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Abstract 

 

Within the past decades, Computational Fluid Dynamics (CFD) has become a useful tool for 

investigations of physiological flows (flows within the human body). The main advantage of 

utilizing CFD is that it can increase our understanding of these flows without the risks 

involved in complicated in vivo measurements, i.e. measurements within the living organism. 
 

The purpose of this thesis was to investigate the CFD capabilities of COMSOL Multiphysics® 

(version 4.3b), and its CFD module, when applied to fluid flow in stenotic vessels (narrowed 

vessels). This was accomplished by investigating pressure variations within two axisymmetric 

artery stenosis models and a simplified model of the cerebral aqueduct, a canal connecting the 

third and fourth ventricles within the human brain, when being subject to pulsatile water flow 

(net flow in one direction). Laboratory experiments were performed in order to validate the 

CFD simulations and the hypothesis was that COMSOL’s CFD module can be used to 

correctly describe fluid flow in stenotic vessels of arbitrary geometry. Both laminar flow 

simulations and turbulence model simulations were performed, separately, where the standard 

    turbulence model, with wall functions, was utilized for the turbulence modelling. The 

work was also meant to yield further understanding of pressure behavior inside stenosed 

regions, building off of a previous study where the pressure distributions inside two rigid 

artery stenosis models were investigated experimentally when applying a pulsatile water flow. 

This thesis focused on investigating the pressure behavior along a central line through the 

stenosis models as well as variations in the total pressure drop over the stenosis, introduced 

due to the oscillating flow rate. In addition, the total pressure drop dependence on geometric 

properties was investigated, with a focus on the stenosis inlet and outlet as well as the stenosis 

diameter.  

 

When comparing the experimental measurements with the CFD simulations, the results 

showed that neither the laminar nor turbulence model simulations yielded fully satisfying 

results when describing the pressure and velocity distributions along the stenosis models. The 

results led to the conclusion that a method that can solve both types of flow is required to 

fully describe the flow, for the problem investigated. To this end an additional turbulence 

model was tested: the low Reynolds     turbulence model. This model showed promise 

when predicting flow behavior along the entire stenosis models and warrants further 

investigation.  

 

For all measurements and simulations, the results showed a considerable pressure decrease 

over the stenosis and a small pressure recovery downstream of the stenosis outlet. In addition, 

flow separation was observed at the stenosis outlet, for all flow rates and stenosis models 

tested. The peak-to-peak pressure drop, related to the flow rate oscillations, was shown to 

increase for increasing mean flow rates, despite keeping the inserted pulse volume and 

oscillation rate constant. However, the results also indicated that the magnitude of the 

pulsations through the stenosis models was severely diminished in the experiments, compared 

to what was expected, implying that the experimental measurement method should be 

evaluated further. The results indicated no major differences in the pressure drop for different 

stenosis inlet and outlet shapes, for the contractions/enlargements tested, though the CFD 

simulations implied that the pressure drop was strongly dependent on the stenosis diameter. 

Thus a correct determination (or estimation) of the stenosis diameter is of utmost importance 

when comparing the velocity and pressure distributions for different stenosis models. 
  



  

Sammanfattning 

 

De senaste decennierna har Computational Fluid Dynamics (CFD) blivit ett användbart 

verktyg vid studier av fysiologiska flöden (flöden i människokroppen). En fördel med CFD är 

möjligheten att öka vår förståelse för dessa flöden utan att behöva utföra komplicerade 

mätningar i känsliga områden i kroppen. 

 

Syftet med detta projekt var att undersöka hur väl COMSOL Multiphysics® (version 4.3b), 

och dess CFD-modul, kan tillämpas vid beskrivning av flöden i kärl med stenoser (förträngda 

kärl). Detta uppnåddes genom att undersöka tryckfördelningarna i två axisymmetriska 

modeller av förträngda artärer samt en förenklad modell av den cerebrala akvedukten, en 

kanal som förbinder tredje och fjärde ventriklarna i hjärnan, när de utsattes för ett pulserande 

vattenflöde (nettoflöde i en riktning). Laborationsexperiment utfördes för att kunna utvärdera 

CFD-simuleringarna och hypotesen var att CFD-modulen i COMSOL kan användas till att 

beskriva vätskeflöden i förträngda kärl av godtycklig geometri på ett korrekt sätt. 

Simuleringar genomfördes både för laminärt och turbulent flöde, var för sig, där turbulens 

hanterades med en standardmodell av typen    , med wall functions. Arbetet var också 

tänkt att ge ytterligare insikt i hur trycket förändras i stenosregioner och utgjorde en 

fortsättning på en tidigare vetenskaplig studie där ett pulserande vattenflöde tillämpades på 

två rigida artärstenosmodeller varvid trycket undersöktes experimentellt. Detta examensarbete 

fokuserade på att beskriva trycket längs med stenosmodellerna och variationerna i det totala 

tryckfallet över modellerna, som det oscillerande flödet gav upphov till. Slutligen jämfördes 

det totala tryckfallet för olika stenosgeometrier, där stenosens in- och utgång samt diameter 

låg i fokus. 

 

När experimenten och CFD-simuleringarna jämfördes så visade resultaten att varken den 

laminära modellen eller turbulensmodellen som tillämpades gav helt tillfredställande resultat 

vad gäller beskrivningen av tryck- och hastighetsfördelningarna längs med stenosmodellerna. 

Resultaten antydde att det undersökta problemet kräver en CFD-modell som kan hantera både 

laminärt och turbulent flöde. Testsimuleringar utfördes med en så kallad low Reynolds 

number-modell, av typen    , som visade lovande resultat vad gäller återskapandet av 

flödesbeteendet hela vägen genom stenosmodellerna och borde undersökas ytterligare.  

 

För samtliga mätningar och simuleringar så visade resultaten på en tydlig tryckförlust över 

stenosen, samt en liten återhämtning i trycket nedströms stenosutgången. Förutom detta så 

observerades flödesseparation vid stenosutgången för samtliga modeller och volymflöden. 

Variationerna i det totala tryckfallet över stenosmodellerna, som orsakades av det pulsativa 

flödet, ökade vid ökat medelflöde trots att volymen på pulserna och pulsationshastigheten 

hölls konstanta. Resultaten visade dock på en tydlig minskning av pulsationerna i de 

experimentella mätningarna, jämfört med den förväntade magnituden, vilket antyder att den 

experimentella metoden måste utvärderas ytterligare. Resultaten visade inte på någon större 

förändring i det totala tryckfallet vid ändring av stenosens ingångs- och utgångsgeometrier, 

för de in- och utgångar som testades i detta arbete, men CFD-simuleringarna visade dock på 

ett starkt beroende mellan tryckfallet och stenosdiameterns storlek. Detta resultat antyder att 

en korrekt uppskattning av diametern på stenosen är av yttersta vikt för att kunna jämföra 

olika stenosmodeller med avseende på hastighets- och tryckfördelningar. 

 

  



  

Preface 

 

This Master’s thesis work was done in collaboration with the Department of Biomedical 

Engineering and Informatics at Umeå University Hospital, Sweden, and I would like to thank 

my supervisors at the department, Sara Qvarlander and Anders Eklund, for their support and 

useful input during the work with this thesis. I also thank Professor Michael Henein at the 

Heart Center, Umeå University Hospital, for providing the catheter tip pressure sensors used 

for the experimental measurements. Thanks also to Krister Wiklund at the Department of 

Physics, Umeå University, for taking the time to read my report and being my examiner. 

 

 

 

 

 

 

 

   

 



 

 

Table of Contents 

1   INTRODUCTION .................................................................................................. 4 

1.1   Background .................................................................................................................................................... 4 

1.2   Purpose ........................................................................................................................................................... 4 

1.3   Objective ........................................................................................................................................................ 5 

2   THEORY ................................................................................................................ 7 

2.1   Hemodynamics .............................................................................................................................................. 7 
2.1.1 The Reynolds number ............................................................................................................................ 7 
2.1.2 Basic hydrodynamics ............................................................................................................................. 8 
2.1.3 Flow resistance in straight channels ...................................................................................................... 9 
2.1.4 Enlargements and contractions ............................................................................................................ 10 
2.1.5 Velocity profiles .................................................................................................................................. 12 
2.1.6 Pulsatile flow ....................................................................................................................................... 13 
2.1.7 Limitations of analytical theory ........................................................................................................... 14 

2.2   The Governing Equations ........................................................................................................................... 15 
2.2.1 Boundary Conditions ........................................................................................................................... 16 

2.3   Turbulence modeling .................................................................................................................................. 17 
2.3.1 RANS Equations.................................................................................................................................. 17 
2.3.2 The     and     models ............................................................................................................... 17 
2.3.3 Boundary layers ................................................................................................................................... 18 
2.3.4 Turbulence intensity and length scale .................................................................................................. 19 

2.4   The Finite Element Method ........................................................................................................................ 20 

3   METHOD ............................................................................................................. 22 

3.1   Experimental measurements ...................................................................................................................... 22 
3.1.1 Experimental setup .............................................................................................................................. 22 
3.1.2 The stenosis models ............................................................................................................................. 23 
3.1.3 Measurement method .......................................................................................................................... 24 
3.1.4 Additional measurements: Removing the catheter sensor ................................................................... 25 

3.2   CFD in COMSOL ....................................................................................................................................... 26 
3.2.1 2D versus 3D ....................................................................................................................................... 26 
3.2.2 Geometry: Including the pressure catheter sensor ............................................................................... 26 
3.2.3 Laminar and turbulent physics ............................................................................................................. 26 
3.2.4 Boundary conditions ............................................................................................................................ 27 
3.2.5 Adding Pulsations ................................................................................................................................ 28 
3.2.6 Meshing ............................................................................................................................................... 28 
3.2.7 Stationary and transient solvers ........................................................................................................... 29 
3.2.8 Studies and post processing ................................................................................................................. 30 

  



 

2 

4   RESULTS ............................................................................................................. 32 

4.1   Pressure behavior ........................................................................................................................................ 32 
4.1.1 Pressure along the stenosis models ...................................................................................................... 32 
4.1.2 Total pressure drop as a function of volumetric flow rate ................................................................... 37 

4.2   Geometry Parameter Study ........................................................................................................................ 40 

4.3   Pulsatile effects on the pressure drop ........................................................................................................ 43 

4.4   Removing the catheter sensor .................................................................................................................... 46 

5   DISCUSSION AND CONCLUSION ...................................................................... 49 

5.1   Discussion ..................................................................................................................................................... 49 

5.2   Conclusions .................................................................................................................................................. 51 

5.3   Limitations and Future work ..................................................................................................................... 52 

REFERENCES ......................................................................................................... 53 

APPENDICES ........................................................................................................... 56 

Appendix A .......................................................................................................................................................... 56 
Derivation of annulus pressure drop ................................................................................................................. 56 

Appendix B .......................................................................................................................................................... 58 
The mesh study ................................................................................................................................................. 58 

Appendix C .......................................................................................................................................................... 61 
The Reynolds numbers ..................................................................................................................................... 61 

Appendix D .......................................................................................................................................................... 63 
The velocity profiles ......................................................................................................................................... 63 
Poiseuille and annulus pressure drops .............................................................................................................. 65 
The wall lift-off ................................................................................................................................................ 67 
The moving catheter ......................................................................................................................................... 68 

Appendix E .......................................................................................................................................................... 70 
Pulsatile flow measurement data ...................................................................................................................... 70 
Constant flow measurement data ...................................................................................................................... 73 

Appendix F .......................................................................................................................................................... 75 
Polynomial fit for the constant flow measurements .......................................................................................... 75 

 
  



 

3 

 



 

4 

1      Introduction 
 

This section provides a brief introduction to the subject of this thesis and the motivations 

behind it. Specific goals are provided in a list for easy accessibility. 

1.1 Background 

 

Atherosclerosis of the arteries is one of the main causes of death in the world today [1, 2]. It is 

caused by plaque forming at the walls of the artery, creating a narrowing of the vessel (artery 

stenosis). Such obstructions can eventually lead to cardiovascular disease such as myocardial 

infarction and stroke, if the blood flow is severely reduced. The formation of plaque is 

believed to be connected to wall shear stress at the vessel walls [3], which is directly related 

to the dynamics of blood flow, making investigations of hydrodynamic properties in stenosis 

regions an important area of research. Studies of flow and pressure distributions in the arteries 

could give us information of where stenoses are likely to appear but also how to prevent 

plaque formation. A recent study theorized that the hydrodynamic pressure increase on the 

artery walls during regular exercise could have a positive mechanical effect on soft plaque 

similar to treatment by percutaneous coronary intervention [4]. The problem of obstructed 

flow is not only limited to the circulatory system of blood, but also poses a threat in other 

physiological systems. The circulation of cerebrospinal fluid (CSF) within the brain is one 

such system, where obstructed flow might lead to non-communicating hydrocephalus (water 

on the brain) [5], and altered CSF dynamics are believed to relate to normal pressure 

hydrocephalus [6]. 

 

One problem with physiological flow systems is the difficulty of performing pressure and 

velocity measurements in vivo, especially when looking for small spatial variations. 

Computational Fluid Dynamics (CFD) has become a promising tool for research within the 

field of bio-fluid mechanics, since it allows for fluid flow properties to be approximated 

numerically without having to resort to complicated in vivo measurements. CFD simulations 

of physiological flows have been performed on several occasions in the past, yielding 

promising results both within studies of artery stenosis [7, 8] as well as studies of the CSF-

system [9]. 

1.2 Purpose 

 

The Department of Biomedical Engineering and Informatics at Umeå University Hospital 

conducts research and development in medical technology in close collaboration with medical 

researchers. Among other projects, one research group within the department is involved in 

research of the CSF-circulation where
 

flow measurements are performed by Magnetic 

Resonance Imaging (MRI). While fluid velocity is easily measured, detailed knowledge about 

pressure gradients is more difficult to obtain. A specific area of interest is the narrow passage 

connecting the third and fourth ventricles within the brain, known as the cerebral aqueduct (or 

the aqueduct of Sylvius). The research group is now searching for ways to describe 

hydrodynamic properties, such as pressure gradients, for patient specific geometries with the 

help of proper software. One of the tools up for investigation is COMSOL Multiphysics® 

(version 4.3b) and its CFD module. 
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This thesis work was meant to act as a first step in evaluating COMSOL’s CFD module by 

performing CFD simulations of fluid flow through stenosis models of simple geometry and 

comparing the results with acquired experimental data. The hypothesis was that COMSOL’s 

CFD module can be used to accurately describe physiological flows in (stenotic) vessels of 

arbitrary geometry. The thesis was also meant as a continuation of a recent project in 

collaboration with the Heart Centre and the Department of Public Health and Clinical 

Medicine, at Umeå University Hospital, where two artery stenosis models being subject to 

pulsatile fluid flow were investigated in order to characterise the pressure behavior in the 

proximity of the stenoses [4]. The experimental method of that study was used to perform 

additional measurements on a new stenosis model, representing the cerebral aqueduct, as well 

as recreating the acquired results for the artery stenosis models. The results from these 

measurements served as a basis for comparison with the CFD simulations. 

