

Bureau Veritas Minerals

2015 Schedule of Services and Fees (CAD) v.4

Mining Life Cycle

Exploration

Ultra trace geochemistry

Trace geochemistry

Ore grade assays

Site services

Development

Ore grade assays

Geometallurgy

Mineralogy

Operations

Trade

Baseline Environmental

Assay Techniques

Pilot Plant

Remediation-Closure

Acid Mine Drainage

Tailings

Humidity Cells

Water Monitoring

Bureau Veritas Minerals Laboratories (BVML) services is a global full services provider for exploration, metallurgical and mining analytical testing through over 60 laboratories worldwide.

Bureau Veritas is a world leader in Testing, Inspection and Certification (TIC) services with over 1300 offices in 140 countries worldwide, providing services for marine, consumer products, petroleum, environmental, food, construction materials and mining.

GLOBAL NETWORK

140 COUNTRIES | 1330 OFFICES & LABS | OVER 66,000 EMPLOYEES

Established in 1828, Bureau Veritas is a global leader in Testing, Inspection and Certification services related to QHSE. Bureau Veritas support and protect people, environments, critical assets, major projects and businesses around the world.

EMEA

- 640 offices
 and laboratories
- **30,000** employees
- 88 countries

ASIA-PACIFIC

- 420 offices and laboratories
- **20,000** employees
- 22 countries

AMERICAS

- 270 offices and laboratories
- **16,000** employees
- 30 countries

Contents
The table of contents below provides some cross-refering of packages and services between our new codes and past codes used by Acme and Inpectorate.

	NEW CODE(S)	ACME CODE	INSPECTORATE CODE	PAG
Sample Preparation				
Crush 70% 10 mesh and pulverize 250 g	PRP70-250	R200-250	SP-RX-2K	0.
Pulverize to 85% passing 200 mesh	PUL85	P200	SP-PV-250, SP-PV-1000	0.
Standard soil sieve 80 mesh	SS80	SS80	SP-SS-1K	0!
Precious Metals				
Fire Assay Au, Pt, Pd – ICP	FA330	G606 / 3B02	PKG-PGM	0
Fire assay gold 30 g – AA Finish	FA430	G601	Au-1AT-AA	0
Fire assay Ag	FA530-Ag	G613	Ag-1AT-GV	0
Fire assay gold 30 g – Grav	FA530-Au	G601 + G612	Au-1AT-GV	0
Fire Assay Au and Ag – 30 g – Grav	FA530	G603 + G612	AuAg-1AT-GV	0
Screen Fire Assay – 50 g double minus fraction	FS652	G615	Au-Met-500 or Au-Met-1000	0
Ore & High Grade Analysis				
Aqua Regia Ore Grade AA	AR400	8AR	-AR-OR	1
Multi Acid Ore Grade AA	MA400	8TD	-4A-OR	1
Aqua Regia Ore Grade ICP	AQ370	7AR	-	1
Multi Acid Ore Grade ICP	MA370	7TD	-	1
Cu Titration	GC820	G820	Cu-CON	1
Zn Titration	GC816	G816	Zn-CON	1
Pb Titration	GC817	G817	Pb-CON	1
Fe Titration	GC818	G818	Fe-CON	1
Exploration Geochemistry				
Aqua regia – ICP	AQ300 /AR330	1D01	30-AR-TR or 30M-AR-TR	1
Aqua regia – ICP/MS	AQ200	1DX1	-	1
Aqua regia – Ultratrace	AQ250/AR250	1F04	50-AR-UT or 50M-AR-UT	1
Multi acid – ICP	MA300/MA330	1E	30-4A-TR	1
Multi acid – ICP + ICP-MS Hg	MA300+AQ200-Hg	1E + G807	-	1
Multi acid – ICP + CVAA Hg	MA330+CVAA		30M-4A-TR	1
Multi acid – ICP/MS	MA200	1EX	_	1
Multi acid – Ultratrace	MA250	1T	30-4A-UT	1
General Exploration Package	GENX10	-	GENX-10	1
Lithogeochemistry				
Whole Rock Lithium Fusion ICP Finish	LF300	4A04	WR-FS-ICP	2
ithium Fusion – Refractory and REEs	LF100	4B03	REE-LB-MS	2
Total Whole Rock Characterization	LF202	4A4B or 4AB1	WR-REE-LB	2
XRF – Fusion – Major Oxides	LF700	4X02	NA-XF103	2
XRF - Fusion - Laterites	LF720	4X20	NA-XF201	2
XRF – Fusion – Iron Ore	LF730	4X30	NA-XF100	2
_eco – total C and S	TC003	2A12	CS-LECO	2
Group Services				
Remote Services				3
INAA	BQ-NAA-01	5A		3
Environmental				3

Sample Preparation, Storage & Disposal

Sample preparation lays the groundwork for all the analysis which will be performed on your sample. With demanding and strict process controls, the superior quality of preparation of samples improves the measurable analytical values produced. A split is taken to represent the original sample. The preparation process and this split are subject to QA/QC control checks during the progression and prior to submission to the analytical portion. If there is a non-conformance to the quality standard the process is reviewed and corrected. This applies to the client standards and blank material, internal blanks and standards, duplicates and replicates that are analyzed. This strict policy is for any material that is reported or used in the analytical process.

To ensure the equipment is producing a quality product the reduction of the wear surfaces of plates and bowls is constantly monitored and recorded. No equipment is allowed to be used beyond its lifespan.

A sieve test is used to monitor the process on select and random samples at the primary crushing stage and pulverization. These tests are recorded and reported for your review. There is an all-encompassing training program that employees undergo that assures our staff understand the importance of their work and adherence to a high quality standard.

The packages listed here are the most common practice in our industry. If you require sample preparation techniques specific to your needs please contact your local rep to discuss in more detail. You will find our team of professionals and technical group second to none in our ability to provide support with your project.

Rock and Core Preparation

CODE	DESCRIPTION	CAD
PRP70-250	Crush 1 kg to ≥70% passing 2mm Pulv 250 g ≥85% 75µm	\$7.20
PRP70-500	Crush 1 kg to ≥70% passing 2mm Pulv 500 g ≥85% 75µm	\$8.25
PRP70-1KG	Crush 1 kg to ≥70% passing 2mm Pulv 1 kg ≥85% 75µm	\$9.30
CRU70	Crush to ≥70% passing 2mm per kg, includes first 1 kg	\$3.50
	Extra crushing over 1 kg per kg	+ \$0.70
CRUPR	Primary Crushing for large samples (eg. Whole Core) per kg	\$0.90
PUL85	Dry and pulverize to ≥85% passing 75 μm	\$3.70
	Extra pulverizing over 250 g, per 250 g	+ \$0.90
PULCB	Pulverize by ceramic box, per 100 g	\$9.70
DY105	Dry pulp at 105°C, per sample	\$0.60
HOMOG	Homogenizing of pulps by light pulverizing	\$2.50
SPTRF	Split by riffle splitter up to 5kg of -2 mm sample , per sample	\$2.20
WGHT	Weigh sample	\$0.65
CRUBW	Extra wash with barren material – crushing	\$2.50
PULSW	Extra wash – silica – pulverizing	\$3.00
SPTRS	Rotary split up to 5 kg	\$4.45
SPTMR	Micro rotary split per 250 g	\$2.50

Other size fractions / preparation requirements available upon request.

Sample Preparation, Storage & Disposal

Soil Preparation

CODE	DESCRIPTION	CAD
SS80	Dry at 60°C, sieve up to 100 g to -180 µm (80 mesh) up to 1/2 kg sample	\$2.35
	Overweight sieving per 500 g	\$1.05
SS230	Dry at 60°C, sieve 100 g to -63 μm (230 mesh), up to 1/2 kg sample	\$3.15
	Overweight sieving per 500 g	\$1.60
DYXS	Surcharge for extra wet samples	\$0.50
SSXXX	Sieving at other mesh sizes, per 1/2 kg	\$1.60
PULSL	Pulverize soils in mild steel pulverizer, per 100 g	\$3.15
PULCB	Pulverize soils in ceramic pulverizer, per 100 g	\$9.70
SVRJT	Saving all or part of soil reject	\$1.50
CLYSP	Clay separation per 500 g	\$15.00
SPTRF	Split by riffle splitter up to 5 kg	\$2.20
DISP2	Heat Treatment of soils and sediments, per sample	\$0.50

Important Note Regarding Soils: Importation regulations may apply; contact lab prior to shipment for details and shipment requirements.

For soil shipments to Canada: No soil, till or sediment pulps or rejects (excluding those from BC Mainland, Yukon and NWT) can be returned and must be incinerated upon disposal. A disposal fee (DISP2) is charged for these samples. Soil rejects are discarded immediately after preparation unless SVRJT is requested.

Miscellaneous Charges

CODE	DESCRIPTION	CAD
PULHP	Hand pulverize by mortar and pestle	\$8.40
QCCHK	Additional QC Checks	\$3.15
HANDX	Handling of special projects, per hour	\$60.00
WGHT	Weigh samples	\$0.65
SHP01	Shipping charge (pulps), per sample	\$2.00
SPTPL	Split pulp for client extra charge	\$0.60
PULSW	Extra wash with silica-pulverizing	\$3.00
DYAIR	Air Dry samples (<40°C) per 2 kg	\$2.40
SLBHP	Sorting, Labeling, boxing and handling samples received as pulps	\$0.60
BAT01	Batch charge for <20 samples	\$50.00

Warehouse Charges

CODE	DESCRIPTION	CAD
SPRTN	Cost of Shipping Returns	at cost
DRRJT	Dispose or return handling of reject	\$0.35
DRPLP	Dispose or return handling of pulps	\$0.10
WHRJT	Monthly storage of reject after 90 days, per sample	\$0.60
WHPLP	Monthly storage of pulps after 90 days, per sample	\$0.20
WHSRT	Monthly storage of soil rejects per sample	\$0.35
VAC01	Vacuum seal samples, nitrogen purge	\$10.00

Storage Information: All rock rejects are stored for 3 months at no charge. Clients may purchase additional storage time. A minimum charge of \$10/quarter (\$40/yr) will apply to all clients with rejects in storage after 90 days. When storage is requested on receipt the first 3 months of paid storage will be charged upfront.

BVML recognizes and applies the US and Canadian limits for the concentration of hazardous metals in waste materials. For samples exceeding these limits, BVML reserves the right to require clients to accept the return of their reject and pulp material or the expense of disposing of any sample material that is defined as hazardous. Concentrates and high NORM samples must be returned.

Aqua Regia Gold

Recommended for soils, sediments, vegetation or reconnaissance rock samples. Samples are digested in 1:1:1 aqua regia then analyzed by ICP-MS. Refractory, massive sulphide and graphitic samples can limit Au solubility. Rock samples are ignited at 550°C before aqua regia leaching.

CODE	ELEMENT	DETECTION	UPPER LIMIT	DESCRIPTION	CAD
AQ115	Au	0.5 ppb	10 ppm	15 g Aqua regia ICP-MS	\$10.50
AQ130				30 g Aqua regia ICP-MS	\$14.45
AQ115-IGN				Ignited 15 g Aqua regia ICP-MS	\$11.80
AQ130-IGN				Ignited 30 g Aqua regia ICP-MS	\$15.75

Fire Assay

Lead collection fire assay fusion for total sample decomposition, digestion of the Ag dore bead and this analysis by AA, ICP-ES, or ICP-MS. *Require at least 2 g per sample weight.

ICP

FA330-Au	Au	2 ppb	10 ppm	30 g / fire assay / ICP-ES	\$16.50
FA350-Au				50 g / fire assay / ICP-ES	\$19.50
FA330	Au	2 ppb	10 ppm	30 g / fire assay / ICP-ES	\$17.65
FA350	Pt	3 ppb	10 ppm	50 g / fire assay / ICP-ES	\$20.45
	Pd	2 ppb	10 ppm		

ICP-MS

FA130	Au	1 ppb	1 ppm	30 g / fire assay / ICP-MS	\$21.00
FA150	Pt	0.1 ppb	1 ppm	50 g / fire assay / ICP-MS	\$23.80
	Pd	0.5 ppb	1 ppm		

AAS

FA430	Au	0.005 ppm	10 ppm	30 g / fire Assay / AAS	\$16.00
FA450				50 g / fire Assay / AAS	\$18.80
FA431	Au	0.01 ppb	100 ppm	30 g / fire Assay / AAS (Reno Only)	\$17.25

Gravimetric

 $\label{eq:Au>10} \verb| ppm by FA330 \& FA430 are automatically analyzed by gravimectric method.$

		, , , , ,		
FA530-Ag	Ag	50 ppm	30 g / fire Assay / gravimetric	\$19.60
FA550-Ag			50 g / fire Assay / gravimetric	\$22.40
FA530-Au	Au	0.9 ppm	30 g / fire Assay / gravimetric	\$19.60
FA550-Au			50 g / fire Assay / gravimetric	\$22.40
FA530	Au, Ag	as above	30 g / fire Assay / gravimetric	\$19.60
FA550			50 g / fire Assay / gravimetric	\$22.40

Combined Instrumentation Finishes

FA630	Au	0.005 ppm	10 ppm	Fire assay Ag Grav Au AA finish 30 g	\$23.00
	Ag	50 ppm	10000 ppm		

Sulphide rich samples may require requested weights to be reduced to 15 g or smaller for proper fusion.

Fire Assay (continued)

CODE	ELEMENT	DETECTION	UPPER LIMIT	DESCRIPTION	CAD
Metallic S	Screen Fire A	ssay			
FS631	Au	0.1 ppm		Metallic Fire Assay – single fraction – 30 g - 500 g screen	\$44.00
FS632	Au	0.1 ppm		Metallic Fire Assay – duplicate fraction – 30 g – 500 g screen	\$52.00
FS651	Au	0.1 ppm		Metallic Fire assay – single minus – 50 g – 500 g screen	\$50.00
FS652	Au	0.1 ppm		Metallic Fire assay – duplicate minus – 50 g – 500 g screen	\$59.00

Metallic Screen Fire Assay prices include screening of sample to 106 µm. Additional preparation charges for crushing and pulverizing apply where applicable. Alternative screen sizes/weight available upon request. Pricing is based on gravimetric analysis of the plus fraction and instrumentation on the minus fraction. Additional charges for gravimetric analysis of minus fraction may apply. Please contact your local office for details.

