
Systems

File No. 8370-36
Order No. GC20-1804-3

IBM Virtual Machine
Facility /370:
Command Language Guide
for General Users
Release 2 PLC 13

This publication provides general users with the basic infor
mation they need to use the CP and CMS command
languages of VM/370. General users are those users who
program, test, and execute applications in a virtual machine.

VM/370 (Virtual Machine Facility/370) is an operating
system that manages the resources of a single System/370
computer so that multiple computing systems (virtual
machines) appear to exist. VM/370 consists of a Control
Program (CP), which manages the real computer, a Con
versational Monitor System (CMS), which is a general
purpose conversational time-sharing system that executes
in a virtual machine, and a Remote Spooling Communica
tions Subsystem (RSCS), which spools files to and from
geographically remote locations.

This publication has two parts and several appendixes.
Part 1 is the usage information; it contains the rules for
using the command languages and information about vir
tual disks, CMS files, and virtual machine operation.
Part 2 is the reference information; it describes each of the
CP and CMScommands for general users. The appendixes
include information about the functions of VM/370
commands, problem program debugging, the CMS Batch
Facility, CMS macro instructions, and CMS filetype and
filemode conventions.

Prerequisite Publications

Introduction to Virtual Storage in System/370, Order
No. GR20-4260

IBM Virtual Machine Facility/370: Terminal Users'
Guide, Order No. GC20-181 0

GC20-1804-3 Page Modified by TNL GN20-2659

This edition, together with Technical Newsletter GN20-2659 dated March
31, 1975, corresponds to B~l~~§~ l g1~ 11 (Program Level Change) of the
IBM Virtual Machine Facility/370, and to all subsequent releases unless
otherwise indicated in new editions or Technical Newsletters.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systems,
consult the latest 1~~ ~1§1~~LJ§Q ~nQ ~1§1~~LJ1Q ~i~liQ~!~E~l, Order No.
GA22-6822, and its Yi!1g~1 ~1Q!~~~ ~gEE1~~~n1, Order No. GC20-0001, for
the editions that are applicable and current.

Technical changes and additions to text and illustrations are indicated
by a vertical bar to the left of the change.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, VM/370 Publications, 24 New England Executive Park,
Burlington, Massachusetts 01803. Comments become the property of IBM.

© copyright International Business Machines Corporation 1972, 1973,
1974, 1975

This publication is an introduction to, and
a user's guide and reference manual for,
all general users of the VM/370 command
languages (CP and CMS) •

It contains only those commands
available for general users; other commands
are listed in the publications !~~ Virtual
~~£h!B~ ~~f!1!!IL11Q: Q£~!~!2!~§ -Guide:
Order No. GC20-1806, IBM Virtual Machine
~~£!l!1ILllQ: §I§!~! f!Qg!~~~~!~§ -Guide:
Order No. GC20-1807, and !~~ vIrtual
~~£~!n~ ~~£!l!!IL11Q: ~~~Q!~ 2~QQ!Ing
~2~~Yn!£~!!Qn§ 2Y~§I§!~m (~2~2) ~§~!~§
~Y!£~' Order No. GC20-1816.

The publication is organized in two
parts: "Part 1: Usage Information" and
"Part 2: Reference Information".

Part 1 has six sections:

"section 1: Introduction and General
Concepts" is a summary of general concepts
you should be familiar with when you are
using VM/370.

"Section 2: The VM/370 CP and CMS
Command Languages" describes the VM/370
command environments, the general structure
of the command language, and, in general,
how to use the features of the VM/370
command languages to help you solve
programming problems.

"Section 3: CMS Virtual Disks and How to
Use Them" describes the virtual disk system
for your virtual machine and how to use
it.

"Section 4: The CMS
describes the file as it is
system. This section gives
on how to create and name a
are used in the system, and
OS data sets and DOS files.

File System"
used in the CMS
you information
file, how files
how CMS handles

"Section 5: Writing and Executing a
Sample Program US1ng CMS" is an
introduction to the VM/370 interactive
programming environment. In this section,
you are given a program that you can enter
at your terminal as you read the book.
Together with the information in the four
preceding sections, this sample program
should provide you with the basic
information you need to use your virtual
machine and its interactive capabilities.

"section 6:
describes the

Virtual Machine
operation of

Operation"
a virtual

GC20-1804-3 Page Modified by TNL GN20-2659

Preface

machine. It includes information about the
virtual machine console, attaching devices,
handling tape drives, loading operating
systems, spooling the console, reading
cards, printing, punching, disconnecting
the terminal, and alternating execution of
operating systems in one virtual machine.

Part 2 is in two sections:

"Section 7: Format and Usage Rules for
CMS Commands" and "Section 8: Format and
Usage Rules for CP Commands" provide you
with all the information you need to use
the commands and facilities of VM/370.
Also included is a summary of the
notational conventions used to describe the
commands.

The "Appendixes" include more reference
information. They include a list of the
functions performed by VM/370 commands,
information on how to debug using VM/370,
how to use 'the CMS Batch Facility, a list
of macros you can use with the VM/370
assembler, a chart showing the filemodes
related to files manipulated by CMS
commands, and a list of filetypes reserved
by VM/370.

In this publication, the
terminology is used:

following

~ "3330 series" is used to refer to the
IBM 3330 Disk Storage Models 1, 2, and
11, and the IBM 3333 Disk Storage and
Control Models 1 and 11.

• 2305 refers to the IBM 2305 Fixed Head
Storage, Models 1 and 2.

I. 3270 refers
station.

to the 3277 Display

• Any information pertaining to the IBM
2741 terminal also applies to the IBM
3767 terminal unless otherwise noted.

For a glossary of VM/370 terms see the
!]~ !!!!~~1 ~~£~!~ ~~f!!!!IL11Q: Q!~§§~!I
~nQ ~~§!~! !nQ~!, Order No. GC20-1813.

PREREQUISITE PUBLICATIONS

You should be familiar with the information
in the publications listed on the front
cover before you use this publication.

If the IBM 3767 Communication Terminal
is a virtual console, the publication !~~
1167 Q£~!~!Q!~§ §~!g~, Order Ho. GA18-2000,
is also a prerequisite.

COREQUISITE PUBLICATIONS

The information in the following
publications describes certain VM/370
facilities in greater detail and with more
examples than can be contained in this
pUblication:

~~!I ~~!g~, Order Ho. GC20-1805

~1§!~! R!Q9I~!~!~§ §~ide, Order No.
GC20-1807

~l§te! ~~SSgg~§, Order Ho. GC20-1808

References in text to titles of
prerequisite and corequisite VM/370
publications will be given in abbreviated
form.

VM/370 MEASUREMENT FACILITY

!g!: Program Feature

! new class G coamand, INDICATE, allows you
to display, at your terminal, certain
system load conditions and your virtual
machine's use of system resources. The
following changes to this aanual reflect
this support:

• "section 8: Format and Usage Rules for
CP Commands" is updated to include the
new INDICATE command.

• "Figure 34. Commands Accepted from Each
User Class" is updated.

•

•

"Figure 35.
updated.

CP Command Summary"

"Figure 44. Commands for System
Hardware Analysis" is updated.

VM/VS HANDSHAKING FEATURE

!g!: programming Feature

is

and

The VM/VS Handshaking feature is a
communication path between VM/370 and
OS/VS1 that makes each system control
program aware of certain capabilities and
requirements of the other. The following
changes to this manual reflect this
support:

• A new operand, PAGEl, is added to the CP
SET command.

• The response for the CP QUERY SET
command line is updated.

• "Figure 34. Commands Accepted from EAch
User Class" is updated.

• "Figure 41 Commands for Virtual Machine
Control is updated.

GC20-1804-3 Page Modified by TNL GN20-2659

summary of Amendments
for GC20-1804-3

VM/370 Release 2 PLC 13

!g!: Program Feature

VM/370 now supports the IBM 3270
Information Display System as a remote
virtual machine console attached via
nonswitched point-to-point lines to a 2701
Data Adapter Unit, 2703 Transmission
Control Unit, or 3704/3705. Communications
Controller in emulation aode. The remote
3270 user also has the capability of
copying an entire screen display on a 3284,
3286, or 3288 Printer at the remote
location.

The following changes to this manual
reflect this new support:

• "Section 7. Format and Usage Rules for
CMS Commands" is updated to reflect
additional operands and subcommands of
the EDIT command.

• "Section 8. Format and Usage Rules for
CP Commands" is updated to include the
COpy function of the SET command.

• "Figure 34. Commands Accepted from Each
User Class", "Figure 36. Commands to
Control a Terminal Session", and "Figure
42. Commands to Control VM/370" are
updated to reflect additional operands
to the NETWORK, QUERY, and SET
commands.

NEW OPERANDS FOR SET COMMAND

!g!: Program Feature

Two new operands to the SET command
described in "Section 8: Format and Usage
Rules for CP Commands" allow the virtual
machine user to enable and disable the
EeMODE and/or ISAM options, dynamically.

GC20-1804-3 Page Modified by TNL GN20-2659

NEW OPERAND FOR SLEEP COMMAND

!g~: Program feature

A delay time interval may now be specified
as an operand on the SLEEP command line.
The use of this optional operand causes the
virtual machine to automatically awaken at
the end of the specified time interval.
The new command format is described in
"Section 8: Format and Usage Rules for CP
Commands".

MISCELLANEOUS

fh~~ggQ: Documentation Only

This Technical Newsletter contains other
minor technical and typographic changes.

NEW DEVICE SUPPORT

!&!! Program Feature

The IBM 3340 Direct Access Storage Facility
is now supported by VM/370. This support
includes Rotational Position Sensing (RPS)
and the 3348 Data Module, Models 35, 70 and
70F (supported as a Model 70) • The
following changes to this manual reflect
this support:

• The control
the DASD
updated.

statements and
Dump Restore

messages of
program are

• T3340 is a new operand for the CP DEFINE
command.

• The device type field in the response
for the CP QUERY VIRTUAL DASD command
line is updated.

VM/370 supports the IBM 3767 Communication
Terminal (at 300 bps) operating as an IBM
2741 Communication Terminal only. No
coding changes were necessary; the
following changes to this .anual reflect
this support:

• The list of prerequisite publications in
the preface is updated.

• "The Terminal: Your Virtual Console"
discussion in "Section 5: Writing and
Executing a Program Using VM/370" is
updated.

• The discussions of the BLIP and AUTOREAD
functions of the CMS SET command are
updated.

• The discussion of the APL operand of the
CP TERMINAL command is updated.

READING DOS FILES FROM DOS DISKS

!~!: Programming Feature

Using OS macros, CMS can now read DOS files
that reside on DOS disks. No DOS macros
are simulated. The following changes to
this manual reflect this support:

Summary of Amendmen~s
for GC20-1804-3

VM/370 Release 2 PLC 11

• "Section 4: The CMS File System" is
updated.

• The eMS ACCESS, FILEDEF, LISTDS,
MOVEFILE, and STATE command descriptions
in "Section 7: Format and Usage Rules
for CMS Commands" ar~ updated.

• "Figure 37. Commands to Develop Programs
and Process Data" is updated.

CMS ZAP SERVICE PROGRAM ENHANCED

!g!: Program Feature

The CMS ZAP service program is enhanced so
that it can now modify or dump TXTLIB and
MODULE files in addition to LOADLIB files.
"Figure 13. CMS Command Summary" is updated
to reflect this support. This service
program is intended for use by system
support personnel only.

NEW SUBSYSTEM SUPPORTED AS VM/370 COMPONENT

!~!: Component

The Remote Spooling Communications
Subsystem (RSCS) is nov supported as a
VM/370 component. RSCS transmits spool
files across a teleprocessing network to
and from remote stations. Re.ote stations
supported include HASP- and ASP-type batch
processors and work stations. The new
component is a control program designed to
run in a virtual machine dedicated to
remote spooling. The following changes
reflect this support:

• The Preface is updated.

• "Section 1: Introduction and General
Concepts" is updated.

•

•

•

"Figure 34. Com.ands Accepted fro. Each
Privilege Class" is updated.

"Figure 35. CP
updated.

Command summary" is

The CP CHANGE, DEFINE, DETACH, ORDER,
SET, SPOOL, and TRANSFER com.and
descriptions are updated.

• A new CP command, TAG, is described.

• "Figure 36. Co.mands to
Terminal Session" is updated.

control a

• "Figure 43. Co •• ands for
Control" is updated.

• "Appenidx C: Using
Facility" is updated.

the CMS

ENHANCEMENT FOR THE VIRTUAL MACHINE

!~!: Program feature

Spooling

Batch

Programs using block multiplexer channel
operations (for example, DOS/VS, VS1, and
VS2) can now be executed in block
multiplexer mode on the virtual machine.
This virtual machine option may increase
the throughput of the virtual machine's
operating system because it allows the
overlap of SIOs to virtual devices without
encountering the channel busy condition.
The following changes to this publication
reflect this support:

• "Figure 34. Com.ands Accepted from Each
Privilege Class" is updated.

• The CP DEFINE and QUERY commands have a
new operand, CHANNELS.

MISCELLANEOUS

£h~ng~~: Documentation Only

Numerous minor editorial changes have been
made; these are too numerous to mention.
However, a list of the major editorial
changes and all miscellaneous technical
changes follows.

"Part 1: Usage Information" has many
editorial changes. In addition, several
sections about the operation of virtual
machines and CMS, which were in the !~LllQ:
f!~nn!ng ~nQ ~I2~~! Q~n~!~!!g~ Q~!Q~, are
now included in Part 1:

• Additional information about the
terminal mode of operation, attention
interrupts, and the CMS command search
order is included in "Section 2: The
VM/370 CP and CMS Command Languages."

• Additional information about accessing
CMS disks is added to "Section 3: CMS
Virtual Disks and How to Use Them."

• Additional information about compiling
programs under CMS and tape handling in

•

•

CMS is included in "Section 4: The CMS
File System."

Additional information about entering
the continuation character in column 72
is included in "Section 5: Writing and
Executing a Sample Program using CMS."

A new section, "Section 6: Virtual
Machine Operation" is added to Part 1 •

"Part 2: Reference Information" has the
following changes:

• The "Notational Conventions" section is
expanded.

•

•

•

"Figure 13. CMS Command
contains editorial changes.

summary"

The following CMS command descriptions
are clarified:

-ACCESS
-ASSEMBLE
-COMPARE
-COPYFILE
-DDR control statements
-EDIT
-ERASE
-EXEC
-FILEDEF
-FORMAT
-GENDIRT
-GENMOD
-GLOEAL
-INCLUDE (Two new options, DUP and

NODUP, are described)
-LISTFILE
-LOAD (Two new options, DUP and NODUP,
are described)

-PRINT
-PUNCH
-QUERY
-READCARD
-RELEASE
-RENAME
-RUN
-SET
-START
-STATE
-SVCTRACE
-SYNONYM
-TAPE
-TAPPDS
-TXTLIB
-TYPE
-UPDATE

"Figure 17. Summary of EDIT Subcommands
and Macros" contains editorial changes.

• Two previously undocumented immediate
commands RO and SO are now included. SO
temporarily suspends the recording of
trace information and RO restarts
tracing that was suspended via the SO
command.

•

•

"Figure 33. CP privilege Class
Descriptions" is updated.

"Figure 34. Commands Accepted from Each
Privilege Class" is reformatted.

• "Figure 35. CP Command summary" is
upda ted.

• The following CP command descriptions
are clarified:

-'CP
-CLOSE
-CP
-DEFINE
-DISCONN
-DISPLAY
-DUMP

•

•

-EXTERNAL
-IPL
-LINK
-LOGOFF
-LOGON
-ftESSAGE
-QUERY
-SET
-TERftINAL
-TRACE
-TRANSFER

The RDTAPE and PRINTL macro descriptions
in "Appendix D: CftS ftacro Instructions"
are clarified.

"Figure 48.
updated.

Reserved Filetypes" is

CMS EDITOR LINE RENUMBERING FEATURE

!~!: Program Feature

A new CMS Editor subcommand recomputes
the line numbers of VSBASIC and FREE FORT
source files. "Figure 13. Summary of
EDIT Subcommands" and the EDIT command
error messages in "Section 6: Format
and Usage Rules for CMS Commands" were
changed to support this feature.

IBM 3704/3705 COMMUNICATIONS CONTROLLERS
NETWORK CONTROL PROGRAM (NCP) AND
PARTITIONED EMULATION PROGRAM (PEP) SUPPORT

!~!: Program Feature

VM/370 now support all three of the
3704/3705 control programs:

• Emulation Program (EP)
• Network Control program (NCP)
• Partitioned Emulation Program (PEP)

The following
support

changes reflect this

• The Preface is updated to remove the
statement limiting support of the
3704/3705.

e "Figure 9. eMS Com.and Summary~ in
"Section 6: Format and Usage Rules
for CMS Commands" is updated.

Summary of Amendments
for GC20-1804-2

as updated by GN20-2640
VM/370 Release 2 PtC 4

• "Figure 31. CP Command Summary" in
"Section 7: Format and Usage Rules
for CP Commands" is updated.

• The DIAL, DISCONN, LOGON and LOGOFF
descriptions in "Section 7: Format
and Usage Rules for CP Commands" are
updated.

• "Figure 38. Commands to control
VM/370" in "Appendix A: Functions of
VM/370 Commands" is updated.

• "Figure 43. Disk Determination" in
"Appendix E: Disk Determination
(Filemode Management)" is updated.

• "Figure 44. Reserved Filetypes" in
"Appendix F: Reserved Filetype
Descriptions" is updated.

MISCELLANEOUS

fh~~~~g: Documentation Only

• The running foot for section 7 is
corrected on the TNL pages to read
"Section 7: Format and Usage Rules
for CP Commands"

• The Index is corrected.

!~!: Documentation Change

Part of the publication has been
changed to include information on
general concepts for 'M/370 users, on
the ep and eMS command languages, on the
CMS disk system, and on the CMS file
system. Also, there is an example
program for use as an introduction to
the interactive processing capabilities
of 'M/370.

£hg~g~g: Documentation expanded

Editorial
throughout
usage.

changes have
the publication

]~~: Documentation Change

been made
to clarify

In section 6, "Format and Usage Rules
for CMS Commands", the error messages
and return codes have been included in
the command descriptions.

Ch~~~~~: Documentation Expanded

SYNONYM COMMAND

Updated to charify use of the command.

Ch~~~~~: Program Feature

ACCESS COtlMAND

Updated to clarify its use with OS
Read/Only disk.

DDR COMMAND

Updated to support 9-track 6250 bpi
tapes and 3330 Model 11 disks.

EDIT COMMAND

Updated to support new subcommands for
graphic display devices.

FILEDEF COMMAND

Updated to reflect new support for
dynamic entry of a data set name and for

Su •• ary of Amendments
for GC20-1804-2

'M/370 Release 2 PLC 1

new options MEMBER
6250 bpi tapes are
FILEDEF.

and CONCAT. Also,
now supported by

GLOBAL COMMAND

Updated to support use
FILEDEF CONCAT option.

MO'EFILE COMMAND

of the new

Updated to include support for accessing
OS data sets.

QUERY COftftAND

Updated to inclUde support for querying
the status of OS disks accessed by CMS.

SET COftftAND

Updated to
conditions
terminal.

include support
for use with

STATE COMftAND

for setting
a display

Updated to include support for verifying
the existence of an OS disk accessed by
CMS.

TAPE COftftAND

Updated to include support for 6250 bpi
tapes.

UPDATE COMMAND

Updated to allow flexibility in format
specification of auxiliary files.

!~!: Program Feature

ASSEMBLE COMMAND

Updated to reflect the new options for
the assembler and to clarify use of the
command.

LISTDS COMMAND

Added to the system: Lists information
about data sets on OS disks accessed by
CMS.

~h~lig~~: Documentation Expanded

* (asterisk) COMMAND

Updated to clarify its use.

ADSTOP COMMAliD

Updated
virtual
ADSTOP.

to clarify use
machine assist

CHANGE COMMAND

Updated to clarify use.

CLOSE COMMAND

Updated to clarify use.

DISCONN COMMAND

Updated to clarify use.

IPL COMMAND

Updated to clarify use.

LOGOFF COMMAND

Updated to clarify use.

LOGON COMMAND

Updated to clarify use.

REWIND COMMAND

Updated to clarify use.

SET COMMAND

Updated to clarify use.

SLEEP COMMAND

Updated to clarify use.

TRACE COMMAND

Updated to clarify use.

of the VM/370
feature with

£h~~g~g: Program Feature

DEFINE COM"AND

Updated to include support
operand. GRAF allows you
teaporary graphic device
virtual aachine.

DISPLAY CO"MAND

for the GRAF
to define a

for your

Updated to allow you to specify a range
of registers or storage.

DUMP COftMAND

Updated to allow you to specify a range
of registers or storage.

MESSAGE COMMAND

Name of the MSG command has been changed
to "ESSAGE.

QUERY COMMAND

Updated to support GRAF, and PFnn
operands. These new operands allow you
to query the status of console spool
files, display terminals, and program
function keys, respectively.

SET COMMAND

Updated to include support for the
ASSIST and PFnn options. ASSIST invokes
the virtual machine assist feature; PFnn
allows you to define functions
associated with program function keys on
a graphic display terminal.

SPOOL COMftAND

Updated to support
character option.
universal spooling
your virtual reader
of spool files.

the * (asterisk)
* specifies a

class which allows
to read all classes

Also, the CLOSE, FOR, and PURGE options
are supported.

TERMINAL COMMAND

Updated to clarify use. Also, updated
to reflect support for the MODE operand,
which allows you to set the mode of your
terminal to either CP mode (Control
Program) or VM (virtual machine).

TRANSFER COM"AND

Updated to support the FROft userid
operand, which allows you to reclaim a
file that you spooled to another user.

!g!: Program Feature

'CP COft!UND

Added to allow you to enter CP commands
from a virtual machine environment
without issuing an interrupt.

ATTN COftftAND

Added to allow an attention interrupt to
be entered at the keyboard.

CP COMMAND

Added to allow entry of
"CP" while processing in
environment.

REQUEST COMftAND

the characters
the CP command

Added to allow you to enter an attention
interrupt at the keyboard of you virtual
console.

PART 1: USAGE INFORMATION •• ~ • •• .9

SECTION 1: INTRODUCTION AND GENERAL
CONCEPTS. • • • • • • • • • • • • • 11

VM/370 Control Program (CP), the
Conversational Monitor System (CMS),
and the Remote Spooling Communications
Subsystem CRSCS). • • • • • • • • • 11
~n~ Virtual Machine. • • • • • • 11
The CP and CMS Command Languages ••• 13

SECTION 2: THE VM/370 CP AND CMS COMMAND
LANGUAGES. • • • • • • • 15

VM/370 Command Environments. • 15
How to Enter CP and CMS Commands • • 16

The Command Name • • • • 16
The Command Operands • • 16
The Command Options. • • 17
Comments in the CP and CMS Command

Languages • • • • • • • 17
Character Set Usage. • • 17

How to Write User-Defined Commands ••• 18
EXEC Commands. • • • • • • • • • • 18
Commands Created by LOAD and GENMOD. • 19

Truncating and Abbreviating Commands •• 19
Synonyms for CMS Commands. • • 20
CMS Command Search Order • • • 20

Interrupting the Execution of a
Command

SECTION 3: CMS VIRTUAL DISKS AND HOW TO

• 22

USE THEM. • • • • • • • • 27
Virtual Disk Identifiers and Addresses • 27

The A-Disk • • • • • • • • • • 27
Disks B through G, Y, and Z. • 27
The S-Disk • • • • • . • • 28

Formatting Virtual Disks • • 28
Virtual Disk Addresses and How They Are
Defined • • • • • • • • • • 28

Permanent Virtual Disks. • • • • • 28
Defining Temporary Virtual Disks • • • 29

Accessing and Releasing Virtual Disks. • 29
Linking to Another User's virtual Disk. 29
Extending One Virtual Disk from Another. 30
Virtual Disk Search Order •••••••• 30
Read/Write Status of Virtual Disks: R/O

and R/W • • • • • • • • • 30

SECTION 4: THE CMS FILE SYSTEM • • • 33
Creating or Defining Files • • • 33
Naming Your Files: The File Identifier • 33

The Filename Field • 33
The Filetype Field • • • • 34
The Filemode Field • • • 34

CMS Filetypes. • • • • • • 35
Filetypes for Assembler and Compiler
Source Files. • • • • • • • • • • 36

Object Files: Filetype TEXT. • • • • • 36
Files with the Filetype LISTING •••• 36
Files with the Filetypes EXEC and

MODULE.. • ••••••••••• 36

Contents

File Groups Created by the Language
Processors •••••••••••••• 37

Using OS Programs and Macros under CMS • 37
Assembling a Program Usinq OS Macros • 39
Executing a Program that Uses OS

Macros ••••••••••• 39
Reading OS Data Sets from OS Disks and

DOS Files from DOS Disks. • • • 40
43
43

using Program Products under CMS •
How to Specify the Filemode Field ••

Specifying Search Order Using the
Filemode Field. • • • •

Libraries •••••••••
CMS Tape Handling. • • • •
CMS unit Record Support ••

Card Reader. • •

SECTION 5: WRITING AND EXECUTING A
SAMPLE PROGRAM USING eMS ••••

Getting Started •••••••••
What You Should Know before You Can

• • 44
• • 44
• • 45
• • 46
• • 46

47
• 47

Use CP and CMS •••••••••••• 47
Contacting VM/370 and Logging On • • • 50
Loading CMS in the Virtual Machine:

The IPL Command. • • • • • • 50.1
Using CMS to Create, Assemble, Load, and
Execute a Program • • • • • • • •• 52

How to Use the CMS Editor. • • • • • • 52
Creating Your Source Records: The

INPUT Subcommand. •• • •••
Other EDIT Subcommands You Need ••
A Sample Program • • • • • • • • •

Creating and Executing Your Program.

53
• • 53
• • 55
• • 56

Input for the Program •••••••
Assembling Your Program ••••••
Loading and Executing the Program. • • 58
Logging Off. • • • • • • • • • •• 58

• • 57
• • 57

SECTION 6: VIRTUAL MACHINE OPERATION •• 59
Virtual System Console • • • 59
Attaching Devices. • 59

Tape Devices • • • • • • • • 60
Loading an Operating system into a

Virtual Machine • • • • • • • •
Spooling Virtual Console I/O • •
Reading Cards in a Virtual Machine •
Printing and Punching in a Virtual

60
61
62

Machine • • • • • • • • • • • • • • • • 63
Disconnecting the Terminal • • • • • • • 64
Using Multiple Consecutive Operating

Systems • • • • • • • • • • • •
Transferring output ••••••
Configurations • • • • • • • •

Execution Control. • • •

PART 2: REFERENCE INFORMATION ••
Notaticnal Conventions •••••

SECTION 7: FORMAT AND USAGE RULES FOR
CMS COMMANDS •••••

CMS Command Summary.
ACCESS • • • • • • •

• • 65
• • 65
• • 67
• • 68

69
• • 69

73
• • 73
• • 78

GC20-1804-3 Page Modified by TNL GN20-2659

ASSEMBLE
CMSBATCH
COMPARE.
COPYFILE •
CP
DDR.

DDR Control Statements
I/O Definition Statements.

DEBUG.
DISK •
EDIT
ERASE.
EXEC •
FILEDEF.
FORMAT
GENDIRT.
GENMOD •
GLOBAL
INCLUDE.
LISTDS
LISTFILE •
LOAD
LOAD MOD.
MACLIB •
MODMAP
MOVEFILE
PRINT.
PUNCH.
QUERY.
READCARD •
RELEASE.
RENAME
RUN.
SET.
SORT
START.
STATE.
SVCTRACE •
SYNONYM.
TAPE •
TAPPDS
TXT LIB
TYPE
UPDATE •
IMMEDIATE COMMANDS

HB •
HO
HT •
HX
RO •
RT •
SO •

SECTION 8: FeRMAT AND USAGE RULES FOR
CP COMMANDS

CP Command Privilege Classes •
CP Command Summary
*.
'CP.
ADSTCP •
ATTN
BEGIN.
CHANGE •
CLOSE.
COUPLE •
CP
DEFINE
DETACH

82
88
89
91

.103

.104

.104

.105

.114

.116
• 118
.125
.127
.132
.142
.145
• 146
.148
.150
• 155
• 157
.161
.169
.170
.175
.176
.179
.181
.184
.189
.192
.193
.195
.197
.200
.202
.203
.204
• 208
.212
.217
.220
.223
.225
.237
.237
.237
.238
.238
.239
.239
.240

.241

.241

.245

.249

.250
• 252
.254
.255
• 256
.258
.261
• 263
• 264
.267

DIAL •
DISCONN.
DISPLAY.
DUMP
ECHO •
EXTERNAL
INDICATE •
IPL.
LINK
LOADVFCB
LOGOFF
LOGON.
MESSAGE.
NOTREADY
ORDER.
PURGE.
QUERY.

.269

.271

.272

.277

.280

.281

.282
.282.3

.284

.287

.288

.290

.292

.293

.294

.295

.296

.297 The QUERY Command for Class G Users.
QUERY Command for All Classes of Users

(Except Class Any) •
READY.
REQUEST.
RESET.
REWIND
SET.
SLEEP.
SPOOL.
STORE.
SYSTEM •
TAG.
TERMINAL •
TRACE.
TRANSFER •

APPENDIXES

APPENDIX A: FUNCTIONS OF VM/370
COMMANDS •

APPENDIX B: DEBUGGING A PROBLEM PROGRAM

.306

.308

.309
.310
.311
.312
.317
.318
.324
.327
.328
.331
.334
.338

.339

.341

WITH V M/370 .351
How To Start Debugging .351

Does A Problem Exist? .351
Identifying The Problem. .351
Analyzing The Problem. .352

How To Use VM/370 Facilities To Debug •• 352
Problem Program ABEND. .353
Unexpected Results in a Problem

Program .353
Problem Program Disabled Loop. .353
Problem Program Enabled Loop. .354
Problem Program Disabled wait. .354
Problem Program Enabled Wait. .355

Comparison Of CP And CMS Facilities For
Debugging. .356

APPENDIX C: USING THE CMS BATCH
FACILITY.

Using The Batch Facility Virtual
Machine •
Input To The Batch Facility Virtual

Machine
Batch Facility Output •

APPENDIX D: CMS MACRO INSTRUCTIONS •
COMPSWT Macro •
FSCB Macro
FSCLOSE Macro.

.357

.357

.358

.360

.363

.365

.366

.367

FSERASE Macro •••
FSOPEN Macro •
FSREAD Macro • • • • •
FSSTATE Macro.
FSWRITE Macro.
HNDEXT Macro •
HNDINT Macro •
HNDSVC Macro •
LINEDIT Macro.
PRINTL Macro •
PUNCHC Macro
RDCARD Macro •
RDTAPE Macro •
RDTERM Macro •

.368

.369

.370
~ 372
.373
.375
.376
.377
.378
.390

")0')
• ...J~L

.393

.394

.396

GC20-1804-3 Page Modified by TNL GN20-2659

REGEQU Macro •
TAPECTL Macro ••
WAITD Macro.
WAITT MacrQ~

WRTAPE Macro •
WRTERM Macro •

APPENDIX E: DISK DETERMINATION

• .397
• .398
• .400
· .401
• .402
• .404

(Filemode Management) • • • • • • • • .405

APPENDIX F: RESERVED FILETYPE
DESCRIPTIONS. • • .407

INDEX. • • • • • • • .413

Figures

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.
Figure 6.

Figure 7.
Figure 8.

Figure 9.
Figure 10.

Figure 11.
Figure 12.

Figure 13.
Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19~

Figure 20.

Character sets and Their
Contents ••••••••••••••••••••• 18
How CMS Searches for the
Command to Execute •••••••••• 21
Effects of Attention
Interrupt While Virtual
Console Is Set to the VM
Terminal Mode •••••••••••••••• 24
Effects of Attention
Interrupt While Virtual
Console Is Set to the CP
Terminal Mode •••••••••••••••• 25
CP and CMS Disk Access ••••••• 31
Determining Pilemode
Numbers •••••••••••••••••••••• 35
OS Macros simulated by CMS ••• 38
CMS Commands Used in
processing Data Sets on OS
Disks and Files on DOS Disks.40
Logical Editing Symbols •••••• 48
Loading an OS/MFT virtual
Machine •••••••••••••••••••••• 61
OS Job Stream Transfer ••••••• 66
Directory Entry for
Alternating Operating
Systems •••••••••••••••••••••• 67
CMS Command Summary •••••••••• 73
COPY FILE Option
Incompatibilities ••••••••••• 99
An Annotated Sample of
Output from the TYPE and
PRINT Functions of the tDR
Program ••••••••••••••••••••• 111
Summary of DEBUG
Subcommands ••••••••••••••••• 115
Summary of EDIT Subcommands
and Macros •••••••••••••••••• 120
Summary of EXEC Control
Statements •••••••••••••••••• 128
summary of EXEC Built-in
Functions ••••••••••••••••••• 130
Valid File Characteristics
for Each Device Type for the
FILEDEF Command ••••••••••••• 134

Figure 21.

Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

Figure 29.
Figure 30.

Figure 31.

Figure 32.
Figure 33.

Figure 34.

Figure 35.
Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.
Figure 41.

Figure 42.
Figure 43.

Figure 44.

Figure 45.

Figure 46.

Figure 47.
Figure 48.

Resolution of Unresolved
References •••••••••••••••••• 152
SLC statement Format •••••••• 164
LDT Statement Format •••••••• 165
ICS Statement Format •••••••• 165
REP Statement Format •••••••• 166
ENTRY Statement Format •••••• 166
LIBRARY Statement Format •••• 167
Default Device Attributes
for MOVEFILE Command •••••••• 177
Header Card Format •••••••••• 182
Format of the READ Control
Card •••••••••••••••••••••••• 191
Summary of SVC Trace Output
Lines ••••••••••••••••••••••• 207
System and User Truncations.211
CP Privilege Class
Descriptions •••••••••••••••• 242
Commands Accepted from Each
User Class •••••••••••••••••• 243
CP Command Summary •••••••••• 245
Commands to Control a
Terminal Session •••••••••••• 341
Commands to Develop Programs
and Process Data •••••••••••• 342
Commands to Test and Debug a
Program ••••••••••••••••••••• 343
Commands to Update Data
Files ••••••••••••••••••••••• 344
Commands to Control Disks ••• 345
Commands for Virtual Machine
Control ••••••••••••••••••••• 346
Commands to Control VM/370 •• 348
Commands fer Spooling
Control ••••••••••••••••••••• 349
Commands for System and
Hardware Analysis ••••••••••• 350
Comparison of CP and CMS
Facilities for Debugging •••• 356
A Sample Listing of a
Program that Uses CMS
Macros •••••••••••••••••••••• 364
Disk Determination •••••••••• 405
Reserved Filetypes •••••••••• 407

Part 1: Usage Information

This part of the publication contains
use all of the facilities of VM/370.

rules and information to help you
It contains six sections.

"Section 1: Introduction and General Concepts" is a summary of
general concepts you should be faailiar with when you are using VM/370.

"Section 2: The VM/370 CP and CMS Command Languages" describes the
V~/370 command environments, the general structure of the command
language, and how you can use the features of the VM/370 command
languages to aid you in solving programming problems.

"Section 3: CMS virtual Disks and Bow to use Them" describes the
virtual disk system for your virtual machine and how to use it.

"Section 4: The CMS Pile system" describes the file as it is used in
the CMS system. This section gives you information on how to create and
name a file, how these files are used in the system, and how CMS handles
OS data sets and DOS files.

"Section 5: Writing and Executing a Sample Program Using CMS" is an
introduction to the Vft/370 interactive programming environment. In this
introductory section, you are given a program that you can enter at your
terminal as you read the book. Together with the information in the four
preceding sections, this sample p~ogram should provide you with the
basic information you need to use your virtual machine and its
interactive capabilities.

"Section 6: virtual ftachine Operation" contains
information about operating virtual machines. This
generally applies to non-CftS virtual machines and includes
alternately executing CMS and another operating system
virtual machine.

additional
information

an exaaple of
in the same

Part 1: Usage Information 9

This section is a summary
when vou are usinq VM/370.
which-describe how to use
system.

Section I: Introduction and General Concepts

of general concepts that are useful to you
It is a proloque to the followinq sections,
virtual disks, -and how to use the CMS file

virtual Machine Pacility/370 (VM/370) is a system control program
that controls "virtual machines." A virtual machine is the functional
equivalent of a real machine, but where the real machine has lights to
show status, and buttons and switches on the real system console to
control it, the virtual machine has a virtual system console to display
status and a command language to start operations and control them. The
virtual system console is your terminal; there are three command
languages, the CP, CMS, and RSCS Command Languages. using your terminal
(as a virtual console) and the command languages, you have many of the
capabilities of the operator of a real machine.

VM/370 Control Program (CP), the Conversational Monitor System (CMS),
and the Remote Spooling Communications Subsystem (RSCS)

VM/370 has three components: the Control Program (CP), the
Conversational Monitor System (CMS) , and the Remote spooling
Communications Subsystem (RSCS). CP controls the resources of the real
machine; that is, the physical machine in your computer room. CMS is the
conversational operating system designed specifically to run under CP.
RSCS is a SUbsystem designed to supervise transmission of files across a
teleprocessing network controlled by CP. This section describes CP and
CMS; for information about RSCS, see the !~LJ1~: ~~!g!~ ~Egg!!~g
~Q!!YBi£~!igB§ ~Y~§~§l~! (~~~~) Q§~~~§ gy!g~.

THE VIRTUAL MACHINE

The virtual machine is a software counterpart of a real machine. Its
control program can be any of those supported by VM/370. These are
listed in the !~LJ1Q: !B!~ggY£!!QB.

The virtual machine components are the virtual
terminal), a virtual CPU, virtual storage, and
input/output (I/O) devices.

system console (your
virtual channels and

Your virtual machine is a logical extension of the real computer. The
virtual machines are defined in the VM/370 directory, which is a list of
all the virtual machines logically extended from the real machine. Each
entry in the VM/370 directory lists the configuration of a virtual
machine.

A virtual disk is a logical subdivision of a real disk. Por practical
purposes, it is the same as a real disk on a real machine. Virtual disks

Section 1: Introduction and General Concepts 11

GC20-1804-3 Page Modified by TNL GN20-2659

have their own device addresses and cylinder numbers. Each CMS virtual
disk has a Master File Directory that lists each of the files contained
on it.

The size of your virtual disks is defined in the VM/370 directory
entry for your virtual machine. The virtual disk can be equal to or
less than the size of the real disk. For CMS, the maximum size of a
virtual disk is less than the real disk and varies with the device type.
If you need more space, your system programmer can give it to you by
redefining the number of cylinders, by defining more disks in your
VM/370 directory entry; or you can assign temporary disk (T-disk) space
for your virtual machine. with CMS, you can have up to ten virtual
disks logically attached to your virtual machine. These ten disks are
called the A, B, C, D, E, F, G, S, Y, and Z disks and are described in
more detail in section 3.

The file is the essential data unit in the VM/370 system. Programs,
program input, procedures, and any other type of data unit you want to
use on the system, are files in the VM/370 system.

In CMS, a file is a logically related group of records that you
create. Using the EDIT command, you can create and modify a file
yourself in the CMS command environment; using FILEDEF, you can define
os data sets and DOS files as files for use under CMS.

On a real machine, spooling is, in general, the process of transmitting
a unit record file from the CPU' to a peripheral device for processing or
from a device to the CPU for processing. When the file is sent to the
peripheral device, the CPU is free for aore work.

The concept of spooling also applies to virtual unit record I/O
devices. You process virtual unit record files in your virtual machine
and, while they are processing, transmit them to your virtual printer or
to your virtual punch. Your virtual machine is then available for more
work. This collection of data directed to your virtual printer or punch
is called a spool file. The output spool file can be transmitted to its
counterpart on the real machine, to your own reader, or to the reader of
another virtual machine. Thus, the spool file is waiting to be
processed by a real device or another virtual machine.

VM/370 expands the concept of spooling to include the creation of a
spooled console log which is a record of all of your virtual console
input/output, including CP commands and responses. This console spool
file can be sent to the real printer when you want a copy of it.

The Remote Spooling Communications subsystem (RSCS) lets you transmit
files across a teleprocessing network to geographically remote locations
via the CP TAG and SPOOL commands. For details on how the network is
structured and operated, see the !~Ll1Q: ~~~Q!~ §EQQ!!ng £Q!~Yn!£g!!Qn2
§~B2~2!~! (]~~~) Q2~~~2 g~!g~.

12 IBM VM/370: Command Language Guide for General Users

THE CP AND CftS COftftAND LANGUAGES

You control your virtual aachine using the CP and CftS co.aand languages.
Any virtual machine can use the CP coamand language; you can use the CftS
command language only if your virtual =achine operating sfstea is ens.

The CP co.mand language gives you control of the devices attached to
your virtual machine. ftany of the functions of a real coaputer console
are simulated via the CP coaaand language. Also, there are coa.ands
that provide spooling and disk-sharing capabilities.

CP comaands fall into one or aore privilege classes; this pUblication
provides information on only those coa.ands that can be used by the
general user (class G) or any user (class any). General users are those
users who program, test, and execute applications on a virtual aachine.
The CP command privilege classes available to your virtual aachine are
defined in your Vft/370 directory entry.

Using CP commands, you can send messages to the Vft/370 systea
operator and other users, modify the configuration of your virtual
aachine, and use the virtual machine input/output devices. CP coaaands
are available to all virtual machines under Vft/370. You can invoke these
commands when you are in the virtual machine environaent using CftS (or
some other operating system) in your virtual machine.

The CftS command language allows you to create, modify, debug, and, in
general, manipulate a system of files.

ftany language processors can be executed under CftS: the assembler, VS
BASIC, as PORTRAI IV, as COBOL, and OS PL/I Optimizing and Checkout
Coapilers. You can find a coaplete list of language processors that can
be executed under CftS in the !AL170: In!I2gycti2!. CftS executes the
assembler and the coapilers when you invoke thea with CftS coaaands. The
ASSEftBLE comaand is described in this aanual; the supported coapiler
commands are described in the appropriate program Product
documentation.

The CftS EDIT co •• and allows you to create and aodify files; the IIIC
com.and helps you to create a procedure consisting of CP and CftS
commands, which has the conditional execution capability of a aacro
language; the DEBUG com.and gives you several program debugging
subcom.ands.

Other CftS coaaands allow you to read cards froa a virtual card
reader, punch cards to a virtual card punch, and print records on a
virtual printer. ftany commands are provided to help you aanipulate your
virtual disks and files.

since you can invoke CP coa.ands froa within the CftS virtual machine
environment, the CP and CftS co •• and languages are, for practical
purposes, a single, integrated com.and language for CftS users.

Section 1: Introduction and General Concepts 13

Section 2: The VMi370 CP and CMS Command Languages

Th1S section describes the V8/370 command environments, ~ne general
structure of the CP and CMS command languages, the user-defined
commands, command abbreviations, truncations, synonyms, and the command
search order.

The VM/370 system is comprised of the Control Program (CP) and the
Conversational ~onitor system (CMS). CP controls the real machine. You
can use CP commands to manipulate your virtual machine. CMS is an
interactive system designed specifically for use with CP for problem
solving and program development. CMS gives you a file system and the
commands required to manipulate files, and the virtual disks on which
they reside.

There are two types of VM/370 commands: system commands and
user-defined commands. The system commands are those defined by the CP
and CMS command languages. User-defined CMS commands are those you
create yourself using the EXEC command or the LOAD and GEHMOD commands.
User-defined CP commands are also allowed; your installation system
programmer must create them. The procedure is described in the VM/370:
~~§tem R~gg~~~~~~ g~!g~.

Depending on the way you are using the system, you may want to be in
a specific command environment. A command environment is the environment
of your virtual machine as defined by the command language subset you
are using. If you are using the CP command language, you are in the CP
command environment; if you are using CMS or another operating system,
you are in the virtual machine command environment.

Many commands can also have abbreviations and minimum truncations, as
defined by the system, and can have synonyms, which you define.

since there are many types of com.ands, VM/370 provides a set of
conventions for searching through the system for a given command. For
example, you may have defined your own command with the same name as a
CMS -system com.and, therefore, you must know which command actually
executes. The rules governing the search for the correct command are
contained in this section.

VM/370 Command Environments

There are two basic command environments: the CP command environment and
the virtual machine command environment.

The CP command environment is reached when you log on to VM/370 and
issue CP commands. Depending on the task you want to perform on your
virtual machine, you may want to switch in and out of this environment.
The means for entering and exiting from this environment are described
in "Interrupting the Execution of a Command" in this section.

You can find out which command environment you are in by entering a
null line (that is, pressing the Enter key, or equivalent, with no
data). VM/370 responds to a null line by displaying the current command
environment.

section 2: The VM/370 CP and CMS Command Languages 15

The virtual machine command environment is the environment you reach
when you load your virtual machine with the CMS operating system or
another operating system.

When you load CMS in your virtual machine, you can use both the CP
and CBS co.mand languages. The CftS command environment has three
subcommand environments that are entered by means of the EDIT, EXEC, and
DEBUG commands.

The EDIT co.mand places your virtual machine in the EDIT subcom.and
environment, where you can use the CftS Editor to create and modify
files. In the EDIT subcommand environment, you can place your virtual
machine in either of two modes, the EDIT mode or the IIPUT mode. BDIT
mode lets you modify a file; INPUT mode lets you create or add to a
file.

The EXEC subcommand environment is entered via the EXEC command. In
this environment, you execute procedures that contain combinations of CP
and CftS commands to perform the functions you specify. These procedures
are usually created in the EDIT environment.

The DEBUG command places your virtual machine in the DEBUG subco •• and
environment, in which you can issue co •• ands to display registers and
storage, specify breakpoints (address instruction stops), display the
contents of control words, and so on.

How to Enter CP and CMS Commands

A V"/370 command consists of a command name, usually followed by one or
more positional operands and, in some cases, by an option list. The
general form for the command line is:

[operand •••] [(option ••• [)]]

You must use one or more blanks to separate each entry in the command
line unless otherwise indicated.

THB COftftAND IAftE

The command name is an alphameric symbol of not more than eight
characters. In general, the names are verbs which describe the function
you want the system to perfor.. Por example, you may want to find out
whether a certain user is logged on the Vft/310 system. In this case,
you would use the CP QUBRY command.

THE COftftAND OPERANDS

The command operands are keywords and positional operands of no more
than eight alphameric characters each. The operands specify the
information on wbich the system operates when it performs the command
function. Por the QUBRY command, for example, you could use the USER or
userid operand to find out whether the user is on the system.

16 IBft Vft/370: Co •• and Language Guide for General Users

Some commands require no operands; others require several. You can
find each class G, class Any, and CftS command with all of its operand
requirements in Part 2 of this publication.

You must write the operands in the order in which they appear in the
co.mand formats in Part 2, unless otherwise specified.- When you are
using CftS, blanks should be used to separate the last operand and the
option list.

tHE COftftliD OPTIONS

The command options are keywords used to control the execution of the
co.mand. The command formats in Part 2 show all the options for each
command.

The option list must be preceded by a left parenthesis; the closing
parenthesis is not necessary.

If conflicting or duplicate options are entered, the last entered is
the option in effect for the command. Exceptions to this rule are the
CftS COPYPILE, PILEDEP, ERASE, and PORftAT commands. See the individual
descriptions of these co.mands in Part 2 for more information.

COftftENTS IN THE CP AND CftS COftftAND LANGUAGES

You can write comments with CP commands of the following types:

• Commands with no operands

• Commands with a fixed number of operands

• Commands ~ith a single optional operand

You cannot write comments with commands that have a variable number
of than

If you want to write comments with CftS commands, you enter them
following the closing parenthesis of the option list. The only
exception to this rule is the ERASE command, for which com.ents are not
allowed.

You can enter comments on your console by using the CP * command.

CHARACTER SET USAGE

CP and CftS commands may be entered using a combination
from six different character sets. The contents of
character sets is described in Pigure 1.

of characters
each of the

section 2: The 'ft/370 CP and CftS Command Languages 17

i

I Character Set I Ba.es
I
I Separator Blank
I
I lIational Dollar Sign
I Pound Sign
~ At Sign

Alphabetic Upper Case
Lower Case

lIumeric lIu.eric

Alphameric lIational
Alphabetic

lIu.eric

Special

Figure 1. Character Sets and Their Contents

How to Write User-Defined Commands

Symbols

$

• i

A Z
a - z

o 9

$, " it
A Z
a z
o 9

All other
characters

You can update existing commands and create your own commands using the
CBS EXEC command and the LOAD and GEIMOD commands.

EIEC COBBAIDS

The BXBC command allows you to create an BXBC procedure that has the
effect of a command and which can be invoked by its filename, just as a
command is invoked. BXBC procedures can contain CP, CftS, and
user-defined commands and provide a convenient way of generating a
predefined sequence of commands. You are implicitly specifying the BXBC
command when you issue the filename of the EIEC procedure.

There is one case when you must specify the EXBC com.and and its
associated filename explicitly: when an EXEC is nested within another
EIBC, the nested BXEC must be specified explicitly.

Certain EIEC control statements let you conditionally execute
statements within the procedure. You conditionally execute statements by
means of the SIF, SLOOP, and SGOTO statements, similar to the
conditional and looping facilities found in high level languages.

You can find all the information you need to write EIEC com.ands in
the !!L11Q: 111~ Use~~§ Guid!.

A special type of BXEC procedure called a PROPILB BIBC can be used to
set up a predetermined operating environment within CftS each time you
use your virtual machine. If you have a PROPILE BIEC it is executed
before the first command after you IPL CBS. It defines the conditions
you want while you are programming under CBS. For example, if you are an
assembler language programmer, you need the CBS, TEIT, and OS macro
libraries accessed while you are processing. In your PROFILE EIBC, then,
you could issue a GLOBAL command to access these libraries automatically
whenever you IPL the CftS operating system.

18 IBft V8/310: Command Language Guide for General Users

CO~~ARDS CREATED BY LOAD ARD GERftOD

You can use the LOAD and GBR~OD commands to create program
.odule is a relocatable file whose external references
resolved; that is, a module is a file that you can execute
its filename. The module filename is, effectively, a CftS
define for your own use.

modules. I
have been

by invoking
co.aand you

A source prograa aust be assembled or compiled to produce an object
file that has a filetype of TEXT. The LOAD coa.and loads the object
file into virtual storage in your virtual machine. When LOAD executes,
all external references for the file are resolved. You then use GIIIOD
to create an absolute core-image of the file or files loaded in storage.
Its filetype is always ftODULE. This core-image copy may then be used as
a CftS command by invoking its filename.

If you are creating a module containing aore than one TEXT file, you
include the additional TEXT files with the IRCLUDE command, then issue
the GEBftOD.

Truncating and Abbreviating Commands

To make the entering of commands on the keyboard more convenient, CP and
CftS allow .any com.ands (as well as many operands and options) to be
used in a shortened form. The shortened form can be either an
abbreviation or a truncation to its minimum form. ~iniau. truncations
are shown within the foraat box and abbreviations are shown with the
description that follows the foraat box for all the com.and foraats in
Part 2.

In those foraats, the minimum truncation is shown in uppercase
letters in the coa.and foraat box; the optional letters are shown in
lowercase. This rule holds for options and operands as well. I good
example of com.and truncation is the EDIT command. The format shows the
co •• and bame as "Edit". This means you can enter the IDIT co •• and in
any of the following forms:

EDIT

ED
E

I is the .ini.u. truncation, but CftS accepts all of the above for.s
for the command.

Abbreviations are shorter for.s of coamands and operands.
Abbreviations for co.mands are shown below the full name of the coaaaDd
in the format box. Abbreviations for operands and options are shown in
the description of the individual operands and options that follow the
foraat box. lor exa.ple, the operand RIADER has both a .1n1au.
truncation and an abbreviation. In the foraat box, it is shown as:

Reader

indicating the .1n1.U. truncation is R. In the discussion of the reader
operand that follows, it is shown as:

READER
RDR

indicating that the abbreviation is RDR.

section 2: The Vft/370 CP and CftS Co •• and Languages 19

Synonyms lor CMS Commands

Using the EDIT com.and, you can create a table of synonyms for both C8S
commands and co.mands you define yourself. You create the file using
the EDIT command in the form

EDIT filenaae SYNONY8

(the filetype must be SYIOIY8). You then enter the records that will be
in the table, in the for.

commandname synonymname count

where "commandname" is the name of the command for which you are
creating a synony., "synonyaname" is the name of the synonym for the
command name, and "count" is the number of characters you want to use as
a minimum truncation value for the synonym.

In order to use the synonym table once you have created it and filed
it in your systea, you must invoke the SYNONY8 command at the beginning
of every terminal session in which you want to use the table.

You can find a more detailed explanation of how to use the SYNONY8
command in section 7.

CMS Command Search Order

You can create a user-defined comaand (that is, a aodule or EXEC
procedure) which executes in your virtual machine and resides on disk.
To execute such a co.mand or EXEC procedure, you only have to enter the
filename from the terminal. However, be aware of the C8S search order
for terminal input. Once a match is found, the search stops. The
search order is:

1. EXEC file on any currently accessed disk. (The C8S RUN co.mand is
an EXEC file.)

2. Valid abbreviation or truncation for an EXEC file on any currently
accessed disk.

3. Nucleus resident or transient area command. (The nucleus resident
C8S commands are: CP, DEBUG, ERASE, GEN80D, INCLUDE, LOAD, LOAD!OD,
START, and STATE. The transient commands are: ACCESS, CO!PARE,
DISK, PILEDEP, GENDIRT, GLOBAL, LISTPILE, !OD8AP, PRIIT, PUICH,
QUERY, READCARD, RELEASE, RENA!E, SET, SVC~RACE, SYIOIY8, TAPE, and
TYPE.)

4. Command module on any currently accessed disk. (All the reaaining
C8S commands are disk resident and execute in the user area.)

5. Valid abbreviation or truncation for nucleus-resident or transient
area command module.

6. Valid abbreviation or truncation for disk resident co.aand.

Por example, if you create an EXEC file with the same name as a disk
resident co.mand, the C8S search always finds the EXEC file first.
Thus, the disk resident command is never executed.

Figure 2 shows more details of the coa.and search order; you can find
a complete description of the search order in the V8/370: ~ystem
~l'oqra.!!!!r' s ~uid!.

20 IB! V!/370: Command Language Guide for General Users

I I
CMS

EXEC
SEARCH

CMS
MODULE
SEARCH

lL
IF

CP
SEARCH

~

(KEY IN A
COMMA!'JD NAME

ISSUE
AN ERROR
MESSAGE

YES

YES

YES

YES

YES

I Figure 2. Bow CftS Searches for the Command to Execute

EXECUTE
THE F!LE
AND RETURN
CONTROL TO
CMS.

EXPAND THE
NAME TO THE
FULL REAL
NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
FILE AND
RETURN CONTROL
TO CMS.

EXPAND THE
NAME TO THE FULL

REAL NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
COMMAND
AND RETURN
CONTROL TO
CMS.

section 2: The VM/370 CP and CMS Co •• and Languages 21

IITEBBUPTIIG THE EXECUTION OF A COaaAND

You can suspend the execution of a coaaand in your virtual machine using
the Attention key (or its equivalent) on your terainal keyboard.
Functionally, the Attention key requests the Control Program to
interrupt the coaaand currently executing, thus allowing you to key in
new input. The interrupt takes effect iamediately in aost cases, but
soae coaaands coaplete execution before the interrupt takes effect.

The name and physical location of the Attention key varies with
different styles of terainals supported by VB/370. See the VB/370:
I~!!!~~! y§~!!§ §ui~! for details on various styles of terainals.

Using the Attention key, you can switch coamand environaents (that is,
switch from the CP to the VB co.aand environment or vice versa), at the
saae tiae you request an interrupt. What happens when you press the
Attention key depends on two factors: the comaand environaent of your
virtual aachine and the aode setting of your virtual console.

Your virtual machine can be in one of two coamand environments: the
CP command environaent (CP) or the virtual Bachine comaand environment
(Va). These environments are defined by usage. When you IPL an operating
systea for your virtual machine, your virtual aachine is in the VB
environment, otherwise, it is in the CP environment.

You set the mode of your virtual console using the CP TEBBINAL
command. The ~ODE operand of this cosmand allows you to set your virtual
console in either the CP or va mode. These modes correspond, in
general, to the preceding cosmand environments description. Each of the
terminals that can be used with the Va/370 system has a key that is the
equivalent of the Attention key on the 2741 (with which you signal an
attention interrupt). Unless otherwise noted, where the tera "Attention
key" is used in this publication, the phrase "(or equivalent)" is
implied. The equivalent key on the 1050 terminal is the BESET LIIE key;
on the 3270 terainal, the Enter key.

On a 3270 terminal you can signal an attention interrupt to the
virtual machine with the ATTN or BEQUEST commands. Issuing the ATTI or
BEQUEST commands on a 3270 is equivalent to pressing the Attention key
once on a 2741. On a 3270 terminal, pressing the Enter key is equivalent
to pressing the Attention key twice quickly on a 2741.

Fo-r a 3215, you press the Attention key once to signal an attention
interrupt to the virtual machine, then enter the ICP command to get to
CP mode.

How CP interprets attention interrupts issued by the virtual machine
users depends on whether the terminal mode is set to CP or VB.

The default mode setting for the primary systea operator is:

TEBBINAL BODE CP

If your default ter.inal mode is CP, or
co.mand, pressing the Attention key one or
virtual machine into CP mode.

if you
more

issued the
times forces

22 IBB VB/370: Comaand Language Guide for General Users

above
your

For all other users, the default mode setting is:

TERftIIAL ftODE V"

If the terainal aode is Vft, pressing the Attention key once passes an
interrupt pending condition to the virtual machine operating system.
Pressing the Attention key twice quickly (or pressing the 3270's Enter
key) places your virtual machine in CP mode.

If you execute CftS from a 3270 device, you must issue the ATTI or
REQUBST command if you are in CP mode and want to return to the virtual
aachine mode.

The following two figures show the effect of an Attention interrupt
when your virtual console is in either Vft or CP aode. Pigure 3 shows
the action taken by V"/370 when your virtual console is in V" mode and
you press the Attention key. The first coluan represents the condition
of the terminal keyboard when you press the Attention key. The second
coluan represents the number of tiaes you press the Attention key. If
your virtual console is in the Vft mode, one Attention requests an
interrupt and two quick Attentions force your virtual machine to the CP
co.mand environment. The third coluan represents the action Vft/370
takes depending on the number of times you press the Attention key.
"any" means that the effect of the Attention key is the same no matter
how many tiaes you press it.

!Q1~: If the operator sets his terminal mode to V" and resets his
virtual machine, his console acts as described in the first state of
Pigure 3 (that is, more than one attention is required to unlock the
keyboard for CP input).

section 2: The Vft/370 CP and CftS Com.and Languages 23

state of Terainal before
Attention Key Pressed

I 10.1
I of I
IATTNI

Resulting
Action

Terminal idle; keyboard
locked; virtual aachine
running

Terminal receiving output
from virtual machine

Keyboard unlocked for inputl
to virtual machine; no I

1 IAttention interrupt pending; virtual
I aachine running

)1 IKeyboard unlocked for CP input

1 IAttention interrupt pending; virtual
I aachine running

)1 IKeyboard unlocked for CP input at
I completion of console I/O

1 IDevice end (DE) and attention status
I pending; virtual machine runningl

data entered or all data 1--
deleted I

I

Keyboard unlocked for input I
to virtual machine; soae I

)1 IUnit exception (UB)status pending;
I virtual aachine running

1 IUnit exception (UB) status pending:
I virtual aachine running

data entered 1--
I
I

)1 IDevice end (DE) status pending;
I keyboard unlocked for CP input

Keyboard locked; executing lany IAttention ignored
CP command I

Keyboard locked; in SLBBP
mode entered via co •• and

lany IKeyboard unlocked for CP input
I I

Keyboard locked; in SLEEP lany IVirtual machine resumes execution
mode entered via Diagnose I I
instruction I I

Terminal receiving output I 1 IAttention interrupt pending; virtual
from CP but not from userl I machine running
command 1--

I)1 IKeyboard unlocked for CP input

Terminal rece1v1ng output lany 10utput line canceled and in soae
in response to CP co •• andl I cases coamand output canceled

Keyboard unlocked for CP lany IAttention interrupt made pending;
input; no data entered orl virtual aachine running
all data canceled I

Keyboard unlocked for CP lany IInput line canceled; keyboard
input; soae data entered I I unlocked for CP input

ITo perform this function on a 3270, position the cursor one position
to the left of the user input area (line 22, position 0) and press
the Enter key.

Figure 3. Effects of Attention Interrupt While Virtual Console Is Set
to the V! Terminal Bode

24 IB! V8/370: Co.mand Language Guide for General Users

Figure 4 shows the action taken by VM/370 when your virtual console
is in CP mode. If your virtual console is in CP mode and you press the
Attention key one or more times, you force the virtual machine to the CP
command environment.

state of Terminal before
Attention key Pressed

Resulting
Action

Terminal idle; keyboard locked; IKeyboard unlocked for CP input
virtual machine running I

Terminal receiving output from
virtual machine

Keyboard unlocked for input to
to virtual machine; no data
entered or all data deleted

Keyboard unlocked for input to
virtual machine; some data
entered

Keyboard locked; executing CP
command

Keyboard locked; in SLEEP mode
entered via co.mand

Keyboard locked; in SLEEP mode
entered via Diagnose
instruction

Terminal receiving output from
CP but not froa user com.and

Terminal receiving output in
response to CP co •• and

IKeyboard unlocked for CP input
I

IUnit exception CUE) status pending;
keyboard unlocked for CP input

IDevice end CDE) status pending;
I keyboard unlocked for CP input
I

IAttention ignored
I

IKeyboard unlocked for CP input
I

IVirtual machine resumes execution
I
I

IKeyboard unlocked for CP input
I

IOutput line canceled and in some
cases command output canceled

Keyboard unlocked for CP input; IAttention interrupt made pending;
no data entered or all data virtual machine running
canceled

Keyboard unlocked for CP input; IInput line canceled; keyboard
some data entered unlocked for CP input

Figure 4. Effects of Attention Interrupt While Virtual Console Is set
to the CP Terminal Bode

Section 2: The VM/370 CP and CMS Command Languages 25

Section 3: eMS Virtual Disks and How To Use Them

This section describes your virtual disk system and how you use it. It
describes how the disks are naaed, how they are accessed, when they need
to be formatted, how to access and release thea and, in general, how to
Ilanipula te them.

Your virtual machine can have many disks defined for it in the Vft/370
directory, but it can have at most ten virtual disks logically accessed
at any time. Virtual disks are logical subdivisions of real disks; but
they can be considered real disks. Each has its own virtual device
address, virtual cylinders, and for CftS disks, a ftaster File Directory,
which lists the files contained on the disk.

You can request the operator to attach an entire real disk to your
virtual aachine. This real disk, once attached, is considered a virtual
disk.

When your virtual aachine is defined, the system programmer estimates
your disk storage requireaents and allocates cylinders for your virtual
disks accordingly.

Virtual Disle Identifiers and Addresses

Virtual disks have disk identifiers and virtual addresses. The virtual
disk identifier (or fileaode letter) is a single-letter specificatio~ of
A, B, C, D, I, P, G, S, Y, or Z. The disk identifier is a part of the
filemode specification used in the CftS command line. The virtual disk
address is a three-character hexadeciaal nuaber. The address can be
assigned permanently in the Vft/370 directory or temporarily via the CP
DBPIIB command.

THE A-DISK

The A-disk is the priaary user disk. It is a read/write disk which is
accessed when you begin your CftS terllinal session. You can create,
store, and aodify files using this disk. Usually, the address of the
A-disk is 191.

DISKS B THROUGH G, Y, AID Z

You aay have several disks defined in your Vft/370 directory entry.
During a terminal session you may want to make these disks a part of
your active virtual machine. In this case, you use the ACCESS coamand to
acquire a disk and give it a naae. The identifiers B through G, Y and Z
are used to identify these disks.

If you have a virtual 192 disk defined for your virtual aachine in
the Vft/370 directory, or if you specifically define a virtual disk with
address 192 before loading CftS, that disk is accessed as your D-disk at
the time your A-disk is accessed.

Section 3: CftS Virtual Disks and How to Use Thea 27

THE S-DISK

The S-disk is the system disk and is read-only. It contains the CftS
nucleus and disk-resident co •• and aodules. The Y and Z disks can be
eItensions of the syste. disk, depending on your virtual aachine
configuration. If you have 190 and 19E disks defined in your Vft/370
directory entry, these are accessed as the S and I disks after you IPL
CftS.

Formatting Virtual Disks

Before you USe your virtual disks, you must ensure that they have been
formatted. Each disk must be formatted the first time you use it; it
need not be formatted thereafter.

Use the CftS PORftAT co •• and to format a virtual disk the first time
you use it. However, the FORftAT command erases the contents of the disk,
so you should take care not to issue FORftAT for a disk whose contents
you want to save.

Each tiae you use the CP DEPINE comaand to attach a teaporary virtual
disk to your virtual machine, you must issue the FORftAT co •• and.

If you are formatting a disk to contain as or DOS files, use the
IBCDASDI virtual disk initialization program, which is described in the
!.a/37.Q: ~.E!!~g!2~2 Guig!!.

Virtual Disk Addresses and How They Are Defined

Iou can have both permanent and temporary disks attached to your machine
during a terainal session. Permanent disks are predefined in the Vft/370
directory entry for your virtual machine. Temporary disks are those you
define for your own virtual aachine using the CP DEFIlE coaaand.

PBRftAIBIT VIRTUAL DISKS

The Vft/370 directory entry for your virtual machine defines the
permanent virtual disks. Bach disk has associated with it an access mode
specifying whether you can read or write on the disk or only read froa
it. The virtual disk entries in the V8/370 directory aay typically look
like the following:

ftDISK
ftDISK
ftDISK

197 2314 000
198 3330 010
194 3330 050

050 CftS190 R
005 CftS001 W
005 CftS192 W

The first two fields describe the device, virtual disk in this
example, and the virtual address of the device. The third field
specifies the device type of your virtual disk. The fourth and fifth
fields specify the starting real cylinder at which your virtual disk
logically begins and the nuaber of cylinders allocated to your virtual
disk, respectively. The siIth field is the label of the real disk on

28 IBft Vft/370: Coaaand Language Guide for General Users

which the virtual disk is defined and the seventh field is a letter
specifying the read/write aode of the disk. The ftDISK control state.ent
of the Directory Service Program is described in the Vft/370: Operator's
Guide.

Even though these devices are per.anently attached to your virtual
aachine, you .ust access thea using the CftS ACCESS co •• and before you
can use the ••

DilljljG TifiPOiAiY VIiTUAL DISKS

Using the CP DEPIIE co •• and, you can attach a teaporary disk to your
virtual aachine for the duration of a terainal session. Once attached,
the disk .ust be accessed using the CftS ACCESS co •• and. Por exa.ple, the
co •• ands below allow you to use a temporary G-disk.

define t3330 as 291 cyl 10

You should then foraat it using the CftS POiftAT co •• and:

for.at 291 9

You should respond to the eftS response .essages.

Accessing and Releasing Virtual Disks

Even though virtual disks may be defined in the Yft/370 directory entry
for your virtual aachine, you cannot use thea until you access thea.
There may be .any disks defined in that entry, but your CftS virtual
aachine .ay have access to only ten of the. at a ti.e. The CftS ACCESS
co •• and allows you to logically access a virtual disk for your CftS
virtual .achine.

Since you can have only ten virtual disks active in your CftS machine
at a tiae, you Bay want to release a disk so that you can access
another. You use the CftS BELEASE coaaand to logically release the
virtual disk fro. your CftS virtual aachine, then access the new disk
using the ACCESS co.aand.

Linking to Another User's Virtual Disk

Yft/370 lets you link to a virtual disk owned by another user. Use the CP
LII! co •• and as shown in the example below:

link to bensid 193 as 194 r pass= go

This co •• and links another user's vixtual disk (whose address is 193) to
your virtual aachine, where it has the address 194. The B specifies that
the disk can only be read and GO is the read password. BEISID is the
use rid for the virtual .achine to which you are linking.

You .ay also have another user's virtual disk defined in your Yft/370
directory entry.

Once you have linked a disk to your virtual aachine, use the CftS
ACCESS command to access it and give it a na.e.

Section 3: CftS Virtual Disks and Bow to Use Thea 29

Extending One Virtual Disk from Another

Using the CMS ACCESS command w you can make one virtual disk a read-only
extension of another so that when you specify that a disk is to be read w
any extension to that disk is read also. For exallple w the co •• and:

access 192 d/a

lIakes the D-disk an extension of the A-disk.

When one virtual disk is an extension of another w the extension disk
isw by definition w a read-only disk. However w you can respecify its
access status by issuing the ACCESS again, this time not extending the
D-disk from the A-disk.

access 192 d

Not only does
it may also
systell.

extending one disk from another alter
affect the search order for the disk

its access status w
accessed on your

When you issue a CftS com.and and specify * as the filemode, the
extensions set via the ACCESS cOII.and are not in effect, that is, the
search is in alphabetical order.

Only one level of disk extension is permitted.

Virtual Disk Search Order

When you specify a file to be acted upon in a CMS cOllmand w the default
(or standard) CftS search for that file is in alphabetical order; the
A-disk first w B second, and so on. The standard search order is used
when no mode letter is specified or implied. If a mode letter is
specified or implied, the search order is first the given disk and then
all the disks that are read-only extensions of the given disk (except
for certain co •• ands, such as LISTFILE and TAPE DUftP, which purposely
ignore read-only extensions) •

Read/Write Status of Virtual Disks: R/O and R/W

The read/write status for a virtual disk defines whether you can read or
read and write on a disk on your virtual machine. You can access disks
in two ways: read-only, where files on that disk can only be read; and
read/write, where files can be read and written.

To access a disk, you must:

1. Identify a disk as part of your virtual machine configuration. If
the disk appears in your Vft/370 directory entry it is already a
part of your virtual .achine configuration. Also, you can .ake a
disk part of your configuration by issuing a CP LII! or DEFIlE
command.

2. Identify the disk to CftS and assign it a file directory name. You
issue the ACCESS comlland after you load CftS to do this. The CftS
ACCESS co •• and associates a particular disk with a given file
directory name and, optionally, specifies which files on the disk
are to be used and specifies the disk as read-only.

30 IBft Vft/370: Com.and Language Guide for General Users

The following example shows how you add a temporary disk and a user
disk to your CftS virtual machine.

ipl cms
link dept637 230 197 r 12601
define t3330 as 192 cyl 5
format 192 d
access 197 b

lirst the LIIK command adds a device at virtual address 197 to your
virtual machine. (The disk added is defined in the V8/370 directory for
a virtual machine with a userid of DEPT637 as device address 230 with a
read password of 12601.)

Then the DElIIE command adds temporary disk space (from a CP pool of
such space) to your virtual machine at address 192.

The CftS lORftAT command initializes the temporary disk area (192) in
the CftS format.

