
Computational	Microbiology	
Lab	Manual	(Biology	
2003/3004)	

Tonya	Ward	Contributions	by:	Elise	Morton,	Gabe	Al-Ghalith,	Joseph	Guhlin,	Andrew	Honsey,	Jen	
Teshera-Levye,	Rachel	Soble,	&	Maxwell	Kramer	

Getting	Started	
Overview	of	Computational	Microbiology	Workflow	
During	the	computational	microbiology	section	of	this	course	you	will	use	your	own	computer,	
and	the	supercomputers	at	the	Minnesota	Supercomputing	Institute	(MSI)	to	analyze	
microbiome	data.	Below	is	a	diagram	explaining	which	resources	and	programs	will	be	found	on	
your	computer	and	on	MSI.	

	

In	order	to	analyze	the	microbiome	datasets	available,	we	must	install	some	programs	on	your	
computer.	These	programs	are	listed	in	the	table	below.	Links	for	these	programs	are	also	
available	on	the	course	Moodle	for	your	convenience.	

## Warning: package 'knitr' was built under R version 3.3.2	

Program	 Use	 Download	 Cost	

Putty	 Connect	to	
MSI	(Windows	
only)	

Mac:	Not	Needed	Windows:	http://www.putty.org	 free	

FileZilla	 Transfer	files	
to/from	MSI	

Mac	&	Windows:https:FileZilla-project.org	 free	

Sublime	
Text	

Writing	text	
files	

Mac	&	Windows:	www.sublimetext.com/3	 free	

RStudio	 Analyze	&	plot	
data	

Mac	and	Windows:	First:	[https://cran.r-project.org	&	
www.rstudio.com/products/rstudio/download	

free	

PuTTY	
PuTTY	allows	people	with	Windows	to	access	the	computers	on	MSI	from	the	command	line.	It	
is	a	terminal	application	that	we	will	use	specifically	for	MSI.	Mac	and	Linux	users	do	not	need	
to	this,	and	will	access	MSI	using	their	terminal	instead.	

FileZilla	
FileZilla	will	let	you	connect	your	computer	to	the	supercomputers	at	MSI	https://FileZilla-
project.org.	This	is	a	point	and	click	program	with	a	visual	user	interface.	You	can	install	it	and	
we	will	set	up	the	MSI-specifics	later	when	we	first	log	in	to	MSI.	

Sublime	Text	
Sublime	Text	is	a	text	editor	https://www.sublimetext.com/3.	Just	like	we	might	use	Microsoft	
Word	for	writing	our	papers	and	assignments,	we	need	a	text	editor	to	write	the	type	of	text	
files	we	use	in	computational	microbiology.	We	need	a	special	text	editor	because	the	
computer	will	be	reading	in	and	processing	our	files	directly,	so	they	must	be	formatted	
properly.	We	cannot	use	something	like	Word,	or	Notepad	because	they	embed	special	
modifications	into	the	files	they	create.	For	the	ease	of	troubleshooting,	everyone	is	required	to	
use	Sublime	Text	3.	This	is	a	point	and	click	(and	type)	program	with	a	visual	user	interface.	You	
can	install	and	use	it	right	away.	

RStudio	
R	is	the	programming	language	we	will	use	to	analyze	and	plot	our	data.	We	can	think	of	it	like	
Microsoft	Excel.	R	can	do	everything	we	would	need	to	do	in	Excel	and	a	lot	more.	To	download	
R,	we	will	need	to	download	it	for	your	particular	operating	system.	Choose	your	appropriate	
link	from	here:	http://cran.us.r-project.org/.	

After	this	downloads,	you	will	probably	get	two	R	icons	which	open	a	dialogue	which	looks	
similar	to	the	terminal.	We	will	never	be	using	these	because	it	is	kind	of	a	clunky	way	to	use	R.	
Instead	we	will	be	installing	an	Integrated	Development	Environment	(IDE)	for	R	called	RStudio.	
It	works	as	a	wrapper	for	R	to	create	somewhat	of	a	personalized	console	with	different	panes	
containing	different	information	about	what	you	are	working	on.	To	download	it	go	to	this	link	
and	choose	the	right	installer	for	your	operating	system:	
http://www.rstudio.com/products/rstudio/download/.	

Accessing	MSI	
What	is	MSI?	
MSI	stands	for	the	Minnesota	Supercomputing	Institute.	It	is	an	academic	unit	of	the	University	
of	Minnesota.	They	offer	numerous	services,	such	a	batch	high	performance	computing	(HPC),	
interactive	HPC	and	data	storage.	For	the	context	of	this	course,	you	can	think	of	MSI	as	a	
resource	of	many	large	computers	that	we	can	use	to	perform	our	computational	tasks.	

Serial	versus	Parallel	Computing	
When	we	use	MSI	we	can	complete	our	tasks	faster	if	we	run	them	in	parallel.	This	is	similar	to	
thinking	about	electricity.	Look	at	the	example	below	with	light	bulbs.	On	the	left	the	circuit	is	
set	up	in	series	(bulbs	one	after	another),	on	the	right	the	circuit	is	set	up	in	parallel	(electricity	
reaching	all	bulbs	at	the	same	time).	

	

We	can	do	the	same	type	of	thing	with	computers.	Below	is	an	example	of	serial	computation.	
When	run	a	command	on	MSI	we	are	taking	a	big	dataset	and	executing	a	bunch	of	instructions.	
The	instructions	have	to	be	done	in	a	certain	order	and	only	one	can	be	done	at	a	time.	If	we	do	
this	in	series,	it	can	take	a	long	time.	For	example,	if	we	want	to	align	millions	of	DNA	sequences	
to	a	reference,	also	known	as	OTU	picking	(we	will	talk	about	what	this	is	later	in	the	course),	it	
takes	a	really	long	time	if	we	want	to	do	it	accurately.	

	

Below	is	an	example	of	parallel	computation.	We	can	break	up	our	problem	into	smaller	chunks	
and	run	them	at	the	same	time	on	multiple	processors.	This	way	we	can	get	to	our	results	

faster.	In	the	example	we	are	using	OTU	picking,	but	many	of	our	computational	microbiology	
commands	can	be	run	in	parallel.	

	

So	really,	we	use	MSI	so	that	we	can	quickly	complete	tasks	that	would	take	our	own	computers	
a	really	long	time.	

Accessing	MSI	
If	you	want	to	use	your	personal	computer,	you	would	physically	interact	with	the	keyboard	
and	mouse	attached	to	it.	The	computers	at	MSI	are	not	located	where	we	are,	so	we	must	
access	them	remotely.	To	understand	how,	we	should	first	learn	some	terminology:	

term	 Definition	

Client	 The	computer	where	the	user	is	sitting	and	where	the	connection	is	initiated	from	

Server	 The	remote	computer	that	accepts	the	connection	and	provides	the	service	

IP	
Address	

Internet	Protocol	address.	4	8-bit	number	that	all	computers	connected	to	the	
internet	have,	telling	us	where/who	the	computer	is.	MSI:	@login.msi.umn.edu	

SSH	 Secure	Shell.	Enables	command-line	connection	by	creating	an	encrypted	
connection	between	your	computer	and	the	remote	server	

To	access	MSI	you	must	be	using	the	UMN	secure	wifi,	eduroam,	or	you	must	be	logged	into	
the	VPN	
If	you	don't	have	the	VPN,	follow	instructions	here	for	on	Moodle.	

Logging	In:	

Mac/Linux:	
Open	your	terminal	and	type	(test):	

ssh x500@login.msi.umn.edu	

It	will	then	ask	for	your	password,	which	is	your	x500	password.	It	will	not	show	up	as	you	type	
it.	

Windows:	open	PuTTY:	
First	Time:	Open	PuTTY	and	do	the	following.	Once	you	hit	open,	it	will	ask	for	your	x500	
password.	

	

Every	Other	time:	click	on	your	biol1961	PuTTY	shortcut.	

Logout:	
exit	

Servers	Available	at	MSI	
When	you	first	access	MSI	you	are	on	the	login	server.	This	server	can	be	used	to	look	at	which	
files	are	there	and	make	simple	text	files.	To	perform	any	other	tasks,	you	must	move	to	a	
server	that	is	capable	of	performing	larger	tasks.	The	server	we	will	use	is	'lab'.	

Move	to	Lab	Server	
ssh lab	

Directory	Structure	on	MSI	
We	can	see	the	exact	directory	structure	of	MSI	using	FileZilla.	Generally	it	looks	like	this:	

/home/	
				biol1961/	
								home_directory/	
								shared/	
								public/	

Connecting	to	MSI	with	FileZilla	
Type	in	the	host	IP	for	MSI:	login.msi.umn.edu	
Type	in	your	username:	x500	
Type	in	your	password	
Click	Quickconnect	
	

	

Commenting	Code	
"Programs	must	be	written	for	people	to	read,	and	only	incidentally	for	machines	to	execute."	
				-Structure	and	Interpretation	of	Computer	Programs,	1985	

What	is	commenting?	
When	we	write	and	execute	code	we	are	telling	the	computer	to	do	something.	The	computer	
reads	our	code,	interprets	what	to	do	and	executes	it.	As	people,	we	write	comments	in	the	
code	for	other	people	to	read.	These	comments	include	explanations	as	to	what	the	code	is	
doing,	instructions,	what	the	inputs	and	outputs	should	be	and	other	important	pieces	of	
information.	Comments	are	not	read	by	the	computer.	We	ensure	they	are	not	read	by	the	
computer	by	placing	special	symbols	before	the	comment	text	that	stops	the	computer	from	
reading	that	text	and	trying	to	interpret	it.	There	are	different	types	of	comment	symbols	
depending	on	which	language	you	are	writing	in.	For	this	course,	we	will	be	using	the	following	
symbol:	#	

The	pound	symbol,	or	hashtag,	tells	the	computer	to	not	read	any	text	that	follows	the	symbol.	
The	symbol	is	line	specific,	so	once	a	new	line	is	started	the	computer	can	again	read	the	text.	

Example:	
# this line is a comment, not read by the computer	
cd file_path/to/DNA_sequences	
# the line above is NOT a comment and is read and executed by the computer	

Summary:	'#'	=	a	comment	for	us,	and	not	the	computer.	

Comments	on	Comments	
Commenting	is	also	important	for	later	in	the	course	when	we	begin	to	write	our	own	code.	You	
will	be	expected	to	comment	any	code	you	write	so	that	it	can	be	interpreted	by	your	
instructors	and	peers.	For	this	class,	please	consider	the	following	points:	

1. The	value	of	a	comment	is	proportional	to	the	distance	between	the	comment	and	the	
code.	Good	comments	stay	as	close	as	possible	to	the	code	they're	referencing.	As	
distance	increases,	the	comment	becomes	misleading.	
	

2. Comments	should	be	clear	and	concise	
	

3. Comments	should	capture	intent.	Because	we	are	learning	in	this	course,	what	we	want	
our	code	to	do	and	what	it	actually	does	might	be	two	different	things.	Commenting	your	
intent	can	help	your	instructors	help	you!	

Adapted	from	https://blog.codinghorror.com/when-good-comments-go-bad/	

The	Command	Line	
Why	Command	Line?	
We	need	to	be	able	to	interact	with	the	Minnesota	Supercomputing	Institute's	(MSI)	
supercomputers.	Some	of	our	computers	work	with	the	Windows	or	Mac	iOS	systems,	while	
the	supercomputers	at	MSI	run	UNIX.	To	work	with	UNIX,	you	have	to	learn	how	to	enter	
commands	from	the	terminal	to	tell	the	computer	what	to	do.	This	will	likely	start	out	as	trial	
and	error	for	you,	so	don't	get	discouraged!	

You	should	try	these	commands	and	combinations	of	these	commands	to	get	a	better	
understanding.	Repetition	is	essential	to	learning	these	commands	and	how	they	work.	Much	
of	working	with	the	command-line	is	memory.	So	copy-and-pasting	commands	is	discouraged.	
Typing	them	on	the	command-line	yourself	will	accelerate	your	learning	and	the	command	line	
provides	instant-feedback.	If	you	make	a	mistake,	you	can	use	the	up	arrow	on	the	keyboard	to	
correct	your	command,	or	you	can	simply	re-type	it	and	try	to	correct	your	error.	

When	working	from	the	command	line,	the	case	of	the	letter	is	important.	Lowercase	'a'	does	
not	equal	uppercase	'A'.	So	not	only	do	you	have	to	be	careful	of	typos,	you	also	have	to	be	
careful	of	the	case	of	the	letters!	

Please	note	that	in	this	manual	command	line	test	will	be	in	a	different	font.	Inputs	(commands)	
that	you	can	actually	try	out	will	be	bolded.	With	the	new	font,	you	should	be	able	to	tell	the	
difference	between	many	common	characters.	Characters	such	as	0	and	a	capital	O	are	distinct.	
As	are	lower-case	l	and	the	number	1.	The	pipe	|	and	l	and	1	are	also	different.	This	font	is	
called	Monaco.	

Additional	Help	
The	following	website	can	help	with	learning	UNIX.	You	can	type	in	a	command,	with	options,	
and	it	will	provide	a	description	of	that	command	and	any	options	you	supplied.	Try	it	with	

ls -a	

Help	website:	http://www.explainshell.com/	

Commands	
A	command	in	UNIX/Linux	can	be	as	simple	as	ls.	But	can	also	be	more	advanced	and	have	flags,	
affecting	how	the	program	is	run,	and	arguments,	telling	the	program	where	to	work	or	which	
file	to	work	with,	depending	on	the	command.	Let's	consider	the	following	command:	

ls -a ~/../sample/	

This	command	lists	the	files	and	directories,	including	hidden	ones,	in	the	sample	directory.	

	

Notice	the	following:	

• The	command,	flags,	and	argument	are	all	separated	by	a	space	
• The	first	set	of	characters	before	any	space	occurs	are	the	command	(ls).	If	we	forgot	a	

space,	and	typed	ls-a,	the	computer	would	try	to	run	a	command	that	is	literally	named	'ls-
a'	which	does	not	exist,	and	you	will	get	command not found.	

	

Anatomy	of	a	command	(as	it	looks	in	the	terminal):	

tward@login02 [~] % ls -a test_directory	

• ls	is	the	command	itself	
– ls	stands	for	list.	It	tells	the	computer	to	list	the	contents	of	something	

• -a	is	a	flag	to	the	command,	affecting	how	the	program	functions	
– Flags	modify	the	command.	-a	means	all,	and	is	telling	the	computer	to	list	all	files	

(even	hidden	ones)	
• test_directory	is	the	argument	to	the	command	

– It	is	telling	the	computer	what	to	list:	List	is	all	the	files	in	the	directory	
~/Desktop/biol1961/file/	

• tward@login02 [~] %	is	the	terminal	output	
– It	tells	us	where	we	are	(logged	in	under	tward,	in	the	login	server	login02).	What's	

inside	the	[]	tells	us	which	directory	we	are	in	(~	means	"home"),	and	%	tells	you	
when	the	command	starts.	We	will	leave	this	part	out	for	all	future	examples.	

	

Commands	may	have	a	zero,	one,	or	more	flags	and	zero,	one,	or	more	arguments.	For	
example,	the	cp	command	which	copies	a	file	will	always	have	two	arguments,	but	rarely	uses	
flags.	

cp test_directory/sample.fastq test_directory/my_sample.fastq	

• cp	is	the	command	itself	
• test_directory/sample.fastq	is	the	first	argument,	the	name	and	location	of	the	file	to	

be	copied	
• test_directory/my_sample.fastq	is	the	second	argument,	the	name	and	location	to	

copy	the	file	to	
This	will	copy	the	sample.fastq	file	to	the	same	directory,	and	the	name	of	the	new	file	will	be	
my_sample.fastq.	

Where	Are	We	Working?	
• When	working	from	the	command	line,	we	first	start	in	our	home	directory	(a	directory	is	

another	name	for	a	folder)	
• From	our	home	directory	we	can	reference	other	directories	or	paths	to	files	
• Commands	are	performed	in	the	directory	you	are	in	
• When	you	change	directories	(cd)	you	move	from	one	location	to	another	
• Commands	default	to	working	in	your	current	directory,	but	you	can	tell	them	to	work	

somewhere	else	using	a	specified	path	
	

Think	of	your	own	computer.	When	you	open	your	"Finder"	(Mac)	or	Windows	Explorer	
(Windows),	you	start	in	your	home	directory.	From	there	you	have	other	directories	you	can	
enter.	Inside	those	directories	you	might	have	even	more	subdirectories.	Let's	use	an	example	
of	a	pictures	folder	on	your	desktop.	If	you	want	to	access	Picture_1	from	2014,	you	would	go	
to	your	Desktop,	then	into	Pictures,	then	into	Pictures_2014	and	click	picture_1.	

	

Your	Home	Directory	
Your	home	directory	is	your	default	starting	place	when	you	log	in	to	MSI.	On	MSI,	my	home	
directory	is	'/home/biol1961/tward'.	I	can	check	this	by	opening	my	terminal.	logging	in	to	MSI,	
and	typing	pwd	(print	working	directory).	

pwd					/home/biol1961/tward	

I	can	also	test	this	by	writing	using	cd ~.	With	this	we	move	to	our	home	directory	(cd	=	change	
directory,	~	=	home).	We	then	check	what	directory	we	are	in	with	pwd	(print	working	
directory).	

cd ~	
pwd	
 /home/biol1961/tward	

We	can	also	check	using	echo,	which	will	print	the	output	of	the	~	to	the	screen.	

echo ~	
 /Users/tward	

Changing	Directories	
• The	command	cd	changes	directories	
• Use	cd ~	to	change	to	your	home	directory	
• Use	cd ..	to	move	into	the	parent	directory	(up	one	from	where	you	are)	
• Use	cd shared	to	move	into	a	directory	called	'shared'	
cd ~/../shared/	

means	to	change	directories	to:	
1.	My	home	directory	using	~	(which	is	home/biol1961/tward)	
2.	Go	up	to	the	parent	directory	using	../	
3.	And	the	to	the	shared	directory	using	/shared	

If	I	want	to	move	back	to	my	home	directory	from	here,	I	can	type:	

cd ~	

which	means	to	move	to	my	home	directory.	note	that	cd ~	will	bring	you	home	no	mater	
where	you	are.	

Try	moving	around	on	MSI	from	your	home	directory	to	the	main	biol1961	directory,	to	the	
shared	directory,	to	the	public	directory...	

Telling	Commands	Where	Files	Are	
• Commands	&	programs	work	from	where	you	currently	are	(see:	pwd)	
• When	telling	commands	how	to	get	somewhere,	you	can	give	a	start	position,	such	as	in	

the	following	command:	
cp ~/../shared/File.txt ~	

This	tells	the	cp	command	to	start	at	your	home	directory	(~),	and	then	move	into	the	parent	
directory	(..),	and	into	the	shared	folder	and	copy	the	File.txt	file	to	your	home	directory	
(~).	

Our	Biology	1961	directory	structure	should	look	like	this:	

home/ 	
 biol1961/ 	
 x500/	
 shared/	
 public/	

If	we	want	to	work	from	our	home	directory	we	can	reference	it,	regardless	of	where	we	
currently	are,	like	this	/home/biol1961/x500.	Note:	a	slash	in	front	means	the	absolute	path	
from	the	root	of	the	directory	tree	(home).	

Relative	path:	biol1961/x500	
Absolute	path:	/home/biol1961/x500	or	~	

**remember	~	is	short	for	your	home	directory.	

Absolute	versus	Relative	File	Paths	
Notice	that	in	comparison	to	what	we	talk	about	above,	here	we	are	talking	about	referencing	
the	path	to	a	file,	not	the	path	itself.	But	the	rules	are	still	the	same.	An	absolute	file	path	is	the	
file's	address	from	the	root	of	the	computer's	file	system.	For	example:	

/home/biol1961/x500/my-file.txt	

is	an	absolute	file	path,	and	will	work	from	any	directory.	A	relative	file	path	could	be	

my-file.txt	

The	command	receiving	this	file	path	will	only	work	if	that	file	is	in	the	same	directory	the	
command	is	running	from.	Another	relative	file	path	could	be:	

../my-file.txt	

This	example	would	only	work	if	the	file	is	backward	one	directory	(parent	directory)	from	your	
current	directory.	You'll	get	a	"No	such	file	or	directory"	error	when	you	have	not	referenced	
the	location	of	the	file	properly.	Relative	file	paths	are	used	to	reduce	typing	and	make	things	
easier.	Absolute	file	paths	will	almost	always	work.	Remember,	the	way	to	tell	a	relative	path	
from	an	absolute	path	is	by	a	leading	forward	slash	/.	

Listing	Files	and	Directories	
• The	command	ls	will	allow	you	to	list	files	and	directories	
• The	default	location	it	looks	is	your	present	working	directory,	which	you	can	identify	with	

the	command	pwd	
• You	can	also	specify	other	locations	to	examine;	by	using	ls ~/sample_directory/	you	

are	asking	to	list	files	and	directories	found	in	the	sample_directory	folder	
• You	can	list	hidden	files	by	using	the	flag	-a	and	you	can	see	file	size,	date,	modification,	

and	permissions	by	using	-l,	you	can	get	file	sizes	in	human	readable	format	with	-h	
• You	can	combine	these,	and	use	ls -lah ~/Desktop/	to	find	out	this	information	for	files	

in	the	shared	folder	
ls -lah /home/biol1961/tward/sample_directory	
total 1.0G	

drwxr-s---. 3 tward biol1961 4.0K Oct 3 13:04 .	
drwxr-xr-x. 55 root biol1961 12K Sep 6 09:30 ..	
-rw-r--r--. 1 tward biol1961 3.1K Sep 23 12:04 alpha_div.txt	
-rw-r--r--. 1 tward biol1961 0 Sep 27 13:39 alpha_otu.txt	
-rw-r--r--. 1 tward biol1961 0 Sep 27 13:39 alpha_taxa.txt	
-rw-------. 1 tward biol1961 5.8K Oct 3 13:02 .bash_history	
-rw-r--r--. 1 tward biol1961 403 Oct 3 13:04 .bashrc	
-rw-r--r--. 1 tward biol1961 2.4M Sep 28 11:14 Gever_100.biom	

Try	listing	all	of	the	files	in	your	home	directory	

Tab	Complete	
If	you	want	to	write	a	path	or	file	path,	you	can	use	the	tab	button	to	help	you.	Let's	say	we	
want	to	type	the	following	/home/biol1961/tward/sample_directory/my-file.txt.	If	we	
start	typing	the	first	couple	of	letters	/home/biol1961/twa,	we	can	then	use	tab	to	complete	
the	rest	for	us.	If	there	is	only	one	option,	tab	will	fill	in	the	word.	If	there	is	more	than	one	
option,	hitting	tab	once	will	not	fill	in	the	word,	but	hitting	it	twice	will	list	all	our	options.	

Try	writing	the	path	to	your	desktop	by	using	the	tab	button.	

Moving/Copying	Files	
To	move	files,	use	mv.	To	copy	files,	use	cp.	If	we	are	in	the	shared/	directory,	this	command	
moves	a	file	called	seq.txt	from	the	shared	directory	to	our	home	directory.	

mv seq.txt ~	

To	copy	the	same	file,	we	would	have	used	cp	instead	and	we	would	have	a	copy	in	both	
locations.	
Try	copying	a	file	from	named	copy_me.txt	from	the	shared/	directory	into	your	home	
directory.	

Creating	a	Directory	
To	create	a	new	directory,	use	mkdir.	

In	this	example,	we	use	pwd	to	show	we	are	in	a	new	directory	on	the	desktop.	We	use	ls	to	
show	that	there	are	no	files	or	directories	in	the	current	directory.	We	then	create	a	new	
directory	with	mkdir,	and	can	now	see	it	with	ls,	and	then	we	change	into	that	directory	with	
cd.	

pwd	
 Users/tward/Desktop/new_directory	
	
ls	
mkdir new_sub_directory	

	
ls	
 new_sub_directory	
	
cd new_sub_directory/	

Try	making	a	new	directory	in	your	home	directory.	Trying	copying	a	file	from	the	shared/	
folder	(copy_me.txt)	into	the	new	directory	you	made.	

