JOURNAL OF
Econometrics

ELSEVIER Journal of Econometrics 74 (1996) 3-30

Fractionally integrated generalized autoregressive
conditional heteroskedasticity

Richard T. Baillie®, Tim Bollerslev*:®, Hans Ole Mikkelsen®

2Department of Economics, Michigan State University, East Lansing, MI 48824, USA
®Department of Economics, University of Virginia, Charlottesville, VA 22901, USA
“Department of Finance and Business Economics, University of Southern California, Los Angeles,
C4 90089, USA

Abstract

The new class of Fractionally Integrated Generalized AutoRegressive Conditionally
Heteroskedastic (FIGARCH) processes is introduced. The conditional variance of the
process implies a slow hyperbolic rate of decay for the influence of lagged squared
innovations. Unlike I(d) processes for the mean, Maximum Likelihood Estimates (MLE)
of the FIGARCH parameters are argued to be T'/>-consistent. The small-sample
behavior of an approximate MLE procedure is assessed through a simulation study,
which also documents how the estimation of a standard GARCH model tends to produce
integrated, or IGARCH, like estimates. An empirical example with daily Deutsch-
mark-U.S. dollar exchange rates illustrates the practical relevance of the new
FIGARCH specification.

Key words: Fractional integrated ARCH; FIGARCH; IGARCH; Mean-reversion,
Monte Carlo simulations; Exchange rate volatility
JEL classification: C15; C22; F31

* Corresponding author.

The second author is also affiliated with the NBER. Most of this research was completed while the
third author was visiting Northwestern University. We gratefully acknowledge the helpful com-
ments received from three anonymous referees, Robin Brenner, Yin-Wong Cheung, Miguel Delgado,
Francis X. Diebold, Andrew Harvey, Campbell Harvey, Daniel B. Nelson, Peter M. Robinson,
participants at the 1993 workshop on ‘Modern Time Series Analysis in Finance’ at the University of
Aarhus, Denmark, the 1994 conference on ‘Asymmetries and Non-Linearities in Dynamic Economic
Models’ in Madrid, the 1994 NBER Summer Institute, as well as seminar audiences at the University
of Arizona, University of California at Santa Barbara, University of Iowa, University of Minnesota,
University of Montreal, University of Texas at Austin, and University of Virginia.

0304-4076/96/$15.00 © 1996 Elsevier Science S.A. All rights reserved
SSDI 0304-4076(95)01749-4



4 R.T. Baillie et al. [ Journal of Econometrics 74 (1996) 3—30
1. Introduction

Much recent experience in modeling the conditional mean of macroeconomic
and financial time series data has emphasized the role of persistence of shocks,
and a large literature has emerged on testing for and estimating unit roots in the
autoregressive representations of univariate and vector processes. Related ad-
vances have occurred in the area of common stochastic trends and cointegra-
tion. However, the knife-edge distinction between I(0) and I(1) processes can be
far too restrictive. In the discrete time long-memory fractionally integrated I(d)
class of processes, proposed by Adenstedt (1974), Granger (1980, 1981), Granger
and Joyeux (1980), and Hosking (1981), the propagation of shocks to the mean
occurs at a slow hyperbolic rate of decay when 0 < d < 1, as opposed to the
extremes of 1(0) exponential decay associated with the stationary and invertible
ARMA class of processes, or the infinite persistence resulting from an I(1)
process. Important theoretical work on this class of models includes the recent
advances by Dahlhaus (1989), Lo (1991), Robinson (1991, 1994a), Sowell (1990,
1992a), and Yajima (1988), among others; see also Baillie (1996) and Robinson
(1994b) for recent surveys of the literature on I{d) processes in economics.

It has long been recognized that asset returns determined in speculative
markets are approximately uncorrelated but not independent through time,
as most return processes tend to exhibit temporal bursts of volatility; see
Mandelbrot (1963) for some of the earliest evidence along these lines. In
particular, following the introduction of the ARCH model by Engle (1982), and
the popular GARCH and EGARCH parameterizations proposed by Bollerslev
(1986) and Nelson (1991), many empirical studies have noted the extreme degree
of persistence of shocks to the conditional variance process; for a recent survey
of the extensive literature on ARCH modeling in finance see Bollerslev, Chou,
and Kroner (1992). Analogous to the issues pertaining to the proper modeling of
the long-run dependencies in the conditional mean of economic time series,
similar questions therefore become relevant in the modeling of conditional
variances. This observation led Engle and Bollerslev (1986) to the formulation of
the Integrated GARCH, or IGARCH, class of models, which possesses many of
the features of the unit root, or I(1), processes for the mean.! For instance, the
implied effect of a shock for the optimal forecast of the future conditional
variance will be to make the corresponding cumulative impulse response
weights tend to a nonzero constant, so that the forecasts will increase linearly
with the forecast horizon. This implies that the pricing of risky secur-
ities, including long-term options and futures contracts, may show extreme

' The analogy to I(1) processes for the conditional mean is far from complete, however; see, e.g.,
Bollerslev, Engle, and Nelson (1994), Gallant, Rossi, and Tauchen (1993), Nelson (1990a), and the
discussion in Section 2 below.
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dependence on the initial conditions, or the current state of the economy.
However, this extreme degree of dependence seems contrary to observed pricing
behavior. Also, recent studies by deLima, Breidt, and Crato (1994), Dacorogna
et al. (1993), Ding, Granger, and Engle (1993), and Harvey (1993) all report the
presence of apparent long-memory in the autocorrelations of squared or abso-
lute returns of various financial asset prices. Motivated by these observations,
this paper introduces the Fractionally Integrated Generalized AutoRegressive
Conditionally Heteroskedastic, or FIGARCH, class of processes. The primary
purpose of this new approach is to develop a more flexible class of processes for
the conditional variance that are more capable of explaining and representing
the observed temporal dependencies in financial market volatility.

The plan for the rest of the paper is as follows. Section 2 formally defines the
process and discusses some of the most important population characteristics.
The FIGARCH process combines many of the features of the fractionally
integrated process for the mean together with the regular GARCH process for
the conditional variance. In particular, the FIGARCH model implies a slow
hyperbolic rate of decay for the lagged squared innovations in the conditional
variance function, although the cumulative impulse response weights associated
with the influence of a volatility shock on the optimal forecasts of the future
conditional variance eventually tend to zero; a property the model shares with
weakly stationary GARCH processes.> An approximate Maximum Likelihood
Estimation (MLE) procedure is discussed in Section 3, which also presents the
results of a detailed simulation study. Unlike the estimation of ARFIMA
processes for the mean, the MLE of the parameters for the FIGARCH process
appears T!?-consistent. Detailed simulation evidence reveals that for the
sample sizes typically encountered with financial data, this approximate MLE
works extremely well in terms of estimating both the parameters of the process
and their asymptotic standard errors. Section 4 compares and contrasts the
FIGARCH and IGARCH models. The results of estimating regular GARCH
processes, when the true data generating process is FIGARCH, are also exam-
ined. Interestingly, the estimated autoregressive parameters in the misspecified
GARCH models are found to be very close to unity, indicative of IGARCH
type behavior. These results lead us to conjecture that the apparent widespread
IGARCH property so frequently reported with high-frequency asset pricing
data may well be spurious, and that the IGARCH process provides a poor
diagnostic for distinguishing between integrated, as opposed to long-memory