The ACCESS command activates the disk at virtu?l address 197 (similar
to VARY OILIIE in OS) and assigns the disk the file directory name B.
The importance of the directory name was explained in the preceding
section "Virtual Disk Search Order"

If ACCBSS is not the first command entered after CftS is loaded, an
automatic ACCESS is performed to access a disk at device address 191 as
the A-disk.

Both CP and CftS can control read/write access to disks, as is
illustrated in ligure 5.

CP ACCBSS

Read-only
Read/Write

CftS ACCESS

Read
only

I Read/
I write

I Bead-only I Bead-only
I Bead-only I Read/irite

ligure 5. CP and CftS Disk Access

Access allowed by CP is determined by the Vft/370 directory entry or
the form of LIIK issued by a virtual machine operator for a particular
disk.

The read/write status of virtual disks can be controlled in several
ways:

• It can be specified explicitly in the Vft/370 directory.

• It can be specified by the CP DElIIE com.and.

• A disk can be made read-only by extending it from another disk.

If the read/write status is defined in the Vft/370 directory, it is
either a read/write (B/i) or read-only (R/O) disk. R/i disks can be read
from and written on; R/O disks only may be read.

Section 3: CftS Virtual Disks and Bow to Use Them 31

When you define a teaporary disk at your terainal, that disk is
always a R/i disk.

The read/write status of a particular disk affects the way you use
it. R/O disks cannot be written on. For example, you cannot use a R/O
disk to contain the output of a language processor.

You can find the read/write status of a file by issuing the QUERY
coaaand with the DISK option.

32 IBM VM/370: Co.aand Language Guide for General Users

Section 4: The eMS File System

The file is the essential unit of data in the CMS system. A CMS file is
a logically grouped unit of data you define via a CMS command. This
section gives you information on how you can create a file and name it,
how files are used in the system, and how CMS handles as data sets and
DOS files.

Creating or Defining Files

You can create a file using the CMS Editor, which is invoked with the
CMS EDIT command. The Editor lets you create and modify a file on your
virtual disk. The FILEDEF command defines data sets created under an as
system such as OS/VS1 or OS/VS2 so that they can be recognized by CMS.
You use as macros to perform I/O operations for these data sets.

The files (or data sets) defined by PILEDEP can be as data sets
created by an as system, DOS files created by a DOS system, or files
created under eMS using os macros simulated by eMS and residing on a eMS
virtual disk. You can then access them under CMS just as you do files
you create using the Editor. Files may also be introduced to the system
by means of the READCARD, DISK, and TAPE commands.

All the information you need to create a CMS file using
can be found in the !AL11Q: ~~IT ~~!de. The FILEDEF
described later in this section and in section 7.

the Editor
command is

In order to create a file, you must define a name for the file and
decide upon the filetype of the file; use of the file determines its
filetype. This information is entered along with the command in the form
of a file identifier. Appendix F lists the reserved filetypes and
describes the use of each.

For a description of how to load existing source card decks into your
virtual machine, see the CMS READCARD command description.

Naming Your Files: The File Identifier

When you create a file in CMS, you name it using a file identifier. The
file identifier consists of three fields: the filename (fn), the
filetype (ft), and the file.ode (fm). This file identifier is then used
to refer to the file while you are using CMS.

THE FILENAME FIELD

The filename for a file is a one- to eight-character alphameric symbol.
The characters can be A through Z, a through z, 0 through 9, and the
special characters $, I, or i. You should be careful when using the 1
and i characters, since they are used also as VM/370 logical editing
characters.

Section 4: The eMS File System 33

You can use any filenaae you wish: however, you
duplicating naaes or abbreviations for CP or CftS systea
you duplicate the name of a system command and invoke the
the execution of that file depends on the CftS coamand
which is described in section 2 under "CftS Coaaand Search

should avoid
coaaands. If

naae from CftS,
search order,

Order."

Pilenames, in some cases, becoae user-defined command naaes. The
filenaaes for files with the filetype ftODULE or EXEC have the saae
effect as a command, in aany cases.

TH! fILETYPE fIELD

The filetype is also a one- to eight-character alphameric symbol. The
characters can be A through Z, a through z, 0 through 9,·and the special
characters $, I, or i. You can find more infor.ation about the filetype
specification in the sections that follow.

Certain filetypes have special meaning to CftS, that is, CftS assumes
the file has specific characteristics such as record length, tab
settings, truncation column, upper or lowercase, and other information
of significance for use by a coamand. These special filetypes are
described in a later section "CftS Piletypes" and are summarized in
Appendix F.

THE PILEftODE FIELD

The filemode field has two characters: the filemode letter and the
filemode nuaber. The file80de letter is established by the ACCESS
co.aand, and specifies the virtual disk on which a file resides: A
through G, S, Y, or Z. The file_ode nu.ber can be a number from 0-5.
Figure 6 shows what each file_ode number means. The first coluan is the
filemode number, the second coluan specifies the read/write status
associated with the number, and the third column gives a brief
description of how to use the file.ode number.

34 IBft Vft/370: Command Language Guide for General Users

Filellode
Number

o

1

2

3

5

6-9

Read/Write
Status

R/W

R/W

R/W

R/E

OS

R/W

Meaning

The file specified is a private fi19! vou
cannot access a file with the 0 fii~~ode
unless you have read/write privileges for
the virtual disk on which the file resides.

You can read froll and write into this file,
depending on how the disk is accessed.

You can read from and write into this file,
depending on how the disk is accessed.
Certain files on the S-disk are mode 2;
you can access these files. You can also
use mode 2 to describe files on disks
other than the system disk.

The file is to be erased after it is read.
Usually, this filellode is used for
temporary work files created by the
language processors and sOlie CMS commands.

This file is created using OS macros. It
may be blocked and, if in as variable
format, may contain Block Descriptor Words
(BDWs) and Record Descriptor Words (ROWs).

Has the same meaning as filemode 1.

Reserved for IBM use.

Figure 6. Determining Filellode Numbers

The other information you need when using this field of the file
identifier is found later in this section, "How to Specify the Filemode
Field."

eMS Filetypes

The filetype field specifies the type of the file; that is, how the file
functions in the CMS system. The filetype field is used by the EDIT
command to define standards for record length, tab settings, upper or
lowercase, truncation column, and so on. For other cOllmands, the
filetype field is used to identify a subset of all files that are
appropriate for processing by that command, for example you may want to
process all files with the filetype ASSEMBLE.

Source files have a filetype describing the language in which the
file is written; files containing relocatable object code have the
filetype TEXT; files containing executable object code have the filetype
MODULE; files containing listings have the filetype LISTING, and so on.

The filetypes described in this section are reserved; that is, they
have a special meaning to CMS when you specify them in the filetype
field of the file identifier. They are most useful in the programming
environment (for example, filetypes describing source files, EXEC, TEXT,
MODULE, and LISTING files). There is also a description of files
created during certain types of processing under CMS.

Section 4: The CMS File System 35

FILETYPES FOR ASSEMBLER AND COMPILER SOURCE FILES

When you create a source file using the Editor you assign a filetype
that describes the source language used to create the file. For example,
when you create an assembler language file using the CMS Editor, the
command you issue might be:

edit myfile assemble

where MYFILE is the filename of the file and ASSEMBLE is its filetype.
When you specify the filetype as ASSEMBLE, you are telling the Editor
that the file is an asse.bler language file, and that the records
created should be appropriate for processing by the system assembler.
The Editor uses the filetype ASSEMBLE to define suitable conditions for
creation of an assembler language source file. That is, the Editor
creates a file consisting of fixed-length, SO-character records, with
all input translated to uppercase, and with standard tab settings of 1,
10, 16, 31, 36, and so on.

See "Appendix P. Reserved Piletype Descriptions" for a list of the
filetypes associated with the other supported programming languages and
the CMS commands. When you create source files, there are rules
concerning usage of the file, the command you use to process the file
under CMS, the record format of the file and the contents of the file.

OBJECT PILES: PILETYPE TEXT

When you execute one of the language processors, the results of the
processing (asse.bled or compiled object code) are placed in a file with
the same filename as the source file for the program, but with a
filetype of TEXT.

PILES WITH THE PILETYPE LISTIIG

Also, when you execute the language processors, a listing describing the
source code and the results of execution is contained in a file with the
same filename as the source file and filetype LISTING.

PILES WITH THE PILETYPES EXEC AND MODULE

There are two types of files that can be executed by invoking the
filename of the file. These two types of files are files that have
either the filetype EXEC or the file type MODULE.

An EXEC file may be a procedure (a sequence of predefined commands to
be executed as a unit). EXEC procedures also provide you with a
conditional execution capability similar to the looping facilities of
high level languages. You can find information about how to write and
use EXEC procedures in the !AL11~: IXE~ ~~~~~ §~!~~.

In CMS, a MODULE file is a non-relocatable copy of a program or
routine that resides in storage in executable form. A MODULE file is
created by loading an object file (filetype TEXT) in your virtual
machine (via the LOAD co.mand) and then generating the module via the
GEIMOD command. Like the EXEC file, the MODULE file can be executed by
invoking its filena.e.

36 IBM VM/370: Command Language Guide for General Users

FILE GROUPS CREATED BY THE LANGUAGE PROCESSORS

ftany CftS commands create groupings of files, each related to the other
by the same filename. Some of these files are permanent and some are
temporary. For example, if you issue the co.mand

assemble Ilyfile

the system assembler executes to assemble the file nailed ftYFILE.
Execution of the assembler generates several files, some per_anent and
some teaporary. You can request eMS to list the permanent files by
means of the LISTPILE command:

listfile myfile * a1

CftS then generates a list of all files with the filename of ftIPILE,
including the permanent files created during the execution of the
assembler, which might look like this:

ftIFILE ASSEftBLE Al
ftIPILE TEXT Al
ftYFILE LISTING A1

where the TEXT file contains the object code resulting frail the
assembly, and the LISTING file contains the program listing generated by
the assembly. The source input file, ftI!ILE ASSEftBLE Al, is not
erased.

Temporary files are also created by the assembler for use as
workfiles:

ftIPILE SISUTl
ftYFILE SISUT2
ftIPILE SISUT3

The filetypes of the workfiles Ilay vary depending on the processor
you are using. Disk space 1S allocated for the assembler work areas on
an as-needed basis. They are erased when processing is complete.

Iou should ensure that a file created durinq the execution of a
language processor does not have the same file identifier as one you
wish to save. CftS, when instructed by a language processor to write a
file, erases any file with the same file identifier as the one
specified.

Using OS Programs and Macros under eMS

Iou can assemble and execute programs under CftS that require the use of
OS macros simulated by Cfts. Figure 7 lists the OS macros that CftS
simulates.

Section 4: The CftS Pile System 37

Maf!:Q
XDAP
WAIT
POST
GETMAIN
FBEEMAIR
GETPOOL
FBEEPOOL
LINK
ICTL

LOAD
DELETE
GETMAIN/

FREEMAIN
TIME
ABEND
SPIE

BLDL/FIND

OPEN
CLOSE
STOW
OPENJ
TCLOSE
DEVTYPE

TBKBAL
WTO/WTOR
EXTRACT
IDENTIFY
ATTACH
CHAP
TTIMEB
STIMER
DEQ
SNAP
ERQ
FREEDBUF
STAE

DETACH
CBKPT
RDJFCB

SYBAD
BSP
GET/PUT
READ/WRITE
ROTE/POIRT
CHECK
TGET/TPUT
TCLEARQ
STAX
RETURB

SVC
Nu!12~!

00
01
02
04
05

06
07

08
09
10

11
13
14

18

19
20
21
22
23
24

25
35
40
41
42
44
46
47
48
51
56
57
60

62
63
64

68
69

93
94
96

Function
Bead or-write direct access volumes
wait for an I/O completion
Post the I/O completion
Conditionally acquire user storage
Belease user-acquired storage
Simulate as SVC 10
Simulate as SVC 10
Link control to another phase
Delete, then link control to another

load phase
Read a phase into storage
Delete a loaded phase
Manipulate user free storage

Get the time of day
Terminate processing
Allow processing program to

handle program interrupts
Manipulate simulated partitioned

data files
Activate a data file
Deactivate a data file
Manipulate partitioned directories
Activate a data file
Temporarily deactivate a data file
Obtain device-type physical

cha racteristics
BOP
Com.unicate with the terminal
Effective BOP
Add entry to loader table
Effective LIBK
Effective BOP
Access or cancel timer
Set timer
Effective BOP
Dump specified areas of storage
Effective BOP
Release a free storage buffer
Allow processing program to

decipher ABEBD conditions
Effective BOP
Effective BOP
Obtain information from FILEDEF

com.and
Handle data set error conditions
Backup a record on a tape or disk
Access system-blocked data
Access systea-record data
Manage data set positioning
Verify READ/WRITE completion
Read or write a terminal line
Clear terminal input queue
create an attention exit block
Return from a linked or

attached routine

Figure 7. OS Macros Simulated by CMS

38 IBM VM/370: Command Language Guide for General Users

ASSEeBLING A PROGRAM USING OS MACROS

To assemble a program that uses OS macros, you must first issue a GLOBAL
command to make the macro library containing the macros available to the
assembler.

global maclib osmacro

Once you have accessed the macro library, you can use macros from the
library to assemble a program like the one shown in the following
example:

TESTER CSECT

OPEl (OUTDCB, (OUTPUT»

PUT OUTDCB,lREA

CLOSE OUTDCB

OUTDCB DCB DDNIME=OUT, •••

To assemble the example, issue the command:

assemble tester

After the file is assembled, you can load the resulting TEXT file and
then execute the program.

EXECUTING ! PROGRA! THAT USES OS

In order to execute a program that uses OS macros, you must associate
each DCB statement in your program with the device specified to perform
the input/output operation for it. As in OS, this association is made
via the ddname. In CMS, however, you issue the PILEDEP com.and, which
performs a function for CMS that parallels the function performed by the
DD statement in OS.

Thus, to execute the preceding example program, you issue these
commands:

filedef out disk tester output a1
load tester
start

When you use the OS macros simulated by CMS to read and write (as in
the example), you can write only to CMS disks. You cannot issue a write
to an OS or DOS disk. Also, CMS does not simulate all reads and writes;
only the OS BSAM, BPAM, OSAM, and BDAe access methods are simulated.

Piles written on a CMS disk can, in turn, be read by programs running
under CMS when those programs request that CMS simulate a read (for
instance a GET or READ macro).

Section 4: The ces Pile System 39

READIIG as DATA SBTS PROB as DISKS AID DOS PILES !ROB DOS DISKS

sequential and partitioned data sets residing on as disks, and
sequential files residing on DOS disks, can be read by prograas using as
aacros running under CBS. Also, certain CBS co.aands can be used to
process these data sets and files on as and DOS disks. Pigure 8 lists
coaaands you can use to aanipulate as data sets and DOS files under CBS,
and briefly describes the function of the coaaand in relation to its use
with as data sets and DOS files.

ACCESS

RELBASB

LISTDS

STATB

PILEDBP

DDR

GLOBAL

Operation

Bakes the as or DOS disk containing the as data set or DOS
file available in R/O status to your CBS virtual machine.

Releases the as or DOS disk you have accessed (via ACCESS)
froa your CBS virtual aachine.

Lists inforaation describing as data sets residing on an
as disk, or DOS files on a DOS disk.

Yerifies the existence of an as data set or DOS file on a
disk. Before STATE can verify the existence of the data
set or file, you aust have defined it (via PILEDBP).

Defines the as data set or DOS file for use under CBS by
associating an as ddnaae with an as data set name or DOS
file-ide Once defined by PILEDEP, the as data set or DOS
file can be used by an as program running under CBS and
can be aanipulated by the other commands that support as
functions.

copies an entire as or DOS disk to tape.

Bakes aacro libraries available to the asseabler. You can
prepare an as macro l{brary for reference by the GLOBAL
coaaand by issuing !ILEDE! for the data set and giving
the data set a filetype of BACLIB.

12~§: If you are going to assemble, reaeaber that the
ddnaae to use on the PILEDEP co.aand aust be CBSLIB.

ASSBBBLB Assembles an as data set or DOS file under CBS.

BOYBPILB Boves data records from one device to another device. Each
device is specified by a ddnaae, which must have been
defined via PILBDBP.

QUBRY Lists (1) the status of virtual machine features specified
by the CBS SBT coa.and, (2) the files that have been
defined via PILBDBP in your system of virtual disks, and
(3) the status of virtual disks attached to your virtual
.achine.

Pigure 8. CBS Co.aands Used in Processing Data Sets on as Disks and files
on DOS Disks

40 IBB YB/370: Coaaand Language Guide for General Users

The following restrictions apply when you read OS data sets under ens:

• Read password-protected data sets are not read.

• VSAM, BDAM, and ISA! data sets are not read.

• Multivolume data sets are read as single-volume data sets.
End-of-volume is treated as end-of-file and there is no end-of-volume
switching.

• Keys in data sets with keys are ignored; only the data is read.

• User labels in user-labeled data sets are bypassed.

The following restrictions apply when you read DOS files under CMS:

I • No DOS aacros are siaulated.

I. Only DOS sequential files can be read. CMS operands and options that
I do not apply to OS sequential data sets (such as the MEftBER and
I COBCAT options of PIL!D!P and the PDS option of ftOVEPILE) also do not
I apply to DOS sequential files.

I. The following types of DOS files cannot be read:

-DOS VSAft, DAft and ISAft files.

-DOS core image, relocatable, source statement
libraries.

-Piles with the input security indicator on.

and procedure

-Files that contain more than 16 user label and/or data extents. (If
the file has user labels, they occupy the first extent; therefore
the file must contain no more than 15 data extents.)

I. Multivolume files are read as single-volume files. End-of-volume is
I treated as end-of-file. There is no end-of-volume switching.

I. User labels in user-labeled files are bypassed.

I • Since DOS files do not contain BLKSIZE, RECPft, or LRECL options,
I these options must be specified via the PILED!P command or the DCB
I statement; otherwise, defaults of BLOCKSIZE=32760 and RECPft=U are
I assigned. LB!CL is not used for RECPft=U files.

I. If a DOS file-id does not follow as naaing conventions (that is, one
I to eight-byte qualifiers with each qualifier separated by a period;
I up to 44 characters including periods), you must use the DSN 1
I operand of PILED!P and the 1 operand of LISTDS to enter the DOS
I file-ide

Section 4: The CftS Pile System 41

The following examples show how to use the FILEDEF and MOVEFILE commands
to handle as data sets and DOS files under CMS.

The following sequence of CftS com.ands moves an as STOW macro file
from an as partitioned data set called SIS1.ftACLIB or a CMS file called
SIS1 MACLIB to the CMS file STOW MACRO.

access 195 b/a
filedef test1 disk sys1 maclib b1 (member stow)
filedef macro disk stow macro
movefile test1 macro

The following sequence of CftS commands moves all the members of an as
partitioned data set called SIS1.ftACLIB or a CftS file called SIS1 MACLIB
into separate CftS files, each with a filename equal to its member name
and a filetype of MACRO.

access 195 b
filedef test2 disk sys1 aaclib b1
filedef macro disk
movefile test2 macro (pds)

Either of the following sequences of CMS commands can be used to
verify the existence of the as data set called TEST.OS.SAftPLE.1 and
assemble it with SYS1.MACLIB on an as disk and CftSLIB on a CftS disk.

access 198 d
listds test os sample 1 *
filedef assemble d1 dsn test os sample 1
filedef cmslib disk sys1 maclib * (concat
global maclib sys1 cmslib
assemble file

-- or --

access 198 d
filedef assemble disk test1 assemble d1 dsn ?
test.os.sample.1
state test1 assemble *
filedef cmslib disk cmslib maclib * (block 3360 lrecl 80 recfm fb concat)
filedef cmslib disk sys1 maclib * (concat)
global maclib cmslib sys1
assemble test1

The following sequence of CftS commands moves a DOS file named DAILY
ACCOUNT JAN 1 from the DOS 195 disk to the CMS file FILE OUT.

access 195 b
filedef in disk file in b1 dsn ?
DMSFLD220R ENTER DATA SET NAftE
daily account jan 1
movefile in out
(A default FILEDEF is issued for FILE OUT.)

42 IBft VM/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

USING PROGRAM PRODUCTS UNDER CMS

The CMS assembler and the Program Product language processors supported
by CMS (listed in the !~LllQ: !~!I2gY£!!2n) are as programs that require
definition via FILEDEF in order to perform input/output processing. For
input, all of these programs can use sequential or partitioned data sets
that reside on as disks, or sequential files that reside on DOS disks.

When a supported language processor is executed under CMS, CMS issues
FILEDEFs for the data sets or files it requires in order to execute the
program. You can override these default definitions by issuing a
FILEDEF for those data sets or files before you invoke the language
processor. You must issue the FILEDEF for the data set or file each
time you want to use it, since the processors clear all file definitions
when they complete their processing.

When as compilers execute under CMS, they normally:

• Run the compilation to completion.

• Display any diagnostics at the terminal.

• Generate a CMS disk file with the same filename as the source program
and a filetype of TEXT, which contains the object deck created by the
assembler or compiler.

• Direct the printed output of the assembler or compiler to the spooled
printer or to a disk file with a filetype of LISTING.

The filename of files created by the assembler or compilers running
under CMS is equal to that of the source file.

Disk work files required by the assembler or as compilers under CMS
are automatically created during compilation and erased at the end of
compilation. No cataloging or erasing of data sets is required.

Object programs (TEXT files) produced under CMS and under OS in real
or virtual machines may be executed under CMS if they do not utilize
certain os functions not simulatea oy eMS. (aS macro functions that are
simulated are discussed in "Using as Programs and Macros under CMS.")
Object programs (except for the PL/I Checker) using non-simulated as
macro functions must be transferred to an appropriate real or virtual as
machine for execution. PL/I Checker programs that use non-simulated as
macro functions must be both assembled and executed on the appropriate
real or virtual as machine.

How to Specify the Filemode Field

The filemode field of the file identifier is comprised of two
characters: a virtual disk letter and a filemode number. In almost all
CMS commands, this field is optional. You need not specify it since CMS
itself has the ability to search for the file. Some commands, in fact,
do not permit a filemode entry.

There are four ways to specify this field of the file identifier:

• Explicitly, by actually entering the filemode letter and filemode
number in the filemode field.

• Implicitly, by leaving the entire field blank.

Section 4: The CMS File System 43

GC20-1804-3 Page Modified by TNL GN20-2659

• By specifying an asterisk (*) in the filemode field.

• By specifying an equal sign (=) in the filemode field.

If you specify the filemode explicitly, the virtual disk you specify
and any extensions of it are searched for your file. If, however, the
virtual disk you specify is an extension, the extension disk is
searched, but not the parent disk. If you specify a read-only virtual
disk when you are writing a file, CMS returns an error message.

If you specify the filemode field implicitly by leaving it blank,
only your A disk and its extensions are searched for the file.

The asterisk (*) can have two meanings, depending on the command with
which it is specified: (1) search all disks until the specified file is
found, or (2) search all disks for all occurrences of the file.

The equal sign (=) as the filemode is specified when you want to read
from and write on the same virtual disk. This character can be used
only on disks for which you have read/write privileges.

When you are using one of the Program Product language processors to
write to a virtual disk, CMS first attempts to write to the virtual disk
you specify and then attempts to write to that disk's parent (if one
exists). If there is no room on either of these disks, or if both disks
are read-only, writing is done only to the A-disk.

SPECIFYING SEARCH ORDER USING THE FILEMODE FIELD

A CMS function that is trying to locate a file on a disk may search for
that file in either of two ways:

• If it is searching for a file with a particular filemode, such as
"A", that disk and its immediate extensions are searched.

• If it is to search all accessed disks (Filemode *), the disks are
searched in alphabetical order (A BCD E F G S Y Z).

CMS functions or commands that do not allow you to specify the
filemode (such as LOAD, ASSEMBLE, and MACLIB) use the second type of
search, and search all accessed disks in alphabetical order.

Commands that allow you to specify the filemode may do either type of
search. If you specify a particular disk or allow it to default to "A",
then the first type of search is done. If you specify filemode as "*",
then the second type of search is done.

However, the LIST FILE and TAPE DUMP commands do not use extensions in
search of a particular disk.

Libraries

CMS provides two types of libraries: macro libraries and text, or
program libraries. A library is a file with the filetype MACLIB or
TXTLIB. Unlike other CMS files, a library file consists of members plus
a dictionary for locating the members by name within the library file.

44 IBM VM/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

A macro library is a file whose filetype is MACLIB. It contains a
dictionary and members which are macro definitions. The system macro
libraries are CMSLIB MACLIB, OS MACRO MACLIB, OSMACR01 MACLIB and TSOMAC
MACLIB. CMSLIB MACLIB contains the eMS macros. OSMACRO MACLIB contains
selected OS macros from the OS macro library, SYS1.MACLIB, which are

Section 4: The CMS File System 44.1

simulated by CMS. OSMACR01 MACLIB contains the other macros from
SYS1.MACLIB, making it possible to assemble a program in CMS for os
execution. And, TSOMAC MACLIB contains selected TSO macros.

You can create your own macro library by using the MACLIB command.
Files with the filetype HACRO or COpy can be specified in the nlCLIB
command for inclusion in the library. The MACLIB command can also be
used to add, delete, or replace macros in an existing library; to list
the name, size, and location of macros in a library; and to compress a
library.

A text library is a file whose filetype is TITLlE: It contains a
dictionary and members that are relocatable text files. The system text
library CMSLIB TIT LIB contains extended precision floating point
simulation routines. If you are a TSO user, you can also access the
TSOLIB TITLIB.

YOU can generate your own text library by using the TITLIB command.
Only files with the filetype TEIT may be included. A maximum of 1000
control section names and entry points can be contained in a TITLIB
file. The TITLIB command may also be used to add or delete members from
a library or to list the entry points, control section names, and the
location of members of the library.

CMS has no automatic library calls. A library must be made available
using the GLOBAL command before CMS will search it. GLOBAL has two
forms, the TITLIB form for specifying text libraries, and the MACLIB
form for specifying macro libraries. The command GLOBAL MAC LIB CMSLIB
OSMACRO would make CMSLIB MACLIB and OS MACRO MAC LIB available to be
searched during an assembly for macro operation codes, and they would be
searched in the order they were named in the GLOBAL command. Text
libraries that are made available with the GLOBAL command are searched
for missing subroutines or undefined filenames whenever the LOAD or
INCLUDE commands are issued. Up to eight libraries may be specified
with either form of GLOBAL. The commands GLOBAL TITLIB and GLOBAL
MACL~B, specifying no library names, terminate searching of previously
specified libraries.

Descriptions of the MACLIB, TITLIB, and GLOBAL commands appear in
section 7.

eMS Tape Handling

CMS has two commands that handle tapes.

The CMS TAPE command dumps CMS formatted files from disk to tape,
loads such files from tape to disk, and performs various control
operations on a specific tape, such as setting tape modes, forward or
backward spacing, and rewinding the tape. The TAPE command is used
solely for CMS files. The files on tape are created in a unique format
that can be read only by the TAPE LOAD command.

The TAPPDS command reads tapes created by the OS utility programs
such as IEHMOVE, IEBUPDTE, and IEBPTPCH. If the tape contains an OS
partitioned data set (PDS) produced by the OS IEBPTPCH utility, the
TAPPDS command can write the members as individual CMS files.
Optionally, it produces CMS files from tape in the OS IBBUPDTB control
file format, blocked or unblocked. TAPPDS can also create CMS files
from unloaded partitioned data sets in IEHMOVB format, blocked or
unblocked. The tape may be unlabeled or may have a standard OS label.

section 4: The CMS Pile System 45

lote: The 80VErILE and DDR commands, as well as user-written programs,
can-handle tapes.

eMS Unit Record Support

CftS supports one virtual card reader at virtual address OOC, one virtual
card punch at virtual address OOD, and one virtual printer at virtual
address OOE. Under V8/310, these devices are spooled. CftS does not
support real or dedicated unit record devices, nor does it support a
virtual 2520 Card Punch.

I CARD READER

The READCARD co •• and reads data records froa the spooled card reader to
a C8S disk. Input records of 151 or less characters are accepted.
Column binary data is not acceptable. All user-generated card decks
.ust be read into the virtual reader before a BE1DCABD co •• and can be
issued. You can get card decks into a C8S reader in either of two ways:

• 1 card deck, containing only one file, is placed in a real card
reader and read by CP. The deck must be preceded by a V8/310
identification (ID) card specify~ng the userid of the virtual machine
to receive the card images. (Files must be read in separately, even
if they are for the same virtual machine. If a second deck is placed
behind the first, the second ID is ignored and the second file is
treated as though it were part of the first file. The only
end-of-file condition recognized is an end-of-file on the real
device.) The card i.ages are placed on a spool file in the specified
virtual machine's virtual card reader. If the specified user is not
logged on to the system, the deck re.ains in his virtual card reader
until he logs on and issues the BEADC1BD co •• and.

I. One virtual machine transfers records from its virtual card punch or
I printer to a virtual card reader (its own or that of another user).

46 IBft V8/310: Command Language Guide for General Users

Section 5: Writing and Executing a Sample Program Using eMS

Once you have read the preceding four sections, you can use the sample
program in this section as an introduction to the interactive facilities
of Yft/370. This section contains the information you need to create and
use a program that runs under the CftS operating system. The text is
organized so that you can enter the sample program at your terminal as
you read ..

The sample program treats a number of Y8/370 commands in a
"one-situation" manner. That is, most of the commands cari be used in
ways other than that shown in the sample program.

The first part of this section describes the steps you take before
creating the program: learning to use your terminal, contacting the
computer, loading the CftS operating system and formatting a disk with
which to work.

The second part of this section deals with two topics: how to use the
CftS Editor to create a program and how to use Yft/370 commands to execute
it.

The program you write is a simple one, even though it is coded in
assembler language. It consists of only a few statements; all you need
to do is enter them. When the program executes, you can use it
interactively, so you get an idea of how to use Y8/370 interactively.

Getting Started

Y8/370 is an operating system that provides you with a unique
facility--your own machine. This machine is a virtual machine, that is,
a machine with software counterparts for almost all of the hardware
components of a real machine. All of these components are controlled
from your ter.inal, which is your virtual console.

On the real machine console, there are lights and keys that help you
manipulate. the .achine; on the virtual console (your terminal), you
manipulate the machine using the command languages of the CP and CftS
operating systems.

The CP command language lets you manipulate your virtual machine
components. For example, you could temporarily define a new device for
your virtual machine using the CP DEFIlE command. The CftS command
language allows you to manipulate the virtual disks on your system and
the files contained in them. For example, you can create and assemble a
program file in asse.bler language using the CftS EDIT and ISSEftBLE
cO~lIands.

WHIT YOU SHOULD KIOW BEFORE YOU CAl USE CP liD CftS

Before you can use CP and C8S, you should know (1) how to operate your
terllinal and (2) your userid (user identification) and password.

section 5: Writing and Executing a Sa.ple Program Using CftS 47

There are many types of terminals you can use as a V8/370 virtual
console. Before you can conveniently use any of the co •• ands and
facilities described in this section, you have to familiarize yourself
with the ter.inal you will be using. Generally, you can find
information about the type of terminal you are using and how to use it
with V8/370 in the !~Ll1Q: Ier~i~g! Us§!!§ ~Yide. If your ter.inal is a
3767, you also need the !~! 11~1 ~E§~g~Q~~§ Guide. The sa.ple progra.
is designed for typewriter terminals. Where parallel com.ands are
needed for display terminals, you can find these co.mands described in
the !~Ll1Q: I~!I ~Yi~~·

I

your userid is a symbol that identifies your virtual
and allows you to access V8/370. Your password
functions as a protective device ensuring that only
use your virtual machine can use it. Both symbols
by the system programmer for your installation and
from him.

machine to V8/370
is a symbol that

those authorized to
are usually defined
you can obtain them

When you are familiar with your terminal and know your userid and
password, you are nearly ready to use V8/370. But before you begin
using your terminal to enter commands, you should know how the V8/370
Logical Editing Characters can help you correct the typing mistakes you
may make at your terminal.

V8/370 has a set of symbols you can use to correct typing errors and to
change data as you enter lines at your keyboard. Using these logical
editing symbols, you can cancel a line entirely, change a character in a
line, logically end a line and begin a new one without pressing the
Enter Key (or equivalent) and ignore the special meaning of a character
on a line. Figure 9 lists the default logical editing symbols. To
change the symbols' use, you must either define different logical
editing symbols in your V8/370 directory entry or issue the CP TER8INAL
command.

r
I Symbol Function
I
I ~ Logical Character Delete
I • Logical Line End
I ¢ Logical Line Delete
I " Logical Escape
I

Figure 9. Logical Editing Symbols

When you enter your input lines using these symbols, you do not see
the effect they have immediately, since Vft/370 is simply accepting the
input you are entering. You can see the effect the logical editing
symbols have when you request Vft/370 to show you your input file.

48 IB8 Vft/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

I~~ 199i£!± ~h!f!£!~! ~~1~!~ ~y~~gl (~): Deletes the character preceding
it on the input line. A string of character delete symbols deletes a
corresponding number of preceding characters. For example, if you make
a typing error such as:

permnaent

just enter five character delete symbols and follow them with the
correct letters, as follows:

permnaentaaaaaanent

when you press the Enter Key on your terminal, the line is accepted by
VM/370

permanent

I~~ 199!£~1 1!n~ ~~1~!~ ~I!B£l (~): Causes your virtual machine to
delete the logical line you are entering. Por example,

a formula of the highest affirmation ¢

causes the entire line to be ignored by VM/370. You can press the Enter
key to continue typing, or you can continue on the same input.

I~~ 199!£!1 1!~~ End ~I!~21 (!): Causes your virtual machine to
logically end the lIne you are entering. This symbol allows you to
enter many logical lines on one physical line, for example,

a formulalof the highestlaffirmation

is accepted by VM/370 as

a formula
of the highest
affirmation

I~~ 12g!£~1]§£!£~ ~I!~21 ("): Tells your virtual machine to ignore the
special line-editing meaning of the character that follows. You use the
logical escape symbol to ignore the line-editing meaning of the special
characters that you do not want VM/370 to misinterpret. Por example,
VM/370 misinterprets the following line:

gross .2 pencils a 92¢ per dozen

The special characters on this line are interpreted by VM/370 as:

• Begin a new line after "gross"
• Delete the blank space after "pencils"
• Erase everything starting with the 1 sign through the ¢.

However, the line is correctly interpreted if entered as follows:

1 gross "12 pencils "a 92"¢ per dozen

section 5: Writing and Executing a Sample Program Using CMS 49

GC20-1804-3 Page Modified by TNL GN20-2659

!gte: The user may not be able to predict the results of mixing three or
more consecutive line editing symbols because of the way the input line
is acted upon by V"/370. For example:

abc""Cildef

and

abc'"'CiliiJdef

both result in

abcdef

CONTACTING V"/370 AND LOGGING ON

The next steps to take before you begin to create the program are: (1)
contacting V"/370 and (2) identifying yourself to the computer.

To contact V"/370, you switch the terminal device on and V"/370 responds
with the message:

vm/370 online

to let you know that V"/370 is running and that you can use it. If you
do not receive the "vm/370 online" message, see the .!~LllQ: !,gil!1!~.!
Q§g~~§ §Y!Qg for help. You can now press the Attention key (or
equivalent) on your terminal and issue the LOGON command to identify
yourself to the system:

logon smith

where SMITH is used as your userid. The LOGON command is entered by
pressing the Return (or Enter) key. If V"/370 accepts your userid, it
responds by asking you for your password:

ENTER PASSWORD:

You then enter your password, which is, in most installations, hidden by
the system.

The series of lines you and the computer have exchanged so far looks
like this:

vm/370 online

(!ii,g!!i!Q!!)
logon smith

ENTER PASSWORD:
IIIIIII

When you switched your terminal on, V"/370 responded
to let you know it was ready for your input.

You press the Attention key.
You entered the LOGON command and your userid, and

then pressed the Return key.
V"/370 asked you for your password in response.
You entered your password and the system hides it.

The logging on process is now complete
machine with an operating system, such
system (C" S) •

and you can load your virtual
as the Conversational Monitor

50 IBM VM/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

LOADING eMS IN THE VIRTUAL MACHINE: THE IPl COMMAND

The Conversational Monitor System is an interactive operating system
designed for VM/370 virtual machines. CMS provides commands for
manipulating virtual disks (virtual disks correspond to real disks on
real machines) and files (units of data records such as programs or
input data for programsj. You load eMS in your virtual machine using
the CP IPL command:

ipl cms

where "cms" is assumed to be the saved system name for your
installationis eMS. VM/370 responds by displaying a message such as:

CMS VERSION v.l - mm/dd/yy 12:02

to indicate that the IPL command executed successfully and that CMS is
loaded.

Section 5: Writing and Executing a Sample Program Using CMS 50.1

If this is the first time the virtual
that it is formatted. Be careful to

disk is used you should make sure
use this information only if you

know your disk aust be for.atted. Ask your syste. prograamer whether or
not you should format your virtual disk. PORBAT takes the form:

for.at 191 a

CBS then prompts you with the following message:

DBSPOR603R PORBAT WILL ERASE ALL PILES ON DISK 'A(191) '. DO YOU
WISH TO COITIIUE? (YESIIO):

You answer:

~s

CftS then asks you for the disk label of the disk to be formatted, which
you can get fro. the system programmer:

DftSPOR605R EITER DISK LABEL:

You answer by entering a disk label:

ftYDISK

CftS then erases all the files on that disk, if any existed, and formats
the disk for your use. When you enter the label, CBS responds by telling
you:

PORftATTIIG DISK 'A'

'3' CYLIIDEBS PORBATTED 01 'A(191)'.

B; T=0.15/1.60 11:26:03

You have to issue this command the first time you use the virtual disk.

lh~ Cft~ Read~ ftessage

The last line of the response fro. CftS in the preceding example was a
Ready message. All CftS co.man~s generate a Beady message when they
co.plete processing. The Ready message is a response from the system to
let you know you can enter data into the system. The form of the Ready
message can vary, since it can be changed using the SET co.mand. The
preceding exa.ple shows the long form of the Beady .essage. If your
Beady message is set to a short form, Yft/370 lets you know when you can
enter another co •• and by sending you a .essage that looks like:

B;

Until now, the com.ands discussed have had to do with the process of
getting you situated on your virtual machine; you have learned to use
the ter.inal, contacted Yft/370, logged on, loaded an operating syste.,
and formatted a disk to use. low you can go on to create a progra.,
asse.ble, load, and execute it.

Section S: Writing and Executing a Sample Program Using CftS Sl

Using CMS to Create, Assemble, Load, and Execute a Program

The following infor.ation is a description of the four steps in writing
a program using CftS: (1) creating a program file, (2) assembling the
source file, (3) correcting the file if there are errors in it, and (4)
loading and executing the program. Before you can begin, however, you
should know a little about the CftS Editor.

HOW TO USE THE CftS BDITOB

The CftS Editor is the progra •• ing tool you can use to create and .odify
your program. The information you are about to read tells you how to use
the basic EDIT subco •• ands you need to create your program.

The Editor is a CftS component designed to make it convenient to cteate
and .odify files using the CftS operating system. The Editor is invoked
by the EDIT com.and, which, for your program, takes the form:

edit sample assemble

where SAftPLE is the name of the file you are creating, and ASSEftBLE is
the filetype of the file. The filetype tells the Editor that the file
you are creating is a file written in the assembler language. The
Editor sets the correct logical tab settings you should use when
entering the Assembler language statements.

When you enter the preceding EDIT co.mand line, CftS responds with the
message

HEW FILE:
BDIT:

YOU are now in the EDIT .ode.

The Editor can be used in two .odes, EDIT mode and IHPUT mode. The
IIPUT mode is used solely for entering new lines of data into your file.
The EDIT .ode is used to correct mistakes you made when you initially
created the file or to modify the file. The EDIT com.and automatically
places your virtual .achine in the EDIT mode; you enter the EDIT
subcommand IIPUT to place your virtual machine in the INPUT mode. To
get out of INPUT mode, press the Return key (or equivalent) on a null
line, that is, press the Beturn key without entering any data.

Usually, when you create a file, you first create the source records
and then check them for errors. The Editor provides subco.mands to make
the creation and correction of files convenient. The two sections that
follow describe (1) the subcommand you use when creating the file and
(2) other EDIT subcom.ands that are useful to you in creating and
correcting the program file. All of the facilities of the EDIT com.and
are described in the !,U37Q: J~!! Guide.

52 IBft Vft/370: Co •• and Language Guide for General Users

When you use the Editor, you change one line at a time. The Editor uses
a "current line pointer" to point to, or show you, the current line in
your file. If you enter the TYPE subcommand, the Editor displays the
line it is currently pointing to without changing the pointer.

CREATING YOUR SOURCE RECORDS: THE INPUT SUBCOMMAND

You can use the INPUT subcommand in two ways: (1) to enter the INPUT
mode or (2) to insert a single line of data into your file. To enter
the INPUT mode, you enter the INPUT subcommand and press the Return key.
To insert a single line of data, you enter the INPUT subcommand followed
by the line of data, then press the Return key.

When you are in the INPUT mode, the Editor accepts anything you enter
on the command line, regardless of its internal system definition. Only
the logical editing symbols can be used in the INPUT mode to change a
line. All you can do in the INPUT mode is add new lines of data to your
file.

Usually the Editor is used to create new files and modify existing
files, so it has features that make this convenient, such as line number
prompting for some language processors and tab settings for all
supported language processors. For the assembler language program you
are creating, you can use tab settings provided by the Editor to space
to the correct position for assembler language instruction fields.

OTHER EDIT SUBCOMMANDS YOU NEED

The EDIT subcommands described here are almost self-descriptive. They
let you see what your file contains, alter its contents, and store it on
disk. Remember that these are only a few of the Editor's facilities and
that you can find the rest described in the !~Lll~: ~~11 §EiQ~.

To see the first record of your file, instruct the Editor to type the
top record:

top

The top record of the file is always a null line, placed there by CMS
so that you can always insert records at the beginning of your file.
So, to see the first actual line of data, use the subcommand DOWN 1,
which points the Editor to the line below the null line.

To see the last record in your file, instruct the Editor to locate
the bottom record of the file:

bottom

Section 5: Writing and Executing a Sample Program Using eMS 53

GC20-1804-3 Page Modified by TNL GN20-2659

To see records above the current line, instruct the Editor to move up in
your file:

up number

where number is the number of lines above the active line. For example,
UP 7 moves the current line pointer seven lines above the current line.

To see records below the current line, instruct the Editor to move
down in your file:

down number

where number is the number of lines below the current line.

To delete a line from your file, move up or down in the file so that the
line you want to delete is the current line. When the line you want
deleted is displayed as the current line, instruct the Editor to delete
it:

delete number

where number specifies the number of lines deleted beginning with the
current line. If you enter DELETE 9, the Editor deletes the current
line and the next eight lines following it. The new current line is the
one following the last deleted line.

To display records in your file, enter the TYPE subcommand:

type number

where number is the number of lines you want displayed, beginning with
the current line. The last line displayed then becomes the current
line. If you are using a 3270 display terminal in display mode use the
SCROLL, FORWARD, and BACKWARD subcommands to display records.

To change the contents of a record, issue the CHANGE subcommand:

change /string1/string2/

where string1 is the string of characters you want to replace and
string2 is the string of characters you want to replace them with.

54 IBM VM/370: Command Language Guide for General Users

To store the co.mands and the data you have created in your file~
instruct the Editor to file your data for you, using- the PILE
subcommand. Before you issue PILE, however, you must return your virtual
machine to the EDIT mode. So press the Return key to enter EDIT mode,
and then issue PILE:

file

All of the records you created are now filed on your virtual disk.
The PILE subcommand takes your virtual machine back to the CftS
environment. CftS responds to the PILE subcommand with a Ready !essage,
to let you know your virtual machine is back in the CftS environment.

The subcommands just discussed should be adequate for writing and
editing a simple program. As you follow the prograa example you will
see how these EDIT subcoamands are used.

1 SA!PLE PROGRA!

The program you are about to create is a sample program designed to
familiarize you with the interactive facilities of Vft/370. The program,
when it executes, calls for you to enter a line of data in response to a
direction from the program. It asks you to enter another item of
information. Then, it tells you what you told it.

Enter the prograa just as you see it. What you enter is shown in
lowercase; the Editor responses are shown in uppercase. The first field
the Editor allows you to enter is the label field, which begins with
column 1. When you press the tab key, the type ball moves to the next
tab setting on the terainal,'and this lets the Editor know that the next
field you enter goes in the operation field, which begins in column 10.
When you press the tab key again, the Editor spaces to the operand
field, beginning in column 16.

There are several ways you can get a continuation mark in column 72;
see the !A~l~: EDIT §yid~ for this information. In this exaaple, the
$!ARK edit macro is used. You must add the $!lRK edit aacro to your CftS
system; it is not distributed with CftS. The V!LJ1~: lDIT Guid~ tells
you how to add it to your CftS system.

Bote that the example shows one space after the third LIBEDIT macro
instead of pressing the tab key. The third LIBEDIT macro line is so
long that is does not fit if you tab to column 31. When you enter the
third LINEDIT macro you aust press the Return key twice after the last
com.a: once to enter the line and one to return to EDIT mode. You know
you are in EDIT mode when EDIT: is displayed. Then you must enter the
macro '$!lRK'. This places an * continuation mark in column 72. To
return to INPUT aode, enter 'input'.

section 5: Writing and Executing a Sample Program Using CftS 55

edit .yfile asseable
lEW PILE:
EDIT:
tabs 1 10 16 31 36 41 46 69 72 80
input
IIPUT:
When IBPUT: is displayed, you continue entering your program.
sample csect

EDIT:
$mark
input
IIPUT:

name
age
savret

using sample,r12
lr r12,r15
st r14,savret
linedit
rd term
linedit
rd term

set up address ability
load base register
save return address
text='please enter your name'
name
text='please enter your age'
age

linedit text='hi, •••••••••• , you just told me you are

I
br
eject

sub=(chara,name,chara,age),rent=no
r14,savret get return address
r14 return to caller

dc c1130' name field
age field dc c1130'

dc floe
regequ
end

save return address

, ,

When you finish entering the program, you can display it, and then
you should file it. If you display the program, it should be:

SlftPLB

IAftE
AGE
SAVRET

CSBCT
USIIG SAftPLE,R12 SET UP ADDRESSABILITY
LR R12,R15 LOAD BASE REGISTER
ST R14,SAVRET SAVE RETURN ADDRESS
LIIEDIT TEXT='PLEASE EITER YOUR NAftE'
RDTERft IAftE
LIIBDIT TEXT='PLEASE EITER YOUR AGE.'
RDTERft AGE
LIIEDIT TEXT='BI, •••••••••• , YOU JUST TOLD ftE YOU ARE

L
BR
EJECT

SUB=(CBARA,llftE,CBARA,AGE),REIT=IO
R14,SAVRET GET RETURN ADDRESS
R14 RETURI TO CALLER

DC CL130' IAftE PIELD
AGE PIELD DC CL130'

DC P'O'
REGEQU
EID

SAVE RETURI ADDRESS

Creating and Executing Your Program

Col
72

I ,
.... " *

This section describes the CftS commands you use to create, load, and run
your sample program: EDIT, GLOBAL, ASSEftBLE, LOAD, and START. These
cOllmands represent the most basic method of creating and executing a
program using CftS.

56 IBft Vft/370: Com.and Language Guide for General Users

INPUT FOR THE PROGRAft

To create the program file, enter the EDIT command to invoke the CftS
Editor~

edit sample assemble

The Editor responds to the command by telling you that this is a new
file and that you can begin creating it

NEW PILE:
EDIT:

You then place your virtual machine in the INPUT mode by entering the
INPUT subcommand

input

When you press the Return key, the Editor responds with the message

IIPUT:

low you can enter the program statements. When you have entered all
of your program statements, press the Return key to return to the EDIT
environment. low issue the FILE subcommand to save the statements you
have entered and to return to the CftS command environ.ent.

ASSEftBLIIG YOUR PROGRAft

To assemble SAftPLE, you issue two commands: GLOBAL and ASSEftBLE. The
GLOBAL command accesses libraries needed by the assembler during its
execution. The ASSEftBLE command causes your program to be assembled by
the assembler. You should enter both GLOBAL and ASSEftBLE just as they
are shown here:

global maclib cmslib
assemble sample

CftS notifies you when the assembly is done by displaying a message at
your terminal. You receive one of two kinds of messages: one to tell
you there were no errors, the other to tell you there were errors and
where they were in the program. In either case, a Ready message is
generated to tell you that ASSEftBLE has completed execution.

If there are no errors, the message is

ASSEftBLER DOlE
10 ERRORS PLAGGBD II THIS ASSBftBLY
R;

If you have errors, you receive a message like

ASSEftBLB DOlE
SAft00331 B ERRT
IP0024 lEAR OPERAID COLUftNl--UIDEPIIED SYftBOL
1 STATBftEIT WAS PLAGGED II THIS ASSEftBLY
8 WAS HIGHEST SEVERITY CODE
R(008);

section 5: Writing and Executing a Sample Program Using CftS 57

If you receive the error message, you have to go back and correct
your prograa; the asseabler language error message you receive tells you
where and how you aade the mistake. Use the EDIT coamand to correct the
file:

edit saaple asseable

This stateaent allows you to correct your source file. The Editor
places your virtual machine in the EDIT mode and places the file in
storage so you can edit it. You can now begin aaking corrections using
the EDIT subcom.ands described in the first part of this section.

When you have corrected the program, file it again and reasseable it
(assemble sample). This tiae you need not enter the GLOBAL command,
since the first GLOBAL command is in effect for the duration of your
terainal session.

If the prograa assembles with no errors, you can load it in virtual
storage and execute it.

LOADING AND EXECUTING THE PROGRAM

The CMS LOAD and START co •• ands load your program in virtual storage and
begin its execution. The LOAD coamand processes the relocatable object
code produced by the ASSEMBLE co •• and. The LOAD co •• and loads the
assembler TEXT file into storage and establishes the proper linkage.
Enter the LOAD com.and as it is shown here:

load saaple

After you press the Return key, CMS responds with a Ready message
(R;) when your program is loaded successfully.

low enter the START co.mand to begin execution of the program:

start sample

The virtual machine, with your prograa now in control, proapts you with
the messages supplied by your program:

PLEASE EITER YOUR lAME:
PLEASE ENTER YOUR AGE:

After you answer its questions, your program writes you a message and
returns a Ready aessage.

LOGGIIG OPP

When you want to end the terainal session, use the LOGOPP co.mand,

logoff

58 IBM VM/370: Coa.and Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

Section 6: Virtual Machine Operation

Virtual System Console

The major differences between operating on the real machine and
operating under CP are:

• You can enter CP commands by entering CP mode, or by issuing the iCP
command while a virtual machine's console is able to read.

• The Request key of a real operator's console is simulated by
signalling attention once from the terminal.

To reply to messages from a virtual machine operating system, you:

I. Must enter VM mode (if you on a 2741 communication terminal).

• Enter the information requested.

• press the carriage return (Return) key on the 2741 Communication
Terminal (or equivalent on other terminals) •

If communication with CP is required before responding to specific
error messages issued by some virtual machine operating systems, enter
CP mode and perform the necessary console functions. When control
returns to the virtual machine environment, the virtual machine read is
canceled by a unit exception and the virtual machine operating system
responds by reissuing the read. The required virtual machine response
may then be entered.

The Cancel key of the system console keyboard is simulated by the
Attention key on the 2741. To enable the CPU operator to make input
line and character corrections to operating system responses, the VM/370
logical editing symbols may be used.

Attaching Devices

When a virtual machine operating system requires a specified device, as
in a MOUNT request, you should do one of the following:

• If the device is already defined as part of the virtual machine
configuration, enter CP mode. Then enter the CP command READY cuu
(with cuu replaced by the virtual I/O device address), followed by
the CP BEGIN command. This is the virtual machine equivalent of
physically making a device ready, if it is not already in a ready
state.

• If the device is not a standard device already defined as part of the
virtual machine configuration, enter CP mode, and issue the CP DEFINE
command to add the device to the virtual machine configuration. If a
DASD device is already defined for some other user in the VM/370
directory, you can use the CP LINK command to add the device to your
virtual machine configuration. Otherwise, send a message to the

Section 6: Virtual Machine Operation 59

system operator to attach it to your virtual machine. When the real
device is ready, enter the BEGIN command.

Note: If the virtual device is an attached real device at the time you
need it mounted, the real device can be taken out of and put back into
ready status to cause an interrupt.

TAPE DEVICES

Tape drives, because they cannot be shared, are usually not defined in
the VM/370 directory as part of a virtual machine configuration. When
you require a tape drive for a job, a system operator with privilege
class B must attach an available real device to your virtual machine
with the virtual device address you require. When the job involving
that tape drive is complete, you can issue a DETACH command, naming the
virtual device address of the tape to release the tape. In this way,
real tape drives are allocated to a virtual device only for the duration
of the jobs that need them.

Loading an Operating System into a Virtual Machine

Figure 10 shows how you could load an OS/MFT system on a virtual
machine, and the subsequent mounting of a virtual device at address
232. (For clarity, the information you enter is shown in lower case,
and messages displayed by CP and OS are shown in uppercase).

The virtual machine that is to run OS must have a configuration
compatible with that for which the operating system's nucleus was
generated. An example of an appropriate VM/370 directory entry is:

USER BATCH PASSWORD 512K
ACCOUNT NUMBER BIN10

OPTION REALTIMER ISAM
CONSOLE 01F 3215
SPOOL C 2540 READER A
SPOOL D 2540 PUNCH A
SPOOL E 1403 A
DEDICATE 230 BATCH1
DEDICATE 231 BATCH2

60 IBM VM/370: Command Language Guide for General Users

r--, logon os/mft
ENTER PASSWORD:
(Printing of the password is inhibited)

LOGON AT 13:24:30 EST THURSDAY m./dd/yy
ipl 230 IPL the OS system residence device.

You must respond to alIOS IPL co.mands.

IEE007A READY OS ready message.
set date = 72.355, Q = (231)

start rdr, OOc
start vtr, OOe
start
IEl233A e 232, VOLABC,JOB,STEP OS requests operator to mount a pack labeled

"VOLABC" on 232.

Icp link to usera 330 as 232 w pass

DASD 232 LINKED TO R/i

You press the attention key once to present
an interrupt to OS.

Because the LINK co •• and vas prefaced by 'CP,
the OS virtual machine acts as though you
had pressed the CANCEL key, and issues
another READ to the syste. console. The LINK
co.mand is passed directly to CPo
You request that a disk belonging to usera,
with a virtual address of 330, be linked
to your own virtual machine. You issue the
CP LINK com.and to access that other user's
disk, with virtual address 232 in his virtual I
aachine. Alternately, you could issue the I
"vary 232,online" OS comaand. I

.cp ready 232
I

Then enter READY to siaulate a ready I
interrupt to OS and end the read by pressing I
the carriage return or Enter key. I

Figure 10. Loading an OS/8FT Virtual 8achine

Spooling Virtual Console 1/0

CP lets you spool your virtual aachine's console input/output to disk,
instead of, or in addition to, having it displayed at your terainal.
The data spooled includes aessages from or to the virtual .achine
operating systea, and froa or to CP. This facility, invoked by the
SPOOL CONSOLE co •• and, is particularly useful when the virtual .achine
is executing with the terminal disconnected, or when the virtual aachine
console is a display device, since the virtual console output, which
would otherwise be lost, is saved on disk. The saved data is later
printed on the real printer.

If the real printer cannot print lower-case characters, the operator
can use the FOLD option when he loads the buffer for the print train
image. This causes the printer to print, in upper case, data that you
enter in lower case.

You can invoke or ter.inate virtual console I/O spooling at any tiae
and as often as you like. If the console file is not closed when you
log off (or are forced off) the V8/370 syste., CP closes the console
spool file and schedules it for printing.

Section 6: virtual ftachine Operation 61

I

GC20-1804-3 Page Modified by TNL GN20-2659

Reading Cards in a Virtual Machine

When an operating system such as DOS, DOS/VS, or OS/PCP, MFT, MVT, VS1,
or VS2 is running batch production jobs in a virtual machine, it aay
occasionally be necessary to dedicate a real card reader to that virtual
machine. In that case, jobs are entered through the card reader in
exactly the same way they are entered on a standalone system, and no
double spooling occurs.

If, however, there is no extra reader availatle to dedicate in such a
manner, or if the virtual machine is being run from a terainal not
located near a real card reader, other methods of handling card input
are necessary.

Card images can be placed into the (spooled) virtual card reader of
your virtual machine in four ways:

• A card deck can be placed in the real card reader and read by VM/370.
The deck must be preceded by a special VM/370 identification (ID)
card specifying your virtual machine userid. VM/370 reads the cards
and transfers the card images to your virtual machine's virtual card
reader as a spool file. When your virtual machine issues a read to
the card reader, VM/370 presents the cards, one at a time, to the
virtual machine. The format of the ID card is described in the CMS
READCARD command description.

• A virtual machine's printer can transfer printer listing images and
the punch can transfer punch images to its own (or to some other
user's) virtual card reader. CP can handle up to 150-character
records in virtual card readers. The CP SPOOL transfers these unit
record files. For example:

spool punch to usera

causes all cards punched to be transferred (after the punch file is
closed) as an input file to usera's spooled card reader.

CMS cannot print files that have
long. However, CMS can display
long.

records greater than 160 characters
records greater than 160 characters

• Via the CP TRANSFER command, you can transfer your virtual reader
file(s) to another user's virtual reader, or retrieve previously
transferred files back to your own virtual reader.

• A card deck can be placed in the card reader of any of the remote
stations supported by the Remote Spooling Communications Subsystem
(RSCS). The same VM/370 ID control card, as mentioned previously,
must precede the deck. RSCS receives the card file and spools it to
the specified VM/370 user's virtual card reader.

Normally you should find it helpful to set the following spooling
options for your virtual card reader:

spool ~Oc cont noeof

cont specifies that reading be "continuous" (that is, not to indicate
an EOF condition to the virtual machine after each input file,
but to continue reading all the card images until the reader

62 IBM VM/370: Command Language Guide for General Users

noeof

files spooled to the virtual machine are exhausted). If this
option is not in effect, a unit exception is reflected to your
virtual machine at the end of each spooling file. This option
eliminates the need to repeatedly enter the CP RBADY and CLOSB
commands between the reading of each spooled file.

indicates that the virtual reader's end-of-file button is
assumed not to have been pushed. When all reader spool files
are exhausted, an intervention-required status pending is
reflected to the virtual machine. When additional reader files
are transfered to the virtual card reader, a device end
interrupt i~ reflected to the virtual machine, and card reading
normally resumes automatically (because a device end interrupt
"wakes up" the virtual machine).

The operator of a virtual machine operating system such as OS or DOS
may choose to prepare his own job streams at his terminal using the CMS
Bditor facilities, and then IPL another operating system to process the
job streams. This procedure is discussed under "Using Multiple
Consecutive Operating Systems."

Printing and Punching in a Virtual Machine

VM/370 provides unit record spooling facilities. When operating systems
that also provide unit record spooling facilities are running in a
virtual machine, double spooling of printed and punched output may
occur. If you wish, you can eliminate one of the spooling facilities.

To eliminate CP spooling, a real printer or punch can be temporarily
attached to a virtual machine, or dedicated to a virtual machine in the
VM/370 directory via the DBDICATE statement. In either case, CP
performs no spooling for that virtual device. Interrupt processing can
be initiated by the virtual machine whenever it receives control of the
CPU from CP.

CP spooling has priority over any virtual machine execution. The
real printer and punch are better utilized by CP than by a virtual
.achine. ~~ spooling provides .ore efficient shared use O~ a i1.1~ed
number of readers, printers, or punches by many virtual machines.

OS spooling can be eliminated by using OS JCL in the form UNIT=OOB or
UNIT=OOD instead of SYSOUT=A or SYSQUT=B, where OOB and OOD are virtual
device addresses.

DOS POWER spooling can be eliminated by using the Job Entry Control
Language (JECL) option of POWER and by indicating no spooling on the
JECL control statements for dedicated spooling devices.

When printer or punch spooling is performed by CP, the CP CLOSE
command specifying the virtual printer or punch address should be issued
periodically. This releases previously finished and stacked output
files for CP spooling and results in better utilization of the DASD
spooling areas and of the unit record devices.

CMS has no spooling facilities of its own, and does not cause double
spooling when running in a virtual machine. It does not support an
attached or dedicated printer, punch, or reader, and must use the
facilities of CP. CMS closes the virtual printer or punch after the
completion of each command that uses them.

Section 6: virtual Machine Operation 63

Disconnecting the Terminal

Once you load a virtual machine operating system and start jobs you .ay
want to use your terminal for some other purpose while the batch jobs
are running. The DISCOII coaaand allows you to disconnect your terminal
from the V~/370 system, but allows the virtual aachine to continue
operation. You can reconnect your ter.inal by issuing the LOGOI
co •• and.

Unless the CP com.and, SPOOL COISOLE START, is issued to spool the
virtual console and CP output, all "writes" or output messages to the
virtual console are ignored.

A BOLD option is provided with the DISCOII coamand
communication line in a switched line configuration
disabled.

to prevent a
from being

Disconnecting the terminal frees it for other uses, but is useful
only for operating systems that can run in an unattended mode. If a
virtual machine that is running disconnected issues a "read" to the
virtual console or enters a disabled wait state, virtual machine
execution is halted and a 15-minute time-out begins. If you do not
re-establish your connection to the V~/370 systea (by logging on again)
within 15 minutes, you are logged off the system.

A virtual aachine aay also be placed in disconnect status
automatically. If a teleprocessing line error occurs, or you turn off
your terminal without logging off, the virtual machine is disconnected
and execution stops. (If you turn off a 3210 without logging off, the
virtual machine is disconnected if someone sends a message to the
terminal.) A 15-minute time-out begins. If you do not log on again
within 15 minutes, your virtual machine is logged off the system.

When a disconnected machine is logged off, V~/370 closes all open
spool files and schedules them for printing or punching.

You reconnect to a disconnected virtual machine via the noraal logon
procedure. (If there was a read active on the ter.inal at the time of
disconnect, you aay have to issue a RESET co.aand for the terminal.)
Your running virtual machine is placed in the CP com.and mode. To
resume execution of the virtual machine operating system, issue the
BEGI) command.

For example, (a) shows the disconnect
subsequent reconnect, as long as PROGA
reconnects.

(a)
logon usera
EITER PASSWORD:

procedure, and (b) shows the
is still running when USERA

(displaying of the password is inhibited)
LOGOI AT 05:30:30 EST FRIDAY mm/dd/yy
ipl 190
C~S VERSIOI 2 LEVEL 0
run proga
•••
CP
disconn
DISCOIIECT AT 05:35:30 EST FRIDAY mm/dd/yy

64 IB~ V~/370: Command Language Guide for General Users

(b)
logon usera
FafTER PASSWORD:
(displaying of the password is inhibited)
RECONNECT AT 07:42:45 EST FRIDAY mm/dd/yy
begin

Note: A PROFILE EXEC
automatically when you
system option (such
disconnect, that option
again.

procedure (if one exists) is not executed
log on after disconnecting. Also, if you set a
as specifying TERMINAL APL ON) before you
may be returned to its default when you log on

Using Multiple Consecutive Operating Systems

You may require the facilities of more than one operating system during
a single terminal session.

When you run an operating system such as as, DOS, OS/VS1, OS/VS2, or
DOS/VS from a terminal, you can use the CMS Editor facilities to create
and modify job streams.

If you are an applications programmer who normally uses CMS to
interactively create, modify, and test your programs you may require
facilities not supported or available in CMS for compilation (for
example, programs using DOS macros) or for execution (for example, any
DOS object program, or any as object program that utilizes certain as
supervisory functions. and access methods not simu1a ted under CMS).

The following technique uses multiple operating systems
consecutively. Job control cards, compiler or assembler source
programs, and test data streams are created and modified at the terminal
under control of the CMS Editor. Then the job stream is executed, only
after control has been passed to an appropriate operating system with
the necessary facilities.

In this way, you can use the terminal-oriented facilities of CMS to
create and update source progra.s and ~CL. When you are ready to
compile or test, you can give control of your virtual machine to DOS or
as. After execution is finished, you can transfer the printer and punch
output back to CMS for selective scanning and displaying at the
terminal.

This approach assumes you have created source program files and data
files under CMS. To execute under another operating system (in this
example, OS) you must also create JCL records that specify the
compilation, link edit, or execution, as appropriate. These records are
created under CMS and named with a distinctive filename and filetype
(for example, PLICOMP JCL). Job control records, source program files,
and data files can then be merged together in the virtual card reader to
form a single as job stream. CP and CMS commands (shown in Figure 11)
create and transfer this job stream.

I TRANSFERRING OUTPUT

The CP SPOOL command transfers card images from the virtual card punch
of one virtual machine to the virtual card reader of that same or some
other virtual machine. During this time, no real cards are punched or
read; CP manages the transfer of CMS card-image data files through disk
spooling operations only.

section 6: virtual Machine Operation 65

Figure 11 shows how files are transferred between virtual machines.
The virtual machine is in eMS mode at the start of the example. The
co •• and "SPOOL OOc cont eof" specifies that reading be continuous until
all files spooled to the virtual machine are exhausted and the virtual
end-of-file button on the reader is pushed. NOHEADER specifies that no
special control cards are to be inserted in front of each punched file.
virtual device 230 is an as system volume. virtual device 231 contains
the as job queue, SYS1.SYSJOBQE. All standard as responses (for
example, R;T=0.04/0.12 09:36:08) are omitted from the example; however,
the as READY message is included to more fully illustrate the IPL
sequence. Also, assuming you are using a 2741, you must press the
Attention key before entering each as command. The attention interrupts
are not shown in Figure 11.

r--,
CMS
cp close OOc
cp close OOd
cp spool OOd to *
punch jobcard jc1 (noheader)
punch plicomp jc1 (noheader)
punch plimain pl1 (no header)
punch asmcomp jc1 (noheader)
punch asmsub assemble (noheader)
punch linkgo jc1 (noheader)
punch godata dat (noheader)
punch slshstar jc1 (noheader)
cp spool OOc cont eof
cp ipl 230

Not~: The following are issued once under as control:

IEE007A READY
set date=xx.355,Q=(231)
start rdr,OOc
start wtr,OOe
start

Figure 11. as Job stream Transfer

To transfer files between virtual machines, you must" have access to
both operating systems being used. Access to both systems can be
provided either in your virtual machine's VM/370 directory entry, or
dynamically before loading the new system.

Figure 12 illustrates a virtual machine configuration and the
corresponding VM/370 directory control statements. Virtual device
addresses 190 and 191 contain the CMS system and user disk area.
virtual device addresses 230 and 231 contain the os system and user disk
area. The two systems use a common card reader, card punch, printer,
and console.

66 IBM VM/370: Command Language Guide for General Users

USER OS2 PASSWORD
ACCOUBT BUftBBR BIB16

COBSOLB 01F 3215
SPOOL C 2540 RBADBR
SPOOL D 2540 PUBCB
SPOOL B 1403
LIBK JFK 230 230 R
LIBK CftSSYS 190 190 RR
ftDISK 231 2314 120 82 W
ftDISK 191 2314 101 10 UDISK1 WR RPASS WPASS

Figure 12. Directory Bntry for Alternating Operating Systems

I CONFIGURATIOBS

You can alternate operating systems more simply if:

I. The devices used by both systems are supported at the same device
I address, and

I. The common addresses are not used to support different devices

If these two conditions do not exist, you must modify the virtual
machine configuration before each IPL of a new system.

If the two systems require online typewriter keyboards at different
addresses, the CP DBFIBB com.and can be used to change the address of
the virtual system console. For example, if the OS system specified in
Figure 12 required an online typewriter keyboard at address 01F,·issue
the command

cp define 009 as 01F

before loading 230. When the OS job stream is completed, issue the
command

cp define 01F as 009

before loading CftS. virtual storage size can be changed and virtual
card readers, printers and punches can be added with this procedure.

If the systems expect different device types at the same address (for
example, in Figure 12 CftS expects a 2314 at address 191, but the OS
system might be generated to support a 3330 at that address), the common
address must be assigned to the appropriate device each time a new
system is loaded. If CftS is running with a disk at address 191, you
should issue the following command before loading OS:

cp detach 191

An appropriate device can then
address 191 either befOre loading,
from the OS system.

be added to the virtual machine at
or in response to a mount request

!Qte: For direct access storage devices, the above procedure is
necessary even if both systems support the same device type at the same
address. The disk format used by CftS is unique, and is not compatible
with that of other operating systems. Files can be shared between CftS
and OS or DOS only through the spooling facilities, of CP.

section 6: Virtual ftachine Operation 67

Execution Control

1 string of arguments can be passed to your program from the terminal
when execution is begun with the CKS START command. If arguments are
specified, the storage address of a parameter list is placed in general
register 1. The parameter list is a string of double words, one
arguaent per double word. The first argument is the entry operand.
Other arguments are accessed with displacements of 8, 16, 24, and so on,
from the address contained in register 1 when execution begins. For
exallple:

load proga
start epg 071374

causes execution to begin at a control section or entry point named
EPG. When execution begins, general register 1 points to a string of
two double words, the first containing lPG, the second containing
071374.

If a program is to be executed frequently, you can create a
non-relocatable copy of it on one of your disks. Subsequent invocation
of this program causes the absolute module to be read from disk storage,
ready to begin execution.

68 IBK V"/370: Command Language Guide for General Users

Part 2: Reference Information

This part of the publication contains reference information.
contains all the formats and rules for using CBS commands.
contains the formats and rules for using CP commands.

Section 7
section 8

Notational Conventions

The notation used to define the command syntax in this publication is:

• Truncations and Abbreviations of Commands

Where truncation of a command name is permitted, the shortest
acceptable version of the command is represented by uppercase
letters. (Remember, however, that VB/370 commands can be entered
with any combination of upper and lowercase letters.) The example
below shows the format specification for the FILBDBF command.

FIledef

This representation means that FI, FIL, FILB, FILBD, FILBDB, and
FILBDBF are all valid specifications for this command name.

Operands and options are specified in the same manner. Where
truncation is permitted, the shortest acceptable version of the
operand or option is represented by uppercase letters in the command
format box. If no minimum truncation is noted, the entire word
(represented by all capital letters) must be entered.

Abbreviations are shorter forms of co •• and names, operands, and
options. Abbreviations for command names are shown below the full
name in the format box. Abbreviations for operands and options are
shown in the description of the individual operands and options that
follows the format box. For example, the operand RBADBR has both a
minimum truncation and an abbreviation. In the format box it is
shown as:

Reader

indicating that the minimum truncation is R. In the discussion of
the RBADER operand that follows, it is shown as:

READER
RDR

indicating that the
specifications for the
REIDER, and RDR.

abbreviation is RDR. Thus, the acceptable
REIDER operand are: R, RE, REI, REID, RBIDB,

In some cases what appears to be a minimum truncation is really the
only valid abbreviation. For example, the abbreviation for BEBBER is
BEB. Only these two forms are valid and no truncations are allowed.
The format box contains

Part 2: Reference Information 69

MEMBER {n:ae}

and the description that follows the format box is

MEMBER { nalle}
"EM *

• The following symbols are used to define the coaaand foraat and
should never be typed when the actual co.aand is entered.

underscore
braces { }
brackets []
ellipsi's

• Uppercase letters and words, and the following syabols, should be
entered as specified in the format box.

asterisk *
comma
hyphen
equal sign =
parentheses ()
period
colon

• Lowercase letters, words, and symbols that appear in the comaand
format box represent variables for which specific information should
be substituted. Par exaaple, "fn ft f." indicates that file
identifiers such as "MIPILE EXEC 11" should be entered.