Counting	Lines,	words	and	characters	
In	computational	microbiology	we	will	be	using	multiple	types	of	text	files.	Some	of	these	files	
will	include	sequences	of	DNA	(all	the	A,T,G,C's),	tables	of	how	many	bacteria	are	in	each	
sample,	and	other	files	with	information	about	diversity.	Sometimes	it	is	handy	to	be	able	to	
pull	snippets	of	information	from	these	files.	For	example:	

• we	can	count	the	number	of	lines,	words,	and	characters	in	a	file	with	the	command	wc	
• "Words"	are	defined	here	by	groups	of	characters	(strings)	separated	by	a	space.	
In	this	example,	we	get	only	the	number	of	lines	in	the	my_file.txt	file	using	the	-l	flag	with	wc.	
Next,	we	get	the	number	of	lines,	words,	and	number	of	characters	in	the	file	when	we	don't	
use	the	-l	flag.	

wc -l ~/my_file.txt	
 552544 /home/biol1961/tward/my_file.txt	
	
wc ~/Desktop/biol1961/my_file.fastq	
 552544 552544 90114322 /home/biol1961/tward/my_file.txt	

Try	counting	the	number	of	lines	in	the	copy_me.txt	file	

Getting	lines	from	a	file	(beginning	or	end)	
• To	get	lines	from	the	beginning	of	a	file	or	end	of	a	file,	we	can	use	the	commands	head	or	

tail	
• By	default,	these	commands	will	give	us	10	lines,	but	we	can	change	this	with	the	flag	-n K	

where	K	is	the	number	of	lines	you	would	like	to	receive	
Here	is	an	example,	searching	a	file	called	sample.fastq.	This	file	contains	all	the	sequences	of	
DNA	for	a	sample	in	a	dataset.	So,	the	top	2	lines	from	a	file	would	be	head	-n 2
sample.fastq	

head -n 2 ~/Desktop/biol1961/sample.fastq	
@M00784_000000000-A8BPP:1:1101:14310:1364#0/2	
CGACAACCATGCATCACCTGTCACTTCTGTCCCCGAAGGGAAAAATGCGATTAGGCATCGGTCAAAAGGATCTCACC
CTTCGCTCATCTTCTTCGCGTTGCTTCTAATTCCACCACATGCTCCCCTACTTCTCCGCCTCCCCCTCACTTCCTTT

GAGTTTCACTCTTGCGAGCGTACTTCCCAGGCGTAGTACTTAATGCTTTCGCTGCGCCACCGTCGCGCTTCCCCCCC
CACCCCTCCTTCCCATCTTTTCCTCCCTCCCCCTCCCGCGTCTCCCATCCCCCTCCCCTTCTCCCCCACC	

Searching	a	File	
• We	can	quickly	search	files	with	the	grep	command.	
• To	use	grep	you	supply	a	string	to	search	for,	followed	by	a	file	to	search	in	
• grep	will	send	the	result	to	standard	output	(typically	the	screen),	which	is	the	entire	line	

that	matches	the	search	string	you've	provided.	
Here	are	some	examples,	searching	sample.fastq.	This	file	contains	all	the	sequences	of	DNA	
for	a	sample	in	a	dataset.	

grep GGGGGGATGAT ~/Desktop/biol1961/sample.fastq	
CGACGGCCATGCAACACCTCCACAGGCGCCCCGAAGGGCCTCATCATCTCTGAAACATTCGCCTACAGTTCAAGCTC
CGGTAAGGTTCCTCGCGTATCATCCAATTAAACCCCCAGTTCCTCCGCTTTTGCCGGCCCCCGTCAATTCCTTTGAG
GTTCTACCCTGCCGGCGTACTCCCCCGGGGGGATGATTCATGCCTTCGCTTGGCCGCTTACGACAGACGCAACCAAC
GATCAACCATCATTTACGGCGTGCACTACACGGCTCACGATTCTCACTCCTCTCATCTATCACCACTCCC	
CGACAACCATGCAGCACCTGTATCAGTATCCCCGAAGGGACTATGTAACTTTACAGGAATTACTGGAAGGCAAGACC
TGGGAAGGGTCCTCGCGTTGCTACGAAATAAAACAAAAGCTCCGCAGCCTGTGCGGGCCCCCGTCAATTACATTGAG
GTTCAAACTTGCGGCCGTACTCACCAGGGGGGATGATTAATGTGTTTACTTCGGAAAAGAAGGGGTCGATACCCAAT
ACACCTAGCAGCAATCGTTTACAGTGTGGACTACAAGGGTATCTAGTCACCTGTATCTTATACAAATCTG	
CGACAACCATGCAGCACCTGCAAAGAGAGTACGAAGGAAGAGATAGTATTCAAAAGGGGCCACTGCAATTCAAGCAC
GGGGAAGGGTCCTCGGCGATCATTGAATTAAAACACATGGTCCTACGGTTGTGACGGGCCCCGTCAATTTCTTTGAG
GTTCACTGTTGCCGGAGTTATCCCCAGGGGGGATGATTAATGATTTTGCTGGGCCGCTCGAATGGTCTGGACAACAC
AGGGACTCGACATTATACGTTGAGGCGTGCCAGGGACACGAACACACGGTCATTTGTCATCAACACACCC	

The	lines	returned	are	very	long	and	are	printed	on	multiple	lines.	However,	they	are	the	same	
length	and	you	can	see	we	find	three	lines	that	contain	GGGGGGATGAT	

Redirecting	command	output	(to	another	command)	
• We	can	use	the	output	of	one	command	as	the	input	of	another	
• The	pipe,	|	,	is	a	key	typically	above	the	enter	key.	It	is	a	vertical	line	
• The	pipe	redirects	output	from	one	command	to	input	of	another	command	

For	example,	we	can	see	how	many	lines	in	the	sample.fastq	file	contains	the	sequence	
'GATTACA'.	grep	counts	the	number	of	lines	'GATTACA'	appears	in	the	file,	and	feeds	it	to	
wc	to	count	the	number	of	lines.	

grep GATTACA ~/Desktop/biol1961/sample.fastq | wc -l	151	

We	can	also	see	the	last	2	lines	that	match	GATTACA:	

grep GATTACA ~/Desktop/biol1961/sample.fastq | tail -2	
CGACGGCCATGCACCACCTCGGCCTCCGTCCGAAGAGCCACCCATCTCTGGGTGTTTCAGGCGCCGTTCGAGCCCGT
GTAAGGTTTCTTGCGTTTCATTGAATTTAACCACCTGTTTCTACGCCTGTTCGGGCCCCCCTCCAATTCCTTGAGGT
TTCACGCTTCCGATGTTCCTCCCAGGTGGATGTACTATTGCTGTCGCCTGGGCACCGACAGGGTTCCGCCGGCGGAC

ACCCATTATTCCTTGTTGAGTGGATTACATGGCAAGCTAATCACCCGTCTGTGTCTCTTCACACTCGCTC	
CGACGGCCATGCAACACATGTTTTCATGTCCCCGAAGGGAAAGCTCCATCTCTGGAGCGGTCAATCAATGTCAAGCC
TTGGTAAGGTTCTTCGCGTTGCGTCGAATTAAACCACATACTCCACCGCTTGTGCGGGCCCCCGTAAATTCCTTTGA
GGTTCATCCTTGCGGACGTACTCCCCAGGCGGGGTACTTATTGCGTTAACTCCGGCACAGAAGGGGTCGATACCTCC
TACACCGAGTACCCATCGTTTACGGCAAGGACTACCGGGGATTACAACTCCCTGTCGCCTCTACCAATCT	

We	can	also	string	multiple	grep	commands	together,	for	example	we	could	search	for	lines	
containing	'ATG'	that	also	contain	'TAG'	that	also	contain	'GATTACA',	and	count	the	number	of	
matches.	

grep ATG ~/Desktop/biol1961/sample.fastq | grep TAG | grep GATTACA | wc -l	
138	

Redirecting	command	output	(to	a	file)	
• We	can	also	redirect	the	output	of	a	command	to	a	file	
• Output	can	be	directed	to	a	new	file	with	>	(this	will	replace	existing	content	if	something	

is	already	there!)	
• You	can	add	to	the	end	of	a	file	with	>>	(this	will	NOT	replace	existing	content,	but	adds	to	

it	instead)	
We	can	use	the	same	example	as	above,	where	we	used	grep	to	search	for	lines	containing	
'ATG'	that	also	contain	'TAG'	that	also	contain	'GATTACA',	and	direct	the	output	to	a	file	called	
'many_grep.txt'.	

grep ATG ~/Desktop/biol1961/sample.fastq | grep TAG | grep GATTACA | wc -l >
many_grep.txt	

We	can	write	direct	text	to	a	file	using	echo.	For	example,	we	can	write	"the	number	of	lines	
that	contain	ATG,	TAG	and	GATTACA:"	to	the	end	of	the	many_grep.txt	file.	

echo "This is the number of lines that contain ATG, TAG, GATTACA" >>
many_grep.txt	

Try	writing	"I	will	master	computational	microbiology"	to	a	new	file	called	'mantra.txt'	on	your	
desktop.	

Exploring	.txt	files	from	terminal	
• We	can	open	and	look	at	text	files	from	the	command	line	with	the	command	nano	
• nano file.txt	opens	the	file	
• Arrow	keys	move	up	and	down	
• Directions	for	quitting	the	file	are	located	at	the	bottom	of	the	screen	
We	can	explore	what	the	sample.fastq	file	looks	like	by	typing	the	following	the	command,	
and	then	quitting	by	typing		x.	

nano sample.fastq	

Try	looking	into	your	mantra.txt	file	on	your	Desktop.	

For	more	commands	you	can	use,	please	see	the	Bash_commands	file	on	Moodle.	Please	use	
this	file	and	update	it	with	commands	you	find	useful	as	you	complete	the	computational	
microbiology	section.	

Modifying	'.bashrc'	on	MSI	
The	following	instructions	are	for	modifying	your	unmask	setting	on	MSI.	This	setting	is	listed	
within	your	.bashrc	file.	It	controls	who	has	access	to	the	files	you	create	on	MSI.	The	default	
setting	is	077,	which	means	all	files	and	directories	are	private.	We	want	to	set	it	to	027,	so	that	
people	in	our	group	(e.g.,	TAs	and	instructors)	can	have	access	to	the	files	you	create.	

1.	Log	onto	MSI	

ssh x500@login.msi.umn.edu	

PuTTY	users:	Just	click	on	your	MSI	PuTTY	shortcut	

2.	Copy	the	.bashrc	file	from	the	shared	directory	to	your	home	directory	

 cp /home/biol1961/shared/.bashrc ~	

3.	Source	your	file	to	make	it	active	

 cd ~	
 source .bashrc	

Job	Submission	on	MSI	
Why	submit	jobs	
MSI	uses	job	queues	to	efficiently	and	fairly	manage	when	computations	are	executed.	The	
queuing	system	that	MSI	uses	is	called	PBS,	which	stands	for	Portable	Batch	System.	We	
submit	a	script	to	the	supercomputer	to	be	run	at	a	later	time	(when	the	resources	are	
available).	This	is	the	alternative	to	waiting	around	for	hours,	potentially	longer,	for	the	
resources	you	need	to	become	available.	

What	is	a	script?	
A	script	is	a	file	containing	commands	to	be	run	in	order.	The	script	itself	can	then	be	run	like	a	
command	and	will	execute	all	the	tasks	outlined	in	the	file.	There	are	many	types	of	scripts.	For	
example,	all	the	commands	we	will	run	in	QIIME	are	scripts	that	execute	many	tasks	for	us.	
A	PBS	job	script	is	a	type	of	script	we	use	with	the	MSI	supercomputers.	It	is	a	small	plain	text	
file	containing	information	about	what	resources	a	job	requires	-	including	time,	number	of	
nodes	and	memory.	The	PBS	script	also	contains	the	commands	needed	to	begin	the	desired	
computation.	
Below	is	an	example	of	a	PBS	script	that	we	will	use	repeatedly.	For	our	purposes,	the	text	in	
black	will	remain	the	same	for	all	jobs	submitted	to	MSI.	The	text	in	red	will	vary,	depending	on	
the	user	and	the	job	to	be	submitted.	

#! /bin/bash -l	
#PBS -l nodes=1:ppn=16,mem=2Gb,walltime=3:00:00	
#PBS -m abe	
#PBS -M your_email	
#PBS -o job_name_stdout	
#PBS -e job_name_stderr	
cd /home/biol1961/x500	
module load name_of_software	
command_X_Y_Z	

#!/bin/bash -l	
The	first	line	in	the	PBS	script	defines	which	type	of	shell	the	script	will	be	read	with.	We	need	
the	BASH	shell	and	it	will	be	read	line	by	line	(-l).	

#PBS -l nodes=1:ppn=16,mem=2Gb,walltime=3:00:00	
The	second	line	contains	the	PBS	resource	request.	The	sample	job	will	require	3	hours,	1	node,	
each	with	1	processor	core	per	node	(ppn),	and	2	gigabytes	of	RAM	(mem).	Note	that	
commands	for	the	PBS	queuing	system	begin	with	#PBS.	Other	commands	to	be	run	do	not	
have	the	'#PBS'.	

#PBS -m abe	
#PBS -M your_email	

The	third	and	fourth	lines	are	both	commands	having	to	do	with	sending	message	emails	to	the	
user.	The	first	of	these	lines	instructs	the	PBS	system	to	send	a	message	email	when	the	job	
aborts,	begins,	or	ends.	The	second	command	specifies	the	email	address	to	be	used.	

#PBS -o job_name_stdout	
#PBS -e job_name_stderr	
The	fifth	and	sixth	lines	specify	the	names	of	the	files	to	which	the	job's	output	and	errors	
should	be	written,	respectively.	You	can	change	the	name	(job_name)	to	specify	the	job	that	is	
run	(e.g.	OTU_picking_stdout).	

cd home/biol1961/x500	
A	PBS	script	should	also	contain	the	appropriate	change	directory	commands	to	get	to	the	job	
execution	location	(in	this	case	the	computer	will	move	to	the	user's	home	directory).	

module load name_of_software	
The	script	also	needs	to	contain	module	load	commands	for	any	software	modules	that	the	
calculation	might	need.	'Module	load'	is	effectively	the	same	as	opening	an	application	on	your	
computer.	This	could	be	something	like:	module load qiime/1.8.0	

command_X_Y_Z	
The	last	lines	of	a	PBS	script	contain	commands	used	to	execute	the	job.	This	could	be	
something	like:	pick_otus.py	-i	sequences.fasta	-o	otus.	

You	must	write	your	PBS	scripts	in	your	plain	text	editor	(Sublime	Text	3)	and	save	them	with	
the	extension	.pbs	

Check	a	Job	Status	
there	are	two	commands	used	to	to	check	the	progress	of	our	job:	qstat	and	showq.	For	our	
own	jobs,	we	need	to	use	the	-u	username	flag	to	specify.	If	there	is	no	flag	for	qstat,	it	will	
show	all	of	the	jobs	currently	running	or	waiting	on	the	specified	machine.	showq	will	show	
more	information	about	the	jobs,	including	the	starting	time,	expected	finishing	time,	and	
usage	of	computational	resources	(processors,	nodes).	

qstat -u x500	
showq -u x500	

Kill	a	Job	
When	we	check	the	job	status,	there	is	a	Job	ID	starting	with	a	number.	This	number	can	be	
used	to	kill	the	job.	For	example,	if	the	Job	ID	is	4327.node1081.locald,	type	

qdel 4327	

or	

qdel 4327.node1081.locald	

We	can	kill	multiple	jobs	in	a	row	by	specifying	the	Job	IDs,	or	use	all,	if	all	the	jobs	need	to	be	
killed.	

QIIME	
What	is	QIIME?	
QIIME	stands	for	Quantitative	Insights	Into	Microbial	Ecology.	It	is	pronounced	'chime'.	It	is	
pipeline	for	preforming	microbiome	analysis	from	raw	DNA	sequences.	Some	of	the	things	
QIIME	can	do	for	us	includes:	

• Quality	filtering	
• OTU	picking	
• Assigning	taxonomy	
• Diversity	analysis	
• Visualizations	
• Statistics	
QIIME	uses	a	mix	of	other	existing	softwares	and	algorithms	to	perform	its	tasks.	Because	of	
this	we	call	it	a	'wrapper'.	That	means	it	wraps	up	many	other	existing	tools	and	algorithms	in	a	
package	that	works	as	one	cohesive	unit.	

How	Do	We	Use	QIIME?	
As	mentioned	above,	QIIME	is	a	wrapper	for	many	different	components.	This	means	installing	
QIIME	can	be	extremely	challenging	because	it	requires	MANY	dependencies	(other	programs	
and	algorithms).	For	this	reason	(and	the	computer	power	of	MSI),	we	use	the	1.8.0	version	of	
QIIME	installed	on	MSI.	
When	we	are	on	MSI	and	logged	into	the	lab	server,	we	can	turn	QIIME	'on'	by	typing:	

module load qiime/1.8.0	

module load	means	out	of	all	the	modules	(programs	installed	on	MSI),	load	the	one	we	are	
going	to	specify.	There	are	different	versions	of	QIIME	on	MSI,	so	we	must	specify	that	we	want	
version	1.8.0	with	qiime/1.8.0.	If	you	wanted	to	see	all	the	different	modules	available	on	MSI	
you	could	do	so	with	module avail.	If	you	wanted	to	turn	off	a	module	you	had	loaded,	you	
can	type	module unload	followed	by	the	name	of	the	module.	

QIIME	has	many	commands	(files	that	contain	ordered	lists	of	commands	to	be	run),	and	these	
commands	can	be	found	at	the	link	below.	This	is	how	we	complete	different	steps	in	our	
analysis.	

QIIME	Commands:	http://qiime.org/scripts/	

Try	going	to	this	page	and	click	some	of	the	commands	links,	for	example	click	
summarize_taxa.py	and	read	what	this	command	does,	what	the	inputs	are	and	the	examples.	
Notice	that	all	commands	end	in	'.py'.	This	is	because	all	the	commands	are	written	in	a	
language	called	Python,	and	commands	in	Python	end	in	'.py'.	

QIIME	Workflow	
Here	is	a	flowchart	of	the	how	QIIME	works:	

	

Notice	the	initial	inputs	in	green:	

Input	 Definition	

Sequencing	
Output	

This	is	all	of	the	raw	DNA	sequences	from	the	sequencer	(.fastq	files)	

Metadata	 This	is	another	word	for	mapping	file.	It's	a	tab-delimited	text	file,	where	the	
sample	IDs	are	rows	and	the	columns	are	different	categories	of	data.	For	
example,	which	primers	were	used	for	sequencing,	which	body	site	the	sample	
is	from,	clinical	data	(like	if	the	sample	came	from	a	person	with	the	disease	or	a	
control),	etc.	Many	times	we	actually	make	these	files	in	Excel,	and	export	them	
as	.txt	files.	

The	rest	of	the	steps	in	this	pipeline	will	be	covered	in	detail	throughout	the	rest	of	the	course.	

Running	Commands	
To	determine	how	to	run	a	command,	we	have	to	look	up	the	documentation.	We	can	either	go	
to	the	command	page	(for	QIIME)	mentioned	above	and	click	on	the	command	we	want,	or	we	
can	type	the	following:	

qiime_command.py -h	

By	specifying	-h	we	are	saying	'HELP!'.	The	command	will	list	the	documentation	associated	
with	it.	This	output	will	not	be	as	comprehensive	as	what	is	available	online,	but	will	at	least	tell	
us	all	the	possible	inputs	and	outputs.	

Example	
collapse_samples.py	

Online:	

	

This	tells	us	what	the	command	does:	

Uses	the	mapping	file	to	collapse	the	OTU	table.	
The	minimum	we	need	to	specify	(required)	is:	

• The	OTU	table	we	care	about	in	.biom	format	
• The	mapping	file	we	care	about	
• The	output	file	path	for	our	collapsed	OTU	table	
• The	output	file	path	for	our	collapsed	OTU	table	
• The	field	we	would	like	to	collapse	by	
Optionally,	we	can	also	determine:	+	The	collapse	mode	+	To	normalize	or	not	

Terminal:	
collapse_samples.py -h	

This	will	tell	us	(more	or	less)	the	same	information,	but	prints	it	to	the	terminal	screen.	

Quality	Control	of	Sequence	Data	
When	we	get	our	DNA	sequences	from	the	sequencer,	there	is	some	quality	control	that	must	
be	done.	For	example,	the	barcodes	and	primers	used	in	the	sequencing	reaction	should	be	
removed.	Also	any	sequences	that	are	too	low	in	quality	should	be	discarded.	

If	we	are	analyzing	16S	amplicon	data,	then	we	should	also	trim	our	sequences	to	the	expected	
amplicon	size.	If	we	used	paire-end	sequencing	we	can	also	stitch	our	pairs	together	to	make	
our	sequences	longer	and	of	higher	quality	for	alignment.	

We	can	trim	and	filter	our	raw	sequences	using	many	different	tools,	but	in	this	course	we	will	
be	using	SHI7	(pronouned	shizen).	This	program	will	do	all	the	quality	control	we	need	and	
produce	a	final	combined	file	sequence	file	that	we	will	use	as	the	input	for	OTU	picking	(to	
determine	which	bacteria	are	in	our	samples).	The	input	that	SHI7	requires	is	a	directory	of	
.fastq	files,	where	each	sample	as	its	own	fastq	file.	

What's	a	fastq	file?	
A	.fastq	file	contains	our	DNA	sequences	as	well	as	other	information	regarding	the	quality	of	
the	sequencing	reaction.	Each	sequence	within	a	.fastq	has	four	lines	of	information:	

• Line	1	begins	with	a	'@'	character	and	is	followed	by	a	sequence	identifier	and	an	optional	
description	

• Line	2	is	the	raw	sequence	letters	(A,T,G,C...)	
• Line	3	begins	with	a	'+'	character	and	is	optionally	followed	by	the	same	sequence	

identifier	
• Line	4	encodes	the	quality	values	for	the	sequence	in	Line	2,	and	contains	the	same	

number	of	symbols	as	letters	in	the	sequence	

What's	a	fasta	file?	
A	.fasta	or	.fna	file	contains	our	DNA	sequences	only.	Each	sequence	within	a	.fasta	has	
two	lines	of	information:	

• Line	1	begins	with	a	'>'	character	and	is	followed	by	a	sequence	identifier	and	an	optional	
description	

• Line	2	is	the	raw	sequence	letters	(A,T,G,C...)	
The	.fasta	or	.fna	format	is	the	input	format	required	for	OTU	picking.	When	we	quality	
control	our	sequences	we	also	convert	them	from	.fastq	to	.fna.	

How	Do	We	Quality	Control	Sequences?	
SHI7	is	currently	installed	in	the	shared	directory,	and	our	.bashrc	file	contains	information	to	
have	MSI	use	this	program	as	if	it	were	installed	as	a	module.	The	full	documentation	for	SHI7	is	
located	here:	https://github.com/knights-lab/shi7.	

To	run	SHI7	picking,	we	will	use	the	main	SHI7	command	with	the	following	parameters:	

shi7.py 	
-i directory_with_fastqs/ 	
-o qc_reads_output	

The	input	file	path	is	to	the	sequences	you	want	to	process	(-i).	This	should	be	a	directory	with	
one	fastq	per	sample.	The	name	of	each	fastq	should	be	the	sample	ID	followed	by	the	.fastq	
file	extension.	The	output	directory	is	where	you	want	your	final	clean	sequence	file	to	be	(-o).	
There	are	some	optional	parameters	to	use	depending	on	the	dataset.	The	include:	

-SE # This will use single-end mode. 	
 # If you don't have paired reads, use -SE	
-trim_q 32 # Trim sequences based on quality, default is 20, 	
 # increase to 32 if sequencing run is old (before 2015)	
--adaptor Nextera # You can specifically take out the adapter that was used 	
 # In most recent sequencing it's Nextera adapters	
--strip_underscore T # You can process the file names to keep the first part	

For	the	full	list	of	options,	you	can	type:	

shi7.py -h 	

This	is	telling	SHI7	to	print	the	help	page.	