1.3 Objective 

 

The main objective of this thesis was to investigate the fluid pressure behavior in three 

axisymmetric stenosis models subjected to pulsatile water flow by comparing experimental 

measurements with CFD simulations, focusing on the following properties: 

 

 Investigate the pressure behavior inside the stenosis models at predetermined points 

along the symmetry axis. 

 Pulsatile flow effects. 

 Differences in the pressure drop, over the stenosis, for different stenosis shapes. 

 

 To achieve this aim, the work was divided into separate stages:  

 

1. Perform experimental measurements of fluid flow through two axisymmetrical artery 

stenosis models of stenosis diameter 1.0 mm and 1.5 mm with rigid walls and identical 

inlet and outlet shapes. 

2. Perform CFD simulations of pulsatile flow through the artery models and compare the 

results with the experimental measurements and with previously measured bench data 

[4]. 

3. Perform experimental measurements on a simplified aqueduct model, with differing 

stenosis inlet and outlet shapes. 

4. Compare the experimental measurements for the aqueduct model with new CFD 

simulations. 
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2 Theory 
 

This chapter includes the theory relevant to this thesis work. It contains general theory of 

fluid dynamics and CFD, such as the Navier-Stokes equations and turbulence model theory. 

Common hydrodynamic relations used within the study of blood flow (hemodynamics) are 

presented, and the pressure drop over a stenosis is approximated. The chapter concludes with 

theory regarding the Finite Element Method. 

2.1 Hemodynamics 

 

Hemodynamics is the study of blood flow in biomechanical systems. It is a complicated 

science, partly due to the composition of blood (consisting of both blood cells and plasma) but 

also due to the geometric complexities of the circulatory system and the pulsatile nature of 

blood flow. Thus for many hemodynamic studies, approximations are made in order to apply 

simple hydrodynamic relations to describe the flow of blood. For one, even though blood 

behaves like a non-Newtonian fluid, in many situations it is sufficient to approximate it as 

Newtonian. Blood flow is also commonly modeled as incompressible, i.e. local density 

variations are neglected, and approximated as flow through cylindrical tubes/pipes. These 

assumptions may seem crude, but help describe the flow, pressure and resistance within the 

blood vessels in a convenient way that can yield qualitative information about blood flow 

behavior. In this thesis, only incompressible Newtonian fluid flow through rigid vessels is 

considered. 

2.1.1 The Reynolds number 

 

As a natural phenomenon in fluids, the characteristics of the flow can change drastically under 

certain conditions, for example at really high velocities. Various quantities can be used to 

characterize flow in different situations. One of the most well known, and widely used, is the 

Reynolds number. This dimensionless quantity relates the inertial forces to the viscous forces 

within a fluid, and is defined as 

 

    
               

              
 

   

 
 (2.1.1) 

where   is the fluid density,   the dynamic fluid viscosity,   the mean velocity of the fluid 

and   a typical length scale of the flow (e.g. the hydraulic diameter for pipe flow). For low 

Reynolds numbers, the inertial forces are negligible compared to the viscous forces and flow 

is characterized by smooth and organized layer motion [10]. Flow of this kind is said to be 

within the laminar regime. At higher Reynolds numbers, inertial forces dominate the viscous 

forces, creating chaotic eddies, vortices and other flow instabilities of widely different length 

and time scales [10]. In this regime the flow is referred to as turbulent and is much more 

difficult to predict. At moderately high Reynolds numbers, the flow starts changing from 

laminar to turbulent. This regime is known as the transitional regime, where the flow might 

show characteristics of both laminar and turbulent flow. For a cylindrical pipe, the transition 

from laminar to turbulent flow usually occurs for Reynolds numbers slightly above 2000 (see 

Table 2.1-1) but it depends on problem specifics such as surface roughness and geometry 

variations. In summary, the Reynolds number is helpful in order to get a sense of the fluid 

flow behavior. 
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Table 2.1-1: Flow characterization within a pipe by the Reynolds number [11]. 

Reynolds number Flow regime 

< 2000 Laminar flow 

> 4000 Turbulent flow 

2000< Re <4000 Transitional flow 

 

2.1.2 Basic hydrodynamics 

 

For isothermal fluid flow, i.e. flow of constant temperature, through systems of vessels/pipes, 

the physical quantities of interest are most often the velocity and pressure of the fluid, and 

their respective distributions. A first estimation of the average velocity behavior can be found 

by measuring the volumetric flow rate (or just flow rate) going through the system. The 

volumetric flow rate is the volume of fluid passing a cross-sectional area per unit time, and 

can be described by 

 

      (2.1.2) 

where   is the cross-sectional area of the vessel. For incompressible fluid flow, the mass flow 

rate, and thus the (volumetric) flow rate, can be considered constant within the vessel due to 

mass conservation. For a vessel with a local stenosis, (2.1.2) yields 

 

             (2.1.3) 

where    is the mean velocity in the vessel,       
    is the vessel cross-sectional area, 

   is the mean velocity inside the stenosis region and       
    is the stenosis cross-

sectional area (see Figure 2.1-1). Thus once the flow rate is known, the mean flow velocities 

in different parts of the flow system can be determined, if the corresponding cross-sectional 

areas are known. This is also useful when approximating the Reynolds number in different 

parts of the flow system. 

 

For frictionless flow, the total pressure along a streamline (curve instantaneously tangent to 

the velocity vector) fulfills the following relation 

 

    
   

 

 
         

   
 

 
      (2.1.4) 

where   is the pressure at a given point along a streamline,   is the instantaneous velocity, 

  is the corresponding height of the point in question and   is the gravitational acceleration at 

sea level. The second term on both sides of (2.1.4) is often referred to as the dynamic 

pressure, describing the kinetic energy of the fluid. (2.1.4) is known as the Bernoulli equation, 

which is valid for incompressible flow and compressible flow of low velocity. Bernoulli’s 

equation describes the shift from kinetic to potential energy (dynamic to static pressure) for 

frictionless fluid flow. Equation (2.1.4) is commonly generalized to include the cross-

sectional mean flow velocities,    and   , instead of the instantaneous ones [12]. 
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Figure 2.1-1: A pipe with a local stenosis. Here   is the diameter and the mean velocity is denoted  , which is higher in 

the smaller part of the pipe (     ) due to conservation of the flow rate Q throughout the channel. 

2.1.3 Flow resistance in straight channels 

 

For flow within a pipe (or vessel), frictional losses are generated due to viscosity of the fluid 

and a no-slip condition at the walls. Because of this flow resistance, the Bernoulli equation 

must be complemented by irreversible pressure losses to fully describe the pressure changes 

for pipe flow. The pressure drop for fully developed flow in a straight channel can be 

described by the Darcy-Weisbach equation 

 

      
 

 

   

 
 (2.1.5) 

where   is the length of the pipe,   is the hydraulic diameter of the pipe and    is the Darcy 

friction factor. The friction factor is dependent on the wall roughness of the pipe and the 

Reynolds number of the flow. For fully developed laminar flow in a smooth cylindrical pipe, 

known as Poiseuille flow, the pressure drop is described by the Poiseuille formula  

 

    
     

   
   (2.1.6) 

Thus, for laminar flow, the friction factor is         , and the pressure drop is linearly 

dependent on the flow rate. For higher Reynolds numbers (other flow regimes) the friction 

factor can be determined by using Moody diagrams [13]. For fully turbulent flows, the 

pressure drop exceeds that of laminar flow [14]. 
  

For flow through annulus geometries, the pressure drop is a bit more complicated. The 

pressure drop for fully developed flow in a straight annulus can be found to be 

 

 
   

    

    
    

  
 

   
  
  

 

   
    

     
  
  

     
    

  
  

        

(2.1.7) 

where    and    are the smaller and larger radius, respectively (see the derivation in Appendix 

A). This expression for the pressure drop is only valid for laminar flow. 
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2.1.4 Enlargements and contractions 

 

When flow encounters obstructions, the pressure will further decrease. In the case of sudden 

contractions and enlargements of the pipe, the fluid will not be able to follow the vessel walls, 

resulting in flow separation (see Figure 2.1-2 and Figure 2.1-3). This results in the dissipation 

of mechanical energy due to the formation of a recirculation region just downstream of the 

point of flow separation [15]. The pressure losses, for contractions/enlargements, can be 

described as part of the dynamic pressure 

 

        

   

 
     

    

    
   (2.1.8) 

where      is a pressure loss coefficient that is dependent on the shape of the contraction or 

enlargement, the Reynolds number of the flow, as well as the stenosis to vessel diameter ratio 

[16]. This coefficient is usually determined empirically, but can be approximated in certain 

cases. 

 

For sudden enlargements, the discharge coefficient can be approximated with the Borda-

Carnot relation [17] resulting in the following expression for the discharge coefficient 

 

         
  

  
 
 

 
(2.1.9) 

where       is the ratio of the cross-sectional areas of the stenosis region and the vessel. The 

approximation of (2.1.9) is best applied for flows of higher Reynolds numbers, i.e. turbulent 

flows [16]
1
.  

 

The coefficient for sudden contractions is different than the one for enlargements. Due to flow 

separation the flow area becomes even smaller than the cross-sectional stenosis area 

downstream of the contraction (Figure 2.1-3 and Figure 2.1-4). The point of minimum area 

for the flow is known as the vena contracta, and it is the expansion of the flow from this point, 

where flow decelerates to fulfill (2.1.3), that stands for the biggest loss of mechanical energy 

[19]. Thus the discharge coefficient depends on the ratio of the flow area at the vena contracta 

and the cross-sectional area of the stenosis. However, the discharge coefficient will still 

depend on the ratio of the stenosis and vessel cross-sectional areas since this relationship 

affects the resulting flow area at the vena contracta. 

 

In addition to the irreversible pressure drop in contractions and enlargements, the pressure 

also changes due to conversions between static and dynamic pressure. In the case of 

contractions, the velocity increases to fulfill (2.1.3), resulting in a reversible pressure drop. 

For enlargements, the velocity decreases, resulting in pressure recovery (unless the discharge 

losses are bigger than the pressure gained from the kinetic to static pressure conversion), 

hence the word reversible. 

 

  

                                                
1
 For a thorough investigation of pressure losses due to enlargements/contractions for turbulent pipe flow, the 

book Pipe flow: A practical and comprehensive guide [18] is suggested.     
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Equation (2.1.8), together with (2.1.6) and (2.1.7) for Poiseuille and annulus flow 

respectively, shows that the total irreversible pressure drop is dependent on the flow rate in a 

non-linear fashion. Combining these equations yields 

 

       
        (2.1.10) 

where everything except for the flow rate has been included in the coefficients    and   . The 

form of (2.1.10) is the same for both cylindrical and annulus pipe flow, but with different 

coefficients. It is important to note that the coefficients will be dependent on the Reynolds 

number, thus it will vary for different Reynolds number regions
2
. In addition, for the specific 

problem of a stenosis, where both a contraction and an enlargement is present, the flow effects 

at the stenosis inlet also affect the pressure drop (or the discharge coefficient) at the outlet, 

due to the non-linearity of the fundamental equations of fluid dynamics. This further 

complicates the behavior of the pressure losses compared to cases where only an enlargement 

or a contraction is present. 

 

 
Figure 2.1-2: Flow separation due to the enlargement of a pipe. Velocity field (colored surface) and velocity stream lines 
(white lines) are presented for a cross-section of a 2D-axisymmetric geometry (a cylinder).  The direction of the flow is in 

the positive z-direction and the color scale represents the velocity magnitude where red is high and blue is low. 

 
 

 

 

 

 

 

                                                
2
 To find out more about pressure drops for laminar flow in enlargements, the following articles are 

recommended: Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers [16] and A 

general correlation for the local loss coefficient in Newtonian axisymmetric sudden expansions [20]. 
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Figure 2.1-3: Flow separation due to the contraction of a pipe. Velocity field (color) and velocity stream lines (white lines) 
are presented for a cross-section of a 2D-axisymmetric geometry (an annulus). The direction of the flow is in the positive 

z-direction and the color scale represents the velocity magnitude where red is high and blue is low. 

 
Figure 2.1-4: Flow separation, and vortex formation, due to the contraction of a pipe. The point of smallest flow area is 

the vena contracta. Q is the flow rate. 

2.1.5 Velocity profiles 

 

For fluid flow within a pipe, the velocity profile is an important property of interest. For fully 

developed flow in a cylindrical pipe of constant diameter, the corresponding expressions for 

the velocity profiles are 

 

 

                    
 

 
 
 

  

                     
 

 
 
   

 

(2.1.11) 
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for laminar and turbulent flow respectively, where             for laminar flow and 

               for turbulent flow. The laminar profile can be derived by fundamental 

principles of fluid flow and corresponds to that of Poiseuille flow. The velocity profile for 

turbulent flow seen in (2.1.11), sometimes referred to as the 1/7
th

 power law, is an empirically 

determined relation [12] and is only a model (one out of many). It is one of the most 

commonly used models, but depending on the situation, other models might describe the 

velocity profile for turbulent flow more accurately. 

 

The velocity profile for fully developed laminar flow in an annulus can be found to be 

 

      
  

    
    

  

   
    

     
 
  
        

     
  
  

 

   
    

     
  
  

     
    

  
 (2.1.12) 

(see Appendix A for the derivation). The acquired expression for the annulus velocity profile 

has its maximum slightly shifted towards the wall of smaller radius, which is in contrast to 

cylindrical pipe flow where the maximum is in the centre of the pipe. The turbulent velocity 

profile has no well known formulation for flow within an annulus. 

2.1.6  Pulsatile flow 

 

Pulsatile flow can be described by the dimensionless quantity known as the Womersley 

number. This quantity relates the oscillatory frequency of the pulsatile flow to viscous effects 

[21] and is defined as 

 

     
  

 
   

 

 
 (2.1.13) 

where   is the angular frequency of the oscillations,   a typical length scale (commonly the 

radius for a pipe) and       is the kinematic viscosity. The Womersley number appears 

when the linearized Navier-Stokes equations are solved for oscillatory, laminar, pipe flow 

[21]. The Womersley number determines how much the flow in a pipe is affected by the 

oscillation frequency of the pulsations. For a Womersley number lower than unity, the flow is 

almost fully developed at each instant of the oscillatory cycle, and the flow rate and the 

pressure gradient driving the flow (        ) will be changing almost in phase. The flow is 

then very close to oscillatory Poiseuille flow, which means that the velocity profile can be 

described by the first equation of (2.1.11) at each instant in time corresponding to the 

instantaneous pressure gradient. With increasing values of the Womersley number, the flow 

and pressure gradient become more and more out of phase due to inertia of the fluid. 

Furthermore the flow does not have time to reach its fully developed form at each instant in 

time, resulting in a damping of the flow rate oscillations compared to that of oscillatory 

Poiseuille flow under the same pressure gradient variations [21]. 

 

When adding symmetric pulsations to a constant stream, there will be a net flow in the 

direction of constant flow. If the pulsatile flow rate is known, then the maximum and 

minimum flow rates can be used to approximate the difference in the pressure drop for a 

system, over an oscillatory cycle. For a pulsation amplitude of   , equation (2.1.10) gives the 

maximum and minimum pressure drops over a stenosis (according to the systolic and diastolic 

stages respectively)  
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(2.1.14) 

Taking the difference of these two equations yields 

 

                         . (2.1.15) 

Equation (2.1.15) shows that the pressure drop oscillates with an amplitude whose size is 

depending on the mean flow rate  , according to the first term on the right hand side (RHS). 