• Choices are represented in the command format boxes by stacking.

1
B
C

• 1n underscore indicates an assumed default option. If an underscored
choice is selected, it need not be specified when the coa.and is
entered.

~!!!£!.!!
The representation

1
~
C

indicates that either 1,
selected, it need not be
assumed.

B, or C may be selected. However, if B is
specified. Or, if none is entered, B is

10 IBM VM/310: Coa.and Language Guide for General Users

• The use of braces denotes choices, one of which ~§! be selected.

EX~l!.El~
The representation

{ ~ }
indicates that you !!§! specify either A, or B, or C.
choices is enclosed by neither brackets or braces,
treated as if enclosed by braces.

If a list of
it is to be

• The use of brackets denotes choices, one of which ~!~ be selected.

~.!!.!!.El~
The representation

r ,
I A I
I B I
I C I
L .J

indicates that you may enter A, B, or C, or you may omit the field.

• An ellipsis indicates that the preceding item or group of items may
be repeated more than once in succession.

~!!!tE!g
The representation

(options •••)

indicates that more than one option may be coded within the
parentheses.

Part 2: Reference Information 71

Section 7: Format and Usage Rules for CMS Commands

CMS Command Summary

This section contains descriptions of the commands acceptable in the CMS
environment. Pigure 13 contains an alphabetical list of the CMS
commands and ~ne functions performed by each. Unless otherwise noted,
CMS commands are described in this manual.

I

ICommand Usage
1--·-------------------------IACCESS IDefine direct access space for a CMS virtual machine,

Icreate extensions and relate the disk space to a logical
1 directory.

1
1
1
IASM37051

1
IAssemble 3704/3705 source code.

1
IASSEMBLE

CMSBATCH

COBOL2

1
IAssemble Assembler Language source code.
1
Invoke the CMS Batch Pacility.

Compile ANS Version 4 COBOL source code.

COMPARE Compare all or part of records in two existing disk files.

COIVERT2

COPYPILE

CP

Convert free form PORTRAN statements to fixed form.

Copy files according to spedifications.

Enter CP commands from CMS environment.

CPEREp3 Dump error information which was recorded by VM/370 error
recording routines.

DDR1,3 Perform backup, restore, and copy operations for virtual
disks.

DEBUG" Enter DEBUG subenvironment, DEBUG mode.

DIRECT1,3 Set up VM/370 directory entries.

DISK Perform disk-to-card and card-to-disk operations for CMS
Ifiles.

lThis co.mand .is described in the VML170: PlanninE ~~~ ~st~~
Generation Guide.

2ThIs-COimand-rnvokes an IBft Program Product, available fro. IBM
a license fee.

3This com.and is described in the VM/170: QR~~at2~~§ Guid~.
"This command is described briefly in this manual and in detail

VMn70: .§.l!!!~! Pr2.9!:~!~!:~!! ~!!!g~.

Pigure 13. CMS Command Summary (Part 1 of 4)

'I
1

for 1
1
1

in thel
1
I

Section 7: Pormat and Usage Rules for CMS Commands 73

• I Command Usage

1---IEDITs IEnter EDIT sUbenvironaent, EDIT aode.
I I

IERASE IDelete files from user disks.
I I
I EXEC6 IProcess special procedures aade up of frequently used
I
I
PILEDEP

POR!AT

PORTGI2

POR'IBX2

GEN37051

GENDIRT

GENftOD

GLOBAL

GOPORT2

INCLUDE

LISTDS

LISTPILE

LKEDI

LOAD

LOAD BOD

BACLIB

Isequences of coa.ands.
I
IProvide simulation of OS job control language data
Id~finition (DD) stateaents.
I
Prepare disks in CftS 800-byte block foraat.

Compile PORTRAI source code using the G1 coapiler.

Coapile PORTRAI source code using the B-extended coapiler.

Generate an EXEC file that assembles and link edits the
3704/3705 control program.

Create auxiliary module directories.

Generate absolute non-relocatable files (ftODULE files).

Define specific CftS libraries to be searched for aacro~
and subroutines.

Compile PORTRAN' source code and execute the program just
coapiled using Code and Go compiler.

Bring additional TEXT files into storage and establish
linkage.

List information about data sets on an OS disk.

List information about user CftS files.

Link edit the 3704/3705 control program.

Bring TEXT files into storage and establish linkages.

Bring a single ftODULf file into storage.

Create and modify C!S .acro libraries.

lThis command is described in the 'ftLJ70: Rlanni~~ A~~ §I~!~!
Generation Guide.

2ThIs-coiiand-iiivokes an IB! Program Product, available froa IB! fOl: a
license fee.

5This command is described briefly in this manual and in detail in the
'ftLJ70: ED.!~ Guide.

6This command is described briefly in this manual and in detail in the
'!/~lQ: 111~ Y2~~§ §!!!de.

Pigure 13. C!S Co •• and Suamary (Part 2 of 4)

74 IB! '1'/370: Command Language Guide for General U~ers

Coaaand Usage

ftODftlP IDisplay load map of a ftODULE file.
I

ftOVEFILE Iftove data fro. one device to another device of the same or
1 different type.
1 -

ICPDUftPl,3 Process CP spool reader files created by 3704/3705
duaping operations.

PLIC2

PLICB2

PLIOPT2

PBIRT

PURCH

QUEBY

BEIDCIBD

BELEISE

BEIAftE

BUI

SAVEICPl

SCBIPT?

Co.pile the PL/I source code using the PL/I Checkout
Compiler.

Execute the PL/I object code generated by the PLjI Checkout
Coapiler.

Coapile the PL/I source code using the PL/I Optiaizing
Compiler.

spool a specified CftS file to the virtual printer.

Spdol a specified CftS file to the virtual punch.

Bequest information about a CftS virtual machine.

Bead data froa spooled card input device.

ftake a disk and its directory inaccessible to a CftS virtual
machine.

Change the name of a CftS file or files.

Initiate series of functions to be perforaed on a file.

Bead 3704/3705 control program load into virtual storage
and save an image on a CP-ovned disk.

Foraat and print documents according to embedded SCBIPT
control vords in the document file.

lThis comaand is described in the Vft/112: f!!!!i!g !nd ~ste~
2This coaaand invokes an IBft Program Product, available froa IBft for al
license fee. 1

3This command is described in the !!l112: Q~!~!!2~~§ §yide. 1
?This co.mand invokes a text processor that is an IBft Installed User 1
Program, available froa IBB for a license fee. 1

Figure 13. CBS Co.mand Suaaary (Part 3 of 4)

Section 7: Format and Usage BuIes for CftS Coa.ands 75

I
Command Usage

SET Establish, set, or reset CMS virtual machine
characteristics.

SORT Arrange a specified file in ascending order according to
specified fields in the data record.

START Begin execution of programs previously loaded.

STATE Verify the existence of a file.

SVCTRACE Record information about supervisor calls.

SYRORYM Invoke a table containing synonyms you have created for
CMS commands.

TAPE Perform tape-to-disk and disk-to-tape operations for CMS
files.

TAPPDS Load OS partitioned data set (PDS) files or card image
files from tape to disk.

TESTCOB2 Execute the OS COBOL Interactive Debug Program Product.

TESTFORT2 Execute the "FORTRAN Interactive Debug Program Product.

TXTLIB Generate and modify text libraries.

TYPE Display all or part of a file at the terminal.

UPDATE Make changes in a file as defined by control cards in a
Icontrol file.
I

VMFDUMp3 IFormat and print system ABBRD dumps.
I

VSBASIC2 ICompile and execute VS BASIC programs under CMS.
I

VSBUTIL2 IConvert BASIC 1.2 data files to the format required by
IVS BASIC.
I

ZApl,3 IModify or dump LOADLIB, TXTLIB, or MODULB files.

lThis command is described in the !AL11Q: g!~!!iBg !~g System
Generation Guide. "

2This-coimand-invokes an IBM Program Product, available from IBM for a
license fee.

3This command is described in the !1L~lQ: QEerator's Guide.

Figure 13. CMS Command Summary (Part 4 of 4)

76 IBM VM/370: Co.mand Language Guide for General Users

I

GC20-1804-3 Page Modified by TNL GN20-2659

Any of the commands listed in Figure 13 may be entered when you are
running CMS in your virtual machine, the terminal is idle, and the
virtual machine is receptive for input. If however, CMS is processing a
previously entered command and your typewriter terminal keyboard is
locked, you must signal your virtual machine via an attention
interrupt. The system acknowledges the interrupt by unlocking the
keyboard: Now you can enter commands. If your terminal is a display
device, there is no problem of entering commands while the virtual
machine is busy as its keyboard remains unlocked for additional command
input. Note that in these circumstances the most recent command is
stacked and is not executed until the command that is currently
executing completes.

In addition to the commands listed in Figure 13, there are seven
commands called Immediate Commands which are handled in a different
manner from the others. They may be entered while another command is
executing by pressing the Attention key (or its equivalent) and are
executed immediately. The Immediate Commands are:

• HE - Halt batch execution

• HO - Halt tracing

• HT - Halt typing

• HX - Halt execution

• Re - Resume tracing

• RT - Resume typing

• so - Suspend tracing

section 7: Format and Usage Rules for CMS Commands 77

ACCESS

ACCESS

Use the ACCESS co.mand to acquire disk space and to set up file
directories in storage to be used during a ter.inal session. A Master
File Directory is the disk-resident file directory containing an entry
for each CMS file on a virtual disk. A User File Directory is the
directory created in storage when the ACCESS co.mand is executed. It
contains an entry for each CMS file that is available to you in your CMS
virtual machine. The specifications of the ACCESS com.and deter.ine the
entries in the User File Directory. The format of the ACCESS co •• and
is:

r----- --,

ACcess
r ,
Icuu 1I0de[/ext [fn [ft [fm]]]]1 [(options ••• [)]]
L J

2E!iQ!!§:
r ,
INOPROFI
IERASE 1
L .J

[NODISK] L-_____ _

cuu makes the disk at the specified virtual device address
available. This field must be specified if other than the
default value is desired. The default value is 191, except
when the NODISK option is specified. (When BODISK 1S
selected, the only disk accessed is the system disk and any of
its extensions.)

Note that 000 is not a valid address.

mode assigns the one-character filemode letter to the disk being
accessed. This field must be specified if cuu is specified
(except when the NODISK option is selected). The default
value is A.

ext indicates the mode of the parent disk. The User File
Directory of this disk is logically associated with the User
File Directory of the read-only extension. There must not be
a blank preceding or following the slash (I).

fn searches the Master 'File Directory of the disk being accessed
and includes the files with the specified filename in the User
File Directory for that disk. An asterisk coded in this field
means that all filenames are to be included. (See Bote 5.)

ft searches the Master File Directory of the disk being accessed
and includes the files with the specified filetype in the User
File Directory for that disk. If an asterisk is coded in this
field, all filetypes are included. (See Note 5.)

fm searches the Master File Directory of the disk being accessed
and includes the files with the specified filemode in the User
File Directory for that disk. An asterisk coded in this field
means that all files on the disk specified by the filemode
letter and device address are selected, regardless of the
filemode number. (See Note 5.)

78 IBM VM/370: Command Language Guide for General Users

ACCESS

I~te: An asterisk (*), preceded by any number of characters for filename
or filetype, allows the specified characters to be used as the leading
characters for that identifier. For example, ABC* for fn allows access
to all files with filenames beginning with ABC.

lOPROF

BRASB

BODISK

suppresses execution of a PROFILE EXEC file (see lote 1).
This option is valid only if the ACCESS co •• and is the
first co.mand entered after an IPL of the CftS operating
system. On subsequent ACCESS co •• ands, the NOPROr option
is ignored.

creates a User File Directory with no entries for the
disk being accessed; this option is valid only for disks
in read/write mode. The ftaster File Directory on the
disk re.ains unchanged; only. the directory in virtual
storage is altered (see Bote 3).

lets you gain access to the CftS operating system with no
disks accessed except the system disk and its
extensions. This option is valid only on the first
co •• and you enter after loading CftS. If BODISK is
specified, no other operands or options may be used.

1. The PROFILE EXEC file is a user-generated EXEC procedure often used
to perform initialization and to set system parameters required by
the virtual .achine. For exa.ple, whenever programs that use
macros are assembled or compiled, the PROFILE EXEC procedure can
issue the GLOBAL co.mand to indicate where the system should search
for the macros. For OS programs, the PROFILE EXEC procedure can
issue FILEDEF state.ents for the files to be used.

2. If an ACCBSS co •• and is not entered as the first co •• and after an
IPL com.and for CftS, the command:

access 191 a

is auto.atically perfor.ed and the PROFILE EXEC file, if one
exists, is executed. Any disk being accessed must previously have
been formatted using the CftS co.mand FORftAT.

3. If an ACCESS co •• and with the ERASE option is entered by mistake,
you can regain access to the existing files on the disk either by
issuing another ACCESS com.and without the ERASE option, or by
issuing a RELEASE com.and for the disk. Since the ERASE option
does not alter the ftaster File Directory or disk files, but only
specifies that the directory built in virtual storage is to contain
no entries, the original disk files can be recovered as long as
they were not altered. However, if a CftS command is executed which
causes a new file to be written on the disk, the ftaster File
Directory is updated and the files which were on the disk before
the execution of the ACCESS co.mand with the BRASB option are no
longer available. The space previously used for the erased files
is now available for new files.

4. If the initial ACCESS command (either explicit or implied)
encounters an error, a message is displayed at the terminal and you
can enter another co.mand; no disk has been accessed at this time.

section 7: Pormat and Usage Rules for CftS Co.mands 79

ACCESS

5. The filena.e, filetype and file.ode can only be specified with
disks which are accessed as read-only extensions. Piles with a
mode nu.ber of 0 are not be accessed in this case.

6. If you have disk addresses 190, 191, 192, and 19E defined in the
V"/370 directory, or if they are defined before you IPL C"S, these
disks are accessed as the S, A, D, and Y disks, respectively. The S
and Y disks are read-only disks.

7. If you are using ACCESS to access a read-only OS or DOS disk, you
cannot specify the fn, ft, or fm operands, nor can you specify any
options.

8. A read-only OS or DOS disk cannot be accessed unless a C"S A-disk
is already accessed, in read/write .ode.

9. Only one virtual machine at a time can access a disk in read/write
mode.

Command

ACCESS 192 B

AC 192 B/B ABC

ACC 192 B/B ABC*

Result

IMakes all files on 192 (which is to become the
IE-disk) availa~le for reading.

IProvides read-only access to all files on the
IB-disk, with a filename of ABC.

IProvides read-only access to all files on the
IB-disk whose filenames have ABC as the first
Ithree characters.

ACCE 192 B/B ABC * B2 IProvides read-only access to all files on the
IE-disk that have a filename of ABC and that
lare in read-only mode (mode number of 2).

ACCES 191 A/A

ACCESS 194 D/A

ACC (ROPROP)

AC 191 A (ERASE)

IPlaces the A-disk in read-only mode.

IMakes the D-disk a read-only extension of the
lA-disk. The A-disk must have been accessed
Ibefore this com.and is issued. The effect of
Ithis can be negated by issuing
I ACCESS 194 D

IAccesses 191 as the A-disk and does not
lexecute your PROPILE EXEC file if this is the
Ifirst command executed after you load CMS.

IMakes 191 available as the A disk but builds
Ithe file directory in virtual storage with no
lentries. All'space on the disk becomes avail
lable for new files, when the execution of a
ICMS co •• and causes the "aster Pile Directory
Ito be updated.

80 IBM VM/370: Command Language Guide for General Users

DMSACC7231 mode (cuu) R/O [-OS]

The specified disk is attached to the
read-only mode. When the disk specified
CMS adds the "-OS" to the response.

DMSACC7241 cuul REPLACES mode(cuu2)

ACCESS

CMS virtual machine in
is in OS or DOS format,

Before execution of the command the disk represented by cuu2 was
the "mode" disk. The disk i Guul, is nnv assigned that file~ode
letter. This message is followed by message DMSACC726I.

DMSACC7251 cuu ALSO = 'mode' [-OS]

The disk specified by cuo is the "mode" disk and an ACCESS command
was issued to assign it another filemode letter. When the disk
specified is in OS or DOS format, CMS adds the -os to the
response.

DMSACC7261 'cuu mode' RELEASED

The disk located at virtual address cuu that is being accessed as a
read/write disk is already currently accessed. The effect of the
previous ACCESS command is canceled and the disk is released from
the virtual machine configuration.

DMSACC002E lILE 'DMSROS TEXT' NOT FOUND RC=28
DMSACC003E IRVALID OPTIOR 'option' RC=24
DMSACC017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSACC048E IRVALID MODE 'mode' RC=24
DMSA~C059E 'cuu' ALREADY ACCESSED AS READ/WRITE 'mode' DISK RC=36
DMSACC060E lILE(S) 'fn [ft [fm]]' ROT 10URD. DISK 'mode(cuu), WILL HOT

BE ACCESSED RC=28
DMSACCl12S DISK 'mode (cuu) , DEVICE ERROR RC=100
D5SACC113S mode (cuu) ROT ATTACHED RC=100
DMSACC230W OS DISK - lILEID AHD/OR OPTIOHS SPECI1IED ARE IGRORED
DMSACC240S ERROR LOADING READ OS ROUTINE 'DMSROS TEXT'

Section 7: Format and Usage Rules for CMS Co •• ands 81

ASSEftBLE

ASSEMBLE

Use the ASSEftBLE coaaand to invoke the Asseabler to asseable the
specified file. The Assembler processing and output are controlled by
the options selected. The foraat of the lSSEftBLE co •• and is:

Asse.ble

fn

fn [(options ••• [)]]

r ,
1!1:!2g!£ I
INOALOGICI
L .J

r ,
11ISI I
I NOLISTI
L .J

r ,
11!~~ I
INOESDI
L .J

r ,
IftCALL I
I!Q!!~AL1:1
L ...

r ,
I FLAG (nnn) I
Illl.§ 1Ql I
L .J

r ,
IftLOGIC I
I!Oft1:QGI~ I
L ...

r ,
IIjlI lIy'LLl I
IIREF (SHOR T) I

r ,
I PRINT I
INOPRINTI

I NOIREF I I~!.§! I
L .J L ...

r ,
IDECK I
I.!ODEClSl
L ...

r ,
I NUftBER I
I NONUft I
L ...

r ,

I .Qlhl1!£! I
I NOOBJECTI
L .J

r ,
ISTft! I
INOSTftTI
L ...

r ,
ITEST I
INO!~I
L .J

r ,
ITERft!NA1:1
I JOTERft I
L ...

r ,
ILINECOUN (nn) I
11:1!1!~OU! j~~ll
L .J

r ,
IRL~ I
INORLD I
L ...

r ,
ILIBftAC I
I].QLI.ID!!f I
L .J

r , r , r , r ,
ISYSPARft (string) I 111:!g! I

INOALIGN I
L .J

IBUlSIZE (ftIN) I
IBUlSIZJ lSTDll
L ...

is the filenaae of the source
must have a filetype of
80-character records.

IRENT I
I NO,!!ENTI
L .J

I SYSPARft (1) I
I SYSPARft () i
L ...

file to be asseabled. The file
ASSBftBLB and fixed-length,

1:!§!!!2 ~Q!1!91: OPTIONS: The list below describes the assembler options
you can use to control the assembler listing. The default values are
underscored.

lists conditional assembly state.ents in open
code.

82 IBft Vft/370: Coaaand Language Guide for General Users

BOILOGIC

NOESD

FLAG (nnn)
~1!~ lQl.

LINECOUN (nn)
LI1!1!~Q!!l! J.2~1

NCLIST

ftCALL

"LOGIC

NORLD

LIBftAC

ASSEftBLE

suppresses the ALOGIC option.

lists the external symbol dictionary (ESD).

suppresses the printing of the ESD listing.

does not include diagnostic ·messages and ftNOTE
messages below severity code nnn in the listing.
Diagnostic messages can have severity codes of 4,
8, 12, 16, or 20 (20 is the most severe); and
ftNOTE severity codes can be between 0 and 255. For
example, FLAG (8) suppresses diagnostic messages
with a severity code of 4 and MNOTE messages with
severity codes of 0 through 7.

nn specifies the number of lines to be listed per
page.

produces an assembler listing.

does not produce an assembler listing. This option
overrides ESD, RLD, and XREF.

lists the inner macro instructions encountered
during macro generation following their respective
outer macro instructions. The assembler assigns
statement numbers to these instructions. The ftCALL
option is implied by the ftLOGIC option; NOftCALL
has no effect if ftLOGIC is specified.

suppresses the "CALL option.

lists all statements of a macro definition
processed during macro generation after the macro
instruction. The assembler assigns statement
numbers to them.

suppresses the !LOGIC option.

produces the relocation dictionary as part of the
listing.

does not print the relocation directory.

lists the macro definitions read from the macro
libraries and any assembler statements following
the logical END statement. The logical END
statement is the first END statement processed
during macro generation. It may appear in a macro
or in open code; it may even be created by
substitution •. The assembler assigns statement
numbers to the statements that follow the logical
END statement.

section 7: Format and Usage Rules for CftS Commands 83

ASSB"BLB

XRBF (SHORT)

NOXRBF

PRINT
PR

NOPRINT
NCPR

~!.§!
DI

suppresses the LIB"AC option.

includes in the assembler listing a cross
reference table of all symbols used in the
assembly. This includes symbols that are defined
but never referenced. The assembler listing also
contains a cross reference table of literals used
in the assembly.

includes in the assembler listing a cross
reference table of all symbols that are referenced
in the assembly. Any symbols defined but not
referenced are not included in the table. The
assembler listing contains a cross reference table
of literals used in the assembly.

does not print the cross-reference tables.

writes the LISTING file to the printer.

suppresses printing the LISTING file.

places the LISTING file on a virtual disk.

OUTPUT CONTROL OPTIONS: The output control options are used to control
the-Qbject-iodule output of the assembler.

DECK

NOOBJECT
NOOBJ

TBST

writes the object module on the device specified
on the 'ILEDE' statement for PUNCH. If this
option is specified together with the OJBECT
option, the object module is written both on the
PUNCH and TEXT files.

suppresses the DECK option.

writes the object module on the device specified
in the TEXT 'ILEDE' statement. If this option is
specified together with the DBCK option, the
object module is written on the two devices
specified in the 'ILEDE' statement for TBXT and
PUNCH.

does not create the object module.

includes the special source symbol table (SY"
cards) in the object module.

Does not produce SY" cards.

84 IB" V"/370: Command Language Guide for General Users

ASSE"BLE

SYSTER" OPTIOIS: These are used to control the SYSTER" file associated
wIth-Jour-assembly.

BOBU"

IOST"T

IOTER"

writes the line nuaber field (columns 73-80 of the
input records) in the SYSTER" listing for
statements for which diagnostic information is
given. This option is valid only if TER"IBAL is
specified.

suppresses the BU"BER option.

writes the state.ent number assigned by the
assembler in the SYSTER" listing for statements
for which diagnostic information is given. This
option is valid only if TER"IBAL is specified.

suppresses the ST"T option.

writes the diagnostic
SYSTER" data set. The
consists of the diagnosed
the error message issued.

infor.ation on the
diagnostic information

statement followed by

suppresses the TER"IBAL option.

OTHER ASSE"BLER OPTIONS: The options below allow you to specify various
functions-an~values-for the assembler.

!1!!H!
!1!H!

." ,..,.. '." "VAJ.,~\:rl'l

BOALGI

BUPSIZE (811)

aligns all data on the proper boundary in the
object module; for exa.ple, an P-type constant is
aligned on a fullword boundary. In addition, the
asse.bler checks storage addresses used in machine
instructions for alignment violations.

does not align data areas other than those
specified in CCW instructions. The assembler does
not skip bytes to align constants on proper
boundaries. Alignment violations in machine
instructions are not diagnosed.

uses the minimum buffer sizes (790 bytes) for each
of the utility data sets (SYSUT1, SYSUT2, and
SYSUT3). Storage normally used for buffers is
allocated to work space. Because more work space
is available, more complex programs can be
assembled in a given virtual 'storage size; but the
speed of the assembly is substantially reduced.

chooses the buffer size that gives optimum
performance. The buffer size depends on the amount
of virtual storage. Of the assembler working
storage in excess of minimum requirements, 371 is
allocated to the utility data set buffers and the
rest to .acro generation dictionaries.

Section 7: Pormat and Usage Rules for C"S Commands 85

ASSEMBLE

RENT

SYSPARM

checks your program for a possible violation of
program reenterability. Code that makes your
program nonreenterable is identified by an error
message.

suppresses the RENT option.

{

(string) J 'string' is the value assigned to the system
() null variable symbol &SYSPARM. The varible (string)

string cannot be greater than 8 characters. If you
(1) wish to enter a string of more than 8 characters,

use the SYSPARM (1) format. with the SYSPARM (1)
form, CMS prompts you with the message:

EITER SYSPARM:

You can enter a string of characters up to the
option limit of 100 characters. You can also
enter parentheses and embedded blanks from the
terminal. SYSPARM () enters a null string of
characters.

Q!Jjjl~l!~ ~~~ IlLE ~~!!~1~~: When you issue the ASSEMBLE command, there
are default FILEDEF commands issued for assembler data sets. You may
want to override these with explicit FILEDEF commands. The ddnames most
likely to be overridden are:

ASSEMBLE
TEXT
LISTING
PUNCH
CMSLIB

(SYSIN input to the assembler)
(SISLII output of the assembler)
(SYSPRIRT output of the assembler)
(SYSPUNCH output of the assembler)
(SYSLIB input to the assembler)

The default FILEDEF commands issued by the assembler for the ddnames
are:

FILEDEF ASSEMBLE DISK fn ASSEMBLE fm (RECFM FB LRECL 80 Block 800

FILEDEF TEXT DISK fn TEXT fm

FILEDEF LISTING DISK fn LISTING fm (RECFM FBA Block 1210

FILEDEF PUNCH PUNCH

FILEDEF CMSLIB DISK CMSLIB MACLIB * (RECFM FB LRECL 80 Block 800

A FILEDEF command, issued for any of the above ddnames prior to
invoking the assembler, overrides the default FILEDEF issued by the
assembler. Assume that there is an assembler source file in card deck
form which you want to assemble. If you have this card deck read into
your virtual machine reader, you must issue an overriding FILEDEF
command prior to assembling, that is, FILEDEF ASSEMBLE READER. Now you
can invoke the assembler as follows:

ASSEMBLE SAMPLE (options • • • •

The name SAMPLE is used by the assembler as the filename for any TEXT
or LISTING files produced by the assembler, provided a file SAMPLE
ASSEMBLE does not exist on any accessed disk, in which case, the first
file is erased.

86 IBM VM/370: Command Language Guide for General Users

ASSEMBLE

Similarly, if you have a tape containing an assembler input file
which you want to assemble, you must issue the following commands:

FILEDEF ASSEMBLE TAPn (RECFM F LRECL 80 BLOCK 80

or, if the file is blocked,

FILEDEF ASSEMBLE TAPn (RECFM FB LRECL 80 BLOCK 80*n

followed by

ASSEMBLE SAMPLE (options....

You can use as data sets as CMS files by defining those data sets
with the FILEDEF command. For example,

FILEDEF ASSEMBLE DISK MYDSET ASSEMBLE B4 DSN as DATASET

B4 is the mode of as disk to be accessed.

OS.DATASET is the name of the as data set to be used for input.

To assemble this, issue:

ASSEMBLE MYDSET

The same examples used here for input files can be applied to other
ddnames. Care should be taken that any attributes specified for the
file conform to the assembler expected attributes for the device, that
is, PUNCH, LRECL 80 BLOCK 80, TERMINAL 132.

For the messages and return codes associated with the ASSEMBLE command,
see the g~L!~ ~Bg !~LJ1Q !§§~!~1~£ R£9g~~~~~~§ ~~~g~.

section 7: Format and Usage Rules for CMS Commands 87

GC20-1804-3 Page Modified by TNL GN20-2659

CMSBATCH

CMSBATCH

You use the CMSBATCH command to invoke the CMS Batch Facility. The
format of the CMSBATCH command is:

r-
I CMSBATCH
L

[sysname]

sysname is the name of the saved system that the CMS Batch Facility
loads for all subsequent batch jobs. This operand can only be
used if the installation has set up the CMS Batch Facility as
a saved system.

You issue this command immediately after loading CMS with the IPL
command. You can find a complete description of the CMS Batch Facility
in "Appendix C: Using the CMS Batch Facility" and in the !lUllQ:
QE~~~lQ£~§ §y~g~.

DMSBTB100E NO BATCH PROCESSOR AVAILABLE RC=40
DMSBTB101E BATCH NOT LOADED RC= 88
DMSBTP105E NO JOB CARD PROVIDED RC=None
DMSBTP106E JOB CARD FORMAT INVALID RC=None
DMSBTP107E CP/CMS COMMAND 'command, (device)' NOT ALLOWED RC=88
DMSBTP108E /SET CARD FORMAT INVALID RC=None
DMSBTP109E CPUIPRINTERIPUNCH LIMIT EXCEEDED RC=None

88 IBM VM/370: Command Language Guide for General Users

COMPARE

COMPARE

Use the COMPARE command to compare two disk files of fixed or variable
length format and to display the contents of corresponding unlike
records at the terminal. The format of the COMPARE command is:

r-
I COMpare I fileid 1 fileid2 [(COL mm-nn[)]]
L- -J

fileid is the file identification of the
All three identifiers (filename,
must be specified for each fileid.

two files to be compared.
filetype, and filemode)

(COL mm-nn)
(~g1 l=!f~~!l

defines any contiguous portion of the corresponding
records for comparison. The comparison begins at
position mm of each record 1n both files. The
comparison proceeds up to and including position nn of
each record in both files. If mm is not specified, the
comparison starts with the first character of each
record in both files. If nn is not specified, the
default ending position is the last character of each
record. The "_" is required and may not be preceded or
followed by a blank. IIlrecl ll is the logical record
length of the file.

If you want to stop the displaying of the dissimilar records, use the
CMS immediate command HT.

COMPARE ABC lIZ A1 ABC MNO A1

Each record in file ABC lIZ A1 is compared with the corresponding record
in file ABC MNO A1. Comparison begins at the first position of each
record and proceeds for the entire length of the record. Records which
do not match are displayed at the terminal.

COMPARE MYFILE ASSEMBLE A1 YOURFILE ASSEMBLE A1 (COL 10-72)

positions 10 through 72 of each record in file MYFILE ASSEMBLE A1 are
compared with corresponding positions of each record in file YOURFILE
ASSEMBLE A1. Records in which these positions do not match are displayed
at the terminal.

If corresponding records in each file do not match, the record from the
first file is displayed, followed by the record from the second file.

section 7: Format and Usage Rules for CMS Commands 89

GC20-1804-3 Page Modified by TNL GN20-2659

COMPARE

DMSCftP002E PILE 'fn [ft [fa]]' NOT POUND RC=28
DMSCMP003E INVALID OPTION 'option' RC=24
DMSCftP005E NO 'option' SPECIPIED RC=24
DMSCftP009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24
DMSCMP010E PREMATURE EOP ON PILE ['fn ft [fa']] RC=40
DMSCftPOllE CONPLICTING PILE PORMATS RC=32
DMSCMP019E IDtNTICAL PILEIDS RC=24
DftSCftP029E INVALID PARAMETER 'param' IN THE OPTION 'col' FIELD RC=24
DMSCMP054E INCOMPLETE PILEID SPECIFIED RC=24
DMSCftP062E INVALID * IN PILEID RC=20
DMSCftPl04S ERROR Inn' READING FILE 'fn ft fm' PROM DISK RC=100
DftSCftP209W PILES DO NOT COMPARE RC=4

90 IBM VM/370: Command Language Guide for General Users

COPYPILE

COPYFILE

Use the COPYPILE co.~and to copy d~ta froll specified input files to the
output files accordlng to converS10ns and specifications indicated by
the options selected. The manner in which the file identifiers are
entered determines whether one output file is created (single output
aode) or aultiple files are created (multiple output mode).

The COPYPILE command is used to:

• Copy one file to another
• Combine two or more files into a single output file
• Copy files i~to aultiple output files
• Copy a file from one minidisk to another

with the COPYPILE command, you can:

• Display the naaes of files copied at the terminal.

• Replace the existing output files with the new output files.

• Change the record foraat and logical record length.

• selectively copy records from the input file(s) based on either:

- Record nUllber

- Label field of record

• Re.ove the trailing fill characters from each record.

• Compress an input file.

• Convert 026 key punch characters to corresponding 029 characters.

• Convert lowercase letters to ~ppercase and uppercase letters to
lowercase.

• Overlay data in an existing file with selected data from another
file.

• Append one file to another file.

• ftove selected positions within each record to specified positions in
the records of another file.

• Insert a specified charact'er string or hexadecimal character into
selected positions of each record in the output file.

• Perfor. character translations.

section 7: Poraat and Usage Rules for CftS Co •• ands 91

COpy FILE

The format of the COPYPILE cOllmand is:

COPYfile

fi1eidi 1

fileidi2

fi1eido

fileidi 1 [fileidi2 •••] [fileido] [(options ••• [)]]

~:Etion.§:
r ,
IType I
I!OT:!~I
L .J

r ,
IPRo.!£! I
I NOPRollpt I
L .J

r ,
ITRUnc I
I!QIiy!£1
L .J

r ,
IPIll c I
IPl1l hh I
IPl11 40 I
L .J

r ,
IIEWDatel
10LDDatei
L .J

r ,
IPRolI recno I
IPRLabel xxxxxxxxi
L .J

r ,
I PAck I [EBcdic]
IUNPackl
L .J

r ,
ISPecs I [TRAns]
II0S.f~£.§1
L .J

[LRec1 nn]

r ,
IPOR recno I
ITOLabel xxxxxxxxi
L .J

r ,
IUPcase I
ILOwcase I
L .J

r ,
I1!EWPi1~1
IREPlacel
10Vly I
IAPpend I
L .J

is the first (or only) input file. Each file identifier
(filename, fi1etype and filemode) must be specified either
by indicating the specific identifier or by coding an
asterisk. However, all three file identifiers of fi1eidil
cannot be specified by asterisks.

is an additional input file(s). Each file identifier
(filename, fi1etype, and fi1emode) must be specified. In
single output mode, any of the three ,input file identifiers
may be specified either by indicating the specific
identifier or by coding an asterisk. However, all three
file identifiers of fi1eidi2 cannot be specifi~d by
asterisks. In multiple output mode, an asterisk 1S an
invalid file identifier. An equal sign (=) may be coded for
any of the file identifiers, indicating that it is the salle
as the corresponding identifier in fi1eidl.

is the output fi1e(s) to be created. Each file identifier
(filename, filetype and fi1ellode) IIUSt be specified. To
create multiple output files, an equal sign (=) must be
coded in one or aore of the identifier fields. If there is
only one input fi1eid, fi1eido aay be omitted, in which case
it defaults to - - = (the input file represented by fi1eidil
is replaced).

The following options are the most used options of the COPYPILE
com.and. Binor variations of these options are described in the "Other
Options" section.

92 IB! V!/370: COIIIRand Language Guide for General Users

TYPE

ROTYPE -----

OLDDATE

RECFt!

LRECL nn

NOPROt!PT

COPYFILE

displays at the terminal the names of the files being
copied.

suppresses the displaying at the terminal the names of
the files being copied.

uses the current date as the creation date of the new
files.

uses the date en the first input file as the creation
date of the new files.

is the record format of the output files.
specified, the output record format is the same
of the input.

If not
as that-

is the logical record length of the output file(s) if it
is to be different from that of the input files. The
maximum value of nn is 65535.

displays the messages which request specification or
translation lists.

suppresses the display of prompting messages
specification and translation lists.

for

FROt! recno is the starting record number for each input file in the
copy operation.

FRLABEL xxxxxxxx

FOR recno

xxxxxxxx is a character sequence which appears at the
beginning of the first record to be copied from each
input file. up to eight characters may be specified.
The character sequence may not contain embedded blanks.

is the number of records to be copied from each input
file.

TOLABEL xxxxxxxx

TRUNC

xxxxxxxx is a character sequence which, if at the
beginning of a record, stops the copy operation for that
input file. The record containing the given character is
not copied. Up to eight characters may be specified.
The character sequence may not contain embedded blanks.

removes trailing blanks (or fill characters) when
converting to RECFt! V output file record format.

The RECFt! and LRECL options can
record format and logical record
files being created.

be used to
lengths of

specify the
the output

section 7: Format and Usage Rules for Ct!S Commands 93

COPYPILB

PACK

There are two record formats, F (fixed) or V (variable).
All records in a fixed record foraat file are the saae
size (for exaaple, card image files, where all records
are 80 bytes long). Variable record format files have
records of varying sizes. SCRIPT files, where the length
of each record is usually different, are variable record
fora at files.

The logical record length (LRBCL) applies only to fixed
record foraat (F) files. For exaaple, for card image
files, the logical record length is 80.

If the R!CFB or LRBCL options are not specified, the
record foraat and logical record length for the output
file are the same as for the current or only input file.
If the output file record foraat is V, then the LRBCL
option (if specified) is ignored.

When the output file record format is F, the input
records are truncated or padded, as necessary, to the
logical record length. When the output file record
foraat is V, the input records are simply copied to the
output file, unless the TRUNC option is specified. If
THUIC and H!CFB V are specified, all blanks at the end of
each record are removed before the record is written
out.

Por information on variations of this option, see the
discussion of the FILL option under "other Options."

suppresses the removal of trailing blanks (or fill
characters) when converting to RBCFB V output file record
format.

converts repetitively occurring characters to compressed
foraat. If the FILL option is not used, all occurrences
of two or more blanks in the file are encoded as one
character, and four or more occurrences of any other
character in the file are encoded as three characters.
If a FILL character is specified, that character replaces
the blank as the special packing character, and blanks
are treated as any other non-fill character.

Source files generally take up a great deal of disk
space, because they contain aany blanks. This is
particularly wasteful in the case of source files which
are seldoa used.

Use the PACK option of the COPYFILB coamand to encode a
file so that aultiple blanks are represented as a single
character, and multiple occurrences of other characters
also produce space savings.

When the PACK option is used, the output file is in a
foraat which can be decoded only by the UNPACK option of
the COPYPIL! command.

Por exaaple, the co •• and:

COPYPILB * ASS!BBL! A1 (PACK

causes all ASSBftBLB files on the A-disk to be packed.

94 IBB VB/370: Com.and Language Guide for General Users

OIPACK

EBCDIC

OPCASE

LOWCASE

COPYPILE

If you know that a particular character occurs a great
many times in a file (and if this character occurs more
often than the blank character), specify that character
as the fill character for the file. Two or more
occurrences of the specified fill character are encoded
as one character. Then four or more consecutive
occurrences of any other character (including the blank)
are encoded as three characters.

However, not every file should be packed. In fact, if
the file does not contain very many occurrences of
multiple characters, it is possible for the packed file
to be longer than the original file.

CAOTIQ!: A file in packed format should not be modified
in any way. If such a file is modified in any way, the
OIPACK routines will be unable to reconstruct the
original file. Packed files should never be combined or
split.

reverses the PACK operation.

converts a file that was created with 026
characters (BCD), to 029 keypunch characters
The following conversions are made:

< to)
& to +

" to (

• to =
it to •
• to

keypunch
(EBCDIC) •

converts all lowercase characters in each record to be
written to an output file to uppercase before the record
is written out.

converts all uppercase characters in each record to be
written to an output file to lowercase before the record
is written out.

In addition to the options already described, the COPYPILE co •• and
offers several variations:

RBPLACE

checks that output files did not previously exist. If
one or more output files do exist, an error message is
displayed and the COPYPILE co.mand terminates. This
option is the default so that existing files are not
inadvertently destroyed.

causes the output file to be replaced by an input file of
the same name. REPLACE is the default option when the
output file identification is "= = =."

section 7: Format and Osage Rules for CftS Com.ands 95

COpy PILE

OYLY

APPEND

PILL c
PILL hh
l!~ !Q

SPECS

overlays the data in an existing output file with data
froa the input file.

appends the data froa the input file to the end of a file
specified by the output file identifiers. If no output
file exists, one is created.

is the padding and truncation character or the principal
packing character for the PACK option. The fill character
aay be specified by entering a single character, c, or by
entering a two-digit hexadeciaal representation of a
character. The default is 40 (the hexadeciaal
representation for a blank in EBCDIC).

When the output file record foraat is P, the input
records are truncated or padded, as necessary, to the
logical record length. The padding and truncation
character is usually a blank, but this default aay be
overridden if you specify a new padding and truncation
character with the PILL option.

When RECPft Y and TRUIC are specified, all blanks on the
end of each record are reaoved before the record is
written. To truncate some character other than blanks,
use the PILL option.

The PACK routine treats the blank as a "special packing
character". If desired, the PILL option aay be used to
change the "special packing character" to a non-blank
character.

requests a user specification list defining the aanner in
which data is to be copied.

If the SPECS option is
proapting message:

used, COPYPILE issues the

DftSCPY601R ENTER SPECIPICATION LIST

The- keyboard unlocks, and
specification list.

you aay

The format of the specification list is:

source target [source target] •••

type in the

where source can be specified in several ways and target
is a deciaal nuaber representing a position in the output
record. Source can be specified as:

• A pair of coluans of the input file, specified in the
foraat "nn-am", two decimal nuaber values separated by
a hyphen. This foraat causes the specified positions
in the input file record to be copied to the output
file. Por each record that is copied, the value of aa
(the ending record position) is compared to the length
of the record. Whenever the specified ending record
position exceeds the length of the record, the end of
the record becoaes the assumed ending position for
that record. Por example, the source specification
"23-40" causes coluans 23 through 40 of the input file
record to be copied to the output file.

96 IBft Yft/370: Coamand Language Guide for General Users

COPYPILE

• I string of characters, delimited by nonalphaaeric
characters. Such a specification causes the specified
string of characters to be placed in the output file
record. Por example, a source specification of
"/lbCd 1234/" causes the string "lbCd 1234" to be placed
in each record of the output tile. The letters in the
string of characters are not automatically raised to
uppercase; if you wish capital letters, you must type
them in as such.

• I string of characters, specified by the letter "B"
followed by an even number of hexadecimal digits
entered using numeric characters and either upper or
lower case alphabetic characte~s. Por example, the
specification, "hb7c1ff" causes the characters given
by the hexadecimal values X'B7', X'e1', and X'PP' to
be placed in the output file.

Por example, consider the following specification list:

1-5 10 /IBC/ 3 /XYZ/ 20 BOO 25

This specification list contains four sets of
specifications, and causes data to be placed into the
output record in the following manner: Pirst, positions
1 through 5 of the input record are placed in positions
10 through 14 of the output record. Next, the characters
"IBC" are placed in positions 3 through 5 of the output
record. Next, the characters "XYZ" are placed in
positions 20 through 22 of the output record. Pinally,
the character X'OO' is placed in position 25 of the
output record.

Por variable length output files, the length of the
output record is determined by the position of the
rightmost byte of data that was placed in the output
record. Por fixed length output files, the record is
padded or truncated to the logical record length.

Positions of the output record for which no data is
specified are filled with blanks. Use the PILL option to
specify another fill character. In the example shown
above, positions 1-2, 6-9, 15-19 and 23-24 of the output
file record contain blanks. In addition, if the output
record format is P, positions 26 through to the end of
the record contain blanks.

The SPECS option is particularly useful in conjunction
with the OfLY option. If these options are used
together, the specification list indicates the exact
positions of the output file record to be overlaid. Por
example, if the specification list 1-10 20 is used with
the OfLY option, then positions 1-10 of each input file
record overlay positions 20-29 of each record of the
existing output file, and the other positions of the
output file records remain unchanged.

The specification list can be continued onto
lines by typing '++' at the end of the first

additional

these two characters are encountered
source-specification is expected, all scanning
line ceases, and the keyboard unlocks so that a
may be entered.

line. If
when a
of that
new line

Section 7: Pormat and Usage BuIes for CMS Commands 91

COPYPILE

TRINS

indicates that no specification list is to be entered.

specifies that you are to be asked for a list of
character translations to be made as the file is copied.

The TRINS option allows you to specify your own list of
translations; it overrides any of the other three
translation options (OPC1SE, LOWC1SE or EBCDIC).

When the TRINS option is specified, the COPYPILE command
displays the prompting message:

DftSCPY602R EITER TR1NSL1TION LIST

You may then enter the translation list.

The translation list consists of a series of pairs of
characters, separated by blanks. Each character may be
specified either by entering the character itself or by
entering a two-digit hexadecimal equivalent (the latter
is particularly useful for characters not available on
your teraina1 keyboard).

Por exaaple, the translation list:

* - 1 fO 00 ff

specifies that the character '*' is to be translated-to
I_I, the character 'I' is to be translated to X'PO', and
the character X'OO' is to be translated to X'PP'. If the
preceding translation list is specified in conjunction
with the LOWC1SE option, then the translation 'l' to
X'pO' overrides the LOWC1SE translation, 'I' to 'a'.

The translation list can be continued onto additional
lines by typing '++' as the last two characters of the
present line. Whenever these two characters are
encountered when the first character of a character pair
is expected, all scanning of that line ceases, (for
typewriter terainals, the keyboard unlocks), then a new
line aay be entered.

Pigure 14 shows coabinations of options which should not be specified
together in the same COPYPILB co.aand.

If the option in the first coluan is specified, none of the options
in the second coluan can be coded.)

98 IBft Yft/370: Command Language Guide for General Osers

option

lPPBID

BBCDIC
lOR
FRLABBL
lROB
LOICASB
LRECL
IBIDATB
IEllILE
10PROBPT
10SPECS
10TRUIC
10TYPE
OLDDATE
OVLY
PACK

PROBPT
RBCPB
RBPLACB
SPECS
TOLIBBL
TRAIS
TRUIC
TYPE
UIPACIC

UPClSE

Figure 14.

COPYlILE

Incompatible options

LRECL, IEIDATE, IEllILE, OLDDATE, OVLY, PACK, RECP!,
REPLACE, UIPACK

PACK, UIPACK
PACK, TOLABEL, UIPICK
PROB, PACK, UIPACK
PRLABBL, PACK, UIPACK
PACK, UIPACK
APPEID, PACK, UIPACK
APPIID, OLDDATI
APPIID, OVLY, REPLACE
PROBPT
PACK, SPICS, UIPICK
PACK, TRUIC, UIPACK
TYPI
APPIID, IBIDATI
APPEID, IEIPILE, PACK, REPLACE, UIPACK
APPEID, IBCDIC, lOR, PRLABBL, lROB, LOICISE, LRECL,

OfLY, RECPB, SPECS, TOLABEL, TRAIS, TRUIC, UIPACK,
UPCASE

10PROBPT
APPEID, PACK, UIPACK
APPIID, IIIPILI, OfLY
10SPICS, PACK, UIPACK
POR, PACK, UIPACK
PICK, UIPACK
10TRUIC, PACK, UIPICK
10TYPE
APPIID, IBCDIC, lOR, lRLABEL, lROB, LOICASE, LRECL,

OfLY, PACK, RECPB, SPECS, TOLIBEL, TRAIS, TRUIC,
UPCASB

PACK, UIPACK

COPYPILI option Incompatibilities

COPYPILI OLD PILE A1 III lILE A1

Copies the file OLD PILB A1 to a new file named lEI lILE A1.

COPYPILI * PILB A1 BIG PILI A1

Copies all files with filetype of lILE and filemode of
them into a single output file named BIG lILI A1. If
A1, B PILE A1, and C PILE A1 exist, they are copied to
are not erased.

COPYPILI OLD * B1 III = B1

A1 and combines
the files A PILE

BIG PILE A1 and

Copies a group of files, each with a filename of OLD and a filemode of
B1, to a new group of files each with a filename of lEI and a filemode
of B1. If the files named OLD IABI B1, OLD BIRTBDA B1, and OLD ADDRBSS
B1 exist, they are copied to files named lEI IABE B1, lEI BIRTBDA B1,
and III ADDRISS B1, respectively.

Section 1: lormat and Usage Rules for CBS Commands 99

COPY1ILE

COPYPILE I Y 11 P Q 11 BIG PILE 11

Coabines files X Y 11 and P Q 11 in a single output file naaed BIG PILB
11.

COPYPILI X • 11 = PILI =

Coabines all files with a filenaae of X and a fileaode of 11 in a single
output file naaed X PILI 11.

COPY1ILE X • 11 = T 11 BIG PILE 11

Coabines all files having a filenaae I and fileaode 11 with the file
having a filenaae I, a filetype T, and fileaode 11 to fora a single file
naaed BIG PILE 11. The co.aand

COPYPILI X • 11 = T = BIG PILI =

produces the saae result.

COPYPILB X • 11 P Q 11 BIG = 11

Co.bines each file with a filenaae of X and a fileaode of 11 with the
file P Q 11 to create a file naaed BIG. 11. One file is created for
each existing file with a filenaae X and file.ode 11.

COPYPILB I • 11 P = 11 BIG = 11

Co.bines each file with a filenaae of I and a fileaode of 11 with a file
with a filenaae of P, a fileaode of 11 and a filetype corresponding to
that of the first input file; to produce a file with a filenaae of BIG,
a corresponding filetype, and a file.ode of 11.

COPYPILI X * 11 P = = BIG = =

produces the saae result.

COPYPILI BIGIIBB 1 11 XYZ= == =

Copies the file BIGI1BI 1 11 to a file naaed XYZBIGII 11 11.

COPYPILB 1 B 11 C D 11 (PROB 10 POR 25)

Copies 25 records froa file 1 B 11 to file C D 11, beginning with the
tenth record of 1 B 11.

COPYPILI OLD B 11 IBi B 11 (PRL1BBL BYPROG TOL1BIL PIllS)

Copies records froa file OLD B 11 to Iii B 11, beginning with a record
containing the characters 'BYPROG' and continues until a record
containing the characters 'PIllS' is encountered.

COPYPILI * ISSBBBLB * (PICK

CODverts all files with a filetype of ISSIBSL! to packed foraat.

100 ISB YB/370: Coaaand Language Guide for General Users

COPYPILE

COPYPILE ftY PILE A1 YOUR PILE A1 (SPECS

Copies the file naaed ftY PILI A1 to a new
aodified according to the specification list.

file naaed YOUR PILE A1
The aessage

DftSCPY601B EITIR SPICIPICATIOI LIST

is displayed.

Por exaaple, if you enter the following specification list:

JABC; 3 nnn ..
IlVV I

Positions 1 through 5 of the input record are copied to positions 10
through 14 of the output record, the character string "ABC" is placed in
positions 3 through 5 of the output record, and the character X·OO· is
placed in the first position of the output record. All other positions
in the output record contain blanks unless a PILL character is
specified, in which case the PILL character is placed in all unspecified
posi tions.

COPYPILE OLD PORft A1 NEi PORft A1 (SPECS OVLY

Portions of the existing output file are to be overlaid by portions of
the input record, or by character strings specified in a specification
list.

COPY PILE XYZ TEXT C = = A

Copies a file froa one virtual disk to another.

DftSCPY601R IITIR SPECIPICATION LIST:

This aessage requests the specification list which is to be entered
in conjunction with the SPICS option.

DftSCPY602R ENTER TRANSLATIOI LIST:

This aessage requests the translation list which is to be entered
in conjunction with the TRANS option.

DftSCPY7211 COpy 'fn ft f.' {TO IAPPIIDI OVLY) 'fn ft f.' {OLDIIEi) PILE

This aessage appears in conjunction with the TYPE option. It
indicates the naaes of the input file and output file.

DftSCPY002E {IIPUTIOVERLAY} PILE 'fn ft f.' NOT POUND RC=28
DftSCPY003E IIVALID OPTIOI 'option' RC=24
DftSCPY024E lILE 'fn ft fa' ALREADY EXISTS -- SPECIlY 'REPLACE' RC=28
DftSCPY029E IIVILID PIRlftlTER 'para' IN THE OPTION 'option' lIELD RC=24
DftSCPY030E lILE 'fn ft fa' ILRIIDY ICTIVI RC=28

section 7: loraat and Usage Rules for CftS Co •• ands 101

COpy FILE

DftSCPY037E
DftSCPY042E
DftSCPY048E
Dft SC PY054 E
DftSCPY062E
DftSCPY063E
DftSCPY064E

DISK '.ode' IS READ/ONLY RC=36
liO lILEID[(S)] SPECIFIED RC=24
INVALID ftODE '.ode' RC=24
lliC08PLETE FILEID 'fn [ft'] SPECIFIED RC=24
INVALID CHAR '[=I*lchar]' IN FILEID '[fn ft f.]' RC=20
liO {TRAISLATIONISPECIFICATION} LIST ENTERED RC=40
INVALID [TRANSLATE] SPECIFICATION AT OR NEAR
RC=24

DftSCPY065E 'option' OPTION SPECIFIED TWICE RC=24
DftSCPY066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DftSCPY067E COftBINED INPUT FILES ILLEGAL WITH PACK OR UNPACK OPT lOIS

DftSCPY068E
DftSCPY101S
DftSCPY102S
DftSCPY103S
DftSCPY156E

RC=24
INPUT FILE 'fn ft f.' NOT IN PACKED FORftAT RC=32
'SPECS' TEftP STRIIG STORAGE EXHAUSTED AT •••••••••• RC=88
TOO ftANY FILEIDS RC=88
liU8BER OF SPECS EXCEEDS ftAX 20 RC=88
'FROft nnn' NOT lOUND --FILE 'fn ft f.' HAS ONLY 'nnn' RECORDS
RC=32

DftSCPY157E LABEL 'label' NOT FOUND IN FILE 'fn ft f.' RC=32
D8SCPY172E TO LABEL 'label' {EQUALSI IS AN INITIAL SUBSTRING Ol} FRLABEL

'label' RC=24
DftSCPY173E liO RECORDS WERE COPIED TO OUTPUT FILE 'fn ft f.' RC=40
DftSCPY901T UNEXPECTED ERROR AT 'addr': PLIST 'plist' AT 'addr', BASE

'addr', RC Inn' RC=256
DftSCPY903T IftPOSSIBLE PHASE CODE 'hh' RC=256
DftSCPY904T UNEXPECTED UNPACK ERROR AT 'addr', BASE 'addr' RC=256

102 IBft Vft/370: Co •• and Language Guide for General Users

CP

CP

Use the CP command to transmit co •• ands to the Vft/370 control program
environment without leaving the CftS environment. The for.at of the CP
cO!l!land is:

CP [commandline]

commandline is any CP co •• and permitted for your CP co.mand privilege
class. If this field is omitted, you are placed in CP
.ode and may enter CP com.ands without preceding each
co.mand with CP. To return to CftS issue the CP com.and
BEGII.

111 responses are from the CP command which was issued.

CP TERMIIAL LIIESIZE 80

The TERMIIAL command is passed to the control program for processing.

section 7: Format and Usage Rules for CftS Co.mands 103

DDR

DDR

Use the DASD Du.p Restore (DDR) service prograa to dump, restore, copy,
or print Vft/310 user ainidisks. The DDR program may run as a standalone
program, or under CftS via the DDR co •• and.

The DDR progra. has five functions:

1. Dumps part or all of the data from a DASD device to tape.

2. Transfers data fro. tapes created by the DDR DUftP function to a
direct access device. The direct access device must be the same as
that which originally contained the data.

3. Copies data from one device to another of the same type. Data may
be reordered, by cylinder, when copied from disk to disk. In order
to copy one tape to another, the original tape must have been
created by the DDR DUftP function.

4. Prints selected parts of DASD and tape records in hexadecimal and
EBCDIC on the virtual printer.

5. Displays selected parts of DASD and tape records in hexadecimal and
EBCDIC on the terminal.

Note: To generate the Vft/310 starter system from the distributio~ tape,
the standalone RESTORE function must be used.

The format of the DDR co.mand is:

r ,
DDR [filename [filetype I filemode I]]

I * I
L .J

filename filetype [filemode] is the identification of the file
containing the control statements for the
DDR program. If no file identification is
provided, the DDR program attempts to
obtain control statements from the
console. The filemode defaults to * if a
value is not provided.

!~te: If you use the CftS DDR command, CMS ignores the SYSPRINT control
statement and directs the output to the CftS printer OOE.

DDR CONTROL STATEMENTS

Control statements describe the intended processing and the needed I/O
devices. I/O definition statements must be specified first.

All control statements may be entered from either the console or the
card reader. Only colu.ns 1 to 11 are inspected by the program. All
data after the last operand in a statement is ignored. An output tape
must have the DASD cylinder header records in ascending sequences;
therefore, the extents must be entered in sequence by cylinder. Only

104 IBM VM/310: Co •• and Language Guide for General Users

DDR

one type of function - du.p, restore, or copy - may be performed in one
execution, but up to 20 statements describing cylinder extents may be
entered. The function statements are delimited by an input or output
statement, or by a null line if the console is used for input. If
additional functions are to be performed. the seauence of certain
control cards must be repeated.- Only those statements needed to
redefine the I/O devices are necessary for subsequent steps. All ot~er
I/O definitions remain the same.

To return to CftS, enter a null line (carriage return) in response to
the prompting message (EITER:). To return directly to CP, key in ICP.

The PRINT and TYPE statements work differently from other DDR control
statements in that they operate on only one data extent at a time. If
the input is from a tape created by the dump function, it must be
positioned at the header record for each step. The PRINT and TYPE
statements have an implied output of either the console (TYPB) or system
printer (PRINT). Therefore, PRINT and TYPE statements need not be
delimited by an input or output statement.

I/O DEFINITION STATEftENTS

The I/O definition statements describe the tape, DASD, and printer
devices used while executing the DASD Du.p Restore program.

An INPUT or OUTPUT statement describes each tape and DASD unit used.
The format of the INPUT/OUTPUT statement is:

INput
OUTput

INPUT

OUTPUT

cuu

type

r ,
cuu type Ivolserl [(options •••)]

laltapel
L J

.Q~ti2~~:
r , r , r ,
ISKip nnl IftOde 62501 IREWindl
la!iR Q I IBOde 16001 IUNl2!~1
L J IftOde 8001 ILEave I

L J L J

indicates that the device described is an input device.

indicates that the device described is an output device.

is the unit address of the device.

is the device type (2314, 2319, 3330, 3330-11, 3340-35,
3340-70, 2305-1, 2305-2, 2400, 2420, or 3420) (no 7-track
support for any tape devices). specify a 3410 device as a
3420, a 3340-70P as a 3340-70, and a 3333 as a 3330.

section 7: Format and Usage Rules for CftS Commands 105

I
I
I
I
I
I

DDR

volser

altape

SKIP nn
Q

ftODE 6250
ftODE 1600
ftODE 800

REWIRD

UILOAD

LEAVE

!~!~: The DASD Dump Restore (DDR) program, running in a
virtual machine, uses I/O DIAGIOSE 20 to perf ora I/O
operations on tape and DASD devices. DDR under CftS requires
that the device type entered agree with the device type of the
real device as recognized by Vft/310. If there is a conflict
with device types, the following message is issued:

DftKDDR101E IIVALID OPTIOI

However, if DDR runs standalone in a virtual aachine, DDR uses
DIAGIOSE 20 to perform the I/O operation if the device types
agree and SIO if the device types do not agree.

is the volume serial number of a DASD device. If the keyword
'SCRATCH' is specified instead of the voluae serial number, no
label verification is performed.

is the address of an alternate tape drive.

Noj:~: If multiple reels of tape are required and "altape" is
not specified, DDR types the following at the end of the reel:
"END OF VOLUftE CYL xxx HD xxx, ftOUNT ftOUNT NEXT TAPE." After
the new tape is mounted, DDR continues automatically.

forward spaces nn files on the tape. nn is any nuaber up to
255. The SKIP option is reset to zero after the tape has been
posi tioned •

causes all output tapes that are opened for the first tiae
and at the load point to be written or read in the specified
density. All subsequent tapes aounted are also set to the
specified density. If no mode option is specified, then no
mode set is performed and the density setting reaains as it
previously was.

rewinds the tape at the end of a function.

rewinds and unloads the tape at the end of a function.

leaves the tape positioned at the end of the file at the end
of a function.

Use the SYSPRIIT control statement (in the standalone application only)
to describe the printer that is to print data extents specified by the
PRIRT statement. It also can print a map of the cylinder extents froa
the DUftP, RESTORE, or COpy stateaent. If the SYSPRINT state.ent is not
provided, the printer assignment defaults to OOE. CftS ignores the
SYSPRINT statement when you invoke DDR as a coaaand under CftS, and CftS
always directs the output to OOE. The for.at of the SYSPRIIT control
statement is:

SYsprint cuu

.!~:

cuu specifies the unit address of the device.

106 IBft Vft/310: Command Language Guide for General Users

DDR

The function statements tell the DDR program what action to perform.
The function commands also describe the extents to be dumped, copied, or
restored. The format of the DUnP/COPYjRESTORE control statement is:

DUmp
COpy
RBstore

r-
Icyl1 [To]
ICPvol
!lL!
IBUcleus
L

,
[cyl2 [Reorder] [To] [cyI3]] I

I
I
I

I
~

DUMP requests the program to move data from a direct access volume
onto a magnetic tape or tapes. The data is moved cylinder by
cylinder. Any number of cylinders may be moved. The format
of the resulting tape is:

COpy

RESTORE

Record 1: a volume header record, consisting descrIbing the volumes.
of data

Record 2: a track header record, consisting of a list of count
fields to restore the track, and the number of data records
written on tape. After the last count field the record
contains key and data records to fill the 4K buffer.

~~£QIg 3: track
records -packed
truncated.

data
into

records, consisting of
4K blocks, with the

key and data
last record

Record !: either the end-of-volume or end-of-job trailer
label: The end volume label contains the same information as
the next volume header record except that the ID field
contains EOV. The end-of-job trailer label contains the same
information as record 1 except that the cylinder number field
contains the disk address of the last record on tape and the
ID field contains EOJ.

requests the program to copy data from one device to another
device of the same or equivalent type. Data may be recorded
on a cylinder basis from input device to output device. A
tape-to-tape copy can be accomplished only with data dumped by
this program.

requests the program to return data that has been dumped by
this program. Data can be restored only to a DASD volume of
the same or equivalent device type as it was dumped from. It
is possible to dump from a real disk and restore to a minidisk
as long as the device types are the same.

cyll [TO] [cyl2 [REORDER] [TO] [cyI3]]
Only those cylinders specified are moved, starting with the
first track of the first cylinder (cyll), and ending with the
last track of the second cylinder (cyI2). The REORDER operand
causes the output to be reordered, starting at the specified
cylinder (cyI3) or at the starting cylinder (cyll) if "cyI3"
is not specified. The REORDER operand must not be specified

Section 7: Pormat and Usage Rules for CMS Commands 107

DDR

CPVOL

unless specified limits are defined for the operation; the
starting and, if required, ending cylinders (cyl1 and cyl2)
must be specified.

specifies that cylinder 0 and all active directory and
permanent disk space are to be copied, dumped, or restored.
This indicates that both source and target disk must be in CP
format, that is, the CP Pormat/Allocate service program must
have formatted them.

ALL specifies that the operation is to be performed on all
cylinders.

BUCLEUS specifies that record 2 on cylinder 0, track 0 and the nucleus
cylinders will be dumped, copied, or restored.

Re2!rictiQ!§:

1. Each track must contain a valid home address, containing the real
cylinder and track location.

2. Record zero must not contain aore than eight key and/or data
characters.

3. Plagged tracks are treated just as any other track for all 2314,
2319, and 2305 devices. That is, no attempt is made to substitute
the alternate track data when a defective primary track is read.
In addition, tracks are not inspected to determine whether they
were previously flagged when written. Therefore, volumes
containing flagged tracks should be restored to the same cylinders
of the volume from which they were dumped. The message DftKDDR115E
occurs each time a defective track is dumped, copied or restored,
and the operation continues.

4. Plagged tracks for a 3330 device are handled automatically by the
control unit and may never be detected by the program. The program
may detect a flagged track if, for example, no alternate track is
assigned to the defective primary track. If a flagged track is
detected by the program, message DBKDDR115E occurs and the
operation terminates.

IIPUT 191 3330 SYSRES
OUTPUT 180 2400 181 (BODE 800
SYSPRIIT OOP
DUBP CPVOL
IIPUT 130 3330 BIII01
DUBP 1 TO 50 REORDER 51
60 10 101

This example sets the density to 800 bpi, then dumps all pertinent
data froa the voluae labeled 'SYSRES' onto the tape that is mounted on
unit 180. If the program runs out of room on the first tape, it
continues dumping onto the alternate device (181). While dumping, a aap
of the dumped cylinders is printed on unit OOP. When the first function
is coaplete, the volume labeled 'BIBI01' is dumped onto a new tape. Its

108 ISB VB/310: Command Language Guide for General Users

DDR

cylinder header records
cylinders is printed on
and labeled 101 to 111.
unit OOP. When the DDR
and the prograa stops.

are labeled 51 to 100. 1 map of the duaped
unit 001. lext, cylinders 60 to 70 are duaped

This extent is added to the cylinder aap on
processing is coaplete, the tapes are unloaded

If cylinder extents are being defined froa the console, the following
is displayed:

EITER CYLIIDER EXTENTS
EITER:

Por any extent after the first extent, the aessage

EITER IEIT BITBIT OR lULL LIIB
BITER:

is displayed.

You aay then enter additional extents to be duaped, restored, or
copied. 1 null line causes the job step to start.

Use the PRIIT and TYPE function stateaent to print or type (display) a
hexadeciaal and BBCDIC translation of each record specified. The input
device aust be defined as direct access or tape. The output is directed
to the system console for the TYPB function, or to the SYSPRIIT device
for the PRIIT function. (This does not cause redefinition of the output
unit definition.) The foraat of the PRIIT/TYPB control stateaent is:

PRint
TYpe

where:
cyl1

cyll [hh 1 [rr 1]] [TO cy12 [hh2 [rr2]]] [(options)]

QptiOiiS:
[Hex] [Graphic] [Count]

is the starting cylinder.

I

I
I
I
I ,

hh1 is the starting track. If present, it aust follow the cy11
operand. The default is track zero.

rr1 is the starting record. If present, it aust follow the hh1
operand. The default is hoae address and record zero.

[TO] cy12 is the ending cylinder. If aore than 1 cylinder is to be
printed or typed "TO cy12" aust be specified.

hh2 is the ending
operand. The
cylinder.

track. If present, it aust follow the cy12
default is the last track on the ending

rr2 is the record ID of the last record to print. The default is
the last record on the ending track.

Section 7: Poraat and Usage Rules for CftS Coaaands 109

DDR

QRtion§:

HEI prints or displays a hexadeciaa1 representation of each record
specified.

GRAPHIC

COUIT

prints or displays an EBCDIC translation of each record
specified.

prints or displays only the count field for each record
specified.

PRIIT 0 TO 3

Prints all of the records from cylinders 0, 1, 2, and 3.

PBIIT 0 1 3

Prints only one record, from cylinder 0, track 1, record 3.

PRIIT 1 10 3 TO 1 15 4

Prints all records starting with cylinder 1, track 10, record 3,
and ending with cylinder 1, track 15, record 4.

The example in Figure 15 shows the information displayed at the
console (TYPE function) or system printer (PRINT function) by the DDR
program. The listing is annotated to describe soae of the data fields.

Responses

DftKDDR711R YOLID BEAD IS vo1id2 [NOT vo1id1]

vo1id2

vo1id1

DO YOU WISH TO COITIIUE? RESPOID YES 10 OR RERBAD:

is the volume serial number from the YOL1 label on the
DASD unit.

is the volume serial number from the IIPUT or OUTPUT
control card.

The volume serial number read from the device at cuu is not the
same as that specified on the IIPUT or OUTPUT control card.

DftKDDR716R NO YOLl LABBL FOUID FOR volser

vo1ser

DO YOU WISH TO CO.TIIUE? RESPOND YES NO OR RBREAD:

is the volume serial number of the DASD device from the
INPUT or the OUTPUT control card.

The DASD device at cuu contains no volume serial number.

110 ISft Yft/370: Command Language Guide for General Users

Home Address
Record 0

Home Address of track
in hexadecimal format

Data
(hexadecimal)

DDR

Record 1-+-_- 'CYL 019 HD 00 REe 001'eOUNT 0013000001' ro 7rth;-cta;a l~h ~ is :;ze:- - 1

~-----Cylinder, head, and Record ID
record numbers in (hexadecimal)
decimal

I • A heading is printed containing the I

~
data length from the count field first in

I
decimal, then in hexadecimal

• The data is the_ n_ printed in hexadecimal I
i // with graphic interpret,tion to the right
L,/- ~ts~nhere). ___ J

04096 1000 DATA LENGnl _---------?
00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

1st Halfof-+---_CYL 019.HD 00 REC 002 COUNT 0013000002 00 09A8 Note: Data Length field repeated
in heading. Record 2

02472 09A8 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

ABOVE RECORD WRITTEN USING RECORD OVERFLOW e
r::;--------,

Ie This statement indicates that this portion I
of Record 2 was written using the Write

I
Special Count, Key, and Data command. The
remainder of Record 2 is found on the next I
track as the first record after Record O. L ______ ...J

Home Address+---_ CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 0013000100 00 0008 00000000 00000000
Record 0

CYL 019 HD 01 REC 002 COUNT 0013000102 00 0658-'-----------------~
2nd Half of

Record 2 01624 0658 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

~----------.., e If the key length field is not zero

I e A he2cting is printf>d ront,ining the key length !
/;

first in decimal, then in hexadecimal. I • The key is then printed in hexadecimal with I
G ________ ...1 ;JT

graphic interpretatIon to the nght(not shown here).

Record 3 --t----- CYL 019 HD 01 REC 003 COUNT 0013000103 800F80 •

00128 0080 KEY LENGTH -'---------

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAM6 AS ABOVE ...

03968 OF80 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

Record 4 --t---- CYL 019 HD 01 REC 004 COUNT 0013000104 000000

END OF FILE RECORD

r::;--------,

I~ I Whenever the data length field is zero
I an end-of-file prints next. I
L _______ .J

Figure 15. An Annotated Sa.ple of output fro. the TYPB and PRINT
Functions of the DDR Program

section 7: Poraat and Usage Rules for CftS Co •• ands 111

DDR

DftKDDR717R DATA DOftPED FROft volidl TO BE RESTORED TO volid2
DO YOO WISH TO COITIBOE1 RESPOID YES NO OR REREAD:

volidl

volid2

is the volume serial number from the input tape header
record (volu.e du.ped) •

is the volume serial number from the output DASD device.

The above aessage is printed to verify the input parameters.

EITER CYLIRDER EXTEITS
EITER:

This message is received only if you are entering input from your
terminal.

EID OF VOLOftE CYL III HD II, ftOOIT IEXT TAPE

DDR continues processing, after the mounting of the neIt tape
reel.

volser is the volume serial nuaber of the disk dumped.

The RESTORE operation has begun.