2In a related development, Harvey (1993) and deLima, Breidt, and Crato (1994) have recently
considered stochastic volatility models which imply a similarly slow hyperbolic rate of decay. The
much easier inferential procedures for ARCH-type models is one obvious advantage of this
approach; for additional discussion of these issues see Andersen (1994), Harvey, Ruiz, and Shephard
(1994), Harvey and Shephard (1993), Jacquier, Polson, and Rossi (1994), and Taylor (1986, 1994).
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formulations of the conditional variance process. Section 5 of the paper applies
the FIGARCH model in estimating the volatility process for a long time series of
daily Deutschmark-U.S. dollar spot exchange rates. The empirical evidence
favors the FIGARCH formulation, indicating clear rejections of the stable
GARCH and IGARCH null hypotheses. The corresponding impulse response
weights derived from the FIGARCH model also appear to be more realistic
from an economic perspective when compared to the fairly rapid rate of decay
associated with the estimated covariance stationary GARCH model or the
infinite persistence for the IGARCH formulation. The final section provides
a brief conclusion, together with several suggestions for extensions and applica-
tions of the ideas developed in the paper.

2. Definition and properties of the FIGARCH process

Following Engle (1982), consider the discrete time real-valued stochastic
ARCH process, {¢, },

& = 2,0, (1)

where E,_(z,) = 0 and VAR,_,(z,) = 1, and ¢, is a positive time-varying and
measurable function with respect to the information set available at time t — 1.
Throughout, E,_{(+) and VAR,_,(-) refer to the conditional expectation and
variance with respect to this same information set. Thus, by definition, the {¢,}
process is serially uncorrelated with mean zero, but the conditional variance of
the process, 62, is changing over time.

In the classic ARCH(q) model of Engle (1982), the conditional variance ¢ is
postulated to be a linear function of the lagged squared innovations implying
Markovian dependence dating back only g periods; ie., e2; fori=1,2, ... ,q.
The GARCH(p, q) specification of Bollerslev (1986) provides a more flexible lag
structure. Formally, this model is defined by

6! =w +a(L)e? + p(L)o?, ¥}

where L denotes the lag or backshift operator, and o(L) = ;L + a,L2 +
- +o,L%and B(Ly= ;L + B,L*> + --- + B,L”. For stability and covariance
stationarity of the {¢,} process, all the roots of [1 — a(L) — B(L)] and [1 — B(L)]
are constrained to lie outside the unit circle. The GARCH(p, q) process may be
rewritten as the infinite-order ARCH process,

of =l - BWI™" +a(L)[1 — AL)] e
= o[l - B()] ™ + A(L)e2. 3)

The before mentioned stationarity condition implies that the effect of the past
squared innovations on the current conditional variance decays exponentially
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with the lag length. Alternatively, the GARCH(p, q) process in Eq. (2) may also
be expressed as an ARMA(m, p) process in &7,

[1 — (L) — B(L)]el = w + [1 = B(L)]v:, )

where m = max{p, q}, and v, =¢% — ¢/ is mean zero serially uncorrelated.
Thus, the {v,} process is readily interpreted as the ‘innovations’ for the condi-
tional variance. When the autoregressive lag polynomial, 1 — o(L) — B(L), con-
tains a unit root, the GARCH(p, q) process is defined by Engle and Bollerslev
(1986) to be integrated in variance. The corresponding Integrated GARCH(p, q),
or IGARCH(p, g¢), class of models is given succinctly by

(L)L = L)ef = w + [1 = B(L)]v,, )

where ¢(L) = [1 — (L) — B(L)](1 — L)™' is of order m — 1. The Fractionally
Integrated GARCH, or FIGARCH, class of models is simply obtained by
replacing the first difference operator in Eq. (5) with the fractional differencing
operator.

In order to motivate this development, it is worth briefly considering the
fractionally integrated process for the mean. The concept of long-memory and
fractional Brownian motion was originally developed by Hurst (1951) and
Mandelbrot and Van Ness (1968). However, the ideas were essentially opera-
tionalized for applications with discrete time representations by Granger (1980,
1981), Granger and Joyeux (1980), and Hosking (1981). In particular, the
ARFIMA(k, d, I) class of models for the discrete time real-valued process {y,} is
defined by

a(L)(1 — L)'y, = b(L),, (6)

where a(L) and b(L) are polynomials in the lag operator of orders k and [
respectively, and {¢,} is a mean-zero, serially uncorrelated process. The frac-
tional differencing operator, (1 — L)%, has a binomial expansion which is most
conveniently expressed in terms of the hypergeometric function,

(1—-LyY=F(—d,1,1;L)

S rtk—dyrk+1)-'r(—d-'L*

k=0,

= Z TCkLk, (7)

k=0,

where I'(-) denotes the Gamma function.> Provided that var(e,) < co and
— 0.5 <d < 0.5, the {y,} process in Eq. (6) is weakly stationary and invertible,

3 The hypergeometric function is formally defined by
Fimn5x) =) Im) T~ Y Lm+j)Tn+j)Is+) TG+ 1) %

j=0,
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and will possess unique infinite moving average and autoregressive representa-
tions. However, for d > 0 the process is long memory in the sense that
limy= 0 Y= —4.k|p;l, where p ; denotes the autocorrelation of the process at lag j,
does not converge to a finite limit. As argued forcefully by Sowell (1992b), the
ARFIMA model essentially disentangles the short-run and the long-run dynam-
ics, by modelling the short-run behavior through the conventional ARMA lag
polynomials, a(L) and b(L), while the long-run characteristic is captured by the
fractional differencing parameter, d.

Analogously to the ARFIMA(k, d, [) process for the mean, the FIGARCH
(p, d, q) process for {¢,} is naturally defined by

(L)1 — LY'el = o + [1 — B(L)]v,, &)

where 0 < d < 1, and all the roots of ¢(L) and [1 — B(L)] lie outside the unit
circle.* Rearranging the terms in Eq. (8), an alternative representation for the
FIGARCH(p, d, g) model is

[1—BL)]o! =w + [1 — B(L) — p(L)(1 — LY']el. ©)
Thus, the conditional variance of ¢, is simply given by
of = o[l = BMT " + {1 —[1 — BL)] " $(L)(1 — L)*}&?
= o[l = BO)] " + AL, (10)

where A(L) = A;L + A,L* + ---. Of course, for the FIGARCH(p, d, q) process
in Eq. (8) to be well-defined and the conditional variance to be positive almost
surely for all ¢, all the coefficients in the infinite ARCH representation in Eq. (10)
must be nonnegative; ie.,, 4, = 0for k=1, 2, ... . As for the GARCH(p, g) class
of models analyzed by Nelson and Cao (1992), general conditions to ensure
nonnegativity of all the lag coefficients in A(L) have proven elusive. Fortunately,
as illustrated below, sufficient conditions are fairly easy to establish on a case-
by-case basis.