CHPOT	Stipulate new crucible for fire assay fusion	\$1.50
EN002	Environmental disposal charge-Fire assay lead waste	\$0.25

Note: Fees for lead waste disposal may apply in some regions.

Wet Digestion Assay

Trace Level

AR400-Ag	Ag	0.1 ppm	200 ppm	Aqua Regia Digestion AA Finish	\$6.00
MA402-Ag	Ag	0.5 ppm	500 ppm	4-Acid Digestion AA Finish	\$8.50
Ore Grade					
AR410-Ag	Ag	1 ppm	1000 ppm	Aqua Regia Digestion AA Finish	\$11.55

4-Acid Digestion AA Finish

\$12.85

Carbons, Concentrates and High Grade

1 ppm

1000 ppm

Concentrates

MA410-Ag Ag

FA501-Au	Au	10 ppm	100000 ppm	2 g sample Fire Assay for Concentrates, duplicate analysis	\$76.00
FA501-Ag	Ag	10 ppm	100000 ppm	2 g sample Fire Assay for Concentrates, duplicate analysis	\$76.00
FA501	Au, Ag	as above	as above	2 g sample Fire Assay for Concentrates, duplicate analysis	\$99.00

Carbon

FA502-Au	Au	0.1	10000	2 g sample Fire Assay for Carbons, duplicate analysis	\$41.50
FA502-Ag	Ag	1	10000	2 g sample Fire Assay for Carbons, duplicate analysis	\$41.50
FA502	Au, Ag	as above	as above	2 g sample Fire Assay for Carbons, duplicate analysis	\$63.00

Platinum Group Elements

CODE	ELEMENT	DETECTION	UPPER LIMIT	DESCRIPTION
FN001	Pt Pd Au Rh Ru Os Ir	1 ppb 1 ppb 1 ppb 1 ppb 1 ppb 1 ppb 1 ppb		Nickel sulfide collection fire assay with ICP-MS finish
FA004	Au Pt Rh	1 ppb 1 ppb 1 ppb		Lead Collection, Palladium Inquart Fire Assay with ICP-MS finish

Methods are available through our laboratory in Rustenburg, South Africa only. Please contact the laboratory regarding your specific analytical requirements. See also page 31 for Nickel sulfide collection with neutron activation analysis through our Group Services.

Gold / Base Metal Leaches

CODE	ELEMENT	DETECTION	UPPER LIMIT	DESCRIPTION	CAD
BL001	Au	0.1 ppb 0.01 ppm	100ppm 200ppm	BLEG, Cyanide leach (500 g – 1 kg sample for 12–24 hour) – Organic extraction/AAS Finish – AAS Finish	\$26.50
CN400	Au, Ag, Cu			Cyanide Leach (various options)	Contact for Pricing
PL415 PL430	Au	0.03 ppm	50 ppm	Preg Rob Leach - Cyanide leach with Au spiked solution - <15 g sample - 30 g sample	\$14.10 \$15.00
GC4CN	Au, Ag	0.03 ppm	50 ppm	Direct Read of Cyanide solutions by AAS - one element - both elements	\$8.15 \$10.50
GC850		0.01 kg H ₂ SO ₄ /TON		Sulfuric leach, Net Acid Consumption	\$30.25
EN003				Cyanide waste disposal charge * may apply in some regions	\$0.65

Additional base metal elements (Fe, Zn, Pb) may be added to some leaches for an additional analytical charge. Please contact the laboratory regarding your specific analysis requirements.

Copper Leaches

The methods below, allow determination of Cu leachability, mineralogy and mineral solubility. These methods utilize Inspectorate's standard leach conditions, however client specific conditions can be negotiated on request.

CODE	ELEMENT	DETECTION	UPPER LIMIT	DESCRIPTION	CAD
LH401	CuS	0.001%	10%	1M Citric Acid leach with AAS finish - Cu Oxides	\$12.85
LH402	CuSH	0.001%	10%	Sulfuric acid leach with AAS finish - Nonsulfide Cu	\$12.85
LH403	CuCN	0.01%	10%	Cyanide Leach with AAS finish	\$12.85
LHSEQ	CuSH CuCN CuRes			Sample is sequentially leached in $\rm H_2SO_4(LH402)$, CN (LH403) then Multi Acid, with Cu from each leach reported. Total Copper can be reported as a sum of the leaches.	\$34.90
LH425	CuSAP	0.01%	100%	Quick ferric sulfate leach for 1hr @ 167°F, Cu by AAS	\$12.00

The methods above, allow determination of Cu leachability, mineralogy and mineral solubility. These methods utilize laboratory standard leach conditions, however client specific conditions can be negotiated on request.

Methods in this section are designed to provide the extremely high precision and accuracy required to quantify commodity elements for resource evaluation. Digestion schemes and reagents are chosen to effectively deal with high analyte concentrations and are coupled with the most stable and matrix tolerant analytical platforms available to produce data of the highest quality. A variety of classical wet assay techniques are also available for samples that exceed the maximum concentrations that can be determined instrumentally.

AA Analysis

CODE	ELEMENT	DETECTI	ON LIMIT	UPPE	R LIMIT	CAD
AR400 – AR410	Ag	1	ppm	1000	ppm	
Aqua Regia	Cu 0.001 % 10 %					
	Мо	0.001	%	10	%	\$11.55 First Element
	Fe	0.01	%	30	%	
	Zn	0.01	%	10	%	\$3.95 Each Additional Element
	Pb	0.01	%	10	%	
	As	0.01	%	10	%	
				4000		
MA400-MA410 Multi acid	Ag	1		1000	ppm	
	Cu	0.001	%	10	%	A40.05
	Мо	0.001	%	10	%	\$12.85 First Element
	Fe	0.01	%	30	%	40.05
	Zn	0.01	%	10	%	\$3.95 Each Additional Element
	Pb	0.01	%	10	%	
	As	0.01	%	10	%	
0.4.400	٨	4		4000		
3A400 3 acid	Ag	1	ppm	1000	ppm	
	Cu	0.001	%	10	%	\$11.55
	Мо	0.001	%	10	%	First Element
	Fe	0.01	%	30	%	\$3.95
	Zn	0.01	%	10	%	Each Additional Element
	Pb	0.01	%	10	%	

^{*} Note not all elements may be possible from the same digestion – different weight volumes may be required and will incur additional charge. Please enquire with laboratory prior to sending samples.

ICP Analysis

The following multi-element assays provide optimum precision and accuracy for high grade rock and drill core samples with a selection of digestion methods to best suit the ore type. AQ370, MA370, LF370 report %-level concentrations as determined by ICP-ES. AQ270 and MA270 combine both ICP-ES and ICP-MS analysis to extend the lower detection limits and provide a broader spectrum of elements.

CODE		CAD
AQ370-X	Aqua Regia – ICP-ES – Any Element	\$11.15
AQ370	Aqua Regia – ICP-ES – Standard suite – 24 elements	\$15.45
AQ270	Aqua Regia – ICP-ES/MS – Standard Suite – 34 elements	\$21.00
MA370-X	Multi Acid - ICP-ES - Any element	\$13.25
MA370	Multi Acid – ICP-ES – Standard suite – 23 elements	\$17.65
MA270	Multi Acid – ICP-ES/MS – Standard Suite – 40 elements	\$25.45
PF370-X	Peroxide Fusion – ICP-ES – Any element	\$14.95
PF370	Peroxide Fusion – ICP-ES – Standard suite – 17 elements	\$19.30
KP300-X	Phosphoric Acid – ICP-ES – Any element	\$13.90
KP300	Phosphoric Acid – ICP-ES – Standard suite – 5 elements	\$17.65

AQ370 - AQUA REGIA ICP-ES

CAD\$ 15.45

 $\label{thm:prop:metal} \mbox{Hot Aqua Regia digestion for base-metal sulphide and precious-metal ores. \mbox{ICP-ESanalysis}.$

ELEMENT	DETECTI	ON LIMIT	UPPEF	RLIMIT
Ag	2	GM/T	300	GM/T
Al	0.01	%		
As	0.01	%	10	%
Bi	0.01	%		
Ca	0.01	%		
Cd	0.001	%		
Co	0.001	%		
Cr	0.001	%		
Cu	0.001	%	10	%
Fe	0.01	%		
Нд	0.001	%		
K	0.01	%		
Mg	0.01	%		
Mn	0.01	%		
Mo	0.001	%	20	%
Na	0.01	%		
Ni	0.001	%		
Р	0.001	%		
Pb	0.01	%	4	%
S	0.05	%		
Sb	0.001	%		
Sr	0.001	%		
W	0.001	%		
Zn	0.01	%	20	%

Aqua Regia digestion is considered a partial digestion. Solubility of some elements will be limited by mineral species present.

In our ongoing quest to push technical boundaries, BVML is always looking to collaborate on interesting projects that require outside the box thinking. Please speak with one of our technical representatives if you have a unique analytical challenge. Working together to succeed together is the BVML way, and we look forward to working with you soon.

AQ270 - AQUA REGIA ICP-ES/MS

CAD\$ 21.00

Same digestion as AQ370 but includes ICP-ES and ICP-MS analysis.

ELEMENT	DETECTI	ON LIMIT	UPPEF	R LIMIT
Ag	0.5	ppm	300	ppm
Al	0.01			
As	5	ppm	100000	ppm
Ва		ppm		
Bi	0.5	ppm		
Ca	0.01	%		
Cd	0.5	ppm		
Co	0.5	ppm		
Cr	0.5	ppm		
Cu	0.5	ppm	100000	ppm
Fe	0.01	%		
Ga	5	ppm		
Hg	0.05	ppm		
K	0.01	%		
La	0.5	ppm		
Mg	0.01	%		
Mn	5	ppm		
Мо	0.5	ppm	200000	ppm
Na	0.01	%		
Ni	0.5	ppm		
Р	0.001			
Pb		ppm	40000	ppm
S	0.05	%		
Sb		ppm		
Sc	0.5	ppm		
Se		ppm	500	ppm
Sr		ppm		
Th		ppm		
Ti	0.001			
TI		ppm		
U		ppm		
V		ppm		
W		ppm		
Zn	5	ppm	200000	ppm

^{*}Requires at least 2 g per sample weight.

KP300 - PHOSPHORIC ACID

CAD\$17.65

Phosphoric acid digestion for select elements.

ELEMENT	DETECTION LIMIT	UPPER LIMIT
Мо	0.001 %	100 %
Nb	0.001 %	100 %
Та	0.001 %	100 %
U	0.001 %	100 %
W	0.005 %	100 %

^{*}Requires at least 2 g per sample weight.

^{*}Requires at least 2 g per sample weight.

MA370 - MULTI ACID ICP-ES

CAD\$17.65

Hot Multi-Acid digestion for sulphide and silicate ores. ICP-ES analysis.

ELEMENT	DETECTI	ON LIMIT	UPPER	R LIMIT
Ag	2	GM/T	300	GM/T
Al	0.01	%		
As	0.02	%		
Bi	0.01	%		
Ca	0.01	%		
Cd	0.001	%		
Со	0.001	%		
Cr	0.001	%		
Cu	0.001	%		
Fe	0.01	%		
K	0.01	%		
Mg	0.01	%		
Mn	0.01	%		
Mo	0.001	%		
Na	0.01	%		
Ni	0.001	%		
Р	0.01	%		
Pb	0.02	%	10	%
S	0.05	%		
Sb	0.01	%		
Sr	0.01	%		
W	0.01	%		
Zn	0.01	%	40	%

^{*}Requires at least 1 g per sample weight.

PF370 - PEROXIDE FUSION ICP-ES

CAD\$19.30

Sodium peroxide fusion for refractory mineral ores.

ELEMENT	DETECTION LIMIT	UPPER LIMIT
Al	0.01 %	50 %
As	0.007 %	10 %
Ca	0.006 %	50 %
Co	0.001 %	100 %
Cr	0.006 %	100 %
Cu	0.008 %	100 %
Fe	0.02 %	100 %
K	0.02 %	30 %
Li	0.001 %	100 %
Mg	0.01 %	30 %
Mn	0.001 %	100 %
Ni	0.002 %	100 %
Pb	0.03 %	30 %
S	0.01 %	60 %
Sn	0.005 %	100 %
Ti	0.002 %	30 %
Zn	0.002 %	100 %

^{*}Requires at least 2 g per sample weight.

MA270 - MULTI ACID ICP-ES/MS

CAD\$25.45

Same digestion as MA370 but includes ICP-ES and ICP-MS analysis.

ELEMEN	NT DETECTI	ON LIMIT	UPPER LIMIT
Ag	0.5	ppm	300 ppm
Al	0.01	%	
As	5	ppm	
Ва	5	ppm	
Ве	5	ppm	
Bi	0.5	ppm	
Ca	0.01	%	
Cd	0.5	ppm	
Се	5	ppm	
Со	1	ppm	
Cr	1	ppm	
Cu	0.5	ppm	
Fe	0.01	%	
Hf	0.5	ppm	
K	0.01	%	
La	0.5	ppm	
Li	0.5	ppm	
Mg	0.01		
Mn	5	ppm	
Мо	0.5	ppm	
Na	0.01		
Nb	0.5	ppm	
Ni	0.5	ppm	
Р	0.01		
Pb	0.5	ppm	100000 ppm
Rb		ppm	
S	0.05		
Sb	0.5	ppm	
Sc		ppm	
Sn		ppm	
Sr		ppm	
Та		ppm	
Th		ppm	
Ti	0.001		
U		ppm	
V		ppm	
W		ppm	
Υ		ppm	
Zn		ppm	400000 ppm
Zr		ppm	
	0.0		

While multi-acid digestion is considered to be a near total digestion this digestion is only partial for some Cr and Ba minerals and oxides of Al, Fe, Hf, Mn, Sn, Ta and Zr. Additionally volatilizatin during fuming may result in some loss of As, S and Sb.

^{*}Requires at least 1 g per sample weight.

