntervalStep’,io_checkpointFileIntervalStep)

!! etc ...

Note that the parameters found in the flash.par or in the Config files, for example plotFileNumber, are
generally stored in a variable of the same name with a unit prefix prepended, for example io plotFileNumber.
In this way, a program segment clearly indicates the origin of variables. Variables with a unit prefix (e.g., io
for IO, pt for particles) have been initialized from the RuntimeParameters database, and other variables are
locally declared. When creating new simulations, runtime parameters used as variables should be prefixed
with sim .

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/RuntimeParameters/RuntimeParameters_get_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_abortFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/RuntimeParameters/RuntimeParameters_set_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_IO.txt
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Multispecies Unit

source

Multispecies

MultispeciesMain

Figure 11.1: The Multispecies unit directory tree.

FLASH has the ability to track multiple fluids, each of which can have its own properties. The Multi-
species unit handles setting and querying on the properties of fluids, as well as some common operations
on properties. The advection and normalization of species is described in the context of the Hydro unit in
Chapter 15.

11.1 Defining Species

The names and properties of fluids are accessed by using their constant integer values defined in the Flash.h
header file. The species names are defined in a Config file. The names of the species, for example AIR, NI56,
are given in the Config file with keyword SPECIES.

In the traditional method for defining species, this Config would typically be the application’s Config
file in the Simulation unit. In the alternative method described below in Section 11.4, SPECIES are nor-
mally not listed explicitly in the Simulation unit Config, but instead are automatically generated by
Multispecies/MultispeciesMain/Config based on the contents of the species setup variable. Either
way, the setup procedure transforms those names into accessor integers with the appended description
SPEC.

These names are stored in the Flash.h file. The total number of species defined is also defined within
Flash.h as NSPECIES, and the integer range of their definition is given by SPECIES BEGIN and SPECIES END.
To access the species in your code, use the index listed in Flash.h, for example AIR SPEC, NI56 SPEC.

Note that NSPECIES, SPECIES BEGIN, and SPECIES END are always defined, whether a simulation uses
multiple species or not (and whehter the simulation includes the Multispecies unit or not). However, if
NSPECIES= 0, SPECIES END will be less than SPECIES BEGIN, and then neither of them should be used as an
index into solution vectors.

As an illustration, Figures Figure 11.2 and Figure 11.3 are snippets from a configuration file and the
corresponding section of the FLASH header file, respectively. For more information on Config files, see
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# Portion of a Config file for a Simulation
SPECIES AIR
SPECIES SF6

Figure 11.2: Sample Config file showing how to define required fluid species.

#define SPECIES_BEGIN (NPROP_VARS + CONSTANT_ONE)
#define AIR_SPEC 11
#define SF6_SPEC 12
#define NSPECIES 2
#define SPECIES_END (SPECIES_BEGIN + NSPECIES - CONSTANT_ONE)

Figure 11.3: Sample excerpt from header file Flash.h showing integer definition of fluid species.

Section 5.5; for more information on the setup procedure, see Chapter 5; for more information on the
structure of the main header file Flash.h, see Chapter 6.

FLASH Transition

In FLASH2, you found the integer index of a species by using find fluid index. In
FLASH4, the species index is always available because it is defined in Flash.h. Use the index
directory, as in xIn(NAME SPEC - SPECIES_BEGIN + 1) = solnData(NAME SPEC,i,j,k).
But be careful that the species name is really defined in your simulation! You can test with

if (NAME_SPEC /= NONEXISTENT) then
okVariable = solnData(NAME_SPEC,i,j,k)

endif

The available properties of an individual fluid are listed in Table 11.1 and are defined in file Multi-
species.h. In order to reference the properties in code, you must #include the file Multispecies.h. The
initialization of properties is described in the following section.

11.2 Initializing Species Information in Simulation_initSpecies

Before you can work with the properties of a fluid, you must initialize the data in the Multispecies unit.
Normally, initialization is done in the routine Simulation initSpecies. An example procedure is shown
below and consists of setting relevant properties for all fluids/SPECIES defined in the Config file. Fluids do
not have to be isotopes; any molecular substance which can be defined by the properties shown in Figure 11.4
is a valid input to the Multispecies unit.

FLASH Transition

For nuclear burning networks, a Simulation initSpecies routine is already predefined. It
automatically initializes all isotopes found in the Config file. To use this shortcut, REQUIRE
the module Simulation/SimulationComposition in the Config file.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_initSpecies_F90.html
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Table 11.1: Properties available through the Multispecies unit.
Property Name Description Data type
A Number of protons and neutrons in nucleus real
Z Atomic number real
N Number of neutrons real
E Number of electrons real
BE Binding Energy real
GAMMA Ratio of heat capacities real
MS ZMIN Minimum allowed average ionization real
MS EOSTYPE EOS type to use for MTMMMT EOS integer
MS EOSSUBTYPE EOS subtype to use for MTMMMT EOS integer
MS EOSZFREEFILE Name of file with ionization data string
MS EOSENERFILE Name of file with internal energy data string
MS EOSPRESFILE Name of file with pressure data string
MS NUMELEMS Number of elements comprising this species integer
MS ZELEMS Atomic number of each species element array(integer)
MS AELEMS Mass number of each species element array(real)
MS FRACTIONS Number fraction of each species element array(real)
MS OPLOWTEMP Temperature at which cold opacities are used real

subroutine Simulation_initSpecies()

implicit none
#include "Multispecies.h"
#include "Flash.h"

! These two variables are defined in the Config file as
! SPECIES SF6 and SPECIES AIR
call Multispecies_setProperty(SF6_SPEC, A, 146.)
call Multispecies_setProperty(SF6_SPEC, Z, 70.)
call Multispecies_setProperty(SF6_SPEC, GAMMA, 1.09)

call Multispecies_setProperty(AIR_SPEC, A, 28.66)
call Multispecies_setProperty(AIR_SPEC, Z, 14.)
call Multispecies_setProperty(AIR_SPEC, GAMMA, 1.4)

end subroutine Simulation_initSpecies

Figure 11.4: A Simulation initSpecies.F90 file showing Multispecies initialization
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#include "Flash.h"
#include "Multispecies.h"

! Create arrays to store constituent element data. Note that these
! arrays are always of length MS_MAXELEMS.
real :: aelems(MS_MAXELEMS)
real :: fractions(MS_MAXELEMS)
integer :: zelems(MS_MAXELEMS)

call Multispecies_setProperty(H2O_SPEC, A, 18.0/3.0) ! Set average mass number
call Multispecies_setProperty(H2O_SPEC, Z, 10.0/3.0) ! Set average atomic number
call Multispecies_setProperty(H2O_SPEC, GAMMA, 5.0/3.0)
call Multispecies_setProperty(H2O_SPEC, MS_NUMELEMS, 2)

aelems(1) = 1.0 ! Hydrogen
aelems(2) = 16.0 ! Oxygen
call Multispecies_setProperty(H2O_SPEC, MS_AELEMS, aelems)

zelems(1) = 1 ! Hydrogen
zelems(2) = 8 ! Oxygen
call Multispecies_setProperty(H2O_SPEC, MS_ZELEMS, zelems)

fractions(1) = 2.0/3.0 ! Two parts Hydrogen
fractions(2) = 1.0/3.0 ! One part Oxygen
call Multispecies_setProperty(H2O_SPEC, MS_FRACTIONS, fractions)

Figure 11.5: A Simulation initSpecies.F90 file showing Multispecies initialization

11.3 Specifying Constituent Elements of a Species

A species can represent a specific isotope or a single element or a more complex material. Some units
in FLASH require information about the elements that constitute a single species. For example, water is
comprised of two elements: Hydrogen and Oxygen. The Multispecies database can store a list of the atomic
numbers, mass numbers, and relative number fractions of each of the elements within a given species. This
information is stored in the array properties MS ZELEMS, MS AELEMS, and MS FRACTIONS respectively. The
property MS NUMELEMS contains the total number of elements for a species (MS NUMELEMS would be two for
water since water is made of Hydrogen and Oxygen). There is an upper bound on the number of elements for
a single species which is defined using the preprocessor symbol MS MAXELEMS in the “Flash.h” header file and
defaults to six. The value of MS MAXELEMS can be changed using the ms maxelems setup variable. Figure 11.5
shows an example of how the constituent elements for water can be set using the Simulation initSpecies
subroutine.

The constituent element information is optional and is only needed if a particular unit of interest requires
it. At present, only the analytic cold opacities used in the Opacity unit make use of the constituent element
information.

11.4 Alternative Method for Defining Species

Section 11.1 described how species can be defined by using the SPECIES keyword in the Config file. Sec-
tion 11.2 then described how the properties of the species can be set using various subroutines defined in
the Multispecies unit. There is an alternative to these approaches which uses setup variables to define the
species, then uses runtime parameters to set the properties of each species. This allows users to change the
number and names of species without modifying the Config file and also allows users to change properties
without recompiling the code.



11.5. ROUTINE DESCRIPTIONS 187

Table 11.2: Automatically Generated Multispecies Runtime Parameters
Property Name Runtime Parameter Name
A ms <spec>A
Z ms <spec>Z
N ms <spec>Neutral
E ms <spec>Negative
BE ms <spec>BindEnergy
GAMMA ms <spec>Gamma
MS ZMIN ms <spec>Zmin
MS EOSTYPE eos <spec>EosType
MS EOSSUBTYPE eos <spec>SubType
MS EOSZFREEFILE eos <spec>TableFile
MS EOSENERFILE eos <spec>TableFile
MS EOSPRESFILE eos <spec>TableFile
MS NUMELEMS ms <spec>NumElems
MS ZELEMS ms <spec>ZElems <N>
MS AELEMS ms <spec>AElems <N>
MS FRACTIONS ms <spec>Fractions <N>
MS OPLOWTEMP op <spec>LowTemp

Species can be defined using the species setup variable. For example, to create two species called AIR
and SF6 one would specify species=air,sf6 in the simulation setup command. Using this setup variable
and using the SPECIES keyword in the Config file are mutually exclusive. Thus, the user must choose which
method they wish to use for a given simulation. Certain units, such as the Opacity unit, requires the use of
the setup variable.

When species are defined using the setup variable approach, the Multispecies unit will automatically
define several runtime parameters for each species. These runtime parameters can be used set the properties
shown in Table 11.1. The runtime parameter names contain the species name. Table 11.2 shows an example
of the mapping between runtime parameters and Multispecies properties, where <spec> is replaced by the
species name as specified in the species setup argument list. Some of these runtime parameters are arrays,
and thus the <N> is a number ranging from 1 to MS MAXELEMS. The Simulation initSpecies subroutine
can be used to override the runtime parameter settings.

11.5 Routine Descriptions

We now briefly discuss some interfaces to the multifluid database that are likely of interest to the user. Many
of these routines include optional arguments.

• Multispecies setProperty This routine sets the value species property. It should be called within
the subroutine Simulation initSpecies for all the species of interest in the simulation problem, and
for all the required properties (any of A, Z, N, E, EB, GAMMA).

FLASH Transition

In FLASH2, you could set multiple properties at once in a call to add fluid to db. In
FLASH4, individual calls are required. If you are setting up a nuclear network, there is a
precoded Simulation initSpecies to easily initialize all necessary species. It is located
in the unit Simulation/SimulationComposition, which must be listed in your simulation
Config file.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Multispecies/Multispecies_setProperty_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_initSpecies_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_initSpecies_F90.html
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• Multispecies getProperty Returns the value of a requested property.

• Multispecies getSum Returns a weighted sum of a chosen property of species. The total number of
species can be subset. The weights are optional, but are typically the mass fractions Xi of each of the
fluids at a point in space. In that case, if the selected property (one of Ai, Zi, . . . , γi) is denoted Pi,
the sum calculated is ∑

i

XiPi .

• Multispecies getAvg Returns the weighted average of the chosen property. As in Multispecies get-
Sum, weights are optional and a subset of species can be chosen. If the weights are denoted wi and the
selected property (one of Ai, Zi, . . . , γi) is denoted Pi, the average calculated is

1
N

N∑
i

wiPi ,

where N is the number of species included in the sum; it may be less than the number of all defined
species if an average over a subset is requested.

• Multispecies getSumInv Same as Multispecies getSum, but compute the weighted sum of the in-
verse of the chosen property. If the weights are denoted wi and the selected property (one of Ai, Zi,
. . . , γi) is denoted Pi, the sum calculated is

N∑
i

wi

Pi
.

For example, the average atomic mass of a collection of fluids is typically defined by

1
Ā

=
∑

i

Xi

Ai
, (11.1)

where Xi is the mass fraction of species i, and Ai is the atomic mass of that species. To compute Ā
using the multifluid database, one would use the following lines

call Multispecies_getSumInv(A, abarinv, xn(:))
abar = 1.e0 / abarinv

where xn(:) is an array of the mass fractions of each species in FLASH. This method allows some of
the mass fractions to be zero.

• Multispecies getSumFrac Same as Multispecies getSum, but compute the weighted sum of the
chosen property divided by the total number of particles (Ai). If the weights give the mass fractions
Xi of the fluids at a point in space and the selected property (one of Ai, Zi, . . . , γi) is denoted Pi, the
sum calculated is ∑

i

Xi

Ai
Pi .

• Multispecies getSumSqr Same as Multispecies getSum, but compute the weighted sum of the
squares of the chosen property values. If the weights are denoted wi and the selected property (one of
Ai, Zi, . . . , γi) is denoted Pi, the sum calculated is

N∑
i

wiPi
2 .

• Multispecies list List the contents of the multifluid database in a snappy table format.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Multispecies/Multispecies_getProperty_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Multispecies/Multispecies_getSum_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Multispecies/Multispecies_getAvg_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Multispecies/Multispecies_getSumInv_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Multispecies/Multispecies_getSumFrac_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Multispecies/Multispecies_getSumSqr_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Multispecies/Multispecies_list_F90.html
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11.6 Example Usage

In general, to use Multispecies properties in a simulation, the user must only properly initialize the species
as described above in the Simulation_init routine. But to program with the Multispecies properties, you
must do three things:

• #include the Flash.h file to identify the defined species

• #include the Multispecies.h file to identify the desired property

• use the Fortran interface to the Multispecies unit because the majority of the routines are overloaded.

The example below shows a snippet of code to calculate the electron density.

...
#include Flash.h
#include Multispecies.h

USE Multispecies_interface, ONLY: Multispecies_getSumInv, Multispecies_getSumFrac
...

do k=blkLimitsGC(LOW,KAXIS),blkLimitsGC(HIGH,KAXIS)
do j=blkLimitsGC(LOW,JAXIS),blkLimitsGC(HIGH,JAXIS)

do i=blkLimitsGC(LOW,IAXIS),blkLimitsGC(HIGH,IAXIS)
call Multispecies_getSumInv(A,abar_inv)
abar = 1.e0 / abar_inv
call Multispecies_getSumFrac(Z,zbar)
zbar = abar * zbar
ye(i,j,k) = abar_inv*zbar

enddo
enddo

enddo
...

11.7 Unit Test

The unit test for Multispecies provides a complete example of how to call the various API routines in
the unit with all variations of arguments. Within Multispecies unitTest, incorrect usage is also indicated
within commented-out statements.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Multispecies/Multispecies_unitTest_F90.html
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Chapter 12

Physical Constants Unit

source

PhysicalConstants

PhysicalConstantsMain

Figure 12.1: The PhysicalConstants unit directory tree.

The Physical Constants unit provides a set of common constants, such as Pi and the gravitational
constant, in various systems of measurement units. The default system of units is CGS, so named for having
a length unit in centimeters, a mass unit in grams, and a time unit in seconds. In CGS, the charge unit is
the esu, and the temperature unit is the Kelvin. The constants can also be obtained in the standard MKS
system of units, where length is in meters, mass in kilograms, and time in seconds. For MKS units, charge
is in Coloumbs, and temperature in Kelvin.

FLASH Transition

For ease of usage, the constant PI=3.14159.... is defined in the header file constants.h.
Including this file with #include “constants.h” is an alternate way to access the value of π,
rather than needing to include the PhysicalConstants unit.

Any constant can optionally be converted from the standard units into any other available units. This
facility makes it easy to ensure that all parts of the code are using a consistent set of physical constant values
and unit conversions.

For example, a program using this unit might obtain the value of Newton’s gravitational constant G in
units of Mpc3 Gyr−2M−1

� by calling

call PhysicalConstants_get ("Newton", G, len_unit="Mpc",
time_unit="Gyr", mass_unit="Msun")

In this example, the local variable G is set equal to the result, 4.4983× 10−15 (to five significant figures).
Physical constants are taken from K. Nahamura et al. (Particle Data Group), J. Phys. G 37, 075021

(2010).
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Table 12.1: Available Physical Constants

String Constant Description
Newton Gravitational constant G
speed of light Speed of light
Planck Planck’s constant
electron charge charge of an electron
electron mass mass of an electron
proton mass Mass of a proton
fine-structure fine-structure constant
Avogadro Avogadro’s Mole Fraction
Boltzmann Boltzmann’s constant
ideal gas constant ideal gas constant
Wien Wien displacement law constant
Stefan-Boltzmann Stefan-Boltzman constant
pi Pi
e e
Euler Euler-Mascheroni constant

12.1 Available Constants and Units

There are many constants and units available within FLASH3, see Table 12.1 and Table 12.2. Should the
user wish to add additional constants or units to a particular setup, the routine PhysicalConstants init
should be overridden and the new constants added within the directory of the setup.

12.2 Applicable Runtime Parameters

There is only one runtime parameter used by the Physical Constants unit: pc unitsBase selects the default
system of units for returned constants. It is a three-character string set to ”CGS” or ”MKS”; the default is
CGS.

12.3 Routine Descriptions

The following routines are supplied by this unit.

• PhysicalConstants get Request a physical constant given by a string, and returns its real value. This
routine takes optional arguments for converting units from the default. If the constant name or any of
the optional unit names aren’t recognized, a value of 0 is returned.

• PhysicalConstants init Initializes the Physical Constants Unit by loading all constants. This rou-
tine is called by Driver initFlash and must be called before the first invocation of Physical-
Constants get. In general, the user does not need to invoke this call.

• PhysicalConstants list Lists the available physical constants in a snappy table.

• PhysicalConstants listUnits Lists all the units available for optional conversion.

• PhysicalConstants unitTest Lists all physical constants and units, and tests the unit conversion
routines.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/PhysicalConstants/PhysicalConstants_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_PhysicalConstants.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/PhysicalConstants/PhysicalConstants_get_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/PhysicalConstants/PhysicalConstants_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_initFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/PhysicalConstants/PhysicalConstants_list_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/PhysicalConstants/PhysicalConstants_listUnits_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/PhysicalConstants/PhysicalConstants_unitTest_F90.html
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Table 12.2: Available Units for Conversion of Physical Constants

Base unit String Constant Value in CGS units Description
length cm 1.0 centimeter
time s 1.0 second
temperature K 1.0 degree Kelvin
mass g 1.0 gram
charge esu 1.0 ESU charge
length m 1.0E2 meter
length km 1.0E5 kilometer
length pc 3.0856775807E18 parsec
length kpc 3.0856775807E21 kiloparsec
length Mpc 3.0856775807E24 megaparsec
length Gpc 3.0856775807E27 gigaparsec
length Rsun 6.96E10 solar radius
length AU 1.49597870662E13 astronomical unit
time yr 3.15569252E7 year
time Myr 3.15569252E13 megayear
time Gyr 3.15569252E16 gigayear
mass kg 1.0E3 kilogram
mass Msun 1.9889225E33 solar mass
mass amu 1.660538782E-24 atomic mass unit
charge C 2.99792458E9 Coulomb

Cosmology-friendly units using H0 = 100 km/s/Mpc:
length LFLY 3.0856775807E24 1 Mpc
time TFLY 2.05759E17 2

3H0

mass MFLY 9.8847E45 5.23e12 Msun

FLASH Transition

The header file PhysicalConstants.h must be included in the calling routine due to the
optional arguments of PhysicalConstants get.

12.4 Unit Test

The PhysicalConstants unit test PhysicalConstants unitTest is a simple exercise of the functionality in
the unit. It does not require time stepping or the grid. “Correct” usage is indicated, as is erroneous usage.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/PhysicalConstants/PhysicalConstants_unitTest_F90.html
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Chapter 13

3T Capabilities for Simulation of
HEDP Experiments

The FLASH code has been extended with numerous capabilities to allow it to simulate laser-driven High
Energy Density Physics (HEDP) experiments. These experiments often require a multi-temperature treat-
ment of the plasma where the ion temperature, Tion and the electron temperature Tele are not necessarily
equal. Thermal radiation effects are also important in many High Energy Density (HED) plasmas. If the
radiation field has a total energy density given by urad(x, t) then the radiation temperature is defined as
Trad = (urad/a)1/4. The radiation field is not in equilibrium with the plasma and thus Trad 6= Tele 6= Tion.
We refer to this treatment, where these three temperatures are not necessarily equal, as a 3T treatment.
This chapter is intended to describe the basic theory behind FLASH’s 3T implementation to direct users to
other parts of the manual and simulations which provide further details on how to use these new capabilities
in FLASH.

The term “3T” is not meant to imply in any way that a gray treatment of the radiation field is being
assumed. The radiation temperature is only used to represent the total energy density, which is integrated
over all photon frequencies. The radiation temperature never directly enters the calculation. Thus, 3T refers
to the fact that FLASH is being run in a mode where 3 independent components (ions, electrons, radiation)
are being modeled. The radiation field is usually treated in a frequency dependent way through multigroup
radiation diffusion as described below and in Chapter 24.

The equations which FLASH solves to describe the evolution of an unmagnetized 3T plasma are:

∂ρ

∂t
+∇ · (ρv) = 0, (13.1a)

∂

∂t
(ρv) +∇ · (ρvv) +∇Ptot = 0, (13.1b)

∂

∂t
(ρEtot) +∇ · [(ρEtot + Ptot) v] = Qlas −∇ · q, (13.1c)

where:

• ρ is the total mass density

• v is the average fluid velocity

• Ptot is the total pressure defined as the sum over the ion, electron, and radiation pressures:

Ptot = Pion + Pele + Prad (13.2)

• Etot is the total specific energy which includes the specific internal energies of the electrons, ions, and
radiation field along with the specific kinetic energy. Thus:

Etot = eion + eele + erad +
1
2
v · v (13.3)
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• q is the total heat flux which is assumed to have a radiation and electron conductivity component:

q = qele + qrad (13.4)

• Qlas represents the energy source due to laser heating

Since the plasma is not assumed to have a single temperature, additional equations must be evolved to
describe the change in specific internal energies of the ions, electrons, and radiation field. For the electrons
and ions these equations are:

∂

∂t
(ρeion) +∇ · (ρeionv) + Pion∇ · v = ρ

cv,ele

τei
(Tele − Tion), (13.5a)

∂

∂t
(ρeele) +∇ · (ρeelev) + Pele∇ · v = ρ

cv,ele

τei
(Tion − Tele)−∇ · qele + Qabs −Qemis + Qlas, (13.5b)

∂

∂t
(ρerad) +∇ · (ρeradv) + Prad∇ · v = ∇ · qrad −Qabs + Qemis, (13.5c)

where:

• cv,ele is the electron specific heat

• τei is the ion/electron equilibration time

• Qabs represents the increase in electron internal energy due to the total absorption of radiation

• Qemis represents the decrease in electron internal energy due to the total emission of radiation

The 3T equation of state in FLASH connects the internal energies, temperatures, and pressures of the
components. Many different equations of state options exist in FLASH. These are described in Section 16.4.
A full-physics HEDP simulation using FLASH will solve equations (13.1) and (13.5) using the 3T equation of
state. These equations are somewhat redundant since (13.1c) can be written as a sum of the other equations.
These equations are also not yet complete, since it has not been described how many of the terms above are
defined and computed in FLASH. The remainder of this chapter will describe this and direct readers to the
appropriate sections of the manual where examples and further information can be found.

A series of operator splits is used to solve (13.1) and (13.5) in FLASH. First, all of the terms on the left
hand sides of these equations are split off and solved in various code units. The remaining equations:

∂ρ

∂t
+∇ · (ρv) = 0, (13.6a)

∂

∂t
(ρv) +∇ · (ρvv) +∇Ptot = 0, (13.6b)

∂

∂t
(ρEtot) +∇ · [(ρE + Ptot) v] = 0, (13.6c)

∂

∂t
(ρeion) +∇ · (ρeionv) + Pion∇ · v = 0, (13.6d)

∂

∂t
(ρeele) +∇ · (ρeelev) + Pele∇ · v = 0, (13.6e)

∂

∂t
(ρerad) +∇ · (ρeradv) + Prad∇ · v = 0, (13.6f)

describe the advection of conserved quantities and the effect of work. (13.6) is solved by the Hydro unit.
Chapter 15 describes the hydrodynamics solvers in a general way where only equations for conservation of
total mass, momentum, and energy are considered. The extension of the FLASH hydrodynamics solvers to
3T is described in Section 14.1.4. Note that these equations are not in a conservative form because of the
presence of the work terms in (13.6d), (13.6e), and (13.6f). These work terms are divergent at shocks and
cannot be directly evaluated. Two techniques are described in Section 14.1.4 for coping with this issue.
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The electron, ion, and radiation internal energy equations in the absence of the hydrodynamic terms are
shown in (13.7). The density is updated in the hydrodynamic update so for the remaining equations the
density is assumed to be constant, and we remove the density from the time derivatives.

ρ
∂eion

∂t
= ρ

cv,ele

τei
(Tele − Tion), (13.7a)

ρ
∂eele

∂t
= ρ

cv,ele

τei
(Tion − Tele)−∇ · qele + Qabs −Qemis + Qlas, (13.7b)

ρ
∂erad

∂t
= ∇ · qrad −Qabs + Qemis. (13.7c)

The first term on the right hand side of (13.7a) and (13.7b) describes the exchange of internal energy
between ions and electrons through collisions. This term will force the ion and electron temperatures to
equilibrate over time. The Heatexchange unit, described in Section 17.5.1, solves for this part of (13.7).
Specifically, it updates the ion and electron temperatures according to:

∂eion

∂t
=

cv,ele

τei
(Tele − Tion), (13.8a)

∂eele

∂t
=

cv,ele

τei
(Tion − Tele). (13.8b)

The electron specific heat, cv,ele is computed through calls to the equation of state. The ion/electron
equilibration time is computed in the Heatexchange unit.

The second term on the right hand side of (13.7b) represents the transport of energy through electron
thermal conduction. Thus the heat flux is defined as:

qele = −Kele∇Tele, (13.9)

where Kele is the electron thermal conductivity and is computed in the Conductivity unit (see Section 22.1).
The Diffuse unit, described in Chapter 18, is responsible for including the effect of conduction in FLASH
simulations. Again, using operator splitting, the Diffuse unit solves the following equation over a time step:

ρ
∂eele

∂t
= ∇ ·Kele∇Tele. (13.10)

This equation can be solved implicitly over the time step to avoid time-step constraints. The electron
conductivity is evaluated using a flux limiter to give more a physically realistic heat flux in regions where
the electron temperature gradient is very large.

The remaining terms describe radiation transport. FLASH incorporates radiation effects using multigroup
diffusion (MGD) theory. The total radiation flux, emission, and absorption terms which appear in (13.7)
contain contributions from each energy group. For group g, where 1 ≤ g ≤ Ng, the total quantities can be
written as summations over each group:

Qabs =
Ng∑
g=1

Qele,g, Qemis =
Ng∑
g=1

Qemis,g, qrad =
Ng∑
g=1

qg. (13.11)

The change in the radiation energy density for each group, ug, is described by:

∂ug

∂t
+∇ · (ugv) +

(
ug

eradρ

)
Prad∇ · v = −∇ · qg + Qemis,g −Qabs,g (13.12)

The total specific radiation energy is related to ug through:

ρerad =
Ng∑
g=1

ug (13.13)
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The RadTrans unit is responsible for solving the radiation diffusion equations for each energy group.
The RadTrans unit solves these diffusion equations implicitly by using the Diffuse unit. While the work
term for the total radiation energy is computed in the Hydro unit, the distribution of that work amongst
each energy group is performed in the RadTrans unit. Chapter 24 describes in detail how the multigroup
radiation diffusion package in FLASH functions. The group radiation flux, emission, and absorption terms
are all defined in that chapter. These terms are functions of the material opacity which is computed by the
Opacity unit and is described in Section 22.4.

The only remaining term in (13.7) is Qlas which represents the deposition of energy by lasers into the
electrons. The Laser implementation in the EnergyDeposition unit is responsible for computing Qlas. The
geometrics optics approximation to laser energy deposition is used in FLASH. Section 17.4 describes the
theory and usage of the laser ray-tracing model in FLASH in detail.

As has been described above, the HEDP capabilities in FLASH are divided amongst many units including:

• Hydro: Responsible for the 3T hydrodynamic update

• Eos: Computes 3T equation of state

• Heatexchange: Implements ion/electron equilibration

• Diffuse: Responsible for implementing implicit diffusion solvers and computes effect of electron con-
duction

• RadTrans: Implements multigroup radiation diffusion

• Opacity: Computes opacities for radiation diffusion

• Conductivity: Computes electron thermal conductivities

• EnergyDeposition: Computes the laser energy deposition

Several simulations are included with FLASH which demonstrate the usage of the HEDP capabilities
and, taken together, exercise all of the units listed above. These simulations are described briefly below.
Chapter 30 describes all of the simulations in detail. Below, the relevant simulations listed with brief
descriptions.

• MGDInfinite simulation, described in Section 30.6.1: Simple 0D test of the exchange of energy between
electrons, ions, and the radiation field

• MGDStep simulation, described in Section 30.6.2: Simple 1D test of electron conduction, ion/electron
equilibration, and MGD

• ShafranovShock simulation, described in Section 30.8.1: Simple 1D verification test of the structure
of a shock in a radiationless plasma with Tele 6= Tion.

• GrayDiffRadShock simulation, described in Section 30.8.2: Simple 1D verification test of the structure
of a radiating shock

• ReinickeMeyer simulation, described in Section 30.8.3: Verification test of a spherical blast wave with
thermal conduction

• LaserSlab simulation, described in Section 30.7.5: Full physics 2D simulation which includes 3T
hydrodynamics, tabulated EOS and opacity, MGD, electron conduction, and laser ray-tracing. This
simulation is meant to demonstrate how to set up a complex simulation of an HEDP experiment
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Hydrodynamics Units

source

physics

Hydro

HydroMain

split
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multiTemp PPMKernel

multiTemp

MHD 8Wave RHD

unsplit

Hydro Unsplit MHD StaggeredMesh multiTemp

Figure 14.1: The Hydro unit directory tree.

The Hydro unit solves Euler’s equations for compressible gas dynamics in one, two, or three spatial di-
mensions. We first describe the basic functionality; see implementation sections below for various extensions.
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The Euler equations can be written in conservative form as

∂ρ

∂t
+∇ · (ρv) = 0 (14.1)

∂ρv
∂t

+∇ · (ρvv) +∇P = ρg (14.2)

∂ρE

∂t
+∇ · [(ρE + P )v] = ρv · g , (14.3)

where ρ is the fluid density, v is the fluid velocity, P is the pressure, E is the sum of the internal energy ε
and kinetic energy per unit mass,

E = ε +
1
2
|v|2 , (14.4)

g is the acceleration due to gravity, and t is the time coordinate. The pressure is obtained from the energy
and density using the equation of state. For the case of an ideal gas equation of state, the pressure is given
by

P = (γ − 1)ρε , (14.5)

where γ is the ratio of specific heats. More general equations of state are discussed in Section 16.2 and
Section 16.3.

In regions where the kinetic energy greatly dominates the total energy, computing the internal energy
using

ε = E − 1
2
|v|2 (14.6)

can lead to unphysical values, primarily due to truncation error. This results in inaccurate pressures and
temperatures. To avoid this problem, we can separately evolve the internal energy according to

∂ρε

∂t
+∇ · [(ρε + P )v]− v · ∇P = 0 . (14.7)

If the internal energy is a small fraction of the kinetic energy (determined via the runtime parameter
eintSwitch), then the total energy is recomputed using the internal energy from (14.7) and the veloci-
ties from the momentum equation. Numerical experiments using the PPM solver included with FLASH
showed that using (14.7) when the internal energy falls below 10−4 of the kinetic energy helps avoid the
truncation errors while not affecting the dynamics of the simulation.

For reactive flows, a separate advection equation must be solved for each chemical or nuclear species

∂ρX`

∂t
+∇ · (ρX`v) = 0 , (14.8)

where X` is the mass fraction of the `th species, with the constraint that
∑

` X` = 1. FLASH will enforce
this constraint if you set the runtime parameter irenorm equal to 1. Otherwise, FLASH will only restrict the
abundances to fall between smallx and 1. The quantity ρX` represents the partial density of the `th fluid.
The code does not explicitly track interfaces between the fluids, so a small amount of numerical mixing can
be expected during the course of a calculation.

The hydro unit has a capability to advect mass scalars. Mass scalars are field variables advected with
density, similar to species mass fractions,

∂ρφ`

∂t
+∇ · (ρφ`v) = 0 , (14.9)

where φ` is the `th mass scalar. Note that mass scalars are optional variables; to include them specify the
name of each mass scalar in a Config file using the MASS SCALAR keyword. Mass scalars are not renormalized
in order to sum to 1, except when they are declared to be part of a renormalization group. See Section 5.5.1
for more details.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
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Table 14.1: Runtime parameters used with the hydrodynamics (Hydro) unit.

Variable Type Default Description
eintSwitch real 0 If ε < eintSwitch · 1

2 |v|
2, use the internal energy

equation to update the pressure
irenorm integer 0 If equal to one, renormalize multifluid abundances

following a hydro update; else restrict their values
to lie between smallx and 1.

cfl real 0.8 Courant-Friedrichs-Lewy (CFL) factor; must be
less than 1 for stability in explicit schemes

Table 14.2: Solution variables used with the hydrodynamics (Hydro) unit.

Variable Type Description
dens PER VOLUME density
velx PER MASS x-component of velocity
vely PER MASS y-component of velocity
velz PER MASS z-component of velocity
pres GENERIC pressure
ener PER MASS specific total energy (T + U)
temp GENERIC temperature

14.1 Gas hydrodynamics

14.1.1 Usage

The two gas hydrodynamic solvers supplied in the release of FLASH4 are organized into two different operator
splitting methods: directionally split and unsplit. The directionally split piecewise-parabolic method (PPM)
makes use of second-order Strang time splitting, and the new directionally unsplit solver is based on Monotone
Upstream-centered Scheme for Conservation Laws (MUSCL) Hancock type second-order scheme.

The algorithms are described in Section 14.1.2 and Section 14.1.3 and implemented in the directory tree
under physics/Hydro/HydroMain/split/PPM and physics/Hydro/HydroMain/unsplit/Hydro_Unsplit. Ex-
tensions for multitemperature applications are described in Section 14.1.4.

Current and future implementations of Hydro use the runtime parameters and solution variables described
in Table 14.1 and Table 14.2. Additional runtime parameters used either solely by the PPM method or the
unsplit hydro solver are described in HydroMain.

14.1.2 The piecewise-parabolic method (PPM)

FLASH includes a directionally split piecewise-parabolic method (PPM) solver descended from the PROME-
THEUS code (Fryxell, Müller, and Arnett 1989). The basic PPM algorithm is described in detail in Woodward
and Colella (1984) and Colella and Woodward (1984). It is a higher-order version of the method developed
by Godunov (1959). FLASH implements the Direct Eulerian version of PPM.

Godunov’s method uses a finite-volume spatial discretization of the Euler equations together with an
explicit forward time difference. Time-advanced fluxes at cell boundaries are computed using the numerical
solution to Riemann’s shock tube problem at each boundary. Initial conditions for each Riemann problem
are determined by assuming the non-advanced solution to be piecewise-constant in each cell. Using the
Riemann solution has the effect of introducing explicit nonlinearity into the difference equations and permits
the calculation of sharp shock fronts and contact discontinuities without introducing significant nonphysical
oscillations into the flow. Since the value of each variable in each cell is assumed to be constant, Godunov’s
method is limited to first-order accuracy in both space and time.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
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PPM improves on Godunov’s method by representing the flow variables with piecewise-parabolic func-
tions. It also uses a monotonicity constraint rather than artificial viscosity to control oscillations near dis-
continuities, a feature shared with the MUSCL scheme of van Leer (1979). Although these choices could lead
to a method which is accurate to third order, PPM is formally accurate only to second order in both space
and time, as a fully third-order scheme proved not to be cost-effective. Nevertheless, PPM is considerably
more accurate and efficient than most formally second-order algorithms.

PPM is particularly well-suited to flows involving discontinuities, such as shocks and contact disconti-
nuities. The method also performs extremely well for smooth flows, although other schemes which do not
perform the extra work necessary for the treatment of discontinuities might be more efficient in these cases.
The high resolution and accuracy of PPM are obtained by the explicit nonlinearity of the scheme and through
the use of intelligent dissipation algorithms, such as monotonicity enforcement and interpolant flattening.
These algorithms are described in detail by Colella and Woodward (1984).

A complete description of PPM is beyond the scope of this guide. However, for comparison with other
codes, we note that the implementation of PPM in FLASH uses the Direct Eulerian formulation of PPM
and the technique for allowing non-ideal equations of state described by Colella and Glaz (1985). For
multidimensional problems, FLASH uses second-order operator splitting (Strang 1968). We note below the
extensions to PPM that we have implemented.

The PPM algorithm includes a steepening mechanism to keep contact discontinuities from spreading over
too many cells. Its use requires some care, since under certain circumstances, it can produce incorrect results.
For example, it is possible for the code to interpret a very steep (but smooth) density gradient as a contact
discontinuity. When this happens, the gradient is usually turned into a series of contact discontinuities,
producing a stair step appearance in one-dimensional flows or a series of parallel contact discontinuities in
multi-dimensional flows. Under-resolving the flow in the vicinity of a steep gradient is a common cause of
this problem. The directional splitting used in our implementation of PPM can also aggravate the situation.
The contact steepening can be disabled at runtime by setting use steepening = .false..

The version of PPM in the FLASH code has an option to more closely couple the hydrodynamic solver
with a gravitational source term. This can noticeably reduce spurious velocities caused by the operator
splitting of the gravitational acceleration from the hydrodynamics. In our ‘modified states’ version of PPM,
when calculating the left and right states for input to the Riemann solver, we locally subtract off from
the pressure field the pressure that is locally supporting the atmosphere against gravity; this pressure is
unavailable for generating waves. This can be enabled by setting ppm modifystates = .true..

The interpolation/monotonization procedure used in PPM is very nonlinear and can act differently on the
different mass fractions carried by the code. This can lead to updated abundances that violate the constraint
that the mass fractions sum to unity. Plewa and Müller (1999) (henceforth CMA) describe extensions to
PPM that help prevent overshoots in the mass fractions as a result of the PPM advection. We implement
two of the modifications they describe, the renormalization of the average mass fraction state as returned
from the Riemann solvers (CMA eq. 13), and the (optional) additional flattening of the mass fractions to
reduce overshoots (CMA eq. 14-16). The latter procedure is off by default and can be enabled by setting
use cma flattening = .true..

Finally, there is an odd-even instability that can occur with shocks that are aligned with the grid. This
was first pointed out by Quirk (1997), who tested several different Riemann solvers on a problem designed
to demonstrate this instability. The solution he proposed is to use a hybrid Riemann solver, using the
regular solver in most regions but switching to an HLLE solver inside shocks. In the context of PPM, such
a hybrid implementation was first used for simulations of Type II supernovae. We have implemented such a
procedure, which can be enabled by setting hybrid riemann = .true..

14.1.3 The unsplit hydro solver

A directionally unsplit pure hydrodynamic solver (unsplit hydro) is an alternate gas dynamics solver to the
split PPM scheme. The method basically adopts a predictor-corrector type formulation (zone-edge data-
extrapolated method) that provides second-order solution accuracy for smooth flows and first-order accuracy
for shock flows in both space and time. Recently, the order of spatial accuracy in data reconstruction for the
normal direction has been extended to implement the 3rd order PPM and 5th order Weighted ENO (WENO)
methods. This unsplit hydro solver can be considered as a reduced version of the Unsplit Staggered Mesh

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
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(USM) MHD solver (see details in Section 14.3.3) that has been available in previous FLASH3 releases.
The unsplit hydro implementation can solve 1D, 2D and 3D problems with added capabilities of exploring

various numerical implementations: different types of Riemann solvers; slope limiters; first, second, third
and fifth reconstruction methods; a strong shock/rarefaction detection algorithm as well as two different
entropy fix routines for Roe’s linearized Riemann solver.

One of the notable features of the unsplit hydro scheme is that it particularly improves the preservation
of flow symmetries as compared to the splitting formulation. Also, the scheme used in this unsplit algorithm
can take a wide range of CFL stability limits (e.g., CFL < 1) for all three dimensions, which is based on using
upwinded transverse flux formulations developed in the multidimensional USM MHD solver (Lee, 2006; Lee
and Deane, 2009; Lee, 2013).

The above set of runtime parameters provide various types of different combinations that help in obtaining
numerical accuracy, efficiency and stability. However, there are some important tips users should know before
using them.

• [Extended stencil]: When NGUARD=6 is used, users should also use nxb, nyb, and nzb larger than
2*NGUARD. For example, specifying -nxb=16 in the setup works well for 1D cases. Once setting up
NGUARD=6, users still can use FOG, MH, PPM, or WENO without changing NGUARD back to 4.

• [transOrder]: The first order method transOrder=1 is a default and only supported method that is
stable according to the linear Fourier stability analysis. The choices for higher-order interpolations are
no longer available in this release.

• [EOSforRiemann]: EOSforRiemann = .true. will call (expensive) EOS routines to compute consistent
adiabatic indices (i.e., gamc, game) according to the given left and right states in Riemann solvers.
For the ideal gamma law, in which those adiabatic indices are constant, it is not required to call EOS
at all and users can set it .false. to reduce computation time. On the other hand, for a degenerate
gas, one can enable this switch to compute thermodynamically consistent gamc, game, which in turn
are used to compute the sound speed and internal energy in Riemann flux calculations. When disabled,
interpolations will be used instead to get approximations of gamc, game. This interpolation method
has been tested and proven to gain significant computational efficiency and accuracy, giving reliable
numerical solutions even for simulating a degenerate gas.

• [Gravity coupling with Unplit Hydro Solvers]: When gravity is included in a simulation using the
unsplit hydro and MHD solvers, users can choose to include gravitational source terms in the Rie-
mann state update at n + 1/2 time step (i.e., use gravHalfUpdate=.true.). This will provide a
second-order accuracy with respect to coupling gravitational accelerations to hydrodynamics. With
use gravHalfUpdate=.true., users can choose use gravConsv=.true. to adopt conservative forms (ex-
pensive); although, an efficient primitive counterpart update should be accurate enough for most cases.
Otherwise, if use gravHalfUpdate=.false., the gravitational source terms will only be included at
the final update step (i.e., Un to Un+1), giving first order accuracy. We also have included a new
approach to update gravity accelerations at n + 1/2 time step (i.e., use gravPotUpdate=.true.)
. In this new approach, the gravity potentials are calculated by calling a Poisson solver, giving
more accurate values at cell-interfaces. The option use gravPotUpdate=.true. only works with
the primitive update, use gravConsv=.false.. It should be noted that the new optimized unsplit
hydro/MHD codes (i.e., +uhd, +usm in source/physics/Hydro/HydroMain/unsplit) do not support
use gravPotUpdate=.true. and use gravConsv=.true. any more; however they are still supported
in the old unsplit codes (i.e., +uhdold, +usmold in source/physics/Hydro/HydroMain/unsplit_old).

• [Reduced CTU vs. Full CTU for 3D in the unsplit hydro (UHD) and staggered mesh (USM) solvers]:
use 3dFullCTU is a new switch that enhances a numerical stability for 3D simulations in the unsplit
solvers using the corner transport upwind (CTU) algorithm by Colella. The unsplit solvers of FLASH
are different from many other shock capturing codes, in that neither UHD nor USM solvers need
intermediate Riemann solver solutions for updating transverse fluxes in multidimensional problems.
This provides a computational efficiency because there is a reduced number of calls to Riemann solvers
per cell per time step. The total number of required Riemann solver solutions are two for 2D and three
for 3D (except for extra Riemann calls for constraint-transport (CT) update in USM). This is smaller
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Table 14.3: Additional runtime parameters for Interpolation Schemes in the unsplit hydro solver
(physics/Hydro/HydroMain/unsplit/Hydro Unsplit)

Variable Type Default Description
order integer 2 Order of method in data reconstruction: 1st order Go-

dunov (FOG), 2nd order MUSCL-Hancock (MH), 3rd or-
der PPM, 5th order WENO.

transOrder integer 1 Interpolation order of accuracy of taking upwind biased
transverse flux derivatives in the unsplit data reconstruc-
tion: 1st, 2nd, 3rd. The choice of using transOrder=4
adopts a slope limiter between the 1st and 3rd order ac-
curate methods to minimize oscillations in upwinding at
discontinuities.

slopeLimiter string “vanLeer” Slope limiter: “MINMOD”, “MC”, “VANLEER”, “HY-
BRID”, “LIMITED”

LimitedSlopeBeta real 1.0 Slope parameter specific for the “LIMITED” slope by Toro
charLimiting logical .true. Enable/disable limiting on characteristic variables (.false.

will use limiting on primitive variables)
use steepening logical .false. Enable/disable contact discontinuity steepening for PPM

and WENO
use flattening logical .false. Enable/disable flattening (or reducing) numerical oscilla-

tions for MH, PPM, and WENO
use avisc logical .false. Enable/disable artificial viscosity for FOG, MH, PPM, and

WENO
cvisc real 0.1 Artificial viscosity coefficient
use upwindTVD logical .false. Enable/disable upwinded TVD slope limiter PPM. NOTE:

This requires NGUARD=6
use hybridOrder logical .false. Enable an adaptively varying reconstruction order scheme

reducing its order from a high-order to first-order depend-
ing on monotonicity constraints

use gravHalfUpdate logical .false. On/off gravitational acceleration source terms at the half
time Riemann state update

use gravConsv logical .false. Primitive/conservative update for including gravitational
acceleration source terms at the half time Riemann state
update

use gravPotUpdate logical .false. Use gravity source term update by calling Poisson solver.
Note: this only can be used with use gravConsv=.false.

use 3dFullCTU logical .true. Enable a full CTU (e.g., similar to the standard 12-
Riemann solve) algorithm that provides full CFL stability
in 3D. If .false., then the theoretical CFL bound for 3D
becomes less than 0.5 based on the linear Fourier analysis.
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Table 14.4: Additional runtime parameters for Riemann Solvers in the unsplit hydro solver
(physics/Hydro/HydroMain/unsplit/Hydro Unsplit)

Variable Type Default Description
RiemannSolver string “Roe” Different choices for Riemann solver. “LLF (local

Lax-Friedrichs)”, “HLL”, “HLLC”, “HYBRID”,
“ROE”, and “Marquina”

shockDetect logical .false. On/off attempting to detect strong
shocks/rarefactions (and saving flag in "shok"
variable)

shockLowerCFL logical .false. On/off lowering of CFL factor where strong shocks
are detected, automatically sets shockDetect if
on.

EOSforRiemann logical .false. Enable/disable calling EOS in computing each Go-
dunov flux

entropy logical .false. On/off entropy fix algorithm for Roe solver
entropyFixMethod string ‘‘HARTENHYMAN’’ Entropy fix method for the Roe solver.

“HARTEN”, “HARTENHYMAN”

than the usual stabilty requirement in many other codes which needs four for 2D and twelve for 3D in
order to provide a full CFL limit (i.e., CFL < 1).

In general for 3D, there is another computationally efficient approach that only uses six Riemann
solutions (aka, 6-CTU) instead of solving twelve Riemann problems (aka, 12-CTU). In this efficient
6-CTU, however, the numerical stability limit becomes CFL< 0.5.

For solving 3D problems in UHD and USM, enabling the new switch use 3dFullCTU=.true. (i.e., full-
CTU) will make the solution evolution scheme similar to 12-CTU while requiring to solve three Riemann
problems only (again, except for the CT update in USM). On the other hand, use 3dFullCTU=.false.
(i.e., reduced-CTU) will be similar to the 6-CTU integration algorithm with a reduced CFL limit (i.e.,
CFL < 0.5).

Unsplit Hydro Solver vs. Unsplit Staggered MHD Mesh Solver

One major difference between the unsplit hydro solver and the USM MHD solver is the pres-
ence of magnetic and electric fields. The associated staggered mesh configuration required
for the USM MHD solver is not needed in the unsplit hydro solver, and all hydrodynamic
variables are stored at cell centers.

Stability Limits for both Unsplit Hydro Solver and Unsplit Staggered Mesh
Solver

As mentioned above, the two unsplit solvers can take a wide range of CFL limits in all three
dimensions (i.e., CFL < 1). However, in some circumstances where there are strong shocks
and rarefactions, shockLowerCFL=.true. could be useful to gain more numerical stability
by lowering the CFL accordingly (e.g., default settings provide 0.45 for 2D and 0.25 for
3D for the Donor scheme). This approach will automatically revert such reduced stability
conditions to any given original condition set by users when there are no significant shocks
and rarefactions detected.
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Setting up a simulation with the unsplit hydro solver

The default hydro implementation has changed from split to unsplit in FLASH4.4. One can
still specify +unsplitHydro (or +uhd for short) in the setup line in order to explicitly request
the unsplit hydro solver for a simulation. One needs to specify +splitHydro in the setup
line if a split hydro solver is required instead. For instance, a setup call ./setup Sedov
-2d -auto +splitHydro will run a Sedov 2D problem using the split PPM hydro solver.
Without specifying +unsplitHydro, the default unsplit hydro solver will be selected.

Diffusion terms

Non-ideal terms, such as viscosity and heat conduction, can be included in the unsplit hydro
solver for simulating diffusive processes. Please see related descriptions in Section 14.3.5.

Non-Cartesian Grid Support

Grid support for non-Cartesian geometries has been revised in the unsplit hydro and MHD
solvers in the current release. The supported geometries are (i) 1D spherical (ii) 2D cylin-
drical in r-z. Please see related descriptions in Section 8.11.

14.1.3.1 Implementation of Stationary Rigid Body in a Simulation Domain for Unsplit Hydro
Solver

An approach to include a single or multiple stationary rigid body (bodies) in a simulation domain has been
newly introduced in the unsplit hydro solver. Using this new feature it is possible to add any numbers of
solid bodies that are of any shapes inside a computational domain, where a reflecting boundary condition
is to be applied at each solid surface. Due to the nature of regualar box-like grid structure in FLASH, the
surface of rigid body looks like stair steps at best rather than smooth or round shapes. High refinement
levels are recommended at such stair shaped interfaces around the rigid body.

In order to add a rigid body in a simulation, users first need to add a variable called BDRY_VAR in a
simulation Config file. The next step is to initialize BDRY_VAR in Simulation_initBlock.F90 in such a way
that a positive one is assigned to cells in a rigid body (i.e., solnData(BDRY_VAR,i,j,k)=1.0 ); otherwise a
negative one for all other cells (i.e., solnData(BDRY_VAR,i,j,k)=-1.0).

Users can allow high resolutions around the rigid body by promoting BDRY_VAR to be one of the refinement
variables (i.e., refine_var_1=‘‘bdry’’ in flash.par).

The implementation automatically adapts order (a spatial reconstruction order; see Table 14.4) in fluid
cells that are near the rigid body, reducing any order (> 1) to order=1 at those fluid cells adjacent to the
body. This prohibits any high order (higher than 1) interpolation algorithms from reaching the rigid body
data which should not be used when reconstructing high order Riemann states in the adjacent fluid cells.

For this reason there is one stability issue during simulations when order in the fluid cells becomes
1 and hence the local reconstruction scheme becomes a first order Godunov method. For these cells, the
multidimensional local data reconstruction-evolution integration scheme reduces to a donor cell method
(otherwise globally the corner-transport-upwind method by Colella) which requires a reduced CFL limit
(i.e., CFL < 1/2 for 2D; CFL < 1/3 for 3D). In FLASH4.3, a reduced CFL factor is automatically used in
such cases; the theoretical reduced CFL limit of 1/NDIM is further adjusted by hy cflFallbackFactor.

Two example simulations can be found in Section 30.1.12.1 and Section 30.1.12.2.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
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14.1.4 Multitemperature extension for Hydro

Chapter 13 described the new capabilities in FLASH for modeling High Energy Density Physics (HEDP)
experiments and describes the basic theory. These experiments often require a 3T treatment of the plasma
as described in Chapter 13. Equation (13.1) shows the full set of 3T equations solved by the current version
of FLASH. A series of operator splits are used to isolate the hydrodynamic terms from the various source
terms. The Hydro unit is responsible for solving the system of equations which includes the hydrodynamic
terms, shown in (13.6). These terms describe advection and work. Note this system contains a redundant
equation since the total energy equation, (13.6c), can be written as a sum which includes (13.6b), (13.6d),
(13.6e), and (13.6f).

A significant challenge exists in solving (13.6) since (13.6d), (13.6e), and (13.6f) contain source terms that
involve velocity divergences; these are the work terms. The quantity ∇·v is not defined at a shock, and thus
directly evaluating this source term is not possible. Two techniques have been implemented in FLASH for
solving (13.6) without evaluating the work terms directly. These will be referred to as the entropy advection
approach and the RAGE-like approach. These approaches exploit the fact that the existing hydrodynamic
solvers (the split and unsplit solvers) already solve the conservation equations for total mass, momentum,
and energy. These equations retain the same form in the 3T case, however they are not complete and
must be augmented with other equations to close the system since the total pressure is computed using
an equation of state that requires knowledge of the properties of ions and electrons independently. For
example, in many equations of state, we can write that Pele = Pele(ρ, eele) and Pion = Pion(ρ, eion). Thus
P = Pele + Pion = P (ρ, eele, eion). In the 1T case, the system can be closed by assuming Tele = Tion.

14.1.4.1 The Entropy Advection Approach

The total entropy is not continuous at a shock. To conserve mass, momentum, and energy, shocks must
irreversibly convert kinetic energy to internal energy. A good approximation that can be made is that the
electron entropy is continuous across a shock. The entropy advection approach makes this assumption to
solve for the state of the ions. The entropy advection approach has had limited testing. It has not been
extended to incorporate radiation. Thus, there is no need to include (13.6f).

The entropy advection approach solves the first three equations of (13.6) for conservation of total mass,
momentum, and energy. Now the system can be closed by solving either (13.6d) or (13.6e). However, this
cannot be done, since those equations have terms that are divergent at shocks. The solution is to add an
additional equation which states that electron entropy is advected with the fluid:

∂

∂t
(ρsele) +∇ · (ρselev) = 0 (14.10)

The electron internal energy, temperature and other properties are then computed using the EOS in a mode
which accepts specific electron entropy sele in addition to specific combined internal energy Tetot and ρ as
inputs. Thus, the solution procedure for the entropy advection scheme is:

• Solve the system of equations defined by (13.6a), (13.6b), (13.6c), and (14.10)

• Compute the total specific internal energy, etot, by subtracting the kinetic energy from the total energy:
etot = Etot − v · v/2

• Compute the electron specific internal energy using the 3T equation of state: eele = EOS(ρ, sele, etot)

• Compute the ion specific internal energy from the total specific internal energy using the kinetic energy
and the electron internal energy: eion = etot − eele

14.1.4.2 The RAGE-like Approach

The RAGE-like approach is so named because it is identical to the method implemented in the radiation
hydrodynamics code RAGE (Gittings, 2008). Verification tests comparing the two codes have shown nearly
identical behavior. The RAGE-like is physically accurate in smooth flow, but does not distribute internal
energy correctly among the ions, electrons, and radiation field at shocks. This is in contrast to the entropy
advection approach which does distribute energy correctly, but has its own limitations.
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In general, let ∆es be the change in the internal energy at a particular location over some short time,
∆t. The subscript s refers to either ions, electrons, radiation, or the total specific internal energy. When
considering only the hydrodynamic effects, ∆es = ∆eadv

s + ∆ework
s + ∆eshock

s , where:

1. ∆eadv
s refers to the change in internal energy due to the advection of internal energy with the fluid

2. ∆ework
s refers to the change in internal energy due to hydrodynamic work. This term is not well defined

near shocks.

3. ∆eshock
s refers to changes in internal energy due to shock heating. Shock heating is the necessarily,

irreversible conversion of kinetic energy to internal energy which occurs at shock as a consequence of
conserving mass, momentum, and energy.

One physically accurate approximation is that ∆eshock
ion = ∆eshock

tot . The challenge of 3T hydrodynamics lies
in dividing these components so that they can be correctly apportioned among the ions, electrons, and
radiation field. The entropy advection approach avoids maintains the physically accurate result by solving
an equation for electron entropy.

The RAGE-like approach does not apportion shock heating to only the ions. Rather it apportions the
quantity ∆ework

tot +∆eshock
tot among the ions, electrons, and radiation field in proportion to the partial pressures

of these components. This is consistent with (13.6) in smooth flow, but it not accurate near shocks where
the shock heating should only contribute to the change in the ion internal energy. Note that it is possible
to isolate internal energy changes due to advection by solving as set of advection equations for the ions,
electrons, and radiation field.

Thus, the solution procedure for the RAGE-like approach is:

1. Solve the system of equations defined by (13.6a), (13.6b), and (13.6c) and simultaneously solve:

∂

∂t
(ρeele) +∇ · (ρeelev) = 0, (14.11a)

∂

∂t
(ρeion) +∇ · (ρeionv) = 0, (14.11b)

∂

∂t
(ρerad) +∇ · (ρeradv) = 0, (14.11c)

to update the internal energies by including only advection related changes.

2. Compute the change in total specific internal energy over the time step for each computational cell:
∆etot = ∆Etot − v · v/2

3. Compute ∆ework
tot +∆eshock

tot by subtracting the advected energy changes from the total change in internal
energy

4. Divide ∆ework
tot + ∆eshock

tot amongst the ions, electrons, and radiation field according to the ratio of
pressures

14.1.4.3 Use, Implications, and Limitations of Multitemperature Hydro Approaches

Each approach has its own strengths and weaknesses. The entropy advection approach is more accurate in
the sense that it correctly includes all shock heating in the ion internal energy. The RAGE-like approach
is less accurate near shocks for this reason in terms of predicting the correct downstream ion temperature
and electron temperature. In general, immediately downstream of a shock, the RAGE-like approach will
predict an electron temperature that is too large and an ion temperature that is too small. However, the
density and velocity in the vicinity of shocks will be accurate. Furthermore, ion/electron equilibration
(see Chapter 13) will quickly act to equalize the ion and electron temperatures. Therefore, the RAGE-like
approach is reasonable when the ion/electron equilibration time is small as is the case in many physical
scenarios. The Shafranov Shock simulation (see Section 30.8.1) compares the temperatures produced by the
RAGE-like approach through these two approaches.
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Table 14.5: Aditional solution variables used with the hydrodynamics (Hydro) unit extended for multitem-
perature. Note that “specific” variables are understood as per mass unit of the combined fluid.

Variable Corresponding 1T Variable Type Description
tion temp GENERIC ion temperature
tele temp GENERIC electron temperature
trad temp GENERIC radiation temperature
pion pres GENERIC ion pressure
pele pres GENERIC electron pressure
prad pres GENERIC radiation pressure
eion eint/ener PER MASS specific ion internal energy
eele eint/ener PER MASS specific electron internal energy
erad eint/ener PER MASS specific radiation energy
sele PER MASS (mass scalar) specific electron entropy

The entropy advection approach has some practical limitations that prevent its use in FLASH for general
problems. First, many of the 3T EOS models in FLASH do not support the calculation of electron entropy.
The only EOS that does is the gamma-law model which is not appropriate modeling many HEDP experi-
ments. Furthermore, oscillations in the electron and ion temperatures have been observed when using this
approach. These oscillations can lead to negative ion temperatures. For these reasons, the entropy advection
approach has not yet been used for production FLASH simulations of HEDP experiments.

Users can select which 3T hydro approach to use by setting the hy eosModeAfter runtime parameter.
When set to “dens ie gather” a RAGE-like approach is used. When set to “dens ie sele gather”, the entropy
advection approach is used. Due to the limitations described above, the RAGE-like approach is currently
the default option. The +uhd3t setup shortcut can be used to setup a simulation using the 3T extension of
the unsplit hydrodynamics solver. The split solver is included by default whenever a multitemperature EOS
is included in the simulation. The Shafranov Shock simulation (Section 30.8.1) and radiative shock (Sec-
tion 30.8.2) simulations demonstrate the use of the split solver. The Laser Slab simulation (Section 30.7.5)
demonstrates the use of the 3T unsplit hydrodynamics solver.

The multitemperature hydro extensions are implemented in several implementation directories named
multiTemp within the normal hydrodynamic solvers. These contain source files that replace some of the
source files of the same name that reside higher in the source tree, and related source and Config files.
Together, these files add code functionality and solution variables that are appropriate for multitemperature
simulations. The FLASH configuration mechanism automatically takes care of building with the right
versions of source files when the multiTemp directories are included.

The Hydro unit thus adds variables that are used to describe the state of each of the three components.
In the current version, these are maintained in addition to corresponding variables for the state of the fluid
as a whole. There is thus redundancy in the state description. As a benefit of this redundancy, some code
units that were written without multitemperature in mind may continue to function in a multitemperature
context by referring to the usual 1T set of variables (like temp, pres, ener, eint). The set of variables may
be optimized in future code revisions. Table 14.5 shows some of the additional variables.

Hydro needs a multitemperature implementation of Eos in oder to work for multitemperature setups.
Thus when a simulation is configured to use the multiTemp Hydro code, it also needs to include one of
the Eos implementations under physics/Eos/EosMain/multiTemp. The Config files under multiTemp
in Hydro will take care of this, but the simulation may have to request a specific implementation under
physics/Eos/EosMain/multiTemp. A simuation also needs to control which EOS modes to use during a
simulation. Thus the runtime parameters eosMode, eosModeInit, and the new hy eosModeAfter need to
be set appropriately.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
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14.1.5 Chombo compatible Hydro

This is a slightly modified version of the split Hydro solver (Section Section 14.1.2) which must be used when
including Chombo Grid. It is available at physics/Hydro/HydroMain/split/PPM/chomboCompatible and
is automatically selected by the setup script whenever an application includes Chombo Grid.

It is required because the Chombo class LevelFluxRegister which performs flux correction at fine-
coarse boundaries has a very different interface to the subroutines in Paramesh. A LevelFluxRegister
conserves fluxes at fine-coarse boundaries and then corrects the coarse solution data. In contrast, the
Paramesh subroutine Grid_conserveFluxes only conserves fluxes and then FLASH updates the solution
data in hy_ppm_updateSoln.

This implementation has not been tested extensively and should not be used in a production simulation.
We have encountered worse than expected mass and total energy conservation when it has been used with
Chombo Grid. It is not yet known whether this is a problem with Chombo compatible Hydro or whether
our AMR refinement is too aggressive and there is fine-coarse interpolation where there are sharp shock
fronts. Aggressive AMR refinement could be the problem because the availability of cell-by-cell refinement
in Chombo is very different to our prior experience with Paramesh which refines entire blocks at a time.

An example of bad mass and total energy conservation happens in a Sod problem that uses the included
parameter file named test_regular_fluxes_fbs_troublesome.par. The boundary conditions are setup
to be periodic, so that mass and total energy should be conserved. Integrated mass and total energy at
the end of test problem change by order 1 × 10−5%. Increasing lrefine_max from 2 to 4 does not lead to
worse conservation. We have found that we can eliminate the conservation problems in this test problem
by setting BRMeshRefineBlockFactor = 8 and maxBlockSize = 8, however, such a change has not fixed
every test problem configuration which has shown poor conservation. In general, we get better conservation
when using mesh parameter values maxBlockSize >= 8, BRMeshRefineBlockFactor >= 8, refRatio = 2
and tagRadius >= 2, and so have added warning messages in the FLASH log file when these values are
outside of the given range. We expect to learn more about the conservation issue soon after the FLASH4
release.

This Hydro implementation can be manually included in an application with Paramesh mesh package as
follows:

./setup Sod -auto chomboCompatibleHydro=True -parfile=test_regular_fluxes_fbs_troublesome.par

The logical parameter chomboLikeUpdateSoln controls whether or not FLASH uses the standard
hy_ppm_updateSoln for the solution update. A value of .true. indicates that it will not be used and is the
only acceptable value for Chombo based applications. A value of .false. means it is used and is a possibility
for Paramesh based applications.

Using Chombo Compatible Hydro

The runtime parameter eintSwitch should be set to 0.0 when using physics/Hydro/-
HydroMain/split/PPM/chomboCompatible.

14.2 Relativistic hydrodynamics (RHD)

14.2.1 Overview

FLASH provides support for solving the equations of special relativistic hydrodynamics (RHD) in one, two
and three spatial dimensions.

Relativistic fluids are characterized by at least one of the following two behaviors: (i) bulk velocities close
to the speed of light (kinematically relativistic regime), (ii) internal energy greater than or comparable to
the rest mass density (thermodynamically relativistic regime). As can be seen from the equations in Sec-
tion 14.2.2, the two effects become coupled by the presence of the Lorentz factor; as a consequence, transverse
velocities do not obey simple advection equations. Under these circumstances, Newtonian hydrodynamics is
not adequate and a correct description of the flow must take relativistic effects into account.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
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14.2.2 Equations

The motion of an ideal fluid in special relativity is described by the system of conservation laws

∂

∂t

 D
m
E

+∇ ·

 Dv
mv + pI

m

 = 0 , (14.12)

where D, m, E, v and p define, respectively, the fluid density, momentum density, total energy density,
three-velocity and pressure of the fluid. (14.12) is written in units of c = 1, where c is the speed of light.
The same convention is also adopted in the FLASH code.

At present, only Cartesian (1, 2 and 3-D), 2-D cylindrical (x = r, y = z) and 1-D spherical (1-D, x = r)
geometries are supported by FLASH. Gravity is not included, although it can be easily added with minor
modifications.

An equation of state (Eos) provides an additional relation between thermodynamic quantities and closes
the system of conservation laws ((14.12)). The current version of FLASH supports only the ideal equation
of state, for which the specific enthalpy h may be expressed as

h = 1 +
Γ

Γ− 1
p

ρ
(14.13)

where Γ (constant) is the specific heat ratio and ρ is the proper rest mass density. Causality (cs < c) is
preserved for Γ < 2. The specific heat ratio is specified as a runtime parameter ("gamma").

As in classical hydrodynamics, relativistic fluids may be described in terms of a state vector of conserva-
tive, U = (D,m, E), or primitive, V = (ρ,v, p), variables. The connection between the two sets is given by

D = γρ , m = ρhγ2v , E = ρhγ2 − p , (14.14)

where γ =
(
1 − v2

)−1/2 is the Lorentz factor. Notice that the total energy density includes the rest mass
contribution. The inverse relation, giving V in terms of U , is

ρ =
D

γ
, v =

m

E + p
, p = Dhγ − E . (14.15)

This inverse map is not trivial due to the non-linearity introduced by the Lorentz factor γ; it can be shown,
in fact, that (14.15) can be combined together to obtain the following implicit expression for p:

p = Dh
(
p, τ(p)

)
γ(p)− E . (14.16)

(14.16) has to be solved at least once per time step in order to recover the pressure from a set of conservative
variables U . Notice that τ = τ(p) depends on the pressure p through τ = γ(p)/D and that the specific
enthalpy h is, in general, a function of both p and τ , h = h(p, τ(p)). The conversion routines are implemented
in the rhd conserveToPrimitive.F90 and rhd primitiveToConserve.F90 source files.

14.2.3 Relativistic Equation of State

A variant version of the ideal gamma law Eos_wrapped.F90 routine is required by the RHD unit and is
provided in Eos/EosMain/Gamma/RHD. In order to do so the unit requires a typical Config file which should
look like this:

REQUIRES physics/Eos/EosMain/Gamma/RHD

For this specific purpose, the current RHD implementation supports MODE DENS EI (a default mode) and
MODE DENS PRES only (but not MODE DENS TEMP) in making a Eos_wrapped call.

14.2.4 Additional Runtime Parameter

One additional runtime parameter used with the RHD unit is
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Table 14.6: Additional parameters in the RHD unit.

Variable Type Default Description
rhd reconType integer 1 Order of reconstruction scheme: 1 for piecewise

liner; 2 for piecewise parabolic

14.3 Magnetohydrodynamics (MHD)

14.3.1 Description

The FLASH4 code includes two magnetohydrodynamic (MHD) units that represent two different algorithms.
The first is the eight-wave model (8Wave) by Powell et al. (1999) that is already present in FLASH2. The
second is a newly implemented unsplit staggered mesh algorithm (USM or StaggeredMesh). It should be
noted that there are several major differences between the two MHD units. The first difference is how each
algorithm enforces the solenoidal constraint of magnetic fields. The eight-wave model basically uses the
truncation-error method, which effectively removes the effects of unphysical magnetic monopoles if they are
generated during simulations. It does not, however, completely eliminate monopoles that are spurious in a
strict physical law. To improve such unphysical effects in simulations, the unsplit staggered mesh algorithm
uses the constrained transport method (Evans and Hawley, 1988) to enforce divergence-free constraints
of magnetic fields. This method is shown to maintain magnitudes of ∇ · B substantially low, e.g., to the
orders of 10−12 or below, in most simulations. The second major difference is that the unsplit staggered mesh
algorithm uses a directionally unsplit scheme to evolve the MHD governing equations, whereas the eight-wave
method uses a directionally splitting method as in FLASH2. In general, the splitting method is shown to be
robust, relatively straightforward to implement, and generally faster than the unsplit method. The splitting
method, however, does generally introduce splitting errors when solving one-dimensional subproblems in each
sweep direction for multidimensional MHD equations. This error gets introduced in simulations because (i)
the linearized Jacobian flux matrices do not commute in most of the nonlinear multidimensional problems
(LeVeque, 1992; LeVeque, 1998), and (ii) in MHD, dimensional-splitting based codes are not able to evolve
the normal (to the sweep direction) magnetic field during each sweep direction (Gardiner and Stone, 2005).

Note that the eight-wave solver uses the same directionally splitting driver unit Driver/DriverMain/split
as the PPM and RHD units do, while the unsplit staggered mesh solver (StaggeredMesh) has its own indepen-
dent unsplit driver unit Driver/DriverMain/unsplit.

Both MHD units solve the equations of compressible ideal and non-ideal magnetohydrodynamics in one,
two and three dimensions on a Cartesian system. Written in non-dimensional (hence without 4π or µ0

coefficients) conservation form, these equations are

∂ρ

∂t
+ ∇ · (ρv) = 0 (14.17)

∂ρv
∂t

+ ∇ · (ρvv−BB) +∇p∗ = ρg +∇ · τ (14.18)

∂ρE

∂t
+ ∇ · (v(ρE + p∗)−B(v ·B)) = ρg · v +∇ · (v · τ + σ∇T ) +∇ · (B× (η∇×B)) (14.19)

∂B
∂t

+ ∇ · (vB−Bv) = −∇× (η∇×B) (14.20)

where

p∗ = p +
B2

2
, (14.21)

E =
1
2
v2 + ε +

1
2

B2

ρ
, (14.22)

τ = µ

(
(∇v) + (∇v)T − 2

3
(∇ · v)I

)
(14.23)
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Table 14.7: Additional solution variables used in the MHD units.

Variable Type Description
magx PER VOLUME x-component of magnetic field
magy PER VOLUME y-component of magnetic field
magz PER VOLUME z-component of magnetic field
magp (GENERIC) magnetic pressure
divb (GENERIC) divergence of magnetic field

are total pressure, specific total energy and viscous stress respectively. Also, ρ is the density of a magnetized
fluid, v is the fluid velocity, p is the fluid thermal pressure, T is the temperature, ε is the specific internal
energy, B is the magnetic field, g is the body force per unit mass, for example, due to gravity. τ is the
viscosity tensor, µ is the coefficient of viscosity (dynamic viscosity), I is the unit (identity) tensor, σ is the heat
conductivity, and η is the resistivity. The thermal pressure is a scalar quantity, so that the code is suitable
for simulations of ideal plasmas in which magnetic fields are not so strong that they cause temperature
anisotropies. As in regular hydrodynamics, the pressure is obtained from the internal energy and density
using the equation of state. The two MHD units support general equations of state and multi-species fluids.
Also, in order to prevent negative pressures and temperatures, a separate equation for internal energy is
solved in a fashion described earlier in the hydrodynamics chapter.

The APIs of the MHD units are fairly minimal. The units honor all of hydrodynamics unit variables,
interface functions and runtime parameters described in the above hydrodynamics unit chapter (see Chap-
ter 15). In addition, both the eight-wave and the unsplit staggered mesh units declare additional plasma
variables and runtime parameters, which are listed in Table 14.7 and Table 14.8.

14.3.2 Usage

In the current release, the eight-wave unit serves as a default MHD solver. In order to choose the unsplit
staggered mesh unit for MHD simulations, users need to include +usm in a setup script. The default eight-
wave unit will be automatically chosen if there is no such specification included.

A word of caution

The eight-wave solver is only compatible with native grid interpolation in AMR simula-
tions. This is because the solver only uses two layers of guard cells in each coordinate
direction. The choice -gridinterpolation=native is automatically adopted if +8wave is
specified in setup, otherwise, -gridinterpolation=native should be explicitly included
in order to use the eight-wave solver without specifying +8wave. For instance, running
a script ./setup magnetoHD/BrioWu -1d -auto +8wave will properly setup the BrioWu
problem for the 8Wave solver, and ./setup magnetoHD/BrioWu -1d -auto +usm for the
StaggeredMesh solver.

Supported configurations

Both MHD units currently support the uniform grid with FIXEDBLOCKSIZE and
NONFIXEDBLOCKSIZE modes, and the adaptive grid with PARAMESH on Cartesian geometries,
as well as 2D cylindrical (R-Z). When using AMR grids, the eight-wave unit supports both
PARAMESH 2 and PARAMESH 4, while only PARAMESH 4 is supported in the unsplit staggered
mesh solver because face-centered variables are only fully supported in PARAMESH 4.
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Table 14.8: Additional runtime parameters used in the MHD units.

Variable Type Default Description
UnitSystem string “none” System of units in which MHD calculations are

to be performed. Acceptable values are “none”
“CGS” and “SI”.

killdivb logical .true. Enable/disable divergence cleaning.
flux correct logical .true. Enable/disable flux correction on AMR grid.

14.3.3 Algorithm: The Unsplit Staggered Mesh Solver

A directionally unsplit staggered mesh algorithm (USM), which solves ideal and non-ideal MHD governing
equations (14.17) ∼ (14.20) in multiple dimensions, is a new MHD solver. Since FLASH4-beta, a full 3D
implementation has been included as a new official release (Lee, submitted, 2012). The unsplit staggered
mesh unit is based on a finite-volume, high-order Godunov method combined with a constrained transport
(CT) type of scheme which ensures the solenoidal constraint of the magnetic fields on a staggered mesh
geometry. In this approach, the cell-centered variables such as the plasma mass density ρ, plasma momentum
density ρv and total plasma energy ρE are updated via a second-order MUSCL-Hancock unsplit space-time
integrator using the high-order Godunov fluxes. The rest of the cell face-centered (staggered) magnetic fields
are updated using Stokes’ Theorem as applied to a set of induction equations, enforcing the divergence-free
constraint of the magnetic fields. Notice that this divergence-free constraint is automatically guaranteed
and satisfied in pure one-dimensional MHD simulations, but special care must be taken in multidimensional
problems.

The overall procedure of the unsplit staggered mesh scheme can be broken up into the following steps
(Lee, 2006; Lee and Deane, 2009; Lee, submitted, 2012):

• Quasi-linearization: This step replaces the nonlinear system (14.17) ∼ (14.20) with an approximate,
quasi-linearized system of equations.

• Data Reconstruction-evolution: This routine calculates and evolves cell interface values by half time
step using a second-order MUSCL-Hancock TVD algorithm (Toro, 1999). The approach makes use
of a new method of ’multidimensional characteristic analysis’ that can be achieved in one single step,
incorporating all flux contributions from both normal and transverse directions without requiring any
need of solving a set of Riemann problems (that is usually adopted in transverse flux updates). In
this step the USM scheme includes the multidimensional MHD terms in both normal and transverse
directions, satisfying a perfect balance law for the terms proportional to∇·B in the induction equations.

• An intermediate Riemann problem: An intermediate set of high-order Godunov fluxes is calculated
using the cell interface values obtained from the data reconstruction-evolution step. The resulting
fluxes are then used to evolve the normal fields by a half time step in the next procedure.

• A half time step update for the normal fields: The normal magnetic fields are evolved by a half time step
using the flux-CT method at cell interfaces, ensuring the divergence-free property on a staggered grid.
This intermediate update for the normal fields and the half time step data from the data reconstruction-
evolution step together provide a second-order accurate MHD states at cell interfaces.

• Riemann problem: Using the second-order MHD states calculated from the above procedures, the
scheme proceeds to solve the Riemann problem to obtain high-order Godunov fluxes at cell interfaces.

• Unsplit update of cell-centered variables: The unsplit time integrations are performed using the high-
order Godunov fluxes to update the cell-centered variables for the next time step.

• Construction of electric fields: Using the high-order Godunov fluxes, the cell-cornered (edged in 3D)
electric fields are constructed. The unsplit staggered mesh scheme computes a new modified electric
field construction (MEC) scheme that includes first and second multidimensional derivative terms
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in Taylor expansions for high-order interpolations. This modified electric field construction provides
enhanced accuracy by explicitly adding proper amounts of dissipation as well as spatial gradients in
its interpolation scheme.

• Flux-CT scheme: The electric fields from the MEC scheme are used to evolve the cell face-centered
magnetic fields by solving a set of discrete induction equations. The resulting magnetic fields satisfy
the divergence-free constraint up to the accuracy of machine round-off errors.

• Reconstruct cell-centered magnetic fields: The cell-centered magnetic fields are reconstructed from the
divergence free cell face-centered magnetic fields by taking arithmetic averages of the cell face-centered
fields variables.

Note that the procedure required in solving one-dimensional MHD equations is much simpler than solving
the multidimensional ones and only involves the first through third and the fifth steps in the above oulined
scheme. The choices of TVD slope limiters available in the unsplit staggered mesh scheme (see Table 14.9)
includes the minmod limiter as well as the compressible limiters such as vanLeer or mc limiter. Another choice,
called hybrid limiter, can be used to provide a mixed type of limiters as described in Balsara (2004). In this
choice, one uses a compressible limiter to produce a crisp representation for linearly degenerate waves (e.g.,
an entropy wave and left- and right-going Alfvén waves). To this end, a compressible limiter can be applied
to the density and the magnetic fields variables, where these variables contribute much of the variations in
such linearly degenerate waves. Other variables, the velocity field components and pressure, constitute four
genuinely nonlinear wave families (i.e., left- and right-going fast/slow magneto-sonic waves) in MHD. These
genuinely nonlinear wave families inherently behave according to their self steepening mechanism and one can
simply use a diffusive but robust minmod limiter. Another limiter, called limited, is also available (see details
in Toro, 1999, 2nd Ed., section 13.8.4), and users need to specify a runtime parameter β (LimitedSlopeBeta
in flash.par) if this limiter is chosen for a simulation.

The unsplit staggered mesh unit solves a set of discrete induction equations in multi-dimensional problems
to proceed temporal evolutions of the staggered magnetic fields using electric fields. For instance, in a
two-dimensional staggered grid, the unsplit staggered mesh unit solves a two-dimensional pair of discrete
induction equations that were found originally by Yee (1966):

bn+1
x,i+1/2,j = bn

x,i+1/2,j −
∆t

∆y

{
E

n+1/2
z,i+1/2,j+1/2 − E

n+1/2
z,i+1/2,j−1/2

}
, (14.24)

bn+1
y,i,j+1/2 = bn

y,i,j+1/2 −
∆t

∆x

{
− E

n+1/2
z,i+1/2,j+1/2 + E

n+1/2
z,i−1/2,j+1/2

}
. (14.25)

The superindex n + 1/2 in the above equations simply indicates an intermediate timestep right after the
temporal update of the cell-centered variables.

A three-dimensional schematic figure of the staggered grid geometry with collocations of edge-based
values (electric fields E) and face based values (magnetic fields b) is shown in Figure 14.2.

One of the main advantages of using the CT-type of scheme is that the cell face-centered magnetic fields
bn+1
x,i+1/2,j and bn+1

y,i,j+1/2, which are updated via the above induction equations, satisfy the divergence-free
constraint locally. The numerical divergence of the magnetic fields is defined as

(∇ ·B)n+1
i,j =

bn+1
x,i+1/2,j − bn+1

x,i−1/2,j

∆x
+

bn+1
y,i,j+1/2 − bn+1

y,i,j−1/2

∆y
(14.26)

and it remains zero to the accuracy of machine round-off errors, provided that nabla ·B)n
i,j = 0.

On an AMR grid, the unsplit staggered mesh scheme uses a direct injection method as a default to
preserve divergence-free prolongation to the cell face-centered fields variables. This method is one of the
simplest approaches that is offered by PARAMESH 4 to maintain the divergence-free constraint in prolongation.
This simple method ensures the solenoidal constraint well enough where the fields are varying smoothly, but
can introduce oscillations in regions of steep field gradient. In such cases Balsara’s prolongation algorithm
can be useful. Both prolongation algorithms are supported and enabled using runtime parameters in the
unsplit staggered mesh solver (see Table 14.9 below).
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To solve the above induction equations (14.24) and (14.25) in a flux-CT type scheme, it is required
to construct cell edge-based electric fields. The simplest choice is to use the cell face-centered high-order
Godunov fluxes and take an arithmetic average to construct cell-cornered (edge-based in 3D) electric fields:

E
n+1/2
z,i+1/2,j+1/2 =

1
4

{
− F

n+1/2
By,i+1/2,j − F

n+1/2
By,i+1/2,j+1 + G

n+1/2
Bx,i,j+1/2 + G

n+1/2
Bx,i+1,j+1/2

}
=

1
4

{
E

n+1/2
z,i+1/2,j + E

n+1/2
z,i+1/2,j+1 + E

n+1/2
z,i,j+1/2 + E

n+1/2
z,i+1,j+1/2

}
, (14.27)

where FBy and GBx represent the x and y high-order Godunov flux components corresponding to the
magnetic fields By and Bx, respectively (see details in Balsara and Spicer, 1999).

A high-order accurate version is also available by turning on a logical switch E modification in the unsplit
staggered mesh scheme, which takes Taylor series expansions of the cell-cornered electric field E

n+1/2
z,i+1/2,j+1/2

in all directions, followed by taking an arithmetic average of them (Lee, 2006; Lee and Deane, 2009).
The last step in the unsplit staggered mesh scheme is to reconstruct the cell-centered magnetic fields

Bx,i,j and By,i,j from the divergence-free face-centered magnetic fields. The unsplit staggered mesh scheme
takes arithmetic averages of the face-centered fields variables to obtain the cell-centered magnetic fields,
which is sufficient for second order accuracy. After obtaining the new cell-centered magnetic fields, the total
plasma energy may need to be corrected in order to preserve the positivity of the thermal temperature and
pressure (Balsara and Spicer, 1999; Tóth, 2000). This energy correction is very useful especially in problems
involving very low β plasma flows.

There are several choices available for calculating high order Godunov fluxes in the unsplit staggered
mesh scheme. The default solver is Roe’s linearized approximate solver, which takes into account all seven
waves that arise in the MHD equations. The Roe solver can adopt one of the two entropy fix routines
(Harten, 1983; Harten and Hyman, 1983) in ordetblrefr to avoid unphysical states near strong rarefaction
regions. As all seven waves are considered in Roe’s solver, high numerical resolutions can be achieved in most
cases. However, Roe’s solver still can fail to maintain positive states near very low densities even with the
entropy fix. In this case, computationally efficient and positively conservative Riemann solvers such as HLL
(Einfeldt et al., 1991), HLLC (S. Li, 2005), or HLLD (Miyoshi and Kusano, 2005) can be used to maintain
positive states in simulations. A hybrid type of Riemann solver which combines using the Roe solver for
high accuracy and HLLD for stability is also available.

The USM solver has been recently extended also for 2D and 2.5D cylindrical (R-Z) geometries, both for
uniform grids and AMR. In the cylindrical implementation, we followed the guidelines of Mignone et al.
(2007) and Skinner & Ostriker (2010). Special care was also taken to ensure a divergence free interpolation
of the staggered magnetic field components, when grid movements occur in AMR. This novel prolongation
scheme is based on the methods described in Balsara (2001, 2004) and Li & Li (2004). More information
regarding the cylindrical implementation can be found in Tzeferacos et al. (2012, in print) whereas new
test problems, provided with this release, are available at Sections 30.2.3 and 30.2.4. Handling of different
geometries will be available in future releases.

14.3.3.1 Slowly moving shock handling in PPM

A new dissipative mechanism is a hybridized slope limiter for PPM that combines a new upwind biased slope
limiter with a conventional TVD slope limiter (Lee, D., Astronum Proc. 2010). This hybrid upwind limiter
reduces spurious numerical oscillations near discontinuities, and therefore can compute sharp, monotonized
profiles in compressible flows when using PPM, especially in Magnetohydrodynamics (MHD) slowly moving
shock regions. (See more in Chapter 30.2.1.)

By the nature of very small numerical dissipations in PPM, unphysical oscillations in discontinuous MHD
solutions can appear in a specific flow region, referred to as a slowly moving shock (SMS) relative to the grid.
This new approach handles numerical non-oscillatory MHD solutions using PPM in SMS regions. The SMS
should not be confused with so-called ”slow MHD shock” which corresponds to two slow waves (i.e., u± cs)
in MHD, where cs is the slow magneto-acoustic velocity.

The method first detects a local, slowly moving shock, and considers an upwind direction to compute a
monotonicity-preserving slope limiter. This new approach, in addition to improving the numerical solutions
in MHD to levels that reduce (or eliminate) such oscillatory behaviors while preserving sharp discontinuities
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Figure 14.2: A 3D control volume on the staggered grid with the cell center at (i, j, k). The magnetic fields
are collocated at the cell face centers and the electric fields at the cell edge centers. The line integral of the
electric fields

∫
∂F nE · Tdl along the four edges of the face F x, i + 1/2, j, k gives rise to the negative of

the rate of change of the magnetic field flux in x-direction through the area enclosed by the four edges (i.e.,
the area of F x, i + 1/2, j, k).

in MHD, is also simple to implement. The method has been verified against the results from other high-
resolution shock-capturing (HRSC) methods such as MUSCL and WENO schemes.

In order to enable the SMS treatment for PPM, users set a runtime parameter upwindTVD=.true.
in flash.par. The SMS method does require to have an extended stencil, and users should specify
+supportPPMUpwind in setup. See more in Section 14.1.3.

Stability limit

As described in the unsplit hydro solver unit (physics/Hydro/HydroMain/unsplitHydro Unsplit),
the USM MHD solver can take a wide range of CFL limits in all three dimensions (i.e.,
CFL < 1). However, in some circumstances where there are strong shocks and rarefactions,
shockLowerCFL=.true. could be useful to gain more numerical stability by using. It is
also helpful to use (1) artificial viscosity and flattening, or (2) lower order reconstruction
scheme (e.g., MH), or (2) diffusive Riemann solver such as HLL-type, or LLF solvers, or (3)
a reduced CFL accordingly.
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Table 14.9: Runtime parameters used in the unsplit staggered mesh MHD
(physics/Hydro/HydroMain/unsplit/MHD StaggeredMesh) solver additional to those described for
the unsplit hydro solver (physics/Hydro/HydroMain/unsplit/Hydro Unsplit).

Variable Type Default Description
killdivb logical .true. On/off ∇ ·B = 0 handling on the staggered grid
E modification logical .true. Enable/disable high-order electric field construc-

tion
E upwind logical .false. Enable/disable an upwind update for induction

equations
energyFix logical .true. Enable/disable energy correction
facevar2ndOrder logical .true. Turn on/off a second-order facevar update
ForceHydroLimit logical .false. On/off pure Hydro mode
prolMethod string ”INJECTION PROL” Use either direct injection method (”INJEC-

TION PROL”) or Balsara’s method (”BAL-
SARA PROL”) in prolonging divergence-free
magnetic fields stored in face-centered variables

RiemannSolver string ”ROE” ”HLLD” is additionally available for MHD, ”Hy-
brid” is also available for MHD.

Divergence-free prolongation of magnetic fields on AMR in the unsplit
staggered mesh solver

It is of importance to preserve divergence-free evolutions of magnetic fields in MHD simula-
tions. Moreover, some special cares are required in prolonging divergence-free magnetic fields
on AMR grids. One simple straightforward way in this aspect is to prolong divergence-free
fields to newly created children blocks using direct injection. This injection method therefore
inherently preserves divergence-free properties on AMR block structures and works well in
most cases. This method is a default in the unsplit staggered mesh solver and can also be
enabled by setting a runtime parameter prolMethod = "INJECTION PROL". Another way,
proposed by Balsara (2001), is also available in the unsplit staggered mesh solver and can
be chosen by setting prolMethod = "BALSARA PROL". Both prolongation methods are sup-
ported in MHD’s 2.5D and 3D simulations. In 2 and 2.5D cylindrical geometry however, since
neither method takes into account geometrical factors, we use a modified prolongation algo-
rithm based on Balsara (2004) and Li&Li (2004). This is the default option and is activated
by choosing prolMethod = "BALSARA PROL". The need for this special refinement requires
to have an MHD’s own customized implementation of Simulation_customizeProlong.F90
placed in the source/Simulation/SimulationMain/magnetoHD/.

