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Abstract

Within the past decades, Computational Fluid Dynamics (CFD) has become a useful tool for
investigations of physiological flows (flows within the human body). The main advantage of
utilizing CFD is that it can increase our understanding of these flows without the risks
involved in complicated in vivo measurements, i.e. measurements within the living organism.

The purpose of this thesis was to investigate the CFD capabilities of COMSOL Multiphysics®
(version 4.3b), and its CFD module, when applied to fluid flow in stenotic vessels (narrowed
vessels). This was accomplished by investigating pressure variations within two axisymmetric
artery stenosis models and a simplified model of the cerebral aqueduct, a canal connecting the
third and fourth ventricles within the human brain, when being subject to pulsatile water flow
(net flow in one direction). Laboratory experiments were performed in order to validate the
CFD simulations and the hypothesis was that COMSOL’s CFD module can be used to
correctly describe fluid flow in stenotic vessels of arbitrary geometry. Both laminar flow
simulations and turbulence model simulations were performed, separately, where the standard
k — w turbulence model, with wall functions, was utilized for the turbulence modelling. The
work was also meant to yield further understanding of pressure behavior inside stenosed
regions, building off of a previous study where the pressure distributions inside two rigid
artery stenosis models were investigated experimentally when applying a pulsatile water flow.
This thesis focused on investigating the pressure behavior along a central line through the
stenosis models as well as variations in the total pressure drop over the stenosis, introduced
due to the oscillating flow rate. In addition, the total pressure drop dependence on geometric
properties was investigated, with a focus on the stenosis inlet and outlet as well as the stenosis
diameter.

When comparing the experimental measurements with the CFD simulations, the results
showed that neither the laminar nor turbulence model simulations yielded fully satisfying
results when describing the pressure and velocity distributions along the stenosis models. The
results led to the conclusion that a method that can solve both types of flow is required to
fully describe the flow, for the problem investigated. To this end an additional turbulence
model was tested: the low Reynolds k — € turbulence model. This model showed promise
when predicting flow behavior along the entire stenosis models and warrants further
investigation.

For all measurements and simulations, the results showed a considerable pressure decrease
over the stenosis and a small pressure recovery downstream of the stenosis outlet. In addition,
flow separation was observed at the stenosis outlet, for all flow rates and stenosis models
tested. The peak-to-peak pressure drop, related to the flow rate oscillations, was shown to
increase for increasing mean flow rates, despite keeping the inserted pulse volume and
oscillation rate constant. However, the results also indicated that the magnitude of the
pulsations through the stenosis models was severely diminished in the experiments, compared
to what was expected, implying that the experimental measurement method should be
evaluated further. The results indicated no major differences in the pressure drop for different
stenosis inlet and outlet shapes, for the contractions/enlargements tested, though the CFD
simulations implied that the pressure drop was strongly dependent on the stenosis diameter.
Thus a correct determination (or estimation) of the stenosis diameter is of utmost importance
when comparing the velocity and pressure distributions for different stenosis models.



Sammanfattning

De senaste decennierna har Computational Fluid Dynamics (CFD) blivit ett anvandbart
verktyg vid studier av fysiologiska floden (fléden i ménniskokroppen). En férdel med CFD é&r
mojligheten att oka var forstaelse for dessa floden utan att behdva utféra komplicerade
matningar i kansliga omraden i kroppen.

Syftet med detta projekt var att undersdéka hur val COMSOL Multiphysics® (version 4.3b),
och dess CFD-modul, kan tillampas vid beskrivning av floden i k&rl med stenoser (fortréngda
karl). Detta uppnaddes genom att undersoka tryckfordelningarna i tva axisymmetriska
modeller av fortrangda artdrer samt en forenklad modell av den cerebrala akvedukten, en
kanal som forbinder tredje och fjarde ventriklarna i hjarnan, nar de utsattes for ett pulserande
vattenflode (nettoflode i en riktning). Laborationsexperiment utfordes for att kunna utvérdera
CFD-simuleringarna och hypotesen var att CFD-modulen i COMSOL kan anvandas till att
beskriva vitskefloden i fortrangda karl av godtycklig geometri pa ett korrekt satt.
Simuleringar genomférdes bade for laminart och turbulent flode, var for sig, dar turbulens
hanterades med en standardmodell av typen k — w, med wall functions. Arbetet var ocksa
tankt att ge ytterligare insikt i hur trycket forandras i stenosregioner och utgjorde en
fortsattning pa en tidigare vetenskaplig studie dar ett pulserande vattenflode tillampades pa
tva rigida artarstenosmodeller varvid trycket undersoktes experimentellt. Detta examensarbete
fokuserade pa att beskriva trycket langs med stenosmodellerna och variationerna i det totala
tryckfallet 6ver modellerna, som det oscillerande flédet gav upphov till. Slutligen jamfordes
det totala tryckfallet for olika stenosgeometrier, dar stenosens in- och utgang samt diameter
lag i fokus.

Nar experimenten och CFD-simuleringarna jamfordes sa visade resultaten att varken den
lamin&ra modellen eller turbulensmodellen som tilldmpades gav helt tillfredstallande resultat
vad géller beskrivningen av tryck- och hastighetsférdelningarna langs med stenosmodellerna.
Resultaten antydde att det undersokta problemet kraver en CFD-modell som kan hantera bade
laminart och turbulent flode. Testsimuleringar utférdes med en s& kallad low Reynolds
number-modell, av typen k — &, som visade lovande resultat vad galler aterskapandet av
flodesbeteendet hela vagen genom stenosmodellerna och borde undersokas ytterligare.

For samtliga matningar och simuleringar sa visade resultaten pa en tydlig tryckforlust 6ver
stenosen, samt en liten aterhamtning i trycket nedstroms stenosutgdngen. Forutom detta sa
observerades flodesseparation vid stenosutgangen for samtliga modeller och volymfloden.
Variationerna i det totala tryckfallet éver stenosmodellerna, som orsakades av det pulsativa
flodet, 6kade vid 6kat medelflode trots att volymen pa pulserna och pulsationshastigheten
holls konstanta. Resultaten visade dock pa en tydlig minskning av pulsationerna i de
experimentella matningarna, jamfort med den forvéntade magnituden, vilket antyder att den
experimentella metoden maste utvarderas ytterligare. Resultaten visade inte pa nagon storre
forandring i det totala tryckfallet vid &ndring av stenosens ingangs- och utgangsgeometrier,
for de in- och utgangar som testades i detta arbete, men CFD-simuleringarna visade dock pa
ett starkt beroende mellan tryckfallet och stenosdiameterns storlek. Detta resultat antyder att
en korrekt uppskattning av diametern pa stenosen ar av yttersta vikt for att kunna jamfora
olika stenosmodeller med avseende pa hastighets- och tryckfordelningar.



Preface

This Master’s thesis work was done in collaboration with the Department of Biomedical
Engineering and Informatics at Umea University Hospital, Sweden, and | would like to thank
my supervisors at the department, Sara Qvarlander and Anders Eklund, for their support and
useful input during the work with this thesis. | also thank Professor Michael Henein at the
Heart Center, Umed University Hospital, for providing the catheter tip pressure sensors used
for the experimental measurements. Thanks also to Krister Wiklund at the Department of
Physics, Umea University, for taking the time to read my report and being my examiner.



Table of Contents

1 INTRODUCTION ..ot e e e e e e e e e e e e e eaa e e eaneeenns 4
IS 7 Tod (o | 0T o S S 4
O e U1 g o 0L OO PP RTPRPR 4
IR T © ] o 1-Tod £ Y SR 5
2 THE O RY et e e 7
2.1 HEMOAYNAIMICS ...ttt b et b et b b s bt b s e bt e b s e bt e b e e bt e b s e eb e b e s b eb e nb e s e e bt nb e st et e ebe e ebennes 7
2.1.1  The REYNOIAS NUMDET ......c.oiiiiiiiitiiet bbbkttt b ettt eb s 7
2.1.2  BaSiC NYAIOYNAMICS. ......cueiiiiiiiiiiitiieiist et bbbttt bttt b bbbt nb bt eb s 8
2.1.3  Flow resistance in Straight ChanNEIS ..o 9
2.1.4  Enlargements and CONTTACTIONS ........cviuiriiiiiiiiiieie ittt bbbt 10
S T Y- (o ot 1Y o] (0] 1 USSR 12
2.1.6  PUISALIHE TIOW ..o 13
2.1.7  Limitations of analytical tNEOIY .........c.coiiiiiii e e 14
2.2 The GOVErNING EQUALIONS. .......cciiieiie ittt e st e ba e te e teaseesteesaeesaeesteeneeansennee e 15
2 N = o ¥ o = ViV 0o a0 114 o] SRS 16
2.3 TUrBUIENCE MOAEIING ..ot b bbbt b et b e bbb 17
2.3. 1 RANS EQUALIONS. ... ettt ettt ettt bbbt bbbt b bbb bbbttt b 17
232 Thek —and k — @ MOUBIS......ciiiiiiiii bbb e 17
2.3.3 BOUNGAIY BYEIS .. .ceiiiitiieiiiite ettt bbb bbbttt bbbt bbbttt s 18
2.3.4  Turbulence intensity and [8NGth SCAIE...........ccoiiiiiiiii e 19
2.4 The Finite EIeMENt METNOM. ..........coriiiiiicii et 20
3 METHOD .ttt 22
3.1 EXPErimental MEASUIEIMENTS .......cciiiiiieiiecte ettt te st e e s te et et e s e st e steesba e be e s tessaesseesteesaeeteenseansenneeses 22
311 EXPErMENTAL SELUD ..ooveeiieiiee ettt et e et e et et e et e e te e be e s e s re e s reenre e s reenteenreeneearee e 22
3.1.2  THe StENOSIS MOGEIS......ieiiiitiieect et b bbbt b ettt 23
3.1.3  Measurement MELNOU .........cuiiiiiie bbbttt b et b e nbe s 24
3.1.4  Additional measurements: Removing the Catheter SENSOT ..........ccuviriiirirrinencse e 25
KT O = I 1o O 1Y TSRS 26
B R B T £ 11 I OSSPSR 26
3.2.2  Geometry: Including the pressure Catheter SENSOK ..o 26
3.2.3  Laminar and tUrbUIENT PRYSICS......cc.eiiiiiiii it ettt sae b 26
3.2.4  BOUNAArY CONAILIONS .....cueitiitiitiiteiti ettt sttt sttt e s e et et seesb e e bt eb e e s e en b e seesbenbesaeebeene e 27
3.2.5  ACAING PUISALIONS ......cuiiiiie ittt bbbt e e et bbbt ebe e b e e mt e e e ne e besaesbeere e 28
328 IMIBSHING -ttt bbbt Rt Rt R e e b h e R Rt R e R e e Rt et e e bt eaeebeene e 28
3.2.7  Stationary and tranSIENT SOIVETS .......c.eiiiii ittt bbbttt et bbb sbe s e 29

3.2.8  StUdies and POSE PrOCESSING ....veueivireereetireeieetiste ettt ettt sttt st et s bt ese st eb e b e st st e enesne s 30



A RESULTS Lt e e e 32

4.1 PresSUIE DERAVIOT ......c.oiiiiiie ettt bbbt bbb et b et s b s e ebesr e ebennes 32
4.1.1  Pressure along the SteN0SIS MOUEIS.........ccviiiiiiiie st sresre e eneas 32
4.1.2 Total pressure drop as a function of volumetric fIOW rate ............coeoiiiininciiee e, 37

4.2 GEOMELIY Parameter STUTY .......cocirieiiiiiieiieie ettt ettt b bbbt b bbbt bttt sbe e ebennes 40

4.3 Pulsatile effects 0N the PreSSUIE AFOP ......ciiiiiiiiiieiie ettt sb e e eb e are e 43

4.4 RemOoVing the CATNETEE SENSOK ..ottt bbbt b e bbbt et sb e b nnes 46

5 DISCUSSION AND CONCLUSION ... oottt 49

5.1 DISCUSSION .....cttiterietiite ittt sttt ettt sbe ettt st ettt ebeabe e et e e be e e bt ek e e bt eb et e b e ebe e e e bt ebe b e b e e be b e b e e be b ebeabe st eneabe b eneetins 49

5.2 CONCIUSIONS ...ttt btk e bbbt bt bt e R et e bt e bt e b e e b £ e Rt e s s e b ekt ebeeb e e b e e bt e s e e b et ebeebeene e 51

5.3 Limitations and FULUFE WOTK .......c..ooiiiiiiiiiiieie ettt bttt bbbt nb bbb 52

REFERENGCES ... oot et e e e e e e e e e eaa e ees 53

APPENDICES. ... e e aaas 56

AAPPENAIX A .ottt h b E R bR E AR R R R E R R R R Rt R bR e bt et b et r e 56
Derivation Of anNUIUS PreSSUIE TIOP .....cveieeieeieerie et st st e st este e e te st e s e ste e s teesteaneesssesssestaeteesteasaesneesneesneeeas 56

N o] 0 1=1 o [l = ST 58
TNE MESN STUAY ...ttt et e s st e ea e e te e be e s be e s teeseesseesteesteeteanteaneeansenneesteesteetenseeas 58

N o] 0 1=1 o [ ST 61
The REYNOIAS NUMDETS ...ttt ettt et e s s e s be e sbeesteenbeeneeessesteesteeteeneenseeas 61

N o] o 1=1 o [l 5 ST 63
THE VEIOCIEY PrOTIIES ... bbbt b ettt nb s 63
Poiseuille and anNUIUS PreSSUIE AIOPS .. .c.vivereriitirieeete ettt sttt stttk bbbt sb et sbe e b e 65
THhe WAL TIFE-0FF ..ottt e et et seeeteereese e e et e beseesteanenneas 67
THE MOVING CALNETET ...t bbbt bbb bbbt b et bbb 68

APPENAIX E .t b bbb E bR e R b b h bbbt 70
Pulsatile FIOW MEASUIEMENT GALA ........cvieiiiite it bbb bbb 70
Constant flOW MEASUIEMENT GALA ...........eieiieieieie ittt bttt e et b e bbbt bt e et e saesb bbb e ne e 73

N o 0 1=1 o [ ST 75
Polynomial fit for the constant flOW MEASUIEMENES..........c.ovviiiiiiice e 75






1 Introduction

This section provides a brief introduction to the subject of this thesis and the motivations
behind it. Specific goals are provided in a list for easy accessibility.