Other Analysis

CODE	DESCRIPTION	DETECTION LIMIT	UPPER LIMIT	CAD
Mercury				
AQ200-Hg	Hg – ICP-MS	0.01 ppm	50 ppm	\$11.55
CV400	Trace Hg – CVAA	0.01 ppm	100 ppm	\$8.50
CV410	Ore Grade Hg – CVAA	0.01 %	20 %	\$9.00
Nater and Ge	neral Chemistry			
GC901	Moisture (105°C)			\$6.80
TG001	LOI	0.1 %	100 %	\$9.20
GC902	Lattice water			\$27.30
GC002-pH	pH of solids	0.1 units		\$9.20
GC002-Cond	Conductivity of solids	3 uS/cm		\$9.20
GC002	pH and conductivity on solids			\$13.10
INSOL	Acid Insoluble	0.02 %	100 %	\$20.00
Specific Grav	ity			
SPG01	Specific Gravity on Pulp Sample			\$13.25
SPG02	Specific Gravity on Core			\$13.25
SPG03	Specific Gravity on Waxed Core			\$16.00
SPG04	Specific Gravity on Pycnometry			\$11.80
Other Trace a	nd Ore Grade Analysis Requires			
GC820	Cu Titration	0.01 %	100 %	\$36.75
GC816	Zn titration	0.01 %	100 %	\$29.95
GC817	Pb titration	0.01 %	100 %	\$29.95
GC818	Fe titration	0.01 %	100 %	\$29.95
BR425	Fe – high grade assay, AAS	0.01 %	100 %	\$20.00
CC006	F ₀ O	0.01.0/	100.9/	622 00

GC816	Zn titration	0.01	%	100	%	\$29.95
GC817	Pb titration	0.01	%	100	%	\$29.95
GC818	Fe titration	0.01	%	100	%	\$29.95
BR425	Fe – high grade assay, AAS	0.01	%	100	%	\$20.00
GC806	FeO	0.01	%	100	%	\$22.80
GC410	NiS	0.001	%	100	%	\$27.30
GC921	CuO	0.01	%	10	%	\$17.30
GC922	MoO	0.001	%	100	%	\$17.30
GC923	Pb and/or Zn Oxide + cab\$3.95 extra element	0.01	%	10	%	\$25.00
GC519	SiO ₂ gravimetric	0.02	%	100	%	\$26.25
GC320	Ba by Na ₂ CO ₃ /K ₂ CO ₃ fusion, ICP-ES	0.01	%	30	%	\$27.55
GC520	Ba by Na ₂ CO ₃ /K ₂ CO ₃ fusion, grav.	0.1	%	100	%	\$27.55
BR405	Sb – high grade assay, AAS	0.01	%	100	%	\$12.85
PF100	В	3	ppm	2000	ppm	\$11.00
GC840	F - Trace Level	10	ppm	10000	ppm	\$11.00
GC841	F – Ore Grade	0.01	%	15	%	\$18.10
	Surcharge samples > 15%	10	%	40	%	\$12.60
GC304-Ga	Ga by ICP-ES	0.01	%	100	%	\$18.10

0.01 %

100 %

\$17.20

GC304-Ge

Ge by ICP-ES

^{*}Requires at least 5 g per sample weight.

AQ300 & AQ200-ICP/ICP-MS

		AQ	300	۸۸	200	IIDI	PER
	ELEMENT	DETE(CTION		ЛIT
	Ag	0.3	ppm	0.1	ppm	100	ppm
	Al	0.01	%	0.01	%	10	%
	As	2	ppm	0.5	ppm	10000	ppm
	Au			0.5	ppb	100000	ppb
	B+	20	ppm	20	ppm	2000	ppm
	Ва	1	ppm	1	ppm	10000	ppm
	Bi	3	ppm	0.1	ppm	2000	ppm
	Ca	0.01	%	0.01	%	40	%
	Cd	0.5	ppm	0.1	ppm	2000	ppm
	Со	1	ppm	0.1	ppm	2000	ppm
	Cr	1	ppm	1	ppm	10000	ppm
	Cu	1	ppm	0.1	ppm	10000	ppm
	Fe	0.01	%	0.01	%	40	%
	Ga	5	ppm	1	ppm	1000	ppm
	Hg	1	ppm	0.01	ppm	50	ppm
e Se	K	0.01	%	0.01	%	10	%
Standard Package	La	1	ppm	1	ppm	10000	ppm
Pa	Mg	0.01	%	0.01	%	30	%
lard	Mn	2	ppm	1	ppm	10000	ppm
tanc	Мо	1	ppm	0.1	ppm	2000	ppm
Ś	Na	0.01	%	0.001	%	5	%
	Ni	1	ppm	0.1	ppm	10000	ppm
	Р	0.001	%	0.001	%	5	%
	Pb	3	ppm	0.1	ppm	10000	ppm
	S	0.05	%	0.05	%	10	%
	Sb	3	ppm	0.1	ppm	2000	ppm
	Sc	5	ppm	0.1	ppm	100	ppm
	Se			0.5	ppm	100	ppm
	Sr	1	ppm	1	ppm	10000	ppm
	Те			0.2	ppm	1000	ppm
	Th	2	ppm	0.1	ppm	2000	ppm
	Ti	0.001	%	0.001	%	5	%
	TI	5	ppm	0.1	ppm	1000	ppm
	V	1	ppm	2	ppm	10000	ppm
	W	2	ppm	0.1	ppm	100	ppm

U	8 ppm	0.1 ppm	2000 ppm
Available upon request			

Aqua Regia

Economically priced ICP-ES (AQ300) or ICP-ES/MS (AQ200) analysis to complement your exploration project. Sample splits of 0.5 g are leached in hot modified Aqua Regia. Select a larger split size for more representative Au analysis. Refractory and graphitic samples can limit Au solubility.

CODE		CAD
AQ300	33 elements - Aqua Regia - ICP-ES	\$9.40
AQ300+U	34 elements - Aqua Regia - ICP-ES	\$9.90
AQ200+U	available upon request	
AQ200	36 element 0.5 g - ICP-ES/MS	\$15.75
AQ201	36 element 15 g - ICP-ES/MS	\$19.95
AQ202	36 element 30 g - ICP-ES/MS	\$23.60

Aqua regia digestion is considered a partial digestion. Solubility of some elements will be limited by mineral species present.

AQ250 - Ultratrace by ICP Mass Spec.

Ag 2 ppb 100000 ppl Al 0.01 % 10 % As 0.1 ppm 10000 ppl Au 0.2 ppb 100 ppl B+ 20 ppm 2000 ppl Ba 0.5 ppm 10000 ppl Bi 0.02 ppm 2000 ppl Ca 0.01 % 40 % Cd 0.01 ppm 2000 ppl Co 0.1 ppm 2000 ppl	m m m
As 0.1 ppm 10000 ppm Au 0.2 ppb 100 ppm B* 20 ppm 2000 ppm Ba 0.5 ppm 10000 ppm Bi 0.02 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.01 ppm 2000 ppm Co 0.1 ppm 2000 ppm	m m m
Au 0.2 ppb 100 pp B+ 20 ppm 2000 pp Ba 0.5 ppm 10000 pp Bi 0.02 ppm 2000 pp Ca 0.01 % 40 % Cd 0.01 ppm 2000 pp Co 0.1 ppm 2000 pp	m m m
B+ 20 ppm 2000 pp Ba 0.5 ppm 10000 pp Bi 0.02 ppm 2000 pp Ca 0.01 % 40 % Cd 0.01 ppm 2000 pp Co 0.1 ppm 2000 pp	m m
Ba 0.5 ppm 10000 ppp Bi 0.02 ppm 2000 ppp Ca 0.01 % 40 % Cd 0.01 ppm 2000 ppp Co 0.1 ppm 2000 ppp	m
Bi 0.02 ppm 2000 pp Ca 0.01 % 40 % Cd 0.01 ppm 2000 pp Co 0.1 ppm 2000 pp	
Ca 0.01 % 40 % Cd 0.01 ppm 2000 pp Co 0.1 ppm 2000 pp	m
Cd 0.01 ppm 2000 pp Co 0.1 ppm 2000 pp	
Co 0.1 ppm 2000 pp	
	m
	m
Cr 0.5 ppm 10000 pp	m
Cu 0.01 ppm 10000 pp	m
Fe 0.01 % 40 %	
Ga 0.1 ppm 1000 pp	m
Hg 5 ppb 50000 pp	b
K 0.01 % 10 %	
between La 0.5 ppm 10000 pp Voe Mg 0.01 % 30 % Mn 1 ppm 10000 pp Mo 0.01 ppm 2000 pp Na 0.001 % 5 %	m
Y Mg 0.01 % 30 %	
Mn 1 ppm 10000 pp	m
Mo 0.01 ppm 2000 pp	m
Na 0.001 % 5 %	
Ni 0.1 ppm 10000 pp	m
P 0.001 % 5 %	
Pb 0.01 ppm 10000 pp	m
S 0.02 % 10 %	
Sb 0.02 ppm 2000 pp	m
Sc 0.1 ppm 100 ppm	m
Se 0.1 ppm 100 ppm	m
Sr 0.5 ppm 10000 pp	m
Te 0.02 ppm 1000 pp	m
Th 0.1 ppm 2000 pp	m
Ti 0.001 % 5 %	
TI 0.02 ppm 1000 ppm	m
U 0.1 ppm 2000 pp	m
V 2 ppm 10000 pp	m
W 0.1 ppm 100 pp	m
Zn 0.1 ppm 10000 pp	m

 $^{^{+}}$ Detection limit = 1 ppm for 15/30 g analysis Aqua regia digestion is considered a partial digestion. Solubility of some elements will be limited by mineral species present

Aqua Regia

ICP-MS analysis of a 0.5, 15 or 30 g sample after modified Aqua Regia digestion for low to ultra-low determination on soils, sediments and lean rocks. Larger splits (15 or 30 g) give a more representative analysis of elements subject to nugget effect (e.g. Au). Au solubility can be limited in refractory and graphitic samples. Lead Isotope Add on adds Pb isotopes (204Pb, 206Pb, 207Pb, 208Pb) suitable for geochemical exploration of U and other commodities where gross differences in natural to radiogenic Pb ratios, is a benefit.

CODE		CAD
AQ250	37 element 0.5 g - Standard Pkg	\$19.40
AQ251	37 element 15 g - Standard Pkg	\$23.60
AQ252	37 element 30 g - Standard Pkg	\$27.30
+PGM	Pt Pd add on for Standard Pkg	+ \$2.10
AQ250-EXT	53 element 0.5 g - Extended Pkg	\$22.85
AQ251-EXT	53 element 15 g - Extended Pkg	\$27.05
AQ252-EXT	53 element 30 g - Extended Pkg	\$30.70
+REE	Rare Earth Element add on	+ \$6.30
+ISO	Lead Isotope add on	+ \$12.60

	ELEMENT	AQ2 DETEC		UPF LIN	
	Ве	0.1	ppm	1000	ppm
	Се	0.1	ppm	2000	ppm
	Cs	0.02	ppm	2000	ppm
	Ge	0.1	ppm	100	ppm
	Hf	0.02	ppm	1000	ppm
ge	In	0.02	ppm	1000	ppm
Extended Package	Li	0.1	ppm	2000	ppm
ΙРа	Nb	0.02	ppm	2000	ppm
dec	Pd	10	ppb	100000	ppb
ten	Pt	2	ppb	100000	ppb
Ĕ	Rb	0.1	ppm	2000	ppm
	Re	1	ppb	10000	ppb
	Sn	0.1	ppm	100	ppm
	Та	0.05	ppm	2000	ppm
	Υ	0.01	ppm	2000	ppm
	Zr	0.1	ppm	2000	ppm
	Dy	0.02	ppm	2000	ppm
	Er	0.02	ppm	2000	ppm
	Eu	0.02	ppm	2000	ppm
	Gd	0.02	ppm	2000	ppm
on	Но	0.02	ppm	2000	ppm
REE Add on	Lu	0.02	ppm	2000	ppm
EE /	Nd	0.02	ppm	2000	ppm
22	Pr	0.02	ppm	2000	ppm
	Sm	0.02	ppm	2000	ppm
	Tb	0.02	ppm	2000	ppm
	Tm	0.02	ppm	2000	ppm
	Yb	0.02	ppm	2000	ppm

	MA3 DETEC		MA2 DETEC		UPP LIM		MA2 DETEC		UPP LIM	
٨٥				ppm				ppb		
Ag	0.01	ppm o/	0.01		200	ppm o/	0.01		200000	
As		ppm		ppm	10000			ppm	10000	
Ba		ppm			10000			ppm	10000	
Ве		ppm		ppm	10000			ppm	10000	
Bi		ppm		ppm ppm	4000			ppm	4000	
Са	0.01		0.01		4000		0.04		4000	
Cd		ppm		ppm	4000			ppm	4000	
Ce	0.4	ррпп		ppm	2000			ppm	2000	
Со	2	ppm		ppm	4000			ppm	4000	
Cr		ppm		ppm	10000			ppm	10000	
Cs	_	ррпп		ррпп	10000	ррпп		ppm	2000	
Cu	2	ppm	0.1	ppm	10000	nnm		ppm	10000	
Dy	_	ррпп	0.1	ррпп	10000	ррпп		ppm	2000	
Er								ppm	2000	
Eu								ppm	2000	
Fe	0.01	0/2	0.01	0/2	60	0/2	0.01		60	
Ga	0.01	/0	0.01	70	00	/0		ppm		ppm
Gd								ppm	2000	
Hf			0.1	ppm	1000	nnm		ppm	1000	
Но			0.1	ррпп	1000	ррпп		ppm	2000	
In			0.05	ppm	1000	nnm		ppm	1000	
K	0.01	0/2	0.03		1000		0.01		1000	
La		ppm		ppm	2000			ppm	2000	
Li	_	ррпп		ppm	2000			ppm	2000	
Lu			0.1	ррпп	2000	ррпп		ppm	2000	
Mg	0.01	0/2	0.01	0/2	30	%	0.01		30	
Mn		ppm		ppm	10000			ppm	10000	
Мо		ppm		ppm	4000			ppm	4000	
Na	0.01		0.001		10		0.001		10	
Nb		ppm		ppm	2000			ppm	2000	
Nd	_	ррпп	0.1	ррпп	2000	ррпп		ppm	2000	
Ni	2	ppm	0.1	ppm	10000	nnm		ppm	10000	
Р	0.002		0.001			%	0.001			%
Pb		ppm		ppm	10000			ppm	10000	
Pr	<u> </u>	PP	0.1	рр	10000	рр		ppm	2000	
Rb			0.1	ppm	2000	nnm		ppm	2000	
Re			0.005			ppm	0.002			ppm
S	0.1	%	0.1		10		0.04		10	
Sb		ppm		ppm	4000			ppm	4000	
Sc		ppm		ppm		ppm		ppm		ppm
Se		10.10		ppm	1000			ppm	1000	
Sm				1-1-1-1				ppm	2000	
Sn	2	ppm	0.1	ppm	2000	ppm		ppm	2000	
Sr		ppm		ppm	10000			ppm	10000	
Та		'		ppm	2000			ppm	2000	
Tb				''		'		ppm	2000	
Te			0.5	ppm	1000	ppm		ppm	1000	
Th	2	ppm		ppm	4000			ppm	4000	
Ti	0.01		0.001		10		0.001		10	
TI				ppm	10000			ppm	10000	
Tm								ppm	2000	
U	20	ppm	0.1	ppm	4000	ppm		ppm	4000	
V		ppm		ppm	10000			ppm	10000	
W		ppm		ppm		ppm		ppm		ppm
Υ		ppm		ppm	2000			ppm	2000	
Yb								ppm	2000	
Zn	2	ppm	1	ppm	10000	ppm		ppm	10000	
Zr		ppm		ppm	2000			ppm	2000	

Multi Acid

Multi-acid digestion packages combine a strong multi-acid digestion that dissolves most minerals with a choice of ICP-ES (MA300), ICP-ES/MS (MA200) or Ultra Trace ICP-MS (MA250) analysis to give near total values for all elements. A 0.25 g split is heated in HNO3-HClO4-HF to fuming and taken to dryness. The residue is dissolved in HCl.