Thus for increasing (mean) flow rates, the size of the variations in pressure drop (over one 

cycle) will also increase, despite keeping the size of the flow rate pulsations constant (   
     ). It is worth noting that    and    are dependent on the Reynolds number, which means 

that the flow rate dependency is different for different Reynolds number regions. Observe that 

(2.1.15) only holds as long as the oscillatory flow rate is of the same amplitude for all flows, 

i.e. the whole pulse is pressed through the stenosis for all flows, which is the case for a rigid 

tube but not necessarily so when dealing with elastic vessels. Since (2.1.15) does not include 

any time-dependency, the equation might also be affected for pulsatile flow of sufficiently 

high frequency, where the flow deviates far from oscillating Poiseuille flow (   ).  

2.1.7 Limitations of analytical theory 

 

While the theory described above is useful, it only describes parts of the flow behavior, thus it 

is only approximate. To get a full description, the fundamental governing equations of fluid 

flow have to be solved. These equations are highly non-linear and can seldom be solved 

analytically. This is why numerical methods are used for most fluid flow problems, hence the 

need for CFD. 
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2.2 The Governing Equations 

 

The motion of a fluid is governed by the Navier-Stokes system of equations. They are derived 

by applying the three laws of conservation to fluid flow. In component form, these equations 

can be written as 

 

 
  

  
 

      

   
   (2.2.1) 
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    (2.2.3) 

where   is the fluid density,    the position vector components,    the components of the 

velocity vector,   the pressure,     the viscous stress tensor,   the internal energy per unit 

mass,    the heat flux,   the heat supply per unit mass, and    represents body forces per unit 

volume acting on the fluid, such as gravity forces. The index   indicates summation over all 

components. The first of these equations results from conservation of mass and is known as 

the continuity equation. The second is a set of equations (one equation for each dimension) 

that describes linear momentum conservation; this equation is often referenced as the Navier-

Stokes equation(s). Finally the third equation describes energy conservation. In 3D, this 

system involves six scalar variables ( ,  ,   and a velocity component    for each dimension) 

and only five equations. To close the system, an equation of state is needed. This equation of 

state relates the pressure to the density and temperature 

 

          (2.2.4) 

where   is the temperature of the gas/fluid. Since the internal energy per unit mass is related 

to temperature 

 

          (2.2.5) 

it can be replaced and   becomes the new unknown variable. The problem boils down to six 

unknowns ( ,  ,   and all   ) and six equations (2.2.1-2.2.4). To fully describe the motion of 

fluid flow, for a specific problem, the Partial Differential Equations (PDEs) of (2.2.1-2.2.3) 

must be complemented with the appropriate boundary and initial conditions. 

 

Under certain circumstances the governing equations can be simplified. In reality, fluids and 

gases are compressible, but for velocities much lower than the speed of sound within the 

medium, fluid flow can be considered incompressible (i.e. local density variations are 

neglected). When dealing with incompressible flows of Newtonian fluids, the momentum and 

mass equations above reduce to 
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   (2.2.6) 

 

   
   

  
   

   

   
   

  

   
  

    

      
     (2.2.7) 

Equation (2.2.6) implies that the mass flux for a volume element must be equal to zero. The 

left hand side (LHS) of (2.2.7) describes the acceleration of the fluid, while the RHS describes 

pressure, viscous, and other body forces. The second term on the RHS of (2.2.7) is the 

resulting viscous stress when assuming that the shear stress is linearly dependent on the 

velocity gradients (which is the case for a Newtonian fluid) and the dynamic viscosity of the 

fluid. The non-linear term in (2.2.7) is the convective acceleration, which is the acceleration 

in space that is time-independent, such as acceleration due to changing geometry. Because of 

the constant density, the equation of energy conservation is decoupled from the mass and 

momentum equations, thus (2.2.6) and (2.2.7) are enough to describe the fluid motion if 

temperature effects are neglected, which is the case in this thesis. The reduced system, (2.2.6) 

and (2.2.7), consists of four equations (one for mass and three for momentum conservation) 

and four unknowns (   ,  ).  

2.2.1 Boundary Conditions 

 
Two of the most common boundary conditions are the Dirichlet and the Neumann boundary 

conditions. The former specifies the value of a variable at a boundary while the latter specifies 

the derivatives of a variable. They are both special cases of the more general Robin boundary 

condition, which is a combination of the two [22]. Common boundaries to fluid flow are walls 

confining the fluid, inlet/outlet boundaries and free surfaces (the latter is beyond the scope of 

this thesis). Since the fluid cannot flow through walls, the normal component of fluid velocity, 

relative to the wall, must be zero there. The tangential component of velocity relative to the 

wall, for viscous fluid flow, must also be zero, which is a result of friction between the fluid 

and the wall due to the viscosity of the fluid. This is known as the no-slip condition, which is 

a Dirichlet condition on the velocity (              ).  

 

For CFD simulations, the inlet and the outlet conditions are most often specified either by 

velocity, mass flow rate, or pressure. For most fluid flow problems, at least one of these 

properties is known. Velocity conditions are usually inlet conditions, whereas pressure is 

commonly applied at the outlet of a system [23]. Mass flow can be applied when the velocity 

profile is unknown. Another CFD boundary condition is the symmetry boundary condition. 

Since the flow variables must be continuous over the symmetry plane, the velocity normal to 

this plane must vanish there. In addition, the normal derivative of the velocity component 

along the symmetry plane must be zero as well (no tangential viscous stress at the plane of 

symmetry) [24]. 
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2.3 Turbulence modeling 

 

While the Navier-Stokes equations (2.2.7) are still valid for turbulent flow, it is not feasible to 

solve these equations exactly (in most cases) due to the vastly different length and time scales 

present. Thus finding a solution using Direct Numerical Simulations (DNS), even for simple 

geometries/problems, can become difficult once turbulence is involved. An additional 

problem occurs when trying to approximate the solution to a fluid flow problem by any 

laminar physics model. While all laminar flow models utilize the Navier-Stokes equations, 

they only yield the same result as DNS when all the different length scales are resolved, i.e. 

the computational mesh is fine enough. If all scales are not resolved, there is a risk that the 

solution acquired is physically unrealistic, despite numerical convergence, but it is also likely 

that the approximation diverges due to sharp gradients. As a result of these difficulties, 

turbulence must be modeled for most industrial problems. 

2.3.1 RANS Equations 

 

One of the most common ways of approximating turbulence is to average out fluctuating 

quantities of the Navier-Stokes equations by separating the flow variables into a time-average 

and an oscillating part. This separation is known as the Reynolds decomposition. Applying 

this method to (2.2.7) yields what is known as the Reynolds-Averaged Navier-Stokes 

equations (here in component form) 

 

 
    

  
     

    

   

   
 
 

 

   

          
    

   

 
    

   

     
   

        (2.3.1) 

where     is the kronecker delta function,    denotes the time average of the velocity and    the 

fluctuating part. The last term within the brackets on the RHS of (2.3.1) is known as the 

Reynolds stress term and it is the only part of the RANS equations that includes the 

fluctuating part of the velocity. The RANS equations, as they are, will not constitute a closed 

system of equations and the Reynolds stress term has to be modeled by additional equations in 

order to close the system of equations. In the past, there have been many different attempts to 

model this stress term, resulting in a variety of different turbulence models. The first one to 

accomplish this was Boussinesq (1877), through the Boussinesq approximation. The idea is to 

model the momentum transfer caused by turbulent eddies by introducing the concept of eddy 

viscosity. There are several turbulence models based on this approximation, such as zero-

equation models, one-equation models and two-equation models. This thesis is limited to the 

following standard two-equation models: the     and the     models. 

2.3.2 The     and     models 

 

The     model is one of the most commonly used turbulence models in engineering 

applications, most frequently for “low-speed incompressible flows in isotropic turbulence” 

[25]. The model includes two turbulence quantities needed to describe the turbulent aspects of 

the flow; the turbulence kinetic energy   and the turbulence dissipation rate  . To account for 

the new turbulence quantities, two additional transport equations are added, hence the name 

two-equation model. This model has been documented to yield good results for free flow 

simulations, but is known to perform more poorly in the case of wall bounded flows and 

adverse pressure gradients (i.e. increasing pressure in the direction of the flow) [26]. 
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The     model is also a widely used turbulence model. In addition to the turbulent kinetic 

energy  , the specific turbulence dissipation rate (or vorticity)   is used to describe the 

turbulent flow properties. This model performs better than the     model for a variety of 

flows [26]. The disadvantages include higher sensitivity to vorticity inlet conditions for free 

stream flow (flow free from the effects of walls) and lower robustness than the     model 

[26]. 

2.3.3 Boundary layers 

 

Due to the no-slip condition at boundary walls, boundary layers are created adjacent to the 

walls where viscous effects become more dominant. Because of the creation of boundary 

layers, velocity gradients normal to the surface are very sharp, requiring dense meshing close 

to the walls in order to be resolved. To account for this fact, the method of wall functions can 

be applied for turbulent flow [25]. These wall functions are based on empirical laws and can 

be used to analytically describe the flow behavior in parts of the boundary layers, yielding 

boundary conditions some distance away from the wall, thus removing the need for excessive 

meshing. 

 

The innermost boundary layer can be divided into three sub-layers [25]: the viscous (or 

laminar) layer, the buffer layer, and the log-law layer (see Figure 2.3-1). The log-law layer is 

described by what is known as the law of the wall. This law states that the tangential 

component of the mean velocity of turbulent flow is proportional to the natural logarithm of 

the distance to the wall. The velocity in the log-law layer can be written as 

 

    
 

 
        (2.3.2) 

where          is the dimensionless relative velocity, tangent to the wall,           the 

dimensionless relative wall distance,   the von Karman constant,    the friction (or shear) 

velocity and     a constant whose value depends on the model approach. This approximation 

is valid at a distance of       from the wall but deviates considerably when reaching 

values around    . Closest to the wall is the viscous sub-layer where 

 

        (2.3.3) 

which is valid for     . For         neither (2.3.2) nor (2.3.3) approximates the 

velocity profile satisfactorily. This intermediate region is known as the buffer layer. If there 

were no buffer layer, then (2.3.2) and (2.3.3) would meet at        . For values of   
    , the viscous model works better, while the log law is superior for        , though 

none of the two models yields good results close to      .6. In addition to the velocity, the 

turbulence quantities are also given corresponding boundary conditions away from the wall. 

 

The boundary conditions at the walls can vary depending on the implementation of the wall 

functions. One common approach is to divide the boundary layers at      .6, where the 

law of the wall is used above      .6 and below this limit the velocity and the turbulence 

quantities are based on viscous sub-layer constraints [25]. Other models incorporate all three 

sub-layers, where the buffer layer is modeled between        . In contrast, the simplest 

wall function approach directly makes use of the law of the wall, without taking the other sub-

layers into account.     
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Figure 2.3-1: The boundary layers for turbulent flow.    is the dimensionless relative wall distance and    is the 

dimensionless relative velocity tangent to the wall. The figure is from an external source, by another author, and is 
published under the following license [27]. 

There are also low Reynolds number versions of the two-equation RANS models, meant to 

better resolve boundary layer flows (i.e. flows of lower Reynolds numbers) [28]. For these 

models the boundary layer is resolved all the way into the viscous sub layer (    ), without 

relying on wall functions. This means that the quality of the boundary layer mesh is of utmost 

importance for low Reynolds number models. 

2.3.4 Turbulence intensity and length scale 

 

When modeling turbulence, the turbulence quantities must also be set at the inlet to the flow 

system to generate the correct degree of turbulence. However, it is usually very difficult to 

estimate the magnitude of the turbulence quantities. Instead, it is common to describe 

turbulence by the turbulence intensity and turbulence length scale. For fully developed 

turbulent pipe flow, the turbulence intensity is usually within 5-10 % and the turbulence 

length scale, describing the size of the eddies that are modeled, is commonly set to 7% of the 

hydraulic diameter of the pipe for 2D flows [29]. 
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2.4 The Finite Element Method 

 

The Finite Element Method (FEM) is a numerical method used to find approximate solutions 

to boundary value problems. It is commonly used in various fields of engineering. The main 

idea is to divide the domain of the problem into many smaller elements where the main PDEs 

can be approximated locally. The element equations are then combined into a global system 

of equations, over the entire domain. It is an approach based on the variational theory of 

calculus where an error function is minimized to yield the best approximation to the solution. 

 

By applying variational calculus to the PDEs in question, all spatial derivatives are removed, 

approximating the PDEs, over each element, as ordinary differential equations in time, or just 

algebraic equations for steady state problems. The resulting system of equations is then solved 

by numerical linear algebra for steady state problems and time dependent problems are solved 

by numerical integration schemes. Non-linear equations, such as the Navier-Stokes equations, 

yield non-linear equations that have to be linearized in order to be solved. The local (element) 

equations are combined into a global system of equations to approximate the solution on the 

entire domain.  

 

The resulting FE approximation, to the solution, is built out of linear combinations of basis 

functions, where each function is connected to a node point of the elemental grid/mesh (see an 

example in Figure 2.4-1). These basis functions are usually polynomials where the order can 

be increased to improve accuracy, but this also increases the computational complexity of the 

problem. When solving the Navier-Stokes equations, it is important that the basis functions 

describing the velocity are, at least, one order higher than those describing the pressure [30]. 

 

There are many advantages with the FEM since complex geometries can be described with 

non-uniform meshes (unlike finite difference methods where the mesh elements are of 

uniform size). The downside is that it is mathematically complex compared to other methods 

such as the Finite Volume Method (FVM), another common (numerical) method often used 

for fluid flow problems. 

 
Figure 2.4-1: An example showing a 1D FE-approximation (red) created using a linear combination of piecewise linear 

basis functions (blue). The six points located at          represent the node points of the computational mesh, with 
mesh elements in between. The figure is from an external source, by another author, and is published under the 

following license [31]. 
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3 Method 
 

This section covers the approach of the experimental measurements and CFD simulations. 

The first part includes the setup and measurement approach for the experimental measure-

ments, as well as providing a description of the three stenosis models. The latter part involves 

the CFD simulations in COMSOL, where the settings are explained in steps and the methods 

are motivated. The chapter ends with a short explanation of what tests were made to compare 

the CFD simulations with the experimental results.  
 

3.1 Experimental measurements 

 

The aim of the experiments was to characterize the pressure behavior in three different plastic 

tube stenosis models being subject to a pulsatile flow of water. The experimental setup and 

method correspond to the ones utilized in the article Natural angioplasty: A mechanical effect 

of exercise [4]. 

3.1.1 Experimental setup 

 

The experimental setup (Figure 3.1-1) was identical for all measurements and all stenosis 

models. To create a constant fluid flow through the system, a peristaltic pump (Ismatec BVK, 

Zurich, Switzerland) was connected to the stenosis model in question by a system of elastic 

tubes. These tubes were extended to a length of 17 meters in order to dampen possible 

disturbances in the flow. The pump was also connected to a container of water that fed fluid 

to the system, and the flow rate was regulated by 6 taps connected to the peristaltic pump. 