For 0 <d < 1 the hypergeometric function evaluated at L = 1 equals zero,
F(—4d,1,1;1) =0, so that A(1) = 1. The w > 0 term therefore has the same
interpretation as in the IGARCH model. Consequently, the second moment of
the unconditional distribution of ¢, is infinite, and the FIGARCH process is
clearly not weakly stationary; a feature it shares with the IGARCH class of
processes.” However, as shown by Nelson (1990a) for the IGARCH(1, 1) model

* A similar specification with & = 0 has been used by Robinson (1991) in formulating tests for d > 0.

* Note, this differs from the corresponding analog for ARFIMA-type models. With dynamic models
for the conditional mean that does not include a drift, summability of the squared coefficients of the
infinite-order MA representation is required for the model to be covariance-stationary. This holds
true for the ARFIMA model with d < 0.5. In contrast, for ARCH-type models the stationarity
condition depends on the actual cumulated coefficients from the MA representation.
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and extended to the general IGARCH(p, q) model by Bougerol and Picard
(1992), IGARCH models are strictly stationary and ergodic. Since the high-
order lag coefficients in the infinite ARCH representation of any FIGARCH
model may be dominated in an absolute value sense by the corresponding
IGARCH coefficients from Eq. (5), it follows by a direct extension of the proofs
for the IGARCH case that the FIGARCH(p, d, q) class of processes is strictly
stationary and ergodic for 0 <d < 1.

As highlighted by this discussion, considerable care should be exercised in
interpreting persistence in nonlinear models. Formally, Bollerslev and Engle
(1993) define a process to be persistent in variance if lim supy, o |E; + s(67+4) —
E,(eZ; )| > O for some s > 0. This same notion of infinite dependence on the
initial conditions for the optimal forecasts of the future conditional variances
also underlies the conditional moment profiles analyzed by Gallant, Rossi, and
Tauchen (1993). However, in the present context in which the conditional
variance is parameterized as a linear function of the past squared innovations,
the persistence of the conditional variance is most simply characterized in terms
of the impulse response coefficients for the optimal forecast of the future
conditional variance as a function of the time ¢t innovation, v,,

Yk = aEt(8t2+k)/avt - aEt(£t2+k—1)/th~ (11)

Of course, in more general conditional variance models the y;s will depend on
the time ¢t information set. However, for the FIGARCH class of models analyzed
here, the impulse response coefficients are independent of ¢, and the persistence
as measured by the 7, coefficients corresponds directly to the generalization of
the linear impulse response analysis to nonlinear models developed by Gallant,
Rossi, and Tauchen (1993). Specifically, the impulse response coefficients may be
found from the coefficients in the y(L) lag polynomial,

(1 =L)ef =(1 - L)' “¢(L) ‘o + (1 = L)y ¢(L)" ' [1 = BL)Iv,
={+y(L)w, (12)

where the first equality follows directly from the definition of the FIGARCH
(p, 4, q) process in Eq. (8). Analogously to conventional impulse response analy-
sis for the mean, the long-run impact of past shocks for the volatility process
may now be asessed in terms of the limit of the cumulative impulse response
weights, i.e.,

k=0 i=0,k k=
=F(d-1,1 L)1) '[1 - pD)]. (13)

As noted above, for 0 € d < 1, F(d — 1,1, 1;1) = 0, so that for the covariance-
stationary GARCH(p, g) model and the FIGARCH(p, d, q) model with 0 <d
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< 1, shocks to the conditional variance will ultimately die out in a forecasting
sense. There are important differences in the shock dissipation for d = 0 and
0 <d < 1, however. Whereas shocks to the GARCH process die out at a fast
exponential rate, for the FIGARCH model 4, will eventually be dominated by
a hyperbolic rate of decay; see, e.g., Diebold, Husted, and Rush (1991). Thus,
even though the cumulative impulse response function converges to zero for
0 < d < 1, the fractional differencing parameter provides important information
regarding the pattern and speed with which shocks to the volatility process are
propagated. In contrast, for d =1, F(d — 1, 1,1;1) =1, and the cumulative
impulse response weights will converge to the nonzero constant y(1) = ¢(1)™!
x [1 — B(1)]. Thus, from a forecasting perspective shocks to the conditional
variance of the IGARCH model persist indefinitely. For values of d > 1,
F(d —1,1,1;1) = oo, resulting in an unrealistic explosive conditional variance
process and y(1) being undefined.

In most practical applications relatively simple first-order models have been
found to provide good representations of the conditional variance processes. To
illustrate the ideas developed above consider therefore the simple GARCH(1,1)
model,

ol =w+a&l  + Pioi-y,
rewritten in ARMA(L,1) form as

(1 - ¢ L)e! =w + (1 —p;L)v,
where ¢, = a; + B,. The impulse response weights for this model are given by
the coefficients in the polynomial, y(L) = (1 — L)1 — ¢;L)"*(1 — B,L), so that
vo=17v1=¢y —f1 — 1, and y, = (¢; — B1)(¢1 — 1)¢* ™2 for k > 2; see also
Engle and Bollerslev (1986). The cumulative impulse response weights for the
process equals 4, = (¢, — B,)@%~* for k > 1, and in the limit y(1) = 0 provided
that 0 < ¢; < 1. Hence, the effect of a shock for the forecast of the future

conditional variance tend to zero at a fast exponential rate. The IGARCH(1,1)
model occurs when ¢, =1,

(1—L)e2 =w + (1 — By L)v,.

In this situation, 4, = (1 — f,) for all lags k > 1, and all the cumulative impulse
response weights are equal to the nonzero constant y(1) =1 — ;. The corre-
sponding FIGARCH(1, 4, 0) model is

(1—-L)Ye=w+(1 — B L)v,.

By analogy to the properties for the ARFIMA(O, d, 1) model developed in
Hosking (1981), it is possible to show that the cumulative impulse response
coefficients in the infinite ARCH representation for the FIGARCH(1, 4, 0)
model, A(L)=1— (1 — B,L) *(1 — L)%, equal

MA=M1—-B—Q -k '] Tk+d— 1)k ‘r@?,
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for k > 1, and 14 = 1. Thus, provided that w > 0, the condition 0 < ; <d < 1
is both necessary and sufficient to ensure that the conditional variance in the
FIGARCH(1, d, 0) model is positive almost surely for all ¢. Furthermore, it
follows by a straightforward application of Sterling’s formula, that for high
lags, k,

A m [(1— BT () Tk

In contrast to the covariance stationary GARCH(1,1)} model or the IGARCH
(1,1) model, where shocks to the conditional variance either dissipates
exponentially or persist indefinitely; for the FIGARCH(l,d,0) model
the response of the conditional variance to past shocks decays at a slow
hyperbolic rate.