*Requires at least 0.5g per sample weight.

CODE		CAD
MA300	35 element ICP-ES	\$13.25
MA200	45 element - ICP-ES/MS	\$18.75
AQ200-HG	Hg add on	+ \$11.55
MA250	Ultratrace ICP-MS	\$25.05

While multi-acid digestion is considered to be near total digestion this digestion is only partial for some Cr and Ba minerals and oxides of Al, Fe, Hf, Mn, Sn, Ta and Zr. Additionally volatilization during fuming may result in some loss of As, S and Sb.

CODE	ELEMENT			DESCRIPTION	RATE
GENX10	Au †	0.005 – 3	ppm		
	Ag	0.1 – 100	ppm		
	As	5 – 10,000	ppm		
	Ві	2 – 10,000	ppm	Au determined by 1AT Fire Assay/AA,	
	Cu	1 - 10,000	ppm	Hg determined by Cold Vapour/AA or ICP MS	\$24.35
	Pb	2 - 10,000	ppm	All other elements determined by Multi-Element ICP	324.33
	Hg	0.01 - 100	ppm	with AR Digest	
	Мо	1 - 10,000	ppm		
	Sb	2 – 10,000	ppm		
	Zn	2 - 10,000	ppm		

⁺ Detection limit = 1 ppm for 15/30 g analysis

Aqua regia digestion is considered a partial digestion. Solubility of some elements will be limited by mineral species present

Selective Leaches

Selective or sequential extractions can target elements held in specific soil phase or range of phases thus allowing better interpretation of geochemical processes.

Used Sequentially, the leaches can determine elements occurring in surface soils as salts or adsorbed ions on clays, organic compounds and amorphous Mn and Fe hydroxides. Used singularly, the stronger leaches are less selective. Analysis by ICP-MS. Contact our geochemists for further information.

CODE	DESCRIPTION	CAD
LH101	Demineralized H ₂ O leach water soluble components	
LH102	1 M ammonium acetate - exchangeable cations adsorbed by clay and elements co-precipitated with carbonates	
LH103	0.1 M sodium pyrophosphate - elements adsorbed by organic matter (humic and fulvic compounds)	
LH104	0.1 M hydroxylamine - elements adsorbed by amorphous Mn hydroxide, often the most reactive soil phase for scavanging mobile elements.	
LH105	0.25 M hydroxylamine - elements adsorbed by amorphous Fe hydroxide and more crystaline Mn hydroxide	
	Prices	
	Separate leach, per leach	\$40.00
	Sequential leach, per leach	\$45.00
	Setup, per leach on submissions of <35 samples	\$100.00

Preparation

CODE	DESCRIPTION	CAD
VGMAS	Dry and macerate vegetation, per 100 g	\$8.80
VA475	Ashing 50 g dry vegetation at 475°C	\$8.80
VGWSH	Wash plant samples with Type-1 water, dry at 60°C, per 100 g	\$2.95
SVRJT	Saving all or part of reject fraction	\$1.50
WGHT	Weigh samples	\$0.65
DRPLP	Dispose or Return Handling of Pulps	\$0.10

Only dry plant material free of any soil. Importation permits may apply; contact the laboratory prior to shipment.

Dry Plant Material Analysis

ICP-MS analysis of vegetation samples using a 1 g split digested in HNO $_3$ then Aqua Regia and analyzed by ICP-MS for ultralow detection limits. Washing with de-mineralized water is recommended if samples are coated with inorganic material. (See VGWSH under Sample Preparation.)

VG101	Standard Suite – 37 elements	\$24.70
VG101-EXT	Extended Suite – 53 elements	\$28.65
VG105	Standard Suite – 37 elements -5 g sample option	\$28.00
VG105 - EXT	Extended Suite – 53 elements	\$31.95
+PGM	Pt/Pd add on for Standard Suite	+\$2.20
+REE	Rare Earth Element Add on	+ \$6.30
+ISO	Lead isotope add on	+ \$13.25

Ashed Plant Material Analysis

This group analyses 0.25 g of the vegetation ash of a 50 g dry plant sample that has undergone controlled ignition to minimize volatilization (see VA475 under Sample Preparation). Weights of ashing will be reported and all results are reported as concentration in ash.

VG104	Ultratrace ICP-MS analysis on 0.25 g ash – Standard Package	\$19.40
VG104-EXT	Extended package	\$22.85
+REE	Rare Earth Element Add on	+ \$6.30

BVML also has an in house team dedicated to research and development. Building on our external collaborations, this team leverages academic discoveries into new packages and services that benefit the exploration and mining sector. From novel sample preparation methods, to new digestions and improved analytical techniques this group focuses on delivering continuous improvement to our clients.

VG101/VG105 – Dry Plant Material Analysis

	ELEMENT	VG: DETE	101 CTION	UPF LIN	PER //IT
	Ag	2	ppb	100000	ppb
	Al	0.01	%	10	%
	As	0.1	ppm	10000	ppm
	Au	0.2	ppb	100000	ppb
	В	1	ppm	2000	ppm
	Ва	0.1	ppm	10000	ppm
	Ві	0.02	ppm	2000	ppm
	Ca	0.01	%	40	%
	Cd	0.01	ppm	2000	ppm
	Со	0.01	ppm	2000	ppm
	Cr	0.1	ppm	10000	ppm
	Cu	0.01	ppm	10000	ppm
	Fe	0.001	%	40	%
	Ga	0.1	ppm	1000	ppm
	Hg	1	ppb	100000	ppb
	K	0.01	%	10	%
age	La	0.01	ppm	10000	ppm
ack	Mg	0.001	%	30	%
Standard Package	Mn	1	ppm	10000	ppm
nda	Мо	0.01	ppm	2000	ppm
Sta	Na	0.001	%	10	%
	Ni	0.1	ppm	10000	ppm
	Р	0.001	%	5	%
	Pb	0.01	ppm	10000	ppm
	S	0.01	%	10	%
	Sb	0.02	ppm	2000	ppm
	Sc	0.1	ppm	100	ppm
	Se	0.1	ppm	100	ppm
	Sr	0.5	ppm	10000	ppm
	Те	0.02	ppm	1000	ppm
	Th	0.01	ppm	2000	ppm
	Ti	1	ppm	100000	ppm
	TI	0.02	ppm	1000	ppm
	U	0.01	ppm	2000	ppm
	V	2	ppm	10000	ppm
	W	0.1	ppm	100	ppm
	Zn	0.1	ppm	10000	ppm

VG101/VG105 - EXT

	ELEMENT	VG: DETE	101 CTION		PER VIIT
	Ве	0.1	ppm	1000	ppm
	Се	0.01	ppm	2000	ppm
	Cs	0.005	ppm	2000	ppm
	Ge	0.01	ppm	100	ppm
	Hf	0.001	ppm	1000	ppm
ge	In	0.02	ppm	1000	ppm
Extended Package	Li	0.01	ppm	2000	ppm
Ра	Nb	0.01	ppm	2000	ppm
ded	Pd	2	ppb	100000	ppb
ten	Pt	1	ppb	100000	ppb
ũ	Rb	0.1	ppm	2000	ppm
	Re	1	ppb	1000	ppb
	Sn	0.02	ppm	100	ppm
	Та	0.001	ppm	2000	ppm
	Υ	0.001	ppm	2000	ppm
	Zr	0.01	ppm	2000	ppm

VG104 – Ashed Plant Analysis

CAD\$19.40

	ELEMENT		104 CTION		PER MIT
	Ag		ppb	100000	
	Al	0.01	%	10	%
	As	0.1	ppm	10000	ppm
	Au	0.2	ppb	100000	ppb
	В	1	ppm	2000	ppm
	Ва	0.5	ppm	10000	ppm
	Ві	0.02	ppm	2000	ppm
	Ca	0.01	%	40	%
	Cd	0.01	ppm	2000	ppm
	Со	0.1	ppm	2000	ppm
	Cr	0.5	ppm	10000	ppm
	Cu	0.01	ppm	10000	ppm
	Fe	0.01	%	40	%
	Ga	0.1	ppm	1000	ppm
	Hg				
	K	0.01	%	10	%
Standard Package	La	0.5	ppm	10000	ppm
ack	Mg	0.01	%	30	%
고 교	Mn	1	ppm	10000	ppm
nda	Мо	0.01	ppm	2000	ppm
Sta	Na	0.001	%	5	%
	Ni	0.1	ppm	10000	ppm
	Р	0.001	%	5	%
	Pb	0.01	ppm	10000	ppm
	S	0.02	%	10	%
	Sb	0.02	ppm	2000	ppm
	Sc	0.1	ppm	100	ppm
	Se	0.1	ppm	100	ppm
	Sr	0.5	ppm	10000	ppm
	Те	0.02	ppm	1000	ppm
	Th	0.1	ppm	2000	ppm
	Ti	0.001	%	5	%
	TI		ppm	1000	ppm
	U	0.1	ppm	2000	
	V		ppm	10000	ppm
		0.4	ppm	100	ppm
	W	0.1	ррп	100	ррпп

VG104-EXT- Extended package

CAD\$22.85

	ELEMENT		104 CTION	UPF LIN	PER MIT
	Ве	0.1	ppm	1000	ppm
	Се	0.1	ppm	2000	ppm
	Cs	0.02	ppm	2000	ppm
	Ge	0.1	ppm	100	ppm
	Hf	0.02	ppm	1000	ppm
Эе	In	0.02	ppm	1000	ppm
ckaç	Li	0.1	ppm	2000	ppm
Рас	Nb	0.02	ppm	2000	ppm
ded	Pd	10	ppb	100000	ppb
Extended Package	Pt	2	ppb	100000	ppb
ñ	Rb	0.1	ppm	2000	ppm
	Re	1	ppb	1000	ppb
	Sn	0.1	ppm	100	ppm
	Ta	0.05	ppm	2000	ppm
	Υ	0.01	ppm	2000	ppm
	Zr	0.1	ppm	2000	ppm
	Dy	0.02	ppm	2000	ppm
	Er	0.02	ppm	2000	ppm
	Eu	0.02	ppm	2000	ppm
	Gd	0.02	ppm	2000	ppm
u	Но	0.02	ppm	2000	ppm
REE Add on	Lu	0.02	ppm	2000	ppm
ËEA	Nd	0.02	ppm	2000	ppm
R	Pr	0.02	ppm	2000	ppm
	Sm	0.02	ppm	2000	ppm
	Tb	0.02	ppm	2000	ppm
	Tm	0.02	ppm	2000	ppm
	Yb	0.02	ppm	2000	ppm