Pulsations were added by connecting a syringe pump to the flow system, upstream of the 

stenosis, pumping at a frequency of 1 Hz (to simulate the heart beat). The pulsations were 

added at an angle of 90 degrees to the constant flow stream. For this reason, the syringe pump 

was connected some distance away from the stenosis in order for the flow to become fully 

developed before reaching the model inlet. The syringe pump was programmed using the 

software LabVIEW (National Instruments Corporation, Austin, Texas, U.S.) to create a 

volume curve that was triangular in shape with a volume difference of approximately 0.4 ml 

peak-to-peak. To remove the effects of the hydrostatic component of the pressure, the system 

was placed horizontally. No flow was used as zero reference pressure, and the end of the flow 

line was open to air (open outflow). 

 

To measure the pressure, a RadiAnalyzer
TM

 Xpress measuring system (Radi Medical, 

Uppsala, Sweden), displaying the maximum (systolic), minimum (diastolic) and mean 

pressure, was connected to the system utilizing a Pressure Wire Certus catheter system 12006 

(St Jude Medical Systems, Uppsala, Sweden) that included a catheter tip pressure sensor and a 

fluid catheter sensor. Both the reference pressure (at the model inlet) and the pressure at 

discrete points inside the stenosis could then be measured simultaneously. The catheter tip 

sensor was inserted through the elastic tube upstream of the stenosis models and was fed 

through the stenosis, little by little, during the measurements. Due to the construction of the 

catheter tip pressure sensor, where the point of measurement was positioned 3.05 cm from the 

endpoint of the sensor, the catheter tip was occupying the stenosed region at all times. In 

addition, the rigid stenosis model was extended at the model end by an additional elastic tube 

(10.5 cm in length) in order for the catheter tip sensor to be fully submerged during the 

measurements. The resolution for the pressures displayed by the RadiAnalyzer was 1 mmHg. 
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Figure 3.1-1: The experimental setup (bottom) and the corresponding schematic sketch (top). The peristaltic pump (1) is 

connected to the stenosis model (2) by 17 m of elastic tubes. Additional connections are those of the oscillatory (syringe) 
pump (3) and the reference pressure sensor (4). The taps regulating the flow can be seen in the photo (5). 

3.1.2 The stenosis models 

 
Three axisymmetrical stenosis models of slightly different geometries were used during this 

project. Each model consisted of a Plexiglas tube with an inner diameter of 3 mm and a 

stenosed region (or a constriction) of different length, diameter and inlet/outlet shapes (Table 

3.1-1). Two of the models were artery stenosis models and the third was a simplified model of 

the cerebral aqueduct (Figure 3.1-2). All models had a length of 57 mm, without the elastic 

extension of 10.5 cm. It is important to note that in the previous study [4] an extra resistance 

was added downstream of the stenosis models (to increase the pressure at the model inlet), 

something that was not included in this thesis. 
 

Table 3.1-1: The geometric parameters of the three stenosis models. 

Model Stenosis length 

(mm) 

Stenosis inner 

diameter (mm) 

Inlet/outlet angles α 

(degrees) 

Artery stenosis 1 7.0 1.0 120/120 

Artery stenosis 2 8.0 1.5 120/120 

Aqueduct 7.0 1.0 60/180 or 180/60 
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Figure 3.1-2: Cross-sections of the stenosis models. The artery models (top) and the aqueduct model (bottom). Half the 

inlet/outlet angle (α) is shown in the upper model. 

3.1.3 Measurement method 

 

Both constant and pulsatile flow measurements were performed. For the pulsatile flow 

measurements, pulsations were added to the constant flow, resulting in a net flow in the 

direction of the constant flow. The pulsatile part of the flow was kept at constant pulsation 

rate and volume (the same settings for all measurements) and only the constant flow rate was 

varied. For the artery stenosis models, the pressure was measured in six points (Figure 3.1-3) 

with the catheter tip pressure sensor, while ten points were used for the aqueduct model 

(Figure 3.1-3). For each measurement, the systolic, diastolic and mean pressures were 

documented, both in the reference point (at the model inlet) and in the measurement point 

inside the stenosis model in question. All pressure measurements under pulsatile flow were 

performed six times per measurement point, resulting in six measurement series, and once per 

measurement point for the constant flow measurements. The mean flow rate was measured by 

collecting the volume of water passing the stenosis model in intervals of 20 and/or 30 

seconds. For the pulsatile flow measurements, the flow rate was measured two or three times 

per measurement series, and six times per flow rate for the constant flow rate measurements. 

During the measurements, the water was kept at a temperature between 23 and 24 degrees 

centigrade (measured with a Delta OHM thermometer HD 9214, 0.1°C resolution). 

 

While the constant flow measurements were done for several different flow rates for each 

stenosis model, the pulsatile measurements were only done for the following (mean) flows 

and models: 

 

 129 ml/min for the 1.0 mm artery stenosis model 

 130 ml/min and 173 ml/min for the aqueduct model when using the smooth narrowing 

as inlet 

 131 ml/min and 172 ml/min for the aqueduct model when using the abrupt narrowing 

as inlet 

 

The pulsatile flow measurements with the artery stenosis model were performed to recreate 

the results of the previous study [4]. Measurements with the aqueduct model were performed 

for both directions to investigate possible differences due to differing stenosis inlet/outlet 

shapes. 
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Figure 3.1-3: Pressure measurement points for the artery models (top), the aqueduct model with the smooth narrowing 

proximal to the flow (middle), and distal to the flow (bottom). 

3.1.4 Additional measurements: Removing the catheter sensor 

 

Pressure measurements were also performed with an infusion system, Likvor CELDA® 

System (Likvor AB, Umeå, Sweden), replacing the catheter pressure system, in order to 

remove the effects of the inserted catheter tip on the flow. Due to time constraints, only 

measurements with the 1.0 mm artery model were performed using the CELDA system. For 

these additional measurements, only the total pressure drop over the stenosis model was 

measured (from the model entrance to the end of the elastic extension), for pulsatile flow, and 

the mean flow rate was measured three times per flow rate. 
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3.2 CFD in COMSOL 

 

The experimental measurements were compared to CFD simulations run with the software 

COMSOL Multiphysics® (Version 4.3b) and its CFD module. COMSOL is based on the FEM 

(see Section 2.4), which is well suited for fluid flow problems. In COMSOL it is possible to 

create 1D, 2D, 2D-axisymmetric and 3D models, where the geometry, physics (equations and 

boundary conditions) and the mesh can be defined, all without the need for any additional 

software. COMSOL also includes various study options (such as solver methods) and post 

processing alternatives. 

3.2.1 2D versus 3D 

 

Since turbulence is a 3-dimensional phenomenon it is desirable to utilize 3D when solving 

problems of fluid flow. However, due to the increase in computational cost between 2D and 

3D, in both memory and processing time, it was decided to start with 2D simulations since it 

should still capture the main features of the flow, but to a lower computational cost. Since the 

geometries of the model stenoses were axisymmetric, a 2D-axisymmetric geometry could be 

used, which is close to a 3D representation. 

3.2.2 Geometry: Including the pressure catheter sensor 

 

The geometry of each CFD model consisted of the stenosis model, plus the additional 

extension of 10.5 cm, and the catheter sensor. Since the pressure was expected to change very 

little in regions away from the stenosis, the elastic extension was modeled as rigid in the CFD 

simulations to simplify the numerical calculations. The catheter was approximated as a rigid 

stationary cylinder placed inside the stenosis model, along the axis of symmetry, creating the 

geometry of an annulus as opposed to a cylindrical geometry. During the experiments, the 

catheter was observed to fluctuate as well as shifting shape when bent against the walls of the 

model, which introduced effects not accounted for in the simulations. However, since the 

catheter was mostly positioned in its central position, and the flow area was the same, this 

simplification was deemed reasonable. 

3.2.3 Laminar and turbulent physics 

 

For all simulations of this thesis, the water density was set to            and the viscosity 

to              (the same values as used in the theoretical model of [4]). The Reynolds 

number was approximated to be below 2000 in the pipe and larger than 2000 in the stenosis 

region for nearly all of the experimental measurements (see Appendix C). For cylindrical pipe 

flow, this includes the transitional regime where flow behavior is difficult to analyze. Because 

of this fact, both laminar physics simulations and simulations including the modeling of 

turbulence were tested. COMSOL’s CFD module gives the option to model laminar as well as 

turbulent flow with already implemented physics models. For the turbulence model, the 

choice fell on the RANS     model due to it being one of the most prominently used 

turbulence models within the field of CFD today. The     model implemented in 

COMSOL, at the time, was the revised Wilcox model with wall functions [26]. For the 

laminar model, the incompressible Navier-Stokes equations (2.2.7) and the corresponding 

continuity equation (2.2.6) were used to solve for the velocity vector and the pressure (in 

cylindrical coordinates). For the turbulence model, the RANS equations (2.3.1) were solved 

with two equations added for the turbulence quantities,   and  , to close the system of 

equations. 
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In addition, a low-Reynolds number model was also tested to better describe the gradients 

close to the walls, instead of relying on wall functions. Since the low Reynolds     model 

was not implemented in COMSOL at the time, the low Reynolds number     model was 

applied, but with no success for annulus flow (no convergence in the solutions). For 

cylindrical flow (no catheter), the low-Re model was applied successfully and was included in 

the analysis of the additional measurements (the Likvor CELDA® System measurements). For 

this model, two equations, one for   and one for  , were added to the RANS equations. 

 

Regarding discretization, COMSOL makes use of several stabilization techniques in order to 

discretize flow problems using first order (P1) basis functions for both the velocity and the 

pressure, instead of using higher order basis functions for the velocity. The default settings 

include two consistent stabilization techniques: streamline and crosswind stabilization [32]. 

The number of degrees of freedom is severely reduced by using P1-P1 elements, but it may 

result in poor resolution of steep gradients. For most simulations, this setting was used to 

improve simulation speed, although the P2-P1 discretization was tested but did not yield any 

noticeable change in the results. 

3.2.4 Boundary conditions 

 

A velocity condition was set at the model inlet for all simulations. The mean velocity was 

computed from (2.1.2), since only the flow rate was known (measured). For laminar inflow, 

(2.1.11) and (2.1.12) could be used for the cylindrical and annulus flow, respectively, to get 

the corresponding velocity profiles for constant flow. For the turbulence simulations, the 

turbulence quantities were defined by the turbulence intensity and turbulence length scale. 

The intensity was set to 5 % and the length scale to 0.07 hydraulic diameters, which is 

recommended for fully developed turbulent pipe flow [29]. 

 

To introduce pulsations to the flow, an oscillating flow rate was applied at the inlet in the 

form of a sinusoidal wave, representing the motion of the syringe pump supplying a volume 

of 0.4 ml at a frequency of 1 Hz (see Section 3.2.5). This means that a volume of 0.4 ml was 

added and withdrawn every second. The pulses were added as uniform velocity, and the 

geometry was prolonged upstream of the stenosis region to let the flow develop properly 

before reaching the stenosis inlet. 

 

The boundary conditions for the rigid walls were set to no-slip in the laminar simulations. For 

the turbulence     model, boundary flow was handled by using wall functions [33]. In 

COMSOL, the distance from the wall to the computational domain (or wall lift-off) is 

automatically calculated so that the dimensionless wall distance (or wall lift-off in viscous 

units) is 11.06. The buffer layer is ignored and the entire viscous sub-layer is represented 

analytically. Since the viscous and buffer layers are very thin, for fully turbulent flow, it is 

important that the wall distance is very small compared to the dimensions of the geometry. It 

is also important that the dimensionless distance is 11.06 everywhere on the walls, or close to 

it, in order for this wall function approach to be valid. This was investigated for all 

simulations where the turbulence     model was used (see Appendix D). For the low 

Reynolds number turbulence model, a no-slip condition was set at the walls. 

 

At the outlet, a simple Dirichlet condition was set for the pressure, since it was open to 

atmospheric pressure (open outflow). Due to the fact that only the change in pressure over the 

stenosis was of interest, and not the absolute pressure, the value of the pressure was set to zero 

at the outlet (instead of atmospheric pressure). 



 

28 

3.2.5 Adding Pulsations 

 

To add pulsations, the oscillatory flow had to be described by a varying flow rate, which was 

then converted to velocity through (2.1.2). Since the volume inserted/removed every half 

second was known to be 0.4 ml, the pulsations could be estimated by integrating the sought 

after flow rate over half a second and setting it equal to the inserted volume. Mathematically 

this can be described as 

 

                    
   

 

 (3.2.1) 

where   is the oscillating flow rate,   the frequency of the oscillations,   is the oscillation 

period and           is the volume inserted. The programmed motion of the syringe pump was 

described by a triangular function of frequency 1 Hz, but under the experiment the profile was 

observed to be more sinusoidal. For this reason the periodic flow rate was approximated as a 

sine function yielding 

 

                            
   

 

 (3.2.2) 

where      is the amplitude of the flow rate oscillations. Then, using the fact that      , 

the amplitude becomes 

 

 
     

         

  
         

   
 
 

    
              (3.2.3) 

Adding this to the constant flow yields the final expression for the inflow 

 

                                  . (3.2.4) 

3.2.6 Meshing 

 

A free triangular mesh was used within the flow stream away from the walls while boundary 

layers were added close to the walls. Since the velocity changes very rapidly in the direction 

normal to the wall, close to the boundary, and very little in the tangential direction of the wall, 

the boundary layers were made to consist of quadrilateral elements tightly packed in the 

direction normal to the wall and more sparsely in the tangential direction (see Figure 3.2-1). 

Mesh refinements were added for all sharp edges and the line of flow separation. 

 

A mesh analysis was made where the number of finite elements was increased with the aim to 

find a fine enough mesh where no change in the quantities of interest occurred for any 

additional increase in the number of elements, or until the variations were negligible. The 

quantities of interest were the pressure drop over the stenosis and the recirculation length of 

the separation zone. The mesh study was done for all three stenosis models (see Appendix B). 

For the laminar model, the recirculation length required a large number of mesh elements in 

order to remain constant. In addition, when the number of elements was increased, the 

resulting recirculation length moved even further from the expected results. Because of this, 

the pressure drop was the main deciding factor when creating the mesh (for the laminar model 

simulations). 
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Figure 3.2-1: The computational mesh with triangular elements on the inner domain and wall boundary layers consisting 

of quadrilateral elements tightly packed in the direction normal to the wall. 

3.2.7 Stationary and transient solvers 

 

For the stationary solver, COMSOL uses Newton’s method (Newton-Raphson) to solve the 

non-linear Navier-Stokes equations [34]. The non-linear solver iterates to find the solution, 

and for each iteration the non-linear system of equations is linearized and solved using a 

linear solver [34]. These linear solvers are either direct or iterative [35]. For most simulations 

of this thesis, a direct linear solver was used due to them being more robust than iterative 

solvers. This was also the default choice made by COMSOL for most simulations. The direct 

solver makes use of Gaussian elimination, or LU factorization, to solve the linearized matrix 

system. For the simulations with the      turbulence model, the turbulence quantities were 

solved separately from the velocity and pressure by using a segregated solver, and the default 

solvers chosen by COMSOL were always used. The low Reynolds     model simulations 

were solved using a segregated solver as well. 