1.1 Background

Atherosclerosis of the arteries is one of the main causes of death in the world today [1, 2]. It is
caused by plaque forming at the walls of the artery, creating a narrowing of the vessel (artery
stenosis). Such obstructions can eventually lead to cardiovascular disease such as myocardial
infarction and stroke, if the blood flow is severely reduced. The formation of plaque is
believed to be connected to wall shear stress at the vessel walls [3], which is directly related
to the dynamics of blood flow, making investigations of hydrodynamic properties in stenosis
regions an important area of research. Studies of flow and pressure distributions in the arteries
could give us information of where stenoses are likely to appear but also how to prevent
plaque formation. A recent study theorized that the hydrodynamic pressure increase on the
artery walls during regular exercise could have a positive mechanical effect on soft plaque
similar to treatment by percutaneous coronary intervention [4]. The problem of obstructed
flow is not only limited to the circulatory system of blood, but also poses a threat in other
physiological systems. The circulation of cerebrospinal fluid (CSF) within the brain is one
such system, where obstructed flow might lead to non-communicating hydrocephalus (water
on the brain) [5], and altered CSF dynamics are believed to relate to normal pressure
hydrocephalus [6].

One problem with physiological flow systems is the difficulty of performing pressure and
velocity measurements in vivo, especially when looking for small spatial variations.
Computational Fluid Dynamics (CFD) has become a promising tool for research within the
field of bio-fluid mechanics, since it allows for fluid flow properties to be approximated
numerically without having to resort to complicated in vivo measurements. CFD simulations
of physiological flows have been performed on several occasions in the past, yielding
promising results both within studies of artery stenosis [7, 8] as well as studies of the CSF-
system [9].

1.2 Purpose

The Department of Biomedical Engineering and Informatics at Umea University Hospital
conducts research and development in medical technology in close collaboration with medical
researchers. Among other projects, one research group within the department is involved in
research of the CSF-circulation where flow measurements are performed by Magnetic
Resonance Imaging (MRI). While fluid velocity is easily measured, detailed knowledge about
pressure gradients is more difficult to obtain. A specific area of interest is the narrow passage
connecting the third and fourth ventricles within the brain, known as the cerebral aqueduct (or
the aqueduct of Sylvius). The research group is now searching for ways to describe
hydrodynamic properties, such as pressure gradients, for patient specific geometries with the
help of proper software. One of the tools up for investigation is COMSOL Multiphysics®
(version 4.3b) and its CFD module.



This thesis work was meant to act as a first step in evaluating COMSOL’s CFD module by
performing CFD simulations of fluid flow through stenosis models of simple geometry and
comparing the results with acquired experimental data. The hypothesis was that COMSOL’s
CFD module can be used to accurately describe physiological flows in (stenotic) vessels of
arbitrary geometry. The thesis was also meant as a continuation of a recent project in
collaboration with the Heart Centre and the Department of Public Health and Clinical
Medicine, at Umea University Hospital, where two artery stenosis models being subject to
pulsatile fluid flow were investigated in order to characterise the pressure behavior in the
proximity of the stenoses [4]. The experimental method of that study was used to perform
additional measurements on a new stenosis model, representing the cerebral aqueduct, as well
as recreating the acquired results for the artery stenosis models. The results from these
measurements served as a basis for comparison with the CFD simulations.

1.3 Objective

The main objective of this thesis was to investigate the fluid pressure behavior in three
axisymmetric stenosis models subjected to pulsatile water flow by comparing experimental
measurements with CFD simulations, focusing on the following properties:

e Investigate the pressure behavior inside the stenosis models at predetermined points
along the symmetry axis.

e Pulsatile flow effects.

e Differences in the pressure drop, over the stenosis, for different stenosis shapes.

To achieve this aim, the work was divided into separate stages:

1. Perform experimental measurements of fluid flow through two axisymmetrical artery
stenosis models of stenosis diameter 1.0 mm and 1.5 mm with rigid walls and identical
inlet and outlet shapes.

2. Perform CFD simulations of pulsatile flow through the artery models and compare the
results with the experimental measurements and with previously measured bench data
[4].

3. Perform experimental measurements on a simplified aqueduct model, with differing
stenosis inlet and outlet shapes.

4. Compare the experimental measurements for the aqueduct model with new CFD
simulations.






2  Theory

This chapter includes the theory relevant to this thesis work. It contains general theory of
fluid dynamics and CFD, such as the Navier-Stokes equations and turbulence model theory.
Common hydrodynamic relations used within the study of blood flow (hemodynamics) are
presented, and the pressure drop over a stenosis is approximated. The chapter concludes with
theory regarding the Finite Element Method.

2.1 Hemodynamics

Hemodynamics is the study of blood flow in biomechanical systems. It is a complicated
science, partly due to the composition of blood (consisting of both blood cells and plasma) but
also due to the geometric complexities of the circulatory system and the pulsatile nature of
blood flow. Thus for many hemodynamic studies, approximations are made in order to apply
simple hydrodynamic relations to describe the flow of blood. For one, even though blood
behaves like a non-Newtonian fluid, in many situations it is sufficient to approximate it as
Newtonian. Blood flow is also commonly modeled as incompressible, i.e. local density
variations are neglected, and approximated as flow through cylindrical tubes/pipes. These
assumptions may seem crude, but help describe the flow, pressure and resistance within the
blood vessels in a convenient way that can yield qualitative information about blood flow
behavior. In this thesis, only incompressible Newtonian fluid flow through rigid vessels is
considered.

2.1.1 The Reynolds number

As a natural phenomenon in fluids, the characteristics of the flow can change drastically under
certain conditions, for example at really high velocities. Various quantities can be used to
characterize flow in different situations. One of the most well known, and widely used, is the
Reynolds number. This dimensionless quantity relates the inertial forces to the viscous forces
within a fluid, and is defined as

inertial forces pwlL

: (2.1.1)
viscous forces U

where p is the fluid density, u the dynamic fluid viscosity, w the mean velocity of the fluid
and L a typical length scale of the flow (e.g. the hydraulic diameter for pipe flow). For low
Reynolds numbers, the inertial forces are negligible compared to the viscous forces and flow
is characterized by smooth and organized layer motion [10]. Flow of this kind is said to be
within the laminar regime. At higher Reynolds numbers, inertial forces dominate the viscous
forces, creating chaotic eddies, vortices and other flow instabilities of widely different length
and time scales [10]. In this regime the flow is referred to as turbulent and is much more
difficult to predict. At moderately high Reynolds numbers, the flow starts changing from
laminar to turbulent. This regime is known as the transitional regime, where the flow might
show characteristics of both laminar and turbulent flow. For a cylindrical pipe, the transition
from laminar to turbulent flow usually occurs for Reynolds numbers slightly above 2000 (see
Table 2.1-1) but it depends on problem specifics such as surface roughness and geometry
variations. In summary, the Reynolds number is helpful in order to get a sense of the fluid
flow behavior.



Table 2.1-1: Flow characterization within a pipe by the Reynolds number [11].

Reynolds number Flow regime
<2000 Laminar flow
> 4000 Turbulent flow
2000< Re <4000 Transitional flow

2.1.2 Basic hydrodynamics

For isothermal fluid flow, i.e. flow of constant temperature, through systems of vessels/pipes,
the physical quantities of interest are most often the velocity and pressure of the fluid, and
their respective distributions. A first estimation of the average velocity behavior can be found
by measuring the volumetric flow rate (or just flow rate) going through the system. The
volumetric flow rate is the volume of fluid passing a cross-sectional area per unit time, and
can be described by

Q =wA (2.1.2)

where A is the cross-sectional area of the vessel. For incompressible fluid flow, the mass flow
rate, and thus the (volumetric) flow rate, can be considered constant within the vessel due to
mass conservation. For a vessel with a local stenosis, (2.1.2) yields

Q = wiA; = w4, (2.1.3)

where w; is the mean velocity in the vessel, A; = md?/4 is the vessel cross-sectional area,
w, is the mean velocity inside the stenosis region and A, = wd3/4 is the stenosis cross-
sectional area (see Figure 2.1-1). Thus once the flow rate is known, the mean flow velocities
in different parts of the flow system can be determined, if the corresponding cross-sectional
areas are known. This is also useful when approximating the Reynolds number in different
parts of the flow system.

For frictionless flow, the total pressure along a streamline (curve instantaneously tangent to
the velocity vector) fulfills the following relation

uZ 2

P1 +p71+,09h1 = D2 +%

where p is the pressure at a given point along a streamline, u is the instantaneous velocity,

h is the corresponding height of the point in question and g is the gravitational acceleration at

sea level. The second term on both sides of (2.1.4) is often referred to as the dynamic

pressure, describing the kinetic energy of the fluid. (2.1.4) is known as the Bernoulli equation,

which is valid for incompressible flow and compressible flow of low velocity. Bernoulli’s

equation describes the shift from kinetic to potential energy (dynamic to static pressure) for

frictionless fluid flow. Equation (2.1.4) is commonly generalized to include the cross-
sectional mean flow velocities, w; and w,, instead of the instantaneous ones [12].

+ pgh, (2.1.4)
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Figure 2.1-1: A pipe with a local stenosis. Here d is the diameter and the mean velocity is denoted w, which is higher in
the smaller part of the pipe (w; < w;) due to conservation of the flow rate Q throughout the channel.

2.1.3 Flow resistance in straight channels

For flow within a pipe (or vessel), frictional losses are generated due to viscosity of the fluid
and a no-slip condition at the walls. Because of this flow resistance, the Bernoulli equation
must be complemented by irreversible pressure losses to fully describe the pressure changes
for pipe flow. The pressure drop for fully developed flow in a straight channel can be
described by the Darcy-Weisbach equation

2
= f— (2.1.5)
Ap = fp D 2
where L is the length of the pipe, D is the hydraulic diameter of the pipe and f}, is the Darcy
friction factor. The friction factor is dependent on the wall roughness of the pipe and the
Reynolds number of the flow. For fully developed laminar flow in a smooth cylindrical pipe,
known as Poiseuille flow, the pressure drop is described by the Poiseuille formula

o, _ 1284l
p= D%

Thus, for laminar flow, the friction factor is f, = 64/Re, and the pressure drop is linearly
dependent on the flow rate. For higher Reynolds numbers (other flow regimes) the friction
factor can be determined by using Moody diagrams [13]. For fully turbulent flows, the
pressure drop exceeds that of laminar flow [14].

(2.1.6)

For flow through annulus geometries, the pressure drop is a bit more complicated. The
pressure drop for fully developed flow in a straight annulus can be found to be

T
_ 8uQL In (r_i)
n0F =1 |0 + ) (32) - (0F =) (2:1.7)
1

Ap

n<rsmn

where r; and r,, are the smaller and larger radius, respectively (see the derivation in Appendix
A). This expression for the pressure drop is only valid for laminar flow.



2.1.4 Enlargements and contractions

When flow encounters obstructions, the pressure will further decrease. In the case of sudden
contractions and enlargements of the pipe, the fluid will not be able to follow the vessel walls,
resulting in flow separation (see Figure 2.1-2 and Figure 2.1-3). This results in the dissipation
of mechanical energy due to the formation of a recirculation region just downstream of the
point of flow separation [15]. The pressure losses, for contractions/enlargements, can be
described as part of the dynamic pressure

2 2
_,. PwT_ . 8pQ 2.1.8
Ap = kass > —kdisn2D4, (2.1.8)
where kg4;¢ IS a pressure loss coefficient that is dependent on the shape of the contraction or
enlargement, the Reynolds number of the flow, as well as the stenosis to vessel diameter ratio
[16]. This coefficient is usually determined empirically, but can be approximated in certain

cases.

For sudden enlargements, the discharge coefficient can be approximated with the Borda-
Carnot relation [17] resulting in the following expression for the discharge coefficient

A\ 2.1.9
kais = (1 - A_:) ( )

where A; /A, is the ratio of the cross-sectional areas of the stenosis region and the vessel. The
approximation of (2.1.9) is best applied for flows of higher Reynolds numbers, i.e. turbulent
flows [16]*.

The coefficient for sudden contractions is different than the one for enlargements. Due to flow
separation the flow area becomes even smaller than the cross-sectional stenosis area
downstream of the contraction (Figure 2.1-3 and Figure 2.1-4). The point of minimum area
for the flow is known as the vena contracta, and it is the expansion of the flow from this point,
where flow decelerates to fulfill (2.1.3), that stands for the biggest loss of mechanical energy
[19]. Thus the discharge coefficient depends on the ratio of the flow area at the vena contracta
and the cross-sectional area of the stenosis. However, the discharge coefficient will still
depend on the ratio of the stenosis and vessel cross-sectional areas since this relationship
affects the resulting flow area at the vena contracta.

In addition to the irreversible pressure drop in contractions and enlargements, the pressure
also changes due to conversions between static and dynamic pressure. In the case of
contractions, the velocity increases to fulfill (2.1.3), resulting in a reversible pressure drop.
For enlargements, the velocity decreases, resulting in pressure recovery (unless the discharge
losses are bigger than the pressure gained from the Kkinetic to static pressure conversion),
hence the word reversible.

'Fora thorough investigation of pressure losses due to enlargements/contractions for turbulent pipe flow, the
book Pipe flow: A practical and comprehensive guide [18] is suggested.
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Equation (2.1.8), together with (2.1.6) and (2.1.7) for Poiseuille and annulus flow
respectively, shows that the total irreversible pressure drop is dependent on the flow rate in a
non-linear fashion. Combining these equations yields

Ap = k1Q* + k,Q. (2.1.10)

where everything except for the flow rate has been included in the coefficients k; and k,. The
form of (2.1.10) is the same for both cylindrical and annulus pipe flow, but with different
coefficients. It is important to note that the coefficients will be dependent on the Reynolds
number, thus it will vary for different Reynolds number regions®. In addition, for the specific
problem of a stenosis, where both a contraction and an enlargement is present, the flow effects
at the stenosis inlet also affect the pressure drop (or the discharge coefficient) at the outlet,
due to the non-linearity of the fundamental equations of fluid dynamics. This further
complicates the behavior of the pressure losses compared to cases where only an enlargement
or a contraction is present.
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Figure 2.1-2: Flow separation due to the enlargement of a pipe. Velocity field (colored surface) and velocity stream lines
(white lines) are presented for a cross-section of a 2D-axisymmetric geometry (a cylinder). The direction of the flow is in
the positive z-direction and the color scale represents the velocity magnitude where red is high and blue is low.

% To find out more about pressure drops for laminar flow in enlargements, the following articles are
recommended: Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers [16] and A
general correlation for the local loss coefficient in Newtonian axisymmetric sudden expansions [20].
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Figure 2.1-3: Flow separation due to the contraction of a pipe. Velocity field (color) and velocity stream lines (white lines)
are presented for a cross-section of a 2D-axisymmetric geometry (an annulus). The direction of the flow is in the positive
z-direction and the color scale represents the velocity magnitude where red is high and blue is low.
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Figure 2.1-4: Flow separation, and vortex formation, due to the contraction of a pipe. The point of smallest flow area is
the vena contracta. Q is the flow rate.