14.3.4 Algorithm: The Eight-wave Solver

The eight-wave magnetohydrodynamic (MHD) unit is based on a finite-volume, cell-centered method that
was proposed by Powell et al. (1999). The unit uses directional splitting to evolve the magnetohydrodynamics
equations. Like the PPM and RHD units, this MHD unit makes one sweep in each spatial direction to advance
physical variables from one time level to the next. In each sweep, the unit uses AMR functionality to fill
in guard cells and impose boundary conditions. Then it reconstructs characteristic variables and uses these
variables to compute time-averaged interface fluxes of conserved quantities. In order to enforce conservation
at jumps in refinement, the unit makes flux conservation calls to AMR, which redistributes affected fluxes
using the appropriate geometric area factors. Finally, the unit updates the solution and calls the EOS unit
to ensure thermodynamical consistency.
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After all sweeps are completed, the MHD unit enforces magnetic field divergence cleaning. In the current
release only a diffusive divergence cleaning method (truncation-error method), which was the default method
in FLASH2, is supported and the later release of the code will incorporate an elliptic projection cleaning
method.

The ideal part of the MHD equations are solved using a high-resolution, finite-volume numerical scheme
with MUSCL-type (van Leer, 1979) limited gradient reconstruction. In order to maximize the accuracy of
the solver, the reconstruction procedure is applied to characteristic variables. Since this may cause certain
variables, such as density and pressure, to fall outside of physically meaningful bounds, extra care is taken
in the limiting step to prevent this from happening. All other variables are calculated in the unit from the
interpolated characteristic variables.

In order to resolve discontinuous Riemann problems that occur at computational cell interfaces, the code
by default employs a Roe-type solver derived in Powell et al. (1999). This solver provides full characteristic
decomposition of the ideal MHD equations and is, therefore, particularly useful for plasma flow simulations
that feature complex wave interaction patterns. An alternative Riemann solver of HLLE type, provided in
FLASH2, has not been incorporated into FLASH4 yet.

Time integration in the MHD unit is done using a second-order, one-step method due to Hancock (Toro,
1999). For linear systems with unlimited gradient reconstruction, this method can be shown to coincide with
the classic Lax-Wendroff scheme.

A difficulty particularly associated with solving the MHD equations numerically lies in the solenoidality
of the magnetic field. The notorious ∇ · B = 0 condition, a strict physical law, is very hard to satisfy
in discrete computations. Being only an initial condition of the MHD equations, it enters the equations
indirectly and is not, therefore, guaranteed to be generally satisfied unless special algorithmic provisions
are made. Without discussing this issue in much detail, which goes well beyond the scope of this user’s
guide (for example, see Tóth (2000) and references therein), we will remind the user that there are three
commonly accepted methods to enforce the ∇ ·B condition: the elliptic projection method (Brackbill and
Barnes, 1980), the constrained transport method (Evans and Hawley, 1988), and the truncation-level error
method (Powell et al., 1999). In the current release, the truncation-error cleaning methods is provided for
the eight-wave MHD unit, and the constrained transport method is implemented for the unsplit staggered
mesh MHD units (see Section 14.3.3 for details).

In the truncation-error method, the solenoidality of the magnetic field is enforced by including several
terms proportional to ∇ · B. This removes the effects of unphysical magnetic tension forces parallel to
the field and stimulates passive advection of magnetic monopoles, if they are spuriously created. In many
applications, this method has been shown to be an efficient and sufficient way to generate solutions of high
physical quality. However, it has also been shown (Tóth, 2000) that this method can sometimes, for example
in strongly discontinuous and stagnated flows, lead to accumulation of magnetic monopoles, whose strength
is sufficient to corrupt the physical quality of computed solutions. In order to eliminate this deficiency,
the eight-wave MHD code also uses a simple yet very effective method originally due to Marder (1987)
to destroy the magnetic monopoles on the scale on which they are generated. In this method, a diffusive
operator proportional to ∇∇ ·B is added to the induction equation, so that the equation becomes

∂B
∂t

+∇ · (vB−Bv) = −v∇ ·B + ηa∇∇ ·B , (14.28)

with the artificial diffusion coefficient ηa chosen to match that of grid numerical diffusion. In the FLASH
code, ηa = λ

2 ( 1
∆x + 1

∆y + 1
∆z )−1, where λ is the largest characteristic speed in the flow. Since the grid magnetic

diffusion Reynolds number is always on the order of unity, this operator locally destroys magnetic monopoles
at the rate at which they are created. Recent numerical experiments (Powell et al., 2001) indicate that this
approach can very effectively bring the strength of spurious magnetic monopoles to levels that are sufficiently
low, so that generated solutions remain physically consistent. The entire ∇ ·B control process is local and
very inexpensive compared to other methods. Moreover, one can show that this process is asymptotically
convergent (Munz et al., 2000), and each of its applications is equivalent to one Jacobi iteration in solving
the Poisson equation in the elliptic projection method. The caveat is that this method only suppresses but
does not completely eliminate magnetic monopoles. Whether this is acceptable depends on the particular
physical problem.

As an alternative way to eliminate magnetic monopoles completely, the FLASH2 code includes an elliptic
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projection method, in which the unphysical divergence of the magnetic field can be removed to any desired
level down to machine precision. As yet, this method has not been made available in FLASH4 and will be
supported in a later release.

14.3.5 Non-ideal MHD

Non-ideal terms (magnetic resistive, viscous and heat conduction terms) can be enabled or disabled in FLASH
at run time via the flash.par file. For example, a typical flash.par file for non-ideal runtime parameters
should look more or less like this:

# Magnetic Resistivity ---------
useMagneticResistivity = .true.
resistivity = 1.0E-0

# Viscosity --------------------
useViscosity = .false.
diff_visc_nu = 1.0E-2

# Conductivity -----------------
useConductivity = .false.
diff_constant = 1.0E-2

One way of simulating a diffusive process is to add those physics units in a simulation Config file. For
example, a snippet of Config file can look like this:

# Magnetic Resistivity
REQUIRES physics/materialProperties/MagneticResistivity/MagneticResistivityMain

# Viscosity
REQUIRES physics/materialProperties/Viscosity/ViscosityMain

# Conduction
REQUIRES physics/materialProperties/Conductivity/ConductivityMain/Constant-diff

# Diffusive time step calculation
REQUIRES physics/sourceTerms/Diffuse/DiffuseMain

Including diffusive terms

New treatments has been made in including the non-ideal diffusive terms in the USM-
MHD solver in the FLASH3.2 release and remain unchanged since then. In the previous
releases before FLASH3.2, all the non-ideal diffusive terms had to be grouped together in
the ”resistive MHD” part of the unit by turning the flag variable useMagneticResistivity
on, and the non-ideal terms were included all together. In the FLASH3.2 release, each
individual term can be separately included by turning each corresponding logical variables
in run time. The Diffusion time step is computed using the Diffuse_computeDt.F90 routine
in Driver_computeDt.F90 to provide a more consistent way of computing a non-ideal time
step.
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Incompressible Navier-Stokes Unit

The IncompNS unit solves incompressible Navier-Stokes equations in two or three spatial dimensions. The
currently released implementation assumes constant density throughout the simulation domain.

Multistep and Runge-Kutta explicit projection schemes are used for time integration. These methods
are described in Armfield & Street 2002, Yang & Balaras 2006, and Vanella et al. 2010. Implementations
using a staggered grid arrangement are provided for both uniform grid (UG) and PARAMESH adaptive
mesh refinement Grid implementations. The MultigridMC and BiPCGStab Poisson solvers con be employed
for AMR cases, whereas the homogeneous trigonometric solver + PFFT can be used in UG. Typical velocity
boundary conditions for this problem are implemented.

More documentation to appear later.
As of FLASH4.4, Simulations that use the IncompNS unit should be configured to use a special imple-

mentation of Driver evolveFlash located in Driver/DriverMain/INSfracstep. (Including IncompNS in
the units of a simulation will automatically pull this directory into the configuration.) This requirement may
change in the future.
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Chapter 16

Equation of State Unit
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Figure 16.1: The Eos directory tree.

16.1 Introduction

The Eos unit implements the equation of state needed by the hydrodynamics and nuclear burning solvers.
The function Eos provides the interface for operating on a one-dimensional vector. The same interface can
be used for a single cell by reducing the vector size to 1. Additionally, this function can be used to find
the thermodynamic quantities either from the density, temperature, and composition or from the density,
internal energy, and composition. For user’s convenience, a wrapper function (Eos wrapped) is provided,
which takes a section of a block and translates it into the data format required by the Eos function, then
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calls the function. Upon return from the Eos function, the wrapper translates the returned data back to the
same section of the block.

Four implementations of the (Eos) unit are available in the current release of FLASH4: Gamma, which
implements a perfect-gas equation of state; Gamma/RHD, which implements a perfect-gas equation taking
relativistic effects into account; Multigamma, which implements a perfect-gas equation of state with multiple
fluids, each of which can have its own adiabatic index (γ); and Helmholtz, which uses a fast Helmholtz
free-energy table interpolation to handle degenerate/relativistic electrons/positrons and includes radiation
pressure and ions (via the perfect gas approximation).

As described in previous sections, FLASH evolves the Euler equations for compressible, inviscid flow.
This system of equations must be closed by an additional equation that provides a relation between the
thermodynamic quantities of the gas. This relationship is known as the equation of state for the material,
and its structure and properties depend on the composition of the gas.

It is common to call an equation of state (henceforth EOS) routine more than 109 times during a two-
dimensional simulation and more than 1011 times during the course of a three-dimensional simulation of
stellar phenomena. Thus, it is very desirable to have an EOS that is as efficient as possible, yet accurately
represents the relevant physics. While FLASH is capable of using any general equation of state, we discuss
here the three equation of state routines that are supplied: an ideal-gas or gamma-law EOS, an EOS for
a fluid composed of multiple gamma-law gases, and a tabular Helmholtz free energy EOS appropriate for
stellar interiors. The two gamma-law EOSs consist of simple analytic expressions that make for a very fast
EOS routine both in the case of a single gas or for a mixture of gases. The Helmholtz EOS includes much
more physics and relies on a table look-up scheme for performance.

16.2 Gamma Law and Multigamma

FLASH uses the method of Colella & Glaz (1985) to handle general equations of state. General equations of
state contain 4 adiabatic indices (Chandrasekhar 1939), but the method of Colella & Glaz parameterizes the
EOS and requires only two of the adiabatic indices. The first is necessary to calculate the adiabatic sound
speed and is given by

γ1 =
ρ

P

∂P

∂ρ
. (16.1)

The second relates the pressure to the energy and is given by

γ4 = 1 +
P

ρε
. (16.2)

These two adiabatic indices are stored as the mesh-based variables GAMC_VAR and GAME_VAR. All EOS routines
must return γ1, and γ4 is calculated from (16.2).

The gamma-law EOS models a simple ideal gas with a constant adiabatic index γ. Here we have dropped
the subscript on γ, because for an ideal gas, all adiabatic indices are equal. The relationship between pressure
P , density ρ, and specific internal energy ε is

P = (γ − 1) ρε . (16.3)

We also have an expression relating pressure to the temperature T

P =
Nak

Ā
ρT , (16.4)

where Na is the Avogadro number, k is the Boltzmann constant, and Ā is the average atomic mass, defined
as

1
Ā

=
∑

i

Xi

Ai
, (16.5)

where Xi is the mass fraction of the ith element. Equating these expressions for pressure yields an expression
for the specific internal energy as a function of temperature

ε =
1

γ − 1
Nak

Ā
T . (16.6)

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_F90.html
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The relativistic variant of the ideal gas equation is explained in more detail in Section 14.2.
Simulations are not restricted to a single ideal gas; the multigamma EOS provides routines for simulations

with several species of ideal gases each with its own value of γ. In this case the above expressions hold, but
γ represents the weighted average adiabatic index calculated from

1
(γ − 1)

= Ā
∑

i

1
(γi − 1)

Xi

Ai
. (16.7)

We note that the analytic expressions apply to both the forward (internal energy as a function of density,
temperature, and composition) and backward (temperature as a function of density, internal energy and
composition) relations. Because the backward relation requires no iteration in order to obtain the tempera-
ture, this EOS is quite inexpensive to evaluate. Despite its fast performance, use of the gamma-law EOS is
limited, due to its restricted range of applicability for astrophysical problems.

16.2.1 Ideal Gamma Law for Relativistic Hydrodynamics

The relativistic variant of the ideal gas equation is explained in more detail in Section 14.2.

16.3 Helmholtz

The Helmholtz EOS provided with the FLASH distribution contains more physics and is appropriate for
addressing astrophysical phenomena in which electrons and positrons may be relativistic and/or degenerate
and in which radiation may significantly contribute to the thermodynamic state. Full details of the Helmholtz
equation of state are provided in Timmes & Swesty (1999). This EOS includes contributions from radiation,
completely ionized nuclei, and degenerate/relativistic electrons and positrons. The pressure and internal
energy are calculated as the sum over the components

Ptot = Prad + Pion + Pele + Ppos + Pcoul (16.8)

εtot = εrad + εion + εele + εpos + εcoul . (16.9)

Here the subscripts “rad,” “ion,” “ele,” “pos,” and “coul” represent the contributions from radiation, nuclei,
electrons, positrons, and corrections for Coulomb effects, respectively. The radiation portion assumes a
blackbody in local thermodynamic equilibrium, the ion portion (nuclei) is treated as an ideal gas with
γ = 5/3, and the electrons and positrons are treated as a non-interacting Fermi gas.

The blackbody pressure and energy are calculated as

Prad =
aT 4

3
(16.10)

εrad =
3Prad

ρ
(16.11)

where a is related to the Stephan-Boltzmann constant σB = ac/4, and c is the speed of light. The ion
portion of each routine is the ideal gas of (Equations 16.3 – 16.4) with γ = 5/3. The number densities of
free electrons Nele and positrons Npos in the noninteracting Fermi gas formalism are given by

Nele =
8π
√

2
h3

m3
e c3 β3/2

[
F1/2(η, β) + F3/2(η, β)

]
(16.12)

Npos =
8π
√

2
h3

m3
e c3 β3/2

[
F1/2 (−η − 2/β, β) + β F3/2 (−η − 2/β, β)

]
, (16.13)
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where h is Planck’s constant, me is the electron rest mass, β = kT/(mec
2) is the relativity parameter,

η = µ/kT is the normalized chemical potential energy µ for electrons, and Fk(η, β) is the Fermi-Dirac
integral

Fk(η, β) =

∞∫
0

xk (1 + 0.5 β x)1/2 dx

exp(x− η) + 1
. (16.14)

Because the electron rest mass is not included in the chemical potential, the positron chemical potential
must have the form ηpos = −η − 2/β. For complete ionization, the number density of free electrons in the
matter is

Nele,matter =
Z̄

Ā
Na ρ = Z̄ Nion , (16.15)

and charge neutrality requires
Nele,matter = Nele −Npos . (16.16)

Solving this equation with a standard one-dimensional root-finding algorithm determines η. Once η is known,
the Fermi-Dirac integrals can be evaluated, giving the pressure, specific thermal energy, and entropy due to
the free electrons and positrons. From these, other thermodynamic quantities such as γ1 and γ4 are found.
Full details of this formalism may be found in Fryxell et al. (2000) and references therein.

The above formalism requires many complex calculations to evaluate the thermodynamic quantities, and
routines for these calculations typically are designed for accuracy and thermodynamic consistency at the
expense of speed. The Helmholtz EOS in FLASH provides a table of the Helmholtz free energy (hence the
name) and makes use of a thermodynamically consistent interpolation scheme obviating the need to perform
the complex calculations required of the above formalism during the course of a simulation. The interpolation
scheme uses a bi-quintic Hermite interpolant resulting in an accurate EOS that performs reasonably well.

The Helmholtz free energy,
F = ε− T S (16.17)

dF = −S dT +
P

ρ2
dρ , (16.18)

is the appropriate thermodynamic potential for use when the temperature and density are the natural
thermodynamic variables. The free energy table distributed with FLASH was produced from the Timmes
EOS (Timmes & Arnett 1999). The Timmes EOS evaluates the Fermi-Dirac integrals (16.14) and their
partial derivatives with respect to η and β to machine precision with the efficient quadrature schemes of
Aparicio (1998) and uses a Newton-Raphson iteration to obtain the chemical potential of (16.16). All
partial derivatives of the pressure, entropy, and internal energy are formed analytically. Searches through
the free energy table are avoided by computing hash indices from the values of any given (T, ρZ̄/Ā) pair. No
computationally expensive divisions are required in interpolating from the table; all of them can be computed
and stored the first time the EOS routine is called.

We note that the Helmholtz free energy table is constructed for only the electron-positron plasma, and
it is a 2-dimensional function of density and temperature, i.e. F (ρ,T). It is made with Ā = Z̄ = 1 (pure
hydrogen), with an electron fraction Ye = 1. One reason for not including contributions from photons and
ions in the table is that these components of the Helmholtz EOS are very simple (Equations 16.10 – 16.11),
and one doesn’t need fancy table look-up schemes to evaluate simple analytical functions. A more important
reason for only constructing an electron-positron EOS table with Ye = 1 is that the 2-dimensional table
is valid for any composition. Separate planes for each Ye are not necessary (or desirable), since simple
multiplication by Ye in the appropriate places gives the desired composition scaling. If photons and ions
were included in the table, then this valuable composition independence would be lost, and a 3-dimensional
table would be necessary.

The Helmholtz EOS has been subjected to considerable analysis and testing (Timmes & Swesty 2000),
and particular care was taken to reduce the numerical error introduced by the thermodynamical models
below the formal accuracy of the hydrodynamics algorithm (Fryxell, et al. 2000; Timmes & Swesty 2000).
The physical limits of the Helmholtz EOS are 10−10 < ρ < 1011 (g cm−3) and 104 < T < 1011 (K).
As with the gamma-law EOS, the Helmholtz EOS provides both forward and backward relations. In the
case of the forward relation (ρ, T , given along with the composition) the table lookup scheme and analytic
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Table 16.1: 1T and multitemperature Eos modes. The symbols are defined in constants.h. The column
“1-T” indicates whether invoking Eos with this mode implies and/or ensures that the three components are
in temperature equilibrium; a “yes” here implies that all temperatures provided as outputs are equal, and
equal to T if T is listed as an input. For modes where component temperatures are allowed to stay different,
the combined T has no physical meaning but indicates an “average” temperature to which the components
would equilibrate if cells were held fixed without exchange of heat with neighboring cells. The columns
RS indicates modes where, in the current multitemperature Eos implementations, a Newton-Raphson root
search may be performed internally in order to compute some combined fluid quantities, in particular T . In
this columnt “(y)” means the search is only necessary to get T and can otherwise be omitted. Subscripts
i, e, and r stand for ions, electrons, and radiation, respectively, ε for specific internal energy, s for specific
entropy. Note that combined density ρ is always assumed an input and omitted from the table. Material
composition and ionization levels are currently also just inputs.

symbol inputs outputs 1-T RS
MODE DENS TEMP T ε, P yes no
MODE DENS TEMP EQUI T ε, P , Ti=Te=Tr, εi, εe, εr, se, Pi, Pe, Pr, . . . yes no
MODE DENS TEMP GATHER Ti, Te, Tr T, ε, P , εi, εe, εr, se, Pi, Pe, Pr, . . . no (y)
MODE DENS EI ε T , P yes yes
MODE DENS EI SCATTER ε T , P , Ti=Te=Tr, εi, εe, εr, se, Pi, Pe, Pr, . . . yes yes
MODE DENS EI GATHER εi, εe, εr T, ε, P , Ti, Te, Tr, se, Pi, Pe, Pr, . . . no (y)
MODE DENS EI SELE GATHER ε, se, εr T , P , Ti, Te, Tr, εi, εe, Pi, Pe, Pr, . . . no (y)
MODE DENS PRES P T , ε yes yes

formulae directly provide relevant thermodynamic quantities. In the case of the backward relation (ρ, ε,
and composition given), the routine performs a Newton-Rhaphson iteration to determine temperature. It
is possible for the input variables to be changed in the iterative modes since the solution is not exact. The
returned quantities are thermodynamically consistent.

16.4 Multitemperature extension for Eos

Extended functionality is required of the Eos in order to work a multitemperature simulation. Such sim-
ulations need to use one of the implementations under the multiTemp directory. When the Hydro multiTemp
code is used, as described in Section 14.1.4, one of the implementations under physics/Eos/EosMain/multiTemp
must be used. Additional functionality includes

• Support for additional Hydro variables that describe the state for the fluid components (ions, electrons,
radiation).

• Additional Eos modes. See Table 16.1.

16.4.1 Gamma

The multitemperature Gamma EOS implementation models the ion as well as the electron components as ideal
gases, and the radiation component as black body thermal radiation (like the Helmholtz 1T implementation,
see Section 16.3). It is a limitation of this implementation that the ionization state of ions is assumed to be
fixed.

This Eos implementation has several runtime parameters, in part inherited from the 1T implementation,
that can technically be changed but for which different values can lead to a nonsensical or inconsistent model.
In particular, the values of gamma, gammaIon, gammaEle, and gammaRad should not be changed from their
default values (5./3. for the first four and 4./3. for the latter). Other values have not been tested.

This EOS can include contributions from radiation, partially or completely ionized nuclei, and electrons.
The desired (constant) ionization level Z̄ of the nuclei should be specified with the eos singleSpeciesZ

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
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runtime parameter. The eos singleSpeciesA runtime parameter specifies the average atomic mass Ā and
should be set to the mass of one atom of the material in atomic mass units. For example, for a plasma of
fully ionized Carbon-12, one would set eos singleSpeciesA = 12.0 and eos singleSpeciesA = 6.0.

The combined pressure and internal energy are calculated as the sum over the components

Ptot = Pion + Pele + Prad (16.19)

εtot = εion + εele + εrad . (16.20)
Here the subscripts “ion,” “ele,” and “rad” represent the contributions from nuclei, electrons, and radiation,
respectively. The radiation portion assumes a black body in local thermodynamic equilibrium, the ion
portion (nuclei) is treated as an ideal gas with γ = 5/3, and the electrons are treated as a classical ideal gas
as well.

As for the 1T Helmholtz implementation, the black body pressure and energy relate to the radiation
“temperature” by

Prad =
aT 4

rad

3
(16.21)

εrad =
3Prad

ρ
(16.22)

where a is related to the Stephan-Boltzmann constant σB = ac/4, and c is the speed of light.
Like 1T implementations, all multitemperature implementations of Eos must return γ = γ1 = ρ

P
∂P
∂ρ ,

and γ4 is calculated from (16.2). These two generalizations of adiabatic indices are usually stored as the
mesh-based variables GAMC_VAR and GAME_VAR as a result of calling Eos wrapped.

16.4.1.1 Gamma/Ye

The Ye variant of Gamma implementation is like the Gamma implementation, except that Ā and Z̄ need not
be constant throughout the domain but can vary in different parts of the fluid.

Typically, a simulation would implement a Simulation initBlock that initializes mass scalar variables
sumy and ye as desired. The initial values then get advected with the motion of the fluid. Eos interprets
them as

sumy =
∑

Yi (16.23)

and
ye = Ye (16.24)

and computes

abar = Ā =
1∑
Yi

(16.25)

and
zbar = Z̄ = YeĀ (16.26)

from them.

16.4.2 Multigamma

First a clarification, to avoid confusion: We will call ions, electrons, and radiation the three components of
the fluid; and we designate different kinds of materials as different species. A fluid with several materials
contributes its ions to the common ion component and its electrons to the common electron component.
Currently, all adiabatic coefficients γi describing the electrons and the various kinds of ions should be 5/3 as
for a monatomic ideal gas (despite the implementation’s name!). Mixing of species in a cell results in a fluid
whose matter components are described by average values Ā and Z̄, which depends on the local composition
as well as on the Ai and Zi values of the various species.

In our multitemperature approximation, the three components may have different temperatures, but
there is no notion of a per-species temperature.

The multitemperature Multigamma implementation is another variation on the multitemperature Gamma
theme. Except for the different way of gettting Ā and Z̄, all else goes as described for Gamma, above.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_wrapped_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_initBlock_F90.html
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16.4.3 Tabulated

The Tabulated Eos implementation is currently only available for simulations configured in 3T mode. The
currently supported table formats are IONMIX1 and IONMIX4. See the Opacity section Section 22.4.6 for
a description of the IONMIX1 and IONMIX4 table file format.

Tables are read into memory at initialization. For IONMIX4, tables for z̄(T,Nion), Ei(T,Nion),
Ee(T,Nion), Pi(T,Nion), and Pe(T,Nion) are used.

Eos modes like MODE DENS TEMP, MODE DENS TEMP component, MODE DENS TEMP EQUI compute Nion from
dens and directly look up the output quantities in the appropriate tables. For other modes, root searches
would be required.

However, the Tabulated Eos implementation is currently not being used on its own but only in connection
with the Multitype implementation.

16.4.4 Multitype

Multitype implementation does Eos computations by combining Eos calls for different materials. A material
is a species in the sense of the Multispecies unit. Properties of materials relevant to the Multitype Eos are
thus kept in the Multispecies database.

The Multitype implementation can combine materials of different eos types. If can be used for 3T
Eos modes. When used in this generally, we speak of MTMMMT Eos - multitemperature multimaterial
multitype.

Currently, the Eos types that can be combined are:

• Gamma,

• Tabulated.

The Multitype implementation calls eos idealGamma and eos tabIonmix only in MODE DENS TEMP component
modes.

The prescription for combining results of such calls is currently simple: Make Eos calls for different
materials separately, passing the material’s partial density into the Eos as the density. Ther per-material
calls are thus not aware of other materials in the same cell. Results are combined as appropriate: pressures
are taken as partial pressures and are added up to give the total multimaterial pressure; specific energies are
multiplied with partial densities to give energy densities, which are added up.

For 3T modes, the above is applied separately for ion and electron components, resulting in separate
total energies, pressures, etc., for ions and electrons. Newton-Raphson root search is done to implement
Eos modes that take energies or pressures as inputs (like MODE DENS EI∗, MODE DENS PRES [not completely
implemented]), separately for ions and electrons if necessary. The blackbody radiation component is added.

To use MTMMMT, use the +mtmmmt setup shortcut. See the LaserSlab simulation for an example. See
the Multispecies unit on initializing material properties.

16.5 Usage

16.5.1 Initialization

The initialization function of the Eos unit Eos init is fairly simple for the two ideal gas gamma law imple-
mentations included. It gathers the runtime parameters and the physical constants needed by the equation
of state and stores them in the data module. The Helmholtz EOS Eos init routine is a little more complex.
The Helmholtz EOS requires an input file helm table.dat that contains the lookup table for the electron
contributions. This table is currently stored in ASCII for portability purposes. When the table is first read
in, a binary version called helm table.bdat is created. This binary format can be used for faster subsequent
restarts on the same machine but may not be portable across platforms. The Eos_init routine reads in the
table data on processor 0 and broadcasts it to all other processors.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_init_F90.html
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16.5.2 Runtime Parameters

Runtime parameters for the Gamma unit require the user to set the thermodynamic properties for the single
gas. gamma, eos singleSpeciesA, eos singleSpeciesZ set the ratio of specific heats and the nucleon and
proton numbers for the gas. In contrast, the Multigamma implementation does not set runtime parameters to
define properties of the multiple species. Instead, the simulation Config file indicates the requested species,
for example helium and oxygen can be defined as

SPECIES HE4
SPECIES O16

The properties of the gases are initialized in the file Simulation initSpecies.F90, for example

subroutine Simulation_initSpecies()
use Multispecies_interface, ONLY : Multispecies_setProperty
implicit none

#include "Flash.h"
#include "Multispecies.h"
call Multispecies_setProperty(HE4_SPEC, A, 4.)
call Multispecies_setProperty(HE4_SPEC, Z, 2.)
call Multispecies_setProperty(HE4_SPEC, GAMMA, 1.66666666667e0)
call Multispecies_setProperty(O16_SPEC, A, 16.0)
call Multispecies_setProperty(O16_SPEC, Z, 8.0)
call Multispecies_setProperty(O16_SPEC, GAMMA, 1.4)

end subroutine Simulation_initSpecies

For the Helmholtz equation of state, the table-lookup algorithm requires a given temperature and density.
When temperature or internal energy are supplied as the input parameter, an iterative solution is found.
Therefore, no matter what mode is selected for Helmholtz input, the best initial value of temperature should
be provided to speed convergence of the iterations. The iterative solver is controlled by two runtime param-
eters eos maxNewton and eos tolerance which define the maximum number of iterations and convergence
tolerance. An additional runtime parameter for Helmholtz, eos coulumbMult, indicates whether or not to
apply Coulomb corrections. In some regions of the ρ-T plane, the approximations made in the Coulomb
corrections may be invalid and result in negative pressures. When the parameter eos_coulombMult is set to
zero, the Coulomb corrections are not applied.

16.5.3 Direct and Wrapped Calls

The primary function in the Eos unit, Eos, operates on a vector, taking density, composition, and either
temperature, internal energy, or pressure as input, and returning γ1, and either the pressure, temperature or
internal energy (whichever was not used as input). This equation of state interface is useful for initializing a
problem. The user is given direct control over the input and output, since everything is passed through the
argument list. Also, the vector data format is more efficient than calling the equation of state routine directly
on a point by point basis, since it permits pipelining and provides better cache performance. Certain optional
quantities such electron pressure, degeneracy parameter, and thermodynamic derivatives can be calculated
by the Eos function if needed. These quantities are selected for computation based upon a logical mask array
provided as an input argument. A .true. value in the mask array results in the corresponding quantity being
computed and reported back to the calling function. Examples of calling the basic implementation Eos are
provided in the API description, see Eos.

The hydrodynamic and burning computations repeatedly call the Eos function to update pressure and
temperature during the course of their calculation. Typically, values in all the cells of the block need of be
updated in these calls. Since the primary Eos interface requires the data to be organized as a vector, using
it directly could make the code in the calling unit very cumbersome and error prone. The wrapper interface,
Eos wrapped provides a means by which the details of translating the data from block to vector and back
are hidden from the calling unit. The wrapper interface permits the caller to define a section of block by
giving the limiting indices along each dimension. The Eos_wrapped routine translates the block section thus

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
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described into the vector format of the Eos interface, and upon return translates the vector format back
to the block section. This wrapper routine cannot calculate the optional derivative quantities. If they are
needed, call the Eos routine directly with the optional mask set to true and space allocated for the returned
quantities.

16.6 Unit Test

The unit test of the Eos function can exercise all three implementations. Because the Gamma law allows only
one species, the setup required for the three implementations is specific. To invoke any three-dimensional
Eos unit test, the command is:

./setup unitTest/Eos/implementation -auto -3d

where implementation is one of Gamma, Multigamma, Helmholtz. The Eos unit test works on the assumption
that if the four physical variables in question (density, pressure, energy and temperature) are in thermal
equilibrium with one another, then applying the equation of state to any two of them should leave the other
two completely unchanged. Hence, if we initialize density and temperature with some arbitrary values, and
apply the equation of state to them in MODE DENS TEMP, then we should get pressure and energy values that
are thermodynamically consistent with density and temperature. Now after saving the original temperature
value, we apply the equation of state to density and newly calculated pressure. The new value of the
temperature should be identical to the saved original value. This verifies that the Eos unit is computing
correctly in MODE DENS PRES mode. By repeating this process for the remaining two modes, we can say with
great confidence that the Eos unit is functioning normally.

In our implementation of the Eos unit test, the initial conditions applied to the domain create a gradient
for density along the x axis and gradients for temperature and pressure along the y axis. If the test is being
run for the Multigamma or Helmholtz implementations, then the species are initialized to have gradients
along the z axis.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Eos/Eos_F90.html
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Figure 17.1: The organizational structure of physics source terms, which include units such as Burn and
Stir. Shaded units include only stub implementations. Only a subset of units is shown.
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Figure 17.2: The organizational structure of physics source terms, with additional units, including
Heatexchange.

The physics/sourceTerms organizational directory contains several units that implement forcing terms.
The Burn, Stir, Ionize, and Diffuse units contain implementations in FLASH4. Two other units, Cool
and Heat, contain only stub level routines in their API.

17.1 Burn Unit

The nuclear burning implementation of the Burn unit uses a sparse-matrix semi-implicit ordinary differential
equation (ODE) solver to calculate the nuclear burning rate and to update the fluid variables accordingly
(Timmes 1999). The primary interface routines for this unit are Burn init, which sets up the nuclear
isotope tables needed by the unit, and Burn, which calls the ODE solver and updates the hydrodynamical
variables in a single row of a single block. The routine Burn computeDt may limit the computational timestep
because of burning considerations. There is also a helper routine Simulation/SimulationComposition/-
Simulation_initSpecies (see Simulation initSpecies) which provides the properties of ions included in
the burning network.

17.1.1 Algorithms

Modeling thermonuclear flashes typically requires the energy generation rate due to nuclear burning over a
large range of temperatures, densities and compositions. The average energy generated or lost over a period
of time is found by integrating a system of ordinary differential equations (the nuclear reaction network)
for the abundances of important nuclei and the total energy release. In some contexts, such as supernova
models, the abundances themselves are also of interest. In either case, the coefficients that appear in the
equations are typically extremely sensitive to temperature. The resulting stiffness of the system of equations
requires the use of an implicit time integration scheme.

A user can choose between two implicit integration methods and two linear algebra packages in FLASH.
The runtime parameter odeStepper controls which integration method is used in the simulation. The choice
odeStepper = 1 is the default and invokes a Bader-Deuflhard scheme. The choice odeStepper = 2 invokes
a Kaps-Rentrop or Rosenbrock scheme. The runtime parameter algebra controls which linear algebra
package is used in the simulation. The choice algebra = 1 is the default and invokes the sparse matrix
MA28 package. The choice algebra = 2 invokes the GIFT linear algebra routines. While any combination
of the integration methods and linear algebra packages will produce correct answers, some combinations may
execute more efficiently than others for certain types of simulations. No general rules have been found for best

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/sourceTerms/Burn/Burn_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/sourceTerms/Burn/Burn_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/sourceTerms/Burn/Burn_computeDt_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_initSpecies_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Burn.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Burn.txt
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combination for a given simulation. The most efficient combination depends on the timestep being taken, the
spatial resolution of the model, the values of the local thermodynamic variables, and the composition. Users
are advised to experiment with the various combinations to determine the best one for their simulation.
However, an extensive analysis was performed in the Timmes paper cited below.

Timmes (1999) reviewed several methods for solving stiff nuclear reaction networks, providing the basis
for the reaction network solvers included with FLASH. The scaling properties and behavior of three semi-
implicit time integration algorithms (a traditional first-order accurate Euler method, a fourth-order accurate
Kaps-Rentrop / Rosenbrock method, and a variable order Bader-Deuflhard method) and eight linear algebra
packages (LAPACK, LUDCMP, LEQS, GIFT, MA28, UMFPACK, and Y12M) were investigated by running
each of these 24 combinations on seven different nuclear reaction networks (hard-wired 13- and 19-isotope
networks and soft-wired networks of 47, 76, 127, 200, and 489 isotopes). Timmes’ analysis suggested that
the best balance of accuracy, overall efficiency, memory footprint, and ease-of-use was provided by the two
integration methods (Bader-Deuflhard and Kaps-Rentrop) and the two linear algebra packages (MA28 and
GIFT) that are provided with the FLASH code.

17.1.2 Reaction networks

We begin by describing the equations solved by the nuclear burning unit. We consider material that may
be described by a density ρ and a single temperature T and contains a number of isotopes i, each of which
has Zi protons and Ai nucleons (protons + neutrons). Let ni and ρi denote the number and mass density,
respectively, of the ith isotope, and let Xi denote its mass fraction, so that

Xi = ρi/ρ = niAi/(ρNA) , (17.1)

where NA is Avogadro’s number. Let the molar abundance of the ith isotope be

Yi = Xi/Ai = ni/(ρNA) . (17.2)

Mass conservation is then expressed by
N∑

i=1

Xi = 1 . (17.3)

At the end of each timestep, FLASH checks that the stored abundances satisfy (17.3) to machine precision
in order to avoid the unphysical buildup (or decay) of the abundances or energy generation rate. Roundoff
errors in this equation can lead to significant problems in some contexts (e.g., classical nova envelopes),
where trace abundances are important.

The general continuity equation for the ith isotope is given in Lagrangian formulation by

dYi

dt
+∇ · (YiVi) = Ṙi . (17.4)

In this equation Ṙi is the total reaction rate due to all binary reactions of the form i(j,k)l,

Ṙi =
∑
j,k

YlYkλkj(l)− YiYjλjk(i) , (17.5)

where λkj and λjk are the reverse (creation) and forward (destruction) nuclear reaction rates, respectively.
Contributions from three-body reactions, such as the triple-α reaction, are easy to append to (17.5). The
mass diffusion velocities Vi in (17.4) are obtained from the solution of a multicomponent diffusion equation
(Chapman & Cowling 1970; Burgers 1969; Williams 1988) and reflect the fact that mass diffusion processes
arise from pressure, temperature, and/or abundance gradients as well as from external gravitational or
electrical forces.

The case Vi ≡ 0 is important for two reasons. First, mass diffusion is often unimportant when compared
to other transport processes, such as thermal or viscous diffusion (i.e., large Lewis numbers and/or small
Prandtl numbers). Such a situation obtains, for example, in the study of laminar flame fronts propagating
through the quiescent interior of a white dwarf. Second, this case permits the decoupling of the reaction
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network solver from the hydrodynamical solver through the use of operator splitting, greatly simplifying the
algorithm. This is the method used by the default FLASH distribution. Setting Vi ≡ 0 transforms (17.4)
into

dYi

dt
= Ṙi , (17.6)

which may be written in the more compact, standard form

ẏ = f (y) . (17.7)

Stated another way, in the absence of mass diffusion or advection, any changes to the fluid composition are
due to local processes.

Because of the highly nonlinear temperature dependence of the nuclear reaction rates and because the
abundances themselves often range over several orders of magnitude in value, the values of the coefficients
which appear in (17.6) and (17.7) can vary quite significantly. As a result, the nuclear reaction network
equations are “stiff.” A system of equations is stiff when the ratio of the maximum to the minimum
eigenvalue of the Jacobian matrix J̃ ≡ ∂f/∂y is large and imaginary. This means that at least one of
the isotopic abundances changes on a much shorter timescale than another. Implicit or semi-implicit time
integration methods are generally necessary to avoid following this short-timescale behavior, requiring the
calculation of the Jacobian matrix.

It is instructive at this point to look at an example of how (17.6) and the associated Jacobian matrix
are formed. Consider the 12C(α,γ)16O reaction, which competes with the triple-α reaction during helium
burning in stars. The rate R at which this reaction proceeds is critical for evolutionary models of massive
stars, since it determines how much of the core is carbon and how much of the core is oxygen after the initial
helium fuel is exhausted. This reaction sequence contributes to the right-hand side of (17.7) through the
terms

Ẏ (4He) = −Y (4He) Y (12C) R + . . .

Ẏ (12C) = −Y (4He) Y (12C) R + . . . (17.8)
Ẏ (16O) = +Y (4He) Y (12C) R + . . . ,

where the ellipses indicate additional terms coming from other reaction sequences. The minus signs indicate
that helium and carbon are being destroyed, while the plus sign indicates that oxygen is being created. Each
of these three expressions contributes two terms to the Jacobian matrix J̃=∂f/∂y

J(4He,4 He) = −Y (12C) R + . . . J(4He,12 C) = −Y (4He) R + . . .

J(12C,4 He) = −Y (12C) R + . . . J(12C,12 C) = −Y (4He) R + . . . (17.9)
J(16O,4 He) = +Y (12C) R + . . . J(16O,12 C) = +Y (4He) R + . . . .

Entries in the Jacobian matrix represent the flow, in number of nuclei per second, into (positive) or out of
(negative) an isotope. All of the temperature and density dependence is included in the reaction rate R.
The Jacobian matrices that arise from nuclear reaction networks are neither positive-definite nor symmetric,
since the forward and reverse reaction rates are generally not equal. In addition, the magnitudes of the
matrix entries change as the abundances, temperature, or density change with time.

This release of FLASH4 contains three reaction networks. A seven-isotope alpha-chain (Iso7) is useful
for problems that do not have enough memory to carry a larger set of isotopes. The 13-isotope α-chain
plus heavy-ion reaction network (Aprox13) is suitable for most multi-dimensional simulations of stellar
phenomena, where having a reasonably accurate energy generation rate is of primary concern. The 19-
isotope reaction network (Aprox19) has the same α-chain and heavy-ion reactions as the 13-isotope network,
but it includes additional isotopes to accommodate some types of hydrogen burning (PP chains and steady-
state CNO cycles), along with some aspects of photo-disintegration into 54Fe. This 19 isotope reaction
network is described in Weaver, Zimmerman, & Woosley (1978).

The networks supplied with FLASH are examples of a “hard-wired” reaction network, where each of
the reaction sequences are carefully entered by hand. This approach is suitable for small networks, when
minimizing the CPU time required to run the reaction network is a primary concern, although it suffers the
disadvantage of inflexibility.
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17.1.2.1 Two linear algebra packages: MA28 and GIFT

As mentioned in the previous section, the Jacobian matrices of nuclear reaction networks tend to be sparse,
and they become more sparse as the number of isotopes increases. Since implicit or semi-implicit time
integration schemes generally require solving systems of linear equations involving the Jacobian matrix,
taking advantage of the sparsity can significantly reduce the CPU time required to solve the systems of
linear equations.

The MA28 sparse matrix package used by FLASH is described by Duff, Erisman, & Reid (1986). This
package, which has been described as the “Coke classic” of sparse linear algebra packages, uses a direct –
as opposed to an iterative – method for solving linear systems. Direct methods typically divide the solution
of Ã · x = b into a symbolic LU decomposition, a numerical LU decomposition, and a backsubstitution
phase. In the symbolic LU decomposition phase, the pivot order of a matrix is determined, and a sequence
of decomposition operations that minimizes the amount of fill-in is recorded. Fill-in refers to zero matrix
elements which become nonzero (e.g., a sparse matrix times a sparse matrix is generally a denser matrix).
The matrix is not decomposed; only the steps to do so are stored. Since the nonzero pattern of a chosen
nuclear reaction network does not change, the symbolic LU decomposition is a one-time initialization cost
for reaction networks. In the numerical LU decomposition phase, a matrix with the same pivot order and
nonzero pattern as a previously factorized matrix is numerically decomposed into its lower-upper form.
This phase must be done only once for each set of linear equations. In the backsubstitution phase, a set
of linear equations is solved with the factors calculated from a previous numerical decomposition. The
backsubstitution phase may be performed with as many right-hand sides as needed, and not all of the
right-hand sides need to be known in advance.

MA28 uses a combination of nested dissection and frontal envelope decomposition to minimize fill-in
during the factorization stage. An approximate degree update algorithm that is much faster (asymptotically
and in practice) than computing the exact degrees is employed. One continuous real parameter sets the
amount of searching done to locate the pivot element. When this parameter is set to zero, no searching
is done and the diagonal element is the pivot, while when set to unity, partial pivoting is done. Since the
matrices generated by reaction networks are usually diagonally dominant, the routine is set in FLASH to
use the diagonal as the pivot element. Several test cases showed that using partial pivoting did not make
a significant accuracy difference but was less efficient, since a search for an appropriate pivot element had
to be performed. MA28 accepts the nonzero entries of the matrix in the (i, j, ai,j) coordinate system and
typically uses 70−90% less storage than storing the full dense matrix.

GIFT is a program which generates Fortran subroutines for solving a system of linear equations by
Gaussian elimination (Gustafson, Liniger, & Willoughby 1970; Müller 1997). The full matrix Ã is reduced
to upper triangular form, and backsubstitution with the right-hand side b yields the solution to Ã · x = b.
GIFT generated routines skip all calculations with matrix elements that are zero; in this restricted sense,
GIFT generated routines are sparse, but the storage of a full matrix is still required. It is assumed that
the pivot element is located on the diagonal and no row or column interchanges are performed, so GIFT
generated routines may become unstable if the matrices are not diagonally dominant. These routines must
decompose the matrix for each right-hand side in a set of linear equations. GIFT writes out (in Fortran
code) the sequence of Gaussian elimination and backsubstitution steps without any do loop constructions
on the matrix A(i, j). As a result, the routines generated by GIFT can be quite large. For the 489 isotope
network discussed by Timmes (1999), GIFT generated ∼ 5.0×107 lines of code! Fortunately, for small
reaction networks (less than about 30 isotopes), GIFT generated routines are much smaller and generally
faster than other linear algebra packages.

The FLASH runtime parameter algebra controls which linear algebra package is used in the simulation.
algebra = 1 is the default choice and invokes the sparse matrix MA28 package. algebra = 2 invokes the
GIFT linear algebra routines.

17.1.2.2 Two time integration methods

One of the time integration methods used by FLASH for evolving the reaction networks is a 4th-order accurate
Kaps-Rentrop, or Rosenbrock method. In essence, this method is an implicit Runge-Kutta algorithm. The

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Burn.txt
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reaction network is advanced over a timestep h according to

yn+1 = yn +
4∑

i=1

bi∆i , (17.10)

where the four vectors ∆i are found from successively solving the four matrix equations

(1̃/γh− J̃) ·∆1 = f(yn) (17.11)
(1̃/γh− J̃) ·∆2 = f(yn + a21∆1) + c21∆1/h (17.12)
(1̃/γh− J̃) ·∆3 = f(yn + a31∆1 + a32∆2) + (c31∆1 + c32∆2)/h (17.13)
(1̃γh− J̃) ·∆4 = f(yn + a31∆1 + a32∆2) + (c41∆1 + c42∆2 + c43∆3)/h . (17.14)

bi, γ, aij , and cij are fixed constants of the method. An estimate of the accuracy of the integration step is
made by comparing a third-order solution with a fourth-order solution, which is a significant improvement
over the basic Euler method. The minimum cost of this method − which applies for a single timestep that
meets or exceeds a specified integration accuracy − is one Jacobian evaluation, three evaluations of the
right-hand side, one matrix decomposition, and four backsubstitutions. Note that the four matrix equations
represent a staged set of linear equations (∆4 depends on ∆3 . . . depends on ∆1). Not all of the right-hand
sides are known in advance. This general feature of higher-order integration methods impacts the optimal
choice of a linear algebra package. The fourth-order Kaps-Rentrop routine in FLASH makes use of the
routine GRK4T given by Kaps & Rentrop (1979).

Another time integration method used by FLASH for evolving the reaction networks is the variable order
Bader-Deuflhard method (e.g., Bader & Deuflhard 1983). The reaction network is advanced over a large
timestep H from yn to yn+1 by the following sequence of matrix equations. First,

h = H/m

(1̃− J̃) ·∆0 = hf(yn) (17.15)
y1 = yn + ∆0 .

Then from k = 1, 2, . . . ,m− 1

(1̃− J̃) · x = hf(yk)−∆k−1

∆k = ∆k−1 + 2x (17.16)
yk+1 = yk + ∆k ,

and closure is obtained by the last stage

(1̃− J̃) ·∆m = h[f(ym)−∆m−1]
yn+1 = ym + ∆m . (17.17)

This staged sequence of matrix equations is executed at least twice with m = 2 and m = 6, yielding a
fifth-order method. The sequence may be executed a maximum of seven times, which yields a fifteenth-order
method. The exact number of times the staged sequence is executed depends on the accuracy requirements
(set to one part in 106 in FLASH) and the smoothness of the solution. Estimates of the accuracy of an
integration step are made by comparing the solutions derived from different orders. The minimum cost of
this method — which applies for a single timestep that met or exceeded the specified integration accuracy
— is one Jacobian evaluation, eight evaluations of the right-hand side, two matrix decompositions, and ten
backsubstitutions. This minimum cost can be increased at a rate of one decomposition (the expensive part)
and m backsubstitutions (the inexpensive part) for every increase in the order 2k +1. The cost of increasing
the order is compensated for, hopefully, by being able to take correspondingly larger (but accurate) timestep.
The controls for order versus step size are a built-in part of the Bader-Deuflhard method. The cost per step
of this integration method is at least twice as large as the cost per step of either a traditional first-order
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accurate Euler method or the fourth-order accurate Kaps-Rentrop discussed above. However, if the Bader-
Deuflhard method can take accurate timesteps that are at least twice as large, then this method will be
more efficient globally. Timmes (1999) shows that this is typically (but not always!) the case. Note that in
Equations 17.15 – 17.17, not all of the right-hand sides are known in advance, since the sequence of linear
equations is staged. This staging feature of the integration method may make some matrix packages, such
as MA28, a more efficient choice.

The FLASH runtime parameter odeStepper controls which integration method is used in the simulation.
The choice odeStepper = 1 is the default and invokes the variable order Bader-Deuflhard scheme. The
choice odeStepper = 2 invokes the fourth order Kaps-Rentrop / Rosenbrock scheme.

17.1.3 Detecting shocks

For most astrophysical detonations, the shock structure is so thin that there is insufficient time for burning
to take place within the shock. However, since numerical shock structures tend to be much wider than their
physical counterparts, it is possible for a significant amount of burning to occur within the shock. Allowing
this to happen can lead to unphysical results. The burner unit includes a multidimensional shock detection
algorithm that can be used to prevent burning in shocks. If the useShockBurn parameter is set to .false.,
this algorithm is used to detect shocks in the Burn unit and to switch off the burning in shocked cells.

Currently, the shock detection algorithm supports Cartesian and 2-dimensional cylindrical coordinates.
The basic algorithm is to compare the jump in pressure in the direction of compression (determined by
looking at the velocity field) with a shock parameter (typically 1/3). If the total velocity divergence is
negative and the relative pressure jump across the compression front is larger than the shock parameter,
then a cell is considered to be within a shock.

This computation is done on a block by block basis. It is important that the velocity and pressure
variables have up-to-date guard cells, so a guard cell call is done for the burners only if we are detecting
shocks (i.e. useShockBurning = .false.).

17.1.4 Energy generation rates and reaction rates

The instantaneous energy generation rate is given by the sum

ε̇nuc = NA

∑
i

dYi

dt
. (17.18)

Note that a nuclear reaction network does not need to be evolved in order to obtain the instantaneous energy
generation rate, since only the right hand sides of the ordinary differential equations need to be evaluated.
It is more appropriate in the FLASH program to use the average nuclear energy generated over a timestep

ε̇nuc = NA

∑
i

∆Yi

∆t
. (17.19)

In this case, the nuclear reaction network does need to be evolved. The energy generation rate, after
subtraction of any neutrino losses, is returned to the FLASH program for use with the operator splitting
technique.

The tabulation of Caughlan & Fowler (1988) is used in FLASH for most of the key nuclear reaction
rates. Modern values for some of the reaction rates were taken from the reaction rate library of Hoffman
(2001, priv. comm.). A user can choose between two reaction rate evaluations in FLASH. The runtime
parameter useBurnTable controls which reaction rate evaluation method is used in the simulation. The
choice useBurnTable = 0 is the default and evaluates the reaction rates from analytical expressions. The
choice useBurnTable = 1 evaluates the reactions rates from table interpolation. The reaction rate tables
are formed on-the-fly from the analytical expressions. Tests on one-dimensional detonations and hydrostatic
burnings suggest that there are no major differences in the abundance levels if tables are used instead of the
analytic expressions; we find less than 1% differences at the end of long timescale runs. Table interpolation is
about 10 times faster than evaluating the analytic expressions, but the speedup to FLASH is more modest,
a few percent at best, since reaction rate evaluation never dominates in a real production run.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Burn.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Burn.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Burn.txt
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Finally, nuclear reaction rate screening effects as formulated by Wallace et al. (1982) and decreases in
the energy generation rate ε̇nuc due to neutrino losses as given by Itoh et al. (1996) are included in FLASH.

17.1.5 Temperature-based timestep limiting

When using explicit hydrodynamics methods, a timestep limiter must be used to ensure the stability of
the numerical solution. The standard CFL limiter is always used when an explicit hydrodynamics unit is
included in FLASH. This constraint does not allow any information to travel more than one computational
cell per timestep. When coupling burning with the hydrodynamics, the CFL timestep may be so large
compared to the burning timescales that the nuclear energy release in a cell may exceed the existing internal
energy in that cell. When this happens, the two operations (hydrodynamics and nuclear burning) become
decoupled.

To limit the timestep when burning is performed, an additional constraint is imposed. The limiter tries
to force the energy generation from burning to be smaller than the internal energy in a cell. The runtime
parameter enucDtFactor controls this ratio. The timestep limiter is calculated as

∆tburn = enucDtFactor · Eint

Enuc
(17.20)

where Enuc is the nuclear energy, expressed as energy per volume per time, and Eint is the internal energy
per volume. For good coupling between the hydrodynamics and burning, enucDtFactor should be < 1. The
default value is kept artificially high so that in most simulations the time limiting due to burning is turned
off. Care must be exercised in the use of this routine.

17.2 Ionization Unit

The analysis of UV and X-ray observations, and in particular of spectral lines, is a powerful diagnostic tool
of the physical conditions in astrophysical plasmas (e.g., the outer layers of the solar atmosphere, supernova
remnants, etc.). Since deviation from equilibrium ionization may have a non-negligible effect on the UV and
X-ray lines, it is crucial to take into account these effects in the modeling of plasmas and in the interpretation
of the relevant observations.

In light of the above observations, FLASH contains the unit Ionize, in particular the implementation
physics/sourceTerms/Ionize/IonizeMain/Nei, which is capable of computing the density of each ion
species of a given element taking into account non-equilibrium ionization (NEI). This is accomplished by
solving a system of equations consisting of the fluid equations of the whole plasma and the continuity
equations of the ionization species of the elements considered. The densities of the twelve most abundant
elements in astrophysical material (He, C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) plus fully ionized
hydrogen and electrons can be computed by this unit.

The Euler equations plus the set of advection equations for all the ion species take the following form

∂ρ

∂t
+∇ · (ρv) = 0 (17.21)

∂ρv
∂t

+∇ · (ρvv) +∇P = ρg (17.22)

∂ρE

∂t
+∇ · [(ρE + P )v] = ρv · g [ + S ] (17.23)

∂nZ
i

∂t
+∇ · nZ

i v = RZ
i (i = 0, . . . , Z) , (17.24)

where ρ is the fluid density, t is the time, v is the fluid velocity, P is the pressure, E is the sum of the internal
energy and kinetic energy per unit mass, g is the acceleration due to gravity, nZ

i is the number density of
ions of ionization level i of the element Z, and

RZ
i = Ne[nZ

i+1α
Z
i+1 + nZ

i−1S
Z
i−1 − nZ

i (αZ
i + SZ

i )] , (17.25)

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Burn.txt
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Table 17.1: Runtime parameters used with the Ionize unit.

Variable Type Default Description
tneimin real 1.0× 104 Min nei temperature
tneimax real 1.0× 107 Max nei temperature
dneimin real 1.0 Min nei electron number density
dneimax real 1.0× 1012 Max nei electron number density

where Ne is the electron number density, αZ
i ≡ α(Ne, T ) are the coefficients of collisional and dielectronic

recombination, and SZ
i ≡ S(Ne, T ) are the collisional ionization coefficients of Summers(1974). Note that

NSPECIES, the total number of FLASH species, will be given by

Nspec = 2 +
∑
Z

(Z + 1);

the sum ranges over all the elements from the list above that are included in the problem, and the additional
2 comes from the hydrogen and electron mass fractions which are automatically included by the IonizeMain
subunit.

17.2.1 Algorithms

A fractional step method is required to integrate the equations and in particular to decouple the NEI solver
from the hydro solver. For each timestep, the homogeneous hydrodynamic transport equations given by
(17.21) are solved using the FLASH hydrodynamics solver with RZ

i = 0. After each transport step, the
“stiff” systems of ordinary differential equations (one system per element included in the simulation) for the
NEI problem

∂nZ
i

∂t
= RZ

i (i = 0, . . . , Z) (17.26)

are integrated. This step incorporates the reactive source terms. Within each grid cell, the above equations
can be solved separately with a standard ODE method. Since this system is “stiff”, it is solved using the
Bader-Deuflhard time integration solver with the MA28 sparse matrix package. Timmes (1999) has shown
that these two algorithms together provide the best balance of accuracy and overall efficiency for the similar
problem of nuclear burning, see Section 17.1.

Note that in the present version, the contribution of the ionization and recombination to the energy equa-
tion (the bracketed term in (17.23)) is not accounted for. Also, it should be noted that the source term in the
NEI unit implementation is adequate to solve the problem for optically thin plasma in the “coronal” approx-
imation; just collisional ionization, auto-ionization, radiative recombination, and dielectronic recombination
are considered.

17.2.2 Usage

In order to run a FLASH executable that uses the ionization unit, the ionization coefficients of Summers
(1974) must be contained in a file named summers den 1e8.rates in the same directory as the executable
when the simulation is run. This file is copied into the object/ directory with the Config keyword DATAFILES
in the physics/sourceTerms/Ionize/IonizeMain implementation.

The Ionize unit supplies the runtime parameters described in Table 17.1. There are two implementations
of physics/sourceTerms/Ionize/IonizeMain: the default implementation, Nei (tested using Neitest (see
Section 30.7.1)), and Eqi (untested in FLASH4). The former computes ion species for non-equilibrium
ionization, and the latter computes ion species in the approximation of ionization equilibrium.

The Ionize unit requires that the subunit implementation Simulation/SimulationComposition/-
Ionize be used to set up the ion species of the fluid. The ions are defined in a file Simulation/-
SimulationComposition/Ionize/SpeciesList.txt, however, the Config file in the simulation directory
(e.g. Simulation/SimulationMain/Neitest/Config) defines which subset of these elements are to be used.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Ionize.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Ionize.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Ionize.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Ionize.txt
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17.3 Stir Unit

The addition of driving terms in a hydrodynamical simulation can be a useful feature, for example, in gener-
ating turbulent flows or for simulating the addition of power on larger scales (e.g., supernova feedback into
the interstellar medium). The Stir unit comes in two implementations: 1) the Generate implementation,
in which a divergence-free, random time-correlated ‘stirring’ velocity is directly added at selected modes in
the simulation and 2) the FromFile implementation, in which a stirring field is set up from data residing
on a file. The FromFile implementation allows to set up identical stirring fields on different platforms, and
thus comparisons can be made between different codes.

Before FLASH 4.2, the implementation now called Generate was the only one provided. It is still the
default that is being used if one specifies just REQUIRES physics/sourceTerms/Stir in a Config file or
-unit=physics/sourceTerms/Stir on the setup command line.

17.3.1 Stir Unit: Generate Implementation

In the generate implementation, the Stir unit directly adds a divergence-free, time-correlated ‘stirring’ ve-
locity at selected modes in the simulation.

The time-correlation is important for modeling realistic driving forces. Most large-scale driving forces are
time-correlated, rather than white-noise; for instance, turbulent stirring from larger scales will be correlated
on timescales related to the lifetime of an eddy on the scale of the simulation domain. This time correlation
will lead to coherent structures in the simulation that will be absent with white-noise driving.

For each mode at each timestep, six separate phases (real and imaginary in each of the three spatial
dimensions) are evolved by an Ornstein-Uhlenbeck (OU) random process (Uhlenbeck 1930). The OU process
is a zero-mean, constant-rms process, which at each step ‘decays’ the previous value by an exponential
f = e(∆t

τ ) and then adds a Gaussian random variable with a given variance, weighted by a ’driving’ factor√
(1 − f2). Since the OU process represents a velocity, the variance is chosen to be the square root of the

specific energy input rate (set by the runtime parameter st energy) divided by the decay time τ (st decay).
In the limit that the timestep ∆t → 0, it is easily seen that the algorithm represents a linearly-weighted
summation of the old state with the new Gaussian random variable.

By evolving the phases of the stirring modes in Fourier space, imposing a divergence-free condition is
relatively straightforward. At each timestep, the solenoidal component of the velocities is projected out,
leaving only the non-compressional modes to add to the velocities.

The velocities are then converted to physical space by a direct Fourier transform – i.e., adding the sin
and cos terms explicitly. Since most drivings involve a fairly small number of modes, this is more efficient
than an FFT, since the FFT would need large numbers of modes (equal to six times the number of cells in
the domain), the vast majority of which would have zero amplitude.

17.3.2 Stir Unit: FromFile Implementation

In the from file implementation, the Stir unit sets up a stirring field from data residing on a file. Here we
summarize the method for driving turbulence used in Federrath et al. (2010, A&A, 512, A81). Please refer
to that paper for further details.

Turbulence decays in about a crossing time, because the kinetic energy carried by the turbulence dissipates
on small scales and turns into heat. In order to study the statistics of turbulence (e.g., the PDF, power
spectrum, structure functions, etc.) over a significant time period thus requires continuous stirring (also
called driving or forcing) with a turbulent acceleration field, which we call ~f(~x, t) in the following.

The stirring field ~f is often modeled with a spatially static pattern for which the amplitude is adjusted
in time. This results in a roughly constant energy input on large scales, but has the disadvantage that the
turbulence is not really random, because the large-scale pattern is fixed, which may introduce undesirable
systematics. Other studies model ~f such that it can vary in time and space to achieve a smoothly varying
pattern that resembles the flow of kinetic energy from scales larger than the simulation box scale. The
most widely used method to achieve this is the Ornstein-Uhlenbeck (OU) process. The OU process is a
well-defined stochastic process with a finite autocorrelation timescale. It can be used to excite turbulent
motions in 3D, 2D, or 1D simulations as explained in Eswaran & Pope (1988, Computers & Fluids, 16, 257).

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Stir.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Stir.txt
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The OU process is a stochastic differential equation describing the evolution of ~̂f in Fourier space (k-
space):

d ~̂f (~k, t) = f0 (~k) P ζ(~k) d ~W(t) − ~̂f (~k, t)
dt

T
. (17.27)

The first term on the right hand side is a diffusion term. This term is modeled by a Wiener process ~W(t),
which adds a Gaussian random increment to the vector field given in the previous time step dt. Wiener
processes are random processes, such that

~W(t)− ~W(t− dt) = ~N (0,dt) , (17.28)

where ~N (0,dt) denotes the 3D, 2D, or 1D version of a Gaussian distribution with zero mean and standard
deviation dt. This is combined with a projection using the projection tensor P ζ(~k) in Fourier space. In
index notation, the projection operator reads

Pζ
ij (~k) = ζ P⊥ij (~k) + (1− ζ)P‖ij (~k) = ζ δij + (1− 2ζ)

kikj

|k|2
, (17.29)

where δij is the Kronecker symbol, and P⊥ij = δij−kikj/k2 and P‖ij = kikj/k2 are the solenoidal (divergence-
free) and the compressive (curl-free) projection operators, respectively. The projection operator serves to
construct a purely solenoidal stirring field by setting ζ = 1. For ζ = 0, a purely compressive stirring field is
obtained. Any combination of solenoidal and compressive modes can be constructed by choosing ζ ∈ [0, 1].
By changing the parameter ζ, we can thus set the power of compressive modes with respect to the total
power in the driving field. The analytical ratio of compressive power to total power can be derived from
equation (17.29) by evaluating the norm of the compressive component of the projection tensor,∣∣∣(1− ζ)P‖ij

∣∣∣2 = (1− ζ)2 , (17.30)

and by evaluating the norm of the full projection tensor∣∣∣Pζ
ij

∣∣∣2 = 1− 2ζ + Dζ2 . (17.31)

The result of the last equation depends on the dimensionality D = 1, 2, 3 of the simulation, because the
norm of the Kronecker symbol |δij | = 1, 2 or 3 in one, two or three dimensions, respectively. The ratio of
equations (17.30) and (17.31) gives the relative power in compressive modes, Flong/Ftot, as a function of ζ:

Flong

Ftot
=

(1− ζ)2

1− 2ζ + Dζ2
. (17.32)

Figure 17.3 provides a graphical representation of this ratio for the 1D, 2D, and 3D case. For comparison,
we plot numerical values of the forcing ratio obtained in eleven 3D and 2D hydrodynamical simulations by
Federrath et al. (2010, A&A, 512, A81), in which we varied the forcing parameter ζ from purely compressive
stirring (ζ = 0) to purely solenoidal stirring (ζ = 1) in the range ζ = [0, 1], separated by ∆ζ = 0.1.
Note that a natural mixture of stirring modes is obtained for ζ = 0.5, which leads to Flong/Ftot = 1/3 for
3D turbulence, and Flong/Ftot = 1/2 for 2D turbulence. A simple way to understand this natural ratio
is to consider longitudinal and transverse waves. In 3D, the longitudinal waves occupy one of the three
spatial dimensions, while the transverse waves occupy two of the three on average. Thus, the longitudinal
(compressive) part has a relative power of 1/3, while the transverse (solenoidal) part has a relative power of
2/3 in 3D. In 2D, the natural ratio is 1/2, because longitudinal and transverse waves are evenly distributed
in two dimensions.

The second term on the right-hand side of equation (17.27) is a drift term describing the exponential
decay of the autocorrelation of ~f . The usual procedure is to set the autocorrelation timescale equal to
the turbulent crossing time, T = Lpeak/V , on the scale of energy injection, Lpeak. This type of stirring
models the kinetic energy input from large-scale turbulent fluctuations breaking up into smaller and smaller
structures.

The runtime parameters associated with the StirFromFile unit are described in the 17.3.3 section.
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Figure 17.3: Ratio of compressive to total power of the turbulent stirring field, reprinted from Federrath
et al. (2010, A&A, 512, A81) with permission by Astronomy & Astrophysics. The solid lines labelled with
1D, 2D, and 3D show the analytical expectation for this ratio, equation (17.32), as a function of the stirring
parameter ζ for one-, two- and three-dimensional driving, respectively. The diamonds and squares show
results of numerical simulations in 3D and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. The two limiting
cases of purely solenoidal stirring (ζ = 1) and purely compressive stirring (ζ = 0) are indicated as ”sol”
and ”comp”, respectively. Note that in any 1D model, all power is in the compressive component, and thus
F long/F tot = 1, independent of ζ.

17.3.3 Using the StirFromFile Unit

17.3.3.1 Runtime Parameters

Table 17.2: Runtime parameters for the stirring module.

Variable Type Default Description
useStir boolean .true. switch stirring on/off
st computeDt boolean .false. restrict timestep based on stirring
st infilename string ”forcingfile.dat” file containing the stirring time sequence

Table 17.2 lists the runtime parameters for the StirFromFile unit. This includes a switch for turning
the stirring module on/off and a switch to restrict the timestep based on the acceleration field used for
stirring (st computeDt is switched off by default, because it is normally sufficient to restrict the timestep
based on the gas velocity). Finally, st infilename is the name of the input file containing the time and
mode sequence used for stirring. This file must be prepared in advance with a separate Fortran program
located in SimulationMain/StirFromFile/forcing_generator/. The reason for this structural splitting
is to predetermine what the code is going to do. For instance, by preparing the time sequence of the stirring
in advance, one can always reproduce exactly the full evolution of all driving patterns applied during a
simulation. It also has the advantage that exactly identical stirring patterns can be applied in completely
different codes, because they read the time and mode sequence from the same stirring file (Price & Federrath,
2010, MNRAS, 406, 1659).

The stirring module is compatible with any hydro or MHD solver and any grid implementation (uniform
or AMR). Upon inclusion in a FLASH setup or module, the StirFromFile module defines three additional
grid scalar fields, accx, accy, and accz, holding the three vector components of the stirring field ~f .

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Stir.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Stir.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Stir.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Stir.txt
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17.3.3.2 Preparing the Stirring Sequence (st infilename)

Table 17.3: Parameters in forcing generator.F90 to prepare a stirring sequence.

Variable Type Default Description
ndim integer 3 The dimensionality of the simulation (1, 2, or 3)
xmin, xmax real −0.5, 0.5 Domain boundary coordinates in x direction
ymin, ymax real −0.5, 0.5 Domain boundary coordinates in y direction
zmin, zmax real −0.5, 0.5 Domain boundary coordinates in z direction
st spectform integer 1 Spectral shape (0: band, 1: paraboloid)
st decay real 0.5 Autocorrelation time of the OU process, T = Lpeak/V
st energy real 2e-3 Determines the driving amplitude
st stirmin real 6.283 Minimum wavenumber stirred (e.g., kmin . 2π/Lbox)
st stirmax real 18.95 Maximum wavenumber stirred (e.g., kmax & 6π/Lbox)
st solweight real 1.0 Mode mixture ζ = [0, 1] in Eq. (17.32). Typical values

are 1.0: solenoidal; 0.0: compressive; 0.5: natural mix-
ture.

st seed integer 140281 Random seed for stirring sequence
end time real 5.0 Final time in stirring sequence
nsteps integer 100 Number of realizations between t = 0 and end time
outfilename string ”forcingfile.dat” Output name (input file st infilename for FLASH)

The code requires a time sequence of stirring modes at runtime, which have to be prepared with the stand-
alone Fortran program forcing generator.F90 in SimulationMain/StirFromFile/forcing_generator/.
A Makefile is provided in the same directory. This program prepares the time sequence of Fourier modes,
which is then read by FLASH during runtime, to construct the physical acceleration fields used for stir-
ring. It controls the spatial structure and the temporal correlation of the driving, its amplitude, the
mode mixture, and the time separation between successive driving patterns. The user has to modify
forcing_generator.F90 to construct a requested driving sequence and to tailor it to the desired physi-
cal situation to be modeled.

Table 17.3 lists all the parameters that can be adjusted in the main routine of forcing generator.F90.
Most of them are straightforward to set (ndim, xmin, xmax, ymin, ...1), but others may require some
explanation. For example, st spectform determines the shape of the driving amplitude in Fourier space.
Many colleagues drive a band (st spectform=0), i.e., equal power injected between wavenumber modes
kmin = st stirmin and kmax = st stirmax. This produces a sharp transition between stirred modes and
modes that are not stirred. Here we set the default to a smooth function, a paraboloid (st spectform=1),
such that most power is injected on wavenumber kpeak = (kmin + kmax)/2 and falls off quadratically towards
both wavenumber ends, normalized such that the injected power at kmin and kmax vanishes. This has the
advantage of defining a characteristic peak injection scale kpeak and achieves a smooth transition between
stirred and non-stirred wavenumbers.

st decay and st energy determine the autocorrelation time of the OU process and the total injected
energy, which is simply a measure for the normalization of the acceleration field. These parameters must
be adjusted according to the physical setup. For instance, for a given target velocity dispersion V on the
injection scale Lpeak = 2π/kpeak, the autocorrelation time should be set equal to the turbulent crossing time,
T = Lpeak/V . In contrast, setting st decay to a very small or a very large number results in white noise
driving or in a static driving pattern, respectively.

The parameter st solweight determines whether the acceleration field will be solenoidal (divergence-
free) or compressive (curl-free) or any mixture, according to Equation (17.32). Incompressible gases should
naturally be driven with a purely solenoidal field (ζ = 1), while compressible turbulence in the interstellar
medium may be driven primarily by a mixture of solenoidal and compressive modes. A detailed study of the
influence of ζ is presented in Federrath et al. (2010, A&A, 512, A81).

1Note that we typically assume a cubic box with side length L box = xmax− xmin = ymax− ymin = zmax− zmin
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st seed is the random seed for the OU sequence and determines the pseudo random number sequence
for the integrated Box-Muller random number generator.

Finally, end time and nsteps determine the final physical time for stirring and the number of driving
patterns to be prepared within the time period from t = 0 to t = end time. This sets the number of
equally-spaced times at which FLASH is going to read a new stirring pattern from the file. This allows the
user to control how frequently a new driving pattern is constructed. A useful time separation of successive
driving patterns is about 10% of a crossing time (or autocorrelation time), i.e., setting nsteps = 10 ×
end time/st decay. This will sample the smooth changes in the OU driving sequence sufficiently well for
most applications.

17.3.4 Stirring Unit Test

An example setup using the StirFromFile unit is located in SimulationMain/StirFromFile/. The unit
test can be invoked by

./setup StirFromFile -auto -3d -nxb=16 -nyb=16 -nzb=16 +ug -with-unit=physics/Hydro.
The FLASH executable must be copied into the run directory together with the standard flash.par for
this setup, and together with the default forcing file (to be constructed using the standard parameters;
see section 17.3.3.2). During runtime the code writes a file with the time evolution of spatially integrated
quantities, amongst others, the rms Mach number and vorticity, which can used as basic code checks.

17.4 Energy Deposition Unit

The Energy Deposition unit calculates the energy deposited by one or more laser beams incident upon the
simulation domain. The function EnergyDeposition is the main control driver of the Energy Deposition
unit. The current implementation treats the laser beams in the geometric optics approximation. Beams
are made of a number of rays whose paths are traced through the domain based on the local refractive
index of each cell. The laser power deposited in a cell is calculated based on the inverse Bremsstrahlung
power in the cell and depends on the local electron number density gradient and local electron temperature
gradient. Currently there are two schemes implemented into FLASH: 1) a ray tracing algorithm based on
cell average quantities and 2) a more refined ray tracing method based on cubic interpolation. Both schemes
are discussed in the algorithmic implementation section 17.4.4 below.

17.4.1 Ray Tracing in the Geometric Optics Limit

In the geometric optics approach, the path of a laser wave can be described as the motion of a ray of
unit-mass through the potential field

V (r) =
c2

2
η(r)2, (17.33)

where c is the speed of light in vacuum and η is the index of refraction of the medium, assumed to vary on
a much longer spatial scale than the wavelength of the laser wave. Also η(r) is considered constant during
the time it takes for the ray to cross the domain (frozen medium). However η(r) is allowed to vary from one
time step to the next. For a non-relativistic unmagnetized plasma, the refractive index is given by

η(r)2 = 1−
ω2

p(r)
ω2

= 1− ne(r)
nc

, (17.34)

where ωp(r) is the plasma frequency, ω the laser frequency, ne(r) is the electron number density at location
r and

nc =
meπω2

e2
=

meπc2

λ2e2
(17.35)

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/sourceTerms/EnergyDeposition/EnergyDeposition_F90.html


17.4. ENERGY DEPOSITION UNIT 249

is the critical density at which the ray frequency and the plasma frequency are equal (me and e are the
electron mass and charge, λ is the laser wavelength). The ray equation of motion is then

d2r
dt2

= ∇
(
−c2

2
ne(r)
nc

)
, (17.36)

which constitutes the basic ray tracing 2nd order ODE equation. Splitting into two 1st order ODEs leads to

dr
dt

= v (17.37)

dv
dt

= −c2∇ne(r)
2nc

. (17.38)

For short distances we can assume a first order Taylor expansion of the electron number density around a
spcific location r0:

ne(r) ≈ ne(r0) +∇ne(r0) · (r− r0), (17.39)

where ∇ne(r0) is the electron number density gradient vector at r0. Inserting equation 17.39 into 17.37 and
17.38 leads to equations for the ray velocity and position as a function of time

v(t) = v0 −
c2

2nc
∇ne(r0)t, (17.40)

r(t) = r0 + v0t−
c2

4nc
∇ne(r0)t2, (17.41)

where r0 and v0 are the initial ray position and velocity.

17.4.2 Laser Power Deposition

The power P of an electromagnetic wave is depleted by the inverse Bremsstrahlung (ib) process. The rate
of power loss is governed by a 1st order ordinary differential equation (ODE):

dP

dt
= −νib(t)P. (17.42)

The inverse Bremsstrahlung frequency factor is given by the formula

νib =
ne

nc
νei, (17.43)

where νei is the electron-ion collision frequency

νei =
4
3

(
2π

me

)1/2
neZe4 lnΛ
(kBTe)3/2

. (17.44)

Here me is the electron mass, Z is the average ionization number of the plasma, e is the electron charge, ln Λ
is the Coulomb logarithm, kB is the Boltzmann constant and Te is the electron temperature. The Coulomb
logarithm is the natural logarithm of the Debye number Λ and is taken here as

lnΛ = ln

[
3

2Ze3

(
k3

BT 3
e

πne

)1/2
]

. (17.45)

The inverse Bremsstrahlung frequency depends thus on the electron number density and the electron tem-
perature, both of which are functions of the position, and, since the position changes with time, it ultimately
is also a function of time

νib(r) = νib(t) =
4
3

(
2π

me

)1/2
Ze4

nck
3/2
B

ne[r(t)]2 lnΛ[r(t)]
Te[r(t)]3/2

. (17.46)
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Solution of the above ODE in Eq.(17.42) gives the attenuation of the ray’s power from time zero to time t:

Pt = P0 exp
{
−
∫ t

0

νib(t′) dt′
}

. (17.47)

For a given small time step, the integral in Eq.(17.47) can be approximated in the following way. In order to
remove the intermediate function r(t) from the expression in Eq.(17.46), we first assume that the Coulomb
logarithm remains constant during the incremental time step

lnΛ[r(t)] ≈ lnΛ[r0] = ln

[
3

2Ze3

(
k3Te(r0)3

πne(r0)

)1/2
]

. (17.48)

Using first order Taylor expansions on both ne and Te similar to equation 17.39

ne[r(t)] = ne(r0) +∇ne(r0) · (r(t)− r0) (17.49)
Te[r(t)] = Te(r0) +∇Te(r0) · (r(t)− r0) (17.50)

and inserting the ray position equation 17.41, we get

ne[r(t)] = ne(r0)
[
1 +
∇ne(r0) · v0

ne(r0)
t− c2∇ne(r0) · ∇ne(r0)

4ncne(r0)
t2
]

(17.51)

Te[r(t)] = Te(r0)
[
1 +
∇Te(r0) · v0

Te(r0)
t− c2∇Te(r0) · ∇ne(r0)

4ncTe(r0)
t2
]

. (17.52)

The inverse-Bremsstrahlung rate can thus be written as a rational polynomial expression

νib(t) = νib(0)
(1 + Ut + Rt2)2

(1 + Wt + St2)3/2
, (17.53)

where νib,0 is the inverse-Bremsstrahlung rate at the initial point (zero time)

νib(0) =
4
3

(
2π

me

)1/2
Ze4 lnΛ[r0]

nck3/2

ne(r0)2

Te(r0)3/2
(17.54)

and

U =
∇ne(r0) · v0

ne(r0)
(17.55)

W =
∇Te(r0) · v0

Te(r0)
(17.56)

R = −c2∇ne(r0) · ∇ne(r0)
4ncne(r0)

(17.57)

S = −c2∇Te(r0) · ∇ne(r0)
4ncTe(r0)

. (17.58)

The integral in Eq.(17.47) can be solved by using a second order Gaussian quadrature

∫ t

0

νib(t′) dt′ = νib(0)
t

2

2∑
i=1

wi
(1 + Uti + Rt2i )

2

(1 + Wti + St2i )3/2
, (17.59)

where t1,2 = (1±1/
√

3)t/2 and both weights are equal to 1. The rate of energy deposition (energy deposited
per unit time) during this time is then P0 − Pt.
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17.4.3 Laser Energy Density

Experimentally implemented for only 3D Cartesian geometry in FLASH 4.4.

Light carries energy through space and therefore can be attributed an energy density (energy per volume).
For example, light propagating at velocity c with power P through an area A has an energy density of
Ulight = P

Ac .
Splitting the laser’s power across a finite number of rays is an abstraction with an interesting consequence.

Because each ray’s power is artificially confined to a 1D curvilinear axis, light rays in FLASH are naturally
described by linear energy densities (energy per distance) rather than volumetric energy densities (energy
per volume). Volumetric energy density is more physically relevant. Therefore, the contribution of each
ray to volumetric laser energy density (a cell quantity, “lase”, available as an output when using certain
ray-tracing modules – see 17.4.10.5) is calculated by taking the linear energy density of each ray, integrating
over the ray path within the cell, and dividing by the cell volume.

The details of the laser energy density calculation are as follows. Trading path length for parametrized
time, ray power Pt changes along the ray path by Eq.(17.47). For light traveling at speed c (determined by
frequency and medium), ray linear energy density Et similarly varies along ray path:

Et =
Pt

c
(17.60)

Volumetric energy density Ucell is found by integrating linear energy density Et over the ray’s path within
the cell (tf is the parametrized time value for which the ray reaches edge of cell), then dividing by cell volume
Vcell:

Ucell =

∫ tf

0
Etdt

Vcell
=

1
cVcell

∫ tf

0

Ptdt (17.61)

For each cell, all contributions to volumetric laser energy density (all rays’ Ucell) are summed to give a
total laser energy density for that cell.

17.4.4 Algorithmic Implementations of the Ray Tracing

The current implementation of the laser energy deposition assumes that rays transit the entire domain in a
single time step. This is equivalent of saying that the domain’s reaction time (changes of its state variables)
is much longer than the time it takes for each ray to either cross the domain or get absorbed by it. For
each time step it is first checked, if at least one of the laser beams is still active. If this is the case, then for
each active beam a collection of rays is generated possessing the right specifications according to the beam’s
direction of firing, its frequency, its pulse shape and its power. The Energy Deposition unit moves all rays
across all blocks until every ray has either exited the domain or has been absorbed by the domain. The rays
are moved on a block by block basis and for each block the rays are traced through the interior cells. The
Energy Deposition unit utilizes the infrastructure from the Grid Particles unit 8.9 to move rays between
blocks and processors. The code structure of the Energy Deposition unit during one time step is as follows:

Loop over all blocks containing rays
Calculate needed block data for all cells.

————- Start threading —————

Loop over all rays in block
Trace each ray through all cells in block

End loop

————- End threading —————

End loop
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Reassign rays to blocks/processors and repeat (exit, if no more rays)

The inner loop over all rays in a block is conveniently handled in one subroutine to allow for compact
(optional) threading. Currently there are three algorithmic options on how to trace the rays in FLASH: 1)
Cell average algorithm, 2) Cubic interpolation with piecewise parabolic ray tracing and 3) Cubic interpolation
using Runge Kutta integration schemes.

17.4.4.1 Cell Average (AVG) Algorithm

The AVG algorithm (Kaiser 2000) is based on tracing the rays on a cell-by-cell basis. Each cell has its
own average center electron number density 〈ne〉 and electron temperature 〈Te〉 value at the center of the
cell. The electron number density gradient vector 〈∇ne〉 as well as the electron temperature gradient vector
〈∇Te〉 are assumed to be constant within each cell. Rays will be transported through each cell between cell
faces in one step. Electron number densities ne0 and electron temperatures Te0 on the entry cell face are
calculated from the cell center values in accordance with equation 17.39 using first order Taylor expansions

ne0 = 〈ne〉+ 〈∇ne〉 · (r0 − 〈r〉) (17.62)
Te0 = 〈Te〉+ 〈∇Te〉 · (r0 − 〈r〉), (17.63)

where r0 are the position coordinates of the ray at the cell’s face and 〈r〉 are the coordinates of the cell’s
center. The ray’s cell crossing time tcross is determined from the quadratic time equation 17.41 by inserting
planar equations Axx+Ayy +Azz +D = A ·r(t)+D = 0 for all cell faces (in cartesian coordinates), leading
to

− c2A · 〈∇ne〉
4nc

t2 + A · v0t + A · r0 + D = 0, (17.64)

and selecting the shortest time (excluding the zero time corresponding to the point of entry). In FLASH, the
cartesian cell faces are coplanar with the xy-, xz- and the yz-plane, simplifying the quadratic time equation.
A cell face located at xcell and coplanar with the yz-plane has the plane equation x = xcell and thus Ax = 1,
Ay, Az = 0 and D = −xcell. For this cell face, the quadratic time equation becomes

−
c2〈∇ne〉x

4nc
t2 + v0xt + r0x − xcell = 0 (17.65)

and similar for the other cartesian components. In order to achieve a stable ray tracing algorithm and
uniquely assign rays to cells and blocks while crossing through cell walls, a cell wall thickness is defined,
which is shared between two adjacent cells. The code is set up such that rays are never to be found inside
this wall. When crossing between two cells occurs (same block or different blocks), the rays positions are
always adjusted (nudged) such that they will sit on this wall with finite thickness. The cell wall thickness
is defined in the code as being a very tiny fraction (adjustable, with default value of 1:1,000,000) of the
smallest cell dimension during a simulation.

The ray’s rate of energy deposition between the cell entry face and the cell exit face is calculated using
equations 17.47 to 17.59 with ∇ne(r0) and ∇Te(r0) replaced by their cell average values 〈∇ne〉 and 〈∇Te〉
and ne(r0) and Te(r0) replaced by their corresponding cell entry values ne0 and Te0. The upper integration
time limit is tcross, the ray’s cell crossing time.

The AVG algorithm, while conceptually simple, leads to discontinous change in ne at the cell interfaces.
To account for this, the ray undergoes refraction according to Snell’s law. Refraction at cell interfaces causes
a change in the ray’s velocity normal to the interface surface while preserving the ray velocity component
transverse to the interface normal. To derive the change in the ray normal velocity component, imagine the
cell interface to have a small infinitesimal thickness s and the ray moving from left to right through the
interface. On the left and right the normal velocity components are v⊥(`) and v⊥(r), respectively, while the
corresponding ne are ne(`) and ne(r). Since we are dealing with an interface of infinitesimal thickness, we
can use the first order equation 17.40 to get

v⊥(r) = v⊥(`)− c2

2nc

∆ne

s
t, (17.66)
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Figure 17.4: A single ray crossing a cell.

where ∆ne = ne(r) − ne(`), and the electron number density gradient is ∇ne = ∆ne/s. But s/t is the
average velocity of the ray passing through the interface and since we have constant acceleration we have
s/t = [v⊥(r) + v⊥(`)]/2, which, when inserted into the last equation, gives

v⊥(r)− v⊥(`) = − c2

nc

∆ne

[v⊥(r) + v⊥(`)]

v2
⊥(r)− v2

⊥(`) = −c2∆ne

nc

∆v2
⊥ = −c2∆ne

nc
. (17.67)

Clearly there is a limit as to how large ∆ne can be for refraction to occur. If ∆ne > v2
⊥(`)nc/c2, we have

v2
⊥(r) < 0, which is impossible. The only way out is then for the ray to have ∆ne = 0, i.e. the ray stays in

the same cell and reflects with v⊥(r) = −v⊥(`).
The basic algorithmic steps for tracing a single ray through all cells in one block (see Figure 17.4) can be

summarized as follows: The initial situation has the ray positioned on one of the block’s faces with velocity
components such that the ray’s direction of movement is into the block.

• Identify ray entry cell i0, entry position r0, entry velocity v0 and entry power P0.

• Calculate ne0 and Te0 at the entry point using equations 17.62 and 17.63.

• Solve equation 17.41 for time for each possible cell face. Identify the cell crossing time tcross as minimum
of all solutions > 0.

• Using tcross and equation 17.41 again, find the cell exit position rexit.

• Calculate lnΛ[r0], νib(0), U , W , R, S and evaluate Pexit using equations 17.47 and 17.59.

• Using tcross and equation 17.40, find the ray’s exit velocity vexit.

• Based on rexit and vexit determine new entry cell iexit.

• Calculate the electron number density jump ∆ne between both cells i0 and iexit, using equation 17.39.

• Check for reflection or refraction using Snell’s law equation 17.67 and update vexit and possibly new
entry cell iexit.

• If cell iexit is still in block, set all exit variables equal to entry variables and repeat the steps.
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17.4.4.2 Cubic Interpolation with Piecewise Parabolic Ray Tracing (CIPPRT)

The use of cubic interpolation schemes is an attempt at providing continuous ne and Te representations
as well as continuous first derivatives ∇ne and ∇Te throughout the entire domain. This allows for the
calculation of a more smoother path for each ray inside each cell when compared to the AVG algorithm. In
effect, the cell-by-cell choppiness of the AVG algorithm can be avoided by taking many small ray steps inside
each cell. Also, the troublesome ne discontinuities at the cell boundaries and the application of Snell’s law
will disappear. The essential features of the cubic interpolation schemes are layed out in section 27.2. In
what follows we show the piecewise parabolic ray tracing scheme.

The CIPPRT algorithm tries to map out the ray path inside each cell as a sequence of parabolic (i.e.
constant acceleration) paths. It resembles the AVG algorithm and uses the same equations Eq.(17.40)
and Eq.(17.41) for determination of velocity and position of each parabolic section of the path. The main
difference between the AVG and the CIPPRT is that the latter uses the cubic interpolated ray acceleration
field at each cell point, whereas the former assumes the same constant acceleration at each point throughout
the cell. The CIPPRT can hence be viewed as a succession of AVG steps inside each cell. The energy
deposition of each parabolic path section is also calculated like for the AVG algorithm, namely solving the
exponential time integral in Eq.(17.47) using the second order Gaussian quadrature in Eq.(17.59). The
required ne and Te at the Gaussian quadrature points are evaluated using the cubic interpolation equation
Eq.(27.11). The following scheme illustrates the steps involved for tracing a ray through a cell, assuming
the ray is somewhere located in the cell at r0 with velocity v0:

1. Calculate, using Eq.(27.13), the electron number density gradient ∇ne(r0).

2. Determine the time t to reach the next cell face using the quadratic time equation Eq.(17.41) and
determine the ray’s position r(t) on the face.

3. Do two t/2 steps and calculate the r(2× t/2) position. The first t/2 step is guaranteed to stay inside
the cell. Hence r(t/2) ∈ cell. However, despite r(2× t/2) having the potential to step outside the cell,
we only need it for comparison with r(t).

4. Form the error vector e = r(2 × t/2) − r(t). If |e| ≤ target accuracy, accept the r(t) position. If not,
set t = t/2 and repeat step 2).

5. Once a satisfactory stepping time has been determined, update the velocity using Eq.(17.40).

17.4.4.3 Cubic Interpolation with Runge Kutta Integration (CIRK)

Instead of using the piecewise parabolic ray tracing approach, the CIRK algorithm advances the ray through
cells using Runge Kutta (RK) integration 29.2. An advantage of using the RK integrator is that the rate of
power loss ODE 17.42 can be directly incorporated into the RK solution vector, thereby gaining access over
its error control. The ray tracing RK vector has 7 entries

d

dt

 r
v
P

 =

 v
a

−νibP

 =

 v
−c2∇ne(r)/2nc

−νib(r)P

 , (17.68)

and the independent variable t does not appear on the rhs. Since each ray must be traced on a cell-by-cell
basis, we have to make sure that each RK step either stays within the cell or hits one of its walls. The CIRK
algorithm therefore has to use the confined RK stepping routine.