3. Estimation and inference

The most common approach for estimation of ARCH models assumes condi-
tional normality of the process. Under this assumption, Maximum Likelihood
Estimates (MLE) for the parameters of the FIGARCH(p, d, q) process based on
the sample {¢;, &5, ..., &7} may therefore be obtained by maximizing the expres-
sion

logL(0;¢y, &3, ... ,&7)

= —0.5-T-log(2r) —0.5- Y [log(a}) + eio; 2], (14)
t=1,T

where 0 = (w, d, B1, ..., Bp D1y - 1 Py).°
In practice some initial conditions are required to start up the recursions for
the conditional variance function. The approach taken here is to maximize the
likelihood function conditional on these start-up values. In particular, as is
standard in the estimation of both stable GARCH and IGARCH models, we
simply fix all the pre-sample values of &7 for t =0, — 1, — 2, ... in the infinite
ARCH representation in Eq. (10) at the unconditional sample variance.
Of course, for the FIGARCH(p, d, q) model with d > 0 the population variance
does not exist. However, subject to the regularity conditions specified
below, conditioning on the pre-sample values will not affect the asymptotic

%In most practical applications ¢, will correspond to the innovations for the mean of some other
process of interest, e.g., y; = E,—1(y;) + & =fi— 1 (1) + &, where u refers to the parameters for the
conditional mean function. The likelihood function for the augmented parameter vector (¢, 4') and
the sample {1, y2, ..., yr} is identical to Eq. (14).
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distributions of the resulting estimators and test statistics.” In most practical
applications with high-frequency financial data the standardized innovations
z, = g0, ' are leptokurtic and not ii.d. normally distributed through time. In
these situations the robust Quasi-MLE (QMLE) procedures discussed by Weiss
(1986) and Bollerslev and Wooldridge (1992) may be invoked to allow for
asymptotically valid inference.

Unfortunately, the consistency and asymptotic normality of the QMLE based
ARCH estimators and test statistics have only been formally established for
the IGARCH(1,1) case to date. In particular, following Lee and Hansen (1994),
and assuming that (i) z, is stationary and ergodic, (i) z7 is nondegenerate,
(iiiy E,—1(z{) < x < oo almost surely, and (iv) sup,E,_[log(B; + o, z7)] < o
almost surely, it is possible to show that the quasi-likelihood function and the
corresponding score vector and Hessian, are all strictly stationarity and ergodic.®
It follows therefore by a central limit theorem, that the QMLE obtained by
maximizing (14), say 0, is both consistent and asymptotically normally distributed,

T2 (07 — 69) — N(0, A(60)~ " B(6o) A(00) "), (15)

where A(-) and B(-) represent the Hessian and the outer product of the gradients
respectively, both evaluated at the true parameters, ,. While the above result
for the IGARCH(1,1) case extends directly to the FIGARCH(1, d, 0) model through
a dominance-type argument, a formal proof of consistency and asymptotic normal-
ity of O for the general IGARCH(p, g) case, with obvious implications for the
FIGARCH(p, d, 9} model, remains an important issue for future research.

In order to assess the practical applicability and small sample performance of
the QMLE procedure for the estimation of FIGARCH processes, we now turn
to the results from a detailed simulation study. As discussed above, the imple-
mentation of this approach necessitates conditioning on pre-sample values and
a truncation of the infinite lag polynomial in Eq. (10). Given the long memory
and relatively slow decay of a response to a lagged squared innovation, the effect
of pre-sample values might be expected to have a bigger impact than with
stationary GARCH processes.” Thus, truncating at too low a lag may destroy

"Diebold and Schuermann (1996) use nonparametric density estimation techniques in evaluating
the exact likelihood function for low-order covariance-stationary ARCH models. For sample sizes
of 50 or larger, the exact results are almost identical to the estimates based on the conditional
likelihood function.

8 An alternative approach, due to Lumsdaine (1996), assumes that the first 32 moments of the
conditional distribution of z, exist.

° The analogous effect of pre-sample values in the estimation of long-memory ARFIMA process for
the mean has been documented by Cheung and Diebold (1994) and Chung and Baillie (1993). For
sample sizes of T = 100 or larger the effect of pre-sample values appears to have negligible effect on
the MLE of the ARFIMA parameters. Furthermore, with financial applications the time series of
interest often consist of several thousand observations.
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important long-run dependencies. To mitigate these effects the truncation lag
was set at 1,000 for all of the simulation and estimation results reported below.!°

The true model parameters for the different Data Generation Processes
(DGP) are reported in the first five columns of Tables 1 and 2, with the orders of
the estimated FIGARCH(p, d, q9) models indicated in the (p,d, q) column.
FIGARCH models with d = 0.0, 0.5, 0.75, and 1.0, and sample sizes of 1,500 and
3,000 were investigated. A constant mean, u, was estimated jointly with the
FIGARCH parameters; ie., y, =u + ¢ for t = 1,2, ..., T. In order to concen-
trate on the estimation of conditional variance parameters, u was fixed at zero
across all the experiments. Similarly, the intercept in the conditional variance
equation was set at w = 0.1. In addition to the simulations with conditionally
normally distributed errors, we also report the results for a FIGARCH(1, 4, 0)
model with z, ii.d. Student-t distributed with seven degrees of freedom. This
latter distribution has conditional kurtosis equal to five, as often observed
in empirical work with GARCH models for high-frequency data; see, e.g.,
Bollerslev (1987). For all of the different DGP’s a total of 500 replications were
generated.!! The Bias, RMSE, and Std. columns report the simulated bias, root
mean squared error, and average estimated standard error of the QMLE across
the 500 replications. The standard errors are based on the finite-sample approxi-
mation to Eq. (15); i.e., O ~ N(8y, T "' A(B7)" *B@r)A(B7)™ ).

Turning to the results for d in Table 1, it is immediately clear from the Bias
column, that from a practical perspective the approximate MLE method works
extremely well in terms of estimating the true d parameters for all of the eight
different designs. Even though the simulated finite-sample bias is significantly
different from zero at conventional significance levels for some of the models, no
systematic bias is apparent.'? Interestingly, from the first two rows of the table,
the estimation of the extra ¢, parameter in the FIGARCH(L, d, 1) model, which
nests the standard GARCH(1,1) specification, adds only little to the sampling
variability of 4 when compared to the estimates from the true FIGARCH(1, d, 0)
model. Also, when comparing the estimates of d from the two FIGARCH(1, 4, 0)
models with T = 3,000 and d = 0.75 or d = 0.5 to the results for the same two

10To gauge an idea about the magnitude of the truncation bias note that for 0 < d the infinite sum in
Eq. (7) evaluated at L = 1 equals zero; i€, Y 4=0.o 'k — d)I'(k + 1)"'I'(—d)™' = 0. Truncating
this expansion at k = 1,000 for d = 0.75 yields 0.00155.

"1 To avoid start-up problems, the first 7,000 realizations were discarded for each replication. The
normal random variables, z,, were generated by RNDNS in the GAUSS computer language. The t-
distributed errors were generated as z, = 5Y/2z; (23, + 23, + -+ + z3,)” "/* by drawing the z; s as
i.i.d. standard normal.