2.1.5 Velocity profiles

For fluid flow within a pipe, the velocity profile is an important property of interest. For fully
developed flow in a cylindrical pipe of constant diameter, the corresponding expressions for
the velocity profiles are

r

Wiaminar () = Umax (1 B (§)2> (2.1.11)

1/7

T
Utyurbulent (7‘) = Umax (1 - E)
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for laminar and turbulent flow respectively, where u,,,x = 2Unmeqn fOr laminar flow and
Umax = 1.22Upeqn TOr turbulent flow. The laminar profile can be derived by fundamental
principles of fluid flow and corresponds to that of Poiseuille flow. The velocity profile for
turbulent flow seen in (2.1.11), sometimes referred to as the 1/7" power law, is an empirically
determined relation [12] and is only a model (one out of many). It is one of the most
commonly used models, but depending on the situation, other models might describe the
velocity profile for turbulent flow more accurately.

The velocity profile for fully developed laminar flow in an annulus can be found to be

20 (F—rd)n (:—1) — @2 =r®)In (%)

L _ (2.1.12)
n(ry =1)  (rF +7r2)In (r_z) —(rf —1P)
1

u(r) =

(see Appendix A for the derivation). The acquired expression for the annulus velocity profile
has its maximum slightly shifted towards the wall of smaller radius, which is in contrast to
cylindrical pipe flow where the maximum is in the centre of the pipe. The turbulent velocity
profile has no well known formulation for flow within an annulus.

2.1.6 Pulsatile flow

Pulsatile flow can be described by the dimensionless quantity known as the Womersley
number. This quantity relates the oscillatory frequency of the pulsatile flow to viscous effects

[21] and is defined as
O=a ’% =a fﬂ (2.1.13)
U v

where w is the angular frequency of the oscillations, a a typical length scale (commonly the
radius for a pipe) and v = p/u is the kinematic viscosity. The Womersley number appears
when the linearized Navier-Stokes equations are solved for oscillatory, laminar, pipe flow
[21]. The Womersley number determines how much the flow in a pipe is affected by the
oscillation frequency of the pulsations. For a Womersley number lower than unity, the flow is
almost fully developed at each instant of the oscillatory cycle, and the flow rate and the
pressure gradient driving the flow (Ap/Ly;y.) Will be changing almost in phase. The flow is
then very close to oscillatory Poiseuille flow, which means that the velocity profile can be
described by the first equation of (2.1.11) at each instant in time corresponding to the
instantaneous pressure gradient. With increasing values of the Womersley number, the flow
and pressure gradient become more and more out of phase due to inertia of the fluid.
Furthermore the flow does not have time to reach its fully developed form at each instant in
time, resulting in a damping of the flow rate oscillations compared to that of oscillatory
Poiseuille flow under the same pressure gradient variations [21].

When adding symmetric pulsations to a constant stream, there will be a net flow in the
direction of constant flow. If the pulsatile flow rate is known, then the maximum and
minimum flow rates can be used to approximate the difference in the pressure drop for a
system, over an oscillatory cycle. For a pulsation amplitude of AQ, equation (2.1.10) gives the
maximum and minimum pressure drops over a stenosis (according to the systolic and diastolic
stages respectively)
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Ap = k1(Q + AQ)* + k(Q + AQ)

(2.1.14)
Ap = k;(Q — AQ)? + k,(Q — AQ).
Taking the difference of these two equations yields
Apsys — Apgia = 4k1AQQ + 2k,AQ. (2.1.15)

Equation (2.1.15) shows that the pressure drop oscillates with an amplitude whose size is
depending on the mean flow rate Q, according to the first term on the right hand side (RHS).
Thus for increasing (mean) flow rates, the size of the variations in pressure drop (over one
cycle) will also increase, despite keeping the size of the flow rate pulsations constant (AQ =
const). It is worth noting that k; and k, are dependent on the Reynolds number, which means
that the flow rate dependency is different for different Reynolds number regions. Observe that
(2.1.15) only holds as long as the oscillatory flow rate is of the same amplitude for all flows,
i.e. the whole pulse is pressed through the stenosis for all flows, which is the case for a rigid
tube but not necessarily so when dealing with elastic vessels. Since (2.1.15) does not include
any time-dependency, the equation might also be affected for pulsatile flow of sufficiently
high frequency, where the flow deviates far from oscillating Poiseuille flow (Q > 1).

2.1.7 Limitations of analytical theory

While the theory described above is useful, it only describes parts of the flow behavior, thus it
is only approximate. To get a full description, the fundamental governing equations of fluid
flow have to be solved. These equations are highly non-linear and can seldom be solved
analytically. This is why numerical methods are used for most fluid flow problems, hence the
need for CFD.
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2.2  The Governing Equations

The motion of a fluid is governed by the Navier-Stokes system of equations. They are derived
by applying the three laws of conservation to fluid flow. In component form, these equations
can be written as

9 Apy) _ 0 (2.2.1)
ot ax]
du; du; dp | 0t
—_ =y . 2.2.2
p<6t+%6%> ox, T ox, T 222
de de ou; ou; 0q;
i L .t 2.2.3

where pis the fluid density, x; the position vector components, u; the components of the
velocity vector, p the pressure, 7;; the viscous stress tensor, ¢ the internal energy per unit
mass, q; the heat flux, r the heat supply per unit mass, and f; represents body forces per unit
volume acting on the fluid, such as gravity forces. The index j indicates summation over all
components. The first of these equations results from conservation of mass and is known as
the continuity equation. The second is a set of equations (one equation for each dimension)
that describes linear momentum conservation; this equation is often referenced as the Navier-
Stokes equation(s). Finally the third equation describes energy conservation. In 3D, this
system involves six scalar variables (p, p, € and a velocity component u; for each dimension)
and only five equations. To close the system, an equation of state is needed. This equation of
state relates the pressure to the density and temperature

p=p(p,T) (2.2.4)

where T is the temperature of the gas/fluid. Since the internal energy per unit mass is related
to temperature

e=e(pT) (2.2.5)

it can be replaced and T becomes the new unknown variable. The problem boils down to six
unknowns (p, p, T and all ;) and six equations (2.2.1-2.2.4). To fully describe the motion of
fluid flow, for a specific problem, the Partial Differential Equations (PDES) of (2.2.1-2.2.3)
must be complemented with the appropriate boundary and initial conditions.

Under certain circumstances the governing equations can be simplified. In reality, fluids and
gases are compressible, but for velocities much lower than the speed of sound within the
medium, fluid flow can be considered incompressible (i.e. local density variations are
neglected). When dealing with incompressible flows of Newtonian fluids, the momentum and
mass equations above reduce to
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Equation (2.2.6) implies that the mass flux for a volume element must be equal to zero. The
left hand side (LHS) of (2.2.7) describes the acceleration of the fluid, while the RHS describes
pressure, viscous, and other body forces. The second term on the RHS of (2.2.7) is the
resulting viscous stress when assuming that the shear stress is linearly dependent on the
velocity gradients (which is the case for a Newtonian fluid) and the dynamic viscosity of the
fluid. The non-linear term in (2.2.7) is the convective acceleration, which is the acceleration
in space that is time-independent, such as acceleration due to changing geometry. Because of
the constant density, the equation of energy conservation is decoupled from the mass and
momentum equations, thus (2.2.6) and (2.2.7) are enough to describe the fluid motion if
temperature effects are neglected, which is the case in this thesis. The reduced system, (2.2.6)
and (2.2.7), consists of four equations (one for mass and three for momentum conservation)
and four unknowns (u, p).

2.2.1 Boundary Conditions

Two of the most common boundary conditions are the Dirichlet and the Neumann boundary
conditions. The former specifies the value of a variable at a boundary while the latter specifies
the derivatives of a variable. They are both special cases of the more general Robin boundary
condition, which is a combination of the two [22]. Common boundaries to fluid flow are walls
confining the fluid, inlet/outlet boundaries and free surfaces (the latter is beyond the scope of
this thesis). Since the fluid cannot flow through walls, the normal component of fluid velocity,
relative to the wall, must be zero there. The tangential component of velocity relative to the
wall, for viscous fluid flow, must also be zero, which is a result of friction between the fluid
and the wall due to the viscosity of the fluid. This is known as the no-slip condition, which is
a Dirichlet condition on the velocity (u = Uy,q)-

For CFD simulations, the inlet and the outlet conditions are most often specified either by
velocity, mass flow rate, or pressure. For most fluid flow problems, at least one of these
properties is known. Velocity conditions are usually inlet conditions, whereas pressure is
commonly applied at the outlet of a system [23]. Mass flow can be applied when the velocity
profile is unknown. Another CFD boundary condition is the symmetry boundary condition.
Since the flow variables must be continuous over the symmetry plane, the velocity normal to
this plane must vanish there. In addition, the normal derivative of the velocity component
along the symmetry plane must be zero as well (no tangential viscous stress at the plane of
symmetry) [24].
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2.3 Turbulence modeling

While the Navier-Stokes equations (2.2.7) are still valid for turbulent flow, it is not feasible to
solve these equations exactly (in most cases) due to the vastly different length and time scales
present. Thus finding a solution using Direct Numerical Simulations (DNS), even for simple
geometries/problems, can become difficult once turbulence is involved. An additional
problem occurs when trying to approximate the solution to a fluid flow problem by any
laminar physics model. While all laminar flow models utilize the Navier-Stokes equations,
they only yield the same result as DNS when all the different length scales are resolved, i.e.
the computational mesh is fine enough. If all scales are not resolved, there is a risk that the
solution acquired is physically unrealistic, despite numerical convergence, but it is also likely
that the approximation diverges due to sharp gradients. As a result of these difficulties,
turbulence must be modeled for most industrial problems.

2.3.1 RANS Equations

One of the most common ways of approximating turbulence is to average out fluctuating
quantities of the Navier-Stokes equations by separating the flow variables into a time-average
and an oscillating part. This separation is known as the Reynolds decomposition. Applying
this method to (2.2.7) yields what is known as the Reynolds-Averaged Navier-Stokes
equations (here in component form)

o _ om0
pat pujaxj_fi dx

J

_ du; aﬁj —_—
_p5ij +u <a—x] + a—x1> — puiujl (2.3.1)

where §;; is the kronecker delta function, u denotes the time average of the velocity and u' the
fluctuating part. The last term within the brackets on the RHS of (2.3.1) is known as the
Reynolds stress term and it is the only part of the RANS equations that includes the
fluctuating part of the velocity. The RANS equations, as they are, will not constitute a closed
system of equations and the Reynolds stress term has to be modeled by additional equations in
order to close the system of equations. In the past, there have been many different attempts to
model this stress term, resulting in a variety of different turbulence models. The first one to
accomplish this was Boussinesq (1877), through the Boussinesq approximation. The idea is to
model the momentum transfer caused by turbulent eddies by introducing the concept of eddy
viscosity. There are several turbulence models based on this approximation, such as zero-
equation models, one-equation models and two-equation models. This thesis is limited to the
following standard two-equation models: the k — ¢ and the k — w models.

2.3.2 The k — € and k — w models

The k — e model is one of the most commonly used turbulence models in engineering
applications, most frequently for “low-speed incompressible flows in isotropic turbulence”
[25]. The model includes two turbulence quantities needed to describe the turbulent aspects of
the flow; the turbulence Kkinetic energy k and the turbulence dissipation rate . To account for
the new turbulence guantities, two additional transport equations are added, hence the name
two-equation model. This model has been documented to yield good results for free flow
simulations, but is known to perform more poorly in the case of wall bounded flows and
adverse pressure gradients (i.e. increasing pressure in the direction of the flow) [26].
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The k — w model is also a widely used turbulence model. In addition to the turbulent Kinetic
energy k, the specific turbulence dissipation rate (or vorticity) w is used to describe the
turbulent flow properties. This model performs better than the k — ¢ model for a variety of
flows [26]. The disadvantages include higher sensitivity to vorticity inlet conditions for free
stream flow (flow free from the effects of walls) and lower robustness than the k — ¢ model
[26].

2.3.3 Boundary layers

Due to the no-slip condition at boundary walls, boundary layers are created adjacent to the
walls where viscous effects become more dominant. Because of the creation of boundary
layers, velocity gradients normal to the surface are very sharp, requiring dense meshing close
to the walls in order to be resolved. To account for this fact, the method of wall functions can
be applied for turbulent flow [25]. These wall functions are based on empirical laws and can
be used to analytically describe the flow behavior in parts of the boundary layers, yielding
boundary conditions some distance away from the wall, thus removing the need for excessive
meshing.

The innermost boundary layer can be divided into three sub-layers [25]: the viscous (or
laminar) layer, the buffer layer, and the log-law layer (see Figure 2.3-1). The log-law layer is
described by what is known as the law of the wall. This law states that the tangential
component of the mean velocity of turbulent flow is proportional to the natural logarithm of
the distance to the wall. The velocity in the log-law layer can be written as

1
ut = Elny+ +C* (2.3.2)

where u* = % /u, is the dimensionless relative velocity, tangent to the wall, y* = yu, /v the
dimensionless relative wall distance, k the von Karman constant, u, the friction (or shear)
velocity and C* a constant whose value depends on the model approach. This approximation
is valid at a distance of y* > 30 from the wall but deviates considerably when reaching
values around 500. Closest to the wall is the viscous sub-layer where

ut = y* (2.3.3)

which is valid for y* < 5. For 5 < y* < 30 neither (2.3.2) nor (2.3.3) approximates the
velocity profile satisfactorily. This intermediate region is known as the buffer layer. If there
were no buffer layer, then (2.3.2) and (2.3.3) would meet at y* ~ 11.6. For values of y <
11.6, the viscous model works better, while the log law is superior for y* > 11.6, though
none of the two models yields good results close to y* = 11.6. In addition to the velocity, the
turbulence quantities are also given corresponding boundary conditions away from the wall.

The boundary conditions at the walls can vary depending on the implementation of the wall
functions. One common approach is to divide the boundary layers at y* = 11.6, where the
law of the wall is used above y* = 11.6 and below this limit the velocity and the turbulence
quantities are based on viscous sub-layer constraints [25]. Other models incorporate all three
sub-layers, where the buffer layer is modeled between 5 < y* < 30. In contrast, the simplest
wall function approach directly makes use of the law of the wall, without taking the other sub-
layers into account.
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Figure 2.3-1: The boundary layers for turbulent flow. y* is the dimensionless relative wall distance and U* is the
dimensionless relative velocity tangent to the wall. The figure is from an external source, by another author, and is
published under the following license [27].

There are also low Reynolds number versions of the two-equation RANS models, meant to
better resolve boundary layer flows (i.e. flows of lower Reynolds numbers) [28]. For these
models the boundary layer is resolved all the way into the viscous sub layer (y* < 5), without
relying on wall functions. This means that the quality of the boundary layer mesh is of utmost
importance for low Reynolds number models.