COPYING volser

volser is the volume serial number described by the input unit.

The COpy operation has begun.

DOftPIIG volser

.!h!!!:

volser is the voluae serial number described by the input unit.

The dumping operation has begun.

PRIBTING volser

volser is the volume serial number described by the input unit.

The PRIIT operation has begun.

EID OF DOftP

The DO!P operation has ended.

112 IBft Vft/370: Com.and Language Guide for General Users

DDR

END OF RESTORE

The RESTORE operation has ended.

END OF COpy

The COFY operation has ended.

END OF PRINT

The PRINT operation has ended.

END OF JOB

All specified operations have completed.'

ENTER:

Prompts input from the terminal. A null line (Enter key or
equivalent) causes control to return to CMS, if the virtual machine
is in the CMS environment.

Section 7: Format and Usage Rules for CMS Commands 113

GC20-1804-3 Page Modified by TNL GN20-2659

DEBUG

DEBUG

Use the DEBUG command to acquire online facilities for debugging
programs running under CMS and to acquire an entry in CMS for handling
external interrupts, program interrupts, and unrecoverable errors. The
subcommands which may be issued in the DEBUG environment allow you to
examine and change the contents of certain control words and registers
as well as portions of virtual storage. The facilities of DEBUG are
made available when:

• The DEBUG command is issued

• An external interrupt occurs

• A break point (instruction address stop) is encountered during
program execution; this causes a program interrupt.

Once the DEBUG environment has been entered due to any of the above
circumstances, you are in the DEBUG environment. Only DEBUG subcommands
are valid input in this environment.

When the DEBUG environment is entered, the contents of all general
registers, the channel status word, and the channel address word are
saved so they may be examined and changed before being restored when
leaving the DEBUG environment. If DEBUG is entered via an interrupt,
the old program status word for that interrupt is also saved. If DEBUG
is the first command entered after an ABEND occurs, the contents of all
general registers, the CSW, the CAW, and the old PSW are available from
the time of the ABEND. The format of the DEBUG command is:

r----- ------------------------,
I DEBUG I L-______ __

1. The CMS commands HB, HO, HT, RO, RT and SO are not recognized in
the DEBUG environment.

2. The floating-point registers cannot be examined or changed in the
DEBUG environment.

None.

~]]~2 2Q]£Q~~!M~2: For a complete description of
refer to the !~LJ1Q: §~§!~~ g!29!~!!~!~§ ~YiQ~.
the DEBUG subcommands.

the DEBUG subcommands
Figure 16 summarizes

114 IBM VM/370: Command Language Guide for General Users

Subcommand Pormat

BReak id {SymbOl}
hexloc

CIW

CSW

r ,
DEPine symbol hexloc I n I

I .! I
L .J

r r "
DUmp I symboll ISYllbol211 [ident]

Ihexloc1 Ihexloc211
I I * II
L L .J.J

r ,
GO Isymboll

I hexlocl
L .J

GPR regl [reg2]

HX

r ,
ORigin Isymboll

Ihexlocl
L .J

RETurn

SET {CIW hexinfo \
CSW hexinfo [hexinfo]
PSW hexinfo [hexinfo]
GPR reg hexinfo [hexinfo]

STore {SymbOl} hexinfo
hexloc

r ,

I {SymbOl} I n I
hexloc I.! I

L .J

Punction

Istops program execution at the
Ispecified breakpoint.

DEBUG

IDisplays the contents of the
IChannel lddress Word at the ti.e
IDEBUG vas entered.

IDisplays the contents of the
IChannel status Word at the ti.e
IDEBUG vas entered.

IAssigns a symbolic name to the
Ivirtual storage address.
I
I

IDu.ps the contents of specified
Ivirtual storage locations to the
Ivirtual spooled printer.
I
I

IReturns to the CftS environment and
Istarts execution at the specified
Ilocation.
I

IDisplays the contents of the
Ispecified general registers.

IReturns to the CftS cOII.and envi
Iron.ent.

ISpecifies the base address to be
ladded to locations specified in
lother DEBUG subco.mands.
I

iDisplays the contents of the old
IProgram status Word.

IExits froll DEBUG environ.ent to
Ithe CftS co •• and environment.

IChanges the contents of specified
Ilocations or registers.
I
I

IStores information in a specified
Ivirtual stbrage location.

IExamines virtual storage loca
Itions.
I
I

Pigure 16. Summary of DEBUG Subcommands

section 7: Pormat and Usage Rules for CftS COII.ands 115

DISK

DISK

Use the DISK command to:

• Punch disk files to the virtual spooled card punch in a
format which allows the punched deck to be restored to disk
form of the original disk file.

special
in the

• Restore punched decks created by the DISK DUMP command to a disk
file.

The format of the DISK comaand is:

DISK
{

DUMP
LOAD

fn ft [fa] }
I

I
I
I

DUMP fn ft fm indicates that the specified file (fn ft fa) is to be
punched. The file may have either fixed or
variable-length records. After all data is punched, an
end-of-file card is created with an N in column 5. This
card contains directory information, and must remain in
the deck. The original disk file is retained.

LOAD indicates that one or more card files are to be read from
the spooled card reader and written as CMS files on disk.
The DISK LOAD operation reads a card deck consisting of
any number of logical decks previously punched by DISK
DUMP. The file designations are obtained from the card
stream. If a file exists with the same designation as one
of those in the card stream, it is erased and replaced.
DISK LOAD loads files onto the primary read/write disk.

DISK DUMP MIPILE OLD A1

The specified file, MIFILE OLD Al, is written to the virtual spooled
punch and followed by an end-of-file card.

DISK LOAD

All files which were previously read into the virtual card reader are to
be loaded onto disk; each file must be followed by an end-of-file card
as created by the DISK DUMP function.

There is no response to the DISK DUMP command. The file identifiers of
each file loaded is the response for the DISK LOAD command:

fn ft fm

116 IBM VM/370: Command Language Guide for General Users

DMSDSK002E FILE 'fn ft fm' NOT FOUND RC=28
DMSDSK009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24
DMSDSK014E INVALID FUNCTION 'function' RC=24
DMSDSK037E DISK 'mode' IS READ/ONLY RC=36
DMSDSK047E NO FUNCTION SPECIFIED RC=24
DMSDSK048E INVALID MODE 'mode' RC=24
DMSDSK054E INCOMPLETE FILEID SPECIFIED RC=24
DMSDSK062E INVALID * IN FILEID ['fn ft fm'] RC=20
DMSDSK070E INVALID PARAMETER 'param' RC=24
DMSDSK077E END CARD MISSING FROM INPUT DECK RC=32
DMSDSK078E INVALID CARD IN INPUT DECK RC=32
DMSDSK104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSDSK105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSDSK118S ERROR PUNCHING FILE RC=100
DMSDSK124S ERROR READING CARD FILE RC=100
DMSDSK205W READER EMPTY OR NOT READY RC=8

DISK

section 7: Format and Usage Rules for CMS Commands 117

GC20-1804-3 Page Modified by TIL GH20-2659

EDIT

EDIT

Use the C"S Editor to:

• Create, froa the terminal, sequential files consisting of either
fixed or variable length records.

• Provide, on the basis of certain known filetypes, automatic selection
of record length, record foraat, logical tab settings, serialization,
linemode, and lowercase to uppercase translation.

• Add, delete, or change any part of a CftS file.

• Extract all or part of a CftS file to create a new file, or to embed
it in another file.

• Allow searching and changing of portions of the file through
context-directed searches or by using a specific line number.

• Receive automatic prompting with line numbers.

• Allow any or all of the file to be displayed at your terminal.

• Provide an interface to the CftS EXEC interpreter to provide a macro
facility. Refer to the !~Ll1Q: IQ!% QYigg for a complete description
of the macro facility.

The format of the EDIT command is:

r
I Edit fn ft [fa] [(options ••• [)]]
I
I
I
I
L

QE!iQ!!§:
[LRECL nn]
[NODISP]

fn ft is the filename and filetype of the file to be created or
edited. If a file with the specified filename and filetype
does not exist, the CftS Editor assumes that you want a new
file created, and after the input environment is entered,
information entered by you becomes input to that file. If a
file with the same filename and filetype does exist, the
EDIT environment is entered, enabling you to issue EDIT
subcoamands and to modify the specified file. Both the
filename and filetype must be specified.

fm is the filemode of the file to be created or edited. If the
filemode is specified, EDIT searches only the indicated
disk. If the filemode is specified as an asterisk, EDIT
searches all disks for the existence of that file. If the
filemode is not specified, only the primary disk and its
extensions are searched. If the file is found, its mode is
saved, and EDIT later writes the altered file back to that
same disk. If an existing file is not found, the newly
created file is placed on the disk specified by the filemode
or on the primary disk.

118 IBft Vft/370: Command Language Guide for General Users

lRECl nn

NODISP

GC20-1804-3 Page Modified by TNl GN20-2659

EDIT

is the record length of the file to be created
edited. If the record length is not specified,
following default values are assumed:

Existing record length is kept regardless of format.

variable for.at:
Filetype lISTING
Filetype SCRIPT:
Filetype FREEFORT:

Fixed format:

121 maximum
132 maximum

81 maximum

All filetypes: 80

or
the

The maximum record length supported by the Editor is 160
characters.

forces a display terminal into lINE (typewriter) mode.
When the HODISP option is in effect, all subco.mands that
are solely for control of display terminals (BACKWARD,
CHANGE with no operands, FORWARD, and SCROLl(UP» are
made invalid for the EDIT session.

This option is used when an EDIT session is initialized
from a local 3270 terminal and the typewriter mode is
desired. The default mode of operation for an EDIT
session is DISPLAY for a local 3270 and lINE for a remote
3270.

The mode of operation for either terminal can be changed
during the session via the FORMAT subcommand and the
DISPLAY or lINE operand, unless the NODISP option is in
effect.

section 7: Format and Usage Rules for CftS Commands 119

GC20-1804-3 Page ~odified by TNL GN20-2659

EDIT

Refer to the !!L]l~: ~~!1 §y!gg for a functional description of each of
the EDIT subcoamands. The formats are given in Pigure 17 for reference
only.

L-

Subcoaaand Pormat

r ,
ALter {parm 1} {parm2} I n r , I

AUTOsa ve {n }
OPP

r ,
BAckward I 11

I n I
L .J

Bottom

r ,
CASE I U I

I M I
L .J

I * I G I I
I .1 I * I I
L L .J.J

r r "
Change /string1/string21/ I n r ,1 I

I 1.1 I G III
I I * I * III
L L L .J.J.J

Punction

IScans the next ~ records of
Ithe file, altering the speci
Ified parameter, either once in
leach line or for all occur
Irences in the line.

IAutomatically saves the file
Ion disk after the indicated
Inumber of lines have been
Iprocessed.

IPoints the current line
IPointer to a line above the
Iline currently pointed to.
I (Por display terminals.)

I~akes the last line of the
Ifile the current line.

IIndicates whether translation
Ito uppercase is to be done, or
Idisplays the current status.
I

IChanges string1 to string2 for
I~ records or to EOP, either
Ifor the first occurrence in
leach line or for all
loccurrences.

Figure 17. Summary of EDIT Subcommands and ~acros (Part 1 of 5)

120 IBM VM/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

Subcommand Format

CMS

r ,
DELete ! n !

I 1 I
I * I
L J

r ,
DOwn I n I

I

I 1 I
L J

DString /string [I]

FILE [fn [ft [fm]]]

Find [line]

FMode [fm]

FName [fn]

FORMat {DISPLAY}
LINE

r ,
FOrward I 1 I

I n I
L J

r r r r ""
Getfile fn I ft I fm I min I I I I

I * I * I 1 I * I I I I
L L L L JJJJ

r ,
IMAGE ION I

IOFF I
ICANONI
L J

Input [line]

r ,
LINEmode ILeft I

IRightl
IOFF I
l J

Function

IEnters CMS subset command
I mode.

EDIT

IDeletes B lines or to the end
lof the file (*).

IPoints to the Bth line from
lthe current line.
I
I

Ideletes all lines from the
Icurrent line down to the line
Icontaining the indicated
Istring.

ISaves the file being edited on
Idisk or changes its identi
Ifiers. Returns to CMS.

ISearches the file for the
Igiven line.

IResets or displays the
Ifilemode.

IResets or displays the
Ifilename.

Iswitches the 3270 terminal
Ibetween DISPLAY mode and LINE
I mode.

IPoints the current line
Ipointer to a line currently
Ipointed to. (For display
Iterminals.

IInserts some, or all, of the
Igiven file following the cur
Irent line.
I

IExpands text into line images
lor displays current settings.
I
I
I

IInserts 'line' in the file or
lenters INPUT mode.

ISets or displays current line
Isetting.
I
I
I L---__________ __ _____________________________________ . __________ _

Figure 17. Summary of EDIT Subcommands and Macros (Part 2 of 5)

section 7: Format and Usage Rules for CMS Commands 120.1

r------

I
I

I

Subco.aand Format

Locate Istring [I]

LONG

I r,
I Next I n I
! ! 1 I
I L.J

I
I Overlay line
I
I
I PREserve

EDIT

Function

IScans file froll next line for
Ifirst occurrence of 'string'.

IEnters LONG error message
;mode.

IPoints to the nth line down
Ifrom the current line.
I
I

IReplaces all or part of the
Icurrent line.

ISaves current 1I0de settings.
1---
I PROMPT [n]
I
I
I
I QUIT
I
I
I r,
I RECfa I F I
I I V I
I L.J

ISets or displays line number
lincrellent. Initial setting is
110.

ITerainates EDIT session with
Ino updates since last 'SlVE'.

ISets or displays record format
Ifor subsequent files.
I
I

1--
I r r "
I RENum Istrtno lincrnol I
I 11.Q I §1!:1l!!2 I I
ILL .J.J

I
I
I
I
I
I
I

r ,
REPEAT I n I

I 1 I
I * I
L .J

I Replace [line]
I
I
I
I
I REstore
I
I
I RETURN
I
1------·
:{RE~SE} [subcommand]

I
I
I

IRecollputes line numbers for
IVSBASIC and FREEFORT source
Ifiles.
I

IExecutes the following OVERL1Y
Isubcommand ~ times.
!
I
I

I
IReplaces the current line withl
I'line' or deletes the current I
Iline and enters INPUT mode (if I
Ino data line is specified). I

----------------------1
IRestores mode settings to
Ivalues last preserved.

I
I
I

IReturns to EDIT environment 1
Ifrom CMS subset. I

------------------1
IStacks (LIFO) the last EDIT I
Isubcommand that does not startl
Iwith REUSE or the question I
Imark (1) and then executes anyl
Igiven EDIT subcommand. I

. ___ .J

Figure 17. Summary of EDIT Subcommands and Macros (Part 3 of 5)

section 7: Format and Usage Rules for CMS Commands 121

GC20-1804-3 Page Modified by TNL GN20-2659

EDIT

r-------------------
I Subcommand Format

SAVE [fn [ft [f.J]]

r ,
S[croll][Up] 1* I

In I
11 I
l .J

SERial { OFF r '} ON lincrl
ALL I l.Q I
seq l .J

SHORT

r ,
STACK I n I

I 1 I
Isubcommandl
L .J

TAESet {n1 n2 ••• nx}

TOP

r ,
TRUNC I n I

I * I
L .J

r r , ,
Type I m I n I I

I 1 I * I I
I * I I I
L L .J .J

r ,
Up I n I

I 1 I
L .J

r ,
Verify ION I

10FFI
L .J

r ,
{; } Isubcommandl

I n I
I 1 I
L .J

r r , ,
Zone I m I n I I

I 1 I * I I
I * I I I
L L .J .J

rr , ,
Iistartcollendcoll
II 1 I * I
LL .J .J

L-_____________________ ___

Function

ISaves the file on disk and
Istays in EDIT environment.

I
I
I
I

-------------------1
IDisplay a number of lines I
labove or below the current I
Iline. (For display terminals.) I
I I
I I

ITurns serialization on or off
lin columns 73 through 80.
I
I

IEnters SHORT error message
I mode.

IStacks ~ lines, beginning with
Icurrent line, in terminal
linput tuffer.
I
I

ISets the given tabs.

IPoints to the beginning of the
Ifile.

ISets or displays the column of
I truncation. An asterisk (*)
Imeans end of logical record.
I

IDisplays ! lines beginning
Iwith the current line or the
Ibeginning of the file.
I
I

IPoints to the line In' lines
labove the current line. ,
I

ISets, displays, or resets
Iverify mode. The asterisk (*)
Imeans end of logical record.
I

,Assigns to X or Y the given
IEDIT subcommand or executes
,the previously assigned sub
Icommand n times.
I

ISets or displays the columns
Ibetween which editing is to
,t ake place.
I
I

Figure 17. Summary of EDIT Subcommands and Macros (Part 4 of 5)

122 IBM VM/370: Command Language Guide for General Users

IDIT

i
Subcoaaand For.at Function I

---1 1

nnnnn [text]

r ,
SDUP. I n I

I .1 I
L ~

SBOVI n { Op a }
Down •
TO label

IDisplays the last EDIT subcoa-
I.and which did not begin with
IBEUS! or a question .ark (1).

,Locates the line specified by
Ithe given line nuaber and in
,serts tezt if given.

;nuplicates the current line ~
Iti.es. SoUP is an BOlT .acro.
I
I

IBoves ! lines up or down!
tlines. $BOY! is an BOlT aacro.
I

I Figure 17. Su.aary of IDIT Subco.aands and !aeros (Part 5 of 5)

Iii .FILI:

EDIT:

The specified file does not ezist.

The EDIT environ.ent is entered. The logical tab settings .ay be
either those defined by the user or those assn.ed according to the
filetype. In EDIT subco •• and .ay now be issued.

IIPUT:

The input environ.ent is entered
REPLICE or IIPOT with no operands.
accepted as input to the file.

by issuing the BDIT subco •• ands
III subsequent input lines are

11DIT: line

.... ,

"line" was entered in the EDIT environaent and is an invalid BDIT
subcoa.and or aacro. This aessage appears while in LOIG error
.essage aode.

In invalid subcoaaand was entered in the EDIT environ.ent while in
SHORT error aessage .ode •

In. invalid EDIT aaero was entered while in SHORT error aessage
.ode.

section 7: For.at and Osage Rules for CBS Co.aands 123

EDIT

DftSEDI003E IIVALID OPTIOI 'option' RC=24
DftSEDI024E PILE 'fn ft f.' ALREACY EXISTS RC=28
DftSEDI029E I.VALID PARAftETER 'para.' II THE OPTIOI 'LRICL' PIELD RC=24
DftSEDI044E RECORD LEIGTH EXCEEDS ALLOWABLE ftAXI!Uft RC=88
DftSEDIOS4E I.CO!PLETE PILEID SPECIPIED RC=24
D!SEDI076E ACTUAL RECORD LEIGTH EXCEEDS THAT SPECIPIED RC=40
D!SEDI104S ERROR Inn' RBADIIG PILE 'fn ft f.' PRO! DISK RC=100
D!SEDI10SS ERROR Inn' WRITING PILE 'fn ft fa' 01 DISK RC=100
DftSEDI132S PILE 'fn ft f.' TOO LARGB RC=88

124 IBft V!/370: Co •• and Language Guide for General Users

ERASE

ERASE

Use the ERASE co •• and to delete a file or a related group of files fro.
a read/write disk. The file to be deleted aust not be on a read-only
disk. The for.at of the ERASE co •• and is:

I
I
I
I
I

ERASE I fn ft [fa'] [(options ••• [)]]
1**

r ,
IType I
I~!I
L ..I

wh.!I!:

fn is the filenaae of the files to be erased. An asterisk aay be
coded in this position to indicate that all filena.es are to be
used. This field aust be specified, either with a na.e or an
asterisk.

ft is the filetype of the files to be erased. An asterisk aay be
coded in this position to indicate that all filetypes are to be
used. This field .ust be specified, either with a na.e or an
asterisk.

fa is the file.ode of the files to be erased. If this field is
oaitted, the priaary read/write disk is searched for the files
to be erased.

lote: If asterisk is specified for filenaae and filetype then fileaode
iUst be specified. The fileaode aust include both a aode letter and
nuaber.

TYPE displays at the terainal the file identifier for each file
erased.

IOTIlJ file identifiers are not displayed at the terainal.

ERASE OLDlILE TEftP (TYPE)

The file with the identifier
read/write disk, is erased.
ter.inal.

OLD1ILE TEftP, ilf located on the priaary
Its file identifier is displayed at the

Responses

fn ft fa

If the TYPE option is specified, the file identifier for each file
erased is displayed.

Section 7: loraat and Usage Rules for CftS Coa.ands 125

ERASE

DMSERS002E FILE ['fn [ft [fa]]'] NOT FOUND RC=28
DMSERS003E INVALID OPTIOI 'option' RC=24
DMSERS037E DISK '.ode' IS READ/ONLY RC=24
DMSERS048E IIVALID MODE '.ode' RC=24
DMSERS054E INCOMPLETE FILEID SPECIPIED RC=24
DMSERS069E DISK 'mode(cuu)' NOT ACCESSED RC=36
DMSERS070E IIVALID PARAMETER 'para.' RC=24
DMSERS071E ERASE * * [*1 NOT ALLOWED RC=24

Note: You can invoke the ERASE command from the terminal, from an EXEC
file, or as a function from a program. If ERASE is invoked as a function
or from an EXEC file that has the &COITROL NOMSG option in effect, the
DMSERS002E PILE fn ft fm NOT POUID error message is not issued.

126 IBM VM/370: Command Language Guide for General Users

EXEC

EXEC

Use the EXEC command if you want to be able to execute one or more CftS
co.mands or EXEC control statements contained in a specified file bi
issuing a single command. If this command is entered from the CftS
co.mand mode but not nested within another EXEC procedure, the initial
word 'EXEC' may be omitted. The format of the EXEC command is:

EXec

fn

args

fn [args •••]

is the filename of a file containing one or more CftS commands to
be executed. The filetype of the file must be EXEC and the file
must be fixed format with a logical record length not exceeding
130 characters. EXEC files can be created with the EDIT command
or by a user program. EXEC files created by the CftS Editor have
a logical record length of 80 characters. Each EXEC file can
contain a maximum of 4096 lines.

are the arguments to replace the numeric variables in the EXEC
file specified. within an EXEC file, up to thirty symbolic
variables can be used (each one indicated by an ampersand (&)
followed by an integer ranging from one to thirty) to indicate
values which are to be replaced when the EXEC file is executed.
The arguments are assigned to symbolic variables in the order in
which they appear in the argument list. For example, each time
an &1 appears in an EXEC line, the first argument specified with
the EXEC command temporarily replaces the &1, the second
argument specified with the EXEC command replaces &2, and so on,
to argument N of the EXEC co.mand.

If the percent sign (I) is used in place of an argument, the
corresponding variable (&1) is ignored in all the commands which
refer to that variable. If the specified EXEC ~1~e contains
more variables than arguments given with the EXEC command, the
higher numbered variables are assumed to be missing, and are
ignored when the com.ands are executed.

EXEC CONTROL ST1TEftENTS

Control statements begin with a control word, which is usually followed
by a list of tokens, and in some cases by additional lines of data.
Figures 18 and 19 list the control statements and their functions and
the EXEC built-in functions. Refer to the !!L~70: !XEC Q2~r's Guide for
detailed information on how to use EXEC.

section 7: Format and Usage Rules for CftS Commands 127

EXEC

Control statement

&variable = ae

&lRGS [arg1 [arg2 •••]]

&BEGPUNCH [llL]
line1
line2

&END

&BEGST1CK

line1
line2

&EID

r , r ,
IIIFQ I 11ll I
IlIFO I L .J
L .J

&BBGTYPB [lll]
line1
line2

&END

&CONTINUE

&CONTROl
r ,r ,r ,r ,
101'1' I I TI!B I If!~! I IA~~ I
IBRRORI I!QTI!~I IUIP1CKI IIO!SGI
I Cft~ I L .J L .J L .J

11lt I
L .J

&BRROR action

Function

IAssigns the value of ae to
Ithe symbol specified by
I&variable; ae is an algebraic
lexpression; the equal sign
Imust be preceded and followed
Iby a blank.

IRedefines the arguaents &1,
1&2, ••• with the value of
I ' ar g 1 " , a r g 2 " ••• , and re
Isets the variable &INDEX.

I Punches 'line1', 'line2', •••
linto the card punch, without
Itokenizing them.
I
I
I

IStacks 'line 1', 'line2', ••• ,
lin the console input buffer
I without tokenizing thea.
I
I
I
I
I
I

IDisplays 'line1', 'line2', ••• 1
lat the console, without token
lizing them.
I
I
I
I

IProvides a branch address for
I&ERROR, &GOTO, and other con
Iditional branching statements.

ISets, until further notice,
Ithe characteristics of the
Isummary of execution, which is
lautomatically printed at the
Iconsole.
I
I

IExecutes 'action' following
lany CftS command which yields
Ian error return code (that is,
la return code which is not
Izero). 'action' can be any
lexecutable statement.

Figure 18. Summary of EXEC control Statements (Part 1 of 3)

128 IBft Vft/370: Command language Guide for General Users

EXEC

,
Control statement Function I

---1
r ,

&EXIT Ireturncodel
i Q I
L .J

IExits from the EXEC file with
Ithe given return code.
I
I

I
I
I
I

---1
&GOTO {TOP }

linenuaber
label

&If {token 1 } (EQ) (token2 I executable
&$)NE)&$ (statement

&*) a~) \ &*)

&LOOP {n } {II }
label condition

&PUNCH token 1 [token2 •••]

r
&REID In

,
I
I
I

11
IIRGS
IVIRS
L

var 1 [var 2 •••] I
.J

r ,
&SKIP I n I

I 1 I
L .J

r ,
&SPICE I n I

I 1 I
L .J

r ,
&STICK IlIlQI [tokenl [token2 •••]]

ILIlO 1
L .J

ITransfers control to
lof the EXEC file, to
Iline, or to the line
i.ith !label'.

the top I
the given
starting

IExecutes the 'executable
I statement' if the condition is
; satisfied.
I
I
I

ILoops through the following Q
Ilines, or down to (and includ
ling) the line starting with
I'label', for m tilles, or until
I 'condition' is satisfied.

IPunches a card containing
Itokenl, token2, •••

IReads the next ~ lines froll
Ithe terllinal and treats thea
las if they had been in the
IEXEC file; or reads a line,
lassigns the tokens in it to
Ithe argullents &1, &2, ••• , and
I resets &INDEX to the number of
larguments thus set; or reads a
Isingle line and assigns the
Itokens in it to the variables
I'varl', 'var2', •••

IIf n > 0, skips the next ~
Ilines of the EXEC file. If
In < 0, transfers centrol to
Ithe line which is ~ lines
labove the current line. If
In = 0, transfers control to
Ithe next line.

IDisplays Q blank lines at the
I terminal.
I
I

IStacks a line in the terainal
linput buffer containing
I 'token 1 " 'token2', ••• , or
Istacks a null line if the
Itokens are absent.

ligure 18. Su.mary of EXEC Control statements (Part 2 of 3)

section 1: lormat and Usage Rules for CMS Commands 129

EXEC

Control State.ent

r ,
&TI!E 101 I

10FF I
IRBSETI
ITYPB I
L ~

&TYPB tokenl [token2 •••]

Function

IDisplays timing information.
I
I
I
I
I

IPrints at the ter.inal a line
Icontaining 'tokenl,' 'token2,'
I· · ·

Figure 18. Summary of EXBC Control State.ents (Part 3 of 3)

An BXBC built-in function consists of the name of the function and,
usually, a list of arguments. Built-in function names are BXBC
keywords, and start with an ampersand. with the exception of &LITERAL,
they are recognized only, if they appear as the token following the equal
sign of an assignment statement. Figure 19 lists the BXEC built-in
functions with their format and an explanation.

Built-in Function

&COlCAT tokenl [token2 •••]

&DATATYPB token

&Length token

SLlteral token

SSUBSTR token i [j]

Bxplanation

IConcatenates 'tokenl',
l'token2' ••••• into a single
Itoken. with a maximum length
lof eight.

I Has the value IUft or CHAR.
Idepending on the data.

IGives the number of nonblank
Icharacters in 'token'.
I

IUses the literal value of
I 'token'. without sUbstitution
Ifor any EXBC variable which
Imay appear in it.

IExtracts that part of 'token'
Iwhich starts at character "in.
Iwith length "j"; or which
Istarts at character "in and
Iruns to the end of the token.

Figure 19. Su.mary of EXEC Built-in Functions

As each CBS co.mand in the EXBC file is processed. it is displayed at
the terminal along with any nonzero return code. The SCOBTROL co •• and
can be used to augment or reduce the amount of displaying done during
execution.

130 IB! '!/370: Co •• and Language Guide for General Users

EXEC

If the EXEC interpreter finds an error, it displays ~he message:

ERROR IN PILE 'fn EXEC fm', LINE n, 'description of error'

where "description of error" is one of the following conditions with its
appropriate return code:

Return
~Qg§-
(802)
(804)
(805)
(806)
(807)
(808)
(809)
(810)
(811)
(812)
(813)
(814)
(815)
(816)

~§2gipt.!.Q1!
SSKIP OR SGOTO ERROR
TOO !INY lRGUftENTS
MAX DEPTH OP LOOP NESTING EXCEEDED
DISK OR TER!INAL READ ERROR
I Ii V A LI D S I IT AX
INVALID FOR! OP CONDITION
IIIVALID ASSIGNMEIT
!ISUSE OP SPECIAL VARIABLE
ERROR II SBBBOR ACTION
CONVERSION ERROR
TOO ftAIII TOKEIS III STATEftENT
ftISUSE OP BUILT-IN PUNCTION
EOP POUID II LOOP
INVALID CONTROL WORD

D!SBXC001E NO PILENAftE SPECIPIED RC=24
DftSEXC002E PILE 'fn ft' NOT POUID BC=28
DftSEXC034E PILB 'fn ft f.' IS NOT PIXED LENGTH RC=32

Section 7: Pormat and Usage Rules for CftS Commands 131

FILEDEF

FILEDEF

Use the FILEDEF command to define an as ddname and to relate that ddname
to a device on your virtual machine. If the device is a disk, FILED!F
assigns a C!S file identification (that is, fn ft fa) and, if the disk
is an as disk, an as data set name; or, if the disk is a DOS disk, a DOS
file-ide llso, using FILED!F, you can specify as DCB parameters that
describe the ddname just as they would on the as Job control Language
Data Definition statement. In general, FILEDEF is used to define ddnames
for programs written using the language processors supported by 'B/310.
You can find usage information on FILEDEF in "UsinG as Programs and
Macros Under CMS" in section 4.

The format of the FILEDEF co.mand is:

FIledef
l{ddname} I nn
I *

~!i21!j:
r ,
l!lf~lSE I
ILOWC1SEI
L ..

Terainal [(optionl optionD[)]]

PRinter
PUnch
Reader

[(optionD[)]]

r r "
DISK Ifn ft Ifal I [(optionB optionD[)]]

I FI!!) gdn~~ 1111 I
L L

rr , r "
II DISK fn ft II filii {DSN 1 }
II FILl ddna~~111111 DSN qual1 qua12 •••
LL .. L

[(optionB optionD[)]]

DUM!Y

T1Pn

CLE1R

opti~~:
[KEILEI nn]
r ,
IITEIT nnl
IITEIT ~.21
L ..

[LIBCT nn]
[OPTCD a]
[J)ISP BOD]

[(optionD[)]]

[(optionC optionD[)]]

2E!iQ!!£:
r ,
11TRlCKI
19TRlCKI
L ..

[TRTCH a]
[DEN den]

.QptionD:
[PERB]
r ,
ICHINGE I
I NOCHINGEI
L ..

[RECFB a]
[LRECL nn]

[BEBBER aeabernaae]
[COICIT]

r ,
IBLOCK nn I
IBLKSIZE nnl
L .. r ,

: DSORG {i~~~
I Dl I
I IS I
L' ..

132 IBB 'B/310: Com.and Language Guide for General Users

,

I ..

ddnalle
nn

*

FILEDEF

is the naae by which the file is referred to in your
program. If a number nn is specified, it is translated to a
FORTR1NI data definition name of FTnnF001. If the CLE1R
operand is specified. ddnalle mav be specified as an asterisk
(*) to indicate that-all file definitions not entered with the
PER! option are to be relloved.

TERftIB1L is your terllinal (terminal I/O should not be blocked).

PRINTER is the spooled printer.

PUNCH is the spooled punch.

REIDER

DISK

DUIU'Y

T1Pn

CLE1R

is the spooled card reader (card reader I/O should not be
blocked) •

specifies that the virtual I/O device is a disk. Is shown in
the foraat, you can choose one of two forms for specifying the
DISK operand. Both forlls are described in the section that
follows, "Using the FILEDEF DISK Operand."

indicates that no real I/O is to take place for a disk data
set.

is a magnetic tape. The symbolic number of the tape drive, nn,
can be 1, 2, 3, or~, representing virtual units 181, 182,
183, and 184 respectively.

reaoves any existing definition for the specified ddname.
Clearing a ddna.e before defining it ensures that a file
definition does not exist and that any options previously
defined with the ddname no longer have effect.

If no operands are entered with the cOllmand, a list of current filetypes
is displayed at the terainal including the ddname, device type, and, if
device type is DISK, the filename, filetype, and filemode. llso, if the
PILEDEP is for an as data set, the data set name is displayed; or, if
the FILEDEF is for a DOS file, the file-id is displayed.

Whenever an option is specified that is invalid for a particular
device type, an error message is issued. Figure 20 shows valid
options for each device type.

IThe FORTR1N processors are Prograll Products.

Section 7: Format and Usage Rules for CftS Commands 133

FILE.DEF

option
I Onit Record I
IREADEB, POICHI
I PRINTER I TERKIIIL TIPn

DISK
DOKftI I

BLOCK, BLKSIZE
CHANGE, NOCHANGB
COICAT

1
1

1
1

1
1

1
1
1

DBN
DISP ftOD
KElLEN
LlftCT

1
1
1
12

LOWCASE, OPCISE
LRBCL x

x
X X X

X
12

KBftBER
OPTCD
PEBM
BECFM
TBTCH
ITBNT

X
X

X
X

1
X

1
7TBACK, 9TBACK X

INo options may be necessary but all disk options are accepted.
2This option is used for BDAK files.
3This option is for 7-track tapes only.

Figure 20. Valid File Characteristics for Bach Device Type for the
FILEDEF COllmand

.Y.fCI.§~

LOWCISE

KElLEN nn

ITENT nn

LIMCT nn

OPTCD a

DISP MOD

translates all terminal input data to uppercase •

retains all terminal input data as typed in.

is the size (nn) of the key (in bytes).

is the number of records (nn) in the extent for the file.
The default is 50.

is the maximull nuaber of extra tracks or blocks (nn) to
be searched. This option is used for BDIK files.

is the direct access search processing desired. The
variable ! may be any combination of up to three of the
following: (A and B are mutually exclusive.)

Cod~
I
B
P
R

DISD Search
Ictual device addressing
Extended search
Peed back addressing
Relative block addressing

positions the read/write pointer after the last record in
the disk file.

MEMBEB membernalle
allows you to specify the name of a member of an as
Partitioned Data Set; membername is the nalle of the PDS
lIellber.

134 IBft Vft/370: Command Language Guide for General Osers

COBCAT

PILEDEP

allows you to concatenate OS data sets with each other
and with CftS files. You must use the COBCAT option when
you are defining an OS data set referred to by a later
GLOBAL command (COBCAT is not necessary for CftS files
referred to in a later GLOBAL command.)

COBCAT should be used only for aacro libraries to be
specified in a later GLOBAL co.mand. You must specify
COBCAT with all of the OS data sets you define, including
the first.

wnen you use CONCiT in a FILEDEF coaaand, you can specify
more than one PILEDEP for a particular ddname.

llso, when you use COBCAT, the DCB paraaeters used are
those associated vith the first filename you specify in a
GLOB1L comaand for a macro library.

DSORG {~PIOS:} is the data set organization: physical sequential (PS),
partitioned (PO), direct access (Dl), or indexed
sequential (IS).

r ,
I 7TR1CK I is the tape setting.
I 9TRACK I
L .I

TRTCH a

DEB den

PERft

BOCHABGE

is the tape recording technique. Use the following chart
to determine the value of ~:

a Parity converter Translator

0 odd off I off
OC odd on I off
OT odd off I on

! even off I off
ET even off I on

is tape density: den can be 200, 556, 800, 1600, or 6250
bpi (bits per inch). If 200 or 556 are specified, 7TR1CK
is assuaed. If 800, 1600, or 6250 are specified 9TR1CK is
assumed.

retains the current definition until it either is
explicitly cleared or is changed with a new PILED!P
coalland with the CH1BG! option. If PERft is not
specified, the definition is cleared when a PILED!P * CLE1R com.and is executed.

merges the file definitions whenever a file definition
exists for a ddname and a PILEDEP specifying the same
ddnalle is issued: the options associated with the two
definitions are merged. Options from the original
definition remain in effect unless duplicated in the new
definition. Rew options are added to the option list.

retains the current file definition, if one exists, for
the specified ddname.

section 7: Pormat and Usage Rules for CftS Commands 135

FILBDBF

BBCFft a

LBBCL nn

BLOCK nn
BLKSIZB nn

is the record foraat of the file. where! can be one of
the following:

!
F
FB
V
VB
U
FS.FBS
VS.VBS
A
B

fteani.!!,g
fixed length
fixed blocked l

variable length
variable blocked l

undefined
fixed length. standard blocks
variable length. spanned records
ASA print control characters 2

aachine print control codes2

is the logical record length (nn)
LBBCL should not exceed 32.767
restrictions.

of the file. in bytes.
bytes because of OS

is the logical
BLOCK should
restrictions.

block size (nn) of the file. in bytes.
not exceed 32.767 bytes because of OS

If a CftS file is fixed and has 80-byte CftS records. you
should specify BECPft PB BLOCK 800 LBBCL 80 and a fileaode
nuaber of 1. (BLOCK can also be expressed as 80*10.)
There can be significant perforaance improvement for CBS
fixed files if the block size is a au1tiple of 800.

Bates:
-l-.--There is an auxiliary processing option for PILBDBP that is only

valid when FILBDEP is executed by an internal prograa call: this
option cannot be entered on a terainal coaaand. The option.
AUIPROC addr. allows an auxiliary processing routine to receive
control during I/O operations.

2. DOS files do not contain BLKSIZE. LBECL. or BECPB specifications.

3.

These options aust be specified by a PILEDBP coa.and or DCB
stateaent. Otherwise the defaults. BLKSIZE=32760 and RECPB=U. are
assumed. LBBCL ,is not used for BBCP!=U files.

If V or VS
less than
specified.
LBECL and
results of

is specified for RECFft. LRECL must be at least 4 bytes
BLKSIZB. BLKSIZE must be specified if LBECL is
The FILEDEF co.mand does not provide default values for

BLOCKSIZB. However. the following chart describes the
specifying BLOCKSIZE and LBECL.

IPB and VB should not be used with TBBftIBAL or BEADBR devices.
2A and ft may be used in conjunction with any of the valid BBCFft settings

(for example. PA. PBA. VA. VBA. etc.)

136 IBft Vft/370: Comaand Language Guide for General Users

GC20-1804-3 Page Modified by TIL G120-2659

FILEDEF

r---~-~--~~
BLKSIZE

not
specified

not
specified

specified

LRECL Results

not IIf the input file exists on disk, the item
specified Ilength becomes the BLKSIZE (or BLKSIZE +4

Ifor variable length records) •

not ILRECL~BLKSIZE (or LRECL=BLKSIZE-4,
specified Ivariable-length records).

.&:~

.LV.L

specified IBLKSIZE=LRECL (or BLKSIZE=LRECL+4, for
Ivariable-length record) •

specified IThe values specified are used.
L---------------------.--~

There are two general forms for specifying the FILEDEF DISK operand. If
you specify the first form:

DISK fn ft [fm]

fn and ft (filename and filetype) are assumed to be a CMS fileid.
the filemode is for an OS disk, fn and ft are assumed to be the only
qualifiers of an OS data set name. In this form, the filemode
specify must always match the access mode of the disk on which the
set resides. The default values for fn ft fm are FILE ddname A1.

If
two
you

data

You cannot use this form unless the OS data set. name or DOS file-id
conforms to the OS naming convention (one- to eight-byte qualifiers
separated by periods, to a maximum of 44 chracters, including periods) .
Also, the data set name can have only two qualifiers; otherwise, you
must use the DSN ? or DSN qua11 ••• form. For example, if the data set
name or file-id is TEST.SAMPLE.MAY. you enter:

FILEDEF MINE B1 DSN TEST SAMPLE MAY

-- or --

FILEDEF MINE B1 DSN ?
TEST. SAMPLE. MAY

If the data set name or file-id is TEST. SAMPLE, then you enter:

FILEDEF MINE DISK T!ST SAMPLE B1

The second form of the DISK operand is only for use with OS data sets
and DOS files:

,. , r ,

FILED!F ddname I DISK fn ft I I fm I {DSN ? }
I 111~ QQ!!~!!!~ I IAll DSN qua11 [qua12 •••]
L .J L .J

This form allows you to specify a DSN operand that corresponds to the
DSN parameter on the DD card describing an OS data set or DOS file.
There are three ways you can specify this form:

Section 7: Format and Usage Rules for CMS Commands 137

GC20-1804-3 Page Modified by TNL GN20-2659

FILEDEF

1. FILEDE' ddname DISK fn ft fm DSN quaIl [qua12 •••]

If you use this form, the FILEDEF command associates the filename
and filetype you specify with the OS data set name or DOS file-id
specified following the DSN operand. Once it is defined, you can
refer to the OS data set name or DOS file-id by coding the filename
and filetype. If you omit DISK, filename, filetype, and filemode,
the default values are PILE ddname Al.

2. FILEDEP ddname DSN 1

This form of the PILEDEP command allows you to specify the DSN OS
data set name or DOS file-id interactively. Using this form, you
can enter an OS data set name or DOS file-id containing embedded
special characters such as blanks and hyphens. If you use this
form, the default filename and filetype for your file, FILE ddname,
is the filename and filetype associated with the OS data set name
or DOS file-ide The filemode for this form is always the default,
Al.

The interactive DSN operand works this way: when you enter DSN 1,
CMS requests that you enter the OS data set name or DOS file-id
exactly as it appears in the data set or file. Do not omit the
periods that separate the qualifiers of an OS data set name, but do
not insert periods where they do not appear.

quall[.qua12 •••]

where quall.qua12 ••• are the qualifiers of the as data set name or
DOS file-{d. When you use this form, you must code the periods
separating the qualifiers.

3. FILEDE' ddname Bl DSN quaIl [qua12 •••]

This form allows you to specify the OS data set name or DOS file-id
explicitly. (This form can be used for DOS file-ids only if they
comply with the OS naming convention of one- to eight-byte
qualifiers separated by periods, to a maximum of 44 characters,
including periods.) Again, the default value for the filename is
FILE and for filetype, the default value is the name associated
with the OS data set name or DOS file-ide The filemode for this
form is Bl as you specified it on the co •• and. When you use this
form, you must omit the periods that separate the qualifiers of the
OS data set name. For example, for an OS data set or DOS file
named MY.PILE.IN, you enter

FILEDEF ddname Bl DSN MY FILE IN

All of these forms have many variations, as is apparent from the
command format.

Note: When the FILEDEF command is used to define a ddname, that
defInition remains in effect until another PILEDEP command (with the
CLEAR option) is issued or until the system clears the definition. The
system clears PILEDEF definitions if:

• Any of the CMS language processors are executed. The language
processors always issue, at their completion, the command PILEDEF *
CLEAR. This command causes all FILEDEF definitions to be cleared,
except for those defined with the PERM option.

138 IBM VM/370: Command Language Guide for General Users

FILEDEF

If you want any FILEDEF definitions to remain in effect after a
language processor has executed, define them with the PERM option.

• An ABEND occurs. When you enter your next co •• and, ABEND recovery
takes place. ABEND recovery clears all previously specified FILEDEF
definitions, including those for which the PERM option was
specified. All the FILEDEF definitions must be respecified after
~~rh lRp.wn r~rnv~rv ---- ----- ----.--~.

FILEDEF MACLIE DISK SYS1 MACLIB B1 (MEMBER ABEND)

When the CMS file SYS1 MACLIB or, if the B disk is an OS disk, the OS
data set SYS1.MACLIB is opened, the read/write pointer is set to the
start of the partitioned data set member ABEHD.

FILEDEF ASSEMBLE DISK TEST ASSEMBLE B1 DSN SAMPLE OS DATA

When an OS macro or a eMS command references the fileid TEST ASSEMBLE
B1, it gets information from the OS data set SAMPLE.OS.DATA. For
example, the command ASSEMBLE TEST assembles the OS data set
SAMPLE.OS.DATA.

FILEDEF SYSPRINT PHIlTER (PERM RECFM F BLOCK 132)

Whenever SYSPRINT is referred to in
is spooled to the virtual printer.
logical block length of 132. The file
command FILEDEF * CLEAR.

your program, the output written
The file is fixed-format with a
definition is not removed by the

FILEDEF PRINTOUT TERMINAL (UPCASE NOCHANGE

If a file definition for the ddname PRINTOUT does not exist, one is
established. Output written to PRINTOUT is displayed at the terminal in
uppercase.

FILEDEF DISK DISK HAME OLDFILE

All I/O for a file with a ddname of DISK is directed to a disk file
with a file identifier of NAME OLDFILE.

FILEDEF DISKFILE DUMMY

When any I/O command is issued to a disk file with a ddname of
DISKFILE, the real I/O operation is not performed.

FILEDEF NEWMAST TAP2 (9TRACK DEH 1600 RECFM FB LRECL 050 BLOCK 3000

I/O commands issued to a file with ddname of NEWMAST are directed to
the tape located at logical unit TAP2. The tape is 9-track, and
recording is done at 1600 bpi. The tape is in fixed-block format with a
logical record length of 50 and a physical blocksize of 3000.

Section 7: Format and Usage Rules for CMS Commands 139

GC20-1804-3 Page Modified by TNL GN20-2659

FILEDEF

FILEDEF CMSLIB DISK aSl MACLIB * DSN OS DATA 1 (LRECL 80 BLOCK 800 RECFM FB CON CAT)
FILEDEF CMSLIB DISK OS2 MACLIB * DSN OS DATA 2 (CONCAT)
FILEDEF CMSLIE DISK SYS1 MACLIB * (CONCAT)
GLOBAL MACLIB OSl OS2 SYS1 MYLIB

This example shows how you can use the CONCAT option to cause CMS to
search the as maclibs OS.DATA.1, OS.DATA.2 and SIS1.MACLIB and the CMS
maclib MILIB to resolve maclib references in assembling the CMS file
SAMPLE ASSEMBLE.

ACCESS 193 B
ACCESS 194 C
FILEDEF CMSLIB DISK ASPl MACLIB * DSN ASP1 MACROS RLl (RECFM FIXED BLOCK 3360 LRECL 80 CONCAT)
FILEDEF CMSLIB DISK ASP2 MACLIB * DSN ASP2 MACROS RL2 (CONCAT)
FILEDEF CMSLIB DISK SYS1 MACLIB * (CONCAT)
FILEDEF ASSEMBLE TEST SAMPLE B1 DSN TEST OS SAMPLE1
GLOBAL MACLIB ASP1 ASP2 SYSl CMSLIB
ASSEMBLE TEST

This example shows how you can use FILEDEF to override the default
FILEDEF commands CMS gives you for an assembly. The example also shows
how to point to an as disk containing as source for TEST.OS.SAMPLE1 and
the as macro libraries ASP.MACROS.RL1, ASP.MACROS.RL2, and SIS1.MACLIB.
The GLOBAL command accesses four macro libraries and the order of search
for the macros needed during assembly, that is, ASP1 first, ASP2 next,
and so on. The first three libraries are as libraries and CMSLIB is a
CMS macro library.

!Qi~: A disk does not have to be accessed at the time a FILEDEF is
issued; however, if this is the case, a warning message is issued to the
user informing him that the disk is not accessed.

ddname1 device1 [filename1 filetype1]

ddnameN deviceN [filenameN filetypeN]

A list of current definitions is displayed if the FILEDEF command
is entered with no operands.

DMSFLD220R ENTER DATA SET NAME:

A FILEDEF command with the DSN? operand was entered. Enter an OS
data set name the form quaI1.quaI2 •••• qualn; where qual1, qual2
through qualn are the qualifiers of an as data set name.

DMSFLD7041 INVALID CLEAR REQUEST

A CLEAR request was entered for a file definition that does not
exist; no action is taken.

140 IBM VM/370: Command Language Guide for General Users

DftSPLD003E IBVALID OPTIOB 'option' RC=24
DftSPLD023E NO PILETYPE SPECIPIED RC=24
DftSPLD027E I!VllID DEVrCE 'device name' RC~24

FILEDEF

DftSPLD029E INVALID PARAftETER 'param' IN THE OPTION 'option' FIBLD RC=24
DftSFLD035B INVALID TAPE ftODE RC=24
DftSPLD050E PARAftETER ftISSIIG AFTER DDNAftE RC=24
DftSPLD065E 'option' OPTION SPECIFIED TWICE RC=24
DftSPLD066E 'option' AID 'option' ARE COIFLICTING OPTIOIS RC=24
DMSPLD070E INVALID PARAftETER 'oaram' RC=24
DMSFLD221E INVALID DATA SBT IA!E 'data set name' RC=24
DftSPLD224E PILEID ALREADY IN USE RC=24

section 7: Format and Usage Rules for CftS Co •• aDds 141

PORftAT

FORMAT,

Use the PORftAT coamand to:

• Initialize a virtual disk area in the CftS format.

• count the nuaber of cylinders on a virtual disk.

• write a label on a virtual disk.

• Reset the number of cylinders on the virtual disk.

This co.mand can be used
direct access storage device.

with a virtual 3340, 3330, 2314, or 2319
The format of the PORltAT command is:

PORftAT cuu lIode [nocyl] [(options ••• [)]]

!.!l~~:

.Qpti.9J!§:
r "'I

ILABEL I
IRECOftPI
L ..

cuu is the virtual device address of the virtual disk to be
foraatted.

aode

nocy1

LABEL

Bote that 000 is not a valid address.

is the fileaode letter to be assigned to the specified device
address. Valid fi1eaode letters are A, B, C, D, E, P, G, I, and
Z. This field must be specified.

is the number of cylinders to be made available for use. All
available cylinders on the disk are used if the nu.ber specified
exceeds the actual number available.

writes a label on
six-character label
3 of the virtual
six-character disk
blank padded).

the disk without foraatting the disk. A
is written on cylinder 0, track 0, record
disk. A prompting message requests a

label (less than six is left-justified,

BECOftP changes the nuaber of cylinders on the disk which are
available to the user to the actual number of ainidisk
cylinders or to the number specified by nocyl, whichever is
less. If nocyl is not specified, all cylinders are used.

lo!!: If neither RECOKP nor LABEL is specified, the disk area is
initialized by writing a device-dependent nuaber of records (containing
binary zeros) on each track. Any previous data on the disk is erased.
A read after write check is made as the disk is formatted.

142 IBK V6/310: Command Language Guide for General Users

FORftAT

FORftAT 191 A 25

Initializes 25 cylinders of the disk located at virtual address 191 in
CftS format.

POR!AT 192 B 25 (RECO!P)

Changes the number of cylinders available at virtual address 192 to 25
cylinders.

FORBAT 193 C (LABEL)

writes a label on the disk at virtual address 193.
prompting message with a six-character label.

Respond to the

DBSPOR603R POR!AT WILL ERASE ALL PILES ON DISK 'Ilode(cuu) '. DO YOU WISH
TO COITIIUE? (YESIIO):

You have indicated that a disk area is to be initialized: any
existing files will be erased. This message gives you the option
of canceling the execution of the FORftAT command. Reply YES or
NO.

DftSPOR605R ENTER DISK LABEL:

You have requested that a label'be written on the disk.
one- to six-character label.

DftSPOR7051 DISK RE!AINS UNCHANGED

The response to message, D!SPOR603R, was '10'.

DftSPOR7321 'nnn' CYL POR!ATTED ON DISK 'mode (ccu) ,

Enter a

A formatting operation has been done on nnn cylinders of the disk
at virtual address ccu.

DftSFOR7331 FOR!ATTIIG DISK 'mode'

The disk represented by mode letter 'mode' is being formatted.

DI SK 'Ilode (cuu)': 'n' FILES, 'n' BLOCKS, , n' LEFT (OF 'n'), nnl FULL
('n' CYL)

This message gives the extent and other information about a disk
when a RECO!P operation has been done.

Section 7: Pormat and Usage Rules for CftS Com.ands 143

PORftAT

DftSPOR003E IIVALID OPTIOI 'option' RC=24
DftSPOR017E INVALID DEVICE ADDRESS 'cuu' RC=24
DftSPOR028E 10 DEVICE SPECIPIED RC=24
DftSFOR037E DISK '.ode[(cuu)]' IS READ/OILY RC=36
DftSPOR048E IIVALID ftODE '.ode' RC=24
DftSPOR069E DISK '.ode' lOT ACCESSED RC=36
DftSFOR070E IIVALID PARAftETER 'para.' RC=24
DftSPOR113S cuu lOT ATTACHED RC=100
DftSFOR114S 'cuu' IS AI UISUPPORTED DEVICE TYPE RC=88
DftSPOR125S PERftAIEIT UIIT CHECK 01 DISK ·.ode(cuu)' RC=100
DftSFOR126S ERROR {READIWRIT}IIG LABEL 01 DISK '.ode(cuu)' RC=100
DftSFOR214W CAIIOT RECOftPUTE WITHOUT LOSS OP DATA. 10 CHAIGE RC=8

144 IBft Vft/370: Command Language Guide for General Users

GBIDIRT

GENDIRT

Use the GBIDIRT co •• and to create a CftS auxiliary directory. The
auxiliary directory contains the na.e and location of .odules which
would otherwise significantly increase the size of the resident
directory, thus increasing search ti.e and storage require.ents. By
using GBBDIRT to create an auxiliary directory, the file entries for the
given cOII.and are loaded only when the co._and is invoked. The for.at
of the GBIDIRT co_.and is:

GBIDIRT

!J!.!!:! :

directorynalle

target.ode

directoryn aile [target.ode]

is the entry point of th~ auxiliary directory.

is the file.ode letter of the disk containing the
.odules referred to in the directory. The letter is
the file.ode of the disk containing the .odules at
execution ti.e,not the file. ode of the disk at
creation of the directory. The default value for
target.ode is S, system disk. It is your
responsibility to deter.ine the usefulness of this
operand at your installation, and to infor. all users
whose programs are in auxiliary directories exactly
what filellode to specify on the lCCBSS co •• and.

!2te: See the Vft/370: Syste. Proqr.!~£..!! Gui,g.! for infor.ation on
creating auxiliary directories and for further require.ents for using
the target_ode option.

DftSGID002W FILB 'fn ft f.' lOT FOUID RC=4
DftSGID021B IITRY POIIT 'na.e' BOT FOUID RC=28
DftSGHD022B 10 DIRBCTORY IlftB SPBCIFIBD RC=24
DftSGID070B IIVILID PIRlftlTBR 'para.' RC=24

Section 7: For.at and Usage Rules for CftS Co •• ands 145

GEHKOD

GENMOD

Use the GEIKOD co •• and to generate absolute core-i.age files. The
format of the GEIKOD co •• and is:

fn

ft

fm

Genllod [fn [ft [fm]]] [(options ••• [)]]

.Q.E!io.!!§: [PROK entry1]
[TO entry2]
r ,
I !!E I
I ROKAP I
L .J

r ,
I STR I
I IOSTR I
L .J

[SYSTEK]

is the filename of the KODULE file being created. If fn is
not specified, the file created has a filename equal to that
of the first entry point in the LOAD KAP.

is the filetype of the KODULE file being created.
specified, ft .ust be KODULE.

If

is the file.ode of the KODULE file being created. If f. is
not specified, the file is written on the priaary read/write
disk.

If conflicting options are specified, the last one entered is used.

PROK entry1 specifies an entry point or a control section naae, which
is the starting virtual storage location froa which the
core-iaage copy is generated.

TO entry2

KAP

IOftAP

If PROK is not specified, the starting virtual storage
location of the module is eit_her t he address of fn (if it
is an external name), or the address of the first
external nalle encountered during the loading process •.
This is not necessarily the lowest address loaded. If
you have any external references before your START or
CSECT instructions, you aust specify PROK entry1 to load
your program properly.

specifies an entry point or a control section naae, which
is the ending virtual storage location fro a which the
core-image copy is generated.

includes a load map in the KODULE file.

specifies that a load map is not to be contained in the
ftODULE file.

146 IBK YK/370: COllmand Language Guide for General Users

STR

NOSTR

SYSTEM

Notes:

GC20-1804-3 Page Modified by TNL GN20-2659

GENMOD

~Q!~: If a module is generated with the NOMAP option,
that module cannot later be loaded and started with the
CMS LCADMOD and START commands. When NOMAP is specified,
the information produced is not sufficient for the START
command to execute properly. However, a module generated
with the NOMAP option can later be invoked as a command,
that is, it can be invoked if its filename is entered.

invokes the CMS storage initialization routine when the
MODULE is subsequently loaded (see the CMS LOADMOD
command). This routine frees any storage remaining from
a prevlous program. STR is the default setting if the
MODULE is to be loaded at the beginning of available user
storage.

indicates that, when the MODULE is loaded, free storage
pointers are not reset for any storage currently in use.
NOSTR is the default setting if the MODULE is to be
loaded at a location other than the default load
address.

indicates that when the MODULE is subsequently loaded, it
is to have a storage protect key of zero.

-':--Before the file is written, undefined symbols are set to location
zero and the common reference control section is initialized. The
undefined symbols are not retained as unresolved symbols in the
MODULE file. Therefore, once the MODULE file is generated, those
references cannot be resolved and may cause unpredictable results
during execution.

2. If you load a program into the transient area you should issue the
GENMOD command with the STR option. Be careful if the program
issues OS GETMAIN or FREEMAIN because your program, plus the amount
of storage obtained via GETMAIN, cannot exceed two pages (8192K).
It is recommended that you do not issue a GETMAIN from a transient
area.

DMSMCD001E NO FILENAME SPECIFIED RC=24
DMSMOD002E FILE 'fn ft' NOT FOUND RC=28
DMSMOD003E INVALID OPTION 'option' RC=24
DMSMOD005E NO (FROM TO) ENTRY SPECIFIED RC=24
DMSMCD021E ENTRY POINT 'name' NOT FOUND RC=40
DMSMOD032E INVALID FILETYPE 'ft' RC=24
DMSMOD037E DISK 'mode' IS READ/ONLY RC=36
DMSMOD040E NO FILES LOADED RC=40
DMSMOD070E INVALID PARAMETER ••••• RC=24
DMSMOD084E INVALID USE OF 'FROM' AND 'TO' OPTIONS RC=24
DMSMOD105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSMOD109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104

Section 7: Format and Usage Rules for CMS Commands 147

GLOBAL

GLOBAL

Use the GLOBAL co •• and to specify which CMS libraries are to be searched
when processing subsequent CMS commands. The GLOBAL command remains in
effect for an entire CMS session unless it is explicitly canceled or
until another GLOBAL command is entered. There are no default
libraries, so the command must be libraries if any libraries are to be
used. The GLOBAL command verifies the existence of the libraries and
issues a warning message if a specified library does not exist. The
format of the GLOBAL command is:

r-
I GLobal
I L-________ __

MAClIB

TXTLlB

libnamel •••

{
MACLIB } [libnamel ••• libname8]
TXTLIB

,
I
I

J

allows the specification of the macro libraries that are
to be used during the execution of language processor
commands. The macro libraries may be CMS files or OS
data sets. If you specify an OS data set, FllEDEF must
be issued for the data set before you issue GLOBAL. (See
the description of the FlLEDEF CONCAT option for more
information.)

allows the specification of text libraries to be searched
for .issing subroutines when the lOAD or INCLUDE command
is issued, or when a dynamic load occurs (that is, when
OS SVC 8 is issued).

Note: Subroutines that are called by dynamic load should
(1r-contain only VCOBs that are resolved within the same
text library member or (2) be resident in storage
throughout the processing of the original CMS LOAD or
INCLUDE command. Otherwise, the entry point is
unpredictable.

is the filename of up to eight libraries. If the MAClIB
form of the GLOBAL command is used, the filetypes of all
files specified must be MAClIB. If the TXTLIB form of
the oommand is used, the filetypes of all files specified
must be TXTLIB. The libraries are searched in the order
in which they are named. If no library names are
specified, the command cancels the effect of any previous
GLOBAL command.

If you want to use an OS library during the execution of a language
processor, you can issue a GLOBAL command to access the library, as long
as you have defined the library via the FILEDEF command. If you want to
use that library for more than one job, however, you must redefine it
{again, via FILEDEF), since the language processors clear your previous
definition of the library.

Another means for reusing a library is the PERM option of the FIlEDEF
command. If you use PERM, you must clear that FILEDEF before you issue
another GLOBAL for a different library.

148 IB" V"/370: Command Language Guide for General Users

GLOBAL

GLOBAL BICLIB ICCESS SYSftlC

The systeM searches ~ne iCCESS aiCLIB and SISSie BICL!B files for
aissing aacros during coapilations.

GLOBAL TITLIB COlVERT PLOAT

ThA syste. searches the COlVERT TITLlE and PLOAT TITLIB files
aissing subroutines during subsequent LOID and IICLUDE operations.

GLOBAL BICLIB

Cancels the effect of any previous GLOBAL ftACLIB libname co •• and.

DftSGLB002i PILI 'fn ft' lOT POOID BC=28
DftSGLB014E IIVALID PUICTIOI 'function' RC=24
DftSGLB0471 10 PUICTIOI SPICIPIED RC=24
DftSGLB108S ftORE TBAI 8 LIBRARIBS SPBCIPIED RC=88

&_-
.LU.L

Section 7: Pormat and Usage BuIes for CftS Com.ands 149

IBCLUDB

INCLUDE

Use the IBCLUDB co.aand to read one or aore TBXT files (containing
relocatable object code) fro. disk and to load thea into storage,
establishing the proper linkages between the files. IBCLUDB is noraally
used to resolve references left unresolved by a previous LOAD or INCLUDE
co •• and. Refer to Pigure 21 for a description of the handling of
unresolved references. I LOID co •• and .ust have been previously issued
for the IBCLUDE co •• and to produce desirable results. The for.at of the
INCLUDE co •• and is:

INclude

fn •••

fn... [(options ••• [)]]
QE~i.21!§ : r , r ,

1 CLEAR 1 1 { entrY}1
IIOCLEI!1 IRBSET 1
L .J I • I

[ORIGII hexloc]

L .J

r , r , r , r , r ,
IftlP I ITYPE I II!! 1 IRER I IIUTO 1
II0ftAPI I!QTYPBI IBOIIV I INORBP I INOAUTOI
L .J L .J L .J L .J L .J

r , r ,
I~IB! I [STIRT] [S.ftE] IDUR I
IIOLIBEI INODUP 1
L .J L

are the naaes of the files to be
Piles aust have a filetype of
relocatable object code such as
language processor coa.ands.

.J

loaded into storage.
TEXT and consist of
that produced by the

If options were specified with a previous LOID or IICLUDE co •• and,
these options (with the exception of CLEAR and ORIGIN) re.ain set if
SAftB is specified when IICLUDE is issued. Otherwise, the options
assu.e their default settings. If conflicting options are specified,
the last one entered is in effect.

CLEAR

NOCLBIR

clears the load area in storage to binary zeros before
the files are loaded.

does not clear the load area before loading.

RESBT {en. try } resets the execution starting point previously
set by a LOAD or IICLUDE co •• and. If entry is
specified, the starting execution address is reset to
the specified location. If an asterisk (.) is
specified, the starting point is reset to the location
of the first file or to the address specified as an
operand of an EID card, LDT card, or BITRY card.

ORIGII hexloc begins loading the progra. at the
by hexloc. The variable, hexloc,
nu.ber of up to eight characters.

location specified
is a hexadeci.al

If this option is

150 IBft Vft/370: Co •• and Language Guide for General Users

1!ll

IOftAP

TYPE

IOTYP!

1!!

10IIV

10RBP

IOAUTO

10LIBE

START

SAftB

10DUP

IICLUDB

not specified, loading begins at the next available
storage location. IICLUD! does not overlay any
previously loaded files unless this option is
specified and the address given indicates a location
within a previously loaded object module:

adds inforaation to the LOAD ftAP file.

does not add any inforaation to the LOAD ftAP file.

displays the load aap of the files at the terminal, as
well as writing it on the primary disk. This option
is valid only if ftAP is specified or iaplied.

dQes not display the LOAD ftAP file at the terminal.

prints invalid card images in the LOAD ftAP file.

does not print invalid card images in the LOAD ftAP
file.

prints replace statement iaages in the LOAD ftAP file.
See the explanation of the CftS LOAD coamand for a
description of the replace (REP) statement.

suppresses the printing of replace statements in the
LOAD ftAP file.

searches your disks for TilT files
undefined references.

to resolve

suppresses automatic searching for TBXT files.

searches the text libraries defined by the GLOBAL
co.mand for aissing subroutines.

does not search any text libraries for unresolved
references.

begins execution after loading is coapleted.

retains the same options (except ORIGII and CLBAR)
that were used by a previous IICLUDB or LOAD coaaand.
Otherwise, the default setting of unspecified options
is assumed. If other options are specified with SAftE,
they override previously specified options. See the
exaaples.

displays warning aessages at your virtual console when
a duplicate CSICT is encountered during processing.
The duplicate CSBCT is not loaded.

does not display warning aessages at your virtual
console when duplicate CSBCTs are encountered during
processing. The duplicate CS!CT is not loaded.

Section 7: lor mat and Usage Rules for CftS Co.mands 151

IICLUDE

Use standard order of search to
locate the TEXT files specified
by fn •••

I
I
* . * Any *

* unresolved * NO

* references *
* ? *

* · · * * IYES
I

· * · * Is *
* BOAUTO * YES

* specified *
* ? *

* · *
* IBO
I

Use standard order of search to
locate files with a filetype of
TEXT and a filenalle correspond
ing to the unresolved reference

.
*

*
*

*
*

*

1<
I

· * · * Any * unresolved
references

?

*. . *
* IYES
I

· * . * Is *
BOLIBE

specified
?

* . *
* INO
I

* NO

*
*

* YES
*---

*

Search active text libraries
(those that were previously
specified by a GLOBAL com.and).
Piles are searched in the order I
they are entered in the cOlllland.1

Search terainated

Pigure 21. Resolution of Unresolved References

Search
terllinated

Search
complete

Search
cOllplete

152 IBM V8/370: COII.and Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

INCLUDE

INCLUDE MAIN SUBI DATA (RESET MAIN MAP START)

Brings the files named MAIN TEXT, SUBI TEXT, and DATA TEXT into real
storage and appends the. to files which were previously loaded.
Information about these loaded files is added to the LOlD MAP file.
Execution begins at entry point MAIN.

LOAD MYPROG (NOMAP NOLI BE NOREP)

INCLUDE MYSUB (MAP SAME)

During execution of the LOAD command, the file named MYPROG TEXT is
brought into real storage. The following options are in effect: NOMAP,
NOLIBE, NOREP, NOTYPE, INV, AUTO. During execution of the INCLUDE
command, the file named MYSUB TEXT is appended to MYPROG TEXT. The
following options are in effect:

MAP, NOLIBE, NOREP, NOTYPE, INV, AUTO

!2!~: After you IPL CMS, at least one LOAD command must be issued before
INCLUDE can be used with predictable results.

DMSLI07401 EXECUTION BEGINS •••

START was specified with INCLUDE and the loaded program has begun
execution. Any further responses are from the program.

INVALID CARD - XXX ••• XXX

INV was specified with LOAD and an invalid card has been found.
The message and the contents of the invalid card (xxx ••• xxx) are
listed in the file LOAD MAP. The invalid card is ignored and
loading continues.

CONTROL CARD - •••

A loader or library-search control statement was encountered (that
is, ENTRY or LIBRARY). See the description of the LOAD command for
the use of ENTRY and LIBRARY control cards. This response is
placed in the LOAD MAP file only.

DMSLI0001E NO FILENAME SPECIFIED RC=24
DMSLI0002E FILE 'fn ft' NOT FOUND RC=28
DMSLI0003E INVALID OPTION 'option' RC=24
DMSLI0005E NO option SPECIFIED RC=24
DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40
DMSLI0029E INVALID PARAMETER 'param' IN THE OPTION 'option' FIELD RC=24
DMSLI0055E NO ENTRY POINT DEFINED RC=40
DMSLI0056E FILE 'fn ft' CONTAINS INVALID RECORD FORMATS RC=32

Section 7: Format and Usage Rules for CMS Commands 153

GC20-1804-3 Page Modified by TNL GN20-2659

INCLUDE

DM5LI01045 ERROR 'nn' READING FILE 'fn ft fm' FROM DI5K RC=100
DM5LI01055 ERROR 'nn' WRITING FILE 'fn ft fm' ON DI5K RC=100
DM5LI01095 VIRTUAL 5TORAGE CAPACITY EXCEEDED RC=104
DM5LIOl165 LOADER TABLE OVERFLOW RC=104
DM5LI01685 P5EUDO REGI5TlR TABLE OVERFLOW RC=104
DM5LI01695 E5DID TABLE OVERFLOW RC=104
DM5LI0201W THE FOLLOWING NAME5 ARE UNDEFINED: RC=4
DM5LI0202W DUPLICATE IDENTIFIER 'identifier' RC=4
DM5LI0203W "5ET LOCATION COUNTER" NAME 'name' UNDEFINED RC=4
DM5LI0206W P5EUDO REGI5TER ALIGNMENT ERROR RC=4
DM5LI0907T I/O ERROR ON FILE 'fn ft fm' RC=256

154 IBM VM/370: Command Language Guide for General Users

LISTDS

LlSTDS

Use the LISTDS command to list at your terminal information describing
the data sets residing on an OS disk, or the files on a DOS disk.

The format of the LISTDS command is:

LISTDS

1

dsname

fm

*

r ,
I 1 I (f m) [(0 P ti 0 n s ••• [)]]
I dsname I l * J
L .J

[FORMAT]

[PDS]

indicates that you want to enter the OS data set name or DOS
file-id from your terminal. If you enter the question mark
(1), CMS requests that you enter the OS data set name or DOS
file-id exactly as it appears in the data set or file. Do
not omit the periods that separate the qualifiers of an OS
data set name, but do not insert periods where they do not
appear.

quall[.quaI2.qualn]

where quaIl, qual2, through qualn are qualifiers for the data
set name or file-ide Using this form, you can specify data
set names or file-ids that contain embedded special
characters such as blanks and hyphens. -

is the OS data set name or DOS file-id and takes the form:

quall[qual2 qualn]

where quaIl, qual2, through qualn are the qualifiers for the
data set name or file-ide Each qualifier must not exceed 8
characters and must be separated from other qualifiers by
blanks, not periods. (This form can be used for DOS file-ids
only if they comply with the OS naming convention of one- to
eight-byte qualifiers separated by periods, to a maximum of
44 characters, including periods.) For example, for an OS
data set or DOS file named MY.FILE.IN, you enter:

LISTDS MY FILE IN

is the filemode of the data set or file being listed.

indicates that you want the data set name (or file-id) and
filemode listed for all of the data sets (or files) on all of
the OS or DOS disks currently accessed.

section 7: Format and Usage Rules for CMS Commands 155

GC20-1804-3 Page Modified by TNL GN20-2659

LISTDS

FORMAT displays the date, disk label, file.ode, and data set name for
FO the OS data set as well as the REeFM, LRECL, BLKSIZE, and

DSORG operands. For a DOS file, LISTDS displays the date,
disk label, filemode, and file-id, but gives no information
about the RECFM, LRECL, and BLKSIZE operands (two blanks
appear for each); DSORG is always PS.