17.4.5 Setting up the Laser Pulse

The laser’s pulse contains information about the laser’s energy profile and can thus be characterized by a
function of laser power in terms of time P (t). The curve of P (t) gives the power of the laser pulse at any
given simulation time. In FLASH, the form of P (t) is given by a series of points, which are connected via
straight lines (see Figure 17.5). Each point denotes a power/time pair Pi(ti). The average laser power P of
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Figure 17.5: The structure of the laser pulse.

the pulse during a time step from t→ t + ∆t is then

P =

∫ t+∆t

t
P (t) dt

∆t
, (17.69)

where the integration is performed piecewise between all the points Pi(ti) contained within the relevant
time frame. The average laser power will be distributed among all the rays that will be created during that
particular time step. Note, that t1 is the time the laser first comes into existence. In Figure 17.5 there is
therefore no line connecting the origin (zero power) with P1. If the user wants a gradual buildup of laser
power from zero, an explicit point P1 = 0 must be given at time t1. The same consideration applies for the
other end of the timescale.

17.4.6 Setting up the Laser Beam

The laser’s beam contains all the information about orientation and shape of the laser. The orientation
is characterized by specifying lens and target coordinates. The shape of the laser is given by the size and
shape of the lens and target cross section areas and the cross-sectional ray power distribution law. Figure
17.6 is helpful in visualizing the position of the vectors for the formulas below. The most important vectors
for setting up the rays are the two local elliptical semiaxes unit vectors u1 and u2. These two unit vectors,
together with the lens and target positions, are very convenient in calculating the rays lens and target
coordinates. Note, that the unit vectors are the same for both the lens and the target, if defined from their
corresponding local elliptical centers. In what follows, vectors in capital letters are defined in the global
coordinate system and vectors in small letters are defined in the local target coordinate system.

17.4.6.1 The Local Elliptical Semiaxis Unit Vectors

The laser beam originates at the lens, whose center is located at L, and hits the target, whose center is
located at T. In 3D geometries, the elliptical target area is defined as an ellipse perpendicular to the lens-
target line and whose largest semiaxis s1 is positioned such that it makes a torsional angle φ1 with the local
target z-axis (see Figure 17.6). Let us define the beam vector b = L − T pointing from the target to the
lens and connecting the two respective centers. We then have the defining equations for s1

s1xbx + s1yby + s1zbz = 0 (17.70)
s2
1x + s2

1y + s2
1z = `1 (17.71)

s1z = `1 cos φ1 cos(θ − π/2), (17.72)
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Figure 17.6: The laser beam.

where `1 is the length of s1 and θ is the angle that the beam vector b makes with the local z-axis. The first
equation 17.70 says that b and s1 are orthogonal. The second one 17.71 defines the length of s1 and the
third one 17.72 defines the local z-axis projection of s1. The last equation can be rewritten as

s1z = `1

√
b2
x + b2

y

|b|
cos φ1. (17.73)

Forming an expression for s2
1y from equation 17.70, an expression for s2

1z from equation 17.72 and inserting
the results into equation 17.71, we obtain a quadratic equation in s2

1x, from which we can obtain all three
components. We get after some algebra and simplifications

s1x =
`1√

b2
x + b2

y

[
−bxbz

|b|
cos φ1 ± by sinφ1

]
(17.74)

s1y =
`1√

b2
x + b2

y

[
−bybz

|b|
cos φ1 ∓ bx sinφ1

]
(17.75)

s1z = `1

√
b2
x + b2

y

|b|
cos φ1. (17.76)

The two possible solutions for s1x and s1y correspond to the two possible definitions of the rotation angle φ1

in either clockwise or counterclockwise rotation from the z-axis when looking along the beam vector b from
the lens to the target. Let us henceforth define φ1 to be the clockwise rotation. Then the lower signs in s1x

and s1y apply and dividing each component by `1 we obtain for the unit vector components

u1x =
1√

b2
x + b2

y

[
−bxbz

|b|
cos φ1 − by sinφ1

]
(17.77)

u1y =
1√

b2
x + b2

y

[
−bybz

|b|
cos φ1 + bx sinφ1

]
(17.78)

u1z =

√
b2
x + b2

y

|b|
cos φ1. (17.79)
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The second elliptical semiaxis s2 is perpendicular to the first and lays in the same elliptical target plane. If
we define it to be at a right angle in clockwise direction from s1, the torsional angle it makes with the local
z-axis is φ2 = φ1 + π/2. The formulas for its unit vector components are the same as for s1 but with φ1

replaced by φ2. From trigonometric sine and cosine relations we can re-express them in terms of φ1

u2x =
1√

b2
x + b2

y

[
bxbz

|b|
sinφ1 − by cos φ1

]
(17.80)

u2y =
1√

b2
x + b2

y

[
bybz

|b|
sinφ1 + bx cos φ1

]
(17.81)

u2z = −

√
b2
x + b2

y

|b|
sinφ1. (17.82)

Note the importance of the
√

b2
x + b2

y term. If this term is equal to zero, then the unit vectors become

undefined. This corresponds to the laser beam being parallel to the global z-axis (and thus coinciding with
the local z-axis). Then both elliptical semiaxes are not defined uniquely through a z-axis torsional angle of
zero. In this case the torsional angle must be defined through one of the other coordinate axis. The following
coordinate index permutations in the above formulas apply:

φ1 defined through x-axis = x→ y, y → z, z → x (17.83)
φ1 defined through y-axis = x→ z, y → x, z → y. (17.84)

In 2D geometries, the beam’s lens and target areas shrink to a line segment. All z-components are zero
and the torsional angle is equal to π/2. The components of the unit vector can be deduced from the equations
17.77 and 17.78 as

ux = − by

|b|
(17.85)

uy =
bx

|b|
. (17.86)

17.4.6.2 Extremum Values for the Elliptical Target Zone

In 3D simulations, the planar elliptical target zone can be placed in any possible way inside the domain by
specifying the lens L and target T positions, both elliptical target zone semiaxes lengths `1 and `2, the first
semiaxis torsion angle φ1 and the coordinate axis to which φ1 refers to. We wish to enforce in the code a
complete containment of the entire target plane inside the domain boundaries. To check this condition we
need the extremum coordinate values of the elliptical boundary curve of the target. The collection of all
points e, based on the local target coordinate system, can be given in the following implicit form

e = `1u1 cos(ω) + `2u2 sin(ω), 0 ≥ ω ≥ 2π. (17.87)

Differentiating with respect to ω and equating to zero we get the minimax condition on all coordinate
components as

ωmin/max = arctan
(

`2u2

`1u1

)
, (17.88)

where ωmin/max denotes the vector of the minimax angles for each cartesian component. The equation 17.88
has two possible answers for each ω component in the range 0 ≥ ω ≥ 2π, corresponding to the minimum
and the maximum value. The ωmin and ωmax angles differ by π radians for each cartesian component. The
corresponding minima and maxima on the elliptical boundary curve are obtained by inserting the ωmin and
ωmax angles into equation 17.87.

In order to simplify things, we note that what we need are the sine and cosine values of ωmin and ωmax.
From the definition of the trigonometric functions based on the length of the three sides of a right-angled
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Figure 17.7: Setting up the rays between the beam’s lens and target area using a square grid. Only half of
the square elliptical grids are shown for clarity.

triangle (a = opposite side, b = adjacent side, c = hypotenuse for an angle ω), we have, using sinω = a/c,
cos ω = b/c, tanω = a/b and c2 = a2 + b2

sin(arctan(a/b)) = sin(ω) = a/c =
a√

a2 + b2
(17.89)

cos(arctan(a/b)) = cos(ω) = b/c =
b√

a2 + b2
. (17.90)

When applied to equation 17.87, we obtain

emin/max = ±
√

(`1u1)2 + (`2u2)2. (17.91)

The corresponding minimax equation for the 2D geometries (ellipse → line segment) is

emin/max = ±`u, (17.92)

with ` being half the length of the target line segment and u the line segment unit vector.

17.4.7 Setting up the Rays

For each Energy Deposition unit call, the code sets up the initial collection of rays, defined to be located on the
domain boundary with specific velocity components such that they will hit the target area at precise locations
if they would cross an empty domain. Key concepts in setting up the rays initial position, velocity and power
are the elliptical local square, radial, delta or statistical grids and the beam cross section power function.
Rays will be launched from the lens grid intersection points to the corresponding target grid intersection
points. Using a square grid, a uniform beam cross-sectional ray density will be achieved, although this could
be relaxed in the future to include the possibility of rectangular grids leading to different cross-sectional ray
densities along the two elliptical semiaxes directions. A radial grid places the rays on concentrical ellipses.

17.4.7.1 The Elliptical Lens/Target Local Square Grid

In 3D geometries, both the lens and target areas are defined as two similar ellipses (different size, same
shape). Given a specific elliptical shape by defining the lengths of both semiaxes `1 ≥ `2, we can set up a
square grid inside the ellipse, such that the number of grid intersection points matches closely the number
of rays Nrays specified by the user. The grid is defined by the separation ∆ between two grid points and the
placement of the grid’s origin at the center of the ellipse. Our goal is to find this ∆ value.
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Denote by Nrectangle the number of grid intersection points for the circumscribing rectangle with sides
2`1 and 2`2. We then have

Nrectangle = Number of ellipse points
Area rectangle
Area ellipse

=
4Nrays

π
, (17.93)

this relation holding only approximately due to the finite resolution of the grid. Let us denote by r = `1/`2
the ratio between the largest and smallest semiaxis. If n1 is the number of tics along the `1-semiaxis starting
at the grid origin (0,0), then the number of tics along the `2-semiaxis is approximately equal to n1/r. Looking
at the circumscribed rectangle area, the total number of grid intersection points laying on the grid’s axes will
be twice those on each semiaxis plus the grid’s origin: 2n1 +2n1/r+1. The total number of grid intersection
points not on any of the axes is 4(n1)(n1/r). Both numbers together should then equal to Nrectangle. Hence,
from 17.93, we are lead to a quadratic equation in n1

4
r
n2

1 +
(

2 +
2
r

)
n1 −

(
4Nrays

π
− 1
)

= 0, (17.94)

whose solution is

n1 =
1
4

[
−(1 + r) +

√
(1− r)2 +

16rNrays

π

]
. (17.95)

Always n1 > 0, which can easily be seen from the lowest possible value that n1 can attain for Nrays = 1
and the lowest possible ratio r = 1 (in this case n1 = 0.06418...). Since n1 has to be an integer we take the
ceiling value of the solution 17.95. If the user specified Nrays = 1, the search for n1 is bypassed and the ray
is placed at the elliptical origin.

Having n1, the next task is to find the optimum (or close to optimum) grid spacing ∆. This is done by
defining a minimum and maximum grid spacing value

∆min =
`1

n1 + 1
(17.96)

∆max =
`1

n1 − 1
. (17.97)

A series of ∆min ≤ ∆k ≤ ∆max grid spacings is then tested, and for each ∆k the number of grid intersection
points Nk inside the ellipse area is determined. Of all Nk obtained, a certain number of them will be closest
to Nrays. The average over all these ∆k will then be taken as the final ∆ value. For this ∆ we compute the
final number of grid intersection points, which will then replace the user’s specified Nrays.

Since the target `1 and `2 semiaxes are specified by the user, the ∆T for the target square grid is evaluated
using the above algorithm. The corresponding lens ∆L value is set using the similarity in size between the
lens and the target. Using the user’s specified `1 for the lens, the preservation of length relations between
similar objects leads to:

∆L

`1,L
=

∆T

`1,T
(17.98)

and hence

∆L =
`1,L

`1,T
∆T . (17.99)

In 2D geometries the situation is much simpler. Due to the linear shape of the lens and target areas, it is
very easy to calculate the ∆T value of the linear target grid such that exactly Nrays grid points are obtained
with the outer two grid points coinciding with the target end points. The corresponding ∆L is evaluated
using equation 17.99.
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17.4.7.2 The Elliptical Lens/Target Local Radial Grid

In order to set up the radial lens and target grids, we use the implicit definition of the elliptical curve from
17.87. The grid will then be defined as the number of tics on the `1, `2 pair and the number of tics on the
angle ω within the range 0 ≥ ω ≥ 2π. The number of tics on both of these ’axes’ will be the same and will
be denoted by n. The total number of radial grid points within the lens and target ellipses will be equal to
1 + n(n + 1), leading to the quadratic equation

n2 + n + 1 = Nrays, (17.100)

whose relevant solution is

n =
1
2

[
−1 +

√
4Nrays − 3

]
. (17.101)

In order to reduce the error to Nrays, rounding to the nearest integer is applied for n. The individual grid
points are calculated from

eij =
`1i

n
u1 cos

(
2πj

n

)
+

`2i

n
u2 sin

(
2πj

n

)
, (17.102)

where the index ranges are

j = 0, 1, 2, . . . , n (17.103)
i = min(1, j), . . . , n. (17.104)

In an effort to provide more control to the user, the default ’same number of tics on both radial and angular
axes’ has been extended, such that the user can enforce one or even both of these values. This is controlled
by setting the requested number of radial and/or angular tics as runtime parameters for each beam. The
resulting number of rays will then be recalculated and overwritten.

17.4.7.3 The Elliptical Lens/Target Local Delta Grid

One of the drawbacks of the local square grid is that the user has no direct control of the resulting tic
separation. The main goal when setting up the local square grid is to have the number of rays match as
closely as possible the number of rays requested by the user. The local delta grid is provided to give the
user full control over the tic separations on both semiaxes, relaxing at the same time the number of rays
constraint. The delta grid becomes useful if the user wants to enforce a more smooth energy deposition in the
cells hit by the 3D laser beam. Rays can be forced to hit each cell well away from the cell boundary, thereby
avoiding the initial uneven ray distributions due to some rays hitting the block walls with corresponding
nudging to one block or the other. As a consequence the delta grids are most useful if the target area of the
beam has or is known to have a uniform refinement level.

The setup of the delta grid is simple: the user has to provide the tic separation values as beam runtime
parameters. The beam setup code then adheres strictly to these values and excludes any grid points laying
outside the elliptical beam boundary. The number of rays requested initially by the user is completely
ignored and replaced by the number of rays determined for the delta grid. The user must make sure that the
supplied memory requirements for ray storage are ok. This can be done by estimating the number of rays
resulting from the delta grid on the area of the circumscribed rectangle with sides 2`1 and 2`2 and rescaling
by the ellipse/rectangle area factor. If we denote the user supplied tic separations corresponding to the `1
semiaxis and `2 semiaxis by ∆1 and ∆2, then the estmated number of rays would be:

Nrays ≈ 2
(

`1
∆1

)
× 2

(
`2
∆2

)
× π

4

=
π`1`2
∆1∆2

. (17.105)

The first tics of the delta grid along each grid axis start at ∆1/2 and ∆2/2. The grid center (0, 0) is thus
not part of the delta grid.
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17.4.7.4 The Elliptical Lens/Target Local Statistical Grid

The local statistical grid is defined by a statistical collection of (x, y) pairs within the range [−1, 1], where
the x and y denote fractions of the `1 and `2 semiaxis. A random number generator for the range [0, 1] is
used and the numbers are shifted to the [−1, 1] range by multiplying by 2 and adding −1. Every (x, y) pair
is checked, if it actually lays within the ellipse and retained if it does. The random (x, y) pair generation
stops, once the requested number of rays is reached. In order to use different statistical grids for each time
step, the statistical grid is regenerated afresh for each time step using a different random seed value.

17.4.7.5 Beam Cross Section Power Function

The beam cross section power function describes the power distribution of the rays inside the beam at
launching time. Currently there are two types of power distribution functions implemented in FLASH: 1)
uniform (flat) distribution (equal power) and 2) gaussian decay from the center of the beam. The first one is
trivial: every ray gets assigned an equal amount of power. The gaussian decay function assigns to each ray
a relative weight according to the position inside the elliptical cross section of the beam. Using the local s1

and s2 target coordinate system located at the center of the beam, the gaussian weighting function for 2D
target areas (3D geometries) reads

w = exp
−

[(
x

Rx

)2

+
(

y

Ry

)2
]γ

, (17.106)

where x and y denote the local coordinates inside the ellipse along the s1 and s2 axes, respectively, Rx and
Ry are user defined decay radii values and γ is the user defined gaussian super exponent. For 1D target
areas (2D geometries) the weighting function is

w = exp
−

[(
x

Rx

)2
]γ

. (17.107)

In order to determine the actual power assigned to each ray, we use the average laser power from equation
17.69

Pray = P
wray∑
wray

. (17.108)

The sum of the weights over all rays plays the role of a sort of partition function for the beam grid and can
thus be precomputed and become part of the beam properties when setting up the beams.

17.4.7.6 The Rays Initial Position and Velocity

In 3D, after the local lens and target grids have been set up, each ray has associated with it a local lens
elliptical coordinate pair (xL, yL) and a local target elliptical coordinate pair (xT , yT ). The corresponding
global coordinates can be obtained using the global lens and target center coordinates and the elliptical unit
vectors (see Figure 17.7)

RL = xLu1 + yLu2 + L (17.109)
RT = xT u1 + yT u2 + T. (17.110)

Defining now the ray vector R pointing from the lens to the target

R = RT −RL, (17.111)

we can state the parametric ray line equation

P = RL + wR. (17.112)
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The ray line equation is used to determine where and which domain boundary surface the ray will hit.
Consider a domain boundary surface contained within a plane given by the equation

Axx + Ayy + Azz + D = 0
A · (x y z) + D = 0. (17.113)

The value of the real w parameter where the ray line meets this plane is obtained by inserting the ray line
equation into the plane equation. It is

w = −A ·RL + D

A ·R
. (17.114)

Inserting this w value into the ray line equation 17.112 we obtain the location Pcross of the crossing point
on the plane. From Figure 17.7, for the ray vector to cross the plane, the value of w must be in the range
0 ≤ w ≤ 1. A value of w = 0 or w = 1 indicates that the plane is crossing the lens or target area, respectively.
If w is in proper range, it must next be checked if Pcross is located within the domain boundary surface. If yes,
that w value is accepted. Note, that several proper w values can be obtained. A ray crossing near the corner
of a rectangular domain gives three proper w values corresponding to crossing the three rectangular planes
defining the corner. Since the rays originate from the lens, the relevant w is the one with minimum value
and the corresponding Pcross will be taken as the rays initial position. The initial ray velocity components
are determined from the unit vector of the ray vector

v = v0
R
|R|

, (17.115)

where v0 is the initial magnitude of the velocity (in most simulations this is the speed of light). For 2D
geometries all the above equations remain the same, except for the ray global coordinates, for which the
terms in u2 are dropped and for the domain boundary planes, for which the terms involving the z-component
in the defining equation 17.138 do not exist. The following steps summarize the determination of the initial
ray positions and velocity components for each ray:

• Form the ray vector R using 17.111.

• Find the collection {w} of all 0 ≤ w ≤ 1 values using 17.114 for all domain surface planes (A, D).

• Using the ray line equation 17.112, remove all w values from {w} which lead to plane crossing points
Pcross not contained within the domain boundary surface.

• Take the minimum of the remaining w’s in {w} and calculate the corresponding Pcross. This is the
ray’s initial position vector.

• Using the ray vector R again calculate the velocity components using 17.115.

17.4.8 3D Laser Ray Tracing in 2D Cylindrical Symmetry

Performing a pure 2D cylindrical ray tracing has an obvious disadvantage: each ray must also be treated as
a 2D cylindrical symmetrical object. Each ray can only hit the R-disk of the cylindrical domain at precisely
90 degrees and no variation in this incident angle is possible. However, if one treats the cylinder as a true
3D object, then it is possible to trace each ray through this 3D cylinder. The advantage of retaining the
2D cylindrical description of the domain is obvious: only 2D storage is needed to describe the properties of
the domain. 3D in 2D ray tracing is much more complicated than either the simple pure 3D or pure 2D
counterparts. The interplay between the polar and the cartesian coordinates leads to ray tracing equations
which can only be solved approximately via the use of elliptical integrals. Rather than approximating the
integrals involved, a second approach decomposes the 3D cylinder into several identical cylindrical wedges
with each wedge having planar boundaries. The larger the number of wedges the more accurate the 3D in
2D ray tracing will be. Both approaches (approximating the integrals and wedging the 3D cylinder) are
entirely equivalent.
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Figure 17.8: Tracing a ray in 3D in a 2D cylindrical domain. View onto the R-disk. The z-axis has been
left out for clarity.

17.4.8.1 The Exact 3D in 2D Ray Tracing Solution

We will first state the exact time-radial solution of an object of mass m moving in a central force environment
with no external forces acting on it. The motion of such an object is characterized by constant energy and
angular momentum and is hence confined to a 2D plane. There are two ways to describe the position r,
velocity v and acceleration a vectors of a particle in a 2D plane: using cartesian î, ĵ or polar R̂, θ̂ unit vectors.
They are interrelated by

(R̂, θ̂) = (̂i, ĵ)
(

cos θ − sin θ
sin θ cos θ

)
(17.116)

Using these unit vectors and the differentiation chain rule we get

r = x̂i + ŷj = RR̂ (17.117)
v = ẋ̂i + ẏ̂j = ṘR̂ + Rθ̇θ̂ (17.118)
a = ẍ̂i + ÿ̂j = (R̈−Rθ̇2)R̂ + (Rθ̈ + 2Ṙθ̇)θ̂ (17.119)

where each dot on the dotted variables stands for d/dt. The angular momentum of the object in polar
coordinates is

L = r×mv

= RR̂×m(ṘR̂ + Rθ̇θ̂)
= mR2θ̇(R̂× θ̂) (17.120)

and its magnitude

L = mR2θ̇ (17.121)

Since only a central force component is present, this force depends only on the radial part

F(R) = maR = m(R̈−Rθ̇2)R̂. (17.122)

We are now ready to state the equation of motion of the object in polar coordinates. Let’s assume the object
has initially at time t0 the coordinates (R0, θ0), and let E be its constant energy. E is composed of two
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parts: kinetic and potential energy. Both parts will change as time passes by. The potential energy U can
only change along a change in R, because the force has only a radial component. We have

E =
1
2
mv2 + U(R)

=
1
2
m(Ṙ2 + R2θ̇2) + U(R)

=
1
2
mṘ2 +

1
2

L2

mR2
+ U(R) (17.123)

where in the last step we have eliminated the angular dependence through the use of Eq. (17.121). The last
equation for E is a first order differential equation allowing for separation of variables∫ RT

R0

[
2
m

(E − U(R))− L2

m2R2

]−1/2

dR =
∫ tT

t0

dt (17.124)

The potential energy can be obtained via integration

U(R) = −
∫ R

R0

F (R′)dR′ + U(R0)

= −m

∫ R

R0

aR(R′)dR′ + U(R0). (17.125)

The value of the initial potential energy is arbitrary and is conveniently set to zero. Assuming further that
t0 = 0, we obtain

tT =
∫ RT

R0

[
2E

m
− L2

m2R2
+ 2

∫ R

R0

aR(R′)dR′

]−1/2

dR. (17.126)

Given an initial radial R0 and a final target radial RT value, tT is the time the object will take in travelling
from R0 to RT under the specified initial conditions at R0 (values of E and L). If the object will not reach
RT then tT is either negative or complex. The time equation (17.126) can be solved analytically only for
a small number of cases (like for example if aR = 0). All other cases require numerical approximation to
the radial integral. For our case, when the ray moves through one radial 2D cylindrical zone using the AVG
approximation 17.4.4.1, the central force acceleration is constant, i.e aR = a. For this case we have

tT =
∫ RT

R0

[
2E

m
− L2

m2R2
+ 2a(R−R0)

]−1/2

dR, (17.127)

for which it is possible to give an analytical solution in terms of elliptical integrals. However, the analytical
solution is far to complicated to be of practical use.

17.4.8.2 The Approximate 3D in 2D Ray Tracing Solution

The main reason for the complicated time equation has its roots in the θ polar variable describing the
rotational symmetry. An approximate treatment can be formulated, in which each circle is treated as a
linear polygon with n sides (n not necessarily integer), where the value of n determines the quality of the
approximation. The exact 3D radial acceleration cylindrical problem in R, θ, z coordinates is transformed
into an approximate 3D cartesian problem in x, y, z coordinates, where the z coordinate remains unaffected.
Each torus cell is hence approximated as a collection of truncated wedge (TW) cells. The trapezoidal sides
of these wedges are parallel to the x, y plane and the rectangular sides are perpendicular to this plane. Since
all TW cells have exactly the same size and shape when coming from the same torus cell, it suffices to
concentrate on just one of them. These representative TW cells will be placed inside the x, y plane, such
that the positive x axis divides the trapezoidal sides into two equal areas. The collection of all representative
TW cells has the shape of a wedge with opening angle Ω. In order to trace the rays through the TW cells,
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Figure 17.9: Shape and location of the TW cells.

we need the equation of all the cell boundary planes. The equations of the cell planes perpendicular to the
z axis (containing the trapezoidal sides) are simply z = zcell. The equations of the cell planes perpendicular
to the x axis are similarly x = xcell. The remaining cell plane equations corresponding to the non-coplanar
cell faces are (see Figure 17.9)

y = ± tan
(

Ω
2

)
x

= ±mx. (17.128)

The quadratic time equations to be solved for the x = xcell and z = zcell plane equations are of the same
form as equation 17.65. For the plane equations in 17.128 we obtain, after inserting the appropriate forms
into the general cartesian quadratic time equation 17.64 and considering the zero gradient approximation in
y direction

− c2

4nc
[∓m〈∇ne〉x] t2 + [∓mv0x + v0y] t + [∓mr0x + r0y] = 0 (17.129)

We now describe the three main tasks for the 3D in 2D ray tracing: 1) proper setup of lenses and corre-
sponding targets, 2) initial placement of the 3D rays on the 2D cylindrical domain and 3) tracing of the rays
through the truncated wedges.

17.4.8.3 Extremum Global Radial 3D and 2D Distance Values for 3D Elliptical Lens and
Target Zones

In curved domain setups (cylindrical and spherical), it becomes necessary to calculate extremum global radial
distance values for a 3D elliptical curve from the domain origin in order to check proper placements of the
lens and target zones. We start by stating the global equation of the elliptical target curve E (the treatment
of the lens ellipse is analogous) in 3D in implicit form (see Figure 17.6):

E = T + s1 cos(ω) + s2sin(ω), 0 ≥ ω ≥ 2π. (17.130)

The 2D projections of this elliptical 3D curve in either the (x,y), (x,z) or (y,z) plane are themselves ellipses,
however the 2D projections of s1 and s2 do no longer correspond to the 2D elliptical major and minor
semi-axes. They generally are oblique to each other and their scalar product is non-zero. We will therefore
develop general formulas taking the possible reduction of 3D to 2D into account. The square of the radial
distance for any point on that curve from the global origin is

|E|2 = |T|2 + 2s1 ·T cos(ω) + 2s2 ·T sin(ω)
+s1 · s1 cos2(ω) + s2 · s2 sin2(ω) + 2s1 · s2 cos(ω) sin(ω). (17.131)
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Table 17.4: Different cases arising in 3D, depending on values of A,B, C, D

D C A B Shape |E|2min |E|2max

0 0 0 0 Circle (radius |s1|) |T|2 + |s1|2 |T|2 + |s1|2
0 0 0 6= 0 Tilted circle |T− s2|2 |T + s2|2
0 0 6= 0 0 Tilted circle |T− s1|2 |T + s1|2
0 0 6= 0 6= 0 Double-tilted circle Solve quadratic
0 6= 0 0 0 Ellipse |T + s2|2 |T + s1|2
0 6= 0 0 6= 0 Tilted ellipse |T− s2|2 |T + s1|2
0 6= 0 6= 0 0 Tilted ellipse Solve quadratic product
0 6= 0 6= 0 6= 0 Double-tilted ellipse Solve quartic

Differentiating with respect to ω and setting equal to zero leads to the minimax equation

B cos(ω)−A sin(ω)− C sin(ω) cos(ω) + D[cos2(ω)− sin2(ω)] = 0, (17.132)

where

A = s1 ·T (17.133)
B = s2 ·T (17.134)
C = s1 · s1 − s2 · s2 (17.135)
D = s1 · s2. (17.136)

The minimax equation 17.132 contains a mixed trigonometric term and can only be solved by eliminating
either the sine or the cosine function. This leads in general to a quartic equation

q4x
4 + q3x

3 + q2x
2 + q1x + q0 = 0, (17.137)

whose coefficients are, depending on if x is either cos(ω) or sin(ω):

x = cos(ω) x = sin(ω)
q4 C2 + 4D2 C2 + 4D2

q3 2AC + 4BD −2BC + 4AD
q2 A2 + B2 − C2 − 4D2 A2 + B2 − C2 − 4D2

q1 −2AC − 2BD 2BC − 2AD
q0 D2 −A2 D2 −B2

All four A,B, C, D can have a value of zero. The coefficient of x4 plays a special role. Note, that for this
coefficient to be zero, both C and D must be zero, which corresponds to a circular curve in both 3D and
2D. For a circular target the quartic reduces to a quadratic. For the 3D cases we always have D = 0.
The following table 17.4 shows the different cases that can arise for 3D, together with a description of
the geometrical shapes of the target figures involved and the corresponding maximum and minimum radial
distances: In this table we have used our convention |s1| ≥ |s2| and placement of the elliptical semi-axes in
such a way that the angle they make with T is ≥ 90◦. The cases that arise for the 2D are summarized in the
table 17.5: When solving the quartic or quadratic product equations, we must remember to eliminate the
two non-valid extra solutions introduced due to squaring. All real solutions between −1 and +1 are inserted
into 17.131 and the maximum and minimum of all four possible values are selected.

17.4.8.4 Initial Placement of the 3D Rays on the 2D Cylindrical Domain

There are two kinds of domain surfaces for a cylindrical domain. The first kind corresponds to the flat
circular surface at both ends of the cylinder. These surfaces are planar and the determination of the ray
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Table 17.5: Different cases arising in 2D, depending on values of A,B, C, D, |s1|, |s2|

D C A B |s1| |s2| Shape |E|2min |E|2max

0 0 0 0 0 0 Point |T|2 |T|2
0 6= 0 0 0, 6= 0 0 6= 0 Line (length |s2|) |T− s2|2 |T + s2|2
0 6= 0 0, 6= 0 0 6= 0 0 Line (length |s1|) |T− s1|2 |T + s1|2
0 0 0, 6= 0 0, 6= 0 6= 0 6= 0 Circle (radius |s1|) (|T| − |s1|)2 (|T|+ |s1|)2
0 6= 0 0 6= 0 6= 0 6= 0 Ellipse (s2||T) Solve quadratic product
0 6= 0 6= 0 0 6= 0 6= 0 Ellipse (s1||T) (|T| − |s1|)2 (|T|+ |s1|)2

0, 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 Tilted ellipse Solve quartic

intersection position on these surfaces proceeds along the same lines as shown in section 17.4.7.6. The second
kind of surface is the cylinder mantle, whose geometrical equation is:

x2 + y2 −D = 0
(x y) · (x y)−D = 0. (17.138)

Inserting the parametric ray line equation 17.112, we obtain a quadratic equation in w:

(R ·R)w2 + (2R ·RL)w + (RL ·RL −D) = 0, (17.139)

where only the x and y components of the vectors are taken to form the scalar products. Having found the
appropriate w for each ray and the corresponding crossing point Pcross on the domain cylindrical surface,
we need to translate the ray 3D domain crossing coordinates Px, Py, Pz into the initial ray 2D cylindrical
wedge coordinates WR,Wy,Wz, where WR and Wz correspond to the 2D cylindrical domain and Wy is
the linearized angular coordinate from 17.128. Since the starting angular point is irrelevant (there is no
preference of any point on the circle), we set this point equal to zero. Thus:

WR =
√

P 2
x + P 2

y (17.140)

Wy = 0 (17.141)
Wz = Pz (17.142)

To determine the initial ray wedge velocities, we define two unit vectors of the 3D ray vector: 1) the unit
vector in the (x,y)-plane and 2) the unit vector along the z-axis:

uxy = Rxy/|R| (17.143)
uz = Rz/|R|, (17.144)

where Rxy is the (x,y)-plane projection of the 3D ray vector. Likewise, the crossing point vector is also split
into two components:

Pcross = Pxy + Pz. (17.145)

Since the origin of the cylindrical domain is located at (x, y) = (0, 0), the vector Pxy is a radial vector in the
(x,y)-plane. The ray vector component Rxy on the other hand is usually not radially oriented, because the
ray’s origin (on the lens) does not necessarily lay on the (x, y) = (0, 0) line. Both vectors Pxy and Rxy are
useful in order to determine the ray’s initial wedge velocities (see Figure 17.10). Denote the angle between
Rxy and Pxy by α. Then

cos(α) =
Rxy ·Pxy

|Rxy||Pxy|
(17.146)
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Figure 17.10: Initial radial (vR) and angular (vy) ray velocity components on the wedge from vectors Pxy

and Rxy.

and the initial ray wedge velocities are

vR = v0 ∗ cos(α)|uxy| (17.147)
vy = v0 ∗ sign(Rxy ×Pxy) ∗ sin(α)|uxy| (17.148)
vz = v0 ∗ |uz|, (17.149)

where the sine and the cross product vector present in the expression for vy are calculated as

sin(α) = +
√

1− cos2(α) (17.150)

and

Rxy ×Pxy =

∣∣∣∣∣∣
i j k

Rx Ry 0
Px Py 0

∣∣∣∣∣∣ = (RxPy −RyPx)k. (17.151)

The sign of the cross product refers to the sign of the k component. Note, that the wedge’s y-direction refers
to the cylindrical θ-coordinate and the convention is that counterclockwise rotation along θ is considered
positive.

17.4.8.5 Tracing the Rays through the Truncated Wedges

When a ray hits the R- or z-planes of a truncated wedge, the R- or z-components of the ray’s position and
velocity change the same way as for a pure 2D cylindrical simulation. The y-components stay the same.
When the ray hits the y-planes of the truncated wedge, it will cross into a new rotated wedge and the
y-position and the R- and y-components of the velocity must change to reflect that rotation. The change in
y-position is simple: just invert its sign. For the velocity component changes we need the cosine and sine of
the wedge’s opening angle Ω. The new components are thus

Wy(new) = −Wy (17.152)
vR(new) = vR ∗ cos(Ω)± vy ∗ sin(Ω) (17.153)
vy(new) = vy ∗ cos(Ω)∓ vR ∗ sin(Ω), (17.154)

where the sign options in vR and vy correspond to the two possible y-planes defined in 17.128 (see Figure
17.11). The change in direction of both velocity vector components is not a rotational effect on the ray due to
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Figure 17.11: Change in position and velocity components when ray moves into a new wedge. For clarity,
the velocity components in the original wedge are shifted from the boundary crossing point.

the medium through which it travels but rather a geometrical effect due to changing wedges. When crossing
a common y-plane between two wedges, the ray is still on the same position in the (R,z) 2D cylindrical
plane. Note, that Ω must not necessarily be a divisor of 360◦. Since Ω is fixed through the entire simulation,
cos(Ω) and sin(Ω) are conveniently computed only once during initialization.

17.4.9 Synchronous and Asynchronous Ray Tracing

The default laser implementation uses the Lagrangian particle framework to move rays (modeled as particles)
across block and process boundaries. We generally find that particle movement consumes a relatively small
portion of total runtime even in large-scale simulations with millions of particles (Dubey et al., 2012). This
is not always case in laser-driven FLASH simulations, where realistic simulations can spend the majority
of runtime moving rays between blocks. The reason for the discrepancy in performance is because a ray
generally travels a much larger distance than a tracer particle in a single time-step. In the tracer particle
case we only need one application of the communication subroutines in a single time-step because a particle
never moves further than a nearest-neighbor block (see CFL limit). In contrast a ray can move to the other
side of the domain in a single time-step which may involve visiting hundreds of intermediate blocks.

There are various implementations of particle exchange in the GridParticles sub-unit. In order to un-
derstand the performance bottlenecks, we describe the default implementation used in FLASH applications
configured with Paramesh. The particle movement communication consists of an MPI Allreduce to deter-
mine the number of particles and messages that each MPI rank will receive, followed by point to point
messages which exchange the actual particles. In addition to the communication in the GridParticles unit,
there is also an MPI Allreduce in the laser unit which determines if all the rays have either left the domain
or have been absorbed. This is the termination criteria and controls whether another round of particle
exchange is needed.

Performance profiles of simulations using the laser indicate that most time is spent in MPI Allreduce
calls in a particle movement subroutine. The trace in Figure 17.12 shows that this happens because of load
imbalance and not slowness of the underlying collective communication call. The two main colors in this
trace are red and purple; red is time spent in a computational kernel named ed traceBlockRays2Dcyl3D and
purple is time spent in MPI Allreduce. We see that the color map is dominated by purple which indicates
most MPI ranks are waiting for the MPI Allreduce to complete. The cascading red pattern shows the ray
paths as rays move between blocks assigned to different MPI ranks. It is clear that there are many round
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of bulk synchronous particle exchange and that some MPI ranks must wait a long time before receiving any
rays. The biggest impediment to good performance is the dependency between MPI ranks which happens

Figure 17.12: Performance trace of MPI ranks 0-33 in a laser simulation using synchronous communication
and run with 2048 MPI ranks on Intrepid BG/P.

because ray paths are not known ahead of time. Performance quickly degrades at higher processor counts
because increased domain decomposition means rays must cross more process boundaries. One approach
to improve performance would be to use the mesh replication feature of FLASH to trivially parallelize over
the rays, but this is not ideal because it introduces redundant computations of e.g. hydrodynamics in each
mesh. The approach we take is to introduce pipelined parallelism to hide the dependency between MPI ranks;
rays are sent to nearest-neighbor blocks on different MPI ranks as early as possible to minimize the time
MPI ranks must wait for work. Computation and communication are overlapped, which is different to the
current bulk synchronous approach where there are distinct computation and communication phases. The
“asynchronous ray trace” is included in a FLASH application by setting up with the shortcut +asyncLaser.
We describe the ray exchange and termination communication kernels in the asynchronous scheme below.

The ray exchange communication kernel requires all MPI ranks set up designated send and receive
communication channels with only those MPI ranks which own nearest-neighbor blocks. This is a relatively
small subset because of the block locality in Paramesh. We post one speculative non-blocking receive
for each neighbor and then test all communication channels (at a rate determined by runtime parameter
ed commRaysBetweenMsgTest) for new rays. When an MPI rank receives a message we copy the rays and
then post a new speculative non-blocking receive. This ensures that a message can be received from any
nearest neighbor at any time. We send rays using non-blocking sends from source MPI ranks when send
buffers (of size determined by runtime parameter ed commChannelSize) are full. At idle phases, we also
send rays before the send buffer is full to prevent deadlock and ensure good global progress. When exchange
is complete all MPI ranks send a zero byte message to each neighboring MPI rank to match the remaining
speculative receives.

The termination communication kernel must also be non-blocking to allow progress in the ray exchange
communication kernel. This rules out using a blocking MPI Allreduce as is used in the default synchronous
scheme. We have multiple non-blocking implementations of the termination kernel which all have different
library and MPI dependencies. The default implementation, which has no special dependencies, uses a
master-slave approach to determine completion. It works by sending a count of local inactive rays from
slaves to a master which maintains a count of global inactive rays. We send a notification message from the
master to the slaves when the global number of inactive rays is equal to the initial count of active rays. Even
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though we have demonstrated that this implementation can work when using 8192 MPI ranks on Intrepid
BG/P, there is a danger of exceeding internal MPI limits on the number of messages the master rank can
receive. For this reason we have created another implementation which uses a non-blocking MPI Iallreduce
which is part of MPI-3. We recommend using this implementation because there is less danger of exceeding
internal MPI limits. It can be used by setting up a FLASH application with the setup shortcut +mpi3. Given
that the MPI-3 standard is still quite new, it is likely that some MPI implementations on today’s production
machines do not support non-blocking collectives. Therefore, we also support the non-blocking reduction in
the Non Blocking Collectives (NBC) library http://htor.inf.ethz.ch/research/nbcoll/libnbc/. The
necessary reduction name substitutions happen when a FLASH application is setup with +libnbc.

We repeat the experiment in Figure 17.12 with the asynchronous communication scheme and show re-
sults in Figure 17.13. The number of ranks on the y-axis and time scale on the x-axis are the same as
before. The color map is much more chaotic than before because all MPI ranks are either computing or
spinning in various subroutines looking for more work. As before, the red color indicates time spent in a
computational kernel named ed traceBlockRays2Dcyl3D. The red is now much more clustered on the left
side of the figure indicating MPI ranks wait less time for rays than before. We see large segments of green
for MPI rank 0 which indicates time spent testing for new messages. This is happening because we made
use of the master-slave termination kernel in this test. A performance comparison of the synchronous and
asynchronous communication schemes is shown in Figure 17.14. The parameters ed commChannelSize and

Figure 17.13: Performance trace of MPI ranks 0-33 in a laser simulation using asynchronous communication
and run with 2048 MPI ranks on Intrepid BG/P.

ed commRaysBetweenMsgTest give some control over the memory overhead and performance of the asyn-
chronous scheme. The ed commChannelSize parameter should be kept relatively small because it determines
the amount of space available for rays in send and receive buffers. Large values lead to a very high memory
footprint because there is a designated portion of space in the buffers for all communication channels (i.e.
all possible pairs of communicating processors) and there can be 10-100s of communication channels. The
parameter also determines the number of rays which are buffered before being sent from source processors to
destination processors, and so smaller values will improve overall load balance. All messages are non-blocking
and so the source processor returns immediately to computation and is free to send rays to different destina-
tion processors. However, the source processor will block (actually spin on various MPI Test statements with
no danger of deadlock) if a ray should be sent to the original processor and the original message is not yet
delivered. This means it is important for the destination processor to frequently check for new messages not
only to start work as soon as possible but also to enable the source processor to return to useful work. The

http://htor.inf.ethz.ch/research/nbcoll/libnbc/
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Figure 17.14: Strong scaling of a laser simulation run on Intrepid BG/P with the synchronous and asyn-
chronous communication scheme.

parameter ed commRaysBetweenMsgTest should therefore be kept relatively small so that the destination
processor performs less computational work between message checks.

We set the default values of ed commRaysBetweenMsgTest=50 and ed commChannelSize=100. Very
small values for both parameters improve load balance but introduce new overheads such as the cost of
continually testing for new messages and the cost of preparing the laser computation routines for the newly
received rays. The preparation work includes sorting the rays in block order and then scanning the ray
array to find the start and end index for each block. Sorting improves the memory-access pattern and is a
sensible optimization when computational time is large relative to the sort time (as always happens in the
original synchronous communication scheme), however, it hurts performance when computational work is
very fine-grained. Hence, we do not advise using parameter values much smaller than the default values. In
future it would be interesting to see if removing the serial optimization improves the global time to solution.
This could happen because more processors are doing useful work despite there being worse memory-access
on each processor.

The asynchronous communication scheme conflicts with various capabilities in FLASH. It only works
with Paramesh at the current time, although support for UG could probably be added without a huge
amount of effort. We initially did not support UG because we did not know the MPI rank IDs of the corner
neighboring blocks, although this is no longer the case. It also conflicts with the Laser I/O.

The asynchronous communication scheme is able to run without the GridParticles dependency by set-
ting up with useGridParticles=False. This is generally a good idea because the GridParticles sub-unit
has initialization code which allocates large send and receive buffers for bulk synchronous communication.
These buffers are not needed in the asynchronous scheme and so removing the dependency significantly
reduces the memory footprint. The only down-side is that a slower sorting subroutine will be used in
place of Grid SortParticles, which is able to achieve a fast sort by using the space in the bulk synchronous
communication buffers.

The new asynchronous ray tracing implementation works and has been tested with several laser problems
using multiple compilers and MPI implementations. However, since this is a rather new implementation,
the asynchronous ray tracing mode should still be considered as being in its experimental stage. Both
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synschronous and asynchronous ray tracing modes are currently made available, with synchronous mode
being the default. The asynchronous mode can be activated by using the appropriate setup parameter.

17.4.10 Usage

To include the use of the Energy Deposition unit, the following should be included into the setup line
command:

+laser ed_maxPulses=<number> ed_maxPulseSections=<number> ed_maxBeams=<number>

The +laser is a shortcut that handles all the logistics for properly including the EnergyDeposition unit.
By default, the ray tracing algorithm used is the AVG algorithm 17.4.4.1 in its synchronous communication
mode 17.4.9. To activate the cubic interpolation ray tracing schemes, replace the +laser shortcut by the
shortcut +laserCubicInterpolation. This automatically includes the relevant routines for cubic interpolation
and bypasses the ones responsible for the AVG algorithm. The default ray tracing method for the cubic
interpolation is the piecewise parabolic ray tracing method 17.4.4.2. To activate the cubic interpolation
using the Runge Kutta integrator one has to set the shortcut +laserCubicInterpolationRK. To activate the
asynchronous ray tracing communication mode, replace the +laser shortcut by the shortcut +asynchLaser.
This enables the asynchronous communication routines and supresses the synchronous ones. Only the AVG
ray tracing algorithm is currently implemented in asynchronous communication mode. The other three setup
variables fix the dimensions needed for the pulses and beams:

• ed maxPulses: The maximum number of different laser pulses for the simulation.

• ed maxPulseSections: The maximum number of power/time pairs per pulse.

• ed maxBeams: The maximum number laser beams for the simulation.

The Energy Deposition unit reads all the information it needs to construct the laser beams and pulses from
runtime parameters specified in the flash.par file. Below is the list of runtime parameters that is needed to
properly build the laser. For clarification and figuring out the input to a particular laser simulation, the
reader is encouraged to have Figures 17.5, 17.6 and 17.7 at hand.

17.4.10.1 Laser Pulses Runtime Parameters

• ed numberOfPulses: Controls the number of different laser pulses that are going to be used.

• ed numberOfSections n: Indicates the number of power/time pairs that are going to be used to set
up the shape of the n-th laser pulse. There must be at least as many of these runtime parameters as
there are number of laser pulses defined, i.e. n = 1,...,ed numberOfPulses.

• ed power n i: Sets the i-th power of the i-th power/time pair of the n-th laser pulse. The ranges of
the indices must be at least: i = 1,...,ed numberOfSections n and n = 1,...,ed numberOfPulses.

• ed time n i: Sets the i-th time of the i-th power/time pair of the n-th laser pulse. The ranges of the
indices must be at least: i = 1,...,ed numberOfSections n and n = 1,...,ed numberOfPulses.

17.4.10.2 Laser Beams Runtime Parameters

• ed numberOfBeams: The number of laser beams that are going to be used.

• ed lensX n: The x-component of the global lens center position vector L (n-th beam).

• ed lensY n: The y-component of the global lens center position vector L (n-th beam).

• ed lensZ n: The z-component of the global lens center position vector L (n-th beam).

• ed targetX n: The x-component of the global target center position vector T (n-th beam).

• ed targetY n: The y-component of the global target center position vector T (n-th beam).
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• ed targetZ n: The z-component of the global target center position vector T (n-th beam).

• ed targetSemiAxisMajor n: The major (largest) semiaxis length `1 for the elliptical target area (n-th
beam).

• ed targetSemiAxisMinor n: The minor (smallest) semiaxis length `2 for the elliptical target area
(n-th beam).

• ed lensSemiAxisMajor n: The major (largest) semiaxis length `1 for the elliptical lens area (n-th
beam).

• ed semiAxisMajorTorsionAngle n: The major elliptical semiaxis torsion angle φ1 along the beam’s
lens target center line (n-th beam).

• ed semiAxisMajorTorsionAxis n: The major elliptical semiaxis torsion axis (’x’,’y’ or ’z’) from which
the torsion angle φ1 is defined (n-th beam).

• ed pulseNumber n: The pulse shape identification number (n-th beam).

• ed wavelength n: The wavelength of the laser (n-th beam).

• ed initialRaySpeed n: The initial speed of the rays when hitting the domain boundary, in units of
the speed of light (n-th beam).

• ed ignoreBoundaryCondition n: Ignore the domain boundary conditions (reflective) when rays enter
the domain (n-th beam)?

• ed crossSectionFunctionType n: Beam cross section power function (flat or gaussian decay) type.
For a flat profile use ’uniform’, for gaussian decay use ’gaussian1D’ (two-dimensional beams) or ’gaus-
sian2D’ (three-dimensional beams) (n-th beam).

• ed gaussianExponent n: The Gaussian super exponent γ for the beam cross section power function
in equation 17.106 (n-th beam).

• ed gaussianRadiusMajor n: The Gaussian radius (e-folding length) Rx along the major elliptical
semiaxis in equation17.106 (n-th beam).

• ed gaussianRadiusMinor n: The Gaussian radius (e-folding length) Ry along the minor elliptical
semiaxis in equation17.106 (n-th beam).

• ed gaussianCenterMajor n: The Gaussian center location along the major elliptical semiaxis (n-th
beam).

• ed gaussianCenterMinor n: The Gaussian center location along the minor elliptical semiaxis (n-th
beam).

• ed numberOfRays n: Number of rays to be created for the beam. Might be overwritten in 3D geomet-
rical cases (n-th beam).

• ed gridType n: Specifies the grid type to be used for placing the rays inside the beam. For two-
dimensional beams the options are ’regular1D’ or ’statistical1D’. For three-dimensional beams the
options are ’square2D’, ’radial2D’ or ’statistical2D’. (n-th beam).

• ed gridnRadialTics n: For radial grid types, the number of wanted grid positions along each radial
spike can be specified (n-th beam).

• ed gridnAngularTics n: For radial grid types, the number of wanted angular slices can be specified
(n-th beam).

• ed gridDeltaSemiAxisMajor n: For delta grid types, the tic separation along the major elliptical
semiaxis (n-th beam).

• ed gridDeltaSemiAxisMinor n: For delta grid types, the tic separation along the minor elliptical
semiaxis (n-th beam).
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17.4.10.3 Laser General Runtime Parameters

• ed maxRayCount: The maximum number of rays that can be created on one processor.

• ed gradOrder: (AVG algorithm only) The order of approximation used for the electron number density
ne and the electron temperature Te in a cell (equation 17.39). A value of 1 leads to linear and a value
of 2 to parabolic (quadratic) ray trajectories inside the cell. The first case includes no gradients and
only takes the cell’s average value.

• ed computeGradNeleX: (AVG algorithm 17.4.4.1 only) If false, the x-components of the gradients 〈∇ne〉
are not computed, i.e. set to zero.

• ed computeGradNeleY: (AVG algorithm 17.4.4.1 only) If false, the y-components of the gradients 〈∇ne〉
are not computed, i.e. set to zero.

• ed computeGradNeleZ: (AVG algorithm 17.4.4.1 only) If false, the z-components of the gradients 〈∇ne〉
are not computed, i.e. set to zero.

• ed enforcePositiveNele: (AVG algorithm 17.4.4.1 only) If true, the x-, y- and z-components of the
gradients 〈∇ne〉 will be rescaled such that they always deliver a positive (greater or equal zero) value
for the number of electrons in a cell.

• ed enforcePositiveTele: (AVG algorithm 17.4.4.1 only) If true, the x-, y- and z-components of the
gradients 〈∇Te〉 will be rescaled such that they always deliver a positive (greater or equal zero) value
for the electron temperature in a cell.

• ed printMain: If true, it prints general information regarding the laser setup to a file with name
<basename>LaserMainDataPrint.txt, where <basename> is the base name of the simulation.

• ed printPulses: If true, it prints detailed information about the laser pulses to a file with name
<basename>LaserPulsesPrint.txt, where <basename> is the base name of the simulation.

• ed printBeams: If true, it prints detailed information about the laser beams to a file with name
<basename>LaserBeamsPrint.txt, where <basename> is the base name of the simulation.

• ed printRays: If true, it prints detailed information about the all rays initially generated on each
processor to a file(s) with name(s) <basename>LaserRaysPrint<PID>.txt, where <basename> is the
base name of the simulation and PID is the processor rank number.

• ed laser3Din2D: If true, 3D rays will be traced on a 2D cylindrical grid.

• ed laser3Din2DwedgeAngle: The wedge opening angle Ω (in degrees) for a 3D in 2D laser ray trace
simulation.

• ed rayZeroPower: Below this value (erg/s), the ray is considered to have zero power.

• ed rayDeterminism: If true, the Grid Unit will be forced to use the Sieve Algorithm to move the ray
particle data. Forcing this algorithm will result in a slower movement of data, but will fix the order
the processors pass data and eliminate round off differences in consecutive runs.

• ed cellWallThicknessFactor: Controls the (imaginary) thickness of the cell walls to ensure compu-
tational stability of the laser code. The cell thickness is defined as this factor times the smallest cell
dimension along all geometrical axes. The factor is currently set to 10−6 and should only very rarely
be changed.

• ed cellStepTolerance: (Cubic interpolation only) This factor times the smallest dimension of each
cell is taken as the positional error tolerance for the CIPPRT 17.4.4.2 and the CIRK 17.4.4.3 ray
tracing methods.

• ed powerStepTolerance: (Cubic interpolation with Runge Kutta only) This factor denotes the frac-
tional error (unit = current power) for a Runge Kutta step in the CIRK 17.4.4.3 ray tracing method.
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• ed RungeKuttaMethod: (Cubic interpolation with Runge Kutta only) Specifies which Runge Kutta
method to use for the CIRK 17.4.4.3 ray tracing method. Current options are: ’CashKarp45’ (order
4, default), ’EulerHeu12’ (order 1), ’BogShamp23’ (order 2), ’Fehlberg34’ (order 3) and ’Fehlberg45’
(order 4).

• ed saveOutOfDomainRays: If true, the rays info will be stored into a separate saved ray array for those
rays that exit the domain.

• useEnergyDeposition: If false, the energy deposition is not activated, even if the code was compiled
to do so. Bypasses the need to rebuild the code.

• threadRayTrace: If true, the innermost ray loop, tracing all rays through a block, is threaded. This
runtime parameter can only be set during setup of the code.

17.4.10.4 LaserIO Runtime Parameters and Usage

Often times it is useful to be able to visualize the paths of the individual rays in a simulation. This can be
very helpful in ensuring that the laser beams are set up in the intended manner. The LaserIO directory in
the source tree located at:

source/physics/sourceTerms/EnergyDeposition/EnergyDepositionMain/Laser/LaserIO

By default, this unit is requested by the Laser package (for example, when the +laser setup shortcut is
specified).

The LaserIO package gives users the ability to write the trajectory of a certain number of rays to plot
files when normal FLASH plot file writes occur. This feature is only compatible with parallel HDF5 IO
implementations (for example, with +parallelIO or +hdf5typeio). Only three runtime parameter options
need to be set to use LaserIO. These are:

• ed useLaserIO: Set to .true. to activate LaserIO

• ed laserIOMaxNumberOfRays: Sets the approximate maximum number of rays to write to the plot
file. This number can be less than the total number of rays in the simulation. When greater than the
maximum number of rays, every ray trajectory is written.

• ed laserIOMaxNumberOfPositions: Sets the size of the LaserIO buffer. A good estimate of this value
is 5×NXB×NYB×NZB× ed laserIOMaxNumberOfRays.

The ed laserIOMaxNumberOfRays parameter sets the approximate maximum number of rays to write
out. The exact number of rays that will be written is equal to:

max
[
int
(

Nrays

ed laserIOMaxNumberOfRays

)
, 1
]

,

where Nrays is the sum of the number of rays to launch for each beam. The LaserIO ray information is written
to the normal HDF5 plot files in the RayData dataset. The extract rays.py script that is distributed with
FLASH in the tools/scripts directory can be used to extract this data. This is a python script which
requires the NumPy and PyTables python packages to operate. The script takes as arguments a list of plot
files. For each plot file, the script will generate a corresponding VTK file which can be loaded into VisIt.
The RayPower Watts Pseudocolor in VisIt can be plotted to show the ray trajectories. The rays are colored
based on their power (in watts). See the LaserSlab simulation Section 30.7.5 for an example which uses
LaserIO.

17.4.10.5 Laser Energy Density Output

Laser energy density (energy per volume – see 17.4.3) is very useful for visualizing lasers in the simulation
space and can be output to the variable “lase” in checkpoint and plot files. This is an experimental feature
in FLASH 4.4 and is implemented only for 3D Cartesian geometry. To enable “lase” output, edit your
simulation’s Config file (e.g., for the LaserSlab example, Simulation/SimulationMain/LaserSlab/Config)
to include the line:
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Figure 17.15: One ray moving through an ellipsoidal tube with a quadratic electron number density profile
and reaching a focal point F.

VARIABLE lase TYPE: PER_VOLUME

Then setup and build FLASH to use 3D Cartesian ray tracing (otherwise, the added variable is ignored).

17.4.11 Unit Tests

The unit tests set up a series of beams that launch rays onto a domain with a particular electron number
density and electron temperature distribution in such a way that an analytical solution is possible for the
ray paths and their power deposited inside the domain. The tests are 3D cartesian extensions to the 2D
analytical test solution for the quadratic trough as presented in the paper by Kaiser (2000). Figure 17.15
shows the basic structure. 2D cartesian versions of the tests is also available.

17.4.11.1 Analytic Path Solution for the Ellipsoidal Quadratic Potential Tube

Let us define a quadratic ellipsoidal electron number density profile in a 3D space along the xz-plane and
having no variation along the y-axis:

ne(r) = nw + A(x− xw)2 + B(z − zw)2, (17.155)

Here xw and zw are the center coordinates of the ellipsoidal tube cross section, nw is the value of the electron
number density at the center of the ellipse and A,B are the scaling factors for the individual components.
The values of A and B are determined by the boundary conditions of ne(r). For example, if one wants ne(r)
to be equal to a critical value nc at specific coordinates xc and (separately) zc, then we have:

A = (nc − nw)/(xc − xw)2 (17.156)
B = (nc − nw)/(zc − zw)2. (17.157)

Using the ray equation of motion

d2r
dt2

= ∇
(
−c2

2
ne(r)
nc

)
, (17.158)

we can solve for the position vector r under several circumstances (boundary conditions). The first thing
to note is that ne(r) does not contain mixed variable terms, hence the differential ray equation is separable
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into the individual components. Let us take the x-component. We have

d2x

dt2
= − c2

2nc

d

dx
A(x− xw)2

= −k(x− xw), (17.159)

where k = c2A/nc. This is the differential equation for a simple harmonic oscillator around the point xw.
The boundary conditions are such that at time t = 0 the ray will be at an initial position x0 and will posses
a certain velocity component vx

x = x0 (at t = 0) (17.160)
dx

dt
= vx (at t = 0). (17.161)

To solve the simple harmonic oscillator equation, we make the ansatz

x(t) = xw + (x0 − xw) cos(βt) + b sin(βt) (17.162)

and find the expressions for b and β satisfying the boundary conditions. We have

dx

dt
= −β(x0 − xw) sin(βt) + bβ cos(βt) (17.163)

d2x

dt2
= −β2(x0 − xw) cos(βt)− bβ2 sin(βt)

= −β2(x− xw) (17.164)

from which we deduce that

β =
√

k (17.165)

b =
vx

β
. (17.166)

The solution to the complete ray equation can thus be stated as

x(t) = xw + (x0 − xw) cos(
√

kt) +
vx√
k

sin(
√

kt) (17.167)

y(t) = y0 + vyt (17.168)

z(t) = zw + (z0 − zw) cos(
√

k′t) +
vz√
k′

sin(
√

k′t), (17.169)

where r0 = (x0, y0, z0) is the ray’s initial position, v0 = (vx, vy, vz) the initial velocity and

k =
c2A

nc
(17.170)

k′ =
c2B

nc
. (17.171)

Let us now define a focal point F, where all rays launched will meet. The obvious choice is a focal point along
the tube’s center line (xw, zw). Without specifying the y-coordinate of this point yet, we ask the question:
at what times t and t′ will x(t) = xw and z(t′) = zw for the first time after launch? From the ray equation
solutions we get

t =
arctan[−

√
k(x0 − xw)/vx]√

k
(17.172)

t′ =
arctan[−

√
k′(z0 − zw)/vz]√

k′
, (17.173)
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where the angular region of interest for the tangent is 0 ≤ θ ≤ π. It is interesting that there is both a lower
and an upper limit to these times. While the lower limit of t → 0 makes sense (if we shoot the ray with
infinite velocity towards the tube’s center) the upper limit of t→ π/

√
k is less intuitive: there is no escape

from the tube no matter what initial outward velocity we give the ray due to increasing pulling back force
towards the center as the ray moves away from it. If the velocity component is zero we have t = π/(2

√
k).

In general, both times t and t′ will be different. What this means is that the ray will not hit the focal
point. For that to occur, both times must be equal, hence we must have

arctan[−
√

k(x0 − xw)/vx]√
k

=
arctan[−

√
k′(z0 − zw)/vz]√

k′
. (17.174)

Given A and B values (and thus k and k′ values via equations 17.170 and 17.171) defining the tube’s electron
number density layout, this last relation imposes a condition among the variables x0, z0, vx, vz. Only if this
condition is fulfilled will a focal point at (xw, yF, zw) be reached. The y-coordinate yF of the focal point is
then obtained from the y-solution 17.168 of the ray equation by inserting the value of the time t obtained
through either side of 17.174. For the unit test we must identify yF to be sitting on the domain boundary.
Hence when launching a series of ray’s for the unit test, all yF must be the same. A first scheme I thus
emerges for setting up a very general unit test:

SCHEME I

• Fix the center (xw, zw) of the ellipsoidal tube cross section, set up the x- and z-dimensions of the
domain, and assign a value to the electron number density nw at the center.

• Set up the ellipsoidal tube parameters A and B, as shown in 17.156 and 17.157, and choose a constant
vy velocity component.

• For one trial ray, given the initial position and velocity x-components x0 and vx, determine the time t
to reach the focal point F using equation 17.172.

• Using t and vy, calculate yF from 17.168, and set up the y-dimensions of the domain.

• Set up the initial x-component positions x0 for the whole set of rays that are going to be launched.

• Using t, determine the corresponding x-component velocities vx for all rays from equation 17.172.

• For each ray, choose a z0 location and determine the needed velocity component vz using the relation
17.174.

• Launch all rays and collect all the x- and z-components of the domain exit points (xexit, zexit).

• For each ray, check how close (xexit, zexit) is to the expected (xw, zw).

A second simplified scheme II (and the one that is currently implemented in FLASH) has all rays launched
vertically onto the xz-face of the domain. This means that vx = vz = 0. By looking at the time condition
17.174, we see that the only possibility for a focal point in this case is if k = k′, and the time associated with
it is equal to t = π/(2

√
k). This means that we must have A = B (a circular tube). Scheme II is set up as

follows:

SCHEME II

• Fix the center (xw, zw) of the circular tube cross section, set up the x- and z-dimensions of the domain,
and assign a value to the electron number density nw at the center.

• Set up the circular tube parameter A, as shown in 17.156, and choose a constant vy velocity component.

• Calculate the time t = (π/2c)
√

nc/A to reach the focal point F.

• Using t and vy, calculate yF from 17.168, and set up the y-dimensions of the domain.
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• Set up the initial positions (x0, z0) for the whole set of rays that are going to be launched.

• Launch all rays and collect all the x- and z-components of the domain exit points (xexit, zexit).

• For each ray, check how close (xexit, zexit) is to the expected (xw, zw).

Note, that for scheme II there is no restriction on the initial ray positions (x0, z0) like in scheme I. Rays
launched vertically from anywhere onto the xz-plane with the same vy velocity will reach the same focal
point F. Their paths might be of different lengths, but the time it takes for them to reach F is always the
same.

17.4.11.2 Analytic Power Deposition Solution for the Ellipsoidal Quadratic Potential Tube

According to equation 17.47, the power remaining after the ray exits the ellipsoidal tube is

Pexit = P0 exp
{
−
∫ tcross

0

νib[r(t)] dt

}
, (17.175)

where P0 and Pexit denote the ray’s power at the tube’s entry and exit point and tcross is the time it takes
for the ray to reach the focal point F. From 17.46, the inverse-Bremsstrahlung rate is

νib[r(t)] =
4
3

(
2π

me

)1/2
e4

nck3/2

Z[r(t)]ne[r(t)]2 lnΛ[r(t)]
Te[r(t)]3/2

. (17.176)

Note the dependence of Z on position, since we are dealing with the entire domain and not with individual
cells. In order to obtain an analytical integrand that is easy to integrate, the first assumption that we make
is that both Z and Λ are independent of position. For convenience we chose:

Z[r(t)] = 1 (17.177)
lnΛ[r(t)] = 1. (17.178)

To change the quadratic dependence on the electron number density to a linear dependency, we set the
electron temperature as

Te[r(t)] = Tw

[
ne[r(t)]

nw

]2/3

(17.179)

with a specific electron temperature Tw at the elliptical origin. Using these choices we obtain

νib[r(t)] =
4
3

(
2π

me

)1/2
nwe4

nck3/2Tw
3/2

ne[r(t)]

= νib,w
ne[r(t)]

nw
, (17.180)

where

νib,w =
4
3

(
2π

me

)1/2
n2

we4

nck3/2Tw
3/2

(17.181)

is the inverse-Bremsstrahlung rate at the origin. The integral in the exponential becomes∫ tcross

0

νib[r(t)] dt =
νib,w

nw

∫ tcross

0

ne[r(t)] dt

=
νib,w

nw

∫ tcross

0

nw + A(x[t]− xw)2 + B(z[t]− zw)2 dt. (17.182)
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Inserting the analytical path solutions 17.167 and 17.169, we can perform the integration. Let us concentrate
on the x-component part only. We are lead to an integral of the form∫ tcross

0

(x[t]− xw)2 dt =
∫ tcross

0

[
(x0 − xw) cos(

√
kt) +

vx√
k

sin(
√

kt)
]2

dt

=
vx(x0 − xw)

2k
+

v2
x + k(x0 − xw)2

2k
tcross, (17.183)

where tcross is given by the expression in 17.172. For this integration, known sine and cosine integration
rules have been used as well as the fact that sin(arctan a) = a/

√
1 + a2 and cos(arctan a) = 1/

√
1 + a2. The

z-component integration is similar. Collecting everything together and using the expressions for k,k′,A and
B from 17.170, 17.171, 17.156 and 17.157 we obtain∫ tcross

0

νib[r(t)] dt = νib,w

[
tcross +

nc

2c2nw

{
vx(x0 − xw) + vz(z0 − zw) + (v2

x + v2
z)tcross

}
+

nc − nw

2nw

{
(x0 − xw)2

(xc − xw)2
+

(z0 − zw)2

(zc − zw)2

}
tcross

]
. (17.184)

This is the general expression of the exponent integral for evaluating the power deposition of the rays for
scheme I. For the circular tube of scheme II we have vx = vz = 0, tcross = (π/2c)

√
nc/A, A = B, and the

exponent integral simplifies to∫ tcross

0

νib[r(t)] dt = νib,wtcross

[
1 +

A

2nw

{
(x0 − xw)2 + (z0 − zw)2

}]
. (17.185)

If all rays start with the same power and imposing equal power deposition for all rays, then the term inside
the curly brackets must be equal to a constant value

(x0 − xw)2 + (z0 − zw)2 = R2. (17.186)

This condition implies that the rays have to be launched on a circle with radius R around the tube origin
(xw, zw). This ensures equal path lengths for all rays and hence equal power deposition.

17.4.11.3 Unit Tests Parameters and Results

The current Energy Deposition unit test coded into FLASH is based on the analytic solutions for scheme II.
The circular quadratic potential tube is defined through the following parameters and constants:

Parameters Constants in FLASH
xc, zc = 10 cm me = 9.10938215× 10−28 g

xw, zw = 5 cm e = 4.80320427× 10−10 esu
R = 3 cm k = 1.3806504× 10−16 erg/K
λ = 1× 10−4 cm c = 2.99792458× 1010 cm/sec

vy = c
Tw = 10 keV
P0 = 1 erg/sec

With these values we obtain the following additional variable values (in parenthesis are the equations used),
completing the picture:

nc = 1.1148542 . . .× 1021 cm−3 (17.35)
nw = nc/2

tcross = 5π/c
√

2 sec (17.172 with vx = 0)
yF = 5π/

√
2 cm (17.168)

νib,w = 8.1002987 . . .× 108 sec−1 (17.181)
Pexit = 0.7017811 . . . erg/sec (17.185 and 17.175)
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Evaluation of each cell’s average electron number density is done by integrating equation 17.155 over the
entire cell xz-area

〈ne〉 =

∫ z2

z1

∫ x2

x1

ne(x, y) dx dz

(x2 − x1)(z2 − z1)

= nw + A(x− xw)2 + A(z − zw)2 +
A

3
(∆x2 + ∆z2), (17.187)

where x1, z1 are the lower and x2, z2 the upper corresponding cell edge coordinates and

x =
x1 + x2

2
(17.188)

∆x =
x1 − x2

2
(17.189)

with corresponding equations for the z-part. The average cell’s electron temperature is evaluated directly
from the average electron number density using 17.179

〈Te〉 = Tw

[
〈ne〉
nw

]2/3

. (17.190)

The gradients are obtained from the cell average values using the symmetrized derivative formula (shown
here for the i-th cell x-component of the electron number density gradient)

∂

∂x
ne(i) =

〈ne〉i+1 − 〈ne〉i−1

di−1,i+1
, (17.191)

where di−1,i+1 is twice the distance between neighboring cells on the x-axis.

TEST I

For test I, a series of 8 rays (from 8 beams with 1 ray each) with radial distances of 3cm from (xw, zw) =
(5cm, 5cm) are launched with the following initial (x0, z0) coordinates (all in cm):

Ray x0 z0

1 8 5
2 5 8
3 2 5
4 5 2
5 5 + 3/

√
2 5 + 3/

√
2

6 5 + 3/
√

2 5− 3/
√

2
7 5− 3/

√
2 5 + 3/

√
2

8 5− 3/
√

2 5− 3/
√

2

Results are shown only for the ray 1 and ray 5, the other ones are related to these two by symmetry. Also
zexit is not given, because for ray 1 we have zexit = 5cm and for ray 5 we have zexit = xexit. The percentage
errors were calculated as |xexit − xw|/xw and likewise for the power deposition.
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Refinement Level xexit % error Pexit % error
Ray 1

1 5.04894 0.98 0.69487 0.98
2 5.16343 3.27 0.69864 0.45
3 5.02737 0.55 0.70107 0.10
4 4.98971 0.21 0.70185 0.01
5 5.00004 0.00 0.70176 0.00
6 5.00234 0.05 0.70174 0.00

Ray 5
1 5.35171 7.03 0.69283 1.23
2 4.77272 4.55 0.70200 0.03
3 4.96221 0.76 0.70115 0.09
4 4.94433 1.11 0.70204 0.04
5 4.95092 0.98 0.70235 0.08
6 4.97987 0.40 0.70198 0.02

Analytical
∞ 5.00000 0.70178

TEST II

The second test is also based on scheme II and aims at launching a large number of rays using only one
beam centered along the tube’s origin with a specific cross section power function, such that all rays reaching
the focal point have an equal exit power. Since the power deposited depends on the ray path length, the
cross section power function must be such that each ray gets the appropriate initial power to account for
the differences in path lengths. For a specific ray we have for the exit power

Pexit,ray = P
wray∑
wray

exp
{
−νib,w tcross

[
1 +

ARray

2nw

]}
, (17.192)

where equations 17.185, 17.175 and 17.108 have been used and Rray = (x0 − xw)2 + (z0 − zw)2 is the ray’s
radial distance from the tube origin. If we set the ray weighting function equal to the inverse gaussian
function

wray = e
+

Aνib,wtcross

2nw
R2

ray
, (17.193)

we obtain

Pexit,ray =
P

Z
e−νib,w tcross , (17.194)

where we have used Z for the power partition function
∑

wray. For a particular number of rays per beam,
Z is constant and therefore the exit power of all rays are equal. To get independent of the number of rays,
the unit test records the partition scaled exit power Pexit,rayZ for each ray as well as their focal (xexit, zexit)
coordinates. A maximum square radial deviation

∆R2
focal = max

{
(xexit − xw)2 + (zexit − zw)2

}
(17.195)

from the focal point is then defined and recorded. The maximum absolute deviation in the partition scaled
power is registered as

∆Pfocal = max |Pexit,rayZ − Pe−νib,w tcross |. (17.196)

Both quantities are then checked against tolerance values.
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17.5 Heatexchange

The Heatexchange unit implements coupling among the different components (Ion, Electron, Radiation) as
a simple relaxation law.

∂ρEEle

∂t
= κi,e(TIon − TEle) + κe,r(TRad − TEle) (17.197)

∂ERad

∂t
= −κe,r(TRad − TEle) (17.198)

∂ρEIon

∂t
= −κi,e(TIon − TEle) (17.199)

This unit is required because FLASH operator splits the ion/electron equilibration term from the rest
of the calculations. All realistic 3T HEDP simulations should include the Heatexchange unit since it is
responsible for equilibrating the ion/electron temperatures over time. The radiation terms in (17.197) are
only included when the legacy gray radiation diffusion unit is used. The more sophisticated multigroup
radiation diffusion unit, described in Chapter 24, includes the emission and absorption internally.

There are several different implementations residing under Heatexchange unit,

• Immediate: Instantaneous complete equilibration.

• Constant: hx_couplingConst12, hx_couplingConst13 and hx_couplingConst23 can be used for
setting the constant coupling terms.

• ConstCoulomb: Uses a constant coulomb logarithm to compute ion-electron equilibration.
hx_coulombLog can be used to set this value.

• Spitzer: Uses a Spitzer ion-electron equilibration timescale.

• LeeMore: Uses a Spitzer-like ion-electron equilibration timescale but with the Coulomb logarithm
from Lee & More 1984.

The Constant and ConstCoulomb implementations are really designed to be used for testing purposes.
The Spitzer and LeeMore implementation should be used for simulations of actual HEDP experiments since
it is more accurate and physically realistic. This is described in detail in Section 17.5.1 and Section 17.5.2.

hx relTol runtime parameter affects the time step computed by Heatexchange computeDt. Basically,
if the max (abs) temperature adjustment that would be introduced in any nonzero component in any cell
is less than hx relTol, then the time step limit is relaxed. Set to a negative value to inherite the value of
runtime parameter eos tolerance.

Usage: To use any implementation of Heatexchange unit, a simulation should include the Heatexchange
using an option like -with-unit=physics/sourceTerms/Heatexchange/HeatexchangeMain/ConstCoulomb
on the setup line, or add
REQUIRES physics/sourceTerms/Heatexchange/HeatexchangeMain/ConstCoulomb in the Config file. The
same process can be repeated for other implementations.Constant implementation is
set as the default.

17.5.1 Spitzer Heat Exchange

The Spitzer implementation described here and LeeMore implementation described later in Section 17.5.2
should be used to model ion-electron equilibration in realistic HEDP simulations. See Section 30.7.5 for an
example of how to use the Spizter Heatexchange implementation in an HEDP simulation. Note, that this
implementation only models ion-electron equilibration, and does not include any radiation related physics.
In that sense it is designed to be used in conjunction with the multigroup radiation unit described in diffusion
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Figure 17.16: .Verication test for heat exchange code units, showing electrons and ions at different temper-
atures coming into mutual equilibrium, as expected from the form of the electron-ion coupling. The time
axis unit is equal to the asymptotic value of the exponential decay time.

Chapter 24, since this unit includes the emission and absorption terms internally. Thus the equations solved
by the Spitzer implementation are:

deion

dt
=

cv,ele

τei
(Tele − Tion) (17.200a)

deele

dt
=

cv,ele

τei
(Tion − Tele) (17.200b)

where:

• Tele is the electron temperature

• Tion is the ion temperature

• eele is the electron specific internal energy

• eion is the ion specific internal energy

• cv,ele is the electron specific internal energy

• τei is the ion/electron equilibration time

We then replace de with cvdT for the ions and electrons to obtain:

dTion

dt
=

m

τei
(Tele − Tion) (17.201a)

dTele

dt
=

1
τei

(Tion − Tele) (17.201b)

where m = cv,ele/cv,ion is the ratio of specific heats. (17.201) can be solved by assuming that the specific heats
and ion/electron equilibration times are constant over a time step, ∆t. The result is that the ion/electron
temperatures equilibrate exponentially over a time step. This is shown in (17.202).

Tn+1
ion =

(
Tn

ion + mTn
ele

1 + m

)
−m

(
Tn

ele − Tn
ion

1 + m

)
exp

[
−(1 + m)

∆t

τei

]
(17.202a)

Tn+1
ele =

(
Tn

ion + mTn
ele

1 + m

)
+
(

Tn
ele − Tn

ion

1 + m

)
exp

[
−(1 + m)

∆t

τei

]
(17.202b)
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The Spitzer implementation does not directly update the temperatures, however, since this would lead to
energy conservation errors. Rather, the specific internal energies are directly updated according to:

en+1
ele = en

ele + cn
v,ele(T

n+1
ele − Tn

ele) (17.203a)

en+1
ion = en

ion + cn
v,ion(Tn+1

ion − Tn
ion) (17.203b)

The final temperatures are then computed using a call to the equation of state.
The subroutine hx ieEquilTime is responsible for computing the ion/electron equilibration time, τei.

Currently, the formula used is consistent with that given in (Atzeni, 2004) and the NRL Plasma Formulary
(Huba, 2011). The value of τei is shown in (17.204).

τei =
3k

3/2
B

8
√

2πe4

(mionTele + meleTion)3/2

(melemion)1/2
z̄2nion lnΛei

. (17.204)

where:

• kB is the Boltzmann constant

• e is the electron charge

• mion is the average mass of an ion

• mele is the mass of an electron

• z̄ is the average ionization as computed by the EOS

• nion is the ion number density in the plasma

• lnΛei is the Coulomb Logarithm associated with ion/electron collision, further description below.

The Coulomb logarithm is the logarithmic ratio of the maximum impactor parameter, bmax, to minimum
impact parameter, bmin, for ion-electron collisions, i.e.,

lnΛei = ln
[
bmax

bmin

]
(17.205)

In general, the scales of bmin and bmax should be well separated and therefore the Coulomb logarithm should
always be a dimensionless, positive number with a value of a few or greater. The expressions for bmax and
bmin used in the Spitzer heat exchange are given by (Brysk, 1974),

bmax =
kBTele

4πe2nele
(17.206)

and

bmin = max
(

z̄e2

3kBTele
,

~
2
√

3kBTelemele

)
. (17.207)

where nele is the electron number density and ~ is Planck’s constant.
Note that in HED plasmas, there are situations where bmax ∼ bmin and the Coulomb logarithm given by

the above expressions can become very small or negative. To avoid this, the Coulomb logarithm used in the
Spitzer heat exchange is hard coded to be greater or equal to the value of 1.0 (as in Brysk, 1974).

Finally, note that the runtime parameter hx ieTimeCoef multiplies τei and can be used to scale τei.

17.5.2 LeeMore Heat Exchange

The LeeMore heat exchange uses (17.204), but with a different expression for the Coulomb logarithm, lnΛei.
The expression for ln Λei comes from Sec. III.B. of Lee & More 1984,

lnΛei =
1
2

ln

[
1 +

(
bmax

bmin

)2
]

(17.208)
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where bmax is equal to the Debeye-Huckel screening length, λDH, in an expression that includes the ion
temperature and mean ionization state,

1
λ2

DH

=
4πnelee

2

kTele
+

4πnion(ez̄)2

kTion
(17.209)

and bmin is the same as used in the Spitzer heat exchange model, i.e. (17.207).
Like the Spitzer heat exchange model, the Coulomb logarithm in the LeeMore heat exchange is hard

coded to be greater or equal to some positive value. Lee & More 1984 cite numerical results that conclude
that the floor on the Columb logarithm should be 2.0 (instead of 1.0 as in the Spitzer heat exchange model).

It should be reiterated that the LeeMore heat exchange model just described only differs from the Spitzer
heat exchange in the calculation of the Coulomb logarithm. The expression in Lee & More 1984 for the
electron relaxation time (their Eq. 24) also contains fermi-dirac factors that we neglect here for simplicity.
These factors may be incorporated into the LeeMore heat exchange model at a later date. Regardless, the
LeeMore heat exchange module should be more accurate than the Spitzer heat exchange because of the
improvement to the Coulomb logarithm.

17.6 Flame

The Flame unit implements an artificial reaction front model based on a simplified single-variable reaction-
diffusion model. This is intended to be used to model the behavior of under-resolved reaction fronts propa-
gated spatially by thermal diffusion, commonly called flames or deflagration fronts. As the reaction-diffusion
front is also carried with the fluid, this model is sometimes termed an advection-diffusion-reaction (ADR)
model. The principal usage to date of this model has been during the deflagration phase of models of Type
Ia Supernovae. See Townsley et al. (2007), from which some text in this section has been adapted, and works
that reference it for examples.

17.6.1 Reaction-Diffusion Forms

Generally, an ADR scheme characterizes the location of a flame front using a reaction progress variable, φ,
which increases monotonically across the front from 0 (fuel) to 1 (ash). Evolution of this progress variable
is accomplished via an advection-diffusion-reaction equation of the form

∂φ

∂t
+ ~v · ∇φ = κ∇2φ +

1
τ

R(φ) , (17.210)

where ~v is the local fluid velocity, and the reaction term, R(φ), timescale, τ , and the diffusion constant,
κ, are chosen so that the front propagates at the desired speed. Vladimirova et al. (2006) showed that the
step-function reaction rate leads to a substantial amount of unwanted acoustic noise. They studied a suitable
alternative, the Kolmogorov Petrovski Piskunov (KPP) reaction term which has an extensive history in the
study of reaction-diffusion equations. In the KPP model the reaction term is given by

R(φ) =
1
4
φ(1− φ) . (17.211)

The symmetric and low-order character of this function gives it very nice numerical properties, leading to
amazingly little acoustic noise. Following Vladimirova et al. (2006), we adopt κ ≡ sb∆x/16 and τ ≡ b∆x/16s,
where ∆x is the grid spacing, s is the desired propagation speed, and b sets the desired front width scaled
to represent approximately the number of zones.

The KPP reaction term, however, has two serious drawbacks. Formally, the flame speed is only single
valued for initial conditions that are precisely zero (and stay that way) outside the burned region (Xin 2000),
which cannot really be effected in a hydrodynamics simulation. This can lead to an unbounded increase
of the propagation speed, which is precisely the property we wish to have under good control. Secondly,
the progress variable φ takes an infinite amount of time to actually reach 1 (complete consumption of fuel).
While not a fatal flaw like the flame speed problem, this is a problem for our simulations in which we would
like to have a localized flame front so that fully-burned ash can be treated as pure NSE material.
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Both of these drawbacks can be ameliorated by a slight modification of the reaction term (S. Asida,
private communication) to

R(φ) =
f

4
(φ− ε0)(1− φ + ε1) , (17.212)

where 0 < ε0, ε1 � 1 and f is an additional factor that depends on ε0 and ε1 and the flame width so that
the flame speed is preserved with the same constants as for KPP above. This “sharpened” KPP (sKPP) has
truncated tails in both directions (thus being sharpened), making the flame front fully localized, and is a
bi-stable reaction rate and thus gives a unique flame speed (Xin 2000). The price paid is that since R(φ) = 0
for φ ≤ 0 and φ ≥ 1, (17.212) is discontinuous, adding some noise to the solution. Since the suppression
of the tails is stronger for higher ε0 and ε1, we adjusted ε0 and ε1 so that for a particular flame width we
could meet noise goals (Townsley et al. 2007). The parameter the default parameter values obtained are
ε0 = ε1 = 10−3, f = 1.309, and b = 3.2. The noise properties of these choices are discussed in Townsley et
al. (2007).

Diffusive flames are known to be subject to a curvature effect that affects the flame speed when the
radius of curvature is similar to the flame thickness, a frequent circumstance with modestly-resolved flame
front structure. In testing, the curvature effect of the step-function reaction rate proved surprisingly strong,
likely due to the exponential “nose” that the flame front possesses (Vladimirova et al. 2006). Both KPP and
sKPP show significantly better curvature properties.

17.6.2 Unit Structure

The unit is divided into several subunits to allow flexibility in how the propagation speed is determined
and how the enery release of the reaction front takes place. The main subunit FlameMain just implements
the actual the reaction and diffusion terms defined above. There is currently only one implementation,
RDSplit5point, that uses operator-split steps for the reaction and diffusion, and a 5 point stencil for the
Laplacian operator.

The order of operations occurs as follows, for each block of the mesh in sequence: The progress variable, φ,
stored in FLAM MSCALAR is extracted, the Unit-internal function fl flameSpeed() is called to fill a temporary
array with the flame speed evaluated for each cell in the current block. The mesh scalar FLAM MSCALAR is
then updated based on this flame speed while saving temporarily the effective φ̇ for this time step. This
information is then passed on to the internal function fl_effects() which performs any energy release or
other desired side effects of the propagation of the RD front. Note both the temporary arrays storing the
flame speed and the φ̇ for the current block are destroyed before processing the next block. However some
implementations of fl_flameSpeed() may save this information in the main grid arrays for informational
or other purposes.

17.6.2.1 Flame Speed

The flame speed is generally determined by various physical quantities on the grid. However, since the
flame is generally an artificial reaction front, many aspects other than the composition may influence the
speed. The simplest alternative implementation for determining the flame speed, which is the default one,
is Flame/FlameSpeed/Constant. This simply sets a constant flame speed everywhere on the grid.

The flame speed can also include a turbulence-flame interaction (TFI). The implemented options are
discussed in Jackson, Townsley, & Calder (2014, submitted). This is accomplished by including one of the
implementations under, for example Flame/FlameSpeed/Constant/TFI. Since the TFI always modifies some
base flame speed, it is generally included as a implementation of that type of flame speed, in this case a
constant flame speed. In order to facilitate sharing of the TFI components, they are stored in their own
implementation directories under Flame/FlameSpeed/turbulent and included as needed. All of the TFI
options require the inclusion of the Turb unit which provides a measurement of the local turbulence strength.

17.6.2.2 Flame Effects

The flame effects subunit performs functions related to the actual energy deposition or changes in abundances
caused by advance of the reaction front being modeled by the reaction-diffusion progress variable φ. The
simplest implementation, included under Flame/FlameEffects/EIP, implements fixed energy input and
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change in Ā and Z̄ across the reaction front. This is constructed to utilize the fully ionized electron-ion
plasma EOS called the ”Helmholtz” EOS in Flash.

17.7 Turbulence Measurement

The Turb unit implements a method to measure the local turbulence strength at the grid scale. The
implementation is based on the operator OP2 in Colin et al. (2000),

v′ = OP2(~v) = c2∆3
x∇2(∇× ~v) . (17.213)

Here c2 is a calibration constant, set with the turb c2 runtime variable. The default value, 0.9, was deter-
mined for the PPM hydodynamics method by Jackson et al. (2014, submitted) based on simulations of stirred
turbulence. ∆x is the grid spacing and v is the velocity field on the grid. Two options are implemented for
sampling the velocity field, each of which uses a 5-point stencil for the Laplacian operator. If turb stepSize
is set to 1, the stencil samples adjacent cells, if set to 2 every other cell is sampled, for an effective stencil
size of 9 points. The latter option requeres a guardcell fill between the curl and Laplacian operators. The
result of equation 17.213 is stored in the TURB mesh variable.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Turb.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Turb.txt
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Diffusive Terms

source

physics

Diffuse

DiffuseMain

Split Unsplit

DiffuseFluxBased

Figure 18.1: The organizational structure of the Diffuse unit.

The physics/Diffuse unit implements diffusive effects, such as heat conduction, viscosity, and mass
diffusivity.

18.1 Diffuse Unit

The Diffuse unit contains four things:

1. Flux-Based Diffusion Solvers: These are explicit diffusion solvers used to compute fluxes for specific
processes, such as thermal conduction or magnetic resistivity. These fluxes can then be added to the
total fluxes in the hydrodynamic solvers (see Section 18.1.1).

2. General Implicit Diffusion Solvers: The Diffuse unit also contains explicit diffusion solvers that are
general purpose. These subroutines can be used to implicitly solve scalar diffusion problems in FLASH
(see Section 18.1.2).

3. Flux Limiters: The Diffuse unit contains a general purpose subroutine which modifies diffusion coef-
ficients to incorporate a flux limiters (see Section 18.1.3).

4. Electron Thermal Conduction: The Diffuse unit contains code which uses the general purpose implicit
diffusion solver to solve an equation which models electron thermal conduction in a 3T plasma (see
Section 18.1.4)
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18.1.1 Diffuse Flux-Based implementations

There are some important differences between other physics units and the flux-based Diffuse implementa-
tions:

• DiffuseFluxBased does not operate by modifying solution data arrays (like UNK, etc.) directly.
DiffuseFluxBased modifies flux arrays instead.

• DiffuseFluxBased therefore depends on another physics unit to

1. define and initialize the flux arrays (before DiffuseFluxBased calls add to them), and to

2. apply the fluxes to actually update the solution data in UNK.

• DiffuseFluxBased calls that implement the diffusive effects are not made from Driver evolveFlash
as for other physics units and the DiffuseMain subunit. Rather, those DiffuseFluxBased calls need
to be made from cooperating code unit that defines, initializes, and applies the flux arrays. As of
FLASH4, among the provided unit implementations only the PPM implementation of the Hydro unit
does this (by calls in the hy ppm sweep routine).

• The DiffuseFluxBased routines that implement the diffusive effects are called separately for each flux
direction for each block of cells.

Other Hydro implementations, in particular the MHD implementations, currently implement some diffusive
effects in their own flux-based way that does not use the DiffuseFluxBased unit.

To use DiffuseFluxBased routines of the Diffuse unit, a simulation should

• include the Diffuse unit using an option like -with-unit=physics/Diffuse/DiffuseFluxBased on
the setup line, or REQUIRES physics/Diffuse/DiffuseFluxBased in a Config file;

• include a unit that makes Diffuse calls, currently the PPM implementation of Hydro;

• set useXXX runtimes parameters appropriately (see below).