2.3.4 Turbulence intensity and length scale

When modeling turbulence, the turbulence quantities must also be set at the inlet to the flow
system to generate the correct degree of turbulence. However, it is usually very difficult to
estimate the magnitude of the turbulence quantities. Instead, it is common to describe
turbulence by the turbulence intensity and turbulence length scale. For fully developed
turbulent pipe flow, the turbulence intensity is usually within 5-10 % and the turbulence
length scale, describing the size of the eddies that are modeled, is commonly set to 7% of the
hydraulic diameter of the pipe for 2D flows [29].
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2.4  The Finite Element Method

The Finite Element Method (FEM) is a numerical method used to find approximate solutions
to boundary value problems. It is commonly used in various fields of engineering. The main
idea is to divide the domain of the problem into many smaller elements where the main PDEs
can be approximated locally. The element equations are then combined into a global system
of equations, over the entire domain. It is an approach based on the variational theory of
calculus where an error function is minimized to yield the best approximation to the solution.

By applying variational calculus to the PDEs in question, all spatial derivatives are removed,
approximating the PDEs, over each element, as ordinary differential equations in time, or just
algebraic equations for steady state problems. The resulting system of equations is then solved
by numerical linear algebra for steady state problems and time dependent problems are solved
by numerical integration schemes. Non-linear equations, such as the Navier-Stokes equations,
yield non-linear equations that have to be linearized in order to be solved. The local (element)
equations are combined into a global system of equations to approximate the solution on the
entire domain.

The resulting FE approximation, to the solution, is built out of linear combinations of basis
functions, where each function is connected to a node point of the elemental grid/mesh (see an
example in Figure 2.4-1). These basis functions are usually polynomials where the order can
be increased to improve accuracy, but this also increases the computational complexity of the
problem. When solving the Navier-Stokes equations, it is important that the basis functions
describing the velocity are, at least, one order higher than those describing the pressure [30].

There are many advantages with the FEM since complex geometries can be described with
non-uniform meshes (unlike finite difference methods where the mesh elements are of
uniform size). The downside is that it is mathematically complex compared to other methods
such as the Finite Volume Method (FVM), another common (numerical) method often used
for fluid flow problems.

A

x=0 x X, X, x, x=1

Figure 2.4-1: An example showing a 1D FE-approximation (red) created using a linear combination of piecewise linear

basis functions (blue). The six points located at x(, X1 ... X5 represent the node points of the computational mesh, with
mesh elements in between. The figure is from an external source, by another author, and is published under the

following license [31].
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3  Method

This section covers the approach of the experimental measurements and CFD simulations.
The first part includes the setup and measurement approach for the experimental measure-
ments, as well as providing a description of the three stenosis models. The latter part involves
the CFD simulations in COMSOL, where the settings are explained in steps and the methods
are motivated. The chapter ends with a short explanation of what tests were made to compare
the CFD simulations with the experimental results.

3.1 Experimental measurements

The aim of the experiments was to characterize the pressure behavior in three different plastic
tube stenosis models being subject to a pulsatile flow of water. The experimental setup and
method correspond to the ones utilized in the article Natural angioplasty: A mechanical effect
of exercise [4].

3.1.1 Experimental setup

The experimental setup (Figure 3.1-1) was identical for all measurements and all stenosis
models. To create a constant fluid flow through the system, a peristaltic pump (Ismatec BVK,
Zurich, Switzerland) was connected to the stenosis model in question by a system of elastic
tubes. These tubes were extended to a length of 17 meters in order to dampen possible
disturbances in the flow. The pump was also connected to a container of water that fed fluid
to the system, and the flow rate was regulated by 6 taps connected to the peristaltic pump.
Pulsations were added by connecting a syringe pump to the flow system, upstream of the
stenosis, pumping at a frequency of 1 Hz (to simulate the heart beat). The pulsations were
added at an angle of 90 degrees to the constant flow stream. For this reason, the syringe pump
was connected some distance away from the stenosis in order for the flow to become fully
developed before reaching the model inlet. The syringe pump was programmed using the
software LabVIEW (National Instruments Corporation, Austin, Texas, U.S.) to create a
volume curve that was triangular in shape with a volume difference of approximately 0.4 ml
peak-to-peak. To remove the effects of the hydrostatic component of the pressure, the system
was placed horizontally. No flow was used as zero reference pressure, and the end of the flow
line was open to air (open outflow).

To measure the pressure, a RadiAnalyzer™ Xpress measuring system (Radi Medical,
Uppsala, Sweden), displaying the maximum (systolic), minimum (diastolic) and mean
pressure, was connected to the system utilizing a Pressure Wire Certus catheter system 12006
(St Jude Medical Systems, Uppsala, Sweden) that included a catheter tip pressure sensor and a
fluid catheter sensor. Both the reference pressure (at the model inlet) and the pressure at
discrete points inside the stenosis could then be measured simultaneously. The catheter tip
sensor was inserted through the elastic tube upstream of the stenosis models and was fed
through the stenosis, little by little, during the measurements. Due to the construction of the
catheter tip pressure sensor, where the point of measurement was positioned 3.05 cm from the
endpoint of the sensor, the catheter tip was occupying the stenosed region at all times. In
addition, the rigid stenosis model was extended at the model end by an additional elastic tube
(10.5 cm in length) in order for the catheter tip sensor to be fully submerged during the
measurements. The resolution for the pressures displayed by the RadiAnalyzer was 1 mmHg.
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Figure 3.1-1: The experimental setup (bottom) and the corresponding schematic sketch (top). The peristaltic pump (1) is
connected to the stenosis model (2) by 17 m of elastic tubes. Additional connections are those of the oscillatory (syringe)
pump (3) and the reference pressure sensor (4). The taps regulating the flow can be seen in the photo (5).

3.1.2 The stenosis models

Three axisymmetrical stenosis models of slightly different geometries were used during this
project. Each model consisted of a Plexiglas tube with an inner diameter of 3 mm and a
stenosed region (or a constriction) of different length, diameter and inlet/outlet shapes (Table
3.1-1). Two of the models were artery stenosis models and the third was a simplified model of
the cerebral aqueduct (Figure 3.1-2). All models had a length of 57 mm, without the elastic
extension of 10.5 cm. It is important to note that in the previous study [4] an extra resistance
was added downstream of the stenosis models (to increase the pressure at the model inlet),
something that was not included in this thesis.

Table 3.1-1: The geometric parameters of the three stenosis models.

Model Stenosis length Stenosis inner Inlet/outlet angles a
(mm) diameter (mm) (degrees)
Artery stenosis 1 7.0 1.0 120/120
Artery stenosis 2 8.0 15 120/120
Aqueduct 7.0 1.0 60/180 or 180/60
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Figure 3.1-2: Cross-sections of the stenosis models. The artery models (top) and the aqueduct model (bottom). Half the
inlet/outlet angle (a) is shown in the upper model.

3.1.3 Measurement method

Both constant and pulsatile flow measurements were performed. For the pulsatile flow
measurements, pulsations were added to the constant flow, resulting in a net flow in the
direction of the constant flow. The pulsatile part of the flow was kept at constant pulsation
rate and volume (the same settings for all measurements) and only the constant flow rate was
varied. For the artery stenosis models, the pressure was measured in six points (Figure 3.1-3)
with the catheter tip pressure sensor, while ten points were used for the aqueduct model
(Figure 3.1-3). For each measurement, the systolic, diastolic and mean pressures were
documented, both in the reference point (at the model inlet) and in the measurement point
inside the stenosis model in question. All pressure measurements under pulsatile flow were
performed six times per measurement point, resulting in six measurement series, and once per
measurement point for the constant flow measurements. The mean flow rate was measured by
collecting the volume of water passing the stenosis model in intervals of 20 and/or 30
seconds. For the pulsatile flow measurements, the flow rate was measured two or three times
per measurement series, and six times per flow rate for the constant flow rate measurements.
During the measurements, the water was kept at a temperature between 23 and 24 degrees
centigrade (measured with a Delta OHM thermometer HD 9214, 0.1°C resolution).

While the constant flow measurements were done for several different flow rates for each
stenosis model, the pulsatile measurements were only done for the following (mean) flows
and models:

e 129 ml/min for the 1.0 mm artery stenosis model

e 130 ml/min and 173 ml/min for the aqueduct model when using the smooth narrowing
as inlet

e 131 ml/min and 172 ml/min for the aqueduct model when using the abrupt narrowing
as inlet

The pulsatile flow measurements with the artery stenosis model were performed to recreate
the results of the previous study [4]. Measurements with the aqueduct model were performed
for both directions to investigate possible differences due to differing stenosis inlet/outlet
shapes.
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Figure 3.1-3: Pressure measurement points for the artery models (top), the aqueduct model with the smooth narrowing
proximal to the flow (middle), and distal to the flow (bottom).

3.1.4 Additional measurements: Removing the catheter sensor

Pressure measurements were also performed with an infusion system, Likvor CELDA®
System (Likvor AB, Umea, Sweden), replacing the catheter pressure system, in order to
remove the effects of the inserted catheter tip on the flow. Due to time constraints, only
measurements with the 1.0 mm artery model were performed using the CELDA system. For
these additional measurements, only the total pressure drop over the stenosis model was
measured (from the model entrance to the end of the elastic extension), for pulsatile flow, and
the mean flow rate was measured three times per flow rate.
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3.2 CFDin COMSOL

The experimental measurements were compared to CFD simulations run with the software
COMSOL Multiphysics® (Version 4.3b) and its CFD module. COMSOL is based on the FEM
(see Section 2.4), which is well suited for fluid flow problems. In COMSOL it is possible to
create 1D, 2D, 2D-axisymmetric and 3D models, where the geometry, physics (equations and
boundary conditions) and the mesh can be defined, all without the need for any additional
software. COMSOL also includes various study options (such as solver methods) and post
processing alternatives.

3.2.1 2D versus 3D

Since turbulence is a 3-dimensional phenomenon it is desirable to utilize 3D when solving
problems of fluid flow. However, due to the increase in computational cost between 2D and
3D, in both memory and processing time, it was decided to start with 2D simulations since it
should still capture the main features of the flow, but to a lower computational cost. Since the
geometries of the model stenoses were axisymmetric, a 2D-axisymmetric geometry could be
used, which is close to a 3D representation.

3.2.2 Geometry: Including the pressure catheter sensor

The geometry of each CFD model consisted of the stenosis model, plus the additional
extension of 10.5 cm, and the catheter sensor. Since the pressure was expected to change very
little in regions away from the stenosis, the elastic extension was modeled as rigid in the CFD
simulations to simplify the numerical calculations. The catheter was approximated as a rigid
stationary cylinder placed inside the stenosis model, along the axis of symmetry, creating the
geometry of an annulus as opposed to a cylindrical geometry. During the experiments, the
catheter was observed to fluctuate as well as shifting shape when bent against the walls of the
model, which introduced effects not accounted for in the simulations. However, since the
catheter was mostly positioned in its central position, and the flow area was the same, this
simplification was deemed reasonable.

3.2.3 Laminar and turbulent physics

For all simulations of this thesis, the water density was set to 1000 kg/m?3 and the viscosity
t0 0.00095 Pa - s (the same values as used in the theoretical model of [4]). The Reynolds
number was approximated to be below 2000 in the pipe and larger than 2000 in the stenosis
region for nearly all of the experimental measurements (see Appendix C). For cylindrical pipe
flow, this includes the transitional regime where flow behavior is difficult to analyze. Because
of this fact, both laminar physics simulations and simulations including the modeling of
turbulence were tested. COMSOL’s CFD module gives the option to model laminar as well as
turbulent flow with already implemented physics models. For the turbulence model, the
choice fell on the RANS k — w model due to it being one of the most prominently used
turbulence models within the field of CFD today. The k —w model implemented in
COMSOL, at the time, was the revised Wilcox model with wall functions [26]. For the
laminar model, the incompressible Navier-Stokes equations (2.2.7) and the corresponding
continuity equation (2.2.6) were used to solve for the velocity vector and the pressure (in
cylindrical coordinates). For the turbulence model, the RANS equations (2.3.1) were solved
with two equations added for the turbulence quantities, k and w, to close the system of
equations.
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In addition, a low-Reynolds number model was also tested to better describe the gradients
close to the walls, instead of relying on wall functions. Since the low Reynolds k — w model
was not implemented in COMSOL at the time, the low Reynolds number k — & model was
applied, but with no success for annulus flow (no convergence in the solutions). For
cylindrical flow (no catheter), the low-Re model was applied successfully and was included in
the analysis of the additional measurements (the Likvor CELDA® System measurements). For
this model, two equations, one for k and one for &, were added to the RANS equations.

Regarding discretization, COMSOL makes use of several stabilization techniques in order to
discretize flow problems using first order (P1) basis functions for both the velocity and the
pressure, instead of using higher order basis functions for the velocity. The default settings
include two consistent stabilization techniques: streamline and crosswind stabilization [32].
The number of degrees of freedom is severely reduced by using P1-P1 elements, but it may
result in poor resolution of steep gradients. For most simulations, this setting was used to
improve simulation speed, although the P2-P1 discretization was tested but did not yield any
noticeable change in the results.

3.2.4 Boundary conditions

A velocity condition was set at the model inlet for all simulations. The mean velocity was
computed from (2.1.2), since only the flow rate was known (measured). For laminar inflow,
(2.1.11) and (2.1.12) could be used for the cylindrical and annulus flow, respectively, to get
the corresponding velocity profiles for constant flow. For the turbulence simulations, the
turbulence quantities were defined by the turbulence intensity and turbulence length scale.
The intensity was set to 5 % and the length scale to 0.07 hydraulic diameters, which is
recommended for fully developed turbulent pipe flow [29].

To introduce pulsations to the flow, an oscillating flow rate was applied at the inlet in the
form of a sinusoidal wave, representing the motion of the syringe pump supplying a volume
of 0.4 ml at a frequency of 1 Hz (see Section 3.2.5). This means that a volume of 0.4 ml was
added and withdrawn every second. The pulses were added as uniform velocity, and the
geometry was prolonged upstream of the stenosis region to let the flow develop properly
before reaching the stenosis inlet.

The boundary conditions for the rigid walls were set to no-slip in the laminar simulations. For
the turbulence k — w model, boundary flow was handled by using wall functions [33]. In
COMSOL, the distance from the wall to the computational domain (or wall lift-off) is
automatically calculated so that the dimensionless wall distance (or wall lift-off in viscous
units) is 11.06. The buffer layer is ignored and the entire viscous sub-layer is represented
analytically. Since the viscous and buffer layers are very thin, for fully turbulent flow, it is
important that the wall distance is very small compared to the dimensions of the geometry. It
is also important that the dimensionless distance is 11.06 everywhere on the walls, or close to
it, in order for this wall function approach to be valid. This was investigated for all
simulations where the turbulence k — w model was used (see Appendix D). For the low
Reynolds number turbulence model, a no-slip condition was set at the walls.