 

Two time-dependent solvers are available in COMSOL: the BDF and Generalized Alpha 

solvers [36]. The time-dependent simulations, of this thesis, were handled by the BDF time 

solver, a solver based on backward differentiation formulas. This method is more stable than 

the Generalized Alpha, something that was often needed for the problem of interest, though 

damping of fast oscillations might be introduced, which is an unfortunate property of the 

backward differentiation methods. The Generalized Alpha solver was used for comparison, 

when possible, but this did not impact the results, regarding the quantities of interest. 
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3.2.8 Studies and post processing 

 

The main CFD studies involved simulations of the experimental measurements described in 

Section 3.1, and also those of the previous study [4]. The CFD results were analyzed with 

focus on: 

 

 Pressure behavior along the stenosis models. 

 Pulsatile flow effects. 

 The total pressure drop dependence on the shape of the stenosis. 

 

Since the pressure was mostly uniform in the radial direction, the pressure along the pipe was 

investigated along a central line through the stenosis model, and not averaged in separate 

cross-sections. For total pressure drop measurements, the spatial (cross-sectional) average 

pressure at the model inlet was calculated. Since the pressure was set to zero at the outlet, the 

inlet pressure corresponded to the total pressure drop. The pulsatile effects on the pressure 

were investigated by looking at the total pressure drop at different points in time, mainly 

comparing the systolic and diastolic pressure drops. To investigate the effects of different 

stenosis shapes the pressure drop was compared for the different stenosis models. In addition, 

a separate angle study was performed where the stenosis inlet and outlet angles were varied 

while the effects on the total pressure drop were studied. The inlet and outlet angles were 

varied separately and the angle held constant was set to 20 degrees. The pressure drop 

dependence on the stenosis diameter was investigated by simply varying the diameter. 

 

In addition to the main studies, several shorter studies were made to further evaluate the 

validity of the CFD simulations (see Appendix D). These studies were meant to investigate: 

 

 The velocity profiles right before the stenosis inlet. 

 The pressure drop corresponding to (2.1.6) and (2.1.7) for cylindrical and annulus pipe 

flow, respectively. 

 The effects of the manual catheter adjustments made during measurements. 

 Wall lift-off and wall lift-off in viscous units for the turbulence model simulations that 

utilized wall functions. 
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4 Results 
 
The following section contains all collected results related to the specific aims of the project. 

The pressure behavior inside the models is presented for the catheter measurements, as well 

as the total pressure drop as a function of flow rate. The pressure drop dependence on the 

geometry of the stenosis (inlet, outlet and diameter) and pulsatile flow effects are investigated. 

The chapter ends with a presentation of the no-catheter measurement results in order to 

determine the effects introduced by the inclusion of the catheter pressure sensor. 

4.1 Pressure behavior 

4.1.1 Pressure along the stenosis models 

 

The time-averaged pressure behavior along the 1.0 mm model for pulsatile flow (mean flow 

rate of 129 ml/min) is presented in Figure 4.1-1 and Figure 4.1-2. The results for the 

laboratory experiments showed a major pressure decrease over the stenosis region and 

pressure recovery downstream of the stenosis outlet. The pressure decrease was the largest at 

the stenosis inlet, partly due to the static to kinetic pressure conversion, but the pressure also 

decreased considerably inside the stenosis. The laminar CFD results agreed with the exper-

imental results up to the stenosis outlet, but downstream of this point the observed pressure 

recovery was slower than in the experiments. However, when looking at the total pressure 

drop (the irreversible pressure loss over the entire model plus the added extension), the results 

showed that the laminar simulation predicted the expected pressure recovery (approximately) 

but further downstream than in the experiments. The turbulence model simulation, on the 

other hand, severely underestimated the total pressure drop, but showed a much faster 

pressure recovery at the outlet, more in line with the experiments. The length of the separation 

zones (at the stenosis outlet) for the 1.0 mm artery model can be seen in Figure 4.1-3 and 

Figure 4.1-4 for the laminar simulations and the turbulence     simulations, respectively. 

For the turbulence model, the recirculation length was slightly longer than one centimeter, 

while the laminar model simulation yielded a recirculation length that extended up to more 

than ten centimeters. Flow separation was also observed at the stenosis inlet (in the CFD-

simulations) where a slight pressure recovery can be seen (Figure 4.1-2). The CFD 

simulations corresponding to the previous study, [4], were very similar to the ones presented 

here, thus only the total pressure drop results are presented for those simulations (see Table 

4.1-1).  
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Figure 4.1-1: Time-averaged pressure along the 1.0 mm artery stenosis model for pulsatile flow (mean flow rate of 129 

ml/min). The CFD simulations are compared to the experimental values. The error bars show the standard deviations for 
the mean pressure measurements. 

 
Figure 4.1-2: Closer look at the pressure along the 1.0 mm artery stenosis model for pulsatile flow (mean flow rate of 129 
ml/min). The CFD simulations are compared to the experimental values. The error bars show the standard deviations for 

the mean pressure measurements. 
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Figure 4.1-3: Contour plot, where the z-velocity component is zero, showing the boundaries of the separation zone for 
the laminar flow simulation (1.0 mm artery model). The color scale represents the radial velocity. The lower plot shows 

the point of flow separation and the upper plot shows the point of reattachment. The mean flow was 129 ml/min. 
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Figure 4.1-4: Contour plot, where the z-velocity component is zero, showing the boundaries of the separation zone for 
the turbulence model     simulation (1.0 mm artery model). The color scale represents the radial velocity. The mean 

flow was 129 ml/min. 

The corresponding results for the aqueduct model can be seen in Figure 4.1-5 and Figure 4.1-

6. The experimental results showed a smaller total pressure drop compared to that of the 1.0 

mm artery model, for approximately the same flow rate. The experimental results also showed 

that the pressure recovery occurred within 1-2 centimeters downstream of the stenosis outlet, 

for both flow directions. The laminar simulations overestimated the total pressure drop while 

(still) underestimating the adverse pressure gradient. However, the laminar simulation results 

were still relatively close to the experimental results inside the stenosis region. The turbulence 

model simulations were in much closer agreement with the experiments regarding both the 

pressure drop and the adverse pressure gradient, though the length of the separation zone was 

slightly underestimated for the smooth inlet simulation (early pressure recovery). In addition, 

the turbulence model simulation with the abrupt stenosis inlet predicted a larger pressure 

decrease at the stenosis inlet than expected, resulting in lower pressure inside the stenosis 

region, and quick pressure recovery right at the stenosis outlet, something that was not seen in 

the experiments. The results for the higher flow rate ( 170 ml/min) yielded similar results, 

thus only the total pressure drop data is presented for those measurements (see Table 4.1-1). 

 

When comparing the experimental results for the two flow directions (Table 4.1-1), no major 

difference could be seen in the total pressure drop between the two, only a slight difference of 

2 mmHg for the increased flow rate ( 170 ml/min). The laminar simulations yielded a 

slightly larger pressure drop for the abrupt stenosis inlet, for both flow rates investigated, 

while the turbulence model showed minimal differences. The experimental data, from the 

pulsatile flow measurements, can be found in Appendix E. 
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Figure 4.1-5: Time-averaged pressure along the simplified aqueduct model (abrupt narrowing proximal to the flow) for 

pulsatile flow (mean flow rate of 131 ml/min). The CFD simulations are compared to the experimental values. The error 
bars show the standard deviations for the mean pressure measurements. 

 
Figure 4.1-6: Time-averaged pressure along the simplified aqueduct model (smooth narrowing proximal to the flow) for 
pulsatile flow (mean flow 130 ml/min). The CFD simulations are compared to the experimental values. The error bars 

show the standard deviations for the mean pressure measurements. 
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Table 4.1-1: The total pressure drop under pulsatile flow for the different stenosis models and mean flow rates. The 
numbers in parenthesis represent data from the previous study [4]. 

Stenosis 

model 

Mean flow 

rate (ml/min) 

Average total 

pressure drop, 

experiments 

(mmHg) 

Average total 

pressure drop, 

laminar model 

(mmHg) 

Average total 

pressure drop, 

turbulence model 

(mmHg) 

Artery model 1.0 

mm 
129 73.0 74.0 58.4 

Artery model 1.0 

mm 
(126) (70.5) 71.0 55.8 

Artery model 1.0 

mm 
(173) (123.5) 122.5 105.1 

Aqueduct model, 

smooth inlet 
130 60 74.3 57.6 

Aqueduct model, 

abrupt inlet 
131 60 77.2 57.3 

Aqueduct model, 

smooth inlet 
173 92 122.5 99.8 

Aqueduct model, 

abrupt inlet 
172 94 126.7 98.5 

 
 

4.1.2 Total pressure drop as a function of volumetric flow rate 

 

To investigate the total pressure drop, from the model inlet to the end of the extension, and its 

dependence on the flow rate, the results from several constant flow measurements were 

compared. The results for the 1.0 mm artery stenosis model can be seen in Figure 4.1-7. The 

results showed good agreement between the laminar simulations and the experimental values 

for intermediate flows, while the difference was larger for the lowest and highest flow rates. 

The turbulence model predicted a lower pressure drop than expected for the 1.0 mm artery 

model, with the lowest flow rate of 58 ml/min being the only exception. The same 

investigation was made for the 1.5 mm artery stenosis model which showed a similar behavior 

(Figure 4.1-8). The point corresponding to the lowest flow rate indicated a negative pressure 

drop in the experiments, which is unrealistic. This measurement error was likely caused by a 

drift in the pressure sensor signal. When comparing the results for the two artery models, it is 

clear that the increase in stenosis diameter, from 1.0 mm to 1.5 mm, yielded a considerable 

decrease in the pressure drops. For the aqueduct model, the turbulence model simulations 

yielded results that were closer to the experimental results than the laminar simulations 

(Figure 4.1-9 and Figure 4.1-10). The laminar simulations overestimated the pressure drop 

for all flow rates investigated, and the turbulence model simulations agreed well with 

experiments for low and intermediate flow rates. The difference between experiments and 

simulations increased for increasing flow rates, for both CFD approaches. The results also 

showed that the pressure drop was slightly non-linear in its dependence on the flow rate for all 

stenosis models (see Appendix F). The pressure drop data, for the constant flow 

measurements, can be seen in Appendix E. 
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Figure 4.1-7: The total pressure drop as a function of flow rate for the 1.0 mm artery stenosis model. CFD simulations are 

compared to the experimental results. 

 

Figure 4.1-8: The total pressure drop as a function of flow rate for the 1.5 mm artery stenosis model. CFD simulations are 
compared to the experimental results. The first experimental measurement point indicates a measurement error since it 

shows an increase in pressure over the stenosis, which is physically unrealistic. 
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Figure 4.1-9: The total pressure drop as a function of flow rate for the aqueduct model, with the smooth narrowing 
proximal to the flow. CFD simulations are compared to the experimental results. 

 
Figure 4.1-10: The total pressure drop as a function of flow rate for the aqueduct model, with the abrupt narrowing 

proximal to the flow. CFD simulations are compared to the experimental results.  
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4.2 Geometry Parameter Study 

 

In the CFD simulations, the stenosis inlet and outlet angles were varied in order to investigate 

the resulting effects on the total pressure drop. The resulting pressure drops as a function of 

the outlet and inlet angles, respectively, can be seen in Figure 4.2-1 and Figure 4.2-2 for the 

laminar simulations and different Reynolds numbers. The results show that the total pressure 

drop increased for increasing values of the outlet angle. For larger angles, the outlet angle 

dependency diminished, resulting in approximately the same total pressure drop for angles 

over 40-50 degrees. The Reynolds number, within the tested range (450-1200), seemed to 

have an influence on the magnitude of the difference only, while the shape of the curve 

remained the same. This was in contrast to the results for the inlet angle investigation, where 

the pressure drop seemed to fluctuate slightly for different angles but showed no clear trend 

until the flow rate (or Reynolds number) was increased. For higher Reynolds numbers, the 

pressure drop was generally more sensitive to changes in the inlet and outlet angles. The 

turbulence model simulations yielded similar results as the laminar simulations, and are not 

presented. 
 

 
Figure 4.2-1: The total pressure drop as a function of the outlet angle for different Reynolds numbers (for CFD laminar 

flow simulations). The inlet angle was kept at an angle of 20 degrees. Re=459 (upper left), Re=852 (upper right) and 
Re=1134 (lower left). The Reynolds numbers correspond to the flow rates 70, 131 and 173 ml/min. 



 

41 

 
Figure 4.2-2: The total pressure drop as a function of the inlet angle for different Reynolds numbers (for CFD laminar flow 
simulations). The outlet angle was kept at an angle of 20 degrees. Re=459 (upper left), Re=852 (upper right) and Re=1134 

(lower left). The Reynolds numbers correspond to the flow rates 70, 131 and 173 ml/min. 

To further investigate geometrical effects, the stenosis diameter was varied in the laminar 

flow simulations to observe the change in total pressure drop over the aqueduct model (Figure 

4.2-3). The results showed a strong diameter dependency, where an increase in the stenosis 

diameter by only three percent (i.e. 0.03 mm) yielded a total pressure drop that was 

considerably lower than that of the 1.0 mm stenosis diameter simulations. Turbulent flow 

simulations were also performed but yielded a similar reduction, thus those results are not 

presented. 
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Figure 4.2-3: The pressure behavior for the aqueduct model, smooth inlet, for different stenosis diameters. The results 

are all extracted from laminar model CFD simulations under a constant flow rate of 130 ml/min. 
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4.3 Pulsatile effects on the pressure drop 

 

The Womersley number for the problem configuration, according to (2.1.13), was approx-

imately       , implying that a phase shift between the flow rate oscillations and the 

pressure gradient oscillations might be introduced, as well as possible damping of the flow 

rate oscillations. Since (2.1.13) only include parameters that were held constant, the 

Womersley number was the same for all measurements.  

 

For the full pulse, corresponding to a volume of 0.4 ml, the laminar model simulations failed 

to converge while the turbulence model predicted a much higher peak-to-peak pressure drop 

than the experimental measurements showed (see Figure 4.3-1 for the 1.0 mm artery model 

results). The results also showed that the predicted pressure drop curve was not symmetric, 

despite a symmetric sinusoidal flow rate input, where the crests were farther from the mean 

pressure drop value than the troughs. 

 

 
Figure 4.3-1: The total pressure drop as a function of time for pulsatile flow through the 1.0 mm artery stenosis model, 

corresponding to a volume pulse of 0.4 ml and a mean flow rate of 129 ml/min. A converging solution was only acquired 
for the     turbulence model simulation. 

The pulse size was investigated by applying the acquired pressure results from the laboratory 

experiments (from Appendix E) as a pressure inlet condition to the CFD models. The resulting 

flow rate behavior led to the conclusion that a pulse of 0.1 ml would yield approximately the 

correct pressure amplitude size, a serious reduction from 0.4 ml. The CFD results for this 

reduced pulse, together with the experimental results, can be seen in Table 4.3-1. The results 

showed that the systolic-diastolic differences (or peak-to-peak values) for the pressure drop 

were much closer to that of the experiments for the reduced pulse size of 0.1 ml compared to 

the full 0.4 ml pulse. The results also showed that the peak-to-peak pressure drop increased 

slightly for increasing mean flow rates, both in the experiments as well as in the CFD 

simulations, despite keeping the pulse size constant. In addition, the peak-to-peak pressure 

drop was found to be slightly larger for the abrupt inlet measurements compared to the 

smooth inlet measurements (true for the CFD simulations as well). 
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Table 4.3-1: The difference in systolic and diastolic pressure drops for the different models and mean flow rates. The CFD 
results represent a volume pulse of 0.1 ml and the experimental results a pulse of 0.4 ml. 