The appropriate calls to DiffuseFluxBased routines will then be made by the following Hydro code
(which can be found in hy ppm sweep.F90):

call Diffuse_therm(sweepDir, igeom, blockList(blk), numCells,&
blkLimits, blkLimitsGC, primaryLeftCoord, &
primaryRghtCoord, tempFlx, tempAreaLeft)

call Diffuse_visc (sweepDir, igeom, blockList(blk), numCells,&
blkLimits, blkLimitsGC, primaryLeftCoord,primaryRghtCoord,&
tempFlx, tempAreaLeft,secondCoord,thirdCoord)

!! call Diffuse_species(sweepDir, igeom, blockList(blk), numCells,&
!! blkLimits, blkLimitsGC, primaryLeftCoord,primaryRghtCoord,&
!! tempFlx, tempFly, tempFlz)

To use the Diffuse unit for heat conduction in a simulation, the runtime parameters useDiffuse and
useDiffuseTherm must be set to .true.; and to use the Diffuse unit for viscosity effects in a simulation,
the runtime parameters useDiffuse and useDiffuseVisc must be set to .true..

18.1.2 General Implicit Diffusion Solver

FLASH contains a general purpose implicit diffusion solver that can be used to include physics such as
electron thermal conduction and multigroup diffusion. The actual code for these solvers is located in
GridSolvers. Two implementations of these solvers exist in the Diffuse unit. An older and less use-
ful version lies under the Split directory. A newer solver which uses the HYPRE library is contained in the
Unsplit directory. As the name suggests, the split solver is directionally split (default: Strang) to interact

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_evolveFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Diffuse.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Diffuse.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Diffuse.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Diffuse.txt
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with the pencil grid infrastructure of the GridSolvers/Pfft implementation of the Grid unit. The runtime
parameter useDiffuse must be set to .true. to activate the general purpose implicit solver.

The typical diffusion equation that can be solved by this unit takes the form,

A
∂f

∂t
+ Cf = ∇ ·B∇f + D, (18.1)

where f is the variable to be diffused in time, and A, B, C, D are parameters with spatial variation. The
infrastructure is provided for a general diffusion equation and can be customized to solve specific equations.
The API function Diffuse_solveScalar provides a comprehensive interface to solve different types of
equations.

In the unsplit solver the equation is implicitly advanced as follows,

An fn+1 − fn

δt
+ Cnfn+1 = θ(∇ ·Bn∇fn+1) + (1− θ)(∇ ·Bn∇fn) + D, (18.2)

In the split solver, the solution is advanced along each direction separately. i.e,
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3 ) +
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3
D (18.5)

θ Scheme
0.0 Explicit
0.5 Crank Nicholson
1.0 Backward Euler

Implicitness: It should be noted that the parameters A, B, C are time lagged and evaluated at tn.
Whereas keeping with the spirit of the implicit scheme these should have been evaluated at tn+1. Evaluating
them at tn+1 makes the problem non-linear for non-constant values of A, B and C. These equations are much
more complicated to solve. Although time lagged coefficient essentially linearized the non-linear problem,
the trade off is the scheme is no longer completely implicit. The scheme is fully implicit only in the constant
case. This could possibly impact the overall stability characteristics of the scheme.

The Laplacian term is discretized using a central difference scheme as follows,

∇ ·B∇f =
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Where, f and B are cell centered variables, and
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Paramesh: In coming up with a numerical scheme in AMR, it is important to ensure that fluxes are
conserved at fine-coarse boundary. This is typically done in FLASH using Grid_consvervefluxes routine.
However this is an option which is not available to the implicit solver. Since it uses HYPRE to solve the
linear system, the flux conversation should be embedded in the system being solved by HYPRE.

Looking at standard diffusion equation mentioned earlier, for simplicity we set C = D = 0.
So,

A
∂f

∂t
= ∇ ·B∇f, (18.13)

We introduce a new variable ~F defined as,

~F = B∇f, and (18.14)

A
∂f

∂t
= ∇ · ~F , (18.15)

We discretize the equation as follows,

An fn+1 − fn

δt
∂v = θ(~Fn+1 · ∂~s) + (1− θ)(~Fn · ∂~s) (18.16)

(18.17)

The idea is then to compute ~F · ∂~s on the fine coarse boundary so as to conserve flux.In a 1D problem
the ~F · ∂~s on a fine-coarse boundary is computed as,

(FL)i+ 1
2

= (FR)i+ 1
2

= Bi+ 1
2

fi+1 − fi

δxi+1+δxi

2

(18.18)

(FL)i− 1
2

= (FR)i− 1
2

= Bi− 1
2

fi − fi−1

δxi−1+δxi

2

(18.19)

(18.20)

The idea is similarly extended to 2D where coarse cell flux is set to sum of computed fine cell fluxes of
its neighbors.

Fcdsc = F1ds1 + F2ds2 (18.21)
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Table 18.2: General Implicit Diffusion Solver Boundary Conditions
Name Integer Effect

Neumann GRID PDE BND NEUMANN ∇f · n = 0
Dirichlet GRID PDE BND DIRICHLET f = c
Vacuum VACUUM something like 1

2f + 1
4∇f · n = 0

Outstream OUTSTREAM free streaming radiation at outer boundary (1D spherical only)

Where,

F1 = Bface
f1 − fc

δx1+δxc

2

(18.22)

F2 = Bface
f2 − fc

δx2+δxc

2

(18.23)

The value of Bface can then be evaluated from surrounding cells using paramesh interpolation.

Usage: To use the “Split” implementation of the Diffuse unit, a simulation should include the Diffuse
unit using an option like -with-unit=source/physics/Diffuse/DiffuseMain/Split on the setup line, or
add REQUIRES physics/Diffuse/DiffuseMain/Split in the Config file. To get the “Unsplit” implemen-
tation, replace Split with Unsplit. Split and Unsplit solver are mutually exclusive implementations and
cannot exist in the same simulation.

Table 18.1: comparison of capabilities of Split and Unsplit diffu-
sion.

Capability Split Unsplit
Paramesh no yes
Uniform grid yes yes
Cartesian 1D, 2D yes yes
Cartesian 3D yes yes
Cylindrical 1D yes yes
Cylindrical 2D (R-Z) yes yes
Spherical 1D yes yes

18.1.2.1 Boundary Conditions

Unlike much of the rest of FLASH, the general purpose implicit diffusion solver does not implement boundary
conditions explicitly through guard cell fills. Instead the diffusion matrix is modified to directly include
boundary conditions. The bcTypes and bcValues arguments to Diffuse_solveScalar are used to indicate
the boundary condition to use. Each of these arguments is an array of length six corresponding to the six
faces of the domain: imin, imax, jmin, imax, kmin, kmax in that order. The bcTypes argument is used
to set the type of boundary condition to use. Several integer values are acceptable that are defined in the
“constants.h” header file. The allowed integer values and the mathematical effect are shown in Table 18.2.
When a Dirichlet (constant value) boundary conditions is required, bcTypes stores the value to use.

18.1.3 Flux Limiters

The Diffuse unit contains the subroutine Diffuse_fluxLimiter which modifies a mesh variable repre-
senting a diffusion coefficient over the entire mesh to include a flux-limit. The subroutine modifies the
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Table 18.3: String and Integer Representations of Flux-Limiter Modes
Mode Integer Constant String Representation

None FL NONE “fl none”
Harmonic FL HARMONIC “fl harmonic”
Min/Max FL MINMAX “fl minmax”
Larsen FL LARSEN “fl larsen”
Levermore-Pomraning FL LEVPOM “fl levermorepomraning1981”

diffusion coefficient to smoothly transition to some maximum flux, qmax. The subroutine takes the following
arguments:

subroutine Diffuse_fluxLimiter(idcoef, ifunc, ifl, mode, blkcnt, blklst)

where:

• idcoef [integer,input] Mesh variable representing the diffusion coefficient (e.g. COND_VAR for electron
thermal conduction)

• ifunc [integer,input] Mesh variable representing the function being diffused (e.g. TELE_VAR for thermal
conduction)

• ifl [integer,input] Mesh variable representing the flux limit (e.g. FLLM_VAR for electron thermal con-
duction)

• mode [integer,input] The type of flux-limiter to apply

• blkcnt [integer,input] Number of blocks

• blklst [integer array, input] List of blocks

The subroutine modifies the mesh variable whose index is given by idcoef by applying a flux-limit. Many
methods of incorporating flux-limits into the diffusion coefficient exist. Diffuse_fluxLimiter currently
supports three of these: “harmonic”, “min/max”, “Larsen”, and “none”. The mode argument selects the
specific method to use. The modes are integers defined in the “constants.h” header file. String representations
also exist and can be converted to the integer values using the RuntimeParameters_mapStrToInt subroutine.
The string representations can be used to create runtime parameters which represent a flux-limiter mode.
Table 18.3 shows the integer constants used as arguments for Diffuse_fluxLimiter as well as the string
representations of these constants.

Each flux limiter mode modifies the existing diffusion coefficient to incorporate the flux limiter in a
different way. If D is the original diffusion coefficient and Dfl is the flux-limited diffusion coefficient then:

• the “none” flux limiter sets:
Dfl = D (18.24)

• the “harmonic” flux limiter sets:
Dfl =

1
1
D + |∇f |

qmax

(18.25)

• the “Larsen” flux limiter sets:
Dfl =

1[(
1
D

)2 +
(
|∇f |
qmax

)2
]1/2

(18.26)

• the “min/max” flux limiter sets:

Dfl = min
(

D,
qmax

|∇f |

)
(18.27)

where f is the value of the function being diffused. The gradient of f is computed using a second order
central difference.
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18.1.4 Stand-Alone Electron Thermal Conduction

The Diffuse unit also contains a subroutine which solves the diffusion equation for the case of electron
thermal conduction. This code is in the diff_advanceTherm subroutine that is called by Diffuse. The
diffusion equation has the form:

ρcv,ele
∂Tele

∂t
= ∇ ·Kele∇Tele (18.28)

where ρ is the mass density, cv,ele is the electron specific heat, and Kele is the electron thermal conductivity.
The conductivity is computed by the Conductivity unit (see Section 22.1 for more information). This
equation is solved implicitly over a time step to avoid overly restricted time step constraints. In many cases
a flux-limiter is needed in situations where overly large temperature gradients are present. The flux-limit
used for electron thermal conduction, qmax,ele, is defined as:

qmax,ele = αelenelekBTele

√
kBTele

mele
(18.29)

where:

• αele is the electron conductivity flux-limiter coefficient

• nele is the electron number density

• kB is the Boltzmann constant

• mele is the electron mass

The Diffuse solveScalar subroutine is used for the implicit solve. The use of the electron thermal
conduction solver is demonstrated in several simulations. See Section 30.8.1 and Section 30.7.5 for examples.
For electron thermal conduction to function, the useConductivity and useDiffuse runtime parameters
must be set to .true.. The following runtime parameters control the behavior of the electron thermal
conduction package:

• diff useEleCond: Set to .true. to activate electron thermal conduction

• diff eleFlMode: String indicating which flux-limiter mode to use for electron conduction. Valid values
are described in Section 18.1.3.

• diff eleFlCoef: Sets the value of αele

• diff thetaImplct: A number between 0 and 1. When set to 0, an explicit treatment is used for the
diffusion solve. When set to 1, a fully implicit solve is used.

The runtime parameters:

diff_eleXlBoundaryType
diff_eleXrBoundaryType
diff_eleYlBoundaryType
diff_eleYrBoundaryType
diff_eleZlBoundaryType
diff_eleZrBoundaryType

are strings which are used to set the boundary conditions for electron conduction on each of the six faces of
the domain. Acceptable values are:

• “DIRICHLET”, “Dirichlet”, or “dirichlet” to indicate a Dirichlet boundary condition where Tele is set
to zero on the boundary

• “OUTFLOW”, “neumann”, “zero-gradient”, “outflow” to indicate a Neumann boundary condition
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Gravity Unit
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Figure 19.1: The Gravity unit directory tree.

19.1 Introduction

The Gravity unit supplied with FLASH4 computes gravitational source terms for the code. These source
terms can take the form of the gravitational potential φ(x) or the gravitational acceleration g(x),

g(x) = −∇φ(x) . (19.1)

The gravitational field can be externally imposed or self-consistently computed from the gas density via the
Poisson equation,

∇2φ(x) = 4πGρ(x) , (19.2)

where G is Newton’s gravitational constant. In the latter case, either periodic or isolated boundary conditions
can be applied.
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19.2 Externally Applied Fields

The FLASH distribution includes three externally applied gravitational fields, along with a placeholder
module for you to create your own. Each provides the acceleration vector g(x) directly, without using the
gravitational potential φ(x) (with the exception of UserDefined, see below).

When building an application that uses an external, time-independent Gravity implementation, no
additional storage in unk for holding gravitational potential or accelerations is needed or defined.

19.2.1 Constant Gravitational Field

This implementation creates a spatially and temporally constant field parallel to one of the coordinate axes.
The magnitude and direction of the field can be set at runtime. This unit is called Gravity/GravityMain/-
Constant.

19.2.2 Plane-parallel Gravitational field

This PlanePar version implements a time-constant gravitational field that is parallel to one of the coordinate
axes and falls off with the square of the distance from a fixed location. The field is assumed to be generated
by a point mass or by a spherically symmetric mass distribution. A finite softening length may optionally
be applied.

This type of gravitational field is useful when the computational domain is large enough in the direction
radial to the field source that the field is not approximately constant, but the domain’s dimension perpendic-
ular to the radial direction is small compared to the distance to the source. In this case the angular variation
of the field direction may be ignored. The PlanePar field is cheaper to compute than the PointMass field
described below, since no fractional powers of the distance are required. The acceleration vector is parallel to
one of the coordinate axes, and its magnitude drops off with distance along that axis as the inverse distance
squared. Its magnitude and direction are independent of the other two coordinates.

19.2.3 Gravitational Field of a Point Mass

This PointMass implementation describes the gravitational field due to a point mass at a fixed location. A
finite softening length may optionally be applied. The acceleration falls off with the square of the distance
from a given point. The acceleration vector is everywhere directed toward this point.

19.2.4 User-Defined Gravitational Field

The UserDefined implementation is a placeholder module for the user to create their own external gravita-
tional field. All of the subroutines in this module are stubs, and the user may copy these stubs to their setup
directory to write their own implementation, either by specifying the gravitational acceleration directly or
by specifying the gravitational potential and taking its gradient. If your user-defined gravitational field is
time-varying, you may also want to set PPDEFINE FLASH GRAVITY TIMEDEP in your setup’s Config file.

19.3 Self-gravity

The self-consistent gravity algorithm supplied with FLASH computes the Newtonian gravitational field
produced by the matter. The produced potential function satisfies Poisson’s equation (19.2). This unit’s
implementation can also return the acceleration field g(x) computed by finite-differencing the potential using
the expressions

gx;ijk = 1
2∆x (φi−1,j,k − φi+1,j,k) +O(∆x2)

gy;ijk = 1
2∆y (φi,j−1,k − φi,j+1,k) +O(∆y2) (19.3)

gz;ijk = 1
2∆z (φi,j,k−1 − φi,j,k+1) +O(∆z2) .
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In order to preserve the second-order accuracy of these expressions at jumps in grid refinement, it is important
to use quadratic interpolants when filling guard cells at such locations. Otherwise, the truncation error of
the interpolants will produce unphysical forces at these block boundaries.

Two algorithms are available for solving the Poisson equations: Gravity/GravityMain/Multipole and
Gravity/GravityMain/Multigrid. The initialization routines for these algorithms are contained in the
Gravity unit, but the actual implementations are contained below the Grid unit due to code architecture
constraints.

The multipole-based solver described in Section 8.10.2.1 for self gravity is appropriate for spherical or
nearly-spherical mass distributions with isolated boundary conditions. For non-spherical mass distributions
higher order moments of the solver must be used. Note that storage and CPU costs scale roughly as the square
of number of moments used, so it is best to use this solver only for nearly spherical matter distributions.

The multigrid solver described in Section 8.10.2.6 is appropriate for general mass distributions and can
solve problems with more general boundary conditions.

The tree solver described in 8.10.2.4 is appropriate for general mass distributions and can solve problems
with both isolated and periodic boundary conditions set independently in individual directions.

19.3.1 Coupling Gravity with Hydrodynamics

The gravitational field couples to the Euler equations only through the momentum and energy equations. If
we define the total energy density as

ρE ≡ 1
2
ρv2 + ρε , (19.4)

where ε is the specific internal energy, then the gravitational source terms for the momentum and energy
equations are ρg and ρv · g, respectively. Because of the variety of ways in which different hydrodynamics
schemes treat these source terms, the gravity module only supplies the potential φ and acceleration g, leaving
the implementation of the fluid coupling to the hydrodynamics module. Finite-difference and finite-volume
hydrodynamic schemes apply the source terms in their advection steps, sometimes at multiple intermediate
timesteps and sometimes using staggered meshes for vector quantities like v and g.

For example, the PPM algorithm supplied with FLASH uses the following update steps to obtain the
momentum and energy in cell i at timestep n + 1

(ρv)n+1
i = (ρv)n

i + ∆t
2 gn+1

i

(
ρn

i + ρn+1
i

)
(ρE)n+1

i = (ρE)n
i + ∆t

4 gn+1
i

(
ρn

i + ρn+1
i

) (
vn

i + vn+1
i

)
. (19.5)

Here gn+1
i is obtained by extrapolation from φn−1

i and φn
i . The Poisson gravity implementation supplies

a mesh variable to contain the potential from the previous timestep; future releases of FLASH may permit
the storage of several time levels of this quantity for hydrodynamics algorithms that require more steps.
Currently, g is computed at cell centers.

Note that finite-volume schemes do not retain explicit conservation of momentum and energy when
gravity source terms are added. Godunov schemes such as PPM, require an additional step in order to
preserve second-order time accuracy. The gravitational acceleration component gi is fitted by interpolants
along with the other state variables, and these interpolants are used to construct characteristic-averaged
values of g in each cell. The velocity states vL,i+1/2 and vR,i+1/2, which are used as inputs to the Riemann
problem solver, are then corrected to account for the acceleration using the following expressions

vL,i+1/2 → vL,i+1/2 +
∆t

4

(
g+

L,i+1/2 + g−L,i+1/2

)
vR,i+1/2 → vR,i+1/2 +

∆t

4

(
g+

R,i+1/2 + g−R,i+1/2

)
. (19.6)

Here g±X,i+1/2 is the acceleration averaged using the interpolant on the X side of the interface (X = L,R)
for v ± c characteristics, which bring material to the interface between cells i and i + 1 during the timestep.
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19.3.2 Tree Gravity

The Tree implementation of the gravity unit in physics/Gravity/GravityMain/Poisson/BHTree is meant
to be used together with the tree solver implementation Grid/GridSolvers/BHTree/Wunsch. It either calcu-
lates the gravitational potential field which is subsequently differentiated in subroutine Gravity accelOneRow
to obtain the gravitational acceleration, or it calculates the gravitational acceleration directly. The latter
approach is more accurate, because the error due to numerical differentiation is avoided, however, it con-
sumes more memory for storing three components of the gravitational acceleration. The direct acceleration
calculation can be switched on by specifying bhtreeAcc=1 as a command line argument of the setup script.

The gravity unit provides subroutines for building and walking the tree called by the tree solver. In this
version, only monopole moments (node masses) are used for the potential/acceleration calculation. It also
defines new multipole acceptance criteria (MACs) that estimate the error in gravitational acceleration of a
contribution of a single node to the potential (hereafter partial error) much better than purely geometrical
MAC defined in the tree solver. They are: (1) the approximate partial error (APE), and (2) the maximum
partial error (MPE). The first one is based on an assumption that the partial error is proportional to the
multipole moment of the node. The node is accepted for calculation of the potential if

Dm+2 >
GMSm

node

∆ap,APE
(19.7)

where D is distance between the point-of-calculation and the node, M is the node mass, Snode is the node size,
m is a degree of the multipole approximation and ∆ap,APE is the requested maximum error in acceleration
(controlled by runtime parameter grv bhAccErr). Since only monopole moments are used for the potential
calculation, the most reasonable choice of m seems to be m = 2. This MAC is similar to the one used in
Gadget2 (see Springel, 2005, MNRAS, 364, 1105).

The second MAC (maximum partial error, MPE) calculates the error in acceleration of a single node
contribution ∆ap,MPE according to formula 9 from Salmon&Warren (1994; see this paper for details):

∆ap,MPE ≤
1

D2

1
(1− Snode/D)2

(
3dB2e
D2

− 2bB3c
D3

)
(19.8)

where Bn = Σimi|ri−r0|n where mi and ri are masses and positions of individual grid cells within the node
and r0 is the node mass center position. Moment B2 can be easily determined during the tree build, moment
B3 can be estimated as B2

3 ≥ B3
2/M . The maximum allowed partial error in gravitational acceleration is

controlled by runtime parameters grv bhAccErr and grv bhUseRelAccErr (see 19.4.1).
During the tree walk, subroutine Gravity bhNodeContrib adds contributions of tree nodes to the gravi-

tational potential or acceleration fields. In case of the potential, the contribution is

Φ = −GM

|~r|
(19.9)

if isolated boundary conditions are used, or

Φ = −GMfEF,Φ(~r) (19.10)

if periodic periodic or mixed boundary conditions are used. In case of the acceleration, the contributions
are

~ag =
GM~r

|~r|3
(19.11)

for isolated boundary conditions, or
~ag = GMfEF,a(~r) (19.12)

for periodic or mixed boundary conditions. In In the above formulae, G is the constant of gravity, M is
the node mass, ~r is the position vector between point-of-calculation and the node mass center and fEF,Φ and
fEF,a are the Ewald fields for the potential and the acceleration (see below).

Boundary conditions can be isolated or periodic, set independently for each direction. If they are peri-
odic at least in one direction, the Ewald method is used for the potential calculation (Ewald, P. P., 1921,
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Ann. Phys. 64, 253). The original Ewald method is an efficient method for computing gravitational field for
problems with periodic boundary conditions in three directions. Ewald speeded up evaluation of the gravi-
tational potential by splitting it into two parts, Gm/r = Gm erf(αr)/r + Gm erfc(αr)/r (α is an arbitrary
constant) and then by applying Poisson summation formula on erfc terms, gravitational field at position ~r
can be written in the form

φ(~r) = −G

N∑
a=1

ma

 ∑
i1,i2,i3

AS(~r, ~ra,~li1,i2,i3) + AL(~r, ~ra,~li1,i2,i3)

 = −G

N∑
a=1

mafEF,Φ(~ra − ~r) , (19.13)

the first sum runs over whole computational domain, where at position ~ra is mass ma. Second sum
runs over all neigbouring computational domains, which are at positions ~li1,i2,i3 and AS(~r, ~ra,~li1,i2,i3) and
AL(~r, ~ra,~li1,i2,i3) are short and long–range contributions, respectively. It is sufficient to take into account
only few terms in eq. 19.13. The Ewald field for the acceleration, fEF,a, is obtained using a similar decom-
position. We modified Ewald method for problems with periodic boundary conditions in two directions and
isolated boundary conditions in the third direction and for problems with periodic boundary conditions in
one direction and isolated in two directions.

The gravity unit allows also to use a static external gravitational field read from file. In this version, the
field can be either spherically symmetric or planar being only a function of the z-coordinate. The external
field file is a text file containing three columns of numbers representing the coordinate, the potential and the
acceleration. The coordinate is the radial distance or z-distance from the center of the external field given
by runtime parameters. The external field if mapped to a grid using a linear interpolation each time the
gravitational acceleration is calculated (in subroutine Gravity accelOneRow).

19.4 Usage

To include the effects of gravity in your FLASH executable, include the option

-with-unit=physics/Gravity

on your command line when you configure the code with setup. The default implementation is Constant,
which can be overridden by including the entire path to the specific implementation in the command
line or Config file. The other available implementations are Gravity/GravityMain/Planepar, Gravity/-
GravityMain/Pointmass and Gravity/GravityMain/Poisson. The Gravity unit provides accessor func-
tions to get gravitational acceleration and potential. However, none of the external field implementations
of Section Section 19.2 explicitly compute the potential, hence they inherit the null implementation from
the API for accessing potential. The gravitation acceleration can be obtained either on the whole domain,
a single block or a single row at a time.

When building an application that solves the Possion equation for the gravitational potential, addi-
tional storage is needed in unk for holding the last, as well as (usually) the previous, gravitational poten-
tial field; and, depending on the Poisson solver used, additional variables may be needed. The variables
GPOT VAR and GPOT VAR, and others as needed, will be automatically defined in Flash.h in those cases. See
Gravity potentialListOfBlocks for more information.

19.4.1 Tree Gravity Unit Usage

Calculation of gravitational potential can be enabled by compiling in this unit and setting the runtime param-
eter useGravity true. The constant of gravity can be set independently by runtime parameter grv bhNewton;
if it is not positive, the constant Newton from the FLASH PhysicalConstants database is used. If param-
eters gr bhPhysMACTW or gr bhPhysMACComm are set, the gravity unit MAC is used and it can be chosen by
setting grv bhMAC to either ApproxPartialErr or MaxPartialErr. If the first one is used, the order of the
multipole approximation is given by grv bhMPDegree.

The maximum allowed partial error in gravitational acceleration is set with the runtime parameter
grv bhAccErr. It has either the meaning of an error in absolute acceleration or in relative acceleration
normalized by the acceleration from the previous time-step. The latter is used if grv bhUseRelAccErr is
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set to True, and in this case the first call of the tree solver calculates the potential using purely geometrical
MAC (because the acceleration from the previous time-step does not exist).

Boundary conditions are set by the runtime parameter grav boundary type and they can be isolated,
periodic or mixed. In the case of mixed boundary conditions, runtime parameters grav boundary type x,
grav boundary type y and grav boundary type z specify along which coordinate boundary conditions are
periodic and isolated (possible values are periodic or isolated). Arbitrary combination of these values is
permitted, thus suitable for problems with planar resp. linear symmetry. It should work for computational
domain with arbitrary dimensions. The highest accuracy is reached with blocks of cubic physical dimensions.

If runtime parameter grav boundary type is periodic or mixed, then the Ewald field for appropriate
symmetry is calculated at the beginning of the simulation. Parameter grv bhEwaldSeriesN controls the
range of indices i1, i2, i3 in (eq. 19.13). There are two implementations of the Ewald method: the new one
(default) requires less memory and it should be faster and of comparable accuracy as the old one. The
default implementation computes Ewald field minus the singular 1/r term and its partial derivatives on a
single cubic grid, and the Ewald field is then approximated by the first order Taylor formula. Parameter
grv bhEwaldNPer controls number of grid points in the x direction in the case of periodic or in periodic
direction(s) in the case of mixed boundary conditions. Since an elongated computational domain is often
desired when grav boundary type is mixed, the cubic grid would lead to a huge field of data. In this case,
the amount of necessary grid points is reduced by using an analytical estimate to the Ewald field sufficiently
far away of the symmetry plane or axis.

The old implementation (from Flash4.2) is still present and is enabled by adding bhtreeEwaldV42=1
on the setup command line. The Ewald field is then stored in a nested set of grids, the first of them cor-
responds in size to full computational domain, and each following grid is half the size (in each direction)
of the previous grid. Number of nested grids is controlled by runtime parameter grv bhEwaldNRefV42. If
grv bhEwaldNRefV42 is too low to cover origin (where is the Ewald field discontinuous), then the run is termi-
nated. Each grid is composed of grv bhEwaldFieldNxV42× grv bhEwaldFieldNyV42× grv bhEwaldFieldNzV42
points. When evaluation of the Ewald Field at particular point is needed at any time during a run, the field
value is found by interpolation in a suitable level of the grid. Linear or semi-quadratic interpolation can
be chosen by runtime parameter grv bhLinearInterpolOnlyV42 (option true corresponds to linear inter-
polation). Semi-quadratic interpolation is recommended only in the case when there are periodic boundary
conditions in two directions.

The external gravitational field can be switched on by setting grv useExternalPotential true. The pa-
rameter grv bhExtrnPotFile gives the name of the file with the external potential and grv bhExtrnPotType
specifies the field symmetry: spherical for the spherical symmetry and planez for the planar symmetry with
field being a function of the z-coordinate. Parameters grv bhExtrnPotCenterY, grv bhExtrnPotCenterX
and grv bhExtrnPotCenterZ specify the position (in the simulation coordinate system) of the external field
origin (the point where the radial or z-coordinate is zero).

Table 19.1: Tree gravity unit parameters controlling the accuracy of calculation.

Variable Type Default Description

grv bhNewton real -1.0 constant of gravity; if < 0, it is obtained
from internal physical constants database

grv bhMAC string ”ApproxPartialErr” MAC, other option: ”MaxPartialErr”

grv bhMPDegree integer 2 degree of multipole in error estimate in APE MAC

grv bhUseRelAccErr logical .false. if .true., grv bhAccErr has meaning of
relative error, otherwise absolute

grv bhAccErr real 0.1 maximum allowed error in gravitational
acceleration

Tree gravity unit parameters controlling the external gravitational field.
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Table 19.2: Tree gravity unit parameters controlling the boundary conditions.

Variable Type Default Description

grav boundary type string ”isolated” or ”periodic” or ”mixed”

grav boundary type x string ”isolated” or ”periodic”

grav boundary type y string ”isolated” or ”periodic”

grav boundary type z string ”isolated” or ”periodic”

grv bhEwaldAlwaysGenerate boolean true whether Ewald field should be regenerated

grv bhEwaldSeriesN integer 10 number of terms in the Ewald series

grv bhEwaldNPer integer 32 number of points+1 of the Taylor expansion

grv bhEwaldFName string ”ewald coeffs” file with coefficients of the Ewald field Taylor expansion

grv bhEwaldFieldNxV42 integer 32 size of the Ewald field grid in x-direction

grv bhEwaldFieldNyV42 integer 32 size of the Ewald field grid in y-direction

grv bhEwaldFieldNzV42 integer 32 size of the Ewald field grid in z-direction

grv bhEwaldNRefV42 integer -1 number of refinement levels (nested grids) for the Ewald
field; if < 0, determined automatically

grv bhLinearInterpolOnlyV42 logical .true. if .false., semi-quadratic interpolation is used for
interpolation in the Ewald field

grv bhEwaldFNameAccV42 string ”ewald field acc” file with the Ewald field for acceleration

grv bhEwaldFNamePotV42 string ”ewald field pot” file with coefficients of the Ewald field for potential

Variable Type Default Description

grv bhUseExternalPotential logical .false. whether to use external field

grv bhUsePoissonPotential logical .true. whether to use gravitational field calculated by the
tree solver

grv bhExtrnPotFile string ”external potential.dat” file containing the external gravitational field

grv bhExtrnPotType string ”planez” type of the external field: planar or spherical symmetry

grv bhExtrnPotCenterX real 0.0 x-coordinate of the center of the external field

grv bhExtrnPotCenterY real 0.0 y-coordinate of the center of the external field

grv bhExtrnPotCenterZ real 0.0 z-coordinate of the center of the external field

19.5 Unit Tests

There are two unit tests for the gravity unit. Poisson3 is essentially the Maclaurin spheroid problem
described in Section 30.3.4. Because an analytical solution exists, the accuracy of the gravitational solver
can be quantified. The second test, Poisson3_active is a modification of Poisson3 to test the mapping
of particles in Grid mapParticlesToMesh. Some of the mesh density is redistributed onto particles, and
the particles are then mapped back to the mesh, using the analytical solution to verify completeness. This
test is similar to the simulation PoisParticles discussed in Section 30.4.3. PoisParticles is based on the
Huang-Greengard Poisson gravity test described in Section 30.3.3.
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Particles Unit
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Figure 20.1: The Particles unit main subunit.
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Figure 20.2: The Particles unit with ParticlesInitialization and ParticlesMapping subunits.

The support for particles in FLASH4 comes in two flavors, active and passive. Active particles are further
classified into two categories; massive and charged. The active particles contribute to the dynamics of the
simulation, while passive particles follow the motion of Lagrangian tracers and make no contribution to the
dynamics. Particles are dimensionless objects characterized by positions xi, velocities vi, and sometimes
other quantities such as mass mi or charge qi . Their characteristic quantities are considered to be defined at
their positions and may be set by interpolation from the mesh or may be used to define mesh quantities by
extrapolation. They move relative to the mesh and can travel from block to block, requiring communication
patterns different from those used to transfer boundary information between processors for mesh-based data.

Passive particles acquire their kinematic information (velocities) directly from the mesh. They are meant
to be used as passive flow tracers and do not make sense outside of a hydrodynamical context. The gov-
erning equation for the ith passive particle is particularly simple and requires only the time integration of
interpolated mesh velocities.

dxi

dt
= vi (20.1)

Active particles experience forces and may themselves contribute to the problem dynamics (e.g., through
long-range forces or through collisions). They may additionally have their own motion independent of the
grid, so an additional motion equation of

vn+1
i = vn

i + an
i ∆tn . (20.2)

may come into play. Here ai is the particle acceleration. Solving for the motion of active particles is also
referred to as solving the N -body problem. The equations of motion for the ith active particle include the
equation (20.1) and another describing the effects of forces.

mi
dvi

dt
= Flr,i + Fsr,i , (20.3)

Here, Flr,i represents the sum of all long-range forces (coupling all particles, except possibly those handled
by the short-range term) acting on the ith particle and Fsr,i represents the sum of all short-range forces
(coupling only neighboring particles) acting on the particle.

For both types of particles, the primary challenge is to integrate (20.1) forward through time. Many
alternative integration methods are described in Section Section 20.1 below. Additional information about
the mesh to particle mapping is described in Section 20.2. An introduction to the particle techniques used
in FLASH is given by R. W. Hockney and J. W. Eastwood in Computer Simulation using Particles (Taylor
and Francis, 1988).
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FLASH Transition

Please note that the particles routines have not been thoroughly tested with non-Cartesian
coordinates; use them at your own risk!

New since FLASH3.1

Since release 3.1 of FLASH, a single simulation can have both active and passive particles
defined. FLASH3 and FLASH2 allowed only active or passive particles in a simulation. Be-
cause of the added complexity, new Config syntax and new setup script syntax is necessary
for Particles. See Section 5.2 for command line options, Section 6.6 for Config sytax, and
Section 20.3 below for more details.

FLASH4 includes support for sink particles. These are a special kind of (massive) active particles,
with special rules for creation, mass accretion, and interaction with fluid variables and other particles. See
Section 20.4 below for information specific to sink particles.

20.1 Time Integration

The active and passive particles have many different time integration schemes available. The subroutine
Particles advance handles the movement of particles through space and time. Because FLASH4 has
support for including different types of both active and passive particles in a single simulation, the imple-
mentation of Particles advance may call several helper routines of the form pt advanceMETHOD (e.g.,
pt advanceLeapfrog, pt advanceEuler active, pt advanceCustom), each acting on an appropriate sub-
set of existing particles. The METHOD here is determined by the ADVMETHOD part of the PARTICLETYPE
Config statement (or the ADV par of a -particlemethods setup option) for the type of particle. See
the Particles advance source code for the mapping from ADVMETHOD keyword to pt advanceMETHOD
subroutine call.

20.1.1 Active Particles (Massive)

The active particles implementation includes different time integration schemes, long-range force laws (cou-
pling all particles), and short-range force laws (coupling nearby particles). The attributes listed in Table 20.1
are provided by this subunit. A specific implementation of the active portion of Particles advance is se-
lected by a setup option such as -with-unit=Particles/ParticlesMain/active/massive/Leapfrog, or
by specifying something like REQUIRES Particles/ParticlesMain/active/massive/Leapfrog in a simu-
lation’s Config file (or by listing the path in the Units file if not using the -auto configuration option).
Further details are given is Section 20.3 below.

Available time integration schemes for active particles include

• Forward Euler. Particles are advanced in time from tn to tn+1 = tn + ∆tn using the following
difference equations:

xn+1
i = xn

i + vn
i ∆tn

vn+1
i = vn

i + an
i ∆tn . (20.4)

Here ai is the particle acceleration. Within FLASH4, this scheme is implemented in Particles/-
ParticlesMain/active/massive/Euler. This Euler scheme (as well as the Euler scheme for the
passive particles) is first-order accurate and is included for testing purposes only. It should not be used
in a production run.
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http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_advance_F90.html
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• Variable-timestep leapfrog. Particles are advanced using the following difference equations

x1
i = x0

i + v0
i ∆t0

v1/2
i = v0

i + 1
2a

0
i ∆t0 (20.5)

vn+1/2
i = vn−1/2

i + Cnan
i + Dnan−1

i

xn+1
i = xn

i + vn+1/2
i ∆tn .

The coefficients Cn and Dn are given by

Cn = 1
2∆tn + 1

3∆tn−1 + 1
6

(
∆tn2

∆tn−1

)
Dn = 1

6

(
∆tn−1 − ∆tn2

∆tn−1

)
. (20.6)

By using time-centered velocities and stored accelerations, this method achieves second-order time
accuracy even with variable timesteps. Within FLASH4, this scheme is implemented in Particles/-
ParticlesMain/active/massive/Leapfrog

• Cosmological variable-timestep leapfrog. (Particles/ParticlesMain/active/massive/LeapfrogCosmo)
The coefficients in the leapfrog update are modified to take into account the effect of cosmological red-
shift on the particles. The particle positions x are interpreted as comoving positions, and the particle
velocities v are interpreted as comoving peculiar velocities (v = ẋ). The resulting update steps are

x1
i = x0

i + v0
i ∆t0

v1/2
i = v0

i +
1
2
a0

i ∆t0
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2
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)][
1−∆tn−1 An

2
+ ∆tn−12 An2 + 2Ȧn
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]

+an
i

[
∆tn−1

2
+

∆tn2

6∆tn−1
+

∆tn−1

3
− An∆tn

6
(
∆tn + ∆tn−1

)]
+an−1

i

[
∆tn−12 −∆tn2

6∆tn−1
− An∆tn−1

12
(∆tn + ∆tn−1)

]
xn+1

i = xn
i + vn+1/2

i ∆tn .

Here we define A ≡ −2ȧ/a, where a is the scale factor. Note that the acceleration an−1
i from the

previous timestep must be retained in order to obtain second order accuracy. Using the Particles/-
ParticlesMain/passive/LeapfrogCosmo time integration scheme only makes sense if the Cosmology
module is also used, since otherwise a ≡ 1 and ȧ ≡ 0.

• Sink particles have their own implementation of several advancement methods (with time subcycling),
implemented under Particles/ParticlesMain/active/Sink, see description below in Section 20.4.

The leapfrog-based integrators implemented under Particles/ParticlesMain/active/massive supply
the additional particle attributes listed in Table 20.2.

Table 20.1: Particle attributes provided by active particles.

Attribute Type Description
MASS_PART_PROP REAL Particle mass
ACCX_PART_PROP REAL x-component of particle accelera-

tion
ACCY_PART_PROP REAL y-component of particle accelera-

tion
ACCZ_PART_PROP REAL z-component of particle accelera-

tion
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Table 20.2: Particle attributes provided by leapfrog time integra-
tion.

Attribute Type Description
OACX_PART_PROP REAL x-component of particle accelera-

tion at previous timestep
OACY_PART_PROP REAL y-component of particle accelera-

tion at previous timestep
OACZ_PART_PROP REAL z-component of particle accelera-

tion at previous timestep

20.1.2 Charged Particles - Hybrid PIC

Collisionless plasmas are often modeled using fluid magnetohydrodynamics (MHD) models. However, the
MHD fluid approximation is questionable when the gyroradius of the ions is large compared to the spatial
region that is studied. On the other hand, kinetic models that discretize the full velocity space, or full
particle in cell (PIC) models that treat ions and electrons as particles, are computationally very expensive.
For problems where the time scales and spatial scales of the ions are of interest, hybrid models provide a
compromise. In such models, the ions are treated as discrete particles, while the electrons are treated as a
(often massless) fluid. This mean that the time scales and spatial scales of the electrons do not need to be
resolved, and enables applications such as modeling of the solar wind interaction with planets. For a detailed
discussion of different plasma models, see Ledvina et al. (2008).

20.1.2.1 The hybrid equations

In the hybrid approximation, ions are treated as particles, and electrons as a massless fluid. In what follows
we use SI units. We have NI ions at positions ri(t) [m] with velocities vi(t) [m/s], mass mi [kg] and
charge qi [C], i = 1, . . . , NI . By spatial averaging we can define the charge density ρI(r, t) [Cm−3] of the
ions, their average velocity uI(r, t) [m/s], and the corresponding current density JI(r, t) = ρIuI [Cm−2s−1].
Electrons are modelled as a fluid with charge density ρe(r, t), average velocity ue(r, t), and current density
Je(r, t) = ρeue. The electron number density is ne = −ρe/e, where e is the elementary charge. If we assume
that the electrons are an ideal gas, then pe = nekTe, so the pressure is directly related to temperature (k is
Boltzmann’s constant).

The trajectories of the ions are computed from the Lorentz force,

dri

dt
= vi,

dvi

dt
=

qi

mi
(E + vi ×B) , i = 1, . . . , NI

where E = E(r, t) is the electric field, and B = B(r, t) is the magnetic field. The electric field is given by

E =
1
ρI

(
−JI ×B + µ−1

0 (∇×B)×B−∇pe

)
+ ηJ− ηh∇2J,

where ρI is the ion charge density, JI is the ion current, pe is the electron pressure, µ0 = 4π · 10−7 is the
magnetic constant, J = µ−1

0 ∇ × B is the current, and ηh is a hyperresistivity. Here we assume that pe is
adiabatic. Then the relative change in electron pressure is related to the relative change in electron density
by

pe

pe0
=
(

ne

ne0

)γ

,



312 CHAPTER 20. PARTICLES UNIT

where the zero subscript denote reference values (here the initial values at t = 0). Then Faraday’s law is
used to advance the magnetic field in time,

∂B
∂t

= −∇×E.

20.1.2.2 A cell-centered finite difference hybrid PIC solver

We use a cell-centered representation of the magnetic field on a uniform grid. All spatial derivatives are
discretized using standard second order finite difference stencils. Time advancement is done by a predictor-
corrector leapfrog method with subcycling of the field update, denoted cyclic leapfrog (CL) by Matthew
(1994). An advantage of the discretization is that the divergence of the magnetic field is zero, down to round
off errors. The ion macroparticles (each representing a large number of real particles) are deposited on the
grid by a cloud-in-cell method (linear weighting), and interpolation of the fields to the particle positions
are done by the corresponding linear interpolation. Initial particle positions are drawn from a uniform
distribution, and initial particle velocities from a Maxwellian distribution. Further details of the algorithm
can be found in Holmström, M. (2012,2013) and references therein, where an extension of the solver that
include inflow and outflow boundary conditions was used to model the interaction between the solar wind
and the Moon. In what follows we describe the FLASH implementation of the hybrid solver with periodic
boundary conditions.

20.1.2.3 Hybrid solver implementation

The two basic operations needed for a PIC code are provided as standard operations in FLASH:

• Deposit charges and currents onto the grid: call Grid mapParticlesToMesh()

• Interpolate fields to particle positions: call Grid mapMeshToParticles()

At present the solver is restricted to a Cartesian uniform grid, since running an electromagnetic particle code
on an adaptive grid is not straightforward. Grid refinement/coarsening must be accompanied by particle
split/join operations. Also, jumps in the cell size can lead to reflected electromagnetic waves.

The equations are stated in SI units, so all parameters should be given in SI units, and all output will be
in SI units. The initial configuration is a spatial uniform plasma consisting of two species. The first species,
named pt picPname 1 consists of particles of mass pt picPmass 1 and charge pt picPcharge 1. The initial
(at t = 0) uniform number density is pt picPdensity 1, and the velocity distribution is Maxwellian with
a drift velocity of (pt picPvelx 1, pt picPvely 1, pt picPvelz 1), and a temperature of pt picPtemp 1.
Each model macro-particle represents many real particles. The number of macro-particles per grid cell
at the start of the simulation is set by pt picPpc 1. So this parameter will control the total number of
macro-particles of species 1 in the simulation.

All the above parameters are also available for a second species, e.g., pt picPmass 2, which is initialized
in the same way as the first species. The grid is initialized with the uniform magnetic field (sim bx, sim by,
sim bz).

Now for grid quantities. The cell averaged mass density is stored in pden, and the charge density in cden.
The magnetic field is represented by (grbx, grby, grbz). A background field can be set during initialization
in (gbx1, gby1, gbz1). We then solve for the deviation from this background field. Care must be take
so that the background field is divergence free, using the discrete divergence operator. The easiest way to
ensure this is to compute the background field as the rotation of a potential. The electric field is stored in
(grex, grey, grez), the current density in (grjx, grjy, grjz) , and the ion current density in (gjix, gjiy,
gjiz). A resistivity is stored in gres, thus it is possible to have a non-uniform resistivity in the simulation
domain, but the default is to set the resistivity to the constant value of sim resistivity everywhere. For
post processing, separate fields are stored for charge density and ion current density for species 1 and 2.

Regarding particle properties. Each computational meta-particles is labeled by a positive integer, specie
and has a mass and charge. As all FLASH particles they also each have a position ri=(posx, posy, posz)
and a velocity vi=(velx, vely, velz). To be able to deposit currents onto the grid, each particle stores the
current density corresponding to the particle, JIi. For the movement of the particles by the Lorentz force,
we also need the electric and magnetic fields at the particle positions, E(ri) and B(ri), respectivly.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
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Table 20.3: Runtime parameters for the hybrid solver. Initial values are at t = 0. For each parameter for
species 1, there is a corresponding parameter for species 2 (named with 2 instead of 1), e.g., pt picPvelx 2.

Variable Type Default Description
pt picPname 1 STRING ”H+” Species 1 name
pt picPmass 1 REAL 1.0 Species 1 mass, mi [amu]
pt picPcharge 1 REAL 1.0 Species 1 charge, qi [e]
pt picPdensity 1 REAL 1.0 Initial nI species 1 [m−3]
pt picPtemp 1 REAL 1.5e5 Initial TI species 1 [K]
pt picPvelx 1 REAL 0.0 Initial uI species 1 [m/s]
pt picPvely 1 REAL 0.0
pt picPvelz 1 REAL 0.0
pt picPpc 1 REAL 1.0 Number of macro-particle of

species 1 per cell
sim bx REAL 0.0 Initial B (at t = 0) [T]
sim by REAL 0.0
sim bz REAL 0.0
sim te REAL 0.0 Initial Te [K]
pt picResistivity REAL 0.0 Resistivity, η [Ω m]
pt picResistivityHyper REAL 0.0 Hyperresistivity, ηh

sim gam REAL -1.0 Adiabatic exponent for electrons
sim nsub INTEGER 3 Number of CL B-field update

subcycles (must be odd)
sim rng seed INTEGER 0 Seed the random number gener-

ator (if > 0)

Regarding the choice of time step. The timestep must be constant, ∆t =dtinit = dtmin = dtmax, since
the leap frog solver requires this. For the solution to be stable the time step, ∆t, must be small enough. We
will try and quantify this, and here we asume that the grid cells are cubes, ∆x = ∆y = ∆z, and that we
have a single species plasma.

First of all, since the time advancement is explicit, there is the standard CFL condition that no particle
should travel more than one grid cell in one time step, i.e. ∆t maxi(|vi|) < ∆x. This time step is printed to
standard output by FLASH (as dt Part), and can thus be monitored.

Secondly, we also have an upper limit on the time step due to Whistler waves (Pritchett 2000),

∆t <
Ω−1

i

π

(
∆x

δi

)2

∼ n

B
(∆x)2 , δi =

1
|qi|

√
mi

µ0 n
,

where δi is the ion inertial length, and Ωi = |qi|B/mi is the ion gyrofrequency.
Finally, we also want to resolve the ion gyro motion by having several time steps per gyration. This will

only put a limit on the time step if, approximately, ∆x > 5 δi, and we then have that ∆t < Ω−1
i .

All this are only estimates that does not take into account, e.g., the initial functions, or the subcycling
of the magnetic field update. In practice one can just reduce the time step until the solution is stable. Then
for runs with different density and/or magnetic field strength, the time step will need to be scaled by the
change in nI/B, e.g., if nI is doubled, ∆t can be doubled. The factor (∆x)2 implies that reducing the cell
size by a factor of two will require a reduction in the time step by a factor of four.

20.1.3 Passive Particles

Passive particles may be moved using one of several different methods available in FLASH4. With the
exception of Midpoint, they are all single-step schemes. The methods are either first-order or second-order
accurate, and all are explicit, as described below. In all implementations, particle velocities are obtained by
mapping grid-based velocities onto particle positions as described in Section 20.2.
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Table 20.4: The grid variables for the hybrid solver that are most important for a user. For each property
for species 1, there is a corresponding variable for species 2 (named with 2 instead of 1), e.g., cde2.

Variable Type Description
cden PER VOLUME Total charge density, ρ [C/m3]
grbx GENERIC Magnetic field, B [T]
grby GENERIC
grbz GENERIC
grex GENERIC Electric field, E [V/m]
grey GENERIC
grez GENERIC
grjx PER VOLUME Current density, J [A/m2]
grjy PER VOLUME
grjz PER VOLUME
gjix PER VOLUME Ion current density, JI [A/m2]
gjiy PER VOLUME
gjiz PER VOLUME
cde1 PER VOLUME Species 1 charge density, ρI [C/m3]
jix1 PER VOLUME Species 1 ion current density, JI [A/m2]
jiy1 PER VOLUME
jiz1 PER VOLUME

Numerically solving Equation (20.1) for passive particles means solving a set of simple ODE initial value
problems, separately for each particle, where the velocities vi are given at certain discrete points in time
by the state of the hydrodynamic velocity field at those times. The time step is thus externally given and
cannot be arbitrarily chosen by a particle motion ODE solver1. Statements about the order of a method
in this context should be understood as referring to the same method if it were applied in a hypothetical
simulation where evaluations of velocities vi could be performed at arbitrary times (and with unlimited
accuracy). Note that FLASH4 does not attempt to provide a particle motion ODE solver of higher accuracy
than second order, since it makes little sense to integrate particle motion to a higher order than the fluid
dynamics that provide its inputs.

In all cases, particles are advanced in time from tn (or, in the case of Midpoint, from tn−1) to tn+1 =
tn+∆tn using one of the difference equations described below. The implementations assume that at the time
when Particles advance is called, the fluid fields have already been updated to tn+1, as is the case with the
Driver evolveFlash implementations provided with FLASH4. A specific implementation of the passive por-
tion of Particles advance is selected by a setup option such as -with-unit=Particles/ParticlesMain/-
passive/Euler, or by specifying something like REQUIRES Particles/ParticlesMain/passive/Euler in a
simulation’s Config file (or by listing the path in the Units file if not using the -auto configuration option).
Further details are given is Section 20.3 below.

• Forward Euler (Particles/ParticlesMain/passive/Euler). Particles are advanced in time from
tn to tn+1 = tn + ∆tn using the following difference equation:

xn+1
i = xn

i + vn
i ∆tn . (20.7)

Here vn
i is the velocity of the particle, which is obtained using particle-mesh interpolation from the

grid at t = tn.

Note that this evaluation of vn
i cannot be deferred until the time when it is needed at t = tn+1, since

at that point the fluid variables have been updated and the velocity fields at t = tn are not available
any more. Particle velocities are therefore interpolated from the mesh at t = tn and stored as particle

1Even though it is possible to do so, see Particles computeDt, one does not in general wish to let particles integration
dictate the time step of the simulation.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_advance_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_evolveFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_advance_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_computeDt_F90.html
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Table 20.5: Important particle properties for the hybrid solver. Note that this is for the computational
macro-particles.

Variable Type Description
specie REAL Particle type (an integer number 1,2,3,. . . )
mass REAL Mass of the particle, mi [kg]
charge REAL Charge of the particle, qi [C]
jx REAL Particle ion current, JIi = qivi [Am]
jy REAL
jz REAL
bx REAL Magnetic field at particle, B(ri) [T]
by REAL
bz REAL
ex REAL Electric field at particle, E(ri) [V/m]
ey REAL
ez REAL

attributes. Similar concerns apply to the remaining methods but will not be explicitly mentioned every
time.

• Two-Stage Runge-Kutta (Particles/ParticlesMain/passive/RungeKutta). This 2-stage Runge-
Kutta scheme is the preferred choice in FLASH4. It is also the default which is compiled in if particles
are included in the setup but no specific alternative implementation is requested. The scheme is also
known as Heun’s Method:

xn+1
i = xn

i +
∆tn

2

[
vn

i + v∗,n+1
i

]
, (20.8)

where v∗,n+1
i = v(x∗,n+1

i , tn+1) ,

x∗,n+1
i = xn

i + ∆tnvn
i .

Here v(x, t) denotes evaluation (interpolation) of the fluid velocity field at position x and time t; v∗,n+1
i

and x∗,n+1
i are intermediate results 2; and vn

i = v(xn
i , tn) is the velocity of the particle, obtained using

particle-mesh interpolation from the grid at t = tn as usual.

• Midpoint (Particles/ParticlesMain/passive/Midpoint). This Midpoint scheme is a two-step
scheme. Here, the particles are advanced from time tn−1 to tn+1 = tn−1 + ∆tn−1 + ∆tn by the
equation

xn+1
i = xn−1

i + vn
i (∆tn−1 + ∆tn) . (20.9)

The scheme is second order if ∆tn = ∆tn−1.

To get the scheme started, an Euler step (as described for passive/Euler) is taken the first time
Particles/ParticlesMain/passive/Midpoint/pt_advancePassive is called.

The Midpoint alternative implementation uses the following additional particle attributes:

PARTICLEPROP pos2PrevX REAL # two previous x-coordinate
PARTICLEPROP pos2PrevY REAL # two previous y-coordinate
PARTICLEPROP pos2PrevZ REAL # two previous z-coordinate

• Estimated Midpoint with Correction (Particles/ParticlesMain/passive/EstiMidpoint2).
The scheme is second order even if ∆tn = ∆tn+1 is not assumed. It is essentially the EstiMidpoint
or “Predictor-Corrector” method of previous releases, with a correction for non-constant time steps by

2They can be considered “predicted” positions and velocities.
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using additional evaluations (at times and positions that are easily available, without requiring more
particle attributes).

Particle advancement follows the equation

xn+1
i = xn

i + ∆tn vcomb
i , (20.10)

where

vcomb
i = c1 v(x∗,n+ 1

2
i , tn) + c2 v(x∗,n+ 1

2
i , tn+1) + c3 v(xn

i , tn) + c4 v(xn
i , tn+1) (20.11)

is a combination of four evaluations (two each at the previous and the current time),

x∗,n+ 1
2

i = xn
i +

1
2
∆tn−1vn

i

are estimated midpoint positions as before in the Estimated Midpoint scheme, and the coefficients

c1 = c1(∆tn−1,∆tn) ,

c2 = c2(∆tn−1,∆tn) ,

c3 = c3(∆tn−1,∆tn) ,

c4 = c4(∆tn−1,∆tn)

are chosen dependent on the change in time step so that the method stays second order when ∆tn−1 6=
∆tn.

Conditions for the correction can be derived as follows: Let ∆tn∗ = 1
2∆tn−1 the estimated half time

step used in the scheme, let t
n+ 1

2
∗ = tn + ∆tn∗ the estimated midpoint time, and tn+ 1

2 = tn + 1
2∆tn

the actual midpoint of the [tn, tn+1] interval. Also write xE,n+ 1
2

i = xn
i + 1

2∆tnvn
i for first-order (Euler)

approximate positions at the actual midpoint time tn+ 1
2 , and we continue to denote with x∗,n+ 1

2
i the

estimated positions reached at the estimated mipoint time t
n+ 1

2
∗ .

Assuming reasonably smooth functions v(x, t), we can then write for the exact value of the velocity
field at the approximate positions evaluated at the actual midpoint time

v(xE,n+ 1
2

i , tn+ 1
2 ) = v(xn

i , tn) + vt(xn
i , tn)

1
2
∆tn + (vn

i ·
∂

∂x
)v(xn

i , tn)
1
2
∆tn + O((

1
2
∆tn)2) (20.12)

by Taylor expansion. It is known that the propagation scheme x̃n+1
i = xn

i + v(xE,n+ 1
2

i , tn+ 1
2 )∆t using

these velocities is second order (this is known as the modified Euler method).

On the other hand, expansion of (20.11) gives

vcomb
i = (c1 + c2 + c3 + c4)v(xn

i , tn)

+ (c2 + c4)vt(xn
i , tn)∆t + (c1 + c2)(vn

i ·
∂

∂x
)v(xn

i , tn)∆tn∗

+ higher order terms in ∆t and ∆tn∗ .

After introducing a time step factor f defined by ∆tn∗ = f ∆tn, this becomes

vcomb
i = (c1 + c2 + c3 + c4)v(xn

i , tn) (20.13)

+ (c2 + c4)vt(xn
i , tn)∆t + (c1 + c2)(vn

i ·
∂

∂x
)v(xn

i , tn) f ∆t

+ O((∆t)2) .

One can derive conditions for second order accuracy by comparing (20.13) with (20.12) and requiring
that

vcomb
i = v(xE,n+ 1

2
i , tn+ 1

2 ) + O((∆t)2) . (20.14)
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It turns out that the coefficients have to satisfy three conditions in order to eliminate from the theo-
retical difference between numerical and exact solution all O(∆tn−1) and O(∆tn) error terms:

c1 + c2 + c3 + c4 = 1 (otherwise the scheme will not even be of first order) ,

c2 + c4 =
1
2

(and thus also c1 + c3 = 1
2 ) ,

c1 + c2 =
∆tn

∆tn−1 .

The provided implementation chooses c4 = 0 (this can be easily changed if desired by editing in the
code). All four coefficients are then determined:

c1 =
∆tn

∆tn−1 −
1
2

,

c2 =
1
2

,

c3 = 1− ∆tn

∆tn−1 ,

c4 = 0 .

Note that when the time step remains unchanged we have c1 = c2 = 1
2 and c3 = c4 = 0, and so (20.10)

simplifies significantly.

An Euler step, as described for passive/Euler in (20.7), is taken the first time when Particles/-
ParticlesMain/passive/EstiMidpoint2/pt advancePassive is called and when the time step has
changed too much. Since the integration scheme is tolerant of time step changes, it should usually not
be necessary to apply the second criterion; even when it is to be employed, the criteria should be less
strict than for an uncorrected EstiMidpoint scheme. For EstiMidPoint2 the timestep is considered
to have changed too much if either of the following is true:

∆tn > ∆tn−1 and
∣∣∆tn −∆tn−1

∣∣ ≥ pt dtChangeToleranceUp×∆tn−1

or
∆tn < ∆tn−1 and

∣∣∆tn −∆tn−1
∣∣ ≥ pt dtChangeToleranceDown×∆tn−1,

where pt dtChangeToleranceUp and pt dtChangeToleranceDown are runtime parameter specific to
the EstiMidPoint2 alternative implementation.

The EstiMidpoint2 alternative implementation uses the following additional particle attributes for
storing the values of x∗,n+ 1

2
i and v∗,n+ 1

2
i between the Particles advance calls at tn and tn+1:

PARTICLEPROP velPredX REAL
PARTICLEPROP velPredY REAL
PARTICLEPROP velPredZ REAL
PARTICLEPROP posPredX REAL
PARTICLEPROP posPredY REAL
PARTICLEPROP posPredZ REAL

The time integration of passive particles is tested in the ParticlesAdvance unit test, which can be used
to examine the convergence behavior, see Section 20.3.4.

20.2 Mesh/Particle Mapping

Particles behave in a fundamentally different way than grid-based quantities. Lagrangian, or passive particles
are essentially independent of the grid mesh and move along with the velocity field. Active particles may be
located independently of mesh refinement. In either case, there is a need to convert grid-based quantities
into similar attributes defined on particles, or vice versa. The method for interpolating mesh quantities

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
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to tracer particle positions must be consistent with the numerical method to avoid introducing systematic
error. In the case of a finite-volume methods such as those used in FLASH4, the mesh quantities have
cell-averaged rather than point values, which requires that the interpolation function for the particles also
represent cell-averaged values. Cell averaged quantities are defined as

fi (x) ≡ 1
∆x

∫ xi−1/2

xi−1/2

f (x′) dx′ (20.15)

where i is the cell index and ∆x is the spatial resolution. The mapping back and forth from the mesh to the
particle properties are defined in the routines Particles_mapFromMesh and Particles_mapToMeshOneBlk.

Specifying the desired mapping method is accomplished by designating the MAPMETHOD in the Simulation
Config file for each type of particle. See Section 6.6.1 for more details.

20.2.1 Quadratic Mesh Mapping

The quadratic mapping package defines an interpolation back and forth to the mesh which is second order.
This implementation is primarily meant to be used with passive tracer particles.

To derive it, first consider a second-order interpolation function of the form

f (x) = A + B (x− xi) + C (x− xi)
2

. (20.16)

Then integrating gives
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and
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We may write these as  fi+1

fi
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 =

 1 −1 13
12

1 0 1
12

1 1 13
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 . (20.20)

Inverting this gives expressions for A, B, and C, A
B∆x
C∆x2

 =

 − 1
24
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1
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 . (20.21)

In two dimensions, we want a second-order interpolation function of the form

f (x, y) = A + B (x− xi) + C (x− xi)
2 + D (y − yj) + E (y − yj)

2 + F (x− xi) (y − yj) . (20.22)
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In this case, the cell averaged quantities are given by

fi,j (x, y) ≡ 1
∆y

∆x

∫ xi+1/2

xi−1/2

dx′
∫ xj−1/2

yj−1/2

dy′f (x′, y′) . (20.23)

Integrating the 9 possible cell averages gives, after some algebra,
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At this point we note that there are more constraints than unknowns, and we must make a choice of the
constraints. We chose to ignore the cross terms and take only the face-centered cells next to the cell containing
the particle, giving 
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Inverting gives 
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Similarly, in three dimensions, the interpolation function is

f (x, y, z) = A + B (x− xi) + C (x− xi)
2 + D (y − yj) + E (y − yj)

2 + F (z − zk) + G (z − zk)2 . (20.27)

and we have 
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Finally, the above expressions apply only to Cartesian coordinates. In the case of cylindrical (r, z) coordi-
nates, we have

f (r, z) =

A + B (r − ri) + C (r − ri)
2 + D (z − zj)

+E (z − zj)
2 + F (r − ri) (z − zj) . (20.29)
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20.2.2 Cloud in Cell Mapping

Other interpolation routines can be defined that take into account the actual quantities defined on the
grid. These “mesh-based” algorithms are represented in FLASH4 by the Cloud-in-Cell mapping, where the
interpolation to/from the particles is defined as a simple linear weighting from nearby grid points. The
weights are defined by considering only the region of one “cell” size around each particle location; the pro-
portional volume of the particle “cloud” corresponds to the amount allocated to/from the mesh. The CIC
method can be used with both types of particles. When using it with active particles the MapToMesh
methods should also be selected. In order to include the CIC method with passive particles, the setup com-
mand line option is -with-unit=Particles/ParticlesMapping/CIC. Two additional command line option
-with-unit=Particles/ParticlesMapping/MapToMesh and -with-unit=Grid/GridParticles/MapToMesh
are necessary when using the active particles. All of these command line options can be replaced by placing
the appropriate REQUIRES/REQUESTS directives in the Simulation Config file.

20.3 Using the Particles Unit

The Particles unit encompasses nearly all aspects of Lagrangian particles. The exceptions are input/output
the movement of related data structures between different blocks as the particles move from one block to
another, and mapping the particle attributes to and from the grid.

Beginning with release of version 4 it is possible to add particles to a simulation during evolution, a
new function Particles addNew has been added to the unit’s API for this purpose. It has been possible
to include multiple different types of particles in the same simulation since release FLASH3.1. Particle
types must be specified in the Config file of the Simulations unit setup directory for the application, and
the syntax is explained in Section 6.6. At configuration time, the setup script parses the PARTICLETYPE
specifications in the Config files, and generates an F90 file Particles specifyMethods.F90 that populates
a data structure gr_ptTypeInfo. This data structure contains information about the method of initialization
and interpolation methods for mapping the particle attributes to and from the grid for each included particle
type. Different time integration schemes are applied to active and passive particles. However, in one
simulation, all active particles are integrated using the same scheme, regardless of how many active types
exists. Similarly, only one passive integration scheme is used. The added complexity of multiple particle
types allows different methods to be used for initialization of particles positions and their mapping to and
from the grid quantities. Because several different implementations of each type of functionality can co-exist
in one simulation, there are no defaults in the Particles unit Config files. These various functionalities are
organized into different subunits; a brief description of each subunit is included below and further expanded
in subsections in this chapter.

• The ParticlesInitialization subunit distributes a given set of particles through the spatial domain
at the simulation startup. Some type of spatial initialization is always required; the functionality
is provided by Particles initPositions. The users of active particles typically have their own
custom initialization. The following two implementations of initialization techniques are included in
the FLASH4 distribution (they are more likely to used with the passive tracer particles):

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_specifyMethods_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_initPositions_F90.html
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Lattice distributes particles regularly along the axes directions throughout a subsection of the physical
grid.

WithDensity distributes particles randomly, with particle density being proportional to the grid gas
density.

Users have two options for implementing custom initialization methods. The two files involved in
the process are: Particles initPositions and pt initPositions. The former does some housekeeping
such as allowing for inclusion of one of the available methods along with the user specified one, and
assigning tags at the end. A user wishing to add one custom method with no constraints on tags etc
is advised to implement a custom version of the latter. This approach allows the user to focus the
implementation on the placement of particles only. Users desirous of refining the grid based on particles
count during initialiation should see the setup PoisParticles for an example implementation of the
Particles initPositions routine. If more than one implementation of pt initPositions is desired in the
same simulation then it is necessary to implement each one separately with different names (as we do
for tracer particles: pt initPositionsLattice and pt initPositionsWithDensity) in their simulation setup
directory. In addition, a modified copy of Particles initPostions, which calls these new routines in the
loop over types, must also be placed in the same directory.

• The ParticlesMain subunit contains the various time-integration options for both active and passive
particles. A detailed overview of the different schemes is given in Section 20.1.

• The ParticlesMapping subunit controls the mapping of particle properties to and from the grid.
FLASH currently supplies the following mapping schemes:

Cloud-in-cell (ParticlesMapping/meshWeighting/CIC), which weights values at nearby grid cells;
and

Quadratic (ParticlesMapping/Quadratic), which performs quadratic interpolation.

Some form of mapping must always be included when running a simulation with particles. As mentioned
in Section 20.2 the quadratic mapping scheme is only available to map from the grid quantities to
the corresponding particle attributes. Since active particles require the same mapping scheme to be
used in mapping to and from the mesh, they cannot use the quadratic mapping scheme as currently
implemented in FLASH4. The CIC scheme may be used by both the active and passive particles.

For active particles, we use the mapping routines to assign particles’ mass to the particle density
grid-based solution variable (PDEN_VAR). This mapping is the initial step in the particle-mesh (PM)
technique for evaluating the long range gravitational force between all particles. Here, we use the
particle mapping routine Particles mapToMeshOneBlk to “smear” the particles’ attribute over the cells
of a temporary array. The temporary array is an input argument which is passed from the grid mapping
routine Grid mapParticlesToMesh. This encapsulation means that the particle mapping routine is
independent of the current state of the grid, and is not tied to a particular Grid implementation. For
details about the task of mapping the temporary array values to the cells of the appropriate block(s),
please see Section 8.9.2. New schemes can be created that “smear” the particle across many more cells
to give a more accurate PDEN_VAR distribution, and thus a higher quality force approximation between
particles. Any new scheme should implement a customized version of the pt_assignWeights routine,
so that it can be used by the Particles_mapToMeshOneBlk routine during the map.

• The ParticlesForces subunit implements the long and short range forces described in Equation (20.3)
in the following directories:

– longRange collects different long-range force laws (requiring elliptic solvers or the like and depen-
dent upon all other particles);

– shortRange collects different short-range force laws (directly summed or dependent upon nearest
neighbors only).

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_initPositions_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_mapToMeshOneBlk_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_mapParticlesToMesh_F90.html
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Currently, only one long-range force law (gravitation) with one force method (particle-mesh) is included
with FLASH. Long-range force laws are contained in the Particles/ParticlesForces/longRange,
which requires that the Gravity unit be included in the code. In the current release, no shortRange
implementation of ParticlesForces is supplied with FLASH. However, note that the sink particle
implementation described below in Section 20.4 includes directly computed particle–particle forces.

After particles are moved during time integration or by forces, they may end up on other blocks within
or without the current processor. The redistribution of particles among processors is handled by the
GridParticles subunit, as the algorithms required vary considerably between the grid implementations.
The boundary conditions are also implemented by the GridParticles unit. See Section 8.9 for more details of
these redistribution algorithms. The user should include the option -with-unit=Grid/GridParticles on
the setup line, or REQUIRES Grid/GridParticles in the Config file.

In addition, the input-output routines for the Particles unit are contained in a subunit IOParticles.
Particles are written to the main checkpoint files. If the user desires, a separate output file can be created
which contains only the particle information. See Section 20.3.3 below as well as Section 9.2.3 for more
details. The user should include the option -with-unit=IO/IOParticles on the setup line, or REQUIRES
IO/IOParticles in the Config file.

In FLASH4, the initial particle positions can be used to construct an appropriately refined grid, i.e. more
refined in places where there is a clustering of particles. To use this feature the flash.par file must include:
refine_on_particle_count=.true. and max_particles_per_blk=[some value]. Please be aware that
FLASH will abort if the criterion is too demanding. To overcome the abort, specify a less demanding
criterion, or increase the value of lrefine_max.

20.3.1 Particles Runtime Parameters

There are several general runtime parameters applicable to the Particles unit, which affect every imple-
mentation. The variable useParticles obviously must be set equal to .true. to utilize the Particles unit.
The time stepping is controlled with pt dtFactor; a value less than one ensures that particles will not step
farther than one entire cell in any given time interval. The Lattice initialization routines have additional
parameters. The number of evenly spaced particles is controlled in each direction by pt numX and similar
variables in Y and Z. The physical range of initialization is controlled by pt initialXMin and the like.
Finally, note that the output of particle properties to special particle files is controlled by runtime parameters
found in the IO unit. See Section 9.2.3 for more details.

20.3.2 Particle Attributes

By default, particles are defined to have eight real properties or attributes: 3 positions in x,y,z; 3 velocities
in x,y,z; the current block identification number; and a tag which uniquely identifies the particle. Addi-
tional properties can be defined for each particle. For example, active particles usually have the additional
properties of mass and acceleration (needed for the integration routines, see Table Table 20.1). Depending
upon the simulation, the user can define particle properties in a manner similar to that used for mesh-based
solution variables. To define a particle attribute, add to a Config file a line of the form

PARTICLEPROP property-name

For attributes that are meant to merely sample and record the state of certain mesh variables along
trajectories, FLASH can automatically invoke interpolation (or, in general, some map method) to generate
attribute values from the appropriate grid quantities. (For passive tracer particles, these are typically the
only attributes beyond the default set of eight mentioned above.) The routine Particles updateAttributes
is invoked by FLASH at appropriate times to effect this mapping, namely before writing particle data to
checkpoint and particle plot files. To direct the default implementation of Particles updateAttributes
to act as desired for tracer attributes, the user must define the association of the particle attribute with the
appropriate mesh variable by including the following line in the Config file:

PARTICLEMAP TO property-name FROM VARIABLE variable-name

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_updateAttributes_F90.html
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These particle attributes are carried along in the simulation and output in the checkpoint files. At
runtime, the user can specify the attributes to output through runtime parameters
particle attribute 1, particle attribute 2, etc. These specified attributes are collected in an array by
the Particles init routine. This array in turn is used by Particles updateAttributes to calculate the
values of the specified attributes from the corresponding mesh quantities before they are output.

20.3.3 Particle I/O

Particle data are written to and read from checkpoint files by the I/O modules (Section 9.1). For more
information on the format of particle data written to output files, see Section 9.9.1 and Section 9.9.2.

Particle data can also be written out to the flash.dat file. The user should include a local copy of
IO writeIntegralQuantities in their Simulation directory. The Orbit test problem supplies an example
IO_writeIntegralQuantities routine that is useful for writing individual particle trajectories to disk at
every timestep.

There is also a utility routine Particles dump which can be used to dump particle output to a plain
text file. An example of usage can be found in Particles unitTest. Output from this routine can be read
using the fidlr routine particles_dump.pro.

20.3.4 Unit Tests

The unit tests provided for Particles exercise the Particles advance methods for tracer particles. Tests
under Simulation/SimulationMain/unitTest/ParticlesAdvance can be used to examine and compare
convergence behavior of various time integration schemes. The tests compare numerical and analytic solutions
for a problem (with a given velocity field) where analytic solutions can be computed.

Currently only one ParticlesAdvance test is provided. It is designed to be easily modified by replacing
a few source files that contain implementations of the equation and the analytic solution. The use the test,
configure it with a command like

./setup -auto -1d unitTest/ParticlesAdvance/HomologousPassive \
-unit=Particles/ParticlesMain/passive/EstiMidpoint2

and replace EstiMidpoint2 with one of the other available methods (or omit the option to get the default
method), see Section 20.1.3. Add other options as desired.

For unitTest/ParticlesAdvance/HomologousPassive,

./setup -auto -1d unitTest/ParticlesAdvance/HomologousPassive +ug -nxb=80

is recommended to get started.
When varying the test, the following runtime parameters defined for

Simulation/SimulationMain/unitTest/ParticlesAdvance will probably need to be adjusted:

PARAMETER sim schemeOrder INTEGER 2 — The order of the integration scheme. This should probably
always be either 1 or 2.

PARAMETER sim maxTolCoeff0 REAL 1.0e-8 — Zero-th order error coefficient C0, used for convergence
criterion if sim_schemeOrder= 0.

PARAMETER sim maxTolCoeff1 REAL 0.0001 — First order error coefficient C1, used for convergence cri-
terion if sim_schemeOrder= 1.

PARAMETER sim maxTolCoeff2 REAL 0.01 — Second order error coefficient C2, used for convergence cri-
terion if sim_schemeOrder= 2.

A test for order k is considered successful if the following criterion is satisfied:

maxError ≤ Ck × maxActualDtk ,

where maxError is the maximum absolute error between numerical and analytic solution for any particle that
was encountered during a simulation run, and maxActualDt is the maximum time step ∆t used in the run.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Particles.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_updateAttributes_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/IO/IO_writeIntegralQuantities_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_dump_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_unitTest_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Particles/Particles_advance_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Simulation.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Simulation.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Simulation.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Simulation.txt
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The appropriate runtime parameters of various units, in particular Driver, Particles, and Grid, should be
used to control the desired simulation run. In particular, it is recommended to vary dtmax by several orders
of magnitude (over a range where it directly determines maxActualDt) for a given test in order to examine
convergence behavior.

20.4 Sink Particles

20.4.1 Basics of Sink Particles

Sink particles are required in collapse simulations to model dense core, star, or black hole formation and
accretion. Using sink particles solves two main problems in collapse calculations:

1. The physical length scale associated with the collapse, the Jeans length,

λJ =

√
πc2

s

Gρ
(20.31)

decreases with increasing gas density ρ (here, G is the gravitational constant and cs the sound speed).
To avoid artificial fragmentation, the Jeans length must be resolved with at least 4 grid cells (Truelove
et al. 1997, ApJ 489, L179). More recent calculations show that a minimum of 32 grid cells is required
to resolve the kinetic energy in rotational motions inside the Jeans volume and to resolve minimum
turbulent MHD dynamo action (Sur et al. 2010, ApJ 721, L134; Federrath et al. 2011, ApJ 731, 62).
The FLASH sink particle module automatically refines the AMR grid based on the Jeans length (con-
trolled by runtime parameters refineOnJeansLength, jeans ncells ref, and jeans ncells deref).
However, once the highest level of the AMR hierarchy is reached, sink particles must be created to
avoid artificial fragmentation when the Jeans length drops further during the collapse.

2. The typical timescale for collapsing objects is the freefall time, tff =
√

3π/(32Gρ). With increasing
gas density, this timescale becomes shorter and shorter, which means that the code will literally grind
to a halt during runaway collapse, as time steps become shorter and shorter. The first object going
into freefall collapse thus determines the time step of the whole calculation, such that following the
formation of a star cluster would be impossible. To avoid these problems, the gas in regions that are
in a state of runaway collapse are replaced by sink particles.

20.4.2 Using the Sink Particle Unit

To include sink particles, specify REQUIRES Particles/ParticlesMain/active/Sink in the simulation
Config file. This automatically includes all required subunits for the sink particles. Currently, sink particles
require a Paramesh 4 Grid implementation and Poisson gravity. Currently, various subunits and implemen-
tation directories of the Particles unit and are also included automatically. Table 20.6 lists all runtime
parameters of the sink particle module. The default values of these parameters should be ok in most simu-
lations, except sink density thresh, sink accretion radius, and sink softening radius. Those three
parameters have to be adopted to the resolution and physics of a given simulation.

First, the sink particle accretion radius, racc (sink accretion radius) should be calculated, based on
the minimum cell size ∆x for a given simulation. The recommended value is racc = 2.5∆x. If sink particles
are included, the code will print a message to the standard output, stating the number of cells that a
chosen sink accretion radius corresponds to. The recommended value for the sink particle softening radius
(sink softening radius) is to set it equal to the accretion radius.

In order to avoid artificial fragmentation, the gas density on the AMR grid must not exceed a critical
density ρthresh in regions of gravitational collapse (Truelove et al. 1997). This density is related to the
smallest resolvable Jeans length λJ on the highest level of the AMR hierarchy. The density threshold ρthresh

(sink density thresh) is obtained by solving the definition of the Jeans length, Equation (20.31) for ρ,

ρthresh =
πc2

s

Gλ2
J

=
πc2

s

4Gr2
acc

. (20.32)

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Driver.txt
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This equation relates the sink particle accretion radius to the sink particle density threshold and depends
on the thermodynamics (sound speed) of a given simulation. Since the Jeans length should be resolved
with at least 4 grid cells (Truelove et al. 1997), the sink particle accretion radius racc must not be smaller
than 2 grid cells. The accretion radius is thus determined by the smallest linear cell size ∆x of the AMR
grid. As recommended above, setting racc ' 2.5∆x satisfies the Truelove criterion, because the Jeans length
λJ = 2racc is thus resolved with 5 grid cells on the top level of the AMR hierarchy.

Please cite Federrath et al. (2010, ApJ 713, 269) if you are using this unit.

20.4.3 The Sink Particle Method

For technical details and tests of the FLASH sink particle unit, see Federrath et al. (2010, ApJ 713, 269)
and Federrath et al. (2011, IAUS 270, 425). We only summarize here the most important aspects of the
implementation.

Before a sink particle is created, we define a spherical control volume with the accretion radius racc

around each cell that exceeds the resolution-dependent density threshold, ρthresh given by Equation (20.32),
and check whether the gas in this control volume

• is on the highest level of refinement,

• is converging (∇ · v < 0; i.e., has negative radial velocity),

• has a central gravitational potential minimum,

• is gravitationally bound (|Egrav| > Eint + Ekin + Emag),

• is gravitationally unstable (Jeans-unstable),

• and is not within the accretion radius of an existing sink particle.

These checks are designed to avoid spurious sink particle formation and to trace only truly collapsing and
star-forming gas. As soon as a sink particle is created, it can gain further mass by accretion from the AMR
grid, if this gas is inside the sink particle accretion radius and is bound and collapsing towards the sink
particle. If the accretion radii of multiple sink particles overlap, the gas of a given cell is accreted onto the
sink particle to which the gas is most strongly bound.

We take all contributions to the gravitational interactions between the gas on the grid and the sink
particles into account. Those interactions are

1. GAS–GAS (handled by either the multigrid or the tree Poisson solver)

2. GAS–SINKS (computed by direct summation over all particles and grid cells)

3. SINKS–GAS (computed by direct summation over all particles and grid cells)

4. SINKS–SINKS (computed by direct N-body summation over all sink particles).

We note that all interactions including sink particles (GAS–SINKS, SINKS–GAS, SINKS–SINKS) do not
require the Poisson solver or any particle–grid mapping procedure. Since these are all computed by di-
rect summation, computational costs can become quite expensive once the number of sink particles reaches
thousands and more, but is significantly more accurate than mapping procedures. In fact, a previous imple-
mentation used interpolation of sink particle masses back onto the grid and employing the Poisson solver to
compute all interactions. This resulted in very smooth gravitational interactions that made it impossible to
follow close orbits and highly eccentric encounters of multiple (two and more) sink particles, in particular
for the sink–sink interactions. Thus, the current implementation of sink particles is designed to follow a
maximum of a few thousand particles. Linear and spline softening of the gravitational forces for extremely
close encounters of multiple sink particles are implemented. By default, linear softening is used for gas–sinks
and sinks–gas interactions (sink softening type gas), motivated by an almost uniform gas density inside
the sink particle radius. Spline softening is used for sink–sink interactions (sink softening type sinks),
as it is more suitable to follow N-body dynamics. Softening is only applied inside the sink softening ra-
dius (sink softening radius). A second-order accurate leapfrog integrator is used to advance the sink
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Figure 20.3: Sink particle unit test to check momentum conservation during sink particle creation, accretion,
and eccentric orbits.

particles. For cosmological simulations, a cosmological version of the leapfrog integrator is available (see
sink integrator). The sink particles are fully integrated into the MPI parallelization of the FLASH code.
Any split or unsplit solver for hydro or MHD (in which case the bound state check includes the contribution
of the magnetic energy) is supported.

20.4.4 Sink Particle Unit Test

To invoke the sink particle unit test, use ./setup unitTest/SinkMomTest -auto -3d. This initializes a
momentum conservation test. An initially uniform cloud with radius 0.025 pc and density 10−18 g cm−3

at rest starts collapsing and forms a sink particle. An initial sink particle with 0.1 M� and initial mo-
mentum py = 4 × 1036 g cm s−1 in positive y-direction is also present. The purpose of this test is to
see how well the total x-momentum px and the total y-momentum py are conserved. This test is par-
ticularly suitable, because it involves gas collapse, sink particle creation, accretion, more than one sink
particle, and thus all gravitational interactions (gas–gas, gas–sinks, sinks–gas, sinks–sinks), as well as
close eccentric orbits of the two sink particles. Figure 20.3 shows px and py as a function of time for
both sink particles and gas separately. The symmetry between sink and gas momenta shows that mo-
mentum is well conserved for several orbits. Figure 20.3 can be reproduced with the IDL and Python
tools in /source/Simulation/SimulationMain/unitTest/SinkMomTest/utils/ by running the IDL script
plot_mom_sinks.pro.
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Table 20.6: Runtime parameters for the sink particle module.

Variable Type Default Description
useSinkParticles BOOLEAN .false. switch sinks on/off
sink density thresh REAL 1.0e-14 density threshold for sink cre-

ation and accretion
sink accretion radius REAL 1.0e14 creation and accretion radius
sink softening radius REAL 1.0e14 gravitational softening radius
sink softening type gas STRING ”linear” sink–gas softening type (options:

”linear”, ”spline”)
sink softening type sinks STRING ”spline” sink–sink softening type (op-

tions: ”linear”, ”spline”)
sink integrator STRING ”leapfrog” sink particle time integrator

(options: ”euler”, ”leapfrog”,
”leapfrog cosmo”)

sink dt factor REAL 0.5 time step safety factor (≤ 0.5)
sink subdt factor REAL 0.01 time step safety factor for sink–

sink subcycling (≤ 0.5)
sink convergingFlowCheck BOOLEAN .true. creation check for converging gas

flow
sink potentialMinCheck BOOLEAN .true. creation check for gravitational

potential minimum
sink jeansCheck BOOLEAN .true. creation check for Jeans instabil-

ity
sink negativeEtotCheck BOOLEAN .true. creation check for gravitation-

ally bound gas
sink GasAccretionChecks BOOLEAN .true. check for bound and converging

state before gas accretion
sink merging BOOLEAN .false. switch for sink particle merging
sink offDomainSupport BOOLEAN .false. support for sink particles to re-

main active when leaving the
grid domain (in case of outflow
boundary conditions)

sink AdvanceSerialComputation BOOLEAN .true. use the global sink particle ar-
ray for time advancement (to
greatly speed up computation of
sink–sink interaction)

pt maxSinksPerProc INTEGER 100 number of sinks per processor
refineOnSinkParticles BOOLEAN .true. sinks must be on highest AMR

level
refineOnJeansLength BOOLEAN .true. switch for refinement on Jeans

length
jeans ncells ref REAL 32.0 number of cells for Jeans length

refinement
jeans ncells deref REAL 64.0 number of cells for Jeans length

de-refinement
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Chapter 21

Cosmology Unit

source

physics

Cosmology

CosmologyMain

MatterLambdaKernel

Figure 21.1: The Cosmology unit tree.

The Cosmology unit solves the Friedmann equation for the scale factor in an expanding universe, ap-
plies a cosmological redshift to the hydrodynamical quantities, and supplies library functions for various
routine cosmological calculations needed by the rest of the code for initializing, performing, and analyzing
cosmological simulations.

21.1 Algorithms and Equations

The Cosmology unit makes several assumptions about the interpretation of physical quantities that enable
any hydrodynamics or materials units written for a non-expanding universe to work unmodified in a cos-
mological context. All calculations are assumed to take place in comoving coordinates x = r/a, where r
is a proper position vector and a(t) is the time-dependent cosmological scale factor. The present epoch is
defined to correspond to a = 1; in the following discussion we use t = t0 to refer to the age of the Universe
at the present epoch. The gas velocity v is taken to be the comoving peculiar velocity ẋ. The comoving gas
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density, pressure, temperature, and internal energy are defined to be

ρ ≡ a3ρ̃

p ≡ ap̃ (21.1)

T ≡ T̃

a2

ρε ≡ aρ̃ε̃ .

The quantities marked with a tilde, such as ρ̃, are the corresponding “proper” or physical quantities. Note
that, in terms of comoving quantities, the equation of state has the same form as for the proper quantities
in noncomoving coordinates. For example, the perfect-gas equation of state is

ρε =
p

γ − 1
=

ρkT

(γ − 1)µ
. (21.2)

With these definitions, the Euler equations of hydrodynamics can be written in the form

∂ρ

∂t
+∇ · (ρv) = 0 (21.3)

∂ρv
∂t

+∇ · (ρvv) +∇p + 2
ȧ

a
ρv + ρ∇φ = 0 (21.4)

∂ρE

∂t
+∇ · [(ρE + p)v] +

ȧ

a
[(3γ − 1)ρε + 2ρv2] + ρv · ∇φ = 0 (21.5)

∂ρε

∂t
+∇ · [(ρε + p)v]− v · ∇p +

ȧ

a
(3γ − 1)ρε = 0 . (21.6)

Here E is the specific total energy, ε+ 1
2v2, and γ is the effective ratio of specific heats. The Cosmology unit

applies the terms involving ȧ via the Cosmology_redshiftHydro routine.
The comoving potential φ in the above equations is the solution to the Poisson equation in the form

∇2φ =
4πG

a3
(ρ− ρ̄) , (21.7)

where ρ̄ is the comoving mean matter density. Note that, because of the presence of a in (21.7), the gravity
units must explicitly divide their source terms by a3.

Units like the Gravity unit, which require the scale factor or the redshift z (a = (1 + z)−1), can obtain
the redshift via Cosmology getRedshift, and use the previous relation to obtain the scaling factor. The
time represented by a cosmological redshift can be obtained by a call to Cosmology redshiftToTime and
passing it a cosmological redshift. Note also that if a collisionless matter component (e.g.particles) is also
present, its density must be added to the gas density on the right-hand side of (21.7). Accounting for particle
masses in density is handled by the Gravity unit.

The comoving mean matter density is defined in terms of the critical density ρcrit by

ρ̄ ≡ Ωmρcrit

ρcrit ≡ 3H2

8πG
. (21.8)

The Hubble parameter H(t) [to be distinguished from the Hubble “constant” H0 ≡ H(t0)] is given by the
Friedman equation

H2(t) ≡
(

ȧ

a

)2

= H2
0

(
Ωm

a3
+

Ωr

a4
+ ΩΛ −

Ωc

a2

)
. (21.9)

Here Ωm, Ωr, and ΩΛ are the present-day densities, respectively, of matter, radiation, and cosmological
constant, divided by ρcrit. The contribution of the overall spatial curvature of the universe is given by

Ωc ≡ Ωm + Ωr + ΩΛ − 1 . (21.10)

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Cosmology/Cosmology_getRedshift_F90.html
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The Cosmology solveFriedmannEqn routine numerically solves the Friedmann equation to obtain the scale
factor and its rate of change as functions of time. In principle, any good ODE integrator can be used; the
csm_integrateFriedman subroutine uses a fourth-order Runge-Kutta method to integrate the Friedmann
equation under the assumption that Ωr = 0. Subunits can also use analytic solutions where appropriate.

Redshift terms for particles are handled separately by the appropriate time integration subunits of the
Particles unit. For an example, see the LeapfrogCosmo implementation of the ParticlesMain subunit in
Section 20.1.1.

21.2 Using the Cosmology unit

To include cosmological expansion in your FLASH executable, include the line

REQUESTS physics/Cosmology/

in your setup’s Config file. At present the Cosmology unit in FLASH4 is built around the MatterLambda-
Kernel. This kernel assumes the contribution of radiation to be negligible in comparison with those of
matter and the cosmological constant.

The runtime parameters available with the Cosmology unit are described in Table 21.1. Note that the
total effective mass density is not explicitly specified but is inferred from the sum of the OmegaMatter,
OmegaRadiation, and CosmologicalConstant parameters. The MaxScaleChange parameter sets the maxi-
mum allowed fractional change in the scale factor a during a single timestep. This behavior is enforced by
the Cosmology computeDt routine. The default value is set to the system’s HUGE value for a double precision
real floating point value to avoid interfering with non-cosmological simulations.