At the outlet, a simple Dirichlet condition was set for the pressure, since it was open to
atmospheric pressure (open outflow). Due to the fact that only the change in pressure over the
stenosis was of interest, and not the absolute pressure, the value of the pressure was set to zero
at the outlet (instead of atmospheric pressure).
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3.2.5 Adding Pulsations

To add pulsations, the oscillatory flow had to be described by a varying flow rate, which was
then converted to velocity through (2.1.2). Since the volume inserted/removed every half
second was known to be 0.4 ml, the pulsations could be estimated by integrating the sought
after flow rate over half a second and setting it equal to the inserted volume. Mathematically
this can be described as

T/2
Vinsertea = Q(f,t)dt (3.2.1)

0
where Q is the oscillating flow rate, f the frequency of the oscillations, T is the oscillation
period and V;pserteq 1S the volume inserted. The programmed motion of the syringe pump was
described by a triangular function of frequency 1 Hz, but under the experiment the profile was
observed to be more sinusoidal. For this reason the periodic flow rate was approximated as a
sine function yielding

T/2
Vinsertea = f Apsc - sin(2rft)dt (3.2.2)
0
where A, is the amplitude of the flow rate oscillations. Then, using the fact that T = 1/f,
the amplitude becomes

Vinserted

[_ cos(2mft) 12 =
2nf

Apse = Vinserteaf - (3.2.3)

0
Adding this to the constant flow yields the final expression for the inflow

Inflow = Qmean + Vinsertealf Sin(ZHft)- (3.2.4)

3.2.6 Meshing

A free triangular mesh was used within the flow stream away from the walls while boundary
layers were added close to the walls. Since the velocity changes very rapidly in the direction
normal to the wall, close to the boundary, and very little in the tangential direction of the wall,
the boundary layers were made to consist of quadrilateral elements tightly packed in the
direction normal to the wall and more sparsely in the tangential direction (see Figure 3.2-1).
Mesh refinements were added for all sharp edges and the line of flow separation.

A mesh analysis was made where the number of finite elements was increased with the aim to
find a fine enough mesh where no change in the quantities of interest occurred for any
additional increase in the number of elements, or until the variations were negligible. The
quantities of interest were the pressure drop over the stenosis and the recirculation length of
the separation zone. The mesh study was done for all three stenosis models (see Appendix B).
For the laminar model, the recirculation length required a large number of mesh elements in
order to remain constant. In addition, when the number of elements was increased, the
resulting recirculation length moved even further from the expected results. Because of this,
the pressure drop was the main deciding factor when creating the mesh (for the laminar model
simulations).
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Figure 3.2-1: The computational mesh with triangular elements on the inner domain and wall boundary layers consisting
of quadrilateral elements tightly packed in the direction normal to the wall.

3.2.7 Stationary and transient solvers

For the stationary solver, COMSOL uses Newton’s method (Newton-Raphson) to solve the
non-linear Navier-Stokes equations [34]. The non-linear solver iterates to find the solution,
and for each iteration the non-linear system of equations is linearized and solved using a
linear solver [34]. These linear solvers are either direct or iterative [35]. For most simulations
of this thesis, a direct linear solver was used due to them being more robust than iterative
solvers. This was also the default choice made by COMSOL for most simulations. The direct
solver makes use of Gaussian elimination, or LU factorization, to solve the linearized matrix
system. For the simulations with the k — w turbulence model, the turbulence quantities were
solved separately from the velocity and pressure by using a segregated solver, and the default
solvers chosen by COMSOL were always used. The low Reynolds k — e model simulations
were solved using a segregated solver as well.

Two time-dependent solvers are available in COMSOL: the BDF and Generalized Alpha
solvers [36]. The time-dependent simulations, of this thesis, were handled by the BDF time
solver, a solver based on backward differentiation formulas. This method is more stable than
the Generalized Alpha, something that was often needed for the problem of interest, though
damping of fast oscillations might be introduced, which is an unfortunate property of the
backward differentiation methods. The Generalized Alpha solver was used for comparison,
when possible, but this did not impact the results, regarding the quantities of interest.
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3.2.8 Studies and post processing

The main CFD studies involved simulations of the experimental measurements described in
Section 3.1, and also those of the previous study [4]. The CFD results were analyzed with
focus on:

e Pressure behavior along the stenosis models.
e Pulsatile flow effects.
e The total pressure drop dependence on the shape of the stenosis.

Since the pressure was mostly uniform in the radial direction, the pressure along the pipe was
investigated along a central line through the stenosis model, and not averaged in separate
cross-sections. For total pressure drop measurements, the spatial (cross-sectional) average
pressure at the model inlet was calculated. Since the pressure was set to zero at the outlet, the
inlet pressure corresponded to the total pressure drop. The pulsatile effects on the pressure
were investigated by looking at the total pressure drop at different points in time, mainly
comparing the systolic and diastolic pressure drops. To investigate the effects of different
stenosis shapes the pressure drop was compared for the different stenosis models. In addition,
a separate angle study was performed where the stenosis inlet and outlet angles were varied
while the effects on the total pressure drop were studied. The inlet and outlet angles were
varied separately and the angle held constant was set to 20 degrees. The pressure drop
dependence on the stenosis diameter was investigated by simply varying the diameter.

In addition to the main studies, several shorter studies were made to further evaluate the
validity of the CFD simulations (see Appendix D). These studies were meant to investigate:

e The velocity profiles right before the stenosis inlet.

e The pressure drop corresponding to (2.1.6) and (2.1.7) for cylindrical and annulus pipe
flow, respectively.

e The effects of the manual catheter adjustments made during measurements.

o Wall lift-off and wall lift-off in viscous units for the turbulence model simulations that
utilized wall functions.

30



31



4  Results

The following section contains all collected results related to the specific aims of the project.
The pressure behavior inside the models is presented for the catheter measurements, as well
as the total pressure drop as a function of flow rate. The pressure drop dependence on the
geometry of the stenosis (inlet, outlet and diameter) and pulsatile flow effects are investigated.
The chapter ends with a presentation of the no-catheter measurement results in order to
determine the effects introduced by the inclusion of the catheter pressure sensor.

4.1 Pressure behavior

4.1.1 Pressure along the stenosis models

The time-averaged pressure behavior along the 1.0 mm model for pulsatile flow (mean flow
rate of 129 ml/min) is presented in Figure 4.1-1 and Figure 4.1-2. The results for the
laboratory experiments showed a major pressure decrease over the stenosis region and
pressure recovery downstream of the stenosis outlet. The pressure decrease was the largest at
the stenosis inlet, partly due to the static to kinetic pressure conversion, but the pressure also
decreased considerably inside the stenosis. The laminar CFD results agreed with the exper-
imental results up to the stenosis outlet, but downstream of this point the observed pressure
recovery was slower than in the experiments. However, when looking at the total pressure
drop (the irreversible pressure loss over the entire model plus the added extension), the results
showed that the laminar simulation predicted the expected pressure recovery (approximately)
but further downstream than in the experiments. The turbulence model simulation, on the
other hand, severely underestimated the total pressure drop, but showed a much faster
pressure recovery at the outlet, more in line with the experiments. The length of the separation
zones (at the stenosis outlet) for the 1.0 mm artery model can be seen in Figure 4.1-3 and
Figure 4.1-4 for the laminar simulations and the turbulence k — w simulations, respectively.
For the turbulence model, the recirculation length was slightly longer than one centimeter,
while the laminar model simulation yielded a recirculation length that extended up to more
than ten centimeters. Flow separation was also observed at the stenosis inlet (in the CFD-
simulations) where a slight pressure recovery can be seen (Figure 4.1-2). The CFD
simulations corresponding to the previous study, [4], were very similar to the ones presented
here, thus only the total pressure drop results are presented for those simulations (see Table
4.1-1).
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Figure 4.1-1: Time-averaged pressure along the 1.0 mm artery stenosis model for pulsatile flow (mean flow rate of 129
ml/min). The CFD simulations are compared to the experimental values. The error bars show the standard deviations for
the mean pressure measurements.
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Figure 4.1-2: Closer look at the pressure along the 1.0 mm artery stenosis model for pulsatile flow (mean flow rate of 129

ml/min). The CFD simulations are compared to the experimental values. The error bars show the standard deviations for
the mean pressure measurements.
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the laminar flow simulation (1.0 mm artery model). The color scale represents the radial velocity. The lower plot shows
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the turbulence model k — w simulation (1.0 mm artery model). The color scale represents the radial velocity. The mean
flow was 129 ml/min.

The corresponding results for the agueduct model can be seen in Figure 4.1-5 and Figure 4.1-
6. The experimental results showed a smaller total pressure drop compared to that of the 1.0
mm artery model, for approximately the same flow rate. The experimental results also showed
that the pressure recovery occurred within 1-2 centimeters downstream of the stenosis outlet,
for both flow directions. The laminar simulations overestimated the total pressure drop while
(still) underestimating the adverse pressure gradient. However, the laminar simulation results
were still relatively close to the experimental results inside the stenosis region. The turbulence
model simulations were in much closer agreement with the experiments regarding both the
pressure drop and the adverse pressure gradient, though the length of the separation zone was
slightly underestimated for the smooth inlet simulation (early pressure recovery). In addition,
the turbulence model simulation with the abrupt stenosis inlet predicted a larger pressure
decrease at the stenosis inlet than expected, resulting in lower pressure inside the stenosis
region, and quick pressure recovery right at the stenosis outlet, something that was not seen in
the experiments. The results for the higher flow rate (=170 ml/min) yielded similar results,
thus only the total pressure drop data is presented for those measurements (see Table 4.1-1).

When comparing the experimental results for the two flow directions (Table 4.1-1), no major
difference could be seen in the total pressure drop between the two, only a slight difference of
2 mmHg for the increased flow rate (=170 ml/min). The laminar simulations yielded a
slightly larger pressure drop for the abrupt stenosis inlet, for both flow rates investigated,
while the turbulence model showed minimal differences. The experimental data, from the
pulsatile flow measurements, can be found in Appendix E.
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Figure 4.1-6: Time-averaged pressure along the simplified aqueduct model (smooth narrowing proximal to the flow) for
pulsatile flow (mean flow 130 ml/min). The CFD simulations are compared to the experimental values. The error bars
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Table 4.1-1: The total pressure drop under pulsatile flow for the different stenosis models and mean flow rates. The
numbers in parenthesis represent data from the previous study [4].

Stenosis Mean flow Average total Average total Average total
model rate (ml/min) pressure drop, pressure drop, pressure drop,
experiments laminar model turbulence model
(mmHg) (mmHg) (mmHg)
Artery model 1.0 129 73.0 74.0 58.4
mm
Arteryr:]nrtr)]del 1.0 (126) (70.5) 71.0 55.8
Artery r:]nr?]del 1.0 (173) (123.5) 122.5 105.1
Aqueduct model, 130 60 74.3 57.6
smooth inlet
Aqueduct model, 131 60 77.2 57.3
abrupt inlet
Aqueduct model, 173 92 122.5 99.8
smooth inlet
Aqueduct _model, 172 94 126.7 98.5
abrupt inlet

4.1.2 Total pressure drop as a function of volumetric flow rate

To investigate the total pressure drop, from the model inlet to the end of the extension, and its
dependence on the flow rate, the results from several constant flow measurements were
compared. The results for the 1.0 mm artery stenosis model can be seen in Figure 4.1-7. The
results showed good agreement between the laminar simulations and the experimental values
for intermediate flows, while the difference was larger for the lowest and highest flow rates.
The turbulence model predicted a lower pressure drop than expected for the 1.0 mm artery
model, with the lowest flow rate of 58 ml/min being the only exception. The same
investigation was made for the 1.5 mm artery stenosis model which showed a similar behavior
(Figure 4.1-8). The point corresponding to the lowest flow rate indicated a negative pressure
drop in the experiments, which is unrealistic. This measurement error was likely caused by a
drift in the pressure sensor signal. When comparing the results for the two artery models, it is
clear that the increase in stenosis diameter, from 1.0 mm to 1.5 mm, yielded a considerable
decrease in the pressure drops. For the aqueduct model, the turbulence model simulations
yielded results that were closer to the experimental results than the laminar simulations
(Figure 4.1-9 and Figure 4.1-10). The laminar simulations overestimated the pressure drop
for all flow rates investigated, and the turbulence model simulations agreed well with
experiments for low and intermediate flow rates. The difference between experiments and
simulations increased for increasing flow rates, for both CFD approaches. The results also
showed that the pressure drop was slightly non-linear in its dependence on the flow rate for all
stenosis models (see Appendix F). The pressure drop data, for the constant flow
measurements, can be seen in Appendix E.
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4.2 Geometry Parameter Study

In the CFD simulations, the stenosis inlet and outlet angles were varied in order to investigate
the resulting effects on the total pressure drop. The resulting pressure drops as a function of
the outlet and inlet angles, respectively, can be seen in Figure 4.2-1 and Figure 4.2-2 for the
laminar simulations and different Reynolds numbers. The results show that the total pressure
drop increased for increasing values of the outlet angle. For larger angles, the outlet angle
dependency diminished, resulting in approximately the same total pressure drop for angles
over 40-50 degrees. The Reynolds number, within the tested range (450-1200), seemed to
have an influence on the magnitude of the difference only, while the shape of the curve
remained the same. This was in contrast to the results for the inlet angle investigation, where
the pressure drop seemed to fluctuate slightly for different angles but showed no clear trend
until the flow rate (or Reynolds number) was increased. For higher Reynolds numbers, the
pressure drop was generally more sensitive to changes in the inlet and outlet angles. The
turbulence model simulations yielded similar results as the laminar simulations, and are not
presented.
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Figure 4.2-1: The total pressure drop as a function of the outlet angle for different Reynolds numbers (for CFD laminar
flow simulations). The inlet angle was kept at an angle of 20 degrees. Re=459 (upper left), Re=852 (upper right) and
Re=1134 (lower left). The Reynolds numbers correspond to the flow rates 70, 131 and 173 ml/min.
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To further investigate geometrical effects, the stenosis diameter was varied in the laminar
flow simulations to observe the change in total pressure drop over the aqueduct model (Figure
4.2-3). The results showed a strong diameter dependency, where an increase in the stenosis
diameter by only three percent (i.e. 0.03 mm) vyielded a total pressure drop that was
considerably lower than that of the 1.0 mm stenosis diameter simulations. Turbulent flow
simulations were also performed but yielded a similar reduction, thus those results are not

presented.
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4.3  Pulsatile effects on the pressure drop

The Womersley number for the problem configuration, according to (2.1.13), was approx-
imately Q =~ 3.86, implying that a phase shift between the flow rate oscillations and the
pressure gradient oscillations might be introduced, as well as possible damping of the flow
rate oscillations. Since (2.1.13) only include parameters that were held constant, the
Womersley number was the same for all measurements.