To	run	this	command,	we	must	submit	a	job	file.	Your	job	file	should	look	like	this:	

#!/bin/bash -l	
#PBS -l nodes=1:ppn=16,mem=2Gb,walltime=6:00:00	
#PBS -m abe	
#PBS -M x500@umn.edu 	
#PBS -o job_name_stout	
#PBS -e job_name_stderr	
	
cd /home/biol1961/x500	
	
module load python	
	
shi7.py 	
-i directory_with_fastqs/ 	
-o qc_reads_output	

Of	course,	you	have	to	modify	the	file	to	specify	YOUR	file	paths	and	the	outputs	to	what	you	
want.	Things	that	cannot	change	include:	

• The	first	3	lines.	The	nodes	and	ppn	must	be	1	and	16	for	the	lab	queue	

• The	__module load python	(SHI7	requires	python	to	run)	
All	the	parameters	for	the	actual	command	must	be	all	on	one	line	in	the	job	file,	with	a	space	
between	the	parameter	letter	and	value.	In	the	above	example	they	are	on	separate	lines	so	
that	you	can	read	them	easily.	The	files	and	paths	must	be	specific	to	you.	

As	mentioned	above,	the	script	will	run	its	own	jobs	after	it	has	started.	You	will	know	quallity	
control	is	done	when	you	have	the	following	files	in	your	output	directory	(-o):	

shi7.log	(all	the	information	about	the	quality	control)	
combined_seqs.fna	(your	combined	and	cleaned	sequences	in	.fna	format)	

You	will	also	have	some	files	that	were	generated	by	the	jobs	submitted	by	this	script.	They	
include:	
job_name_stout	(the	standard	out	captured	by	the	job	submission)	
job_name_stderr	(the	errors	captured	by	the	job	submission)	

Picking	OTUs	
What	is	OTU	picking?	
OTU	picking	is	how	we	take	our	16S	DNA	sequences	and	assign	them	to	an	OTU	identifier.	An	
operational	taxonomic	unit	(OTU)	is	a	cluster	of	similar	16S	sequence	variants.	Each	cluster	is	
meant	to	represent	a	taxonomic	unit	of	bacteria	(species,	genus,	phylum..)	depending	on	the	
sequence	similarity	threshold.	OTU	clusters	are	usually	defined	by	a	97%	identity	threshold	of	
the	16S	gene	sequence	variants.	There	are	three	main	types	of	OTU	picking	that	we	can	do.	

De-novo	

	

• Doesn't	use	a	reference	database	
• Majority	of	the	reads	are	clustered	
• Very	slow	
• Erroneous	reads	get	clustered	
• Cannot	assign	taxonomy	
	

Closed	Reference	

	

• Reference	database	is	quality	filtered	
• Faster	because	you	can	use	parallel	computation	
• No	new	OTUs	can	be	observed	
• Reference	database	bias	

• Uses	the	GreenGenes	database	of	all	known	16S	
• Can	assign	taxonomy	
	

Open	Reference	

	

• Combines	the	two	approaches	
• No	data	is	thrown	out	
• De-novo	clustered	OTUs	cannot	be	assigned	taxonomy	
	

How	do	we	actually	pick	OTUs?	
Depending	on	the	OTU	picker	you	choose	to	use,	OTU	picking	can	be	very	computionally	heavy.	
This	means	it	can	require	a	lot	of	time	and	resources.	Thanks	to	the	development	efforts	of	
microbiome	researchers,	we	have	been	able	to	speed	up	this	process	immensely.	The	OTU	
pickers	within	QIIME	are	currently	not	the	gold	standard,	so	we	will	use	a	different	OTU	picker	
that	is	installed	seperately.	

For	this	course	we	will	used	a	closed	reference	OTU	picker	called	NINJA,	which	stands	for	NINJA	
Is	Not	Just	Another	aligner.	NINJA	is	currently	installed	in	the	shared	directory,	and	our	
.bashrc	file	contains	information	to	have	MSI	use	this	program	as	if	it	were	installed	as	a	
module.	The	full	documentation	for	NINJA	is	located	here:	https://github.com/GabeAl/NINJA-
OPS.	

To	run	OTU	picking,	we	will	use	the	main	NINJA	command	with	the	following	parameters:	

ninja.py 	
-i combined_seqs.fna 	
-o ninja_otus 	
-m normal 	
-p 4 	
-z 	
-d 2	

The	input	file	path	is	to	the	sequences	you	want	to	align	(-i).	These	should	be	the	output	of	the	
quality	control	we	did	earlier.	The	output	directory	is	where	you	want	your	final	OTU	table	to	
be	(-o).	The	-m	parameter	set	to	normal	tells	NINJA	to	run	at	medium	sensitivity	(to	maximize	
the	speed	to	accuracy	ratio).	We	will	use	4	threads	(-p),	and	we	will	search	both	DNA	strands	(-
z).	We	will	also	set	denoising	to	2	(-d),	which	means	we	will	discard	any	sequences	that	appear	
less	than	2	times.	

To	run	this	command,	we	must	submit	a	job	file.	Your	job	file	should	look	like	this:	

#!/bin/bash -l	
#PBS -l nodes=1:ppn=16,mem=2Gb,walltime=6:00:00	
#PBS -m abe	
#PBS -M x500@umn.edu 	
#PBS -o job_name_stout	
#PBS -e job_name_stderr	
	
cd /home/biol1961/x500	
	
module load python bowtie2	
	
ninja.py 	
-i combined_seqs.fna 	
-o ninja_otus 	
-m normal 	
-p 4 	
-z 	
-d 2	

Of	course,	you	have	to	modify	the	file	to	specify	YOUR	file	paths	and	the	outputs	to	what	you	
want.	Things	that	cannot	change	include:	

• The	first	3	lines.	The	nodes	and	ppn	must	be	1	and	16	for	the	lab	queue	
	

• The	__module load python bowtie2	(NINJA	requires	python	and	bowtie2	to	run)	
All	the	parameters	for	the	actual	command	must	be	all	on	one	line	in	the	job	file,	with	a	space	
between	the	parameter	letter	and	value.	In	the	above	example	they	are	on	separate	lines	so	
that	you	can	read	them	easily.	The	files	and	paths	must	be	specific	to	you.	

As	mentioned	above,	the	script	will	run	its	own	jobs	after	it	has	started.	You	will	know	OTU	
picking	is	done	when	you	have	the	following	files	in	your	output	directory	(-o):	

ninja_log.txt	(all	the	information	about	the	alignment)	
ninja_otutable.biom	(your	otu	table)	

You	will	also	have	some	files	that	were	generated	by	the	jobs	submitted	by	this	script.	They	
include:	
job_name_stout	(the	standard	out	captured	by	the	job	submission)	
job_name_stderr	(the	errors	captured	by	the	job	submission)	

If	you	want	to	pick	otus	again,	you	should	delete	these	files	prior	to	submitting	another	OTU	
picking	job.	

What's	an	OTU	table?	
The	output	of	ninja.py	is	an	OTU	table	in	.biom	format.	When	in	.biom	format	the	file	is	not	in	a	
form	we	can	read	easily.	We	must	first	convert	the	table	to	.txt	file	to	view	it.	

Converting	.biom	files	
A	.biom	file	is	a	way	to	package	a	lot	of	information	in	a	way	that	doesn't	take	up	too	much	
space.	Because	all	the	information	is	compact,	it	makes	the	file	not	human	readable.	If	you	call	
head	on	a	.biom	file,	the	output	will	look	mostly	like	gibberish.	What	is	important	is	that	QIIME	
and	other	microbiome	softwares	use	.biom	files	because	they	are	smaller	and	fast	to	work	with.	
If	you	want	to	put	your	OTU	table	in	a	human-readable	format	you	have	to	convert	it	to	a	tab-
delimited	file.	We	will	cover	this	later.	

Biom	Summaries	
OTU	Tables	in	.biom	format	
We	store	out	OTU	tables	in	two	different	formats,	either	as	a	tab-delimited	text	file	(.txt)	or	as	a	
compact,	human	non-readable	biom	format	(.biom).	When	we	store	the	table	as	a	biom	file,	we	
cannot	easily	look	in	the	file	to	see	how	many	OTUs	or	samples	there	are,	but	we	can	access	a	
summary	of	the	file	using	some	biom	commands	through	QIIME.	

Biom	Summary	
We	can	summarize	our	OTU	table	with	the	biom	summarize-table	command	while	using	QIIME	
interactively:	

ssh lab	
	
cd /home/biol1961/x500	
	
module load qiime/1.8.0	
	
biom summarize-table -i file/path/to/otu_table.biom -o OTU_summary.txt	

The	input	file	would	be	the	file	path	the	YOUR	OTU	table	and	the	output	can	be	whatever	you	
would	like	to	name	the	summary	file.	This	command	will	make	a	text	file	that	contains	a	
summary	of	your	OTU	table.	We	can	look	at	the	nonctents	of	the	.txt	file	by	using	nano	(the	text	
editor	on	MSI).	

nano OTU_summary.txt	

	

You	can	see	an	example	of	the	summary	file	above.	It	tells	us:	*	The	number	of	samples	*	THe	
number	of	observations	(OTUs)	*	The	minimum,	maximum,	median,	mode	and	standard	
deviations	of	of	the	number	of	counts	per	sample	*	The	taxonomy	is	stored	as	the	observation	
metadata	*	A	list	of	how	many	counts	are	in	each	sample	

Rarefaction	
What	is	Rarefaction?	
In	microbiome	research,	diversity	represents	the	number	OTUs	within	in	a	data	set.	This	
number	can	be	greatly	impacted	with	different	sequencing	depths.	For	example,	the	deeper	
you	sequence	the	more	species	you	will	find.	This	is	a	problem,	especially	if	you	sequence	
50,000	reads	from	one	sample	and	only	100	reads	from	another	sample.	You	would	likely	find	
more	species	in	the	sample	that	is	deeply	sequenced	(50,000	reads)	in	comparison	to	the	one	
that	was	shallowly	sequenced	(100	reads).	

Below	is	an	example	where	we	are	going	to	sequence	one	sample	three	times.	Each	colored	dot	
represents	a	microbe	and	each	color	represents	a	different	species.	Through	the	process	of	
DNA	isolation,	16S	PCR	amplification,	sequencing,	quality	trimming	and	OTU	picking	we	can	lose	
information	or	sequences.	

	

To	prevent	any	bias	we	may	see	in	our	diversity	analysis	we	can	rarefy	our	data.	A	rarefaction	is	
a	random	collection	of	sequences	from	a	sample,	with	a	specified	number	of	sequences	
(depth).	For	example,	a	rarefaction	with	a	depth	of	1000	reads	per	sample	is	a	simulation	of	
what	your	sequencing	results	would	look	like	if	you	sequenced	exactly	1000	reads	from	each	
sample.	By	rarefying	our	OTU	table	we	can	fairly	measure	alpha	diversity	across	samples.	

Exploring	Rarefied	Data	with	Alpha	Diversity	
In	QIIME,	we	can	first	explore	our	data	by	looking	at	alpha	diversity	across	multiple	different	
sequencing	depths.	This	task	is	performed	using	the	alpha_rarefaction.py	command	that	
takes	your	OTU	table	and	makes	a	directory	full	of	many	OTU	tables,	all	of	which	are	repeats	of	
rarefactions	at	specfifc	depths.	The	output	of	this	command	allows	us	to	visualize	how	
measurements	in	alpha	diversity	will	change	across	a	range	of	sequence	depths	per	sample.	
Once	we	know	how	the	diversity	changes	with	depth,	we	can	create	one	final	rarefied	table	to	
use	for	our	alpha	diversity	and	beta	diversity	calculations.	

The	command	is	run	using	these	parameters:	

alpha_rarefaction.py	
-i input_file_path	
-o output_directory	
-t tree_file_path	
-m metadata_file_path	

The	input	file	path	is	to	the	otu	table	in	.biom	format	that	you	want	to	rarefy	(-i).	The	output	
directory	is	where	you	want	your	final	results	to	be	(-o).	The	tree	file	path	is	the	location	of	the	
GreenGenes	97	percent	phylogeny	tree	(-r).	

The	alpha_rarefaction.py	command	will	do	multiple	things:	

(1) Create	multiple	rarefied	OTU	tables	at	ten	step	increments	(+	ten	sequences	each	time)	
starting	at	a	minimum	level	of	ten	sequences	and	stopping	at	the	median	number	of	
sequences	per	sample	

(2) Run	alpha_diversity.py	on	each	of	the	rarefied	OTU	tables	using	the	chao1,	
observed_species,	and	phylogenetic	distance	metrics	

(3) Collates	the	results	for	each	metric	at	the	various	depths	into	one	table	per	metric,	within	
the	alpha_div_collated/	subdirectory	

(4) Plots	the	different	metrics	for	each	category	in	the	metadata	file	and	places	those	within	
the	alpha_rarefaction_plots/	subdirectory	

(5) Deletes	all	of	intermediate	the	OTU	tables	it	had	generated	to	do	the	analysis	
(6) Creates	a	log	file	and	overall	rarefaction	plot	within	the	main	output	directory	
To	run	this	QIIME	command,	we	must	submit	a	job.	Your	job	file	should	look	like	this:	

#!/bin/bash -l	
#PBS -l nodes=1:ppn=16,mem=2Gb,walltime=6:00:00	
#PBS -m abe	
#PBS -M x500@umn.edu 	
#PBS –o job_name_stout	
#PBS -e job_name_stderr	
	
cd /home/bioltrm1/x500	
	
module load qiime/1.8.0	
	
alpha_rarefaction.py	
-i file/path/to/otu_table.biom	
-o file/path/to/whatever_you_want	
-t /home/biol1961/shared/97_otus.tre	
-m /home/biol1961/shared/map.txt	

Of	course,	you	have	to	modify	the	file	to	specify	YOUR	file	paths	and	the	outputs	to	what	you	
want.	Things	that	cannot	change	include:	
*	The	first	3	lines.	The	nodes	and	ppn	must	be	1	and	16	for	the	lab	queue	*	The	module	load	
qiime/1.8.0	We	must	always	load	QIIME	and	it	must	be	qiime/1.8.0	*	The	–t	must	be	to	the	97	
percent	GreenGenes	tree	

All	the	parameters	for	the	actual	command	must	be	all	on	one	line	in	the	job	file,	with	a	space	
between	the	parameter	letter	and	value.	In	the	above	example	they	are	on	separate	lines	so	
that	you	can	read	them	easily.	As	mentioned	above,	the	script	will	run	its	own	jobs	after	it	has	
started.	You	will	know	alpha_rarefaction.py	is	done	when	you	have	the	following	files	in	
your	output	directory	(-o):	

alpha_div_collated/	(one	table	per	metric	in	here)	
alpha_rarefaction_plots/	(plots	per	metadata	column)	
log_##.txt	(log	file)	
rarefaction_plots.html	(overall	plot)	

You	will	also	have	some	files	that	were	generated	by	the	jobs	submitted	by	this	script.	They	
include:	job_name_stout	(the	standard	out	captured	by	the	job	submission)	
job_name_stderr	(the	errors	captured	by	the	job	submission)	

If	you	want	to	run	the	command	again,	you	should	delete	these	files	prior	to	submitting	
another	job.	

To	look	at	your	plots,	you	must	transfer	the	entire	alpha_rarefaction.py	output	folder	from	
MSI	to	your	computer.	The	rarefaction_plots.html	file	needs	other	information	supplied	
within	the	subfolders.	You	can	move	through	all	of	the	plots	by	selecting	different	categories	
and	diversity	metrics.	

	

Creating	a	Rarefied	OTU	Table	
How	do	you	pick	a	depth?	
You	want	to	pick	a	depth	that:	
(1)	Keeps	as	many	samples	as	possible	(isn’t	too	high)	
(2)	Isn’t	so	low	that	samples	aren’t	representative	of	the	total	diversity	

	 	

In	the	above	examples	the	left	plot	shows	all	samples	and	the	right	plot	shows	the	mean	
number	of	observed	species	according	to	body	site.	If	we	chose	a	depth	of	2000	sequences,	we	
would	loose	some	the	orange	samples	on	the	right	(saliva).	We	know	this	because	on	the	group	
plots,	the	line	will	stop	where	at	least	one	sample	in	that	group	no	longer	has	that	many	
sequences.	The	depth	you	choose	is	entirely	up	to	you!	But	you	should	be	able	to	justify	why	
you	pick	it.	Normally	we	try	to	pick	a	depth	where	the	rarefaction	curves	begin	to	level	off.	This	
means	for	each	increase	in	the	number	of	sequences,	we	are	not	detecting	any	(or	very	few)	
new	OTUs.	In	the	above	example	we	would	probably	rarefy	at	no	lower	than	1,500.	

Creating	your	Rarefied	OTU	Table	
Once	you	have	picked	a	depth	based	on	the	alpha_rarefaction.py outputs,	you	are	ready	
to	create	a	rarefied	OTU	table.	To	do	this,	we	use	the	single_rarefaction.py	command	with	
the	following	parameters:	

single_rarefaction.py	
-i input_file_path	
-o output_file_path	
-d number_of_sequences	

The	input	file	path	is	to	the	OTU	table	in	.biom	format	that	you	want	to	rarefy	(-i).	The	output	
file	path	is	where	you	want	your	final	rarefied	OTU	table	to	be	(-o,	make	sure	the	name	is	
different	from	the	original!).	Both	the	input	and	output	will	be	.biom	files.	The	last	parameter,	(-
d)	is	the	depth	you	have	chosen	based	on	the	plots	generated	by	alpha_rarefaction.py.	

Remember,	all	the	parameters	for	the	actual	command	must	be	all	on	one	line	in	the	job	file,	
with	a	space	between	the	parameter	letter	and	value	and	must	be	specific	to	you.	

The	output	of	this	command	will	be	the	OTU	table	you	use	for	alpha	and	beta	diversity	
calculations.	

Filtering	OTU	Tables	
Why	do	we	Filter	Samples	From	an	OTU	Table?	
Filtering	low	depth	samples	from	an	OTU	table	can	be	used	as	an	alternative	for	rarefying	an	
OTU	table.	Rarefying	results	in	taking	only	a	small	fraction	of	the	original	data.	It	causes	an	
increase	in	two	types	of	error:	

Type	I	
*	"Decreased	specificity"	or	an	increased	likelihood	in	saying	two	groups	are	different	when	
they	aren't	*	Caused	by	rarefied	samples	remaining	over-dispersed	(a	small	number	of	
sequences	come	from	a	variety	of	sources)	

Type	II	
*	"Loss	of	power"	or	"decreased	sensitivity"	to	detect	real	differences	between	groups	*	Caused	
by	valuable	information	about	diversity	being	thrown	out	

	

Let's	discuss	rarefaction	by	looking	at	the	biom	summary	for	an	original	OTU	table	and	the	
rarefied	version.	

	

Biom	Summary	of	Original	OTU	table	|	Biom	summary	of	rarefied	OTU	table	(2000	seqs)	

Notice	how	in	the	above	example,	the	first	samples	in	the	original	OTU	table	are	low	in	
sequence	number.	One	sample	has	only	4	sequences.	The	last	sample	listed	has	over	7,000	
sequences,	and	that	is	still	low	compared	to	the	rest	of	the	sequences	in	the	dataset	(the	
median	is	12,121	sequences).	The	table	on	the	right	is	the	same	OTU	table	rarefied	to	2,000	
sequences.	Notice	that	the	samples	below	2000	sequences	are	thrown	out,	and	that	the	
remaining	samples	are	subsampled	to	an	even	depth	of	2,000.	That	means	most	samples	have	
lost	about	10,000	sequences!	That's	is	a	lot	of	information	to	throw	out!	

We	should	note,	that	rarefying	our	data	is	still	the	gold	standard	when	measuring	alpha	and	
beta	diversity.	When	looking	for	specific	taxa,	however,	we	can	filter	low-depth	samples	from	
our	OTU	table	and	keep	the	full	depth	of	sequences	for	the	rest	of	the	samples.	We	can	then	
account	for	differences	in	sequencing	depth	by	transforming	the	data	later.	We	accomplish	the	
filtering	of	low-depth	samples	through	the	filter_samples_from_otu_table.py	command	in	
QIIME.	Normally,	we	keep	samples	that	have	>1,000	sequences	and	throw	out	the	others.	You	
can	choose	to	go	higher	or	lower	depending	on	the	sequencing	results.	

How	do	We	Filter	an	OTU	Table?	
In	QIIME,	this	task	is	performed	on	your	OTU	table.	The	QIIME	command	
filter_samples_from_otu_table.py	takes	your	OTU	table	and	makes	a	new	version	of	both	
based	on	the	filtering	parameters	you	set.	

The	command	is	run	using	these	parameters:	

filter_samples_from_otu_table.py 	
-i input_file_path 	
-o output_file_path 	
-n number_of_sequences	

The	input	file	path	is	to	the	original	OTU	table	in	.biom	format	that	you	want	to	filter	(-i).	The	
output	file	path	is	where	you	want	your	filtered	OTU	table	to	be	(-o).	The	minimum	number	of	
sequences	a	sample	must	have	to	remain	in	the	OTU	table	is	set	with	the	last	parameter	(-n).	

There	are	other	options	you	can	use	to	filer	your	OTU	table,	such	as:	
-s valid_states	
--sample_id_fp path_to_text_file	
--negate_sample_id_fp path_to_text_file	
-m max_sequence_count	

The	valid	states	let	you	specify	a	mapping	column	and	values	in	that	column	that	a	sample	must	
be	associated	with	to	remain	in	the	OTU	table	(-s).	

For	example,	if	we	sampled	people	from	different	locations	in	the	Twin	Cities	and	the	collection	
location	was	under	a	header	called	'Location'	in	the	mapping	file.	If	we	wanted	to	keep	only	
samples	collected	from	Uptown	and	Downtown	and	not	St	Paul,	you	could	use:	-s
Location:Uptown,Downtown.	You	could	also	use	a	sample	ID	text	file,	with	one	sample	ID	per	
line,	to	list	which	samples	to	keep	(--sample_id_fp),	or	which	to	be	remove	from	the	OTU	
table	(--negate_sample_id_fp)	.	You	can	also	filter	using	the	maximum	number	of	sequences	
a	sample	can	have	to	remain	in	the	OTU	(-m).	

For	the	full	list	of	parameters	and	how	to	use	them,	you	can	look	at	the	command	page	on	the	
QIIME	webpage:	http://qiime.org/scripts/filter_samples_from_otu_table.html	

The	filter_samples_from_otu_table.py	command	will	create	a	new	OTU	table	in	biom	
format	containing	only	the	samples	that	meet	the	filtering	criteria.	