Table 21.1: Runtime parameters used with the Cosmology unit.

Parameter Type Default Description
useCosmology BOOLEAN .true. True if cosmology is to be used in this simula-

tion
OmegaMatter REAL 0.3 Ratio of total mass density to critical density

at the present epoch (Ωm)
OmegaBaryon REAL 0.05 Ratio of baryonic (gas) mass density to crit-

ical density at the present epoch; must be
≤ OmegaMatter (Ωb)

CosmologicalConstant REAL 0.7 Ratio of the mass density equivalent in the cos-
mological constant to the critical density at the
present epoch (ΩΛ)

OmegaRadiation REAL 5× 10−5 Ratio of the mass density equivalent in radia-
tion to the critical density at the present epoch
(Ωr)

HubbleConstant REAL 2.1065× 10−18 Value of the Hubble constant H0 in sec−1

MaxScaleChange REAL HUGE(1.) Maximum permitted fractional change in the
scale factor during each timestep

The MatterLambdaKernel supplies a number of functions and routines that are helpful in initializing,
performing, and analyzing cosmological simulations. They should be accessed through the wrapper functions
shown below.

• Cosmology cdmPowerSpectrum
Return the present-day cold dark matter power spectrum as a function of a given wavenumber. The
MatterLambdaKernel provides a fit to this power spectrum from Bardeen et al. (1986), which assumes
baryons do not make a significant contribution to the mass density. Other fits are available; see e.g.,
Hu and Sugiyama (1996) or Bunn and White (1997).

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Cosmology/Cosmology_solveFriedmannEqn_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Cosmology.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Cosmology.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Cosmology.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Cosmology.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Cosmology/Cosmology_computeDt_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Cosmology/Cosmology_cdmPowerSpectrum_F90.html
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• Cosmology computeVariance
Given an array of comoving length scales and a processed power spectrum, compute the linear variance
(δM/M)2 at the present epoch. A top-hat filter is applied in Fourier-space as a smoothing kernel.

• Cosmology computeDeltaCrit
This subroutine computes the linear overdensity at turnaround in the spherical collapse model. For
more information, see the appendix of Lacey and Cole (1993).

• Cosmology redshiftToTime
Compute the age of the Universe corresponding to a cosmological redshift .

• Cosmology massToLength
Given a mass scale, return the corresponding comoving diameter of a sphere containing the given
amount of mass.

21.3 Unit Test

FLASH provides a unit test for checking the basic functionality of the Cosmology module. It tests the unit’s
generated cosmological scaling factor, cosmological redshift, and the time calculated from that redshift
against an analytical solution of these quantities.

The test is run with the following parameters:

OmegaMatter = 1.0
OmegaLambda = 0.0
OmegaBaryon = 1.0
OmegaRadiation = 0.0
HubbleConstant = 1.62038× 10−18sec−1 (50 km/s/Mpc)

The Cosmological scaling factor is related to time by the equation:

a(t) =
(

t
t0

)2/3

where t0 = 2
3H0

, H0 is the HubbleConstant and is related to the cosmological redshift by the equation
z(t) = 1

a(t) − 1. The change in time is a uniform step, and by comparing the analytical and code results at
time t, we can see if the Friedmann equations are correctly integrated by the Cosmology unit, and that the
results fall within a tolerance set in Cosmology unitTest.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Cosmology/Cosmology_computeVariance_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Cosmology/Cosmology_computeDeltaCrit_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Cosmology/Cosmology_redshiftToTime_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Cosmology/Cosmology_massToLength_F90.html
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Material Properties Units
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Figure 22.1: The materialProperties directory with Opacity, MagneticResistivity and Viscosity subunits.
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Figure 22.2: The materialProperties directory with MassDiffusivity and Conductivity subunits.
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FLASH Transition

The set of implementations of the material properties units provided with FLASH is not com-
prehensive. For Heat Conductivity and Viscosity, we provide implementations for effects
with constant coefficients; these can be used as models for implementing effects that follow
other laws. For MassDiffusivity, only no-operation stubs are provided. A routine that cal-
culates constant magnetic resistivity and viscosity is provided in the MagneticResistivity
unit and can be used in non-ideal magnetohydrodynamics simulations. Several add-on ca-
pabilities are being made available to the users from the Download Page on Flash Website.

22.1 Thermal Conductivity

The Conductivity unit implements a prescription for computing thermal conductivity coefficients used by
the Hydro PPM, the unsplit hydro and MHD solvers. The FLASH4 release provides three implementations:

• Constant for heat conduction with a constant isochoric conductivity;

• Constant-diff for heat conduction with a constant coefficient of diffusion.

• SpitzerHighZ which is used for electron thermal conduction. Note that this model can be used with
any material.

• LeeMore is another model for electron thermal conduction. Like SpitzerHighZ, it can also be used
with any material. The LeeMore model is based on Lee & More (Phys. Fluids, 1984) and should be
more accurate than SpitzerHighZ.

To use thermal conductivity in a FLASH4 simulation, the runtime parameter useConductivity must be
set to .true. SpitzerHighZ and LeeMore are the most useful options for realistic HEDP simulations. See
Section 30.7.5 for an example of how the SpitzerHighZ implementation is used in a realistic simulation.

The Spitzer conductivity implemented here is shown in (22.1). It is consistent with the value given in
(Atzeni, 2004).

Kele =
(

8
π

)3/2
k

7/2
B

e4
√

mele

(
1

1 + 3.3/z̄

)
T

5/2
ele

z̄ lnΛei
(22.1)

where:

• Kele is the electron conductivity

• kB is the Boltzmann constant

• e is the electron charge

• mele is the mass of an electron

• z̄ is the average ionization as computed by the EOS

• Tele is the electron temperature

• lnΛei is the Coulomb logarithm associated with electron-ion collisions and is discussed in Section 17.5.

At high temperatures, LeeMore and SpitzerHighZ are nearly identical aside from differences in the
treatments of the Coulomb logarithm (Section 17.5.2). At lower temperatures there can be substantial
differences between LeeMore and SpitzerHighZ and generally the LeeMore model should be much more
accurate. This is because SpitzerHighZ incorrectly assumes that the material remains a classical plasma
even at low temperatures. In practice, however, it is often the case in HEDP simulations that the laser

http://flash.uchicago.edu/site/flashcode/user_support
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Conductivity.txt
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heating will rapidly bring the material to the temperatures where the classical plasma approximation is valid
and the differences between SpitzerHighZ and LeeMore will be minimal.

Users are encouraged to experiment with using both the SpitzerHighZ and LeeMore models in HEDP
simulations in order to determine the sensitivity of the results to the electron thermal conductivity model.
Although LeeMore should always be much more accurate than SpitzerHighZ, there may be cases where
the LeeMore model may still not be accurate enough for a specific application. It is well known that
some materials do not agree well with the LeeMore prediction in certain density-temperature regimes (e.g.
Desjarlais et al. 2002).

22.2 Magnetic Resistivity

The magnetic resistivity unit source/physics/materialProperties/MagneticResistivity provides rou-
tines that computes magnetic resistivity η (and thus viscosity νm) for a mixture of fully ionized gases
used by the MHD solvers. The relationship between magnetic resistivity and viscosity is νm = c2

4π η in
CGS and νm = 1

µ0
η in SI. The default top level routines return zero values for resistivity (a stub func-

tionality). Specific routines for constant and variable resistivity are provided in the low level subdirecto-
ries /MagneticResistivityMain/Constant and /MagneticResistivityMain/SpitzerHighZ. By default,
all routines return results in non-dimensional units (hence without 4π or µ0 coefficients). However they
provide an option to return results either in CGS or SI unit.

22.2.1 Constant resistivity

This subunit returns constant magnetic resistivity. The unit declares a runtime parameter, resistivity,
that is the constant resistivity. The default value is zero. The magnetic resistivity routine reads in
resistivity (η) and returns it to the calling routine with proper scalings depending on unit system. For
example, c2

4π η is returned in CGS unit, 1
µ0

η in SI, and simply η in non-dimensional unit.

FLASH Transition

In previous implementations, there used to be two runtime parameters: magnetic resistivity
and magnetic viscosity. They respectively refer η and c2

4π η in CGS (or 1
µ0

η in SI, where
µ0 = 4π × 10−7 henry/meter). What it was done in the old way was to initialize magnetic
viscosity (e.g., c2

4π η) using the magnetic resistivity, η. As of FLASH3.1, such distinctions
between the magnetic resistivity and magnetic viscosity has been removed and we only use
magnetic resistivity with proper scalings depending on unit system.

22.2.2 Spitzer HighZ resistivity

This subunit returns the Spitzer resistivity for the induction equation and is the most useful option for HEDP
simulations. The implementation follows the prescription of Braginskii (1965), defining a perpendicular and
parallel magnetic resistivity, with respect to the field line, as

ηperp =
mele

e2 nele τele
, (22.2)

ηpar = ηperp/1.96 . (22.3)

Here we denote with mele, e, nele, τele the mass, charge, number density and the collision time of elec-
trons, respectively. In its current form, the implementation /MagneticResistivityMain/SpitzerHighZ/-
MagneticResistivity returns only the parallel component when calculating the resistive fluxes. This can be
modified by calling the /MagneticResistivityMain/SpitzerHighZ/MagneticResistivity_fullState im-
plementation and requesting the optional perpendicular component. To activate the Spitzer HighZ resistivity
implementation, simply add the appropriate path in the Config file of your simulation directory.
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22.3 Viscosity

The Viscosity unit implements a prescription for computing viscosity coefficients used by the Hydro PPM,
the unsplit hydro and MHD solvers. In this release the unit provides support for either constant dynamic vis-
cosity or constant kinematic viscosity, where the choice between the two is made with the runtime parameter
visc whichCoefficientIsConst.

To use viscosity in a FLASH4 simulation, the runtime parameter useViscosity must be set to .true.

22.4 Opacity

The Opacity unit, which resides in physics/materialProperties/Opacity, exists to provide opacities for
multigroup radiation diffusion to the RadTrans unit. Thus, the Opacity unit does not have an API for
providing continuous opacities. The group structure is specified using parameters which are described in
Chapter 24. Opacities are accessed by the RadTrans unit using the Opacity subroutine.

call Opacity(soln, ngrp, opacityAbsorption, opacityEmission, opacityTransport)

The first argument is an input and provides the complete state within a cell as provided by the routine
Grid getBlPtr. The second input argument is the group number. The last three arguments are outputs
which return the absorption, emission, and transport opacities in units of 1/cm using the conditions provided
by the soln argument. See Chapter 24 for a description of these three opacities. There are currently two
Opacity implementations: Constant and Multispecies which are described below.

22.4.1 Constant Implementation

The Constant implementation is very simple and is useful for running test problems. It sets the absorp-
tion, emission, and transport opacities to constant values that are specified using the runtime parameters
op absorbConst, op emissConst, and op transConst. Users can provide custom implementations of the
Constant Opacity subroutine to test different formulas for opacities in FLASH.

The Constant opacity implementation can be included with the following setup option:

-with-unit=physics/materialProperties/Opacity/OpacityMain/Constant

22.4.2 Constcm2g Implementation

The Constcm2g implementation is also very simple and is useful for running test problems. It sets the
absorption, emission, and transport opacities, in units of cm2/g, to constant values that are specified using
the runtime parameters op absorbConst, op emissConst, and op transConst. Users can provide custom
implementations of the Constcm2g Opacity subroutine to test different formulas for opacities in FLASH.

The Constcm2g opacity implementation can be included with the following setup option:

-with-unit=physics/materialProperties/Opacity/OpacityMain/Constcm2g

22.4.3 BremsstrahlungAndThomson Implementation

The BremsstrahlungAndThomson Opacity implementation assumes that the free-free Bremsstrahlung process
is responsible for the coupling between radiation and matter (the emit_opac and absorb_opac terms) and
that simple Thomson scattering dominates the diffusion of radiation through matter (the trans_opac term).
Therefore, the emission and absorption opacities are given by the following formula, in units of cm−1:

κemit,absorb = 3.68× 1022gff (1− Z)(1 + X)T−3.5ρ2, (22.4)

where gff is the Gaunt factor (' 1), Z the fractional abundance of elements heavier than hydrogen, X
the fractional abundance of hydrogen, T the temperature and ρ the temperature.

For the transport opacity, dominated by Thompson scattering, we have, in units of cm−1:

κtrans = 0.2(1 + X)ρ. (22.5)

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Viscosity.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Viscosity.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Grid/Grid_getBlPtr_F90.html
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The parameters op absorbScale, op emitScale, op transScale are also introduced allowing the user
to scale the three opacities accordingly.

This is a gray opacity implementation. The ngrp argument in Opacity calls has to be supplied but will
be ignored.

The BremsstrahlungAndThomson opacity implementation can be included with the following setup op-
tion:

-with-unit=physics/materialProperties/Opacity/OpacityMain/BremsstrahlungAndThomson

22.4.4 OPAL Implementation

The OPAL Opacity implementation reads opacities from OPAL tables. Documentation to be added; see README
in the source tree.

This is a gray opacity implementation. The ngrp argument in Opacity calls has to be supplied but will
be ignored.

22.4.5 Multispecies Implementation

In general, the opacity is a strong function of the material (or species in FLASH parlance), frequency (or
group number), and state of the fluid. The Multispecies Opacity unit implementation provides the flexibility
to specify different opacities to use as a function of species and opacity type (either absorption, emission, or
transport). It can be included in the simulation using the following setup option:

-with-unit=physics/materialProperties/Opacity/OpacityMain/Multispecies

The opacities for each species are averaged together based on the relative number densities to produce
an average opacity of each type for a given cell. For each species and type, the Multispecies implementation
allows the user must specify an opacity model to use. There are currently three commonly used opacity
models in FLASH:

• constant: This model simply returns a constant value for the opacity in units of 1/cm

• constcm2g: This model also returns a constant opacity but uses units of cm2/g

• tabulated: This model allows the user to specify the names of files which store opacity tables. These
tables store opacities as functions electron temperature and density

The first two opacity models, constant and constcm2g, are fairly self-explanatory. The tabulated
opacity model is useful for modeling realistic opacities in a general way. Each table is tabulates an opacity
at ND discrete density points and NT discreet electron temperature points. The table for each species and
opacity type can have different a temperature/density grid. However, each table must use the same energy
group structure which is consistent with the group structure used by the RadTrans unit.

Extraction (interpolation) of opacities from the stored tables is currently done using the bilinear form.
For a temperature/density pair (t, d) inside the grid, the code determines the quadrant corners T1 ≤ t ≤ T2

and D1 ≤ d ≤ D2 and the corresponding four opacities κxy = κ(Tx, Dy);x, y = 1, 2 and performs the bilinear
interpolation:

τ1 =
T2 − t

T2 − T1
(22.6)

τ2 =
t− T1

T2 − T1
(22.7)

δ1 =
D2 − d

D2 −D1
(22.8)

δ2 =
d−D1

D2 −D1
(22.9)

κ(t, d) =
2∑

i=1

2∑
j=1

τiδjκij . (22.10)

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Opacity.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Opacity.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Opacity.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/materialProperties/Opacity/Opacity_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/materialProperties/Opacity/Opacity_F90.html
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Table 22.1: Multispecies Opacity Runtime Parameters
Runtime Parameter Description
op <spec>Absorb Model to use for the absorption opacity
op <spec>Emiss Model to use for the emission opacity
op <spec>Trans Model to use for the transport opacity
op <spec>AbsorbConstant Constant value to use for absorption opacity
op <spec>EmissConstant Constant value to use for emission opacity
op <spec>TransConstant Constant value to use for transport opacity
op <spec>FileName Name of IONMIX file for tabulated opacity
op <spec>FileType Tabulated opacity file type, either “IONMIX” or “IONMIX4”

In case the target (t, d) lays outside the grid boundaries, the corresponding boundary value(s) is(are) taken.
This is a temporary solution and will be supplemented with options for calculating more accurate opacities,
especially for lower cell temperatures. Two possible options are provided for performing the interpolation:
i) on the original tabulated opacities or ii) on the logarthmically (base 10) transformed tabulated opacities.

Currently, the tables must be stored in either the IONMIX or IONMIX4 formats. The exact specification
of this format can be found in Section 22.4.6. The IONMIX4 format is the most general since it allows for
arbitrary temperature/density points. Users who wish to use their own tabulated opacities may convert
their files into the IONMIX4 format for use in FLASH. As Section 22.4.6 describes, IONMIX4 files contain
group opacities in units of cm2/g. Each file contains three different group opacities: a Planck Absorption,
a Planck Emission, and a Rosseland opacity. The user must specify which of these opacities to use for each
species/opacity type in FLASH.

22.4.5.1 Runtime Parameters for the Multispecies Opacity

Use of the Multispecies opacity implementation requires the Multispecies unit. At least one species must
be defined in the simulation to use the Multispecies opacity. Furthermore, the species must all be specified
using the species setup variable and cannot be defined using the SPECIES keyword in a Config file. Please
see Section 11.4 for more details.

Once the species are specified, the Multispecies opacity implementation will automatically create a set of
runtime parameters to allow users to control how the opacity is computed for each species and opacity type.
These runtime parameters are shown in Table 22.1. The symbol <spec> in the table should be replaced by
the species names as specified using the species setup variable.

The opacity models for each species are specified using the op <spec>[Absorb,Emiss,Trans] runtime
parameters. These parameters can be set to the following string values:

• “op constant” Use a constant opacity in units of 1/cm. The constant values are specified using the
appropriate op <spec><type>Constant runtime parameter.

• “op constcm2g” Use a constant opacity in units of cm2/g. The constant values are specified using the
appropriate op <spec><type>Constant runtime parameter.

• “op tabpa” Use the tabulated Planck Absorption opacity from the IONMIX or IONMIX4 file with
name op <spec>FileName.

• “op tabpe” Use the tabulated Planck Emission opacity from the IONMIX or IONMIX4 file with name
op <spec>FileName.

• “op tabro” Use the tabulated Rosseland opacity from the IONMIX or IONMIX4 file with name
op <spec>FileName.

When any of the models for a species is set to “op tabpa”, “op tabpe”, or “op tabro”, FLASH will attempt
to read a file which contains the tabulated opacities. The file name, for each species, is given by the
runtime parameter op <spec>FileName. The type of the file is set using the parameter op <spec>FileType.
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Currently, FLASH only supports reading opacity files in the IONMIX or IONMIX4 format, but this will
likely change in the future.

The code segment below shows an example of how one would specify the runtime parameters for the
Multispecies opacity in a simulation with two species named cham and targ (this simulation would have
been set up using the species=cham,targ setup argument):

# Specify opacity models for the species cham:
op_chamAbsorb = "op_tabpa" # Use tabulated Planck Absorption opacity for

# the absorption term
op_chamEmiss = "op_tabpe" # Use the Planck Emission opacity for the emission

# term
op_chamTrans = "op_tabro" # Use the Rosseland opacity for the transport term
op_chamFileName = "he-imx-005.cn4" # Specify tabulated opacity file name
op_chamFileType = "ionmix4" # Set tabulated opacity file type to IONMIX4

# Specify opacity models for the species targ:
op_targAbsorb = "op_constcm2g" # Use a constant opacity for the absorption term
op_targEmiss = "op_constcm2g" # Use a constant opacity for the emission term
op_targTrans = "op_constcm2g" # Use a constant opacity for the transport term
op_targAbsorbConst = 10.0 # Set targ species absorption opacity to 10 cm^2/g
op_targEmissConst = 0.0 # Set targ species absorption opacity to zero

# This species won’t emit radiation
op_targTransConst = 1.0e+06 # Set targ species transport opacity to a large

# value Radiation will diffuse very slowly through
# this material

In this example species cham uses a tabulated opacity while species targ uses constant opacities. The
opacities for targ are chosen so that the material will not emit any radiation, and to suppress the transport
of radiation. The LaserSlab simulation shows a comprehensive example of how the Multispecies opacity is
used in a realistic HEDP simulation.

22.4.6 The IONMIX EOS/Opacity Format

FLASH reads tabulated opacity and Equation Of State (EOS) files in the IONMIX, IONMIX4, and IONMIX6
formats. The IONMIX4 and IONMIX6 formats are very similar and are more flexible than the IONMIX
format. Thus, only the IONMIX4 and IONMIX6 formats will be documented here. These three formats are
not particularly user friendly and future FLASH releases will likely include support for EOS and opacity
file formats which are easier to handle. Nevertheless, by manipulating their data into the IONMIX4 or
IONMIX6 formats, users can use their own EOS/opacity data in FLASH simulations. Each file contains
information for a single material. All EOS/opacity information is defined on a temperature/density grid.
The densities are actually ion number densities.

Below, the IONMIX4 and IONMIX6 formats are defined. They are very similar: the latter is identical to
the former but also includes electron specific entropy information. Certain information is ignored by FLASH,
meaning that it is read in, but not used for any calculations (right now). Other information is used by the
EOS unit alone, or by the opacity unit alone.

1. Number of temperature points

2. Number of ion number density points

3. Line containing information about the atomic number of each element in this material (ignored by
FLASH)

4. Line containing information about the relative fraction of each element in this material (ignored by
FLASH)

5. Number of radiation energy groups



340 CHAPTER 22. MATERIAL PROPERTIES UNITS

6. List of temperatures

7. List of ion number densities

8. Average ionization (z̄) for each temperature/density (only used for tabulated EOS in FLASH)

9. dz̄/dTe [1/eV ] for each temperature/density (ignored by FLASH)

10. Ion pressure (Pi) [J/cm3] for each temperature/density (only used for tabulated EOS in FLASH)

11. Electron pressure (Pe) [J/cm3] for each temperature/density (only used for tabulated EOS in FLASH)

12. dPi/dTi [J/cm3/eV ] for each temperature/density (ignored by FLASH)

13. dPe/dTe [J/cm3/eV ] for each temperature/density (ignored by FLASH)

14. Ion specific internal energy ei [J/g] for each temperature/density (only used for tabulated EOS in
FLASH)

15. Electron specific internal energy ee [J/g] for each temperature/density (only used for tabulated EOS
in FLASH)

16. dei/dTi [J/g/eV ] for each temperature/density point (ignored by FLASH)

17. dee/dTe [J/g/eV ] for each temperature/density point (ignored by FLASH)

18. dei/dni [J/g/cm3] for each temperature/density point (ignored by FLASH)

19. dee/dni [J/g/cm3] for each temperature/density point (ignored by FLASH)

20. ONLY INCLUDE FOR IONMIX6 FORMAT
Electron specific entropy [J/g/eV ] for each temperature/density point.

21. Each energy group boundary [eV]. There are g + 1 boundaries for a simulation with g groups.

22. Rosseland opacity [cm2/g] for each density/temperature/energy group (only used for tabulated opacity
in FLASH)

23. Planck absorption opacity [cm2/g] for each density/temperature/energy group (only used for tabulated
opacity in FLASH)

24. Planck emission opacity [cm2/g] for each density/temperature/energy group (only used for tabulated
opacity in FLASH)

Below, the exact format of the IONMIX4 file is defined. This is done by providing code listing which
shows how the data can be read in using FORTRAN read statements. Users can use this information to
convert their own data into the IONMIX4 format so that it can be used by FLASH.

! *** Write the header ***

! Write the number of temperature and density points:

write (header,923) ntemp, ndens

! Write the atomic number of each element in this material:

write (headr2,921) (izgas(l),l=1,ngases)

! Write the fraction (by number of ions) of each element in this material:

write (headr3,922) (fracsp(l),l=1,ngases)

write (10,980) header

write (10,980) headr2

write (10,980) headr3

! Write the number of radiation energy groups:
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write (10,982) ngrups

! Write the temperature points (in eV):

write (10,991) (tplsma(it),it=1,ntemp)

! Write the number density points (in cm^-3):

write (10,991) (densnn(id),id=1,ndens)

! Write out the zbar at each temperature/density point (nele/nion):

write (10,991) ((densne(it,id)/densnn(id),it=1,ntemp),id=1,ndens)

! Write d(zbar)/dT:

write (10,991) ((dzdt(it,id),it=1,ntemp),id=1,ndens)

! Write the ion pressure (in Joules/cm^3):

write (10,991) ((densnn(id)*tplsma(it)*1.602E-19_idk,it=1,ntemp),id=1,ndens)

! Write the electron pressure (in Joules/cm^3):

write (10,991) ((tplsma(it)*densne(it,id)*1.602E-19_idk,it=1,ntemp),id=1,ndens)

! Write out d(pion)/dT (in Joules/cm^3/eV):

write (10,991) ((densnn(id)*1.602E-19_idk,it=1,ntemp),id=1,ndens)

! Write out d(pele)/dT (in Joules/cm^3/eV):

write (10,991) &

(((tplsma(it)*densnn(id)*dzdt(it,id) + densne(it,id))*1.602E-19_idk,it=1,ntemp),id=1,ndens)

! Write out the ion specific internal energy (in Joules/gram):

write (10,991) ((enrgyion(it,id),it=1,ntemp),id=1,ndens)

! Write out the electron specific internal energy (in Joules/gram):

write (10,991) ((enrgy(it,id)-enrgyion(it,id),it=1,ntemp),id=1,ndens)

! Write out the ion specific heat (in Joules/gram/eV):

write (10,991) ((heatcpion(it,id),it=1,ntemp),id=1,ndens)

! Write out the electron specific heat (in Joules/gram/eV):

write (10,991) ((heatcp(it,id)-heatcpion(it,id),it=1,ntemp),id=1,ndens)

! Write out d(eion)/d(nion) (I think, but I’m not sure...)

write (10,991) ((dedden_ion(it,id)*condd*densnn(id)/tplsma(it)**2, it=1,ntemp),id=1,ndens)

! Write out d(eele)/d(nele) (I think, but I’m not sure...)

write (10,991) &

(((dedden(it,id)-dedden_ion(it,id))*condd*densnn(id)/tplsma(it)**2, it=1,ntemp),id=1,ndens)

! ONLY FOR IONMIX6 FORMAT, IONMIX4 FORMAT DOES NOT INCLUDE ELECTRON

! SPECIFIC ENTROPY:

!

! Write out electron specific entropy

write (10,991) ((entrele(it,id),it=1,ntemp),id=1,ndens)

! Write out the energy group boundaries (in eV):

write (10,991) (engrup(ig),ig=1,ngrups+1)

! Write the Rosseland group opacities

write (10,991) (((orgp(it,id,ig),it=1,ntemp),id=1,ndens),ig=1,ngrups)

! Write the Planck absorption opacities
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write (10,991) (((opgpa(it,id,ig),it=1,ntemp),id=1,ndens),ig=1,ngrups)

! Write the Planck emission opacities

write (10,991) (((opgpe(it,id,ig),it=1,ntemp),id=1,ndens),ig=1,ngrups)

921 format (’ atomic #s of gases: ’,5i10)

922 format (’ relative fractions: ’,1p5e10.2)

923 format (2i10)

980 format (a80)

981 format (4e12.6,i12)

982 format (i12)

991 format (4e12.6)

22.5 Mass Diffusivity

The MassDiffusivity unit implements a prescription for calculating a generic mass diffusivity that can be
used by the Hydro PPM, and MHD solvers. In this release the unit only provides non-operational stub
functionalities.



Chapter 23

Physics Utilities

23.1 PlasmaState

The PlasmaState unit was introduced in FLASH4.4 as a place to implement auxiliary routines that have
knowledge of the behavior of plasmas. These should eventually include routines to compute quantities like
collision frequencies that are used by various materialProperties units.

The interfaces provided by PlasmaState are intended to be used n the context of zimulations of strongly
ionized plasmas, but should also return “something useful” in other domains of application where this makes
sense.

Currently, the only useful routine provided is PlasmaState getComposition, for computing the elemantal
composition of the mixture of materials in a cell (expressed as number fractions of elements). It is intended
to be used with the Multispecies unit. Note that to get correct results, a simulation has to define the
elemental compositions of the different species (materials) that may be present.
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Chapter 24

Radiative Transfer Unit

source

physics

RadTrans

RadTransMain

MGD

ExpRelax Unified

NeutrinoLeakage

Figure 24.1: The organizational structure of the RadTrans unit.

The RadTrans unit is responsible for solving the radiative transfer equation

1
c

∂I

∂t
+ Ω̂ · ∇I + ρκI = η, (24.1)

where, I(x, Ω̂, ν, t) is the radiation intensity, c is the speed of light, ρ is the mass density, κ(x, ν, t) is the
opacity in units of cm2/g, η(x, ν, t) is the emissivity, ν is the radiation frequency, and Ω̂ is the unit direction
vector. This equation is coupled to the electron internal energy through

∂ue

∂t
=
∫ ∞

0

dν

∫
4π

dΩ̂(ρκI − η), (24.2)

where ue is the electron internal energy density.
The RadTrans unit is responsible for solving the radiative transfer equation and updating the electron

energy using (24.2) over a single time step. This ensures that the total system energy is conserved. Radiation-
hydrodynamics effects, such as work, are operator-split and handled by the hydrodynamics unit. Currently,
there is only a single RadTrans solver, MGD, which uses a simple multigroup diffusion approximation and is
described in Section 24.1.
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24.1 Multigroup Diffusion

The radiative transfer (24.1) and electron energy (24.2) equations can be simplified using a multigroup
diffusion approximation. The frequency space is divided into Ng groups with Ng+1. Group g is defined by
the frequency range from νg to νg+1. The plasma is assumed to emit radiation in a Planck spectrum with a
given emission opacity. The multigroup diffusion equations solved by FLASH are

1
c

∂ug

∂t
−∇ ·

(
1

3σt,g
∇ug

)
+ σa,gug = σe,gaT 4

e

15
π4

[P (xg+1)− P (xg)] (24.3)

∂ue

∂t
=
∑

g

{
σa,gug − σe,gaT 4

e

15
π4

[P (xg+1)− P (xg)]
}

(24.4)

where ug is the radiation energy density, σt,g is the transport opacity, σa,g is the absorption opacity, σe,g

is the emission opacity, a is the radiation constant, Te is the electron temperature, and P (x) is the Planck
integral, defined below. The argument to the Planck integral, is x = hν/kBTe where h is Planck’s constant
and kB is the Boltzmann constant. The opacities in (24.3) and (24.4) are in units of 1/cm and σ = ρκ. The
Planck integral, P (x) is defined as

P (x) =
∫ x

0

dx′
(x′)3

exp(x′)− 1
(24.5)

The multigroup diffusion equation and electron internal energy equation are operator-split using an
explicit treatment. Thus, on each time step (24.4) is solved for each energy group using coefficients evaluated
at time level n using an implicit treatment for the diffusion solution itself. The equation below shows how
the multigroup equations are discretized in time

1
c

un+1
g − un

g

∆t
−∇ ·

(
Dn

g∇un+1
g

)
+ σn

a,gu
n+1
g = σn

e,ga(Tn
e )4

15
π4

[
P (xn

g+1)− P (xn
g )
]

(24.6)
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σn

a,gu
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g − σn

e,ga(Tn
e )4

15
π4

[
P (xn

g+1)− P (xn
g )
]}

(24.7)

where the n superscript denotes the time level, and ∆t is the time step length. These equations are solved
on each time step. The diffusion coefficient, Dn

g , has been introduced. When no flux-limiter is employed,
Dn

g = 1/3σn
t,g. The flux-limiter limits the radiation flux in each group to the free streaming limit, cun

g .
Several flux limiter options are available in FLASH. These are described in section 18.1.3. The string
runtime parameter rt mgdFlMode controls the flux limiter mode. The maximum flux is set to qmax = αrcu

n
g

for each energy group. The coefficient αr is set to one by default, which is what is physically most realistic.
However, it can be controlled using the runtime parameter rt mgdFlCoef.

The diffusion equation, (24.6), is an implicit equation and is solved using the general implicit diffusion
solver described in section 18.1.2. It is recommended that users familiarize themselves with the general
implicit diffusion solver to learn more about using MGD in FLASH.

24.1.1 Using Multigroup Radiation Diffusion

This section describes how to use MGD in FLASH. Section 30.7.5 shows an example of how to use MGD in
a realistic HEDP simulation and is extremely informative.

Several setup options are needed to use MGD. The +mgd setup shortcut will include the MGD unit in the
simulation. In addition, storage needs to be created for storing the specific energy for each group. This is
done using the mgd_meshgroups setup variable. The user must set mgd_meshgroups such that:

(mgd meshgroups)Nmesh ≥ Ng (24.8)

where Nmesh represents the number of meshes (please see section 24.1.2 for more information). If you don’t
know what this is, you can assume that Nmesh = 1. In this case, the constraint is that the mgd_meshgroups
setup variable must be greater than or equal to the number of energy groups. The actual number of energy
groups, Ng, is set at run time using the runtime parameter rt mgdNumGroups. Thus, as an example, the
setup options for a 4-group simulation could be:

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_RadTrans.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_RadTrans.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_RadTrans.txt
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+mgd mgd_meshgroups=6

and the runtime parameter file must contain rt mgdNumGroups = 4. No changes are needed to the Config
file of the simulation.

The FLASH checkpoint files will contain the specific energy in each radiation energy group for each cell.
The variables are named r### where ### is a three digit number from one to Ng. Users can also add these
variables to the list of plot variables so they will be included in plot files.

Several runtime parameters are used to control the MGD unit. The runtime parameter rt useMGD must
be set to .true. for MGD simulations. The energy group structure (values of the group boundaries) are
specified, manually, using runtime parameters. A simulation with Ng groups will have Ng + 1 energy group
boundaries. These are set using the rt mgdBounds ### runtime parameters, where ### is a number between
1 and Ng + 1. By default, enough runtime parameters exist for specifying 101 energy group boundaries. In
the case that more groups are needed, the mgd_maxgroups setup variable sets the number of group boundary
runtime parameters. For example, if 200 energy groups are needed, then mgd_maxgroups=200 should be
specified on the setup line. If Ng ≤ 100, no action is needed.

When MGD is in use, the Opacity unit provides opacities for each cell. Thus, the useOpacity runtime
parameter must be set to true and the appropriate opacity model must be specified. Please see section 22.4
for a detailed description on how to use the Opacity unit in FLASH.

Finally, the radiation boundary conditions must be specified using runtime parameters. The parameters:

rt_mgdXlBoundaryType
rt_mgdXrBoundaryType
rt_mgdYlBoundaryType
rt_mgdYrBoundaryType
rt_mgdZlBoundaryType
rt_mgdZrBoundaryType

control the boundary condition on each logical face of the domain. The allowed values are:

• reflecting, neumann: This is a zero-flux, or Neumann boundary condition and should be used to
model reflecting boundaries

• dirichlet: This (poorly named) value represents a fixed radiation temperature boundary condition

• vacuum: This represents a vacuum boundary condition

Please see section 18.1.2.1 for more information on boundary conditions for the diffusion solver.
As was mentioned earlier, FLASH uses the generalized implicit diffusion solver, described in section 18.1.2,

to solve (24.6) for each energy group. Thus, users must make sure to include an appropriate diffusion solver
in their simulation.

24.1.2 Using Mesh Replication with MGD

When many energy groups are needed, domain decomposition alone is not an effective method for speeding
up calculations. The computation time scales roughly linearly with the number of energy groups. As the
number of groups increases, users can divide the mesh among larger number of processors to compensate.
This is an effective strategy until the strong scaling limit for the simulation is reached. At this point, mesh
replication becomes the only way to speed up the simulation further.

Mesh replication allows FLASH to perform the diffusion solves for each energy group in parallel. By
default, mesh replication is deactivated and each diffusion equation is solved serially. When mesh replication
is in use the total pool of Np processes is divided among Nm identical copies of the computational mesh.
The radiation solver uses these copies of the mesh to perform Nm parallel radiation solves. The runtime
parameter meshCopyCount is used to set Nm and has a value of 1 by default.

This is best illustrated with an example. Suppose Ng, the total number of energy groups, is set to 100,
and there are Np = 6 processes available to run the simulation. If meshCopyCount=1, then Nm = 1 and the
computational mesh will not be replicated. This is FLASH’s normal mode of operation: the mesh will be
divided into six pieces and each process will be responsible for one of these pieces. Each process will also be

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_RadTrans.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_RadTrans.txt
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involved in the solution of the diffusion equation for all 100 energy groups. If meshCopyCount=2, then the
computational domain will be divided into three pieces. Two processes will be assigned to each piece. In
other words two groups of three processes will be created. The first set of three processes will be responsible
for solving the diffusion equations for the odd numbered energy groups. The second set of processes will
solve the diffusion equations for the even numbered energy groups. Each process only knows about 50 of the
100 groups. In some cases, this may be substantially faster than the meshCopyCount=1 approach.

Another benefit of mesh replication is that it reduces the amount of memory needed per process. In
the example above, when meshCopyCount=1, each process must store the energy density for all 100 energy
groups. Thus, storage must exist for 100 cell centered variables on each process. When meshCopyCount=2,
storage is only needed for 50 cell centered variables. The setup variable mgd_meshgroups controls the number
of cell centered variables created on process. Thus, when meshCopyCount=2, we can set mgd_meshgroups to
50 instead of 100. As a result, far less memory is used per block.

Whether or not mesh replication is helpful for a particular simulation can only be determined through
extensive testing. It depends on the particular simulation and the hardware.

24.1.3 Specifying Initial Conditions

The initial conditions must be specified throughout the domain for each radiation energy group. This
involves setting the specific energy, eg = ug/ρ, in units of erg/g for each group. Because of the mesh
replication capability, the user is discouraged from manually setting the value of the underlying radiation
mass scalars. Instead, several routines have been added to the RadTrans unit to simplify this process
dramatically. Specifying the initial conditions involves two steps. First, the value of eg must be set for
each group in each cell. Second, either the total specific radiation energy, er =

∑
g eg, or the radiation

temperature, Tr = (ur/a)1/4, must be set - depending on the value of eosModeInit. Below, two use cases
are described.

24.1.3.1 Initializing using a Radiation Temperature

The easiest way to set the initial condition is to use a radiation temperature in each cell and to assume that
the radiation field is described by a Planck spectrum. The subroutine:

RadTrans_mgdEFromT(blockId, axis, trad, tradActual)

will automatically set the value of eg for each group using a given radiation temperature and assuming
a black body spectrum. The arguments are:

1. blockId: The block ID

2. axis: A 3 dimensional array of integers indicating the cell within the block

3. trad: An input, the desired radiation temperature

4. tradActual: An output, The actual radiation temperature (described further below)

When the simulation is initialized, it is important that Tr = (
∑

g ug/a)1/4. This will not always be the case.
The reason is that a black body spectrum has a non zero energy density for all frequencies. But FLASH
simulations require finite energy group boundaries. For example, if trad is set to 11604 K (this corresponds
to 1 eV), but the upper energy group boundary is only set to 10 eV, then we are effectively cutting off the
part of the spectrum above 10 eV. The actual radiation temperature, which is consistent with the sum of the
energies in each group, will be slightly less than 1 eV. The argument tradActual contains this new radiation
temperature.

Once RadTrans mgdEFromT has been used to initialize eg, either the total radiation specific energy, er,
must be set or the radiation temperature for the cell must be specified. When the runtime parameter
eosModeInit is set to “dens temp gather”, the initial radiation temperature must be specified in the variable
TRAD_VAR. When eosModeInit is set to “dens ie gather”, er must be specified in the variable ERAD_VAR.

The example below shows a segment from a Simulation initBlock routine from a typical simulation
which uses MGD:

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/RadTrans/RadTrans_mgdEFromT_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_initBlock_F90.html
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do k = blkLimits(LOW,KAXIS),blkLimits(HIGH,KAXIS)
do j = blkLimits(LOW,JAXIS),blkLimits(HIGH,JAXIS)

do i = blkLimits(LOW,IAXIS),blkLimits(HIGH,IAXIS)

axis(IAXIS) = i
axis(JAXIS) = j
axis(KAXIS) = k

...

! Set the secific energy in each radiation group using a
! radiation temperature of 1~eV (11604.55~K):
call RadTrans_mgdEFromT(blockId, axis, 11604.55, tradActual)

! Set the radiation temperature:
call Grid_putPointData(blockId, CENTER, TRAD_VAR, EXTERIOR, axis, tradActual)

! Alternatively, we could have set ERAD_VAR using a*(tradActual)**4

enddo
enddo

enddo

Note that tradActual is used to specify the value of TRAD_VAR.

24.1.3.2 Manually setting the radiation spectrum

Specifying the radiation temperature is sufficient for many cases. Alternatively, users can manually specify
the radiation spectrum. The subroutine

RadTrans_mgdSetEnergy(blockId, axis, group, eg)

has been created for this purpose. The arguments are:

• blockId: The block ID

• axis: A 3 dimensional array of integers indicating the cell within the block

• group: The group number, between 1 and Ng

• eg: The specific radiation energy (erg/g) for the group

This subroutine sets the value of eg for a particular cell and should be called from the Simulation initBlock
subroutine.

The example below assumes that the user would like to initialize the radiation field so that e1 = aT 4
r /ρ

and all other groups are initialized to zero energy. Note, that for this example, the user should obtain the
value of a, the radiation constant, from the PhysicalConstants unit. This simulations used Ng = 4.

do k = blkLimits(LOW,KAXIS),blkLimits(HIGH,KAXIS)
do j = blkLimits(LOW,JAXIS),blkLimits(HIGH,JAXIS)

do i = blkLimits(LOW,IAXIS),blkLimits(HIGH,IAXIS)

axis(IAXIS) = i
axis(JAXIS) = j
axis(KAXIS) = k

...

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_initBlock_F90.html
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! Set the secific energy in each radiation group:
call RadTrans_mgdSetEnergy(blockId, axis, 1, a*sim_trad**4/sim_rho)
call RadTrans_mgdSetEnergy(blockId, axis, 2, 0.0)
call RadTrans_mgdSetEnergy(blockId, axis, 3, 0.0)
call RadTrans_mgdSetEnergy(blockId, axis, 4, 0.0)

! Set the radiation temperature:
call Grid_putPointData(blockId, CENTER, TRAD_VAR, EXTERIOR, axis, sim_trad)

! Alternatively, we could have set ERAD_VAR using a*sim_trad**4/sim_rho

enddo
enddo

enddo

24.1.4 Altering the Radiation Spectrum

In some cases, it is necessary to alter the radiation spectrum manually, for example, to add a radiation energy
source. In these cases, it is useful to manually alter the mesh variables which store the specific radiation
energy within each group: eg = ug/ρ. However, because of mesh replication, altering these variables requires
a different procedure than modifying other mesh variables (such as the density) in FLASH. The reason is
that each process does not, in general, have access to each eg. The procedure for modifying eg directly is as
follows:

1. Loop over the energy groups that each process sees

2. Modify eg

3. Modify the total specific radiation energy, erad, so that it stores the sum over all eg

Note, that in step 1, looping over the energy groups does not simply involve looping from 1 to Ng. The reason
is that each process must loop over only those groups that it is responsible for. Again, because of mesh repli-
cation, this may be less than Ng. Below, an example is shown where the specific energy in each group is man-
ually set to 1012 erg/g. An ideal place for this type of code to exist is in the Simulation adjustEvolution
subroutine which gets called every time step.

! Loop over all cells, set the specific radiation energy to zero:
do lb = 1, nblk
call Grid_getBlkIndexLimits(blklst(lb),blkLimits,blkLimitsGC)
call Grid_getBlkPtr(blklst(lb), blkPtr)

do k = blkLimits(LOW,KAXIS), blkLimits(HIGH,KAXIS)
do j = blkLimits(LOW,JAXIS), blkLimits(HIGH,JAXIS)
do i = blkLimits(LOW,IAXIS), blkLimits(HIGH,IAXIS)
blkPtr(ERAD_VAR,i,j,k) = 0.0

end do
end do

end do
call Grid_releaseBlkPtr(blklst(lb), blkPtr)

end do

! Loop over radiation energy groups:
do gloc = 1, NONREP_NLOCS(rt_acrossMe, rt_meshCopyCount, rt_mgdNumGroups)

! g represents the global energy group number:

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_adjustEvolution_F90.html
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g = NONREP_LOC2GLOB(gloc, rt_acrossMe, rt_meshCopyCount)

! gvar represents the index in the block pointer for group g:
gvar = MGDR_NONREP_LOC2UNK(gloc)

! Loop over blocks and set the energy density in each group:
do lb = 1, nblk
call Grid_getBlkIndexLimits(blklst(lb),blkLimits,blkLimitsGC)
call Grid_getBlkPtr(blklst(lb), blkPtr)

do k = blkLimits(LOW,KAXIS), blkLimits(HIGH,KAXIS)
do j = blkLimits(LOW,JAXIS), blkLimits(HIGH,JAXIS)
do i = blkLimits(LOW,IAXIS), blkLimits(HIGH,IAXIS)

! Set the specific energy in group g:
blkPtr(gvar,i,j,k) = 1.0e+12

! Make sure to track the total radiation energy in the cell:
blkPtr(ERAD_VAR,i,j,k) = blkPtr(ERAD_VAR,i,j,k) + &

blkPtr(gvar,i,j,k)
end do

end do
end do
call Grid_releaseBlkPtr(blklst(lb), blkPtr)

end do
end do

! Finally, every process needs to know the total specific radiation
! energy. RadTrans_sumEnergy adds up ERAD_VAR across all of the
! meshes:
call RadTrans_sumEnergy(ERAD_VAR, nblk, blklst)

! Call EOS to get a consistent state:
do lb = 1, nblk
call Grid_getBlkIndexLimits(blklst(lb),blkLimits,blkLimitsGC)
call Eos_wrapped(MODE_DENS_EI_GATHER,blkLimits,blklst(lb))

end do

In the first part of the example, the value of ERAD_VAR is set to zero. ERAD_VAR simply stores the total
specific radiation energy in each cell. After we are done modifying the energy for each group, it is important
that ERAD_VAR be updated to contain the total specific radiation energy.

The second part of the example loops over the groups. Notice the strange loop ending index. The
NONREP_NLOCS macro computes the number of groups represented on a given process. To find the actual
group number, g, a call is made to NONREP_LOC2GLOB. Next, MGDR_NONREP_LOC2UNK is called to get the
actual index into the block pointer which corresponds to group g. Following this is a fairly standard loop
over blocks and cells where the block pointer is used to modify the specific energy in each group. Notice
that we are keeping a running total of the total specific energy in the cell which is stored in ERAD_VAR.

Finally, we must call RadTrans sumEnergy to add up ERAD_VAR across all of the meshes. After this
call, every process will contain the same total specific energy in each cell. This is followed by a call to the
equation of state. This is needed to update the radiation temperature and pressure, TRAD_VAR and ERAD_VAR,
respectively.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/RadTrans/RadTrans_sumEnergy_F90.html
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Chapter 25

Logfile Unit

source

monitors

Logfile

LogfileMain

Figure 25.1: The Logfile unit directory structure.

FLASH supplies the Logfile unit to manage an output log during a FLASH simulation. The logfile
contains various types of useful information, warnings, and error messages produced by a FLASH run.
Other units can add information to the logfile through the Logfile unit interface. The Logfile routines
enable a program to open and close a log file, write time or date stamps to the file, and write arbitrary
messages to the file. The file is kept closed and is only opened for appending when information is to be
written, thus avoiding problems with unflushed buffers. For this reason, Logfile routines should not be
called within time-sensitive loops, as system calls are generated. Even when starting from scratch, the logfile
is opened in append mode to avoid deleting important logfiles. Two kinds of Logfiles are supported. The first
kind is similar to that in FLASH2 and early releases of FLASH3, where the master processor has exclusive
access to the logfile and writes global information to it. The newer kind gives all processors access to their
own private logfiles if they need to have one. Similar to the traditional logfile, the private logfiles are opened
in append mode, and they are created the first time a processor writes to one. The private logfiles are
extremely useful to gather information about failures causes by a small fraction of processors; something
that cannot be done in the traditional logfile.

The Logfile unit is included by default in all the provided FLASH simulations because it is required
by the Driver/DriverMain Config. As with all the other units in FLASH, the data specific to the Logfile
unit is stored in the module Logfile data.F90. Logfile unit scope data variables begin with the prefix
log variableName and they are initialized in the routine Logfile init.

By default, the logfile is named flash.log and found in the output directory. The user may change the
name of the logfile by altering the runtime parameter log file in the flash.par.

# names of files
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basenm = "cellular_"
log_file = "cellular.log"

25.1 Meta Data

The logfile stores meta data about a given run including the time and date of the run, the number of MPI
tasks, dimensionality, compiler flags and other information about the run. The snippet below is an example
from a logfile showing the basic setup and compilation information:

================================================================================
Number of MPI tasks: 2
MPI version: 1
MPI subversion: 2
Dimensionality: 2
Max Number of Blocks/Proc: 1000
Number x zones: 8
Number y zones: 8
Number z zones: 1
Setup stamp: Wed Apr 19 13:49:36 2006
Build stamp: Wed Apr 19 16:35:57 2006
System info:
Linux zingiber.uchicago.edu 2.6.12-1.1376_FC3smp #1 SMP Fri Aug 26 23:50:33 EDT
Version: FLASH 3.0.
Build directory: /home/kantypas/FLASH3/trunk/Sod
Setup syntax:
/home/kantypas/FLASH3/trunk/bin/setup.py Sod -2d -auto -unit=IO/IOMain/hdf5/parallel/PM

-objdir=Sod
f compiler flags:
/usr/local/pgi6/bin/pgf90 -I/usr/local/mpich-pg/include -c -r8 -i4 -fast -g

-DMAXBLOCKS=1000 -DNXB=8 -DNYB=8 -DNZB=1 -DN_DIM=2
c compiler flags:
/usr/local/pgi6/bin/pgcc -I/usr/local/hdf5-pg/include -I/usr/local/mpich-pg/include

-c -O2 -DMAXBLOCKS=1000 -DNXB=8 -DNYB=8 -DNZB=1 -DN_DIM=2
===============================================================================

25.2 Runtime Parameters, Physical Constants, and Multispecies
Data

The logfile also records which units were included in a simulation, the runtime parameters, physical
constants, and any species and their properties from the Multispecies unit. The FLASH3 logfile keeps track
of whether a runtime parameter is a default value or whether its value has been redefined in the flash.par
file. The [CHANGED] symbol will occur next to a runtime parameter if its value has been redefined in the
flash.par. Note that the runtime parameters are output in alphabetical order within the Fortran datatype
– so integer parameters are shown first, then real, then string, then Boolean. The snippet below shows the
this portion of the logfile; omitted sections are indicated with “...”.

==============================================================================
FLASH Units used:
Driver
Driver/DriverMain
Driver/DriverMain/TimeDep
Grid
Grid/GridMain
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Grid/GridMain/paramesh
Grid/GridMain/paramesh/paramesh4
...
Multispecies
Particles
PhysicalConstants
PhysicalConstants/PhysicalConstantsMain
RuntimeParameters
RuntimeParameters/RuntimeParametersMain
...
physics/utilities/solvers/LinearAlgebra

==============================================================================
RuntimeParameters:

==============================================================================
algebra = 2 [CHANGED]
bndpriorityone = 1
bndprioritythree = 3
...
cfl = 0.800E+00
checkpointfileintervaltime = 0.100E-08 [CHANGED]
cvisc = 0.100E+00
derefine_cutoff_1 = 0.200E+00
derefine_cutoff_2 = 0.200E+00
...
zmax = 0.128E+02 [CHANGED]
zmin = 0.000E+00
basenm = cellular_ [CHANGED]
eosmode = dens_ie
eosmodeinit = dens_ie
geometry = cartesian
log_file = cellular.log [CHANGED]
output_directory =
pc_unitsbase = CGS
plot_grid_var_1 = none
plot_grid_var_10 = none
plot_grid_var_11 = none
plot_grid_var_12 = none
plot_grid_var_2 = none
...
yr_boundary_type = periodic
zl_boundary_type = periodic
zr_boundary_type = periodic
bytepack = F
chkguardcells = F
converttoconsvdformeshcalls = F
converttoconsvdinmeshinterp = F
...
useburn = T [CHANGED]
useburntable = F

==============================================================================

Known units of measurement:
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Unit CGS Value Base Unit
1 cm 1.0000 cm
2 s 1.0000 s
3 K 1.0000 K
4 g 1.0000 g
5 esu 1.0000 esu
6 m 100.00 cm
7 km 0.10000E+06 cm
8 pc 0.30857E+19 cm
...
Known physical constants:

Constant Name Constant Value cm s g K esu
1 Newton 0.66726E-07 3.00 -2.00 -1.00 0.00 0.00
2 speed of light 0.29979E+11 1.00 -1.00 0.00 0.00 0.00
...
15 Euler 0.57722 0.00 0.00 0.00 0.00 0.00
==============================================================================

Multifluid database contents:

Initially defined values of species:
Name Index Total Positive Neutral Negative bind Ener Gamma
ar36 12 3.60E+01 1.80E+01 -9.99E+02 -9.99E+02 3.07E+02 -9.99E+02
c12 13 1.20E+01 6.00E+00 -9.99E+02 -9.99E+02 9.22E+01 -9.99E+02
ca40 14 4.00E+01 2.00E+01 -9.99E+02 -9.99E+02 3.42E+02 -9.99E+02
...
ti44 24 4.40E+01 2.20E+01 -9.99E+02 -9.99E+02 3.75E+02 -9.99E+02
==============================================================================

25.3 Accessor Functions and Timestep Data

Other units within FLASH may make calls to write information, or stamp, the logfile. For example, the
Driver unit calls the API routine Logfile stamp after each timestep. The Grid unit calls Logfile stamp
whenever refinement occurs in an adaptive grid simulation. If there is an error that is caught in the code
the API routine Driver abortFlash stamps the logfile before aborting the code. Any unit can stamp the
logfile with one of two routines Logfile stamp which includes a data and time stamp along with a logfile
message, or Logfile stampMessage which simply writes a string to the logfile.

The routine Logfile stamp is overloaded so the user must use the interface file Logfile_interface.F90
in the calling routine. The next snippit shows logfile output during the evolution loop of a FLASH run.

==============================================================================
[ 04-19-2006 16:40.43 ] [Simulation_init]: initializing Sod problem
[GRID amr_refine_derefine] initiating refinement
[GRID amr_refine_derefine] min blks 0 max blks 1 tot blks 1
[GRID amr_refine_derefine] min leaf blks 0 max leaf blks 1 tot leaf blks 1
[GRID amr_refine_derefine] refinement complete
[ 04-19-2006 16:40.43 ] [GRID gr_expandDomain]: create level=2
...
[GRID amr_refine_derefine] initiating refinement
[GRID amr_refine_derefine] min blks 250 max blks 251 tot blks 501
[GRID amr_refine_derefine] min leaf blks 188 max leaf blks 188 tot leaf blks 376
[GRID amr_refine_derefine] refinement complete

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Logfile/Logfile_stamp_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Logfile/Logfile_stamp_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Driver/Driver_abortFlash_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Logfile/Logfile_stamp_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Logfile/Logfile_stampMessage_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Logfile/Logfile_stamp_F90.html
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[ 04-19-2006 16:40.44 ] [GRID gr_expandDomain]: create level=7
[ 04-19-2006 16:40.44 ] [GRID gr_expandDomain]: create level=7
[ 04-19-2006 16:40.44 ] [GRID gr_expandDomain]: create level=7
[ 04-19-2006 16:40.44 ] [IO_writeCheckpoint] open: type=checkpoint name=sod_hdf5_chk_0000
[ 04-19-2006 16:40.44 ] [io_writeData]: wrote 501 blocks
[ 04-19-2006 16:40.44 ] [IO_writeCheckpoint] close: type=checkpoint name=sod_hdf5_chk_0000
[ 04-19-2006 16:40.44 ] [IO writePlotfile] open: type=plotfile name=sod_hdf5_plt_cnt_0000
[ 04-19-2006 16:40.44 ] [io_writeData]: wrote 501 blocks
[ 04-19-2006 16:40.44 ] [IO_writePlotfile] close: type=plotfile name=sod_hdf5_plt_cnt_0000
[ 04-19-2006 16:40.44 ] [Driver_evolveFlash]: Entering evolution loop
[ 04-19-2006 16:40.44 ] step: n=1 t=0.000000E+00 dt=1.000000E-10
...
[ 04-19-2006 16:41.06 ] [io_writeData]: wrote 501 blocks
[ 04-19-2006 16:41.06 ] [IO_writePlotfile] close: type=plotfile name=sod_hdf5_plt_cnt_0002
[ 04-19-2006 16:41.06 ] [Driver_evolveFlash]: Exiting evolution loop
==============================================================================

25.4 Performance Data

Finally, the logfile records performance data for the simulation. The Timers unit (see Section 26.1) is
responsible for storing, collecting and interpreting the performance data. The Timers unit calls the API
routine Logfile writeSummary to format the performance data and write it to the logfile. The snippet
below shows the performance data section of a logfile.

==============================================================================
perf_summary: code performance summary

beginning : 04-19-2006 16:40.43
ending : 04-19-2006 16:41.06

seconds in monitoring period : 23.188
number of subintervals : 21
number of evolved zones : 16064

zones per second : 692.758
------------------------------------------------------------------------------
accounting unit time sec num calls secs avg time pct
------------------------------------------------------------------------------
initialization 1.012 1 1.012 4.366
guardcell internal 0.155 17 0.009 0.669
writeCheckpoint 0.085 1 0.085 0.365
writePlotfile 0.061 1 0.061 0.264

evolution 22.176 1 22.176 95.633
hydro 18.214 40 0.455 78.549
guardcell internal 2.603 80 0.033 11.227
sourceTerms 0.000 40 0.000 0.002
particles 0.000 40 0.000 0.001
Grid_updateRefinement 1.238 20 0.062 5.340
tree 1.126 10 0.113 4.856
guardcell tree 0.338 10 0.034 1.459
guardcell internal 0.338 10 0.034 1.458

markRefineDerefine 0.339 10 0.034 1.460
guardcell internal 0.053 10 0.005 0.230

amr_refine_derefine 0.003 10 0.000 0.011
updateData 0.002 10 0.000 0.009
guardcell 0.337 10 0.034 1.453
guardcell internal 0.337 10 0.034 1.452

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Logfile/Logfile_writeSummary_F90.html
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eos 0.111 10 0.011 0.481
update particle refinemen 0.000 10 0.000 0.000
io 2.668 20 0.133 11.507
writeCheckpoint 0.201 2 0.101 0.868
writePlotfile 0.079 2 0.039 0.340
diagnostics 0.040 20 0.002 0.173

==============================================================================
[ 04-19-2006 16:41.06 ] LOGFILE_END: FLASH run complete.

25.5 Example Usage

An example program using the Logfile unit might appear as follows:

program testLogfile

use Logfile_interface, ONLY: Logfile_init, Logfile_stamp, Logfile_open, Logfile_close
use Driver_interface, ONLY: Driver_initParallel
use RuntimeParameters_interface, ONLY: RuntimeParameters_init
use PhysicalConstants_interface, ONLY: PhysicalConstants_init

implicit none

integer :: i
integer :: log_lun
integer :: myPE, numProcs
logical :: restart, localWrite

call Driver_initParallel(myPE, numProcs) !will initialize MPI
call RuntimeParameters_init(myPE, restart) ! Logfile_init needs runtime parameters
call PhysicalConstants_init(myPE) ! PhysicalConstants information adds to logfile
call Logfile_init(myPE, numProcs) ! will end with Logfile_create(myPE, numProcs)

call Logfile_stamp (myPE, "beginning log file test...", "[programtestLogfile]")
localWrite=.true.
call Logfile_open(log_lun,localWrite) !! open the local logfile
do i = 1, 10
write (log_lun,*) ’i = ’, i

enddo
call Logfile_stamp (myPE, "finished logfile test", "[program testLogfile]")
call Logfile_close(myPE, log_lun)

end program testLogfile
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Figure 26.1: The Timers unit directory tree.

26.1.1 MPINative

FLASH includes an interface to a set of stopwatch-like timing routines for monitoring performance. The
interface is defined in the monitors/Timers unit, and an implementation that uses the timing functionality
provided by MPI is provided in monitors/Timers/TimersMain/MPINative. Future implementations might
use the PAPI framework to track hardware counter details.

The performance routines start or stop a timer at the beginning or end of a section of code to be monitored,
and accumulate performance information in dynamically assigned accounting segments. The code also has
an interface to write the timing summary to the FLASH logfile. These routines are not recommended for
timing very short segments of code due to the overhead in accounting.

There are two ways of using the Timers routines in your code. One mode is to simply pass timer names
as strings to the start and stop routines. In this first way, a timer with the given name will be created if
it doesn’t exist, or otherwise reference the one already in existence. The second mode of using the timers
references them not by name but by an integer key. This technique offers potentially faster access if a timer
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is to be started and stopped many times (although still not recommended because of the overhead). The
integer key is obtained by calling with a string name Timers create which will only create the timer if it
doesn’t exist and will return the integer key. This key can then be passed to the start and stop routines.

The typical usage pattern for the timers is implemented in the default Driver implementation. This
pattern is: call Timers init once at the beginning of a run, call Timers start and Timers stop around
sections of code, and call Timers getSummary at the end of the run to report the timing summary at the
end of the logfile. However, it is possible to call Timers reset in the middle of a run to reset all timing
information. This could be done along with writing the summary once per-timestep to report code times on a
per-timestep basis, which might be relevant, for instance, for certain non-fixed operation count solvers. Since
Timers reset does not reset the integer key mappings, it is safe to obtain a key through Timers create
once in a saved variable, and continue to use it after calling Timers reset.

Two runtime parameters control the Timer unit and are described below.

Table 26.1: Timer Unit runtime parameters.

Parameter Type Default value Description

eachProcWritesSummary LOGICAL TRUE Should each process write its summary
to its own file? If true, each process
will write its summary to a file named
timer summary <process id>

writeStatSummary LOGICAL TRUE Should timers write the max/min/avg values
for timers to the logfile?

monitors/Timers/TimersMain/MPINative writes two summaries to the logfile: the first gives the timer
execution of the master processor, and the second gives the statistics of max, min, and avg times for timers
on all processors. The secondary max, min, and avg times will not be written if some process executed
timers differently than another. For example, this anomaly happens if not all processors contain at least one
block. In this case, the Hydro timers only execute on the processors that possess blocks. See Section 25.4
for an example of this type of output. The max, min, and avg summary can be disabled by setting the
runtime parameter writeStatSummary to false. In addition, each process can write its summary to its own
file named timer summary <process id>. To prohibit each process from writing its summary to its own
file, set the runtime parameter eachProcWritesSummary to false.

26.1.2 Tau

In FLASH3.1 we add an alternative Timers implementation which is designed to be used with the Tau
framework (http://acts.nersc.gov/tau/). Here, we use Tau API calls to time the FLASH labeled code
sections (marked by Timers start and Timers stop). After running the simulation, the Tau profile contains
timing information for both FLASH labeled code sections and all individual subroutines / functions. This is
useful because fine grained subroutine / function level data can be overwhelming in a huge code like FLASH.
Also, the callpaths are preserved, meaning we can see how long is spent in individual subroutines / functions
when they are called from within a particular FLASH labeled code section. Another reason to use the Tau
version is that the MPINative version (See Section 26.1.1) is implemented using recursion, and so incurs
significant overhead for fine grain measurements.

To use this implementation we must compile the FLASH source code with the Tau compiler wrapper scripts.
These are set as the default compilers automatically whenever we specify the -tau option (see Section 5.2) to
the setup script. In addition to the -tau option we must specify --with-unit=monitors/Timers/Timers-
Main/Tau as this Timers implementation is not the default.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Timers/Timers_create_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Timers/Timers_init_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Timers/Timers_start_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Timers/Timers_stop_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Timers/Timers_getSummary_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Timers/Timers_reset_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Timers/Timers_reset_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Timers/Timers_create_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/monitors/Timers/Timers_reset_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Timers.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Timers.txt
http://acts.nersc.gov/tau/
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26.2 Profiler

source

monitors

Profiler

Figure 26.2: The Profiler unit directory tree.

In addition to an interface for simple timers, FLASH includes a generic interface for third-party profiling
or tracing libraries. This interface is defined in the monitors/Profiler unit.

In FLASH4 we created an interface to the IBM profiling libraries libmpihpm.a and libmpihpm smp.a
and also to HPCToolkit http://hpctoolkit.org/ (Rice University). We make use of this interface to
profile FLASH evolution only, i.e. not initialization. To use this style of profiling add -unit=monitors/-
Profiler/ProfilerMain/mpihpm or -unit=monitors/Profiler/ProfilerMain/hpctoolkit to your setup
line and also set the FLASH runtime parameter profileEvolutionOnly = .true.

For the IBM profiling library (mpihpm) you need to add LIB MPIHPM and LIB MPIHPM SMP macros
to your Makefile.h to link FLASH to the profiling libraries. The actual macro used in the link line de-
pends on whether you setup FLASH with multithreading support (LIB MPIHPM for MPI-only FLASH and
LIB MPIHPM SMP for multithreaded FLASH). Example values from sites/miralac1/Makefile.h follow

LIB_MPI =
HPM_COUNTERS = /bgsys/drivers/ppcfloor/bgpm/lib/libbgpm.a
LIB_MPIHPM = -L/soft/perftools/hpctw -lmpihpm $(HPM_COUNTERS) $(LIB_MPI)
LIB_MPIHPM_SMP = -L/soft/perftools/hpctw -lmpihpm_smp $(HPM_COUNTERS) $(LIB_MPI)

For HPCToolkit you need to set the environmental variable HPCRUN DELAY SAMPLING=1 at job
launch to enable selective profiling (see the HPCToolkit user guide).

http://hpctoolkit.org/
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26.3 Proton Imaging Unit

source

diagnostics

ProtonImaging

localAPI ProtonImagingMain

ProtonBeams ProtonDetection ProtonUtilities ProtonsCreate ProtonsTrace

Figure 26.3: The Proton Imaging unit directory tree.

The Proton Imaging unit fires proton beams onto the simulation domain and records their deflection
due to electric and magnetic fields on detector screens. The function ProtonImaging is the main driver that
orchestrates the proton imaging execution. The deflection of the protons are calculated using the Lorentz
force. For each cell in the domain the average electric and magnetic fields are used and the electric and
magnetic components do not change within each cell. The code allows for setting up several proton beams
with possibly different activation times and several detector screens. Each beam is associated with only one
detector, but a detector is allowed to record the protons coming from more than one beam. This way one
can simulate multienergetic proton beams by splitting them into several computational beams with identical
spacial specifications and identical detector target but using different proton energies. The mapping ’beam
→ many detectors’ is currently not allowed.

Tracing of the protons through the domain can be done in two ways: 1) crossing the domain during one
time step or 2) allowing for time resolved proton tracing, i.e. tracing the protons through the domain during
many time steps, if the velocities of the protons are sufficiently small. Although the proton imaging driver
can be called during an entire simulation with proton beams being activated at certain simulation times, it
is highly recommended to apply the proton imaging diagnostic as a post processing application on existing
checkpoint files. Screen protons can be appended to existing detector files, but the proton imaging code does
not write currently any data to the checkpoint files. Restarting a FLASH application from a previous proton
imaging run is hence not recommended, especially if the time resolved proton imaging version is used. Old
disk protons waiting to be transported though the domain may be out of sync when restarting a previous
run.

26.3.1 Proton Deflection by Lorentz Force

In the presence of an electric and magnetic field, the (relativistic and non-relativistic) Lorentz force in CGS
units on a proton in motion is:

F = Q(E + v/c×B), (26.1)

where Q is the charge of the proton in esu (g1/2 cm3/2 s−1), F the force in dyne (g cm s−2), v the proton
velocity (cm s−1), c the speed of light (2.998 × 1010 cm s−1) and E and B are the electric and magnetic

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/diagnostics/ProtonImaging/ProtonImaging_F90.html
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fields in Gauss (g1/2 cm−1/2 s−1). The non-relativistic acceleration the proton experiences is:

a = Qm(E + v/c×B), (26.2)

where Qm is the mass rescaled charge Q/m of the proton. For uniform fields in each cell (constant
(Ex, Ey, Ez) and (Bx, By, Bz)), this leads to a set of 1st order coupled differential equations in time

v̇x(t) = Qm[Ex + vy(t)Bz/c− vz(t)By/c] (26.3)
v̇y(t) = Qm[Ey + vz(t)Bx/c− vx(t)Bz/c] (26.4)
v̇z(t) = Qm[Ez + vx(t)By/c− vy(t)Bx/c] (26.5)

for the velocity components vx(t), vy(t) and vz(t). Given the initial proton velocity components (v0x, v0y, v0z)
at time t = 0, the analytical solution to this system of coupled differential equations becomes:

vx(t) = (b2
xEx + bxbyEy + bxbzEz)Qmt

+(b2
x + b2

y cos[BQmt/c] + b2
z cos[BQmt/c])v0x

+bzey(1− cos[BQmt/c])c + byez(cos[BQmt/c]− 1)c
+bxby(1− cos[BQmt/c])v0y + bxbz(1− cos[BQmt/c])v0z

+(b2
yex + b2

zex − bxbyey − bxbzez) sin[BQmt/c]c

+(b2
xbz + b2

ybz + b3
z) sin[BQmt/c]v0y

−(b2
xby + b2

zby + b3
y) sin[BQmt/c]v0z (26.6)

vy(t) = [x→ y, y → z, z → x] vx(t) (26.7)
vz(t) = [x→ z, y → x, z → y] vx(t) (26.8)

where B is the magnitude of the magnetic field vector and bx = Bx/B and ex = Ex/B are the magnetic field
magnitude rescaled magnetic and electric field components. The operator [x → y, y → z, z → x] stands for
’replace x with y, y with z and z with x’ in the formula for vx(t). Qm is the mass rescaled charge of the proton.
Note that the units of ExQmt are the same as velocity. The quantities bx, ex and BQmt/c are dimensionless.
Integrating vx(t), vy(t) and vz(t) over t, we get expressions for the positions rx(t), ry(t) and rz(t) as a function
of time. The resulting equations have terms involving t, t2, cos[BQmt/c] and sin[BQmt/c], and cannot be
solved analytically. We therefore resort to a Runge-Kutta integration approach with the 6-dimensional ODE
vector:

d

dt

(
r
v

)
=

(
v
a

)
=
(

v
Qm(E + v/c×B)

)
, (26.9)

For certain orientations of E and B, however, analytical solutions for r and v are possible (see the unit test
section).

26.3.1.1 Relativistic Proton Equation of Motion

Although not (yet) implemented into FLASH, we state here briefly the relativistic proton equation of motion.
Starting from the Lorentz equation 26.1, the force F is the time derivative of the relativistic momentum p:

F =
dp
dt

=
d[γ(v)mv]

dt
, (26.10)

where m is the rest mass of the proton and γ(v) is the Lorentz factor:

γ(v) = 1/
√

1− (v · v/c)2 = 1/
√

1− (v/c)2. (26.11)

Performing the differentiation on the r.h.s. of Eq.(26.10) using the chain rule (since both v and thus γ
depend on time), we arrive at:

F = γ(v)ma⊥ + γ(v)3ma‖, (26.12)
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where a‖ and a⊥ are the parallel and perpendicular components of the acceleration a = dv/dt with respect
to the velocity vector:

a = a‖ + a⊥ , v · a⊥ = 0 , v · a = v · a‖. (26.13)

Inverting Eq.(26.12) to find the acceleration from the force on a moving proton leads to:

a =
1

γ(v)m

(
F− [v · F]v

c2

)
(26.14)

with magnitude:

a =
1

γ(v)m

√
F 2 − 1 + γ(v)2

c2γ(v)2
[v · F]2, (26.15)

and inserting the Lorentz force equation 26.1 we get the relativistic expression for the acceleration:

a = Qmγ (E + v/c×B− [v/c ·E] v/c) , (26.16)

where Qmγ is the relativistic mass rescaled charge Q/mγ(v) of the proton. Comparing this expression with
its non-relativistic version from Eq.(26.2), the main difference is not only the relativistic increase in mass
(mγ(v)) but also an extra term of order c−2 involving the electric field.

26.3.1.2 Approximate Solutions to the Non-Relativistic Proton Equation of Motion

Since Runge-Kutta integration with constraints (due to the cell boundaries) is expensive, we wish to derive
conditions under which the proton path through a cell approximates a parabola, for which quadratic solutions
to the path positions become available. To this end we expand v(t) in terms of t around the cell entry point
t = 0. We get:

v(t) = v0 +
∣∣∣∣dv(t)

dt

∣∣∣∣
t=0

t +
1
2

∣∣∣∣d2v(t)
dt2

∣∣∣∣
t=0

t2 + O[t3] (26.17)

= v0 + a0t +
j0
2

t2 + O[t3], (26.18)

where

a0 = Qm(E + v0/c×B) (26.19)
j0 = Qm(a0/c×B) (26.20)

are the acceleration and jerk vectors at the cell entry point. Integration of Eq.(26.18) yields the path
equation:

r(t) = r0 + v0t +
a0

2
t2 +

j0
6

t3 + O[t4]. (26.21)

The leading parabolic error term is hence the term involving the jerk vector. The largest parabolic error
term ε can be estimated by:

ε =
max j0

6
t3. (26.22)

If ε is less than the allowed positional error of the computation, the parabolic approximation is used. To get
also the velocity components with the same accuracy, the jerk terms are used to compute the velocities. If
the jerk terms are omitted from the velocity calculations, the velocity components would only be accurate
to first order in t and considerable error in velocity directions can accumulate during a proton imaging
application.
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In order to get a feeling for the conditions under which the parabolic approximation is applied in FLASH,
let us first state the expression for the jerk vector j0, which is obtained by noting that j0 = da0/dt and using
the acceleration vector expression twice:

j0 = (Q2
m/c)E×B + (Q2

m/c2)(v0 ×B)×B. (26.23)

The maximum magnitude that the j0 vector can achieve is given by the situation in which the pairs B,v0

and E,B are perpendicular and E×B is opposite to v0. This leads to

|j0| ≤ (Q2
m/c)EB + (Q2

m/c2)B2v0 (26.24)

and the inequality will also hold for the individual components of j0. Assuming no electric field, we can
estimate the magnitude of B for which the parabolic approximation should be valid. In FLASH, the positional
error is defined as a fraction f times the minimum cell side size. For a cubic cell with sides ∆ we can set up
the parabolic condition on B as follows:

Q2
mB2v0

6c2
t3 ≤ ∆f. (26.25)

The time it takes to cross the cubic cell is of the order of t = ∆/v0 and we conservatively extend this time
by the factor of 3

√
6 to get rid of the 6 in the denominator. The parabolic condition on B becomes

B ≤ cv0

Qm∆

√
f. (26.26)

For typical FLASH runs, we have for 20MeV protons v ≈ c/5 and ∆ is of the order of microns (10−4cm)
for typical simulations. The accuracy fraction f is typically 10−6. We also have Qm ≈ 2.9 × 1014 and
c = 2.99× 1010. Hence under these conditions we have:

B ≤ ≈ 107Gauss, (26.27)

i.e., all magnetic fields under 107 Gauss in a cell can be treated parabolically.

26.3.1.3 Approximate Solutions to the Relativistic Proton Equation of Motion

This follows along the lines of the previous section (26.3.1.2). Eq.(26.19) must be replaced by the relativistic
expression from Eq.(26.16), replacing v by v0, and Eq.(26.20) must be replaced by the time derivative of
Eq.(26.16), replacing in the final expression v by v0 and a by a0:

a0 = Qmγ (E + v0/c×B− [v0/c ·E] v0/c) , (26.28)
j0 = Qmγ (a0/c×B− [a0/c ·E] v0/c− 2[v0/c ·E] a0/c) , (26.29)

where Qmγ is equal to Q/mγ(v0). Note the extra terms of order c−2 when compared with Eqs.(26.19) and
(26.20). The largest parabolic error expression in Eq.(26.22) remains the same. Assuming again no electric
field, the same steps leading to the non-relativistic parabolic B condition in Eq.(26.26), leads to:

B ≤ cv0

Qmγ∆

√
f, (26.30)

the only difference being in using the relativistic mass rescaled proton charge. For the 20MeV protons
v ≈ c/5 this would lead to a factor of ≈ 1.02 larger B than in Eq.(26.27), due to the relativistically reduced
magnitude of j0.

26.3.2 Setting up the Proton Beam

The setup of each proton beam follows closely the setup of the laser beams in 17.4.6. The major difference
is that the proton imaging beams originate from 3D capsules instead of 2D planar crossection areas. This
allows for simulating proton capsule aberrations in the proton beams. The radius of the capsule as well as
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its center location is specified for each beam at runtime, as well as each beams full conical aperture angle.
Target coordinates are only needed for directional purposes and the target area is circular and perpendicular
to the beam’s direction. Additional runtime parameters needed for each beam are: 1) the launching time
(the beam fires once the simulation time exceeds the launching time), 2) its target detector screen and 3)
the number of protons to be launched and their energies. Once each beam has been set up, it is checked,
if its capsule volume is completely outside of the computational domain. A beam capsule (partially) inside
the domain is not allowed. A local set of 3D rectangular grid unit vectors u1,u2,u3 is constructed for each
beam, such that u3 points from the capsule center to the target center and u1 × u2 = u3. The 3D grid unit
vectors serve for generating statistical 3D points inside the spherical capsule as well as statistical 2D points
inside the circular target area.

26.3.3 Creating the Protons

The protons inside each beam are created by connecting one-to-one the statistical 3D grid points inside the
capsule with the statistical 2D grid points inside the circular target area. The proton directions inside each
beam are therefore not conically collinear and are allowed to cross. The proton initial positions and velocities
on the domain surface are calculated using the same strategy as presented in 17.4.7.6. Protons missing the
domain can either be simply ignored or directly recorded on the detector screen.

26.3.3.1 Moving Protons throught the Domain

As the total number of protons generated can be very large, special techniques have to be used to overcome
the computational memory constraints. The Proton Imaging unit has been designed to work with a proton
batch and screen proton bucket combination. Both the batch and the bucket are of much smaller size than
the total protons and screen protons generated and can be seen as temporary storage devices for both entities.
During a time step, the active proton beams start filling the generated protons into the beam proton batch.
Once filled, the beam protons in the batch are sent through the domain, where they are either collected
as disk protons into the disk proton batch (if time resolved proton imaging was requested) or as screen
protons into the screen proton bucket. If the screen proton bucket is full, its contents (screen protons) are
written to the corresponding detector files and emptied. The refilling of both the beam/disk proton batch
and the screen bucket are independent of each other and both batch and bucket can be of different sizes. The
main function ProtonImaging processes beam/disk proton batch after batch until no more active beam/disk
protons are present. As an example, if at a time step we have 3 active beams with 1, 000, 000 protons each
and the dimension of the proton batch is set to 100, 000, a total of 30 beam proton batches will be generated
and sent through the domain.

26.3.3.2 Proton Specifications

Each beam/disk proton needs to know its position x, y, z and velocity vx, vy, vz as it traverses the domain.
In addition to these 6 components it needs to know: 1) the time spent travelling in domain, 2) the current
block and processor numbers, 3) a global identification tag, 4) the originating beam and target detector
numbers. Screen protons on the other hand are only defined on the detector screen and hence need no
specific information for domain travelling. Their information is reduced to a screen position coordinate pair
x, y and a detector number to which detector they are associated with.

Additionally, upon request, the proton imaging code is able to calculate extra magnetic diagnostic quan-
tities k and J for each beam/disk and screen proton:

k =
∫

B d`, (26.31)

J =
∫

vn · (∇×B) d`, (26.32)

where
∫

d` denotes path integration, B is the magnetic field vector and vn is the unit normal velocity vector
along the proton path. Transforming the path integrals into time integrals using the relation d` = |v(t)|dt,

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/diagnostics/ProtonImaging/ProtonImaging_F90.html
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we get the differentials:

dk
dt

= B|v(t)|, (26.33)

dJ

dt
= v(t) · (∇×B). (26.34)

leading to extra 4 entries in the Runge-Kutta vector in Eq.(26.9):

d

dt


r
v
k
J

 =


v

Qm(E + v/c×B)
Bv

v · (∇×B)

 , (26.35)

If the parabolic path approximation is used for a cell, then v(t) = v0 +a0t, where v0 and a0 are the velocity
and acceleration at cell entry. For a J cell contribution we have (note this is a general result not depending
on the parabolic approximation):

J =
∫ T

0

v(t) · (∇×B)dt =
∫ T

0

dr(t) · (∇×B) = [r(T )− r0] · (∇×B) (26.36)

where T is the cell crossing time and r0,r(T ) are the cell entry and exit locations of the proton. For the
parabolic k cell contribution we have;

k = B
∫ T

0

|v0 + a0t|dt. (26.37)

The parabolic path length integral can be solved exactly. Using the following two dimensionless quantities:

X =
|a0|
|v0|

T (26.38)

cos θ =
a0 · v0

|a0||v0|
(26.39)

we get ∫ T

0

|v0 + a0t|dt =
1
2
|v0|T

[
1 +

(
X−1 cos θ + 1

) (√
X2 + 2X cos θ + 1− 1

)
+X−1(1− cos2 θ) ln

(
cos θ + X +

√
X2 + 2X cos θ + 1

cos θ + 1

)]
. (26.40)

Computational application of this formula must be done with some care to avoid loss of accuracy.

26.3.4 Setting up the Detector Screens

Each detector screen is defined as a square planar area with a specific side length s and an optional circular
pinhole. The orientation of the screen in 3D space is specified by three components: 1) the center location
of the screen C, 2) the normal vector of the screen plane n and 3) the orthogonal unit vector pair ux,uy

with origin at the center and oriented in such a way that each unit vector is parallel to two opposite sides
of the detector screen. Location of the pinhole H is fixed by giving the distance between the two pinhole
and detector centers and is always located on the detector side opposite to n. The circular pinhole area is
coplanar to the detector screen area. While C and n are sufficient to characterize the screen plane, the exact
location of the detector square area is only specified once the orientation of uy (or ux) is fixed. For that
purpose we define a tilting angle α of uy wrt one of the global 3D axes along the normal vector n. A tilting
angle of α = 0 would thus mean that the chosen global axis and uy are coplanar.
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26.3.4.1 Recording Protons on the Detector Screen

After each proton leaves the domain, it is located on the domain surface at a position P and with (outward
from domain) velocity v. The goal is to see, if the proton actually hits the screen plane and to record the
local coordinates (x, y) on the screen plane with coordinate basis [ux,uy]. After some algebra we arrive at
the following conditions

v · n = 0 proton moves parallel to screen plane (26.41)
(C−P) · n

v · n
> 0 proton hits screen plane (26.42)

and the following expressions for the local coordinates

x =
uy · [v × (C−P)]

v · n

y =
ux · [(C−P)× v]

v · n
. (26.43)

For better handling of the screen output data, the local coordinates are shifted and rescaled such that
(x, y) ∈ [0, 1] when the proton is on the detector screen. Using the detectors side length s, we achieve this
by the following local coordinate transformation:

x −→ (x + s/2)/s (26.44)
y −→ (y + s/2)/s. (26.45)

If a pinhole is present, the code has to check, if the proton makes it through the hole. Since the detector
screen area and the circular pinhole area are coplaner, we can use the local coordinate basis [ux,uy] located
at the pinhole center H to calculate a local pinhole coordinate for each proton, in analogy to Eq.(26.43):

hx =
uy · [v × (H−P)]

v · n
(26.46)

hy =
ux · [(H−P)× v]

v · n
. (26.47)

The proton makes it through the pinhole, if h2
x + h2

y ≤ r2
h, where rh is the radius of the pinhole.

The user is able to specify via a runtime parameter, if he wants only the detector screen protons (x, y) ∈
[0, 1] to be written to the detector file or if he also wants to record the offscreen protons (x, y) /∈ [0, 1]. Each
detector file is currently an ascii file (formatted) and named:

<basename>ProtonDetectorFile<detectorID> <timestamp> (26.48)

where <basename> is the name of the simulation, <detectorID> is the detector number (currently limited
to the range [01-99]) and (optionally) <timestamp> is the simulation time when the file was created. Only
the (x, y) pairs are written (first x followed by y on each line) without any headers. Thus the file can be
directly incorporated and read by other software for graphical output (see for example the proton imaging
ASCII − > PGM greyscale converter). Additionally, if requested, the detector file will contain in columns 3
to 6 the proton magnetic diagnostic quantities kx, ky, kz, J from Eqs.(26.31) and (26.32), in that order.

26.3.5 Time Resolved Proton Imaging

For some applications (slow moving protons, fast domain changing) it is desireable to adjust the domain
environment as the protons move through it. The proton imaging unit has been given this capability by
monitoring the time each proton spends in the domain and compare it to the computational time step. When
the proton time exceeds the time step value, it is stored as a disk proton which will be written to disk. All
disk protons from a previous time step must be first processed during a new time step before any new beam
protons are generated. During a time step, the main driver ProtonImaging calls the following two tasks,
each of which does the following operations:

Transport disk protons:

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/diagnostics/ProtonImaging/ProtonImaging_F90.html
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• Read all disk protons from old disk proton file

• Trace all disk protons through domain:

– To new disk proton file (if proton time > time step)

– To screen detector

• Rename new disk proton file −→ old disk proton file

Transport beam protons:

• Create all beam protons

• Trace all beam protons through domain:

– To new disk proton file (if proton time > time step)

– To screen detector

• Append new disk proton file −→ old disk proton file

The time resolved application requires extra memory and disk storage due to the presence of disk protons as
well as extra reading/writing time from/to disk. If only a non-time resolved proton imaging run is requested,
the code skips all array allocations and operations associated with the disk protons, and only the underlined
actions of the transport beam protons task get activated.

26.3.6 Usage

To include the use of the Proton Imaging unit, the following should be included into the setup line command:

+protonImaging [pi_maxBeams=<number> pi_maxDetectors=<number> threadProtonTrace=True]

The +protonImaging shortcut handles all the logistics for properly including the ProtonImaging unit. The
default settings are: maximum number of beams = 1, maximum number of detectors = 1 and no use of
threading during tracing of protons through the domain, which can be changed by the following three setup
variables:

• pi maxBeams: The maximum number proton beams for the simulation.

• pi maxDetectors: The maximum number of proton imaging detectors for the simulation.

• threadProtonTrace: Enables threading during proton domain tracing.

Using proton imaging runtime parameters in the flash.par file, the user can set up the proper proton imaging
configuration for his specific needs. The following list of runtime parameters is currently available for the
user.

26.3.6.1 Proton Imaging Beams Runtime Parameters

The following are the runtime parameters for the proton imaging beams. The n at the end of each runtime
parameter characterizes the beam number, hence replace n by 1 for the first beam, n by 2 for the second
beam, etc.

• pi numberOfBeams: The number of proton imaging beams that are going to be used.

• pi beamCapsule[X,Y,Z] n: The global 3D components of the capsule center position vector C.

• pi beamCapsuleRadius n: The radius of the spherical capsule.

• pi beamTarget[X,Y,Z] n: The global 3D components of the target position vector T for directional
purpose.
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• pi beamApertureAngle n: The conical full aperture angle.

• pi beamProtonEnergy n: The energy (in MeV) of the protons in the beam.

• pi beamTime2Launch n: The time during the simulation, when the beam should be fired.

• pi beamDetector n: The detector number, where the protons of the beam should be recorded.

• pi beamNumberOfProtons n: Number of protons to be launched from the beam.

• pi beamNoBoundaryCondition n: Ignore domain boundary conditions (reflective) when protons enter
the domain?

26.3.6.2 Proton Imaging Detectors Runtime Parameters

The following are the runtime parameters for the proton imaging detectors. As for the beams, the n at the
end of each runtime parameter characterizes the detector number.

• pi numberOfDetectors: The number of proton imaging detectors that are going to be used.

• pi detectorCenter[X,Y,Z] n: The global 3D components of the detector center position vector C.

• pi detectorNormal[X,Y,Z] n: The local 3D components of the detector normal vector n.

• pi detectorSideLength n: The side length (cm) of the detector square screen.

• pi detectorSideTiltingAngle n: The tilting angle (degrees) of two sides parallel to the detector
screen unit axis uy] with respect to the tilting axis.

• pi detectorSideTiltingAxis n: The global tilting axis (’x’,’y’ or ’z’) for the detector screen.

• pi detectorAlignWRTbeamNr n: A useful shortcut to place the detector screen right along a beam
path with the screen surface orthogonal to the beam path. This, together with the specified detector
distance from the beam capsule center, automatically calculates the center vector C and the normal
vector n. If a beam number ≤ 0 is specified, no alignment is performed and the user has to supply
center vector and normal vector coordinates.

• pi detectorDistance2BeamCapsule n: The detector distance from the beam capsule center, used only
if the detector is alligned with respect to a beam.

• pi detectorPinholeRadius n: The radius of the pinhole. If ≤ 0 no pinhole is used.

• pi detectorPinholeDist2Det n: The pinhole center distance from the detector center, useful only if
a pinhole radius > 0 was specified.

26.3.6.3 Proton Imaging General Runtime Parameters

• pi cellStepTolerance: This factor times the smallest dimension of each cell is taken as the positional
error tolerance for the protons during their path (parabolic or Runge-Kutta) tracing through each cell.

• pi cellWallThicknessFactor: Controls the (imaginary) thickness of the cell walls to ensure compu-
tational stability of the proton imaging code. The cell thickness is defined as this factor times the
smallest cell dimension along all geometrical axes. The factor is currently set to 10−6 and should only
very rarely be changed.

• pi detectorFileNameTimeStamp: If set to true, a time stamp will be added to each detector file name.
This allows for time splitting of detectors.

• pi detectorXYwriteFormat: Controls formatted ascii output of the proton (x, y) pairs on the detector
screens (default ’es20.10’).
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• pi detectorDGwriteFormat: Controls formatted ascii output of the magnetic diagnostic quantities
kx, ky, kz, J on the detector screens (default ’es15.5’).

• pi flagDomainMissingProtons: If true, any proton missing the domain will abort the program. If
false, protons missing the domain will be recorded directly on the detector screen.

• pi ignoreElectricalField: If true, the electrical field in each cell is ignored and the proton movement
is only governed by the magnetic field (deflection only).