For the full pulse, corresponding to a volume of 0.4 ml, the laminar model simulations failed
to converge while the turbulence model predicted a much higher peak-to-peak pressure drop
than the experimental measurements showed (see Figure 4.3-1 for the 1.0 mm artery model
results). The results also showed that the predicted pressure drop curve was not symmetric,
despite a symmetric sinusoidal flow rate input, where the crests were farther from the mean
pressure drop value than the troughs.
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Figure 4.3-1: The total pressure drop as a function of time for pulsatile flow through the 1.0 mm artery stenosis model,
corresponding to a volume pulse of 0.4 ml and a mean flow rate of 129 ml/min. A converging solution was only acquired
for the k — w turbulence model simulation.

The pulse size was investigated by applying the acquired pressure results from the laboratory
experiments (from Appendix E) as a pressure inlet condition to the CFD models. The resulting
flow rate behavior led to the conclusion that a pulse of 0.1 ml would yield approximately the
correct pressure amplitude size, a serious reduction from 0.4 ml. The CFD results for this
reduced pulse, together with the experimental results, can be seen in Table 4.3-1. The results
showed that the systolic-diastolic differences (or peak-to-peak values) for the pressure drop
were much closer to that of the experiments for the reduced pulse size of 0.1 ml compared to
the full 0.4 ml pulse. The results also showed that the peak-to-peak pressure drop increased
slightly for increasing mean flow rates, both in the experiments as well as in the CFD
simulations, despite keeping the pulse size constant. In addition, the peak-to-peak pressure
drop was found to be slightly larger for the abrupt inlet measurements compared to the
smooth inlet measurements (true for the CFD simulations as well).
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Table 4.3-1: The difference in systolic and diastolic pressure drops for the different models and mean flow rates. The CFD
results represent a volume pulse of 0.1 ml and the experimental results a pulse of 0.4 ml.

Stenosis model Mean flow Experimental Peak-to-peak Peak-to-peak
rate (ml/min) peak-to-peak pressure drop, pressure drop,
pressure drop laminar model  turbulence model
(mmHg) (mmHg) (mmHg)
Aqueduct model, 130 39.2 36.5 31.6
smooth inlet
Aqueduct_model, 131 395 30.1 33.1
abrupt inlet
Aqueduct _model, 173 42.0 47.7 41.6
smooth inlet
Aqueduct model, 172 44.2 50.8 43.9
abrupt inlet
Artery model 1.0 129 43.2 36.3 33.2
mm

To further estimate how large the pulses through the stenosis models were in reality, the
experimental results for the total pressure drop versus the flow rate, from the constant flow
measurements (Section 4.1.2 and Appendix E), were fit to polynomial functions (one for each
stenosis model) in order to get a mathematical description of the flow rate dependency (see
Figure 4.3-2 and Appendix F). By inserting the maximum and minimum pressure drop values
acquired from the pulsatile flow experiments into the resulting equations, the oscillatory flow
rate amplitude (4,5.) was approximated. Equation (3.2.3) was then used to find the
approximate volume of the pulses (A,sc => Vipserteq)- The collected results can be seen in
Table 4.3-2. The results pointed to a major reduction in the volume pulse, relatively close to
the pulse approximated by applying the pressure inlet condition in the simulations, for all
stenosis models. Applying the same procedure to the pressure data from the previous study
[4], where an extra resistance was added downstream of the stenosis outlet, the pulse size was
estimated to have been even smaller than 0.1 ml.
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Figure 4.3-2: A quadratic fit for the pressure vs. flow rate data for the aqueduct model, with the abrupt narrowing
proximal to the flow. The coefficient of determination, R%, was 0.9983 for the quadratic fit.
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Table 4.3-2: The estimated pulse volumes and the corresponding mean flow rates for the different stenosis models under
pulsatile flow. The numbers in parenthesis are based on data from the study previously published [4].

Stenosis model Mean flow rate Estimated pulse
(ml/min) volume (ml)

Aqueduct model,

abrupt proximal

Aurtery stenosis

model 1.5 mm (203) (0.08)
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4.4  Removing the catheter sensor

The total pressure drop was also measured with the Likvor CELDA® System so the catheter
tip pressure sensor could be removed, simplifying the flow geometry. This was done to
observe possible effects that the catheter tip pressure sensor had on the pressure drop. Since
the Likvor CELDA® System only measured the total pressure drop, the pressure behavior
inside the stenosis region could not be measured. The results for these additional measure-
ments showed that the time-average of the total pressure drop, for pulsatile flow, was
considerably lower for the no-catheter measurements compared to the measurements with the
catheter, for similar flow rates (see Figure 4.4-1). There was a difference of about 30 mmHg
between the two, for the 1.0 mm artery model, implying a major effect from the catheter tip
pressure sensor. The graph in Figure 4.4-1 also shows that the laminar simulations captured
the difference in total pressure drop between the catheter and no catheter measurements.
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Figure 4.4-1: The time-averaged total pressure drop (one value) over the 1.0 mm artery stenosis model for pulsatile flow,
with and without the catheter sensor (mean flow rates were 129 ml/min and 125 ml/min, respectively). The resulting
pressure curves along the stenosis model for the laminar flow simulations are also included. CELDA corresponds to the

no-catheter measurements.

For the CELDA measurements, low Reynolds number k — ¢ turbulence model simulations
were included in addition to the laminar and k — w turbulence model simulations. The results
for the 1.0 mm artery model can be seen in Figure 4.4-2 and Figure 4.4-3, for a flow rate of
125 ml/min. The laminar and k — w turbulence model results were very similar to the ones
corresponding to the catheter measurements. The low Reynolds number model, however,
predicted both the same pressure drop as seen in the experiments (approximately) and the
steep adverse pressure gradient present during the catheter measurements.
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Figure 4.4-2: CFD results for the pressure along the 1.0 mm artery stenosis model and the experimentally estimated total
pressure drop (one value) are presented. The results correspond to the no catheter (CELDA) measurements under
pulsatile flow, mean flow rate 125 ml/min.
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Figure 4.4-3: Close-up of the pressure along the 1.0 mm artery stenosis model corresponding to the no catheter (CELDA)
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measurements under pulsatile flow, mean flow rate 125 ml/min, for the CFD simulations.
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5 Discussion and Conclusion

5.1 Discussion

The experimental results agreed with the ones previously found [4], including already
established pressure behavior such as a major pressure decrease over the stenosis and a small
pressure recovery downstream of the stenosis outlet (Figure 4.1-2, Figure 4.1-5 and Figure
4.1-6). In addition, the results verified the occurrence of flow separation at the stenosis outlet
for the stenosis models used, which was further implied by the CFD simulations (Figure 4.1-1
to Figure 4.1-6). The precise length of the separation region at the stenosis outlet was difficult
to determine due to the catheter tip pressure sensor being adjusted manually, but the length of
the separation zone never exceeded 15 mm (see Appendix E). It is worth noting that the
pressure fluctuated considerably just after the point of flow separation, especially for the
measurements with the more abrupt stenosis outlet. Based on the constant flow
measurements, the pressure drop seemed to have a slightly non-linear dependence on the flow
rate within the tested flow interval (see Appendix F), something that was also implied by the
approximated flow rate dependency in (2.1.10). Regarding flow regimes, the experimental
measurements could not verify whether flow was laminar or turbulent. Based on the Reynolds
numbers for the measurements (Appendix C) it is possible that both laminar and turbulent
flow occurred during the measurements. However, the Reynolds numbers at the model inlet
always predicted laminar inflow.

For the 1.0 artery model, the laminar simulations showed promise when used to determine the
time-averaged pressure behavior up to the stenosis outlet, for pulsatile flow, but could not
describe the observed pressure recovery correctly (Figure 4.1-1). For the constant flow
measurements, the total pressure drop was close to the experimental results for both artery
models, for intermediate flow rates that is (Figure 4.1-7 and Figure 4.1-8). For the aqueduct
model, the laminar flow simulations overestimated the pressure drop for both flow directions
(Figure 4.1-5, Figure 4.1-6, Figure 4.1-9 and Figure 4.1-10). However, the pressure inside
the stenosis region was fairly close to the experimental values for this model as well. Thus if
investigations of pressure inside the stenosis region are of interest, then the laminar model
might suffice. However, the inability to correctly describe the behavior of the adverse
pressure gradient (or pressure recovery) hinders studies of the flow downstream of the
stenosis.

The turbulence k — w model simulations better predicted the length of the separation zone
(Figure 4.1-1, Figure 4.1-5 and Figure 4.1-6) and yielded fairly accurate pressure drops for
the aqueduct model while underestimating the pressure drop for the artery models (Figure
4.1-7 to Figure 4.1-10). However, the wall lift-off (Appendix D) was quite large compared to
the dimensions of the geometry, i.e. the model diameter, possibly indicating that the chosen
turbulence model approach was not a good fit for this flow problem. The strange behavior in
the stenosis region for the abrupt inlet simulation (Figure 4.1-5) further indicates this.
However, without knowing for sure if the flow in the experiments was laminar or turbulent
(or both), it is difficult to draw any final conclusions. Despite these facts, when comparing the
resulting pressure behavior in the experiments with that of the CFD simulations, it is strongly
indicated that, at least, the flow at the stenosis outlet was turbulent, and that turbulence
modeling is needed in order to correctly describe the flow separation there (for the flow rates
tested). The introduction of turbulence in stenoses, for laminar inflow, has also been discussed
in similar studies [7, 37]. The introduction of turbulence was also indicated by the results
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acquired for the CELDA measurements and the corresponding CFD simulations (Figure 4.4-2
and Figure 4.4-3) where the low Reynolds k — ¢ turbulence model predicted the expected
pressure behavior along the entire stenosis model (if assuming similar pressure recovery as for
the annulus/catheter measurements).

When investigating flow in both directions through the aqueduct model, the change in
stenosis inlet/outlet geometry did not seem to have any major effect on the total pressure drop,
although the pressure drop was slightly larger for the abrupt inlet, something both the
experiments and laminar CFD simulations agreed on (Table 4.1-1). This is also consistent
with the angle study of Section 4.2, based on CFD simulations. The results in Figure 4.2-1
and Figure 4.2-2 showed that the total pressure drop was not very sensitive to changes in the
stenosis inlet and outlet shapes for angles over 40-50 degrees, except for high flow rates
where the pressure drop was more sensitive to changes in the inlet angle. Thus having the
abrupt inlet proximal to the flow is more likely to yield a slightly larger pressure drop since all
stenosis models used in this thesis had angles above 40 degrees. The sensitivity at the inlet is
reasonable, since more abrupt contractions can greatly affect the separation zone created
there, while separation at the outlet happens immediately, unless the enlargement is very
smooth. Similar results for the outlet angle have been shown in other publications [16, 38].

One important aspect that the experiments and the CDF simulations did not agree on is the
difference in the total pressure drop between the 1.0 mm artery model and the aqueduct model
(also 1.0 mm in stenosis diameter) that was observed during the experimental measurements
(Table 4.1-1), for similar flow rates (= 130 ml/min). This result was contradicted by the
CFD simulations, where the difference in pressure drop between the two stenosis models was
very small (Table 4.1-1). Since neither the results for the two flow directions (Table 4.1-1)
nor the CFD angle study (Figure 4.2-1 and Figure 4.2-2) could explain the observed pressure
drop difference, it is unlikely that this difference was caused by different stenosis inlet/outlet
shapes. One of the most important geometric parameters is the stenosis diameter, indicated
both by the CFD diameter study (Figure 4.2-3) as well as the theoretical expressions (2.1.5)
and (2.1.8). These results indicate that only a small diameter increase is needed for a notable
decrease in pressure drop, at least when the catheter is present. Thus possible deviations in
stenosis diameter, from 1.0 mm, in any of the models, could be a major contributor to the
unexpected difference in pressure drop between the two stenosis models. Uncertainties in the
pressure and flow rate measurements could also have contributed, but due to the low
variations in both the pressure and flow measurements (see Appendix E) this would only
explain a small part of the observed difference.

For the pulsatile flow measurements, the pressure variations, due to the oscillations, increased
with increasing net flow rates (Table 4.3-1), both for the experimental measurements and
CFD simulations, despite the fact that the pulse volume and the pulsation rate were kept
constant. This result is in line with the theoretical expression in (2.1.15). The results also
indicated a slight increase in the pressure variations for the abrupt inlet compared to the
smooth inlet, though no major differences were observed (true for both the simulations and
experimental measurements). The CFD simulations also indicated non-symmetrical pressure
drop variations (Figure 4.3-1) despite the symmetrical flow rate input, which highlights the
non-linear flow rate dependency. However, the pulses through the stenosis models were
estimated to have been much smaller than those the syringe pump was programmed to
produce. These damped oscillations could be due to elasticity of the tubes connecting the
stenosis models to the syringe pump. The only way the pulsations could travel was within the
flow line, thus making it probable that the tubes were expanded more and more as the
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resistance increased at the stenosis end. This would agree with the fact that the estimated
pulse sizes for the measurements from the previous study [4], where an extra resistance was
added at the end of the stenosis models, were about half the size compared to the ones of this
thesis (see Table 4.3-2). Other than elasticity, the Womersley number for the problem
configuration, according to (2.1.13), also imply possible damping of the flow rate (Q = 3.86),
though no such damping was observed in the CFD simulations. It is possible that the
simulations were unable to recreate this effect, something that should be investigated by
performing a frequency study, both experimentally and in the simulations.

5.2  Conclusions

This thesis has shown that flow separation takes place at the stenosis outlet, extending
downstream of the point of separation, for all flow rates and stenosis models investigated. The
CFD simulations showed that the laminar and turbulent flow simulations could not fully
describe the velocity and pressure distributions throughout the stenosis models, separately,
hence it is highly probable that a method that can handle both laminar and turbulent flow is
needed. The low Reynolds number turbulence model implemented in COMSOL showed
promising results on this front and warrants further investigation.

The peak-to-peak pressure drop (Aps,s — Apgiq) for pulsatile flow was shown to increase for
increasing net flow rates, despite the fact that the pulse volume going through the stenosis
models were kept at constant volume and pulsation rate. However, the results also indicated
that the experimental approach introduced severely diminished pulse sizes, compared to what
was expected. The most likely reasons for this are elasticity in the tubes along the flow line
and/or damping due to the high frequency of the oscillations. Since knowledge of the
oscillating flow rate is essential, the experimental setup should be further investigated and
possibly revised.