To	run	this	QIIME	command,	we	can	use	QIIME	interactively.	
```	{	r,	eval=F}	ssh	lab	
cd	/home/biol1961/x500	module	load	qiime/1.8.0	

filter_samples_from_otu_table.py	-i	file/path/to/otu_table.biom	-o	
file/path/to/whatever_you_want.biom	-m	home/biol1961/shared/map.txt	--
output_mapping_fp	file/path/to/whatever_you_want.txt	-n	number_of_sequences	```	

Of	course,	you	have	to	modify	the	file	to	specify	YOUR	file	paths	and	the	outputs	to	what	you	
want.	For	the	HMP	dataset	in	the	examples,	the	file	path	for	the	map	would	remain	the	same.	
All	the	parameters	for	the	actual	command	must	be	all	on	one	line	in	the	job	file,	with	a	space	
between	the	parameter	letter	and	value.	In	the	above	example	they	are	on	separate	lines	so	
that	you	can	read	them	easily.	We	should	use	a	depth	no	lower	than	1000	sequences.	



Converting	Table	Types	
##.biom	to	.txt	
We	can	convert	.biom	files	to.txt	using	biom convert	on	MSI.	To	do	so,	QIIME	should	be	
loaded	for	interactive	use.	This	command	will	convert	the	.biom	file	to	a	tab-delimited	.txt	
file.	It	will	take	in	the	OTU	table	(in	.biom	format,	-i)	and	will	output	a	new	.txt	file	(-o).	
Specifying	-b	means	we	are	going	from	.biom	to	.txt	and	--header-key specifies	it	has	
taxonomy.	Like	other	biom	commands,	this	command	must	be	run	when	QIIME	has	been	
loaded	in	interactive	mode.	Again,	this	command	should	be	run	all	in	one	line,	with	the	
parameters	separated	by	one	space.	

ssh lab	
	
cd /home/biol1961/x500	
	
module load qiime/1.8.0	
	
biom convert 	
-i table.biom 	
-o table_from_biom_w_taxonomy.txt 	
-b 	
--header-key taxonomy	

This	text	file	of	your	OTU	table	will	look	something	like	this.	The	columns	in	the	OTU	table	are	
the	samples.	The	rows	are	the	OTU	IDs.	The	column	header	for	the	OTU	IDs	is	always	#OTU ID.	
In	the	text	file,	each	column	is	separated	with	a	'tab'.	When	we	open	this	tab-delimited	text	file	
in	Excel,	Excel	knows	to	read	each	tab	as	a	new	column.	The	values	in	the	OTU	table	are	the	
counts	for	that	OTU	ID	in	each	sample.	For	example,	if	we	look	at	the	first	OTU	(189503)	we	can	
see	it	occurs	34	times	in	sample	A,	19	times	in	sample	B,	and	so	on.	Notice	that	the	last	column	
is	not	a	sample,	it	is	the	taxonomy.	

	

.txt	to	.biom	
We	can	convert	out	OTU	tables	from	.txt	to	.biom	using	biom convert	on	MSI.	This	might	be	
important	to	do	after	we	filter	and	normalize	our	tables	(if	we	want	to	use	them	with	QIIME	
again).	To	do	so,	QIIME	should	be	loaded	for	interactive	use.	



ssh lab	
	
cd /home/biol1961/x500	
	
module load qiime/1.8.0	
	
biom convert 	
-i normalized_table.txt  	
-o normalized_table.biom  	
--table-type "OTU table"  	
--header-key taxonomy	

(This	should	be	written	all	on	one	line!)	



Alpha	Diveristy	
What	is	alpha	diversity?	
Alpha	diversity	measures	how	many	different	things	are	within	a	particular	area	or	ecosystem,	
and	is	usually	expressed	by	the	number	of	species	(i.e.,	species	richness)	in	that	ecosystem.	In	
our	case,	the	ecosystem	in	question	is	the	sample	type	we	are	analyzing	(stool,	soil,	skin.).	It's	
important	to	remember	that	alpha	diversity	is	within	a	sample,	which	is	what	makes	it	different	
than	beta	diversity,	which	we	will	talk	about	later	in	the	course.	The	amount	of	diversity	in	any	
community	is	extremely	important	in	determining	ecological	dynamics	(e.g.	community	
productivity,	stability,	and	resilience).	For	humans,	there	is	a	great	deal	of	data	demonstrating	
that	the	ancestral	human	gut	microbiome	is	more	diverse	than	the	modern	one,	and	that	this	
lower	diversity	is	highly	correlated	with	a	number	of	important	diseases.	Therefore,	alpha	
diversity	is	an	important	phenotype	in	microbiome	research.	

Different	metrics	have	been	developed	to	calculate	alpha	diversity.	Some	of	these	include:	

Richness:	A	measure	of	the	number	of	OTUs	present	in	a	sample	
Evenness:	How	many	of	each	OTU	is	present	in	a	sample	
Phylogenetic	relationship:	Accounts	for	taxonomy	and	phylogenetic	relationships	

	

	



Richness	and	evenness	for	one	sample	in	a	microbiome	study.	

	

Example	of	a	phylogenetic	tree.	

What	are	Diveristy	Metrics?	
Below	are	some	common	alpha	diversity	metrics	use	in	microbiome	research.	There	are	
numerous	other	metrics	available	in	QIIME,	but	we	don't	need	to	cover	all	of	them	for	Biology	
2002.	

Observed	Species	
The	simplest	diversity	index;	it	is	just	the	number	of	OTUs.	

Chao1	estimator	

	

This	is	commonly	used,	and	is	based	upon	the	number	of	rare	OTUs	found	in	a	sample	The	
problem	with	this	metric	is	that	if	a	sample	contains	many	singletons	(OTUs	that	happen	just	
once,	usually	by	sequencing	error)	the	Chao	1	index	will	estimate	greater	species	richness	than	
it	would	for	a	sample	without	rare	OTUs.	This	problem	is	avoided	if	we	first	filter	the	rare	OTUs	
from	out	OTU	table.	In	the	equation	Sobs	is	the	number	of	species	in	the	sample,	F1	is	the	



number	of	singletons	(i.e.,	the	number	of	species	with	only	a	single	occurrence	in	the	sample)	
and	F2	is	the	number	of	doubletons,	which	is	the	number	of	species	with	exactly	two	
occurrences	in	the	sample	(Colwell,	et	al.	1994).	

Shannon	index	

	

This	index	accounts	for	both	abundance	and	evenness	of	the	species	present.	It	assumes	all	
species	are	represented	in	a	sample.	In	the	Shannon	index,	p	is	the	proportion	(n/N)	of	
individuals	of	one	particular	species	found	(n)	divided	by	the	total	number	of	individuals	found	
(N),	ln	is	the	natural	log,	??	is	the	sum	of	the	calculations,	and	s	is	the	number	of	species	(CISN.	
2010).	

Simpson	index	

	

The	Simpson	index	is	actually	a	similarity	index,	so	the	higher	the	value	the	lower	diversity	in	
the	sample.	It	gives	more	weight	to	common	or	dominant	species.	In	the	Simpson	index,	p	is	the	
proportion	(n/N)	of	individuals	of	one	particular	species	found	(n)	divided	by	the	total	number	
of	individuals	found	(N),	??	is	still	the	sum	of	the	calculations,	and	s	is	the	number	of	species	
(CISN,.	2010).	

Phylogenetic	Distance	(PD	Whole	Tree)	

	

The	phylogenetic	distance	metric	used	most	often	is	PD	whole	tree.	It	is	the	sum	of	all	
phylogenetic	branches	connecting	OTUs	together	within	a	community.	PD	is	the	sum	of	ED	for	
each	species	(i)	in	the	sample.	ED	is	the	evolutionary	distinctiveness.	It	is	calculated	by	the	
second	equation	where	for	species	i	in	tree	(T),	ED	is	the	sum	of	edge	of	length	???	in	the	set	
s(T,i,r)	connecting	species	i	to	the	root	(r)	and	Se	is	the	number	of	species	that	descend	from	
edge	e	(Cadotte,	et	al.	2010).	Below	is	a	figure	showing	the	components	of	a	phylogenetic	tree	
for	reference.	



	

The	components	of	a	phylogenetic	tree	(Vellend,	et	al.	2011.)	

So,	as	you	can	see,	each	one	of	the	diversity	metrics	is	slightly	different,	each	with	it's	
advantages	and	disadvantages.	In	terms	of	measuring	richness	and	evenness,	each	metric	is	
summarized	below.	

Summary	of	Diversity	Metrics	

Metric	 Measurement	

Observed	Species	 Richness	

Chao1	 Richness	&	Evenness	

Shannon	 Richness	&	Evenness	

Simpson	 Richness	&	Evenness	

PD	Whole	Tree	 Phylogeny	

How	do	we	calculate	alpha	diversity	in	QIIME?	
In	QIIME,	we	can	use	our	rarefied	or	filtered	OTU	table	to	calculate	alpha	diversity.	Earlier	we	
used	alpha	diversity	metrics	to	determine	a	reasonable	rarefaction	depth	or	a	reasonable	
sequencing	depth	as	filtering	cutoff.	Now	we	will	use	the	alpha_diversity.py	command	in	
QIIME	to	make	a	final	alpha	diversity	calculation	for	each	sample.	The	command	is	run	using	
these	parameters:	

alpha_diversity.py	
-i file/path/to/otu_table.biom	
-o file/path/to/alpha_diversity.txt	



-m metrics,to,use	
-t file/path/to/tree	

The	input	file	path	is	to	the	filtered	or	rarefied	otu	table	in	.biom	format	(-i).	The	output	file	
path	is	where	you	want	your	alpha	diversity	table	to	be	(-o).	The	metrics	are	what	you	would	
like	to	use	as	an	estimate	of	diversity,	and	should	be	a	comma	separated	list	with	no	spaces	(-
m).	The	tree	file	path	is	to	the	GreenGenes	97%	OTU	tree	(-t).	For	a	full	list	of	the	metrics	
available	and	how	to	spell	them,	you	can	type:	

alpha_diversity.py -s	

The	output	is:	
Known metrics are: ace, berger_parker_d, brillouin_d, chao1, chao1_ci, 
dominance, doubles, enspie, equitability, esty_ci, fisher_alpha, gini_index, 
goods_coverage, heip_e, kempton_taylor_q, margalef, mcintosh_d, mcintosh_e, 
menhinick, michaelis_menten_fit, observed_otus, observed_species, osd, 
simpson_reciprocal, robbins, shannon, simpson, simpson_e, singles, strong, 
PD_whole_tree	

For	the	full	list	of	parameters	and	how	to	use	them,	you	can	look	at	the	command	page	on	the	
QIIME	webpage:	http://qiime.org/scripts/alpha_diversity.html	

How	do	we	run	aplha_diversity.py?	
To	run	this	QIIME	command,	we	can	use	QIIME	interactively.	Note:	You	should	be	using	your	
rarefied	OTU	table!	

ssh lab	
cd /home/biol1961/x500	
module load qiime/1.8.0	
	alpha_diversity.py	
-i file/path/to/otu_table.biom	
-o file/path/to/alpha_diversity.txt	
-m shannon,simpson,choa1,PD_whole_tree	
-t /home/biol1961/shared/97_otus.tree	

All	the	parameters	for	the	alpha_diveristy.py	command	must	be	all	on	one	line,	with	a	
space	between	the	parameter	letter	and	value.	In	the	above	example	they	are	on	separate	lines	
so	that	you	can	read	them	easily.	

What	does	alpha_diversity.py	give	us?	
The	output	of	the	alpha_diversity.py	command	is	a	table,	where	the	columns	are	the	different	
diversity	metrics	and	the	rows	are	samples.	We	can	then	use	this	table	to	make	alpha	diversity	
plots,	to	visual	our	findings.	We	can	also	test	to	see	if	the	alpha	diversity	is	significantly	different	
between	and	across	different	sample	types.	

	



References	
Cadotte	MW,	et	al.	2010.	Ecology	Letters.13:	96-105.	
Colwell,	R.K.	and	Coddington,	J.A.	1994.	Philosophical	Transactions	of	the	Royal	Society:	
Biological	Sciences.	345:101-118.	
Community	Invasive	Species	Network	(CISN).	2010.	How	to	Calculate	Biodiversity.	
http://www.protectingusnow.org	
Vellend	M,	et	al.	2011.	Biological	diversity:	frontiers	in	measurement	and	assessment.	Oxford	
University	Press.	



Beta	Diversity	
What	is	Beta	Diversity?	
In	his	1972	publication	in	Taxon,	"Evolution	and	Measurement	of	Species	Diversity",	R.	H.	
Whittaker	laid	out	the	terms	and	concepts	for	how	we	think	about	and	define	biodiversity.	His	
idea	was	that	the	total	species	diversity	in	a	landscape	(𝛾	or	gamma-diversity)	(e.g.	ALL	human	
gastrointestinal	(GI)	tracts)	is	determined	by	two	different	things:	

|	--------|-----------------------------	1)	Alpha	diversity	|	the	mean	species	diversity	at	the	habitat	
level		|	𝛼		|	e.g.	one	person's	GI	tract	2)	Beta	diversity	|	the	differentiation	among	habitats		|	𝛽		
|	e.g.	different	people's	GI	tracts	

The	total	diversity,	gamma,	is	alpha	multiplied	by	beta:	𝛾	=	𝛼	*𝛽	
	

We	have	already	discussed	alpha	diversity	and	have	compared	the	average	alpha	diversity	of	
samples	across	body	sites.	We	found	that	indeed,	there	are	significant	differences	in	alpha	
diversity	between	body	sites.	Now,	we	are	interested	in	looking	at	the	difference	(the	ecological	
distance)	in	the	community	members	between	samples	(e.g.	individuals)	and	groups	of	samples	
(e.g.	body	sites).	
For	example,	let's	say	you	are	comparing	the	biological	communities	of	a	20m2	patch	of	the	
Great	Barrier	Reef	(right)	and	a	20m2	of	the	Amazon	rainforest	(left).	

	

Both	of	these	habitats	have	very	high	alpha	(𝛼)	diversity.	However,	despite	similarly	high	alpha	
diversity,	if	you	were	to	compare	the	composition	these	two	communities	at	the	macroscopic	
level,	they	are	almost	completely	non-overlapping.	Therefore,	they	would	also	have	a	very	high	
beta	diversity	(𝛽).	This	however,	is	a	very	extreme	example.	

Let's	say	that	instead	of	comparing	a	single	patch	of	coral	reef	and	a	single	patch	of	rainforest,	
you	compare	multiple	patches	of	5	different	coral	reefs	to	each	other	and	multiple	patches	of	5	
different	rainforests	to	each	other.	You	might	find	that	the	average	alpha	diversity	is	about	the	
same	for	coral	reefs	and	rainforests,	but	beta	diversity	is	significantly	higher	for	rainforests	than	



for	coral	reefs.	That	would	mean	that	different	rainforests	have	species	that	differ	from	each	
other.	

In	another	example,	you	sequence	the	GI	tract	microbiota	of	100	healthy	adults.	Fifty	
individuals	have	been	taking	regular	low	doses	of	aspirin	for	the	past	30	days.	The	other	half	of	
study	subjects	have	been	taking	a	placebo.	You	find	that	the	alpha	diversity	for	the	treatment	
group	is	not	significantly	different	from	the	control	group.	However,	the	beta	diversity	for	the	
treatment	group	is	significantly	higher.	What	would	that	mean?	

What	are	Beta	Diversity	Metrics?	
If	you	remember	there	were	multiple	diversity	metrics	that	we	used	for	alpha	diversity.	
Similarly,	there	are	multiple	beta	diversity	metrics.	Below	we	will	cover	the	most	widely	used	
distance	metrics	for	beta	diversity.	

UniFrac	Distance	

	

This	is	the	most	widely	used	index.	The	unique	fraction	metric,	or	UniFrac,	measures	the	
phylogenetic	distance	between	sets	of	taxa	in	a	phylogenetic	tree.	It	counts	the	branch	lengths	
of	the	tree	that	lead	to	taxa	from	either	one	environment	or	the	other,	but	not	both	(Lozupone	
2005).	In	the	equation,	UAB	is	the	UniFrac	distance	between	sample	A	and	B,	where	unique	=	
total	unique	branch	length	(cumulative	branch	lengths	that	lead	to	OTUs	observed	only	in	
sample	A	or	sample	B)	and	observed	=	total	branch	length	(cumulative	branch	lengths	that	
leads	to	all	OTUs	in	samples	A	or	B).	This	metric	is	sensitive	but	also	has	emphasis	on	minor	
differences	in	the	tree	(Fukuyama,	2012).	



	

Weighted	Unifrac	Distance	
In	the	above	example,	the	relative	abundances	of	taxa	is	not	taken	into	consideration	(referred	
to	as	unweighted	UniFrac	distance).	There	is	a	second	metric	known	as	weighted	UniFrac	
distance,	that	weights	each	OTU	based	on	it's	relative	abundance.	Both	metrics	are	criticized	for	
giving	either	too	much	(unweighted)	or	too	little	(weighted)	value	to	rare	taxa,	but	both	have	
value	in	showing	different	aspects	of	community	diversity.	

Bray-Curis	Dissimilarity	

	

Bray-Curtis	takes	the	sum	of	the	differences	in	OTU	abundances	over	the	sum	of	the	total	OTU	
abundances	between	samples.	In	the	equation	xi	is	the	abundance	of	OTU	x	in	sample	i,	and	xj	
is	the	abundance	of	OTU	x	in	sample	j.	If	an	OTU	is	absent	then	its	abundance	should	be	
recorded	as	zero.	The	Bray-Curtis	metric	ranges	from	0	to	1,	where	0	means	the	two	samples	
have	the	same	composition	and	1	means	the	two	samples	do	not	share	any	OTUs	(Gardener,	
2016).	This	metric	does	not	take	relatedness	of	the	otus	into	consideration	(phylogeny).	

So	as	you	can	see,	each	one	of	the	diversity	metrics	is	slightly	different,	each	with	it's	
advantages	and	disadvantages.	In	terms	of	measuring	abundance	and	phylogenetic	differences,	
each	metric	is	summarized	below.	



Summary	of	Beta	Diversity	Metrics	

Metric	|	Phylogeny?	|	Abundance	------------	|	------------	|	------------	Unweighted	UniFrac	|	yes	|	
no	Weighted	UniFrac	|	yes	|	yes	Bray-Curtis	|	no	|	yes		

How	Do	We	Calculate	Beta	Diversity	in	QIIME?	
We	will	use	the	beta_diversity.py	command	in	QIIME	to	calculate	beta	diversity	metrics	
between	samples	and	groups.	This	command	will	return	a	matrix	of	the	distances	of	all	samples	
to	all	other	samples.	This	can	be	visualized	as	a	graph	of	points,	a	network,	or	any	other	creative	
method	you	can	come	up	with.	We	should	note	that	sequencing	depth	can	have	an	effect	on	
beta	diversity	analysis,	just	as	it	does	on	alpha	diversity.		

beta_diversity_through_plots.py	
-i file/path/to/otu_table.biom	
-o file/path/to/beta_diversity	
-m file/path/to/mapping_file.txt	
-t file/path/to/tree	
-p file/path/to/parameters_file.txt	
-a run_parallel	
-O job_to_run	
-e sequences_per_sample	
	

The	input	file	path	is	to	the	filtered	or	rarefied	OTU	table	in	.biom	format	(-i).	The	output	file	
path	is	where	you	want	your	beta	diversity	output	to	be	(-o).	The	tree	file	path	is	to	the	
GreenGenes	97%	OTU	tree	(-t).	The	metrics	are	what	you	would	like	to	use	as	an	estimate	of	
beta	diversity	are	supplied	in	the	parameters	file	(-p).	To	run	this	in	parallel	(-a),	we	must	
specify	the	number	of	jobs	(-O,	the	lab	queue	max	is	6).	If	we	didn't	rarefy	our	OTU	table,	but	
want	an	even	depth	for	all	the	samples	we	could	also	specify	the	depth	(-e).	For	the	full	list	of	
parameters	and	how	to	use	them,	you	can	look	at	the	script	page	on	the	QIIME	webpage:	
http://qiime.org/scripts/beta_diversity_through_plots.html	

The	beta_diversity_through_plots.py	command	will	do	multiple	things:	

1. Create	jobs	within	the	jobs/	folder	it	creates,	as	well	as	output	(.o##)	and	error	files	
(.e##),	and	a	pbs_nodefile.txt	file	(just	like	the	otu	picking	script)	

2. Randomly	subsample	otu_table.biom	to	even	number	of	sequences	per	sample	
(specified	with	-e)	

3. Run	beta_diversity.py	for	the	diversity	metrics	wanted	(specified	with	the	parameters	
file	via	-p)	and	create	distance	matrices	in	the	main	output	directory	(metric_dm.txt)	

4. Perform	a	principal	coordinates	analysis	on	the	result	of	Step	3	in	the	main	output	
directory	(metric_pc.txt)	



5. Generate	a	2D	and	3D	plots	for	all	mapping	fields	in	the	metric_emperor_pcoa_plot/	
subdirectories	

6. Deletes	all	of	intermediate	generated	to	do	the	analysis	
7. Creates	a	log	file	and	overall	rarefaction	plot	within	the	main	output	directory		
To	run	this	QIIME	command,	we	can	use	QIIME	interactively	on	MSI:		

ssh lab	
module load qiime/1.8.0	
	

beta_diversity_through_plots.py	
-i file/path/to/otu_table.biom	
-o file/path/to/whatever_you_want	
-t /home/biol1961/shared/97_otus.tree	
-m /home/biol1961/shared/map.txt	
-p /home/biol1961/shared/parameters.txt	
	

Of	course,	you	have	to	modify	the	file	to	specify	YOUR	file	paths	and	the	outputs	to	what	you	
want	and	it	should	all	be	on	one	line.		

All	the	parameters	for	the	actual	command	must	be	all	on	one	line	in	the	job	file,	with	a	space	
between	the	parameter	letter	and	value.	In	the	above	example	they	are	on	separate	lines	so	
that	you	can	read	them	easily.	

As	mentioned	above,	the	command	will	run	its	own	jobs	after	it	has	started.	You	will	know	
beta_diversity_through_plots.py	is	done	when	you	have	the	following	files	in	your	output	
directory	(-o):	
	

metric_pc.txt	(one	table	per	metric,	3	total)	
metric_dm.txt	(one	table	per	metric,	3	total)	
metric_emperor_pcoa_plot	/	(one	per	metric,	3	total)	
log_##.txt	(log	file)	
	

To	look	at	your	plots,	you	must	transfer	the	entire	plot	folder	from	MSI	to	your	computer.	The	
plot	file	needs	other	information	supplied	within	the	subfolders.	

Manipulating	3D	Plots	
Once	you	have	moved	the	entire	plot	folder	for	your	metric	of	choice	to	your	computer,	you	
can	click	on	the	.html	file	with	the	directory	to	load	the	plot.	There	are	many	parameters	about	
the	plot	you	can	change.	



|	------------------	|	----------------------------	Colors	|	Change	what	covariate	to	color	by	Visibility	|	
Make	some	samples	more	transparent	Scaling	|	Make	some	samples	larger	or	smaller	Labels	|	
Add	sample	labels	Axes	|	Change	which	principal	coordinates	are	plotted	Options	|	Change	
backgroung/axes	colors	and	save	as	image		

References	
Fukuyama	J,	et	al.	2012.	Pacific	Symposium	on	Biocomputing.	2012:213-24.	Gardener	M.	2016.	
DataAnalytics.org.uk.	
(http://www.dataanalytics.org.uk/Publications/Writers%20Bloc/Distance%20metrics.htm).	
Lozupone	C	and	Knight	R.	2005.	Applied	and	Environmental	Microbiology.	71:8228-8235.	



Ordination	
When	we	want	to	look	at	high-demension	data,	one	way	to	easily	visualize	similarities	and	
differences	is	ordination.	The	type	of	ordination	plots	we	will	learn	about	and	generate	are	
Principal	Component	(PCA)	and	Coordinate	Analyses	(PCoA).	

What	is	PCA	and	PCoA?	
It	is	a	way	of	identifying	patterns	in	data	and	expressing	data	in	such	a	way	as	to	highlight	their	
similarities	and	differences.	Since	our	data	can	be	of	high	dimensions,	finding	the	patterns	can	
be	hard	and	this	is	where	PCA	and	PCoA	are	powerful	tools	for	analyzing	data.	The	other	main	
advantage	of	PCA/PCoA	is	that	once	you	have	found	these	patterns	in	the	data	you	can	
compress	the	data	by	reducing	the	number	of	dimensions	and	visualize	it.	

This	concept	of	dimension	reduction	can	be	very	tricky	to	grasp.	Understanding	all	the	math	
behind	PCA	and	PCoA	is	out	of	the	scope	of	this	class.	We	will,	however,	try	to	understand	how	
the	data	is	reduced,	what	we	are	actually	plotting,	and	how	to	to	accomplish	this	in	R.	

Below	are	some	tutorials	to	help	us	understand	PCA.	

1.	Please	read	the	following	website:	
https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-
eigenvectors-eigenvalues-and-dimension-reduction	

2.	Please	read	the	following	website:	
http://setosa.io/ev/principal-component-analysis	

PCA	vs	PCoA	
From	the	websites	listed	above	we	have	learned	about	PCA.	So	what’s	PCoA?	PCoA	is	similar	
PCA,	however,	PCoA	can	handle	distances	generated	from	any	similarity	or	dissimilarity	
measure,	such	as	Bray–Curtis	and	both	weighted	and	unweighted	UniFrac	metrics.	PCoA	can	