Let dy = N7'Y,_y xd; denote the mean estimate of d across the N =500 replications. By

a central limit theorem argument, N'/2(dy — E(d)) > N(0, 02(d)), where 2(d) denotes the variance of
d. Thus, if d is unbiased the Monte Carlo standard error is consistently estimated by N~ 12 RMSE.
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Table 1
Finite-sample distributions of the QMLE for d in FIGARCH(1, 4, 1) models

ve=p+e, go tiid 1,01, ol=w+poty +[1—BL—(1—¢ L)1~ L)yl
t=12,...,T

d td=d

d B ¢ v T (pdgq) Bias RMSE Std. 0050 0.100 0900 0950

0.75 0.70 0.000
0.75 0.70 0.000
0.75 0.70 0.000
0.75 0.70 0.000
0.50 045 0.000
0.50 045 0.000
0.00 0.85 0975
1.00 0.85 0.000

3000 (1,4, 1) 0.014 0.091  0.081 0.058 0.088 0.786 0.858
3000 (1,4,0) 0.009 0.075 0.062 0.056 0.096 0.792 0.860
1500 (1,4,0) —-0.003 0.109 0091 0074 0092 0.810 0.852
3000 (1.4,0) 0.005 0.092 0.074 0.058 0.102 0.792 0.846
3000 (1,4,0) 0.013 0.075 0.065 0.070 0.122 0.882 0.936
1500 (1,4,0) 0018 0.123  0.092 0.104 0.168 0846 0.894
3000 (1,4,1) —0008 0.056 0.049 0052 0.120 0.898 0.948
3000 (1,4,0) —0005 0.051 0.043 0050 0.092 0892 0.948

3888 7888

For all of the simulated models ¢ = 0.0 and w = 0.1. v = o corresponds to conditional normality.
The orders of the estimated models are indicated in the (p, d, q) column. The bias, the root mean
square error, and the average of the standard error estimate for d over the 500 simulated QMLE
estimates are reported in the d columns. The t;_ ; columns report the empirical rejection frequencies
for the indicated nominal significance levels for a robust t-test of the true null hypothesis.

models based on only T = 1,500 observations, there is an increase in the RMSE
and the Std. of approximately \/(3,000/1,500) = /2 as expected. This increase in
the estimation error uncertainty for the smaller sample size is also evident from
Fig. 1, which graphs the d densities for the two FIGARCH(1, 4, 0) models with
d =0.75, 8, =0.7,and T = 3,000 and 1,500, respectively.!® Note, that even for
T = 3,000, the distribution of d is slightly skewed to the left. Very interestingly,
the estimate of d from the FIGARCH(1, 4, 1) model for the GARCH(1,1) DGP
with d = 0.0, reported in the second to last row, and the estimate of d from the
FIGARCH(1, 4, 0) model for the IGARCH(1,1) DGP with d = 1.0, reported in
the last row, are the most accurate d estimates in Table 1. Also, as Fig. 2 clearly
illustrates, the simulated finite-sample distributions of d for d = 0.0, 0.5, and 1.0
have virtually no common support, so that a conventional nested testing
procedure for d should be able to differentiate between the corresponding
GARCH, FIGARCH, or IGARCH models.

Although the average robust standard errors systematically underestimate
the true sampling variation in d, the numbers in the RMSE and Std. columns are

3The smooth densities were calculated by an Epanechnikov kernel, f(d)=0.75-(N-h)~!-
Y1801 —(@d ~ d)h~1)?1-1(|(d — d;)h~"| < 1), with the bandwidth, h, chosen by formula (3.31)in
Silverman (1986). We are grateful to Bo Honoré for sharing his GAUSS computer program used in
this kernel estimation.
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Fig. 1. Finite-sample distributions of d.

The figure graphs the kernel estimates of the simulated small-sample densities of the Quasi
Maximum Likelihood Estimates (QMLE) for d. The parameters for the two different FIGARCH
(1,d,0) DGP’s are u = 0.0, w = 0.1, d = 0.75, ; = 0.7, T = 1,500, and T = 3,000, respectively.

generally close. Of course, in practice any inference regarding the FIGARCH
parameters must be based on the actual test statistics computed from the before
mentioned finite-sample approximation to (15). The simulated distributions of
the resulting ¢-statistics for the true null hypotheses regarding the fractional
differencing parameter are summarized in the last four columns of the table,
which report the empirical rejection frequencies for the indicated nominal
significance levels.!* Even though the QMLE for d is approximately unbiased,
because of the left skewness in the distribution of d evident in Fig. 1, there is
a tendency for the corresponding t-statistic to overreject in the right tail of the
distribution when d = 0.5 or d = 0.75, whereas the left-tail rejection frequencies
are always close to the nominal levels. A comparison of the results for the
FIGARCH(1, d, 0) model with d = 0.5 and the two different sample sizes
suggests that this skewness in the distribution eventually disappears, but that
very large sample sizes may be required. It is interesting to note that the
robust covariance matrix estimator seems to do a good job of adjusting for
conditional nonnormality in the errors, as the results for the FIGARCH(1, 4, 0)

14Let py= N"'Y ;- vp: denote the simulated rejection frequency, where p; equals one if the
t-statistic in the ith replication exceeds the nominal significance level and zero otherwise. The Monte
Carlo sampling error may then be assessed by N'/2(py — p) = N(0,p[1 — p]).
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Fig. 2. Finite-sample distributions of d.

The figure graphs the kernel estimates of the simulated small-sample densities of the Quasi
Maximum Likelihood Estimates (QMLE) for d. For all three simulated FIGARCH(1, d, 1) DGP’s
# =00, w =0.1, and T = 3,000. The other model parameters are d = 0.0, §; = 0.85, ¢, = 0.975;
d=05, f; =045, ¢; =00; and d = 1.0, §; = 0.85, ¢; = 0.0, respectively. The figure also graphs
the corresponding normal densities with mean equal to the true value of d and variance equal to the
simulated variance of d.

model with conditionally normal and t-distributed errors are very close. It is
also interesting to note, that despite the apparent nonnormal distribution of
d for the FIGARCH(1, d, 0) model with d = 1.0 graphed in Fig. 2, the simulated
rejection frequencies for the t-tests for both d = 1.0 and d = 0.0, reported in the
last two rows of the table, are both extremely well-behaved in either tail of the
distribution. This is also apparent from Fig. 3 which plots the distribution of
ts= from the estimated FIGARCH(1, d, 0) model with the true value of d = 1.0.
Thus, in terms of a conventional nested testing procedure for GARCH versus
FIGARCH, or IGARCH versus FIGARCH, the actual size of the standard
t-test is very reliable for the sample sizes and models analyzed here.

While the discussion of the simulation results above have centered on the
distribution of the fractional differencing parameter, equally satisfactory results
for the approximate QMLE are available for the other FIGARCH parameters.
In particular, Table 2 reports the same set of summary statistics for the esti-
mation of f; from each of the eight different DGP’s.'> We shall not discuss these

!5 The simulation results for the other model parameters are available upon request.
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Fig. 3. Finite-sample distribution of the t-test for d = 1.

17

The figure graphs the kernel estimate of the simulated small-sample density of the robust ¢-test for
d = 1. The parameters for the simulated FIGARCH(1, 4, 0) DGP are u =00, 0 =0.1, d = 1.0,
B = 0.85, and T = 3,000. The figure also graphs the density for the standard normal distribution.