Stenosis model Mean flow 

rate (ml/min) 

Experimental 

peak-to-peak 

pressure drop 

(mmHg) 

Peak-to-peak 

pressure drop, 

laminar model 

(mmHg) 

Peak-to-peak 

pressure drop, 

turbulence model 

(mmHg) 

Aqueduct model, 

smooth inlet 
130 39.2 36.5 31.6 

Aqueduct model, 

abrupt inlet 
131 39.5 39.1 33.1 

Aqueduct model, 

smooth inlet 
173 42.0 47.7 41.6 

Aqueduct model, 

abrupt inlet 
172 44.2 50.8 43.9 

Artery model 1.0 

mm 
129 43.2 36.3 33.2 

 

To further estimate how large the pulses through the stenosis models were in reality, the 

experimental results for the total pressure drop versus the flow rate, from the constant flow 

measurements (Section 4.1.2 and Appendix E), were fit to polynomial functions (one for each 

stenosis model) in order to get a mathematical description of the flow rate dependency (see 

Figure 4.3-2 and Appendix F). By inserting the maximum and minimum pressure drop values 

acquired from the pulsatile flow experiments into the resulting equations, the oscillatory flow 

rate amplitude (    ) was approximated. Equation (3.2.3) was then used to find the 

approximate volume of the pulses (               ). The collected results can be seen in 

Table 4.3-2. The results pointed to a major reduction in the volume pulse, relatively close to 

the pulse approximated by applying the pressure inlet condition in the simulations, for all 

stenosis models. Applying the same procedure to the pressure data from the previous study 

[4], where an extra resistance was added downstream of the stenosis outlet, the pulse size was 

estimated to have been even smaller than 0.1 ml. 

 
Figure 4.3-2: A quadratic fit for the pressure vs. flow rate data for the aqueduct model, with the abrupt narrowing 

proximal to the flow. The coefficient of determination,   , was 0.9983 for the quadratic fit. 



 

45 

Table 4.3-2: The estimated pulse volumes and the corresponding mean flow rates for the different stenosis models under 
pulsatile flow. The numbers in parenthesis are based on data from the study previously published [4]. 

Stenosis model Mean flow rate 

(ml/min) 

Estimated pulse 

volume (ml) 

Aqueduct model, 

smooth  proximal 
131 0.13 

Aqueduct model, 

abrupt proximal 
132 0.12 

Artery stenosis 

model 1.0 mm 
129 (126) 0.11 (0.06) 

Artery stenosis 

model 1.5 mm 
(203) (0.08) 
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4.4 Removing the catheter sensor 

 

The total pressure drop was also measured with the Likvor CELDA® System so the catheter 

tip pressure sensor could be removed, simplifying the flow geometry. This was done to 

observe possible effects that the catheter tip pressure sensor had on the pressure drop. Since 

the Likvor CELDA® System only measured the total pressure drop, the pressure behavior 

inside the stenosis region could not be measured. The results for these additional measure-

ments showed that the time-average of the total pressure drop, for pulsatile flow, was 

considerably lower for the no-catheter measurements compared to the measurements with the 

catheter, for similar flow rates (see Figure 4.4-1). There was a difference of about 30 mmHg 

between the two, for the 1.0 mm artery model, implying a major effect from the catheter tip 

pressure sensor. The graph in Figure 4.4-1 also shows that the laminar simulations captured 

the difference in total pressure drop between the catheter and no catheter measurements. 

 

Figure 4.4-1: The time-averaged total pressure drop (one value) over the 1.0 mm artery stenosis model for pulsatile flow, 
with and without the catheter sensor (mean flow rates were 129 ml/min and 125 ml/min, respectively). The resulting 
pressure curves along the stenosis model for the laminar flow simulations are also included. CELDA corresponds to the 

no-catheter measurements. 

For the CELDA measurements, low Reynolds number     turbulence model simulations 

were included in addition to the laminar and     turbulence model simulations. The results 

for the 1.0 mm artery model can be seen in Figure 4.4-2 and Figure 4.4-3, for a flow rate of 

125 ml/min. The laminar and     turbulence model results were very similar to the ones 

corresponding to the catheter measurements. The low Reynolds number model, however, 

predicted both the same pressure drop as seen in the experiments (approximately) and the 

steep adverse pressure gradient present during the catheter measurements. 
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Figure 4.4-2: CFD results for the pressure along the 1.0 mm artery stenosis model and the experimentally estimated total 

pressure drop (one value) are presented. The results correspond to the no catheter (CELDA) measurements under 
pulsatile flow, mean flow rate 125 ml/min.  

 
Figure 4.4-3: Close-up of the pressure along the 1.0 mm artery stenosis model corresponding to the no catheter (CELDA) 

measurements under pulsatile flow, mean flow rate 125 ml/min, for the CFD simulations. 
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5 Discussion and Conclusion 

5.1 Discussion 

 

The experimental results agreed with the ones previously found [4], including already 

established pressure behavior such as a major pressure decrease over the stenosis and a small 

pressure recovery downstream of the stenosis outlet (Figure 4.1-2, Figure 4.1-5 and Figure 

4.1-6). In addition, the results verified the occurrence of flow separation at the stenosis outlet 

for the stenosis models used, which was further implied by the CFD simulations (Figure 4.1-1 

to Figure 4.1-6). The precise length of the separation region at the stenosis outlet was difficult 

to determine due to the catheter tip pressure sensor being adjusted manually, but the length of 

the separation zone never exceeded 15 mm (see Appendix E). It is worth noting that the 

pressure fluctuated considerably just after the point of flow separation, especially for the 

measurements with the more abrupt stenosis outlet. Based on the constant flow 

measurements, the pressure drop seemed to have a slightly non-linear dependence on the flow 

rate within the tested flow interval (see Appendix F), something that was also implied by the 

approximated flow rate dependency in (2.1.10). Regarding flow regimes, the experimental 

measurements could not verify whether flow was laminar or turbulent. Based on the Reynolds 

numbers for the measurements (Appendix C) it is possible that both laminar and turbulent 

flow occurred during the measurements. However, the Reynolds numbers at the model inlet 

always predicted laminar inflow. 

 

For the 1.0 artery model, the laminar simulations showed promise when used to determine the 

time-averaged pressure behavior up to the stenosis outlet, for pulsatile flow, but could not 

describe the observed pressure recovery correctly (Figure 4.1-1). For the constant flow 

measurements, the total pressure drop was close to the experimental results for both artery 

models, for intermediate flow rates that is (Figure 4.1-7 and Figure 4.1-8). For the aqueduct 

model, the laminar flow simulations overestimated the pressure drop for both flow directions 

(Figure 4.1-5, Figure 4.1-6, Figure 4.1-9 and Figure 4.1-10). However, the pressure inside 

the stenosis region was fairly close to the experimental values for this model as well. Thus if 

investigations of pressure inside the stenosis region are of interest, then the laminar model 

might suffice. However, the inability to correctly describe the behavior of the adverse 

pressure gradient (or pressure recovery) hinders studies of the flow downstream of the 

stenosis. 

 

The turbulence     model simulations better predicted the length of the separation zone 

(Figure 4.1-1, Figure 4.1-5 and Figure 4.1-6) and yielded fairly accurate pressure drops for 

the aqueduct model while underestimating the pressure drop for the artery models (Figure 

4.1-7 to Figure 4.1-10). However, the wall lift-off (Appendix D) was quite large compared to 

the dimensions of the geometry, i.e. the model diameter, possibly indicating that the chosen 

turbulence model approach was not a good fit for this flow problem. The strange behavior in 

the stenosis region for the abrupt inlet simulation (Figure 4.1-5) further indicates this. 

However, without knowing for sure if the flow in the experiments was laminar or turbulent 

(or both), it is difficult to draw any final conclusions. Despite these facts, when comparing the 

resulting pressure behavior in the experiments with that of the CFD simulations, it is strongly 

indicated that, at least, the flow at the stenosis outlet was turbulent, and that turbulence 

modeling is needed in order to correctly describe the flow separation there (for the flow rates 

tested). The introduction of turbulence in stenoses, for laminar inflow, has also been discussed 

in similar studies [7, 37]. The introduction of turbulence was also indicated by the results 
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acquired for the CELDA measurements and the corresponding CFD simulations (Figure 4.4-2 

and Figure 4.4-3) where the low Reynolds     turbulence model predicted the expected 

pressure behavior along the entire stenosis model (if assuming similar pressure recovery as for 

the annulus/catheter measurements). 

 

When investigating flow in both directions through the aqueduct model, the change in 

stenosis inlet/outlet geometry did not seem to have any major effect on the total pressure drop, 

although the pressure drop was slightly larger for the abrupt inlet, something both the 

experiments and laminar CFD simulations agreed on (Table 4.1-1). This is also consistent 

with the angle study of Section 4.2, based on CFD simulations. The results in Figure 4.2-1 

and Figure 4.2-2 showed that the total pressure drop was not very sensitive to changes in the 

stenosis inlet and outlet shapes for angles over 40-50 degrees, except for high flow rates 

where the pressure drop was more sensitive to changes in the inlet angle. Thus having the 

abrupt inlet proximal to the flow is more likely to yield a slightly larger pressure drop since all 

stenosis models used in this thesis had angles above 40 degrees. The sensitivity at the inlet is 

reasonable, since more abrupt contractions can greatly affect the separation zone created 

there, while separation at the outlet happens immediately, unless the enlargement is very 

smooth. Similar results for the outlet angle have been shown in other publications [16, 38].  

 

One important aspect that the experiments and the CDF simulations did not agree on is the 

difference in the total pressure drop between the 1.0 mm artery model and the aqueduct model 

(also 1.0 mm in stenosis diameter) that was observed during the experimental measurements 

(Table 4.1-1), for similar flow rates (           ). This result was contradicted by the 

CFD simulations, where the difference in pressure drop between the two stenosis models was 

very small (Table 4.1-1). Since neither the results for the two flow directions (Table 4.1-1) 

nor the CFD angle study (Figure 4.2-1 and Figure 4.2-2) could explain the observed pressure 

drop difference, it is unlikely that this difference was caused by different stenosis inlet/outlet 

shapes. One of the most important geometric parameters is the stenosis diameter, indicated 

both by the CFD diameter study (Figure 4.2-3) as well as the theoretical expressions (2.1.5) 

and (2.1.8). These results indicate that only a small diameter increase is needed for a notable 

decrease in pressure drop, at least when the catheter is present. Thus possible deviations in 

stenosis diameter, from 1.0 mm, in any of the models, could be a major contributor to the 

unexpected difference in pressure drop between the two stenosis models. Uncertainties in the 

pressure and flow rate measurements could also have contributed, but due to the low 

variations in both the pressure and flow measurements (see Appendix E) this would only 

explain a small part of the observed difference. 

 

For the pulsatile flow measurements, the pressure variations, due to the oscillations, increased 

with increasing net flow rates (Table 4.3-1), both for the experimental measurements and 

CFD simulations, despite the fact that the pulse volume and the pulsation rate were kept 

constant. This result is in line with the theoretical expression in (2.1.15). The results also 

indicated a slight increase in the pressure variations for the abrupt inlet compared to the 

smooth inlet, though no major differences were observed (true for both the simulations and 

experimental measurements). The CFD simulations also indicated non-symmetrical pressure 

drop variations (Figure 4.3-1) despite the symmetrical flow rate input, which highlights the 

non-linear flow rate dependency. However, the pulses through the stenosis models were 

estimated to have been much smaller than those the syringe pump was programmed to 

produce. These damped oscillations could be due to elasticity of the tubes connecting the 

stenosis models to the syringe pump. The only way the pulsations could travel was within the 

flow line, thus making it probable that the tubes were expanded more and more as the 
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resistance increased at the stenosis end. This would agree with the fact that the estimated 

pulse sizes for the measurements from the previous study [4], where an extra resistance was 

added at the end of the stenosis models, were about half the size compared to the ones of this 

thesis (see Table 4.3-2). Other than elasticity, the Womersley number for the problem 

configuration, according to (2.1.13), also imply possible damping of the flow rate (      ), 

though no such damping was observed in the CFD simulations. It is possible that the 

simulations were unable to recreate this effect, something that should be investigated by 

performing a frequency study, both experimentally and in the simulations. 

5.2 Conclusions 

 

This thesis has shown that flow separation takes place at the stenosis outlet, extending 

downstream of the point of separation, for all flow rates and stenosis models investigated. The 

CFD simulations showed that the laminar and turbulent flow simulations could not fully 

describe the velocity and pressure distributions throughout the stenosis models, separately, 

hence it is highly probable that a method that can handle both laminar and turbulent flow is 

needed. The low Reynolds number turbulence model implemented in COMSOL showed 

promising results on this front and warrants further investigation.  

 

The peak-to-peak pressure drop (           ) for pulsatile flow was shown to increase for 

increasing net flow rates, despite the fact that the pulse volume going through the stenosis 

models were kept at constant volume and pulsation rate. However, the results also indicated 

that the experimental approach introduced severely diminished pulse sizes, compared to what 

was expected. The most likely reasons for this are elasticity in the tubes along the flow line 

and/or damping due to the high frequency of the oscillations. Since knowledge of the 

oscillating flow rate is essential, the experimental setup should be further investigated and 

possibly revised. 

 

For the aqueduct model, the pressure variations, and mean total pressure drop, showed a slight 

increase when the model was positioned with the abrupt stenosis inlet proximal to the flow, 

compared to the smooth inlet results, although no major difference was observed for the two 

flow directions. The CFD simulations further implied that the pressure drop was largely 

unaffected for large discharge angles, indicating that the transition has to be very smooth for 

there to be any substantial impact on the pressure drop, for the range of flow rates tested. The 

observed difference in pressure drop between the aqueduct model and the artery model of the 

same diameter could not be fully explained. The CFD simulations and the theoretical 

predictions indicated that the pressure drop was strongly dependent on the stenosis diameter, 

thus unexpected differences in the stenosis diameters is a likely reason for this observed 

difference in pressure drop. This also indicates that an accurate assessment of the stenosis 

diameter is of utmost importance when comparing pressure distributions for different stenosis 

models. 