+REE- Rare Earth Element Add on - + CAD\$6.30

Ag 0.05 ppb Al 1 ppb As 0.5 ppb Au 0.05 ppb B 5 ppb Ba 0.05 ppb Be 0.05 ppb Bi 0.05 ppb Br 5 ppb Ca 0.05 ppm Cd 0.05 ppb Ce 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Eu 0.01 ppb Eu 0.01 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb La 0.01 ppb La 0.01 ppb Li 0.1 ppb Mg 0.05 ppm Mn 0.05 ppb		DETE	CTION .
Al 1 ppb As 0.5 ppb Au 0.05 ppb B 5 ppb Ba 0.05 ppb Be 0.05 ppb Bi 0.05 ppb Br 5 ppb Ca 0.05 ppb Ca 0.05 ppb Cc 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cr 0.5 ppb Cu 0.1 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Er 0.01 ppb Ga 0.05 ppb Ga 0.05 ppb Ga 0.05 ppb Hf 0.02 ppb Hf 0.02 ppb Hg 0.1 ppb Hg 0.1 ppb Hg 0.1 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Lu 0.01 ppb	ELEMENT		
As 0.5 ppb Au 0.05 ppb B 5 ppb Ba 0.05 ppb Be 0.05 ppb Be 0.05 ppb Br 5 ppb Ca 0.05 ppb Cd 0.05 ppb Ce 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Er 0.01 ppb Er 0.01 ppb Br 0.01 ppb Er 0.01 ppb Cu 0.1 ppb	Ag	0.05	ppb
Au 0.05 ppb B 5 ppb Ba 0.05 ppb Be 0.05 ppb Be 0.05 ppb Bi 0.05 ppb Br 5 ppb Ca 0.05 ppm Cd 0.05 ppb Ce 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cs 0.01 ppb Cu 0.1 ppb Dy 0.1 ppb Er 0.01 ppb Er 0.01 ppb Er 0.01 ppb Ga 0.05 ppb Ga 0.05 ppb Ga 0.05 ppb Gh 0.01 ppb Hf 0.02 ppb Hf 0.02 ppb Hf 0.02 ppb Ho 0.01 ppb Lu 0.01 ppb	Al	1	ppb
Ba	As	0.5	ppb
Ba	Au	0.05	ppb
Be 0.05 ppb Bi 0.05 ppb Br 5 ppb Ca 0.05 ppm Cd 0.05 ppb Ce 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hg 0.1 ppb Ho 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Mg 0.05 ppm Mn 0.05 ppm	В	5	ppb
Bi 0.05 ppb Br 5 ppb Ca 0.05 ppm Cd 0.05 ppb Ce 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Eu 0.01 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb K 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Lu 0.01 ppb	Ва	0.05	ppb
Br 5 ppb Ca 0.05 ppm Cd 0.05 ppb Ce 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Gd 0.01 ppb Hf 0.02 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Li 0.1 ppb Mg 0.05 ppm Mn 0.05 ppm	Ве	0.05	ppb
Ca 0.05 ppm Cd 0.05 ppb Ce 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Eu 0.01 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hf 0.02 ppb Ho 0.01 ppb K 0.05 ppm La 0.01 ppb Lu 0.01 ppb Lu 0.01 ppb K 0.05 ppm La 0.01 ppb Lu 0.01 ppb	Bi	0.05	ppb
Cd 0.05 ppb Ce 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Mg 0.05 ppm Mn 0.05 ppb	Br	5	ppb
Ce 0.01 ppb Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppm	Ca	0.05	ppm
Cl 1 ppm Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hf 0.01 ppb Ho 0.01 ppb K 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppm	Cd	0.05	ppb
Co 0.02 ppb Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Lu 0.01 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppm	Се	0.01	ppb
Cr 0.5 ppb Cs 0.01 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	Cl	1	ppm
Cs 0.01 ppb Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppm	Co	0.02	ppb
Cu 0.1 ppb Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	Cr	0.5	ppb
Dy 0.01 ppb Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm	Cs	0.01	ppb
Er 0.01 ppb Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppm	Cu	0.1	ppb
Eu 0.01 ppb Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm	Dy	0.01	ppb
Fe 10 ppb Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppm	Er	0.01	ppb
Ga 0.05 ppb Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppm	Eu	0.01	ppb
Gd 0.01 ppb Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppm	Fe	10	ppb
Ge 0.05 ppb Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppm	Ga	0.05	ppb
Hf 0.02 ppb Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	Gd	0.01	ppb
Hg 0.1 ppb Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	Ge	0.05	ppb
Ho 0.01 ppb In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	Hf	0.02	ppb
In 0.01 ppb K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	Hg	0.1	ppb
K 0.05 ppm La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	Но	0.01	ppb
La 0.01 ppb Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	In	0.01	ppb
Li 0.1 ppb Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	K	0.05	ppm
Lu 0.01 ppb Mg 0.05 ppm Mn 0.05 ppb	La	0.01	ppb
Mg 0.05 ppm Mn 0.05 ppb	Li	0.1	ppb
Mn 0.05 ppb	Lu	0.01	ppb
- -	Mg	0.05	ppm
Mo 0.1 ppb	Mn	0.05	ppb
	Мо	0.1	ppb

ELEMENT	DETEC LIN	CTION /IIT
Na	0.05	ppm
Nb	0.01	ppb
Nd	0.01	ppb
Ni	0.2	ppb
Р	10	ppb
Pb	0.1	ppb
Pd	0.2	ppb
Pr	0.01	ppb
Pt	0.01	ppb
Rb	0.01	ppb
Re	0.01	ppb
Rh	0.01	ppb
Ru	0.05	ppb
S	1	ppm
Sb	0.05	ppb
Sc	1	ppb
Se	0.5	ppb
Si	40	ppb
Sm	0.02	ppb
Sn	0.05	ppb
Sr	0.01	ppb
Та	0.02	ppb
Tb	0.01	ppb
Те	0.05	ppb
Th	0.05	ppb
Ti	10	ppb
TI	0.01	ppb
Tm	0.01	ppb
U	0.02	ppb
V	0.2	ppb
W	0.02	ppb
Υ	0.01	ppb
Yb	0.01	ppb
Zn	0.5	ppb
Zr	0.02	ppb

SO200 - ICP-MS Analysis of Natural Waters

Surface and groundwater surveys are an effective means of exploration for remote and blind ore deposits. ICP-MS provides the low detection limits needed to define background and anomalous levels.

For this analysis all water samples must have less than 0.1% total dissolved solids. Minimum 50ml required. Solutions are analyzed as received

CODE	DESCRIPTION	CAD
SO200	Full Suite (70 elements)	\$30.45

Lithogeochemistry

ICP / ICP MS

*Requires at least 5g per sample weight.

CODE	DESCRIPTION	CAD
Whole Rock	Major And Minor Elements	
LF300-X	Any 1 element, lithium borate fusion ICP-ES	\$16.05
LF302	Standard suite Major Oxides ICP-ES (21 parameters includes Leco C & S)	\$30.00
LF302-EXT	Extended package	\$33.60
LF300	Standard w/o Leco	\$25.60

Whole Rock Trace Elements

LF100-X	Any 1 element, lithium borate fusion ICP-MS	\$18.75
LF100-EXT	Standard suite Trace Elements ICP-MS (45 elements) LF100 + AQ200 add on	\$40.15
LF100	Refractory and Rare Earth Elements Only	\$29.40

Total Whole Rock Characterization

LF202	Total Whole Rock Characterization with AQ200 add on (LF302 + LF100-EXT)	\$58.80
LF200	Total Whole Rock Characterization w/o AQ200 add on (LF302 + LF100)	\$48.05
LF600	LF702+LF100-EXT - Total Whole Rock Characterization	\$60.15

XRF

*Requires at least 12g per sample weight.

Whole Rock by XRF				
LF702	Major Oxides Standard Package	\$34.65		
LF700	Standard Package - No Leco C&S	\$30.45		
LF702-EXT	Extended Package	\$37.80		
Ni Laterite	Package			
LF320	lithium borate fusion ICP-ES 23 elements.	\$37.80		

LF320	lithium borate fusion ICP-ES 23 elements, includes Ni, Cu and Co by MA300	\$37.80
LF322	LF320 + Leco C & S add on	\$43.05
LF720	Laterite standard suite by XRF	\$42.50
LF722	1 F720 + 1 aco C & S add on	\$47.80

XRF Package

LF710	Bauxite	\$37.80
LF730	FeOre_ISO method	\$48.80
LF732	Fe Ore	\$45.65
LF740	Phosphate Rock	\$37.80
LF700-X	Elements by Fusion XRF, First Element	\$16.55
	Each additional element	+ \$5.00

C & S Analysis

*Requires at least 5g per sample weight.

CODE	DESCRIPTION	DETECTION LIMITS	UPPER LIMITS	CAD
TC001	Leco – Total C	0.02 %	100 %	\$13.40
TC005	Graphite C – nitric leach	0.02 %	20 %	\$18.10
TC007	Organic C (TC001-TC005-TC006)	0.02 %	100 %	\$29.90
TC006	Inorganic Carbon, direct CO ₂ evolution and Leco analysis	0.02 %	100 %	\$13.40
TC003	Leco – Total C and S	0.02 %	100 %	\$14.70
TC002	Leco – Total S	0.02 %	20 %	\$13.40
	Surcharge samples >20%	20 %	100 %	+ \$6.30
TC008	Sulphate – Leco after ignition at 550°C	0.05 %	100 %	\$18.10
TC009	Sulphide – by difference	0.05 %	100 %	\$19.70
TC508	Sulphate – gravimetric	0.05 %	100 %	\$25.00
TC901	Elemental S	0.01 %	14 %	\$23.07

 $\textbf{ICP/ICP MS} \hspace{0.1cm} \texttt{(LF100-CAD\$\,29.40, LF200-CAD\$\,48.05, LF202-CAD\$\,58.80, LF300-CAD\$\,25.60)} \\$

		ELEMENT	DETECTIO	N LIMIT	UPPER	LIMIT
		SiO ₂	0.01	%	100	%
		Al ₂ O ₃	0.01	%	100	%
		CaO	0.01	%	100	
		Cr ₂ O ₃	0.002	%	100	%
		Fe ₂ O ₃		%	100	
		K ₂ O	0.01	%	100	
		MgO	0.01	%	100	
		MnO	0.01	%	100	
	0	Na ₂ O	0.01	%	100	
	LF300	P ₂ O ₅	0.01	%	100	
	5	TiO ₂	0.01	%	100	
		Ва	5	ppm	5	%
		Nb	5	ppm	10,000	
		Ni	20	ppm	10,000	
		Sc	1	ppm	10,000	
		Sr	2	ppm	50,000	
		Y		ppm	50,000	
		Zr LOI	0.1	ppm %	50,000	
		Sum	0.01	%	100	
	-	Ce		ppm	50 000	
	LF300EXT	Co		ppm	10 000	
	900	Cu		ppm	10 000	
	Ä	Zn	5	ppm	10 000	
0			1			
LF200		Ba		ppm	50,000	
<u>"</u>		Be Ce		ppm	10,000 50,000	
		Co		ppm	10,000	
		Cs		ppm ppm	10,000	
		Dy		ppm	10,000	
		Er		ppm	10,000	
		Eu		ppm	10,000	
		Ga	0.5	ppm	10,000	ppm
		Gd		ppm	10,000	
		Hf		ppm	10,000	
	00	Но		ppm	10,000	
	.F100	La		ppm	50,000	
	_	Lu Nb		ppm	10,000	
		Nd		ppm ppm	10,000 10,000	
		Pr		ppm	10,000	
		Rb		ppm	10,000	
		Sm	0.05	ppm	10,000	
		Sn		ppm	10,000	
		Sr		ppm	50,000	
		Ta		ppm	10,000	
		Tb		ppm	10,000	
		Th		ppm	10,000	
		Tm		ppm	10,000	
		U		ppm	10,000	ppm
		9	0.1	ppiii	10,000	Phili

		ELEMENT	DETECTION LIMIT		UPPER LIMIT	
		V	8	ppm	10,000	ppm
LF200	8	W	0.5	ppm	10,000	ppm
	F1(Υ	0.1	ppm	50,000	ppm
	_	Yb	0.05	ppm	10,000	ppm
		Zr	0.1	ppm	50,000	ppm

Add on Elements from AQ200

	ELEMENT	DETECTIO	N LIMIT	UPPER L	IMIT
	Ag	0.1	ppm	100	ppm
	As	0.5	ppm	10,000	ppm
	Au	0.5	ppb	100,000	ppb
	Bi	0.1	ppm	2,000	ppm
	Cd	0.1	ppm	2,000	ppm
	Cu	0.1	ppm	10,000	ppm
LF202	Hg	0.01	ppm	50	ppm
Ę	Мо	0.1	ppm	2,000	ppm
	Ni	0.1	ppm	10,000	ppm
	Pb	0.1	ppm	10,000	ppm
	Sb	0.1	ppm	2,000	ppm
	Se	0.5	ppm	100	ppm
	TI	0.1	ppm	1,000	ppm
	Zn	1	ppm	10,000	ppm

Leco from TC000

	ELEMENT	DETECTION	LIMIT	UPPER L	IMIT
202	С	0.02 %	, D	100	%
LF2	S	0.02 %	, D	100	%

LF700 - Major Oxides - XRF

LF700

CAD\$30.45 (LF702 CAD\$ 34.65, LF702-EXT CAD\$37.80)

UPPER LIMIT SiO₂ 0.01 % 100 % Al₂O₃ 0.01 % 100 % Fe₂O₃ 0.01 % 100 % CaO 100 % 0.01 % MgO 0.01 % 100 % Na₂O 100 % 0.01 % K₂O 0.01 % 100 % MnO 0.01 % 93 % TiO₂ 0.01 % 50 % P2O5 0.01 % 100 % Cr₂O₃ 0.01 % 10 % 0.01 % 58.8 % LOI 0.1 % C* 0.02 % 100 % 0.02 % 100 % Cu 0.001 % 6.4 % Ni 0.001 % 7.9 % Pb 0.001 % 9.3 % SO₃ 0.002 % 20 % Sr V₂C Zn Zr 0.002 % 33 % V₂O₅ 0.002 % 10.0 % 0.001 % 8 % 0.002 % 37 %

LF740 - PHOSPHATE ROCK

CAD\$37.80

ELEMENT	DETECTI	ON LIMIT	UPPEF	R LIMIT
SiO ₂	0.01	%	100.0	%
Al ₂ O ₃	0.01	%	80.0	%
Fe ₂ O ₃	0.01	%	100.0	%
CaO	0.01	%	80.0	%
MgO	0.01	%	80.0	%
K ₂ O	0.01	%	40.0	%
MnO	0.01	%	75.0	%
Na ₂ O	0.01	%	60.0	%
TiO ₂	0.01	%	40.0	%
P ₂ O ₅	0.01	%	40.0	%
Cr ₂ O ₃	0.001	%	10.0	%
Ва	0.01	%	35.8	%
Cu	0.001	%	6.4	%
Ni	0.001	%	7.9	%
Pb	0.01	%	9.3	%
S	0.01	%	24	%
Sr	0.001	%	33.8	%
Zn	0.002	%	8.0	%
Zr	0.002	%	29.6	%
V_2O_5	0.10	%	10.0	%
LOI (1000)	0.1	%		

LF700-X

*From Leco TC000

CAD\$16.55 Additional element +CAD\$5.00

ELEMENT	DETECTION LIMIT	UPPER LIMIT
BaO	0.01 %	65.0 %
SrO	0.01 %	40.0 %
Zr	0.01 %	45.0 %
HfO	0.01 %	10.0 %
Се	0.01 %	8.0 %
La	0.01 %	4.5 %
Nd	0.01 %	4.5 %
Sm	0.01 %	4.5 %
Υ	0.01 %	4.0 %
Rb	0.01 %	3.5 %
U	0.01 %	3.5 %
Th	0.01 %	3.0 %
Nb ₂ O ₅	0.01 %	10.0 %
Cs	0.01 %	25.0 %
Sn	0.01 %	3.0 %
Ta ₂ O ₅	0.01 %	4.0 %

LF710 - BAUXITE

CAD\$37.80

ELEMENT	DETECTI	ON LIMIT	UPPEF	R LIMIT
SiO ₂	0.01	%	100.0	%
Al_2O_3	0.01	%	100.0	%
Fe ₂ O ₃	0.01	%	100.0	%
CaO	0.01	%	100.0	%
MgO	0.01	%	100.0	%
Na ₂ O	0.01	%	100.0	%
K ₂ O	0.01	%	100.0	%
MnO	0.01	%	93.0	%
TiO ₂	0.01	%	50.0	%
P ₂ O ₅	0.01	%	100.0	%
Cr ₂ O ₃	0.001	%	10.0	%
Ва	0.01	%	44.8	%
LOI (1000)	0.1	%		
Zn	0.001	%	8	%
Zr	0.004	%	37	%
Sr	0.002	%	33.8	%
V ₂ O ₅	0.002	%	10	%
SO ₃	0.002	%	20	%

Ni Laterite Analysis

Exploration and evaluation of nickel laterite requires total determination and mass balance accounting of the major rock-forming elements and the commodity elements Ni, Cu and Co. BVML delivers these requirements with that combines a cost effective ICP-ES whole-rock determination and a total digestion, multi-element assay or by analysis by XRF.