Table 2
Finite-sample distributions of the QMLE for f; in FIGARCH(l, d, 1) models

vw=u+e&, gotiid 1,(0,1), 6?=w+ pio2 +[1—pL—(1—¢, L)1 —L)]eZ,
t=12,..,T
B th=p

i B & v T (pdg Bas RMSE Std. 0050 0100 0900 0950
0.75 070 0000 oo 3000 (1,4,1) 0.008 0.066 0061 0.040 0.072 0810 0.854
075 070 0.000 oo 3000 (1,40) 0.003 0.065 0.056 0.056 0.088 0790 0.854
075 0.70 0000 oo 1500 (1,4,0) —0012 0.097 0.082 0084 0.142 0792 0.858
0.75 070 0000 7 3000 (1,4,0) —0.002 0.085 0.067 0064 0.108 0804 0.848
050 045 0000 oo 3000 (1,40) 0011 0.077 0068 0.076 0.126 0876 0.924
0.50 045 0000 oo 1500 (1,4,0) 0015 0.122 0.094 0.092 0.154 0.830 0.898
0.00 085 0975 oo 3000 (1,d.,1) —0.008 0.039 0.034 0056 0.100 0.894 00942
1.00 085 0.000 oo 3000 (1,4,0) —0.007 0037 0029 0054 0.120 0902 0952

See footnote to Table 1.
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results in any detail here. It is worth noting, however, that like d, B, also appears
to be unbiased, but that there is a similar tendency for the ¢-statistic for §; to
over-reject in the right tail of the distribution when 0 < d < 1. In summary,
however, the simulations indicate that the proposed QMLE procedure performs
very well for the sample sizes typically encountered with high-frequency finan-
cial data.

4. The occurrence of integrated GARCH

A striking empirical regularity that emerges from numerous studies of high-
frequency, say daily, asset pricing data with ARCH-type models, concerns the
apparent widespread finding of integrated GARCH behavior. This property has
been found in stock returns, exchange rates, commodity prices and interest rates;
see Bollerslev, Chou, and Kroner (1992). Yet, unlike I(1) processes for the mean,
there is less theoretical motivation for truly integrated behavior in the condi-
tional variance.

Nelson (1990b, 1992) and Nelson and Foster (1994) have argued that the
apparent IGARCH property of high-frequency data may arise as an artefact
from empirically approximating continuous time diffusions or semi-martingale
processes. In particular, a GARCH(1,1) model with parameters o® = wh, af

=a(h/2)?, and BP =1 — a(h/2)'/* — ¢ph, where @ > 0, « > 0 and ¢ > 0 are
fixed, provides a consistent approximation to the true continuous time variance
process as the sampling interval, s, goes to zero, for a wide variety of continuous
time processes. Note, that in the limit, the sum of the two GARCH(1,1)
parameters, ¢ = a® 4 % = 1 — ¢h, tends to one, indicative of IGARCH
behavior. However, it is unclear for what ‘small’ sampling interval, h, the
GARCH(1,1) model would actually provide a good approximation. Thus, from
a practical perspective, considerable interest remains in determining which param-
eterization for the discrete time process provides the most parsimonious repre-
sentation and best forecasting performance for a given fixed sampling interval.

To that end, the IGARCH process has forecasting properties that are rad-
ically different to those of the stable GARCH model or the new FIGARCH class
of models. As discussed above, the occurrence of a shock to the IGARCH
volatility process will persist for an infinite prediction horizon. This extreme
behavior of the IGARCH process may reduce its attractiveness for asset pricing
purposes, where the IGARCH assumption could make the pricing functions for
long-term contracts very sensitive to the initial conditions. This seems contrary
to perceived behavior of agents who typically do not frequently and radically
change their portfolio compositions; see Bollerslev and Engle (1993) for some
further discussion on the effects of persistence of volatility in this context.

Also, as noted by Engle and Mustafa (1992) and Schwert (1990), the IGARCH
model is not compatible with the persistence observed after large shocks such as
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Table 3
Finite-sample distributions of the GARCH(1, 1) QMLE for ¢, under FIGARCH(1, 4, 1) DGP’s

Ve=p+é,  aolliid 6,01, ol=ow+fiok+[1 - L —(1 ¢ L)1 — LY]e?,
t=12..,T

¢ th=1

d B ¢, v T Mean RMSE  Std. 0.050 0.100 0.900 0950

075 0.70 0.000
0.75 0.70 0.000
075 070  0.000
0.50 045 0.000
0.50 045 0.000
0.00 085 0975
0.00 085 1.000

3000 0996 0.007 0.006 0.172 0288 0926 0.960
1500 0993 0.010 0.009 0.19 0342 0964 0976
3000 0996 0011 0.008 0.160 0268 0916 0.958
3000 0983 0011 0.007 0724 0814 0998 0.998
1500 0976 0.016 0.012 0.640 0.764 0998 1.000
3000 0973 0.009 0.009 0983 0998 1000 1.000
3000 0998  0.006 0.006 0.068 0.138 0948 0974

8888 788

See footnote to Table 1. For all of the simulated FIGARCH(1,d, 1) models 4 = 0.0 and @ = 0.1. The
remaining model parameters for the true DGP are given in columns one through five. The mean
column reports the mean of the GARCH(1, 1) QMLE for ¢, across the 500 Monte Carlo replica-
tions. The corresponding root mean square error and the average of the QMLE standard error
estimate for ¢, are given in the RMSE and Std. columns, respectively. The t$ = 1 columns give the
empirical rejection frequencies for the indicated nominal significance levels for the null of
IGARCH(1,1); i.e,, ¢; = 1.0 and d = 0.0, or equivalently, ¢, = 0.0 and d = 1.0.

the Crash of October 1987. Along these lines Cai (1994), Hamilton and Susmel
(1994), and Lamoureux and Lastrapes (1990) have argued that deterministic or
stochastic regime shifts in the unconditional variance may easily be mistaken for
IGARCH-type behavior.1®

A further reason to doubt the empirical reasonableness of IGARCH models
relates to issues of temporal aggregation. As shown by Drost and Nijman (1993),
a data generating process of IGARCH at high frequencies would also imply
a properly defined weak IGARCH model at low frequencies of observation.
However, this theoretical result seems at odds with reported empirical findings
for most asset categories. Also, while studies of daily asset returns data have
almost uniformly found IGARCH behavior, studies with even higher-frequency
data over shorter time spans have often uncovered less persistence; see, e.g.,
Baillie and Bollerslev (1991) for an analysis of hourly exchange rates over a 23-
month period.!?

16 This is closely related to the arguments for I(1) processes for the mean in Perron (1989).

17 This phenomenon may be directly analogous to the results reported by Shiller and Perron (1985)
for the mean, where the consequence of having relatively short spans of high-frequency data is to
reduce the power of detecting low-frequency, unit root behavior. The pronounced intraday seasonal
patterns observed in most financial markets also serve to obscure the estimated degree of volatility
persistence; see, e.g., Andersen and Bollerslev (1996).
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Fig. 4. Finite-sample distributions of ¢, .

The figure graphs the kernel estimates of the simulated small-sample density of the Quasi Maximum
Likelihood Estimates (QMLE) for ¢, based on a GARCH(I, 1) parameterization. For all three
simulated FIGARCH(1, d,0) DGP’s ¢ = 0.0, o = 0.1, and T = 3,000. The other model parameters
ared =0.5 and B, = 045,d = 0.75 and B, = 0.7, and d = 1.0 and f; = 0.85, respectively.