 

In addition, the chosen approach for measuring pressure inside the stenosis models (with the 

catheter pressure sensor) was shown to introduce a major increase in the total pressure drop as 

well as complicating the geometry of the problem, making simulations more difficult to 

perform. 
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5.3 Limitations and Future work 

 

One of the main limitations of this thesis was the inability to confirm whether the flow in the 

experiments was laminar or turbulent. The collected results indicate the possibility of both 

types of flow, which makes simulations more difficult. Currently there are no turbulence 

models implemented in COMSOL that are designed with the aim to handle global flow 

transitions (from laminar flow to turbulent flow), but the low Reynolds     model showed 

promise when applied to the problem in question and should be evaluated further. It might 

also be a good idea to try additional turbulence models. One model worth trying is the low 

Reynolds      model since it resolves the boundary layers and has been found to yield 

good results in similar studies [7, 37]. As of yet it is not implemented in COMSOL, but it 

could be implemented manually. Large Eddy Simulations (LES) could be an alternative, 

where the small scale turbulent eddies are modeled while the large scale turbulent eddies are 

computed directly. However, LES comes at a higher computational cost than the RANS 

approach, and the method is not implemented in COMSOL at this time. Another possible way 

to continue this project would be to try and manually introduce turbulence, in the 

experiments, to further evaluate the turbulence models tested in this thesis. 

 

The experimental measurement method should be further evaluated due to elasticity of the 

tubes being a highly probable cause of the diminished pulsations. The effects of different 

pulsation frequencies should also be investigated to determine the frequency dependency. 

Another alternative could be to continue the CFD studies with elastic vessels. It is an 

advantage of COMSOL that it can handle combined physics problems (Multiphysics) such as 

fluid structure interactions (FSI), which is needed for studies of flow through elastic vessels. 

Furthermore, the ability to construct the geometry and the mesh in COMSOL makes the 

software easy to use and eliminates the need for additional meshing software. One of the 

disadvantages with COMSOL is that it might be slightly limited regarding options for 

transitional and turbulent flow, at this time. For this reason, other software with more options 

for CFD, and turbulence modeling in particular, could be of interest. Another option is to 

manually implement the desired turbulence models in COMSOL. 

 

One additional problem with the current equipment is the need to insert a catheter for 

measuring pressure within the stenosis models. This complicates the geometry, and due to 

bending of the catheter, it is difficult to fully recreate this geometry in the simulations. In 

addition, if the diameter sensitivity is as strong as the CFD simulations suggest, when the 

catheter is included (Figure 4.2-3), it will be difficult to measure the stenosis diameters, of the 

experimental models, to the accuracy needed, since as little as tens of micrometers will have a 

major effect on the results. Despite these problems, the laminar flow simulations managed to 

capture the increase in the pressure drop (roughly 30 mmHg) due to the addition of the 

catheter, for the 1.0 mm artery model. Thus the approximation of a stationary and centered 

catheter (in the simulations) was indeed reasonable.  
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Appendices 

Appendix A 

Derivation of annulus pressure drop 

 
By starting with the Navier-Stokes system of equations for incompressible flow of a 

Newtonian fluid (here in differential form) 

 

         (A.1) 

 

   
    

  
                             (A.2) 

where   is the del operator, the pressure drop can be derived for constant laminar flow 

through a straight annulus. Since the geometry in this thesis was placed horizontally and no 

outer body forces, other than gravity, were present, the   term vanishes. By using cylindrical 

coordinates, equation (A.1) becomes 

 

 
 

 

       

  
 

 

 

      

  
 

      

  
    (A.3) 

By assuming that the only non-zero velocity component is in the direction of the flow (i.e. 

along the z-axis), and making use of axial symmetry (no angle dependency), equation (A.3) 

reduces to 

 

 
   

  
    (A.4) 

Using (A.4) the momentum equations (A.2) for steady flow are reduced to 

 

   
 

 

 

  
  

   

  
   

  

  
 (A.5) 

  
  

  
    (A.6) 

Because of (A.6) and axial symmetry, it can be seen that the pressure only changes in the z-

direction. In addition, for fully developed steady flow, the velocity does not change in the 

direction of the flow, implying that    is a function of   only. Since the LHS of (A.5) only 

depends on   and the RHS only depends on  , both sides of (A.5) must be constant. 

Integrating (A.5) with respect to   yields 

 

     
 

  
  

  

  
             (A.7) 

where the constants    and    are determined by the boundary conditions at the walls (    ) 

 

=>    
 

  
  

  

  
  

   
 
  

 

   
  
  
 
   

    
         

    (A.8) 
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with    and    being the smaller and larger radius of the annulus pipe, respectively. Integrating 

(A.8) over the cross-section of the pipe 

 

              

  

  

 (A.9) 

gives an expression for the flow rate 

   
    

    
  

  
  

  

  
    

    
  

  
    

 

   
  
  
 
   (A.10) 

Since the pressure gradient in the z-direction is constant, it can be expressed as 

 

  
  

  
       

  

 
 (A.11) 

where   is the length of the pipe section and    is the pressure difference over the same 

section. Together (A.10) and (A.11) yield the final expression for the pressure drop 

 

 
   

    

    
    

  
 

   
  
  
 

   
    

     
  
  
     

    
  

   

        

(A.12) 

which is equivalent to (2.1.7). Inserting (A.12) in (A.8) yields the velocity profile described 

by (2.1.12). 

 

NOTE: In a similar fashion, the pressure drop and velocity profile for Poiseuille flow can be 

derived using the same principles and starting equations. 

  



 

58 

Appendix B 

The mesh study 

 

The computational mesh, dividing the computational domain into smaller elements, was 

evaluated in order to minimize errors in the CFD simulations. Since the geometry of the 

problem contained sharp edges at the stenosis inlet and outlet, mesh refinements were made in 

those areas. In addition, the mesh was refined along the line of flow separation, similar to the 

mesh constructed in the COMOL model library file: Turbulent flow over a backward facing 

step
3
 (see Figure B-1). In addition, the number of finite elements (and thus also the number of 

degrees of freedom) was increased, in succession, to investigate whether the quantities of 

interest (pressure drop and recirculation length) were dependent on the mesh chosen. These 

mesh studies, for the different stenosis models, are presented below (Table B-1 to Table B-6). 

The results show that the solution was mesh dependent, since the quantities of interest varied 

even for very fine meshes that consisted of a large amount of elements. In addition, the 

recirculation length for the laminar model simulations increased when the number of elements 

was increased, which is the opposite of what was expected, since the laminar model already 

overestimated the recirculation length for coarse meshes. Thus the pressure drop was the 

primary quantity considered when choosing the mesh, and the recirculation length was the 

secondary. However, the pressure drop seemed to fluctuate even for very dense meshes, but 

these fluctuations were quite small even when comparing the finest and coarsest meshes. 

Thus, for all models, a slightly coarser mesh was chosen to improve the simulation speed, 

settling for a number of degrees of freedom around 500k. The turbulence model studies for 

the 1.5 mm artery stenosis model and aqueduct model with smooth inlet were very similar to 

the ones seen in Table B-5 to Table B-6 and are not presented. 

 

 
Figure B-1: The mesh refinements along the line of flow separation. The red dashed line represents the boundary of axial 

symmetry. 

   

                                                
3
 The model can be found in the CFD Module Library Manual (2013).  
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Table B-1: Mesh study for the laminar simulations applied to the 1.0 mm artery stenosis model and for a flow rate of 129 
ml/min. Brown represents the mesh chosen. 

Physics 

induced 

setting 

Domain 

mesh 

setting 

Boundary 

mesh setting 

Total 

Pressure 

drop 

(mmHg) 

Point of 

reattachment 

along the 

model (m) 

Number of 

domain 

elements 

Degrees of 

freedom 

Normal Coarse Fine 72,52 0,104 72670 128997 

Fine Normal Finer 71,64 0,114 123943 211317 

Finer Fine Extra fine 73,99 0,14 305578 508686 

Extra fine Finer Extremely 

fine 

72,9 0,1585 750381 1219953 

Extremely 

fine 

Extra fine Extremely 

fine 

72,71 0,1615 1376404 2160810 

 
 
Table B-2: Mesh study for the laminar simulations applied to the 1.5 mm artery stenosis model and for a flow rate of 203 

ml/min. Brown represents the mesh chosen. 

Physics 

induced 

setting 

Domain 

mesh 

setting 

Boundary 

mesh setting 

Total 

Pressure 

drop 

(mmHg) 

Point of 

reattachment 

along the 

model (m) 

Number of 

domain 

elements 

Degrees of 

freedom 

Normal Coarse Fine 21,155 0,089 67208 120906 

Fine Normal Finer 21,842 0,092 130856 221832 

Finer Fine Extra fine 21,658 0,1055 307099 511428 

Extra fine Finer Extremely  

fine 

20,965 0,1162 737221 1200795 

Extremely 

fine 

Extra fine Extremely  

fine 

21,24 0,117 1382746 2171025 

 
 

Table B-3: Mesh study for the laminar simulations applied to the aqueduct model (smooth stenosis inlet) and for a flow 
rate of 130 ml/min. Brown represents the mesh chosen. 

Physics 

induced 

setting 

Domain 

mesh 

setting 

Boundary 

mesh setting 

Total 

Pressure 

drop 

(mmHg) 

Point of 

reattachment 

along the 

model (m) 

Number of 

domain 

elements 

Degrees of 

freedom 

Normal Coarse Fine 70,98 0,1383 69525 124416 

Fine Normal Finer 71,98 0,1383 116847 200811 

Finer Fine Extra fine 74,3 0,155 324098 536886 

Extra fine Finer Extremely 

fine 

73,54 >0.173 747355 1215660 
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Table B-4: Mesh study for the laminar simulations applied to the aqueduct model (abrupt stenosis inlet) and for a flow 
rate of 131 ml/min. Brown represents the mesh chosen. 

Physics 

induced 

setting 

Domain 

mesh 

setting 

Boundary 

mesh setting 

Total 

Pressure 

drop 

(mmHg) 

Point of 

reattachment 

along the 

model (m) 

Number of 

domain 

elements 

Degrees of 

freedom 

Normal Coarse Fine 77,395 0,1287 67777 121833 

Fine Normal Finer 76,69 0,129 111037 191943 

Finer Fine Extra fine 76,42 0,1605 275216 463638 

Extra fine Finer Extremely 

fine 

77,77 0,1635 790486 1280883 

 
 

Table B-5: Mesh study for the turbulence model simulations applied to the 1.0 mm artery stenosis model and for a flow 
rate of 129 ml/min. Brown represents the mesh chosen. 

Physics 

induced 

setting 

Domain 

mesh 

setting 

Boundary 

mesh setting 

Total 

Pressure 

drop 

(mmHg) 

Point of 

reattachment 

along the 

model (m) 

Number of 

domain 

elements 

Degrees of 

freedom 

Normal Coarse Fine 60,445 0,0365 90229 297255 

Fine Normal Finer 58.53 0.0365 139505 439865 

Finer Fine Extra fine 59,41 0,0365 378614 1129050 

 
 

Table B-6: Mesh study for the turbulence model simulations applied to the aqueduct model (abrupt stenosis inlet) and 
for a flow rate of 131 ml/min. Brown represents the mesh chosen. 

Physics 

induced 

setting 

Domain 

mesh 

setting 

Boundary 

mesh setting 

Total 

Pressure 

drop 

(mmHg) 

Point of 

reattachment 

along the 

model (m) 

Number of 

domain 

elements 

Degrees of 

freedom 

Normal Coarse Fine 57,7 0,0387 85705 285670 

Fine Normal Finer 57,26 0,0387 133356 423120 

Finer Fine Extra fine 57,0 0,0386 330437 1008305 
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Appendix C 

 

The Reynolds numbers 

 

The Reynolds number was calculated using equation (2.1.1) in both parts of the stenosis 

models, i.e. the regular tube section and the stenosis region, for all measurements performed 

(see Table C-1 to Table C-5). The effective diameter of the model tube and stenosis region 

were used as the characteristic length for respective regions and the mean velocities were 

calculated from (2.1.2) using the known flow rate and cross-sectional areas. The Reynolds 

numbers predicted laminar inflow for all measurements performed, while the Reynolds 

numbers within the stenosis region either bordered or surpassed the lower limit of the 

transition region for cylindrical pipe flow, i.e.        . The only exceptions were the 

constant flow measurements with the lowest flow rates, where the Reynolds numbers were 

clearly below      in both regions. Due to these facts, it is difficult to determine whether the 

flow was laminar, turbulent or both (i.e. transitional). It is also possible that the inserted 

catheter sensor introduced some degree of turbulence. 

 

 
Table C-1: The average Reynolds numbers for the pulsatile flow measurements. 

Model Mean flow 

rate (ml/min) 

Inlet Reynolds 

number 

Stenosis Reynolds 

number 

Aqueduct smooth 

inlet 

130 864 2135 

Aqueduct abrupt inlet 131 871 2152 

Artery 1.0 mm 129 858 2119 

Aqueduct smooth 

inlet 

173 1150 2841 

Aqueduct sharp inlet 172 1143 2825 

 

Table C-2: The Reynolds numbers for the constant flow measurements with the 1.0 mm artery stenosis model. 

Flow rate       

(ml/min) 

Inlet Reynolds 

number 

Stenosis Reynolds 

number 

58 386 953 

119 791 1955 

150 997 2464 

194 1290 3186 
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Table C-3: The Reynolds numbers for the constant flow measurements with the 1.5 mm artery stenosis model. 

Flow rate       

(ml/min) 

Inlet Reynolds 

number 

Stenosis Reynolds 

number 

56 372 673 

118 784 1417 

169 1124 2030 

196 1303 2354 

236 1569 2834 

274 1822 3291 

 

Table C-4: The Reynolds numbers for the constant flow measurements with the aqueduct model (smooth narrowing as 
stenosis inlet). 

Flow rate        

(ml/min) 

Inlet Reynolds 

number 

Stenosis Reynolds 

number 

57 379 936 

63 419 1035 

126 838 2070 

179 1190 2940 

 

Table C-5: The Reynolds numbers for the constant flow measurements with the aqueduct model (abrupt narrowing as 
stenosis inlet). 

Flow rate        

(ml/min) 

Inlet Reynolds 

number 

Stenosis Reynolds 

number 

55 366 903 

64 425 1051 

109 725 1790 

120 798 1971 

150 997 2464 

182 1210 2989 
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Appendix D 

 

The velocity profiles 

 

The velocity profiles just upstream of the stenosis inlet for the CFD simulations were 

compared to the theoretical expressions presented in Chapter 2. The results show that the 

laminar model closely predicted the Poiseuille velocity profile (Figure D-1), while there was 

a minimal difference between the laminar model and the theoretical expression for annulus 

flow (Figure D-2). The turbulence     model made use of wall functions, thus the velocity 

was not zero at the grid points closest to the wall (Figure D-3). The velocity profile was also 

much flatter when compared to the laminar flow profile, which is a trademark for turbulent 

flow. Since no well known expression for the turbulent velocity profile in an annulus could be 

found, there were no theoretical expressions to compare to. The low Reynolds number model, 

which was applied only for the no-catheter simulations, showed a velocity profile in between 

the laminar and the fully turbulent analytical profiles (Figure D-4). It is worth noting that if 

the turbulence intensity was lowered at the inlet, then the velocity profile from the low 

Reynolds number model simulation coincided with the theoretical expression for laminar 

flow. But because of the low intensity, the solution did not fully converge and thus it is not 

presented. 

 

 
Figure D-1: The velocity profile for cylindrical pipe flow right before the stenosis inlet according to the theoretical 

expression for laminar flow (circles) and the laminar CFD simulations (line). The flow rate was 125 ml/min. 
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Figure D-2: The velocity profile for annulus flow right before the stenosis inlet according to the theoretical expression for 

laminar flow (dotted line) and the laminar CFD simulations (full line). The flow rate was 129 ml/min. 