also	handle	quantitative,	semi-quantitative,	qualitative,	and	mixed	variables.	

Similar	to	PCA,	PCoA	produces	a	set	of	uncorrelated	axes	to	summarize	the	variability	in	the	
data	set.	Each	axis	has	an	eigenvalue	whose	magnitude	indicates	the	amount	of	variation	
captured	in	that	axis.	The	proportion	of	a	given	eigenvalue	to	the	sum	of	all	eigenvalues	reveals	
the	relative	'importance'	of	each	axis.	A	successful	PCoA	will	generate	a	few	(2-3)	axes	with	
relatively	large	eigenvalues,	capturing	most	of	the	variation	in	the	input	data,	with	all	other	
axes	having	small	eigenvalues.	

Interpretation	of	a	PCoA	plot	is	straightforward:	objects	closer	to	one	another	are	more	similar	
than	those	further	away.	Similarity	or	dissimilarity	is	defined	by	the	measure	used	in	the	
construction	of	the	(dis)similarity	matrix	used	as	input.	



PCoA	can	handle	a	wide	range	of	data,	but	the	original	variables	cannot	be	recovered.	This	is	
because	PCoA	takes	a	matrix	derived	from	the	original	data	as	input	and	not	the	original	
variables	themselves.	

The	beta_diversity_through_plots.py	command	gives	us	PCoA	plots	of	our	data.	Later	in	the	
course	we	will	also	learn	how	to	generate	these	plots	ourselves	in	R.	



Summarizing	Taxa	
What	are	Taxa	Summaries?	
Summarizing	taxa	is	a	way	to	visualize	which	taxa	are	found	in	our	samples.	When	we	
summarize	taxa	we	can	use	the	various	levels	of	taxonomy.	The	following	levels	are	those	
denoted	by	GreenGenes	for	taxonomy.		

Level	|	Taxonomy	|	Example	------	|	------------------	|	-------------------------	1	|	Kingdom	|	Bacteria	
2	|	Phylum	|	Actinobacteria	
3	|	Class	|	Actinobacteria	
4	|	Order	|	Actinomycetales	
5	|	Family	|	Streptomycetacaea	
6	|	Genus	|	Streptomyces	
7	|	Species	|	mirabilis	
	

In	QIIME,	we	can	use	levels	2-6	to	summarize	taxa.	We	can't	use	level	1	because	that	would	
result	in	no	summary	(all	of	our	OTUs	are	bacteria).	We	also	cannot	use	level	7,	because	using	
97%	identity	of	a	16S	gene	cannot	resolve	species	from	one	another	(for	the	most	part).	We	
summarize	taxa	with	the	summarize_taxa_through_plots.py	command	in	QIIME.	

How	do	we	actually	summarize	taxa?	
In	QIIME,	this	task	is	performed	on	your	rarefied	or	filtered	OTU	table.	It	must	be	a	COUNT	
table,	not	relative	abundance.	The	QIIME	command	summarize_taxa_through_plots.py	
takes	your	OTU	table	and	collapses	the	table	into	the	various	taxonomic	levels.	It	will	then	plot	
the	taxa	summarize	for	us.	

The	command	is	run	using	these	parameters:	

summarize_taxa_through_plots.py	
-i file/path/to/otu_table.biom	
-o file/path/to/summary_output	
-m file/path/to/mapping_file.txt	
-c category_to_use		

The	input	file	path	is	to	the	filtered	or	rarefied	OTU	table	in	.biom	format	(-i).	The	output	file	
path	is	where	you	want	your	taxa	summary	directory	to	be	(-o).	The	mapping	file	path	is	the	
location	of	the	mapping	file	(-m).	The	category	you	would	like	to	use	for	the	summarize	must	be	
a	column	header	in	the	mapping	file	(-c).	If	you	leave	this	parameter	out,	QIIME	will	make	the	
summaries	and	plots	using	the	entire	OTU	table.	

For	the	full	list	of	parameters	and	how	to	use	them,	you	can	look	at	the	command	page	on	the	
QIIME	webpage:	http://qiime.org/scripts/summarize_taxa.html	



The summarize_taxa_through_plots.py	command	will:	

1. Create	an	output	directory	named	whatever	you	specified	for	-o	
2. Create	OTU	tables	collapsed	at	each	taxonomic	level	(2-6)	with	samples	grouped	according	

to	your	-c	parameter	
3. Create	taxa	summary	plots	in	a	subdirectory	called	taxa_summary_plots	
Below	is	an	example	of	the	contents	of	the	output	directory.	The	taxa	summary	was	produced	
using	the	category	'sex'	from	the	mapping	file.	If	you	want	to	look	at	the	taxa	summary	plots,	
you	must	move	that	entire	subdirectory	to	your	personal	computer	to	view	the	html	plots.	

	

To	run	this	QIIME	command,	we	must	submit	a	job	file.	Your	job	file	should	look	like	this:	

#!/bin/bash -l	
#PBS -l nodes=1:ppn=16,mem=2Gb,walltime=6:00:00	
#PBS -m abe	
#PBS -M x500@umn.edu	
#PBS -o job_name_stout	
#PBS -e job_name_stderr	
cd /home/biol1961/x500	
module load qiime/1.8.0	
summarize_taxa_through_plots.py	
-i file/path/to/otu_table.biom	
-o file/path/to/whatever_you_want	
-m file/path/to/mapping_file.txt	
-c category_to_use	



All	the	parameters	for	the	actual	command	must	be	all	on	one	line	in	the	job	file,	with	a	space	
between	the	parameter	letter	and	value.	In	the	above	example	they	are	on	separate	lines	so	
that	you	can	read	them	easily.	

Below	is	an	example	of	what	the	taxa	summary	plots	from	QIIME	look	like.	This	example	is	using	
the	category	'sex'	from	the	mapping	file.	The	plots	produced	by	QIIME	are	not	pretty	or	easy	to	
read.	To	make	easier	to	interpret	taxa	summary	plots,	we	can	use	R.	

	

Example	taxa	summary	from	QIIME	



Plotting	and	Statistics	
"There	is	no	statistical	tool	that	is	as	powerful	as	a	well	chosen	graph"	
-Chanmbers	et	al.	1983	

When	we	begin	to	analyze	our	data	it	is	important	to	be	able	to	visualize	our	observations.	Why	
is	this?	

• Plots	are	more	effective	in	creating	interest	and	in	appealing	the	attention	of	others	
• Visual	relationships	are	more	easily	grasped	and	remembered	
• Plots	save	time,	since	trends	and	differences	can	be	visualized	at	a	glance	
• Plots	can	bring	out	hidden	trends	and	relationships	and	aid	in	analytical	thinking	

Variables	and	Data	Types	
Before	we	try	and	visual	our	data	we	need	to	identify	our	variable	and	data	types.	This	list	is	not	
exhaustive,	but	includes	the	main	characteristics	we	need	to	think	about.	When	we	talk	about	
our	data,	usually	the	dependent	variable	will	be	a	measurement	of	the	OTUs	or	taxa	(for	
example,	alpha	diversity	measurements)	and	the	independent	variable	will	be	something	from	
our	mapping	file.	Sometimes	we	will	call	the	independent	variable	in	the	mapping	file	a	
covariate,	which	is	a	variable	that	might	be	predictive	of	the	outcome	of	the	study.	

Variables	
Dependent	Variables	
are	what	we	measured	in	the	experiment	and	what	were	affected	during	the	experiment.	The	
dependent	variable	responds	to	the	independent	variable.	You	cannot	have	a	dependent	
variable	without	an	independent	variable.	On	a	graph,	this	is	the	y	variable.	

Independent	Variables	
are	the	variables	we	have	control	over,	what	we	can	choose	and	manipulate.	They	are	usually	
what	we	think	will	affect	the	dependent	variable.	In	some	cases,	we	may	not	be	able	to	
manipulate	the	independent	variable.	It	may	be	something	observational	that	is	already	there	
and	is	fixed	(sex,	disease	status,	color).	On	a	graph,	this	is	the	x	variable.	

Data	Types	
Qualitative	
data	is	descriptive,	it	is	observed	and	not	measured.	It	is	often	categorical	(color,	smell,	taste).	
Quantitative	data	is	numeric	and	can	be	counted	or	measured	(length,	height,	volume,	weight).	

Discrete	
data	can	only	take	on	a	finite	number	of	values,	and	is	counted.	All	qualitative	variables	are	
discrete.	Some	quantitative	variables	are	discrete,	such	as	disease	score	rated	as	1,2,3,4,	or	day	
sampled	if	people	were	only	sampled	on	a	specific	finite	number	of	days	(day	1	and	15	only).	



Continuous	
data	can	take	on	any	value	in	a	certain	range.	No	measured	variable	is	truly	continuous,	
however,	discrete	variables	measured	with	enough	precision	can	often	be	considered	
continuous	for	practical	purpose	(like	age	measured	per	day,	or	weight).	

Types	of	Plots	
There	are	numerous	types	of	plots	we	can	use.	Here	are	a	few	very	common	types	of	plots,	and	
a	brief	explanation	as	to	what	type	of	data	they	use,	what	they	display,	and	when	we	should	
use	them.	

Pie	Chart	
Pie	charts	are	used	with	discrete	independent	variables.	Pie	charts	are	best	to	use	when	you	are	
trying	to	compare	parts	of	a	whole	(percentage	or	proportional	data).	Pie	charts	should	be	used	
for	displaying	data	with	no	more	than	6	categories.	They	do	not	show	changes	over	time.	They	
are	not	used	often	in	scientific	research.	

Bar	Chart	
Bar	graphs	are	used	with	discrete	independent	variables.	Bar	graphs	can	be	horizontal	(x	axis	on	
side)	or	vertical	(x	axis	is	on	the	bottom).	The	height	of	each	bar	(dependent	variable,	y	
variable)	are	scaled	according	to	their	values	and	the	bars	can	be	compared	to	each	other.	Bar	
graphs	have	a	space	between	each	bar.	Stacked	bar	charts	can	be	used	to	compare	overall	
quantities	across	items	while	illustrating	the	contribution	of	each	category	to	the	total.	

Histogram	
Histograms	are	used	with	continuous	independent	variables.	Histograms	can	be	horizontal	(x	
axis	on	side)	or	vertical	(x	axis	is	on	the	bottom).	The	height	of	each	bar	(dependent	variable,	y	
variable)	are	scaled	according	to	their	values	and	the	bars	can	be	compared	to	each	other.	
Histograms	do	not	have	a	space	between	each	bar.	

	

Figure	1.	Examples	of	bar	charts	and	a	pie	chart	encoding	the	same	data.	(a)	Values	in	
different	categories	are	difficult	to	compare	in	pie	charts.	(b)	Stacked	bar	charts	enable	



comparison	of	overall	values	across	items.	(c)	Layered	bar	charts	support	comparison	of	values	
within	categories.	(d)	Grouped	histograms	allow	comparison	of	values	across	categories	(Streit	
and	Gehlenborg,	2014).	

Boxplot	
Box	plots	are	used	with	discrete	independent	variables.	Box	plots	can	be	horizontal	or	vertical.	
Box	plots	show	the	full	range	of	variation	(from	min	to	max),	the	likely	range	of	variation	(the	
interquartile	range,	IQR),	a	typical	value	(the	median)	and	outliers	(values	3	times	the	IQR).	
They	provide	more	information	than	a	bar	chart.	

	

Figure	2.	A	comparison	of	bar	graphs	and	box	plots.	(a)	Bar	chart	showing	sample	means	with	
standard-deviation	error	bars.	(b)	Box	plot	with	whiskers	extending	to	?	1.5	times	the	
interquartile	range.	(c)	Distributions	of	the	different	data	sets.	(Streit	and	Gehlenborg,	2014).	

Scatter	Plot	
Scatter	plots	are	used	when	both	the	independent	and	dependent	variables	are	quantitative.	
They	show	how	much	one	variable	is	affected	by	another,	also	called	their	correlation.	The	
closer	the	data	points	come	when	plotted	to	making	a	straight	line,	the	higher	the	correlation	
between	the	two	variables,	or	the	stronger	the	relationship.	Scatter	plots	can	also	help	us	see	
data	that	cluster	together	in	certain	areas	of	the	scatter	plot.	



	

Figure	3.	An	example	scatter	plot	of	the	percent	of	the	microbiome	that	is	H.	Pylori	and	
obesity	(Lender	et	al,	2014).	

Line	Graph	
Line	graphs	are	used	when	both	the	independent	and	dependent	variables	are	quantitative.	
Line	graphs	are	like	scatter	plots	except	a	line	is	created	connecting	each	data	point	together.	
This	emphasizes	local	changes	from	one	point	to	the	next.	Unlike	scatter	plots,	line	graphs	do	
not	usually	help	us	detect	correlations,	as	the	line	emphasizes	point-to-point	changes.	

	

Figure	3.	An	example	of	a	line	graphs.	These	graphs	emphasize	changes	in	specific	bacterial	
taxa	with	and	without	probiotic	supplementation	(Rutten	et	al,	2015).	



Statistical	Analysis	
"Humans	aren't	too	good	at	discerning	subtle	patterns	that	are	really	there,	but	equally	so	at	
imaging	them	when	they	are	all	together	absent."	
-	Everitt	and	Hothorn,	2010	

Summary	Statisitcs	
Mode	
-	data	value	that	occurs	most	frequently	

Median	
-	Data	value	that	occurs	at	the	precise	middle	of	all	data	points	

Mean	
-	Numerical	average	of	all	the	data	points	

Variance	
-	Measure	of	the	spread	of	the	data,	and	is	the	average	of	the	squared	differences	from	the	
mean	

Standard	Deviations	
Square	root	of	the	variance	

Interquartile	Range	
-	Where	the	'middle'	fifty	percent	of	the	data	are	located	

Distribution	
-	Listing	or	function	showing	all	the	possible	values	of	the	data	and	how	often	they	occur.	
Includes	normal,	skewed,	uniform,	Poisson	and	others	(See	Figure	5)	

	



Figure	5.	Examples	of	various	distributions	with	different	standard	deviations.	

Statistical	Tests	

Parametric	Statistics	
Parametric	analyses	are	the	oldest	and	most	commonly	used	type	of	analysis.	We	will	cover	the	
three	most	common:	correlation,	t-test,	and	analysis	of	variance.	All	parametric	statistics	have	
three	common	assumptions	that	must	be	met	before	proceeding.	In	Figure	5,	the	top	example	
could	be	tested	with	a	parametric	test.	
1.	All	observations	are	independent	of	other	observations	(product	of	experimental	design,	no	
test	needed).	2.	The	data	are	normally	distributed	(easily	tested	by	examining	the	distribution).	
3.	The	variances	in	the	different	treatment	groups	are	the	same.	(Requires	a	test,	such	as	the	F-
Max	Test)	

Student's	t-Test	
This	analysis	is	used	when	you	are	comparing	two	different	samples.	A	Student's	t-test	will	
report	a	t-statistic	and	a	probability	value	(p-value).	If	the	p-value	is	greater	than	or	equal	to	our	
our	alpha	(usually	0.05)	we	reject	our	null	hypothesis	that	there	is	a	significant	difference	
between	the	groups.	

Analysis	of	Variance	(ANOVA)	
Analysis	of	variance	is	used	to	determine	if	differences	exist	between	more	than	two	treatment	
groups.	The	assumptions	of	ANOVA	are	identical	to	the	t-test	and	the	calculated	statistic	is	
called	an	F-value,	with	a	corresponding	p-value.	As	with	the	t-test,	if	our	probability	value	is	less	
than	0.05	we	reject	our	null	hypothesis	(in	this	case	that	there	is	no	difference	among	the	
treatment	groups).	This	p-value	only	tells	us	if	there	are	significant	differences	among	our	
groups.	It	does	not	tell	us	where	these	differences	are.	

Regression	
Regression	is	used	to	determine	whether	two	variables	are	related.	A	highly	used	regression	
method	is	Pearson's	r.	The	r	statistic	has	a	range	of	values	from	-1.00	(a	perfect	negative	
correlation)	to	1.00	(a	perfect	positive	correlation).	A	negative	correlation	means	that	as	one	
variable	increases	in	size,	the	other	decreases.	A	positive	correlation	means	that	as	one	variable	
increases	so	does	the	other.	When	r=0.00	there	is	no	relationship	between	the	two	variables.	
This	test	has	the	same	three	assumptions	as	other	parametric	analyses,	but	it	also	has	the	
additional	assumption	that	the	relationship	between	the	two	variables	is	linear.	A	regression	
analysis	also	gives	a	coefficient	of	variation	(R2).	The	coefficient	of	variation	has	a	range	of	
values	from	0%-100%	and	explains	how	much	of	the	variation	in	the	dependent	variable	is	
because	of	the	independent	variable.	



Nonparametric	statistics	
Most	nonparametric	statistics	are	simple	to	use,	do	not	require	large	data	sets,	and	have	few	
underlying	assumptions.	They	are	not	as	powerful	as	parametric	statistics	(i.e.	they	are	not	very	
good	at	detecting	small	differences	between	groups),	Non-parametric	tests	all	assume	
independence	of	observations.	In	general,	these	tests	should	be	chosen	over	parametric	
alternatives	when	sample	sizes	are	small	(less	than	10-20	replicates).	We	will	use	three	non-
parametric	tests	in	this	course.	

Wilcoxin's	Rank	Sums	Test	and	the	Mann-Whitney	U	Test	
These	analyses	are	used	to	test	for	differences	between	two	treatment	groups	and	are	
analogous	to	a	t-test.	

Kruskall-Wallis	Test	or	adonis	
These	tests	for	differences	between	more	than	two	different	treatment	groups.	They're	
basically	nonparametric	ANOVAs.	

Spearman's	Correlation	
This	analysis	is	a	non-parametric	regression	analysis.	

Choosing	a	Test	
Below	is	a	flowchart	we	will	use	to	help	us	pick	which	test	to	use	(Gerwien,	2016).	



	

References	
Everitt	BS	and	Hothorn	T.	2010.	A	handbook	of	statistical	analyses	using	R.	CRC	Press.	
Gerwien	R.	2016.	A	painless	guide	to	statistics.	
http://abacus.bates.edu/~ganderso/biology/resources/statistics.hmtl	
Lender	N,	et	al.	2014.	Alimentary	Pharmacology	and	Therapeutics.	40:24-31.	
Rutten	RBMM,	et	al.	2015.	PLoS	ONE.	10:	e0137681.	
Streit	M	and	Gehlenborg	N.	2014.	Nature	Methods.11:117.	



Using	R	Studio	
This	tutorial	will	help	us	learn	how	to	use	RStudio.	

RStudio	interface	
The	first	time	we	open	RStudio	we	are	greeted	by	three	panels.	The	left	half	of	the	screen	is	the	
console.	The	upper	right	corner	is	the	variable	inspector,	and	the	lower	right	corner	can	show	
you	different	things	depending	on	which	tab	is	selected.	The	default	for	this	panel	is	a	file	
viewer.	Let's	go	through	each	panel	more	in	depth.	

	

This	is	what	RStudio	looks	like	

Console	
The	console	is	like	our	terminal.	Here	we	can	type	commands	and	R	will	perform	them.	The	
types	of	commands	we	use	in	the	R	console	are,	for	the	most	part,	specific	to	the	R	coding	
language.	This	language	is	different	than	the	how	you	would	write	commands	for	your	terminal.		

Environment/Variable	inspector	
As	we	load	and	manipulate	data,	we	can	store	the	data	as	a	'variable'.	The	environment	window	
shows	us	which	variables	we	have	created,	and	we	can	actually	look	to	see	what	they	are.	
Notice	this	panel	also	has	a	history	tab	where	you	can	see	all	of	the	recent	commands	you	have	
performed.		



File	System	
This	is	just	like	the	'finder'	on	a	Mac	or	the	'windows	explorer'	on	a	PC.	This	lists	our	files	and	
folders.	Notice	this	panel	has	other	tabs	as	well.	The	plots	tab	will	show	us	what	our	plots	look	
like	as	we	create	them,	the	packages	tab	shows	us	all	of	the	packages	(sets	of	functions)	you	
can	import	when	running	your	analysis.	The	viewer	tab	is	for	more	advanced	interactive	
graphics	and	won't	be	used	in	this	course.		

Dropdown	menus	
These	are	the	options	listed	across	the	top	of	RStudio	(just	like	most	other	programs	on	our	
computers).	These	menus	include	many	options	you	might	need.	For	example,	File,	Save	will	
save	our	work.	



Using	RStudio	
To	begin	using	Rstudio	all	we	have	to	do	is	type	a	command	into	the	console.	For	example,	let's	
make	a	variable	called	test_variable.	And	in	this	variable	we	will	store	some	data.	The	data	
will	be	a	set	of	words	("bird",	"dog",	"cat").	We	also	call	words	strings,	because	the	string	of	
characters	doesn't	necessarily	have	to	be	an	actual	word.	For	example,	"bird"	is	a	string	and	so	
is	"abcd".	

test_variable <- c("bird", "dog", "cat")	

Notice	a	couple	of	things:	

1. the	arrow	<-	is	what	assigns	the	data	to	a	variable.	You	can	read	the	whole	command	like	
this:	"test_variable	gets	a	vector	containing	the	strings	bird,	dog,	cat"	

2. When	we	want	to	group	things	into	one	variable	we	can	use	c(),	which	is	a	function	that	
combines	values	into	a	vector	or	list.	

3. When	we	want	to	store	strings	we	have	to	specify	it's	a	string	using	quotes	"".	We	can	use	
either	double	""	or	single	''	quotes	("bird"	or	'bird').	If	we	tried	to	use	c(bird, dog, 
cat)	instead	of	c("bird", "dog", "cat")	R	would	read	and	try	to	interpret	bird,	dog	
and	cat	to	be	variables,	not	strings.	

Once	you	have	created	this	variable	you	will	be	able	to	see	it	in	your	environment	panel	on	the	
right	side	of	RStudio.	It	tells	us	that	in	test_variable	contains	characters	(chr),	there	are	
three	character	values	stored	[1:3],	and	they	are	"bird", "dog" and "cat".		

Using	Existing	R	Code	
In	addition	to	typing	things	directly	into	the	console,	we	can	run	R	code	from	existing	files.	To	
do	this	we	need	to	open	a	file	that	contains	R	code.	Let's	open	the	Intro-R.r	file	in	R	studio.	To	
do	that	you	can	go	to	File,	Open	File,	and	find	the	'Intro-R.r'	file	that	you	can	download	from	
Moodle.	This	file	will	open	in	a	new	panel	above	the	console.	

To	run	the	code	from	this	file	we	have	two	options.	

1. Copy	and	paste	the	code	into	the	console	and	press	enter	
2. Run	the	code	directly	from	the	file.	To	do	this	we	can	place	our	cursor	on	the	line	of	the	file	

we	want	to	run.	So,	place	your	cursor	on	the	test_variable2 <- c("bacteria", 
"fungi")	line.	For	Mac	users,	you	can	run	this	command	by	holding	down	your	'command'	
key	and	pressing	enter.	For	PC	users,	you	can	run	this	command	by	holding	down	your	
'control'	key	and	pressing	enter.	Another	option	is	to	place	our	cursor	on	the	line	we	want	
to	run	and	then	pressing	the	Run	button	on	the	upper	right	side	of	the	panel.	We	can	run	
many	lines	of	code,	one	line	at	a	time	by	highlighting	all	the	code	we	want	to	run	in	the	
file,	and	using	the	key	combinations	mentioned	above.		



Saving	R	Code	
When	we	do	an	analysis	in	R,	we	definitely	want	to	save	our	code	so	we	can	use	it	in	the	future.	
If	we	are	working	from	an	existing	file,	we	can	open	the	file	and	add	new	code	as	we	write	it.	If	
we	are	starting	a	new	file,	we	can	use	File,	New	File,	R	script	to	create	a	new	file.	As	we	run	
commands,	they	get	stored	in	the	'History'	tab	of	our	'Environment/Variable	Inspector'	(upper	
right	panel).	If	we	run	a	command,	and	it	successfully	does	what	we	want	it	to,	we	can	click	on	
the	command	in	the	'History'	tab,	and	then	click	'To	Source'	to	add	it	to	our	file.	

As	we	write	and	save	our	code,	we	must	remember	to	comment	it.	Our	comments	will	be	used	
by	anyone	reading	the	code	to	figure	out	what	was	done.	Our	comments	should:	

1. Be	close	to	the	code	we	are	specifically	commenting	(not	just	at	the	top	of	the	file)	
2. Be	clear	and	concise	
3. Capture	intent	
Remember	that	the	comment	symbol	is	#,	and	it	is	line-specific.	

Here	is	an	example	of	commented	code:	