PDS displays the member names of references to OS Partitioned
Access Method (PAM) data sets.

The following is an example of LISTDS with the FORMAT and PDS options
and the output resulting from the command.

listds d (fo pds)

RECFM LRECL BLKSI DSORG DATE LABEL FM DATA SET NAME
FB 80 800 PO 01/31/75 OSSYSl D SYS1.MACLIB

MEMBER NAMES:
ABEND ATTACH BLDL BSP CLOSE DCB DETACH DEVTYPE
FIND PUT READ WRITE XDAP
RECFM LRECL BLKSI DSORG DATE LABEL FM DATA SET NAME

F 80 80 PS 01/10/75 OSSYSl D SAMPLE

DMSLDS220R ENTER DATA SET NAME:

The LISTDS command with the? operand was issued. Enter an OS data
set name in the form quall.quaI2.qualn; where quaIl, qual2, through
qualn are the qualifiers of the OS data set name.

DMSLDS002E DATA SET NOT FOUND RC=28
DMSLDS003E INVALID OPTION 'option' RC=24
DMSLDS048E INVALID MODE 'mode' RC=24
DMSLDS069E DISK 'mode' NOT ACCESSED RC=36
DMSLDS221E INVALID DATA SET NAME RC=24
DMSLDS222E I/O ERROR READING 'data set name' FROM OS DISK RC=28
DMSLDS223E NO FILENAME SPECIFIED RC=24
DMSLDS231E I/O ERROR READING VTOC FROM ••• -DISK (OS) RC=28

156 IBM VM/370: Command Language Guide for General Users

LISTPILE

LISTFILE

Use the LISTPILE co.mand to obtain specified information about your CftS
files residing on accessed disks. The information mav be either
displayed at the terainal or used to create a special EIEC file on
disk. 111 operands are optional; if no operands are specified, a list
of default information about each file on your primary read/write disk
is displayed at the terminal. The format of the LISTPILE command is:

fn

ft

fm

Listfile
r r r ",
Ifn 1ft Ifalll [(options ••• [)]]
1* I * I * III
L L L ~~~

option§: r ,
IHeader I
IIOHeaderl
L .I

r ,
IExec I
I APpend I
L ~

r ,
IPlame I
IPType I
I Pft2de I
IPOrmatl
IILloc I
I Date I
ILabel I
L .I

is the filename of the files
collected. If an asterisk
filenaaes are used.

for which information is to be
is coded in this field, all

is the filetype of the files
collected. If an asterisk
filetypes are used.

for which inforaation is to be
is coded in this field, all

is the filemode of the files for which information is to be
collected. If this field is oaitted, only the priaary disk is
searched. If an asterisk is coded, all disks are searched.

lote: An asterisk (*), iaaediately preceded by any nuaber of characters
for fn or ft, searches for the specified characters as the leading
characters for that identifier. Por example, LISTPILE IBC* ISSE!BLE
prints the identifiers for all ISSE!BiE files with filenaaes beginning
with IBC.

BEIDER

SOHEIDER

includes coluan headings in the listing. BEIDER is the
default if any of the "Suppleaental Information" options
are specified. The for.at of the heading is:

PILEII!E PILE TYPE Pft PORftAT RECS BLOCKS DITE TlftE LIBEL

does not include column headings in the list.
the default if only filenaae, filetype,
information is requested.

IOHEIDER is
or fileaode

section 7: Poraat and Usage Rules for CftS Coaaands 157

LISTFILE

EXEC

APPEND

creates a file of 80-character records (one record for each
of the files which satisfies the given file identifier) on
the priaary disk. The file that contains these records is
called CftS EXEC Al. If a file with this name already
exists, the existing one is erased and a new one is created
(unless the APPEND option is specified, in which case the
existing file is retained and the new entries are appended
to it). The EXEC procedure thus created contains two
symbolic variables, &1 and &2. This CftS EXEC file is used
with the EXEC command, but it can also be processed as any
other file (that is, printed, displayed, edited, added to,
changed, and so forth). The header is not included in the
file.

appends the EXEC list created to the existing CftS EXEC Al
file. If the EXEC option is specified instead of APPEND,
any existing CftS EXEC file is erased and replaced by the
file created by this LISTFILE command. If this option is
specified and no CftS EXEC file exists, one is created.

In!Q£~ati2~ Reque~! gptions

Only one of these options need be specified. If one is specified,
any options with a higher priority are also in effect. If none of
the following options are specified, the default information request
options are in effect.

FNAftE

FTYPE

FftODE

PORftAT

ALLOC

DATE

LABEL

creates a list containing only filenames. Option priority
is 1.

creates a list containing only filenames and filetypes.
option priority is 6.

creates a list containing filenames,
filemodes. option priority is 5.

filetypes, and

includes the record format and logical record length of the
of each file in the list. option priority is 4.

includes the amount of disk space that CftS has allocated to
the specified file in the list. The quantities given are
the number of 800-byte blocks and the number of logical
records in the file. Option priority is 3.

includes the date the file was last written in the list.
The fora of 'the date is:

month/day/year hour:ainute

Option priority is 2.

includes the label of the disk on which the file resides in
the list. Option priority is 1.

158 IB! V!/310: Comaand Language Guide for General Users

LISTFILE

LISTPILE * ISSEftBLE * (LIBEL)

LABEL is the lowest priority option; therefore, all other options are
also in effect. III information about the files with a filetype of
ISSEftBLE is displayed at the ter.inal. The header is displayed because
LABEL is a supplemental information option.

The following is displayed at the terminal:

PILEllftE PILETYPE Pft PORftlT RECS BLOCKS DITE TIftE LIBEL
r ,
IPI

fn ISSEftBLE fa IVI lrecl norecs noblks am/dd/yy hh:m .. volid
L ~

One entry is displayed for each file with a filetype of ASSEftBLE.

fn is the filename of the file.

ISSEftBLE is the filetype specified in the command.

fm is the file.ode of the file.

r ,
IPI is the file for.at: P = fixed length
IVI V = variable length
L ~

lrecl is the logical record length of the largest record in the
file.

norecs is the nu.ber of logical records in the file.

Dobiks is 1:ne Du.ber of physical blocks that the file occupies on
disk •

• m/dd/yy is the date (month/day/year) that the file was created.

hh:.m is the tiae (hours:minutes) that the file was created.

volid is the volume serial number of the virtual disk on which
the file resides.

If the EXEC option is not specified, the requested information is
displayed at the terminal.

section 7: Pormat and Usage Rules for CftS Com.ands 159

LISTFILE

DftSLST002E FILE lOT POUID RC=28
DftSLST003E IIVILID OPTIOI 'option' RC=24
DftSLST037E DISK '.ode' IS REID/OILY RC=36
DftSLST048E IIVILID ftODE '.ode' RC=24
DftSLST066E 'option' and 'option' IRE COIPLICTIIG OPTIOIS RC=24
DftSLST069B DISK '.ode' lOT ICCBSSID BC=36
DftSLST070E INVILID PIRlftETEB 'para.' RC=24
DftSLST105S BRROR Inn' iRITIIG PILI 'fn ft f.' 01 DISK BC=100

lote: You can invoke the LISTPILE co •• and fro. the ter.inal, fro. an
iXIC file, or as a function fro. a progra •• If LISTPILI is invoked as a
function or fro. an EIIC file that has the SCOITROL IOftSG option in
effect, the DftSLST002E PILI lOT POUID error .essage is not issued.

160 IBft Vft/370: Co •• and Language Guide for General Users

lOAD

LOAD

Ose the lOAD com.and to read one or more TEXT files '(containing
relocatable object code) from disk and to load them into virtual
storage, establishing the proper linkages between the files.

!2te§:
1. The lOAD command requires a read/write A-disk to contain a work

file.

2. If you are loading a program into the transient area see Note 2 for
the GENMOD co •• and.

The format of the lOAD command is:

.-
LOAD fn ••• [(options ••. [)]]

r ,
Q£!~Q~§: IClEAR I

I!Q£b~!RI
L .J

i '1

I~Jf I
INOMAPI
L .J

r ,

Ibl~~ I
IBOlIBEI
L .J

r ,
ITYPE I
I!Ql!f~1
L .J

[START]

r , r ,

10RIGIN {heXlOC}1 ~RESET {en;ry }:
I TRANS I

L .J L .J

... ,
II!! I
INOINVI
L .J

r ,
I~!!f I
INODOPI
L J

r ,
I!!~~ I
INOREPI
L .J

r ,
IJ!!l.Q I
IBOAOTOI
L .J

L-__________________ __

fn ••• specifies the names of the files to be loaded into storage. The
files must have a filetype of TEXT and consist of relocatable
object code such as that produced by the language processors.

!Q!~: If you have a program that issues a dynamic load command
(OS SVC 8) for a subroutine that (1) is a CSECT in a CMS text
library member and (2) contains VCONs· for entry points not in
the same member, that subroutine must be explicitly loaded with
the program that uses it. Otherwise, the entry point returned
by the CMS lOAD command is unpredictable.

If conflicting options are specified, the last one entered is in
effect.

CLEAR clears the load area in storage to binary zeroes before the
object files are loaded.

!Q~b~!!! does not clear the load area before loading.

RESET { en ;ry}

sets the starting location for the programs currently loaded.
The operand, entry, must be an external name (for example,

section 7: Format and Osage Rules for CMS Commands 161

GC20-1804-3 Page Modified by TNL GN20-2659

LOAD

ORIGIN

~~R

NOMAP

TYPE

CSECT or ENTRY) in the loaded programs. If RESET is not
specified, the default entry point is either (1) the entry
point of the first file loaded, (2) the address on an END
card, (3) the location of a name occurring on an LOT card, or
(4) the location of the operand on an ENTRY statement. If *
is entered the results are the same as if the RESET option
were omitted.

{
hexloc }
TRANS
loads the program beginning at the location specified by
hexloc; this location must be in the CMS nucleus transient
area or in the user area. The location, hexloc, is a
hexadecimal number of up to eight characters. If TRANS is
specified, the file is loaded into the CMS nucleus transient
storage locations. If this option is not specified, loading
begins at the first available user storage location.

!g!~: Any program loaded into the transient area must have a
starting address of X'EOOO'.

creates the file LOAD MAP on the primary disk.

does not create the file LOAD MAP.

displays the LOAD MAP file at the terminal.
valid only if the MAP option is in effect.

This option is

!Q1!f~ does not display the LOAD MAP file at the terminal.

l!Y includes the invalid card images in the LOAD MAP file.

NCINV does not include the invalid card images in the LOAD MAP
file.

B~R includes the replace statements in the LOAD MAP file.

NCREP does not include the replace statements in the LOAD MAP
file.

searches your virtual disks for TEXT files to resolve
undefined references.

NOAUTO suppresses automatic searching for TEXT files.

11]~ searches the text libraries for missing subroutines. If text
libraries are to be searched for TEXT files, they must
previously have been defined by a GLOBAL command.

NCLIBE does not search the text lil:raries for unresolved

START

references.

executes the program l:eing loaded when loading is completed.
LOAD does not normally begin execution of the loaded files.
To begin execution immediately upon successful completion of

162 IBM VM/370: Command Language Guide for General Users

NODUP

LOID

loading, STIRT can be specified. LaID then transfers control
to an entry point in the program. The default entry point is
(1) the address. specified in the operand field of the first
EID statement containing a non-blank operand field, (2) the
address of a name on an LDT statement, (3) the beqinninq of
the first file loaded (if all EID state.ents in-the TEXT
files contain blank operand fields), or (4) the EITRY
specified.

displays warning messages at your terminal when a duplicate
CSBCT is encountered during process~ng. The duplicate CSECT
is not loaded.

does not display warning messages at your terminal
duplicate CSECTS are encountered during processing.
duplicate CSECT is not loaded.

when
The

PILES CREITED BY THE 12!R ~Q~~!!R: The LOID command produces one
temporary-Vorkfile:---

DMSLDR SYSUTl

This temporary work file is placed on the read/write I-disk, which must
be available.

LOID MIP FILE: Unless the IOMIP option is specified, a load map is
created-on--the primary disk each time the LOID command is issued. I
load map is a file that contains the location of control sections and
entry points of files loaded into storage. It may also contain messages
and card images for invalid cards or replace cards that exist in the
loaded files. This load map is normally created as a file with the file
identification LOID MIP. Only one such file may exist on the primary
disk. Each time LaID is issued, a new LOID MIP file replaces any
previous LaID MIP file.

If invalid card images exist in the file or files that are being
loaded, they are listed with the message INVILID CIRD in the LaID MIP
file. To suppress this listing in the load map, the BOIBV option must
be specified.

If replace (REP) statements exist in the file being loaded, they are
included in the LOID MIP file. To suppress this listing of REP
statements, the IOREP option must be specified.

DUPLICITE CSECTS: Duplicate CSECTs (control sections) are bypassed by
the loader:--Cnly the first CSECT encountered is physically loaded. The
duplicates are not loaded. I warning message is displayed at your
terminal if· you specified the DUP option.

1Q!R~~ CO!IjQl ~TITEM~!I2: .Five types of control statements can be added
to a TEXT file. These are the set location counter (SLC), the include
control section (ICS), the replace (REP), the ENTRY, and the LIBRIRY
statements. These are used to set the virtual storage location where
the LaID command begins placing the file, to make corrections and
additions to the relocatable object code in virtual storage once the
file is loaded, to specify entry points, and to specify references that
are not to be resolved. These statements can be added to the TEXT files
already punched and can then be read back in, or they can be added using
the EDIT command.

section 7: Format and Usage Rules for CMS Commands 163

LOAD

set Location counter (~1f) ~tgt~~~t: The SLC statement sets the
Iocatlon-cQunter--used with the loader. The file loaded after the SLC
statement is placed in virtual storage beginning at the address set by
this SLC statement. The SLC statement has the format shown in Figure
22. It sets the location counter in one of three ways:

1. with the absolute virtual address specified as a hexadecimal number
in columns 7-12.

2. with the symbolic address already defined as a program name or
entry point. This is specified by a symbolic name punched in
columns 17-22.

3. If both a hexadecimal address and a symbolic name are specified,
the absolute virtual address is converted to binary and added to
the address assigned to the symbolic name; the resulting sum is
the address to which the loader's location counter is set. For
example, if 0000F8 was specified in columns 7-12 of the SLC card
image and GAMMA was specified in columns 17-22, where GAMMA has an
assigned address of 006100 (hexadecimal), the absolute address in
columns 7-12 is added to the address assigned to GAMMA g1v1ng a
total of 0061F8. Thus, the location counter would be set to
0061F8.

If there are blanks in both columns 7-12 and 17-22, or the symbolic
name has not yet been defined, the response INVALID CARD xxx ••• xxx
is displayed or, depending on the option (NOINV or INV) ~pecified,
is written in the LOAD MAP file. If only the symbolic address is
to be used, columns 7-12 must be left blank or be all zeros. If
only the absolute address is to be used, columns 17-22 must be left
blank.

Column

1

~6

7-12

13-16

17-22

23

24-72

73-80

contents

Load control statement identification (12-2-9 punch).
Identifies this as a statement acceptable to the loader.

SLC -- identifies the type of load statement.

Blank.

Hexadecimal address to be added to the value of the symbol,
if any, in columns 17-22. It must be right-justified in
these columns, with unused leading columns filled with
zeros.

Blank.

Symbolic name whose assigned location is used by the
loader. Must be left-justified 'in these columns. If blank,
the address in the absolute field is used.

Blank.

May be used for comments or left blank.

Not used by the loader. You may leave these columns
blank or insert program identification for your own
convenience.

Figure 22. SLC Statement Format

164 IBM VM/370: Command Language Guide for General Users

LOAD

~~ader I~~miBg!~ (~RI) ~tal~~~~l: The LDT statement is used in a text
library as the last record of a member. It indicates to the loader that
all records for that meaber were processed. The LDT statement can
contain a name to be used as the entry point for the loaded member. The
LDT statement has the for.at shewn in Figure 23.

r--,
Coluan contents

1 Load control statement identication (12-2-9 punch) •
Identifies this as a statement acceptable to the loader.

2-4 LDT -- identifies type of statement.

5-16 Bot used.

11-24 Blank or entry name (left justified padded with blanks to
8 characters).

25-80 Not used.

Pigure 23. LDT statement Poraat

!~~lud~ ~~B!~~l ~ect~~~ (!£~) ~ta!~B!: The ICS state.ent changes the
length of a specified control section or defines a new control section.
It should be used only when REP statements cause a control section to be
increased in length. The format of an ICS state.ent is shown in Figure
24. An ICS statement must be placed at the front of the file or TEXT
file.

Column

1

2-4

5-16

11-22

23

24

25-28

contents

Load control statement identification (12-2-9 punch).
Identifies this as a statement acceptable to the loader.

ICS -- identifies the type of load statement.

Blank.

Control section name -- left-justified in these columns.

Blank.

, (coama).

Bexadecima~ length in bytes of the control section. This
must not be less than the actual length of the previously
specified control section. It must be right-justified in
these columns with unused leading columns filled with
zeros.

29 Blank.

30-12 Bay be used for comments or left blank.

13-80 Bot used by the loader. You may leave these columns blank
or insert prograa identification for your own convenience.

Pigure 24. ICS statement Pormat

section 1: Format and Usage Rules for CftS Commands 165

LOAD

ReE!!£~ (!JR) ~tat~~!: A REP statement allows instructions and
constants to be changed and additions aade. The REP state.ent aust be
punched in hexadecimal code. The format of a REP statement is shown in
Figure 25. The data in coluans 11-10 (excluding the comaas) replaces
what has already been loaded into virtual storage, beginning at the
address specified in coluans 1-12. REP stateaents are placed in the
file either (1) immediately preceding the last stateaent (EID stateaent)
if the text deck does not contain relocatable data such as address
constants, or (2) iaaediately preceding the first RLD (relocatable
dictionary) stateaent if there is relocatable data in the text deck. If
additions made by RBP statements increase the length of a control
section, an ICS statement, which defines the total length of the control
section, must be placed at the front of the deck.

Column

1

2-4

5-6

1-12

Contents

Load control statement identication (12-2-9 punch).
Identifies this as a stateaent acceptable to the loader.

REP -- identifies the type of load stateaent.

Blank.

Bexadeciaal starting address of the area to be replaced as
assigned by the assembler. It must be right-justified in
in these columns with unused leading columns filled with
zeros.

13-14 Blank.

15-16 BSID (Bxternal Symbol Identification) -- the hexadecimal
number assigned to the control section in which replacement
is to be made. The LISTING file produced by the compiler
or assembler indicates this number.

11-10 A aaximua of 11 four-digit hexadeciaal fields, separated by
coamas, each replacing one previously loaded halfword (two
bytes). The last field must not be followed by a coama.

11-12 Blank.

13-80 Not used by the loader. This field aay be left blank or
prograa identification may be inserted.

Figure 25. REP Statement Format

ENTRY Statement: The BITRY statement specifies the first instruction to
be-executed:--It can be placed before, between, or after object modules
or other control stateaents. The foraat of the ENTRY statement is shown
in Figure 26. The external name is the name of a control section or an
entry name in the input deck. It must be the naae of an instruction,
not of data.

EBTRY external name

Figure 26. BBTRY Statement Format

166 IBM VM/310: Co.mand Language Guide for General Users

LOAD

The loader selects the entry point for the loaded program according
to the following hierarchy:

1. From the parameter list on the START command.

2. Prom the last RESET operand in the LOAD or INCLUDE command
entered.

3. Prom the last EITRY statement in the input.

4. From the last LDT statement in the input.

5. Prom the first asseabler- or compiler-produced END statement that
specifies an entry point if no ENTRY statement is in the input.

6. Prom the first byte of the first control section of the loaded
program if there is no ENTRY statement and no assembler- or
compiler-produced EID statement specifying an entry point. Por
example:

EITRY GO

where GO is defined as the external name of the first instruction
to be executed when the program is loaded. The address of the
instruction, indicated by the symbolic name GO, is specified by the
loader as the starting point of the program when it is executed.

LIBRARY Statement: The LIBRARY statement can be used to specify the
never=calr-functIon. The never-call function (indicated by an asterisk,
*, as the first operand) specifies those external references that are
not to be resolved by the automatic library call during any loader step.
It is negated when a deck containing the external name referred to is
included as part of the input to the loader. The format of the LIBRARY
statement is shown in Pigure 27. The external reference refers to an
external reference that may be unresolved after input processing. It is
not to be resolved. Multiple external references within the parentheses
aust be separated by commas. The LIBRARY statement can be placed
before, between, or after object decks or other control statements.

LIBRARY * (external reference)

Pigure 27. LIBRARY Statement Format

LIBRARY * (SINE)

The * specifies the never-call function. SINE is an external reference
in the output. As a result, if SINE is unresolved after input
processing, no automatic library call is made.

section 7: Pormat and Usage Rules for CMS Commands 167

LOAD

DftSLI01401 EIECUTIOI BEGIIS •••

START was specified with LOAD and the loaded progra. starts
execution. Any further responses are fro. the progra ••

IIVALID CARD - xxx ••• xxx

IIV was specified with LOAD and an invalid state.ent was found.
The aessage and the contents of the invalid state.ent (xxx ••• xxx)
are listed in the file LOAD ftAP. The invalid state.ent is ignored
and loading continues.

COITROL CARD -

A loader or library-search control state.ent (that is, IITRY or
LIBRARY) was encountered. This response is placed in the LOAD !AP
file.

D!SLI00011 10 FILIIA!E SPBCIFIED RC=24
D!SLI0002E FILE 'fn ft' lOT FOUID RC=28
D!SLI0003E IIVALID OPTIOI 'option' RC=24
D!SLI0004E EITRY POIIT 'na.e' lOT FOUID RC=40
D!SLI0005E 10 option SPECIFIED RC=24
D!SLI0021B BITRY POIIT 'na.e' lOT rOUID RC=40
D!SLI0029E IIVALID PARA!ETER 'para.' II THE OPTIOI 'option' FIBLD RC=24
D!SLI0055B 10 BITRY POIIT DBFIIBD RC=40
D!SLI0056E rILE 'fn ft~ COITAIIS IIVALID RECORD rOR!ATS RC=32
D!SLI0104S BRROR Inn' RBADIIG FILB 'fn ft f.' rRO! DISK RC=100
D!SLI0105S ERROR Inn' WRITIIG FILl 'fn ft f.' 01 DISK RC=100
D!SLI0109S VIRTUAL STORAGB CAPACITY EICBBDED RC=104
D!SLI0116S LOADIR TABLE OVERPLOW RC=104
D!SLI0168S PSBUDO REGISTEB TABLB OVBRFLOW RC=104
D!SLI0169S ISDID TABLE OVBRFLOW RC=104
D!SLI0201W THI POLLOWIIG IA!BS IRI UIDBPIIBD: RC=4
D!SLI0202W DUPLICATE IDEITIFIBR 'identifier' RC=4
D!SLI0203W "SBT LOCITIOI COUlTER" II!B 'na.e' UIDBFIIBD RC=4
D!SLI0206i PSBUDO RBGISTBR ALIGI!EIT BRROR RC=4
D!SLI0901T I/O ERROR 01 PILB 'tn ft f.' RC=256

168 IB! V!/310: Co •• and Language Guide tor General Users

GC20-1804-3 Page Modified by TNL GN20-2659

LOADMOD

LOADMOD

Use the LOADMOD command to bring a disk file into storage. The file
must be in absolute core-image format as created by the GENMOD command.
The format of the LOADMOD command is:

I LOADMod
L

fn [ft fm]

fn is the filename of the file to be loaded into storage.

ft is the filetype of the file to be loaded.
filetype must be MODULE.

fm is the filemode of the module to be loaded.

If supplied, the

If filetype and file mode are not supplied, the standard order of search
is used to locate a file with the specified filename and a filetype of
MODULE.

DMSMOD001E NO FILENAME SPECIFIED RC=24
DMSMOD002E PILE 'fn ft' NOT FOUND RC=28
DMSMOD032E INVALID FILETYPE 'ft' RC=24
DMSMOD037E DISK 'mode' IS READ/ONLY RC=36
DMSMOD040E NO FILES LOADED RC=40
DMSMOD070E INVALID PARAMETER 'param' RC=24
DMSMCD104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSMOD109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSMOD116S LOADER TABLE OVERFLOW RC=104

Section 7: Format and Usage Rules for CMS Commands 169

81CLIB

MACLIB

Use the 81CLIB coaaand to create and aodify .acro libraries. A .acro
library consists of aeabers (.aero definitions) and a dictionary which
contains the naae of the .aero (aeaber naae), its size, and its location
relative to the beginning of the library. The B1CLIB coa.and checks
only the aacro definitions of B1CRO and 8BID state.ents for errors. The
for.at of the BACLIB co •• and is:

8AClib

GEl

ADD

RBP

DBL

C08P

8AP

libna.e

fn1 [fn2 •••]

GEl
ADD
REP

libnaae fn1 [fn2 •••]

DEL libnaae .e.berna.e1 [.e.bernaae2 •••]

C08P libna.e

81P libnaae [(options ••• [)]]

option,!:
r ,
ITBR8 I
IDI.§! I
I PRIIT I
L ~

generates a C8S .acro library.

adds ae.bers to an existing .acro library.

replaces existing .e.bers in a .acro library.

deletes .e.bers fro. a .acro library.

co. pacts a .aero library.

lists certain infor.ation about the .e.bers in a .aero
library. lvailable infor.ation includes .e.ber na.e,
size, and location relative to the beginning of the
library.

is the filena.e of a .acro library. If the file already
exists, it .ust have a filetype of BACLIB; if it is being
created, it is given a filetype of 81CLIB.

are the na.es of the .acro definition files to be used.
A .acro definition file .ust reside on a CBS disk and its
filetype .ust be either BACRO or COPY. Bach file .ay
contain one or .ore .acros and .ust contain fixed-length,
SO-character records.

In a 8ACRO file, the .acro na.e is taken fro. a prototype
state.ent within the .acro.

If the filetype is COpy and the file contains .ore than
one .acro, each .acro .ust be preceded by a control
stateaent of the following for.at:

170 IB8 Y8/370: Co •• and Language Guide for General Users

!ICLIB

*COPY membername

The name on the control statement is the name of the
macro when it is placed in the macro library. If there
is only one _acrQ in the COpy file and it is not preceded
by a COpy control statement, its name (in the macro
library) is the saae as fn. If there are several macro
definitions in a COpy file and the first one is not
preceded by a COpy control statement the entire file is
treated as one macro.

ae.berna.el ••• is the naae of a macro which exists in a macro library.

TIR!
R~!
PRINT

is the device to contain the output generated by the !IP
function. Yalid device names are DISK (disk file), PRINT
(virtual spooled printer), and TIR! (terminal). If no
device is specified, DISK is assumed. Since these are
the only options allowed in the !ICLIB command, only the
first word after the left parenthesis is exaained. If
the DISK option is specified, the information is written
to a file named 'libname !IP 11'. If a file with that
name previously existed it is replaced by the new file.

The following paragraphs describe each of the functions of the !ICLIB
coamand.

The GEN (generate) function creates a new C!S macro library with the
filename and filetype you specify on the !ICLIB co.aand. If a macro
library with the saae filenaae already exists, it is erased and replaced
by the new macro library. The new file is created froa input files
specified by fni fn2 ••• For exaaple:

!ICLIB Gil OS!IC lCCBSS TI!! PUT R!GBOU

Creates a new aacro library with the file identification OS!IC !ICLIB
from macros existing in the files with the file identifiers:

lCCESS {!ICRO}, TI!I {,B1CRO}. PUT {!ICRO} and REGEOU {B1CRO}
COpy COpy COpy COpy

If a file naaed OS!IC !ICLIB already exists, that file is erased.

Assume that the files ACCISS !ICRO, TIBI COPY, PUT B1CRO, and REGBOU
COpy exist and contain macros in the following fora.

ACCESS !ICRO TI!I COPY PUT B1CRO REGEOU COpy
------------ ----_ ... --- -----~--- -----------

GIT *COPY TTI!IR PUT IRBG
TTI!BR

PUT *COPY STI!ER YRBG
STI!BR

Section 7: Por.at and Usage Rules for C!S Coa.ands 171

MICLIB

The resulting file OSftlC MICLIB contains the following members:

GET
PUT
TTIMER
STIMER
POT
REGEQU

Bote: The PUT macro, which appears twice in the input to the command,
also appears twice in the output. The MICLIB command does not check for
duplicate macro names. If, at a later time, the PUT macro is requested
from OSMIC MICLIB, the first PUT macro encountered in the dictionary is
used.

The IDD function appends the members described by the macro definition
files (fnl fn2 •••) to an existing macro library.

MICLIB IDD OSMIC DCB

Issume that
explana tion of'
follows.

OSMIC MICLIB was created
the GEl function and the

*COPY DCB
DCB macro definition

*COPY DCBD
DCBD macro definition

by the example in the
file DCB COpy exists as

The resulting OSMIC MICLIB contains the following members:

GET
PUT
TTIMER
STIftER
PUT
REGEQU
DCB
DCBD

REP (replace) is effectively a delete function followed by an IDD
function. REP deletes the dictionary entry for the macro definition in
the files specified by fnl fn2 ••• It then appends the new macro
definitions to the macro library and creates new dictionary entries.
Por example, assume that a macro library MYBIC BICLIB contains the
.embers I, B, and C, and that the following command is entered:

BICLIB REP BIBIC I C

The files represented by file identifiers I BICRO and C BICRO each have
one macro definition. lfter execution of the command, BIBIC BICLIB
contains members with the same names as before, but the contents of 1
and C are different.

172 IBB VM/370: Command Language Guide for General Users

MACLIB

The DEt (delete) function reaoves the specified aacro name froa the
:acro library dictionary and compresses the dictionary so there are no
unused entries. The macro definition still occup1es space in the
library, but since no dictionary entry exists it cannot be accessed or
retrieved. If you attempt to delete a macro for which two macro
definitions exist in the macro library, only the first one encountered
is deleted. For example:

"ACLIB DEL OSMAC GET PUT TTIMER DCB

deletes macro naaes GET, PUT, TTIMER, and DCB from the dictionary of the
macro library named OSMAC MACLIE. Assuae that OSMAC exists as in the
ADD function example. After the above com.and, OSMAC contains the
following members:

STIMER
PUT
REGEQU
DCBD

Execution of a MACLIB co.mand with the DEL or REP functions can result
in unused space within a aacro library. The COMP (compress) function is
used to compress a macro library (that is, remove any macros for which
there is no dictionary entry). This function uses a temporary data set
named MACLIE CMSUT1. For example, the command:

MACLIB CaMP MIMAC

Compresses the library MIMAC MACLIB.

The MAP function creates a list containing the name of each aacro in the
dictionary, the size of the macro, and its position within the macro
library. Iou can specify the device to which the list is to be
written. Acceptable devices are:

PRlaT

TERM

the list is placed in a file with the file identification
'libnaae MAP Al'.

the list is spooled to the printer.

the list is displayed at the terainal.

section 7: Format and Usage Rules for CMS Co.mands 173

KACLIB

When the !AP operand is specified on the KACLIB co •• and, the response
is:

.eaberna.e size location

D!SLB!001E
DKSLB!002E
D!SLB!002W
DKSLB!003E
D! SLB!013 W
DKSLB!014E
DKSLB!037E
DKSLB!046E
DMSLB!047E
DMSLBK056E
DMSLB!070E
D!SLBM104S
DMSLB!105S
D!SLBM109S
D!SLB!157S

D!SLB!167S
D!SLB!213W
DMSLB!907T

NO FILENA!E SPECIFIED RC=24
FILE 'fn ft' lOT FOUND RC=28
FILE 'fn ft f.' NOT FOUND RC=4
IIVALID OPTIOI 'option' RC=24
!E!BER 'name' lOT FOUND IN LIBRARY 'fn ft f.'
INVALID FUNCTION 'function' RC=24
DISK 'mode' IS READ/ONLY RC=36
NO LIBRARY NAME SPECIFIED RC=24
10 FUICTION SPECIFIED RC=24
FILE 'fn ft f.' CONTAINS INVALID RECORD FOR!ATS

RC=4

RC=32
INVALID PARAMETER 'param' RC=24
ERROR Inn' READING FILE 'fn ft f.'
ERROR Inn' WRITING FILE 'fn ft f.'
VIRTUAL STORAGE CAPACITY EICEEDED
!ACLIB LIMIT EICEEDED[, LAST
'.e.berna.e'] RC=88

FRO! DISK RC=100
ON DISK' RC=100
RC=104
MEMBER

PREVIOUS !ACLIB FUNCTION lOT FIIISHED RC=88
LIBRARY 'fn ft f.' NOT CREATED RC=4
I/O ERROR 01 FILE 'fn ft fa' RC=256

NAME ADDED

174 IB! V!/370: Co •• and Language Guide for General Users

WAS

ftODftAP

MODMAP

Use the !ODftAP co •• and to display the load .ap associated with the
specified ftODULE file. Two types of modules contain no load map and
therefore produce an error .essage when they are specified in a ftODftAP
co •• and. They are (1) CftS transient area .odules and (2) ftODULE files
created with the GElftOD co •• and using the ROftAP option. The for.at of
the ftODftAP co.mand is:

fn

ftODmap fn

is the filename of the ftODULE file whose load .ap is to be
displayed. The filetype of the file .ust be ftODULE.

The load .ap associated with the file is displayed at the ter.inal.

DMSftDP001E 10 PILEIAftE SPECIPIED RC=24
DftSftDP002E PILE 'fn ft' ROT FOUND RC=28
DftSftDP018E 10 LOAD ftAP AVAILABLE RC=40
DftSftDP070E INVALID PARAftETER 'para.' RC=24

section 7: Por.at and Usage Rules for CftS Co •• ands 175

"OVEPILE

MOVEFILE

Use the "OVEPILE command to move data from any device supported by
V"/370 to any other device supported by V"1370. The com.and accepts two
ddnames as arguments. The PILEDEF command must have specified devices
or disk files for these ddnames. The command moves data records froll
the device, or file, specified by the first ddname to the device, or
file, specified by the second ddname. The format of the "OVEPILE
cOllmand is:

"OVEfile

inputddname

outputddname

PDS

r
linputddname
I
I!I"O.!~
L

r ., .,
I outputddnalle I I
I I I
10UTMOV! I I
L .J .J

[(PDS[)]]

is the ddname representing the input file definition. If
ddname is not specified, the default input filename,
INMOVE, is used.

is the ddname representing
If ddnalle is not specified,
OUTMOVE, is used.

the output file definition.
the default output filename,

moves all of the members of the CMS "lCLIB
of an OS partitioned data set into separate
each with a filename equal to the member
filetype equal to the filetype of the
definition (PILEDEP).

or TXTLIB or
C"S files,

name and a
output file

!2te: Normally, the PILEDEP command is used to establish device
characteristics for the ddname specified with the co •• and. If the
PILEDEP command was not issued, the OS macro simulation routines supply
default characteristics. Por example, if the ddname is X a default
PILEDEP X DISK FILE X 11 command is executed.

If a record format (RECFM), blocksize (BLOCK), and logical record length
(LRECL) are specified on the PILEDEP command, these values are used in
the data control block (DCB) defining the characteristics of the move
operation. If the FILEDEP was issued without the record format
specification, that specification is taken from the default list shown
in Figure 28. If the blocksize was not specified, the default blocksize
is used. If the logical record length was not specified, the default
logical record length is determined as follows: if the record format is
F or U, the logical record length equals the blocksize; if the record
format is V, the logical record length equals the blocksize minus 4.

176 IB" V"1370: Command Language Guide for General Users

MOVEFILE

Input ddname Output ddname

Device RECF! Blocksize RECFM Blocksize

Card Reader F 80 N12 N!2

Card Punch 112 112 F 80

Printer 112 112 U 132

Terminal U 130 U 130

Tape l U 3600 RECFM of Blocksize of
i!lput ddname input ddname

Disk file RECFM of Blocksize of RECFM of Blocks ize of
file file input ddnalle input ddname

Dummy 112 NI2 RECFM of Blocksize of
input ddname input ddname

lIf the default record for.at and blocksize are used in a
tape-to-tape move operation and an input record is greater than 36001
bytes, it is truncated to 3600 bytes on the output tape. 1

210t applicable. I
~--~
Figure 28. Default Device Ittributes for MOVEFILE COllmand

The existing file whose file definition ddname is IEWMIST is moved to
the file whose file definition ddname is OLDMIST.

MOVEFILE NEW!IST OLDMIST

The following sequence of CMS commands move an OS STOW macro file
from an OS partitioned data set SIS1.MACLIB or a CMS file SIS1 MICLIB to
the eMS file STOW BACRO.

ICCESS 195 B/A
FILEDEF TEST 1 DISK SIS 1 MICLIB B1 (MEMBER STOW)
FILEDEF !ACRO DISK STOW MACRO
MOVEFILE TEST1 MACRO

The following sequence of CMS commands moves all the members of an OS
partitioned data set SIS1.MACLIB or a C!S file SIS1 !ACLIB into separate
CMS files each with a filename equal to its member name and a filetype
of MICRO.

ACCESS 195 B
FILEDEF TEST2 DISK SIS1 MICLIB B1
FILEDEF MACRO DISK
MOVEFILE TEST2 MACRO (PDS)

For more examples of how to move as data sets and DOS files to CMS
files using MOVEFILE, see "Using as Programs and !acros under CMS" in
section 4.

section 7: Format and Usage Rules for CMS Commands 177

MOVEFILE

DftSMVE2251 PDS MEMBEB 'membername' MOVED

The specified .ember of an as partitioned data set was .oved
successfully to a CftS file.

DftSftVE2261 EID OF PDS ftOVE

The last member of the partitioned data set was moved successfully
to a CMS file.

DftSftVE7061 TEBM IIPUT -- TYPE lULL LIIE FOB liD OF DATA

The input ddname in the MOVEFILE
This message requests the input
input.

command refers to a terminal.
data; a null line terminates

DftSftVE7081 DISK FILE 'FILE ddname Al' ASSUMED FOB DDIAftE 'ddname'

10 FILEDEF com.and was issued for a ddna.e specified on the
ftOVEFILE command. As a result the MOVEFILE issues a FILEDEF for
that ddna.e.

If the input ddname is undefined, the file must exist. The block
size and record format are taken from this file.

If the output ddname is undefined, the disk file is created on the
A-disk with the same characteristics as those of the input file.

DftSMVE002E FILE 'fn ft f.' lOT lOUID RC=28
DftSftVE003E IIVALID OPTIOI 'option' RC=24
DftSMVE037E OUTPUT DISK -mode' IS BEAD/ONLY BC=36
DftSftVE041E IIPUT AID OUTPUT FILES ABE THE SAME BC=40
D!S!VE048E INVALID !ODE -mode' BC=24
DMS!VE070E IIVALID PABAMETEB 'param' RC=24
DMS!VE073E UIABLE TO OPEl FILE ddname RC=28
DMSftVE075E DEVICE 'device name' ILLEGAL paR {IIPUTIOUTPUT} RC=40
DMS!VE086E IIVALID DDIAME 'ddname' RC=24
DMSMVE127S UISUPPOBTED DEVICE FOB ddname RC=100
D!S!VE128S I/O ERROR 01 IIPUT AFTER READIIG nnnn BECORDS: INPUT EBBOR

code 01 ddnaae BC=100
D!S!VE129S I/O ERROB 01 OUTPUT WBITING BECORD BUMBEB nnnn: OUTPUT EBROB

code 01 ddname BC=100
D!S!VE130S BLOCKSIZE ON V FOR!AT FILE ddname IS LESS THAI 8 BC=88

178 IB! V!/370: Com.and Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

PRINT

PRINT

Use the PRINT command to print a CMS file on the spooled virtual 1403 or
3211 printer. The file may contain carriage control characters and may
have either fixed- or variable-length records, but no record may exceed
132 characters for a 1403 or 150 characters for a 3211. There are two
exceptions to this:

1 • If the CC option is in
character longer (133 or
character.

effect, the record length can be one
151) to allow for the carriage control

2. If the HEX option is in effect, a record of any length can be
printed, up to the CMS file system maximum of 65,535 bytes.

!Q!~: An option may not be in
the discussion of the PRINT
options.

effect, even though it is specified. See
options for information on overriding

The format of the PRINT command is:

,.------- ,
r , I

PRint fn ft Ifml [(options ••• [)]] I
1* I I
L .J I

r , r r , , I
.Q.E1,i.Q!!.§: ICC I ILInecoun Innl I I

l!g~~1 [UPCASE] I I~~I I I
L .J L L ..J .J I
r , I
IMEMBER

{ m:mbername }:
I

I [HEX] I
L .J I L-______ . ___________________ _

fn

ft

fm

CC

is the filename of the file to be printed.
must be specified.

is the filetype of the file to be printed.
must be specified.

This field

This field

is the filemode of the file to be printed. If this field
is specified as an asterisk (*), the standard order of
search is followed and the first file encountered, with
the given filename and filetype, is printed. If fm is
not specified, the primary disk and its extensions are
searched.

interprets the first character of each record as a
carriage control character. If the filetype is
LISTING, the CC option is assumed. If CC is in
effect, the PRINT command does not perform page ejects
or count the number of lines per page; these functions
are controlled by the carriage control characters in
the file. The LINECOUN option has no effect if CC is
in effect.

section 7: Format and Usage Rules for CMS Commands 179

GC20-1804-3 Page Modified by TNL GN20-2659

PRINT

UPCASE
UP

MEMBER { * }
MEM name

HEX

r ,
LINECOUN Innl

I~~I
L .J

does not interpret the first character of each record
as a carriage control character. In this case, the
PRINT command performs the necessary carriage control
to eject a new page and print a heading after the
number of lines specified by LINECOUN are printed. If
NOCC is specified, it is in effect even if CC was
specified previously or if the filetype is LISTING.

translates the lowercase letters in
uppercase for printing.

the file to

prints the members of macro or text libraries. This
option may be specified if the file is a simulated
partitioned data set (filetype MACLIB or TXTLIB). If
* is entered, all individual members of that library
are printed. If a membername is specified, only that
member is printed.

prints the file in graphic hexadecimal format. If HEX
is specified, the options CC and UPCASE are not in
effect, even if specified, and even if the filetype is
LISTING.

allows you to set the number of lines to be printed
on each page. nn can be any decimal number from 0
through 99 and has a default value of 55. If nn is
set to zero, the effect is that of an infinite line
count and page ejection does not occur. This option
has no effect if the CC option is also specified.

PRINT MYLIB MACLIB (MEMBER GET)

Spools the contents of the member GET in file MYLIB MACLIB to the
printer. The first character of each record in the file is not used for
carriage control.

PRINT OLDMAST NAME (CC)

Spools the contents of the file OLDMAST NAME to the printer and uses the
first character of each record in the file for carriage control.

None.

The READY message indicates the command ccmpleted without error
(that is, the file is written to the spooled printer). The file is
now under the control of CP spooling functions.

DMSPRT002E FILE 'fn ft fm' NOT FOUND RC=28
DMSPRT003E INVALID OPTION 'option' RC=24
DMSPRT008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}

RC=36
DMSPRT013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32

180 IBM VM/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

PRINT

DMSPRT029E INVALID PARAMETER 'param' IN THE OPTION 'option' FIELD RC=24
DMSPRT033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSPRT039E NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
DMSPRT044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSPRT048E INVALID MODE 'fm' RC=24
DMSPRT054E INCOMPLETE FILEID SPECIFIED RC=24
DMSPRT062E INVALID * IN FILEID RC=20
DMSPRT070E INVALID PARAMETER 'parmi RC=24
DMSPRT104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSPRT123S ERROR PRINTING FILE 'fn ft fm' RC= 100

Section 7: Format and Usage Rules for CMS Commands 180.1

PUBCH

PUNCH

Use the PUBCH command to spool a specified CMS disk file to the punch.
PUBCH accepts fixed- or variable-length records as long as no record
exceeds 80 characters. Records with less than 80 characters are padded
with blanks on the right. Records longer than 80 characters are
rejected. The format of the PUBCH command is:

fn

ft

fm

PUnch

BOHEADER
IOH

r ,
fn ft Ifml

I * I
L J

[coptions ••• [)]]

r "i

IHE!~!! I
I BOHEADERI
L J

r ,
I MEMBER {* }I
I aembername I
L J

is the filename of the file to be punched. This field must
be specified.

is the filetype of the file to be punched.
be specified.

This file must

is the fileaode of the file to be punched. If this field is
specified as an asterisk C*), the standard order of search
is followed and the first acceptable file encountered is
punched. If fm is not specified, the primary disk and its
extensions are searched.

inserts a control card in the punched output preceding
the specified file. This control card identifies the file
for a subsequent RB1DCARD co.mand to restore the file to
a disk. If the filetype is TITLIB and the MBMBBR
aembernaae option is specified, the header card contains
TBIT as the filetype. If the filetype is MACLIB and the
SEMBER aembername option is specified, the header
contains MEMBBR as the filetype. A aacro library member
originates fro. a file with a filetype of either MACRO or
COPY. The control card format is shown in Pigure 29.

does not insert a header control card in the punched
deck.

MEMBER {* }
MEM meabername

punches library members. If the
TITLIB, this option are specified.

filetype is MACLIB or
If * is entered, all

section 7: Pormat and Usage Rules for CMS Co •• ands 181

PUNCH

individual aembers of that aacro or text library are
punched. If .emberna.e is specified, only that me.ber is
punched.

I Humber of I I
ColumnlCharacterslContentsl I!eaning

1

2-5

6-7

8-15

16

17-24

25

26-27

28

29-34

35

36-43

44-45

46-50

51-80

Figure 29.

1

4 RElD

2 blank

8 fnalle

1 blank

8 ftype

1 blank

2 fmode

1 blank

6 volid

1 blank

8 Imll/dd/yy
I

2 Iblank
I

5 Ihh:am
I
I

30 Iblank

IIdentifies card as a control card.
I
IIdentifies card as a READ control card.
I
I
I
IFilename of the file punched.
I
I
I
Filetype of the file punched.

Filemode of the file punched.

Label of the disk froa which the file was
read.

The date that the file vas last written.

The time of day that the file was written
to disk.

Header Card Format

PUICH HEWI!lST TRllS (BOH)

spools the file IEW!lST TRAIS ta the punch. Ho header card is punched
preceding the output deck.

lone.

If the command completes without error (the file was successfully
spooled), the RElDY .essage appears. The file is now under control
of CP spooling functions.

182 IBI! 'I!/370: Co •• and Language Guide for General Users

DMSPUN002E FILE 'fn ft fa' NOT FOUND RC=28
DftSPUN003E INVALID OPTIOW 'option' Rr=?U

PUNCH

DMSPUN008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}
RC=36

DMSPUN013E MEMBER 'naae' NOT FOUND IN LIBRARY RC=32
DMSPUN033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSPUN039E NO EITRIES II LIBRARY 'fn ft fm' RC=32
DMSPUN044E RECORD LEIGTH EXCEEDS ALLOWABLE MAXIMUft RC=32
DftSPUN054E INCOftPLETE FILEID SPECIFIED RC=24
DftSPUN062E INVALID * IN FILEID RC=20
DftSPUN104S ERROR 'nne READING FILE 'fn ft fm' FROM DISK RC=100
DftSPUN118S ERROR PUNCHING FILE 'fn ft fm' RC=100

Section 7: Format and Usage Rules for CMS Commands 183

QUERY

QUERY

Use the QUERY co •• and to gather certain information
virtual .achine environment. Information which .ay

about the CftS
be obtained

includes:

• The state of any of the virtual aachine characteristics
controlled by the CftS SET co •• and.

• File definitions (set with the PILEDEP co •• and) which are

• The status of the disks attached to your virtual .achine.

The for.at of the QUERY co •• and is:

Query BLIP
RDYftSG
LDRTBLS
RELPAGE
IftPCP
IftPEX
ABBREY
REDTYPE
PROTECT
IIPUT
OUTPUT
SEARCH

FILEDEF
ftACLIB
TXT LIB
LIBRARY

BLIP displays the BLIP character(s).

BDYftSG

!.!!!.E~ : BLI P = { xxxxxxxx }
OPP

displays the RDYftSG format.

~n~!!: RDYftSG = { LftSG }
SftSG

!ll!!I!:

LBSG is the standard CftS READY message:

R; T = 0.12/0.33 17:06:20

SBSG is the shortened CftS READY message:

H;

184 IBft Yft/370: Com.and Language Guide for General Users

which are

in effect.

LDRTBLS

RELPAGE

IMPCP

IMPEX

ABBREV

REDTYPE

GC20-1804-3 Page Modified by TNL GN20-2659

QUERY

displays the number of loader tables.

~~§~2~§~: LDRTBLS = nn

indicates whether pages of storage are to be released or
retained after certain commands complete execution.

~~'§~2~'§~: RELPAGE = {ON }
OFF

01 releases pages.
OFF retains pages.

displays the status of implied CP com.and indicator.

j~'§EQ~§~: IftPCP = {ON }
OFF

ON passes com.ands not recognized by CftS to CP.
OFF flags co •• ands not recognized by CMS.

displays status of implied EXEC indicator.

= {ON}
OFl!'

ON indicates that EXEC files can be executed by entering
the filename of the file.

OFF indicates that the EXEC command must be explicitly
entered to execute EXEC files.

displays the status of the minimum truncation indicator.

~~'§~2~'§~: ABBR!V = {ON }
OFF

ON accepts minimum truncations for CMS commands.
OFF does not accept minimum truncations.

displays the status of the REDTYPE indicator.

~~'§EQ~§~: REDTYPE = {ON}
OFF

ON types CMS error messages in red, for certain terminals
equipped with the appropriate terminal feature and a
two-color ribbon. Supported terminals are documented in
the !~LllQ: I~~~iB~l g§~~~.§ gYig~·

OFF does not type CMS error messages in red.

Section 7: Format and Usage Rules for CMS Commands 185

QUERY

PROTECT

INPUT

OUTPUT

SEARCH

displays the status of CMS nucleus protection.

]~§E2g§~: PROTECT = {ON}
OFF

ON means CMS nucleus protection is in effect.
OFF means CMS nucleus protection is not in effect.

displays the contents of your input translate table if one is
specified.

an xxn

If you do not have an input translate table in effect, the
response is

NO USER DEFINED INPUT TRANSLATE TABLE IN USE

displays the contents of your output translate table if you
have specified one.

~~§]Qg§~: OUTPUT xx1 a1

xxn an

If you do not have an output translate table defined, the
response is

NO USER DEFINED OUTPUT TRANSLATE TABLE IN USE

displays the search
accessible.

order of all CMS

~~§]Qg§~: volid vaddr mode
{ R/O}

R/i

disks currently

DISK mode displays the status of the single disk represented by 'mode'.

~~§]Qg§~: mode (vaddr): nn FILES, nnnn REC IN USE, nnnn LEFT
(OF nnnn), nnl FULL (n CYL), type {R/O}

R/i

If the disk is an OS-formatted disk, the response is:

mode (vaddr): (n CIL), R/O-OS

186 IBM VM/370: Command Language Guide for General Users

DISK *

QUERY

If the disk with the specified mode is not accessed, the
response is

DISK 'mode' NOT ACCESSED

displays the status of all CMS disks.

~~§EQ~§~: same as for QUERY DISK mode; one line is displayed
for each accessed disk.

SYNORYK SYSTEM
displays the CMS system synonyms in effect.

System Shortest
~QI!~g Porm
command minliUi-truncation

If no system synonyms are in effect, the following message is
displayed at the terminal:

NO SYSTEM SYNONYMS IN EFFECT

SYNONYM USER
displays user synonyms in effect.

Systell User
Com.and .§I.!!ony!
coiliiind synonym

Shortest
~Q!:LJ!t_~~Il
minimum truncation

If no user synonyms are in effect, the following message is
displayed at the terminal:

NO USER SYBOBYMS IN EPFECT

SYNONYM ALL

PILEDEP

displays all synonyms in effect.

~~§EQ~§~: Same as SYNONYM SYSTEK and SYNONYM USER.

displays all file definitions in effect.

R~§EQ~§~: ddnalle device [fn [ft]]

If there are no user file definitions in effect, the following
message is displayed at the terminal:

NO USER DEFINED PILEDEP'S IN EFPECT

section 7: Pormat and Usage Rules for CMS Commands 187

QUERY

ftlCLIB

TITLIB

LIBR1RY

displays the names of all files with a filetype of ftlCLIB
which are to be searched for macro definitions.

!~£2B2~: ftlCLIB = libname •••

If no macro libraries are
definitions, the response is:

IUCLIB = BOBE

to he searched for macro

displays the na.es of all files with a filetype of TXTLIB
which are to be searched for unresolved references.

If no TITLIBs are to be searched for unresolved references,
the following message is displayed at the terminal:

TITLIB = RORE

displays the name of all macro and text library (files with
filetypes ftlCLIB and TITLIB) which are to be searched.

!~.2£2'!!§~: ftlCLIB = {libnaIBe ••• }
NONE

TXTLIB = { libnaae ••• }
NOIE

DftSQRYOOSE 10 'option' SPECIFIED RC=24
DftSQRY014E INV1LID FUNCTION 'function' RC=24
DftSQRY026E IIV1LID P1RlftETER 'para.' FOR 'function' FURCTIOR RC=24
DftSQRY047E 10 FUICTION SPECIFIED RC=24
DftSQRY070E IBV1LID P1RlftETEB 'paras' RC=24

188 IBft V8/370: Command Language Guide for General Users

REAOCARO

READ CARD

Use the REAOCARO command to read data records from the virtual card
reader (spool input device) and to create files on disk containing the
data records. The data records must be fixed length and normally
contain 80 characters, although they may contain up to 151 characters.
Records less than 80 characters long cannot be read. If a file exists
on disk with the same identifiers as the one to be created, it is
erased.

Any number of files may be entered through the card
immediately preceded by a READ control card specifying
filetype, and optionally the filemode. The RlAO control
in Figure 30. The header card supplied when HEADER is
the eMS PUNCH command is a valid READ control card.

reader, each
the filename,
card is shown

specified with

All files that are logically grouped together must have the same
record length. The READ control cards are displayed at the terminal as
they are encountered, and interpreted just as if filename and filetype
had been entered from the terminal. Each READ control card ends the
preceding file, and the reader end-of-file indication ends the last
file.

Your files must be spooled to the virtual reader before a READCARD
command can be issued. You can send your real card deck to your virtual
card reader using the CP 10 card in front of your real card deck. This
card takes the form:

r ,

{
ID } userid I CLASS c I NAME {fn ft }
USERID I~LA~~ AI dsname

ID
USERID

userid

CLASS c

NAftE {fn ft }
dsname

L ~

is a keyword that must begin in column one.

is the user's identification (userid), liaited to eight
characters.

is the optional class field.
class A is the default.

If CLASS is not specified,

is the name field. If the first fora is specified, the
filename and filetype are each limited to eight
characters. The filenaae and file type aust be separated
by a blank. If the second form is used, the dsnaae field
is liaited to 24 characters.

Note: Only the CLASS n operand is optional. All fields must be
separated by at least one blank. The keyword 10 or USERID must start in
column one.

You need not be logged on at the tiae the decks are transferred to
your virtual reader. If aore than one file is spooled to the virtual
reader, more than one READCARD comaand must be issued to process all the
logical files. If SPOOL RDR CO NT is issued, all the logical files in
the virtual reader are treated as a single file. Again, the files that
are treated as one must all have the saae record length. The format of
the READCARD command is:

section 7: Format and Usage Rules for CftS Commands 189

RE1DC1RD

fn

ft

fm

RE1Dcard r ,
fn ft I fm I

I A I
L J

r r " * I * I fm II
I 11 II
L L JJ

is the filename of the file to be read. In asterisk may be
coded in this field.

is the filetype of the file to be read. In asterisk may be
coded in this field if fn was coded as an asterisk.

is the filemode of the file to be read. If this field is
omitted or specified as an asterisk (*), 1 is assumed.
Whenever a mode number is specified on the command line, it is
used. Otherwise, the mode number on the REID control card is
used to create the disk file.

RE1DC1RD ftY1ILE lSSEftBLE

If filenaae and filetype are specified with the RE1DC1RD co •• and, only
one file is read. The REID control cards are ignored.

RE1DC1RD *
If the file identification is to be entered in the card stream, a single
asterisk must be specified with the R!ADCARD command. If this for. of
the co.mand is specified, and the first card in the input stream is not
a valid REID control card, a file named RE1DCARD CftSUT1 11 is set up to
contain all data read until a valid REID control card is encountered.
If fn ft f. was specified, the file is written on the specified disk
with a mode number matching the file.ode number from the control card.
If the filemode number is specified, that number is used. If filemode
is omitted, 1 is assumed.

RE1DC1RD * *
Two asterisks accept the filename, filetype, and filemode number from
the REID control card, but use a file.ode letter of 1.

RE1DCARD * * B1

Two asterisks with a mode specified accept the filename and filetype
identifiers from the REID control card, but use the filemode specified.

Whatever is specified on the RE1DC1RD command line is used. Whatever
is not specified is taken fro. the REID control card, except the
filemode letter, which defaults to A. If there is no REID control card,
a REID control card

:RB1D RE1DC1RD CftSUT1 11

is assumed.

190 IBft Yft/370: Command Language Guide for General Users

REIDCARD

INumber of I I
Column ICharacters I Contents I Meaning

1 1 Identifies card as a control card.

2-5 4 READ Identifies card as a READ control card.

6-7 2 blank

8-15 8 fn Filename of the file.

16 1 blank

17-24 8 ft Filetype of the file.

25 1 blank

26-27 2 fa Filemode of the file.

28-80 53 anything

Figure 30. Format of the RBAD Control Card

After the comaand READCIRD * is issued, control cards encountered in the
input card stream are displayed at the terminal.

DMSRDC7011 NOLL PILB

The spooled card reader contains no records after the control
card.

DMSRDC7021 RBAD COITROL CIRD IS
REIDCIRD CftSOT1 A1

ftISSIIG. POLLOWIIG ASSUftED: READ

The first card in the deck is not a READ control card. Therefcre,
the file RBADCIRD CftSUT1 A1 is created.

DftSRDC7381 RECORD LBIGTH IS 'nnn' BYTBS

The records being read are not 80 bytes long; this message gives
the length.

When a READCIRD control card is encountered, the first 72 coluans of a
card are displayed at the terminal.'

DftSRDC008E DBVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICB TYPB}
RC=36

DftSRDC042E 10 FILEID SPECIFIED RC=24
DMSRDC054B IICORRECT FILBID SPBCIFIBD RC=24
DMSRDC062E INVILID * II FILBID RC=20
DMSRDC105S BRROR Inn' WRITIIG PILB 'fn ft f.' 01 DISK RC=100
DftSRDC124S BRROR RBIDING CARD FILE RC=100
DMSRDC205W RBADBR BftPTY OR lOT RIADY RC=8

Section 7: Format and Usage Rules for CftS Coa.ands 191

RELEASE

RELEASE

Use the RELEASE co •• and to free an active disk when it is no longer
needed. An ACCESS com.and must have been previously entered for the
specified disk. The for.at of the RELEASE command is:

I RELease
I
I

{ cuu }
mode

I

I
I ,

cuu is the virtual device address of the disk that is to be
released.

Bote that 000 is not a valid address.

mode is the .ode of the disk to be released.

Note: If a disk is accessed more than once, the RELEASE cuu co •• and
releases all instances of cuu. The system disk cannot be released.

DftSARE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DftS1RE028E BO DEVICE SPECIPIED RC=24
DftSARE048E INVALID ftODE '.ode' RC=24
DftSARE069E DISK {'.ode'I'cuu'} NOT ACCESSED RC=36
DftSARE070E INVALID PARAftETER 'param' RC=24

192 IB! V!/370: Co •• and Language Guide for General Users

REIA!E

RENAME

Use the REIA!! coa.and to change the file identification of one or aore
files. The REIA!E coamand may not be used for a file which is located
on a read-only disk. The foraat of the RENA!E coaaand is:

Rename

fileid1

fileid2

TYPE
T

NOTYPE
lOT

~!I
UP

NOUPDIRT
IOUP

fileid1 fileid2 [(options ••• [)]]

r ,
ITYPE i
I!Ql!PEI
L ..

r ,
IUPDI!! I
INOUPDIRTI
L ..

is the file identification of the original file whose naae
is to be changed. All components of the file (filenaae,
filetype, and filemode) aust be coded, either with a name or
an asterisk. If an asterisk is coded in any field, any file
which satisfies the other qualifications is renaaed. Por
exaaple, if fileid1 is coded as A * A1, all files on the A
disk with a filename of A are renaaed.

is the new file identification of the file. All components
of the file (filenaae, filetype, and filemode) aust be
coded, with either a name or an equal sign. If an equal
sign is coded, the corresponding file identifier is
unchanged.

displays at the terainal the new identifiers
of all files renaaed. The file identifiers are displayed
only when an * is specified for one or aore of the file
identifiers (fn, ft or fa) in fileid1.

suppresses displaying at the terminal of the new file
identifiers of all files renamed.

updates the !aster Pile Directory upon completion of
this command.

suppresses the updating of the !aster pile Directory
upon coapletion of this coamand. Normally, !aster Pile
Directories are updated at the completion of each e!s
comaand that affects disk files.

section 1: Pormat and Usage Rules for C!S Comaands 193

RENAME

newfn newft nevfa

The new filenaae, filetype, and file.ode of each file
displayed only when the TYPB option is specified and
was specified for at least one of the file identifiers
fa) of the original file.

altered is
an asterisk

(fn, ft or

If fileid2 is the naae of an existing file, an error aessage is
generated.

DMSRNM002E PILE 'fn ft fa' NOT POUND RC=28
DMSRBM003B IBVALID OPTIOB 'option' RC=24
DMSRNM019E IDBNTICAL PILEIDS RC=24
DMSRBM024E PILE 'fn ft fa' ALREADY BXISTS RC=28
DMSRNM030E PILB 'fn ft fa' ALREADY ACTIVE RC=28
DMSRBM037E DISK 'aode(cuu), IS READ/ONLY RC=36
DMSRBM051E INVALID MODE CHANGE RC=24
DMSRBM054E IBCOMPLBTB PILEID SPECIFIED RC=24
DMSRNM062E INVALID * IN OUTPUT PILEID RC=20

Note: You can invoke the REBAME co •• and from the terainal, froa an EXEC
fIle, or as a function froa a program. If RENAME is invoked as a
function or from an EXEC file that has the SCONTROL NO!SG option in
effect, the D!SRNM002E PILE fn ft fm NOT FOUID error message is not
issued.

194 IBM VM/370: Co.mand Language Guide for General Users

RUN

RUN

Use the RUN command to initiate an automated series of functions on a
file. The RUN command can compile, load, and start execution of the
specified file, depending upon the filetype. The acceptable filetypes
are: EXEC, MODULE, TEXT, and those required by the language processors.
The RUN command is an EXEC procedure: if it is executed from within an
EXEC file, it must be preceded by the EXEC command name. The format of
the RUN command is:

r- -----------------,
I RUN fn (ft (fm]] [(args •••)] I L-_______ _ __ __________________ --J

fn

ft

fm

is the filename of the file to be manipulated. This field must
be entered.

is the filetype of the file to be manipulated. If filetype is
not specified, a search is made for a file with the specified
filename and the filetype of EXEC, MODULE, or TEXT (the search
is performed in that order). If the filetype of an input file
for a language processor is specified, the language processor
is invoked to compile the source statements and produce a TEXT
file. Then, LOAD and START are called to initiate program
execution. The filetype must be specified if filemode is
specified. The valid filetypes and resulting action for this
command are:

lil~1YE~ Action
EXEC The-EXEC processor is called to process the file.

MCDUlE The LOADMOD command is issued to load the program
into storage and the START command begins execution
of the program at the entry point equal to fn.

TEXT The LOAD command brings the file into storage in an
executable format and the START command executes the
program beginning at the entry point named by fn.

FORTRAN The FORTRAN processor module that is
FORTRAN, FORTGI, GOFORT, TESTFORT,
whichever is found first.

called is
or FORTHX,

FREEFORT The GOFORT module is called to process the file.

COBOL

PLI
PLIOPT

The COBOL processor module that is called is COBOL
or TESTCOB, whichever is found first.

The PLIOPT processor module is called to process
the file.

is the filemode of the file to be manipulated. If this field
is specified, a filetype must be specified. If fm is not
specified, the default search order is used to search your
disks for the file.

Section 7: Format and Usage Rules for CMS Commands 195

GC20-1804-3 Page Kodified by TNL GN20-2659

RUN

args are one or more user arguments to te used during execution.
If coapiling or loadig is to be performed, it is assumed that
the default options for those functions are in effect. You can
specify up to 13 arguments in the RUN command, provided they
fit on a single input line. These arguaents are used during
the operation of an EXEC file, or during execution of a "ODULE
or TEXT file. The arguments are set up as a string of
doublewords, one arguaent per doubleword. The address of this
string is passed to the specified file at execution time.
Each argument is left-justified, and any argument more than
eight characters long is truncated on the right. with an EXEC
file, any arguments specified in the RUN coaaand replace the
corresponding &n operands in the individual commands of the
EXEC file.

with a file whose filetype is other than EXEC, the arguments
are placed in a string as described above. The address of the
string is passed to the specified file at execution time. The
end of the arguaent list is denoted by a X'FF' in the first
byte of the argument field.

DKSRUN001E NO FILENAKE SPECIFIED RC=24
DKSRUN002E FILE 'fn ft fm' NOT FOUND RC=28
DKSRUN032E INVALID FILETYPE 'ft' RC=24
DKSRUN048E INVALID KODE 'fm' RC=24
DKSRUN070E INV.LID PARA"ETER 'param' RC=24
DKSRUN999E NO ft PROCESSOR FOUND RC=28

196 IB" V"1370: Command Language Guide for General Users

SET

SET

Use the SET co •• and to establish, turn off, or reset a particular
function in your CftS virtual machine. Only one function may be
specified per SET command. The format of the SET command is:

SET function
r , r ,

!.!U!£tioDs: iBLIP string[(count) j I IRD!1!~§ !!ftS§1
IBLIP ON I IRDYftSG SftSG I
IBLIP Oll I L .J

L .J

r , r r , ,
[LDBTBLS nn] IRELPAGE OR I IINPUT I a xxi I ---- --IRELPAGE OFFI I Ixx yyl I

L .J L L .J .J

[OUTPUT [xx a]]
r , r , r ,
II~~BE! Q! I IRE~TYPE OR I IIK~EX Q! I
IIBBBEV OlPI IREDTYPE OFFI IIftPEX Olll
L .J L .J L .J

r , r , r ,
IIftPCP ON I IPBQIECT Q! I IAUTOBEAD 01 I ----IIftPCP Olll IPBOTECT Olll IAUTOREAD OFFI
L .J L .J L .J

BLIP string[(count)] defines the characters which are displayed
ter.inal to indicate every two CPU seconds

at the
of real

eight
blanks
ON and

BLIP OR

BLIP Oll

BDYftSG SftSG

(or virtual) execution time. Up to
characters can be defined, and if trailing
are desired, the count field must be used.
O!! Bust not be used as BLIP characters.

sets the BLIP character string to its default,
which is a string of nonprintable characters. ON
is the default for typewriter devices. The default
BLIP character provides no visual or audio-visual
signal for the 3767 terminal. Thus, another
character .ust be defined as the BLIP character for
the 3767 if you want the BLIP function.

turns off BLIP. OFF is the default for graphics
devices.

indicates that the standard CftS Ready message,
including current and elapsed time, is used. The
format of the standard Ready message is:

B; T=s ••• /s •• m hh:.m:ss

where the virtual CPU time, Real CPU time, and
clock time are listed.

indicates that a shortened for. of the
message (R;) which does not include the
used.

CftS Beady
time, is

Section 7: Format and Usage Rules for CftS Commands 197

SET

LDRTBLS nn

RELPAGE OPP

IBPUT a xx

IBPUT xx yy

IBPUT

OUTPUT xx a

OUTPUT

ABBREV OPP

defines the number (nn) of pages of storage to be
used for loader tables. By default, a virtual
machine having up to 384K of addressable real
storage has two pages of loader tables; a larger
virtual machine has three pages. This number can
be changed with the SET LDRTBLS nn com.and provided
that: (1) nn is a decimal number less than 128, (2)
the virtual machine has enough storage available to
allow nn pages to be' used for loader tables, and
(3) the system has not started using storage just
below the LDRTBLS. If these three conditions are
met, nn pages are set aside for loader tables. If
you plan to change the number of pages allocated
for loader tables, you should do so as soon after
IPL as possible.

releases page frames of storage and sets them to
binary zeros after the following commands complete
execution: ASSEMBLE, COPYPILE, COMPARE, EDIT,
MACLIB, SOBT, TXTLIB, UPDATE, and the Program
Product language processors supported by VM/370.
These processors are listed in the VM/370:
!nt~ductiQ!!.

does not release pages of storage after the
com.ands listed in the previous paragraph complete
execution. Use the SET RELPAGE OPP function when
debugging or analyzing a problem so that the
storage used is not released and can be examined.

translates the specified character a to the
specified hexadecimal code xx for -characters
entered from the terminal.

allows you to reset the hexadecimal code xx to the
specified hexadecimal code yy in your translate
table.

Bo1~: If you issue SET IBPUT and SET OUTPUT
commands for the same characters, the SET OUTPUT
command must be issued first.

returns all
translation.

characters to their default

translates the specified hexadecimal representation
xx to the specified character ! for all xx
characters displayed at the terminal.

returns all
translation.

characters to their default

allows the system abbreviation or your own
abbreviation (if one is available) to invoke a
system com.and. The SYBOBYM com.and .akes the
system and user abbreviations available.

invokes a com.and only when the full system com.and
name or the full user synonym (if one is available)
is entered.

Por a discussion of the relationship
ABBiEV and SYBOIYM co •• ands, refer to
co •• and description.

of the SET
the SYIOIYM

198 IBM VM/370: Co •• and Language Guide for General Users

REDTYPE OFF

IMPEX OFF

IMPCP OFF

PROTECT OFF

AUTOREAD ON

AUTOREAD OFF

GC20-1804-3 Page Modified by TNL GN20-2659

types CMS error me~sages in red for
ter.inals equipped v1th ~ne appropriate
feature and a two-color ribbon.
terminals are documented in the !!LJ1~:
!!se~~ Gu!g~.

suppresses red typing of error messages.

SET

certain
terminal

Supported
I~~!i!!!!

treats
invoked
entered.