 

 
Figure D-3: The velocity profile for annulus flow right before the stenosis inlet according to the turbulent     model 

simulations. The flow rate was 129 ml/min. 
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Figure D-4: The velocity profile for cylindrical pipe flow right before the stenosis inlet according to the theoretical 

expression for laminar flow (dotted), the low Reynolds      model simulations (full), and the 1/7
th

 power law (dashed). 
The flow rate was 129 ml/min. 

  

Poiseuille and annulus pressure drops 

 

To further evaluate the accuracy of the CFD simulations, the pressure drop for straight 

channels was investigated for both Poiseuille and annulus flow. This was accomplished by 

removing the non-linear term in the Navier-Stokes equations (2.2.7) in the CFD simulations, 

creating what is known as Stokes flow, hence removing any convective effects. All pressure 

losses can then approximately be described by the expressions in (2.1.6) and (2.1.7) for 

Poiseuille and annulus flow, respectively. The results (Table D-1) showed that the pressure 

gradients (i.e.     ) acquired by CFD were close to the theoretical values, for all parts of the 

stenosis model geometry. The largest difference was observed for the annulus stenosis region. 

However, the effects of this difference did not yield any major difference in the pressure drop 

because of the short length of the stenosis (Figure D-5). The same comparison was made for a 

finer mesh but it did not affect the results. It should also be noted that the catheter did not 

occupy the final stretch to the model outlet, hence the comparison with the Poiseuille pressure 

gradient in Figure D-5. The differences between the theoretical and CFD pressure gradients 

are likely due to the flow not being fully developed everywhere in the simulations (the theory 

is based on fully developed flow).  
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Table D-1: The theoretical and laminar flow simulation pressure gradients in the artery 1.0 mm stenosis model, 
neglecting convective effects. For annulus flow, the smaller diameter corresponded to the catheter diameter (0.36 mm). 

The flow rate was 129 ml/min.  

Type of flow Theoretical pressure 

gradient      

(mmHg/m) 

Laminar model pressure 

gradient      

(mmHg/m) 

Poiseuille flow, diameter 

3.0 mm 

-7.71 -7.69 

Annulus flow, large 

diameter 3.0 mm 

-14.23 -14.29 

Annulus flow, large 

diameter 1.0 mm 

-2583 -2680 

 

 

 
Figure D-5: Comparison of the pressure gradients for the CFD simulations and theoretical relations for cylindrical 

(Poiseuille) and annulus flow when convective effects have been neglected. The results correspond to the 1.0 mm artery 
model and a flow rate of 129 ml/min. The diameters for annulus flow presented in the legend correspond to the larger 

diameter of the annulus, the smaller diameter corresponded to the catheter diameter (0.36 mm). 
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The wall lift-off 

 

The wall lift-off is an important quantity to consider when utilizing wall functions to describe 

boundary layers for turbulent flow. The     model, utilizing wall functions, was used in 

this thesis, thus the wall lift-off had to be investigated. All simulation yielded similar results, 

thus only one example was included (see Figure D-6 and Figure D-7). The results showed 

that the wall lift-off in viscous units was 11.06 everywhere, which was recommended by 

COMSOL. On the other hand, the wall lift-off, which should be much smaller than the 

geometry of the problem (        ), was quite large in all parts of the stenosis models 

except for the stenosis region and directly downstream of the stenosis outlet. 

 

 
Figure D-6: The wall lift-off in viscous units for the turbulence     model simulations. 
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Figure D-7: The wall lift-off (in meters) for a typical turbulence     model simulation. 

 

The moving catheter 

 

During the experimental measurements of the pressure along the stenosis models, the catheter 

had to be repositioned for each measurement, since the catheter sensor only had one specific 

sensor point. However, for the CDF simulations it was desirable to keep the catheter 

stationary in the position corresponding to the final measurement point (see Figure 3.1-3) in 

order to minimize the computational time needed for the simulations. For this reason, the 

pressure behavior along one of the three stenosis models was compared for stationary and 

moving catheter simulations (Figure D-8). For the moving catheter simulations, the pressure 

values were documented at the point of the sensor, i.e. 3.05 centimeters from the endpoint of 

the catheter, for all measurement points. For the stationary catheter simulations, the pressure 

was measured in a continuous central line along the stenosis model. The results were very 

similar for both simulations, thus the stationary catheter approach was used throughout.   
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Figure D-8: Pressure along the 1.0 mm artery stenosis model for both stationary and moving catheter simulations. The 

flow rate was 129 ml/min. 
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Appendix E 

 

Pulsatile flow measurement data 

 

The experimental results for the pulsatile flow measurements are presented in Table E-1 to 

Table E-6, the first table containing flow rate data and the other five containing pressure data. 

All pressure values, in every measurement point, are averages of six measurements (from six 

series of measurements). 

 
Table E-1: Flow rate data for the pulsatile flow measurements. 

Model stenosis Mean flow rate     

(ml/min) 

Standard deviation mean 

flow rate (ml/min) 

Artery model 1.0 mm                                            128.75 1.07 

Aqueduct model smooth 

inlet 

129.91 1.56 

Aqueduct model abrupt 

inlet 

130.65 0.88 

Aqueduct model smooth 

inlet 

173.00 1.33 

Aqueduct model abrupt 

inlet 

171.63 1.31 

 

 
Table E-2: Pressure data for the aqueduct model (smooth stenosis inlet) measurements under pulsatile flow. Mean flow 

rate was 130 ml/min. 

Position 

along 

model 

(mm) 

Systolic 

catheter 

pressure 

(mmHg) 

Diastolic 

catheter 

pressure 

(mmHg) 

Mean 

catheter 

pressure 

(mmHg) 

Systolic-

diastolic 

difference 

(mmHg) 

Standard 

deviation 

mean pressure 

(mmHg) 

8.5 79.2 40.0 59.6 39.2 1.1 

18.5 78.3 40.2 59.3 38.2 1.4 

26.8 79.0 40.2 59.6 38.8 1.8 

28.5 72.0 36.2 54.1 35.8 7.0 

32.0 13.7 6.7 8.8 7.0 1.2 

35.5 0.5 - 3.5 - 2.8 4.0 2.9 

38.5 - 4.7 -12.8 - 8.8 8.2 3.0 

43.5 - 1.3 - 5.8 - 3.6 4.5 1.1 

48.5 1.0 - 0.7 0.2 1.7 0.7 

53.5 1.5 - 0.3 0.6 1.8 0.8 
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Table E-3: Pressure data for the aqueduct model (abrupt stenosis inlet) measurements under pulsatile flow. Mean flow 
rate 131 ml/min. 

Position 

along 

model 

(mm) 

Systolic 

catheter 

pressure 

(mmHg) 

Diastolic 

catheter 

pressure 

(mmHg) 

Mean 

catheter 

pressure 

(mmHg) 

Systolic-

diastolic 

difference 

(mmHg) 

Standard 

deviation 

mean pressure 

(mmHg) 

2.0 80.0 40.5 60.3 39.5 1.7 

12.0 79.3 39.7 59.5 39.7 0.9 

22.0 80.8 41.7 61.3 39.2 1.9 

25.5 8.0 2.0 5.0 6.0 2.1 

29.0 - 1.3 - 7.7 - 4.5 6.3 1.9 

30.7 - 1.7 - 8.3 - 5.0 6.7 1.6 

33.7 - 0.5 - 6.3 - 3.4 5.8 1.6 

38.7 2.8 - 0.3 1.3 3.2 1.7 

43.7 2.8 0.5 1.7 2.3 1.3 

56.0 2.5 0.3 1.4 2.2 1.0 

 

 

 
Table E-4: Pressure data for the 1.0 mm artery stenosis model measurements under pulsatile flow. Mean flow rate 129 

ml/min. 

Position 

along 

model 

(mm) 

Systolic 

catheter 

pressure 

(mmHg) 

Diastolic 

catheter 

pressure 

(mmHg) 

Mean 

catheter 

pressure 

(mmHg) 

Systolic-

diastolic 

difference 

(mmHg) 

Standard 

deviation 

mean pressure 

(mmHg) 

0.0 94.5 51.3 72.7 43.2 1.4 

14.0 94.7 51.3 72.3 43.3 2.2 

19.0 96.8 54.2 74.0 42.7 2.3 

22.5 11.8 5.7 8.3 6.2 1.8 

26.0 - 2.5 - 7.7 - 6.3 5.2 1.7 

57.0 1.2 - 1.0 0.0 2.2 0.0 
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Table E-5: Pressure data for the aqueduct model (smooth stenosis inlet) measurements under pulsatile flow. Mean flow 
rate 173 ml/min. 

Position 

along 

model 

(mm) 

Systolic 

catheter 

pressure 

(mmHg) 

Diastolic 

catheter 

pressure 

(mmHg) 

Mean 

catheter 

pressure 

(mmHg) 

Systolic-

diastolic 

difference 

(mmHg) 

Standard 

deviation 

mean pressure 

(mmHg) 

8.5 113.2 71.2 92.0 42.0 3.0 

18.5 112.7 71.0 91.3 41.7 3.1 

26.8 113.2 71.8 92.3 41.3 3.6 

28.5 107.2 68.6 88.2 38.6 3.3 

32.0 19.7 12.2 16.0 7.5 3.2 

35.5 - 4.0 - 9.2 - 6.5 5.2 0.8 

38.5 - 7.2 - 17.2 - 11.7 10.0 3.8 

43.5 - 2.7 - 9.3 - 6.0 6.7 3.5 

48.5 1.3 - 1.2 0.3 2.5 0.5 

53.5 1.0 - 0.8 0.2 1.8 0.8 

 

 

Table E-6: Pressure data for the aqueduct model (abrupt stenosis inlet) measurements under pulsatile flow. Mean flow 
rate 172 ml/min. 

Position 

along 

model 

(mm) 

Systolic 

catheter 

pressure 

(mmHg) 

Diastolic 

catheter 

pressure 

(mmHg) 

Mean 

catheter 

pressure 

(mmHg) 

Systolic-

diastolic 

difference 

(mmHg) 

Standard 

deviation 

mean pressure 

(mmHg) 

2.0 116.7 72.5 94.3 44.2 2.0 

12.0 115.5 72.2 93.6 43.3 1.9 

22.0 119.8 78.2 99.1 41.7 5.5 

25.5 9.2 3.2 6.2 6.0 1.7 

29.0 - 7.3 - 13.7 - 10.3 6.3 2.0 

30.7 - 7.5 - 15.7 - 11.3 8.2 1.5 

33.7 - 3.3 - 11.3 - 7.3 8.0 1.6 

38.7 0.7 - 3.0 - 1.2 3.7 1.5 

43.7 0.7 - 1.0 - 0.2 1.7 1.2 

56.0 0.5 - 1.3 - 0.4 1.8 1.3 
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Constant flow measurement data 

 

The pressure drops for the constant flow measurements, corresponding to Figure 4.1-7 

through Figure 4.1-10, are presented in Table E-7 to Table E-10. All constant flow 

measurements were performed with the catheter pressure sensor. The resulting pressure drops 

for the CFD simulations are also included. 

 

 
Table E-7: The total pressure drop over the 1.0 mm artery stenosis model for a set of constant flow rates. Both the 

experimental and CFD results are presented. Flow rates are presented by the measured mean value (  standard 
deviation). 

Flow rate   

(ml/min) 

Experimental 

pressure drop 

(mmHg) 

Pressure drop, 

laminar model 

(mmHg) 

Pressure drop, 

turbulence model     

(mmHg) 

57.55 ( 1.21) 12.0 20.4 12.5 

118.75 ( 1.27) 64.0 64.8 49.5 

149.59 ( 1.55) 92.0 95.8 77.7 

193.98 ( 1.35) 144.0 152.2 127.9 

 

Table E-8: The total pressure drop over the 1.5 mm artery stenosis model for a set of constant flow rates. Flow rates are 

presented by the measured mean value (  standard deviation). 

Flow rate   

(ml/min) 

Experimental 

pressure drop 

(mmHg) 

Pressure drop, 

laminar model 

(mmHg) 

Pressure drop, 

turbulence model     

(mmHg) 

56.11 ( 0.93) -3.0 3.6 1.7 

117.70 ( 1.16) 8.0 8.9 6.5 

169.11 ( 0.84) 16.0 15.9 12.8 

195.65 ( 0.51) 20.0 20.4 17.0 

235.90 ( 1.41) 28.0 28.1 24.2 

273.73 ( 3.08) 43.0 36.4 32.4 
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Table E-9: The total pressure drop over the aqueduct model (smooth stenosis inlet) for a set of constant flow rates. Flow 

rates are presented by the measured mean value (  standard deviation). 

Flow rate   

(ml/min) 

Experimental 

pressure drop 

(mmHg) 

Pressure drop, 

laminar model 

(mmHg) 

Pressure drop, 

turbulence model     

(mmHg) 

56.45 ( 1.37) 13.0 19.6 11.9 

63.33 ( 1.00) 17.0 23.4 14.8 

125.50 ( 1.06) 51.0 70.0 54.0 

179.33 ( 2.00) 99.0 130.6 106.1 

 

Table E-10: The total pressure drop over the aqueduct model (abrupt stenosis inlet) for a set of constant flow rates. Flow 

rates are presented by the measured mean value (  standard deviation). 

Flow rate  

(ml/min) 

Experimental 

pressure drop 

(mmHg) 

Pressure drop, 

laminar model 

(mmHg) 

Pressure drop, 

turbulence model     

(mmHg) 

54.88 ( 1.00) 13.0 18.6 10.8 

63.67 ( 1.32) 15.0 23.6 14.4 

108.50 ( 0.80) 42.0 56.8 41.8 

120.00 ( 0.5) 50.0 66.9 50.6 

149.82 ( 1.08) 72.0 99.4 79.1 

181.67 ( 2.18) 109.0 142.0 116.0 
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Appendix F 

 

Polynomial fit for the constant flow measurements 

 

The polynomial approximation made to the constant flow rate measurements are presented in 

Figure F-1 to Figure F-4, including residuals and norm of the residuals corresponding to the 

polynomial fit. It should be noted that the polynomial in Figure F-4 was fit to badly 

distributed points that most certainly explains the smaller error residuals compared to the 

polynomial fits in Figure F-1 to Figure F-3. 

 

 

 
Figure F-1: The pressure drop vs. flow rate for the 1.0 mm artery model and the corresponding quadratic fit with 

residuals. The coefficient of determination,   , was 0.9995 for the quadratic fit. 
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Figure F-2: The pressure drop vs. flow rate for the 1.5 mm artery model and the corresponding quadratic fit with 

residuals. The coefficient of determination,   , was 0.9910 for the quadratic fit. 
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Figure F-3: The pressure drop vs. flow rate for the aqueduct model (abrupt stenosis inlet) and the corresponding 

quadratic fit with residuals. The coefficient of determination,   , was 0.9983 for the quadratic fit. 
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Figure F-4: The pressure drop vs. flow rate for the aqueduct model (smooth stenosis inlet) and the corresponding 

quadratic fit with residuals. The coefficient of determination,   , was 0.9999 for the quadratic fit. 