# This stores the sum of 2,4,6 and 8 as a variable 'sum_numbers'	
sum_numbers <- sum(2,4,6,8) 	
	
# This stores the square root of sum_numbers as a 	
# variable 'sqrt_numbers'	
sqrt_numbers <- sqrt(sum_numbers) 	

Your	comments	don't	have	to	be	every	line,	but	should	be	easily	interpreted.	If	there	are	tricky	
parameters	in	your	functions	this	is	a	good	way	to	remind	yourself	why	you	have	to	specify	
certain	things.	Also,	when	naming	variables,	make	sure	to	use	a	descriptive	name	that	reflects	
what	the	variable	is	storing.	

To	save	our	R	code	files,	we	can	use	File,	Save	or	'command'	s	(Mac),	or	'control'	s	(PC).	



Important	Concepts	
Objects	
Objects	are	the	pieces	of	data	stored	as	variables	in	R.	There	are	different	types	of	objects.	We	
already	mentioned	one	type,	'character',	which	includes	letters	and	strings.	Other	types	of	
objects	we	will	use	in	this	class	include	'logical',	which	are	either	True	or	False,	'integer',	which	
are	integers,	and	many	others.		

Variables	
Variables	are	what	we	store	our	data	as	in	R.	We	name	each	variable	(in	our	first	example,	it	
was	'test_variable'),	and	there	are	different	types	of	variables.	Some	types	include	the	
following:	

Vectors	These	can	be	considered	a	group	of	data.	There	are	different	types	of	vectors,	some	
that	we	will	use	in	this	course	include:	'logical'	(trues	or	falses),	'integer'	(numbers),	and	
'character'	(strings).	

vector_1 <- c(1,2,5.3,6,-2,4) # numeric vector	
vector_2 <- c("one","two","three") # character vector	
vector_3 <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) #logical vector	

Lists	These	are	kind	of	like	vectors,	but	the	objects	stored	in	the	list	do	not	have	to	be	the	same	
type.	

list_1 <- c("one",2,TRUE)	

Functions	These	are	variables	that	perform	a	task.	For	example	c()	is	a	function	that	combines	
objects	into	a	vector.	R	comes	with	many	functions,	and	we	write	them	with	their	name	
followed	by	parentheses.	

length() #this is a function that will tell us the length of something	

NULL	Variables	that	are	NULL	contain	nothing,	and	are	not	of	a	specific	type.	If	we	create	a	
NULL	variable,	it	will	be	listed	in	our	environment	but	it	will	have	no	attributes.	

nothing <- NULL	

Matrices	A	matrix	is	a	table,	where	all	the	columns	in	the	matrix	must	have	the	same	mode	
(numeric,	character,	etc.)	and	the	same	length.	

# generates 5 x 4 numeric matrix 	
test_matrix <- matrix(1:20, nrow=5,ncol=4)	

Data	Frames	A	data	frame	is	more	general	than	a	matrix,	in	that	different	columns	can	have	
different	modes	(numeric,	character,	factor,	etc.).	



# This will make a dataframe where the columns are the filled with 	
# the vectors 'd', 'e' and 'f'	
d <- c(1,2,3,4)	
e <- c("red", "white", "red", NA)	
f <- c(TRUE,TRUE,TRUE,FALSE)	
test_dataframe <- data.frame(d,e,f)	

Factors	We	can	tell	R	that	a	variable	is	nominal	by	making	it	a	factor.	The	factor	stores	the	
nominal	values	as	a	vector	of	integers	and	an	internal	vector	of	character	strings	(the	original	
values)	mapped	to	these	integers.	

# Let's say there is a group of people, 3 female and 2 male	
# Let's make a vector that stores how many female (F) and 	
# male (M) people there are 	
gender <- c("F", "F", "M", "M", "F") 	
	
# stores gender as a factor where 1=female, 2=male	
gender <- factor(gender)	
# R now treats gender as a nominal variable 	

Operators	
Data	is	manipulated	in	programs	using	operators	and	functions.	R	has	many	built-in	operators,	
the	most	commonly	used	include:	

Arithmetic	operators	
*	Numerical	calculations	(preserving	the	order	of	operations)	
	+	Addition	+	
	+	Subtraction/change	sign	-	
	+	Multiplication	*	
	+	Division	/	

Relational	operators	
*	Comparing	values	
	+	Less	than	<	
	+	Less	than	or	equal	to	<=	
	+	Greater	than	>	
	+	Greater	than	or	equal	to	>=	
	+	Equal	to	==	
	+	Not	equal	to	!=	

Assignment	operators	
*	Assigning	values	to	objects	



	+	Global	(you	will	generally	use	this	one)	<-	
	+	Local	(often	used	within	functions)	=	

Logical	operators	
*	Conjunctions	for	combining/excluding	terms	
	+	AND	&&	
	+	OR	||	
	+	NOT	!	

Colon	operator	
*	Creating	regular	sequences	(often	of	numbers)	
	+	:	example:	3:7	produces	the	output	[1] 3 4 5 6 7	

Now	use	the	rest	of	the	code	in	the	'Intro-R.r'	file	to	make	and	inspect	different	variable	types	
and	operators.	



Loading	Tables	in	R	
If	you	remember	we	generated	3	types	of	tables	with	QIIME:	
*	OTU	table	(.biom	and	.txt	versions	-	rarefied	and	low-depth	filtered)	*	Alpha	diversity	table	
(.txt)	*	Beta	diversity	tables	(.txt)	

OTU	Table	

Format	
The	first	two	lines	include	a	spacer	line	detailing	how	the	file	was	once	a	.biom	format,	and	the	
column	headers.	Note	that	these	lines	start	with	a	'#',	which	usually	represents	a	comment	line	
(something	the	computer	doesn't	read),	so	we	will	have	to	pay	attention	to	how	R	reads	our	
OTU	table.	

Rows	
OTU	ID,	which	is	a	unique	ID	for	each	set	of	sequences	that	are	97%	identical.	

Columns	1	through	the	second	last	
Each	column	represents	a	sample.	The	numbers	in	each	row	correspond	to	the	number	of	reads	
that	mapped	to	the	specified	OTU	ID	in	the	first	column.	

Last	Column	
The	assigned	taxonomic	identity	for	each	OTU	(e.g.	For	k__Bacteria;	p__Bacteroidetes;	
c__Bacteroidia;	o__Bacteroidales;	f__Prevotellaceae;	g__Prevotella;	s__copri).	k	=	kingdom,	the	
p	=	phylum,	c	=	class,	o	=	order,	f	=	family,	g	=	genus	and	s=	species.	
See	example	of	the	first	5	lines	of	an	OTU	table	that	is	in	the	required	format:	

	

alt	text	

Loading	OTU	Table	
First,	use	the	function	read.table()	to	read	in	your	OTU	table.	These	various	arguments	are	
all	set	specifically	for	the	format	of	your	OTU	table	in	.txt	format.	

comment =	is	telling	R	what	should	be	interpreted	as	a	comment	versus	as	a	line	of	code.	The	
default	for	this	is	the	pound	sign	'#'	but	since	we	want	the	column	header	information	we	turn	
off	the	interpretation	of	comments	using	the	option	comment = ''	

header =	is	telling	R	whether	the	first	line	of	code	should	be	assigned	as	row	1	or	as	the	
column	names.	We	set	this	to	TRUE	or	T.	

sep =	defines	the	field	separator	character	which	in	this	case	is	a	tab,	so	sep = '\t'	



skip =	tells	R	how	many	rows	to	skip	when	reading	in	the	table.	The	default	for	this	is	0,	but	in	
this	case,	we	want	to	ignore	the	first	line	'#	Constructed	from	biom	file'	so	we	skip	the	first	line.	

as.is =	controls	the	interpretation	of	character	variables	as	a	character	string	vs.	as	a	factor.	
To	avoid	having	thousands	of	levels	associated	with	our	taxonomy	column,	we	specify	as.is=T	

check.names =	determines	whether	the	names	of	variable	in	the	data	frame	are	syntactically	
valid.	Because	our	sample	names	in	our	data	set	start	with	numbers,	which	would	cause	
problems	in	R,	we	have	to	set	check.names=F	

row =	will	tell	R	if	we	would	like	to	set	one	of	the	columns	to	be	the	row	names.	In	this	case	we	
would	like	to	set	the	first	column,	which	is	the	OTU	IDs	to	be	the	row	names.	(row=1)	

You	will	have	to	change	the	name	of	the	OTU	table	to	be	the	name	of	your	table.	

# Now we can read in the table - This the the rarefied one	
otu <- read.table("otu_rare2000.txt", 	
                  comment="", 	
                  header=TRUE, 	
                  sep="\t",	
                  skip=1, 	
                  as.is=TRUE, 	
                  check.names=F,	
                  row=1)	
	
# Read in the low depth removed OTU table	
otu_low <- read.table("otu_rare2000.txt", 	
                  comment="", 	
                  header=TRUE, 	
                  sep="\t",	
                  skip=1, 	
                  as.is=TRUE, 	
                  check.names=F,	
                  row=1)	

Remember,	you	can	always	find	out	more	about	a	function	by	using	the	help()	function	or	the	?.	
So,	to	find	out	about	the	read.table()	function,	you	could	do	the	following:	

?read.table()	

To	find	out	information	about	our	table	we	can	use	different	functions.	For	example,	we	can	
find	out	the	row	names	and	column	names	using	rownames()	and	colnames(),	respectively.	
We	can	find	the	dimensions	with	dim(),	and	we	can	print	the	first	couple	of	lines	(default	is	10)	
with	head().	We	can	also	click	on	our	table	in	the	Environment	panel	to	view	the	whole	table.	



# View first 2 lines using head()	
head(otu, n=2)	
	
# View dimensions	
dim(otu)	
	
# Print row names (which are OTU IDs)	
row.names(otu)	
	
#Print column names (which are samples IDs the taxonomy header)	
colnames(otu)	

Alpha	Diversity	File	
Prior	to	plotting	in	R,	we	need	to	generate	an	alpha	diversity	table	in	QIIME.	This	file	will	be	the	
output	of	alpha_diversity.py,	and	will	be	a	tab-delimited,	plain	text	file.	The	format	for	the	
alpha	diversity	file	is	the	following:	

Format	
Rows	

The	rows	are	the	sample	IDs.	

Columns	

Each	column	represents	a	diversity	metric	(e.g.	PD_whole_tree,	simpson,	shannon,	or	
observed_species).	The	numbers	in	each	row	correspond	to	alpha	diversity	estimate	for	the	
associated	sample.	

Loading	Alpha	Diversity	
# Read in the alpha diversity table	
alpha <- read.table("Alpha_Div.txt", 	
                    sep='\t', 	
                    header=TRUE, 	
                    as.is=TRUE, 	
                    check.names=FALSE,	
                    row=1)	

Notice:	
*	We	set	the	header	to	be	the	first	row	(alpha	diversity	metrics)	
*	We	set	the	rownames	to	be	the	first	column	(sample	IDs)	

Beta	Diversity	File	
Prior	to	plotting	in	R,	we	need	to	generate	an	a	distance	matrix	generated	by	with	QIIME.	This	
file	will	be	the	output	of	beta_diversity.py,	and	will	be	a	tab-delimited,	plain	text	file.	The	
format	for	the	beta	diversity	file	is	the	following:	



Format	
Rows	
The	rows	are	the	sample	IDs.	
Columns	
Each	column	is	also	a	sample	ID	and	the	distances	from	one	sample	to	another	are	the	values.	

You	should	have	one	for	each	metric	you	used	(Unweighted	UniFrac,	Weighted	UniFrac,	and	
Bray-Curtis).	

# Load the beta diversity matrix, notice that we use read.table(),	
# but then change from a dataframe to a matrix with as.matrix()	
beta <- as.matrix(read.table("unweighted_unifrac_dm.txt", 	
                             sep = "\t", 	
                             header=T, 	
                             row = 1, 	
                             as.is = T, 	
                             check.names = F))	

Notice:	
*	We	set	the	header	to	be	the	first	row	(These	are	sample	IDs)	
*	We	set	the	rows	names	to	be	the	first	column	(These	are	also	sample	IDs)	

Metadata	File	
Your	metadata	file	(also	called	a	mapping	file)	is	a	data	table	containing	information	about	the	
samples	in	your	dataset.	In	order	to	assess	how	taxa	correlate	with	variables	of	interest	(e.g.	
country,	body	site,	species,	ecoregion,	BMI,	etc.),	we	need	to	have	that	information	about	our	
samples	accessible.	The	metadata	file	for	our	data	set	is	HMP_5BS_metadata.txt.	

Format	
Rows	
The	actual	mapping	file	starts	with	'#SampleID'	as	the	first	header.	This	contains	a	the	sample	
IDs,	which	are	unique	IDs	for	each	sample	in	the	dataset.	To	work	in	QIIME,	this	must	have	a	'#'	
at	the	start.	Remember	that	'#'	usually	represents	a	comment	line	(something	the	computer	
doesn't	read),	so	we	will	have	to	pay	attention	to	how	R	reads	in	this	file.	

Columns	1	-	last	column	
Each	column	represents	a	description	of	the	sample.	It	can	be	anything	including	details	about	
the	patient,	person,	animal	or	location	the	sample	was	taken	from.	This	file	should	contain	no	
spaces	or	empty	columns/rows.	

Loading	Metadata	File	
We	load	the	metadata	table	just	like	the	OTU	table,	but	notice	that	the	skip	parameter	is	left	
out,	because	the	metadata	table	doesn't	have	the	additional	first	line	that	the	OTU	table	has.	



metadata <- read.table('HMP_5BS_metadata.txt', 	
                       header=T, 	
                       sep='\t', 	
                       check.names=F, 	
                       comment='',	
                       row=1)	

Notice:	
*	We	set	the	header	to	be	the	first	row	(These	are	sample	IDs)	
*	We	set	the	rows	names	to	be	the	first	column	(These	are	also	sample	IDs)	
*	We	told	R	to	ignore	the	'#'	in	the	first	line	

What	are	the	dimensions	of	the	metadata	file?	How	would	you	find	this	out?	We	went	over	this	
in	the	'Normalizing	OTU	Table	tutorial'	

What	variables	do	we	have	available	for	this	data	set?	They	are	the	column	headers.	You	can	
find	this	out	using	colnames().	

colnames(metadata)	

## [1] "BarcodeSequence"      "LinkerPrimerSequence" "Sex"                 	
## [4] "BodySite"             "SRS_SampleID"         "FASTA_FILE"          	
## [7] "Description"          "Age"	

The	mapping	file	is	what	we	use	in	the	majority	of	our	QIIME	commands	so	it	contains	
information	about	the	sequencing	files	(e.g.	BarcodeSequence,	LinkerPrimerSequence,	
FASTA_FILE,	and	SRS_SampleID),	that	are	not	necessary	for	our	analysis.	We	need	the	sample	
IDs	to	match	our	variables	to	the	microbial	abundance	information	contained	in	our	OTU	table.	

Each	column	in	this	file	is	a	variable	(also	called	a	covariate),	which	can	be	defined	as	being	
continuous	or	categorical.	Categorical	variables	are	described	as	factors,	the	levels	of	which	are	
the	categories	within	it.	You	can	view	the	number	and	identity	of	levels	for	a	categorical	
variable	by	calling	it,	or	using	the	str()	function.	

# View the 'Sex' column of the mapping file dataframe	
metadata[,'Sex']	

##   [1] female female female female male   female male   male   male   
female	
##  [11] female female male   male   female male   male   female female 
female	
##  [21] male   male   male   male   male   female female female male   male  	
##  [31] male   male   female male   male   female female male   male   
female	
##  [41] female male   female female female male   female female female male  	
##  [51] female female male   male   female female female female male   male  	



##  [61] male   male   female female male   female female female female male  	
##  [71] male   male   female male   male   female male   male   male   
female	
##  [81] female male   male   female female female male   male   male   male  	
##  [91] male   female female female female male   male   female male   
female	
## [101] female female male   female	
## Levels: female male	

Notice	how	we	wrote	the	command	to	access	the	'Sex'	column.[,]	is	a	way	to	specify	rows	and	
columns	or	a	matrix	or	dataframe.	Inside	the	square	brackets,	the	first	index	specified	is	the	
row,	and	the	second	(after	the	comma)	is	the	column.	So	what	we	wrote	was,	"display	all	the	
rows	(left	blank),	in	the	'Sex'	column,	or	metadata[,'Sex'].	We	can	also	use	the	row	number	
or	column	number	metadata[,4].	

Because	our	mapping	file	is	loaded	as	a	dataframe,	we	can	also	do	this	using	the	"$".	

# Notice that using "$" only works for dataframes and not matrices	
metadata$Sex	

##   [1] female female female female male   female male   male   male   
female	
##  [11] female female male   male   female male   male   female female 
female	
##  [21] male   male   male   male   male   female female female male   male  	
##  [31] male   male   female male   male   female female male   male   
female	
##  [41] female male   female female female male   female female female male  	
##  [51] female female male   male   female female female female male   male  	
##  [61] male   male   female female male   female female female female male  	
##  [71] male   male   female male   male   female male   male   male   
female	
##  [81] female male   male   female female female male   male   male   male  	
##  [91] male   female female female female male   male   female male   
female	
## [101] female female male   female	
## Levels: female male	

# The class function will also tell you whether your variable is 	
# a factor, numeric, character, etc.	
class(metadata[,'Sex'])	

## [1] "factor"	



Formatting	Your	Data	
In	order	to	assess	relationships	between	sample	information	in	our	OTU	table,	alpha	diversity	
and	beta	diversity,	we	need	to	match	the	order	of	our	data	frames.	For	that	we	will	use	the	
intersect()	function.	Because	we	have	potentially	removed	one	or	more	samples	from	our	
OTU	table	during	rarefaction,	filtering	or	other	manipulations,	we	can	first	define	the	subset	of	
samples	in	all	of	our	tables.	

intersect()	can	retain	all	the	sample	IDs	that	are	in	the	OTU	table	and	also	in	the	metadata	
file.	We	can	then	subset	all	of	our	tables	to	keep	just	those	samples.	

# First, define all the samples in the OTU table.	
# Remember, when we load in the OTU table, samples are columns	
# Remember, the last column in the OTU table is taxonomy, so ommit the last 
column	
samples1 <- colnames(otu)[1:(ncol(otu)-1)]	
	
# Now let's see what the intersect with the  metadata row names are	
IDs_Keep <- intersect(samples1, rownames(metadata))	
	
# Now let's filter the metadata to keep only those samples	
# We do this by telling R to make a new data frame that only has the rows we 
want	
metadata <- metadata[IDs_Keep,]	
	
# Now let's filter the OTU table to keep just the intersecting samples	
# We will store it as a new otu table (incase we need the old one)	
# Remember, OTU table has columns as samples!	
# This will also remove the taxonomy, because it's not a sample ID we want	
otu2 <- otu[,IDs_Keep] #for rarefied	
otu_low2 <- otu_low[, IDs_Keep] #for low depth removed	
	
# To add the taxonomy back, we can use the taxonomy info from	
# the orignal table	
otu2$taxonomy <- otu$taxonomy	
otu_low2$taxonomy <- otu_low$taxonomy 	
	
# Now let's filer the alpha diversity table to keep those samples too	
# Alpha diversity has the samples as row names	
alpha <- alpha[IDs_Keep, ]	
	
# Now let's filer the beta diversity table to keep those samples too	
# Beta diversity has the samples as row names AND column names	
# We must filter both the rows and columns	



beta <- beta[IDs_Keep,IDs_Keep]	
	
#Let's check to make sure the samples match  	
as.character(rownames(metadata)) == colnames(otu2)[1:(ncol(otu2)-1)]	

##   [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
TRUE	
##  [15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
TRUE	
##  [29] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
TRUE	
##  [43] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
TRUE	
##  [57] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
TRUE	
##  [71] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
TRUE	
##  [85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
TRUE	
##  [99] TRUE TRUE TRUE TRUE	

#Let's see how many samples are in the otu table (columns) and mapping	
	
ncol(otu) #There should be one more here because there is also a taxonomy row	

## [1] 103	

nrow(metadata)	

## [1] 102	



Plotting	in	R	
ggplot	
To	visualize	our	data	in	R	we	will	use	the	package	ggplot2().	This	package	allows	us	to	make	
detailed	and	specific	visualization	needed	to	best	show	our	results.	Let's	start	with	the	packages	
we	need	to	load.	If	these	are	not	installed	you	can	install	them	first	with	install.packages().	

library(ggplot2)	

## Warning: package 'ggplot2' was built under R version 3.3.2	

ggplot	input	
ggplot	likes	to	have	all	the	data	for	the	plot	in	one	table.	Specifically,	it	like	to	be	able	to	access	
the	information	needed	by	using	columns.	Let's	use	alpha	diversity	as	an	example.	We	will	use	
our	alpha	diversity	measurements	as	the	input	data	for	our	examples.	

First	we	have	to	combine	our	alpha	diversity	results	with	the	metadata	that	tells	us	which	body	
site	each	samples	comes	from.	Make	sure	you	have	your	metadata	and	alpha	diversity	tables	
loaded	and	that	the	samples	are	subsetted	and	in	the	correct	order	for	both	tables.	

# We will make a copy of our metadata to work with	
combined_alphadata <- metadata	
	
# Because our sample order is the same, we can make a new column in the table	
# This column will contain all the Shannon index measurements for the samples	
combined_alphadata$shannon <- alpha$shannon	

ggplot	Format	
ggplot	creates	plots	in	layers.	First	we	make	the	base	layer	with	ggplot()	and	then	add	on	
different	types	of	plotting	types	and	aesthetics.	

Aesthetic	Mapping	
In	ggplot,	aesthetic	means	something	you	can	see.	For	example:	
*	position	(i.e.,	on	the	x	and	y	axes)	
*	color	(“outside”	color)	
*	fill	(“inside”	color)	
*	shape	(of	points)	
*	linetype	
*	size	

Geometic	Objects	(geom)	
Geometric	objects	are	the	actual	characters	we	put	on	a	plot.	For	example:	
*	points	(e.g.	geom_point,	for	scatter	plots)	



*	lines	(e.g.	geom_line,	for	line	graphs)	
*	boxplot	(e.g.	geom_boxplot,	for	box	plots)	

Plotting	
Before	we	plot	our	data,	we	need	to	think	about	what	type	it	is.	In	the	first	example	the	
independent	variable	will	be	"BodySite",	which	is	discrete.	Our	dependent	variable,	alpha	
diversity	(Shannon	Index),	falls	in	a	range	of	values.	We	could	use	a	bar	chart,	but	a	box	plot	will	
tell	us	more	about	the	dataset.	

Box	Plots	
If	we	remember,	Box	plots	consist	of	several	features:	the	box,	which	extends	from	the	first	
quartile	(Q1)	to	the	third	quartile	(Q3),	respectively,	with	the	median	(Q2)	depicted	by	a	vertical	