Package L320 contains four separate analytical tests that report 23 parameters (11 major oxides, 10 minor and trace elements, loss on ignition and SUM). SUM is the sum total of these constituents that gives a mass balance close to 100% when all the major constituents are accurately determined and accounted for.

LF720 - XRF CAD\$42.50

ELEMENT	DETECTION LIMIT	UPPER LIMIT
SiO ₂	0.01 %	100.0 %
Al_2O_3	0.01 %	80.0 %
Fe ₂ O ₃	0.01 %	100.0 %
CaO	0.01 %	80.0 %
MgO	0.01 %	80.0 %
Na ₂ O	0.01 %	60.0 %
K ₂ O	0.01 %	40.0 %
MnO	0.01 %	74.0 %
TiO ₂	0.01 %	40.0 %
P ₂ O ₅	0.01 %	40.0 %
Cr ₂ O ₃	0.01 %	10.0 %
Ва	0.01 %	35 %
Ni	0.001 %	7.8 %
Co	0.001 %	2.3 %
Cu	0.001 %	6.4 %
Pb	0.001 %	9 %
SO ₃	0.002 %	20 %
Sn	0.01 %	2.4 %
Sr	0.002 %	16.9 %
Zn	0.001 %	8 %
Zr	0.002 %	33 %
V_2O_5	0.002 %	10 %
LOI	0.1 %	100 %

The redundancy of two separate Ni determinations (LF320 and MA370) provides an additional check on accuracy.

Package LF720 A predetermined amount of sample is dried at 105°C to remove the moisture, then roasted at 1000°C to determine the loss on ignition (LOI).

The roasted sample is then fused in a platinum-gold crucible with a commercial lithium tetraborate/metaborate flux and cast into a disc. Fused discs are analyzed by XRF.

Samples must be dried (prep method D105) prior to analysis, to ensure that the hygroscopic nature of these materials do not add analytical error due to highly variable moisture contents.

LF320 - ICP-ES

CAD\$37.80

ELEMENTS	DETECTION	ON LIMIT
SiO ₂	0.01	%
Al ₂ O ₃	0.01	%
Fe ₂ O ₃	0.04	%
CaO	0.01	%
MgO	0.01	%
Na ₂ O	0.01	%
K ₂ O	0.01	%
MnO	0.01	%
TiO ₂	0.01	%
P_2O_5	0.01	%
Cr ₂ O ₃	0.002	%
LOI	0.01	%
SUM	0.01	%
Ва	5	ppm
Co	0.001	%
Cu	0.001	%
Nb	5	ppm
Ni	20	ppm
Ni	0.001	%
Sc	1	ppm
Sr	2	ppm
Υ	3	ppm
Zr	5	ppm

OPTIONAL ELEMENTS	DETECTION LIMIT
С	0.02 %
S	0.02 %

Lithogeochemistry

Iron Ore Analysis

Using the ISO-9516 method, fused disc XRF analyses provide robust and precise data for all iron ore matrices. Moisture and loss on ignition (LOI) are determined separately at 105C and 1000C to provide critical mineralogical information about Fe bearing phases in the sample. Dried ores are mixed with a lithium metaborate/tetraborate and sodium nitrate flux in a humidity controlled environment to eliminate variability caused by water absorption, followed by fusion and casting into glass discs. Fused discs are entirely homogeneous and eliminate matrix and grain size variability thus presenting an ideal sample to an extremely stable analytical platform. The data produced is of the highest assay quality and is verified with a full spectrum of iron ore specific certified reference material.

LF730 – Following the ISO-9516 guideline using lithium tetraborate, lithium metaborate and sodium nitrate to fuse dried iron ore

samples. Moisture and LOI will be done separately at 105°C and 1000°C.

The fused sample is cast into a disc and analyzed by XRF (PANalytical Axios).

 $\bf LF732$ – Standard fusion protocol for iron ore allows the analysis of Na $_2$ O in addition to elements analyzed using the ISO-9516 method.

LF732 FE ORE PACKAGE

CAD\$45.65

ELEMENT	DETECTI	ON LIMIT	UPPEF	R LIMIT
SiO ₂	0.01	%	100.0	%
Al_2O_3	0.01	%	80.0	%
Fe ₂ O ₃	0.01	%	100.0	%
CaO	0.01	%	40.0	%
MgO	0.01	%	50.0	%
K ₂ O	0.01	%	40.0	%
MnO	0.01	%	60.0	%
Na ₂ O	0.01	%	30.0	%
TiO ₂	0.01	%	40.0	%
P ₂ O ₅	0.01	%	25.0	%
Cr ₂ O ₃	0.001	%	10.0	%
As	0.003	%	3.8	%
Ba	0.001	%	22.4	%
Co	0.001	%	3.9	%
Cu	0.005	%	6.4	%
Ni	0.005	%	3.9	%
Pb	0.001	%	9.3	%
S	0.001	%	5.0	%
Sn	0.005	%	3.9	%
Sr	0.002	%	8.5	%
Zn	0.005	%	8.0	%
Zr	0.001	%	29.6	%
V_2O_5	0.001	%	10.0	%
LOI	0.1	%		

LF730 - FE ORE PACKAGE - ISO-9516

CAD\$48.80

ELEMENT	DETECTION	ON LIMIT	UPPEF	R LIMIT
SiO ₂	0.01	%	80.0	%
Al_2O_3	0.01	%	80.0	%
Fe ₂ O ₃	0.01	%	100.0	%
CaO	0.01	%	40.0	%
MgO	0.01	%	80.0	%
K ₂ O	0.01	%	40.0	%
MnO	0.01	%	80.0	%
TiO ₂	0.01	%	40.0	%
P ₂ O ₅	0.01	%	40.0	%
Cr ₂ O ₃	0.004	%	10.0	%
As	0.003	%	3.8	%
Ва	0.004	%	17.9	%
Со	0.001	%	3.9	%
Cu	0.001	%	6.4	%
Ni	0.001	%	3.9	%
Pb	0.001	%	9.3	%
S	0.001	%	4.0	%
Sn	0.003	%	3.9	%
Sr	0.002	%	8.5	%
Zn	0.001	%	8.0	%
Zr	0.002	%	33.0	%
V_2O_5	0.002	%	10.0	%
LOI (1000)	0.10	%		

Laser Ablation Packages

Fused Bead Laser Ablation ICP-MS

Fused Bead Laser Ablation ICP-MS utilises high productivity robotic fusion technology with state of the art laser ablation and ICP-MS instruments to provide a fully extracted quantitative analysis for all elements. Detection limits are comparable to traditional multi acid digestion methods. The technique offers safety and environmental advantages as there are no acids used in digestion, and it is fast and repeatable.

LA001 CAD\$42.50

50 ELEMEN	T PACKAGE				
Ag (0.1)	As (0.2)	Ba (0.5)	Be (0.2)	Bi (0.2)	Br (10)
Cd (0.1)	Ce (0.02)	Co (0.1)	Cr (1)	Cs (0.01)	Cu (2)
Dy (0.01)	Er (0.01)	Eu (0.01)	Ga (0.1)	Gd (0.01)	Hf (0.01)
Ho (0.01)	In (0.05)	La (0.01)	Lu (0.01)	Mn (1)	Mo (0.2)
Nb (0.01)	Nd (0.01)	Ni (2)	Pb (1)	Pr (0.01)	Rb (0.05)
Re (0.01)	Sb (0.1)	Sc (0.1)	Se (5*)	Sm (0.01)	Sn (0.2)
Sr (0.1)	Ta (0.01)	Tb (0.01)	Te (0.2)	Th (0.01)	Ti (1)
TI (0.2)	Tm (0.01)	U (0.01)	V (0.1)	W (0.05)	Y (0.02)
Yb (0.01)	Zn (5)	Zr (0.5)			

Detection limits in ppm

LA002 CAD\$32.65

BASIC 35 ELEMENT PACKAGE					
Ag (0.1)	As (0.2)	Ba (0.5)	Be (0.2)	Bi (0.2)	Br (10)
Cd (0.1)	Ce (0.02)	Co (0.1)	Cr (1)	Cs (0.01)	Cu (2)
Ga (0.1)	Hf (0.01)	In (0.05)	La (0.01)	Mn (1)	Mo (0.2)
Nb (0.01)	Ni (2)	Pb (1)	Sb (0.1)	Sc (0.1)	Sn (0.2)
Sr (0.1)	Ta (0.01)	Te (0.2)	Th (0.01)	Ti (1)	U (0.01)
V (0.1)	W (0.05)	Y (0.02)	Zn (5)	Zr (0.5)	

Detection limits in ppm

Fused Bead XRF Laser Ablation ICP-MS

Fused Bead Laser Ablation ICP-MS couples high productivity robotic fusion technology with wavelength dispersive XRF and laser ablation-ICP-MS instruments to provide a fully extracted quantitative analysis. Where elements are available by both XRF and ICP-MS, a matrix dependent determination will made for the most appropriate reporting instrument.

LX001 CAD\$61.95

62 ELEMENT C	OMBO PACKAGE			
Al ₂ O ₃ (100)	Ag (0.1)	As (0.2)	BaO (10)	Be (0.2)
Bi (0.2)	Br (10)	CaO (100)	Cd (0.1)	Ce (0.02)
CI (10)	Co (0.1)	Cr (10)	Cs (0.01)	Cu (10)
Dy (0.01)	Er (0.01)	Eu (0.01)	Fe ₂ O ₃ (100)	Ga (0.1)
Gd (0.01)	Hf (0.01)	Ho (0.01)	In (0.05)	K ₂ O (100)
La (0.01)	Lu (0.01)	MgO (100)	MnO (10)	Mo (0.2)
Na ₂ O** (100)	Nb (0.01)	Nd (0.01)	Ni (10)	P ₂ O ₅ (10)
Pb (10)	Pr (0.01)	Rb (0.05)	Re (0.01)	SO ₃ (10)
Sb (0.1)	Sc (0.1)	Se (5*)	SiO ₂ (100)	Sm (0.01)
Sn (0.2)	Sr (0.1)	Ta (0.01)	Tb (0.01)	Te (0.2)
Th (0.01)	TiO ₂ (10)	TI (0.2	Tm (0.01)	U (0.01)
V (0.1)	W (0.05)	Y (0.02)	Yb (0.01)	Zn (10)
Zr (0.5)	LOI (100)	Sum (100)		

Detection limits in ppm

LX002 CAD\$48.95

46 BASIC ELE	MENT COMBO P.	ACKAGE		
Al ₂ O ₃ (100)	Ag (0.1)	As (0.2)	BaO (10)	Be (0.2)
Bi (0.2)	Br (10)	CaO (100)	Cd (0.1)	Ce (0.02)
CI (10)	Co (0.1)	Cr (10)	Cs (0.01)	Cu (10)
Fe ₂ O ₃ (100)	Ga (0.1)	Hf (0.01)	In (0.05)	K ₂ O (100)
La (0.01)	MgO (100)	MnO (10)	Mo (0.2)	Na ₂ O** (100)
Nb (0.01)	Ni (10)	P ₂ O ₅ (10)	Pb (10)	SO ₃ (10)
Sb (0.1)	Sc (0.1)	SiO ₂ (100)	Sn (0.2)	Sr (0.1)
Ta (0.01)	Te (0.2)	Th (0.01)	TiO ₂ (10)	U (0.01)
V (0.1)	W (0.05)	Y (0.02)	Zn (10)	Zr (0.5)
LOI (100)	Sum (100)			

Detection limits in ppm

^{*}partially volatilized

^{*}partially volatilized

 $[\]ensuremath{^{**}}$ may not be available for some sample types

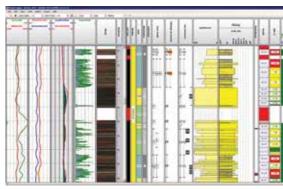
^{*}partially volatilized

^{**}may not be available for some sample types

Environmental: Now with Maxxam, as part of the BV Group of companies, BVM offers comprehensive environmental laboratory services including soil and waste analysis, toxicity evaluation, ultra trace contaminant analysis (HRMS), water quality testing and other specialized testing services.

Becquerel Laboratories, a Maxxam company, is a global leader in neutron activation analysis (NAA) and radioactivity testing. NAA is a great alternative for matrices that don't work with other methods and also for a secondary verification of results generated by other techniques. Becquerel provides custom elemental analysis for difficult matrices such as high purity quartz, coal, diamonds and more.

BV Solutions offers you a vast array of choices for on-site laboratory services. These are extremely customized solutions for your needs depending on geography, size of program, environment, remoteness and power. You can now focus on your project while we take care of the rest.



Through ongoing collaboration with universities and researchers from around the world, we strive to stay at the cutting edge of the analytical sciences to provide the highest quality analyses targeted at the most up to date exploration methods. To this end we are proud to be the exclusive sponsor of the Acme Industrial Research Chair in Exploration Geochemistry at the University of British Columbia. The next five years will be a very exciting time as Dr. Peter Winterburn focuses a world class team on topics designed to reduce exploration costs and increase the rate of discovery for new ore deposits.

MineDSI

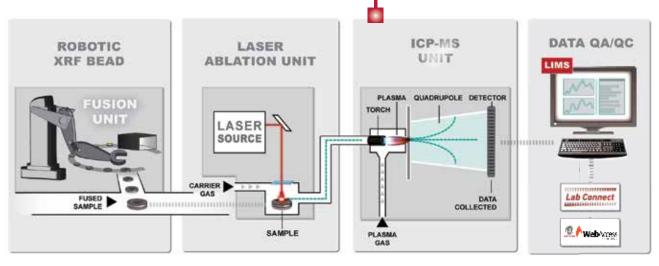
MineDSI is a new digital core logging solution from BV Minerals. The software is designed to improve workflow efficiency by seamlessly integrating digitally captured logging data and high resolution core photographs with all lab and field acquired analytical data. The system also reduces time consuming manual data entry resulting in lower error rates and higher confidence in the data. The versatile MineDSI on-site database is also fully scalable, operating as a standalone product or with full integration with your existing database solution. Speak to a customer service representative today to discuss in detail how MineDSI can benefit your program.