EXEC files
when the

as co.mands;
filename of

an EXEC file
the EXEC file

is
is

does not consider EXEC files as com.ands. To
execute an EXEC file, the EXEC co.mand name must be
issued.

passes command names that CMS does not recognize to
CP; that is, unknown commands are considered to be
CP commands.

generates an error message at the terminal if a
command is not recognized by CMS.

protects the CMS nucleus against writing within its
storage area.

does not protect the storage area containing the
CMS nucleus.

specifies that a console READ is to be issued
immediately after com.and execution. ON is the
default for non-display, non-buffered terminals.

specifies that you do not want a console READ until
you depress the Enter key or its equivalent. OFF
is the default for display terminals because the
display terminal does not lock, even when there is
no READ active for it.

!Q!~: If a user disconnects from one type of ter.inal and reconnects on
to another type, the AUTOREAD status will remain unchanged.

DMSSET014E INVALID FUNCTION 'function' RC=24
DMSSET026E INVALID PARAMETER 'param' FOR 'function' FUNCTION RC=24
DMSSET031E LOADER TABLES CANNOT BE MODIFIED RC=40
DMSSET047E NO FUNCTION SPECIFIED RC=24
DMSSET061E NO TRANSLATION CHARACTER SPECIFIED RC=24
DMSSET070E INVALID PARAMETER 'param' RC=24

Section 7: Format and Usage Rules for CMS Commands 199

SORT

SORT

Use the SORT command to read fixed-length records from a CMS input file,
arrange them in ascending EBCDIC order according to specified sort
fields, and create a new file containing the sorted records. The input
and output files must not have the same file identifiers, since SORT
cannot write the sorted output back into the space occupied by the input
file. If a file with the same name as the output file already exists,
the old file is erased. The format of the SORT command is:

r-
I SORT fileid1 fileid2
I

fileid1 is the file identification (filename, filetype, filemode) of
the file containing the records to be sorted.

fileid2 is the file identification (filename, filetype, filemode) of
the new output file to contain the sorted records.

~g1~~!gg Sort Control Fields: After the SORT command is entered, CMS
responds wIth the-followIng-message on the terminal:

DMSSRT604R ENTER SORT FIELDS:

You should respond by entering one or more pairs of numbers of the form
"xx yy" separated by one or more blanks. Each xx is the starti~g
character position of a sort field within each input record and yy 1S
the ending character position. The leftmost pair of numbers denotes the
major sort field. The number of sort fields is limited to the number of
fields you can enter on one line. The records can be sorted on up to a
total of 253 positions.

!!!~Y~l ~~~f~~~ R~gY!f~!~E~~ !~f §Qf~!gg: The sorting operation takes
place with two passes of the input file. Pass one creates an ordered
pointer table in virtual storage. Pass two uses the pointer table to
read the input file in a random manner and write the output file.
Therefore, the size of storage and the size and number of sort fields
are the limiting factors in determining the number of records that can
be sorted at anyone time. An estimate of the maximum number of records
that can be sorted is:

VMSIZE - 132K
NB -------------

14 + NC

where: NR is the estimated maximum number of input records; NC is the
total number of characters in the defined sort fields; VMSIZE is the
storage size of the virtual machine; and 132K is the size of the
resident CMS nucleus. For example, enter the command and respond to the
prompting message:

sort name address a1 sortedna address b1

DMSSRT604R ENTER SORT FIELDS:

1 10 25 28

The records in the file RAME ADDRESS are sorted on positions 1-10 and
25-28. The sorted output is written into the newly created file

200 IBM VM/370: Command Language Guide for General Users

SORT

SORTEDNA ADDRESS. If you have a 320K virtual machine, you can sort a
maximum of 6875 records.

VMSIZE-132K 320K-132K 188K 192,512
NR 6875

14 + BC 14 + 14 28 28

DMSSRT604R ENTER SORT FIELDS:

You are requested to enter SORT control fields. You should enter
them in the form described in "Entering Sort Control Fields."

DMSSRT002E FILE 'fm ft fa' NOT FOUND RC=28
DMSSRT009E COLUMB 'col' EXCEEDS RECORD LENGTH RC=24
DMSSRT019E IDENTICAL FILEIDS RC=24
DMSSRT034E FILE 'fn ft fm' IS NOT FIXED LENGTH RC=32
DMSSRT037E DISK '.ode' IS READ/OBLY RC=36
DMSSRT053E INVALID SORT FIELD DEFINED RC=24
DMSSRT054E INCOMPLETE FILEID SPECIFIED RC=24
DMSSRT062E INVALID * IN FILEID RC=20
DMSSRT063E NO LIST EBTERED RC=40
DMSSRT070E INVALID PARAMETER 'param' RC=24
DMSSRT104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSSRT105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100

Section 7: Format and Usage Rules for CMS Commands 201

GC20-1804-3 Page Modified by TNL GN20-2659

START

START

Use the START com.and to begin execution of progra.s that were
previously loaded, and to pass the address of a string of argu.ents to
that program. The for.at of the START command is:

r-
I
I START
I
I

r
I entry
I *
L

,
[args •••) I

I
.J L-__ ~

entry passes control to the control section name or entry point
name at execution time. The operand, entry, may be a
filename only if the filena.e is identical to a control
section name or an entry point name.

* passes control to the default entry point. The default
entry point is either the address specified in the operand
field of the first END control statement containing a
non-blank operand field, or the beginning of the first file
loaded if all END control statements in the TEXT files
contains blank operand fields. The default entry point can
be changed by specifying the RESET option on the INCLUDE
command, when loading additional files.

args ••• are argu.ents to be passed to the started program. If user
arguments are specified, entry or * must be specified;
otherwise, the first argument is taken as the entry point.
Arguments are passed to the program via general register 1.
The entry operand and any argu.ents become a string of
doublewords, one argument per doubleword, and the address of
the list is placed in general register 1.

Notes:
l:---Any undefined names or references specified in the files loaded

into storage are defined as zero. Thus, if there is a call or
branch to a subroutine from a main program, and if the subroutine
has never been loaded, the call or branch transfers control to
location zero of the virtual machine at execution time.

2. Do not use the START command for progra.s that are generated via
the GENMCD command with the NOMAP option. The START command does
not execute properly for such programs.

DMSLI00741 EXECUTION BEGINS •••

is displayed when the designated entry point is validated.

DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40
DMSLI0055E NO ENTRY POINT DEFINED RC=40

202 IBM VM/370: Co •• and Language Guide for General Users

STATE

Use the STATE command to verify the existence of a CMS file. The format
of the STATE command is:

STATE fn ft [fm]

fn is the filename of the file whose existence is to be verified.
This field must be specified.

ft is the filetype of the file whose existence is to be verified.
This field must be specified.

fa is the filemode of the file whose existence is to be verified. If
this field is omitted, all your disks are searched.

Note: If * is specified for fn, ft, and/or fm the first file found
satisfying the rest of the fileid is used.

If the filemode refers to an as or DOS disk, the STATE comaand assuaes
that the filename and filetype are related to an as data set name or DOS
file-id through a previous FILEDEF. If an associated FILEDEF coaaand
was not issued, you receive a FILE NOT POUND message.

DMSSTT227I PROCESSING VOLUftE 'no' II DATA SET 'data set name'

The specified data set has aultiple volumes; the volume being
processing is shown in the message. The STATE co.mand treats
end-of-volume as end-of-file and there is no end-of-voluae
switching.

DftSSTT228I USER LABELS BYPASSED ON DATA SET 'data set name'

The specified data set has disk user labels; these labels are
skipped.

DftSSTT002E FILE 'fn ft fm' lOT FOUND RC=28
DftSSTT048E IIVALID ftODE 'mode' RC=24
DMSSTT054E IICOftPLETE FILEID SPECIFIED RC=24
DftSSTT062E IIVALID 'char' II FILlID 'fn ft' RC=20
DftSSTT069E DISK 'mode' BOT ACCESSED RC=36
DftSSTT070E INVALID PARAftETER 'param' RC=24
DftSSTT229E UBSUPPORTED as DATA SET, ERROR 'code'

Bote: You can invoke the STATE command from the terminal, from an EXEC
file, or as a function fro. a program. If STATE is invoked as a function
or from an EXEC file that has the &COlTROL BOftSG option in effect, the
DMSSTT002E FILE fn ft fa NOT FOUND error message is not issued.

section 7: Format and Usage Rules for CftS Commands 203

SVCTR1CB

SVCTRACE

Use the SVCTR1CB co •• and to trace and record information about
supervisor calls occurring in your virtual machine.

The information recorded includes the virtual storage location of the
calling SVC instruction and the name of the called program or routine,
the normal and error return addresses, the contents of the general and
floating-point registers before branching to the SVC-called program and
after returning from it, and 16 words of the parameter list which
existed when the SVC was issued.

To terminate tracing previously established by the SVCTR1CB co •• and,
issue the HO or SVCTR1CB OFF co.mands. Both SVCTR1CE OFF and HO cause
all trace information recorded up to the point they are issued to be
printed on the virtual spooled printer. On typewriter terminals
SVCTR1CB OFF can be issued only when the keyboard is unlocked to accept
input to the C!S command environment. To terminate tracing at any other
point in syste. processing, HO .ust be issued. To suspend tracing
temporarily during a session, interrupt processing and enter the
i •• ediate co.mand SO (Suspend Tracing). To resume tracing that was
suspended with the SO co.mand, enter the immediate com.and RO (Resume
Tracing) •

If you issue the CftS co.mand HI or log off the control program before
termination of tracing set by SVCTR1CB, the switches are cleared
automatically and all recorded trace information is printed on the
virtual spooled printer. The format of the SVCTR1CE command is:

SVCTrace

OB starts tracing all SVC instructions issued within C!S.

OFF stops SVC tracing.

The printer trace output consists of the following:

• The contents of the general registers both before the SVC-called
program is given control and after a return fro. that program.

• The contents of the general registers when the svc handling routine
is finished with processing.

• The contents of the floating-point registers before the SVC-called
program is given control and after a return from that program.

• The contents of the floating-point registers when the SVC handling
routine is finished processing.

• The para.eter list passed to the SVC.

204 IB! V!/370: Co.mand Language Guide for General Users

SVCTBICB

1 variety of infor.ation is printed whenever the

SVCTBICE 01

command is issued.

The first line of trace output starts with a~, +, or.. The foraat
of the first line of trace output is:

{ ~} BID = xxx/dd naae I'ROII loc OLDPSII = psv 1 GOPSII = psv2 [BC=rc]

indicates infor.ation recorded before processing the SVC.

+ indicates inforaation recorded after processing the SiC, unless
• applies.

• indicates infor.ation recorded after processing a CftS SiC which
had an error return.

liD is an abbreviation for SVC lu.ber and Depth Cor level).

xxx is the number of the SVC call Cthey are nu.bered sequentially).

dd is the nesting level of the SiC call.

na.e is the macro or routine being called.

loc is the progra. location froa which the SVC was issued.

psw1 is the PSi at the ti.e the SVC was called.

psw2 is the PSi with which the routine being called is invoked, if
the first character of this line is a ainus sign C-). If the
first character of this line is a plus sign or asterisk C+ or
.), PSi2 represents the PSi which returns control to the user.

rc is the return code from the SiC handling routine in general
register 15. This field is o.itted if the first character of
this line is a .inus sign C-), or if this is an as SVC call.
Por a CftS SVC, this field is 0 if the line begins with a plus
sign C+), and nonzero for an asterisk C.). Ilso, this field
equals the contents of Begister 15 in the "GPBS IPTEB" line.

The next two lines of output are the
registers when control is passed to the SVC
output is identified at the left by ".GPBSB".
is:

.GPBSB = h h h h h h h h .dddddddd.
= h h h h h h h h .dddddddd.

contents of the general
handling routine. This
The for.at of the output

where h represents the contents of a general register in hexadeci.al
for.at and d represents the EBCDIC translation of the contents of a
general register. The contents of general registers 0 through 1 are
printed on the first line, with the contents of registers 8 through P on
the second line. The hexadeci.al contents of the registers are printed
first, followed by the EBCDIC translation. The EBCDIC translation is
preceded and followed by an asteriskC.).

section 1: Por.at and Usage Rules for CftS Coaaands 205

SVCTRACE

The next line of output is the contents of general registers 0, 1,
and 15 when control 1S returned to your progra.. The output is
identified at the left by ".GPRS AlTER :". The format of the output is:

.GPRS AFTER: RO-R1 = h h *dd* R15 = h *d*

where ~ represents the hexadecimal contents of a general register and g
is the EBCDIC translation of the contents of a general register. The
only general registers that C!S routines alter are registers 0, 1, and
15 so only those registers are printed when control returns to your
program. The EBCDIC translation is preceded and followed by an asterisk
(*) •

The next two lines of output are the contents of the general
registers when the SVC handling routine is finished processing. This
output is identified at the left by ".GPRSS." The format of the output
is:

.GPRSS = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where h represents the hexadecimal contents of a general register and g
represents the EBCDIC translation of the contents of a general
register. General registers 0 through 7 are printed on the first line
with registers 8 through F on the second line. The EBCDIC translation
is preceded and followed by an asterisk (*).

The next line of output is the contents of the
floating-point registers. The output is identified
".FPRS". The for.at of the output is:

.FPRS = f f f f *gggg*

calling routine's
at the left by

where f represents the hexadecimal contents of a floating-point register
and g -is the EBCDIC translation of a floating-point register. Each
floating point register is a doubleword; each f and g represents a
double word of data. The EBCDIC translation is preceded and followed by
an asterisk (*).

The next line of output is the contents of floating-point registers
when the SVC-handling routine is finished processing. The output is
identified by ".FPRSS" at the left. The format of the output is:

.FPRSS = f f f f *gggg*

where ! represents the hexadecimal contents of a floating-point register
and ~ is the EBCDIC translation. Each floating-point register is a
doubleword and each f and g represents a doubleword of data. The EBCDIC
translation is preceded and followed by an asterisk (*).

The last two lines of output are only printed if the address in
Register 1 is a valid address for the virtual machine. If printed, the
output is the parameter list passed to the SVC. The output is
identified by ".PAR!" at the left. The output format is:

.PAR! = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where h represents a word of hexadecimal data and g is the EBCDIC
translation. The parameter list is found at the address contained in
Register 1 before control is passed to the SVC-handling program. The
EBCDIC translation is preceded and followed by an asterisk (*).

Figure 31 summarizes the types of SVC trace output.

206 IB! V!/370: Command Language Guide for General Users

SVCTB1CE

r--------------------------------.------------------------------------
Identification

.GPRSB

.GPBS AFTEB

.GPBSS

.FPBS

.FPBSS

• PABM
L-

Comments

The SVC and the routine which issued the SVC.

Contents of general registers when control is passed
to the SVC handling routine.

Contents of general registers 0, 1, and 15 when
control is returned to your progra~.

Contents of the general registers when the SVC
handling routine is finished processing.

Contents of floating-point registers before the
SVC-called program is given control and after
returning from that program.

contents of the floating-point registers when the
SVC handling routine is finished processing.

The parameter list, when one is passed to the SVC •

Figure 31. Summary of SVC Trace Output Lines

DMSOVB014E INVALID FUNCTION 'function' BC=24
DMSOVB047E NO FUNCTION SPECIFIED BC=24
DMSOVB104S EBBOB Inn' BEADING FILE 'DMSOVR MODULE' ON DISK BC=100
DMSOVB109S VIBTUAL STOBAGE CAPACITY EXCEEDED BC=104

,

Section 7: Format and Usage BuIes for CMS Commands 207

GC20-1804-3 Page Modified by TNL GN20-2659

SYNONYM

SYNONYM

Use the SYNONYM command to invoke a table of synonyms to be used with,
or in place of, the CMS command names. You create the table yourself
using the CMS Editor. The fora for specifying the entries for the table
is described under "The User Synonym Table."

The names you define can be used either instead of or in conjunction
with the standard eMS command truncations. However, no matter what
truncations, synonyms, or truncations of the synonyms are in effect, the
full real name of the command is always operative. The format of the
SYNONYM command is:

r------.
I
I
I SYNonym
I
I
I
I
I
I

fn

ft

fm

.§112

NOSTD

CLEAR

r r r ",
I 1ft I III
Ifn 1'§!!Q!!1! Ifmlll [(options ••• [)]]
I I I!llil
L L L .J.J.J

r ,
Q~1!QB~: I~~~ I [£1!!~]

INOSTD I
L .J

,
I
I
I
I
I
I
I
I
I

is the filename of the file you created to contain the
synonyms.

is the filetype of the file containing your synonyms. The
filetype must be SYNONYM; of omitted, SYNONYM is assumed.

is the filemode of the file containing your synonyms. If
omitted, A1 is assumed.

specifies that standard CMS abbreviations are operative •

standard eMS abbreviations are not to be used. (But the
full CMS command and the synonyms you defined can still
be used.)

removes any synonym table set by a previously entered
SYNONYM command.

The SYNONYM command specified with no operands can be used to nullify
the synonyms invoked by a preceding SYNONYM command; that is, you can
"turn off" a table of synonyms.

Note: The SET ABBREV ON or OFF command, in conjunction with the SYNONYM
command, determines which standard and user-defined forms of a
particular eMS command are acceptable.

208 IBM VM/370: Command Language Guide for General Users

SYNONYft

THE USER SYNONYM TABLE

You create the synonym table using the CftS Editor. The table must be a
file with the filetype SYNONYft. The file consists of 80-byte
fixed-length records in free-form format with columns 73-80 ignored.
The format for each record is:

systemcommand usersynonym
----,

count I L ______ _

systemcommand is the name of the CftS command for which you are creating
a synonym.

usersynonym is the synonym you are creating for a CftS command. When
you create the synonym, you must follow the same syntax
rules as for commands, that is, you must use the character
set used to create commands, the synonym may be no longer
than eight characters, and ~u on. For more details on
syntax rules for commands, see "Section 2: Vft/370 CP and
CftS Command Languages."

count is the minimum number of characters that
for the synonym to be accepted by CftS.
entire synonym must be entered (see
example) •

must be entered
If omitted, the

the following

A table of command synonyms is built from the contents of this file.
You may have several SYNONYM files but only one may be active at a time.
For example, if the synonym file contains:

MOVEFILE MVIT

The synonym ftVIT can be entered as a command name to execute the
MOVEFILE command. It cannot be truncated since no count is specified.

ACCESS GETDISK 3

The synonyms GET, GETD, GETDI, GETDIS, or GETDISK can be entered as
the command name instead of ACCESS.

There is a system synonym abbreviation table for the FILEDEF command.
The default values of the SET and SYNONYM commands are such that the
system synonym abbreviation table is available unless otherwise
specified.

for the FILEDEF command states
Therefore, the acceptable

FILE, FILED, FILEDE, and
table is available whenever
effect.

The system synonym abbreviation table
that FI is the minimum truncation.
abbreviations for FILEDEF are: FI, FIL,
FILEDEF. The system synomym abbreviation
both SET ABBREV ON and SYNONYft (STD) are in

Assume that the
USERTAB SYNONYM A.
following entry:

user-defined table has the file
Further assume that this synonym

identification
table has the

Section 7: Format and Usage Rules for CftS Commands 209

GC20-1804-3 Page Modified by TNL GN20-2659

SYNONYM

FILEDEF USENAME 3

Then, USENAME is a synonym for FILEDEF, and acceptable truncations of
USENAME are: USE, USEN, USENA, USENAM, and USENAME. The user synonym
abbreviation table is available whenever both SET ABBREV ON and SYNONYM
USERTAB are specified.

No matter what synonyms and truncations are defined, the full real
name of the command is always in effect.

Figure 32
available for
commands.

lists the forms of the system command and user synonym
the various combinations of the SET ABBREV and SYNONYM

DM5SYN7121 NO SYNONYMS (DM5INA NOT IN NUCLEUS)

The system routine which handles SYNONYM processing is not in the
system.

DMSSYN002E FILE 'fn ft fm' NOT FOUND RC=28
DMS5YN003E INVALID OPTION 'option' RC=24
DMSSYN007E FILE 'fn ft fm' NOT FIXED, 80 CHAR RECORDS RC=32
DMSSYN032E INVALID FILETYPE eft' RC=24
DMSSYN056E FILE 'fn ft fm' CONTAINS INVALID RECORD FORMATS RC=32
DMSSYN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100

210 IBM V"/370: Command Language Guide for General Users

options

SET ABBRB, 0.
SYI USBRTAB (STD

SBT ABBREV 011
SYN USBRTAB (STD

SBT ABBRBV ON ;
SYN USERTAB (BOSTDI

I
I
I
I
I
I
I
I

SBT ABBRBV opp I
SYN USERTAB (NOSTDI

I
I
I
I
I
I
I
I
I

SET ABBRBY 01
SYN (CLBAR STD

SBT ABBRBY OPP
SYI (CLEAR STD

SBT ABBRBY 01
SYI (CLBAR NOSTD

SBT ABBRBV OPl
SYI (CLBAR 10STD

Acceptable
Co •• and

SYNONYM

lorms Co.ments

FI Tne ABBREV ON option of the SET
lIL command and the STD opticn of the

SYNONYM command make the system
table available. The user synonym,
USENA!E is available

lILBDBl because the synonym table
USE (USERTAS) is specified on the
USBR SYROIY! command. The truncations

for USENA!E are available because
SET ABBRBV 01 was specified with
the USERTAS also available.

USBRA!B

lILEDEP
USBNA!E

PILBDBl
USB
USEN

USENA!E

PILBDBP
USBNA!B

PI
PIL

PILEDBP

PILEDEP

IThe user-defined synonym, USBRA!B,
I is permitted because the user
I synonym table (USBRTAB) is speci
I fied on the SYNONYM command. No
I system or user truncations are
I permitted.

IThe system synonym table is Un-
I available because the NOSTD option
lis specified on the SYNONYM com-
I mand. The user synonym, USBIA!B,
I is available because the user syno
I nym table (USBRTAB) is specified on
I the SYIOIY! command and the trun-
I cations of USBNA!B are permitted
I because SET ABBREV ON is specified
I with USBRTAB also available.

IThe system synonym table is made
I unavailable either by the SET
I ABBRBV 011 command or by the SYN
I (NOSTD command. The synonym,
I USBNA!B, is permitted because the
I user-defined synonym table
I (USERTAB) is specified on the
I SYROIY! command. The truncations
I for USBNA!E are not permitted
I because the SBT ABBREV OPP option
I is in effect.

IThe user-defined table is nov un
available. The system synonym
table is available because both
the ABBREV OR option of the SBT
com. and and the STD option of the
SYNONYM command are specified.

IBecause CLEAR is specified on the
I SYROIY! co.mand, the synonym and
I its truncations are no longer
I available. Either the SBT ABBRBV
I OPP co.mand or the SYRORY! (ROSTD
I command make the system synonym
I table unavailable.
I

Pigure 32. System and User Truncations

section 7: Pormat and Usage Rules for C!S Commands 211

TAPE

TAPE

Use the TAPE co •• and to dump CMS-formatted files from disk to tape, load
previously dumped files from tape to disk, and perform various control
operations on a specified tape drive. TAPE is used solely for CMS
files; therefore, the files on tape are in a unique CMS format. The
TAPE command does not process multivolume files. Disk files to be
dumped can contain either fixed- or variable-length records. The format
of the TAPE command is:

TAPE
r ,

DUMP
{;n } { ;t} Ifml

1* I [(optionA optionB optionD[)]]
L .J

r r , ,
LOAD

:{;n} {;t}
Ifml I [(optionB optionC optionD[)]]
11 I I

L L .J .J

r ,
SCAB I { ;n} {;t} I [(optionB optionC optionD[)]]

I I
L .J

SKIP
{ ;n} {;t}

[(optionB optionC optionD[)]]

MODESET [(optionD[)]]

[(optionD[)]]
r ,

tapcmd Inl

optionA:

optionB:

optionC:

optionD:

111
L .J

r ,
liTM I
I!Q!Tftl
L .J

r ,
I ROPRint I
IPRint I
II~!! I
IDISK I
L .I

r ,
IEOT I
lEap nl
IIOP 11
L .I

rr "
IITAPi II
IITAP1 II
I L .J I
I r , I
Ilcuu II
IIll1 II
LL .J.I

r ,
17TRACKI [DEB nnn] [TRTCH xx]
19TRACKI
L .J

DO!P {;n}{;t}[;a]

dumps one or more disk files to tape. The file
identification must be specified. If the asterisk or mode

212 IBM V!/370: Command Language Guide for General Users

TAPE

letter only is coded, all files that satisfy the resulting
file identification are dumped.

The filename (fn) and file type (ft) of the files to be
dumped must be specified. The filemode (fm) of the files to
be dumped is optional. The filemode letter indicates the
source disk for dumping; the filemode number indicates that
only files with that number are to be dumped. A blank
filemode number indicates that all files satisfying the fn
and ft specifications are to be dumped.

LOAD
[{;n}{;t }[im]]

writes tape files to disk. If file identification is
specified, only that one file is loaded. The file
identification is filename (fn), filetype (ft), and filemode
(fm) • If the option EOF n is specified and no file
identification is entered, n tape files are written to
disk. If an asterisk (*) is specified for fn or ft, all
files within EOl n that satisfy the resulting file
identification are loaded.

The files are written to the disk indicated by the file,ode
letter. The filemode number, if entered, indicates that
only files with that filemode number are to be loaded. A
blank file.ode number indicates that all files satisfying
the fn and ft specifications are to be loaded.

SCAN [{;n}{~t}J
displays at the terminal (unless NOPRINT, PRINT or DISK is
specified) the names of the files on tape. If DISK is
specified the list of file identifiers is written to a file
named TAPE eAP. If file identification (filename, fn, and
filetype, ft) is specified, scanning stops upon encountering
that file. If not specified, scanning occurs over n tape
marks as specified by the option EOF n.

SKIP
{;n}{;t}

eODESET

r ,
tapcmd I n I

111
L .J

positions ~ne tape at a specified point, depending upon
other options and operands. If file identification
(filename, fn, and filetype, ft) is entered, the tape is
positioned after the specified file; if EOF n is entered,
the tape is positioned after n tape marks.

sets the values specified by the DEN, TRACK, and TRTCH
options. These values remain in effect for the specified
tape until they are changed in a subsequent TAPE command.

specifies a tape control function (tapcmd) to be executed ~
times (default is 1 if ~ is not specified):

19.EcJl~
BSF
BSR
ERG
FSF
FSR
REi
RUN
iTe

Action
backspace ~ tape marks
backspace ~ tape records
erase gap
forward space ~ tape marks
forward space ~ tape records
rewind tape to load point
rewind tape and unload
write ~ tape marks

section 1: Format and Usage Rules for ces Commands 213

TAPE

Rote: If conflicting options are specified, the last one entered is
in effect.

iTK

!Q!!A

HOPRIHT

PRIHT

DISK

EOT

EOP n
jQ! 1

TAPi
cuu

7TBACK

9TRACK

DEB nnnn

TRTCB xx

writes a tape mark on the tape after each file dumped.

writes a tape mark after each file is dumped, then
backspaces over the tape mark so that subsequent files
written on the tape are not separated by tape marks.

does not spool the list of files dumped, loaded, scanned,
or skipped to the printer.

spools the list of files dumped, loaded, scanned, or
skipped to the printer.

displays a list of files dumped, loaded, scanned, or
skipped at the terminal.

creates a disk file containing the list of files dumped,
loaded, scanned, or skipped. The disk file has the file
identification of TAPE KAP.

reads the tape until
received.

an end-of-tape indication is

reads the tape through a maximum of ~ tape marks. Default
is EOP 1.

specifies the symbolic tape identification or the actual
device address of the tape to be read from or written to.
The default is TAP1 or 181. The unit specified by cuu
must previously have been attached to your CKS virtual
machine before any tape I/O operation can be attempted.
Only symbol names TAP1 through TAP4 and virtual device
addresses 181 through 184 are supported.

specifies a 7 track tape. Odd parity, data convert on,
and translate off are assumed unless TRTCB is specified.

specifies a 9 track tape.

is the tape density where nnnn is 200, 556, 800, 1600, or
6250. If 200 or 556 is specified, 7TBACK is assumed. If
1600 or 6250 is specified, 9TRACK is assumed; if 800 is
specified, 9TRACK is assumed unless 7TRACK is specified.
In the case of dual-density drives, 1600 is the default.

is the tape recording technique for 7 track tape. If
TBTCB is specified, 7TRACK is assumed. One of the
following must be specified as xx:

214 IBK VK/370: Command Language Guide for General Users

~ !~~~ing
o odd parity, data convert off, translate off
OC odd parity, data convert on, translate off
OT odd parity, data convert off, translate on
E even parity, data convert off, translate off
ET even parity, data convert off, translate on

TAPE

Tape records written by the CMS TAPE DUMP co •• and are 805 bytes long.
The first character is a binary 2 (1'02'), followed by the characters
CMS and an EBCDIC blank (1'40'), followed by 800 bytes of file data
packed without regard for logical record length. In the final record,
the character I replaces the blank after eMS, and the data area contains
CMS file directory information.

If a tape contains large files that would not fit on disk, the tape load
operation is terminated. To prevent this, when you dump the files,
separate logical files by tape marks, then forward space to the
appropriate file.

Because the CMS file directory is the last record of the file, the
TAPE command creates a separate workfile so that backspacing and
rereading can be avoided when the disk file is built. If the load
criteria is not satisfied the work file is erased; if it is satisfied the
workfile is rena.ed.

The ROB option (rewind and unload) indicates completion before the
physical operation is completed. Thus, a subsequent operation to the
same physical device may encounter a device busy situation. The TAPE
command creates a work file TAPE CMSOT1 which may exist if a previous
TAPB co.mand has abnormally terminated. If the work file 1S
accidentally du.ped to tape and subsequently loaded, it appears on your
disk as TAPE CftSUT2.

DMSTPE101I BOLL PILE

A final record was encountered and no prior records were read in a
TAPE LOAD operation. 10 file is created on disk.

If the TERM option is in effect, the following is displayed at the
terminal depending on the operation specified:

LOADING •••••
fn ft fm

SKIPPIIG •••••
fn ft fm

Section 1: Format and Osage Rules for CMS Commands 215

TAPE

DU!PING •••••
fn ft f.

SCAIIIIG •••••
fn ft fa

When a tape mark is encountered the following is displayed at the
terminal if the TER! option is specifiea:

END-OF-FILE OR END-OF-TAPE

If a tape contains large files that would not fit on disk, the tape
load operation is terainated. To prevent this when you duap the files
separate logical files by tape marks, then forward space to the
appropriate file.

D!STPE002D PILE (S) 'fn ft fa' NOT FOUID RC=28
D!STPE003E INVALID OPTION 'option' RC=24
D!STPE010E PRE!ATURB EOP 01 PILE 'fn ft fm' RC=40
DMSTPE014E INVALID FUNCTION 'function' RC=24
D!STPE017E INVALID DBVICE ADDRESS 'cuu' RC=24
D!STPB023E 10 PILBTYPB SPBCIPIED RC=24
D!STPE027E INVALID DEVICE 'device name' RC=24
D!STPE029E IIVALID PARA!ETBR 'param' IN THE OPTION 'option' PIELD RC=24
D!STPE037E DISK '.ode' IS READ/ONLY RC=36
D!STPB042E 10 PILBID SPECIPIBD RC=24
D!STPE043E 'TAPn(cuu)' IS FILB PROTECTED RC=36
D!STPB047B NO PUNCTION SPBCIFIED RC=24
D!STPE048E INVALID !ODE '.ode' RC=24
D!STPEOS7E IIVALID RECORD POR!AT RC=32
D!STPEOS8E END-OF-FILE OR END-OF-TAPE RC=40
D!STPE070E INVALID PARA!BTBR 'para.' RC=24
D!STPE104S ERROR Inn' READING FILE 'fn ft f.' PRO! DISK RC=100
D!STPE10SS BRROR Inn' WRITIIG PILE 'fn ft f.' ON DISK RC=100
D!STPE110S ERROR READING 'TAPn(cuu)' RC=100
D!STPE111S BRROR WRITIIG 'TAPn(cuu), RC=100
D!STPE113S TAPn(cuu) NOT ATTACHED RC=100
D!STPE11SS {COIVERSIOI17 TRACK} FBATURE NOT SUPPORTBD 01

(TRANSLATIONIDUAL-DENSITY) DEVICE 'cuu' RC=88

216 IB! V!/370: Co •• and Language Guide for General Users

TAPPDS

TAPPDS

Use the TAPPDS command to create CMS disk files from either tapes in
unblocked card~i.age for.at that are produced by the as IEBPTPCB service
program or froa tapes in the os IBBUPDTE service program control file
format, either blocked or unblocked. using the TAPPDS command, you can
also read unloaded partitioned data sets (PDS) from a tape created by
the os IEBMOVE service program, and create a CMS disk file for each
aember of the data set. The tape can be unlabeled or it can contain os
standard labels~ The for.at of the TIPPDS command is:

fn

ft

fm

TAPPDS
r r r ",
Ifn 1ft Ifmlll [(options ••• [)]]
I * I * IA1111
I I 1* III
L L L .J.J.J

r , r , r ,
QEtiQ'!!§: IPD2 I ICOLl I ITAPnl

IlfOPDS I I!QCO!!.l1 11APjl
IUPDATEI L .J L .J

L .J

,. , r ,
IEBD I I MAXTElf I
IIOEI!U Il!QMAXY!1
L .J L .J

is the filename of the disk file to be created. This
field has meaning only if the ROPDS option is selected
(that is, the tape does not contain members of a
partitioned data set). If the tape does contain members
of a partitioned data set (PDS), an asterisk must be
specified; one file is created for each member with a
filename the same as the member name. If lfOPDS or UPDATE
is specified, the default filenaae is TAPPDS. The
default is assumed if the filename is omitted or coded as
*.
is the filetype of the newly created files. The default
filetypes are CMSUTl (for PDS or lfOPDS) and ASSEMBLE (for
UPDATB). The defaults are used if ft is omitted or
specified as *.

is the mode of the disk to contain the new
default filemode is Al if this field is
specified as an asterisk (*).

files. The
omitted or

If conflicting options are specified, the last one entered is used.
111 options, except TAPn, are ignored when unloaded PDS tapes are
read.

indicates that the
partitioned data

tape contains members
set, each preceded by

of an os
a "MEMBER

section 7: Format and Usage Rules for CMS Co •• ands 217

TAPPDS

IOPDS

UPDATE

COL1

TAPn
liE!

liD

BAftE=naae" stateaent. The tape aust have been created
by the as I!BPTPCB service prograa if this option is
specified.

indicates that the tape contains one file.

provides the ".1 ADD" function of the as IEBUPDTE
service prograa in your C!S virtual aachine. It
indicates that the optional aaterial which is in
I!BUPDTE control file format is to be loaded onto disk
as CftS files. The filename of the new disk file is
taken from the BA!!= parameter in the ".1 ADD"
record. The tape input file can be blocked or
unblocked. All records are written onto the CftS disk
in fixed-length, 80-byte format.

The !ID option is disabled when UPDATE is specified.
The CaLl option should be used with UPDATE so that the
scanning of the data starts at column one. The ".1 "
aust appear in columns 1~3. All records that do not
contain "./" in columns 1-3 which TAPPDS encounters
after an initial "./ ADD" record, are written onto
disk. Conversely, if ".1 ADD" is not found, the file
is not created on disk. The "./ "records are not
written as part of the file on disk.

An "./ IIDUP" record causes TAPPDS to close the
current file and stop processing without repositioning
the tape; also, a single tape aark has the saae
effect.

The optional 'label' in columns 3-10 of a ".1 " record
in an IEBUPDTE control file is not recognized by
TAPPDS. The record is treated as a data record and
included in the CftS disk file.

lor the ".1 ADD" record, if the IAftE= parameter is
aissing or followed by a blank, TAPPDS uses the
default filename "TAPPDS" for the CftS disk file. If
tbis condition occurs more than once during coamand
execution, then upon coapletion of the TAPPDS co.mand
only the last aember "./ ADD" without a valid Blftl=
parameter is on your disk with the default filename.

takes data fro. coluans 1-80; column 1 contains data.

takes data from columns 2-80: column 1 contains
control character information. This is the format
produced by the as IEBPTPCB service program.

is the tape unit number. TAP1 is the default tape unit
nu.ber, which corresponds to the virtual address 181.
There are four possible values of n: TAP1 through
T1P4, indicating virtual tape drives 181 through 184.

considers an EBD stateaent a delimiter for the current
member.

218 IBft 'ft/370: Command Language Guide for General Users

T1PPDS

specifies that liD statements are not to be treated as
member delimiters, but are to be processed as text.

BAIT!! reads up to ten meabers. This is valid only if the
PDS option is selected.

reads any number of members.

DftSTPD7031 PILI 'fn ft [fm]' COPIID

The named file is copied to disk.

DftSTPD7071 Til PILlS COPIID

ftlXT11 vas specified and ten members are copied.

If the tape being read contains standard OS labels, the labels are
displayed at the terminal.

DftSTPD003E IIVILID OPTIOI 'option' RC=24
DftSTPDOS8E IID-OP-PILI OR BID-OP-TIPE RC=40
DftSTPD10SS ERROR Inn' IRITIIG PILB 'fn ft fm' 01 DISK RC=100
DftSTPD110S ERROR Inn' RB1DIIG 'TIPn(cuu)' RC=100

Section 7: Pormat and Usage Rules for CftS Commands 219

TITLIB

TXTLIB

Use the TITLIE command to update CftS text libraries. A text library is
one which is to be searched for missing subroutines in LOAD and IRCLUDE
commands. (See lote 1.)

A text library is a file that has a filetype of TITLIB and contains a
dictionary and one or more relocatable object programs obtained from CftS
files having a filetype of TEIT.

The TITLIB command:

• Generates a text library.

• Adds to an existing text library.

• Deletes from an existing text library.

• Libts the na.es and aliases or entry points and control section names
and the location of the TEIT files included in the text library.

The format of the TITLIB command is:

TIT lib GEN libname fn1 [fn2 ...]
ADD libname fn1 [fn2 ...]
DEL libnalle membername 1 [llembername2 •••]

r ,
I (TE Rft) I

ftAP libname I (PRINT) I
I (121.§D I
L .J

GEN libname fn1 [fn2 •••]
generates a text library with the specified filename (libname)
and a filetype of TITLIB from the TEIT files specified by fn1
fn2... If a file exists with the identification libname TITLIB,
it is erased and a new one is created.

ADD libname fn1 [fn2 •••]
appends the contents of the files specified by fn1 fn2 ••• to the
end of the existing library with the file identification libname
TITLIB. Bo checking for duplicate names, aliases, entry points,
or CSECT names is performed.

DEL libname memberna.e1 [.embername2 •••]
removes the text decks with lIember names (membername1,
memberna.e2 •••) from the directory of the text library, libname
TITLIB. If two .embers exist with the specified .e.bername, only
the first one encountered is deleted (unless the membername is
given twice in the argument list).

Deletions must be performed on
Definition (SD) in the text deck.

the IAftE or first Section
1 deletion for an alias name

220 IBft 'ft/310: Co.mand Language Guide for General Users

TXTLIB

or subsequent entry point results in a not found message with no
change to the member. DEL removes the member and all references
to it.

The file is automatically compressed
the deleted members can be reused.

r ,
I (TERft) I

ftAP libname I (PRIIT) I
i (DISK) I
L .J

so that occupied by

generates the file libname ftAP on the primary disk. If a file
already exists with the same identification, it is erased and the
new file is created. The libnaae ftAP file contains the same
information as that in the dictionary of the specified text library
and is in the format of a list of entry points and control section
names that reside in the text library, and their location or index
in the file. The options on the command line are examined to
determine if the ftAP is to be directed to the terminal (TERft), or
the printer (PRIIT), or is to remain on disk (DISK).

The ftAP operand of the TXTLIB command displays a statement
indicating the total number of entry points and control section
names that currently exist in the TXTLIB file.

1. The total number of members in the TXTLIB file cannot exceed 1000.
When this number is reached, an error message is displayed. The
text library created includes all the text files entered up to (but
not including) the one that caused the overflow.

2. as Linkage Editor EITRY, ALIAS, and IAftE control statement are
accepted. If a IAftE statement is detected, only ALIAS and IAftE
'names' are included in the dictionary for that text deck.
Deletions must be performed on the IAft! 'name'. The total number
of ALIAS names cannot exceed sixteen names per text deck.

3. Unlike as STEPLIB entries, CftS TXTLIB members are not fully
link-edited. The loader, for either an explicit or dynamic load,
attempts to resolve all external references. Por a dynamic load,
if all VCOls cannot be resolved within a member, an incorrect entry
point might be returned. You should explicitly load those
subroutines by either CftS LOAD and IRCLUDE commands or by a VCOI in
the program.

Response

xxx EITRIBS II LIBRARY

When TXTLIB is issued, the contents of the dictionary of the
specified t~xt library are displayed at the terminal. The
number of entries in the text library (xxx) is displayed at the
terminal when the TXTLIB ftAP command is issued.

Section 7: Pormat and Usage Rules for CftS Commands 221

TITLIB

DMSLBT001E 10 FILENAME SPECIFIED RC=24
DMSLBT002E FILE 'fn ft' NOT FOUND RC=28
DMSLBT002W FILE 'fn ft' lOT FOUND RC=4
DMSLBT003E IIVALID OPTIOI 'option' RC=24
DMSLBT013E MEMBER 'na.e' NOT FOUND IN LIBRARY 'fn ft f.' RC=32
DMSLBT014E IIVALID FUICTION 'function' RC=24
DMSLBT046E NO LIBRARY NAME SPECIFIED RC=24
DMSLBT047E 10 FUICTION SPECIFIED RC=24
DMSLBT056E FILE 'fn ft f.' CONTAINS [{NAMEIALIASIENTRYIESD)] INVALID

RECORD FOBMATS RC=32
DMSLBT056W FILE 'fn ft f.' CONTAINS [{NAMEIALIASIENTRYIESD)] INVALID

RECORD FOBMATS RC=4
DMSLBT104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLBT105S ERROR Inn' WRITING FILE 'fn ft fm' OR DISK RC=100
DMSLBT106S NUMBER OF MEMBER RAMES EXCEEDS MAX 'nnnn'. FILE 'fn ft' ROT

ADDED RC=88
DMSLBT213W LIBRARY 'fn ft f.' NOT CREATED RC=4

222 IBM VM/370: Command Language Guide for General Users

TYPE

TYPE

Use the TYPE co •• and to display all or part of a
terminal in either EBCDIC or the hexadecimal
EBCDIC code. The format of the TYPE command is:

specified file at the
representation of

Type

fn

ft

fll

recl

recn

fn ft [fa]
r r"
I recl Irecnll [(options ••• [)]]
I * I! II
I .1 I I I
L L

°Et!.Q.!!.§:
r r,
I ,xxxxx) I "lYYYY I
II CO L< 1 > - I I

t) l!f~cll
L L ..

r
I
I MEMBER
I
L

,
I
I
I ..

is the filename of the file to be displayed.
must be specified.

is the filetype of the file to be displayed.
must be specified.

,
I
I
I ..

[HEX]

This field

This field

is the filemode of the file to be displayed. If this field
is omitted, the A-disk and its extensions are searched to
locate the file. In the case of files with duplicate
filena.e and filetype, only the first file found is
n; C:!n1 "" 'D~..:I - r ~'I:;i •

is the record number of the first record to be displayed.
This field cannot contain special characters. If recl is
greater than the number of records in the file, the file
length is assu.ed. If this field is omitted or entered as
an asterisk, a record number of 1 is assumed.

is the record number of the last record to be displayed.
This value cannot contain embedded commas. If this field is
not specified or is entered as an asterisk, display
continues until end of file is reached.

section 7: Por.at and Usage Rules for CMS Commands 223

TYPE

COL xxxxx yyyyy
displays only certain positions of each record. xxxxx
specifies the beginning position and yyyyy the ending
position of the field within the record which is to be
displayed. If a field is not specified, the entire
record is displayed unless the filetype is LISTING, in
which case the first position of each record is not
displayed, since it is assuaed to be a carriage control
character.

HEX displays the file in hexadecimal format.

{ * } displays member (s) of a library. If the file specified
name is a library, a eEeBER entry can be specified. If an

asterisk (*) is specified, all members of the library
are displayed. If a name is specified, only that
particular member is displayed.

The file is displayed at the terminal according
specifications.

DeSTYP002E FILE 'fn ft fm' NOT FOUND RC=28
DeSTYP003E INVALID OPTION 'option' RC=24
DMSTYP005E INVALID 'option' SPECIFIED RC=24
DMSTYP009E COLueN 'col' EXCEEDS RECORD LENGTH RC=24
DMSTYP013E MEeBER 'name' NOT FOUND IN LIBRARY RC=32

to the given

DMSTYP029E INVALID PARAMETER 'para.' [IN THE OPTION 'option' FIELD]
RC=24

DMSTYP033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSTYP039E NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
DMSTYP049E INVALID LINE NUMBER 'line number' RC=24
DMSTYP054E INCOMPLETE FILEID SPECIFIED RC=24
DMSTYP062E INVALID * IN FILEID RC=20
DMSTYP104S ERROR 'nne READING FILE 'fn ft fm' FROM DISK RC=100

224 IBM VM/370: Com.and Language Guide for General Users

GC20-1804-3 Page Modified by TNl GN20-2659

UPDATE

UPD~.TE

Use the UPDATE command to modify program source files. The source files
should be stored as 80-character card-image files with sequence fields
in record positions 73 to 80. The UPDATE command accepts a source input
file and one or more files containing update control statements and
update source records. ~n~ UPDATE command creates an updated source
output file, an update log file indicating what changes, if any, were
made, and an update record file if more than a single update file is
applied to the input file.

Updates may be applied either permanently (that is, the updated
output file replaces the source input file), or temporarily, in which
case the updated output file has the name 'Sfn', where Ifni is the file
name of the input source file. The format of the UPDATE command is:

r---- ,--- ._--,
Update

fn 1 ft 1 f.l

fn2 ft2 fm2

REP

r r "
fnl Ift1 Ifml [fn2 [ft2 [fm2]]]l1 [(options ••• [)]]

IASSEMBlE IAl I I
L ---,..----- L .J .J

r , r , r , r ,
QE1!Q!!~: IREP I I.§!H!!! I IINC I ICTl I

I!Q!!!fl INOSEQ81 I!Q!!~I I!Q~±~I
L .J L .J L .J L .J

r , r , r , r ,
ISTK I ITERM I I~!.§~ I ISTOR I
I!Q~±~I INOTERM I tPRINT I tNOSTORI
L .J L .J L .J L .J

is the filename, filetype, and filemode of the source input
file. If the file mode or filetype is omitted, 'Al' and
'ASSEMBLE' are assumed, respectively.

is the filename, filetype, and file.ode of the file
containing the update control statements and updated source
records, or, if the CTl option is specified, specifies the
filename, filetype, and filemode of the update control file
to be used for a multiple update. The defaults are fnl
UPDATE 11 if NOCTl is in effect, and fn1 CNTRl A1 if CTl is
specified.

replaces with the source input file with the updated
source file.

retains the old file in its original form, and assigns a
different filename to the new file, consisting of a
dollar sign (S) plus the first seven characters of the
input filename (fnl).

section 7: Format and Usage Rules for CftS Commands 225

GC20-1804-3 Page Modified by TNL GN20-2659

UPDATE

NOSEQ8

INC

CTL

STK

NOTERM

PRINT

STOR

NeSTOR

specifies that the entire sequence field (columns 73
through 80) contains an 8-digit sequence number on every
record of source input.

specifies that columns 73-75 contain a 3 character label
field, and that the sequence numter is a 5-digit value in
columns 76-80.

puts sequence numbers in columns 73 through 80 of each
updated record inserted from the update file.

puts asterisks (********) in the sequence number field of
each updated record inserted from the update file.

specifies that fn2, ft2, and fm2 describe an update
control file for applying multiple update files to the
source input file (see the "Control statement Formats"
section that follows).

~2igl The CTL option implies the INC option.

specifies that a single update file is to be applied to
the source input file.

stacks information resulting from a multiple update at
your CMS console. This information can then be read by a
CMS EXEC procedure. STK is used only with the CTL
option.

specifies that no external communication of the multiple
update results is desired.

displays warning messages at the terminal whenever a
sequence or update control card error is discovered.
(Such warning messages appear in the update log, whether
they are displayed at the terminal or not.)

suppresses the displaying of warning messages at the
terminal. However, error messages which terminate the
entire update procedure are displayed at the terminal.

places the update log file on disk. This file has a file
identification "fn UPDLOG", where "fn" is the filename of
the file being updated.

prints the update log file directly on the virtual
printer.

specifies that the source input file is to be read into
storage and the updates performed in storage prior to
placing the updated source file on disk. This option is
meaningful only when used in conjunction with CTL option
since the benefit of increased processing speed is
realized when processing multiple updates. STOR is the
default when CTL is specified.

specifies that no updating is to take place in storage.
NOSTOR is the default when performing single updates or
when CTL is omitted from the command line.

226 IBM VM/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

UPDATE

The UPDATE control statements let you insert, delete and replace source
records, as well as resequence the output file. All UPDATE control
statements are identified by the characters '.j' in columns 1 and 2 of
the 80-byte record, followed by one or more blanks and a maximum of 6
additional, blank-delimited fields. Control statement data must not
extend beyond column 50. All references to the sequence field of an
input record refer to the numeric data in columns 73-80 of the source
record, or columns 76-80 if NOSEQ8 is specified. Leading zeros in
sequence fields are not required. If no sequence numbers exist in an
input file, a preliminary UPDATE with only the '.j S' control statement
can be used to establish file sequencing.

section 7: Format and Usage Rules for CMS Commands 226.1

UPDATE

Any sequence fields in the update control statements are ignored; if
the BOIBC option is specified, all sequence fields in the update file
are ignored, including those on inserted records. If the INC option is
specified, sequence fields for the inserted records are either generated
by UPDATE, if the dollar-sign ($) delimiter is used, or are included
intact from the update file if the dollar sign ($) is not used.