line	within	the	box;	whiskers,	which	extending	vertically	from	the	box	and	indicate	the	range	of	
variability	outside	of	the	upper	and	lower	quartiles;	and	outliers,	which	are	individual	points	
outside	of	the	box	and	whiskers.	

It	is	important	to	note	that	box	plots	are	good	for	non-parametric	data.	They	display	variation	
in	samples	of	a	statistical	population	without	making	any	assumptions	of	the	underlying	
statistical	distribution.	The	spacing	between	the	interquartile	range	of	the	box	indicates	the	
degree	of	dispersion	(spread)	and	skewness	in	the	data.	

Plotting	Example	1	-	Discrete	X-Variable	
ggplot() + 	
  geom_boxplot(data=combined_alphadata, aes(x= BodySite, y= shannon))	



	
Notice:	
*	We	created	the	base	layer	with	ggplot()   * We add the next layer with+* We added 
a boxplot withgeom_boxplot()* We specified which table to use withdata=* We 
specified the aesthetics withinaes()`	
*	The	dependent	variable	(y)	is	called	by	its	column	name	
*	The	independent	variable	(x)	is	called	by	its	column	name	

Scatter	Plots	
In	the	second	example	the	independent	variable	will	be	"Age",	which	is	continuous.	Our	
dependent	variable,	alpha	diversity	(Shannon	Index),	falls	in	a	range	of	values.	Therefore	we	can	
use	a	scatter	plot	to	look	for	trends.	

Plotting	Example	2	-	Continuous	X-Variable	
ggplot() + 	
  geom_point(data=combined_alphadata, aes(x= Age, y= shannon))	



	
Notice:	
*	We	created	the	base	layer	with	ggplot()   * We add the next layer with+* We added 
a scatter plot withgeom_point()* We specified which table to use withdata=* We 
specified the aesthetics withinaes()`	
*	The	dependent	variable	(y)	is	called	by	its	column	name	
*	The	independent	variable	(x)	is	called	by	its	column	name	

Other	Plotting	Examples	

Plotting	Example	3	-	Wrong	Plot	Types	
ggplot() + 	
  geom_boxplot(data=combined_alphadata, aes(x= Age, y= shannon))	

## Warning: Continuous x aesthetic -- did you forget aes(group=...)?	



	
Notice:	
*	We	tried	to	make	a	boxplot	with	continuous	data.	It	clearly	doesn't	work	well!	

Plotting	Example	4	-	Adding	in	more	aesthetics	
# Specifying the color changes the outline color 	
ggplot() + 	
  geom_boxplot(data=combined_alphadata, aes(x= BodySite, y= shannon, 
color=BodySite))	



	

# Specifying the fill changes the interior color	
ggplot() + 	
  geom_boxplot(data=combined_alphadata, aes(x= BodySite, y= shannon, fill= 
BodySite))	



	

# Specifying the fill to a color changes the interior color for all	
ggplot() + 	
  geom_boxplot(data=combined_alphadata, aes(x= BodySite, y= shannon, fill= 
BodySite))	



	

# Specifying the fill outside of aes() changes it for all x values	
# You must pick an exact color if you'd like to do this	
ggplot() + 	
  geom_boxplot(data=combined_alphadata, fill = "red", aes(x= BodySite, y= 
shannon))	



	

# Specifying the theme changes the background	
ggplot() + 	
  geom_boxplot(data=combined_alphadata, fill="red", aes(x= BodySite, y= 
shannon)) +	
  theme_bw() #this is the black and white theme	



	

# We can pick any colors we want to fill by	
ggplot() + 	
  geom_boxplot(data=combined_alphadata,  aes(x= BodySite, y= shannon, 
fill=BodySite)) +	
  theme_bw() +	
  scale_fill_manual(values= c("blue", "green", "pink", "grey", "yellow"))	



	

Plotting	Example	5	-	Adding	Layers	of	Plots	
# Add a scatter on top of the boxplots 	
# To do this, we have to specify the data frame for each layer and the aes() 
for each layer	
ggplot() + 	
  geom_boxplot(data=combined_alphadata, aes(x= BodySite, y= shannon, 
color=BodySite)) +	
  geom_jitter(data=combined_alphadata, aes(x=BodySite, y=shannon, 
color=BodySite))	



	

# We can decrease the jitter on the scatter plot with width=	
ggplot() + 	
  geom_boxplot(data=combined_alphadata, aes(x= BodySite, y= shannon, 
color=BodySite)) +	
  geom_jitter(data=combined_alphadata, width= 0.1, aes(x=BodySite, y=shannon, 
color=BodySite))	



	

# If all the data for your entire plot will use the same data frame you can 
specify that in the ggplot()	
ggplot(data=combined_alphadata) +	
  geom_boxplot(aes(x= BodySite, y= shannon, color=BodySite)) +	
  geom_jitter(width= 0.1, aes(x=BodySite, y=shannon, color=BodySite))	



	

# If all the data and aes() for your entire plot will be the same, you can 
specify it in ggplot()	
ggplot(data=combined_alphadata, aes(x=BodySite, y=shannon, color=BodySite)) +	
  geom_boxplot() +	
  geom_jitter(width= 0.1)	



	

# You can make this specific to just one plot layer	
# We are using color ONLY in the geom_jitter here	
ggplot(data=combined_alphadata, aes(x=BodySite, y=shannon)) +	
  geom_boxplot() +	
  geom_jitter(width= 0.1, aes(color=BodySite))	



	



Alpha	Diversity	Differences	in	R	
Input	data	

Alpha	Diversity	Table	and	Metadata	
Your	alpha	diversity	table	and	metadata	table	should	be	loaded.	Remember	to	subset	the	tables	
so	that	the	samples	IDs	are	correct	and	in	the	same	order.	In	the	"Loading	Tables	in	R"	section	
we	saved	these	tables	as	alpha	and	metadata	

Now	we	need	to	pick	which	covariate	we	would	like	to	use	for	the	plot,	and	which	alpha	
diversity	metric	we	would	like	to	visualize.	We	will	use	"Sex"	and	the	"shannon"	diversity	
metric.	



Testing	for	Differences	
t-Tests	
A	t-test	can	be	used	to	determine	if	two	sets	of	data	are	significantly	different	from	each	other	
based	on	the	population	means.	It	assumes	the	data	are	normally	distributed.	Although	it	is	
typically	assumed	that	data	of	a	large	enough	sample	size	are	normally	distributed,	this	is	not	
always	the	case.	

Testing	for	Normality	
Let's	see	if	our	data	are	normally	distributed	using	the	hist()	function.	We	will	do	this	for	each	
group	in	the	covariate	we	are	testing	(in	this	case,	'sex').	

# We will find the samples that are male in the metadata	
males.ix <- metadata$Sex == 'male'	
# And subset the alpha table to include only those, and store it as 'males'	
males <- alpha[males.ix,]	
	
# We will do the same for females	
females.ix <- metadata$Sex == 'female'	
females <- alpha[females.ix,]	
	
# Now we can plot the histograms	
hist(females$shannon, xlab="Alpha Diversity", main='Females')	



	

hist(males$shannon, xlab="Alpha Diversity", main='Males')	



	

Do	those	look	normally	distributed?	For	the	most	part	they	do,	but	it	is	sometimes	hard	to	tell.	
The	best	way	to	determine	if	your	data	are	normally	distributed	is	to	do	a	statistical	test.	

The	Shapiro-Wilk	Normality	Test	
This	test	can	be	run	with	the	shapiro.test()	function	in	R.	It	will	generate	an	approximate	p-
value,	which	is	adequate	in	assessing	normality.	In	this	case,	p-values	less	than	0.1	indicate	the	
data	are	significantly	different	from	normal	distribution.	We	will	run	this	test	for	each	group	in	
our	covariate	of	interest.	

shapiro.test(females$shannon)	

## 	
##  Shapiro-Wilk normality test	
## 	
## data:  females$shannon	
## W = 0.94434, p-value = 0.01548	

shapiro.test(males$shannon)	



## 	
##  Shapiro-Wilk normality test	
## 	
## data:  males$shannon	
## W = 0.89861, p-value = 0.0004951	

Based	on	the	results,	should	you	run	a	t-test?	

Mann-Whitney	U	Test	
Based	on	these	results,	it	is	better	to	test	for	differences	in	our	data	using	a	statistical	test	that	
does	not	require	normal	distributions.	The	Mann-Whitney	U	test	(aka	Wilcoxen-rank_sum	test)	
is	smilar	to	the	t-test.	The	null	hypothesis	of	this	test	would	be	that	that	groups	means	differ	
only	by	chance.	We	can	do	a	Mann-Whitney	U	test	using	the	wilcox.test()	function	in	R.	

wilcox.test(females$shannon, males$shannon,  na.rm=TRUE)	

## 	
##  Wilcoxon rank sum test with continuity correction	
## 	
## data:  females$shannon and males$shannon	
## W = 973, p-value = 0.0295	
## alternative hypothesis: true location shift is not equal to 0	

# This is telling are to use a wilcox test to comapre females	
# and males for the diversity metric we set earlier. It is also	
# telling R to remove any NAs (missing data)	
	
# Note that you would run a t-test in the same way, only using 	
# the t.test() function	

The	p-value	here,	which	is	less	than	an	alpha	of	0.05.	This	means	that	we	reject	the	null	
hypothesis	that	these	two	body	sites	are	not	significantly	different	for	this	metric	of	alpha	
diversity.	

We	can	also	see	what	the	box	plot	looks	like.	

alpha2 <- alpha	
alpha2$Sex <- metadata$Sex	
	
ggplot(data=alpha2, aes(x=Sex, y= shannon)) + 	
  geom_boxplot(outlier.color = NA) + # removes outlier points becuase we add 
in the jitter anyways	
  geom_jitter(width= 0.1, aes(color=Sex)) +	
  theme_bw() +	
  guides(color=F) #because the x-axis is already labeled	



	

In	our	example	we	only	have	two	groups,	'male'	and	'female'.	If	we	used	a	different	covariate,	
like	'BodySite'	(which	contains	5	groups)	we	would	have	10	tests	to	do	pairwise.	Luckily,	for	
loops	can	come	to	the	rescue!	This	loop	will	perform	the	wilcox.test()	on	every	unique	
combination	of	groups	in	the	covariate.	

# First let's set all the groups available for the variable we care about	
# In this case we will use BodySite instead of what we set as cov1 	
# (because sex only has two values)	
groups <- unique(metadata$BodySite)	
	
# We create empty vectors to store the pair-wise pvalues and the 	
# groups tested (names)	
pw.pvalues <- NULL	
pw.names <- NULL	
	
# We set two counters, 'i' starts at 1 and goes until one less than	
# the number of groups. 'j' will start at 2, and go until the full 	



# number of groups. This will end up comparing: 1 vs 2, 2 vs 3, 	
# 3 vs 4, and so on.	
for(i in 1:(length(groups) - 1)){	
            for(j in (i+1):length(groups)){	
              #we use this to pick the groups assigned to 'i'	
                ix.metric.i <- metadata$BodySite == groups[i]	
                #and this for 'j'	
                ix.metric.j <- metadata$BodySite == groups[j]	
                #this stores the pvalue from the test	
                pvalue <- wilcox.test(alpha[ix.metric.i,"shannon"], 	
                                      alpha[ix.metric.j,"shannon"])$p.value 	
                #appends the new p-value to the list	
                pw.pvalues <- c(pw.pvalues, pvalue) 	
                #sets the names of the groups tested	
                test.name <- paste(groups[i], "_vs_", groups[j],sep='')	
                #appends the names of the groups tested to the list	
                pw.names <- c(pw.names, test.name) 	
            }	
}	
names(pw.pvalues) <- pw.names	
	
pw.pvalues	

##         Mid_vagina_vs_Left_Retroauricular_crease 	
##                                     6.925356e-02 	
##                             Mid_vagina_vs_Saliva 	
##                                     7.431382e-12 	
##                 Mid_vagina_vs_Subgingival_plaque 	
##                                     3.715691e-12 	
##                              Mid_vagina_vs_Stool 	
##                                     2.600984e-11 	
##             Left_Retroauricular_crease_vs_Saliva 	
##                                     3.482133e-10 	
## Left_Retroauricular_crease_vs_Subgingival_plaque 	
##                                     1.066403e-10 	
##              Left_Retroauricular_crease_vs_Stool 	
##                                     2.117572e-09 	
##                     Saliva_vs_Subgingival_plaque 	
##                                     5.100514e-01 	
##                                  Saliva_vs_Stool 	
##                                     4.815795e-02 	
##                      Subgingival_plaque_vs_Stool 	
##                                     2.298969e-01	



False	Discovery	Rate	Correction	
When	we	use	the	'sex'	covariate,	we	only	have	one	test	to	perform.	If	we	are	comparing	more	
than	two	groups	and	we	are	running	multiple	tests	we	have	to	correct	of	the	number	of	
comparisons	we	are	making.	We	do	this	with	the	p.adjust()	function.	This	will	correct	for	
type	I	errors,	which	are	rejections	of	a	true	null	hypothesis	(also	known	as	a	false	positive).	

# We will correct using 'fdr', which is the false discovery rate	
fdr.pvalues <- p.adjust(pw.pvalues,'fdr')	
fdr.pvalues	

##         Mid_vagina_vs_Left_Retroauricular_crease 	
##                                     8.656695e-02 	
##                             Mid_vagina_vs_Saliva 	
##                                     3.715691e-11 	
##                 Mid_vagina_vs_Subgingival_plaque 	
##                                     3.715691e-11 	
##                              Mid_vagina_vs_Stool 	
##                                     8.669946e-11 	
##             Left_Retroauricular_crease_vs_Saliva 	
##                                     6.964267e-10 	
## Left_Retroauricular_crease_vs_Subgingival_plaque 	
##                                     2.666008e-10 	
##              Left_Retroauricular_crease_vs_Stool 	
##                                     3.529287e-09 	
##                     Saliva_vs_Subgingival_plaque 	
##                                     5.100514e-01 	
##                                  Saliva_vs_Stool 	
##                                     6.879708e-02 	
##                      Subgingival_plaque_vs_Stool 	
##                                     2.554410e-01	

Now	we	can	view	the	relative	p-values	for	each	pairwise	comparison,	and	we	can	save	this	table	
as	a	file.	

# sink() will write whatever is listed below it to a file.  	
# You close that file by listing sink() again.	
sink("alpha_stats.txt")	
	
cat("\nNumber of samples in each group:\n")	
print(table(metadata$BodySite))	
#This prints a table of the number of samples at each body site	
	
cat("\nMean Alpha Diversity:\n")	
print(tapply(alpha$shannon, metadata$BodySite, mean))	



# This will get the mean of alpha diversity at each body site	
# by using tapply() to apply the mean function across the alpha	
# table (subsetted into body site groups)	
	
cat("\nMedian Alpha Diversity:\n")	
print(tapply(alpha$shannon, metadata$BodySite, median))	
# This will get the median of alpha diversity at each body site	
	
cat("\nStandard Deviation:\n")	
print(tapply(alpha$shannon, metadata$BodySite, sd))	
# This will get the standard deviations of alpha diversity at 	
# each body site	
	
cat("\nPairwise Mann-Whitney-Wilcoxon Tests were performed.\n")	
cat("Pairwise p-values are:\n")	
print(pw.pvalues)	
        	
cat("\nFDR-corrected pairwise p-values are:\n")	
print(p.adjust(pw.pvalues,'fdr'))	
	
sink()	

We	can	also	see	what	the	box	plot	looks	like.	

alpha2 <- alpha	
alpha2$BodySite <- metadata$BodySite	
	
ggplot(data=alpha2, aes(x=BodySite, y= shannon)) + 	
  geom_boxplot() +	
  geom_jitter(width= 0.1, aes(color=BodySite)) +	
  theme_bw()	



	

We	can	also	print	this	plot	to	a	pdf	with	the	pdf()	function	followed	by	dev.off()	to	close	the	
pdf.	

plot_output <- ggplot(data=alpha2, aes(x=BodySite, y= shannon)) + 	
  geom_boxplot() +	
  geom_jitter(width= 0.1, aes(color=BodySite)) +	
  theme_bw() +	
  scale_x_discrete(labels=c("ear fold", "vagina", "saliva", "stool", 
"plaque")) +	
  guides(color=F) #because they are labeled at the x- axis 	
	
pdf("Alpha_Diversity.pdf", height=4, width=6)	
plot(plot_output)	
dev.off()	

## quartz_off_screen 	
##                 2	



Taxa	Summary	Plots	in	R	
Visualizing	which	taxa	are	in	your	samples	can	be	an	effective	way	to	see	patterns	in	the	data.	
Here	we	will	learn	how	to	make	taxa	summary	plots	based	on	your	input	OTU	table,	a	covariate	
of	interest,	and	other	specified	parameters.	

Input	data	

OTU	table	and	Metadata	
Your	OTU	table	should	be	loaded	and	we	can	use	the	rarefied	version.	Your	metadata	file	
should	also	be	loaded.	Remember	to	subset	the	tables	so	that	the	samples	IDs	are	correct	and	
in	the	same	order.	In	the	"Loading	Tables	in	R"	section	we	saved	these	tables	as	otu2	and	
metadata	

Manage	Taxonomy	
We	want	to	set	a	taxa	level	by	number:	1	=	kingdom	
2	=	phylum	
3	=	class	
4	=	order	
5	=	family	
6	=	genus	
7	=	species	

Let's	work	with	phylum	(level	2).	The	taxa	are	listed	with	a	letter	representing	the	level	followed	
by	two	underscores,	and	a	semicolon	separating	each	level	(k__kingdom;	p__phylum;	...).	We	
will	do	some	string	parsing	to	replace	the	full	taxonomy	label	with	the	appropriate	level.	

# In this example we are using 2 (or phylum). 	
# This can be for any level you want.	
level = 2	
	
# First we make an empty table (array) for our new names	
# The array will have the number of rows equal to the number of OTUs in the 
table	
# and one column for each taxonomy level 	
names_split <- array(dim=c(length(otu2$taxonomy), level))	
	
# We will store our taxonomy as a list of names	
otu_names <- as.character(otu2$taxonomy)	
	
# Then we run through each name and split based on the level we are 	
# interested in. We make a for loop to split every name stored in 	
# otu_names. strsplit() splits the string (otu_names[i]) at ";". 	
# This retains all the levels as separate strings. head() takes the	



# first items (the total will be the number you specified with level)	
# from the string split output and stores it in the names_split 	
# array at the specied row.	
for (i in 1:length(otu_names)){	
    names_split[i,] <- head(strsplit(otu_names[i], "; ", fixed=T)[[1]], 
n=level)	
}	
	
# Now we will collapse the strings together into one string	
otu_names <- apply(names_split, 1, function(x) paste(x[1:level], sep = "", 
collapse = ";"))	
	
# Replace the old taxonomy with the truncated version	
otu2$taxonomy <- otu_names	

Now	we	want	to	consolidate	our	OTU	table	by	the	taxa	levels	we've	set,	just	like	we	learned	in	
the	loading	and	manipulating	tutorial.	We	will	use	the	aggregate()	function.	

# Get the number of samples (the last column is taxonomy)	
sample_no <- ncol(otu2)-1	
	
# Collapse the otu table and save it as a new table 	
otu3 <- aggregate(otu2[,1:sample_no], by=list(otu2$taxonomy), FUN=sum)	
	
# Name the first column taxonomy because R stores the column	
# we told it to aggregate by as the first column	
names(otu3)[1] <- "taxonomy"	
	
# We can see that the consolidating worked by checking how many rows we 	
# now have - that's how many phyla there are (level=2) 	
nrow(otu3)	

## [1] 17	

Let's	replace	the	rownames	with	the	taxonomy,	and	get	rid	of	the	taxonomy	column.	

# Set rownames as taxonomy	
rownames(otu3) <- otu3$taxonomy	
	
# Keep all columns in the otu table that do NOT (!) have the column 	
# header "taxonomy"	
otu3 <- otu3[,!names(otu3) == "taxonomy"]	



Filtering	OTUs	and	Samples	
Let's	filter	the	OTU	table	to	keep	only	OTUs	that	are	in	at	least	5	people,	and	that	have	at	least	
100	counts.	

#Set the number of samples cut off	
nsamples <- 5	
	
# `otu > 0` tells R to take all values and see if they are greater 	
# than 0. If so it will store it as TRUE, if not greater than 0 they 	
# get a false. Then we take the `rowSums()` of that value, where 	
# TRUE=1 and FALSE=0. Then we ask if the row sums are greater than 	
# then number of samples we set as the cut off. It will store 	
# TRUE/FALSE values for each row.	
cutoff_nsamples <- rowSums(otu3 > 0) > nsamples	
# Keep only samples that are 'TRUE' (meet the cutoff value)	
otu3 <- otu3[cutoff_nsamples,]	
	
ncounts <- 99	
# This cutoff is different than the previous. We care about how MANY	
# counts each taxon has.  We only want to keep those with a minimum	
# of 100 counts across all samples (greater than 99)	
cutoff_ncounts <- rowSums(otu3) > ncounts	
#Keep only taxa that meet the cutoff	
otu3 <- otu3[cutoff_ncounts,]	

Calculating	relative	abundances	
We	took	out	some	taxa	when	filtering,	so	we	need	to	convert	count	into	the	relative	abundance	
of	that	sample.	To	do	this,	we	will	use	a	for	loop	

# We want to use all the columns (since we already took out taxonomy)	
for(i in 1:ncol(otu3)){	
  otu3[,i] <- otu3[,i]/sum(otu3[,i])	
}	

In	order	to	make	our	OTU	table	and	results	more	easily	compatible	with	our	metadata,	we	want	
the	sample	IDs	as	the	rows	and	the	taxa	as	the	columns.	We'll	use	the	function	t()	to	transpose	
the	data	frame.	We	can	then	make	a	column	SampleID	that	will	be	useful	later.	

# Transpose as a data frame	
otu3 <- data.frame(t(otu3))	
	
# Make a column that is the Sample IDs (which are the rownames)	
otu3$SampleID <- rownames(otu3)	
	



# Let's save a backup of this filtered OTU table	
otu_backup <- otu3	

If	you	remember,	ggplot	likes	to	have	all	the	data	in	one	table.	Now	we	will	use	a	function	
called	melt()	from	the	library	reshape2	to	convert	our	data	frame	into	three	columns:	one	
that	has	the	sample	ID,	one	that	has	taxa	IDs,	and	one	that	has	the	relative	abundances	of	the	
taxa	in	our	sample.	We'll	also	use	the	package	plyr	for	it's	function	ddply()	to	aggregate	our	
data	nicely.	

Before	we	can	move	forward,	you	must	get	the	packages	needed	to	run	the	functions	we	will	
use.	You	can	install	packages	with	the	install.packages()	function.	

#You'll want to install these packages if you don't already have them	
library(reshape2)  	
library(plyr)	
	
otu3 <- melt(otu3, id.vars = "SampleID", 	
            variable.name = "Taxa", 	
            value.name = "RelativeAbundance")	

Plotting	
Now	we	have	a	filtered	table	with	three	columns	with	which	we	can	make	a	basic	taxa	summary	