For the aqueduct model, the pressure variations, and mean total pressure drop, showed a slight
increase when the model was positioned with the abrupt stenosis inlet proximal to the flow,
compared to the smooth inlet results, although no major difference was observed for the two
flow directions. The CFD simulations further implied that the pressure drop was largely
unaffected for large discharge angles, indicating that the transition has to be very smooth for
there to be any substantial impact on the pressure drop, for the range of flow rates tested. The
observed difference in pressure drop between the aqueduct model and the artery model of the
same diameter could not be fully explained. The CFD simulations and the theoretical
predictions indicated that the pressure drop was strongly dependent on the stenosis diameter,
thus unexpected differences in the stenosis diameters is a likely reason for this observed
difference in pressure drop. This also indicates that an accurate assessment of the stenosis
diameter is of utmost importance when comparing pressure distributions for different stenosis
models.

In addition, the chosen approach for measuring pressure inside the stenosis models (with the
catheter pressure sensor) was shown to introduce a major increase in the total pressure drop as
well as complicating the geometry of the problem, making simulations more difficult to
perform.
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5.3 Limitations and Future work

One of the main limitations of this thesis was the inability to confirm whether the flow in the
experiments was laminar or turbulent. The collected results indicate the possibility of both
types of flow, which makes simulations more difficult. Currently there are no turbulence
models implemented in COMSOL that are designed with the aim to handle global flow
transitions (from laminar flow to turbulent flow), but the low Reynolds k — & model showed
promise when applied to the problem in question and should be evaluated further. It might
also be a good idea to try additional turbulence models. One model worth trying is the low
Reynolds k — w model since it resolves the boundary layers and has been found to yield
good results in similar studies [7, 37]. As of yet it is not implemented in COMSOL, but it
could be implemented manually. Large Eddy Simulations (LES) could be an alternative,
where the small scale turbulent eddies are modeled while the large scale turbulent eddies are
computed directly. However, LES comes at a higher computational cost than the RANS
approach, and the method is not implemented in COMSOL at this time. Another possible way
to continue this project would be to try and manually introduce turbulence, in the
experiments, to further evaluate the turbulence models tested in this thesis.

The experimental measurement method should be further evaluated due to elasticity of the
tubes being a highly probable cause of the diminished pulsations. The effects of different
pulsation frequencies should also be investigated to determine the frequency dependency.
Another alternative could be to continue the CFD studies with elastic vessels. It is an
advantage of COMSOL that it can handle combined physics problems (Multiphysics) such as
fluid structure interactions (FSI), which is needed for studies of flow through elastic vessels.
Furthermore, the ability to construct the geometry and the mesh in COMSOL makes the
software easy to use and eliminates the need for additional meshing software. One of the
disadvantages with COMSOL is that it might be slightly limited regarding options for
transitional and turbulent flow, at this time. For this reason, other software with more options
for CFD, and turbulence modeling in particular, could be of interest. Another option is to
manually implement the desired turbulence models in COMSOL.

One additional problem with the current equipment is the need to insert a catheter for
measuring pressure within the stenosis models. This complicates the geometry, and due to
bending of the catheter, it is difficult to fully recreate this geometry in the simulations. In
addition, if the diameter sensitivity is as strong as the CFD simulations suggest, when the
catheter is included (Figure 4.2-3), it will be difficult to measure the stenosis diameters, of the
experimental models, to the accuracy needed, since as little as tens of micrometers will have a
major effect on the results. Despite these problems, the laminar flow simulations managed to
capture the increase in the pressure drop (roughly 30 mmHg) due to the addition of the
catheter, for the 1.0 mm artery model. Thus the approximation of a stationary and centered
catheter (in the simulations) was indeed reasonable.
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Appendices
Appendix A

Derivation of annulus pressure drop

By starting with the Navier-Stokes system of equations for incompressible flow of a
Newtonian fluid (here in differential form)

V-i=0 (A1)

ou .
p (E +u- Vﬁ) = —Vp + uV%i + f, (A.2)
where V is the del operator, the pressure drop can be derived for constant laminar flow
through a straight annulus. Since the geometry in this thesis was placed horizontally and no
outer body forces, other than gravity, were present, the f term vanishes. By using cylindrical
coordinates, equation (A.1) becomes

la(prur) + la(Pue) + d(pu,) - 0. (A.3)
r or r 00 dz
By assuming that the only non-zero velocity component is in the direction of the flow (i.e.

along the z-axis), and making use of axial symmetry (no angle dependency), equation (A.3)
reduces to

Ju,

= 0. (A.4)
0z 0
Using (A.4) the momentum equations (A.2) for steady flow are reduced to
1d/ du, dp
el - = (A.5)
H [r dr (r dr )] dz
o _ (A6)
5 0.

Because of (A.6) and axial symmetry, it can be seen that the pressure only changes in the z-
direction. In addition, for fully developed steady flow, the velocity does not change in the
direction of the flow, implying that u, is a function of r only. Since the LHS of (A.5) only
depends on r and the RHS only depends on z, both sides of (A.5) must be constant.
Integrating (A.5) with respect to r yields
1 0
U, = —@<— O_Z) 2+ cylnr + ¢, (A.7)

where the constants c; and c, are determined by the boundary conditions at the walls (u, = 0)

(rf —12) = (2 = 1) (A8)

_ Lo n(;,)

)
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with r; and r, being the smaller and larger radius of the annulus pipe, respectively. Integrating
(A.8) over the cross-section of the pipe

Q = fuz(r)ZHrdr (A.9)

gives an expression for the flow rate

m(rf — rf)( ap) 22 T2
— = + 72— ) A.10
Q 81 a2/ |2 T n (7‘_2) ( )
r
Since the pressure gradient in the z-direction is constant, it can be expressed as
9] A
- a_” = const = Tp (A12)

where L is the length of the pipe section and Ap is the pressure difference over the same
section. Together (A.10) and (A.11) yield the final expression for the pressure drop

3
pp = BHQL In ()
n(ry — 1) (r2+72)1n (:—2) — (-1 ' (A.12)
1
rn<rsrmn

which is equivalent to (2.1.7). Inserting (A.12) in (A.8) yields the velocity profile described
by (2.1.12).

NOTE: In a similar fashion, the pressure drop and velocity profile for Poiseuille flow can be
derived using the same principles and starting equations.
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Appendix B

The mesh study

The computational mesh, dividing the computational domain into smaller elements, was
evaluated in order to minimize errors in the CFD simulations. Since the geometry of the
problem contained sharp edges at the stenosis inlet and outlet, mesh refinements were made in
those areas. In addition, the mesh was refined along the line of flow separation, similar to the
mesh constructed in the COMOL model library file: Turbulent flow over a backward facing
step® (see Figure B-1). In addition, the number of finite elements (and thus also the number of
degrees of freedom) was increased, in succession, to investigate whether the quantities of
interest (pressure drop and recirculation length) were dependent on the mesh chosen. These
mesh studies, for the different stenosis models, are presented below (Table B-1 to Table B-6).
The results show that the solution was mesh dependent, since the quantities of interest varied
even for very fine meshes that consisted of a large amount of elements. In addition, the
recirculation length for the laminar model simulations increased when the number of elements
was increased, which is the opposite of what was expected, since the laminar model already
overestimated the recirculation length for coarse meshes. Thus the pressure drop was the
primary quantity considered when choosing the mesh, and the recirculation length was the
secondary. However, the pressure drop seemed to fluctuate even for very dense meshes, but
these fluctuations were quite small even when comparing the finest and coarsest meshes.
Thus, for all models, a slightly coarser mesh was chosen to improve the simulation speed,
settling for a number of degrees of freedom around 500k. The turbulence model studies for
the 1.5 mm artery stenosis model and aqueduct model with smooth inlet were very similar to
the ones seen in Table B-5 to Table B-6 and are not presented.

3

Figure B-1: The mesh refinements along the line of flow separation. The red dashed line represents the boundary of axial
symmetry.

® The model can be found in the CFD Module Library Manual (2013).
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Table B-1: Mesh study for the laminar simulations applied to the 1.0 mm artery stenosis model and for a flow rate of 129
ml/min. Brown represents the mesh chosen.

Physics Domain Boundary Total Point of Number of  Degrees of
induced mesh mesh setting  Pressure  reattachment domain freedom
setting setting drop along the elements
(mmHg) model (m)
Normal Coarse Fine 72,52 0,104 72670 128997
Fine Normal Finer 71,64 0,114 123943 211317
Finer Fine Extra fine 73,99 0,14 305578 508686
Extra fine Finer Extremely 72,9 0,1585 750381 1219953
fine
Extremely Extra fine Extremely 72,71 0,1615 1376404 2160810
fine fine

Table B-2: Mesh study for the laminar simulations applied to the 1.5 mm artery stenosis model and for a flow rate of 203
ml/min. Brown represents the mesh chosen.

Physics Domain Boundary Total Point of Number of  Degrees of
induced mesh mesh setting  Pressure  reattachment domain freedom
setting setting drop along the elements
(mmHg) model (m)
Normal Coarse Fine 21,155 0,089 67208 120906
Fine Normal Finer 21,842 0,092 130856 221832
Finer Fine Extra fine 21,658 0,1055 307099 511428
Extra fine Finer Extremely 20,965 0,1162 737221 1200795
fine
Extremely Extra fine Extremely 21,24 0,117 1382746 2171025
fine fine

Table B-3: Mesh study for the laminar simulations applied to the aqueduct model (smooth stenosis inlet) and for a flow
rate of 130 ml/min. Brown represents the mesh chosen.

Physics Domain Boundary Total Point of Number of Degrees of
induced mesh mesh setting  Pressure  reattachment domain freedom
setting setting drop along the elements
(mmHg) model (m)
Normal Coarse Fine 70,98 0,1383 69525 124416
Fine Normal Finer 71,98 0,1383 116847 200811
Finer Fine Extra fine 74,3 0,155 324098 536886
Extra fine Finer Extremely 73,54 >0.173 747355 1215660
fine
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Table B-4: Mesh study for the laminar simulations applied to the aqueduct model (abrupt stenosis inlet) and for a flow
rate of 131 ml/min. Brown represents the mesh chosen.

Physics Domain Boundary Total Point of Number of  Degrees of
induced mesh mesh setting  Pressure  reattachment domain freedom
setting setting drop along the elements
(mmHg) model (m)
Normal Coarse Fine 77,395 0,1287 67777 121833
Fine Normal Finer 76,69 0,129 111037 191943
Finer Fine Extra fine 76,42 0,1605 275216 463638
Extra fine Finer Extremely 71,77 0,1635 790486 1280883
fine

Table B-5: Mesh study for the turbulence model simulations applied to the 1.0 mm artery stenosis model and for a flow
rate of 129 ml/min. Brown represents the mesh chosen.

Physics Domain Boundary Total Point of Number of Degrees of
induced mesh mesh setting  Pressure  reattachment domain freedom
setting setting drop along the elements
(mmHg) model (m)
Normal Coarse Fine 60,445 0,0365 90229 297255
Fine Normal Finer 58.53 0.0365 139505 439865
Finer Fine Extra fine 59,41 0,0365 378614 1129050

Table B-6: Mesh study for the turbulence model simulations applied to the aqueduct model (abrupt stenosis inlet) and
for a flow rate of 131 ml/min. Brown represents the mesh chosen.

Physics Domain Boundary Total Point of Number of Degrees of
induced mesh mesh setting  Pressure  reattachment domain freedom
setting setting drop along the elements
(mmHg) model (m)
Normal Coarse Fine 57,7 0,0387 85705 285670
Fine Normal Finer 57,26 0,0387 133356 423120
Finer Fine Extra fine 57,0 0,0386 330437 1008305
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Appendix C

The Reynolds numbers

The Reynolds number was calculated using equation (2.1.1) in both parts of the stenosis
models, i.e. the regular tube section and the stenosis region, for all measurements performed
(see Table C-1 to Table C-5). The effective diameter of the model tube and stenosis region
were used as the characteristic length for respective regions and the mean velocities were
calculated from (2.1.2) using the known flow rate and cross-sectional areas. The Reynolds
numbers predicted laminar inflow for all measurements performed, while the Reynolds
numbers within the stenosis region either bordered or surpassed the lower limit of the
transition region for cylindrical pipe flow, i.e. Re > 2000. The only exceptions were the
constant flow measurements with the lowest flow rates, where the Reynolds numbers were
clearly below 2000 in both regions. Due to these facts, it is difficult to determine whether the
flow was laminar, turbulent or both (i.e. transitional). It is also possible that the inserted
catheter sensor introduced some degree of turbulence.

Table C-1: The average Reynolds numbers for the pulsatile flow measurements.

Model Mean flow Inlet Reynolds Stenosis Reynolds
rate (ml/min) number number

Aqueduct smooth 130 864 2135
inlet

Aqueduct abrupt inlet 131 871 2152

Artery 1.0 mm 129 858 2119

Aqgueduct smooth 173 1150 2841
inlet

Aqueduct sharp inlet 172 1143 2825

Table C-2: The Reynolds numbers for the constant flow measurements with the 1.0 mm artery stenosis model.

Flow rate Inlet Reynolds Stenosis Reynolds
(ml/min) number number

58 386 953

119 791 1955

150 997 2464

194 1290 3186
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Table C-3: The Reynolds numbers for the constant flow measurements with the 1.5 mm artery stenosis model.

Flow rate Inlet Reynolds Stenosis Reynolds
(ml/min) number number
1417
1303 2354

1822 3291

Table C-4: The Reynolds numbers for the constant flow measurements with the aqueduct model (smooth narrowing as
stenosis inlet).

Flow rate Inlet Reynolds Stenosis Reynolds
(ml/min) number number

63 419 1035

1190 2940

Table C-5: The Reynolds numbers for the constant flow measurements with the aqueduct model (abrupt narrowing as
stenosis inlet).

Flow rate Inlet Reynolds Stenosis Reynolds
(ml/min) number number
==

1051
2 P
1971
.
1210 2989




Appendix D

The velocity profiles

The velocity profiles just upstream of the stenosis inlet for the CFD simulations were
compared to the theoretical expressions presented in Chapter 2. The results show that the
laminar model closely predicted the Poiseuille velocity profile (Figure D-1), while there was
a minimal difference between the laminar model and the theoretical expression for annulus
flow (Figure D-2). The turbulence k — w model made use of wall functions, thus the velocity
was not zero at the grid points closest to the wall (Figure D-3). The velocity profile was also
much flatter when compared to the laminar flow profile, which is a trademark for turbulent
flow. Since no well known expression for the turbulent velocity profile in an annulus could be
found, there were no theoretical expressions to compare to. The low Reynolds number model,
which was applied only for the no-catheter simulations, showed a velocity profile in between
the laminar and the fully turbulent analytical profiles (Figure D-4). It is worth noting that if
the turbulence intensity was lowered at the inlet, then the velocity profile from the low
Reynolds number model simulation coincided with the theoretical expression for laminar
flow. But because of the low intensity, the solution did not fully converge and thus it is not
presented.