• pi IOaddDetectorScreens: If true, the square frame of each detector will be added to the plotfile.

• pi IOaddProtonsCapsule2Domain: If true, the proton paths from the capsule to the domain entry
point will be added to the plotfile.

• pi IOaddProtonsDomain2Screen: If true, the proton paths from the domain exit point to the detector
screen will be added to the plotfile.

• pi IOmaxBlockCrossingNumber: This is an estimate of the maximum proton path length while travel-
ling through the block. This estimate is given as an integer number in units of block sides (default 5).
Only in extremely rare cases, when the magnetic and electric fields are strong and sufficiently warped
inside a block and the protons start to circulate inside the block, does one have to increase this number.

• pi IOnumberOfProtons2Plot: The number of protons that are to be plotted and written to the plotfile.

• pi maxProtonCount: The maximum number of beam/disk protons that can be created/read-in on one
processor per batch in the domain.

• pi opaqueBoundaries: If true, the protons do not go through cells marked as opaque boundaries.

• pi printBeams: If true, it prints detailed information about the proton beams to a file with name
<basename>ProtonBeamsPrint.txt, where <basename> is the base name of the simulation.

• pi printDetectors: If true, it prints detailed information about the proton detectors to a file with
name <basename>ProtonImagingDetectors.txt, where <basename> is the base name of the simula-
tion.

• pi printMain: If true, it prints general information regarding the proton imaging setup to a file
with name <basename>ProtonImagingMainPrint.txt, where <basename> is the base name of the
simulation.

• pi printProtons: If true, it prints detailed information about the all protons generated during the
simulation. Protons are ’generated’ on the domain surface and the info is written to several files labeled
by batch number BID, processor rank number PID and a time stamp. Each processor writes its own
file(s) with name(s): <basename>printProtonsBatch<BID>Proc<PID>.txt, where <basename> is
the base name of the simulation. Use of this feature is reserved ONLY for debugging purposes and
is currently limited to 10 batches and 100 processors per time stamp. Usage of a larger number of
batches/processors during a simulation does not abort the run, but protons on batches with BID > 10
and processors with PID > 99 are simply ignored and not printed. Users other than code developers
should not activate this feature.

• pi protonDeterminism: If true, the Grid Unit will be forced to use the sieve algorithm to move the
proton particle data. Forcing this algorithm will result in a slower movement of data, but will fix the
order the processors pass data and eliminate round off differences in consecutive runs.

• pi recordOffScreenProtons: If true, protons not hitting their target detector screen are also recorded
on the detector files. These protons will have screen coordinate pairs (x, y) /∈ [0, 1].

• pi RungeKuttaMethod: Specifies which Runge Kutta method to use for proton tracing. Current options
are: ’CashKarp45’ (order 4, default), ’EulerHeu12’ (order 1), ’BogShamp23’ (order 2), ’Fehlberg34’
(order 3) and ’Fehlberg45’ (order 4).
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• pi screenProtonBucketSize: Sets the bucket size for flushing screen protons out to disk.

• pi screenProtonDiagnostics: If true, the magnetic diagnostic quantities kx, ky, kz, J are evaluated
for each proton and recorded on the detector screens.

• pi timeResolvedProtonImaging: If true, it activates the time resolved proton imaging part of the
code. Protons might need several time steps to cross the domain.

• pi useIOprotonPlot: If true, protons are plotted to the plotfile for visualization pusposes.

• pi useParabolicApproximation: If true, the code traces protons parabolically through cells for low
B / high v combinations (section 26.3.1.2).

• useProtonImaging: If false, no proton imaging will be performed, even if the code was compiled to do
so. Bypasses the need to rebuild the code.

• threadProtonTrace: If true, proton tracing through a block is threaded. This runtime parameter can
only be set during setup of the code.

26.3.7 Unit Test

The unit test for the proton imaging unit consists in sending a ring of protons perpendicular onto a uniform
circular B field and measuring the deflection (radial increase) of the ring. Due to the circular B field and
the velocity direction of the protons, each proton experiences a radial outward force and the radial increase
of the protons can be calculated analytically.

26.3.7.1 Deflection of a Proton Ring by a Uniform Circular Magnetic Field

Consider the case of a uniform circular magnetic field with constant magnetic flux density B pointing
tangentially in clock- or anticlock-wise orientation around an axis, which we chose to be the y axis. If a
proton has only a y component velocity v0y 6= 0 initially, then it will be deflected radially outward or inward,
depending on the clock- or anticlockwise orientation of B. To simplify the calculations, we assume that
the proton is located such that at this point we have only a z magnetic component, that is Bz = ±B and
Bx, By = 0. Since also no electric field is present, we have that:

Ex, Ey, Ez, ex, ey, ez, bx, by = 0 (26.49)
bz = Bz/B = ±1 (26.50)

v0x, v0z = 0. (26.51)

Putting these values into Eqs.26.6, 26.7 and 26.8, the proton velocities become:

vx(t) = ±v0y sin[BQmt/c] (26.52)
vy(t) = v0y cos[BQmt/c] (26.53)
vz(t) = 0 (26.54)

showing that the proton moves within the same z-plane. The + sign in vx(t) applies, if Bz = +B (anti-
clockwise orientation) and the − sign, if Bz = −B (clockwise orientation). Integration over time gives the
position equations:

rx(t) = r0x ±
cv0y

BQm
(1− cos[BQmt/c]) (26.55)

ry(t) = r0y +
cv0y

BQm
sin[BQmt/c] (26.56)

rz(t) = r0z (26.57)

Taking the anticlockwise orientation of B, looking from above onto the fized z-plane, the proton will perform
a half-circle of radius cv0y/BQm. We are interested in the (radial) deflection along the x axis. The proton
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will travel through the domain in the y direction, where on exit the detector screen is placed. If we place
the detector right at the exit of the y direction, then we can calculate from the ry(t) equation the time it
takes for the proton to travel through (exit) the domain:

texit =
c

BQm
arcsin

(
DyBQm

cv0y

)
, (26.58)

where Dy is the length of the domain in y direction. If DyBQm/cv0y > 1, then the proton will not exit the
domain but rather curve back inside the domain. This happens if either Dy is too large (the domain extends
too far into the y direction), B is too large or the initial velocity v0y is too low. For a given Dy and v0y, the
limiting B would be:

Blimit =
cv0y

DyQm
. (26.59)

Inserting the texit expression into the rx(t) equation, we get:

rx(texit) = r0x +
cv0y

BQm

1−

√
1−

(
DyBQm

cv0y

)2
 . (26.60)

The radial deflection ∆r of the proton on the detector screen will be equal to rx(texit)− r0x and therefore:

∆r =
cv0y

BQm

1−

√
1−

(
DyBQm

cv0y

)2
 . (26.61)

The limiting radial deflection (i.e., the maximal radial deflection) that can be detected by the screen at the
domains exit is obtained by inserting the expression of Blimit into the last equation, which gets:

∆rlimit = Dy, (26.62)

and is hence equal to the domains extension in y direction.

26.3.7.2 FLASH Setup of the Unit Test and Results of some Test Runs

We set up a 3D cartesian domain consisting of a rectangular box with dimensions (in cm): x axis [0, 3], y
axis [0, 1] and z axis [0, 3]. A circular beam of 10000 protons with radius 0.5cm is shot along the y axis
perpendicular to the xy plane and centered on the xz plane at (1.5,1.5). The square detector screen was
placed extremely close to the domain exit in y direction and was of the same size as the domain’s xz plane,
i.e., of side length 3cm and centered at (1.5,1.5).

The variable parameters used were: 1) the proton energies (3 and 20MeV), 2) the uniform refinement
levels (3,4,5) and the magnetic field flux B (in Gauss). The following radial deflections ∆r were recorded:
1) the theoretical ∆rthr, 2) the maximum ∆rmax, 3) the minimum ∆rmin and 4) the average ∆ravg. The
results are presented in the following tables.
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Table 26.2: Maximum ∆rmax, minimum ∆rmin, average ∆ravg and theoretical ∆rthr outward radial de-
flections on a ring of 3 MeV protons for uniform domain refinement levels 3,4,5. Subscript numbers indicate
multiplication by negative exponents: ne means n× 10−e.

Proton energy 3 MeV (0.080 c), Refinement Levels = 3,4,5
B ∆rmax ∆rmin ∆ravg ∆rthr

1, 000 2.002593 2.001163 2.002303

2.002593 2.002203 2.002513 2.002593

2.002593 2.002503 2.002573

10, 000 2.003392 2.002302 2.003092

2.003392 2.003142 2.003312 2.003392

2.003392 2.003332 2.003372

100, 000 2.090061 2.089241 2.089771

2.090061 2.089861 2.089981 2.090061

2.090061 2.090011 2.090041

249, 677 9.975891 9.806701 9.867831

9.975891 9.901261 9.928321 9.975881

9.975891 9.946381 9.957971

Table 26.3: Idem like for Table 26.2, but for 20 MeV protons.

Proton energy 20 MeV (0.203 c), Refinement Levels = 3,4,5
B ∆rmax ∆rmin ∆ravg ∆rthr

1, 000 7.860584 7.854944 7.859464

7.860584 7.858854 7.860254 7.860584

7.860584 7.860184 7.860504

10, 000 7.861063 7.855653 7.859913

7.861063 7.859953 7.860753 7.861063

7.861063 7.860813 7.860983

100, 000 7.909752 7.906352 7.908622

7.909752 7.908912 7.909462 7.909752

7.909752 7.909562 7.909682

636, 085 9.983761 9.807501 9.869081

9.983761 9.902871 9.930611 9.983751

9.983761 9.949421 9.961961
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Table 26.4: Idem like for Table 26.2, but for 200 MeV protons.

Proton energy 200 MeV (0.566 c), Refinement Levels = 3,4,5
B ∆rmax ∆rmin ∆ravg ∆rthr

10, 000 2.821803 2.819783 2.821393

2.821803 2.821283 2.821683 2.821803

2.821803 2.821683 2.821773

100, 000 2.824032 2.822682 2.823612

2.824032 2.823702 2.823922 2.824032

2.824032 2.823952 2.824002

1, 000, 000 3.091461 3.090261 3.091001

3.091461 3.091161 3.091331 3.091451

3.091461 3.091381 3.091421

1, 771, 934 9.995841 9.808131 9.870061

9.995841 9.904131 9.932441 9.995811

9.995841 9.951911 9.965381
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Chapter 27

Interpolate Unit

source

numericalTools

Interpolate

InterpolateMain

Figure 27.1: The Interpolate unit directory tree.

27.1 Introduction

The Interpolate unit supplied with FLASH4 contains a collection of interpolation utilities that can be
applied to interpolate quantities on specific grids. It currently contains only cubic interpolation routines for
1D, 2D and 3D rectangular grids, based on piecewise (Hermite) cubic interpolation techniques.

27.2 Piecewise Cubic Interpolation

Piecewise cubic interpolation is a technique that can be used to create functional C1 surfaces (1st derivative
continuous) throughout a grid domain by using functional and derivative information at each vertex of a
grid cell. The domain function F and its derivatives dF are assumed to be known or at least calculable at
each vertex. In order to show the essential features of the piecewise cubic interpolation method and to keep
the formulas and matrix sizes manageable, we present the method for 2D domain geometries.

Consider a particular rectangular 2D cell. We wish to calculate a domain function F as a piecewise cubic
polynomial in terms of [0, 1] rescaled variables x, y inside each cell:

F (x, y) =
3∑

i,j=0

aijx
iyj . (27.1)
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The [0, 1] rescaled variable x is obtained from the domain global variable X and the cell’s lower X` and
upper Xu dimension as

x =
X −X`

Xu −X`
, (27.2)

with a similar expression for y. From the expansion in 27.1, there are 16 expansion coefficients which need
to be determined (fitted) to an appropriate set of data for specific points on the cell, which, in order to
assure continuous representation of F over the entire domain, have to sit on the cell’s boundaries. The most
obvious choice for these points are the cell vertices, each vertex belonging to four cells. The data needed
for each vertex are F , dF/dx, dF/dy and d2F/dxdy. This leads to a linearly independent and rotationally
invariant set of 16 data values, from which the 16 expansion coefficients can be uniquely determined. It can
also be shown that for other dimensions only the inclusion of all mixed simple higher order derivatives leads
to a linearly independent and rotationally invariant set of data values. For example, for rectangular 3D
geometries the data needed at each of the 8 vertices of a cubic cell is F , dF/dx, dF/dy, dF/dz, d2F/dxdy,
d2F/dxdz, d2F/dydyz and d3F/dxdydz.

Let us now organize the 16 expansion coefficients aij into a vector a, such that each element a(k) of a is
associated with the following expansion coefficient:

a(k) = aij ; k = 1 + i + 4j. (27.3)

Likewise, we stack the data values of the four vertices v = 1, 2, 3, 4 into a vector b as follows:

b =


Fv

(dF/dx)v

(dF/dy)v

(d2F/dxdy)v

; Fv =


F1

F2

F3

F4

; (dF/dx)v =


(dF/dx)1
(dF/dx)2
(dF/dx)3
(dF/dx)4

; etc... (27.4)

Let us associate the four vertex indices with the following four [0, 1] rescaled variables of the cell:

v = 1 −→ (x, y) = (0, 0)
v = 2 −→ (x, y) = (1, 0)
v = 3 −→ (x, y) = (0, 1)
v = 4 −→ (x, y) = (1, 1)

. (27.5)

Substituting these values for x and y into equation 27.1 and its derivatives, we can establish a connection
between the expansion coefficient vector and the data vector in the form

b = Ba, (27.6)

where the 16 x 16 matrix B has the following structure

B =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 3 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0
0 0 0 0 0 1 2 3 0 2 4 6 0 3 6 9



, (27.7)



27.3. USAGE 385

containing only positive integers and many zeros (175 out of 256 elements). Since we are ultimately interested
in the expansion coefficients for the cell, we invert equation 27.6 and get

a = B−1b. (27.8)

The inverse B−1 is also an integer matrix and again contains many zero elements, although not as many as
B itself (156 out of 256 elements):

B−1 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
−3 3 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0

2 −2 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −3 3 0 0 −2 −1 0 0
0 0 0 0 0 0 0 0 2 −2 0 0 1 1 0 0
−3 0 3 0 0 0 0 0 −2 0 −1 0 0 0 0 0

0 0 0 0 −3 0 3 0 0 0 0 0 −2 0 −1 0
9 −9 −9 9 6 3 −6 −3 6 −6 3 −3 4 2 2 1
−6 6 6 −6 −3 −3 3 3 −4 4 −2 2 −2 −2 −1 −1

2 0 −2 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 −2 0 0 0 0 0 1 0 1 0
−6 6 6 −6 −4 −2 4 2 −3 3 −3 3 −2 −1 −2 −1

4 −4 −4 4 2 2 −2 −2 2 −2 2 −2 1 1 1 1



.(27.9)

The matrix B−1 is universal for all 2D cells. Each cell has its specific data vector b from which its expansion
coefficient vector a can be established via 27.8. Rather than storing B−1 in matrix form and performing
a direct matrix times vector operation for each cell, B−1 is used implicitly when converting b to a. This
avoids the redundant zero multiplications and is thus much more efficient. In fact, by using cleverly arranged
reusable intermediates, this b to a transformation can be coded using only additions and subtractions and
no multiplications at all.

Once the expansion coefficient vector a for a cell has been established, equation 27.1 can be used to
obtain the function value F at any point inside the cell, provided the [0, 1] rescaled coordinates of that point
are given. The function values are given by Eq.(27.1), which can be computed efficiently using a double
Horner scheme:

ãj = ((a3jx + a2j)x + a1j)x + a0j (27.10)
F (x, y) = ((ã3y + ã2)y + ã1)y + ã0 (27.11)

The evaluation of the global coordinate differentials is done using the chain rule and leads to:

dm+nF (X, Y )
dXmdY n

= (Xu −X`)−m(Yu − Y`)−n dm+nF (x, y)
dxmdyn

(27.12)

dm+nF (x, y)
dxmdyn

=
3∑

i=m

3∑
j=n

(i)m(j)naijx
i−myj−n, (27.13)

where the Pochhammer symbol (i)m is defined as (i)m = i(i− 1)...(i−m + 1).

27.3 Usage

To include the cubic interpolation tool into your FLASH development, add the line

REQUIRES numericalTools/Interpolate

into the Config file of the directory where the global API’s of the interpolation unit will be used. Another
way would be to include the option
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-with-unit=numericalTools/Interpolate

into your command line when you configure the code with setup. Both ways will give you access to the
following cubic interpolation tools in order of their application, where XX stand for the 3 rectangular domain
geometries 1D,2D and 3D:

• Interpolate cubicXXmonoDerv: Handles the logistics for producing optimum sets of mixed vertex
derivatives for a (sub)grid from vertex functional values to ensure monotonicity of the generated C1

cubic interpolation surfaces. Note that in oder to generate these mixed derivatives the user needs to
provide the vertex function values on a larger (sub)grid than the target (sub)grid: 1,2,3 extra vertex
layers for 1D,2D,3D rectangular geometries.

• Interpolate cubicXXcoeffs: Calculate the cubic expansion coefficients aij in equation 27.1 from
user provided sets of vertex data b, arranged as shown in 27.4. The calculation is performed in situ,
i.e. the input vector b is overwritten by the cubic expansion coefficient vector a using equation 27.8.
The routine accepts a collection of different b vectors and processes them all at once. For XX = 2D
or 3D, the code allows for multithreading.

• Interpolate cubicXXF(d1)(d2): For a specific cubic expansion coefficient vector a and a set of up
to three [0, 1] rescaled coordinates x, y, z, these function routines calculate the functional value F using
equation 27.1 and additionally the complete set of 1st (dx,dy,dz) and 2nd (d2x,d2y,d2z,dxdy,dxdz,dydz)
order [0, 1] rescaled coordinate derivatives using equation 27.13. Transformation to global coordinate
derivatives via equation 27.12 is not done here and has to be done by the user in his specific application.



Chapter 28

Roots Unit
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Figure 28.1: The Roots unit directory tree.

28.1 Introduction

The Roots unit supplied with FLASH4 aims at collecting all those utilities that find solutions (roots) to
equations of the form f(x) = 0. Currently the Roots unit only contains routines to find all the roots of
quadratic, cubic and quartic polynomials with real coefficients. Particular emphasis has been put on speed
and stability of root evaluation.

28.2 Roots of Quadratic Polynomials

Here we solve

x2 + a1x + a0 = 0, (28.1)

where a1 and a0 are real. Well known techniques (larger magnitude root x1 computed by quadratic formula,
smaller magnitude root computed by applying Vieta’s rule: x2 = a0/x1) are used to ensure numerical
accuracy of the roots. Additionally the code is equipped to deal with extremely large coefficients, such that
computational overflow will not occur. A coefficient rescaling technique is applied if during evaluation of the
quadratic formula either the term (a1/2)2 or the discriminant (a1/2)2 − a0 become larger than the largest
positive number on the machine.

387
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28.3 Roots of Cubic Polynomials

This solves the cubic polynomial equation

x3 + a2x
2 + a1x + a0 = 0, (28.2)

where a2,a1 and a0 are real. Rather than calculating the roots by the analytical formulas, a special technique
has been devised to pinpoint down one of the real roots by iteration. After rescaling the cubic polynomial
coefficients such that −1 ≤ a2, a1, a0 ≤ +1 and classifying the rescaled cubic polynomials into 6 classes, an
analysis of the real root(s) surfaces for each class enables one to find an optimum starting point for a fast
convergent Newton-Raphson iteration. In rare cases when the Newton-Raphson iterations start oscillating
around the root due to numerical rounding errors, a bisection iteration follows to get the root to within
machine accuracy. Details of this procedure can be found in Flocke 2015. After one of the real roots has
been found, the remaining roots (real or complex) are found by solving the residual quadratic, which is
obtained by composite (forward/backward) deflation.

28.4 Roots of Quartic Polynomials

Solutions to the quartic polynomial equation

x4 + a3x
3 + a2x

2 + a1x + a0 = 0, (28.3)

where a3,a2,a1 and a0 are all real, are found again by Newton-Raphson and bisection iterations techniques,
even for quartics possessing only complex roots. Please consult Flocke 2015 for the theoretical and compu-
tational details.

28.5 Usage

To include the root tools into your FLASH development, add the line

REQUIRES numericalTools/Roots

into the Config file of the directory where the global API’s of the interpolation unit will be used. Another
way would be to include the option

-with-unit=numericalTools/Roots

into your command line when you configure the code with setup. Both ways will give you access to the
following root tools:

• Roots x2Polynomial: Finds all roots of a quadratic polynomial. The coefficient of the leading
quadratic term must be equal to 1. For ordering of the roots, please consult the info in the header of
this routine.

• Roots x3Polynomial: Finds all roots of a cubic polynomial. The coefficient of the leading cubic
term must be equal to 1. For ordering of the roots, please consult the info in the header of this routine.

• Roots x4Polynomial: Finds all roots of a quartic polynomial. The coefficient of the leading quartic
term must be equal to 1. For ordering of the roots, please consult the info in the header of this routine.

28.6 Unit Tests

There is currently a unit test for each kind of polynomial. They are all based on setting up the polynomial
coefficients for known roots and checking the obtained root accuracies from the respective root solvers. The
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unit tests try to stress test the root solvers by setting up polynomials which are hard to solve. Two measures
are used for judging accuracy of the roots obtained. The relative accuracy of a root is defined as

Relative root accuracy = |(xe − xc)/xe|, (28.4)

where xe is the exact analytical root and xc the computational root. The absolute accuracy of a computa-
tional root xc is

Absolute root accuracy = |xc|. (28.5)

For the unit tests we will use the relative root accuracy if xe 6= 0 and the absolute root accuracy otherwise.

28.6.1 Quadratic Polynomials Root Test

This test solves quadratic polynomials with extreme coefficients involving the largest positive number L
and the smallest postive number S representable on the machine under the working precision (for double
precision we would have L ≈ 1.797...×10308 and S ≈ 2.225...×10−308). All possible combinations are tested.
We examine only the LL combination in detail. The four quadratic LL polynomials are:

x2 ± Lx± L = 0 (28.6)

with the two roots:

x1 = ∓L/2 +
√

(L/2)2 ∓ L (28.7)

x2 = ∓L/2−
√

(L/2)2 ∓ L. (28.8)

Since (L/2)2 is much larger than L, we can expand the square root in a Taylor series√
(L/2)2 ∓ L ≈ L/2∓ 1 + O[L−1]. (28.9)

The roots are approximated as

x1 = ∓L/2 + L/2∓ 1 + O[L−1] (28.10)
x2 = ∓L/2− L/2∓ 1 + O[L−1]. (28.11)

However, a quantity like L+1 cannot be accurately represented on a machine due to limited mantissa space
and will get converted to L. The following table shows the computational roots to be expected for the
quadratic LL polynomials

a1 a0 x1 x2

+L +L −1 −L
+L −L +1 −L
−L +L +L +1
−L −L +L −1

Likewise, after going throught the same kind of analysis for the remaining LS, SL and SS polynomials, we
can establish their computational roots. For the four SS polynomials we get (since

√
S � S):

a1 a0 x1 x2

+S +S +i
√

S −i
√

S

+S −S +
√

S −
√

S

−S +S +i
√

S −i
√

S

−S −S +
√

S −
√

S

The four LS polynomials give (since S/L is not representable and hence equal to zero)
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Table 28.1: Coefficients of the cubics I-IX used for the cubic polynomial root test.

Cubic a2 a1 a0

I −1.00000010000001e+14 +1.00000010000001e+21 −1.e+21
II −3.000003 +3.000006000002 −1.000003000002
III +8.999e+80 −1.0009e+161 +1.e+238
IV +1.e+24 −1.0 −1.e+24
V −1.99999999999999e+14 +0.99999999999998e+28 +1.e+28
VI −3.e+5 +3.0000000001e+10 −1.0000000001e+15
VII −3.0 +1.00000000000003e+14 −1.00000000000001e+14
VIII −2.0000001e+7 +1.00000020000001e+14 −1.00000000000001e+14
IX +0.99999999999998e+14 −1.99999999999998e+14 +2.e+14

Table 28.2: Analytical roots and FLASH4 cubic solver accuracy performance of the cubics I-IX used for the
cubic polynomial root test.

Cubic Roots Comments on Roots Accuracy
I +10+14, +10+7, +1 3 widely spaced real < 1.e−15
II +1.000002, +1.000001, +1 3 closely spaced real < 1.e−9
III −10+81, +10+80, +10+77 3 large real < 1.e−15
IV −10+24, +1, −1 1 large, 2 small real < 1.e−15
V +10+14, +10+14, −1 2 degenerate large, 1 small real < 1.e−15
VI +10+5, +10+5 ± i 3 closely spaced, small imag parts < 1.e−15
VII +1, +1± 10+7i 1 small real, 2 large complex, large imag parts < 1.e−15
VIII +1, +10+7 ± i 1 small real, 2 large complex, small imag parts < 1.e−15
IX −10+14, +1± i 1 large real, 2 small complex < 1.e−15

a1 a0 x1 x2

+L +S 0 −L
+L −S 0 −L
−L +S +L 0
−L −S +L 0

and the four SL polynomials have computational roots

a1 a0 x1 x2

+S +L +i
√

L −i
√

L

+S −L +
√

L −
√

L

−S +L +i
√

L −i
√

L

−S −L +
√

L −
√

L

The quadratic solver implemented in FLASH4 obtains all the above roots to within machine epsilon accuracy.

28.6.2 Cubic Polynomials Root Test

The following set of cubic polynomials I-IX is used for the test. It corresponds to the set used in xxx and
represents difficult to solve cases that stress test the cubic solver. In Tables 28.1 and 28.2 we list all the
coefficients, analytical roots and FLASH4 cubic solver accuracy performance of these polynomials. The
polynomials were designed to be tested with double precision machine working precision.
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Table 28.3: Coefficients of the quartics I-XIII used for the quartic polynomial root test.

Quartic a3 a2 a1 a0

I −1.001001001e+9 +1.001002001001e+15 −1.001001001e+18 +1.e+18
II −4.006 +6.018011 −4.018022006 +1.006011006
III −9.98899e+79 −1.1008989e+157 −1.010999e+233 −1.e+307
IV −1.00000000000002e+14 +1.99999999999999e+14 +1.00000000000002e+14 −2.e+14
V +1.e+7 −2.00000000000001e+14 −1.e+7 +2.e+14
VI −9.000002e+6 −0.9999981999998e+13 +1.9999982e+13 −2.e+13
VII +2.000011e+6 +1.010022000028e+12 +1.1110056e+13 +2.828e+13
VIII −1.00002011e+8 +2.01101022001e+11 −1.02200111000011e+14 +1.1000011e+15
IX −2.0000002e+7 +1.01000040000005e+14 −2.020001e+14 +5.05e+14
X −1.9986e+4 +1.00720058e+8 −1.8600979874e+10 +1.00004909000441e+14
XI −4.006 +5.6008018e+1 −1.04148036024e+2 +6.75896068064016e+2
XII −4.0e+3 +6.00001e+6 −4.00002e+9 +1.000010000009e+12
XIII −6.0 +1.01000013e+8 −2.04000012e+8 +1.00000104000004e+14

Table 28.4: Analytical roots and FLASH4 quartic solver accuracy performance of the quartics I-XIII used
for the quartic polynomial root test.

Quartic Roots Comments on Roots Accuracy
I +10+9, +10+6, +10+3, +1 4 widely spaced real < 1.e−15
II +1.003, +1.002, +1.001, +1 4 closely spaced real < 1.e−7
III +10+80, −10+77, −10+76, −10+74 4 large real < 1.e−15
IV +10+14, +2, +1, −1 1 large, 3 small real < 1.e−15
V −2× 10+7, +10+7, +1, −1 2 large, 2 small real < 1.e−15
VI +10+7, −10+6, +1± i 2 large real, 2 small complex < 1.e−15
VII −7, −4, −10+6 ± 10+5i 2 small real, 2 large complex < 1.e−15
VIII +10+8, +11, +10+3 ± i 1 large and small real, 2 medium complex < 1.e−15
IX +10+7 ± 10+6i, +1± 2i 2 large, 2 small complex < 1.e−15
X +10+4 ± 3i, −7± 10+3i 4 complex, mixed size real and imag parts < 1.e−14
XI +1.002± 4.998 i, +1.001± 5.001 i 4 closely spaced complex < 1.e−12
XII +10+3 ± 3i, +10+3 ± i 4 complex, equal real, small imag parts < 1.e−15
XIII +2± 10+4i, +1± 10+3i 4 complex, small real, large imag parts < 1.e−15

28.6.3 Quartic Polynomials Root Test

Again the set of quartic polynomials I-XIII have been taken from xxx. Tables 28.3 and 28.4 list all the
coefficients, analytical roots and FLASH4 quartic solver accuracy performance of these polynomials. The
polynomials were designed to be tested with double precision machine working precision.
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RungeKutta Unit
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Figure 29.1: The RungeKutta unit directory tree.

29.1 Introduction

The RungeKutta unit in FLASH4 provides users with the tools to perform various kinds of (embedded)
Runge Kutta (RK) iterations. The RK iterations are characterized by their implemented Butcher tableaus
of various sizes and orders. The specific ODE to be solved must be transmitted via argument to the individual
RK stepping routines. The RK routines contain no specifics of the ODE equations to be solved. This clean
separation between the ODE function and the details of the RK iterations gives a universally applicable RK
tool, which can be called from any FLASH4 application.

29.2 Runge Kutta Integration

The RK integration scheme starts from an initial set of first order ODE dependent variable values y0 and
advances the ODE solution y through well defined steps in the independent variable x. Control of the
dependent variable errors allows for optimum step size control. We describe here the embedded RK schemes,
which use the same intermediate vectors k to get an estimate of the error vector e. An embedded RK step

393
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can be represented by the following equations:

d

dx
y(x) = f(y(x), x) (29.1)

ki = hf(y(x) +
s∑

j=1

aijkj , x + cih) (29.2)

y(x + h) = y(x) +
s∑

i=1

biki + O[hp+2] (29.3)

y(x + h) = y(x) +
s∑

i=1

b∗i ki + O[hp+1] (29.4)

e =
s∑

i=1

(bi − b∗i )ki + O[hp+1] (29.5)

Here h denotes the step size and s is the size of the embedded RK scheme. Each particular embedded RK
scheme is characterized by the four sets of coefficients aij , bi, b

∗
i , ci, which can be arranged into a table known

as a Butcher tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

b∗1 b∗2 · · · b∗s

The coefficients b and b∗ correspond to RK methods of order p + 1 and p, from which the error vector
is constructed via equation 29.5. If only the strict lower triangle of the aij values are non-zero, then the
embedded RK scheme is explicit. Otherwise we have an implicit scheme. Explicit RK schemes are much
easier to solve, because all intermediate k vectors can be evaluated one after another using previously
evaluated k vectors. Implicit RK schemes on the other hand have to be solved in an iteratively fashion and
are much more expensive. FLASH4 currently has only explicit RK schemes implemented. Error control on
each RK step is done by passing a maximum allowed absolute error vector emax corresponding to each of the
dependent variables in y. Step size control is currently implemented using information from the obtained
error vector e after the RK step and the maximum error vector emax. Using the fact that the error scales
as O[hp+1] due to the lower p order embedded RK method, the new step size hnew is adjusted from the old
step size hold as follows

hnew = holdS
(
max

∣∣∣emax

e

∣∣∣)1/(p+1)

(29.6)

and used as the next trial step size. A safety factor (typically S = 0.9) is used to account for the fact that
only the leading hp+1 term from O[hp+1] was used in deriving this formula.

In some situations one needs an initial guess for the very first initial trial step size. This can be done
from the supplied ODE vector y and the maximum allowed error vector emax as follows. Consider the Taylor
expansion of y(x + h) around x:

y(x + h) = y(x) + hy(1)(x) + h2y(2)(x)/2 + · · ·+ hpy(p)(x)/p! + O[hp+1], (29.7)

where y(p) denotes the p-th derivative of y with respect to x. The expansion error O[hp+1] can be directly
related to the O[hp+1] error of a RK method of order p (cf. equation 29.4). As an approximation one can
equate the absolute value of the Taylor remainder term with the error goal of the RK method (i.e. plugging
in formulas for both O[hp+1] terms):

hp+1|y(p+1)(x∗)|/(p + 1)! = |emax|, (29.8)
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where x ≤ x∗ ≤ x + h. Since we are dealing with an approximation, we further set x∗ = x (this in effect
approximates O[hp+1] by its leading term and ignores the > p + 1 terms), leading to

h = min

(
(p + 1)!

∣∣∣∣ emax

y(p+1)(x)

∣∣∣∣)1/p+1

. (29.9)

We then solve for h and take the minimum to satisfy all components. To use this formula we need to evaluate
the derivative. The following are second order central difference formulas based on equal spacing h (not to
be confused with the RK step size) between functions:

y(m+2k+δ)(x) =
1

h2k+δ

k+δ∑
n=−(k+δ)

(−1)k+n−δ nδ(2k + δ)!
(k + n + δ)!(k − n + δ)!

y(m)(x + nh) + R[h2], (29.10)

where the remainder term is equal to

R[h2] = −k + 2δ

12
h2y(m+2k+2+δ)(x∗) (29.11)

with x − (k + δ)h ≤ x∗ ≤ x + (k + δ)h and δ = 0, 1, depending on if one wants even or odd higher order
derivatives. For m = 0 the derivatives are given in terms of the original functions y(x + ih), whereas
for m > 0 we get higher order derivatives from lower order derivatives. These formulas can be derived
by setting up a system of derivative linear equations from the Taylor expansions of all the (derivative)
functions y(m)(x±nh) for a certain range of n integers and solving these equations for the lowest derivatives
(the technique is discribed in J. Mathews, Computer Derivations of Numerical Differentiation Formulae,
International Journal of Mathematics Education in Science and Technology, Volume 34 No 2, pp.280-287).
The functions y(x ± nh) could in principle be obtained using the RK equation 29.3, but a much more
economical approach would be to use the 1st derivatives (i.e. using m = 1 in equation 29.10). We have from
equation 29.1:

y(1)(x + nh) = f(y(x + nh), x + nh) (29.12)
≈ f(y(x) + nhy(1)(x), x + nh) (29.13)
≈ f(y(x) + nhf(y(x), x), x + nh), (29.14)

where, since the nh are small, the first order expansion of y(x + nh) has been used. Note the nested use of
the derivative ODE function f in equation 29.14. Since the goal is to estimate y(p+1)(x) via equation 29.10,
we set p = 2k + δ, from which k and δ are uniquely determined.

In practice it turns out that equation 29.10 is numerically very unstable for higher order derivatives. We
will use it only for estimating low order derivatives. This leaves us with the problem of estimating higher
order derivatives in equation 29.9. We follow ideas presented in J. Comp. Appl. Math. 18, 176-192 (1987).
To this end we first split the maximum error vector into an error base vector and an error fraction scalar

emax = efrac · ebase (29.15)

and have the user supplied both quantities. The purpose of this splitting is that we separate the maximum
error vector into an accuracy part (the efrac, typically of the order of 10−6 to 10−12) and a part which
relates to the magnitude of the vectors involved in the ODE (the ebase). We further assume that the user
has sufficient knowledge about his ODE problem, such that he can construct these two quantities obeying
roughly the following inequalities:

efrac < 1 (29.16)
ebase 6= 0 (29.17)

|ebase| ≥ max
{
|hny(n)(x)/n!|;n = 0, 1, . . .∞

}
. (29.18)

With this choice of ebase, all terms in equation 29.7 can be divided by ebase. If we now assume a smooth
convergence of the Taylor series and further postulate an exponential type decay between the individual
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ebase-rescaled Taylor terms (which all must be ≤ 1 due to the assumptions in equation 29.18)∣∣∣∣hny(n)(x)
n! ebase

∣∣∣∣ =
∣∣∣∣hmy(m)(x)

m! ebase

∣∣∣∣n/m

n ≥ m, (29.19)

we can replace the higher order derivatives in equation 29.9 by lower order ones and obtain:

h = e
1/p+1
frac ·min

(
m!
∣∣∣∣ ebase

y(m)(x)

∣∣∣∣)1/m

. (29.20)

Note the similar structure to equation 29.9. The higher order contribution has been relegated to efrac,
which, due to the condition in equation 29.16, leads to larger initial step size estimates for higher order RK
schemes. In practice we calculate step size estimates using only m = 2 and m = 1. In rare cases when all 1st
and 2nd order derivatives of y(x) vanish, the (user supplied) default maximum step size estimate is used.
This maximum step size estimate can be given for example as a cell/domain size measure, when it is clear
that the RK stepper should not step beyond a cell or outside of the domain.

A separate RK stepping routine exists in FLASH4, which performs confined RK steps, which will be
explained next. Looking at equation 29.2, we see that for an RK step the ODE function f has to be
evaluated repeatedly for several intermediate yi vectors

yi = y(x) +
s∑

j=1

aijkj . (29.21)

For certain applications it may not be possible to evaluate the ODE function at some of these intermediate
vectors due to lack of sufficient data. An example would be tracing the (classical) path of a particle through
a cell. Only the acceleration vector field of that particular cell is available. If one of the position variables
in yi steps outside of the cell boundaries, the acceleration vector at that point cannot be evaluated and the
step size h must be reduced. The confined RK stepping routine needs extra boundary vectors corresponding
to the variables in the y vectors. The boundary vectors can be only a subset of all the y vector variables.
Those variables which have no corresponding boundary vector entries are assumed to be unbound. Since the
boundaries might itself depend on the variables in y, the boundary vectors are transmitted to the confined
RK stepper as functions, which have to be designed by the user.

29.3 Usage

To include the RK integration tool into your FLASH development, add the line

REQUIRES numericalTools/RungeKutta

into the Config file of the directory where the global API’s of the interpolation unit will be used. Another
way would be to include the option

-with-unit=numericalTools/RungeKutta

into your command line when you configure the code with setup. This gives you access to the following RK
tools:

• RungeKutta step: Performs one unconfined RK step. Optimum stepping size is calculated internally
by using equation 29.6 and readjusted until target accuracy is met. The routine requires as input an
initial step size to start the RK stepping process.

• RungeKutta stepConfined: Performs one confined RK step. Same underlaying machinery as for
the unconfined RK stepper, except stepping size is additionally readjusted to comply with the supplied
boundaries of the confined dependent variables.

• RungeKutta stepSizeEstimate: Returns an estimate for initial step sizes in situations where no
good initial guess of step size is available. The code is based on equations 29.10, 29.14 and 29.20.
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29.4 Unit Tests

29.4.1 Runge Kutta FLASH Test for a 2D Elliptical Path

29.4.1.1 Derivation of the 2D elliptical path ODE

Consider the following ODE in 2D, operating on a 2D vector r:

dr
dt

=
(

λ1 ω
−ω λ2

)
r = Ar. (29.22)

This ODE describes a rotational (ω) and sheer (λ1, λ2) force on a particle located at r. If λ1, λ2 = 0, then
the ODE describes a particle revolving in a circle of radius r(0), the initial radius of the particle. The general
solution to the above ODE is:

r(t) = eAtr(0). (29.23)

The matrix exponential is given by:

eAt =
1
∆

(
(eAt)11 (eAt)12
(eAt)21 (eAt)22

)
, (29.24)

where

(eAt)11 =
1
2
et(λ1+λ2+∆)/2(λ1 − λ2 + ∆) +

1
2
et(λ1+λ2−∆)/2(−λ1 + λ2 + ∆) (29.25)

(eAt)12 = ω(et(λ1+λ2+∆)/2 − et(λ1+λ2−∆)/2 (29.26)
(eAt)21 = −(eAt)12 (29.27)

(eAt)22 =
1
2
et(λ1+λ2+∆)/2(−λ1 + λ2 + ∆) +

1
2
et(λ1+λ2−∆)/2(λ1 − λ2 + ∆) (29.28)

and

∆ =
√

(λ1 − λ2)2 − 4ω2. (29.29)

For general values of λ1, λ2, ω, the path of the particle is a spiral around the origin. Closed paths are possible,
if at certain times t 6= 0 we have eAt = I. A necessary condition is thus that the offdiagonal elements of eAt

have to become zero for certain t 6= 0. Since each of these elements has a factor of the structure eB − eC ,
then either both B and C are real and equal or B and C are imaginary with oposite sign. Both situations
can only happen, if λ2 = −λ1. The first case (B,C real and equal) is only possible if ∆ = 0 and the second
case (B,C imaginary and of opposite sign) only if ∆ is imaginary. Hence, necessary conditions for a closed
path are:

λ2 = −λ1 (29.30)
ω2 ≥ λ2

1. (29.31)

Let us now introduce the parameter |k| > 1 such that:

ω = kλ1. (29.32)

Then our closed path ODE becomes:

dr
dt

= λ1

(
1 k
−k −1

)
r (29.33)

and, since λ1 is now just merely a scaling factor, we can further condense the closed path ODE to:

dr
dt

=
(

1 k
−k −1

)
r. (29.34)
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This is the 2D ellipse ODE we are going to use for our Runge Kutta test. Inserting λ1 = 1, λ2 = −1 and
ω = k into the above general solution, we obtain, after inserting the identity eiφ = cos(φ) + i sin(φ), the
following real path solution:

(
x(t)
y(t)

)
=


sin(φ)√
k2 − 1

+ cos(φ)
k sin(φ)√

k2 − 1

− k sin(φ)√
k2 − 1

− sin(φ)√
k2 − 1

+ cos(φ)

( x0

y0

)
, (29.35)

where

φ = t
√

k2 − 1. (29.36)

For φ = nπ;n = 1, 3, 5, . . ., the 2x2 matrix is equal to −I, i.e. the particle made a half revolution. For
φ = nπ;n = 2, 4, 6, . . ., the 2x2 matrix is equal to I and the particle made a complete revolution. The time
T it takes for the particle to make one complete revolution (its time period) is thus:

T =
2π√

k2 − 1
. (29.37)

The square of the distance d2 = [x(t)]2 + [y(t)]2 the particle is found from the origin has a minimum and a
maximum at the following angles:

φmax(k > 1) = arctan

[√
k + 1
k − 1

x0 + y0

x0 − y0

]
(29.38)

φmin(k > 1) = − arctan

[√
k − 1
k + 1

x0 − y0

x0 + y0

]
(29.39)

φmax(k < 1) = −φmin(k > 1) (29.40)
φmin(k < 1) = −φmax(k > 1). (29.41)

These angles (range [−π/2,+π/2]) give only the angles to the nearest maximum/minimum point from the
original position (x0, y0). The other two angles corresponding to the remaining maximum/minimum distance
points are obtained by adding π. The corresponding times are:

tmax = φmax/
√

k2 − 1 (29.42)

tmin = φmin/
√

k2 − 1. (29.43)

The corresponding minimum and maximum square distances are:

d2
min =

k(x2
0 + y2

0) + 2x0y0

k + sgn[k]
(29.44)

d2
max =

k(x2
0 + y2

0) + 2x0y0

k − sgn[k]
, (29.45)

where the signum function sgn is:

k > 0 −→ sgn[k] = +1 (29.46)
k < 0 −→ sgn[k] = −1. (29.47)

From these formulas we see that

• if x0 = y0 and k > 1 , then the first tmin is equal to zero, i.e. the particle is at its minimum distance√
2|x0| from the origin.

• if x0 = y0 and k < −1 , then the first tmax is equal to zero, i.e. the particle is at its maximum distance√
2|x0| from the origin.
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• if x0 = −y0 and k > 1, then the first tmax is equal to zero, i.e. the particle is at its maximum distance√
2|x0| from the origin.

• if x0 = −y0 and k < −1, then the first tmin is equal to zero, i.e. the particle is at its minimum distance√
2|x0| from the origin.

• the aspect ratio A of the elliptical path is equal to A =
√

(k + sgn[k])/(k − sgn[k]).

We next develop the approach and formulas to find the minimum/maximum distance from a general point
in a 2D domain to a general ellipse inside this 2D domain.

29.4.1.2 Minimum and maximum distance from a point to a general ellipse in a 2D cartesian
domain

We will first get the general parametric equation of an ellipse in 2D cartesian space. We start by placing a
2D ellipse with its center at the cartesian origin and with its minor/major axis aligned along the cartesian
y/x axis. Let the semi-major axis have length a and the semi-minor axis have length b. The parametric
equation for this ellipse is: (

x
y

)
=

(
a sin θ
b cos θ

)
, (29.48)

where the angle parameter is in the range 0 ≤ θ ≤ 2π. Next we clockwise rotate the entire ellipse such that
the minor axis makes an angle α with the cartesian y-axis. The range of this rotation angle is 0 ≤ α ≤ π.
The parametric equation for the rotated ellipse becomes(

x
y

)
= R

(
a sin θ
b cos θ

)
=
(

cos α sinα
− sinα cos α

)(
a sin θ
b cos θ

)
, (29.49)

where R is the rotation matrix that sends every point to its new rotated point. Finally we add the center
translation vector T = (Tx, Ty) to the equation for ellipses that are not located at the cartesian origin:(

x
y

)
=

(
cos α sinα
− sinα cos α

)(
a sin θ
b cos θ

)
+
(

Tx

Ty

)
. (29.50)

This is the general parametric equation of any ellipse in 2D cartesian space. Consider a specific point (x, y)
on the ellipse. The tangent line at this ellipse point contains the tiny derivative vector

v =
(

dx/dθ
dy/dθ

)
=
(

a cos α cos θ − b sinα sin θ
−a sinα cos θ − b cos α sin θ

)
, (29.51)

with its origin at the ellipse point (x, y). The other vector we consider is the vector

w =
(

xp − x
yp − y

)
=
(

xp − a cos α sin θ − b sinα cos θ − Tx

yp + a sinα sin θ − b cos α cos θ − Ty

)
, (29.52)

which also has its origin at the ellipse point (x, y). The minimum distance occurs for those θ for which
v ·w = 0 (perpendicular vectors). This gives the following equation for θ:

R cos θ + S sin θ + U cos θ sin θ = 0, (29.53)

where

R = a[(yp − Ty) sinα− (xp − Tx) cos α] (29.54)
S = b[(xp − Tx) sinα + (yp − Ty) cos α] (29.55)
U = a2 − b2. (29.56)
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Note, that U 6= 0, whenever a 6= b. For a = b (a circle) we will have U = 0 and the equation becomes easily
solvable. The elliptical U term makes the equation much harder to solve. Eliminating the sin θ term, we
arrive at the following quartic equation in cos θ:

cos4 θ + 2
(

S

U

)
cos3 θ +

[(
R

U

)2

+
(

S

U

)2

− 1

]
cos2 θ − 2

(
S

U

)
cos θ −

(
S

U

)2

= 0.

Its solutions give us up to 4 different possible angles θ. However, to each cos θ solution there correspond
two sin θ solutions via sin θ = ±

√
1− cos2 θ, increasing the total possible solutions to 8. Each of these 8

solutions must be checked for the minimum and maximum distance given by |w|. As far as the number
of real solutions for the above quartic is concerned, when the point is inside or close to the ellipse, we can
visualize that there are 4 possible directions from the point to the ellipse for which we have v ·w = 0 (i.e.
we hit the ellipse curve at right angles). Hence for this point location we expect 4 real quartic solutions. On
the other hand, if we are far away from the ellipse, only 2 such points on the elliptical curve will exist and
we expect 2 real and 2 complex solutions. We should never get 4 complex solutions of the above quartic.

29.4.1.3 The FLASH test problem for the Runge Kutta 2D ellipse test

We will now set up the unit test for the Runge Kutta 2D ellipse test. We start by stating the initial conditions
and the requested shape of the ellipse:

1. The particle is initially at position (x0, y0) = (1, 1).

2. We want the particle to follow an elliptical path with given aspect ratio A.

From this requested aspect ratio we calculate our needed k as:

k =
A2 + 1
A2 − 1

(29.57)

and we take k to be positive from now on. This means that the particle will start moving along the elliptical
curve in the clockwise direction. By looking at the general formulas derived in the previous sections, we can
state the following properties and equations for the ellipse. The square distance extrema and locations will
be:

d2
min = 2 (located at (1, 1) and (−1,−1) (29.58)

d2
max = 2A2 (located at (A,−A) and (−A,A). (29.59)

From this we see that the major and minor semi-axis will have lengths:

a =
√

2A (29.60)

b =
√

2. (29.61)

From the particle’s initial position at (1, 1), the minor and major semi-axis will be reached at the following
times (n = 0, 1, 2, . . .):

tminor =
(A2 − 1)

2A
πn (29.62)

tmajor =
(A2 − 1)

2A
π(n + 1/2). (29.63)

Hence the period of one complete revolution (returning to (1, 1)) is given by:

T =
(A2 − 1)

A
π. (29.64)

The ellipse is represented by the following two (equivalent) forms:

(x− y)2

4A2
+

(x + y)2

4
= 1 (29.65)
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and the parametric time equations:

x(t) = A sin
(

2A

A2 − 1
t

)
+ cos

(
2A

A2 − 1
t

)
(29.66)

y(t) = −A sin
(

2A

A2 − 1
t

)
+ cos

(
2A

A2 − 1
t

)
. (29.67)

We will show 4 kinds of errors during a Runge Kutta run:

ex = Runge Kutta error in x-coordinate (29.68)
ey = Runge Kutta error in y-coordinate (29.69)
er = Minimum distance from Runge Kutta point to ellipse curve (29.70)
et = Time distance error: et =

√
[x− x(t)]2 + [y − y(t)]2 (29.71)
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Simulation Units
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Chapter 30

The Supplied Test Problems

source

Simulation

SimulationMain

Sedov ... unitTest

Eos ...

magnetoHD

Rotor ...

SimulationComposition

Figure 30.1: The Simulation unit directory tree. Only some of the provided simulation implementations
are shown. Users are expected to add their own simulations to the tree.

To verify that FLASH works as expected and to debug changes in the code, we have created a suite
of standard test problems. Many of these problems have analytical solutions that can be used to test the
accuracy of the code. Most of the problems that do not have analytical solutions produce well-defined flow
features that have been verified by experiments and are stringent tests of the code. For the remaining
problems, converged solutions, which can be used to test the accuracy of lower resolution simulations, are
easy to obtain. The test suite configuration code is included with the FLASH source tree (in the Simulation/
directory), so it is easy to configure and run FLASH with any of these problems ‘out of the box.’ Sample
runtime parameter files are also included. All the test problems reside in the Simulations unit. The unit
provides some general interfaces most of which do not have general implementations. Each application
provides its own implementation for these interfaces, for example, Simulation initBlock. The exception
is Simulation initSpecies, which provides general implementations for different classes of problems.

30.1 Hydrodynamics Test Problems

These problems are primarily designed to test the functioning of the hydrodynamics solvers within FLASH4.

405
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30.1.1 Sod Shock-Tube

The Sod problem (Sod 1978) is a one-dimensional flow discontinuity problem that provides a good test of a
compressible code’s ability to capture shocks and contact discontinuities with a small number of cells and
to produce the correct profile in a rarefaction. It also tests a code’s ability to correctly satisfy the Rankine-
Hugoniot shock jump conditions. When implemented at an angle to a multidimensional grid, it can be used
to detect irregularities in planar discontinuities produced by grid geometry or operator splitting effects.

We construct the initial conditions for the Sod problem by establishing a planar interface at some angle
to the x- and y-axes. The fluid is initially at rest on either side of the interface, and the density and pressure
jumps are chosen so that all three types of nonlinear, hydrodynamic waves (shock, contact, and rarefaction)
develop. To the “left” and “right” of the interface we have

ρL = 1.0 ρR = 0.125
pL = 1.0 pR = 0.1 (30.1)

The ratio of specific heats γ is chosen to be 1.4 on both sides of the interface.
In FLASH, the Sod problem (Sod) uses the runtime parameters listed in Table 30.1 in addition to

those supplied by default with the code. For this problem we use the Gamma equation of state alternative
implementation and set gamma to 1.4. The default values listed in Table 30.1 are appropriate to a shock with
normal parallel to the x-axis that initially intersects that axis at x = 0.5 (halfway across a box with unit
dimensions).

Table 30.1: Runtime parameters used with the Sod test problem.

Variable Type Default Description
sim rhoLeft real 1 Initial density to the left of the interface (ρL)
sim rhoRight real 0.125 Initial density to the right (ρR)
sim pLeft real 1 Initial pressure to the left (pL)
sim pRight real 0.1 Initial pressure to the right (pR)
sim uLeft real 0 Initial velocity (perpendicular to interface) to the

left (uL)
sim uRight real 0 Initial velocity (perpendicular to interface) to the

right (uR)
sim xangle real 0 Angle made by interface normal with the x-axis

(degrees)
sim yangle real 90 Angle made by interface normal with the y-axis

(degrees)
sim posn real 0.5 Point of intersection between the interface plane

and the x-axis

Figure 30.2 shows the result of running the Sod problem with FLASH on a two-dimensional grid with
the analytical solution shown for comparison. The hydrodynamical algorithm used here is the directionally
split piecewise-parabolic method (PPM) included with FLASH. In this run the shock normal is chosen to
be parallel to the x-axis. With six levels of refinement, the effective grid size at the finest level is 2562, so
the finest cells have width 0.00390625. At t = 0.2, three different nonlinear waves are present: a rarefaction
between x = 0.263 and x = 0.486, a contact discontinuity at x = 0.685, and a shock at x = 0.850. The
two discontinuities are resolved with approximately two to three cells each at the highest level of refinement,
demonstrating the ability of PPM to handle sharp flow features well. Near the contact discontinuity and
in the rarefaction, we find small errors of about 1 − 2% in the density and specific internal energy, with
similar errors in the velocity inside the rarefaction. Elsewhere, the numerical solution is close to exact; no
oscillations are present.

Figure 30.3 shows the result of running the Sod problem on the same two-dimensional grid with different
shock normals: parallel to the x-axis (θ = 0◦) and along the box diagonal (θ = 45◦). For the diagonal
solution, we have interpolated values of density, specific internal energy, and velocity to a set of 256 points

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
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Figure 30.2: Comparison of numerical and analytical solutions to the Sod problem. A 2D grid with six
levels of refinement is used. The shock normal is parallel to the x-axis.
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Figure 30.3: Comparison of numerical solutions to the Sod problem for two different angles (θ) of the shock
normal relative to the x-axis. A 2D grid with six levels of refinement is used.
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spaced exactly as in the x-axis solution. This comparison shows the effects of the second-order directional
splitting used with FLASH on the resolution of shocks. At the right side of the rarefaction and at the contact
discontinuity, the diagonal solution undergoes slightly larger oscillations (on the order of a few percent) than
the x-axis solution. Also, the value of each variable inside the discontinuity regions differs between the two
solutions by up to 10%. However, the location and thickness of the discontinuities is the same for the two
solutions. In general, shocks at an angle to the grid are resolved with approximately the same number of
cells as shocks parallel to a coordinate axis.

Figure 30.4 presents a colormap plot of the density at t = 0.2 in the diagonal solution together with the
block structure of the AMR grid. Note that regions surrounding the discontinuities are maximally refined,
while behind the shock and contact discontinuity, the grid has de-refined, because the second derivative of
the density has decreased in magnitude. Because zero-gradient outflow boundaries were used for this test,
some reflections are present at the upper left and lower right corners, but at t = 0.2 these have not yet
propagated to the center of the grid.

Figure 30.4: Density in the diagonal 2D Sod problem with six levels of refinement at t = 0.2. The outlines
of AMR blocks are shown (each block contains 8× 8 cells).

SodStep Example

FLASH4 also contains under the name SodStep a variant of the Sod problem. This setup is
provided as an example for setting up simulations on domains with steps and obstacles. See
the files in the SodStep simulation directory and the Simulation defineDomain description
for more information on how to use this feature.

30.1.2 Variants of the Sod Problem in Curvilinear Geometries

Variants of the Sod problems can be set up in in various geometries in order to test the handling of non-
Cartesion geometries.

• An axisymmetric variant of the Sod problem can be configured by setting up the regular Sod simulation
with ./setup Sod -auto -2d -geometry=cylindrical and using runtime parameters that include
geometry = "cylindrical". Use sim_xangle = 0 to configure an initial shock front that is shaped
like a cylinder. Results as in those discussed in Toro 1999 can be obtained.

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_defineDomain_F90.html
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• A spherically symmetric variant of the Sod problem can be configured by setting up the regular Sod
simulation with ./setup Sod -auto -1d -geometry=spherical and using runtime parameters that
include geometry = "spherical". Again results as in those discussed in Toro 1999 can be obtained.

• To test the behavior of FLASH solutions when the physical symmetry of the problem does not match
the geometry of the simulation, a separate simulation is provided under the name SodSpherical. To
use this, configure with ./setup SodSpherical -auto -2d -geometry=spherical and using runtime
parameters that include geometry = "spherical". As a 2D setup, SodSpherical represents physi-
cally axisymmetric initial conditions in spherical coordinates. The physical problem can be chosen to
be the same as in the previous case with cylindrical Sod. Again results as in those discussed in Toro
1999 can be obtained.

• The SodSpherical setup can also configured in 1D and will act like the 1D Sod setup in that case.

30.1.3 Interacting Blast-Wave Blast2

This Blast2 problem was originally used by Woodward and Colella (1984) to compare the performance of
several different hydrodynamical methods on problems involving strong shocks and narrow features. It has
no analytical solution (except at very early times), but since it is one-dimensional, it is easy to produce a
converged solution by running the code with a very large number of cells, permitting an estimate of the
self-convergence rate. For FLASH, it also provides a good test of the adaptive mesh refinement scheme.

The initial conditions consist of two parallel, planar flow discontinuities. Reflecting boundary conditions
are used. The density is unity and the velocity is zero everywhere. The pressure is large at the left and right
and small in the center

pL = 1000, pM = 0.01, pR = 100 . (30.2)

The equation of state is that of a perfect gas with γ = 1.4.
Figure 30.5 shows the density and velocity profiles at several different times in the converged solution,

demonstrating the complexity inherent in this problem. The initial pressure discontinuities drive shocks into
the middle part of the grid; behind them, rarefactions form and propagate toward the outer boundaries,
where they are reflected back into the grid. By the time the shocks collide at t = 0.028, the reflected
rarefactions have caught up to them, weakening them and making their post-shock structure more complex.
Because the right-hand shock is initially weaker, the rarefaction on that side reflects from the wall later,
so the resulting shock structures going into the collision from the left and right are quite different. Behind
each shock is a contact discontinuity left over from the initial conditions (at x ≈ 0.50 and 0.73). The shock
collision produces an extremely high and narrow density peak. The peak density should be slightly less
than 30. However, the peak density shown in Figure 30.5 is only about 18, since the maximum value of the
density does not occur at exactly t = 0.028. Reflected shocks travel back into the colliding material, leaving
a complex series of contact discontinuities and rarefactions between them. A new contact discontinuity has
formed at the point of the collision (x ≈ 0.69). By t = 0.032, the right-hand reflected shock has met the
original right-hand contact discontinuity, producing a strong rarefaction, which meets the central contact
discontinuity at t = 0.034. Between t = 0.034 and t = 0.038, the slope of the density behind the left-hand
shock changes as the shock moves into a region of constant entropy near the left-hand contact discontinuity.

Figure 30.6 shows the self-convergence of density and pressure when FLASH is run on this problem. We
compare the density, pressure, and total specific energy at t = 0.038 obtained using FLASH with ten levels
of refinement to solutions using several different maximum refinement levels. This figure plots the L1 error
norm for each variable u, defined using

E(Nref ;u) ≡ 1
N(Nref)

N(Nref )∑
i=1

∣∣∣∣ui(Nref)−Aui(10)
ui(10)

∣∣∣∣ , (30.3)

against the effective number of cells (N(Nref)). In computing this norm, both the ‘converged’ solution u(10)
and the test solution u(Nref) are interpolated onto a uniform mesh having N(Nref) cells. Values of Nref

between 2 (corresponding to cell size ∆x = 1/16) and 9 (∆x = 1/2048) are shown.
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Figure 30.5: Density and velocity profiles in the Woodward-Colella interacting blast-wave problem Blast2
as computed by FLASH using ten levels of refinement.
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Although PPM is formally a second-order method, the convergence rate is only linear. This is not sur-
prising, since the order of accuracy of a method applies only to smooth flow and not to flows containing
discontinuities. In fact, all shock capturing schemes are only first-order accurate in the vicinity of discon-
tinuities. Indeed, in their comparison of the performance of seven nominally second-order hydrodynamic
methods on this problem, Woodward and Colella found that only PPM achieved even linear convergence;
the other methods were worse. The error norm is very sensitive to the correct position and shape of the
strong, narrow shocks generated in this problem.

The additional runtime parameters supplied with the 2blast problem are listed in Table 30.2. This
problem is configured to use the perfect-gas equation of state (gamma) with gamma set to 1.4 and is run in
a two-dimensional unit box. Boundary conditions in the y-direction (transverse to the shock normals) are
taken to be periodic.
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Figure 30.6: Self-convergence of the density, pressure, and total specific energy in the Blast2 test problem.

Table 30.2: Runtime parameters used with the 2blast test prob-
lem.

Variable Type Default Description
rho left real 1 Initial density to the left of the left interface (ρL)
rho mid real 1 Initial density between the two interfaces (ρM)
rho right real 1 Initial density to the right of the right interface

(ρR)
p left real 1000 Initial pressure to the left (pL)
p mid real 0.01 Initial pressure in the middle (pM)
p right real 100 Initial pressure to the right (pR)
u left real 0 Initial velocity (perpendicular to interface) to the

left (uL)
u mid real 0 Initial velocity (perpendicular to interface) in the

middle (uM)
u right real 0 Initial velocity (perpendicular to interface) to the

right (uR)
xangle real 0 Angle made by interface normal with the x-axis

(degrees)
yangle real 90 Angle made by interface normal with the y-axis

(degrees)
posnL real 0.1 Point of intersection between the left interface

plane and the x-axis
posnR real 0.9 Point of intersection between the right interface

plane and the x-axis
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30.1.4 Sedov Explosion

The Sedov explosion problem (Sedov 1959) is another purely hydrodynamical test in which we check the
code’s ability to deal with strong shocks and non-planar symmetry. The problem involves the self-similar
evolution of a cylindrical or spherical blast wave from a delta-function initial pressure perturbation in an
otherwise homogeneous medium. To initialize the code, we deposit a quantity of energy E = 1 into a small
region of radius δr at the center of the grid. The pressure inside this volume p′0 is given by

p′0 =
3(γ − 1)E

(ν + 1)π δrν
, (30.4)

where ν = 2 for cylindrical geometry and ν = 3 for spherical geometry. We set the ratio of specific heats
γ = 1.4. In running this problem we choose δr to be 3.5 times as large as the finest adaptive mesh resolution
in order to minimize effects due to the Cartesian geometry of our grid. The density is set equal to ρ0 = 1
everywhere, and the pressure is set to a small value p0 = 10−5 everywhere but in the center of the grid.
The fluid is initially at rest. In the self-similar blast wave that develops for t > 0, the density, pressure, and
radial velocity are all functions of ξ ≡ r/R(t), where

R(t) = Cν(γ)
(

Et2

ρ0

)1/(ν+2)

. (30.5)

Here Cν is a dimensionless constant depending only on ν and γ; for γ = 1.4, C2 ≈ C3 ≈ 1 to within a few
percent. Just behind the shock front at ξ = 1 the analytical solution is

ρ = ρ1 ≡
γ + 1
γ − 1

ρ0

p = p1 ≡
2

γ + 1
ρ0u

2 (30.6)

v = v1 ≡
2

γ + 1
u ,

where u ≡ dR/dt is the speed of the shock wave. Near the center of the grid,

ρ(ξ)/ρ1 ∝ ξν/(γ−1)

p(ξ)/p1 = constant (30.7)
v(ξ)/v1 ∝ ξ .

Figure 30.7 shows density, pressure, and velocity profiles in the two-dimensional, cylindrical Sedov prob-
lem at t = 0.05. Solutions obtained with FLASH on grids with 2, 4, 6, and 8 levels of refinement are shown
in comparison with the analytical solution. In this figure we have computed average radial profiles in the
following way. We interpolated solution values from the adaptively gridded mesh used by FLASH onto a
uniform mesh having the same resolution as the finest AMR blocks in each run. Then, using radial bins with
the same width as the cells in the uniform mesh, we binned the interpolated solution values, computing the
average value in each bin. At low resolutions, errors show up as density and velocity overestimates behind
the shock, underestimates of each variable within the shock, and a very broad shock structure. However, the
central pressure is accurately determined, even for two levels of refinement. Because the density goes to a
finite value rather than to its correct limit of zero, this corresponds to a finite truncation of the temperature
(which should go to infinity as r → 0). This error results from depositing the initial energy into a finite-width
region rather than starting from a delta function. As the resolution improves and the value of δr decreases,
the artificial finite density limit also decreases; by Nref = 6 it is less than 0.2% of the peak density. Except for
the Nref = 2 case, which does not show a well-defined peak in any variable, the shock itself is always captured
with about two cells. The region behind the shock containing 90% of the swept-up material is represented
by four cells in the Nref = 4 case, 17 cells in the Nref = 6 case, and 69 cells for Nref = 8. However, because
the solution is self-similar, for any given maximum refinement level, the structure will be four cells wide at
a sufficiently early time. The behavior when the shock is under-resolved is to underestimate the peak value
of each variable, particularly the density and pressure.
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Figure 30.7: Comparison of numerical and analytical solutions to the Sedov problem in two dimensions.
Numerical solution values are averages in radial bins at the finest AMR grid resolution N ref in each run.
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Figure 30.8 shows the pressure field in the 8-level calculation at t = 0.05 together with the block refinement
pattern. Note that a relatively small fraction of the grid is maximally refined in this problem. Although the
pressure gradient at the center of the grid is small, this region is refined because of the large temperature
gradient there. This illustrates the ability of PARAMESH to refine grids using several different variables at
once.

Figure 30.8: Pressure field in the 2D Sedov explosion problem with 8 levels of refinement at t = 0.05. The
outlines of the AMR blocks are overlaid on the pressure colormap.

We have also run FLASH on the spherically symmetric Sedov problem in order to verify the code’s
performance in three dimensions. The results at t = 0.05 using five levels of grid refinement are shown
in Figure 30.9. In this figure we have plotted the average values as well as the root-mean-square (RMS)
deviations from the averages. As in the two-dimensional runs, the shock is spread over about two cells at the
finest AMR resolution in this run. The width of the pressure peak in the analytical solution is about 1 1/2
cells at this time, so the maximum pressure is not captured in the numerical solution. Behind the shock the
numerical solution average tracks the analytical solution quite well, although the Cartesian grid geometry
produces RMS deviations of up to 40% in the density and velocity in the de-refined region well behind the
shock. This behavior is similar to that exhibited in the two-dimensional problem at comparable resolution.

The additional runtime parameters supplied with the Sedov problem are listed in Table 30.3. This
problem is configured to use the perfect-gas equation of state (Gamma) with gamma set to 1.4. It is simulated
in a unit-sized box.

30.1.4.1 Sedov Self-Gravity

Another variant of the Sedov problem is included in the release which runs with spherical coordinates in one
dimension. The Sedov Self-Gravity problem also allows the effects of gravitational acceleration where the
gravitational potential is calculated using the multipole solver. Figure 30.10 and 30.11 show the snapshots
of the density profile and the gravitational potential at two different times during the evolution. The first
snapshot is at t = 0.5 sec, when evolution is halfway through, while the second snapshot is at the end of the
evolution, where t = 1.0 sec.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
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Figure 30.9: Comparison of numerical and analytical solutions versus radius r to the spherically symmetric
Sedov problem. A 3D grid with five levels of refinement is used.
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Table 30.3: Runtime parameters used with the Sedov test problem.

Variable Type Default Description
sim pAmbient real 10−5 Initial ambient pressure (p0)
sim rhoAmbient real 1 Initial ambient density (ρ0)
sim expEnergy real 1 Explosion energy (E)
sim rInit real 0.05 Radius of initial pressure perturbation (δr)
sim xctr real 0.5 x-coordinate of explosion center
ssim yctr real 0.5 y-coordinate of explosion center
sim zctr real 0.5 z-coordinate of explosion center
sim nSubZones integer 7 Number of sub-cells in cells for applying the 1D

profile

Figure 30.10: Snapshots of Sedov Self-gravity density profile and gravitational potential at time t=0.5 sec.

Figure 30.11: Snapshots of Sedov Self-gravity density profile and gravitational potential at time t=1.0 sec.
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30.1.5 Isentropic Vortex

The two-dimensional isentropic vortex problem is often used as a benchmark for comparing numerical meth-
ods for fluid dynamics. The flow-field is smooth (there are no shocks or contact discontinuities) and contains
no steep gradients, and the exact solution is known. It was studied by Yee, Vinokur, and Djomehri (2000)
and by Shu (1998). In this subsection the problem is described, the FLASH control parameters are explained,
and some results demonstrating how the problem can be used are presented.

The simulation domain is a square, and the center of the vortex is located at (xctr, yctr). The flow-field
is defined in coordinates centered on the vortex center (x′ = x− xctr, y

′ = y− yctr) with r2 = x′
2 + y′

2. The
domain is periodic, but it is assumed that off-domain vortexes do not interact with the primary; practically,
this assumption can be satisfied by ensuring that the simulation domain is large enough for a particular
vortex strength. We find that a domain size of 10×10 (specified through the Grid runtime parameters xmin,
xmax, ymin, and ymax) is sufficiently large for a vortex strength (defined below) of 5.0. In the initialization
below, x′ and y′ are the coordinates with respect to the nearest vortex in the periodic sense.

The ambient conditions are given by ρ∞, u∞, v∞, and p∞, and the non-dimensional ambient temperature
is T ∗∞ = 1.0. Using the equation of state, the (dimensional) T∞ is computed from p∞ and ρ∞. Perturbations
are added to the velocity and nondimensionalized temperature, u = u∞+δu, v = v∞+δv, and T ∗ = T ∗∞+δT ∗

according to

δu = −y′
β

2π
exp

(
1− r2

2

)
(30.8)

δv = x′
β

2π
exp

(
1− r2

2

)
(30.9)

δT ∗ = − (γ − 1)β
8γπ2

exp
(
1− r2

)
, (30.10)

where γ = 1.4 is the ratio of specific heats and β = 5.0 is a measure of the vortex strength. The temperature
and density are then given by

T =
T∞
T ∗∞

T ∗ (30.11)

ρ = ρ∞

(
T

T∞

) 1
γ−1

. (30.12)

At any location in space, the conserved variables (density, x- and y-momentum, and total energy) can be
computed from the above quantities. The flow-field is initialized by computing cell averages of the conserved
variables; in each cell, the average is approximated by averaging over nx subint × ny subint subintervals.
The runtime parameters for the isentropic vortex problem are listed in Table 30.4.

Table 30.4: Parameters for the IsentropicVortex problem.

Variable Type Default Description
p ambient real 1.0 Initial ambient pressure (p∞)
rho ambient real 1.0 Initial ambient density (ρ∞)
u ambient real 1.0 Initial ambient x-velocity (u∞)
v ambient real 1.0 Initial ambient y-velocity (v∞)
vortex strength real 5.0 Non-dimensional vortex strength
xctr real 0.0 x-coordinate of vortex center
yctr real 0.0 y-coordinate of vortex center
nx subint integer 10 number of subintervals in x-direction
ny subint integer 10 number of subintervals in y-direction

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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Figure 30.12 shows the exact density distribution represented on a 40×40 uniform grid with −5.0 ≤ x, y ≤
5.0. The borders of each grid block (8× 8 cells) are superimposed. In addition to the shaded representation,
contour lines are shown for ρ = 0.95, 0.85, 0.75, and 0.65. The density distribution is radially symmetric,
and the minimum density is ρmin = 0.510287. Because the exact solution of the isentropic vortex problem
is the initial solution shifted by (u∞t, v∞t), numerical phase (dispersion) and amplitude (dissipation) errors
are easy to identify. Dispersive errors distort the shape of the vortex, breaking its symmetry. Dissipative
errors smooth the solution and flatten extrema; for the vortex, the minimum in density at the vortex core
will increase.

Figure 30.12: Density at t = 0.0 for the isentropic vortex problem. Shown are the initial condition and the
exact solution at t = 10.0, 20.0, . . ..

A numerical simulation using the PPM scheme was run to illustrate such errors. The simulation used the
same grid shown in Figure 30.12 with the same contour levels and color values. The grid is intentionally coarse
and the evolution time long to make numerical errors visible. The vortex is represented by approximately
8 grid points in each coordinate direction and is advected diagonally with respect to the grid. At solution
times of t = 10, 20, . . ., etc., the vortex should be back at its initial location.

Figure 30.13 shows the solution at t = 50.0; only slight differences are observed. The density distribution
is almost radially symmetric, although the minimum density has risen to 0.0537360. Accumulating dispersion
error is clearly visible at t = 100.0 (Figure 30.14), and the minimum density is now 0.601786.

Figure 30.15 shows the density near y = 0.0 at three simulation times. The black line shows the initial
condition. The red line corresponds to t = 50.0 and the blue line to t = 100.0. For the later two times, the
density is not radially symmetric. The lines plotted are just representative profiles for those times, which
give an idea of the magnitude and character of the errors.

30.1.6 The double Mach reflection problem

This numerical planar shock test problem introduced by Woodward and Colella (1984) simulates an evolution
of an unsteady planar shock that is incident on an oblique surface. Initially, the incident planar shock begins
to propagate to the bottom surface at a 30◦ angle with the shock Mach number of 10. Later, the solution to
this problem produces a self-similar wave pattern that corresponds to the double Mach reflection. Following
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Figure 30.13: Density at t = 50.0 for the isentropic vortex problem.

Figure 30.14: Density at t = 100.0 for the isentropic vortex problem.
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Figure 30.15: Representative density profiles for the isentropic vortex near y = 0.0 at t = 0.0 (black),
t = 50.0 (red), and t = 100.0 (blue).

many other numerical setups of this problem, we tilt the incident shock rather than the reflecting wall so as
to avoid numerical complications in modeling an oblique physical boundary.

The initial setup involves a Mach 10 shock in air, γ = 1.4, on a rectangular 2D domain of size [0, 4]× [0, 1].
The reflecting wall is represented as the bottom surface of the domain, beginning at x = 1/6. The velocity
normal to the incident shock in the post-shock region is 8.25, and the flow is at rest in the pre-shock region.
The undisturbed air ahead of the shock has a density of 1.4 and a pressure of 1. See the initial density profile
in Figure 30.16 resolved on 6 refinement AMR levels using 162-cell block size.

The boundary condition on 0 ≤ x ≤ 1/6 at y = 0 is fixed in time with the initial values so that the
reflected shock is attached to the bottom surface. We impose reflecting boundary condition (i.e., negating
the y velocity field v) on the rest of the bottom surface. On the top surface of y = 1, we allow the initial
Mach 10 shock proceeds exactly as a function of time in order that the numerical evolution follows the
oblique shock propagation without any planar distortion. At x = 0, we impose a supersonic inflow boundary
condition, and the outflow condition at x = 4.

In later time, the solution develops to form two Mach stems and two contact discontinuities, as shown in
Figure 30.17 the density at t = 2.5 sec. Also shown in Figure 30.18 are 30 levels of contour lines of pressure,
illustrating the evolved flow discontinuities at t = 2.5 sec. We can also see that the numerical solution is
smooth and non-oscillatory in the region bounded by the curved reflected shock, the bottom surface and the
second Mach stem (see more discussion in Woodward and Colella, 1984).

The 5th order WENO method in the unsplit hydrodynamics solver is used with a choice of hybrid
Riemann solver which selectively adopts HLL only at strong shocks and HLLC otherwise.
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Figure 30.16: The initial density at t = 0 visualized with 6 levels of AMR block structures.

Figure 30.17: Density profile at t = 2.5. Two contact discontinuities are denoted as ”CD”, along with two
Mach stems, a curved reflected shock, and a jet formulation of the denser fluid along the bottom surface.

Figure 30.18: The 30 levels of contour lines of pressure at t = 2.5.
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Table 30.5: Runtime parameters used with the double Mach reflection test problem.

Variable Type Default Description
sim rhoLeft real 8 Initial density to the left of the shock (ρL)
sim rhoRight real 1.4 Initial density to the right (ρR)
sim pLeft real 116.5 Initial pressure to the left (pL)
sim pRight real 1 Initial pressure to the right (pR)
sim uLeft real 7.1447096 Initial x-velocity to the left (uL)
sim uRight real 0 Initial x-velocity to the right (uR)
sim vLeft real -4.125 Initial y-velocity to the left (vL)
sim vRight real 0 Initial y-velocity to the right (vR)
sim xangle real -30 Angle made by shock normal with the x-axis (de-

grees)
sim yangle real 90 Angle made by shock normal with the y-axis (de-

grees)
sim posn real 1/6 Point of intersection between the shock plane and

the x-axis

30.1.7 Wind Tunnel With a Step

The problem of a wind tunnel containing a step, WindTunnel was first described by Emery (1968), who
used it to compare several hydrodynamical methods. Woodward and Colella (1984) later used it to compare
several more advanced methods, including PPM. Although it has no analytical solution, this problem is
useful because it exercises a code’s ability to handle unsteady shock interactions in multiple dimensions. It
also provides an example of the use of FLASH to solve problems with irregular boundaries.

The problem uses a two-dimensional rectangular domain three units wide and one unit high. Between
x = 0.6 and x = 3 along the x-axis is a step 0.2 units high. The step is treated as a reflecting boundary, as
are the lower and upper boundaries in the y-direction. For the right-hand x-boundary, we use an outflow
(zero gradient) boundary condition, while on the left-hand side we use an inflow boundary. In the inflow
boundary cells, we set the density to ρ0, the pressure to p0, and the velocity to u0, with the latter directed
parallel to the x-axis. The domain itself is also initialized with these values. We use

ρ0 = 1.4, p0 = 1, u0 = 3 , γ = 1.4, (30.13)

which corresponds to a Mach 3 flow. Because the outflow is supersonic throughout the calculation, we do
not expect reflections from the right-hand boundary.

The additional runtime parameters supplied with the WindTunnel problem are listed in Table 30.6. This
problem is configured to use the perfect-gas equation of state (Gamma) with gamma set to 1.4. We also
set xmax = 3, ymax = 1, Nblockx = 15, and Nblocky = 5 in order to create a grid with the correct
dimensions. The version of Simulation defineDomain supplied with this problem removes all but the
first three top-level blocks along the lower edge of the grid to generate the step, and gives REFLECTING
boundaries to the obstacle blocks. Finally, we use xl boundary type = "user" (USER DEFINED condition)
and xr boundary type = "outflow" (OUTFLOW boundary) to instruct FLASH to use the correct boundary
conditions in the x-direction. Boundaries in the y-direction are reflecting (REFLECTING).

Until t = 12, the flow is unsteady, exhibiting multiple shock reflections and interactions between different
types of discontinuities. Figure 30.19 shows the evolution of density and velocity between t = 0 and t = 4
(the period considered by Woodward and Colella). Immediately, a shock forms directly in front of the step
and begins to move slowly away from it. Simultaneously, the shock curves around the corner of the step,
extending farther downstream and growing in size until it strikes the upper boundary just after t = 0.5. The
corner of the step becomes a singular point, with a rarefaction fan connecting the still gas just above the
step to the shocked gas in front of it. Entropy errors generated in the vicinity of this singular point produce
a numerical boundary layer about one cell thick along the surface of the step. Woodward and Colella reduce
this effect by resetting the cells immediately behind the corner to conserve entropy and the sum of enthalpy

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Eos.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/Simulation/Simulation_defineDomain_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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Figure 30.19: Density and velocity in the Emery wind tunnel test problem, as computed with FLASH. A
2D grid with five levels of refinement is used.
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Figure 30.19: Density and velocity in the Emery wind tunnel test problem (continued).
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Table 30.6: Runtime parameters used with the WindTunnel test problem.

Variable Type Default Description
sim pAmbient real 1 Ambient pressure (p0)
sim rhoAmbient real 1.4 Ambient density (ρ0)
sim windVel real 3 Inflow velocity (u0)

and specific kinetic energy through the rarefaction. However, we are less interested here in reproducing the
exact solution than in verifying the code and examining the behavior of such numerical effects as resolution
is increased, so we do not apply this additional boundary condition. The errors near the corner result in a
slight over-expansion of the gas there and a weak oblique shock where this gas flows back toward the step.
At all resolutions we also see interactions between the numerical boundary layer and the reflected shocks
that appear later in the calculation.

The shock reaches the top wall at t ≈ 0.65. The point of reflection begins at x ≈ 1.45 and then moves
to the left, reaching x ≈ 0.95 at t = 1. As it moves, the angle between the incident shock and the wall
increases until t = 1.5, at which point it exceeds the maximum angle for regular reflection (40◦ for γ = 1.4)
and begins to form a Mach stem. Meanwhile the reflected shock has itself reflected from the top of the step,
and here too the point of intersection moves leftward, reaching x ≈ 1.65 by t = 2. The second reflection
propagates back toward the top of the grid, reaching it at t = 2.5 and forming a third reflection. By this
time in low-resolution runs, we see a second Mach stem forming at the shock reflection from the top of the
step; this results from the interaction of the shock with the numerical boundary layer, which causes the
angle of incidence to increase faster than in the converged solution. Figure 30.20 compares the density field
at t = 4 as computed by FLASH using several different maximum levels of refinement. Note that the size of
the artificial Mach reflection diminishes as resolution improves.

The shear cell behind the first (“real”) Mach stem produces another interesting numerical effect, visible
at t ≥ 3 — Kelvin-Helmholtz amplification of numerical errors generated at the shock intersection. The
waves thus generated propagate downstream and are refracted by the second and third reflected shocks.
This effect is also seen in the calculations of Woodward and Colella, although their resolution was too low
to capture the detailed eddy structure we see. Figure 30.21 shows the detail of this structure at t = 3 on
grids with several different levels of refinement. The effect does not disappear with increasing resolution,
for three reasons. First, the instability amplifies numerical errors generated at the shock intersection, no
matter how small. Second, PPM captures the slowly moving, nearly vertical Mach stem with only 1–2 cells
on any grid, so as it moves from one column of cells to the next, artificial kinks form near the intersection,
providing the seed perturbation for the instability. Third, the effect of numerical viscosity, which can diffuse
away instabilities on course grids, is greatly reduced at high resolution. This effect can be reduced by using
a small amount of extra dissipation to smear out the shock, as discussed by Colella and Woodward (1984).
This tendency of physical instabilities to amplify numerical noise vividly demonstrates the need to exercise
caution when interpreting features in supposedly converged calculations.

Finally, we note that in high-resolution runs with FLASH, we also see some Kelvin-Helmholtz roll up
at the numerical boundary layer along the top of the step. This is not present in Woodward and Colella’s
calculation, presumably because their grid resolution was lower (corresponding to two levels of refinement
for us) and because of their special treatment of the singular point.

30.1.8 The Shu-Osher problem

The Shu-Osher problem (Shu and Osher, 1989) tests a shock-capturing scheme’s ability to resolve small-
scale flow features. It gives a good indication of the numerical (artificial) viscosity of a method. Since it is
designed to test shock-capturing schemes, the equations of interest are the one-dimensional Euler equations
for a single-species perfect gas.

In this problem, a (nominally) Mach 3 shock wave propagates into a sinusoidal density field. As the shock
advances, two sets of density features appear behind the shock. One set has the same spatial frequency as
the unshocked perturbations, but for the second set, the frequency is doubled. Furthermore, the second set
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Figure 30.20: Density at t = 4 in the Emery wind tunnel test problem, as computed with FLASH using
several different levels of refinement.
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Figure 30.21: Detail of the Kelvin-Helmholtz instability seen at t = 3 in the Emery wind tunnel test problem
for several different levels of refinement.

follows more closely behind the shock. None of these features is spurious. The test of the numerical method
is to accurately resolve the dynamics and strengths of the oscillations behind the shock.

The shu osher problem is initialized as follows. On the domain −4.5 ≤ x ≤ 4.5, the shock is at x = xs

at t = 0.0. On either side of the shock,

x ≤ xs x > xs

ρ(x) ρL ρR (1.0 + aρ sin(fρx))
p(x) pL pR
u(x) uL uR

(30.14)

where aρ is the amplitude and fρ is the frequency of the density perturbations. The gamma equation of state
alternative implementation is used with gamma set to 1.4. The runtime parameters and their default values
are listed in Table 30.7. The initial density, x-velocity, and pressure distributions are shown in Figure 30.22.

Table 30.7: Runtime parameters used with the shu osher test
problem.

Variable Type Default Description
posn real -4.0 Initial shock location (xs)
rho left real 3.857143 Initial density to the left of the shock (ρL)
rho right real 1.0 Nominal initial density to the right (ρR)
p left real 10.33333 Initial pressure to the left (pL)
p right real 1.0 Initial pressure to the right (pR)
u left real 2.629369 Initial velocity to the left (uL)
u right real 0.0 Initial velocity to the right (uR)
a rho real 0.2 Amplitude of the density perturbations
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f rho real 5.0 Frequency of the density perturbations

The problem is strictly one-dimensional; building 2-d or 3-d executables should give the same results
along each x-direction grid line. For this problem, special boundary conditions are applied. The initial
conditions should not change at the boundaries; if they do, errors at the boundaries can contaminate the
results. To avoid this possibility, a boundary condition subroutine was written to set the boundary values
to their initial values.

The purpose of the tests is to determine how much resolution, in terms of mesh cells per feature, a
particular method requires to accurately represent small scale flow features. Therefore, all computations
are carried out on equispaced meshes without adaptive refinement. Solutions are obtained at t = 1.8. The
reference solution, using 3200 mesh cells, is shown in Figure 30.23. This solution was computed using PPM
at a CFL number of 0.8. Note the shock located at x ' 2.4, and the high frequency density oscillations just
to the left of the shock. When the grid resolution is insufficient, shock-capturing schemes underpredict the
amplitude of these oscillations and may distort their shape.

Figure 30.24 shows the density field for the same scheme at 400 mesh cells and at 200 mesh cells. With
400 cells, the amplitudes are only slightly reduced compared to the reference solution; however, the shapes
of the oscillations have been distorted. The slopes are steeper and the peaks and troughs are broader, which
is the result of overcompression from the contact-steepening part of the PPM algorithm. For the solution
on 200 mesh cells, the amplitudes of the high-frequency oscillations are significantly underpredicted.

30.1.9 Driven Turbulence StirTurb

The driven turbulence problem StirTurb simulates homogeneous, isotropic and weakly-compressible turbu-
lence. Because theories of turbulence generally assume a steady state, and because turbulence is inherently
a dissipative phenomenon, the fluid must be driven to sustain a steady-state. This driving must be done
carefully in order to avoid introducing artifacts into the turbulent flow. We use a relatively sophisticated
stochastic driving method originally introduced by Eswaran & Pope (1988). The initial conditions sets up a
homogeneous background. The resolution used for this test run was 323, and the boundary conditions were
periodic. The Table 30.8 shows values the runtime parameters values to control the amount of driving, and
the Figures Figure 30.25 and Figure 30.26 show the density and x velocity profile of an xy plane in the center
of the domain.

30.1.10 Relativistic Sod Shock-Tube

The relativistic version of the shock tube problem (RHD Sod) is a simple one-dimensional setup that involves
the decay of an initially discontinuous two fluids into three elementary wave structures: a shock, a contact,
and a rarefaction wave. As in Newtonian hydrodynamics case, this type of problem is useful in addressing
the ability of the Riemann solver to check the code correctness in evolving such simple elementary waves.

We construct the initial conditions for the relativistic shock tube problem as found in Mart́ı & Müller
(2003). We use an ideal equation of state with Γ = 5/3 for this problem and the left and right states are

Table 30.8: Runtime parameters used with the Driven Turbulence test problem.

Variable Type Value Description
st stirmax real 25.1327 maximum stirring wavenumber
st stirmin real 6.2832 minimum stirring wavenumber
st energy real 5.E-6 energy input per mode
st decay real 0.5 correlation time for driving
st freq integer 1 frequency of stirring
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Figure 30.22: Initial density, x-velocity, and pressure for the Shu-Osher problem.
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Figure 30.23: Density, x-velocity, and pressure for the reference solution at t = 1.8.
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Figure 30.24: Density fields on 400 and 200 mesh cells from the PPM scheme.

Figure 30.25: Density profile for the StirTurb driven turbulence problem.
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Figure 30.26: velocity along X dimension for the StirTurb driven turbulence problem.

given:

ρL = 10 ρR = 1.0
pL = 40/3 pR = 2/3× 10−6 (30.15)

and the computational domain is 0 ≤ x ≤ 1. The initial shock location is at x = 0.5 (halfway across a
box with unit dimensions).

In FLASH, the RHD Sod problem (RHD_Sod) uses the runtime parameters listed in Table 30.9:

Table 30.9: Runtime parameters used with the RHD_Sod test problem.

Variable Type Default Description
sim rhoLeft real 10 Initial density to the left of the interface (ρL)
sim rhoRight real 1.0 Initial density to the right (ρR)
sim pLeft real 40/3 Initial pressure to the left (pL)
sim pRight real 2/3× 10−6 Initial pressure to the right (pR)
sim uLeft real 0 Initial velocity (perpendicular to interface) to the

left (uL)
sim uRight real 0 Initial velocity (perpendicular to interface) to the

right (uR)
sim xangle real 0 Angle made by interface normal with the x-axis

(degrees)
sim yangle real 90 Angle made by interface normal with the y-axis

(degrees)
sim posn real 0.5 Point of intersection between the interface plane

and the x-axis

Figure 30.27, Figure 30.28, and Figure 30.29 show the results of running the RHD Sod problem on a
one-dimensional uniform grid of size 400 at simulation time t = 0.36. In this run the left-going wave is
the rarefaction wave, while two right-going waves are the contact discontinuity and the shock wave. This
configuration results in mildly relativistic effects that are mainly thermodynamical in nature.