Changes are made sequentially in a single pass through the input and
update files; an error condition results if any sequence errors occur in
the update control statements, and warnings are issued if an error is
detected in the sequencing of the input file. Any source input records
with a sequence field of eight blanks are skipped, without any
indication of a sequence error. Such records may be replaced or deleted
only if they occur within a range of records that are being replaced or
deleted entirely and if that range has limits with valid sequence
numbers. There is no means provided for specifying a sequence £ield of
blanks on an update control statement.

~~~~~~ Co~!~~J Sta!~~~nt 
in columns 73-80 (if SEQ8 
label placed in columns 
statement is included in 
statement. The for.at of 

-- resequences the updated source output file 
is specified), or in columns 76-80 with the 
73-75 (if NOSEQ8 is specified). If this 

the update file, it must be the first control 
the sequence control statement is: 

./ S [seqstrt [seqincr [label]]] 

seqstrt 

seqincr 

label 

a one- to eight-digit numeric field specifying the 
first decimal sequence number to be used. The default 
value is 1000 if SEQ8 is specified and 10 if NOSEQ8 is 
specified. 

a one- to eight-digit numeric field specifying the 
decimal increment for resequencing the output file. 
The default is the 'seqstrt' value. 

a 3-character field to be duplicated in columns 73-75 
of each source record if NOSEQ8 is specified. The 
default value is the first three characters of the 
input filename (fnl). 

An error is indicated if any valid control statement precedes the 
./ S state.ent in the update file, and the resequence operation is 
suppressed. 

Each source record is resequenced in columns 73-80 as it is written 
onto the output file. Both unchanged records from the input file and 
records inserted from the update file are resequenced. 

Section 7: Pormat and Usage Rules for CMS Commands 227 



UPDATE 

Insert control statement -- inserts all 
next-controI-stateaent:-into the output 
control statement is: 

records following it, up to the 
file. The for.at of the Insert 

r----------------------------------------------, 
.1 I seqno [$ [seqstrt [seqincr]]] I 

seqno 

$ 

seqstrt 

seqincr 

is the sequence nuaber of the source input record 
following which the insertion is to be made. 

optional delimiter indicating that the inserted records 
are to be sequenced incrementally. 

a one- to eight-digit numeric field specifying the 
first deciaal number to be used for sequencing the 
inserted records. 

a one- to eight-digit numeric field specifying the 
decimal increment for sequencing the inserted records. 

All records following the ".1 I" statement, up to the next control 
state.ent, are inserted in the output file following the record 
identified by the "seqno" field. If the BOIIC option is specified, each 
inserted record is identified with asterisks (********) in coluans 
73-80. If either the IIC or CTL option is specified, the records are 
inserted unchanged in the output file, or they are sequenced according 
to the "seqstrt" and "seqincr" fields, if the dollar sign ($) key is 
specified. 

The default sequence increment, if the dollar sign is included, is 
determined by using one tenth of the least significant, non-zero digit 
in the seqno field, with a aaxiaum of 100. The default seqstrt is 
computed as seqno plus the default seqincr. For exaaple, the control 
statement: 

.1 I 2600 $ 2610 

causes the inserted records to be sequenced 11102610, 11102620, and so 
forth (NOSEQ8 assumed here). For the control statement: 

./ I 240000 $ 

the defaulted seqincr is the maxi.un, 100, 
number is 240100. SEQ8 is assumed, so 
sequenced 00240100, 00240200, and so forth. 

and the starting sequence 
the inserted records are 

If either INC or CTL is specified but the dollar sign is not 
included, whatever sequence number appears on the inserted records in 
the update file is included in the output file. 

228 IB8 V8/370: Command Languag~ Guide for General Users 



UP£ATB 

Delete Control statement -- deletes one or more records from the source 
fIle:- The-format of-the Delete control statement is: 

.1 D seqnol [seqn02] [$] 

seqnol 

seqn02 

$ 

is the sequence number identifying the first or only 
record to be deleted. 

is the sequence number of the last record to be 
deleted. 

is an optional delimiter indicating the end of the 
control fields. 

All records of the input file, beginning at seqnol, are deleted from 
the output file, up to and including the seqn02 record. If the seqn02 
field is oaitted, only a single record is deleted. 

ReEl!£! £2n!I2! sta!~~nt -- replaces one or more input records with 
updated records froa the update file. The format of the Replace control 
statement is: 

I 
.1 R seqnol [seqn02] [$ [seqstrt [seqincr]]]1 

seqnol 

seqn02 

$ 

seqstrt 

seqincr 

I 

is the sequence number of the first input record to be 
replaced. 

is the sequence number of the last record to be 
replaced. 

is an optional delimiter key indicating that the 
substituted records are to be sequenced incrementally. 

a one- to eight-digit numeric field specifying the 
first deciaal nuaber to be used for sequencing the 
substituted records. 

a one- to eight-digit 
deciaal increment for 
records. 

nuaeric field specifying the 
sequencing the substituted 

All records of the input file, beginning with the seqnol record, up 
to and including the seqn02 record, are replaced in the output file by 
the records following the ".1 R" statement in the update file, up to the 
next control statement. As with the ".1 D" (delete) function, if the 
seqn02 field is omitted, only a single record is replaced, but it aay be 
replaced by more than a single inserted record. The ".1 R" (replace) 
function is perforaed as a delete followed by an insert, such that the 
number of statements inserted need not match the number deleted. The 
dollar sign ($), seqstrt, and seqincr processing is identical to that 
for the insert function. 

section 7: Poraat and Usage Rules for CftS Co.aands 229 



UPDATE 

Co~! ~ta!~~ent~ --The for.at of the Comment statement is: 

I • / * [ co.ment ] , 

* indicates that this 
be ignored, except 
file. 

is a co •• ent state.ent, and is to 
that it is copied into the log 

The following sections describe the files used and created by the UPDATE 
command, and the placement of the files created. 

INPUT PILES WHEN ~ SINGLE UPDATE IS TO BE APPLIED: When the CTL option 
Is-nQt-specifled 1n the-UPDiTi-com;and~ line;-only one update is applied 
to the source file. The input files are: 

• The source file, which is to be updated. The filename of this file 
must be specified in the co •• and line. The filetype and file.ode 
default to ASSE8BLE and A1, respectively, unless overridden by the 
command line. 

• The update file, whose control statements have been described in the 
preceding section. The filename of this file defaults to the 
filename of the source file, and the filetype and file.ode default to 
UPDATE and A1, respectively. All three may be overridden by the 
command line. 

OUTPUT PILES WHEN A SINGLE UPDATE IS APPLIED: When a single update is 
applied-to-the-source-file, the-following-output files are created: 

• An updated source file is created. "Sfn" becomes the nalle of this 
file, where "fn" is the filename of the original source file, unless 
the REP option is specified. When the REP option is specified, the 
filename of this file becomes "fn". (Por exceptions, see the 
"Warning and Error Handling" section that follows.) 

• An update log, showing all transactions and errors, is created. The 
filename of the file is the filename of the original source file, and 
the filetype of this file is UPDLOG. Note, however, that if the 
PRINT option is specified with the co.m~nd line, then the update log 
is printed directly on the virtual spooled printer, and no disk file 
is created. 

INPUT PIl!ES WHI! 8U!!1!LEVEL ,!!PD!TE,§ A!!~ !~~LI~~: When the CTL option is 
specified on the co.mand line, multilevel updates are applied to the 
source file. In this case, the following files are input to the UPDATE 
command: 

• A source file, specified in exactly the salle way as the source file 
for a single update. 

230 IB8 V8/370: Co •• and Language Guide for General Users 



UPDATE 

• A control file that controls what updates are applied, and the order 
in which they are to be applied. The filename of this file defaults 
to the filename of the source file, and the file type and filemode 
default to CITBL and A1, respectively. All three may be overridden 
by the command line. This file contains, in its control statements, 
pointers to update files, PTP files, and auxiliary files (these are 
described in "The CTL option" section). 

• One or more update files, as specified by the control 
filename of these files is the same as the filename of 
file. The filetype of these files is "UPDTxxxx". 

file. The 
the source 

• Auxiliary files, as specified by the control file. The filename of 
these files is the same as the filename of the source file. The 
filetype of these files is "AUXxxxx". The filetype can be specified 
as either 'AUXnnnn l or 'nnnn AUX'. If you use the second fora, the 
first three characters may not be 'lUX'. The auxiliary files contain 
additional control statements pointing to PTP files. The format of 
the auxiliary files is described in a later section, "The CTL 
Option." 

• PTP files, as specified by either the control file or the auxiliary 
files. The filename of these files is the same as the filename of 
the source file. The filetype is specified in full by the control 
file or the auxiliary file. In format, these files are identical to 
ordinary update files. 

OUIRYI l!11~ !~EI ~Y1I!11V!1 UPRATES !Il !PP1!J~: When the CTL option is 
specified, the following output files are created by the UPDATE command: 

• An updated source file, as in the case of a single update. 

• An update log, as in the case of a single update. 

• An UPDATES file. This file has the filename of the original source 
file, and a file~ype of UPDATES. It contains sum.ary information 
about which updates were applied to the file, and is intended to be 
concatenated onto the assembly text deck for documentation and 
information purposes. 

• Although not a disk file, additional "output" is produced in the form 
of lines placed in the terminal read stack, for interrogation by an 
EXEC file which may have invoked the UPDATE co.mand. These lines are 
placed there only if the STK option is specified. 

~lSK AQRJ QI OUTPUT lItES: If. there are several read/write disks 
accessed when the UPDATE command is invoked, the following steps are 
taken to determine the disk upon which the output files are to be placed 
(the search ~tops as soon as one of the following steps is successful): 

• If the disk on which the original source file resides is read/write, 
then the output files are placed on that disk. 

• If that disk is a read-only extension of a read/write disk, then the 
output files are placed on that particular read/write disk. 

• Otherwise, the output files are place on the primary read/write disk 
(the A-disk) • 

section 7: Format and Usage BuIes for eftS Commands 231 



UPDATE 

If the NOCTL option is specified or defaulted, UPDATE processes one 
input file and one update file to produce an updated source output file 
and an update log file containing a record of what changes were .ade. 
This .ode of operation is suitable for testing modifications prior to 
incorporating them in the base source code, providing that only one set 
of changes has to be tested at a tiae. If, for any reason, more than 
one set of changes is outstanding against a single source input file, 
the difficulties in managing that base code can multiply very rapidly. 
lor this reason, UPDATE provides the CTL option, which has a multilevel 
update control and aanagement scheme developed for updating Y!/370 
distributed source code, and may be used wherever its advantages are 
felt. 

The major components of the multilevel update scheme are: 

• A set of base source code which is not permanently changed. 

• A set of update files for each source file that must be applied in a 
specific order. 

• One or more CNTRL files that describe the order or priority of 
updates to be applied to each source file. 

• Optionally, one or more auxiliary control files, each pertaining to a 
specific source file. 

An integral part of the multilevel update scheae is a naming 
convention for the update files themselves, and for any TEXT files 
produced by assembling or compiling the updated output files. In normal 
usage, any update file bas the filenaae of the source file to which it 
applies and the filetype of UP£ATE. When the CTL option is used to 
invoke the aultilevel update controls, the filenaae usage becomes a 
requireaent, such that the update files must have the filename of the 
source file to which they apply, but the filetypes are modified to 
distinguish between separate update levels. The filetype for an update 
file is constructed froa UPDT plus a one- to four-character update 
identifier. lor example, if the command 

UPDATE D!SUPD ASSE!BLB Al 14 eNTRL 11 (CTL 

is issued, the source file is D8SUPD ASSE!BL! Al and the control file is 
X4 CNTRL Al. Assuae that the control file contains three update files, 
naaed "D!SUPD UPDT750", "D8SUPD UPDTX4", and "D!SUPD UPDT009." The 
CNTRL file specifies which update files are to be applied to the source 
file and in what order they are to be applied, on the basis of the 
update identifier. Another identification para.eter, the update level 
identifier, is used when naaing a TEXT file produced from the updated 
source file. The update level identifier is specified by the CNTRL file 
and is associated with a specific update identifier, also in the CNTRL 
file. Por exa.ple, a file naaed X4 CNTRL, to apply the above .entioned 
updates to D!SUPD ASSB!BLE, aight appear as follows: 

OOD !ACS D8SLIB SYSLIB 
X4D UPDTX4 
75X UPDT750 
009X UPDT009 

232 IB! Y8/370: Coa.and Language Guide for General Users 



UPDATE 

This control file applies the updates DMSUPD UPDT009, DMSUPD UPDT750, 
and DMSUPD UPDTX4, in that order, to the file DMSUPD ASSEMBLE. The 
updates are applied in reverse order as they appear in the CHTRL file, 
that is, the lowest level of update is at the bottom of the file, and 
the highest level update is at the top. As the CBTRL file and update 
files are processed, the UPDATE co.mand displays the following message 
at the terminal: 

DMSUPD178I UPDATING ['fn ft f.'] WITH 'fn ft fm' 

for each update file which is applied to the source input during the 
multilevel update; the bracketed expression is displayed only for the 
first update. 

In the above example, the fields X4D, 75X, and 009X are the update 
level identifiers, associated with the UPDTX4, UPDT750, and UPDT009 
update identifiers, respectively_ According to the naming convention 
for VM/370 TEXT files, the result of assembling the updated $DMSUPD 
ASSEMBLE file would be named DMSUPD TXTX4D, where the X4D is the update 
level identifier of the highest-level update applied. The TXT portion 
of the filetype indicates that this is a TEXT file, but allows up to a 
five-character update level identifier. 

The STK option is provided for use with the multilevel update invoked 
via the CTt option, primarily for communication with CMS EXEC procedures 
which invoke UPDATE. If the CTL and STK options are specified, UPDATE 
places two lines of data in the CMS terminal read stack, as follows: 

first line = * update level identifier 

second line = * library list from 'MACS' record 

These lines are placed in the terminal read stack via the CMS ATTN 
function, and are available to an invoking EXEC procedure via the EXEC 
control words &READ ARGS or &R!AD VARS. The first line, the update 
level identifier, ~s the level identifier of the highest level update 
applied; this is the TEXT file filetype-modifier used by the VM/370 
update procedures. The second line consists of the list of libraries 
specified on the MACS record in the CBTRL file. The library search 
order for an assembly or compilation can be established by issuing the 
GLOBAL com.and using the library list returned. 

If the NOSTK 
made available 
has no meaning_ 

option is used with the multilevel update, no data is 
to external procedures and the update level identifier 

Section 7: Pormat and Usage Rules for CMS Commands 233 



UPDATE 

If the command 

update proga assemble * proga cntrl * (ctl stk) 

is issued and the contents of the PROGA CNTRL file are 

* THIS IS AN EIAftPLE OF A CONTROL FILE 
OOD ftACs BILIB SIS LIB 
* FII POR SAVING ALL REGISTERS 
OOA UPDTLVL4 
PTP A7300Dfts 
* AUX FILE CONTAINING UPDATES POR B1 FEATURE 
OOB AUILVL3 

and the contents of the PROGA AUILVL3 file are 

* PTF A2330Dfts CONTAINS FUNCTIOIAL CODE FOR B1 
PTl A2330Dfts 
* PTF A091SDBs COITAIls BRROR ftEssAGBs lOR B1 
PTP A091SDfts 

The files listed below are used to update PROGA AssEBBLE in the order 
indicated. 

!i!!1!~!§ 
PROGA 
PROGA 
PROGA 
PROGA 

!i!!iI~ 
A091SDBs 
A2330Dfts 
A7300Dfts 
UPDTLVL4 

The resultant output file SPROGA AssBBBLE contains the updates from 
the four files listed. In addition, two lines are placed in front of 
the CBS terminal read stack: 

* OOA * ftlLIB SIS LIB 

If the UPDATB command shown was issued from an EXEC procedure and 
followed by the BIBC com.ands: 

then 

&RBAD VARs &11 &12 
&RBAD VARs &13 &14 &15 

&11 = * &12 = OOA 
&13 = * &14 = ftlLIB 
&15 = SIS LIB 

In this example, the UPDATB command was entered from the terminal and 
the stacked lines are ignored by Cfts. 

234 IBB Vft/370: Command Language Guide for General Users 



UPDATE 

The UPDATE command detects a nuaber of invalid requests, and decides 
whether they should be treated as warning situations or as errors. The 
following is a general description of the handling of these situations, 
and the return codes associated with each. 

SE~YI!CI!2 !]~ UPDATE ~OIIj2~ ~!~ IB!OR~: These errors are treated as 
"Yarning situations. n That ~S, a warning .essage is generated, and 
processing continues. The warning messages are printed in the update 
log, and are displayed on the terminal unless the IOTEBft option is 
specified in the coamand line. The errors are: 

• Input sequencing errors (return code = 4). The input source file 
contains sequence errors (sequence numbers in nonascending order) • 

• Output sequencing errors (return code = 8). The updating procedure 
introduces new sequencing errors into the output source file • 

• Invalid update control statements (return code = 12). The update 
file contains invalid control statements. Erroneous statements in 
control files cause the update procedure to terminate. 

If more than one such error is detected, the UPDATE co.mand returns 
the highest return code (4, 8, or 12) encountered. 

If any such error is detected, the REP option, if specified, is 
ignored, and the update source file retains the filenaae "$fn", as if 
IOBIP was in effect. 

OTHER ERRORS: Other errors are invalid control file stateaents, invalid 
file foriats, and disk input/output errors. The UPDATE comaand 
processing is terainated as soon as the error is detected. The return 
code is always 20 or greater. 

If any such error is detected, the update file is left with the 
filename UPDATE and the filetype CftSUT1, so that you may exaaine or 
otherwise aake use of it. This file aust be erased before the UPDATE 
co •• and can be invoked again. 

PILE 'fn ft fa,' REC In = update control stateaent 

This aessage is displayed when the TEB! option is specified and an 
error is detected in an update file. It identifies the file and 
record nuaber where the error is found. 

DftSUPD177I WABIIIG 
IGIOBED. ] 

ftESSAGES ISSUED (SEVEBITY=nn). ['REP' OPTIOI 

Warning aessages were issued 
severity shown in the error 

during the 
message in 

updating process. 
the 'nn' field is 

The 
the 

Section 7: Poraat and Usage Rules for CftS Co •• ands 235 



OPDATE 

highest of the return codes associated with the warning aessages 
which were generated during the updating process. 

The warning return codes have the following meanings: 

RC = 4; Sequence errors were detected in the original source file 
being updated. 

RC = 8; Sequence errors which did not previously exist in the 
source file being updated were introduced in the output file 
during the updating process. 

RC = 12; Any other nonfatal error detected during the updating 
process has a return code of 12. Such errors include invalid 
update file control statements, and missing PTF files. 

The severity value is passed back as the return code fro. the 
UPDATE command. In addition, if the REP option is specified in 
the co •• and line, then it is ignored, and the updated source file 
has the fileid "Sfn1 ft1", as if the RBP option was not 
specified. 

DftSUPD1781 OPDATIIG ['fn ft fm'] WITH 'fn ft fa' 

The specified 
This message 
command line. 

update file is being applied to the source file. 
appears only if the CTL option is specified in the 

The updating process continues. 

DftSUPD001E NO FILENAftE SPECIFIED RC=4 
DftSOPD002E FILE 'fn ft fm' BOT FOOND RC=28 
DftSUPD003E INVALID OPTIOB 'option' RC=24 
DftSUPD007E FILB 'fn ft fa' IS BOT FIXBD, 80 CHAR. RECORDS RC=32 
DMSUPD010W PREftATURE EOF OF FILE 'fn ft fa' --SEQ NUftBBR , ••••••••• NOT 

FOUID RC=12 
DftSUPD024E FILE 'UPDATE CftSOT1 f.' ALREADY EXISTS RC=24 
DftSUPD037E DISK IA' IS READ/OBLY RC=36 
DftSUPD048E INVALID ftODE ·.ode· RC=24 
DftSUPD065B 'option' OPTIOI SPECIFIBD TWICE RC=24 
DftSUPD066B 'option' AND 'option' ARE CONFLICTIBG OPTIONS RC=24 
DftSUPD069E DISK 'A' BOT ACCESSED RC=36 
DftSUPD070E INVALID PARAftETER ·para.· RC=24 
DftSUPD104S ERROR 'nn' RBADIBG FILE 'fn ft fm' FROM DISK RC=100 
DftSUPD105S BRROR 'nn' WRITING FILE 'fn ft fa' ON DISK RC=100 
DftSOPD174W SEQUBICE BRROR IBTRODUCED IN OUTPUT FILE: •••••••• TO 

••••••••• RC=8 
DftSOPD176W SEQOEICIIG OVERFLOW FOLLOWING SBQ BOMBER· •••••••• • RC=8 
DftSUPD179E ftISSING OR DUPLICATE 'ftICS' CARD IN COBTROL FILB 'fn ft fa' 

RC=32 
DftSUPD180W ftISSING PTF FILE 'fn ft f.' RC=12 
DftSOPD181E 10 UPDATB PILBS WBRB POUID RC=40 
DftSUPD182W SEQUENCE INCREftENT IS ZERO RC=8 
DftSUPD183B IBVALID {COJTROLIAUX} FILE CONTROL CARD RC=32 
DftSUPD184W './S • NOT FIRST CARD IN INPOT PILE --IGNORED RC=12 
DftSUPD185W IBVALID CHAR II SBQUEBCE FIBLD •••••••••• RC=12 
DftSOPD186W SEQOENCE NOftBER •••••••••• NOT POOND RC=12 
DftSUPD187E OPTION 'STK' INVALID WITHOUT 'CTL' RC=24 
DftSOPD207W IIVALID UPDATB PILB CONTROL CARD RC=4 
DftSUPD210W IBPUT FILE SEQUENCE ERROR: ••••••••••• TO •••••••••• RC=4 

236 IBft VM/370: Command Language Guide for General Osers 



GC20-1804-3 Page Modified by THL GN20-2659 

IMMEDIATE COMMANDS 

IMMEDIATE COMMANDS 

An IMMEDIATE command is issued after an Attention interrupt is given to 
CMS by pressing the Attention key (or its equivalent). such commands 
are processed immediately upon entry from the ter.inal or on being 
'stacked' by an EIEC procedure. Any program execution in progress is 
suspended until the immediate command is processed. The com~ands are HB 
(hal t batch execution), HO (halt SVC tracing), HT (halt typing), HI 
(halt execution), RO (resume tracing), RT (resume typing), and SO 
(suspend tracing temporarily). 

I HB 

Use the HB co •• and to stop the execution of a CMS Batch virtual machine 
at the end of the current job. If the virtual machine is running in 
disconnect mode, it must be reconnected. Press the Attention Key to stop 
program execution and enter the command. CMS sets a flag such that at 
the end of the current job, the batch processor generates accounting 
information for the current job and then logs out the eMS Batch virtual 
machine. 

HB 

Hone. 

HO 

Use the HO co •• and during the execution of a command or one of your 
programs to stop the recording of trace information. In order for the HO 
co.mand to be recognized, it must be entered after you stop progra. 
execution by an Attention interrupt. Program execution continues to its 
normal completion, and all recorded trace information is spooled to the 
printer. The format of the HO command is: 

r-------------------------------------------------------------------------, 
I BO L---________ • ______________________________________________________________ _ 

Hone. 

Section 7: format and Usage Rules for eMS eom.ands 237 



GC20-1804-3 Page Modified by TNL GN20-2659 

IMMEDIATE CO~MAIDS 

HT 

Use the HT command to suppress all terminal output generated by any C~S 
command or your program that is currently executing. In order for the 
HT command to be recognized when entered, an Attention interrupt must be 
simulated by pressing the Attention key or its equivalent. Program 
execution continues. With typewriter terminals, the Attention key 
unlocks the keyboard to accept your HT command. with display terminals, 
you enter the HT command in the input area and then press the Enter 
key. When the Ready message is displayed, normal terminal output 
resumes. The format of the HT command is: 

HT L-______________________________ ___ _____________________-J 

Bone. 

HX 

Use the HI command to stop the execution of any CMS command or one of 
your programs under CMS, close any open files or I/O devices, and return 
to the CMS command environment. In order for the HI command to be 
recognized, it must be issued after you stop program execution by an 
Attention interrupt. The HI command is executed when the next SVC or 
I/O interrupt occurs. All terminal output generated before HI is 
executed is displayed before the command is executed. The format of the 
HI command is: 

.-
I HI 
L- -.I 

lone. 

238 IBM VM/370: Command Language Guide for General Users 



HO 

GC20-1804-3 Page Modified by TNL GN20-2659 

IMMEDIATE COMMANDS 

Use the HO command, during the execution of a command or one of your 
programs, to resume the recording of trace information that was 
temporarily suspended by the SO command. In order for the HO command to 
be recognized, it must be entered after you stop program execution with 
an Attenion interruDt. Proaram eye~ution ~ontinn~~ to its normal 
completion, and all· reco~de~ ~tr~~~-i~i~~maii~~--i~- s~~oled to the 
printer. The format of the HO command is: 

r- ---, 
I BO I L-____ __ 

J 

None. 

HT 

Use the HT command to restore terminal displaying from an executing CMS 
command or one of your programs that was previously suppressed by the HT 
command. In order for the HT command to be recognized when entered, an 
Attention interrupt must be simulated by pressing the Attention key or 
it equivalent. Program execution continues, and displaying continues 
from the current point of execution in the program. Any console output 
that is generated after the HT command is issued and up to the time the 
RT command is issued is lost. Execution continues to normal program 
completion. The format of the RT command is: 

r-
I RT 
L-

Bone. 

section 7: Format and Usage Rules for CMS Commands 239 



GC20-1804-3 Page ftodified by TIL GR20-2659 

IftftEDIATE COftftAIDS 

so 

Use the SO co •• and during the execution of a command or one of your 
programs to temporarily suspend the recording of trace inforaation. 
Tracing resumes if you issue the BO command at a later time. In order 
for the SO co •• and to be recognized, it must be entered after you stop 
program execution with an Attention interrupt. Program execution 
continues to its nor.al completion and all recorded trace inforaation is 
spooled to the printer. The format of the SO command is: 

r-------------------------'---------------------------------------------------, 
I so L-______________________ __ 

None. 

240 IBM VM/370: Command Language Guide for General Users 



Section 8: Format and Usage Rules for CP Commands 

CP Command 'Privilege Classes 

The CP co •• ands are divided into eight privilege classes, each class 
representing a different type of user. Each user is assigned, as part 
of his entry in the YK/310 directory, one or .ore privilege classes. 
Pigure 33 shows the function of each class. The footnotes following the 
privilege class indicate where the co •• ands of that particular privilege 
class are described. Pigure 34 shows which co •• ands (and which 
operands, if the co •• and varies for different privilege classes) are 
associated with each class. only class G co •• aDds and class Any 
co •• ands are included in this publication. 

section 8: Por.at and Usage BuIes for CP Co •• ands 241 



Class User and Function 

Al R~i!~~ ~I§!~ 0Eerato~: The class A user controls the 
VM/370 system. Class A is assigned to the user at the VM/370 
system console at IPL time. The priaary system operator is 
responsible for the availability of the VM/370 system and its 
communication lines and resources. In addition, the class 1 
user controls system accounting, broadcast messages, virtual 
machine perforaance options and other coaaand operands that 
affect the overall performance of VM/370. 
!~!~: The class 1 system operator who is automatically logged 
on during CP initialization is designated as the primary 
System Operator. 

Bl aI§!~! BesQ!!£! 0Ee£!!or: The class B user controls all the 
real resources of the VM/370 system, except those controlled 
by the primary system operator and spooling operator. 

Cl,2 ~I§!~ Pr~~~~~: The class C user updates certain 
functions of the V8/370 system. 

Dl aEQQ!in~ Q~!£!to~: The class D user controls spool data 
files and specific functions of the system's unit record 
equipment. 

El,2 ~~§!§! Ana1I§!: The class E user exaaines and saves certain 
data in the V8/370 storage area. 

I 
Fl,3 a!Dice BeE~!§~~tiy!: The class F user obtains and I 

examines in detail, certain data about input and output I 
devices connected to the VM/370 system. I 

G4 General User: The class G user controls functions associated 
with the-eiecution of his virtual machine. 

Anyl,4 !~y y§!~: The class Any user has limited use of VM/370 to 
gain initial access to the V8/370 system. 

B Reserved for IBM use • 

lDescribed in the !AL~IQ: .QEe~ato.!..!.§ Guid!. 
2Described in the llL37Q: ayst.!.! Prog!.!.!.!~!§ Gui~!. 
3Described in the !lIL37Q: .QLTSB,R and jYQ! ~~~!J!.g ID!!g! • 
4Described in this publication. 

Figure 33. CP privilege Class Descriptions 

242 IBM VM/370: Command Language Guide for General Users 

I 



GC20-1804-3 Page Modified by TNL GN20-2659 

r ., ~ 

Class Commands I Operands I I Class Commands Operands 

any * SHUTDOWN 
tcp VARY 
CP QUERY ALL 
DIAL DASD 
DISCONN DUMP 
LOGOff GRAF 
LOGON LINES 
MESSAGE LOGMSG 
SLEEP NAMES 

raddr 
11 ACNT SPOOL n 

DISABLE STORAGE 
ENABLE SYSTEM 
fORCE TAPES 
HALT TDSK 
LOCK UR 
MESSAGE ALL userid 
MCIHTOR DISPLAY USERS 

ENABLE SET DUMP 
INTERVAL LOGMSG 
START VARY 
STOP WARNING 

NETWORK DISABLE 
DISPLAY C QUERY LOGMSG 
DUMP NAMES 
ENABLE userid 
HALT USERS 
LOAD STCP 
POLLDLAY 
QUERY D BACKSPAC 
SHUTDOWN CHANGE 
VARY DRAIN 

QUERY LOGMSG fLUSH 
NAMES fREE 
PRIORITY HOLD 
SASS 1ST LOADBUF 
userid ORDER 
USERS PURGE 

SET FAVORED QUERY FILES 
PRIORITY HOLD 
RESERVE LOGftSG 
SASSIST NAftES 

SHUTDOWN PRINTER 
UNLOCK PUNCH 
WARNING READER 

UR 
B ATTACH use rid 

ATTACH CHANNEL USERS 
DETACH REPEAT 
DETACH CHANNEL SPACE 
DISABLE START 
ENABLE TRANSFER 
MESSAGE ALL 
NETWORK DISABLE E DCP 

DISPLAY DftCP 
DUMP INDICATE I/O 
ENABLE LOAD 
LOAD PAGING 
POLLDLAY QUEUES 
QUERY USER 

'-
Figure 34. COllllands Accepted from Each User Class (Part 1 of 2) 

Section 8: Forllat and Usage Rules for CP Commands 243 



GC20-1804-3 Page Modified by TNL GN20-2659 

.--
I Class Commands Operands Class Commands Operands 

LOCATE LINKS 
MONITOR DISPLAY LOGMSG 

ENABLE NAMES 
INTERVAL PFnn 
START PRINTER 
STOP PUNCH 

QUERY LOGMSG READER 
NAMES SET 
PAGING TERMINAL 
PRIORITY TIME 
SASS 1ST userid 
userid USERS 
USERS VIRTUAL 

SAVESYS READY 
F NETWORK TRACE REQUEST 

QUERY LOGMSG RESET 
NAMES REWIND 
userid SET ACNT 
USERS ASSIST 

SET RECORD ECMODE 
MODE EMSG 

IMSG 
G ADSTOP ISAM 

ATTN LINEDIT 
BEGIN MSG 
CHANGE NOTRANS 
CLOSE PAGE X 
COUPLE PFnn 
DEFINE PFnn COpy 
DETACH PFnn TAB 
DISPLAY RUN 
DUMP TIMER 
ECHO WNG 
EXTERNAL SPOOL 
INDICATE LOAD STORE 

USER SYSTEM 
IPL TAG DEV 
LINK FILE 
LCADVFCB QUERY 
NOTREADY TERMINAL 
ORDER TRACE 
PURGE TRANSFER 
QUERY CHANNELS 

FILES 
L--

Figure 34. Commands Accepted from Each User Class (Part 2 of 2) 

244 IBM VM/370: Command Language Guide for General Users 



CP Command Summary 

This section contains descriptions of the commands acceptable in the 
control program environment. Figure 35 presents an alphabetical list of 
the commands, the privilege classes which may execute the command, and a 
brief statement about the use of each command. 

r------- ------, 
I IPrivilegel 
I Command I Class I Usage 

* 
iCP 

ACNT 

ADSTOP 

ATTACH 

ATTN 

BACKSPAC 

BEGIN 

CHANGE 

CLOSE 

COUPLE 

CP 

DCP 

DEFINE 

DETACH 

DIAL 

DISABLE 

any 

any 

A 

G 

B 

G 

D 

G 

D,G 

G 

G 

any 

E 

G 

B 
B 
B 
G 

any 

A,B 

I 
IAnnotate the console sheet. 
I 
IExecute a CP command while remaining in the 
I virtual machine environment. 
I 
ICreate accounting records for logged on users 
I and reset accounting data. 
I 
IHalt execution at a specific virtual machine 
I instruction address. 
I 
Attach a real device to a virtual machine. 
Attach a DASD device for CP control. 
Dedicate all devices on a particular channel 

to a virtual machine. 

Make an attention interrupt pending for the 
virtual machine console. 

Restart or reposition the output of a unit 
record spooling device. 

Continue or resume execution of the virtual 
machine at either a specific storage location 
or at the address in the current PSi. 

Alter one or more attributes of a closed spool 
file. 

Terminate spooling operations on a virtual card 
reader, punch, printer, or console. 

Connect channel-to-channel adapters. 

Ignored. 

Display real storage at terminal. 

Reconfigure your virtual machine. 

Disconnect a real device from a virtual machine. 
Detach a DASD device from CP. 
Detach a channel from a specific user. 
Detach a virtual device from a virtual machine. 

IConnect a terminal or display device to the 
I virtual machine's virtual communication line. 
I 
IDisable 2701/2702/2703 and 3270 communication 
I lines. 

Figure 35. CP Command Summary (Part 1 of 4) 

section 8: Format and Usage Rules for CP Commands 245 



t 

GC20-1804-3 Page Modified by TNL GN20-2659 

r-------------------------------------------------------------------------~ 

Command 

DISCONN 

DISPLAY 

DMCP 

DRAIN 

DUMP 

ECHO 

ENABLE 

EXTERNAL 

FLUSH 

FORCE 

FREE 

HALT 

HOLD 

INDICATE 

IPL 

LINK 

LOADBUF 

LOADVFCB 

LOCATE 

LOCK 

LOGOFF 

LOGON 

MESSAGE 

Figure 35. 

I Privilege I 
I Class I Usage 
----1----

any IDisconnect your terminal from your virtual 
I machine. 
I 

G IDisplay virtual storage on your terminal. 
I 

E Dump the specified real storage location on your 

D 

G 

virtual printer. 

Halt operations of specified spool devices upon 
completion of current operation. 

Print on virtual printer: virtual PSi, general 
registers, floating-point registers, storage 
keys, and contents of specified virtual 
storage locations. 

G Test terminal hardware by redisplaying data 
entered at the terminal. 

A,B IEnable communication lines. 
I 

G ISimulate an external interrupt for a virtual 
I machine and return control to that machine. 
I 

D ICancel the current file being printed or punched 
I on a specific real unit record device. 
I 

A ICause logoff of a specific user. 
I 

D IRemove spool HOLD status. 
I 

1 Terminate the active channel program on 
specified real device. 

D Defer real spooled output of a particular user. 

E,G Indicate resource utilization and contention. 

G Simulate IPL for a virtual machine. 

G Provide access to a specific DASD device by a 
virtual machine. 

D Load real UCS/UCSB or FCB printer buffers. 

G Load virtual forms control buffer for a virtual 
3211 printer. 

E Find CP control blocks. 

1 Bring virtual pages into real storage and lock 
them; thus excluding them from future paging. 

any IDisable access to CP. 
I 

any IProvide access to CP. 
I 

1,B,any ITransmit messages to other users. 

CP Command Summary (Part 2 of 4) 

246 IBM VM/370: Command Language Guide for General Users 



GC20-1804-3 Page Modified by TNL GN20-2659 

IPrivilegel 
Command I Class I Usage 

MONITOR A,E Trace events of the real machine and record 
system performance data. 

NETWORK A,B,P Load, dump, trace and control the operation of 
the 3704/3705 control program. 

NOTREADY G simulate "not ready" for a device to a virtual 
machine: 

ORDER D,G Rearrange closed spool files in a specific 
order. 

PURGE D,G Remove closed spool file from system. 

QUERY 

READY 

REPEAT 

REQUEST 

RESET 

REWIND 

SAVESYS 

SET 

SHUTDOWN 

SLEEP 

SPACE 

SPOOL 

START 

STCP 

STORE 

A,B,C,D, Request information about machine configuration 
E,F,G and system status. 

G Simulate device end interrupt for a virtual 
device. 

D Repeat (a specified number of times) printing or 
punching of a specific real spool output file. 

G Make an attention interrupt pending for the 
virtual machine console. 

G Clear and reset all pending interrupts for a 
specified virtual device and reset all error 
conditions. 

G Rewind (to load point) a tape and ready a tape 
unit. 

E Save virtual machine storage contents, 
registers; and PSi: 

A,B,F,G Operator--establish system parameters. 
User--control various functions within the 

virtual machine. 

A Terminate all VM/370 functions and checkpoint CP 
system for warm start. 

any Place virtual machine in dormant state. 

D Force single spacing on printer. 

G Alter spooling control options; direct a file to 
another virtual machine or to a remote 
location via the RSCS virtual machine. 

D Start spooling device after draining or changing 
output classes. 

C Change the contents of real storage. 

G Alter specified virtual storage and registers. 

Figure 35. CP Command Summary (Part 3 of 4) 

Section 8: Format and Usage Rules for CP Commands 247 



GC20-1804-3 Page Modified by TNL GN20-2659 

r-----------
I IPrivilegel 
I Command I Class I Usage 

SYSTEM 

TAG 

TERMINAL 

TRACE 

TRANSFER 

UNLOCK 

VARY 

WARNING 

L-

G Simulates RESET, CLEAR STORAGE and RESTART 
buttons on a real system console. 

G Specify variable information to be associated 
with a spool file or output unit record 
device. 

Interrogate the current TAG text setting of a 
given spool file or output unit record device. 

G Define or redefine the input and attention 
handling characteristics of your virtual 
console. 

G Trace specified virtual machine activity at your 
terminal, spooled printer, or both. 

D,G Transfer ihput files to or get input files from 
a specified user's virtual card reader. 

A Unlock previously locked page frames. 

B Mark a device unavailable or available. 

A,B Transmit a high priority message to a specified 
user or to all users. 

Figure 35. CP Command Summary (Part 4 of 4) 

248 IBM VM/370: Command Language Guide for General Users 



* 

Use * to annotate the terminal console sheet or terminal display screen 
data with a co.ment. This commentary also appears in the virtual 
console spool file (if the console spooling function is invoked for the 
virtual machine). The format of the * (coament) r.ommand is: 

* anycom.ent 

lone. 

section 8: Format and Usage Rules for CP Commands 249 



ICP 

#CP 

Use the ICP command to execute a CP command while in a virtual console 
read environment without first signalling attention to get to the CP 
environment. The format of the ICP command is: 

• I ICP [comaandlinel [lcom.andline2 I ••• ]] , 

~!!!!:! : 

comaandline specifies the name, operands, and options for the CP 
command or commands you want to issue. You must precede the 
first commandline with at least one blank. 

The pound sign (I) shown in the format above represents the logical 
line end symbol currently in effect for your virtual machine. If you 
have redefined the logical line end symbol, ICP is an invalid command; 
you must substitute your line end symbol for the pound sign when using 
this command. 

Usage: 

Por the command to operate, the following conditions must be met: 

I. The virtual machine must be running with SET LIIEDIT OR (a default). 

I. The first three characters of the edited line must be ICP (upper or 
I lowercase) with the "I" representing the logical line end character 
I currently defined. 

I • 
I 

At least one blank 
not use attention 
the line. 

must separate the ICP from any com. and line. Do 
interruption in any part of the line or to enter 

I 

You can enter multiple command lines as operands of the ICP command, 
but you must separate each command line by the logical line end (I) 
character. If you enter only ICP with no operands, the virtual machine 
enters the CP environment. CP cancels the virtual machine's console 
READ by returning a unit exception status for the virtual console. The 
virtual operating system then reissues the console READ to allow you to 
key in the appropriate response to a previous aessage fro. that 
machine's operating system. 

250 IB! V!/370: Command Language Guide for General Users 



ICP 

The following examples show several ways to use ICP: 

Command 

ICP 

tcp query files 

ICP query fileslquery users 

data entered¢ICP msg op is tape 
available 

ICP data entered 

ICP query files¢data entered 

system Action 

Your virtual machine enters 
CP environment. 

QUERY command executed. 

Two separate QUERY co.mands 
executed. 

"Data entered" is ignored. You 
send a message to the 
operator. 

You enter CP environment and 
cp'interprets "data entered" 
as an invalid operand. 

"Data entered" is ignored. You 
enter CP environment. 

QUERY command is not executed; 
console input (data entered) 
passes to the virtual machine. 

If you enter ICP without a com.andline, you receive this message: 

CP 

If ion enter ICP with cOaaandlines, lUU receive the responses 
appropriate to the individual com.ands you entered. 

section 8: Pormat and Usage Rules for CP Commands 251 



InSTOP 

ADSTOP 

Use the InSTOP co •• and to halt execution at a virtual instruction 
address. Execution halts when the instruction at the specified address 
is the next instruction to be executed. 

When execution halts, the CP co •• and .ode is entered and a .essage is 
displayed. It this point, you aay invoke other CP debugging co •• ands. 
To resu.e operation of the virtual .achine, issue the BEGIN co •• and. 
Once an InSTOP +ocation is set, it .ay be reaoved by one of the 
following: 

• Beaching the virtual storage location specified in the InSTOP co.mand 
• Performing a virtual IPL or SYSTEft BESET 
• Issuing the InSTOP OPP co •• and 
• Specifying a different location with a new InSTOP hexloc com.and 

The for.at of the IDS TOP co.mand is: 

InSTOP 
{ 

hexloc } 
OPP 

hexl'oc is the hexadecimal representation of the virtual instruction 
address where execution is to be halted. The specified 
address cannot be in a storage segaent shared with other 
users, since the IDSTOP function aodifies storage. 

OPP cancels any previous IDSTOP setting. 

1. Since the ADSTOP function .odifies storage (by placing a CP SVC 
I'B3' at the specified location) your prograa should not exaaine 
the two bytes at the instruction address. CP does not verify that 
the location specified contains a valid CPU instruction. 

2. Address stops may not be set in an OS/VS or 
aachine's virtual storage; address stops may only 
virtual equals real partitions or regions of 
aachines. 

252 IBft Vft/370: Co •• and Language Guide for General Users 

DOS/VS 
be set 
those 

virtual 
in the 

virtual 



ADSTOP 

3. If the SfC handling portion of the virtual .achine assist feature 
is enabled on your virtual machine, CP turns it off when an address 
stop is set. After the address stop is removed, CP returns the 
assist feature SfC handling to its previous status. 

ADSTOP AT xxxxxx 

The instruction whose address is xxxxxx is the next instruction 
scheduled for execution. The virtual machine is in a stopped 
state. Any CP co •• and (including an lDSTOP co •• and to set the next 
address stop) can be issued. Bnter the CP co •• and BBGI. to resu.e 
execution at the instruction location XXIIIX, or at any other 
location desired. 

Section 8: Por.at and Usage Rules for CP Co •• ands 253 



ATTN 

AITN 

Use the ATTN command to make an "attention" interrupt pending at your 
virtual console. The format of the ATTN command is: 

ATTN 

The REQUEST command performs the same function as ATTN and the tvo 
commands can be used interchangeably. 

The BEGIN command is not required after you issue ATTN. 

Bone. 

254 IBft Vft/370: Co •• and Language Guide for General Users 



BEGIN 

BEGIN 

Use the BEGIN co.mand to continue or resume execution in the virtual 
machine at either a specified storage location or the location pointed 
to be the virtual machine's current PSW. The format of the BEGIN 
co.mand is: 

I Begin [hexloc] L ______ ----________________________________________________________________ ~ 

hexloc is the hexadecimal storage location where execution is to 
begin. When BEGIN is issued without hexloc, execution begins 
at the storage address pointed to by the current virtual 
machine PSW. Unless the PSW has been altered since the CP 
command mode was given control, the location stored in the PSW 
is the location where the virtual machine stopped. 

When BEGI) is issued with a storage location specified, 
execution begins at the specified storage location. The 
specified address replaces the instruction address in the PSW, 
then the PSW is loaded. 

Bone. The virtual machine begins execution. 

section 8: Pormat and Usage Rules for CP Commands 255 



CHARGE 

CHANGE 

Use the CHARGE command to alter one or aore of the eIternal attributes 
of a closed spool file or files. Issue the QUERY coamand to deteraine 
the current attributes of the file. In order to change an output file, 
the file aust have been closed but not yet selected for printing or 
punching. An input (READER) file can be changed at any tiae before it 
is opened, that is, before the first read is issued for the file. The 
format of the CHARGE coamand is: 

I 
CHange I 

I 
I 
I 
I 
I 
I 
I 
I 

Reader {CLaSS c11 
Printer spoolid 
PUnch ALL 

CLass c2 I 

COpy nn 
r , 
I HOld I 
INOHold I 
L .J 

Dlst distcode 

r , 

INAme {fn [ft]}1 
I dsname I 
L .J 

lOne of these options ~y~~ be chosen; however, aore than one may be 
specified and they may be combined in any order. This is contrary to 
the notation normally used in this publication. 

READER changes the reader spool file. 
RDR 

PRIRTER changes the printer spool file. 
PRT 

PUNCH changes the punch spool file. 
PCH 

CLASS cl designates an eIisting class. The class, cl, is a 

spoolid 

one-character alphameric field froa A to z or from 0-9. Refer 
to the 'ftLl70: QE~ratg!~~ ~ui~~ for a detailed description of 
spool classes. 

is the spoolid number of the file that is to be changed. Each 
spool file has a unique spoolid. 

ALL changes all your spool files. 

CLASS c2 changes the spool class of the file to c2. 

COpy nn specifies the nuaber of copies of the file to be spooled to 
the virtual output device. This option is valid for printer 
and punch files only. The value of nn (nuaber of copies) must 
be a number from 1 through 99. lor nn less than 10, the 
leading zero is optional. 

HOLD prevents the file froa be~ng printed, punched, or read until 
it is released. The file 1S released when the CHANGE coaaand 
is issued with the NOHOLD operand specified. 

256 IB" '"/370: Comaand Language Guide for General Users 



CHANGE 

NOHOLD releases the specified file from user HOLD status. 

DIST distcode 
changes the distribution code specified in the Vft/370 
directory to the distcode specified on the com.and line, for 
the spe~ified file only. The distribution code appears on the 
output separators of the printer and punch output; it has no 
effect on reader files. 

NAftE fn [ft] 
assigns identification to the spool file in the CftS for.at 
filena.e and filetype. ~u~ field, ~U, ~~ a one- to 
eight-character alphameric filename assigned to the file for 
identification. The field, ft, is a one- to eight-character 
alphameric filetype assigned to the file for identification. 
If ft is not specified, the filetype is set to blanks. 

NAftE dsnalle 
assigns identification to the spool file in a non-CftS for.at. 
The field, dsnalle, is a 1- to 24-character field suitable for 
specifying OS or DOS files [for exa.ple, SYS1.SYSLIB.ftYftAC). 

{n:~n } FILES CHANGED 

This is the response when you issue the CHANGE co.mand. This is an 
indication of the nUllber of files changed. It does not reflect 
individual alterations to a given file. This .essage does not 
appear if you have issued the CP SET IftSG Oll co •• and line. 

section 8: For.at and Usage BuIes for CP COllllands 257 



CLOSE 

CLOSE 

Use the CLOSE co.mand to terminate the spooling activity on any virtual 
spooled record or console device. If the file is an input reader file, 
the file being processed is purged unless SPOOL READER BOLD was 
previously specified (see the SPOOL command). The effect of BOLD or 
NOBOLD for a particular file established by the SPOOL command can be 
overridden by specifying NOBOLD or BOLD, respectively, in the CLOSE 
command. If the file is an output file on a printer, punch, or console, 
the file is either queued for output on a real unit record device, or, 
if the virtual output device is transferred (by use of the "SPOOL vaddr 
TO userid" command), the file is queued for input to the receiving user. 
you can specify a filename and filetype and an optional distribution 
code to aid in later identification of the file and its contents. The 
format of the CLOSE command is: 

Close 

READER 
RDR 

CONSOLE 

PRINTER 
PRT 

PUNCH 
PCB 

vaddr 

BOLD 

NOB OLD 

r , 
IReader r , I 
Ivaddr IBOld I I 
I INOBoldl I 
L L ... ... 
r r , , 
ICONsole I PUrge I I 
IPrinter I I I 
I PUnch I r , r , I I 
Ivaddr I IBOld I [DIst distcode] INAme {fn [ft]}' I I 
I I I BOBoldl I ,dsname , I I I 
L L L ... L ... ... ... 

closes all reader spool files. 

closes your virtual machine's console spool file. Once a 
virtual console spool file is closed, it becomes a printer 
spool file and can be manipulated in the same way as any 
printer spool file (for example, it can be purged or 
changed). 

closes all printer spool files. 

closes all punch spool files. 

is the virtual address (cuu) of the device to be closed. The 
address may represent a reader, console, printer, or punch. 

makes the spool file being closed unavailable for further 
processing, until it is specifically requested or changed. 
This option, specified in the CLOSE command, overrides any 
previously specified BOLD or NOBOLD option for the files being 
closed. 

makes the spool file being closed available for further 
processing. Specify NOBOLD if a BOLD established by the SPOOL 

258 IBft Vft/370: Com.and Language Guide for General Users 



PURGB 

CLOSE 

command is still in effect and the current active file is not 
to be held. 

You can release one of your own output files in HOLD status by 
using the CBAIG! command. If an output file is spooled for 
another user (SPOOL FOR userid), only the receiving virtual 
machine user can change the file status. The originator of 
the file .ay reclaim the file by using the TRANSFBR co •• and 
with the FROft option. If an output file is spooled to a user 
as an input file (SPOOL TO userid), the HOLD option places the 
input file in BOLD status. The file then cannot be read by 
the virtual machine until it is changed to NOBOLD by the 
receiving virtual machine user. 

If an input file is closed with the BOLD option, the file is 
saved and not purged trom the system. The saved file is 
available for virtual machine and user processing and is not 
placed in a user hold status. Input spool files that are 
closed are nor.ally purged from the virtual machine. 

closes and i •• ediately purges from the virtual machine the 
output spool files. No output file is produced. 

DIST distcode 
uses the one- to eight-character alphameric identification 
(distcode) on the output separators of printer and punch 
instead of the identification specified in the Vft/370 
directory. The distribution code is changed for this file 
only and does not affect other files or change the Vft/370 
directory. If the file is transferred to another user, this 
option has no effect. 

BAftB fn [ft] 
assigns identification to the spool file in the CftS for.at 
filename and filetype. The field, fn, is a one- to 
eight-character alphameric filename assigned to the file for 
identification. The field, ft, is a one- to eight-character 
alpha.eric filetype assigned to the file for identification. 
If ft is not specified, the filetype is set to blanks. 

11!E dsnaae 
assigns identification to the spool file in a non-CftS format. 
The dsna.e field is a 1- to 24-charact~r field suitable for 
specifying OS or DOS files (for exa.ple, SYS1.SYSLIB.ftYftAC). 
Only 20 characters of the 24-character dsname are displayed by 
QUBRY, even though a name of up to 24 characters is valid. 

The table that follows shows the result of the CLOSE co •• and, depending 
on how you had previously specified the SPOOL co •• and options BOLD, 
IOBOLD, COlT, and IOCOIT. The CLOSE com.and can result in a file being 
held, saved, or purged. 

section 8: Pormat and Usage BuIes for CP Co •• ands 259 



CLOSE 

virtual 
Device 
Sta tus 

(CLOSE 
Co •• and 
Setting) 

Ror.al EOP 
(default 
CLOSE) 

CLOSE 

CLOSE HOLD 

SPOOL Co •• and options Set for a Virtual Device 

ROHOLD 
ROCORT 

HOLD 
ROCOBT 

IPile releasedlPile saved 
I for proces- I 
I sing I 

IPile releasedlPile saved 
Ifor proces- I 
Ising I 

IPile saved IPile saved 

ROHOLD 
COBT 

IPile releasedlPile 
Ifor proces- I 
Ising I 

IPile releasedlPile 
Ifor proces- I 
Ising I 

IPile held IPile 

HOLD 
COBT 

held 

held 

held 

CLOSE BOHOLD IPile releasedlPile releasedlPile releasedlPile released I 
Ifor proces- Ifor proces- Ifor proces- Ifor proces- I 
Ising Ising Ising Ising I 

-------------------------------------------------------------------1 Bote, "saved" .eans that the file is not purged and does not have 
HOLD. status. A subsequent READ could read this file. 

{ :gi t PILE spoolid {~gR} userid COpy nn {BO:~~~} 
COR} 

I 
I 
• 

This response is received if aultiple copies of the file are being 
processed, if the file is being transferred to another user, or if 
the file is placed in a USER HOLD status. 

260 IB8 V8/370: Co •• and Language Guide for General Users 



COUPLE 

COUPLE 

Use the COUPLE command to connect your virtual (non-dedicated) 
channel-to-channel adapter to another user's virtual channel-to-channel 
adapter (or to another one of your own virtual channel-to-channel 
adapters). The format of the COUPLE command is: 

COUPLE 

vaddr1 

vaddr1 [To] userid vaddr2 

is the virtual address (cuu) of your channel-to-channel 
adapter. 

[TO] userid 

vaddr2 

is the user identification of the virtual machine to which 
vaddr1 is to be connected. If vaddr1 is to be connected to 
your own virtual machine, userid may be specified as an 
asterisk (*). The user must be logged on and have a virtual 
channel-to-channel adapter defined. If the keyword TO is 
omitted, the userid cannot be "T" or "TO". 

is the virtual address (cuu) of the channel-to-channel adapter 
to be connected to vaddr1. 

CTCA vaddr1 COUPLE TO userid vaddr2 

This is the response when you issue the COUPLE co •• and. 

vaddr1 

userid 

vaddr2 

is the address of your channel-to-channel adapter. 

is the identification of the receiving virtual machine. 

is the address of the channel-to-channel adapter of tb~ 
rece1v1ng user (or a different channel-to-channel adapter 
in your own virtual machine). 

CTCA vaddr2 COUPLE BY userid vaddr1 

This is the response sent to the user specified by userid in the 
COUPLE co.mand. 

vaddr1 

userid 

vaddr2 

is the address of the issuing user's channel-to-channel 
adapter. 

is the identification of the user who issued the COUPLE 
co •• and. 

is the address of the channel-to-channel adapter of the 
receiving user. 

section 8: Pormat and Usage Rules for CP Co •• ands 261 



COUPLE 

CTC! vaddrl DROP PROft userid vaddr 

This response to the issuing user indicates that the virtual CTC! 
vaddrl was already coupled when the COUPLE co •• and was issued. The 
previous connection is co.pleted. This response is always followed 
by the response: 

CTC! vaddrl COUPLE TO userid vaddr2 

262 IBft V8/370: Co •• and Language Guide for General Users 



CP 

CP 

Use the CP command if you are a CftS user and do not want to keep aware 
of which co.mand environment you are in. 

The CP command is treated as a "null" by the control program and 
therefore can precede any other command if one or more blanks separate 
CP from the other command. The CP command is useful because it lets the 
CftS user enter commands without knowing which environment (CP or virtual 
machine) he is in. The format of the CP command is: 

, 
I CP I [command] L ______ ----______________________________________________________________ ~ 

command is any CP command or string of CP commands that are separated 
by the logical line end symbol (I) and are valid for your 
privilege class. 

CP QUERY FILES 

or 

QUERY FILES 

can be entered from the CP or CftS command environment. 

lone 

Section 8: For.at and Usage Rules for CP Com.ands 263 



DEFINE 

DEFINE 

Use the DEFINE co •• and to alter your virtual aachine configuration or 
channel operating mode. You can expand your configuration without 
aaking permanent changes, because the definitions are in effect for the 
current terminal session only. If you redefine storage or define the 
channel operating aode, the virtual machine is reset and IPL aust be 
perfor.ed again. The format of the DEFIlE coaaand is: 

DEFine Reader 
Printer 
PUnch [1s] vaddr 
COlsole 
CTCa 
TIfter 
1403 
3211 
CBAlnels [AS] { SEL } 

Bft! 
r , 

LIne [As] vaddr 11Bft[!J 1 
ITELE[ 2] 1 
L .I 

GRAF cuu [3270 ] 
3158 

vaddr1 [AS) vaddr2 

T2314 
T2319 
T3330 [AS 1 vaddr [CIL] nnn 
T3340 
T2305 

"I 
I 
I 

STORage [As] {nnnnnK} 
nnft 

READER [AS] vaddr 
RDR 

PRINTER [AS] vaddr 
PRT 

PUICB [AS] vaddr 
PCB 

CONSOLE [AS] vaddr 

adds a spooling card reader with the address 
specified by vaddr to the virtual machine 
configuration. 

adds a spooling printer with the address 
specified by vaddr to the virtual aachine 
configuration. 

adds a spooling card punch with the address 
specified by vaddr to the virtual aachine 
configuration. 

adds a virtual system console to the virtual 
machine at the address specified by vaddr. 

264 IBft VK/370: Coamand Language Guide for General Users 



CTCA [AS] vaddr 

TlftER [AS] vaddr 

1403 [AS] vaddr 

3211 [AS] vaddr 

CBAIIELS [AS] {SEL} 
BftX 

r , 
LIBE [AS] vaddr IIBftl I 

ITBLB21 
L .. 

GRAP cuu [3270 J 
3158 

vaddrl [AS] vaddr2 

DEFINE 

adds a virtual channel-to-channel adapter with 
the address specified by vaddr to the virtual 
aachine configuration. The control unit 
address must end in zero, and must not already 
be in use. Once the control unit is defined, 
other virtual devices may not be defined for 
the same CTCA. 

adds a pseudo timing 
specified by vaddr 
configuration. 

device with the address 
to the virtual machine 

adds a spooling 1403 printer with the address 
specified by vaddr to the virtual machine 
configuration. 

adds a spooling 3211 printer with the address 
specified by vaddr to the virtual machine 
configuration. The virtual 3211 printer 
supports LOADYFCB and the Index feature. 

redefines the channel mode of operation 
for the virtual machine to either selector or 
block multiplexer. Use of the SEL (selector 
channel) or BftX (block multiplexer channel) 
operand sets the mode of operation for pll 
channels except virtual channel O. Channel 0 
always operates in byte-multiplexer mode. The 
real or virtual channel-to-channel adapter 
always operates in selector mode. 

Block multiplexer mode may enhance the virtual 
aachine's operating system by allowing the 
overlap of 510 operations. This is done by 
reflecting a channel condition code of 0 back 
to the virtual machine rather than a channel 
busy signal. 

Note: The virtual machine is immediately reset 
when this set of operands is executed. 

adds a virtual 2701/2702/2703 communication 
line with the address specified by vaddr to th~ 
virtual aachine configuration. 

IBBl indicates that an IBB-type terminal (2741, 
1050, or equivalent) is on the 2701/2702/2703 
line. TELE2 indicates that a teletypewriter is 
on the 2701/2702/2703' line. 

defines a temporary virtual 3270 or 3158 
systea console used on the system/370 
158) for the virtual machine. The cuu 
hexadecimal address for the device. 

(the 
Bodel 

is the 

redefines the device represented by vaddr1 as 
vaddr2. The virtual address, vaddr1, must 
represent a defined device in the virtual 
machine configuration. 

Section 8: Pormat and Usage Rules for CP Com.ands 265 



DBlIIB 

T231" [lS] vaddr [CIL] 
T2319 

nnn 
adds a temporary virtual disk of the specified 
type to the virtual machine configuration. 
The vaddr specifies the address of the disk, 
and must not be on a virtual control unit 
already defined as a CTC1. CIL nn specifies 
the number of cylinders that the disk 
contains. 

T3330 
T33"0 
T2305 

STOR1GE [lS] { nnnnnK } 
nn8 

redefines the size of the virtual storage for 
the virtual machine as nnnnnK (where K 
represents 102" bytes) or nn8 (where 8 
represents 1,0"8,576 bytes). The value 
specified becomes the new virtual storage size. 
Sizes aust be in "K increments and are limited 
by the maximum value in the V8/310 directory 
entry. The minimum size you can specify is 8K. 
111 entries not specified in a "K increaent are 
rounded up to the next "K boundary. Changing 
the virtual storage size (increasing or 
decreasing) causes a virtual system reset and 
clears all virtual storage to binary zeros. 

Responses are generated to confirm that the desired configuration change 
has taken place. These responses do not appear on your terminal if you 
have issued the CP SET 18SG OPP coamand line. 

type vaddr DElIIED 

where the possible values for type have the following meanings: 

IY~~ 
D1SD 
T1PB 
LIBE 
RDR 
PRT 
PUB 
GRll 
COBS 
CTCl 

CH1IIELS 

J1~~1!!1!g 
Direct access storage device 
8agnetic tape 
Communication line 
Card reader 
Line printer 
Card punch 
Graphics device 
Console 
Channel-to-channel adapter 

= {SEL} 
B81 

is the channel aode of operation for the virtual machine. This 
response applies to all channels except channel 0 (always a 
byte-multiplexer channel) and any channel that has a virtual or 
real channel-to-channel adapter (always a selector channel). 

STOR1GB = nnnnnK 

The minimum storage you may specify is 8K. 

266 IB8 V8/370: Command Language Guide for General Users 



DETACH 

DETACH 

Use the DETACH co •• and to remove a virtual device from the virtual 
machine. You can detach a previously attached device even if the device 
is currently in use. You can also detach devices that were attached 
because of V8/370 directory entries or during CP system initialization. 
You cannot detach volu.es in the syste. SYSaWB list or devices 
containing minidisks that are in use. ihen you detach a virtuai device, 
it becomes inaccessible to your virtual .achine. If the device was 
previously attached to your virtual machine by an ATTACH command, it is 
released and beco.es available for attachment to your virtual machine, 
another user, or the CP system. Tape devices are automatically rewound 
and unloaded when detached. If you detach a device that was previously 
attached to your virtual machine by the operator, a message is sent to 
the operator infor.ing him that the device is free. The format of the 
DETACH command is: 

DETach I vaddr 

vaddr is the virtual address (cuu) of the device to be detached fro. 
your virtual .achine. 

~!sponses 

8essages are sent to the user, the operator who issued the com.and, and 
the primary system operator (if different from the operator who issued 
the com.and), notifying them that the DETACH was successful. 

type vaddr DETACHED 

This is the response you receive the. you detach one of your own 
devices. You do not receive this response if you have issued the 
CP SET I8SG OFF co •• and. 

type vaddr DETACHED BY operator 

This is the response you receive if an operator detaches one of 
your devices. 

r , 
typeraddr DETACHED luseridl 

ISYSTEftl 
L ~ 

This is the response sent to the 
previously attached device or if the 
user or the syste •• 

operator if you detach a 
operator detaches it fro. a 

section 8: Format and Usage Rules for CP Commands 267 



DETACH 

r , 
type raddr DETACHED luseridl BY operator 

ISISTEftl 
L J 

This is the response sent to the primary syste. operator if he did 
not issue the DETACH com. and and the device had been previously 
attached. 

In the above responses, type is one of the following: 

lll!! 
DASD 
TAPE 
LINE 
RDR 
PRT 
PUN 
GRIP 
CONS 
CTCI 
D.r:V 

fteaning 
Direct access storage device 
ftagnetic tape 
co.munication line 
Card reader 
Line printer 
Card punch 
Graphics device 
Console 
Channel-to-channel adapter 
Any other device 

CTCA vaddr DROP PROft userid vaddr 

This is the response if the device detached was a virtual CTCI 
connected (via the COUPLE command) to another CTCI on the virtual 
machine specified by the userid. This response is always followed 
by the response: 

CTCA vaddr DETACHED 

unless the SET IftSG OPP com.and was issued. 

268 IB! Vft/310: Command Language Guide for General Users 



DIAL 

DIAL 

Privilege CI~22: Any 

Use the DIlL command to logically connect a switched line, leased line, 
or locally attached terminal to a previously logged on multiple-access 
virtual machine. Once the connection is made, your terminal operates 
entirely under the control of that virtual machine. The DIlL command 
matches your terminal to the equivalent type defined in the 
multiple-access virtual machine. If no _atching terminal type exists, 
the connection cannot be made and an error message is issued. The 
format of the DIlL command is: 

DIlL 

userid 

vaddr 

lotes: 

userid [vaddr] 

is the identification of a virtual machine that is 
currently logged on. 

is the address of the virtual communication line to which 
the connection is made. 

-':--1 DIlL command is accepted only at logon time, and only as a 
substitute for a LOGOI command. The type of terminal used must be 
supported by both Yft/370 and the multiple-access virtual machine. 
The only exception is the 3277 Display Staticn ftodel 1 
(480-character screen). This display terminal, if used, must ~e 
supported by the multiple-access virtual machine. Yft/370 support 
of this model is limited to the DIlL facility only. See the 
Yft/370: l~inal y§!!~§ Guid~ for details on running and gaining 
access to multiple-access machines. 

2. If the DIlL co.mand is issued from a real 3277 terminal, the 
virtual system must use the CP command BESET to drop the dialed 
connection. DIlL is not supported for the 3066 system console. 

3. The CP DIlL command is not supported for ter.inals that are using 
ICP lines in a 3704/3705 control unit. 

DIILID TO userid vaddr 

is the message sent to the user indicating that a logical 
connection has been made. 

{
GRIP raddr } 
LIIE raddr DI1LID TO userid DIlLED = 
DEY rid 

nnn 

is the response to the primary system operator. It indicates a 
successful connection to the virtual machine (userid) and the 
total number of Yft/370 lines (nnn) currently connected to other 
virtual machines. DEY rid indicates the resource identification 
of a 3704/3705 line. 

lote: The terminal remains connected to and under the control of 
the-virtual machine until that virtual machine terminates the 

section 8: Pormat and Usage Rules for CP Commands 269 



DIAL 

co.munication. At that tiae the user receives the following 
aessage: 

DROP FRO! userid vaddr 

this message is sent to the user when the line is disabled. 

{

GRAF raddr } 
LIIE raddr DROP FBO! userid DIALED = 
DEY rid 

nnn 

is the aessage sent to the primary system operator. 

270 IB! Y!/370: Co •• and Language Guide for General Users 



DISCOII 

DISCONN 

Use the DISCOII com. and to disconnect the terminal fro. the Vft/370 
system: the virtual machine continues operation. When DISCOII is issued 
from the virtual machine, a disconnect-time message is printed at the 
virtual machine's terminal and at the priaary syste. operator's console. 
The terminal remains disconnected until it is reconnected via a LOGOI 
com.and. The virtual aachine is logged o~~ is minutes after an attempt 
is made to read froa the terminal or if the virtual .achine goes into a 
disabled WIlT state. 

If your ter.inal connection is broken because of terainal, line, or 
TP control unit errors, CP places the virtual machine in disconnect aode 
for up to 15 ainutes and your virtual machine does not continue to run. 
If you log on within 15 minutes, your virtual machine can continue 
operating. If you do not log on within the 15-minute interval, the 
virtual machine is logged off. 

Unless the CP command, SPOOL CORSOLE STIRT, is issued to spool the 
virtual console output, all ·writes" or output messages to the virtual 
console are ignored. When the terminal is reconnected via the normal 
LOGOI procedure, the terminal is placed in CP console function mode. To 
resume execution of the virtual machine, enter the BEGIR cosmand. The 
format of the DISCOII command is: 

DISConn [BOld] 

BOLD specifies that the communication line is not to be disabled. 
This option allows you to disconnect your terminal, and, at 
the same time, to avoid the process of telephone dialing into 
the systea to access your virtual .achine again. If specified, 
control returns to CP and the "V8/370 online" =essage, is 
displayed. 

When the DISCOII command is issued, the disconnect time message is 
issued. 

DISCOIIBCT IT hh:mm:ss zone weekday mm/dd/yy 

{
GRIP 
LIII 
DBV 

is the response to the user who issued the co.mand. 

raddr DISCOHBECT userid USERS = nnn 
raddr} 

rid 
is the response to the primary system operator informing him 
that the user represented by "userid" has been disconnected from 
the Vft/370 system. The "nnn" is the total number of users 
reaaining in the system. The response "rid" indicates the 
resource identification. 

Section 8: Por.at and Usage Rules for CP Commands 271 



DISPLAY 

DISPLAY 

Use the DISPLAY com.and to examine the following virtual machine 
components: 

• Virtual storage locations 
• General registers 
• Floating-point registers 
• Control registers 
• Program status word (PSW) 
• Channel addres~ word (CAW) 
• Channel status word (CSW) 

If a command line with an invalid operand is entered, the DISPLAY 
command terminates when it encounters the invalid operand; however, any 
previous valid operands are processed before termination occurs. 
Storage locations, registers, and control words can be displayed using a 
single command line. The format of the DISPLAY com.and is: 

1 
Display D 

hexloc1 
Lhexloc1 
Thexloc1 
Khexloc1 

.Q 

r , 
1 hexloc 11 
IKhexloc11 
1 Lhexloc11 
IThexloc11 
I .2 I 
L J 

r 

r r , , 
l{-}l hexloc2 I I 
I : Ij!!~ I I 
I L J I 
I r , 1 
I{. ]I bytecoun t I I 
I Ij!!~ I I 
L L J J 

r , , 
Greg1 I {-}lreg2 1 I 
Yreg1 I : lIND I I 
Ireg1 I L J I 

1 r , I 
I { • ]I regcount I I 
I I EID I I 
L L J J 

Psw 
CAW 
CSW 

is the first, or only, hexadecimal storage location 
whose contents are to be displayed at the terminal. If 
L is specified, the storage contents are displayed in 
hexadecimal. If T is specified, the storage contents 
are displayed in hexadecimal, with EBCDIC translation • 
If K is specified, the storage keys are displayed in 
hexadecimal. 

If hexloc1 is followed 
fullword boundary, it 
lowest fullword. 

by a period and is not 
is rounded down to the 

on a 
next 

If hexloc1 is not specified, the 
storage location O. If L, T, or K 

display begins at 
are entered either 

272 IB" V"1370: Command Language Guide for General Users 



{ 
-}heXIOC2 
: !1Q 

{ • }bytecount 
!!!! 

Gregl 

Iregl 

Iregl 

{ -}reg2 
: !BD 

DISPLAI 

without any operands, or followed immediately by a 
blank, the contents of all storage locations are 
displayed. If L, T, or K are not specified and this is 
the first operand, then the default value of zero is 
assumed. The address, hexlocl, may be one to six 
hexadecimal digits, leading zeros are optional. 

is the last of the range of hexadecimal storage 
locations whose contents are to be displayed at the 
terminal. Either - or: must be specified to display 
the contents of more than one location by storage 
address~ If hexloc2 is not specified. the contents of 
all storage locations from hexlocl to the end of 
virtual storage are displayed. If specified, hexloc2 
must be equal to or greater than hexloc1 and within the 
virtual storage size. The address, hexloc2, may be 
from one to six hexadecimal digits; leading zeros are 
optional. 

is a hexadecimal integer designating the number of 
bytes of storage (starting with the byte at hexloc1) to 
be displayed at the terminal. The period, ., must be 
specified to display the contents of more than one 
storage location by byte count. The sum of hexloc1 and 
bytecount must be an address that does not exceed the 
virtual machine size. If this address is not on a 
fullword boundary, it is rounded up to the next highest 
fullword. The value, bytecount, must have a value of 
at least one and may be from one to six hexadecimal 
digits; leading zeros are optional. 

is a decimal number from 0-15 or a hexadecimal integer 
from O-F representing the first, or only, general 
register whose contents are to be displayed at the 
terminal. If G is specified without a register number, 
the contents of all the general registers are displayed 
at the terminal. 

is an integer (0, 2, 4, or 6) representing the first, 
or only, floating-point register whose contents are to 
be displayed at the terminal. If I is specified 
without a register number, the contents of all of the 
floating-point registers are displayed at the 
terminal. 

is a decimal number from 0-15 or a hexadecimal number 
from O-F representing the first, or only, control 
register whose contents are to be displayed at the 
terminal. If I is specified without a register number, 
the contents of all of the control registers are 
displayed at the terminal. If Iregl is specified for a 
virtual machine without extended mode operations 
available, only control register 0 is displayed. 

is a number representing the last register whose 
contents are to be displayed at the terminal. Either -
or : must be specified to display the contents of more 
than one register by register number. If reg2 is not 
specified, the contents of all registers from regl 
through the last register of this type are displayed. 

section 8: Format and Usage Rules for CP Commands 273 



DISPLAY 

The operand, reg2, must be equal to or greater than 
reg1. If Gregl or Xreg1 are specified, reg2 may be a 
decimal number from 0-15 or a hexadecimal number from 
O-F. If Yreg1 is specified, reg2 may be 0, 2, 4, or 
6. The contents of registers regl through reg2 are 
displayed at the terminal. 

{ • }regcount 
EBD 

is a decimal number from 1 to 16 or a hexadecimal 
number from 1 to F specifying the number of registers 

PSW 

CAW 

CSW 

(starting with regl) whose contents are to be displayed 
at the terminal. If the display type G or I is 
specified, regcount can be a decimal number from 1 to 
16 or a hexadecimal number from 1 to F. If display type 
Y is specified, regcount must be 1, 2, 3, or 4. The 
sum of regl and regcount must be a number that does not 
exceed the maximum register number for the type of 
registers being displayed. 

displays the current virtual machine 
status word) as two hexadecimal words. 

PSW (program 

displays as one hexadecimal word the contents of 
hexadecimal location 48 (channel address word). 

displays as two hexadecimal words the contents of the 
channel status word (doub1eword at hexadecimal location 
40). 

When multiple operands are entered on a line for location or register 
displays, the default display type is the same as the previous explicit 
display type. The explicit specification of a display type defines the 
default for subsequent operands for the current display function. 
Blanks are used to separate operands or sets of operands if more than 
one operand is entered on the same command line. Blanks must not be 
used to the right or left of range or length delimiters (: .), 
unless it is intended to take the default value of the missing operand 
defined by the blank. For example: 

display 10 20 T40 80 G12 5 L60-100 

displays the following: 

hexadecimal location 10 
hexadecimal location 20 
hexadecimal location 40 with EBCDIC translation 
hexadecimal location 80 with EBCDIC translation 
general register 12 
general register 5 
hexadecimal locations 60 through 100 

One or more of the following responses is displayed, depending upon the 
operands specified. 

274 IB" '"/370: Com.and Language Guide for General Users 



DISPLAY 

XXXIXX wordl word2 word3 word4 [key] *EBCDIC TRANSLATION* 

Tn~s is the response you receive when you display storage 
locations; xxxxxx is the hexadecimal storage location of wordl. 
Wordl is displayed (word-aligned) for a single location 
specification. Up to four words are displayed on a line, followed, 
optionally, by an EBCDIC translation of those four words. Periods 
are printed for unprintable characters. Multiple line are used (if 
required) for a range of locations. If translation to EBCDIC is 
requested (Thexloc), alignment is made to the next lower 16-byte 
boundary; otherwise, alignment is made to the next lower fullword 
boundary. If the location is at a 2K page boundary, the key for 
that page is also displayed. 

XXXXXX TO xxxxxx KEY = kk 

This is the response you receive when you display storage keys; 
XXXXXX is a storage location and kk is the associated storage key. 

GPR n = genregl genreg2 genreg3 genreg4 

This is the response you receive when you display general 
registers; n is the register whose contents are genregl. The 
contents of the following consecutive registers are genreg2 and so 
on. The contents of the registers are displayed in hecadecimal. 
Up to four registers per line are displayed for a range of 
registers. Multiple lines are displayed if required, with a 
maximum of four lines needed to display all 16 general registers. 

FPR n = xxxxxxxxxxxxxxxx .xxxxxxxxxxxxxxxxx E xx 

This is the response you receive when you display floating-point 
registers; n ~s the even-number floating-point register whose 
contents are displayed on this line. The contents of the requested 
floating-point registers are displayed in both the internal 
hexadecimal format and the E format. One register is displayed per 
line. eultiple lines are displayed for a range of registers. 

Section 8: Format and Usage Rules for CP Commands 275 



DISPLIY 

HCR n = ctlreg1 ctlreg2 ctlreg3 ctlreg4 

This is the response you receive when you display control 
registers; n is the register whose contents are ctlreg1. The 
contents of the following consecutive registers are ctlreg2 and so 
on. The contents of the requested control registers are displayed 
in hexadeci.al. Up to four registers per line are displayed. 
!ultiple lines are displayed if required. 

PSW = XXXXXXXI XXXXXXXX 

The contents of the PSW are displayed in hexadecimal. 

Cl! 

CIW = XXXXXXXX 

The contents of the CIW (hexadecimal location 48) are displayed in 
hexadeci.al. 

CSW = xxxxxxxx xxxxxxxx 

The contents of the CSW (hexadeci.al location 40) are displayed in 
hexadecimal. 

Press the Attention key (or its equivalent) 
function while data is being displayed at the 
display ter.inates, another co •• and may be entered. 

to ter.inate 
ter.inal. When 

276 IB! V!/370: Com.and Language Guide for General Users 

this 
the 



DUMP 

DUMP 

Use the DUMP command to print the contents of various components of the 
virtual machine on the virtual spooled printer. The following items are 
printed: 

• virtual progra. status word (PSi) 

• General registers 

• Floating-point registers 

• control registers (if you have the ECMODE option specified in your 
V"/370 directory entry) 

• Storage keys 

• virtual storage locations 

The DUMP command prints the virtual PSi and the virtual registers 
(general, floating-point, and control). If only this information is 
desired, at least one virtual address must be specified, such as: 

DUMP 0 

The output format for the virtual storage locations is eight words 
per line with EBCDIC translation on the right. Bach fullword consists 
of eight hexadecimal characters. All the rest of the information (PSi, 
general floating-point and storage keys) is printed in hexadecimal. If 
you have the BCMOD! option in your VM/370 directory entry, the control 
registers are also printed. To print the dump on the real printer, a 
CLOSE command must be issued for the spooled virtual printer. The 
format of the DUMP com.and is: 

DUMP 

Lhexloc1 
Thexloc1 

hexloc1 
.Q 

I r , r r , , \ 
I Lhexloc 11 I{ - }I hexloc2 I I 
IThexloc111 : II!~ I I [*d umpid] 
I 
I 
L 

hexloc111 L ~ I 
Q II r , I 

~ I{ .} I bytecount I I 
I liND I I 
L L ~ ~ 

is the first or only hexadecimal storage location to 
be dumped. If you enter L or T without operands, the 
contents of all virtual storage locations are dumped. 

The address, hexloc1, may he one to six hexadecimal 
digits; leading zeros are optional. If hexloc1 is not 
specified, the dump begins at storage location o. 

If hexloc1 is followed by a period and is not on a 
fullword boundary, it is rounded down to the next lowest 
fullword. 

section 8: Format and Usage Rules for CP Commands 277 



DU"P 

{ 
-}heXlOC2 
: END 

{ ·lbytecount 
!!~ 

is the last hexadecimal storage location whose contents 
are to be dumped to the printer. The operand, hexloc2, 
must be equal to or greater than hexlocl and within the 
virtual storage size. To dump to the end of storage, you 
can specify END instead of hexloc2 or you can leave the 
field blank, since the default is END. If you specify 
:END or -END, the contents of storage froll hexlocl to END 
are dumped. The contents of storage locations hexlocl 
through hexloc2 are printed with EBCDIC translation at 
the printer. The operand, hexloc2, may be from one to six 
hexadecimal digits; leading zeros are optional. 

is a hexadecimal integer designating the number of bytes 
of storage (starting with the byte at hexlocl) to be 
dumped to the printer. The period,., must be specified 
to dump the contents of more than one storage location by 
byte count. The sum of hexlocl and bytecount must be an 
address that does not exceed the virtual machine size. 
If this address is not on a fullword boundary, it is 
rounded up to the next highest fullword. The value, 
bytecount, must be one or greater and can be no longer 
than six hexadecimal digits. Leading zeros are 
optional. 

can be entered for descriptive purposes. If specified, 
it becomes the first line printed preceding the dump 
data. Up to 100 characters, with or without blanks, may 
be specified after the asterisk prefix. No error 
messages are issued, but only 100 characters are used, 
including asterisks and embedded blanks. 

Normally, you should define beginning and ending dump locations in the 
following manner: 

dump Lhexlocl-hexloc2 
dump Lhexlocl.bytecount 
dump Lhexloc1-hexloc2 hexlocl.bytecount * dumpid 

If, however, a blank follows the type character (L or T) or the 
character and the hexloc, the default dump starting and ending locations 
are assumed to be the beginning and/or end of virtual storage. Blanks 
are used to separate operands or sets of operands if more than one 
operand is entered on the same command line. Blanks must not be used to 
the right or left of range or length delimiters (: - • ), unless it is 
intended to take the default value of the missing operand defined by the 
blank. Thus, all of the following produce full storage dumps: 

dump 1 dump t: dump O-end 
dump t dump 1. dump l:end 
dump dump t. dump t:end 
dUllp dump 0- dump O:end 
dump . dump 0: dump l.end 
dump 1- dump o. dump t.end 
dump t- dump I-end dump O.end 
dump 1: dump t-end 

The following produces three full dumps: 

dump 1 . t 
dump . . . 

278 IBM V"/370: Command Language Guide for General Users 



DUMP 

DUMPING LOC hexloc 

As the dump is processing, the following message is displayed at 
the terminal indicating that the dump is continuing from the next 
64K boundary: where hexloc is the segment (64K) boundary address 
for the dump continuation, such as 020000, 030000, or 040000. 

If you press the Attention key, 
while the message is being 
terminated. 

COMMAND COMPLETE 

or its equivalent, on the terminal 
displayed, the dump function is 

This response indicates normal completion of the dump function. 

section 8: Pormat and Usage BuIes for CP Commands 279 



ECBO 

ECHO 

Use the ECHO coaaand to place the terminal in the ECBO environment. 
When in the ICBO environment, any input line entered is transmitted 
unchanged back to the terainal a specified nuaber of tiaes. To 
terainate this transmission (for example, when you want to enter a 
different data line), press the Attention key (or its equivalent). When 
the specified nuaber of lines is displayed or the Attention key is 
pressed, another read to the terminal is issued to accept another data 
line. lote that no line editing is done; thus, the output line is the 
saae as the input line and aay contain any of the logical line editing 
syabols. The format of the ECHO co •• and is: 

nn 

r , 
ECho Innl 

11 I 
L ~ 

is the number of times the line is to be sent. The default is 
1. An invalid entry (that is, one that is greater than 99 or 
contains non-numeric characters) is treated as 1. 

ECBO EITIRED; TO TIR!IIATB TIST, TYPB BID 

This message is displayed after the ECHO co.aand is invoked to 
indicate that the BCBO environment has been entered. 

IITIR LIII 

This message requests the input line to be entered. A reply of liD 
returns the terminal to the CP command environment. 

280 IB! '8/370: Command Language Guide tor General Users 



GC20-1804-3 Page Modified by TNL GN20-2659 

EXTERNAL 

EXTERNAL 

Use the EXTERNAL command to simulate an external interrupt to the 
virtual machine and return control to that machin€~ This simulates 
pressing the interrupt key on the real computer console, or other 
functions which cause an external interrupt. Control is given to the 
virtual machine immediately. The format of the EXTERNAL command is: 

r-- -----, , r , , 
EXTernal , ,codel I 

L--

code 

, , ~.Q , , , l .J , 
--' 

is the interrupt code, a hexadecimal number to be associated 
with the external interrupt. Valid codes are 1005 (CPU 
Timer), 1004 (Clock Comparator) , and all codes less than or 
equal to X'FF'. The default is the External Interrupt Button 
on the system console, X'40'. 

None. Since control is given to the virtual machine, any response is 
from virtual machine processing. 

section 8: Format and Usage Rules for CP Commands 281 



GC20-1804-3 Page Modified by TNL GN20-2659 

INDICATE 

INDICATE 

Use the INDICATE command to display at your terminal, the use of and 
contention for major system resources. Use INDICATE LOAD to display 
system load conditions. Use INDICATE USER to display the total amount of 
certain resources used by your virtual machine during the current 
terminal session. Use the INDICATE USER command before and after the 
execution of a program to indicate the execution characteristics of that 
program in terms of the resources used. 

The format of the INDICATE command is: 

r-
I I r , 
I INDicate I 11Q!~ I 
I 
I 

I I USER * I 
I L .J L----__________ . ____________________________________ __ 

LOAD 

USER * 

CPU-nnnl 

displays CPU use, CPU contention, main storage use, and main 
storage contention. 

displays the amounts of system resources used by your virtual 
machine in the current terminal session. 

Q1-nn Q2-nn STORAGE-nnnl RATIO-n.n 

I. CPU-nnnl - is the percentage of total CPU usage. The CPU figure is a 
I smoothed value of the percentage of time that the system is running. 
I The value is smoothed because instantaneous values can be 
I misleading. 

I • 
I 
I 

Q1-nn Q2-nn - represent the contention for the CPU in terms 
smoothed number of users in queue 1 and queue 2 (maintained 
scheduler). 

of the 
by the 

I. STORAGE-nnnl - is the percentage of main storage usage. This is a 
I smoothed ratio of the sum of the estimated working sets of users in 
I queue 1 and queue 2 to the number of page able pages in the system. 

I. RATIO-n.n represents the contention for main storage. This 
I scheduler contention ratio is a smoothed value and is defined as: 

E+M 
RATIO 

M 

282 IBM VM/370: Command Language Guide for General Users 



GC20-1804-3 Page Modified by TNL GN20-2659 

INDICATE 

E the number of users waiting to be allocated main storage by the 
scheduler and, therefore, temporarily resident in the scheduler's 
eligible lists. 

M the number of users in queue 1 and queue 2. 

Thus, RATIO is the ratio of users now active to users being serviced 
and is 1.0 for optimum response. Optimum response occurs when enough 
storage exists to accommodate all active users, assuming that the 
system at this time is not CPU bound. 

If E and M are both zero, the value of RATIO is set to 1.0. 

When RATIO=1.5 and M=8, then 4 users are in the eligible lists 
waiting to be allocated main storage space by the scheduler. While 
1n the eligible list, the users are subject to scheduler 
discrimination, as defined by the biased scheduler. 

PAGES: RES-nnnn WS-nnnn READS=nnnnnn WRITES=nnnnnn DISK-nnnn DRUM-nnnn 
VTIME=nnn:nn TTIME=nnn:nn SIO=nnnnnn RDR-nnnnnn PRT-nnnnnn PCH-nnnnnn 

I • RES-nnnn - is the current number of your virtual storage pages 
I resident in main storage. This number is taken at an instant of time 
I during the execution of the INDICATE command. 

I. WS-nnnn - is the most recent system estimate cf your working set 
I size. 

I. REIDS=nnnnnn - is the total number of page reads that have occurred 
I for you since you logged on or since the last ACNT command was issued 
I for your virtual machine. 

I • WRITES=nnnnnn - is the total number of pages written for you since 
I you have logged on or since the last ACNT command was issued for your 
I virtual machine. 

I • DISK-nnnn - is the current number of virtual pages allocated for you 
I on the system paging disk. This number is taken at an instant of 
I time during the execution of the INDICATE command. 

I. DRUM-nnnn - is the current number of virtual pages allocated for you 
I on the system paging drum. This number is taken at an instant of time 
I during the execution of the INDICATE command. 

I • VTIME=nnn:nn - is your total virtual machine time since you logged on 
I or since the last ICNT command was issued for your virtual machine. 

I • TTIME=nnn:nn - is your total virtual machine time and total CPU time 
I (virtual and overhead) that you have used since you logged on or 
I since the last ICNT com.and was issued for your virtual machine. 

I • SIO=nnnnnn - is the total number of non-spooled I/O requests that you 
I have issued since you logged on or since the last ACNT command was 

section 8: Format and Usage Rules for CP Commands 282.1 



GC20-1804-3 page Modified by TNL GN20-2659 

INDICITE 

issued for your virtual machine. 

I. RDR-nnnnnn - is the total number of virtual cards read since you 
I logged on or since the last leNT command vas issued for your virtual 
I machine. 

I • PRT-nnnnnn - is the total number of virtual lines printed since you 
I logged on or since the last ICNT command vas issued for your virtual 
I machine. 

I. PCH-nnnnnn - is the total number of virtual cards punched since you 
I logged on or since the last ICNT command vas issued for your virtual 
I machine. 

282.2 IBM VMj370: Command Language Guide for General Users 



GC20-1804-3 Page Modified by TNL GN20-2659 

IPL 

IPL 

Use the IPL command to simulate an initial program load function for a 
virtual machine. IPL simulates the LOAD button and the device address 
switches on the real computer console. The specified virtual address is 
accessed and the required input/output operations are performed to 
retrieve the IPL data. optionally, the IPL procedure can be stopped 
just before loading the virtual PSi except when initial program loading 
a named system. Also, parameters can be passed to the virtual machine's 
general registers. When the simulated load function is complete, CP 
initiates execution of the virtual machine by loading the IPL PSW which 
was stored during the simulation process. The format of the IPL command 
is: 

Ipl 

~ vaddr [cylno 1 

( systemname 

r , 

r , 
I CLear I 
IJ!Q~1~~~1 
L .J 

[STOP] 

---, 

( [PARft {pl p2 ••• } 1 ! 
_______________-J 

vaddr [cylno] ICLEAR I [STOP] [PARM {p1 p2 ••• }] 
INOCLEARI 
L .J 

simulates the IPL function when loading by device address. 

The address, vaddr, is the virtual address (cuu) of the device 
that contains the nucleus to be loaded. 

The number, cylno, is the cylinder containing the IPL data. 
If this operand is specified, CP loads the IPL data from the 
specified virtual cylinder instead of from the default, 
virtual cylinder zero. This operand is valid only for virtual 
direct storage devices. 

The CLEAR operand clears the virtual storage space to binary 
zeros before the operating system is loaded; NOCLEAR does not 
clear storage. Both of these operands are invalid if the user 
specifies systemname in the IPL command line. 

The STOP operand stops the virtual machine during the IPL 
procedure just before the initial PSi is loaded. The STOP 
operand provides the virtual simulation of the IPL procedure 
for a real machine in instruction step mode. The STOP operand 
is invalid with the IPL systemname form of the command. When 
the virtual machine stops, you can issue CP commands. For 
example, if you are loading OS or OS/VS into your virtual 
machine, you can use CP commands to store data into low 
storage to load an alternate nucleus or to alter the size of 
virtual storage. To restart the virtual machine, issue the 
BEGIN command. 

The PARM p1 p2 ••• operand passes up to 64 bytes of data 
(including embedded blanks) to your virtual machine's general 
registers (four bytes per register), starting with the high 
order byte of general register 0, whenever PARM is specified, 

Section 8: Format and Usage Rules for CP Commands 282.3 



IPL 

the remaining characters in the command line are treated as 
parameters to be passed to the virtual machine; therefcre, 
PARM .ust be the last operand entered on the co.mand line. 

systemname [PARM {p1 p2 ••• )] 
simulates the IPL function when loading a named syste. that 
was previously saved via the SAVESYS command. 

The systemna.e operand is the name of the previously saved 
system. It is loaded into virtual storage and given control. 
For more information about saved systems, see the !]Lll~: 

~12!~! Pr2gr~!!~I~2 ~Yig~· 

The PARM p1 p2... operand passes up to 64 bytes of data 
(including embedded blanks) to your virtual machine's general 
registers (4 bytes per register), starting with the high order 
byte of general register O. Whenever P4RM is specified, the 
remaining characters in the command line are treated as 
para.eters to be passed to your virtual machine; therefore, 
PARM must be the last operand entered on the command line. 

!Q!~: Care .ust be used when passing parameters to a named 
system (systemname)~ Named systems expect certain registers to 
be initialized when they are given control. Indiscriminate 
use of the PARM option could overlay a previously initialized 
register causing unpredictable results. 

After a successful IPL, any responses you receive are those from the 
operating system that was loaded and initialized. 

section 8: Format and Usage Rules for CP Commands 283 



GC20-1804-3 Page Modified by TNL GN20-2659 

LINK 

LINK 

Use the LINK co •• and to make a device that is associated with another 
virtual machine available to your virtual machine configuration, based 
upon information in that user's VM/370 directory entry. The format of 
the LINK command is: 

r-
I LINK 
L-

where: 
[TO]-userid 

vaddr 1 

[AS] vaddr2 

mode 

[TO] userid vaddrl [As] vaddr2 [mode] [[PASS=] password] 

is the name of the user whose VM/370 directory is to be 
searched for device vaddrl. An asterisk (*) is used to 
specify that the Qevice is in your own VM/370 directory. 
If the keyword TO is omitted, the userid may not be TO or 
T. 

is the virtual device address (cuu) in the VM/370 
directory for that userid. 

is the virtual address (cuu) which is to be assigned to 
the device for your virtual machine. If the keyword AS is 
omitted, vaddr may not be A. If your virtual machine has 
tbe ECMODE option, any address up to X'PPF' is valid; 
otherwise, any address up to X'5FF' is valid. 

is the access mode; the primary access requested 
(read-only, write, or multiple), and the alternate access 
(read-only or write) desired if the primary access is not 
available. Valid modes are: 

~gg~ 1!~~.!!.!.!!g 
R Read-only access. The link is not done if any other 

user has the disk in write status. R is the default 
mode if the link is to another userid. 

RR Read-only access. The link is established even if 
another user has the disk in write status. 

W Write access. The link is not done if any other user 
has the disk in read or write status. 

WR Write and read access. If 
in read or write status, 
read-only is acceptable. 

another user has the disk 
an alternate access of 

M Multiple access. This means that a write-link is to 
be given to the disk unless another user already has 
write access to it, in which case no link is to be 
done. 

MR Write-link. If another user already has write access 
to the disk, a read-link is to be done. 

MW Write-link. This link is established in all cases. 