To shed further light on the apparent widespread empirical IGARCH be-
havior in view of the above mentioned criticisms, the possibility that IGARCH
may be an artefact of a mean-reverting long-memory FIGARCH data gener-
ating process was therefore investigated by estimating GARCH(1,1) models for
data generated by the same FIGARCH(1, d, 0) models analyzed in Section 3.
Additionally, a covariance-stationary GARCH(1,1) model with ¢, = 0.975
and B, = 0.85, and an IGARCH(1,1) model with f; = 0.85 were also simu-
lated. Table 3 shows that across all the different FIGARCH(1, 4, 0) designs, the
mean of the estimated ‘persistence’ parameter in the misspecified GARCH(1,1)
model, ¢,, averages between 0.976 to 0.996; all very close to unity as in the
IGARCH(1,1) model. The finite sample distributions of ¢, are further illustrated
in Fig. 4, which plots the densities for the three FIGARCH(1, d, 0) DGP’s with
T = 3,000, and d =0.5, 0.75, and 1.0. When the true DGP is d = 1.0, and
B1 = 0.85, or equivalently IGARCH(1,1) with §; = 0.85, ¢ = 1.0, and d = 0.0,
the finite-sample distribution of ¢, is heavily concentrated around unity as
expected. Interestingly, however, the distribution of ¢, for the FIGARCH
(1,d,0) DGP with d = 0.75 and B, = 0.70 is very similar to the results for the
IGARCH(1,1) model. Even though the distribution for the FIGARCH(1, 4, 0)
DGP with d = 0.50 and f8, = 0.45 is more dispersed, the mode of ¢, from the
GARCH(1,1) model still equals 0.983. Thus, an investigator confined to the
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conventional GARCH paradigm might falsely conclude that the appropriate model
is an IGARCH process. This is further underscored by the distribution of the ¢-tests
for ¢; = 1.0 reported in the last four columns of Table 3. For instance, for the
FIGARCH(1, 4, 0) model with d = 0.75 and T = 3,000, a one-sided nominal 5 per-
cent t-tests for ¢; < 1 would only reject 17.2 percent of the times. With conditional
t-distributed errors the power drops even further to 16.0 percent. Interestingly, the
rejection frequencies are somewhat higher for T = 1,500 observations. At the same
time, the results in the last row of the table indicate that the empirical size of the
t-test for ¢; = 1.0 is quite good. Also, from the second to last row the test has
considerable power against the covariance-stationary GARCH(1,1) model with
¢ =0975; for additional evidence on the small-sample behavior of the
GARCH(1,1) and IGARCH(1,1) parameter estimates see Lumsdaine (1995).
Hence, data generated from a process exhibiting long-memory FIGARCH
volatility may be easily mistaken for IGARCH behavior. This is analogous to
the results of Diebold and Rudebusch (1991), who demonstrate that the conven-
tional unit root testing procedures for the mean have low power for distinguish-
ing against fractional white noise alternatives. For both the mean and the
variance, being confined to only considering the extreme cases of 1(0) and I(1), or
stable GARCH and IGARCH processes, can be very misleading when long-
memory, but eventual mean-reverting processes are generating the observed data.

5. A long-memory model for the Deutschmark—U.S. dollar volatility

A large number of studies have documented the persistence of volatility in
nominal exchange rates; see, e.g., Baillie and Bollerslev (1989), Bollerslev (1987),
Hsieh (1989), and McCurdy and Morgan (1988). Using daily data many of these
studies have concluded that the volatility process is very persistent and appears
to be well approximated by an IGARCH process. To shed further light on this
issue, this section presents estimation results for a long time series of daily
Deutschmark-U.S. dollar spot exchange rate from March 13, 1979 through
December 30, 1992, for a total of 3,454 observations. It is immediately obvious
from the plot in Fig. 5, that the raw spot exchange rate series, s,, is nonstation-
ary. Following standard practice, we shall therefore concentrate on modeling
the daily nominal percentage returns; ie., y, = 100-log(s,/s,—;) for t =1,2,
...,3,453.'% Even though the return series is approximately uncorrelated

8 This is consistent with the outcome of numerous unit root tests reported in the existing literature,
although Cheung (1993) and Tschernig (1995) both report weak evidence for the existence of long
memory type behavior in the mean of U.S. dollar exchange rates. The arguments for a unit root in
log(s,) is not just statistical, however. Compelling market efficiency reasons dictate that the spot
rates should be I(1), so that the corresponding returns on open positions in the foreign exchange
market, i.e., the y, series, would be 1(0).
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Fig. 5. Deutschmark—-U.S. dollar spot rate.

The figure graphs the daily nominal Deutschmark—U.S. dollar spot exchange rate from March 13,
1979 though December 1992.

through time, the plot in Fig. 6 clearly indicates the occurrence of tranquil and
volatile periods. This is also borne out by the Ljung and Box (1978) portman-
teau test for up to 20th-order serial correlation in the returns, Q(20), and the
squared returns, Q*(20), reported in the first column of Table 4. Judged by the
same portmanteau tests for the standardized residuals, &6, *, from the QMLE
for the standard GARCH(1,1) model reported in the second column of the table,
it appears that this simple model does a very good job of tracking the short-run
volatility dependencies. Also, entirely consistent with previous findings, the
estimated autoregressive parameter in the conditional variance equation, ¢, is
very close to unity, suggestive of IGARCH behavior. Indeed, the estimates for
the restricted IGARCH(1,1) model in the third column of the table are very
similar to the results for the GARCH(1,1) model. Hence, any researcher operat-
ing within the conventional paradigm might realistically conclude that the
IGARCH model provides a satisfactory description of the volatility process.
However, from the FIGARCH(1, d, 1) model estimates, reported in the fourth
column, it appears that the long-run dynamics are better modeled by the
fractional differencing parameter.!® Whereas d is between zero and one, the

191t is fairly easy to show that 0 < 0,0 <d < 1 ~ 2¢, and 0 < B, < ¢, + d are sufficient to ensure
that the conditional variance of the FIGARCH(1, d, 1) model is positive almost surely for all t. These
conditions are trivially satisfied by the QMLE in Table 4.
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Fig. 6. Deutschmark-U.S. dollar returns.

The figure graphs the daily percentage returns for the Deutschmark-U.S. dollar spot exchange rate
from March 14, 1979 though December 1992.

estimate of the autoregressive conditional variance parameter, ¢, is no longer
significant at convenional levels. The final column therefore gives the results for
the preferred FIGARCH(l, d, 0) specification. A one-sided t-test for d = 1.0
against d < 1.0 also clearly rejects the IGARCH nuil hypothesis against this
FIGARCH model.?°

Thus, purely from the perspective of searching for a model that best describes
the volatility in the exchange rate return series, the FIGARCH(1, d, 0) model in
column five of Table 4 appears the most satisfactory representation. However,
the true importance of the new FIGARCH specification only becomes fully
apparent when considering and analyzing the effect and propagation of volatil-
ity shocks. To illustrate, Fig. 7 plots the cumulative impulse response weights for
the influence of an innovation on the optimal forecasts of the future conditional
variances for the FIGARCH(I, d, 0) model estimates in Table 4; i.e., Ax(07) for
k=1,2, ... as discussed in Section 2. To get an idea about the associated
parameter estimation error uncertainty, the figure also graphs the asymptotic