The differences in the relativistic regime, as compared to Newtonian hydrodynamics, can be seen in a
curved velocity profile for the rarefaction wave and the narrow constant state (density shell) in between
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Figure 30.27: Density of numerical solution to the relativistic Sod problem at time t = 0.36.

the shock wave and contact discontinuity. Numerically, it is particularly challenging to resolve the thin
narrow density plateau, which is bounded by a leading shock front and a trailing contact discontinuity (see
Figure 30.27).
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Figure 30.28: Pressure of numerical solution to the relativistic Sod problem at time t = 0.36.

Figure 30.29: Normal velocity of numerical solution to the relativistic Sod problem at time t = 0.36.
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Figure 30.30: Log of density of numerical solution to the relativistic 2D Riemann problem at time t = 0.8.
The solution was resolved on AMR grid with 6 levels of refinements

30.1.11 Relativistic Two-dimensional Riemann

The two-dimensional Riemann problem (RHD_Riemann2D), originally proposed by Schulz et al. (1993), in-
volves studying interactions of four basic waves that consist of shocks, rarefactions, and contact discontinu-
ities. The initial condition provided here is based on Migone et al. (2005) producing these elementary waves
at every interface. The setup of the problem is given on a rectangular domain of size [−1, 1]× [−1, 1], which
is divided into four constant state subregions as:

(ρ, p, vx, vy) =


(0.5, 1.0, 0.0, 0.0) −1.0 ≤ x < 0.0, −1.0 ≤ y < 0.0
(0.1, 1.0, 0.0, 0.99) 0.0 ≤ x ≤ 1.0, −1.0 ≤ y < 0.0
(0.1, 1.0, 0.99, 0.0) −1.0 ≤ x < 0.0, 0.0 ≤ y ≤ 1.0
(ρ1, p1, 0.0, 0.0) 0.0 ≤ x ≤ 1.0, 0.0 ≤ y ≤ 1.0

, (30.16)

where ρ1 = 5.477875 × 10−3 and p1 = 2.762987 × 10−3. An ideal EOS is used with the specific heat ratio
Γ = 5/3.

The solution obtained at t = 0.8 in Figure 30.30 shows that the symmetry of the problem is well
maintained. The two shocks are propagated from the upper left and the lower right regions to the upper
right region, yielding continuous collisions of shocks at the upper right corner.The curved shock fronts are
transmitted and formed in the diagonal region of the domain. The lower left region is bounded by contact
discontinuities. By the time t = 0.8 most of regions are filled with shocked gas, whereas there are still two
unperturbed regions in the lower left and upper right regions.
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30.1.12 Flow Interactions with Stationary Rigid Body

The stationary rigid body is only implemented and tested in the unsplit hydro solver Section 14.1.3. It is
possible that the unsplit staggered mesh MHD solver Section 14.3.3 can support the rigid body but we have
not tested yet.

30.1.12.1 NACA Airfoil

Flow simulations over a series of NACA airfoils (or a simple flat plate) can be obtained using the implemen-
tation of a stationary rigid body in the unsplit hydro solver described in Section 14.1.3.1. In this example,
the cambered NACA2412 airfoil is initialized with positive unity values indicating the part of the domain
that belongs to a stationary rigid body. The rest of the domain is assigned negative unity values to indicate
it as a flow region for the unsplit hydro solver. At the surface of the rigid body, a reflecting boundary
condition is applied in order to represent the fact that there is no flow penetrating the rigid object.

Plots in 30.31(a) – 30.33(b) illusrate Mach number and pressure plots over the airfoil with the three
different initial Mach numbers, 0.65, 0.95 and 1.2 at t = 1.8. By this time, the flow conditions have reached
their steady states. For Mach number = 0.65, the critical Mach number has not yet been obtained and the
flow over the airfoil is all subsonic as shown in 30.31(a). Since the airfoil is asymmetric and cambered, we
see there are pressure gradients across the top and bottom surfaces even at zero angle of attack in 30.31(b).
These pressure gradients (higher pressure at the bottom than the top) generate a lift force by which an
airplane can fly defying gravity.

At Mach number reaching 0.95 as shown in 30.32(a) there are local points that are supersonic. This
indicates that the critical Mach number for the airfoil is between 0.65 and 0.95. In fact, one can show that
the critical Mach number is around 0.7 for the NACA2412 airfoil. We see that there is a development of a
bow shock formation in front of the airfoil. A formation of a subsonic region between the bow shock and
the nose of the airfoil is visible in the Mach number plot. Inside the bow shock, a sonic line at which the
local flow speed becomes the sound speed makes an oval shape together with the bow shock. In both the
Mach number and pressure plots, a strong wake forms starting from the top and bottom of the surfaces near
the trailing edge. The wake is hardly visible for Mach number 0.65 in 30.31(a) and 30.31(b). Normal shock
waves have formed steming from the trailing edge as seen in 30.32(a) and 30.32(b).

At Mach number 1.2 the flow becomes supersonic everywhere. In this case, the shape of the bow shock
becomes narrower and there are much larger supersonic pockets developed on the top and bottom surfaces
with a smaller subsonic region between the bow shock and the nose region.

(a) a (b) b

Figure 30.31: NACA2412 in Mach number 0.65 flow at 0 degree angle of attack problem at t = 1.8 (a) Mach
number (b) Pressure
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(a) a (b) b

Figure 30.32: NACA2412 in Mach number 0.95 flow at 0 degree angle of attack problem at t = 1.8 (a) Mach
number (b) Pressure

30.1.12.2 Solid Objects in Sedov Explosion

Another problem for testing a stationary rigid body in a simulation is to consider the Sedov-like explosion in a
chamber surrounded by a solid wall with holes The wall is shown as red blocks with white boundry in 30.34(a)
and 30.34(b). The simulation was done on a uniform Cartesian grid with 300 cells on each direction. Three
holes in the wall subdivide it into four different stationary solid bodies in a square computational domain
[0, 1.5]× [0, 1.5]. The explosion goes off at the origin and generate shock waves inside the chamber. In later
time, when the shock waves pass though the three holes in the wall, turbulence effects are triggered from
the interaction between the fluid and the wall and enhance vortical fluid motions.

One important thing in this problem is to keep the given symmetry throughout the simulation. The flow
symmetry across the diagonal direction is well preseved in 30.34(a) and 30.34(b).
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(a) a (b) b

Figure 30.33: NACA2412 in Mach number 1.2 flow at 0 degree angle of attack problem at t = 1.8 (a) Mach
number (b) Pressure

30.2 Magnetohydrodynamics Test Problems

The magnetohydrodynamics (MHD) test problems provided in this release can be found in source/-
Simulation/SimulationMain/magnetoHD/. In order to set up an MHD problem, users need to specify the
magnetoHD path in a setup script. For instance, the BrioWu problem can be configured by typing ./setup
magnetoHD/BrioWu -auto -1d.

30.2.1 Brio-Wu MHD Shock Tube

The Brio-Wu MHD shock tube problem (Brio and Wu, 1988), magnetoHD/BrioWu, is a coplanar magnetohy-
drodynamic counterpart of the hydrodynamic Sod problem (Section 30.1.1). The initial left and right states
are given by ρl = 1, ul = vl = 0, pl = 1, (By)l = 1; and ρr = 0.125, ur = vr = 0, pr = 0.1, (By)r = −1. In
addition, Bx = 0.75 and γ = 2. This is a good problem to test wave properties of a particular MHD solver,
because it involves two fast rarefaction waves, a slow compound wave, a contact discontinuity and a slow
shock wave.

The conventional 800 point solution to this problem computed with FLASH is presented in Figure 30.35,
Figure 30.36, Figure 30.37, Figure 30.38, and Figure 30.39 . The figures show the distribution of density,
normal and tangential velocity components, tangential magnetic field component and pressure at t = 0.1
(in non-dimensional units). As can be seen, the code accurately and sharply resolves all waves present in
the solution. There is a small undershoot in the solution at x ≈ 0.44, which results from a discontinuity-
enhancing monotonized centered gradient limiting function (LeVeque 1997). This undershoot can be easily
removed if a less aggressive limiter, e.g. a minmod or a van Leer limiter, is used instead. This, however, will
degrade the sharp resolution of other discontinuities.

The directionally splitting 8Wave MHD solver with a second-order MUSCL-Hancock scheme (setup with
+8wave) was used for the results shown in this simulation. The StaggeredMesh MHD solver (setup with
+usm) can also be used for this Brio-Wu problem in one- and two-dimensions. However, in the latter case,
the StaggeredMesh solver only supports non-rotated setups for which a shock normal is parallel to the x-axis
that initially intersects that axis at x = 0.5 (halfway across a box with unit dimensions). This limitation
occurs in the StaggeredMesh scheme because the currently released version of the FLASH code does not
truly support physically correct boundary conditions for this rotated shock geometry.
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(a) a (b) b

Figure 30.34: The Sedov explosion in a chamber surrounded by a wall with holes. (a) Density plot at t = 0.0
sec. (b) Denstiy plot at t = 0.1 sec.

Figure 30.35: Density profile for the Brio-Wu shock tube problem.

30.2.1.1 Slowly moving shocks (SMS) issues in the Brio-Wu problem

Figure 30.40 clearly demonstrates that the conventional PPM reconstruction method fails to preserve mono-
tonicities, shedding oscillations especially in the plateau near strong discontinuities such as the contact and
right going slow MHD shock. In Fig. 30.41, Mach numbers are plotted with varying strengths of the trans-
verse field By. The oscillations increase with an increase of By; the reason being that stronger By introduces
more transverse effect that resists shock propagation in the x direction causing the shock to move slowly.
This effect is clearly seen in the locations of the shock fronts (right going slow MHD shocks in this case),
which remain closer to the initial location x = 0.5 when By is stronger.

Results from using the upwind biased slope limiter for PPM are illustrated in Figures 30.42 – 30.45
. The oscillation shedding found in the conventional PPM (e.g., Fig. 30.40) are significantly reduced in
both density, and Mach number profiles. The overall qualitative solution behavior of using the upwind PPM
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Figure 30.36: Pressure profile for the Brio-Wu shock tube problem.

Figure 30.37: Tangential magnetic field profile for the Brio-Wu shock tube problem.

approach, shown in Fig. 30.42, is very much similar to those from the 5th order WENO method as illustrated
in Fig. 30.43. As shown in the closeup views in Fig. 30.44 and 30.45, the solutions with the upwind PPM
slope limiter (blue curves) outperforms the conventional PPM method (red curves), and compares well with
the WENO scheme (green curves). In fact, the upwind approach shows the most flat density plateau of
all methods. Note that the SMS issue can be observed regardless of the choice of Riemann solvers and the
dissipation mechanism in PPM (e.g., even with flattening on). 400 grid points were used.

30.2.2 Orszag-Tang MHD Vortex

The Orszag-Tang MHD vortex problem (Orszag and Tang, 1979), magnetoHD/OrszagTang, is a simple two-
dimensional problem that has become a classic test for MHD codes. In this problem a simple, non-random
initial condition is imposed at time t = 0

V = V0 (− sin(2πy), sin(2πx), 0) , B = B0 (− sin(2πy), sin(4πx), 0) , (x, y) =∈ [0, 1]2, (30.17)

where B0 is chosen so that the ratio of the gas pressure to the RMS magnetic pressure is equal to 2γ. In this
setup the initial density, the speed of sound and V0 are set to unity; therefore, the initial pressure p0 = 1/γ
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Figure 30.38: Normal velocity profile for the Brio-Wu shock tube problem.

Figure 30.39: Tangential velocity profile for the Brio-Wu shock tube problem.

and B0 = 1/γ.
As the evolution time increases, the vortex flow pattern becomes increasingly complicated due to the

nonlinear interactions of waves. A highly resolved simulation of this problem should produce two-dimensional
MHD turbulence. Figure 30.46 and Figure 30.47 shows density and magnetic field contours at t = 0.5. As
one can observe, the flow pattern at this time is already quite complicated. A number of strong waves have
formed and passed through each other, creating turbulent flow features at all spatial scales.

The results were obtained using the directionally splitting 8Wave MHD solver for this Orszag-Tang prob-
lem.

The 3D version are also shown in the below solved using the unsplit staggered mesh MHD solver.
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Figure 30.40: Density (thick red) and Mach number (thick blue) at t = 0.1 of the Brio-Wu test with
the conventional PPM’s MC limiter. Thin black curves represent reference solutions using the PLM of
MUSCL-Hancock scheme. Severe numerical oscillations are evident in the solution using the conventional
PPM reconstruction on 400 grid points.

Figure 30.41: Mach numbers at t = 0.1 with varying By from 0 to 1 with the conventional PPM’s MC limiter.
Curves in red, blue, green, purple, black, and cyan represent By = 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively.
Severe numerical oscillations are evident in the solution using the conventional PPM reconstruction on 400
grid points.
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Figure 30.42: Density (red) and Mach number (blue) at t = 0.1 of the Brio-Wu test using the upwind biased
PPM limiter.

Figure 30.43: Density (red) and Mach number (blue) at t = 0.1 of the Brio-Wu test using the 5th order
WENO scheme.
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Figure 30.44: Density closeup at t = 0.1 of the Brio-Wu test. The conventional PPM in red curve, the
upwind PPM in blue curve, and the WENO scheme in green curve.

Figure 30.45: Mach number closeup at t = 0.1 of the Brio-Wu test. The conventional PPM in red curve,
the upwind PPM in blue curve, and the WENO scheme in green curve.
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Figure 30.46: Density contours in the Oszag-Tang MHD vortex problem at t = 0.5.

Figure 30.47: Magnetic field contours in the Oszag-Tang MHD vortex problem at t = 0.5.
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(a) a (b) b

(c) c (d) d

Figure 30.48: Density plots of a 3D version of the Orszag-Tang problem on a 1283 uniform grid resolution.
(a) Density at t = 0.2 (b) Density at t = 0.5 (c) Density at t = 0.7 (d) Density at t = 1.0.
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30.2.3 Magnetized Accretion Torus

The magnetized accretion torus problem is based on the global magneto-rotational instability (MRI) sim-
ulations of Hawley (2000). It can be found under magnetoHD/Torus. We consider a magnetized torus of
constant angular momentum (Ω ∝ r−2), inside a normalized Paczyńsky-Wiita pseudo-Newtonean gravita-
tional potential (Paczyńsky&Wiita, 1980) of the form Φ = −1/(R− 1), where R =

√
r2 + z2.

The cylindrical computational domain, with lengths normalized at r0, extends from 1.5 r0 to 15.5 r0 in
the radial direction and from -7 r0 to 7 r0 in the z direction. For this specific simulation we use seven levels
of refinement, linear reconstruction with vanLeer limiter and the HLLC Riemann solver. The boundary
conditions are set to outflow, except for the leftmost side where a diode-like condition is applied.

Assuming an adiabatic equation of state, the initial density profile of the torus is given by

ΓP

(Γ− 1)ρ
= C − Φ− l2K

2r2
, (30.18)

where the specific heats ratio is Γ = 5/3, lK is the Keplerian angular momentum at the pressure maximum
(rPmax = 4.7r0) and C is an integration constant that specifies the outer surface of the torus, given its inner
radius (rin = 3 r0). The initial poloidal magnetic field is computed using the φ component of the vector
potential, Aφ ∝ max(ρ− 5, 0), and normalized so as the initial minimum value of the plasma β = 2P/B2 is
equal to 102. The resulting field follows the contours of density, i.e. torus-like nested loops, and is embedded
well within the torus.

We allow the system to evolve for t = 150 t0. The torus is MRI unstable and after approximately one
revolution accretion sets in. The strong shear generates an azimuthal field component and the angular
momentum is redistributed. Due to the instability, fillamentary structures form at the torus surface that
account for its rich morphology (Figure 30.49). These results can be promtly compared to those in Hawley
(2000) and Mignone et al. (2007).

Figure 30.49: Left: 3D rendering of the axisymmetric torus evolution. Right: Density logarithm of the
magnetized accretion torus after 150 t 0. Superposed are the AMR levels and the mesh.
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30.2.4 Magnetized Noh Z-pinch

In this test we consider the magnetized version of the classical Noh problem (Noh, 1987). It consists of a
cylindrically symmetric implosion of a pressure-less gas: the gas stagnates at the symmetry axis and creates
an outward moving accretion shock which propagates at a constant velocity. The self-similar analytic solution
of this problem has been widely used as benchmark test for hydrodynamic codes, especially those targeting
implosion.

Recently, Velikovich et al. (2012) have extended the original test problem to include an embedded
azimuthal magnetic field, in accordance with the Z-pinch physics. In their study, they present a family
of exact analytic solutions for which the values of primitive variables are finite everywhere, providing an
excellent benchmark for Z-pinch and general MHD codes.

We perform this test in both cartesian and cylindrical geometries. The tests can be found respectively in
magnetoHD/Noh and magnetoHD/NohCylindrical. For brevity we describe only the cylindrical initialization.
The cartesian can be easily recovered by projecting the solution onto the X-Y plane. A 3T MHD version of
this test can also be found under magnetoHD/unitTest/NohCylindricalRagelike.

The simulation is initialized in a computational box that spans [0, 3] cm in the r and z directions, in
cylindrical (r− z) geometry. The leftmost boundary condition is set to axisymmetry, whereas the remaining
boundaries are set to outflow (zero gradient). The initial condition in primitive variables is defined as

ρ = 3.1831× 10−5 r2 g/cm3,

v = (−3.24101× 107, 0, 0) cm/s,
B = (0, 6.35584× 105 r, 0) gauss,
P = C B2. (30.19)

Since Godunov-type codes cannot run with zero pressure, we initialize P by choosing C = P/B2 = 10−6,
ensuring a magnetically dominated plasma.

The simulations are evolved for 30 ns, utilizing the unsplit solver and a Courant number of 0.8. We use
6 levels of refinement, corresponding to an equivalent resolution of 256 × 256 zones. The reconstruction is
piecewise-linear (second order) with characteristic limiting, whereas the Riemann solvers employed are the
HLLD and Roe.

The resulting density profile is shown in Figure 30.50. The refinement closely follows the propagation of
the discontinuity which reaches the analytically predicted location (r = 0.3 cm) at t = 30 ns. The lineouts
for HLLD (green dots) and Roe (blue dots) shown on the right, display good agreement with the analytic
solution (red line) and the discontinuity is sharply captured (resolved on two points). Our Figure 30.50 can
be directly compared to Figures 2a and 3a of Velikovich et al. (2012).

30.2.5 MHD Rotor

The two-dimensional MHD rotor problem (Balsara and Spicer, 1999), magnetoHD/Rotor, is designed to study
the onset and propagation of strong torsional Alfvén waves, which is thereby relevant for star formation.
The computational domain is a unit square [0, 1]× [0, 1] with non-reflecting boundary conditions on all four
sides. The initial conditions are given by

ρ(x, y) =

 10 r ≤ r0

1 + 9f(r) r0 < r < r1

1 r ≥ r1

(30.20)

u(x, y) =

 −f(r)u0(y − 0.5)/r0 r ≤ r0

−f(r)u0(y − 0.5)/r r0 < r < r1

0 r ≥ r1

(30.21)

v(x, y) =

 f(r)u0(x− 0.5)/r0 r ≤ r0

f(r)u0(x− 0.5)/r r0 < r < r1

0 r ≥ r1

(30.22)
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Figure 30.50: Magnetized Noh problem in cylindrical coordinates. Left: density snapshot along with AMR
levels after 30 ns for the HLLD Riemann solver. Right: Lineouts of density close to the origin, r = [0, 0.6]
cm, for HLLD and Roe, superposed on the analytic solution.

p(x, y) = 1 (30.23)

Bx(x, y) =
5√
4π

(30.24)

By(x, y) = 0, (30.25)

where r0 = 0.1, r1 = 0.115, r =
√

(x− 0.5)2 + (y − 0.5)2, w = Bz = 0 and a taper function f(r) =
(
r1 −

r
)
/
(
r−r0

)
. The value γ = 1.4 is used. The initial set-up is occupied by a dense rotating disk at the center of

the domain, surrounded by the ambient flow at rest with uniform density and pressure. The rapidly spinning
rotor is not in an equilibrium state due to the centrifugal forces. As the rotor spins with the given initial
rotating velocity, the initially uniform magnetic field in x-direction will wind up the rotor. The rotor will be
wrapped around by the magnetic field, and hence start launching torsional Alfvén waves into the ambient
fluid. The angular momentum of the rotor will be diminished in later times as the evolution time increases.
The circular rotor will be progressively compressed into an oval shape by the build-up of the magnetic
pressure around the rotor. The results shown in Figure 30.51 were obtained using the StaggeredMesh MHD
solver using 6 refinement levels. The divergence free evolution of the magnetic fields are well preserved as
illustrated in Figure 30.52.

30.2.6 MHD Current Sheet

The two-dimensional current sheet problem, magnetoHD/CurrentSheet, has recently been studied by Gar-
diner and Stone (2005) in ideal MHD regime. The two current sheets are initialized and therefore magnetic
reconnections are inevitably driven. In the regions the magnetic reconnection takes place the magnetic flux
approaches vanishingly small values, and the loss in the magnetic energy is converted into heat (thermal
energy). This phenomenon changes the overall topology of the magnetic fields and hence affects the global
magnetic configuration.

The square computational domain is given as [0, 2]× [0, 2] with periodic boundary conditions on all four
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(a) a (b) b

(c) c (d) d

Figure 30.51: The Rotor problem at t = 0.15 (a) Density (b) Pressure (c) Mach number (d) Magnetic
pressure.

sides. We initialize two current sheets in the following:

By =

 B0 0.0 ≤ x < 0.5
−B0 0.5 ≤ x < 1.5
B0 1.5 ≤ x ≤ 2.0

, (30.26)

where B0 = 1. The other magnetic field components Bx, Bz are set to be zeros. The x component of the
velocity is given by u = u0 sin 2πy with u0 = 0.1, and all the other velocity components are initialized with
zeros. The density is unity and the gas pressure p = 0.1.

The changes of the magnetic fields seed the magnetic reconnection and develop formations of magnetic
islands along the two current sheets. The small islands are then merged into the bigger islands by continuously
shifting up and down along the current sheets until there is one big island left in each current sheet.

The temporal evolution of the magnetic field lines from t = 0.0 to t = 5.0 are shown in 30.53(a) – 30.53(f)
on a 256×256 uniform grid. In Figure 30.54 the same problem is resolved on an AMR grid with 6 refinement
levels, showing the current density jz along with the AMR block structures at t = 4.0. The StaggeredMesh
solver was used for this problem.
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Figure 30.52: Divergence of magnetic fields using the StaggeredMesh solver at t = 0.15 for the Rotor
problem.
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(a) a (b) b (c) c

(d) d (e) e (f) f

Figure 30.53: The temporal evolutions of field lines for the MHD CurrentSheet problem. Equally spaced
60 contour lines are shown at time (a) t = 0.0 (b) t = 1.0 (c) t = 2.0 (d) t = 3.0 (e) t = 4.0 (f) t = 5.0.



30.2. MAGNETOHYDRODYNAMICS TEST PROBLEMS 455

Figure 30.54: Current density at t = 4.0 using the StaggeredMesh solver for the MHD CurrentSheet
problem.
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30.2.7 Field Loop

The 2D and 3D field loop advection problems (magnetoHD/FieldLoop) are known to be stringent test cases
in multidimensional MHD. In this test problem we consider a 2D advection of a weakly magnetized field loop
traversing the computational domain diagonally. Details of the problem has been described in Gardiner and
Stone (2005).

The computational domain is [−1, 1]× [−0.5, 0.5], with a grid resolution 256× 148, and doubly-periodic
boundary conditions. With this rectangular grid cell, the flow is not symmetric in x and y directions because
the field loop does not advect across each grid cell diagonally and hence the resulting fluxes are different
in x and y directions. The density and pressure are unity everywhere and γ = 5/3. The velocity fields are
defined as,

U = u0(cosθ, sinθ, 1) (30.27)

with the advection angle θ, given by θ = tan−1(0.5) ≈ 26.57◦. For the choice of the initial advection velocity
we set u0 =

√
5. The size of domain and other parameters were chosen such that the weakly magnetized

field loop makes one complete cycle by t = 1. It is important to initialize the magnetic fields to satisfy
∇ · B = 0 numerically in order to avoid any initial nonzero error in ∇ · B. As suggested in Gardiner and
Stone (2005), the magnetic field components are initialized by taking the numerical curl of the z-component
of the magnetic vector potential Az,

Bx =
∂Az

∂y
, By = −∂Az

∂x
, (30.28)

where

Az =
{

A0(R− r) r ≤ R
0 otherwise. , (30.29)

By using this initialization process, divergence-free magnetic fields are constructed with a maximum value
of ∇ ·B in the order of 10−16 at the chosen resolution. The parameters in (30.29) are A0 = 10−3 and a field
loop radius R = 0.3. This initial condition results in a very high plasma beta β = p/Bp = 2 × 106 for the
inner region of the field loop. Inside the loop the magnetic field strength is very weak and the flow dynamics
is dominated by the gas pressure.

The field loop advection is integrated to a final time t = 2. The advection test is found to truly require
the full multidimensional MHD approach (Gardiner and Stone, 2005, 2008; Lee and Deane, 2008). Since the
field loop is advected at an oblique angle to the x-axis of the computational domain, the values of ∂Bx/∂x
and ∂By/∂y are non-zero in general and their roles are crucial in multidimensional MHD flows. These
terms, together with the multidimensional MHD terms ABx and ABy , are explicitly included in the data
reconstruction-evolution algorithm in the USM scheme (see Lee and Deane, 2008). During the advection
a good numerical scheme should maintain: (a) the circular symmetry of the loop at all time: a numerical
scheme that lacks proper numerical dissipation results in spurious oscillations at the loop, breaking the
circular symmetry; (b) Bz = 0 during the simulation: Bz will grow proportional to w∇ ·B∆t if a numerical
scheme does not properly include multidimensional MHD terms.

From the results in Figure 30.55, the USM scheme maintains the circular shape of the loop extremely well
to the final time step. The scheme successfully retains the initial circular symmetry and does not develop
severe oscillations.

A variant 3D version of this problem (Gardiner and Stone, 2008) is also available, and is illustrated in
in Fig. 30.56. This problem is considered to be a particularly challenging test because the correct solution
requires inclusion of the multidimensional MHD terms to preserve the in-plane dynamics. Otherwise, the
failure in preserving the in-plane dynamics (i.e., growth in the out-of-plane component) results in erroneous
behavior of the field loop. As shown in Fig. 30.56, the USM solver successfully maintains the circular shape
of the field loop and maintains the out-of-plane component of the magnetic field to very small values over
the domain. This figure compares very well with Fig. 2 in Gardiner and Stone, 2008.

30.2.8 3D MHD Blast

A 2D version of the MHD blast problem was studied by Zachary et al. (Zachary, Malagoli, and Colella,
1994) and we consider a variant 3D version of the MHD spherical blast wave problem here. This problem
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(a) a (b) b

Figure 30.55: The field loop advection problem using the StaggeredMesh solver at time t = 2 with the Roe
Riemann solver. (a)B p with the MEC at t = 2. The color scheme between 2.32 × 10−25 and 7.16 × 10−7

was used. (b)Magnetic field lines with the MEC at t = 2. 20 contour lines of A z between −2.16× 10−6 and
2.7× 10−4 are shown.

(a) B p at t = 0.0 (b) B p at t = 1.5 (c) B p at t = 2.0

Figure 30.56: Thresholded images of the field loop advection problem at times t = 0.0, 1.5, and 2.0 using a
uniform grid size 128× 128× 256.
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leads to the formation and propagation of strong MHD discontinuities, relevant to astrophysical phenomena
where the magnetic field energy has strong dynamical effects. With a numerical scheme that fails to preserve
the divergence-free constraint, unphysical states could be obtained involving negative gas pressure because
the background magnetic pressure increases the strength of magnetic monopoles.

This problem can be computed in various magnetized flow regimes by considering different magnetic
field strengths. The computational domain is a square [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5] with a maximum
refinement level 4. The explosion is driven by an over-pressurized circular region at the center of the domain
with a radius r = 0.1. The initial density is unity everywhere, and the pressure of the ambient gas is
0.1, whereas the pressure of the inner region is 1000. The strength of a uniform magnetic field in the x-
direction are 0, 50/

√
4π and 100/

√
4π. This initial condition results in a very low-β ambient plasma state,

β = 2.513×10−4. Through this low-β ambient state, the explosion emits almost spherical fast magneto-sonic
shocks that propagate with the fastest wave speed. The flow has γ = 1.4.

With this strong magnetic field strength, Bx = 100/
√

4π, shown in Figure 30.57, the explosion now
becomes highly anisotropic as shown in the pressure plot in Figure 30.57. The Figure shows that the
displacement of gas in the transverse y-direction is increasingly inhibited and hydrodynamical shocks prop-
agate in both positive and negative x-directions parallel to Bx. This process continues until total pressure
equilibrium is reached in the central region. This problem is also available in 2D setup.

30.3 Gravity Test Problems

30.3.1 Jeans Instability

The linear instability of self-gravitating fluids was first explored by Jeans (1902) in connection with the
problem of star formation. The nonlinear phase of the instability is currently of great astrophysical interest,
but the linear instability still provides a very useful test of the coupling of gravity to hydrodynamics in
FLASH.

The Jeans problem allows one to examine the behavior of sinusoidal, adiabatic density perturbations in
both the pressure-dominated and gravity-dominated limits. This problem uses periodic boundary conditions.
The equation of state is that of a perfect gas. The initial conditions at t = 0 are

ρ(x) = ρ0 [1 + δ cos(k · x)]
p(x) = p0 [1 + γδ cos(k · x)] (30.30)
v(x) = 0 ,

where the perturbation amplitude δ � 1. The stability of the perturbation is determined by the relationship
between the wavenumber k ≡ |k| and the Jeans wavenumber kJ , where kJ is given by

kJ ≡
√

4πGρ0

c0
, (30.31)

and where c0 is the unperturbed adiabatic sound speed

c0 =
√

γp0

ρ0
(30.32)

(Chandrasekhar 1961). If k > kJ , the perturbation is stable and oscillates with frequency

ω =
√

c2
0k

2 − 4πGρ0 ; (30.33)

otherwise, it grows exponentially, with a characteristic timescale given by τ = (iω)−1.
We checked the dispersion relation (30.33) for stable perturbations with γ = 5/3 by fixing ρ0 and p0 and

performing several runs with different k. We followed each case for roughly five oscillation periods using a
uniform grid in the box [0, L]2. We used ρ0 = 1.5 × 107 g cm−3 and p0 = 1.5 × 107 dyn cm−2, yielding
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(a) a (b) b

(c) c

Figure 30.57: The MHD blast test at time t = 0.01 using the unsplit staggered mesh MHD solver. Density
(top half) and magnetic pressure (bottom half) plots for three different strengths of B x. (a) B x = 0 (b)
B x = 50/

√
4π (c) B x = 100/

√
4π.

kJ = 2.747 cm−1. The perturbation amplitude δ was fixed at 10−3. The box size L is chosen so that kJ is
smaller than the smallest nonzero wavenumber that can be resolved on the grid

L =
1
2

√
πγp0

Gρ2
0

. (30.34)

This prevents roundoff errors at wavenumbers less than kJ from being amplified by the physical Jeans
instability. We used wavevectors k parallel to and at 45 degrees to the x-axis. Each test calculation used
the multigrid Poisson solver together with its default settings.

The resulting kinetic, thermal, and potential energies as functions of time for one choice of k are shown
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in Figure 30.58 together with the analytic solution, which is given in two dimensions by

T (t) =
ρ0δ

2|ω|2L2

8k2
[1− cos(2ωt)]

U(t)− U(0) = −1
8
ρ0c

2
0δ

2L2 [1− cos(2ωt)] (30.35)

W (t) = −πGρ2
0δ

2L2

2k2
[1 + cos(2ωt)] .

The figure shows that FLASH obtains the correct amplitude and frequency of oscillation. We computed the
average oscillation frequency for each run by measuring the time interval required for the kinetic energy to
undergo exactly ten oscillations. Figure 30.59 compares the resulting dispersion relation to (30.33). It can be
seen from this plot that FLASH correctly reproduces (30.33). At the highest wave number (k = 100), each
wavelength is resolved using only about 14 cells on a six-level uniform grid, and the average timestep (which
depends on c0, ∆x, and ∆y, and has nothing to do with k) turns out to be comparable to the oscillation
period. Hence the frequency determined from the numerical solution for this value of k is somewhat more
poorly determined than for the other runs. At lower wavenumbers, however, the frequencies are correct to
less than 1%.

Figure 30.58: Kinetic, internal, and potential energy versus time for a stable Jeans mode with k = 10.984.
Points indicate numerical values found using FLASH 3.0 with a fixed four-level adaptive grid. The analytic
solution for each form of energy is shown using a solid line.

The additional runtime parameters supplied with the Jeans problem are listed in Table 30.10. This
problem is configured to use the perfect-gas equation of state (gamma) with gamma set to 1.67 and is run
in a two-dimensional unit box. The refinement marking routine (Grid markRefineDerefine.F90) supplied
with this problem refines blocks whose mean density exceeds a given threshold. Since the problem is not
spherically symmetric, the multigrid Poisson solver should be used.



30.3. GRAVITY TEST PROBLEMS 461

Figure 30.59: Computed versus expected Jeans dispersion relation (for stable modes) found using FLASH
1.62 with a six-level uniform grid.

Table 30.10: Runtime parameters used with the Jeans test problem.

Variable Type Default Description
rho0 real 1.5× 107 Initial unperturbed density (ρ0)
p0 real 1.5× 107 Initial unperturbed pressure (p0)
amplitude real 0.001 Perturbation amplitude (δ)
lambdax real 0.572055 Perturbation wavelength in x direction (λx =

2π/kx)
lambday real 1.0× 1010 Perturbation wavelength in y direction (λy =

2π/ky)
lambdaz real 1.0× 1010 Perturbation wavelength in z direction (λz =

2π/kz)
delta ref real 0.01 Refine a block if the maximum density contrast

relative to ρref is greater than this
delta deref real -0.01 Derefine a block if the maximum density contrast

relative to ρref is less than this
reference density real 1.5× 107 Reference density for grid refinement (ρref). Den-

sity contrast is used to determine which blocks to
refine; it is defined as

max
block

{∣∣∣∣ρijk

ρref
− 1
∣∣∣∣}
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30.3.2 Homologous Dust Collapse

The homologous dust collapse problem DustCollapse is used to test the ability of the code to solve self-
gravitating problems in which the flow geometry is spherical and gas pressure is negligible. The problem
was first described by Colgate and White (1966) and has been used by Mönchmeyer and Müller (1989) to
test hydrodynamical schemes in curvilinear coordinates. We solve this problem using a 3D Cartesian grid.

The initial conditions consist of a uniform sphere of radius r0 and density ρ0 at rest. The pressure p0 is
taken to be constant and very small

p0 �
4πG

γ
ρ2
0r

2
0 . (30.36)

We refer to such a nearly pressureless fluid as ‘dust’. A perfect-gas equation of state is used, but the value
of γ is not significant. Outflow boundary conditions are used for the gas, while isolated boundary conditions
are used for the gravitational field.

The collapse of the dust sphere is self-similar; the cloud should remain spherical with uniform density as
it collapses. The radius of the cloud, r(t), should satisfy(

8πG

3
ρ0

)1/2

t =
(

1− r(t)
r0

)1/2(
r(t)
r0

)1/2

+ sin−1

(
1− r(t)

r0

)1/2

(30.37)

(Colgate & White 1966). Thus. we expect to test three things with this problem: the ability of the code
to maintain spherical symmetry during an implosion (in particular, no block boundary effects should be
evident); the ability of the code to keep the density profile constant within the cloud; and the ability of the
code to obtain the correct collapse factor. The second of these is particularly difficult, because the edge of
the cloud is very sharp and because the Cartesian grid breaks spherical symmetry most dramatically at the
center of the cloud, which is where all of the matter ultimately ends up.

Results of a DustCollapse run using FLASH 3.0 appear in Figure 30.60, which shows plots of density
and the X component of velocity in menacing color scheme. The values are plotted at the end of the run from
an X-Y plane in the center of the physical domain; density is in logarithmic scale. This run used a resolution
of 1283, and the results were compared against a similar run using FLASH 2.5. We have also included
figures from an earlier higher resolution run using FLASH2 which used 43 top-level blocks and seven levels of
refinement, for an effective resolution of 20483. In both the runs, the multipole Poisson solver was used with
a maximum multipole moment ` = 0. The initial conditions used ρ0 = 109 g cm−3 and r0 = 6.5×108 cm. In
Figure 30.61a, the density, pressure, and velocity are scaled by 2.43×109 g cm−3, 2.08×1017 dyn cm−2, and
7.30×109 cm s−1, respectively. In Figure 30.61b they are scaled by 1.96×1011 g cm−3, 2.08×1017 dyn cm−2,
and 2.90× 1010 cm s−1. Note that within the cloud, the profiles are very isotropic, as indicated by the small
dispersion in each profile. Significant anisotropy is only present for low-density material flowing in through
the Cartesian boundaries. In particular, it is encouraging that the velocity field remains isotropic all the
way into the center of the grid; this shows the usefulness of refining spherically symmetric problems near
r = 0. However, as material flows inward past refinement boundaries, small ripples develop in the density
profile due to interpolation errors. These remain spherically symmetric but increase in amplitude as they are
compressed. Nevertheless, they are still only a few percent in relative magnitude by the second frame. The
other numerical effect of note is a slight spreading at the edge of the cloud. This does not appear to worsen
significantly with time. If one takes the radius at which the density drops to one-half its central value as the
radius of the cloud, then the observed collapse factor agrees with our expectation from (30.37). Overall our
results, including the numerical effects, agree well with those of Mönchmeyer and Müller (1989).

This problem is configured to use the perfect-gas equation of state (gamma) with gamma set to 1.67 and
is run in a three-dimensional box. The problem uses the specialized refinement marking routine supplied
under the Grid interface of Grid_markRefineSpecialized which refines blocks containing the center of the
cloud.
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(a) (b)

Figure 30.60: XY plane of Density (a) and X component of Velocity (b) are shown at the center of the
domain for the DustCollapse problem. The velocity is in normal scale, while density is logscale.

(a) (b)

Figure 30.61: Density (black), pressure (red), and velocity (blue) profiles in the homologous dust collapse
problem at (a) t = 0.0368 sec and (b) t = 0.0637 sec. The density, pressure, and velocity are scaled as
discussed in the text.
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30.3.3 Huang-Greengard Poisson Test

The PoisTest problem tests the convergence properties of the multigrid Poisson solver on a multidimensional,
highly (locally) refined grid. This problem is described by Huang and Greengard (2000). The source function
consists of a sum of thirteen two-dimensional Gaussians

ρ(x, y) =
13∑

i=1

e−σi[(x−xi)
2+(y−yi)

2] , (30.38)

where the constants σi, xi, and yi are given in Table 30.11. The very large range of widths and ellipticities
of these peaks forces the mesh structure to be highly refined in some places. The density field and block
structure are shown for a 14-level mesh in Figure 30.62.

Figure 30.62: Density field and block structure for a 14-level mesh applied to the Huang-Greengard PoisTest
problem. The effective resolution of the mesh is 65, 5362.

Table 30.11: Constants used in the poistest problem.

i 1 2 3 4 5 6 7
xi 0 -1 -1 0.28125 0.5 0.3046875 0.3046875
yi 0 0.09375 1 0.53125 0.53125 0.1875 0.125
σi 0.01 4000 20000 80000 16 360000 400000
i 8 9 10 11 12 13

xi 0.375 0.5625 -0.5 -0.125 0.296875 0.5234375
yi 0.15625 -0.125 -0.703125 -0.703125 -0.609375 -0.78125
σi 2000 18200 128 49000 37000 18900

The PoisTest problem uses one additional runtime parameters sim smlRho, the smallest allowed value
of density. Runtime parameters from the Multigrid unit (both Gravity and GridSolvers) are relevant; see
Section 8.10.2.6.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Simulation.txt
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30.3.4 MacLaurin

The gravitational potential at the surface of, and inside a homogeneous spheroid called a “MacLaurin
spheroid” is expressible in terms of analytical functions. This handy result was first determined by MacLaurin
(1801), and later summarized by, amongst others, Chandrasekhar (1989). These properties allow validation
of the FLASH4 gravitational solvers against the analytical solutions.

As a test case, an oblate (a1 = a2 > a3) Maclaurin spheroid, of a constant density ρ = 1 in the
interior, and ρ = ε→ 0 outside (in FLASH4 smlrho is used). The spheroid is motionless and in hydrostatic
equilibrium. The gravitational potential of such object is analytically calculable, and is:

φ(x) = πGρ
[
2A1a

2
1 −A1(x2 + y2) + A3(a2

3 − z2)
]

, (30.39)

for a point inside the spheroid. Here

A1 =
√

1− e2

e3
sin−1 e− 1− e2

e2
, (30.40)

A3 =
2
e2
− 2
√

1− e2

e3
sin−1 e , (30.41)

where e is the ellipticity of a spheroid:

e =

√
1−

(
a3

a1

)2

. (30.42)

For a point outside the spheroid, potential is:

φ(x) =
2a3

e2
πGρ

[
a1e tan−1 h− 1

2

(
(x2 + y2)

(
tan−1 h− h

1 + h2

)
+ 2z2(h− tan−1 h)

)]
, (30.43)

where
h =

a1e√
a2
3 + λ

, (30.44)

and λ is the positive root of the equation

x2

a2
1 + λ

+
y2

a2
2 + λ

+
z2

a2
3 + λ

= 1 . (30.45)

This test is also useful because the spheroid has spherical symmetry in the X–Y plane, but also lack of
such symmetry in X–Z and Y–Z planes. The density distribution of the spheroid is shown in Equation 30.3.4.
Spherical symmetry is simple to reproduce with a solution using multipole expansion. However, the non-
symmetric solution requires an infinite number of multipole moments, while the code calculates solution up
to a certain lmax, specified by the user as runtime parameter mpole lmax. The error is thus expected to be
dominated by the first non-zero term in the remainder of expansion. Also, the solution for any point inside
the spheroid is the sum of monopole and dipole moments.

The simulation is calculated on a MacLaurin spheroid with eccentricity e = 0.9; several other values for
eccentricity were tried with results qualitatively the same. All tests used 3D Cartesian coordinates. The
gravitational potential is calculated on an adaptive mesh, and the relative error is investigated:

ε =
∣∣∣∣φanalytical − φFLASH

φanalytical

∣∣∣∣ (30.46)

from zone to zone.
As expected, increasing spatial resolution improves the solution quality, but here we focus on how the

solution depends on the choice of lmax, the cutoff ` in (8.15). In Figure 30.64–30.64 the gravitational potential
for the Maclaurin spheroid, the FLASH4 solution, and relative errors for several lmax’s are shown. A similar
figure produced for lmax = 1 shows no difference from Figure 30.64, indicating that the last dipole term in
the multipole expansion does not contribute to the accuracy of the solution but does increase computational

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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Figure 30.63: Density of the MacLaurin spheroid (left X–Y plane, right Y–Z plane) with ellipticity e = 0.9.
The FLASH4 block structure is shown on top.

lmax min(ε) max(ε) relative L2
in norm relative L2

out norm approx. time [s]
0 4.5 10−6 0.182 7.1 10−2 6.8 10−2 9.8
1 4.5 10−6 0.182 7.1 10−2 6.8 10−2 14.5
2 9.8 10−6 0.062 1.4 10−2 1.7 10−2 34.7
4 1.0 10−8 0.026 4.0 10−3 5.0 10−3 55.4
6 6.1 10−9 0.013 1.6 10−3 2.5 10−3 134.9
8 7.8 10−9 0.007 8.7 10−4 1.2 10−3 210.2

10 6.7 10−9 0.004 5.5 10−4 7.0 10−4 609.7

Table 30.12: Minimal and maximal relative error in all zones of the simulation, calculated using (30.46).
Last row is approximate time for one full timestep (gravity only).

cost. Because gravity sources are all of the same sign, and the symmetry of the problem, all odd-l moments
are zero: reasonable, physically motivated values for setting mpole lmax should be an even number.

In the X–Y plane, where the solution is radially symmetric, the first monopole term is enough to quali-
tatively capture the correct potential. As expected, the error is the biggest on the spheroid boundary, and
decreases both outwards and inwards. Increasing the maximum included moment reduces errors. However,
in other non-symmetric planes, truncating the potential to certain lmax leads to an error whose leading
term will be the spherical harmonic of order lmax + 2, as can be nicely seen in the lower right sections of
Figure 30.64 – 30.66. Increasing lmax reduces the error, but also increases the required time for computation.
This computational increase is not linear because of the double sum in (8.17). Luckily, convergence is rather
fast, and already for lmax = 4, there are only few zones with relative error bigger than 1%, while for the
most of the computational domain the error is several orders of magnitude less.

http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Grid.txt
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Figure 30.64: Maclaurin spheroid: l max = 0, 6 refinement levels. Left column is X–Y plane, cut through
z=0.5, right column is Y–Z plane cut through x=0.5 . From top to bottom: analytical solution for the
gravitational potential introduced on FLASH grid; solution of FLASH multipole solver; relative error.
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Figure 30.65: Maclaurin spheroid: l max = 2, 6 refinement levels. Left column is X–Y plane, cut through
z=0.5, right column is Y–Z plane cut through x=0.5 . From top to bottom: analytical solution for the
gravitational potential introduced on FLASH grid; solution of FLASH multipole solver; relative error.
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Figure 30.66: Maclaurin spheroid: l max = 10, 6 refinement levels. Left column is X–Y plane, cut through
z=0.5, right column is Y–Z plane cut through x=0.5 . From top to bottom: analytical solution for the
gravitational potential introduced on FLASH grid; solution of FLASH multipole solver; relative error.
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30.4 Particles Test Problems

These problems are primarily designed to test the functioning of the particle tracking routines within
FLASH4.

30.4.1 Two-particle Orbit

The Orbit problem tests the mapping of particle positions to gridded density fields, the mapping of gridded
potentials onto particle positions to obtain particle forces, and the time integration of particle motion. The
initial conditions consist of two particles of unit mass and separation r0 located at positions (x, y, z) =
(0.5(Lx± r0), 0.5Ly, 0.5Lz), where (Lx, Ly, Lz) are the dimensions of the computational volume. The initial
particle velocity vectors are parallel to the y-axis and have magnitude

|v| =
√

2GM

r0
, (30.47)

if a constant gravitational field due to a point mass M at (0.5Lx, 0.5Ly, 0.5Lz) is employed, or

|v| = 1
2

√
2G

r0
, (30.48)

if the particles are self-gravitating. The correct behavior is for the particles to orbit the center of the grid in
a circle with constant velocity. Figure 30.67 shows a typical pair of particle trajectories for this problem

Figure 30.67: Particle trajectories in the Orbit test problem for a 3D grid at a fixed refinement level of 2.
There is no motion along the z-axis.

No specific gravity unit is required by the problem configuration file, because the problem is intended
to be run with either a fixed external field or the particles’ own field. If the particles are to orbit in
an external field (ext field = .true.), the field is assumed to be a central point-mass field (physics/-
Gravity/GravityMain/PointMass), and the parameters for that unit should be assigned appropriate values.
If the particles are self-gravitating (ext field = .false.), the physics/Gravity/GravityMain/Poisson
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unit should be included in the code, and a Poisson solver that supports isolated boundary conditions should
be used (grav boundary type = "isolated").

In either case, long-range forces for the particles must be turned on, or else they will not experi-
ence any accelerations at all. This can be done using the particle-mesh method by including the unit
Particles/ParticlesMain/active/longRange/gravity/ParticleMesh.

FLASH Transition

Although the Multipole solver can work with the Orbit problem, the solutions are very poor.
We strongly recommend the use of Multigrid solver with this problem.

As of FLASH 2.1 both the multigrid and multipole solvers support isolated boundary conditions. This
problem should be run in three dimensions.

Grid interpolation

The FLASH2 user guide recommends that this problem be run with conservative, quadratic
interpolants (such as mesh/amr/paramesh2.0/quadratic cartesian) and monotonicity en-
forcement turned off (monotone = .false.). In FLASH4, you should use the default 2nd
order monotonic interpolation scheme (see Section 8.6.2) in PARAMESH 4.

The two-particle orbit problem uses the runtime parameters listed in Table 30.13 in addition to the
regular ones supplied with the code.

Table 30.13: Runtime parameters used in the orbit test problem.

Variable Type Default Description
separation real 0.5 Initial particle separation (r0)
ext field logical .false. Whether to make the particles self-gravitating or

to have them orbit in an external potential. In
the former case GravityMain/Poisson should be
used; in the latter, GravityMain/PointMass.

30.4.2 Zel’dovich Pancake

The cosmological pancake problem (Zel’dovich 1970), Pancake, provides a good simultaneous test of the
hydrodynamics, particle dynamics, Poisson solver, and cosmological expansion modules. Analytic solutions
well into the nonlinear regime are available for both N -body and hydrodynamical codes (Anninos & Norman
1994), permitting an assessment of the code’s accuracy. After caustic formation the problem provides a
stringent test of the code’s ability to track thin, poorly resolved features and strong shocks using most
of the basic physics needed for cosmological problems. Also, as pancakes represent single-mode density
perturbations, coding this test problem is useful as a basis for creating more complex cosmological initial
conditions.

We set the initial conditions for the pancake problem in the linear regime using the analytic solution
given by Anninos and Norman (1994). In a universe with Ω0 = 1 at redshift z, a perturbation of wavenumber
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k which collapses to a caustic at redshift zc < z has comoving density and velocity given by

ρ(xe; z) = ρ̄

[
1 +

1 + zc

1 + z
cos (kx`)

]−1

(30.49)

v(xe; z) = −H0(1 + z)1/2(1 + zc)
sin kx`

k
, (30.50)

where ρ̄ is the comoving mean density. Here xe is the distance of a point from the pancake midplane, and
x` is the corresponding Lagrangian coordinate, found by iteratively solving

xe = x` −
1 + zc

1 + z

sin kx`

k
. (30.51)

The temperature solution is determined from the density under the assumption that the gas is adiabatic
with ratio of specific heats γ:

T (xe; z) = (1 + z)2T̄fid

[(
1 + zfid

1 + z

)3
ρ(xe; zfid)
ρ(xe; z)

]γ−1

. (30.52)

The mean temperature T̄fid is specified at a redshift zfid.
Dark matter particles are initialized using the same solution as the gas. The Lagrangian coordinates

x` are assigned to lie on a uniform grid. The corresponding perturbed coordinates xe are computed using
(30.51). Particle velocities are assigned using (30.50).

At caustic formation (z = zc), planar shock waves form in the gas on either side of the pancake midplane
and begin to propagate outward. A small region at the midplane is left unshocked. Immediately behind the
shocks, the comoving density and temperature vary approximately as

ρ(xe; z) ≈ ρ̄
18

(kx`)
2

(1 + zc)
3

(1 + z)3
(30.53)

T (xe; z) ≈ µH2
0

6kBk2
(1 + zc) (1 + z)2 (kx`)

2
.

At the midplane, which undergoes adiabatic compression, the comoving density and temperature are ap-
proximately

ρcenter ≈ ρ̄

[
1 + zfid

1 + z

]3 [ 3H2
0µ

kBT̄fidk2

(1 + zc)
4 (1 + z)3

1 + zfid

]1/γ

(30.54)

Tcenter ≈ 3H2
0µ

kBk2
(1 + z)2 (1 + zc)

4 ρ̄

ρcenter
.

An example FLASH calculation of the post-caustic gas solution appears in Figure 30.68.
Because they are collisionless, the particles behave very differently than the gas. As particles accelerate

toward the midplane, their phase profile develops a backwards “S” shape. At caustic formation the velocity
becomes multivalued at the midplane. The region containing multiple streams grows in size as particles
pass through the midplane. At the edges of this region (the caustics, or the inflection points of the “S”),
the particle density is formally infinite, although the finite force resolution of the particles keeps the height
of these peaks finite. Some of the particles that have passed through the midplane fall back and form
another pair of caustics, twisting the phase profile again. Because each of these secondary caustics contains
five streams of particles rather than three, the second pair of density peaks are higher than the first pair.
This caustic formation process repeats arbitrarily many times in the analytic solution. In practice, the finite
number of particles and the finite force resolution limit the number of caustics that are observed. An example
FLASH calculation of the post-caustic particle solution appears in Figure 30.69.

The 2D pancake problem in FLASH4 uses the runtime parameters listed in Table 30.14 in addition to
the regular ones supplied with the code.

This problem uses periodic boundary conditions and is intrinsically one-dimensional, but it can be run
using Cartesian coordinates in 1D, 2D, or 3D, with the pancake midplane tilted with respect to the coordinate
axes if desired.
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Figure 30.68: Example solution for the gas in a mixed particle/gas Zel’dovich Pancake problem. A comoving
wavelength λ = 10 Mpc, caustic redshift z c = 5, fiducial redshift z fid = 200, and fiducial temperature
T fid = 550 K were used together with a Hubble constant of 50 km s−1 Mpc−1. The cosmological model
was flat with a baryonic fraction of 0.15. Results are shown for redshift z = 0. An adaptive mesh with an
effective resolution of 1024 cells was used. Other parameters for this run were as described in the text. The
distance x is measured from the pancake midplane. (a) Gas density. (b) Gas temperature. (c) Gas velocity.

Figure 30.69: Example solution for the dark matter in a mixed particle/gas Zel’dovich pancake. Perturbation
and cosmological parameters were the same as in Figure 30.68. Results are shown for redshift z = 0. An
adaptive mesh with an effective resolution of 1024 cells was used. The number of particles used was 8192.
Other parameters for this run were as described in the text. Distance x is measured from the pancake
midplane. (a) Dark matter density. (b) Dark matter phase diagram showing particle positions x and
velocities v.

Table 30.14: Runtime parameters used with the 2D pancake test
problem.

Variable Type Default Description
lambda real 3.0857×1025 Wavelength of the initial perturbation (2π/k)
zcaustic real 5. Redshift at which pancake forms a caustic (zc)
Tfiducial real 550. Fiducial gas temperature (Tfid)
zfiducial real 200. Redshift at which gas temperature is Tfid (zfid)
xangle real 0. Angle made by pancake normal with the x-axis

(degrees)
yangle real 90. Angle made by pancake normal with the y-axis

(degrees)
pt_numX integer 128 Number of particles along x-side of initial particle

“grid”
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pt_numY integer 128 Number of particles along y-side of initial particle
“grid”

pt_numZ integer 1 Number of particles along z-side of initial particle
“grid”

30.4.3 Modified Huang-Greengard Poisson Test

The PoisParticles problem is designed to generate a refined grid from the distribution of particles in
the computational domain. In other words, create a grid which is more refined in places where there is a
clustering of particles. It is a modified form of the PoisTest simulation described in Section 30.3.3. Recall
that the PoisTest problem involves the creation of a highly refined grid, which is used to test grid refinement.

In the PoisParticles problem, the density stored in the grid is used as an indicator of where to create
new particles. Here, the number of particles created in each region of the grid is proportional to the grid
density, i.e., more particles are created in regions where there is a high density. Each new particle is assigned
a mass, which is taken from the density in the grid, so that mass is conserved.

The flash.par parameters shown in Table 30.15 specify that the grid should refine until at most 5
particles exist per block. This creates a refined grid similar to the Poistest problem.

Table 30.15: Runtime parameters used with the PoisParticles test problem.

Variable Type Value Description
refine on particle count logical .true. On/Off flag for refining the grid according to par-

ticle count.
max particles per blk integer 5 Grid refinement criterion which specifies maxi-

mum number of particles per block.

30.5 Burn Test Problem

30.5.1 Cellular Nuclear Burning

The Cellular Nuclear Burning problem is used primarily to test the function of the Burn simulation unit.
The problem exhibits regular steady-state behavior and is based on one-dimensional models described by
Chappman (1899) and Jouguet (1905) and Zel’dovich (Ostriker 1992), von Neumann (1942), and Doring
(1943). This problem is solved in two dimensions. A complete description of the problem can be found in a
recent paper by Timmes, Zingale et al(̇2000).

A 13 isotope α-chain plus heavy-ion reaction network is used in the calculations. A definition of what we
mean by an α-chain reaction network is prudent. A strict α-chain reaction network is only composed of (α,γ)
and (γ,α) links among the 13 isotopes 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe,
and 56Ni. It is essential, however, to include (α,p)(p,γ) and (γ,p)(p,α) links in order to obtain reasonably
accurate energy generation rates and abundance levels when the temperature exceeds ∼ 2.5×109 K. At
these elevated temperatures the flows through the (α,p)(p,γ) sequences are faster than the flows through the
(α,γ) channels. An (α,p)(p,γ) sequence is, effectively, an (α,γ) reaction through an intermediate isotope. In
our α-chain reaction network, we include 8 (α,p)(p,γ) sequences plus the corresponding inverse sequences
through the intermediate isotopes 27Al, 31P, 35Cl, 39K, 43Sc, 47V, 51Mn, and 55Co by assuming steady state
proton flows.

The two-dimensional calculations are performed in a planar geometry of size 256.0 cm by 25.0 cm. The
initial conditions consist of a constant density of 107 g cm−3, temperature of 2×108 K, composition of pure
carbon X(12C)=1, and material velocity of vx = vy= 0 cm s−1. Near the x=0 boundary the initial conditions
are perturbed to the values given by the appropriate Chapman-Jouguet solution: a density of 4.236×107 g
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cm−3, temperature of 4.423×109 K, and material velocity of vx = 2.876×108 cm s−1. Choosing different
values or different extents of the perturbation simply change how long it takes for the initial conditions to
achieve a near ZND state, as well as the block structure of the mesh. Each block contains 8 grid points in
the x-direction, and 8 grid points in the y-direction. The default parameters for cellular burning are given
in Table 30.16.

Table 30.16: Runtime parameters used with the Cellular test
problem.

Variable Type Default Description
xhe4 real 0.0 Initial mass fraction of He4
xc12 real 1.0 Initial mass fraction of C12
xo16 real 0.0 Initial mass fraction of O16
rhoAmbient real 1×107 Density of cold upstream material.
tempAmbient real 2×108 Temperature of cold upstream material.
velxAmbient real 0.0 X-velocity of cold upstream material.
rhoPerturb real 4.236×107 Density of the post shock material.
tempPerturb real 4.423×109 Temperature of the post shock material.
velxPerturb real 2.876×108 X-velocity of the post shock material.
radiusPerturb real 25.6 Distance below which the perturbation is applied.
xCenterPerturb real 0.0 X-position of the origin of the perturbation
yCenterPerturb real 0.0 Y-position of the origin of the perturbation
zCenterPerturb real 0.0 Z-position of the origin of the perturbation
usePseudo1d logical .false. Defaults to a spherical configuration. Set to

.true. if you want to use a 1d configuration, that
is copied in the y and z directions.

noiseAmplitude real 1.0×10−2 Amplitude of the white noise added to the pertur-
bation.

noiseDistance real 5.0 The distance above the starting radius to which
white noise is added.

The initial conditions and perturbation given above ignite the nuclear fuel, accelerate the material, and
produce an over-driven detonation that propagates along the x-axis. The initially over-driven detonation is
damped to a near ZND state on short time-scale. After some time, which depends on the spatial resolution
and boundary conditions, longitudinal instabilities in the density cause the planar detonation to evolve
into a complex, time-dependent structure. Figure 30.70 shows the pressure field of the detonation after
1.26×10−7 s. The interacting transverse wave structures are particularly vivid, and extend about 25 cm
behind the shock front. Figure 30.71 shows a close up of this traverse wave region. Periodic boundary
conditions are used at the walls parallel to the y-axis while reflecting boundary conditions were used for the
walls parallel to the x-axis.
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Figure 30.70: Steady-state conditions of the Cellular nuclear burn problem.
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Figure 30.71: Close-up of the detonation front in steady-state for the Cellular nuclear burn problem.
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30.6 RadTrans Test Problems

There are currently two simulations included in FLASH which involve the RadTrans unit with multigroup
diffusion. These simulations are not comparisons to analytic solutions - instead they are simple tests designed
to demonstrate the correct usage of the multigroup diffusion capability in FLASH.

30.6.1 Infinite Medium, Energy Equilibration

The simulation directory for this test is MGDInfinite. This is a fairly simple simulation which has no
spatial gradients. Separate ion/electron/radiation temperatures are set throughout the domain initially.
Over time, the temperatures should approach one another. The electrons and the radiation field exchange
energy through emission and absorption, and the HeatExchange unit controls the rate at which the electrons
and ions equilibrate with one another. The radiation field is represented using four radiation energy groups.

A sample setup line is:

./setup -auto MGDInfinite -1d +hdf5typeio +mtmmmt +mgd +uhd3t \
-with-unit=physics/materialProperties/Opacity/OpacityMain/Constant \
species=be,poli,xe mgd_meshgroups=4

Figure 30.72 shows the temperatures as a function of time.

Figure 30.72: Temperatures as a function of time for the Infinite medium, Energy Equilibration simulation

30.6.2 Radiation Step Test

The simulation directory for this test is MGDStep. This simulation involves four group radiation diffusion and
electron conduction. A constant opacity is used in this simulation. The transport opacity is set to a very
small value to simulate a vacuum. This is a 1D test where the initial electron and radiation temperatures
are discontinuous. Flux limiters are used for both the electrons and radiation. Over time, energy flows from
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the hotter region to the colder region. At the same time, the radiation temperature decreases as energy is
absorbed by the electrons. Figure 30.73 shows the final temperature profiles for this simulation. There is a
relatively sharp drop-off for each curve caused by the use of flux limiters. The drop-off can be made sharper
by increasing the number of cells used in the simulation.

Figure 30.73: Radiation and electron temperatures as a function of position for the MGDStep at 20 ps.



480 CHAPTER 30. THE SUPPLIED TEST PROBLEMS

30.7 Other Test Problems

30.7.1 The non-equilibrium ionization test problem

The neitest problem tests the ability of FLASH to calculate non-equilibrium ionization (NEI) ion abun-
dances. It simulates a stationary plasma flow through a temperature step profile. The solutions were checked
using an independent stationary code based on a fifth order Runge–Kutta method with adaptive stepsize
control by step-doubling (see Orlando et al. (1999)).

Figure 30.74: Temperature profile assumed for the test.

The test assumes a plasma with a mass density of 2 × 10−16 gm cm−3 flowing with a constant uniform
velocity of 3 × 105 cm s−1 through a temperature step between 104 K and 106 K (cf. Figure 30.74). The
plasma is in ionization equilibrium before going through the jump in the region at T = 104 K. The population
fractions in equilibrium are obtained from the equations

[nZ
i ]eqS

Z
i = [nZ

i+1]eqα
Z
i+1 (i = 1, ..., lZ − 1) (30.55)

lZ∑
i=1

[nZ
i ]eq = AZnp (30.56)

The presence of a temperature jump causes a strong pressure difference, which in turn should cause significant
plasma motions. Since the purpose is to test the NEI module, it is imposed that the pressure difference does
not induce any plasma motion and, to this end, the hydro variables (namely, T , ρ, v) are not updated. In
practice, the continuity equations are solved with uniform density and velocity, while the momentum and
energy equations are ignored.

Figure 30.75 shows the population fractions for the 12 most abundant elements in astrophysical plasmas
derived with the stationary code (Orlando et al. (1999)). The out of equilibrium ionization conditions are
evident for all the elements just after the flow goes through the temperature jump.
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Figure 30.75: Numerical solutions of the stationary code. The figure shows the population fractions vs.
space for the 12 elements most abundant in astrophysical plasmas assuming a stationary flow through a
temperature jump.
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Figure 30.75: ... continued ...
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Figure 30.76: As in Figure 30.75 for the solutions of the FLASH code.



484 CHAPTER 30. THE SUPPLIED TEST PROBLEMS

Figure 30.76: ... continued ...
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The same problem was solved with the NEI module of the FLASH code, assuming that the plasma is
initially in ionization equilibrium at t = t0 over all the spatial domain. After a transient lasting approximately
700 s, in which the population fractions evolve due to the plasma flow through the temperature jump, the
system reaches the stationary configuration. Outflow boundary conditions (zero-gradient) are assumed at
both the left and right boundaries. Figure 30.76 shows the population fraction vs. space after 700 s.

30.7.2 The Delta-Function Heat Conduction Problem

The ConductionDelta problem tests the basic function of the Diffuse unit, in particular its use for thermal
conduction, in connection with the Conductivity material property unit. It can be easily modified to
examine the effects of Viscosity, of non-constant conductivity, and of combining these diffusive effects with
hydrodynamics.

In its default configuration, ConductionDelta models the time development of a temperature peak
that at some time tini has the shape of a delta function in 1D or 3D, subject to heat conduction (with
constant coefficient) only. An ideal gas EOS is assumed. When using a flux-based Diffuse interface,
the setup includes the Hydro code unit, but changes of the solution due to hydrodynamical effects are
completely suppressed by zeroing all hydrodynamic fluxes each time before diffusive fluxes are computed
(using updateHydroFluxes = .FALSE.); diffusive fluxes are then computed either by calling Diffuse therm
(in the +splitHydro case) or by an calling an internal routine (such as hy_uhd_addThermalFluxes) of the
Hydro unit.

The theoretical solution of this initial value problem is known: For any t > tini, the temperature profile
is a Gaussian that spreads self-similarly over time. In particular in 1D, if the initial condition is defined as

T (x, tini) = Qδ(x) , (30.57)

then
T (x, t) =

Q

(4πχ(t− tini))1/2
e−x2/4χ(t−tini) (30.58)

(with χ the constant coefficient of diffusivity), see for example Zel’dovich and Raizer Ch. X.
See the end of Section 18.1 for alternative ways of configuring the test problem, using either a flux-based

or a standalone Diffuse interface.

30.7.3 The HydroStatic Test Problem

The Hydrostatic problem tests the basic function of hydrostatic boundary conditions implemented in the
Grid unit, in connection with a Hydro implementation. It is essentially a 1D problem, but can be configured
as 1 1D, 2D, or 3D setup. It can be easily modified to include additional physical effects, by including
additional code units in the setup.

In its default configuration, HydroStatic is set up with constant Gravity. The domain is initialized with
density, pressure, etc., fields representing an analytical solution of the hydrostatic problem with the given
gravitational acceleration, essentially following the barometric formula.

This initial condition is then evolved in time. Ideally, the solution would remain completely static,
and nothing should move. The deviation from this ideal behavior that occurs in practice is a measure of
the quality of the discretization of the initial condition, of the hydrodynamics implementation, and of the
boundary conditions. The effect of the latter, in particular, can be examined by visualizing artifacts that
develop near the boundaries (in particular, velocity artifacts), and studying their dependence on the choice
of boundary condition variant.

30.7.4 Hybrid-PIC Test Problems

A classic plasma model problem is that of an ion beam into a plasma (Winske 1986). Work by Matthew
(1994) describes a two-dimensional simulation of a low density ion beam through a background plasma. The
initial condition has a uniform magnetic field, with a beam of ions, number density nb, propagating along the
field with velocity vb = 10vA, where vA = B/

√
µ0nmi is the Alfvén velocity, through a background (core)

plasma of number density nc. Both the background and beam ions have thermal velocities vth = vA. Here

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/materialProperties/Conductivity/Conductivity_F90.html
http://flash.uchicago.edu/site/flashcode/user_support/rpDoc_4p4.py?submit=rp_Hydro.txt
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/Diffuse/Diffuse_therm_F90.html
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Figure 30.77: Temperature profile of the Delta-Function Heat Conduction Problem at two times. t ini =
−1 ms, top: t = 0ms, bottom: t = 2.46 ms.

we study what is denoted a resonant beam with nb = 0.015 nc and vc = −0.2 vA. Electron temperature is
assumed to be zero, so the electron pressure term in the electric field equation of state is zero. The weight
of the macroparticles are chosen such that there is an equal number of core and beam macroparticles, each
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beam macroparticles thus represent fewer real ions than the core macroparticles. The number of magnetic
field update subcycles is nine.

30.7.4.1 One-dimensional ion beam

The spatial extent of the domain is 22016 km along the x-axis, divided up in 256 cells with periodic boundary
conditions. The core number density is nc = 7 cm−3. The magnetic field magnitude is B = 6 nT directed
along the x-axis, which give an Alfvén velocity of 50 km/s and an ion inertial length of δi=86 km, where
δi = vA/Ωi and Ωi = qiB/mi is the ion gyrofrequency. The time step is 0.0865 s = 0.05 Ω−1

i , and the cell
size is δi. The number of particles per cell is 32. In Fig. 30.78 we show a velocity space plot of the macro-ions
at time t = 34.6 s ≈ 20 Ω−1

i . This can be compared to Fig. 5 in Winske (1984).
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Figure 30.78: Velocity space plot for a one-dimensional ion beam. Velocity along the y-axis as a function
of position at time t = 34.6 s ≈ 20 Ω i−1. Each gray dot is a core macro-ion, and each black dot is a beam
macro-ion.

30.7.4.2 Two-dimensional ion beam

In the two-dimensional case we have a square grid with sides of length 22016 km, and 128 cells in each
direction with periodic boundary conditions. The time step is 0.0216 s = 0.05 Ω−1

i , and the cell widths are
2δi. The number of particles per cell is 16. Otherwise the setup is identical to the one-dimensional case. In
Fig. 30.79 we show the magnitude of the magnetic field y-component at time t = 77.85 s ≈ 46 Ω−1

i . This
can be compared to Fig. 5 in Winske (1986).

30.7.5 Full-physics Laser Driven Simulation

The LaserSlab simulation provides an example of how to run a realistic, laser driven, simulation of an
HEDP experiment. It exercises a wide range of HEDP physics including:

• 3T unsplit hydrodynamics in R− z geometry

• Electron thermal conduction with Spitzer conductivities

• Ion/electron equilibration

• Radiation Diffusion with tabulated opacity

• Laser Ray Tracing

• Tabulated Equation of State
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Figure 30.79: The magnetic field y-component for a two-dimensional ion beam at time t = 77.85 s ≈ 46 Ω i−1.

This simulation has no analytic solutions associated with it. Rather, it is designed to demonstrate the HEDP
capabilities that are available in FLASH.

The simulation models a single laser beam illuminating a solid Aluminum disc in R − z geometry. The
laser is focused on the z-axis and enters the domain at a 45 degree angle. The simulation contains two
materials (or “species” in FLASH terminology). These are called CHAM (short for chamber) and TARG (short
for target). The TARG species models the Aluminum disc. The laser travels through a low density Helium
region before reaching the Aluminum. The properties of the CHAM species are set to model the low density
Helium. A schematic showing the initial conditions is shown in Figure 30.80. The laser rays enter just above
the lower-right corner of the domain and travel until they are absorbed or reflected. The beam intensity is
not uniform across the beam cross section. Rather, it has a super-Gaussian intensity profile with a 10 micron
spot radius.

The following setup line is used for this simulation:

./setup -auto LaserSlab -2d -nxb=16 -nyb=16 +hdf5typeio \
species=cham,targ +mtmmmt +laser +uhd3t +mgd mgd_meshgroups=6 \
-parfile=example.par

where:

• -2d and +cylindrical tells FLASH that this is a 2D simulation

• -nxb=16 and -nyb=16 sets the AMR block size to 16 by 16

• +hdf5typeio enables a newer version of IO that writes to HDF5 files. HDF5TypeIO is faster that other
IO implementations in FLASH and is also more user friendly when generating figures using external
tools, such as VisIt.

• species=cham,targ Creates two species named CHAM and TARG using the setup argument instead of
the SPECIES keyword in the Simulation Config file. This is required for using the Multispecies opacity
unit and is more user friendly since it allows many options to be specified in the runtime parameters
file. See Section 11.4 for more information.
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Figure 30.80: Schematic showing the initial conditions in the LasSlab simulation.

• +mtmmmt Activates the Multi-Temperature, Multi-Material, Multi-Type EOS in FLASH. This EOS lets
users select a different EOS model (such as gamma-law or tabulated) for each species in the simulation
through the runtime parameters file. (see )

• +laser Activates laser ray tracing (see Section 17.4).

• +mgd and mgd_meshgroups=6 activates multigroup radiation diffusion and tells FLASH that there will
be maximum of six groups per mesh (see Chapter 24)

• +uhd3t Activates the 3T unsplit hydro solver (see Section 14.1.4)

• -parfile=example.par Chooses a parameter file that is different than the default

The remainder of this section will describe how each physics unit functions and how the runtime parameters
are chosen for this simulation. Images of the results will also be shown at the end of this section.

30.7.5.1 Initial Conditions and Material Properties

The section “Initial Conditions” section in the runtime parameter file, “example.par”, sets parameters which
define the initial state of the fluid and also set the properties of the materials. The first runtime parameters
in this section are:

sim_targetRadius = 200.0e-04
sim_targetHeight = 20.0e-04
sim_vacuumHeight = 60.0e-04

These options define the space occupied by the target material (the targ species, Aluminum for this simu-
lation). The Aluminum disc extends from:

0 < R < sim targetRadius and (30.59)
sim vacuumHeight < z < sim vacuumHeight + sim targetHeight, (30.60)

where all parameters are in centimeters.
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The next section sets the initial fluid state in the target region and also sets the properties of the targ
species to match Aluminum. The relevant options are:

# Target material defaults set for Aluminum at room temperature:
sim_rhoTarg = 2.7 # Set target material density (solid Al)
sim_teleTarg = 290.11375 # Set initial electron temperature
sim_tionTarg = 290.11375 # Set initial ion temperature
sim_tradTarg = 290.11375 # Set initial radiation temperature
ms_targA = 26.9815386 # Set average atomic mass
ms_targZ = 13.0 # Set average atomic number
ms_targZMin = 0.02 # Set minimum allowed ionization level
eos_targEosType = "eos_tab" # Set EOS model to tabulated EOS
eos_targSubType = "ionmix4" # Set EOS table file to IONMIX 4 format
eos_targTableFile = "al-imx-003.cn4" # Set tabulated EOS file name

The initial density is chosen to match solid Aluminum. The initial ion, electron, and radiation temperatures
are set to room temperature (290 K, 0.025 eV). The runtime parameters ms_targA and ms_targZ set the
average atomic mass and atomic number of the targ species. Note that in the past, this information was
specified by modifying the Simulation_initSpecies subroutine. This information can now be specified
using runtime parameters since the species=cham,targ setup variable was used (see Section 11.4 for more
information). The parameter ms_targZMin sets the minimum ionization level for targ. Without this pa-
rameter, the initial ionization would be nearly zero and the slab would be subcritical with respect to the
laser light. The laser rays would penetrate deeply into the slab and could possible travel through it with no
heating. This can be avoided by putting a lower limit on the ionization level. The final three parameters
control the behavior of the MTMMMT EOS with respect to targ. The option eos_targEosType sets the
EOS model to use for the Aluminum. In this case, we have chosen to use a tabulated EOS which is in
the IONMIX4 format. Finally, we specify the name of the file which contains the EOS data. The file “al-
imx-003.cn4” can be found in the LaserSlab simulation directory in the source tree. The IONMIX4 format,
described in Section 22.4.6, is not human readable. However, the file “al-imx-003.imx.gz” contains a human
readable representation of this EOS and opacity data.

A similar set of runtime parameter options exist for the cham species:

# Chamber material defaults set for Helium at pressure 1.6 mbar:
sim_rhoCham = 1.0e-05
sim_teleCham = 290.11375
sim_tionCham = 290.11375
sim_tradCham = 290.11375
ms_chamA = 4.002602
ms_chamZ = 2.0
eos_chamEosType = "eos_tab"
eos_chamSubType = "ionmix4"
eos_chamTableFile = "he-imx-005.cn4"

The initial Helium density, sim_rhoCham is chosen to be fairly low. This ensures that the Helium remains
relatively transparent to the laser light (see Section 17.4.2 for a description of how the laser energy absorption
coefficient is computed).

For both the targ and cham species, the initial state of the fluid is defined using a density with
three temperatures. The initial EOS mode is set using the eosModeInit runtime parameter. It is set
to “dens temp gather”. This tells FLASH that the initial state will be specified using the density and the
temperature.

30.7.5.2 Multigroup Radiation Diffusion Parameters

This simulation uses multigroup radiation diffusion (MGD) to model the radiation field. This involves setting
parameters which control the MGD package itself and setting parameters which control how opacities for
the two species are computed. The MGD settings from the parameter file are:
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rt_useMGD = .true.
rt_mgdNumGroups = 6
rt_mgdBounds_1 = 1.0e-01
rt_mgdBounds_2 = 1.0e+00
rt_mgdBounds_3 = 1.0e+01
rt_mgdBounds_4 = 1.0e+02
rt_mgdBounds_5 = 1.0e+03
rt_mgdBounds_6 = 1.0e+04
rt_mgdBounds_7 = 1.0e+05
rt_mgdFlMode = "fl_harmonic"
rt_mgdFlCoef = 1.0

rt_mgdXlBoundaryType = "reflecting"
rt_mgdXrBoundaryType = "vacuum"
rt_mgdYlBoundaryType = "vacuum"
rt_mgdYrBoundaryType = "reflecting"
rt_mgdZlBoundaryType = "reflecting"
rt_mgdZrBoundaryType = "reflecting"

The first option turns on MGD. The second parameter sets the number of radiation energy groups in
the simulation, six in this case. Note that this number must be less than or equal to the value of the
mgd_meshgroups setup variable. This restriction can be relaxed through the use of mesh replication (see
Section 24.1.2). The runtime parameters beginning with rt_mgdBounds_ define the group boundaries for
each energy group in electron-volts. The parameters rt_mgdFlMode and rt_mgdFlCoef set the flux limiter
coefficient (see Section 18.1.3 and Section 24.1 for more information). The final six parameters set the
boundary conditions for all groups.

The next set of parameters tell FLASH how to compute opacities for each material. In general, the total
cell opacity is a number density weighted average of the opacity of each species in the cell. The parameters
which control the behavior of the opacity unit for this simulation are:

useOpacity = .true.

### SET CHAMBER (HELIUM) OPACITY OPTIONS ###
op_chamAbsorb = "op_tabpa"
op_chamEmiss = "op_tabpe"
op_chamTrans = "op_tabro"
op_chamFileType = "ionmix4"
op_chamFileName = "he-imx-005.cn4"

### SET TARGET (ALUMINUM) OPACITY OPTIONS ###
op_targAbsorb = "op_tabpa"
op_targEmiss = "op_tabpe"
op_targTrans = "op_tabro"
op_targFileType = "ionmix4"
op_targFileName = "al-imx-003.cn4"

The first parameter tells FLASH that opacities will be computed. The next five parameters control how
opacities are computed for the cham species (Helium) and the final five control the targ species (Aluminum).
These options tell FLASH to use the IONMIX4 formatted opacity file “he-imx-005.cn4” for Helium and “al-
imx-003.cn4” for Aluminum. Section 22.4.5.1 provides a detailed description of how these parameters are
used. Note that the number of groups and group structure in these opacity files must be consistent with the
rt_mgdNumGroups and rt_mgdBounds parameters that were described above.
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30.7.5.3 Laser Parameters

This section describes the runtime parameters which control the behavior of the laser in FLASH. Modeling
laser energy deposition using ray tracing is fairly complicated and requires large numbers of input parameters.
It is highly recommended that you read through the section describing the behavior of the laser model in
FLASH to learn more about how the ray tracing algorithms actually work (see Section 17.4).

This simulation uses a single laser beam which travels at an angle of 45 degrees from the z-axis. The
“Laser Parameters” section of the runtime parameters file contains all of the options relevant to defining the
laser beam. The first set of parameters are:

useEnergyDeposition = .true. # Turn on laser energy deposition
ed_maxRayCount = 10000 # Set maximum number of rays/cycle/proc to 2000
ed_gradOrder = 2 # Turn on laser ray refraction

The first parameter activates the laser model.
The ed maxRayCount parameter sets the maximum number of rays which can be stored on a given

process at once. It tells FLASH how much space to set aside for storing rays. In the case of a single process
simulation, ed maxRayCount must be less than the total number of rays launched on each cycle. The total
number of rays launched is set by the ed numRays ### parameters, described below. Finally, the parameter
ed_gradOrder controls how the electron number density and temperature are interpolated within a cell. A
value of two specifies linear interpolation.

The next set of parameters are:

ed_laser3Din2D = .true.
ed_laser3Din2DwedgeAngle = 0.1

Setting ed laser3Din2D to .true. activates the 3D-in-2D ray trace algorithm. This means that in this
simulation, the beams are defined in 3D geometry and the laser rays are traced in 3D. The total energy
deposited is then projected back on the R− z plane. This can significantly improve the accuracy of the ray
trace when compared to 2D-in-2D ray-tracing. The exception to this is the case of a single beam centered on
the z-axis and traveling along the z axis. In this case, there is no difference between 3D-in-2D and 2D-in-2D
ray tracing algorithms. In this example, the rays travel at a 45 degree angle. Thus, the 3D-in-2D ray-trace
is needed. When using the 3D-in-2D ray trace, ed laser3Din2DwedgeAngle sets the wedge angle. It should
be set to a number between 0.1 and 1.0 degrees. See Section 17.4.8.

The next set of parameters are:

ed_useLaserIO = .true.
ed_laserIOMaxNumPositions = 10000
ed_laserIONumRays = 128

These parameters make use of the LaserIO package in FLASH for visualizing laser rays (see Section 17.4.10.4).
These options tell FLASH to write out the trajectory of 128 rays to the plot files. The runtime parameter
plotFileIntervalStep is set to 100 which tells FLASH to write plot files every 10 cycles. Later in this
section, instructions and examples for plotting the laser ray data will be presented.

Next, a single laser pulse is defined. Each laser pulse (in this case, there is only one) represents a specific
time history of the power and multiple pulses can be defined. The LaserSlab simulation has only a single
laser beam which uses laser pulse number 1. The relevant runtime parameter options are:

# Define Pulse 1:
ed_numberOfSections_1 = 4
ed_time_1_1 = 0.0
ed_time_1_2 = 0.1e-09
ed_time_1_3 = 1.0e-09
ed_time_1_4 = 1.1e-09

ed_power_1_1 = 0.0
ed_power_1_2 = 1.0e+09
ed_power_1_3 = 1.0e+09
ed_power_1_4 = 0.0
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The laser pulse is defined as a piecewise linear function. The parameter ed_numSections_1 is set to four,
meaning the laser power is defined using four different time/power points. The four time and power pairs
are defined using the ed_time_1_# and ed_power_1_# parameters where the times are in seconds and the
powers are specified in Watts. In this case a square pulse is defined with a gradual rise, termination over
0.1 ns. The peak power is 109 W and the pulse lasts for a total of 1.1 ns.

The next set of parameters define the laser beam itself. The trailing 1 in the parameter names indicate
that these parameters are associated with the first beam (in this case, the only beam):

ed_lensX_1 = 1000.0e-04
ed_lensY_1 = 0.0e-04
ed_lensZ_1 = -1000.0e-04
ed_lensSemiAxisMajor_1 = 10.0e-04
ed_targetX_1 = 0.0e-04
ed_targetY_1 = 0.0e-04
ed_targetZ_1 = 60.0e-04
ed_targetSemiAxisMajor_1 = 10.0e-04
ed_targetSemiAxisMinor_1 = 10.0e-04
ed_pulseNumber_1 = 1
ed_wavelength_1 = 1.053
ed_crossSectionFunctionType_1 = "gaussian2D"
ed_gaussianExponent_1 = 4.0
ed_gaussianRadiusMajor_1 = 7.5e-04
ed_gaussianRadiusMinor_1 = 7.5e-04
ed_numberOfRays_1 = 4096
ed_gridType_1 = "radial2D"
ed_gridnRadialTics_1 = 64
ed_semiAxisMajorTorsionAngle_1= 0.0
ed_semiAxisMajorTorsionAxis_1 = "x"

The parameters ed_targetX_1, ed_targetY_1, and ed_targetZ_1 define the coordinate of the center of the
laser focal spot. Notice that even though this is a 2D simulation, three coordinates are specified. That is
because this while most of the FLASH solvers will operate in 2D, R−z geometry, the laser ray trace operates
in 3D Cartesian geometry. For specifying the laser focal spot center, “X” refers to the R direction in the
FLASH simulation (which is also called the “X” direction for many FLASH runtime parameters, regardless
of the geometry). The ed targetZ 1 parameter is referring to the z direction in the R−z simulation. This is
actually the “Y” direction for other FLASH runtime parameters. Finally, the “Z” direction for the 3D-in-2D
ray trace parameters is the direction pointing out of the computer screen. This same naming convention is
used for the parameters ed_lensX_1, ed_lensY_1, and ed_lensZ_1. These parameters specify the center of
the lens. On each time step, all rays are traced from a location on the lens to the focal spot. The lens must
be defined so that it exists entirely outside of the domain. The parameters ed targetSemiAxisMajor 1 and
ed targetSemiAxisMinor 1 set the radius of the laser spot. The laser beam can have an elliptical shape.
In this case the two parameters will have different values, but usually, a circular beam is desired. In this
case, the beam will have a circular shape and a 10 micron radius. The parameter ed lensSemiAxisMajor 1
sets the radius of the focal spot. The laser beam is associated with pulse number 1 (the only pulse in this
case) using the parameter ed pulseNumber 1. The parameter ed_wavelength_1 specifies the wavelength,
in microns, of the laser light. The ed_numberOfRays_1 parameter tells FLASH to launch 4096 rays for the
first beam every time the EnergyDeposition subroutine is called. When using unsplit hydrodynamics (as in
this case), this routine is called a single time per cycle. When using split hydrodynamics, it is called twice.

Taken together, the parameters:

• ed_crossSectionFunctionType_1,

• ed_gaussianExponent_1,

• ed_gaussianRadiusMajor_1, and

• ed_gaussianRadiusMinor_1

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p4/home.py?submit=docs/source/physics/sourceTerms/EnergyDeposition_F90.html
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define the spatial variation of the intensity across the beam. When ed_crossSectionFunctionType_1 is set
to “gaussian2D”, the intensity profile is a supergaussian described by:

I(r) = I0 exp

−
[(

x

Rx

)2

+
(

y

Ry

)2
]γ/2

 (30.61)

where:

• Rx =ed_gaussianRadiusMajor_1,

• Ry =ed_gaussianRadiusMinor_1, and

• γ =ed_gaussianExponent_1.

In our case, we’ve set up a beam with a super-Gaussian profile (gamma = 4) and an e-folding length of
7.5 microns. Since Rx = Ry we have a circular beam and not an elliptical beam. The user does not directly
specify I0. Rather, the user specifies the total beam power (as described above). This then sets I0 through
the integral relation:

P = 2π

∫ R

0

drrI(r), (30.62)

The parameters ed_semiAxisMajorTorsionAngle_1 and ed_semiAxisMajorTorsionAxis_1 only need to
change for non-circular beams.

Finally, the user must specify how rays will be spatially distributed across the beam. The ed_numberOfRays_1
parameter sets the total number of rays to launch on each time step for each beam. Now we have to decide
how to distribute those rays cross the cross-section of the laser beam. The parameter ed_gridType_1 is
set to “radial2D”. This means the rays will be laid out on the circular cross-section of the beam with some
radial and angular spacing. The area of the beam is divided into regions of equal radius and angle. The
parameter ed_gridnRadialTics_1 is set to 64 meaning that there are 64 radial slices in the beam cross
section. Therefore, there are: 4096/64 = 64 angular slices.

30.7.5.4 Examining LaserSlab Simulation Output

This section describes how the output can be visualized using VisIt and through other means. LaserIO code
in FLASH can be used to visualize ray paths (see Section 17.4.10.4 for more information). The LaserIO unit
can only be used with parallel HDF5 IO implementations. The +hdf5typeio setup option is consistent with
this. The runtime parameters:

ed_useLaserIO = .true.
ed_laserIOMaxNumPositions = 10000
ed_laserIONumRays = 128

tell FLASH to use LaserIO and to write out the trajectory of 128 rays to the plot files so they can be
visualized in VisIt. Notice that this is a small subset of the total number of rays that are actually launched.
Writing out all of the rays is inadvisable since it will have numerous negative effects on performance when
large number of rays are used in the simulation. In this case, plot files are written every 0.1 ns and the
simulation is run for 2 ns cycles (as indicated by the parameter tmax). Thus, the following plot files are
generated:

lasslab_hdf5_plt_cnt_0000
lasslab_hdf5_plt_cnt_0001
...
lasslab_hdf5_plt_cnt_0199
lasslab_hdf5_plt_cnt_0200

These HDF5 files contain the ray trajectories for each of the plot time steps (cycles 1, 11, ... 191, and 201 in
this case). Unfortunately, at this time, the FLASH VisIt plugin does not natively support ray visualization.
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The ray data must be extracted from the plot files in placed in a form that VisIt does understand. The
extract_rays.py script, found in the tools/scripts directory, performs this operation. Note, however,
that extract_rays.py requires the NumPy and PyTables python packages to operate.

After this example LaserSlab simulation is run, the extract˙rays.py script can be used as shown:

>>> extract_rays.py lasslab_hdf5_plt_cnt_*
Processing file: lasslab_hdf5_plt_cnt_0000
Processing file: lasslab_hdf5_plt_cnt_0001
...
Processing file: lasslab_hdf5_plt_cnt_0198
Processing file: lasslab_hdf5_plt_cnt_0199
Processing file: lasslab_hdf5_plt_cnt_0200
No ray data in "lasslab_hdf5_plt_cnt_0200" skipping...

Note that a warning message was printed for the last plot file. This occurs because there is no ray data for
a plot file written on the last cycle of a simulation. This is a limitation of the LaserIO package. The script
generates files in the VTK format named:

lasslab_las_0000.vtk
lasslab_las_0001.vtk
...
lasslab_las_0198.vtk
lasslab_las_0199.vtk

These files contain meshes which define the ray trajectories in a format understood by VisIt.
The ray data can be plotted on top of the computational mesh. In VisIt, load the lasslab_las_*.vtk

database. Add the “RayPower˙Watts” Pseudocolor plot. The “RayPower˙Watts” plot colors the trajectories
based on the power of each ray in units of Watts. Thus, the power of any one ray at any given time should
be less than the beam powers specified in the runtime parameters file.