FOURIER TRANSFORM INFRA-RED (FTIR) SPECTROMETRY

The Fourier Transform Infra-Red (FTIR) technique measures light absorbed by a sample in the Infra-Red (IR) region of the light spectrum. To use the FTIR technique for the analysis of mineral samples, the spectrum of a number of samples that have been analysed by classical methods is collected. By using chemometric regression analysis, a mathematical correlation for each analyte is determined from the spectra, and then used to analyse unknown samples. Normal sample preparation schemes are used with the sample to produce a dried pulp. The FTIR spectra are collected without any additional preparation. There are no digests, fusions or other processes required.

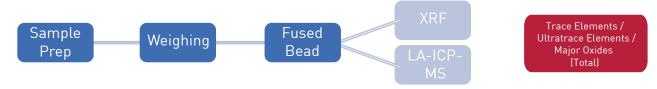
FTIR is a well-accepted analysis technique in the Bauxite industry; Bureau Veritas has successfully completed Bauxite programs using FTIR. Other ore types can be tested; however a consultative approach between the customer and laboratory will be needed to design the calibration set and analytes. Please contact your laboratory representative should you wish to design an analysis trial.

BUREAU VERITAS MINERALS LASER ABLATION ICP-MS ANALYSIS


FOR LITHOGEOCHEMISTRY & MINERAL SPECIFIC CHEMISTRY

Lithogeochemistry Mode

Bureau Veritas Laser Ablation ICP-MS analysis is designed to meet a broad range of analytical requirements with a single cost effective method. In Lithogeochemistry Mode LA-ICP-MS capitilises on BV's high productivity robotic fusion technology with state of the art laser ablation and ICP-MS instruments to provide a fully extracted quantitative analysis for all elements Detection limits are comparable to industry leading mixed acid trace element ICP-MS packages.


LA-ICP-MS BENEFITS

- Total analysis at trace and ultra trace detection limits equivalent to mixed acid ICP-MS packages.
- Simplifies the analysis process to a single, cost effective fusion.
- XRF and ICP-MS capabilities can be combined to extend the dynamic range in one analysis (eg. U from 10ppb to % level.)
- Minimises hazards and waste due to elimination of corrosive acids.

LASER TECHNOLOGY

Bureau Veritas Minerals' **XRF-LA-ICP-MS combo package** requires only a single lithium borate fusion which provides major elements from XRF and trace and ultratrace elements from LA-ICP-MS.

For more details and prices please see page 30.

INAA Laboratories (BQ-NAA-01)

Total determination of Au plus 34 elements by gamma ray analysis after nuclear irradiation. Requires 10–30 g pulp.

aaiatioiii rioqaiio	010 00 g p	- 1
ELEMENT	DETECTI	ON LIMIT
Ag	5	ppm
As	0.5	ppm
Au	2	PPB
Ва	50	ppm
Br	0.5	ppm
Ca	1	%
Се	3	ppm
Со	1	ppm
Cr	5	ppm
Cs	1	ppm
Eu	0.2	ppm
Fe	0.01	%
Hf	1	ppm
Hg	1	ppm
Ir	5	PPB
La	0.5	ppm
Lu	0.05	ppm
Мо	1	ppm
Na	0.01	%
Nd	5	ppm
Ni	100	ppm
Rb	15	ppm
Sb	0.1	ppm
Sc	0.1	ppm
Se	3	ppm
Sm	0.1	ppm
Sn	0.01	%
Sr	0.05	%
Ta	0.5	ppm
Tb	0.5	ppm
Th	0.2	ppm
U	0.5	ppm
W	1	ppm
Yb	0.2	ppm
Zn	50	ppm

REMOTE SERVICES

On site laboratory services are very difficult to manage and require a high amount of resources, time and management. When it is more feasible to handle samples on site we are capable of presenting a solution that will have the backing of a global laboratory that is ISO certified. With 62,000 employees working in all regions of the world we have the resources to be able to offer a high degree of support, knowledge and skill no matter where your project is.

All site labs are customized according to your location, environment, volume and personnel needs. We are able to provide various services depending on each individual need including

Sample preparation Fire assay XRF and handheld XRF Core logging Core cutting Spectroscopy

Having BV Solutions managing your site lab will allow you to focus on your project and we can take care of buying power for reagents and equipment, single monthly invoice, our expertise and knowledge in dust control, assaying and productivity as well as QA/QC control, HS&E, a global laboratory certified under ISO requirements, any lab personnel issues, trouble shooting, depth, continued innovation and R&D. This is what we do.

OTHER ANALYTICAL SERVICES

CODE	DESCRIPTION	CAD
	Anion Analysis of water	
	Cl, SO ₄ , Br, NO ₂ , NO ₃ , PO ₄	call for details

Analysis at Becquerel Laboratories

BQ-NAA-02 FULL	Becquerel – PGE – NiS – Full Package	call for details
BQ-NAA-01	Neutron Activation – Full Suite	\$22.05

INAA Becquerel Laboratories (BQ-NAA-02)

A nickel-sulfide fire assay pre-concentration followed by irradiation and analysis on the sulfide precipitate.

			LOV	VER	UP	PER
		ELEMENT	DETECTION	ON LIMIT	DETECTI	ON LIMIT
	111	Au	1	ppb	1	ppm
KAGE	Pt	20	ppb	10	ppm	
	Š	Pd	20	ppb	10	ppm
그분	PACI	Rh	5	ppb	1	ppm
ARTIAL ACKAGE	Ξ.	Ru	50	ppb	20	ppm
A STATE	Ir	1	ppb	1	ppm	
<u> </u>		Os	10	ppb	1	ppm

ENVIRONMENTAL SERVICES:

Maxxam provides independent analytical data to protect the value of assets, improve the safety and quality of products, and improve the health and safety of people and our environment. Maxxam's analytical capabilities in environmental testing services, control and risk mitigation are packaged to meet regulatory approvals and incorporate stringent quality components, regardless of project scope. Customers include consulting engineers, hydrogeologists, oil and gas companies, mining companies, and all levels of government.

The Environmental Services group offers comprehensive analyses for a wide range of inorganic, organic, radiological and physical parameters in water, waste water, soil, sediment, vegetation, tissue and air. Our analytical services include:

- 1. Soil Vapour & Industrial Hygiene
- 2. Hydrocarbon Forensics
- 3. Ultra Trace (dioxins and furans)
- 4. Radiological & Hazardous Materials
- 5. ARD static and kinetic testing
- 6. Soil Characterization (physical properties)
- 7. Ecotoxicology and Toxicity Analysis
- 8. Emergency Spill Response and Mobile Laboratory Services

CORE SERVICES

Maxxam's Oil Sands Core Processing facility in Calgary is designed for safe and efficient core movement from receiving to slabbing and frozen sample storage, and from photography, to viewing and analysis.

In January 2013, Maxxam acquired Henderson and Associates, the leading provider of geological services for analysis and interpretation of core drilling projects. H&A provides customized software and time-saving geological services to assist clients with the review of their drilling programs. H&A's proprietary Visual Logger™ software facilitates and expedites drill core description and logging for more efficient and accurate results. Visual Logger's flexible, intuitive layout with side-by-side view of your data enables quick, accurate comparisons and thorough analysis. Visual Logger can be adapted to your projects needs with personalized support as requested.

Mineral Processing Hydrometallurgy Mineralogy – Petrographic Environmental Studies Sample Preparation & Storage

MINERAL PROCESSING

Our Mineral Processing Laboratories are fully equipped to perform all metallurgical investigations required for ore evaluation and mill design. Testing services include:

Comminution

Crushing Grinding

Bond Rod & Ball Mill Work Index

Abrasion Index

Size Classification & Screening Starkey SAG Design Test

Gravity Concentration

Jigs

Shaking tables

Elutriation

Spirals

Cone

Heavy media cones

Centrifugal heavy media separation

Centrifugal concentrators (Falcon and Knelson)

Mozley Separator

Flotation

Batch flotation tests Locked cycle tests Column flotation Special gas media flotation Reverse & flash flotation

Magnetic Separation

Agglomeration flotation

(wet & dry, variable intensity)

Drum separator Belt separator

High gradient separator

Solid-Liquid Separation

Standard thickening procedures

Differential settling

Vacuum & pressure filtration

PILOT PLANT

A complete ore treatment pilot plant, can be assembled for any circuit combination, from crushing through to final product with throughput ranging from 1 to 5 tonnes per day, depending on ore hardness.

HYDROMETALLURGY

We have extensive laboratory facilities to conduct a wide range of hydrometallurgical and biohydrometallurgical studies. These include the full scale up from individual batch tests through continuous bench tests to commercial sized pilot plant reactors. The testing capabilities include:

Cyanidation studies (Merrill Crowe, CIP and CIL procedures)

Pressure leaching

Bottle roll and tank leaching

Counter current closed circuit tank leaching

Column leaching up to one meter diameter (4 tonnes)

Diagnostic / sequential leaching

Solvent extraction

Ion exchange

Electrowinning

Differential precipitation

Bio-oxidation of refractory gold ores and concentrates

Biological leaching of base metal ores and concentrates

Biological heap leach simulation

Cyanide and ammonia detoxification

Standard electrowinning technology

Galvanox copper recovery process

BANKABLE FEASIBILITIES

Inspectorate is well recognized in the mining industry for value-added input and quality work. The Metallurgical Division is fully qualified to complete "bankability" testing and mill design. Over the past 21 years, our firm has provided this level of service to most of the major engineering firms working within the mining industry. Our independence, reliability and accountability has been firmly established.

MINERALOGICAL - PETROGRAPHIC STUDIES

Mineralogical studies are critical to successful geological exploration and the processing of ores. We offer a full range of packages including: bulk mineralogical analysis (BMA), particle mineralogical analysis (PMA), modal analysis, trace mineral search (TMS), and sparse phase liberation (SPL) using QEMSCAN, MLA Express and optical mineralogy for both thin and polished sections.

CONTACT INFORMATION:

Metallurgical Division 11620 Horseshoe Way, Richmond, BC Canada V7A 4V5 Tel: +1 (604) 272-8110 Fax: +1 (604) 272-0851 Email: bvmininfo@ca.bureauveritas.com

"The Company" is the legal entity with whom the Client is providing instructions.

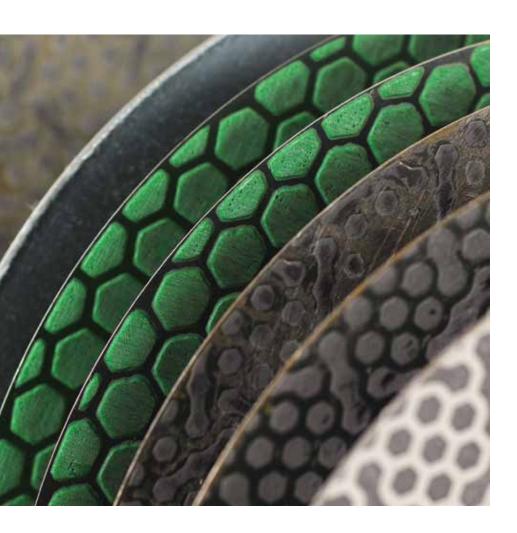
- 1. (a) Unless otherwise specifically agreed in writing, the Company undertakes services in accordance with these general conditions (hereinafter called "General Conditions") and accordingly all offers or tenders of service are made subject to these General Conditions. All resulting contracts, agreements or other arrangements will in all respects be governed by these General Conditions. (b) These General Conditions shall be governed by the law of the Jurisdiction in which the Company is registered. (c) The parties (being the Company and the Client collectively), hereby agree that the courts of the Jurisdiction of registration shall have exclusive Jurisdiction to settle any dispute or claim that arises out of or in connection with these General Conditions or the underlying contract or arrangement except that the Company shall have the option to pursue money claims against the Client in any jurisdiction where the client has assets or funds or a place of business.
- The Company is an enterprise principally engaged in mineral preparation and laboratory testing services for mining, minerals exploration and research, as such it:
 - 2.1. carries out such "standard services" as are referred to in General Condition 6;
 - 2.2. issue reports as may be relevant to the standard services.
- The Company acts for the persons or bodies from whom the
 instructions to act have originated (herein called "the Client"). No
 other party is entitled to give instructions, particularly on the delivery
 of report, unless so pre-authorized by the Client and agreed to by the
 Company.
 - 3.1 The Company will however be deemed irrevocably authorized to deliver at its discretion the report to a third party if following instructions by the Client a promise in this sense has been given to this third party.
- The Company will provide services in accordance with the Client's specific instructions as accepted and confirmed by the Company so far as such testing methods as the Company shall deem appropriate in its detection limit and confidence interval.
 - 5.1 All enquiries and orders for the supply of services must be accompanied by sufficient information, specifications and instructions to enable the Company to evaluate and/or perform the services required.
 - 5.2 The client to inform the Company in advance of any known hazards or dangers, actual or potential, associated with any order or samples or testing including, for example, presence or risk of radiation, toxic or noxious or explosive elements or materials, environmental pollution or poisons. The client will be liable for cost of disposal of samples considered hazardous or dangerous.