2% Interestingly, the estimate of d from this preferred specification is in close accordance with the
recent results in Harvey (1993), who on estimating a simple fractional white noise stochastic
volatility process for the daily Deutschmark—U.S. dollar exchange rate over the much shorter
sample period from October 1, 1981 through June 28, 1985, reports d = 0.868.
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Table 4
FIGARCH(l, d, 1) models for the Deutschmark-U.S. dollar exchange rate
ye = 100-log(s,/s;-1) = u + &, g0, ' ii.d. N(O, 1), ol=w+ o+ [1 - B L
—(1— ¢, L)1 — L)¥]e?, t=1,2,...,3453
(r.d,q) 0,0,0 (1,0,1) (1,1,0) (1,4,1) (1,d,0)
" —0.04 —0.003 — 0.002 —0.004 —0.004
(0.013) (0.011) 0.011) 0.011) 0.011)
[} 0.574 0.016 0.010 0.018 0.017
(0.014) (0.004) (0.003) (0.006) (0.005)
By — 0.867 0.872 0.675 0.762
(0.015) (0.015) (0.104) (0.061)
&4 — 0.980 — 0.094 —
(0.010) (0.075)
d — — 1.000 0.652 0.823
(—) (0.160) 0.077)
bs —0.26 0.11 ~0.11 —0.10 —0.10
ba 6.12 4.76 476 4.77 4,72
0(20) 2491 34.17 36.69 35.52 35.68
02(20) 262.50 19.30 19.77 16.26 19.96

The table reports the Quasi Maximum Likelihood Estimates (QMLE) for various FIGARCH
(p, d. q) models for the percentage return on the daily Deutschmark—U.S. dollar spot exchange rate
from March 14, 1979 through December 30, 1992, for a total of 3,453 observations. The QMLE are
calculated under the assumption of conditional normality. Robust standard errors are reported in
parentheses. The sample skewness and kurtosis for the standardized residuals, §,6, !, are denoted by
by and by. Q(20) and Q*(20) refer to the Ljung-Box portmanteau tests for up to 20th-order serial
correlation in the standardized and the squared standardized residuals, respectively.

5 and 95 percent confidence bands. These intervals were calculated from the
finite-sample approximation to the asymptotic distribution for 61 in Eq. (15)
and a standard first-order Taylor series expansion of A,(67) around 68y; i.e.,

A(07) ~ N(A4lOo), T~ r(0r) A7) * B(0r)ABr) " 'rilOr)),

where r,(0) = 04,(0)/00. From the figure, the influence of past shocks are quite
persistent. Even for up to 160 lags, or more than seven months, the confidence
bands do not include zero. The contrast to the conventional volatility specifica-
tions is clearly seen from Fig. 8, which plots the cumulative impulse response
weights from the estimated GARCHY(1, 1) and IGARCH(1, 1) models together
with the FIGARCH(1, 4, 0) responses. Although the estimated GARCH(1, 1)
model with ¢; = 0.980 is virtually indistinguishable from the IGARCH(1, 1)
model in terms of the statistics in Table 4, the interpretation of its long-run
characteristics are entirely different. While the IGARCH model imposes com-
plete persistence in its impulse response weights, the covariance-stationary
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Fig. 7. Cumulative impulse response function.
The figure graphs the cumulative impulse response function for the conditional variance for the
estimated FIGARCH(1, d, 0) model for the daily Deutschmark—U.S. dollar returns. The dashed lines

give the 5 and 95 percent confidence bands for the impulse response weights, taking into account the
model parameter estimation error uncertainty.

GARCH model implies relatively rapid exponential decay. The preferred
FIGARCH model, however, imposes a more realistic slow hyperbolic decay so
that the effect of a volatility shock is very persistent, but eventually mean-
reverting.

6. Conclusion

This paper has proposed the new class of Fractionally Integrated Generalized
AutoRegressive Conditionally Heteroskedastic, or FIGARCH, processes. This
new model has many attractive features that seem consistent with recently
documented long-run dependencies in absolute and squared asset returns.
Although mean-reverting, shocks to the conditional variance will die out at
a slow hyperbolic rate of decay determined by a fractional differencing param-
eter, while the short-run dynamics are modeled by the conventional GARCH
parameters. The QMLE of the FIGARCH model parameters are argued to be
T '*_consistent, with a limiting normal distribution that provides very good
finite-sample approximations for the sample sizes typically encountered
with financial data. Estimation and subsequent analysis and inference are
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Fig. 8. Cumulative impulse response functions.

The figure graphs the cumulative impulse response functions for the conditional variances for the
estimated GARCH(1, 1), FIGARCH(1, d,0), and IGARCH(1,1) models for the daily Deutsch-
mark—U.S. dollar returns.

correspondingly straightforward. The application of the model to a set of daily
exchange rates is strongly suggestive of long-range volatility dependence.

The FIGARCH model developed here may obviously be extended directly to
other parametric ARCH formulations, including the asymmetric EGARCH
model develop by Nelson (1991) for modeling stock return volatility and the
permanent-transitory components model recently proposed by Engle and Lee
(1993). The empirical relevance of this approach has already been documented
by Bollerslev and Mikkelsen (1996), who report FIEGARCH estimates for the
daily return on the Standard and Poor’s 500 composite stock index with daily
data from 1953 through 1990. Interestingly, the estimated fractional differencing
parameter equals 0.633, with an asymptotic standard error of 0.063, indicating
highly significant long-memory components in aggregate U.S. stock market
volatility. The evidence in Bollerslev and Mikkelsen (1996) also suggest that for
simulated long-term synthetic options the differences between the implied
EGARCH and FIEGARCH based Hull and White (1987) options prices may be
quite substantial. Work is currently under way on trying to extend these
empirical results to other asset categories, and the pricing of actual long-term
options contracts.

The results developed in this paper has concentrated solely on univariate
models. Yet, for most modern asset pricing theories and optimal asset allocation
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decisions, a multivariate modeling framework is necessarily called for. Thus,
extending the present ideas to a multivariate setting, allowing for the possibility
of co-persistence in variance as discussed by Bollerslev and Engle (1993), would
also be important.

Recent findings in Baillie and Bollerslev (1994) suggest that the forward
premium in the foreign exchange market, s, — f;, where s, and f; denote the
logarithmic spot rate and the corresponding forward rate for delivery ! periods
from now, is best characterized as an I(d) process. However, by a standard asset
pricing argument the difference between the expected future spot rate and the
current forward rate, E,(s,.;) — f;, is directly related to the conditional variance
of the spot rate; see, €.g., Hodrick (1987). Thus, the long-term dependence in the
conditional variances of daily spot exchange rates documented here might
therefore be directly related to the apparent long-memory in the forward
premium, which in turn might help to explain the systematic rejections of the
unbiasedness hypothesis as an artefact due to the unbalanced regression of
Si+1— S onf, —s,.

Following Granger (1980) and Haubrich and Lo (1992), who demonstrate
how fractional integration in the mean can occur through the aggregation of I(0)
time series, the overall volatility for any speculative asset may naturally be
interpreted as the result of the markets aggregation of several different autocor-
related ‘news’ arrival processes, thus providing a possible reason behind the
findings of long-memory characteristics in financial market volatility. A more
formal analysis of this idea could proceed along the lines of Nijman and Sentana
(1996). We leave further investigations of all these important topics for future
research.
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