An example showing the ray powers and trajectories is shown in Figure 30.80. The trajectory of 128
laser rays has been drawn. The rays are colored based on their powers.

Computing the Number Density and Average Ionization

For a simulation using the MTMMMT EOS, the electron number density itself is not directly
represented in the solution vector. Rather, for mostly historical reasons, FLASH only keeps
track of the variables YE and SUMY, which are defined as:

YE =
Z̄

Ā
, SUMY =

1
Ā

where Z̄ is the average ionization level and Ā is the average atomic mass of the cell. Thus,
one can compute the average ionization and electron number density from these quantities.
For example:

Ā =
1

SUMY
,

Z̄ =
YE

SUMY
,

nion = NA
ρ

Ā
= SUMYNAρ,

nele = NAZ̄
ρ

Ā
= YENAρ

Where NA is Avogadros number, nion is the ion number density, nele is the electron number
density, and ρ is the mass density (DENS in FLASH). These quantities can be plotted in VisIt
using expressions.
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Another useful tool in visualizing the behavior of the laser is the FLASH variable DEPO. This variable
stores the laser energy deposited in a cell on a particular time step per unit mass. The division by mass
removes the geometric factor present in the ray power. The amount of laser energy entering the domain and
the amount of laser energy exiting the domain can be used to compute the fraction of laser energy that is
deposited. The energy entering and exiting the domain is shown for each cycle and integrated over the entire
simulation in the file “lasslab˙LaserEnergyProfile.dat”. This file is produced whenever the laser ray tracing
package is active in FLASH.

30.8 3T Shock Simulations

FLASH has the ability to simulate plasmas which have separate ion, electron, and radiation temperatures
(see Chapter 13). Usually, simulations which multiple temperatures have several physics models active
including:

• Electron thermal conduction

• Ion/Electron equilibration

• Radiation emission, absorption, and diffusion

This section contains a series of simulations which verify FLASH through comparisons with analytic solutions
of steady shocks where various assumptions are active. Unfortunately, no single analytic solution contains
three distinct temperatures with realistic physical coefficients. Thus, each simulation is performed with a
different set of assumptions active. Taken together, they adequately exercise the 3T capabilities in FLASH.

30.8.1 Shafranov Shock

The Shafranov problem (Shafranov, 1957) is a one-dimensional problem that provides a good verification
for structure of 1D shock waves in a two-temperature plasma with separate ion and electron temperatures.
The Shafranov shock solutions takes as input a given upstream condition and shock speed. It then computes
the downstream conditions and a shock profile. The solution is fairly sophisticated in that it takes into
account electron thermal conduction and ion/electron equilibration. An assumption is made that the electron
entropy is continuous across the shock. Thus, immediately downstream of the shock, the ion-temperature is
substantially higher than the electron temperature. Far downstream, the temperature equilibrate. Electron
conduction creates a preheat region upstream of the shock. An gamma-law EOS is used (typically with
γ = 5/3).

Unfortunately, the Shafranov shock solution can only be simplified to an ODE which must be numer-
ically integrated. The ShafranovShock simulation directory includes analytic solutions for several mate-
rials including Hydrogen, Helium, and Xenon in the files plasma_shock.out, plasma_shock_Z2.out, and
plasma_shock_Z54.out respectively.

Several solutions are compared here for the fully-ionized Helium case with the following initial/boundary
conditions:

• Upstream Ion/Electron Temperature: 5 eV

• Upstream Density: 0.0018 g/cc

• Upstream Velocity: 0.0 cm/s

• Shock Speed: 1.623415272E+07 cm/s

Figure 30.81, Figure 30.82, and Figure 30.83, shows the electron/ion temperature, density, and velocity at
0.15 ns for three cases:

• Analytic Solution: This is the analytic solution for the steady shock. This solution is used to initialize
the FLASH simulations. The simulations are correct to the extent that they are able to maintain this
shock profile.
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Figure 30.81: Electron and ion temperatures from Shafranov shock simulation

• Entropy Advection Solution: This is a 1D FLASH simulation using the split hydrodynamics solver in
“entropy advection” mode as described in Section 14.1.4.1.

• RAGE-like Solution: This is a 1D FLASH simulation using the split hydrodynamics solver in “RAGE-
like” mode as described in Section 14.1.4.2.

The figures show that the both the entropy advection and RAGE-like FLASH simulation are able to maintain
the correct shock speeds. However, the entropy advection approach closely matches the correct analytic ion
temperature profile while the RAGE-like simulation a peak ion temperature that is too low. This is the
expected behavior since the RAGE-like mode does not attempt to ensure that electrons are adiabatically
compressed by the shock.

This simulation can be setup with the following setup command:

# For the Entropy Advection Case:
./setup ShafranovShock -auto -1d +pm4dev +3t -parfile=flash_Z2.par

# For the RAGE-like Case:
./setup ShafranovShock -auto -1d +pm4dev +3t -parfile=ragelike_Z2.par

30.8.2 Non-Equilibrium Radiative Shock

The non-equilibrium radiative shock solution is an analytical solution to a steady, 1D, radiative shock where
Te = Ti but Te 6= Tr. It is presented in (Lowrie, 2008). A constant opacity is assumed, making this a
gray simulation. The “analytic” solution is fairly complex and reduces to an ODE which must be evaluated
numerically. This ODE is evaluated for a given set of upstream conditions and a given Mach number
(evaluated relative to the upstream sound speed). A gamma-law equation of state is assumed.

The FLASH implementation of this simulation resides in the GrayDiffRadShock simulation directory.
The simulation can be set up using the following command:

./setup -auto GrayDiffRadShock -1d +pm4dev +splitHydro +3t mgd_meshgroups=1

The simulation is performed using 3T hydrodynamics with the multigroup radiation diffusion (MGD) unit
(see Chapter 24). A single radiation energy group is used with opacities set to σa = σe = 423 cm−1 and
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Figure 30.82: Mass density from Shafranov shock simulation

Figure 30.83: Velocity from Shafranov shock simulation
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Figure 30.84: Temperatures from non-equilibrium radiative shock simulation. The FLASH results are
compared to analytic solution.

σt = 788 cm−1 (see Section 22.4.1). A γ = 5/3 gamma-law EOS is used with Z = 1 and A = 2. The electron
and ion temperatures are forced to equilibrium by using the Spitzer Heatexchange implementation (see:
Section 17.5.1) where the ion/electron equilibration time has been reduced by a factor of 106 by setting the
hx_ieTimeCoef runtime parameter.

The initial conditions are defined by a step function where the jump occurs at x = 0. The upstream
(x < 0) and downstream (x > 0) conditions are chosen so that the shock remains stationary. The correct
jump conditions are to maintain a stationary mach two shock are:

• ρ0 = 1.0 g/cc

• T0 = 100 eV

• u0 = 2.536e + 07 cm/s

• ρ1 = 2.286 g/cc

• T1 = 2.078 eV

• u1 = 1.11e + 07 cm/s

where the subscript 1 represents downstream conditions and the subscript 0 represents upstream conditions.
The runtime parameter sim_P0 representing the ratio of radiation to matter pressure is set to 10−4.

The verification test is successful to the extent that FLASH is able to maintain a stationary shock with
the correct steady state spatial profile as shown in Figure 8 of (Lowrie, 2008). This is an excellent verification
test in that no special modifications to the FLASH code are needed to perform this test. The simulation
is run for 4.25 ns which is enough time for the initial step function profile to reach a steady state solution.
Figure 30.84 compares the temperatures in the FLASH simulation to the analytic solution. Figure 30.85
compares density to the analytic solution. Excellent agreement is obtained.

30.8.3 Blast Wave with Thermal Conduction

The ReinickeMeyer blast wave solution (Reinicke, 1991) models a blast wave in a single temperature fluid with
thermal conduction. The semi-analytic solution reduces to an ODE which must be integrated numerically.
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Figure 30.85: Mass density from non-equilibrium radiative shock simulation. The FLASH result is compared
to the analytic solution.

Figure 30.86 compares a FLASH simulation to the analytic solution (obtained from cococubed.asu.edu/
code_pages/vv.shtml after 0.3242 ns for a particular set of initial conditions. Excellent agreement is
obtained with the analytic solution. The image shows that at this time the blast wave is at approximately
0.45 cm and the conduction front is at 0.9 cm. The simulation can be set up using the following command:

./setup -auto ReinickeMeyer -1d +pm4dev +spherical -parfile=flash_SPH1D.par

The shortcut +splitHydro may have to be added to reproduce the presented results.

30.9 Matter+Radiation Simulations

Here are some simulations that use the RadFLAH (radiation-fluxlimiter-aware hydro) variant of unsplit
Hydro. They differ from generic 3T simulations in that there is no phyiscal distinction between the temper-
atures of electrons and ions; that is, electrons and ions are understood as forming a “matter” component.
The “matter” component can have a different temperature from radiation.

30.9.1 Radiation-Inhibited Bondi Accretion

This setup can be used as a 1D spherical version of the radiation-inhibited Bondi accretion problem described
by Krumholz et al (2007). The simulation can be set up using the following command:

./setup radflaHD/BondiAccretion -1d -auto +spherical -nxb=16 +mgd mgd_meshgroups=1 \
species=h1 ManualSpeciesDirectives=True +parallelio +uhd3tr \
-without-unit=physics/Hydro/HydroMain/unsplit

Note that this setup differs significantly from the one described in Krumholz et al (2007), by using 1D instead
of 3D geometry, and by excluding the central region from the domain instead of representing the accreting
mass at the origin as a sink (or “star”) particle.

cococubed.asu.edu/code_pages/vv.shtml
cococubed.asu.edu/code_pages/vv.shtml
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Figure 30.86: Mass density and temperature from ReinickeMeyer blast wave FLASH simulation compared
to analytic solution.



502 CHAPTER 30. THE SUPPLIED TEST PROBLEMS

30.9.2 Radiation Blast Wave

This setup can be used to reproduce the Radiation Blast Wave problem described in the Castro II paper by
Zhang et al (2011). The simulation can be set up using the following command for using the default MGD
solver:

./setup radflaHD/RadBlastWave -1d -auto +spherical -nxb=16 +mgd mgd_meshgroups=1 \
species=h1 ManualSpeciesDirectives=True +parallelio +uhd3tr

For Case II of Zhang et al (2011), the following variant, using the experimental ExpRelax MGD solver
implementation, may give better results:

./setup radflaHD/RadBlastWave -1d -auto +spherical -nxb=16 +mgd mgd_meshgroups=1 \
species=h1 ManualSpeciesDirectives=True +parallelio +uhd3tr RadTransImpl=ExpRelax
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Two tools are included in the release of FLASH to assist users with analysis of data. The first, sfocu,
provides a way to compare output files. The second, fidlr3.0, provides visualization and analysis tools by
using the proprietary IDL package.
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Chapter 31

VisIt

The developers of FLASH also highly recommend VisIt, a free parallel interactive visualization package pro-
vided by Lawrence Livermore National Laboratory (see https://wci.llnl.gov/codes/visit/). VisIt runs
on Unix and PC platforms, and can handle small desktop-size datasets as well as very large parallel datasets
in the terascale range. VisIt provides a native reader to import FLASH2.5 and FLASH3. Version 1.10 and
higher natively support FLASH3. For VisIt versions 1.8 or less, FLASH3 support can be obtained by in-
stalling a tarball patch available at http://flash.uchicago.edu/site/flashcode/user_support/visit/.
Full instructions are also available at that site.
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https://wci.llnl.gov/codes/visit/
http://flash.uchicago.edu/site/flashcode/user_support/visit/
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Chapter 32

Serial FLASH Output Comparison
Utility (sfocu)

Sfocu (Serial Flash Output Comparison Utility) is mainly used as part of an automated testing suite called
flashTest and was introduced in FLASH version 2.0 as a replacement for focu.

Sfocu is a serial utility which examines two FLASH checkpoint files and decides whether or not they are
“equal” to ensure that any changes made to FLASH do not adversely affect subsequent simulation output.
By “equal”, we mean that

• The leaf-block structure matches – each leaf block must have the same position and size in both
datasets.

• The data arrays in the leaf blocks (dens, pres...) are identical.

• The number of particles are the same, and all floating point particle attributes are identical.

Thus, sfocu ignores information such as the particular numbering of the blocks and particles, the times-
tamp, the build information, and so on.

Sfocu can read HDF5 and PnetCDF FLASH checkpoint files. Although sfocu is a serial program, it is
able to do comparisons on the output of large parallel simulations. Sfocu has been used on irix, linux, AIX
and OSF1.

32.1 Building sfocu

The process is entirely manual, although Makefiles for certain machines have been provided. There are a
few compile-time options which you set via the following preprocessor definitions in the Makefile (in the
CDEFINES macro):

NO HDF5 build without HDF5 support

NO NCDF build without PnetCDF support

NEED MPI certain parallel versions of HDF5 and all versions of PnetCDF need to be linked with the MPI
library. This adds the necessary MPI Init and MPI Finalize calls to sfocu. There is no advantage to
running sfocu on more than one processor; it will only give you multiple copies of the same report.

32.2 Using sfocu

The basic and most common usage is to run the command sfocu <file1> <file2>. The option -t <dist>
allows a distance tolerance in comparing bounding boxes of blocks in two different files to determine which
are the same (which have data to compare to one another). You might need to widen your terminal to view
the output, since it can be over 80 columns. Sample output follows:
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A: 2006-04-25/sod_2d_45deg_4lev_ncmpi_chk_0001

B: 2005-12-14/sod_2d_45deg_4lev_ncmpi_chk_0001

Min Error: inf(2|a-b| / max(|a+b|, 1e-99) )

Max Error: sup(2|a-b| / max(|a+b|, 1e-99) )

Abs Error: sup|a-b|

Mag Error: sup|a-b| / max(sup|a|, sup|b|, 1e-99)

Block shapes for both files are: [8,8,1]

Mag-error tolerance: 1e-12

Total leaf blocks compared: 541 (all other blocks are ignored)

-----+------------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

Var | Bad Blocks | Min Error || Max Error || Abs Error |

-----+------------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

| | || Error | A | B || Error | A | B |

-----+------------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

dens | 502 | 0 || 1.098e-11 | 0.424 | 0.424 || 4.661e-12 | 0.424 | 0.424 |

eint | 502 | 0 || 1.1e-11 | 1.78 | 1.78 || 1.956e-11 | 1.78 | 1.78 |

ener | 502 | 0 || 8.847e-12 | 2.21 | 2.21 || 1.956e-11 | 2.21 | 2.21 |

gamc | 0 | 0 || 0 | 0 | 0 || 0 | 0 | 0 |

game | 0 | 0 || 0 | 0 | 0 || 0 | 0 | 0 |

pres | 502 | 0 || 1.838e-14 | 0.302 | 0.302 || 1.221e-14 | 0.982 | 0.982 |

temp | 502 | 0 || 1.1e-11 | 8.56e-09 | 8.56e-09 || 9.41e-20 | 8.56e-09 | 8.56e-09 |

velx | 516 | 0 || 5.985 | 5.62e-17 | -1.13e-16 || 2.887e-14 | 0.657 | 0.657 |

vely | 516 | 0 || 2 | 1e-89 | -4.27e-73 || 1.814e-14 | 0.102 | 0.102 |

velz | 0 | 0 || 0 | 0 | 0 || 0 | 0 | 0 |

mfrc | 0 | 0 || 0 | 0 | 0 || 0 | 0 | 0 |

-----+------------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

-----+------------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

Var | Bad Blocks | Mag Error || A || B |

-----+------------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

| | || Sum | Max | Min || Sum | Max | Min |

-----+------------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

dens | 502 | 4.661e-12 || 1.36e+04 | 1 | 0.125 || 1.36e+04 | 1 | 0.125 |

eint | 502 | 6.678e-12 || 7.3e+04 | 2.93 | 1.61 || 7.3e+04 | 2.93 | 1.61 |

ener | 502 | 5.858e-12 || 8.43e+04 | 3.34 | 2 || 8.43e+04 | 3.34 | 2 |

gamc | 0 | 0 || 4.85e+04 | 1.4 | 1.4 || 4.85e+04 | 1.4 | 1.4 |

game | 0 | 0 || 4.85e+04 | 1.4 | 1.4 || 4.85e+04 | 1.4 | 1.4 |

pres | 502 | 1.221e-14 || 1.13e+04 | 1 | 0.1 || 1.13e+04 | 1 | 0.1 |

temp | 502 | 6.678e-12 || 0.000351 | 1.41e-08 | 7.75e-09 || 0.000351 | 1.41e-08 | 7.75e-09 |

velx | 516 | 3.45e-14 || 1.79e+04 | 0.837 | -6.09e-06 || 1.79e+04 | 0.837 | -6.09e-06 |

vely | 516 | 2.166e-14 || 1.79e+04 | 0.838 | -1.96e-06 || 1.79e+04 | 0.838 | -1.96e-06 |

velz | 0 | 0 || 0 | 0 | 0 || 0 | 0 | 0 |

mfrc | 0 | 0 || 3.46e+04 | 1 | 1 || 3.46e+04 | 1 | 1 |

-----+------------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

FAILURE

“Bad Blocks” is the number of leaf blocks where the data was found to differ between datasets. Four
different error measures (min/max/abs/mag) are defined in the output above. In addition, the last six
columns report the sum, maximum and minimum of the variables in the two files. Note that the sum is
physically meaningless, since it is not volume-weighted. Finally, the last line permits other programs to
parse the sfocu output easily: when the files are identical, the line will instead read SUCCESS.

It is possible for sfocu to miss machine-precision variations in the data on certain machines because
of compiler or library issues, although this has only been observed on one platform, where the compiler
produced code that ignored IEEE rules until the right flag was found.
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Drift

33.1 Introduction

Drift is a debugging tool added to FLASH to help catch programming mistakes that occur while refactoring
code in a way that should not change numerical behavior. Historically, simulation checkpoints have been
used to verify that results obtained after a code modification have not affected the numerics. But if changes
are observed, then the best a developer can do to narrow the bug hunting search space is to look at pairs of
checkpoint files from the two different code bases sequentially. The first pair to compare unequal will tell you
that somewhere between that checkpoint and its immediate predecessor something in the code changed the
numerics. Therefor, the search space can only be narrowed to the limit allow by the checkpointing interval,
which in FLASH, without clever calls to IO sprinkled about, is at best once per time cycle.

Drift aims to refine that granularity considerably by allowing comparisons to be made upon every mod-
ification to a block’s contents. To achieve this, drift intercepts calls to Grid releaseBlkPtr, and inserts
into them a step to checksum each of the variables stored on the block. Any checksums that do not match
with respect to the last checksums recorded for that block are logged to a text file along with the source
file and line number. The developer can then compare two drift logs generated by the different runs using
diff to find the first log entry that generates unequal checksums, thus telling the developer which call to
Grid releaseBlkPtr first witnessed divergent values.

The following are example excerpts from two drift logs. Notice the checksum value has changed for
variable dens on block 18. This should clue the developer in that the cause of divergent behavior lies
somewhere between Eos wrapped.F90:249 and hy ppm sweep.F90:533.

inst=2036
step=1
src=Eos_wrapped.F90:249
blk=57
dens E8366F6E49DD1B44
eint 89D635E5F46E4CE4
ener C6ED4F02E60C9E8F
pres 6434628E2D2E24E1
temp DB675D5AFF7D48B8
velx 42546C82E30F08B3

inst=2100
step=1
src=hy_ppm_sweep.F90:533
blk=18
dens A462F49FFC3112DE
eint 9CD79B2E504C7C7E
ener 4A3E03520C3536B9
velx 8193E8C2691A0725
vely 86C5305CB7DE275E

inst=2036
step=1
src=Eos_wrapped.F90:249
blk=57
dens E8366F6E49DD1B44
eint 89D635E5F46E4CE4
ener C6ED4F02E60C9E8F
pres 6434628E2D2E24E1
temp DB675D5AFF7D48B8
velx 42546C82E30F08B3

inst=2100
step=1
src=hy_ppm_sweep.F90:533
blk=18
dens 5E52D67C5E93FFF1
eint 9CD79B2E504C7C7E
ener 4A3E03520C3536B9
velx 8193E8C2691A0725
vely 86C5305CB7DE275E
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33.2 Enabling drift

In FLASH, drift is disabled by default. Enabling drift is done by hand editing the Flash.h file generated by the
setup process. The directive line #define DRIFT_ENABLE 0 should be changed to #define DRIFT_ENABLE
1. Once this has been changed, a recompilation will be necessary by executing make.

With drift enabled, the FLASH executable will generate log files in the same directory it is executed in.
These files will be named drift.<rank>.log, one for each MPI process.

The following runtime parameters are read by drift to control its behavior:
Parameter Default Description
drift trunc mantissa 2 The number of least significant mantissa bits to zero

out before hashing a floating point value. This can be
used to stop numerical noise from altering checksum
values.

drift verbose inst 0 The instance index at which drift should start logging
checksums per call to Grid releaseBlkPtr. Before
this instance is hit, only user calls to Driver driftUnk
will generate log data. A value of zero means never log
checksums per block. Instance counting is described
below.

drift tuples .false. A boolean switch indicating if drift should write logs in
the more human readable ”non-tuples” format or the
machine friendly ”tuples” format that can be read in
by the driftDee script found in the tools/ directory.
Generally the ”non-tuples” format is a better choice
to use with tools such as diff.

33.3 Typical workflow

Drift has two levels of output verbosity, let us refer to them as verbose and not verbose. When in non-verbose
mode, drift will only generate output when directly told to do so through the Driver driftUnk API call.
This call tells drift to generate a checksum for each unk variable over all blocks in the domain and then log
those checksums that have changed since the last call to Driver driftUnk. Verbose mode also generates
this information and additionally includes the per-block checksums for every call to Grid releaseBlkPtr.
Verbose mode can generate a lot of log data and so should only be activated when the simulation nears the
point at which divergence originates. This is the reason for the drift verbose inst runtime parameter.

Drift internally maintains an ”instance” counter that is incremented with every intercepted call to
Grid releaseBlkPtr. This is drift’s way of enumerating the program states. When comparing two drift logs,
if the first checksum discrepancy occurs at instance number 1349 (arbitrary), then it is clear that somewhere
between the 1348’th and 1349’th call to Grid releaseBlkPtr a divergent event occurred.

The suggested workflow once drift is enabled is to first run both simulations with verbose mode off
(dirft verbse inst=0). The main Driver evolveFlash implementations have calls to Driver driftUnk
between all calls to FLASH unit advancement routines. So the default behavior of drift will generate multiple
unk-wide checksums for each variable per timestep. These two drift logs should be compared to find the
first entry with a mismatched checksum. Each entry generated by Driver driftUnk will contain an instance
range like in the following:

step=1
from=Driver_evolveFlash.F90:276
unks inst=1234 to 2345
dens 9CF3C169A5BB129C
eint 9573173C3B51CD12
ener 028A5D0DED1BC399
...
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The line ”unks inst=1349 to 2345” informs us these checksums were generated sometime after the
2345’th call to Grid releaseBlkPtr. Assume this entry is the first such entry to not match checksums with
its counterpart. Then we know that somewhere between instance 1234 and 2345 divergence began. So we
set drift verbose inst = 1234 in the runtime parameters file of each simulation and then run them both
again. Now drift will run up to instance 1234 as before, only printing at calls to Driver driftUnk, but
starting with instance 1234 each call to Grid releaseBlkPtr will induce a per block checksum to be logged
as well. Now these two drift files can be compared to find the first difference, and hopefully get you on your
way to hunting down the cause of the bug.

33.4 Caveats and Annoyances

The machinery drift uses to intercept calls to Grid releaseBlkPtr is lacking in sophistication, and as such
can put some unwanted constraints on the code base. The technique used is to declare a preprocessor #define
in Flash.h to expand occurrences of Grid releaseBlkPtr to something larger that includes FILE and
LINE . This is how drift is able to correlate calls to Grid releaseBlkPtr with the originating line of source

code. Unfortunately this technique places a very specific restriction on the code once drift is enabled. The
trouble comes from the types of source lines that may refer to a subroutine without calling it. The primary
offender being use statements with only clauses listing the module members to import into scope. Because
macro expansion is dumb with respect to context, it will expand occurrences of Grid releaseBlkPtr in
these use statements, turning them into syntactic rubbish. The remedy for this issue is to make sure the
line #include "Flash.h" comes after all statements involving Grid releaseBlkPtr but not calling it, and
before all statements that are calls to Grid releaseBlkPtr. In practice this is quite easy. With only one
subroutine per file, there will only be one line like:

use Grid\_interface, only: ..., Grid\_releaseBlkPtr, ...

and it will come before all calls to Grid releaseBlkPtr, so just move the #include "Flash.h" after the
use statements. The following is an example:

Incorrect Correct

#include "Flash.h"
subroutine Flash_subroutine()

use Grid_interface, only: Grid_releaseBlkPtr
implicit none
[...]
call Grid_releaseBlkPtr(...)
[...]

end subroutine Flash_subroutine

subroutine Flash_subroutine()
use Grid_interface, only: Grid_releaseBlkPtr
implicit none

#include "Flash.h"
[...]
call Grid_releaseBlkPtr(...)
[...]

end subroutine Flash_subroutine

If such a solution is not possible because no separation between all use and call statements exists,
then there are two remaining courses of action to get the source file to compile. One, hide these calls to
Grid releaseBlkPtr from drift by forceably disabling the macro expansion. To do so, just add the line
#undef Grid releaseBlkPtr after #include "Flash.h". The second option is to carry out the macro
expansion by hand. This also requires disabling the macro with the undef just mentioned, but then also
rewriting each call to Grid releaseBlkPtr just as the preprocessor would. Please consult Flash.h to see
the text that gets substituted in for Grid releaseBlkPtr.
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Chapter 34

FLASH IDL Routines (fidlr3.0)

fidlr3.0 is a set of routines to read and plot data files produced by FLASH. The routines are written in the
graphical display language IDL (Interactive Data Language) and require the IDL program from Research
Systems Inc. (http://www.rsi.com). These routines include programs which can be run from the IDL
command line to read 1D, 2D, or 3D FLASH datasets, interactively analyze datasets, and interpolate them
onto uniform grids.

However, some of these routines are not described in this release of the documentation because they have
not been thoroughly tested with FLASH4. A graphical user interface (GUI) to these routines (xflash3)
is provided, which enables users to read FLASH AMR datasets and make plots of the data. Both plotfiles
and checkpoint files, which differ only in the number and numerical precision of the variables stored, are
supported.

fidlr3.0 supports Cartesian, cylindrical, polar and spherical geometries. The proper geometry should
be detected by xflash3 using the geometry attribute in the file header. System requirements for running
fidlr3.0 are: IDL version 5.6 and above, and the HDF5 library. The routines also have limited support for
data files written with netCDF, although this output format has not been thoroughly tested. The routines are
intended to be backwards-compatible with FLASH2, although again extensive testing has not been performed.

34.1 Installing and Running fidlr3.0

fidlr3.0 is distributed with FLASH and is contained in the tools/fidlr3.0/ directory. These routines
were written and tested using IDL v6.1 for Linux. They should work without difficulty on any UNIX machine
with IDL installed—any functionality of fidlr3.0 under Windows is purely coincidental. Due to copyright
difficulties with GIF files, output image files are in PNG or Postscript format. Most graphics packages, like
xv or the GIMP, should be able to convert between PNG format and other commonly used formats.

Installation of fidlr3.0 requires defining some environment variables, making sure your IDL path is
properly set, and compiling the support for HDF5 files. These procedures are described below.

34.1.1 Setting Up fidlr3.0Environment Variables

The FLASH fidlr3.0 routines are located in the tools/fidlr3.0/ subdirectory of the FLASH root di-
rectory. To use them you must set two environment variables. First set the value of XFLASH3 DIR to the
location of the FLASH IDL routines; for example, under csh, use

setenv XFLASH3 DIR flash-root-path/tools/fidlr3.0

where flash-root-path is the absolute path of the FLASH3 root directory. This variable is used in the plotting
routines to find the customized color table and setup parameters for xflash3.

Next, make sure that you have an IDL DIR environment variable set. This should point to the directory
in which the IDL distribution is installed. For example, if IDL is installed in idl-root-path, then you would
define
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setenv IDL DIR idl-root-path .

Finally, you need to tell IDL where to find the fidlr3.0 routines. This is accomplished through the
IDL PATH environment variable

setenv IDL PATH ${XFLASH3 DIR}:${IDL DIR}:${IDL DIR}/lib .

If you already have an IDL PATH environment variable defined, just add XFLASH3 DIR to the beginning of
it. You may wish to include these commands in your .cshrc (or the analogous versions in your .profile
file, depending on your shell) to avoid having to reissue them every time you log in. It is important that
the ${XFLASH3 DIR} come before the IDL directories in the path and that the ${IDL DIR}/lib directory be
included as well.

34.1.2 Running IDL

fidlr3.0 uses 8-bit color tables for all of its plotting. On displays with higher color depths, it may be
necessary to use color overlays to get the proper colors on your display. For SGI machines, launching IDL
with the start.pro script will enable 8-bit pseudocolor overlays. For Linux boxes, setting the X color depth
to 24-bits per pixel and launching IDL with the start linux.pro script usually produces proper colors.

prompt> idl start_linux

34.2 xflash3: A Widget Interface to Plotting FLASH Datasets

The main interface to the fidlr3.0 routines for plotting FLASH datasets is xflash3. Typing xflash3 at
the IDL command prompt will launch the main xflash3 widget, shown in Figure 34.1.

IDL> xflash3

xflash3 produces colormap plots of FLASH data with optional overlays of velocity vectors, contours, and
the block structure. The basic operation of xflash3 is to specify a single output file (either checkpoint
or plotfile) as a prototype for the FLASH simulation. The prototype is probed for the list of variables it
contains, and then the remaining plot options become active.

xflash3 can output to the screen, Postscript, or a PNG image file. If the data is significantly higher
resolution than the output device, xflash3 will sub-sample the image by one or more levels of refinement
before plotting.

Once the image is plotted, the query (2-d data only) and 1-d slice buttons will become active. Pressing
query and then clicking anywhere in the domain will pop up a window containing the values of all the
FLASH variables in the cell nearest the cursor. The query function uses the actual FLASH data—not the
interpolated/uniformly gridded data generated for the plots. Pressing 1-d slice and then left-clicking on the
plot will produce a 1-d slice vertically through the point. Right-clicking on the domain produces a horizontal
slice through the data.

The widget is broken into several sections, with some features initially disabled. Not all options are
available in all dimensions, or in this release of FLASH4. These sections are explained below.

34.2.1 File Menu

The file to be visualized is composed of the path, the basename (the same base name used in the flash.par
file) with any file type information appended to it (e.g. ’hdf5 chk ’) and the range of suffixes through which
to loop. By default, xflash3 sets the path to the working directory from which IDL was started. xflash3
requires a prototype file to work on a dataset. The prototype can be any of the files in the dataset that has
the same name structure (i.e. everything is the same but the suffix) and contains the same variables.
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Figure 34.1: The main xflash3 widget.

34.2.1.1 File/Open prototype...

The Open prototype... menu option will bring up the file selection dialog box (see Figure 34.2). Once a
plotfile or checkpoint prototype is selected, the remaining options on the xflash widget become active, and
the variable list box “Mesh Variables” is populated with the list of variables in the file (see Figure 34.3).

xflash3 will automatically determine if the file is an HDF5 or netCDF file and read the ‘unknown names’
dataset to get the variable list. Some derived variables will also appear on the list (for example, sound speed),
if the dependent variables are contained in the datafile. These derived variables are currently inoperable in
3-D.

34.2.2 Defaults Menu

The Defaults menu allows you to select one of the predefined problem defaults. This choice is provided for
the convenience of users who want to plot the same problem repeated using the same data ranges. This
menu item will load the options (data ranges, velocity parameters, and contour options) for the problem as
specified in the xflash defaults procedure. When xflash3 is started, xflash defaults is executed to read
in the known problem names. The data ranges and velocity defaults are then updated. To add a problem
to xflash3, only the xflash defaults procedure needs to be modified. The details of this procedure are
provided in the comment header in xflash defaults. It is not necessary to add a problem in order to plot
a dataset, since all default values can be overridden through the widget.
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Figure 34.2: The xflash3 file selection dialog.

34.2.3 Colormap Menu

The colormap menu lists the colormaps available to xflash3. These colormaps are stored in the file
flash colors.tbl in the fidlr3.0 directory and differ from the standard IDL colormaps. The first 12
colors in the colormaps are reserved by xflash3 to hold the primary colors used for different aspects of the
plotting. These colormaps are used for 2-d and 3-d data only. At present, there is no control over the line
color in 1-d.

34.2.4 X/Y plot count Menu

The X/Y plot count menu specifies how many plots to put on a single page when looping over suffixes in a
dataset. At present, this only works for 2-d data. Note, the query and 1-d slice operations will not work if
there are multiple plots per page.

34.2.5 Plotting options available from the GUI

Various options are available on the xflash3 user interface to change the appearance of the plots.

34.2.5.1 File Options

The first section below the menu bar specifies the file options. This allows you to specify the range of files
in the dataset (i.e. the suffixes) to loop over. The optional step parameter can be used to skip over files
when looping through the dataset. For example, to generate a “movie” of the checkpoint files from initial
conditions to checkpoint number 17, enter 0000 in the first suffix: box, and enter 0017 in the box following
to. Leave the step at the default of 1 to visualize every output.

34.2.5.2 Output Options

A plot can be output to the screen (default), a Postscript file, or a PNG file. The output filenames are
composed from the basename + variable name + suffix. For outputs to the screen or PNG, the plot size
options allow you to specify the image size in pixels. For Postscript output, xflash3 chooses portrait or
landscape orientation depending on the aspect ratio of the domain.
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Figure 34.3: The xflash3 main window after a prototype has been selected, showing the variable list.

34.2.5.3 Parallel Block Distribution Options

A plot of the parallel block distribution on the physical domain can be created. To use this feature, select the
“Enable” toggle button located in the “Parallel Block Distribution” row of the xflash GUI. If more than one
processor has been used to generate the simulation results, the different levels of refinement in the simulation
can then be selected from a drop down menu. The menu shows which processors hold which blocks at a
given level of refinement. Each processor is denoted by a unique color. Additionally, the processor number
can be superimposed on the plot by selecting the ”Show Plot Numbers“ checkbox.

34.2.5.4 Mesh Variables

The variables dropbox lists the mesh, or grid variables stored in the ‘unknown names’ record in the data
file and any derived variables that xflash3 knows how to construct from these variables (e.g. sound speed).
This selection allows you to choose the variable to be plotted. By default, xflash3 reads all the variables in
a file in 1- and 2-d datasets, so switching the variable to plot can be done without re-reading. At present,
there is no easy way to add a derived variable. Both the widget routine (xflash3.pro) and the plotting
backend (xplot#d amr.pro) will need to be told about any new derived variables. Users wishing to add
derived variables should look at how the total velocity (tot vel) is computed.

34.2.5.5 Options

The options block allows you to toggle various options on/off. Table 34.1 lists the various options available.
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Table 34.1: xflash3 options

log Plot the base-10 log of the variable.
max When a sequence of files is defined in the file options, plot

the maximum of the variable in each cell over all the files.
annotate Toggle the title and time information on the plot.
show ticks Show the axis tick marks on the plot.
abs. value Plot the absolute value of the dataset. This operation is

performed before taking the log.
show blocks Draw the zone boundaries on the plot.
colorbar Plot the colorbar legend for the data range.

34.2.5.6 Data Range

These fields allow you to specify the range of the variable to plot. Data outside of the range will be set to
the minimum or maximum values of the colormap. If the auto box is checked, the limits will be ignored, and
the data will be scaled to the minimum and maximum values of the variable in the dataset.

34.2.5.7 Slice Plane

The slice plane group is only active for 3-d datasets. This option allows you to select a plane for plotting in
(x-y, x-z, y-z).

34.2.5.8 Zoom

The zoom options allow you to set the domain limits for the plot. A value of -1 uses the actual limit of the
domain. For 3-d plots, only one field will be available in the direction perpendicular to the slice plane. The
zoom box button puts a box cursor on the plot and allows you to select a region to zoom in on by positioning
and resizing the box with the mouse. Use the left mouse button to move the center of the zoom box. Use the
middle button to resize the box. Finally, right-click with the mouse when you are satisfied with the zoom
box selection. (Note that you must choose the ”Plot“ button again to see the results of the selected zoom.
The reset button will reset the zoom limits.

34.2.6 Plotting buttons

Several buttons are located at the bottom of the xflash3 user interface which pop up additional windows.
Most of these set additional groups of options, but the actual commands to create plots are located on the
bottom row.

34.2.6.1 Contour Options Button

This button launches a dialog box that allows you to select up to 4 contour lines to plot on top of the
colormap plot (see Figure 34.4). The variable, value, and color are specified for each reference contour. To
plot a contour, select the check box next to the contour number. This will allow you to set the variable from
which to make the contour, the value of the contour, and the color. This option is available in 2-d only at
present.

34.2.6.2 Vector Options Button

This button launches a dialog box that allows you to set the options used to plot vectors on the plot (see
Figure 34.5). This option is usually utilized to overplot velocity vectors. First select the plot vectors checkbox
to enable the other options. Choose the variables to generate vectors with the x-component and y-component
pull-down boxes. These choices are set to velx and vely by default. typical vector sets the vector length to



34.2. XFLASH3: A WIDGET INTERFACE TO PLOTTING FLASH DATASETS 521

Figure 34.4: The xflash3 contour option subwidget.

which to scale the vectors, and minimum vector and maximum vector specify the range of vectors for which
to plot. xskip and yskip allow you to thin out the arrows. This option is available in 2-d only.

34.2.6.3 Particle Options Button

This button enables the user to set options for plotting particles. Since particle-handling routines are not
present in this release of FLASH4, this option is disabled in xflash3.

34.2.6.4 Histogram Options Button

This button pops up a dialog box that allows you to set the histogram options. Currently, only the number
of bins and the scale of the y-axis can be set. This option is disabled in this release of FLASH3.

34.2.6.5 Floating Label Button

This button pops up a dialog box that allows you to add annotation to the plot. First select the use floating
label checkbox to enable the other options. Choose the size of the text in pixels, the thickness of the font,
and the color of the text. Also select the relative position on the screen. The multiple plots button allows
different annotation to be placed on each of plot displayed.

34.2.6.6 Plot Button

Create the colormap plot after selecting the desired options described above. The status of the plot will
appear on the status bar at the bottom.

34.2.6.7 Histogram Button

Create a histogram of the data. This option is disabled in this release of FLASH3.

34.2.6.8 Query Button

The query button becomes active once the plot is created. Click on Query and then click somewhere in the
domain to generate a popup window listing the data values at the cursor location (see Figure 34.6). Use the
Close button to dismiss the results.
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Figure 34.5: The xflash3 velocity option subwidget.

34.2.6.9 1-d Slice Button

This button is available for 2-d and 3-d datasets only. Clicking on 1-d Slice and then left-clicking in the
domain will plot a one-dimensional slice of the current variable vertically through the point selected. A
right-click will produce a horizontal slice. This function inherits the options chosen in the Options block.

34.3 Comparing two datasets

From the IDL prompt, a plot showing visual difference can be created with the command diff3. Comparisons
can be made between any two variables in different files or within the same file. However, this command
currently is supported ONLY for two-dimensional datasets. For example, the command:

IDL> diff3, ’<path_to_file>/flash_hdf5_0001’,’dens’, ’<path_to_file>/flash_hdf5_0002’,’dens’

plots the difference between the ’dens’ variable in two different Flash files.
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Figure 34.6: The xflash3 query widget, displaying information for a cell.
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Chapter 35

convertspec3d

The Spect3D software, developed by Prism Scientific Computing:

http://www.prism-cs.com/Software/Spect3D/Spect3D.htm

is a widely used tool that can be used to model simulated diagnostic responses generated by radiation
hydrodynamics codes. The simulated images mimic common diagnostics fielded in many HEDP experiments.
The convertspec3d python script can be used to convert FLASH output into input for the Spect3D code.

35.1 Installation

The convertspec3d script is written in python and depends on several popular python packages. The
dependencies include:

• Python 2.7

• PyTables

• The python NETCDF package: http://code.google.com/p/netcdf4-python/

• The setuptools package

Once these dependencies are installed, you can install the convertspec3d script. To do so, enter the tools
directory of the FLASH source tree and enter:

python setup.py install

By default, this will try to install the FLASH python tools to a system wide location. You will need
root/administrator privileges for this. If you are on a system where you do not have root privileges, just
enter:

python setup.py install --user

for a user space installation. Type convertspec3d in the command line an you should see some help
information - if the installation went well. For example, you should see something like:

> convertspect3d
usage: convertspec3d [-h] --species SPECIES [--extra EXTRA]

file_names [file_names ...]
convertspec3d: error: too few arguments
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35.2 Usage

To describe the usage of the script, it will be assumed that the user is modeling a laser driven HEDP
experiment. The example will be based on the LaserSlab simulation described in 30.7.5. The script
essentially assumes you are running a simulation using the MTMMMT EOS, where the plasma electron
number density and ion number density can be determined using the SUMY and YE variables. Spect3D requires
this information for most applications. The simulation must have material information where species are
used to model each material. In the case of the LaserSlab simulation, there are two species: cham and targ.

The script takes, as arguments, a list of one or more FLASH checkpoint/plot files and converts each of
these files. The new files have the same names as the old files, but have a .exo extension. For example, the
checkpoint file lasslab_hdf5_chk_0000 would be converted into the file lasslab_hdf5_chk_0000.exo. The
minimal information required by the script is the list of the FLASH output files and a list of the species. For
example, for the LaserSlab simulation described in section 30.7.5, the command for convert the checkpoint
files would be:

%> convertspec3d lasslab_hdf5_chk_* --species=cham,targ

You should then see a series of .exo files generated. The new files contain the following information by
default:

• The electron temperature in eV

• The ion temperature in eV

• The electron number density in 1/cc

• The ion number density in 1/cc

• The mass density in g/cc

• The “partial” mass density for each species (i.e. the fraction of the total density in each cell accounted
for by each species)

With this information, users can run many Spect3D simulations.
If FLASH plot files are being converted, they must contain certain variables. The required variables are:

• dens

• tele

• tion

• sumy

• ye

• The variables for each species. In this example, cham and targ

In addition to simulating diagnostic responses, Spect3D can also plot simulation code output directly.
Thus, even though Spect3D doesn’t require it, users might want to plot the radiation temperature, or some
other variable, in Spect3D. The --extra command line argument for convertspec3d allows users to add
additional variables. For example, let’s extend the convertspec3d command to include the total specific
internal energy and radiation temperature:

%> convertspec3d lasslab_hdf5_chk_* --species=cham,targ --extra=trad,eint
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Chapter 36

Adding new solvers

Adding new solvers (either for new or existing physics) to FLASH starts with a new subdirectory at an
appropriate location in the source tree. If the solver provides an alternative implementation for the already
supported physics, then the subdiretory should be added below the main sub-unit directory for that sub-unit.
For example, adding a Constant implementation to the Heatexchange unit requires adding a subdirectory
Constant under “source/physics/sourceTerms/Heatexchange/HeatexchangeMain”. If the solver is adding
new physics to the code, a new capitalized subdirectory should be placed under the physics subdirectory,
effectively creating a new unit, and its API should be defined by placing the null implementations of the
relevant functions in the subdirectory. The implementations themselves should go into the UnitMain sub-
directory placed in the unit. For exampe adding a Heat unit the to code requires putting a directory Heat
under “source/physics”, and adding files Heat init.F90, Heat finalize.F90 and at least one “doer” function
such as Heat.F90 with null implementations of the corresponding functions. Other than the source files,
a Makefile and a Config file may need to be added to the subdirectory. If the solver is a new unit, both
those files will be needed at the Unit and UnitMain levels. If the solver is an alternative implementaion,
the files may or may not be needed. See http://flash.uchicago.edu/site/flashcode/user_support/
flash_howtos/ExampleFlashUnit/ for the architecture of a unit.
Makefile: The Makefile snippet added to any directory should reflect all the files in the subdirectory that are
not inherited from a higher level directory. At the API level, the Makefile should include all the functions
that constitute the API for the unit. At any lower level, those functions should not be included in the
Makefile, instead all the local files at that level should be included. The implemented source files appear at
UnitMain or some other peer level (if there is more than one sub-unit in the unit). An example of Makefile
for a unit “Heat” with only three functions is as follows:

# Makefile for Heat unit API
Heat = Heat_init.o Heat_finalize.o Heat.o

All the subdirectories lying below this level have their Makefiles use macro concatenation to add to the
list. For example, if the implementation of the Heat unit adds one file he getTemp.F90 in the HeatMain
implementation, the corresponding Makefile will be

# Makefile for HeatMain sub-unit
Heat += Heat\_data.o he_getTemp.o

Note that the sub-unit’s Makefile only makes reference to files provided at its own level of the directory
hierarchy, and the units will have at least one data module (in this instance Heat data) which contains all
the unit scope data. If the sub-unit provides special versions of routines to override those supplied by the
any implementation at a higher level directory in the unit, they do not need to be mentioned again in the
object list,

Config: Create a configuration file for the unit, sub-unit or alternative implementation you are creating.
All configuration files in a sub-unit path are used by setup, so a sub-unit inherits its parent unit’s config-
uration. Config should declare any runtime parameters you wish to make available to the code when this
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unit is included. It should indicate which (if any) other units your unit requires in order to function, and it
should indicate which (if any) of its sub-units should be used as a default if none is specified when setup is
run. The configuration file format is described in Section 3.1.

This is all that is necessary to add a unit or sub-unit to the code. If you are creating a new solver for
an existing physics unit, the unit itself should provide the interface layer to the rest of the code. As long as
your sub-unit provides the routines expected by the interface layer, the sub-unit should be ready to work.
However, if you are adding a new unit, you will need to add calls to your API routines elsewhere in the code
as needed. The most likley place where these calls will need to the be placed will be in the Driver unit

It is difficult to give complete general guidance; here we simply note a few things to keep in mind.
If you wish to be able to turn your unit on or off without recompiling the code, create a new runtime
parameter (e.g., useUnit) at the API level of the your unit. You can then test the value of this parameter
before calling your API routines from the main code. For example, the Burn unit routines are only called if
(useBurn==.true.). (Of course, if the Burn unit is not included in the code, setting useBurn to true will
result in empty subroutine calls.)

You will need to add Unit_data.F90 file which will contain all the data you want to have visible every-
where within the unit. Note that this data is not supposed to be visible outside the unit. You may wish
have Driver initFlash call your unit’s initialiation routine and Driver finalizeFlash to call your unit’s
finalize routine.

If your solver introduces a constraint on the timestep, you should create a routine named Unit computeDt()
that computes this constraint. Add a call to this routine in Drive_computeDt.F90 (part of the Driver unit).
Your routine should operate on a single block and take three parameters: the timestep variable (a real vari-
able which you should set to the smaller of itself and your constraint before returning), the minimum timestep
location (an integer array with five elements), and the block identifier (an integer). Returning anything for
the minimum location is optional, but the other timestep routines interpret it in the following way. The first
three elements are set to the coordinates within the block of the cell contributing the minimum timestep.
The fourth element is set to the block identifier, and the fifth is set to the current processor identifier. This
information tags, along with the timestep constraint, when blocks and solvers are compared across proces-
sors, and it is printed on stdout by the master processor along with the timestep information as FLASH
advances.

If your solver is time-dependent, you will need to add a call to your solver in the Drive_evolveFlash
routine. Limit the entry points into your unit to the API functions. It is a FLASH architecture require-
ment, violating this will make the code unmaintainable and will make it hard to get support from the code
developers.



Chapter 37

Porting FLASH to other machines

Porting FLASH to new architectures should be fairly straightforward for most Unix or Unix-like systems.
For systems which look nothing like Unix or which have no ability to interpret the setup script or makefiles,
extensive reworking of the meta-code which configures and builds FLASH would be necessary. We do not
treat such systems here; rather than do so, it would be simpler for us to do the port ourselves.

For Unix-like systems, you should make sure that your system has csh, a gmake that permits included
makefiles, awk, sed, and Python. Next, create a directory in sites/ with the name of your site. It is best
to name your site according to the output from the hostname -f command (it will return something like
code.uchicago.edu) so that the setup script can automatically determine your site without you needing to
manually specify the -site setup script option. Copy a Makefile.h from a pre-existing site directory into
your new site directory.

37.1 Writing a Makefile.h

To reflect your system, you must modify the different macros defined in Makefile:

FCOMP : the name of the Fortran 90 compiler

CCOMP : the name of the C compiler

CPPCOMP : the name of the C++ compiler

LINK : the name of the linker (usually the Fortran compiler should serve as the linker)

PP : a flag (if any) that should precede a preprocessor directive (typically -D)

FFLAGS OPT : the Fortran compilation flags to produce an optimized executable. These are the flags used
when -auto is given to setup.

FFLAGS DEBUG : the Fortran compilation flags to produce an executable that can be used with a debugger
(e.g. totalview). These flags are used when -debug is passed to setup.

FFLAGS TEST : Fortran compilation flags to produce an executable suitable for testing. These usually involve
less optimization. These flags are used when -test is passed to setup.

CFLAGS OPT : the optimized set of compilation flags for C/C++ code.

CFLAGS DEBUG : the debug compilation flags for C/C++ code.

CFLAGS TEST : the test compilation flags for C/C++ code.

LFLAGS OPT : linker flags used with the OPT compilation flags. This usually ends in ’-o’ to rename the
executable.
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LFLAGS DEBUG : linker flags used with the DEBUG compilation.

LFLAGS TEST : linker flags used with the TEST compilation.

LIB OPT : libraries to link in with the OPT compilation. This should include the MPI library if an MPI
wrapper for the linker was not used (e.g. mpif90).

LIB DEBUG : libraries to link in the with the DEBUG compilation.

LIB TEST : libraries to link in with the TEST compilation.

LIB HDF5 the necessary link line required to link in the HDF5 library. This will look something like

-L /path/to/library -lhdf5

For example, here’s how you might modify the macros defined in the Makefile.h for code.uchicago.edu.
The first part of Makefile.h defines the paths for the MPI wrapper script and various I/O and numerical
libraries.

MPI_PATH = /opt/mpich2/intel/1.4.1p1
HDF5_PATH = /opt/hdf5/intel/1.8.7
HYPRE_PATH = /opt/hypre/intel/2.7.0b
NCMPI_PATH = /opt/netcdf/intel/1.2.0

These should be modified to reflect the locations on your system. Next we setup the compilers and linker.
We almost always use the Fortran 90 compiler as the linker, so the Fortran libraries are automatically linked
in.

FCOMP = \${MPI_PATH}/bin/mpif90
CCOMP = \${MPI_PATH}/bin/mpicc
CPPCOMP = \${MPI_PATH}/bin/mpicxx
LINK = \${MPI_PATH}/bin/mpif90

# pre-processor flag
PP = -D

These commands will need to be changed if your compiler names are different. You are encouraged to use
the compiler wrapper scripts instead of the compilers directly. Note that some older versions of MPICH do
not recognize .F90 as a valid extension. For these, you can either update MPICH to a later version or edit
mpif90 and add .F90 to the line that checks for a valid extension. The PP macro refers to the pre-processor
and should be set to the flag that the compiler uses to pass information to the C preprocessor (usually -D).

We define three different setups of compiler flags as described earlier: the “ OPT” set for normal, fully
optimized code, the “ DEBUG” set for debugging FLASH, and the “ TEST” set for regression testing. This
latter set usually has less optimization. These three sets are picked with the -auto, -debug, and -test flags
to setup respectively.

FFLAGS_OPT = -c -g -r8 -i4 -O3 -real_size 64 -diag-disable 10120
FFLAGS_DEBUG = -c -g -r8 -i4 -O0 -check bounds -check format \
-check output_conversion -warn all -warn error -real_size 64 -check uninit \
-traceback -fp-stack-check -diag-disable 10120 -fpe0 -check pointers
FFLAGS_TEST = \${FFLAGS_OPT} -fp-model precise
F90FLAGS =

CFLAGS_OPT = -c -O3 -g -D_LARGEFILE64_SOURCE -D_FORTIFY_SOURCE=2 \
-diag-disable 10120
CFLAGS_DEBUG = -c -O0 -g -traceback -debug all -debug extended \
-D_LARGEFILE64_SOURCE -diag-disable 10120 -ftrapuv -fp-stack-check
CFLAGS_TEST = \${CFLAGS_OPT} -fp-model precise
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Next come the linker flags. Typically, these have only -o to rename the executable, and some debug flags
(e.g. -g) for the “ DEBUG” set.

LFLAGS_OPT = -diag-disable 10120 -O3 -o
LFLAGS_DEBUG = -diag-disable 10120 -o
LFLAGS_TEST = \${LFLAGS_OPT}

There are library macros for any libraries that are required by a specific FLASH unit (e.g. HDF5).

CFLAGS_MPI = -I\$(MPI_PATH)/include
CFLAGS_HDF5 = -I\${HDF5_PATH}/include -DH5_USE_16_API
CFLAGS_NCMPI = -I\$(NCMPI_PATH)/include
FFLAGS_HYPRE = -I\${HYPRE_PATH}/include

LIB_MPI =
LIB_HDF5 = -L\$(HDF5_PATH)/lib -lhdf5_fortran -lhdf5 -lz
LIB_NCMPI = -L\$(NCMPI_PATH)/lib -lpnetcdf
LIB_HYPRE = -L\${HYPRE_PATH}/lib -lHYPRE

Finally, we have a macro to specify any platform dependent code and some macros for basic file manip-
ulation and library tools.

MACHOBJ =

MV = mv -f
AR = ar -r
RM = rm -f
CD = cd
RL = ranlib
ECHO = echo

On most platforms, these will not need to be modified.
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Chapter 38

Multithreaded FLASH

38.1 Overview

We have added the capability to run multiple threads of execution within each MPI task. The multithreading
is made possible by usage of OpenMP which is described at www.openmp.org. For information about building
a multithreaded FLASH application please refer to Section 5.8.

The OpenMP parallel regions do not cover all FLASH units in FLASH4. At this time we have only
focussed on the units which are exercised most heavily in typical FLASH applications: these are the split
and unsplit hydrodynamics solvers, the unsplit magnetohydrodynamic solvers, Gamma law and multigamma
EOS, Helmholtz EOS, Multipole solver (improved version (support for 2D cylindrical and 3D cartesian))
and energy deposition. The level of OpenMP coverage will increase in future releases.

The setup script will prevent you from setting up invalid threaded applications by exiting with a conflict
error. We have added the conflicts to prevent using, for example, a non thread-safe EOS in a OpenMP parallel
region. Example setup lines can be found in sites/code.uchicago.edu/openmp_test_suite/test.info.

38.2 Threading strategies

We have experimented with two different threading strategies for adding an extra layer of parallelism to the
standard MPI decomposition described in Chapter 8.

The first strategy makes use of the fact that the solution updates on different Paramesh blocks are
independent, and so, multiple threads can safely update the solution on different blocks at the same time.
This is a coarse-grained threading approach which is only applicable to Paramesh. It can be included in a
FLASH application by adding threadBlockList=True to the FLASH setup line.

call Grid_getListOfBlocks(LEAF,blockList,blockCount)
!\$omp do schedule(static)
do b=1,blockCount

blockID = blockList(b)
call update_soln_on_a_block(blockID)

The second strategy parallelises the nested do loops in the kernel subroutines such that different threads
are updating the solution on independent cells from the same block at the same time. This is a fine-grained
threading approach which is applicable to both Paramesh and UG. It can be included in a FLASH application
by adding threadWithinBlock=True to the FLASH setup line. Notice that we parallelise the outermost do
loop for a given dimensionality to improve cache usage for each thread.

#if NDIM == 3
!\$omp do schedule(static)

#endif
do k=k0-2,kmax+2
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#if NDIM == 2
!\$omp do schedule(static)

#endif
do j=j0-2,jmax+2

#if NDIM == 1
!\$omp do schedule(static)

#endif
do i=i0-2,imax+2

soln(i,j,k) = ....

The final threading option is only applicable to the energy deposition unit. In this unit we assign different
rays to each thread, where the number of rays assigned is dynamic because the work per ray is not fixed. It
can be included in a FLASH application by adding threadRayTrace=True to the FLASH setup line

It is perfectly fine to mix these setup options except for threadBlockList=True and threadWithin-
Block=True.

38.3 Running multithreaded FLASH

38.3.1 OpenMP variables

There are OpenMP environmental variables which control the threaded runtime. The most frequntly used
is OMP_NUM_THREADS which controls the number of OpenMP threads in each parallel region. It should be
exported to your environment from your current shell. In the following example we specify that each OpenMP
parallel region will be executed by 4 threads (assuming bash shell)

export OMP_NUM_THREADS=4

You may also need to set OMP_STACKSIZE to increase the stack size of the threads created by the OpenMP
runtime. This is because some test problems exceed the default limit which leads to a segmentation fault
from an innocent piece of source code. In practice we have only encountered this situation in a White Dwarf
Supernova simulation with block list threading on a machine which had a default stack size of 4MB. For
safety we now set a default value of 16MB for all of our runs to provide plenty of stack space for each thread.

export OMP_STACKSIZE=16M

If you need to use a job submission script to run FLASH on compute nodes then you should export the
OpenMP variables in your job submission script.

38.3.2 FLASH variables

There are FLASH runtime parameters which can be set to .true. or .false. to turn on/off the parallel
regions in different units. They are

Unit Block list threading Within block threading Ray trace threading
Hydro threadHydroBlockList threadHydroWithinBlock N/A
EOS N/A threadEosWithinBlock N/A
Multipole threadMpoleBlockList threadMpoleWithinBlock N/A
Energy Deposition N/A N/A threadRayTrace

There is no parameter for block list threading of EOS because, quite simply, there is no block list in
EOS. In many FLASH simulations the EOS subroutines are only called from the hydrodynamic subroutines
which means the EOS will be called in parallel if you thread the Hydro unit block list loop.

In general you do not need to worry about these runtime parameters because the default values will be set
according to the setup variable passed to the setup script. This means that if you setup a Sedov simulation
with block list threading then threadHydroBlockList will default to .true. and threadHydroWithinBlock
will default to .false.. The runtime control of parallel regions may be useful if we ever need to investigate
a possible multithreaded bug in a particular unit.
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38.3.3 FLASH constants

There are FLASH constant runtime parameters which describe the threading strategies included in your
FLASH application. The constants are named threadBlockListBuild, threadWithinBlockBuild and
threadRayTraceBuild. We query these constants in the unit initialization file (e.g. Hydro_init.F90)
to verify that your FLASH application supports the parallel regions requested by the runtime parameters in
38.3.2. If the parallel regions are not supported you will get a warning message in your FLASH log file and
the parallel regions will be disabled. If this happens you can still use the requested parallel regions but you
must re-setup FLASH with the appropriate threading strategy. In general you do not need to worry about
the existence of these constants because if you setup the application with, say, block list threading it only
makes sense for you to adjust the block list threading runtime parameters in your flash.par.

A nice property of using constant runtime parameters instead of pre-processor defines is that -noclobber
rebuilds are extremely fast. This means you can resetup a threadBlockList application with threadWithin-
Block and only rebuild the handful of source files that actually changed. If we used pre-processor defines to
identify the thread strategy then we would have to rebuild every single file because any file could make use of
the define. We actually take advantage of the forced rebuild from changing/adding/removing a pre-processor
define when we switch from a threaded to a non-threaded application. We do this because OpenMP directives
are conditionally compiled when a compiler option such as -fopenmp (GNU) is added to the compile line.
Any source file could contain OpenMP and so we must do a complete rebuild to ensure correctness. We
force a complete rebuild by defining FLASH_OPENMP in Flash.h for any type of multithreaded build.

38.4 Verifying correctness

The hybrid (MPI+OpenMP) tests using only the multithreaded Hydro and Eos units have the nice property
that they can give identical results to the corresponding MPI only test. I emphasise can because it is
possible for an optimized build of the MPI+OpenMP application to give a different answer to the MPI
only application. This is because the OpenMP directives can impede the compiler from optimizing the
floating point calculations. Therefore, to obtain an exact match between an unthreaded and threaded test
you should add a compiler option which prevents the compiler from making any aggressive floating point
transformations. For the Intel compiler we needed to add -fp-model precise to both the MPI-only and
MPI+OpenMP compiler flags to get the same answer. It should be possible to get identical answers for tests
like Sod 30.1.1 and Sedov 30.1.4.

This approach does not hold if you use the multithreaded Multipole or energy deposition unit because the
floating point accumulation order is different to the order in the unthreaded versions. In the multithreading
of the Multipole solver we give each thread its own private moments array and then accumululate the private
moment arrays into a single moments array. Similarly, in the energy deposition unit we give each thread a
private energy deposition array which is then accumulated into DEPO_VAR mesh variable. It is reasonable to
expect a small discrepancy, e.g. a magnitude error of 1E-14 in DEPO_VAR, in a single time step, but be aware
that over a large number of time steps the accumulation of small differences can become much larger.

38.5 Performance results

We present some performance results for each of the multithreaded FLASH units. It is important to note
that the multithreaded speedup of each unit is not necessarily representative of a full application because
a full application spends time in units which are not (currently) threaded, such as Paramesh, Particles and
I/O.

All of the experiments are run on Eureka, a machine at Argonne National Laboratory, which contains
100 compute nodes each with 2 x quad-core Xeon w/32GB RAM. We make use of 1 node and run FLASH
with 1 MPI task and 1-8 OpenMP threads.

38.5.1 Multipole solver

We tested the MacLaurin Spheroid problem described in Section 30.3.4 with the new Multipole solver
described in Section 8.10.2.2 using three FLASH applications: one with Paramesh and block list threading,
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one with Paramesh and within block threading and one with UG and within block threading. The FLASH
setup lines are

./setup unitTest/Gravity/Poisson3 -auto -3d -maxblocks=600 -opt \
+pm4dev +newMpole +noio threadBlockList=True timeMultipole=True

./setup unitTest/Gravity/Poisson3 -auto -3d -maxblocks=600 -opt \
+pm4dev +newMpole +noio threadWithinBlock=True timeMultipole=True

./setup unitTest/Gravity/Poisson3 -auto -3d +ug -opt +newMpole +noio \
threadWithinBlock=True timeMultipole=True -nxb=64 -nyb=64 -nzb=64

The effective resolution of the experiments are the same: the Paramesh experiments have lrefine_max=4
and blocks containing 8 internal cells along each dimension and the UG experiment has a single block
containing 64 internal cells along each dimension. We add the setup variable timeMultipole to include
a custom implementation of Gravity_potentialListOfBlocks.F90 which repeats the Poisson solve 100
times.

Figure 38.1: Speedup of the threaded Multipole solver in the Maclaurin Spheroid test problem.

The results in Figure 38.1 demonstrate multithreaded speedup for three different configurations of
FLASH. The speedup for the AMR threadWithinBlock application is about the same for 4 threads as
it is for 5,6 and 7 threads. This is because we parallelize only the slowest varying dimension with a static
loop schedule and so some threads are assigned 64 cells per block whilst others are assigned 128 cells per
block. We do not see the same issue with the UG threadWithinBlock application because the greater
number of cells per block avoids the significant load imbalance per thread.

38.5.2 Helmholtz EOS

We tested the Helmholtz EOS unit test described in Section 16.6 with a UG and a NoFBS FLASH application.
The FLASH setup lines are

./setup unitTest/Eos/Helmholtz -auto -3d +ug threadWithinBlock=True \
timeEosUnitTest=True +noio



38.5. PERFORMANCE RESULTS 539

./setup unitTest/Eos/Helmholtz -auto -3d +nofbs threadWithinBlock=True \
timeEosUnitTest=True +noio

The timeEosUnitTest setup variable includes a version of Eos_unit.F90 which calls Eos_wrapped 30,000
times in MODE_DENS_TEMP.

Figure 38.2: Speedup of the threaded Helmholtz EOS in the EOS unit test.

The results in Figure 38.2 show that the UG version gives better speedup than the NoFBS version.
This is most likely because the NoFBS version contains dynamic memory allocation / deallocation within
Eos_wrapped.

The UG application does not show speedup beyond 4 threads. This could be because the work per thread
for each invocation of Eos_wrapped is too small, and so it would be interesting to re-run this exact test with
blocks larger than 8 × 8 × 8 cells. Unfortunately the Helmholtz EOS unit test does not currently support
larger blocks – this is a limitation of the Helmholtz EOS unit test and not Helmholtz EOS.

38.5.3 Sedov

We ran 2d and 3d multithreaded versions of the standard Sedov simulation described in Section 30.1.4. We
tested both split and unsplit hydrodynamic solvers and both threadBlockList and threadWithinBlock
threading strategies. The 2d setup lines are

./setup Sedov -2d -auto +pm4dev -parfile=coldstart_pm.par \
-nxb=16 -nyb=16 threadBlockList=True +uhd

./setup Sedov -2d -auto +pm4dev -parfile=coldstart_pm.par \
-nxb=16 -nyb=16 threadWithinBlock=True +uhd

./setup Sedov -2d -auto +pm4dev -parfile=coldstart_pm.par \
-nxb=16 -nyb=16 threadBlockList=True

./setup Sedov -2d -auto +pm4dev -parfile=coldstart_pm.par \
-nxb=16 -nyb=16 threadWithinBlock=True

and the 3d setup lines are
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./setup Sedov -3d -auto +pm4dev -parfile=coldstart_pm_3d.par \
+cube16 threadBlockList=True +uhd

./setup Sedov -3d -auto +pm4dev -parfile=coldstart_pm_3d.par \
+cube16 threadWithinBlock=True +uhd

./setup Sedov -3d -auto +pm4dev -parfile=coldstart_pm_3d.par \
+cube16 threadBlockList=True

./setup Sedov -3d -auto +pm4dev -parfile=coldstart_pm_3d.par \
+cube16 threadWithinBlock=True

The results are shown in Figures 38.3 and 38.4. The speedup graph is based on times obtained from the
“hydro” timer label in the FLASH log file.

Figure 38.3: Speedup of the threaded hydrodynamic solvers in a 2d Sedov test.

Part of the reason for loss of speedup in Figures 38.3 and 38.4 is that the hydrodynamic solvers in FLASH
call Paramesh subroutines to exchange guard cells and conserve fluxes. Paramesh is not (yet) multithreaded
and so we call these subroutines with a single thread. All other threads wait at a barrier until the single
thread has completed execution.

The unsplit hydro solver has one guardcell fill per hydro timestep and the split hydro solver has NDIM
guardcell fills per hydro timestep (one per directional sweep). The extra guardcell fills are part of the reason
that the split applications generally give worse speedup than the unsplit applications.

38.5.4 LaserSlab

We finish with a scaling test for the ray trace in the energy deposition unit. We setup the LaserSlab
simulation described in Section 30.7.5 with the additional setup option threadRayTrace=True. The setup
line and our parameter modifications are

./setup LaserSlab -2d -auto +pm4dev -geometry=cylindrical \
-nxb=16 -nyb=16 +mtmmmt +laser +mgd +uhd3t species=cham,targ \
mgd_meshgroups=6 -without-unit=flashUtilities/contiguousConversion \
-without-unit=flashUtilities/interpolation/oneDim \
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Figure 38.4: Speedup of the threaded hydrodynamic solvers in a 3d Sedov test.

-parfile=coldstart_pm_rz.par threadRayTrace=True +noio

ed_maxRayCount = 80000
ed_numRays_1 = 50000
nend = 20

The speedup is calculated from times obtained from the “Transport Rays” label in the FLASH log file
and the speedup graph is shown in Figure 38.5. The timer records how long it takes to follow all rays through
the complete domain during the timestep. As an aside we remove the flashUtilities units in the setup line to
keep the number of line continuation characters in a setup script generated Fortran file less than 39. This is
just a workaround for picky compilers; another strategy could be a compiler option that allows compilation
of Fortran files containing more than 39 continuation characters.

38.6 Conclusion

At the current time we have only really exposed an extra layer of parallelism in FLASH and have not yet
focused on tuning the multithreading. We do not have enough experience to suggest the most efficient ways
to run the multithreaded code, however, we can suggest some things that may help the efficiency. In an
application setup with threadBlockList it makes sense to maintain at least 5 blocks per thread. This is
because the computational load imbalance between thread A being assigned 1 block and thread B being
assigned 2 blocks is larger than thread A being assigned 5 blocks and thread B being assigned 6 blocks. In
an application setup with threadWithinBlock you should probably use larger blocks, perhaps 16× 16× 16
or even 32× 32× 32, so that each thread has more cells to work on.

As a closing note, you should be aware of the amount of time spent in the threaded FLASH units
compared to the non-threaded FLASH units in your particular FLASH application - perfect speedup in a
threaded unit may be insignificant if most of the time is spent in a non-threaded FLASH unit.
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Figure 38.5: Speedup of the energy deposition ray trace in the LaserSlab test.
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Runtime Parameters

Burn
algebra, 236, 239
enucDtFactor, 6, 242
odeStepper, 236, 241
useBurnTable, 241
useShockBurn, 241

Conductivity
useConductivity, 334

Cosmology
CosmologicalConstant, 331
MaxScaleChange, 331
OmegaMatter, 331
OmegaRadiation, 331

Diffuse
useDiffuse, 292
useDiffuseTherm, 292
useDiffuseVisc, 292

Driver
dtmax, 324
meshCopyCount, 100
nend, 162
restart, 163
tmax, 161

EnergyDeposition
ed cellStepTolerance, 275
ed cellWallThicknessFactor, 275
ed computeGradNeleX, 275
ed computeGradNeleY, 275
ed computeGradNeleZ, 275
ed crossSectionFunctionType n, 274
ed enforcePositiveNele, 275
ed enforcePositiveTele, 275
ed gaussianCenterMajor n, 274
ed gaussianCenterMinor n, 274
ed gaussianExponent n, 274
ed gaussianRadiusMajor n, 274
ed gaussianRadiusMinor n, 274
ed gradOrder, 275
ed gridDeltaSemiAxisMajor n, 274
ed gridDeltaSemiAxisMinor n, 274
ed gridnAngularTics n, 274
ed gridnRadialTics n, 274

ed gridType n, 274
ed ignoreBoundaryCondition n, 274
ed initialRaySpeed n, 274
ed laser3Din2D, 275
ed laser3Din2DwedgeAngle, 275
ed laserIOMaxNumberOfPositions, 276
ed laserIOMaxNumberOfRays, 276
ed lensSemiAxisMajor n, 274
ed lensX n, 273
ed lensY n, 273
ed lensZ n, 273
ed maxRayCount, 275
ed numberOfBeams, 273
ed numberOfPulses, 273
ed numberOfRays n, 274
ed numberOfSections n, 273
ed power n i, 273
ed powerStepTolerance, 275
ed printBeams, 275
ed printMain, 275
ed printPulses, 275
ed printRays, 275
ed pulseNumber n, 274
ed rayDeterminism, 275
ed rayZeroPower, 275
ed RungeKuttaMethod, 276
ed saveOutOfDomainRays, 276
ed semiAxisMajorTorsionAngle n, 274
ed semiAxisMajorTorsionAxis n, 274
ed targetSemiAxisMajor n, 274
ed targetSemiAxisMinor n, 274
ed targetX n, 273
ed targetY n, 273
ed targetZ n, 274
ed time n i, 273
ed useLaserIO, 276
ed wavelength n, 274
threadRayTrace, 276
useEnergyDeposition, 276

Eos
eintSwitch, 202, 212
eos coulumbMult, 232
eos maxNewton, 232
eos singleSpeciesA, 229, 232
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eos singleSpeciesZ, 229, 232
eos tolerance, 232
eosModeInit, 348
gamma, 229, 232, 406, 416, 424
gammaEle, 229
gammaIon, 229
gammaRad, 229

Gravity
grav boundary type, 104, 105, 304, 305
grav boundary type x, 304, 305
grav boundary type y, 304, 305
grav boundary type z, 304, 305
grv bhAccErr, 302–304
grv bhEwaldAlwaysGenerate, 305
grv bhEwaldFieldNxV42, 304, 305
grv bhEwaldFieldNyV42, 304, 305
grv bhEwaldFieldNzV42, 304, 305
grv bhEwaldFName, 305
grv bhEwaldFNameAccV42, 305
grv bhEwaldFNamePotV42, 305
grv bhEwaldNPer, 304, 305
grv bhEwaldNRefV42, 304, 305
grv bhEwaldSeriesN, 304, 305
grv bhExtrnPotCenterX, 304, 305
grv bhExtrnPotCenterY, 304, 305
grv bhExtrnPotCenterZ, 304, 305
grv bhExtrnPotFile, 304, 305
grv bhExtrnPotType, 304, 305
grv bhLinearInterpolOnlyV42, 304, 305
grv bhMAC, 303, 304
grv bhMPDegree, 303, 304
grv bhNewton, 303, 304
grv bhUseExternalPotential, 305
grv bhUsePoissonPotential, 305
grv bhUseRelAccErr, 302–304
grv useExternalPotential, 304
useGravity, 303

Grid
convertToConsvdForMeshCalls, 62, 112, 116
convertToConsvdInMeshInterp, 62, 112, 116
derefine cutoff #, 113
eosMode, 211
eosModeInit, 211
flux correct, 107
geometry, 151
gr bhPhysMACComm, 145, 303
gr bhPhysMACTW, 145, 303
gr bhTreeLimAngle, 145
gr bhTreeSafeBox, 138, 145
gr bhTWMaxQueueSize, 145
gr bhUnifiedTreeWalk, 138
gr bhUseUnifiedTW, 145
gr lrefineMaxRedDoByLogR, 114

gr lrefineMaxRedDoByTime, 115
gr lrefineMaxRedLogBase, 115
gr lrefineMaxRedRadiusFact, 115
gr lrefineMaxRedTimeScale, 115
gr lrefineMaxRedTRef, 115
gr pfftDiffOpDiscretize, 146
gr pmrpForceConsistency, 7
iGridSize, 108
interpol order, 111, 142
jGridSize, 108
kGridSize, 108
lrefine max, 114
max particles per blk, 113
mg maxCorrections, 146
mg MaxResidualNorm, 146
mg printNorm, 146
mpole 2DSymmetryPlane, 143, 144
mpole 3DAxisymmetry, 143, 144
mpole DumpMoments, 143, 144
mpole IgnoreInnerZone, 143, 144
mpole InnerZoneResolution, 143, 144
mpole InnerZoneSize, 143, 144
mpole Lmax, 143, 144
mpole lmax, 146, 465, 466
mpole MaxRadialZones, 144
mpole PrintRadialInfo, 143, 144
mpole subSample, 130
mpole ZoneExponent n, 144
mpole ZoneRadiusFraction n, 144
mpole ZoneScalar n, 144
mpole ZoneType n, 144
Nblockx, 103, 424
nblockx, 102
Nblocky, 103, 424
nblocky, 102
Nblockz, 103
nblockz, 102
pfft setupOnce, 126
refine cutoff #, 113
refine filter #, 113
refine on particle count, 113
refine var #, 112, 113
smlrho, 465
tagradius, 116
xl boundary type, 103, 104, 424
xmax, 102, 419, 424
xmin, 102, 419
xr boundary type, 424
ymax, 102, 419, 424
ymin, 102, 419
zmax, 102
zmin, 102

Hydro
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chomboLikeUpdateSoln, 212
hy cflFallbackFactor, 208
hy eosModeAfter, 211
hybrid riemann, 204
HydroMain, 203
ppm modifystates, 204
updateHydroFluxes, 485
use cma flattening, 204
use steepening, 204

IO
alwaysComputeUserVars, 175
alwaysRestrictCheckpoint, 175
checkpointFileIntervalStep, 180
checkpointFileNumber, 163
chkGuardCellsInput, 169
chkGuardCellsOutput, 169
outputSplitNum, 175
particleFileNumber, 163
plot grid var 1, 168
plot grid var 2, 168
plot var 1, 163
plot var 2, 163
plotFileNumber, 181
plotfileNumber, 163

Ionize
dneimax, 243
dneimin, 243
tneimax, 243
tneimin, 243

Logfile
log file, 355

Opacity
op absorbScale, 337
op emitScale, 337
op transScale, 337

Particles
particle attribute 1, 323
particle attribute 2, 323
pt dtChangeToleranceDown, 317
pt dtChangeToleranceUp, 317
pt dtFactor, 322
pt initialXMin, 322
pt numX, 322
pt numx, 180
pt numy, 180
pt picPpc 1, 312
useParticles, 322

PhysicalConstants
pc unitsBase, 192

ProtonImaging
pi beamApertureAngle n, 375

pi beamCapsule[X,Y,Z] n, 374
pi beamCapsuleRadius n, 374
pi beamDetector n, 375
pi beamNoBoundaryCondition n, 375
pi beamNumberOfProtons n, 375
pi beamProtonEnergy n, 375
pi beamTarget[X,Y,Z] n, 374
pi beamTime2Launch n, 375
pi cellStepTolerance, 375
pi cellWallThicknessFactor, 375
pi detectorAlignWRTbeamNr n, 375
pi detectorCenter[X,Y,Z] n, 375
pi detectorDGwriteFormat, 376
pi detectorDistance2BeamCapsule n, 375
pi detectorFileNameTimeStamp, 375
pi detectorNormal[X,Y,Z] n, 375
pi detectorPinholeDist2Det n, 375
pi detectorPinholeRadius n, 375
pi detectorSideLength n, 375
pi detectorSideTiltingAngle n, 375
pi detectorSideTiltingAxis n, 375
pi detectorXYwriteFormat, 375
pi flagDomainMissingProtons, 376
pi ignoreElectricalField, 376
pi IOaddDetectorScreens, 376
pi IOaddProtonsCapsule2Domain, 376
pi IOaddProtonsDomain2Screen, 376
pi IOmaxBlockCrossingNumber, 376
pi IOnumberOfProtons2Plot, 376
pi maxProtonCount, 376
pi numberOfBeams, 374
pi numberOfDetectors, 375
pi opaqueBoundaries, 376
pi printBeams, 376
pi printDetectors, 376
pi printMain, 376
pi printProtons, 376
pi protonDeterminism, 376
pi recordOffScreenProtons, 376
pi RungeKuttaMethod, 376
pi screenProtonBucketSize, 377
pi screenProtonDiagnostics, 377
pi timeResolvedProtonImaging, 377
pi useIOprotonPlot, 377
pi useParabolicApproximation, 377
threadProtonTrace, 377
useProtonImaging, 377

RadTrans
rt mgdFlCoef, 346
rt mgdFlMode, 346
rt mgdNumGroups, 346, 347
rt useMGD, 347

Simulation
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sim maxTolCoeff0, 323
sim maxTolCoeff1, 323
sim maxTolCoeff2, 323
sim schemeOrder, 323
sim smlRho, 464

Stir
st computeDt, 246
st decay, 244
st energy, 244
st infilename, 246
useStir, 246

Timers
eachProcWritesSummary, 362
writeStatSummary, 362

Turb
turb c2, 289
turb stepSize, 289

Viscosity
useViscosity, 336
visc whichCoefficientIsConst, 336
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diagnostics
ProtonImaging

ProtonImaging, 367, 371, 373
Driver

Driver abortFlash, 93, 167, 181, 358
Driver abortFlashC, 93
Driver evolveFlash, 37, 40, 90, 223, 292, 314
Driver finalizeFlash, 92
Driver getDt, 92
Driver getElapsedWCTime, 92
Driver getNStep, 92
Driver getSimTime, 92
Driver initFlash, 21, 38, 90, 161, 180, 192
Driver initParallel, 90
Driver sendOutputData, 167

Grid
Grid advanceDiffusion, 146
Grid applyBCEdge, 105, 106
Grid applyBCEdgeAllUnkVars, 105, 106
Grid bcApplyToRegion, 105, 106
Grid bcApplyToRegionSpecialized, 105, 106
Grid fillGuardCells, 36, 106, 110, 118, 121
Grid getBlkBoundBox, 110
Grid getBlkCenterCoords, 110, 111, 151
Grid getBlkCornerID, 111
Grid getBlkData, 36, 117, 151
Grid getBlkIndexLimits, 25, 117
Grid getBlkPhysicalSize, 110, 111, 151
Grid getBlkPtr, 117
Grid getBlkRefineLevel, 110
Grid getBlkType, 110
Grid getBlPtr, 336
Grid getCellCoords, 25, 36, 111, 151
Grid getDeltas, 151
Grid getGeometry, 151
Grid getListOfBlocks, 37, 117
Grid getPlaneData, 117, 151
Grid getPointData, 117, 151
Grid getRowData, 117, 151
Grid getSingleCellVol, 151
Grid init, 102, 117
Grid initDomain, 102, 117
Grid mapParticlesToMesh, 305, 321

Grid markRefineDerefine, 19, 114
Grid markRefineSpecialized, 114
Grid pfft, 126
Grid pfftFinalize, 126
Grid pfftInit, 126
Grid putBlkData, 36, 117
Grid restrictAllLevels, 7
Grid sendOutputData, 118, 167
Grid solvePoisson, 141
Grid updateRefinement, 36, 37, 110, 118

IO
IO getPrevScalar, 167
IO getScalar, 167
IO init, 161, 181
IO output, 161, 163, 175
IO readUserArray, 167
IO setScalar, 167, 170
IO writeCheckpoint, 161, 175
IO writeIntegralQuantities, 165, 323
IO writeParticles, 165
IO writePlotfile, 163, 175
IO writeUserArray, 167

monitors
Logfile

Logfile init, 355
Logfile stamp, 358
Logfile stampMessage, 358
Logfile writeSummary, 359

Timers
Timers create, 362
Timers getSummary, 362
Timers init, 362
Timers reset, 362
Timers start, 362
Timers stop, 362

Multispecies
Multispecies getAvg, 188
Multispecies getProperty, 187
Multispecies getSum, 188
Multispecies getSumFrac, 188
Multispecies getSumInv, 188
Multispecies getSumSqr, 188
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Multispecies list, 188
Multispecies setProperty, 187
Multispecies unitTest, 189

Particles
Particles advance, 309, 314, 323
Particles computeDt, 314
Particles dump, 323
Particles init, 323
Particles initPositions, 320, 321
Particles mapToMeshOneBlk, 321
Particles specifyMethods, 70, 320
Particles unitTest, 323
Particles updateAttributes, 322, 323

PhysicalConstants
PhysicalConstants get, 192
PhysicalConstants init, 192
PhysicalConstants list, 192
PhysicalConstants listUnits, 192
PhysicalConstants unitTest, 192, 193

physics
Cosmology

Cosmology cdmPowerSpectrum, 331
Cosmology computeDeltaCrit, 332
Cosmology computeDt, 331
Cosmology computeVariance, 332
Cosmology getRedshift, 330
Cosmology massToLength, 332
Cosmology redshiftToTime, 332
Cosmology solveFriedmannEqn, 331

Diffuse
Diffuse therm, 485

Eos
Eos, 62, 117, 225, 226, 229, 230, 232, 233
Eos getData, 62
Eos init, 231
Eos putData, 62
Eos wrapped, 62, 63, 225, 230, 232

Gravity
Gravity accelOneRow, 142, 302, 303
Gravity bhFillBotNode, 137
Gravity bhNodeContrib, 138, 302
Gravity init, 104
Gravity potentialListOfBlocks, 303

RadTrans
RadTrans mgdEFromT, 348
RadTrans sumEnergy, 351

sourceTerms
EnergyDeposition, 493

RuntimeParameters
RuntimeParameters get, 180, 181
RuntimeParameters getPrev, 167
RuntimeParameters mapStrToInt, 103, 104

RuntimeParameters set, 181

Simulation
Simulation adjustEvolution, 350
Simulation defineDomain, 102, 104, 105, 409,

424
Simulation getVarnameType, 101
Simulation init, 21
Simulation initBlock, 117, 230, 348, 349
Simulation initSpecies, 184, 187, 232, 236
Simulation mapIntToStr, 70
Simulation mapParticlesVar, 70
Simulation mapStrToInt, 70
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.dump checkpoint, see IO

.dump restart, see IO
subunit, 38

ptherimary, 38

adaptive mesh, 108
adiabatic indices, 226
angular coordinates, 102

block, 99
boundary conditions, 103

computational domain, 102
Config, 19, 20

double precision, 25

energy deposition, 248
laser: 3D ray tracing in 2D domain, 262
laser: beam cross section power structure, 261
laser: beam definition and setup, 255
laser: Cell average algorithm, 252
laser: Cubic interpolation with piecewise parabolic

ray tracing, 254
laser: Cubic interpolation with Runge Kutta

integration, 254
laser: energy density, 251
laser: implementation details (algorithm), 248,

251, 268
laser: power deposition, 249
laser: proper beam placement, 257, 265
laser: pulse definition, 254
laser: ray definition and setup, 258, 261, 266
laser: ray grid inside beam, 258, 260, 261
laser: synchronous and asynchronous ray trac-

ing, 269
equation of state, 225, 226

Eos, 232
Eos wrapped, 232
gamma-law, 226
Helmholtz, 226, 227
multi-gamma, 226, 227
rhd-gamma, 226

fidlr

xflash3, 14
FIXEDBLOCKSIZE mode, 80, 86, 107
Flash.h, 79
flash.par, 13, 28, 163, 356
flux conservation, 110

geometry, see mesh
gmake

Makefile.h, 12
grid

boundary, see boundary conditions
data averaging, 110
guardcells, see guardcells
interpolation, 107, 110, 111, 142, 149, 155

order, 111
prolongation, 111, 154
restriction, 111, 154, 155
xmin/xmax, 102
ymin/ymax, 102
zmin/zmax, 102

Grid getCellCoords, 25
guardcells, 99

HDF5, see IO

I/O, 158
IDL, 12
incompressible, 223
IO

.dump checkpoint, 162

.dump particle file, 165

.dump plotfile, 163

.dump restart, 162
checkpoint file, 161
forced Plotfile, 163
HDF5, 169
output file names, 168
particle file, 164
plotfile, 163

kernel, 39

make
make clean, 12
parallel build, 12
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gmake
make realclean, 12

Makefile.h, 41
MAXBLOCKS, 44, 109
memory, 108, 109
mesh

geometry, 149
CARTESIAN, 151

Cartesian, 152
CYLINDRICAL, 151

cylindrical, 153
POLAR, 151
polar, 154
SPHERICAL, 151

spherical, 154
refinement criteria, 23

Navier-Stokes, 223
NONFIXEDBLOCKSIZE mode, 3, 80, 108, 117

PARAMESH, 108
paramesh, 100
Physical Constants, 191

CGS,CGS, 191
MKS,MKS, 191

proton imaging, 367
implementation details (algorithm), 367

proton imaging: beam definition and setup, 370
proton imaging: detector screen setup, 372
proton imaging: moving protons through domain,

371
proton imaging: proton definition and setup, 371
proton imaging: proton specifications, 371
proton imaging: recording protons on detector screen,

373
proton imaging: time resolved proton imaging, 373

sedov.dat, 14
sedov.log, 14
setup

+default, 56
-[123]d, 44
-auto, 43
-curvilinear, 45
-debug, 44
-defines, 45
-fbs, 45
-geometry, 45
-gridinterpolation, 46, 142
-index-reorder, 46
-library, 48
-makefile, 46
-makehide, 46
-maxblocks, 44
-n[xyz]b, 44

-noclobber, 47
-nofbs, 45
-objdir, 44
-opt, 44
-os, 47
-parfile, 47
-particlemethods, 47
-portable, 47
-site, 47
-tau, 48
-test, 44
-unit, 44
-unitsfile, 47
-verbose, 43
-with-library, 48
-with-unit, 44
-without-library, 48
-without-unit, 48
3t, 52
8wave, 50
cartesian, 51
chombo_amr, 49
chombo_ug, 49
cube16, 50
cube32, 50
cube64, 50
curv-pm2, 51
curvilinear, 51
cylindrical, 51
default, 48
ed_maxBeams, 55
ed_maxPulses, 55
fixedBlockSize, 53
gravMgrid, 52
gravMpole, 52
gravPfftNofbs, 52
Grid, 53
grid, 49
GridIndexOrder, 54
hdf5, 48
hdf5TypeIO, 49
IO, 53
io, 48
laser, 53
longrange, 52
maxBlocks, 54
mgd, 53
mgd_meshgroups, 55
mpi1, 52
mpi2, 52
mpole, 51
Mtmmmt, 55
mtmmmt, 52
nDim, 53
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newMpole, 52
noDefaultMpole, 52
nofbs, 51
noio, 48
nolog, 49
noMgrid, 52
npg, 51
nxb, 54
nyb, 54
nzb, 54
parallelIO, 48, 53
ParameshLibraryMode, 54
PfftSolver, 54
pic, 53
pm2, 49
pm3, 49
pm40, 49
pm4dev, 49
pm4dev_clean, 49
pnetcdf, 48
pnetcdfTypeIO, 49
polar, 51
ptdens, 51
ptio, 50
pureHydro, 50
rnf, 50
serialIO, 48
shortcuts, 169, 175
species, 55
spherical, 51
spherical-pm2, 51
SplitDriver, 54
splitHydro, 50
supportPPMUpwind, 50
threadEosWithinBlock, 56
threadHydroBlockList, 55
threadHydroWithinBlock, 55
threadMpoleBlockList, 55
threadMpoleWithinBlock, 56
threadRayTrace, 55
ug, 49
uhd, 50
uhd3t, 52
unsplitHydro, 50
usm, 50
usm3t, 53

setup, 12, 41
setup params, 29
setups

example, 19
sedov, 12

shortcuts, 160
Simulation data, 21
Simulation init, 21

Simulation initBlock, 19, 24
creating new, 19

unit, 35

variable
type

conserved, 61
mass-specific, 61

variable type, 61

XFLASH3 DIR, 14
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