plot	(just	grouped	by	sample	ID).	We'll	use	ggplot.	

library(ggplot2)	
# This will make a plot with the OTU table (otu), using the column 	
# headers specified	
ggplot(otu3, aes(x = SampleID, y = RelativeAbundance, fill= Taxa)) + 	
  geom_bar(stat = "identity", position="fill") +   # This makes it a bar plot 
(geom_bar())	
  scale_x_discrete(labels = NULL)    #This takes off the x-labels (too hard 
to read)	



	

This	plot	is	kind	of	messy!	There	are	so	many	samples	you	can't	easily	see	one	sample	from	
another.	

Adding	Metadata	
Let's	try	piloting	by	a	covariate.	The	easiest	way	to	do	that	is	to	simply	add	our	metadata	values	
to	our	table.	More	columns	means	more	potential	variables	to	plot	by.	Let's	go	back	to	our	full,	
filtered	OTU	table,	melt	it	and	then	add	metadata.	

otu3 <- otu_backup	
otu3 <- melt(otu3, 	
            id.vars = "SampleID", 	
            variable.name = "Taxa", 	
            value.name = "RelativeAbundance")	

Now	we	can	add	in	our	metadata,	using	the	function	merge().	First	let's	make	sure	we	have	the	
covariates/header	names	we	think	we	do,	and	we	can	rename	any	that	aren't	right,	and	only	



keep	the	ones	we're	interested	in.	If	you're	looking	at	real	metadata,	you'll	have	a	much	longer	
list	than	the	tutorial	files.	

colnames(metadata)	

## [1] "BarcodeSequence"      "LinkerPrimerSequence" "Sex"                 	
## [4] "BodySite"             "SRS_SampleID"         "FASTA_FILE"          	
## [7] "Description"          "Age"	

# We only want to keep "Sex", "BodySite", and 	
# "Description", which is the area of the body	
	
#This will keep only the columns with the headers we want	
columns_keep <- c("Sex","BodySite","Description")	
metadata2 <- metadata[,columns_keep]	
	
# Now we merge covariates to sample ids	
# First we need to make a column that is the sample IDs in the	
metadata2$SampleID <- rownames(metadata2)	
	
# This will drop any samples in the mapping file that aren't in the OTU table	
otu3 <- merge(otu3, metadata2, by="SampleID")	

Now	we	can	plot	according	to	body	site.	

ggplot(otu3, aes(x=BodySite, y=RelativeAbundance, fill=Taxa)) +	
  # using position="fill" makes sure it sums to 1	
  geom_bar(stat ="identity", position="fill") 	



	

# We will want to shorten the x-labels.	
# We can even split our data up by sex using this method, 	
# using an option called facet_grid(): 	
ggplot(otu3, aes(x=BodySite, y=RelativeAbundance, fill=Taxa)) + 	
  geom_bar(stat ="identity", position="fill") +	
  facet_grid(.~Sex) + # This will separate by sex	
  scale_x_discrete(labels=c("LRC", "MV", "Sal.","Stool","SGP"))    # This 
relabels the x axis	



	

Plot	Specific	Taxa	
We	can	also	plot	just	specific	taxa.	For	that,	we	can	use	the	aggregated	relative	abundance	
table	otu	from	the	sex	in	the	example	above,	and	pull	out	a	subset	of	the	taxa	we're	specifically	
interested	in.	You'll	need	the	exact	taxa	labels	from	the	table	to	match.	Say	we	want	to	look	at	
Firmicutes	and	Actinobacteria:	

# If we don't remember the spelling, we can print all the taxa and 	
# copy and paste: 	
unique(otu3$Taxa)	

##  [1] k__Bacteria.p__Cyanobacteria   k__Bacteria.p__Tenericutes    	
##  [3] k__Bacteria.p__Fusobacteria    k__Bacteria.p__Bacteroidetes  	
##  [5] k__Bacteria.p__Verrucomicrobia k__Bacteria.p__TM7            	
##  [7] k__Bacteria.p__Actinobacteria  k__Bacteria.p__Spirochaetes   	
##  [9] k__Bacteria.p__Proteobacteria  k__Bacteria.p__Firmicutes     	
## 10 Levels: k__Bacteria.p__Actinobacteria ... 
k__Bacteria.p__Verrucomicrobia	

# Let's subset to just Bacteroidetes and Actinobacteria	
taxaList <- c("k__Bacteria.p__Bacteroidetes", 
"k__Bacteria.p__Actinobacteria")	
	
# Let's make a new subsetted table that is just those phyla	
filtered <- subset(otu3, is.element(otu3$Taxa, taxaList))	



We	plot	things	the	same,	making	sure	not	to	use	the	option	position="fill",	since	our	
abundances	now	should	not	add	up	to	1.	Let's	make	our	labels	a	little	nicer,	as	well.	

ggplot(filtered, aes(x = Sex, y = RelativeAbundance, fill=Taxa)) + 	
  geom_bar(stat="identity") + 	
  labs(y = "Relative Abundance") + 	
  scale_fill_discrete(labels = c("Actinobacteria", "Bacteroidetes")) + 	
  scale_x_discrete(labels = c("Female", "Male"))	

	

There	are	almost	unlimited	parameters	that	you	can	play	with	to	change	the	actual	look	of	your	
plots.	Below	we	use	theme_bw()	to	make	the	background	white,	and	modified	the	colors	by	
making	a	color	variable	cols	that	we	use	to	color	the	different	taxa	with	
scale_fill_manual().	

cols <- c("purple","yellow")	
	
#Note that we have to use scale_fill_manual() instead of scale_fill_discrete 	
# to specify colors	



ggplot(filtered, aes(x = Sex, y = RelativeAbundance, fill=Taxa)) + 	
  geom_bar(stat="identity") + 	
  labs(y = "Relative Abundance") + 	
  scale_x_discrete(labels = c("Female", "Male")) +	
  theme_bw() + 	
  scale_fill_manual(labels = c("Actinobacteria", "Bacteroidetes"), 
values=cols)	

	



Differentiated	OTUs	in	R	
We	can	test	for	taxa	or	OTU	that	are	differentially	abundant	across	sample	types.	To	do	this,	we	
need	to	first	transform	our	data	out	of	the	simplex.	This	means	we	want	to	go	from	working	
with	compositional	data	to	non-compositional	data.	

Inputs	
The	input	data	you	need	include	the	metadata	and	your	OTU	table	that	has	low	depth	samples	
removed.	Don't	use	the	rarefied	OTU	table.	The	tables	should	be	subsetted	and	ordered	for	
sample	ID.	

First	we	will	take	the	taxonomy	out	of	the	OTU	table,	filter	low	abundant	OTUs	and	low	
occurring	OTUs:	

# We can store taxonomy and which OTUs they are to use for later	
# drop=F makes sure it stays as a table	
taxonomy_table <- otu_low2[,"taxonomy",drop=F] 	
	
#Keep only the samples, drop taxonomy from table	
otu_low3 <- otu_low2[, ! names(otu_low2) =="taxonomy"]	
	
#Filter OTUs that are in low abundance	
#Change those less than 1/1 millionth of read depth to 0	
otu_low3[otu_low3 < sum(colSums(otu_low3))/1000000] <- 0	
	
#Change singletons to 0 (needed for low depth OTU tables)	
otu_low3[otu_low3 < 2] <- 0	
	
#Filter the OTU table to keep OTUs in at least 5% of samples	
otu_low3 <- otu_low3[rowSums(otu_low3 > 0) > (0.05*ncol(otu_low3)),]	

Now	we	will	transform	the	data	using	a	centered	log-ratio	transformation.	This	needs	the	
robCompositions	package.	

library(robCompositions)	

## Warning: package 'robCompositions' was built under R version 3.3.2	

## Loading required package: robustbase	

## Warning: package 'robustbase' was built under R version 3.3.2	

## Loading required package: data.table	

## 	
## Attaching package: 'data.table'	



## The following objects are masked from 'package:reshape2':	
## 	
##     dcast, melt	

## Loading required package: e1071	

## Warning: package 'e1071' was built under R version 3.3.2	

## Loading required package: pls	

## Warning: package 'pls' was built under R version 3.3.2	

## 	
## Attaching package: 'pls'	

## The following object is masked from 'package:stats':	
## 	
##     loadings	

## sROC 0.1-2 loaded	

## 	
## Attaching package: 'robCompositions'	

## The following object is masked from 'package:robustbase':	
## 	
##     alcohol	

#Convert any 0 to 0.65 to allow for CLR transform	
#Ref: Palarea-Albaladejo J, et al. 2014. JOURNAL OF CHEMOMETRICS. A bootstrap 
estimation scheme for chemical compositional data with nondetects. 28;7:585–
599.	
otu_low3[otu_low3 == 0] <- 0.65	
    	
#Centered log-ratio transform for compositions	
#Ref: Gloor GB, et al. 2016. ANNALS OF EPIDEMIOLOGY. It's all relative: 
analyzing microbiome data as compositions. 26;5:322-329.	
	
#convert to samples as rows	
otu_table <- t(otu_low3)	
	
#Centered log-ratio tranform the data 	
otu_table <- cenLR(otu_table)$x.clr  	

Test	For	Differences	
Now	our	otu	table	has	samples	as	rows	and	OTUs	as	samples.	We	can	now	loop	through	the	
OTUs	and	test	for	differences	according	to	our	metadata.	Lets	test	for	differences	by	bodysite.	



Because	we	transformed	our	data,	we	can	now	use	parametric	tests	to	look	for	differentiated	
OTUs.	We	can	use	ANOVA	or	t-test	depending	on	the	number	of	groups	to	test.	

# Let's test the first OTU (first column) in the OTU table	
# What is the name of this OTU? We can look it up in our table	
# We pick the row we want using the otu id in the column	
this_taxa <- taxonomy_table[colnames(otu_table)[1],"taxonomy"]	
this_taxa	

## [1] "k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; 
f__Lactobacillaceae; g__Lactobacillus; s__"	

# Now lets run the test using the first column and according to bodysites in 
the metadata	
aov_test <- aov(otu_table[,1] ~ metadata$BodySite)	
summary(aov_test)	

##                   Df Sum Sq Mean Sq F value   Pr(>F)    	
## metadata$BodySite  4  47.77  11.942   27.95 1.91e-15 ***	
## Residuals         97  41.44   0.427                     	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

The	output	from	aov()	is	more	complicated	than	kruskal.test().	aov()	output	is	a	list	that	
includes	information	about	the	degrees	of	freedom	(Df),	the	Sum	of	Squares	(Sum Sq),	the	
Mean	Square	(Mean Sq),	the	F	statistic/ratio	(F value);	and	the	P-value	(Pr(>F)).	For	now,	we	
are	interested	in	the	p-value,	which	can	be	indexed	from	summary(aov_test)	with	
summary(aov_test)[[1]][1,5].	

summary(aov_test)[[1]][1,5]	

## [1] 1.913061e-15	

Let's	plot	this	example	and	see	what	it	looks	like.	

# Because ggplot likes to have all the data in one table, let's make a new 
table to plot with	
plot_table <- data.frame(otu_table)	
#Note that this will store and x infront of all the numerical column names	
plot_table$BodySite <- metadata$BodySite	
	
#store which column (header) you want to plot 	
this_otu <- colnames(plot_table)[1]	
	
# We can also store its name	
# will split the taxonomy based on the ";"	



# Then take the last two values (genus and species) to shorten the name	
name = strsplit(this_taxa, ";", fixed=T)[[1]]	
names_tail = tail(name, n=2)	
	
# This will plot the transformed abundnces for each body site	
# Note that we have to use aes_string() because we are filling in the y 
column header with a string	
ggplot(plot_table) +	
  geom_boxplot(aes_string(x="BodySite", y=this_otu, fill="BodySite")) +	
  scale_fill_manual(values = c("tomato", "darkorchid4", 
"gold","tan4","dodgerblue")) +	
  scale_x_discrete(labels=c("ear fold", "vagina", "saliva", "stool", 
"plaque")) +	
  labs(y=names_tail)	

	



Test	All	Taxa	
Using	for-loops	we	can	apply	this	test	to	all	of	the	OTUs	in	our	table.	In	the	loop,	the	
transformed	abundance	of	each	OTU	for	all	samples	will	be	assigned	to	the	variable	'y',	the	
dependent	variable.	The	next	line	in	the	loop	calls	the	aov()	function,	and	the	last	line	assigns	
each	p-value	to	a	pvals	vector.	

#The first step is to make an empty vector that will store our p-values.	
pvals <- c()	
	
#Loop through each column except the last (because it's body site)	
for(i in 1:(ncol(plot_table)-1)){	
  aov_out <- aov(plot_table[,i] ~ plot_table$BodySite)	
  pvals[i] <- summary(aov_out)[[1]][1,5]	
}	

Find	Significant	p-Values	
Let's	see	how	many	p-values	are	significant	for	each	covariate.	We	will	use	an	alpha	of	0.05.	

sum(pvals < 0.05)	

## [1] 579	

False	Discovery	Rate	
Because	we	did	so	many	statistical	comparisons,	we	need	to	correct	for	type	I	errors	(rejection	
of	a	true	null	hypothesis,	also	known	as	a	false	positive).	Controlling	the	false	discovery	rate	
helps	to	control	the	expected	proportion	of	false	positives.	To	do	this	we	use	the	p.adjust()	
function	with	the	'fdr	parameter.	

pvals.fdr = p.adjust(pvals, "fdr")	

Let's	see	how	many	p-values	are	significant	for	each	covariate	after	the	false	discovery	rate	
correction.	

sum(pvals.fdr < 0.05)	

## [1] 577	

Plotting	Significant	OTUs	
If	we	wanted	to	plot	all	the	significantly	different	taxa	we	could	do	so	with	a	for	loop.	We	will	
plot	the	first	three	significantly	different	taxa	across	the	body	site.	

# Index just the first three significantly different OTUs	
# which() tells us the position of the values that are true (< 0.05), and 
[1:3]	
# takes the first 3.	



first_three <- which(pvals.fdr < 0.05)[1:3] 	
	
# This loops through the significant OTUs, stores their name 	
# and makes a box plot of the transformed abundances of the taxa	
# We then store the plots in a list	
plot_list <- list()	
for(i in 1:length(first_three)){	
  index <- first_three[[i]]	
  this_otu <- colnames(plot_table)[i]	
  this_taxa <- taxonomy_table[i,"taxonomy"]	
  name <- strsplit(this_taxa, ";", fixed=T)[[1]]	
  taxon <- paste(name[6], name[7], sep=" ")	
  # Note that we have to use aes_string() because we are filling in the y 
column header with a string	
  plot_out <- ggplot(plot_table) +	
    geom_boxplot(aes_string(x="BodySite", y=this_otu, fill="BodySite")) +	
    scale_fill_manual(values = c("tomato", "darkorchid4", 
"gold","tan4","dodgerblue")) +	
    scale_x_discrete(labels=c("ear fold", "vagina", "saliva", "stool", 
"plaque")) +	
    labs(y=taxon)	
  plot_list[[i]] <- plot_out	
}	
	
# Now lets print the three plots to a pdf	
# each plot will be a new page in the pdf	
pdf("Diff_taxa.pdf", height=4, width=6)	
for(i in 1:length(plot_list)){	
  plot(plot_list[[i]])	
}	
dev.off()	

## quartz_off_screen 	
##                 2	



PCoA	in	R	
We	use	QIIME	to	calculate	our	distance	matrices	using	beta_diversity.py	or	
beta_diversity_through_plots.py	command.	We	then	can	use	R	to	make	2D	PCoA	plots	of	
this	data.	Let's	start	with	the	packages	we	need	to	load.	If	these	are	not	installed	you	can	install	
them	first	with	install.packages().	

library(ape)	
library(vegan)	
library(ggplot2)	

Load	Data	
You'll	need	to	have	your	beta	diversity	and	metadata	files	loaded	and	subsetted	to	the	
correct	number	and	order	of	samples.	

Principal	Coordinates	Analysis	
Now	we	can	use	the	function	pcoa()	from	the	R	package	ape	to	actually	calculate	our	principal	
coordinate	vectors.	To	make	plotting	easier,	we	save	the	vectors	as	a	data	frame,	set	up	new	
column	titles,	and	add	a	column	of	sample	IDs.	

# Run the pcoa() function on the beta diversity table,	
# and store the vectors generated as a dataframe 	
PCOA <- data.frame(pcoa(beta)$vectors)	
	
# If you look at the PCOA table, you'll see the column names 	
# are the 'axes' and the row names are sample IDs. We want them to 	
# be labeled "PC" instead of "axis"	
	
# We will make a vector with place holders	
new_names <- rep("", ncol(PCOA))	
	
# Fill in first with PC followed by the number (e.g. PC1, PC2, PC3...)	
for(i in 1:ncol(PCOA)){	
  new_names[i] <- paste("PC",i, sep="")	
}	
	
# Replace the column names of PCOA	
names(PCOA) <- new_names	
	
# Create a column that is SampleIDS for PCOA	
PCOA$SampleID <- rownames(PCOA)	
	
#Create a column that is SampleIDs for the metadata	
metadata$SampleID <- rownames(metadata)	



	
# Merge the metadata and beta diversity	
PCOA <- merge(PCOA, metadata, by = "SampleID")	

Plotting	the	PCoA	
Now	you	have	a	data	frame	that	has	all	of	your	PCOA	vectors	and	all	the	relevant	metadata,	
matched	up	by	sample	ID.	In	this	example	we	will	plot	the	first	two	principal	coordinates	(PC1	
and	PC2).	If	you	remember,	the	first	principal	coordinates	should	explain	the	majority	of	the	
variation	in	the	data.	These	will	be	pretty	simple	scatter	plots.	

# Note that geom_point() makes it a scatter plot where the points 	
# are colored according to BodySite	
ggplot(PCOA) + 	
  geom_point(aes(x = PC1, y = PC2, color = BodySite)) + 	
  labs(title="PCoA Plot")	

	

# Now let's add some clusters.  This makes it look great, but can 	
# also be misleading and make us think there are groups when there 	



# aren't. Note that we are using BodySite to color the points and body 	
# AREA to fill the clusters	
ggplot(PCOA) + 	
  geom_point(aes(x = PC1, y = PC2, color = BodySite)) + 	
  labs(title="PCoA and Clusters") + 	
  stat_ellipse(alpha = 0.3, geom="polygon", linetype="blank", aes(x = PC1, y 
= PC2, fill = Description))	

	

Notice	that	the	color	of	the	ellipses	don't	really	match	the	color	of	the	points	they	are	
clustering.	The	colors	are	determined	by	which	order	the	body	area	is	factored	by.	We	can	
make	this	order	line	up	with	the	order	of	the	body	sites.	

# Check order of levels of body area (Description)	
levels(PCOA$Description)	

## [1] "Gastrointestinal_tract" "Oral"                  	
## [3] "Skin"                   "Urogenital_tract"	



# Check order of levels in BodySite	
levels(PCOA$BodySite)	

## [1] "Left_Retroauricular_crease" "Mid_vagina"                	
## [3] "Saliva"                     "Stool"                     	
## [5] "Subgingival_plaque"	

# Reset levels of Bodysite to match levels of body area	
PCOA$BodySite <- factor(PCOA$BodySite, levels = 	
                          c("Stool", "Saliva", "Subgingival_plaque", 	
                            "Left_Retroauricular_crease", "Mid_vagina"))	
	
#Replot	
ggplot(PCOA) + 	
  geom_point(aes(x = PC1, y = PC2, color = BodySite)) + 	
  labs(title="PCoa and Clusters") + 	
  stat_ellipse(alpha = 0.3, geom="polygon", linetype="blank", 	
               aes(x = PC1, y = PC2, fill = Description))	

	



Changing	Plotting	Parameters	
The	following	long	command	throws	a	whole	pile	of	customization	bells	and	whistles	at	ggplot	-	
the	fill	colors	are	tweaked,	the	points	are	a	bit	bigger,	the	font	sizes	are	bigger.	This	is	just	to	
give	you	a	taste	of	all	the	different	aesthetic	options	you	can	play	around	with.	You	should	try	
modifying	each	parameter	and	see	what	it	does	to	the	plot.	

ggplot(PCOA) + 	
    stat_ellipse(alpha = 0.3, geom="polygon", linetype="blank", 	
                 aes(x = PC1, y = PC2, fill = Description)) + 	
    geom_point(size = 3, aes(x = PC1, y = PC2, color = BodySite)) + 	
    labs(title="Human Microbiome Betadiversity") + 	
    scale_color_discrete(name = "Body Site", 	
          labels = c("Ear Fold","Vagina", "Saliva", "Stool","Plaque")) + 	
    scale_fill_hue(h.start = 20,	
          name = "Body Area", 	
          labels = c("GI Tract", "Oral","Skin", "Urogenital Tract")) + 	
    theme(panel.background = element_rect(color = "grey97"), 	
          plot.title = element_text(size = 16), 	
          axis.title = element_text(size = 14), 	
          axis.text = element_text(size = 12),	
          legend.title = element_text(size = 14),	
          legend.text = element_text(size = 12)) + 	
          theme_bw() +	
    guides(color = guide_legend(override.aes = list(fill = "grey97", size = 
4)), 	
           fill = guide_legend(override.aes=list(shape = NA)) )	



	

Testing	for	Signifcant	Differences	
Just	like	we	did	for	alpha	diversity,	we	can	test	for	significant	differences	in	beta	diversity.	For	
example,	let's	say	we	want	to	test	for	significant	differences	between	body	sites	with	the	
Unweighted	UniFrac	data.	We	already	loaded	that	data	when	ran	it	through	the	pcoa()	
function	above.	But	since	we	are	learning	let's	load	it	again	so	we	can	get	comfortable	with	the	
code.	

adonis	
adonis	is	a	non-parametric	statistical	test,	which	means	it	uses	permutations	of	the	data	to	
determine	the	p-value,	or	statistical	significance.	

It	requires:	
*	a	distance	matrix	file,	such	as	a	UniFrac	distance	matrix	
*	a	mapping	file,	and	a	category	in	the	mapping	file	to	determine	sample	grouping	from	

It	computes	an	R2	value	(effect	size)	which	shows	the	percentage	of	variation	explained	by	the	
supplied	mapping	file	category,	as	well	as	a	p-value	to	determine	the	statistical	significance.	



More	information	of	the	adonis	test	can	be	found	here:	
http://qiime.org/tutorials/category_comparison.html,	
http://cc.oulu.fi/~jarioksa/softhelp/vegan/html/adonis.html	

# Turn the beta table into resemblance matrix using as.dist() 	
beta_dist = as.dist(beta)	
	
# Test for a significant difference across all groups.  	
# This will run an ADONIS test.	
ad = adonis(beta_dist ~ metadata[,"BodySite"], data=metadata, 
permutations=999)	
ad	

## 	
## Call:	
## adonis(formula = beta_dist ~ metadata[, "BodySite"], data = metadata,      
permutations = 999) 	
## 	
## Permutation: free	
## Number of permutations: 999	
## 	
## Terms added sequentially (first to last)	
## 	
##                         Df SumsOfSqs MeanSqs F.Model      R2 Pr(>F)    	
## metadata[, "BodySite"]   4    12.725  3.1811  15.789 0.39433  0.001 ***	
## Residuals               97    19.544  0.2015         0.60567           	
## Total                  101    32.269                 1.00000           	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

Note:	
Pr	indicates	that	at	an	alpha	of	0.05,	the	grouping	of	samples	by	'BodySite'	is	statistically	
significant.	

The	R2	value	indicates	that	approximately	39%	of	the	variation	in	distances	is	explained	by	this	
grouping.	It's	important	because	a	p-value	can	indicate	significance	but	we	must	also	notice	
how	much	of	the	variation	the	input	variables	contribute.	

Now	let's	write	our	output	to	a	file.	

# This takes just the analysis of variance table (aoc.tab) 	
# from the output	
a.table <- ad$aov.tab	
	
# This writes it to a file	



write.table(a.table, file="analysis.txt", quote=FALSE, sep="\t", col.names = 
NA)	