072

Laminarmodel
< Theoretical laminar

Welocity (m/fs)

1] (1) 1 1.5
r-coordinate (m) w10~

Figure D-1: The velocity profile for cylindrical pipe flow right before the stenosis inlet according to the theoretical
expression for laminar flow (circles) and the laminar CFD simulations (line). The flow rate was 125 ml/min.
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Figure D-2: The velocity profile for annulus flow right before the stenosis inlet according to the theoretical expression for
laminar flow (dotted line) and the laminar CFD simulations (full line). The flow rate was 129 ml/min.

= Turbulenc e model k-omega I
0.33 F

.32+

0.31 ¢

03t

Welacity (mfs)

0.29 ¢

0.2 |

027 i i ]
] 0.5 1 1.5

r-coordirabe () w107

Figure D-3: The velocity profile for annulus flow right before the stenosis inlet according to the turbulent k — w model
simulations. The flow rate was 129 ml/min.
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Figure D-4: The velocity profile for cylindrical pipe flow right before the stenosis inlet according to the theoretical
expression for laminar flow (dotted), the low Reynolds k — € model simulations (full), and the 1/7th power law (dashed).
The flow rate was 129 ml/min.

Poiseuille and annulus pressure drops

To further evaluate the accuracy of the CFD simulations, the pressure drop for straight
channels was investigated for both Poiseuille and annulus flow. This was accomplished by
removing the non-linear term in the Navier-Stokes equations (2.2.7) in the CFD simulations,
creating what is known as Stokes flow, hence removing any convective effects. All pressure
losses can then approximately be described by the expressions in (2.1.6) and (2.1.7) for
Poiseuille and annulus flow, respectively. The results (Table D-1) showed that the pressure
gradients (i.e. Ap/L) acquired by CFD were close to the theoretical values, for all parts of the
stenosis model geometry. The largest difference was observed for the annulus stenosis region.
However, the effects of this difference did not yield any major difference in the pressure drop
because of the short length of the stenosis (Figure D-5). The same comparison was made for a
finer mesh but it did not affect the results. It should also be noted that the catheter did not
occupy the final stretch to the model outlet, hence the comparison with the Poiseuille pressure
gradient in Figure D-5. The differences between the theoretical and CFD pressure gradients
are likely due to the flow not being fully developed everywhere in the simulations (the theory
is based on fully developed flow).
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Table D-1: The theoretical and laminar flow simulation pressure gradients in the artery 1.0 mm stenosis model,
neglecting convective effects. For annulus flow, the smaller diameter corresponded to the catheter diameter (0.36 mm).
The flow rate was 129 ml/min.

Type of flow Theoretical pressure Laminar model pressure
gradient Ap/L gradient Ap/L
(mmHg/m) (mmHg/m)
Poiseuille flow, diameter -7.71 -7.69
3.0 mm

Annulus flow, large -14.23 -14.29
diameter 3.0 mm

Annulus flow, large -2583 -2680
diameter 1.0 mm

Creeping flow CED

| — — Poiseuille 3.0 mm diameter

L — — Annulus theony 1.0 mm diameber
------- Annulus theory 3.0 mm diamebet

25 -

Fressure fnmHg)

L | | |
o ooz 0.04 0.06 0.08 0.1 012 014 0.16
Position along maodel (m)

Figure D-5: Comparison of the pressure gradients for the CFD simulations and theoretical relations for cylindrical
(Poiseuille) and annulus flow when convective effects have been neglected. The results correspond to the 1.0 mm artery
model and a flow rate of 129 ml/min. The diameters for annulus flow presented in the legend correspond to the larger
diameter of the annulus, the smaller diameter corresponded to the catheter diameter (0.36 mm).
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The wall lift-off

The wall lift-off is an important quantity to consider when utilizing wall functions to describe
boundary layers for turbulent flow. The k — w model, utilizing wall functions, was used in
this thesis, thus the wall lift-off had to be investigated. All simulation yielded similar results,
thus only one example was included (see Figure D-6 and Figure D-7). The results showed
that the wall lift-off in viscous units was 11.06 everywhere, which was recommended by
COMSOL. On the other hand, the wall lift-off, which should be much smaller than the
geometry of the problem (D = 3.0 mm), was quite large in all parts of the stenosis models
except for the stenosis region and directly downstream of the stenosis outlet.

‘/'
oJ

vil1.06

Figure D-6: The wall lift-off in viscous units for the turbulence k — w model simulations.
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Figure D-7: The wall lift-off (in meters) for a typical turbulence k — w model simulation.

The moving catheter

During the experimental measurements of the pressure along the stenosis models, the catheter
had to be repositioned for each measurement, since the catheter sensor only had one specific
sensor point. However, for the CDF simulations it was desirable to keep the catheter
stationary in the position corresponding to the final measurement point (see Figure 3.1-3) in
order to minimize the computational time needed for the simulations. For this reason, the
pressure behavior along one of the three stenosis models was compared for stationary and
moving catheter simulations (Figure D-8). For the moving catheter simulations, the pressure
values were documented at the point of the sensor, i.e. 3.05 centimeters from the endpoint of
the catheter, for all measurement points. For the stationary catheter simulations, the pressure
was measured in a continuous central line along the stenosis model. The results were very
similar for both simulations, thus the stationary catheter approach was used throughout.
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Figure D-8: Pressure along the 1.0 mm artery stenosis model for both stationary and moving catheter simulations. The
flow rate was 129 ml/min.
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Appendix E

Pulsatile flow measurement data

The experimental results for the pulsatile flow measurements are presented in Table E-1 to
Table E-6, the first table containing flow rate data and the other five containing pressure data.
All pressure values, in every measurement point, are averages of six measurements (from six
series of measurements).

Table E-1: Flow rate data for the pulsatile flow measurements.

Model stenosis Mean flow rate Standard deviation mean
(ml/min) flow rate (ml/min)

Artery model 1.0 mm 128.75 1.07

Aqueduct model smooth 129.91 1.56
inlet

Agueduct model abrupt 130.65 0.88
inlet

Agueduct model smooth 173.00 1.33
inlet

Aqueduct model abrupt 171.63 1.31
inlet

Table E-2: Pressure data for the aqueduct model (smooth stenosis inlet) measurements under pulsatile flow. Mean flow
rate was 130 ml/min.

Position Systolic Diastolic Mean Systolic- Standard
along catheter catheter catheter diastolic deviation
model pressure pressure pressure difference  mean pressure
(mm) (mmHg) (mmHg) (mmHg) (mmHg) (mmHg)

8.5 79.2 40.0 59.6 39.2 1.1
18.5 78.3 40.2 59.3 38.2 1.4
26.8 79.0 40.2 59.6 38.8 1.8
28.5 72.0 36.2 54.1 35.8 7.0
32.0 13.7 6.7 8.8 7.0 1.2
35.5 0.5 -35 -2.8 4.0 2.9
385 -4.7 -12.8 -8.8 8.2 3.0
435 -13 -5.8 -3.6 4.5 1.1
48.5 1.0 -0.7 0.2 1.7 0.7
53.5 15 -0.3 0.6 1.8 0.8
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Table E-3: Pressure data for the aqueduct model (abrupt stenosis inlet) measurements under pulsatile flow. Mean flow
rate 131 ml/min.

Position Systolic Diastolic Mean Systolic- Standard
along catheter catheter catheter diastolic deviation
model pressure pressure pressure difference  mean pressure
(mm) (mmHg) (mmHg) (mmHg) (mmHg) (mmHg)

2.0 80.0 40.5 60.3 39.5 1.7
12.0 79.3 39.7 59.5 39.7 0.9
22.0 80.8 41.7 61.3 39.2 1.9
255 8.0 2.0 5.0 6.0 2.1
29.0 -1.3 -1.7 -45 6.3 1.9
30.7 -17 -8.3 -5.0 6.7 1.6
33.7 -05 -6.3 -34 5.8 1.6
38.7 2.8 -0.3 1.3 3.2 1.7
43.7 2.8 0.5 1.7 2.3 1.3
56.0 2.5 0.3 14 2.2 1.0

Table E-4: Pressure data for the 1.0 mm artery stenosis model measurements under pulsatile flow. Mean flow rate 129

ml/min.

Position Systolic Diastolic Mean Systolic- Standard
along catheter catheter catheter diastolic deviation
model pressure pressure pressure difference  mean pressure
(mm) (mmHg) (mmHg) (mmHg) (mmHg) (mmHg)

0.0 94.5 51.3 72.7 43.2 1.4
14.0 94.7 51.3 72.3 43.3 2.2
19.0 96.8 54.2 74.0 42.7 2.3
225 11.8 5.7 8.3 6.2 1.8
26.0 -25 -7.7 -6.3 5.2 1.7
57.0 1.2 -1.0 0.0 2.2 0.0
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Table E-5: Pressure data for the aqueduct model (smooth stenosis inlet) measurements under pulsatile flow. Mean flow
rate 173 ml/min.

Position Systolic Diastolic Mean Systolic- Standard
along catheter catheter catheter diastolic deviation
model pressure pressure pressure difference  mean pressure
(mm) (mmHg) (mmHg) (mmHg) (mmHg) (mmHg)

8.5 113.2 71.2 92.0 42.0 3.0
18.5 112.7 71.0 91.3 41.7 31
26.8 113.2 71.8 92.3 41.3 3.6
28.5 107.2 68.6 88.2 38.6 33
32.0 19.7 12.2 16.0 7.5 3.2
355 -4.0 -9.2 -6.5 5.2 0.8
38.5 -7.2 -17.2 -11.7 10.0 3.8
435 -2.7 -9.3 -6.0 6.7 35
48.5 1.3 -1.2 0.3 2.5 0.5
535 1.0 -0.8 0.2 1.8 0.8

Table E-6: Pressure data for the aqueduct model (abrupt stenosis inlet) measurements under pulsatile flow. Mean flow
rate 172 ml/min.

Position Systolic Diastolic Mean Systolic- Standard
along catheter catheter catheter diastolic deviation
model pressure pressure pressure difference  mean pressure
(mm) (mmHg) (mmHg) (mmHg) (mmHg) (mmHg)

2.0 116.7 72.5 94.3 44.2 2.0
12.0 115.5 72.2 93.6 43.3 1.9
22.0 119.8 78.2 99.1 41.7 55
255 9.2 3.2 6.2 6.0 1.7
29.0 -7.3 -13.7 -10.3 6.3 2.0
30.7 -75 -15.7 -11.3 8.2 1.5
33.7 -33 -11.3 -7.3 8.0 1.6
38.7 0.7 -3.0 -1.2 3.7 1.5
43.7 0.7 -1.0 -0.2 1.7 1.2
56.0 0.5 -1.3 -04 1.8 1.3
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Constant flow measurement data

The pressure drops for the constant flow measurements, corresponding to Figure 4.1-7
through Figure 4.1-10, are presented in Table E-7 to Table E-10. All constant flow
measurements were performed with the catheter pressure sensor. The resulting pressure drops
for the CFD simulations are also included.

Table E-7: The total pressure drop over the 1.0 mm artery stenosis model for a set of constant flow rates. Both the
experimental and CFD results are presented. Flow rates are presented by the measured mean value (+ standard

deviation).
Flow rate Experimental Pressure drop, Pressure drop,
(ml/min) pressure drop laminar model turbulence model
(mmHg) (mmHg) (mmHg)

57.55 (+£1.21) 12.0 20.4 125
118.75 (£1.27) 64.0 64.8 49.5
149.59 (£1.55) 92.0 95.8 7.7
193.98 (£1.35) 144.0 152.2 127.9

Table E-8: The total pressure drop over the 1.5 mm artery stenosis model for a set of constant flow rates. Flow rates are
presented by the measured mean value (+ standard deviation).

Flow rate Experimental Pressure drop, Pressure drop,
(ml/min) pressure drop laminar model turbulence model
(mmHg) (mmHg) (mmHg)

56.11 (40.93) -3.0 3.6 1.7
117.70 (+1.16) 8.0 8.9 6.5
169.11 (£0.84) 16.0 15.9 12.8
195.65 (+0.51) 20.0 20.4 17.0
235.90 (+1.41) 28.0 28.1 24.2
273.73 (+3.08) 43.0 36.4 32.4
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Table E-9: The total pressure drop over the aqueduct model (smooth stenosis inlet) for a set of constant flow rates. Flow
rates are presented by the measured mean value (+ standard deviation).

Flow rate Experimental Pressure drop, Pressure drop,
(ml/min) pressure drop laminar model turbulence model
(mmHg) (mmHg) (mmHg)

63.33 (1.00) 17.0 23.4 14.8

179.33 (£2.00) 99.0 130.6 106.1

Table E-10: The total pressure drop over the aqueduct model (abrupt stenosis inlet) for a set of constant flow rates. Flow
rates are presented by the measured mean value (1 standard deviation).

Flow rate Experimental Pressure drop, Pressure drop,
(ml/min) pressure drop laminar model turbulence model
(mmHg) (mmHg) (mmHg)

63.67 (+1.32) 15.0 236 14.4

120.00 (+0.5) 50.0 66.9 50.6

181.67 (+2.18) 109.0 142.0 116.0
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Appendix F

Polynomial fit for the constant flow measurements

The polynomial approximation made to the constant flow rate measurements are presented in
Figure F-1 to Figure F-4, including residuals and norm of the residuals corresponding to the
polynomial fit. It should be noted that the polynomial in Figure F-4 was fit to badly
distributed points that most certainly explains the smaller error residuals compared to the
polynomial fits in Figure F-1 to Figure F-3.
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Figure F-1: The pressure drop vs. flow rate for the 1.0 mm artery model and the corresponding quadratic fit with
residuals. The coefficient of determination, R?, was 0.9995 for the quadratic fit.

75



4 5 T T T T T T T T

40l

Ap=0.00091*0% - 014%Q + 13
ity
a0t
251

20+

Fressure drop fnmHg)

# Experimental i
Cladratic (4

5 1 | 1 | 1 | 1
100 120 140 160 180 200 220 240 260 280
Floww rake (milfmin)

residuals
2 T T T T T T T T

Quadratic: nemm of residuals = 2.5304

2 !

1 | | 1 | 1
100 120 140 160 180 200 220 240 260 280

Figure F-2: The pressure drop vs. flow rate for the 1.5 mm artery model and the corresponding quadratic fit with
residuals. The coefficient of determination, R, was 0.9910 for the quadratic fit.
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Figure F-3: The pressure drop vs. flow rate for the aqueduct model (abrupt stenosis inlet) and the corresponding
quadratic fit with residuals. The coefficient of determination, R?, was 0.9983 for the quadratic fit.
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Figure F-4: The pressure drop vs. flow rate for the aqueduct model (smooth stenosis inlet) and the corresponding
quadratic fit with residuals. The coefficient of determination, RZ, was 0.9999 for the quadratic fit.
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