- 6. The Company's standard service may include all or any of the following:-
 - 6.1 laboratory analysis or other testing related to Exploration and Mining;
 - 6.2 Supply of technicians or other personnel related to Exploration and Mining.
- 7. Whereas the Company provides and/or sells goods or equipment (as opposed to services) to the Client (whether combined with or separately from any services), and such goods or equipment have been acquired by the Company from a Third Party, the Company gives no express or implied warranty as to the quality of such goods or equipment for their fitness for purpose. However, upon written request by the client, the Company will assign (as far as possible), its rights against such third party.
- 8. Subject to the Client's instructions as accepted by the Company, the Company will issue reports which reflect statements of opinion made with due care within the limitation of instructions received but the Company is under no obligation to refer to or report upon any facts or circumstances which are outside the specific instructions received.
 - 8.1 Reports issued following testing or analysis of such samples as are submitted to the Company for analysis (but not drawn from the bulk by the Company) contain the Company's specific opinion on those samples only but do not express or imply any opinion upon the bulk from which the samples were drawn.
 - 8.2 The Company will not be liable the Client or any third party for any samples so altered, lost, damaged or destroyed.
- For sample pickup a nd/or services provided at the Client's site by the Company's employees, subcontractors and or agents, the Client will ensure the following:
 - 9.1 instructions and sufficient information are given in due time to enable the required services to be performed effectively;
 - 9.2 all necessary measures are taken for safety and security of working conditions, sites and installations during the performance of service and will not rely, in this respect, on the Company's advice whether requested or not; But the Client accepts that the Company and its employees may exercise a "stop work authority" in any circumstances where working conditions are considered by its employee (or other representative of the Company) to be unsafe and contrary to safe working conditions;
 - Such "Stop Work Notice" may be issued verbally by the Company without notice (subject to being confirmed in writing within 48 working hours). Once issued the Company is discharged from any obligation to continue to provide its contracted services until such working conditions have been fully rectified by the Client to the satisfaction of the Company. During the period of suspension of its services, the Company shall be free of any liability for any additional costs or liabilities incurred or potentially incurred by the Client.
 - 9.3 take all necessary steps to eliminate or remedy any obstruction to or interruptions in the performance of the required services and carry adequate business liability insurance in place during the term of the services provided by the Company.

5.

- 10. The Company with consent from the Client to delegate the performance of the whole or any part of the services contracted for with the Client to any agent or subcontractor. The Company will pass on the result of the analysis but without responsibility for its accuracy.
- 11. All technicians and other personnel supplied by the Company in the performance of any services shall at all times remain employees, agents or sub-contractors (as the case may be) of the Company. As such, all such persons shall be answerable to and subject to the instructions of the Company at all times. Unless otherwise agreed by the Company, such persons shall not be obliged to follow any instructions of the Client.
- 12. The Company undertakes to exercise due care and skill in the performance of its services and accepts responsibility only where such skill and care is not exercised and negligence against the Company is proven.
 - 12.1 The liability of the Company in respect of any claims for loss, damage or expense of whatsoever nature and howsoever arising in respect of any breach of contract and/or any failure to exercise due skill and care by the Company shall in no circumstances exceed a total aggregate sum equal to the amount of the fee in respect of the specific service required under the particular contract with the Company which gives rise to such claims.
 - 12.2 The limit of liability of the Company under the terms of Condition 12.1 may (at the sole discretion of the Company) be increased upon request received by the Company in advance of the performance of the service to such figure as may be agreed upon.
 - 12.3 All warranties, conditions and other terms implied by statute or common law are, to the fullest extent permitted by law, excluded from these General Conditions.
 - 12.4 This Condition 12 sets out the entire financial liability of the Company (including any liability for the acts or omissions of its employees, agents and sub-contractors) to the Client in respect of any breach of these General Conditions, any use made by the Client of the services and any representation, statement or tortious act or omission (including negligence) arising in connection with these General Conditions.
- 13. The Client shall guarantee, hold harmless and indemnify the Company and its officers, employees, agents or subcontractors against all claims made by any third party for loss, damage or expense of whatsoever nature and howsoever arising relating to the performance, purported performance or non-performance of any services to the extent that the aggregate of any such claims relating to any one service exceed the limit mentioned in Condition 12.
- 14. Every officer, employee, agent or subcontractor of the Company shall have the benefit of the limitation of compensation and the indemnity contained in these General Conditions and so far as relates to such limitations any contract entered into by the Company is entered into not only on its own behalf but also as agent and trustee for every such person as aforesaid.

- 15. In the event that any unforeseen problems or expenditure arise in the course of carrying out any of the contracted services the Company shall be entitled to make additional charges to cover additional time and cost necessarily incurred to complete the service.
- 16. The Client will punctually pay not later than 30 (thirty) days after the relevant invoice date (or within such other period as may have been agreed in writing by the Company) all proper charges rendered by the Company failing which, and without prejudice to any other rights or remedies available to the Company, interest will become due at the rate of 15 (fifteen) per cent per annum from the date of invoice until payment.
 - 16.1 All prices quoted and charges due under these General Conditions shall, unless the Company confirms otherwise in writing, be exclusive of any value added or sales tax which shall be charged in addition at the prevailing rate.
 - 16.2 The Client shall not be entitled to retain or defer payment of any sums due to the Company on account of any dispute, cross claim or set off which it may allege against the Company.
 - 16.3 In the event of any suspension of payment, arrangement with creditors, bankruptcy, insolvency, receivership or cessation of business by the Client the Company shall be entitled to suspend all further performance of its services forthwith and without liability and all sums payable to the Company shall become immediately due and payable.
- 17. In the event of the Company being prevented by reason of any cause whatsoever outside the Company's control from performing or completing any service for which an order has been given or an agreement made, the Company shall be relieved of all responsibility whatsoever for the partial or total non-performance of the required service.
 - 17.1 The Company may seek compensation for any lost suffered due to the Client not fulfilling its obligations from the Contract.
- 18. The Company is neither an insurer nor a guarantor and disclaims all liability in such capacity. Clients seeking a guarantee against loss or damage should obtain appropriate insurance.
- No alteration, amendment or waiver of any of these General Conditions shall have any effect unless agreed to in writing and signed by an officer of the Company.
- 20. Notwithstanding 19, the Client agrees that the Company has the right to modify these Terms and Conditions. The Client further agrees that such modification will be effective immediately upon notice being given by posting notice of such changes on the Company's website (or by communicating such notice to the Client by e-mail)


CONVERSION FOR WEIGHTS

	TROY OZ.	AVOIRDUPOIS OZ.	GRAMS
1 Troy oz.	1	1.0971	31.104
1 Avoirdupois oz.	0.91146	1	28.35
1 Gram	0.03215	0.03527	1

- 1 Metric Tonne (MT) = 1000 kilograms = 2204.6 pounds
- 1 Short Ton (ST) = 907.2 kilograms = 2000 pounds
- 1 Long Ton (LT) = 1016 kilograms = 2240 pounds

ASSAY VALUATIONS

VALUE	PARTS PER MILLION (ppm)	METRIC TONNE	SHORT TON	LONG TON
1 Gram / MT	1	0.03215	0.02917	0.03266
1 Troy oz / MT	31.104	1	0.9072	1.106
1 Troy oz / ST	34.286	1.1023	1	1.120
1 Troy oz / LT	30.612	0.9842	0.8929	1

OXIDES CONVERSION FACTORS

ELEMENT	CONVERSION FACTOR	OXIDE
Al	1.889	Al_2O_3
Ва	1.669	BaSO ₄
	1.116	ВаО
Ве	2.775	BeO
С	3.666	CO ₂
Ca	1.399	CaO
	2.497	CaCO ₃
Cr	1.461	Cr ₂ O ₃
F	2.055	CaF ₂
Fe	1.286	FeO
	1.430	Fe ₂ O ₃
K	1.205	K ₂ O
Mg	1.658	MgO
	3.468	MgCO ₃
Mn	1.291	MnO
Na	1.348	Na ₂ O
Nb	1.431	Nb_2O_5
Ni	1.273	NiO
Р	2.291	P ₂ O ₅
Rb	1.094	Rb ₂ O
Si	2.139	SiO ₂
Sn	1.270	SnO ₂
Sr	1.185	SrO
Та	1.221	Ta ₂ O ₅
Th	1.138	ThO ₂
Ti	1.668	TiO ₂
U	1.179	U ₃ O ₈
V	1.785	V_2O_5
W	1.261	WO ₃
Υ	1.270	Y_2O_3
Zr	1.351	ZrO ₂

WEB ACCESS

Web Access is a secure web interface for our customers to obtain direct access to the Bureau Veritas Upstream Minerals laboratory database.

Web Access is a fully compliant .NET application designed for Microsoft Internet Explorer. Using this system, our customers may gain access to their data any time of the day or night. In addition customers are provided access to:

- All PDF documents pertaining to each sample submission such as the original sample submission form, certificates, invoices, and facturas (for Latin America);
- PDF documents that apply to the project such as the pricing quote and template submission forms;
- PDF documents that describe the analytical methods;
- Quality Control documents reviewing standard and replicate performance.

SAMPLE TRACKING SYSTEM

Upstream Minerals uses the LIMS (Laboratory Information Management System) to track the flow of every sample through each stage of sample handling and analysis. When received, each sample is bar coded and labeled. This unique barcode is used to build an audit trail that documents the complete history of work performed on each sample. This includes recording each and every person that has touched each sample and the work that they performed. This provides the laboratories with a very high level of control but also provides our clients with an unprecedented level of traceability and sample tracking.

BOX TRACKING SYSTEM

Each bar coded sample is allocated into a bar coded sample box, typically 36 samples per box, but this could be up to several hundred per box. This allows BVML to track each box as it moves from one laboratory to another and allows our clients to monitor the progress of their samples from a remote sample preparation facility to the main laboratory. More importantly, this system speeds the flow of the samples through the laboratory by utilizing bar coding to eliminate time consuming manual steps.

NORTH AMERICA

CANADA

9050 Shaughnessy St Vancouver, BC V6P 6E5 CANADA Tel: +1 604 253 3158 Fax: +1 604 253 1716 bvmininfo@ca.bureauveritas.com

11620 Horseshoe Way Richmond, BC V7A 4V5 CANADA Tel: +1 604 272 8110 Fax: +1 604 272 0851

3470B Highway 16 PO Box 5031 Smithers, BC VOJ 2NO CANADA Tel: +1 250 847 4548 Fax: +1 250 847 4549

669 Moneta Avenue PO Box 1821 Timmins, ON P4N 2H9 CANADA Tel: +1 705 360 5232 Fax: +1 705 360 5503

77 Collins Lane, Lot #53 Whitehorse, YT Y1A 0A8 CANADA Tel: +1 867 393 4725 Fax: +1 867 393 4775

8 Rue Turgeon Val-d'Or, QC J9P 0A5 CANADA Tel: +1 819 874 1177 Fax: +1 819 874 1178

USA

605 Boxington Way Suite 101 Sparks, NV 89434 USA Tel: +1 775 359 6311 2175 Wildwood Way Suite B

2175 Wildwood Way Suite E Elko, NV 89801 USA Tel: +1 775 777 1438

13395 Glacier Highway Juneau, AK 99801 USA Tel: +1 907 750 1734

MEXICO

Calle Cedros No. 9-B Col. Libertad Hermosillo, Sonora CP 83137 MEXICO

Tel/Fax: +52 662 2603057

República de Panamá 428-8 Col. Unión de Ladrilleros Hermosillo, Sonora CP 83179 MEXICO

Tel/Fax: +52 662 118 01 49

Blvd. El Sahuaro No. 1, Parque Industrial de Caborca Caborca, Sonora CP 83690 MEXICO Tel/Fax: +52 637 372 65 21

Av. de Las Industrias 6500-28, Col Nombre de Dios Chihuahua, Chihuahua CP 31020

MEXICO Tel/Fax: +52 614 417 53 82

Antiguo Camino a Contreras 117 Fracc. Industrial Scorpio Durango, DGO CP 34020 MEXICO Tel/Fax: +52 618 810 3974

Lopez de Legazpi No 711 Col. Echeverria Guadalajara, Jalisco CP 44970 MEXICO Tel/Fax: +52 33 3367 0920

CENTRAL AMERICA

GUATEMALA

17 Avenida 51-10 Zona 12 Col. La Colina, Guatemala City, GUATEMALA Tel: +502 24774-795 Fax: +502 24794-362

NICARAGUA

Montoya 2 Cuadras Abajo, Calle Marginal cost. Este del Restaurante Los Ranchos Managua City, NICARAGUA Tel: +505 22 66 33 66

SOUTH AMERICA

CHILE

Av. Claudio Arrau 7152 Pudahuel Santiago, CHILE Tel: +56 22 616 4600 byminsouthamerica@cl.bureauveritas.com

Camino Internacional Diego de Almagro Paipote 1111, Copiapó, CHILE Tel: +56 52 253 5347/48

byminsouthamerica@cl.bureauveritas.com

ARGENTINA

Maza Norte 3880 Gutierrez Maipú Mendoza, Mendoza ARGENTINA Tel: +54 261 5240456

BRA7II

MG 010 KM 26 – Lihna Verde Vespasiano - MG CEP: 33200-000 BRASIL Tel: +55 31 3526 6400 Fax:+55 31 3526 6401

COLOMBIA

Calle 20 No. 30-38 Cienaga, Magdalena COLOMBIA Tel: +57 5410 13 19

GUYANA

Lot 13 Coldingen Industrial Estate East Coast, Demerara GUYANA Tel: +592 270 4349 Fax: +592 270 4393

PERU

Jr. Pacto Andino No. 260-266 Urb. La Villa – Chorrillos Lima 09, PERU Tel: +51 1 467 2045 Fax: +51 1 467 5132

DOMINICAN REPUBLIC

Carretera Maimon Cotui №42 Buenos Aires, Maimón Monseñor Nouel, Bonao, Republica Dominicana Tel: +809 551 2011 info.sa@acmelab.com

EUROPE

TURKEY

Bahcelievier Mahallesi (Samsun Karayolu) Ucyol Sokak No: 27, Hasanoglan Elmadag, ANKARA 6850 TURKEY Tel: +90 312 866 3466/3539 Fax: +90 312 866 1008 bymineurasia@tr.bureauveritas.com

POLAND

3 Magazynowa Street Krakow 30-858 POLAND Tel: +48 601 306 201

AFRICA

SOUTH AFRICA

Rustenburg
Unit 5, Moumo Str
Tlhabane, Rustenburg 0300
SOUTH AFRICA
Tel: +27 1456 53913
bwminsouthernaffica@za.bureauveritas.co

NAMIBIA

Corner Einstien & Newton Streets Swakopmund, NAMIBIA Tel: +264 6441 9442

MALI

SOTERKO (Société Terminale de Korofina) Korofina Sud, Route de Sotuba Barnako BP: E 1489 MALI Mobile: 00223 76 42 99 14

IVORY COAST

Zone Industrielle de Yopougon Face a la MACA 01 BP 1453, Abidjan 01 IVORY COAST Tel: +225 2353 5323

SENEGAL

Lot 623, Quartier Dinguessou Kedougou, SENEGAL Tel: +225 2353 5323