~~~1.!on: Multiple write access under CMS can produce 
unpredictable results.

If the mode is omitted, the default is R if the use rid is
another user; if you are linking to one of your own

284 IBM VM/370: Command Language Guide for General Users

LIIK

disks, the default is the "user access mode" of either R,
W, or ft as specified in the Vft/370 directory for your
disks.

PASS= password 18 a ene- to eight-character string that must match the
access mode password for devicE vaddrl in the Yft/370
directory for the user (userid) specified. The password
should be specified only when the LIIK is executed by a
virtual machine (for example, from CftS), since the
password is not print suppressed when included with the
LIIK command~ The password cannot be the same as ani of
the access modes (R, RR, V, VR, ft, ftR, or ftV) if the
default mode is to be used.

lote: The access mode password should not be confused
with a user password.

If you link to one of your own disks, no password is required. Also,
if the link is to a device whose password is ALL, meaning that the
device can be used by all users, the password is not required. However,
if the link is to any other userid, a password for the desired device
must be provided.

!2te: The access allowed by the LIIK command to the vaddrl device
belonging to userid is summarized below. Iou read the columns down to
determine the type of link that results. The first row indicates the
primary (and, optionally, the alternate) access mode requested. The
second row indicates whether read, write, or multiple passwords exist in
the V8/370 directory for the disk being linked. The third row indicates
whether the disk is already being used, and if so, the mode of its
access. The last row indicates the type of link established. For
example, the third column is interpreted as follows: if you request a
read access link (R) to a disk that has a read password defined and that
already is accessed in read mode, you can establish a read link.

Primary access requested:
alternate access (if any) :

I
R R R R R V V V V V i ft ft ft 8 ft ft 1

R R R R i I
---1 Read password in directory:
write password in directory:
ftult. password in directory:

I I I I I
I I I I I I

I
1

I I I I I I I
---1 Any existing links: I R V V I R R V V I R V V V 1
==1
Access established: I R R I R I W I R I R I V V I R V 1
--1
!he~~: I=no or none; R=read; W=write; ft=aultiplei I=yes

EITER READ PASSWORD:
••••••••

I

Type the read password over the mask to obtain read access to the
desired disk.

EITER VRITE PASSWORD:
••••••••

Type the write password over the mask to obtain write access to the
desired disk.

Section 8: Format and Usage Rules for CP Commands 285

LIIK

EITER ftULT PASSVORD:
••••••••

Type the aUltiple password over the aask to obtain write access to
a disk for which other users aay already have access.

!2i!: If LIIK is issued from a virtual aachine with the password
included on a co.aand line, and the password is incorrect, then CP
counts these incorrect passwords. If a total of ten such incorrect
passwords is entered, the LIIK co.aand froa a virtual aachine is
subsequently disallowed for that user for the re.ainder of the
session. LIII can still be issued directly froa the terainal (that
is, in CP co •• and mode), or the LIIK co •• and can be reinstated as a
valid co.aand from your virtual machine by logging off and logging
on again. (This procedure is designed to protect password security
if a virtual machine issues the LIIK comaand repeatedly with trial
passwords.)

D1SD vaddr2 LIIKED R/O

This response indicates that a read-only link to the given disk is
established, for a LIIK request with a mode of R or RR, and that no
other users are linked to the sa.e disk in read/write aode.

D1SD vaddr2 LIIKED R/i

This response indicates that a read/write link to the given disk is
established, for a LIIK request with a mode of V, VR, ft, ftR, or ftV,
and that no other users are linked to the same disk.

r ,
D1SD vaddr2 LIIKED R/O; R/V BY {nnn ~SERS}I; R/O BY {nnn USERS}I

user1d I userid I
L J

This response indicates that a read-only link to the given disk is
established for a LIII request with a aode of RR, but warns that
the disk is in read/write use by some users and possibly in read
use by some users. If only one user has access, the number of users
(nnn USERS) is replaced by userid.

D1SD vaddr2 LIIKED R/i; R/O BY {nnn ~SERS}
user1d

This response indicates that a read/write link to the given disk is
established for a LIII request with a mode of ft, ftR, or ftV, and
informs you that the disk is also in read-only use by userid or by
nnn users. (10 other users have a read/write link to the disk.)

r ,
D1SD vaddr2 LIIKED R/V; R/i BY {nn USERS} I; RIO BY {nnn USERS} I

userid I userid I
L J

This response indicates that a read/write link to the given disk is
established for a LIIK request with a .ode of Bi, but warns you
that the disk is also in read/write use by some users and possibly
in read use by soae users. If only one user has access, the number
of users (nnn USERS) is replaced by userid. .

286 IBft Yft/370: Com.and Language Guide for General Users

LOADVFCB

LOADVFCB

Use the LOADVFCB co.mand to specify the forms
spooled 3211 printer. The format of the LOADVFCB

control for
,.."" ... ""S ;a ..:._ ..
,"""" •• a.,uu ~~.

a virtual

LCADVFCB vaddr FCB name [Index [nn)) L-____________________________ ___

vaddr

FCB

name

is the virtual device address (cuu) of the virtual 3211
spooled printer.

is a required reserved word meaning Forms Control Buffer.

is a system-defined name for the 3211 FCB image which is to be
the controlling virtual FCB image.

There is only one VM/370 FCB image provided; its name is FCB1
and its format is as follows:

Space 6 lines/inch
Length of page 66 lines

Line
Represented

1
3
5
7
9

11
13
15
19
21
23
64

Channel Skip
Specification

1
2
3
4
5
6
7
8

10
11
12

9

INDEX [nn]
is the number of the print position that is the first print
position. The value, nn, must be a number from 1 through 31; a
leading zero need not be specified. If the keyword INDEX is
specified without a value, the index defaults to the value
specified in the FCB macro. See the !~L37Q: §I2!~~
~!£~!~~~~!~§ §~!g~ for a discussion of the FCB macro and forms
control images.

Note: The LOADVFCB command may be used with installations that do not
have a 3211. The virtual machine's VM/370 directory entry must indicate
a 3211, even though the program and operating . system have a 1403
defined. Then the LOADVFCB command can be used to obtain a virtual
forms control image for 1403 printers so that programs that use printer
overflow sensing may be spooled to disk.

None.

Section 8: Format and Usage Rules for CP Commands 287

GC20-1804-3 Page Modified by TNL GN20-2659

LOGOFF

LOGOFF

Use the LOGOFF command to terminate virtual machine execution and
disconnect your virtual machine from the VM/370 system. This command
causes all active spool files to be closed, temporary disks to be
relinquished, dedicated devices to be detached, and an accounting record
to be created for the user. The format of the LOGOFF command is:

,.-
I LOGoff
I LCGout L-____ _

[HOld]
,
I
I

HOLD retains the connection for a switched communication line to
enable you to logon without redialing the VM/370 system.

You should always logoff and not only turn power off on the terminal.
Terminal power off is not synonymous with logoff.

If you turn power off at the terminal instead of logging off, logoff
occurs by one of the following methods:

• ~~~g~~ lI~~~~i!~~ ~g~!i~~l--Logoff takes place after a 15-minute
interval has elapsed. This occurs if no attempt is made to power on
the terminal and re-establish communications with the still logged-on
virtual machine during this 15-minute period.

I • J~lQ]!§E!~I %~f~!~~l--Logoff only takes place 15 minutes after
VM/370 discovers that the terminal has been turned off (that is,
VM/370 attempts to send a message to the terminal, but gets back an
error code indicating that the terminal is turned off). Because many
hours may pass before VM/370 discovers that the terminal is turned
off, you run the risk of compromising the security of the virtual
machine and data files. Anyone turning the 3270 power back on has
access to the virtual machine without logging on. This is because
the machine is still logged on, although inactive.

CONNECT= hh:mm:ss VIRTCPU= mmm:ss.hs TOTCPU= mmm:ss.hs

CONNECT hh:mm:ss is the actual clock time spent in the current
terminal session in hours:minutes:seconds.

VIRTCPU mmm:ss.hs is the virtual CPU time used in the
current terminal session in
minutes:seconds.hundredths of seconds.

288 IBM VM/370: Command Language Guide for General Users

LOGOll

TOTCPU ••• :ss.hs is the total CPU time (including virtual and
overhead) used in the current terainal session
in ainutes:seconds.hundredths of seconds.

These ti.es are either the elapsed time for the entire ter:inal
session or the elapsed time since the ICIT co •• and was entered for
this user.

LOGOll IT hh: •• :ss zone weekday .a/dd/yy

is the response for a logoff.

{
GRIl raddr}
LINE raddr LOGOll IS userid USERS =
DBY rid

nnn

is the noraal response to the priaary systea operator.
specifies the resource identification.

{
GRIF raddr}
LIIE r~ddr LOGOll IS userid USERS =
DEY r1d . -

nnn rORCED

DEY rid

is the response to the priaary system operator if the logoff is
forced by a line tiaeout or a terminal power-off.
DEV rid specifies the resource identification.

USER DSC LOGOll IS userid USERS = nnn

is the response
for a user who
co.aand.

to the primary systea operator when logoff occurs
had previously disconnected using the DISCOII

Section 8: loraat and Usage Rules for CP Co •• ands 289

LOGON

LOGON

Use the LOGON co •• and to identify yourself to the VB/310 syste. and to
access that syste.. Upon successful logon, VB/370 creates a virtual
machine configuration fro. infor.ation in the VB/310 directory. The
LOGOI com.and name may not be entered using any line-editing sy.bo1s,
but the operands .ay use these symbols. See the !AL11Q: ~!iA!! User's
~~ide for a detailed description of logon procedures. If you use LOGOI
because a teleprocessing line or terminal error disconnected you fro.
your virtual aachine, you have 15 minutes to logon again. If you do not
log on within 15 .inutes, your virtual aachine automatically logs off.
In this case, you .ay have to reconstruct files and restart jobs
interrupted by the teleprocessing line or ter.inal error. The format of
the LOGON command is:

Logon
Login

userid [password] [Bask] [Noip1]

use rid is the identifier assigned to you in the VB/370 system.

password is your password. Specify this field if no protection (that
is, .asking characters) is desired.

BASK

IOIPL

types masking characters to cover the password on typewriter
terminals without the print inhibit feature. The mask types on
the line following a proapting message from VB/310 requesting
you to enter your password. Should you forget to ask for
masking when you type LOGOI, you can press the carriage return
after the prompt for the password types, and V!/310 then types
out the masking characters.

specifies that the IPL device or naae in the VB/370 directory
should not be used for an automatic IPL.

Responses

EITEB PASSWOBD:

indicates that the userid has been accepted. You should type in
the password, or signal a carriage return if a mask is desired for
the password, and BASK was not included on the com.and line.

LOGBSG- hh:.m:ss .m/dd/yy

indicates the ti.e and date at which the system log message was
generated or most recently revised. If you wish to see all of the
system log messages, you must issue the CP com.and QUERY LOGBSG.
Any lines of the log message for which the first character is an
asterisk are displayed at this point.

290 IB! VB/310: Com.and Language Guide for General Users

LOGOI

This .essage is o.itted if all counts are zero, otherwise it
indicates the number of spool files that exist for JOU at logon
tiae.

LOGOI IT hh: •• :ss zone weekday •• /dd/yy

-- or --

RBCOIIBCTBD IT hh:.a:ss zone weekday .a/dd/yy

indicates the tiae, day of the week, and date at which the LOGOI or
RBCOIIECT is coaplete.

{
GRll raddr}
LIIB raddr LOGOI IS userid
DEY rid

-- or --

J GRll raddr}
J LIIB raddr

J
> RECOIIBCT userid

\ DBV rid

USBRS = nnn

USBRS = nnn

is the response to the pri.ary systea operator. DEV rid specifies
the resource identification.

Section 8: loraat and Usage Rules for CP Co •• ands 291

MESSAGE

MESSAGE

Use the !ESSAGE coaaand to transait aessage text to a specified userid
or to the priaary systea operator. If the user designated to receive
the aessage is not logged on or has suppressed the receiving of
aessages, the aessage is not transaitted and the sender receives a
diagnostic aessage to this effect. A aessage which is not received by a
user is not saved and aust be sent at a later tiae when the user is
receiving aessages. The aessage is displayed at the terainal when the
terainal is ready to receive output. If a typewriter terainal (or a
display terainal h.aving AUTOREAD set 01) is entering data, the class Any
aessage is held until an end-of-line (carriage return or EITER) signal
is received. The foraat of the !ESSAGE co.aand is:

Message
!SG {

:serid } asgtext

OPerator

where:

userid is the identification of the single user who is to receive the
aessage.

I * specifies that you are sending a message to yourself.

OPERATOR sends the aessage to the priaary systea operator regardless of
his userid.

asgtext is the text of the aessage which is to be transaitted. As
.any characters .ay be entered as will fit on the re.ainder of
the input line.

Responses

hh:aa:ss
!SG PROB OPBRATOR: asgtext

is the response received by the user fro. the syste. operator.

hh:.a:ss
BSG PRO! {tOGO~XXX}: asgtext

user1d

hh:.a:ss

is the foraat of the aessage sent to another user or to the
syste. operator, where userid is the na.e of the sender. If the
user sending the aessage is not logged on to Y!/310, LOGOI and
the line nu.ber are displayed instead of userid.

is the tiae in hours:.inutes:seconds when the aessage was sent
to the user.

If the user receiving the aessage is the pri.ary systea operator, the
alar. bell at the central coaputer console rings.

292 IBB YB/310: Co •• and Language Guide for General Users

HOTREADY

NOTREADY

Use the HOTREADY command to cause a virtual device to appear as if it
had changed from ready to not ready status. This co.mand is for Use with
spooled unit record devices and virtual consoles only. Any I/O operation
to the specified device, in progress at the time the command is issued,
is completed. On the next start I/O (510) instruction, the not ready
condition is in effect. The format of the HOTREADY command is:

,
10TReady vaddr I

vaddr

Response

I

is the virtual device address (cuu) of the unit to be removed
from ready status.

INVALID DEVICE TYPE

This is the response if the device specified by vaddr is not a
spooled unit record device or a virtual console.

section 8: Pormat and Usage Rules for CP Commands 293

ORDER

ORDER

Use the ORDER com.and to place your closed spool files, by device type,
in a specific order. you can deter.ine via the QUERY co.mand the
filename, filetype, originating userid, spoolid, and other attributes of
all of your files. The files are ordered as they are passed to your
spool device; you may order only your own files. The for.at of the ORDER
co.mand is:

ORDer I {Reader } {CLaSS c 1 CLass C2 ••• }1
I Printer spoolidl spoolid2 •••
I PUnch

1Sequencing can be done with the ORDER co.mand using a combination of
CLASS and spoolid specifications. For example:

ORDER PRIITER CLASS A 1963 CLASS C

specifies that printer files are processed in the following order:
all class A files, the file with spoolid 1963, and then all class C
files.

REIDER orders the reader spool files.
RDR

PRIITER orders the printer spool files.
PRT

PUICH orders the punch spool files.
PCH

CLASS c1 CLASS c2 •••
processes the input and output spool files in the order in
which their classes are specified. CLASS is a required
reserved word and cl, c2,... are one-character alphameric
fields (with values from A to z and from 0 to 9) representing
the spooling classes.

spoolid1 spoolid2 •••
processes the files represented by the spoolids in the order
in which the spoolids are specified.

{:~nD } FILES ORDERED

This response indicates the number of files ordered. It is not
displayed if you issued the CP SET IMSG OFF command.

294 IBM VM/310: Command Language Guide for General Users

PURGE

PURGE

Use the PURGE co •• and to remove your own closed spool files from the
system before they are printed or punched by the spooling devices, or
before they are read by a user. Any closed file may be purged regardless
of its status, as long as it has not been selected for processing. The
format of the PURGE co •• and is:

PURge
I ~ I Beader
I Printer
I) PUnch
I \ ALL

r ,l~
ICLass.c1 CLass.c2 ••• I (
I spoo11d 1 spoo11d2... i)
IALL I
L J

lPurging may be done using a combination of CLASS and spoolid
specifications. Por exa.ple:

PURGE PRINTER CLASS A 1932 CLASS D 619

specifies that all Class A and Class D printer files and printer
files with spoolids 1932 and 619 are to be purged.

READER purges all reader files.
RDR

PRIITER purges all printer spool files.
PRT

PUICB purges all punch spool files.
PCB

ALL purges all spool files. When ALL is specified for device type,
all other operands are ignored~

CLASS c1 CLASS c2 •••
purges the files of the specified device type and class. CLASS
is a required reserved word and c1, c2, ••• are one-character
alpha.eric fields (with values from A to Z and 0 to 9) that
represent the spooling class.

spoolid1 spoolid2 •••
purges only the files for the specified spoolids.

ALL purges all files of the specified type (reader, printer, or
punch) •

{:~nn} PILES PURGED

This response indicates the nu.ber of files purged.
displayed if you issued the CP SET IftSG co •• and.

It is not

Section 8: Pormat and Usage Rules for CP Co •• ands 295

QUBRY

QUERY

Privilege Cl!22: G and all classes except class Any

Use the class G QUERY command to
.achine configuration. You can
information:

find the status of your
request the following

• Bow .uch ti.e you have used during a ter.inal session.

syste. and
types of

• Bow many input and output spool files reside on your virtual
.achine.

• Bow you have set the functions of the SET command.

• Bow you have set the options of the TERftINAL co •• and.

• The status of all the devices on your virtual machine •

I. The channel operating mode of
I block-multiplexer or selector.

your virtual • achine, either

• All users, and their device addresses and access modes, who are
linked to a given virtual address.

• Various kinds of information about your virtual printer, punch, and
reader.

There are other operands you can use with the QUBRY com.and if you
have the privilege class required to use them. These are described in
the !ftL31Q: QE~tor~~ §uide. Also, if you are a CftS user, you can use
the CftS QUBRY co •• and to query the status of your CftS virtual machine.

lor ease of use, the QUERY co.mand and operands described in this
section have been separated into the operands available for general
users (class G) and those available to all users except class Any.

296 IBft Vft/310: Co.mand Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

QUERY

The QUERY Command lor Class G Users

The format of the Class G QUERY command is:

r---
1 Query

TIME

'

Time
set
TERMinal

Files [CLass c]

[Virtual]

Links

Reader
Printer
PUnch

PF[nn]

CHANnels \
GRAF
CONsole
Dasd
TApes
LINES
UR
STORage
ALL
vaddr

vaddr
r ,
1 spoolid 1
IALL 1
ICLass c 1
L .J

displays the current time, time zone, weekday, date, connect
and CPU time for the current terminal session.

FILES [CLASS c]
displays the number of spooled input and output files for your
virtual machine. Files currently being processed are not
included in the totals. If CLASS is specified, the number of
spooled input and output files of the class specified is
displayed.

SET displays the status of the SET command functions.

TERMINAL displays the current options in effect fer your virtual
console environment.

VIRTUAL displays the status of all virtual devices.

CHANNELS displays the channel mode of operation for the
virtual machine.

GRAF displays the status of all your virtual display
devices that are locally attached.

CONSOLE displays the status of your virtual consoles.

DASD displays the status of all ycur virtual direct
access storage devices.

Section 8: Format and Usage Rules for CP Commands 297

QUERY

TAPES

LINES

UR

STORAGE

ALL

vaddr

displays the status of all your virtual magnetic
tape devices.

displays the status
communication lines.

of all

displays the
devices.

status of all your

your virtual

unit record

displays the size of your virtual storage.

displays the status of all your virtual devices.

displays the status of the virtual device at address
vaddr.

LINKS vaddr

READER
RDR
PRINTER
PRT
PUNCH
PCH

displays the userid, device address, and access mode at the
terminal for all users linked to the specified v~rtual address
(vaddr) •

displays the following information, pertaining to your virtual
reader, virtual printer, and virtual punch spool files:

• Userid (of user who created the file)
• Spool file identification (spoolid)
• Class and originating device type
• Number of logical records in the file
• Number of copies specified for the file (has no effect for

reader files)
• File hold status

One line of information is displayed for each spool file.

PRINTER spoolid {
READER }

PUNCH

{

FILES }
READER
PRINTER
PUNCH

displays additional information for one spool file. The
spoolid operand must follow the READER, PRINTER, or PUNCH
operand. In addition to the information normally displayed for
reader, printer, or punch files, the following is also
displayed:

• Date and time the file was created
• Filename and filetype of file (if any)
• Distribution code of the file (PRINTER and PUNCH files

only)

Only one line of data is displayed (that data pertaining to
the spool file specified by spoolid).

ALL

displays additional information for spool files. The ALL
operand must follow the READER, PRINTER, or PUNCH operand. In
addition to the information normally displayed for the reader,
printer, or punch files, the following is also displayed:

298 IB6 V6/370: Command Language Guide for General Users

READER

QUERY

• Date and time the file was created
• Pilename and filetype of file (if any); if your file was

assigned a dsname and you later issue QUERY, only the first
20 characters of the 24-character field are displayed.

• Distribution code of the file (PRINTER and PUNCH files
only)

One line of information is
the type specified.

iii ~nl ::1IVQ~
---';---41: -- for each file of

{

FILES }

PRINTER CLASS c
PUNCH

PF[nn]

displays the basic
class specified by
READER, PRINTER, or

information for
c. This operand
PUNCH operands.

all speol files of the
must follow the FILES,

One line of information is displayed for each spool file of
the specified class.

displays the 3270 Program Function key number specified, along
with its associated command lines. If nn is not specified, all
12 program function keys and their associated data lines are
displayed. The value, nn, is a number from 1 (or 01) to 12.
See the CP SET command for an explanation of how to define and
use program function keys.

This section describes the messages CP prints in response to your
command.

TIME IS hh:mm:ss zone weekday mm/dd/yy

The current real clock time in hours:minutes:seconds, the time zone
(for example, EST), the day of the week and the calendar date
(month/day/year) are displayed.

CONNECT= hh:mm:ss VIBTCPU= mmm:ss.hs TOTCPU= mmm:ss.hs

The time spent in the current terminal session is displayed.

CONNECT= hh:mm:ss is the actual clock time spent in the current
terminal session in hours: minutes: seconds.

VIRTCPU= mmm:ss.hs is the virtual CPU time used in the current
terminal session in minutes:seconds.hundredths
of seconds.

TOTCPU= mmm:ss.hs is the total CPU time (virtual and overhead)
used in the current terminal session in
minutes:seconds.hundredths of seconds.

section 8: Format and Usage Rules for CP Commands 299

GC20-1804-3 Page Modified by TNL GN20-2659

QUERY

{ ON } {ON } ~ ~hE} {ON } {ON }
MSG OFF, WNG OFF, EMSG {TEXT, ACNT OFF, RUN OFF

LINEDIT {~~F ~, TIMER {~:F }, ISAM {~:F}' ECMODE {~;F }
REAL

{ ON {;~~VC}} { ON}
ASSIST OFF , PAGEX OFF

IMSG {~~F}
The settings of all functions controlled by the SET command and the
VM/370 directory ISAM and ECMODE options are displayed. Refer to
the discussion of the SET command for explanations of the
functions.

LINEND {~FF}, LINEDEL {~FF}, CHARDEL {~FF}' ESCAPE {~FF}

LINESIZE nnn, MASK {~:F}, APL {~:F}, ATTN {~;F}, MODE {~:}
The settings of all functions that are controlled by the TERMINAL
command are displayed. Refer to the discussicn of the TERMINAL
command for explanations of the functions. If LINEDIT is turned
off, the logical editing symbols displayed are those that were in
effect before line editing was turned off.

FILES: {~~n} RDR, {:~n} PRT, {:~n} PUN

The total number of spool files in your system is displayed. If you
specify the CLASS option with QUERY FILES, only the totals for the
class you specify are indicated rather than for all classes on your
system.

CHANNELS= {SEL}
BMX

The operating mode of the virtual machine channels is displayed.
This reponse applies to all of the virtual machine channels except
channel 0, which is always a byte-multiplexer channel, and any
channels with virtual or real channel-to-channel adapters, which
are always selector channels.

300 IBM VM/370: Command Language Guide for General Users

vaddr ION DEY raddr}~
llOT RIID!

QUIR!

The status of all locally attached virtual display devices defined
to your virtual aachine is displayed.

vaddr is the virtual address to which the device is attached.

raddr is the real address of the device.

BOT BlIDY shows the status of a virtual display deyice that has not
been attached via the DIlL coaaand.

{ GRIP}
COIS vaddr 01 LIII raddr { TER!} {STOP }

IOTIR! STIRT

{ COlT} { HOLD} {RBID! }
vaddr CL c BOCOIT JOHOLD COP! nn 10TRBID!

vadd r {i~R } userid DIST distcode

Por virtual aachine consoles, a three-line response is displayed.
The first line shows the console status and options and the next
two lines are the virtual console spooling status.

vaddr is the virtual address of the virtual aachine console.

raddr is the real address of the terainal associated with the
virtual console.

c is the spooling class of the console.

nn is the nuaber of copies spooled.

userid is the user identification.

distcode is the distribution code.

The other fields indicate the setting of the respective options in
the SPOOL coaaand.

The default settings for a virtual console are:

COIS vaddr 01 DBV raddr TER! STOP
vaddr CL T 10COIT 10 HOLD COPY 01 RBIDY
vaddr paR userid DIST distcode

Section 8: Poraat and Usage Rules for CP Coaaands 301

QUERY

{ R/i}
DASD vaddr type volser B/O DDD CYL

The status of each virtual disk defined for your syste. is
displayed.

!lhe!:~:

vaddr is the virtual address to which the DASD device is
attached.

type is one of the following device types:

volser

2311
2305
2314
3330
3340
231T (2311 at top of 2314)
231B (2311 at bottom of 2314)

is the volu.e serial number of the system disk on which
this virtual disk resides.

R/i indicates the read/write status of the disk.
R/O

nnn is the number of cylinders on the virtual disk.

TAPE vaddr ON DEV raddr

The status of each tape defined for your system is displayed.

vaddr

raddr

is the virtual address to which the tape is attached.

is the real address of the tape.

LINE vaddr ON DEV raddr

The status of all co.munication lines defined in your virtual
.achine is displayed.

vaddr is the virtual address to which the line is attached.

raddr is the real address of the line.

{
:,ENABLED }

LINE vaddr DISABLED

The status of virtual com.unication lines at virtual address vaddr
is displayed.

302 IBft V8/370: Co •• and Language Guide for General Users

QUERY

{ CORT} { HOLD} { EOF} { READY}
RDR vaddr CL c BOCOBT .. BOHOLDNOEOF . ROTREADY _

The status of all the virtual readers attached to your virtual
machine is displayed.

where: vadci'r
c

is the virtual device address of the virtual reader.

is the spool file class which the device services. A
class of * indicates the device serves all classes of
spool files for input.

The other fields indicate the setting of the respective options in
the SPOOL command.

The default settings for a reader are:

RDR vaddr Cl * IOCONT NOHOlD READY EOF

{ PRT } { CORT} { HOLD} {REIDY}
PUB vaddr Cl C ~OCONT} .0HOl£ COpy nn NOTREADY

{
iTO }

vaddr FOB userid DIST distcode

The status of all the virtual printers and punches attached to your
virtual machine is displayed.

where:
vaddr

c

nn

is the virtual device address of the virtual printer or
punch.

is the output class assigned to spool files produced from
the device.

is the number of copies of each output file to be
produced.

TO userid indicates that the
becomes a reader
userid.

output from the device, when closed,
input spool file for the indicated

FOB userid
indicates the userid identification (spool file owner)
assigned to spool files produced from the device.

distcode is the distribution code assigned to each spool file
produced from the device.

Bote: The distcode in this case indicates the FOR userid; however,
the-distcode produced on the output files when the file is closed
is the distcode assigned to the FOR userid as specified in the
V!/370 directory.

The other fields indicate the setting of the respective options in
the SPOOL co •• and.

Section 8: Pormat and Usage Rules for CP Co •• ands 303

QUERY

The default settings are:

{ PRT}
PUN vaddr CL A ROCONT NOHOLD COPY READY 01

vaddr FOR userid DIST distcode

where:
userId and distcode are assigned for the virtual machine.

STORAGE = nnnnnK

The size of the virtual .achine in .ultiples of 1024 bytes is
displayed.

Has the same effect as if all the following com.ands were issued:

QUERY VIRTUAL STORAGE
QUERY VIRTUAL LINES
QUERY VIRTUAL TAPE
QUERY VIRTUAL UR
QUERY VIRTUAL DASD
QUERY VIRTUAL GRAF
QUERY VIRTUAL CORSOLE
QUERY VIRTUAL CHANNELS

The response is in the same form as QUERY VIRTUAL DASD, TAPES, LINES, or
UR, depending on virtual device type.

userid vaddr {R/O},
• R/i

A list of users who linked to the device at virtual address vaddr
is displayed.

userid

vaddr

is the identification of the user who originated the
link.

is the virtual address by which the user (userid) refers
to the device.

R/O is the type of access the user (userid) has to the
R/i device.

304 IB! V!/370: Co •• and Language Guide for General Users

QUERY

r ,
ORIGINID lILE CLASS RECDS CPY HOLD IDATE TIftE NAftE TYPE DIST I
userid spoolid c typ norecs nn stat Imm/dd hh:mm:ss fn ft distcodel

L .J

userid is the user who originally created the file.

spoolid is a unique, system-assigned number which is used by Vft/370 to
identify the file.

c is the spool file class.

typ is the originating device type (PRT, PUR, CON, or RDR) •

norecs is the number of logical records contained in the file.

nn

stat

mll/dd

is the number of copies assigned to the file (it has no effect
for virtual reader files).

is the file hold status: lONE (no hold), USER (user hold), SYS
(syste. hold), or USYS (syste. and user hold) •

is the date the file was created in month/day.

hh:II.:ss is the time of file creation in hours:.inutes:seconds.

fn is the filename assigned to the file (if any) •

ft is the filetype assigned to the file (if any).

distcode is the distribution code assigned to the file.

When you issue QUERY RBIDBR, QUERY PRINTER, or QUERY PUNCH cOllllands,
rD responds by listing (in the fora described) all the files associated
with your virtual reader, printer, or punch.

The information listing DATE, TIME, RAftE, TYPB, and DIST (date of
file creation, time of file creation, nalle of file, filetype of file,
and file distribution code) is displayed only when you specify the ALL
or spoolid operands.

{ IftftBD}
Plnn DELIY pfdatal •••

The program function defined for a program function key is
displayed. If there is no function defined for the program
function key, this message is generated in the user input area of
the screen:

Plnn UIDBPIIBD

lot!: If the next com.and you enter is shorter
you .ust first clear the input area or enter
eliminate the message; otherwise, errors result.

than this message,
enough blanks to

Section 8: lorllat and Usage Rules for CP COllmands 305

QUERY

QUERY Command for All Classes of User:,; (Except Class Any)

Use tbis form of the QUERY command to:

I. Display the log messages.
I. List all the users that are logged on.
I. Display the number of users that are logged on or dialed to 'ft/370.

This form of the QUERY command is for all classes of users except those
in the Any category. The format for this QUERY command is:

Query

{

LOGmsg }
Haaes
Users [userid]
userid L---__ ~

LOGftSG

HAftES

USERS

displays the log messages of the day.

displays a list of all the users logged on and
address of the line to which each is connected.
is disconnected, DSC is printed instead of
address.

the real
If a user
the line

displays the number of logged on users and the number of
users logically connected to other virtual machines.

USERS use rid displays the user identification and the terminal device
userid address of the specified user if he is logged on. If the

user is not logged on, a message to this effect is issued.
Use the QUERY USERS userid format if the userid is the same
as an operand of the QUERY command (for example, TAPESJ.

* logmsg text line 1

* logmsg text line n

All lines (both those with an asterisk and without) in the log
message file are displayed.

userid - {DSC }' raddr

userid - { DSC }' •••
raddr

306 IBft '8/370: Command Language Guide for General Users

QUERY

A list of all logged-on users is displayed; if the user is
currently connected, the real address to which he is connected is
displayed (raddr); if he is not connected to the system, DSC is
displayed.

nnn USERS, ••• DIALED

The number of users logged on and dialed to VM/310 is displayed.

!~!I!:

nnn is the total number of logged-on users •

•• m is the total number of users attached via DIAL to virtual
machines.

Note: DIALED means the line is not available to CP because it is
logIcally attached to a multiple-access virtual machine and is a
part of that user's virtual machine operation.

userid - raddr

The real address (raddr) to which the specified user is connected
is displayed.

section 8: For.at and Usage Rules for CP Com.ands 301

READY

READY

Use the READY co •• and to set a device-end interrupt pending for the
specified virtual device. The status of the virtual machine is
unchanged. Other than having a device-end interrupt pending, the virtual
device is unchanged. The format of the READY com.and is:

I READY vaddr
L

vaddr is a virtual device address (cuu).

None.

308 IBM VM/370: Command Language Guide for General Users

REQUEST

REQUEST

Use the REQUEST command to make an attention interrupt pending at your
virtual console. The format of the REQUEST com.and is:

REQuest

The ATTN command performs the same functions as REQUEST and the tva
commands can be used interchangeably.

lone.

Section 8: Por.at and Usage Rules for CP Co •• ands 309

RESET

BESET

Use the RESET co •• and to clear all pending interrupts fro. the specified
virtual device. In addition, all error conditions occurring as a result
of unit checks and virtual sense bytes are reset. Th~ for.at of the
RESET co •• and is:

RESET vaddr

.!.h~:

vaddr is a virtual device address (cuu) of the device to be reset.

DEVICE RESET

310 IB! V!/370: Co •• and Language Guide for General Users

REWIND

REWIND

Use the REWIND command to rewind (but not unload) a real tape unit
attached to your virtual machine at a specific virtual device address.
This accomplishes the manual operation of rewinding and making the tape
ready at the tape unit. The format of the REWIND command is:

r--------------------- ------------
I REWind vaddr
L-__ _

vaddr is the virtual device address (cuu) of the tape unit to be
rewound.

REWIND COMPLETE

This is the normal response.

REWIND NOT PERFORMED

This is the response you receive if the real tape unit is not
ready.

section 8: Format and Usage Rules for CP Commands 311

GC20-1804-3 Page Modified by TNL GN20-2659

SET

SET

Use the SET command to control various functions within your virtual
system. The for.at of the SET command is:

,----
SET

ACNT {ON }
OFF

MSG {ON }
OFF

ACNT
MSG
WIG
IMSG
RU I
LINEDit
ECmode
ISAM
NOTRans
PAGE X

EMSG

\

ON ~ OFF
CODE
TEXT

TIMER

{
Q! } OFF
REAL

ASsist

r
PFnn IIMMed

IQ~1~:I~g
L

, r , \ I ISVC I
I I NOSVC I

.. L ..

,
I [pfdata1tpfdata2t ••• pfdatan]
I ..

PFnn [TAB n1 n2 •••]

PFnn COpy [resid]

---,

controls whether accounting information is displayed at
the terminal or not (ON and OFF respectively) when the
operator issues the CP ACNT command. When you log on
VM/370, ACNT is set on.

controls whether messages sent by the MSG command from
other users are to be received at the terminal. If ON is
specified, the messages are displayed. OFF specifies
that no messages are received. When you log on VM/370,
MSG is set on.

controls whether warning messages are displayed at the
terminal. If ON is specified, all warning messages sent

312 IBM VM/370: Command Language Guide for General Users

IMSG faN l
tOFF f

RUN {ON}
OFF

LINEDIT {ON }
OFF

ECMODE
{ ~~F }

IS AM

NOTRANS {ON }
OFF

GC20-1804-3 Page Modified by TNL GN20-2659

SET

via the CP WARNING command from the system operator are
received at the terminal. If OFF is specified, no
warning messages are received. When you log on VM/370,
WNG is set on.

controls whether certain informational responses issued
by the CP CHANGE, DEFINE, DETACH, ORDER, PURGE, and
TRANSFER commands are displayed at the terminal or not.
The descriptions of these CP commands tell which
responses are affected. If ON is specified the
informational responses are displayed. If OFF is
specified, they are not. The SET IMSG ON or OFF command
line has no effect on the handling of error messages set
by the SET EMSG command. When you log cn VM/370, IMSG is
set on.

controls whether the virtual machine stops when the
Attention key is pressed. ON allows you to activate the
Attention key (causing a read of a CP command) without
stopping your virtual machine. When the CP command is
entered, it is immediately executed and the virtual
machine resumes execution. OFF places the virtual
machine in the normal CP environment, so that when the
Attention key is pressed, the virtual machine stops.
When you log on VM/370, RUN is set off.

controls the line editing functions. ON specifies that
the line editing functions and the symbols of the VM/370
system are to be used to edit virtual CPU console input
requests. This establishes line editing features in
systems that do not normally provide them. OFF specifies
that no character or line editing is to be used for the
virtual machine operating system. When you log on
VM/370, LINEDIT is set on.

controls whether the virtual machine operating
system may use system/370 extended control mode and
control registers 1 through 15. Control register zero may
be used with ECMOD! either ON or OFF. When you log on
VM/370, ECMODE is set according to the user's directory
option; ON if ECMODE was specified and OFF if not.

Note: Execution of the SET ECMODE {ONIOFF} command always
causes a virtual system reset.

controls whether additional checking is performed
on virtual I/O requests to DASD in order to support the
use of the as Indexed Sequential Access Method (ISAM).
When you log on VM/370, ISAM is set according to the
user's directory options; ON if ISAM was specified and
OFF if not.

controls CCW translation for CP. NOTRANS can be
specified only by a virtual machine that occupies the
virtual=real space. It causes all virtual I/O from the
issuing virtual machine to bypass the CP CCW
translation. To be in effect in the virtual=real

section 8: Format and Usage Rules for CP Commands 313

GC20-1804-3 Page Modified by TNL GN20-2659

SET

PAGEX {ON }
OFF

EMSG {ON } OFF
CODE
TEXT

TIMER { ON }
OFF
REAL

ASSIST ~ r
lOB

1

I
L

OFF

,
I
I

J

environ.ent, SET NOTRANS ON must be issued after the
virtual=real machine is loaded via the IPL command. (IPL
sets the NOTRANS option to an OFF condition.)

controls the pseudo page fault portion of the
VM/VS Handshaking feature. PAGEX ON or OFF should only be
issued for an OS/VS1 virtual machine that has the VM/VS
Handshaking feature active. It can only be specified for
a virtual machine that has the extended control mode
(ECMODE) option. PAGEX ON sets on the pseudo page fault
portion of handshaking; PAGEX OFF sets it off. When you
log on to VM/370, PAGEX is set OFF.

controls error message handling. OB specifies that both
the error code and text are displayed at the terminal.
TEXT specifies that only text is displayed. CODE
specifies that only the error code be displayed. OFF
specifies that no error message is to be displayed. When
you log on VM/370, EMSG is set to TEXT.

Note, CMS recognizes EMSG settings for all error (E),
information (I), and warning (W) messages, but ignores
the EMSG setting and displays the comFlete message (error
code and text) for all response (R), severe error (S),
and terminal (T) messages.

controls the virtual timer. ON specifies that the
virtual timer is to be updated only when the virtual CPU
is running. OFF specifies that the virtual timer is not
be updated. REAL specifies that the virtual timer is to
be updated during virtual CPU run time and also during
virtual wait time. If the REALTIMER option is specified
in your VM/370 directory entry, TIMER is set to REAL when
you leg on; otherwise it is set to ON when you log on.

r ,
ISVC I
INOSVCI
L J

controls the availability of the virtual machine assist
feature for your virtual· machine. The assist feature is
available to your virtual machine when you log on if (1)
the real CPU has the feature installed and (2) the system
operator has not turned the feature off. The SVC handling
portion of the assist feature is invoked when you log on
unless your VM/370 directory entry has the SVCOFF option.
Issue the QUERY SET command line to see if the assist
feature is activated and whether the assist feature or
VM/370 is handling SVC interrupts.

All svc 76 requests are passed to CP for handling,
regardless of the SVC and BOSVC operands.

If you issue the SET ASSIST command line and specify SVC
or BOSVC while the virtual machine assist feature is
turned off, the appropriate bits are set. Later, if the
feature is turned on again, the operand you specified
while it was off becomes effective.

314 IBM VM/370: Command Language Guide for General Users

r ,

GC20-1804-3 Page ~odified by TRL GR20-2659

SET

OR sets the assist feature on for the virtual machine;
OFF turns it off. SVC specifies that the assist feature
handles all SVC interrupts except SVC 76 for the virtual
machine; ROSVC means V~/370 handles the SVC interrupts.
See the !~LJ1Q: §l§!g! ~!Qg~!!g!~§ g~!g~ for information
on how to use the assist feature.

PFnn II~~ED I [pfdata1'pfdata2' ••• pfdatan]
IDELAYED I
L ~

PFnn TAB n1 n2

defines a program function for a program function key on
a 3277 Display station and indicates when that function
is to be executed. See the !~LllQ: I~!!!~gl Us~!~§ ~~!~~
for a description of how to use the 3277 program function
keys.

The value, nn, is a number from 1 Cor 01) to 12 that
corresponds to a key on a 3277. The program function is a
"function", or programming capability, you create by
defining a series of V~/370 commands or data you want
executed. This series of commands executes when you press
the appropriate program function key.

I~~ED specifes that the program function is executed
immediately after you press the program function key.

DELAYED specifies that execution of the program function
is delayed for a display terminal. When the program
function is entered, it is displayed in the input area
and not executed until you press the Enter key. DELAYED
is the default value for display terminals.

pfdata1'pfdata21 ••• pfdatan defines the V~/370 command or
data lines that constitute the program function. If more
than one command line is to be entered, the pound sign
C') must separate the lines. If you use the pound sign
(t) to separate commands that you want executed with the
designated PP key, you must precede the command line with
'CP, turn line editing off, or precede each pound sign
with the logical escape character C"). For further
explanation, see the "Examples of Setting Program
Function Keys" section that follows. If no command lines
are entered, PFnn is a null command. Program functions
cannot be embedded within one another.

specifies a program function number to be associated with
tab settings on a terminal. The number of the PF key, nn,
can be a value from 1 Cor 01) to 12. See the VMLllQ:
~~!1 §~!g~ for examples of how this feature is used.

TAB is a keyword identifying the tab setting function.
The tab settings may be entered in any order.

PFnn COPY [resid]
specifies that the program function key, numbered nn,
performs a COpy function for a remote 3270 terminal. nn
must be a value of 1 or 01 to 12. The COpy function
produces a printed output of the entire screen display at
the time the PF key is actuated. The output is printed on
an IB~ 3284, 3286 or 3288 printer connected to the same
control unit as your display terminal.

section 8: Format and Usage Rules for CP Commands 315

GC20-1804-3 Page Modified by TNL GN20-2659

SET

The resid operand may be specified if more than one
printer is connected to the same control unit as your
display terminal. It is a three-character hexadecimal
resource identification number assigned to a specific
printer. If resid is entered, the printed copy is
directed to a specific printeri if not, the copy is
printed on the printer with the lowest resid number. The
resid numbers of the printers available to your display
terminal can be obtained from your system operator. If
only one printer is available, resid need not be
specified.

If the command is invalid or if the designated or default
printer is not free (other display terminals may be using
it) or is not connected to the same control unit as your
display terminal, a NOT ACCEPTED message appears on the
screen, If the printer was busy, retry the operation
until the printer honors your request.

You may include your own identification on the printed
output by entering the data into the user input area of
the screen before you press the PF key. The
identification appears in the lower left of the printed
copy.

This example shows you how the SET PFnn command is processed if you do
not turn line editing off or use the logical escape character.

Enter one of the following commands while in CMS mode:

SET PF02 IMMED Q RDR#Q PTRiQ PUN

or

CP SET PF02 IMMED Q RDRIQ PTR#Q PUN

Now press the ENTER key:

1. The ENTER key causes immediate execution,

2. Only the Q PTR and Q PUN commands execute, and

3. Q PTR and Q PUN are stripped from the PF02 key assignment leaving Q
RDR, which was not executed.

The following examples demonstrate two methods for avoiding the
problem.

316 IBM VM/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

SET

Enter one of the following commands while in CMS mode:

tcp SET PP02 IMMED 0 RDRIO PTRIO PUN

-- or

CP SET PP02 IMMED 0 RDR"tQ PTR"IQ PUN

or

SET PP02 IMMED Q RDR"tQ PTR"tQ PUN

Now press the ENTER key.

CP assigns the three QUERY commands as functions of the PP02 key.
pressing the PP02 key executes the three QUERY commands.

Enter the following command while in CMS mode:

SET LINEDIT OPP

and press the ENTER key.

Then enter:

SET PP02 IMMED Q RDRIO PTRtQ PUN

or

CP SET PP02 IMMED Q RDRtQ PTRtQ PUN

and press the ENTER key.

CP assigns the three QUERY commands as functions of the PP02 key.

Then enter:

SET LINEDIT ON

and press the ENTER key.

Pressing the PP02 key executes the three QUERY commands.

* PPnn UNDEFINED

This response appears in the user area of the screen on a 3277
Display Station if a PP key that is undefined is pressed.

Section 8: Format and Usage Rules for CP Commands 316.1

GC20-1804-3 Page Modified by TNL GN20-2659

SLEEP

SLEEP

Use the SLEEP command to place the virtual machine in a dormant state
but allow messages to be displayed. IDe vlr~ual maChlne does not run
during this time, but connection time is still being counted. You can
specify a sleep interval in the command line and the virtual machine is
awakened automatically when the specified interval has elapsed. Awaken
the terminal at anytime by signalling attention. In either case, this
returns the virtual machine to the environment from which SLEEP was
issued. If no ln~erval is specltled, the virtual machine remains
dormant until awakened by signalling attention. The format of the SLEEP
command is:

r-
I
I
I SLeep
i
I
L

I ~h~!~:
I r r "
I I ISECII
I Inn 1]!1!11
I I I HRs II
ILL JJ

r r "
I ISEC II
I nn I ~!1! II
I IHRs II
L L JJ

I indicates the actual number of seconds, minutes, or hours of actual
I CPU time to sleep. The value nn can be any decimal number from 00
I through 99. If you specify no time unit, the value of nn is taken
I to be minutes.

If you issue the SLEEP command from a CP read or from a VM read using
the CP "escape" function (ICP SLEEP), the end of the time interval or
signalling attention returns you to the CP environment.

If you issue the SLEEP command while in virtual machine mode (for
example, CMS execution of the command line CP SLEEP), the end of the
time interval or signalling attention returns your terminal to virtual
machine mode without entering the CP environment.

The SLEEP command, with the time interval, is a convenient way to
delay or schedule the execution of certain jobs that could be run more
efficiently at a later time; for example, second shift.

None.

section 8: Format and Usage Rules for CP commands 317

GC20-1804-3 Page Modified by TNL GN20-2659

SPOOL

SPOOL

Use the SPOOL co.mand to modify the spooling control options in effect
for a given virtual spooling device or for a group of devices. The
SPOOL command can also initialize or stop the spcoling of virtual
console input and output.

You can direct a file to a remote location by using the SPOOL command
in conjunction with the TAG command. The section "Transmitting Files to
Remote Locations" which follows discusses the form cf the SPOOL command
you use to spool files across the Remote Spooling Communications
Subsystem (RSCS).

Unless otherwise set, the following options are default values for
spool files:

~EQQJ: liJ:~
Reader

Printer
Punch

Console

.Q~!i.2.!!'§
NOHOLD, NOCONT, EOF, CLASS * as specified in the
VM/370 directory entry

OFF, NOHOLD, NOCONT, COpy 01, CLASS as specified
in the VM/370 directory entry

NOHOLD, NOCONT, TERM, OFF, CLASS T, COPY 01

The format of the SPOOL command is:

r---
SPool

I
I{Reader}
I vaddr
I
I
I
I
I{printer}
I PUnch
I vaddr

{CONSOle}
vaddr

I
I
I
I
I

{
rllCLass {c* }'II I CONt I I HOld I I EOF I

INOContl INOHoldl INOEofl
L .J L .J L .J L .J

rr , r " r , r ,
IllHOld I ICONt I liTo II userid

IIForl1 * I IINOHoldl INOContl[CLass c] [COpy nn]
I L .J I SYSTEM
I L

I
I OFP
L

r ,
ICLOSE I
IPURGE I
L .J

r ,
ISTArtl

r
IHOld

IlL .J L .J

.J I
I
I

.J

,
I

r
ICONt

, r
I ITErm

,
I

ISTOp I INOHoldl INOContl INOTErml
L .J L .J L .J L .J

[CLass c] [COpy nn] r ,
ICLOSEI
IPURGEI
L .J

r ,
I[To] useridl
I OFF I
L .J

lAt least one of the options within braces must be selected; however,
more than one may be specified, and they may be entered in any order.

1

1

~ .J

318 IBM V8/370: Command Language Guide for General Users

READER
RDR

PHIlTER
PRT

puwell
PCB

CONSOLE

vaddr

SPOOL

modifies the options for all reader spool files.

modifies the options for all printer spool files.

!!odifies the fer all spool deY' ices.

modifies the options for the virtual console spool file and/or
initiates or stops the spooling of virtual console input and
output, including CP input/output.

is the device address (cuu) of the virtual unit record device
or console whose options are to be modified.

CLASS { c*} specifies the spool class of the device.
is a one-character alphameric field whose values
through Z, 1 through 9, or * (asterisk) •

The ~
can be 1

COlT

IOCOIT

BOLD

Unless your virtual reader class is asterisk (*), you must
ensure that any files to be read by your virtual reader are of
the same spool class as your virtual reader. The * is the
universal class; if your virtual reader is class *, it can
read any file, regardless of class.

ignores intermediate end-of-file indicators or CLOSE
requests. Por virtual readers, reading is continuous with all
end-of-file indicators ignored until all files spooled to the
virtual machine are read in. If this option is not in effect,
a unit exception is reflected to the virtual .achine at the
end of each spooled file. CaNT specified for the punch or
printer causes all CLOSE requests to be ignored until reset by
NOCOIT. If CaNT is specified, NOCONT cannot be specified.

COlT specifies that reading is to continue without intervening
end-of-file indications until all files .in the system that
belong to the user are read. If CaRT is not in effect or is
reset by specification of NOCOIT, an end-of-file indication is
reflected to the virtual machine at the end of each SPOOL file
in the syste.. The nature of the end-of-file indication to be
reflected is set by the EOP and NOEOP options. If the BOP
option is in effect, end-of-file is signaled by a unit
exception: this corresponds to pressing the end-of-file
button on a real card reader. If NOEOP is in effect for a
virtual reader, end-of-file is signaled by the reflection of a
unit check/intervention required status.

resets the continuous spooling option. If IOCORT is specified,
COlT cannot be specified.

places all files created by the specified device in a user
BOLD status. Par REIDER files, this option specifies that
input files for the specified reader are not deleted fro. the
system after they are read. The status of all files must be
changed by the CB1RG! co •• and. The status of output devices is
changed by the SPOOL command. If BOLD is specified, ROBOLD
cannot be specified.

section 8: Pormat and Usage Hules for CP Commands 319

SPOOL

BOHOLD

EOP

BOEOP

If the HOLD option is specified for a virtual printer or punch
that is transferred to a user for input (TO userid), that
virtual device places a user HOLD status on the reader file.
The user receiving the file cannot read its status until it is
changed by issuing the CHABGE command with the BOHOLD operand.
The spool file class of the virtual output device must match
the class of the receiver's virtual reader (or the virtual
reader aust have a class of *) in order for the spool file to
be processed. If these conditions are not satisfied, the
reader appears eapty to the virtual machine atteapting to read
a file, even though reader files do exist.

If a virtual reader is operating with COBT and HOLD, then
virtual reader files are saved and placed in a user HOLD
status. The file cannot be read until it is changed (using
the CHARG! co •• and) to a BOHOLD status.

resets the HOLD operand. Future files are not held. BOHOLD
resets the HOLD operand in effect for the specified reader.
This operand can be overridden for an active file being closed
by the CLOSE command using the HOLD or ROHOLD operand. If
BOHOLD is specified, HOLD aay not be specified.

sets a virtual end-of-file condition on the specified reader,
thereby ensuring that a unit exception condition is reflected
on the read that follows the reading of the last card in a
file. If EOP is specified, BOEOFmay not be specified.

specifies that the reading continues to physical end-of-file.
The virtual reader stops when no cards are left in the reader
and when a unit check/intervention required status is
pending. If BOEOP is specified EOF may not be specified.

[TO] userid

* SYSTEft
transfers the output of the virtual device to the virtual card
reader of the specified userid. If TO is omitted, the userid
may not be TO or T. TO * may be coded if the output is to be
transferred to your own virtual card reader. If TO userid is
specified, neither OFF nor FOR may be specified on the same
co •• and line.

If you specify COpy with TO userid, the number of copies you
specify has no effect on the receiver of the spool file; he
receives only one copy. However, if OFF or FOR are specified
on a subsequent command, the receiver of your spool file
receives the number of copies you specify via COPY. For
example, if the following command is entered:

SPOOL PUB TO USERA COPY 3 CLASS B

the COpy operand has no effect on the file going to USERA.
However, if the command:

SPOOL PUN OPP

is entered following the first co.mand, the COpy 3 specified
in the first statement effects the second co.mand.

TO SYSTE! is equivalent to specifying OFP and resets the
transferred spool option.

320 IBft Vft/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

SPOOL

[FOR] userid

OPF

COpy nn

CLOSE

I PURGE

START

indicates the use rid under which printed or punched output is
produced. The userid becomes the owner of the output spool
file and the distcode on the file is the distcode for the user
that is specified in the VM/370 directory. The file is not
transferred to the user's reader input. The default setting is
for your own virtual machine identification. FOR *, or FOR
SYSTEM can be coded to specifv your own identification and is
equivalent to the OFF option.-

resets the transferred spool option.

is the number of copies that are to be printed or punched when
the file is spooled to the real unit record equipment. This
operand is valid only for output files; the number of copies,
nn must be between 1 and 99 (leading zeros need not be
specified).

closes the specified device regardless of the CONT setting for
the device. If CLOSE is specified, PURGE may not be
specified. CLOSE does not affect the setting of any other
operand and is provided as a convenience to close a virtual
output device. As an example, this sequence of commands:

SPOOL PRT CORT
(print file)
(print file)
(print file)

SPOOL PRT ROCONT
CLOSE PRT
SPOOL PRT CORT

(print file)
(print file)

can be replaced with the following sequence to achieve the
desired result:

SPOOL PRT CORT
(print file)
(print file)
(print file)

SPOOL PRT CLOSE
(print file)
(print file)

closes and purges the spool file fro. the specified virtual
output device regardless of the CONT setting for the device.
If PURGE is specified, CLOSE cannot be specified. PURGE does
not affect the setting of any other operand and is equivalent
to issuing the CLOSE command for a device (or type of device)
with the PURGE operand. This form of the SPOOL command is
provided for your convenience.

places all console input and output in a spool file. Until a
CLOSE is issued for the console, characteristics of the
console spool file may be changed by use of the SPOOL CONSOLE
command. After the console is closed, the file becomes a

Section 8: Format and Usage Rules for CP Commands 321

GC20-1804-3 Page Modified by TNL GN20-2659

SPOOL

STOP

TERM

printer spool file whose characteristics can be changed by
issuing the CHllGE PRIITER com.and.

terminates the spooling of console input and output. The
co.mand SPOOL COISOLE STOP does not close the console spool
file.

displays the virtual console input and output at the terminal
in addition to placing it in a spool file. The TERM operand
has no effect until the START operand is specified.

NO TERM suppresses the display of console input and output of a system
running in a virtual machine. The display cf console input and
output of CP console functions, entered from CP mode, are not
suppressed. The NOTERM operand has no effect until the START
operand is specified.

Once you close a spool file by issuing the CMS PRINT or PUNCH command or
the CP CLOSE co.mand, CP assigns the spool file a number between 1 and
9900. This number is called the spoolid (spool file identification) for
the file. It can be used as a convenient way to uniquely identify the
file. It can also be used when you are manipulating the file with VM/370
spooling commands such as ORDER, CHANGE or CLOSE.

spoolids are assigned to all your spool files sequentially. ihen the
maximum number (9900) is assigned, CP begins again with the number 1.

When you print or punch a file, CP displays at your terminal the
spoolid it assigned to your file. You can find out various kinds of
information about a file using the spoolid with the many forms of the
QUERY command.

To direct files to remote stations, use the CP TAG and SPOOL commands in
conjunction with a command that causes the file to be closed and sent to
a virtual device (for example, a virtual printer or punch). Use the TAG
command to specify the device to be spooled and to associate with that
device the location identifier for the destinaticn of the file:

TAG DEV device locid

where device is the virtual device type (for example, PRINTER or PUNCH)
or virtual device address (vaddr) and locid is the name of the
destination to which the file is to be transmitted.

Use the SPOOL command to specify that output to the device specified
in the command is to be sent to the RSCS virtual machine, which perfcrms
the actual transmission of the file:

SPOOL device TO userid

where device is the same virtual device type or virtual device address
specified in the TAG command and userid is the userid of the RSCS
virtual machine at your installation. You can find out the userid of
your installation's RSCS virtual machine and the locid for the various
remote stations from your installations's system programmer.

322 IBM VM/370: Command Language Guide for General Users

SPOOL

After you issue the TAG and SPOOL commands, use a command (such as
the C~S PRINT or PUICH command or the CP CLOSE command) to cause the
spool file to be generated, closed, and spooled to the specified virtual
~on;~~
y~.~~~.

The following example shows how to use these three commands to
transmit a C~S file to a remote location:

TAG DEV PUNCH CA~BRIDG

SPOOL PUICH TO NET

PUNCH ~YPROG ASSE~BLE

The TAG command defines the type of file to be transmitted, a punch
file, and the remote station to which you want it transmitted,
Cl~BRIDG. NET is the userid of the virtual machine controlling the RSCS
network: you direct your file to that virtual machine with the SPOOL
command. The PUICH command causes the file ~YPROG ASSE~BLE to be
punched on your virtual machine card punch, closed, and then spooled to
the virtual reader of the RSCS virtual machine, which you specified in
the SPOOL command. The RSCS virtual machine then processes your file
(now a V~/370 spool file) and transmits it across the RSCS network.

If your virtual machine is logged on V~/370, RSCS notifies you of the
arrival of a file for your machine from the RSCS network by displaying a
aessage at your terminal. The file is sent to your virtual card reader.

V~/370 can accumulate files from the RSCS network destined for your
virtual card reader, regardless of whether you are logged on your
virtual machine or not. If you are logged on your virtual machine,
issue the QUERY command to see if you have any files in your virtual
reader. When you log on your virtual machine, the logon process
transmits a message informing you of accumulated spool files residing in
your virtual reader (punch or printer) •

lone.

section 8: Pormat and Usage Rules for CP Commands 323

STORE

STORE

Use the STORE co •• and to alter the contents of specified registers and
locations of the virtual aachine. The contents of the following can be
altered:

• virtual storage locations
• General registers
• Ploating-point registers
• Control registers (if available)
• Prograa status word

The STORE command can also save virtual machine data in low storage.

The operands aay be combined in any order desired, separated by one
or more blanks, for up to one full line of input. If an invalid operand
is encountered, an error message is issued and the store function is
ter.minated. However, all valid operands entered, before the invalid
one, are processed properly.

storage locations, registers, the PSi, and status can be stored using
a single command line. ihen you combine the operands for storing into
storage, registers, the PSi, or the status area on a single command
line, all operands must be specified; default values do not apply in
this case.

The format of the STORE command is:

STore

hexloc
Lhexloc

hexloc
Lhexloc

Shexloc

{
Greg} Yreg
Ireg

Psw

STATUS

hexwordl [hexword2 •••]

hexdata •••

hexwordl [hexword2 •••]

[bexwordl] hexword2

hexwordl [hexword2 •••]
stores the specified data (hexword 1 [hexword2 •••]) in
successive full word locations starting at the address
specified by hexloc. The smallest group of hexadecimal values
that can be stored using this form is one fullword. Alignment
is made to the nearest fullword boundary. Either for. (hexloc
or Lhexloc) can be used.

The operands (bexwordl hexword2 •••) each represent up to eight
hexadecimal digits. If the value being stored is less than a
fullword (eight hexadecimal digits) , it is right-adjusted in

324 IB~ V~/310: Command Language Guide for General Users

the word and the high order bytes
zeros. If two or more hexwords
separated by one or more blanks.

Shexloc hexdata •••

STORE

of the word are filled with
are specified, they must be

stores the data specified (hexdata •••) in the address
specified by hexloc, without word alignment. The shortest
string that can be stored is one byte (two hexadecimal
digits). If the string contains an odd number of characters,
the last character is not stored, an error message is sent,
and the function is terminated.

The operand, hexdata, is a string of two or more hexadecimal
digits with no embedded blanks.

Greg hexwordl [hexword2 •••]
stores the hexadecimal data (hexword1 [hexword2 •••]) in
successive general registers starting at the register
specified by reg. The reg operand must be either a decimal
number from 0-15 or a hexadecimal digit from O-F.

The operands (hexword1 [hexword2 •••]) each represent up to
eight hexadeciaal digits. If less than eight digits are
specified, the string is right justified in a fullword and
left-filled with zeros. If two or more hexwords are specified,
they must be separated by one or more blanks.

Yreg hexwordl [hexword2 •••]
stores the hexadecimal data (hexwordl [hexword2 •••]) in
successive floating-point registers starting at the register
specified by reg. The reg operand must be a digit from 0-6.
If reg is an odd number, it is adjusted to the preceding even
number.

The operands (hexword1 [hexword2 •••] each represent up to
eight hexadeciaal digits. If less than eight digits are
specified, the string is right justified in a fullword and
left-filled with zeros. If two or more hexwords are specified,
they must be separated by one or more blanks.

Xreg hexwordl [hexword2 •••]
stores the hexadecimal data (hexword1 [hexword2 •••]) in
successive control registers starting at the register
specified by reg. The reg operand must either be a decimal
number froa 0-15 or a hexadecimal digit from O-F. If the
virtual machine is in basic control mode, you can store dOata
in register 0 only.

The operands (hexwordl [hexword2 •••]) each represent up to
eight hexadeciaal digits. If less than eight digits are
specified, the string is right justified in a fullword and
left-filled with zeros. If two or more hexwords are specified,
they must be separated by one or more blanks.

PSi [hexwordl] hexword2
stores the hexadecimal data ([hexwordl] hexword2) in the first
and second words of the virtual machine's program status word
(PSW). If only hexword2 is specified, it is stored into the
second word of the PSi. The operands hexwordl and hexword2
must be separated by one or more blanks. They represent up to
eight hexadecimal digits. If less than eight digits are
specified, the string is right justified and left-filled with
zeros.

section 8: Format and Usage Rules for CP Commands 325

STORE

STATUS stores selected virtual aachine data in certain low storage
locations of the virtual machine, simulating the hardware
store status facility. These locations are per.anently
assigned locations in real storage. To use the STATUS
operand, your virtual aachine aust be in the EItended control
ftode. The STATUS operand should not be issued for CftS virtual
aachines or for DOS virtual aachines generated for a CPU
saaller than a Systea/360 Bodel 40. The STATUS operand stores
the following data in low storage:

Deciaal
Address -216---

224
256
352
384
448

HeIadeciaal
199~§§§ __ _

D8
EO

100
160
180
1CO

Length
in Byt§.!

8
8
8

32
64
64

Data
CPUTiaer
Clock Coaparator
Current PSi
Floating-point registers 0-6
General registers 0-15
Control registers 0-15

STORE COftPLET!

326 IBft V8/370: Co •• and Language Guide for General Users

SISTE!

SYSTEM

Use the SISTE! command to simulate the action of the RESET and RESTART
buttons on the real computer console, and to clear storage. The RESET
function and the CLEAR function leave the virtual machine in a stopped
state. An IPL command must be issued after a SISTB! CLBAR command.
After a SISTE! RESTART, the virtual machine is automatically restarted
at the location loaded into the PSi from the doubleword at virtual
location zero. The format of the SISTE! command is:

r
SIStem

CLEAR

RESET

RESTART

{

CLEAR }
RBSBT
RBSTART

clears virtual storage and virtual storage keys to binary
zeros.

clears all pending interrupts and conditions in the virtual
machine.

simulates the hardware system RESTART function by storing the
current PSi at virtual location eight and loading, as the new
PSi, the doubleword from virtual location zero. Interrupt
conditions and storage remain unaffected.

STORAGE CLEARED - SYSTEn RESET

This response is given if the co.mand SISTE! CLEAR is entered.

SISTB! RESET

This response is given if the command SISTB! RBSBT is entered.

If the command SISTB! RBSTART is entered, no response is given; the
virtual machine resumes execution at the address in the virtual PSi
loaded from virtual storage location zero.

Section 8: Pormat and Usage Rules for CP Commands 327

TAG

TAG

Use the TAG co •• and to associate infor.ation with a V8/370 spool file,
usually for use with a subsystem such as RSCS or a user-written
subsystea. The foraat of the TAG coaaand is:

TAG rrinter} PUnch
DBV COlsole [text]

vaddr

PILB spoolid [text]

\ Printer} PUnch
DEV CONsole

QU!RY vaddr

PILE spoolid

DEY PRIITBR [text]
PBT
PUNCH
PCH
COISOLE
vaddr

associates inforaation (via the text operand described further
on) with your virtual printer, punch, or console, or with the
device specified by vaddr.

PIL! spoolid [text]

text

replaces inforaation previously associated with the file via
the text operand with the current text (described further on).
This operand can be specified only for reader spool files
queued on your virtual machine.

The spoolid operand is the spool file identification, a number
between 1 and 9900 assigned by CP when the spool file was
closed.

defines a field (up to 136 characters long) that can contain
any inforaation you desire. Typically, this field contains
meaningful parameters you w~nt to associate with a spool file.
The field of data specified in the TAG text operand is made
available to virtual machines using the spool file, but is in
no way modified or interpreted by V8/370.

Certain control and addressing information meaningful to RSCS
can be specified in this field. Por details on how to use the
TAG text operand to transmit files across the RSCS network,
refer to the following section, "Using the TAG Text Operand to
Transait Piles to Bemote Locations."

328 IB8 V8/370: Co •• and Language Guide for General Users

TAG

{ (PRIIITl!R I \
(

) DEV (~ig::u))(
QUERY vaddr

FILE spoolid

displays at your terminal the current setting of the TAG text
associated with a given spool file or virtual device. The
operands used with the TAG QUERY command correspond to the
operands used with TAG itself. Por example, you create a text
setting by issuing the com.and:

TAG DEV PUNCH text

To find out the setting of that text field, issue the co •• and:

TAG QUERY DEY PUNCH

If you know the spoolid of a
machine reader and you wish to
file, use the co •• and:

TAG QUERY PILE spoolid

file queued to your virtual
know the text setting for that

spool identification (spoolid) numbers can be obtained using
the CP QUERY command with the RIADER, PRIITER or PUNCH
operand.

The RSCS control program interprets the TAG text operand as addressing
and control para.eters. If you are spooling a file to the RSCS virtual
machine to be transmitted to a remote station, code the TAG text operand
as follows:

locid [userid] [priority]

wh~:

locid is the location identifier (one to eight alphameric digits) of
the location to which the file is being transmitted. Your
system programmer can give you the locids of re.ote stations
attached to your virtual aachine.

use rid is the userid of the V8/370 virtual machine (a one- to
eight-character user identification) to which a file is being
transmitted. This operand is used by re.ote stations when they
transmit files to the RSCS virtual aachine and want the files
sent to a particular V8/370 virtual aachine. You can ignore
this operand if you are not specifying a priority. However, if
you are specifying a priority, you aust code a userid operand,
even though it is ignored by RSCS.

priority is the requested transaission priority, a deci.al nu.ber
between 0 and 99. The highest trans.ission priority is 0, next
highest is 1, and so on. If you wish to specify this operand,
you .ust also specify a userid operand.

Section 8: Por.at and Usage Rules for CP Co.aands 329

TAG

When a spool file you created is closed, it is enqueued on
aachine reader of the virtual machine you specified in

a virtual
the SPOOL
with that
file was
virtual

co •• and. You cannot change the TAG information associated
file unless the operator of the virtual machine to which the
spooled (the BSCS operator) transfers the file back to your
machine.

To change the TAG information associated
reader, you can issue the TAG co •• and
specified:

TAG PILE spoolid new text information

with a file in your virtual
with the spoolid operand

This co.mand causes previous TAG text information to be completely
replaced by the new text specified.

When you enter the command with no new text specified:

TAG PILE spoolid

the text field associated with the file is set to all blanks.

330 IB! Y!/370: Com.and Language Guide for General Users

TEBftIRAL

TERMINAL

Use the TERftIRAL coaaand to control the following functions associated
with your virtual console:

• Logical line-editing symbols
• ftasking of password
• The APL character set
• signalling of an attention interrupt
• Attention handling aode for your virtual console
• Line length for output on your virtual console

The terainal settings you specify with the TERftINAL coa.and are in
effect for only the duration of that terainal session. Whenever you log
on, the systea defaults are in effect. However, the settings you
specify for line-editing and ftODE are still in effect when you log on
after disconnecting. All the other operands (ftASK, APL, ATTN, and
LIIESIZE) are reset if you log on after disconnecting.

Although you can define line-editing syabols and status with the
TERftIBAL coaaand, the LIIEDIT operand of the SET coaaand deteraines
whether the Y8/370 line-editing functions are on or off.

If an error occurs during processing
preceding the one with the error are
TERftIIAL co.aand is:

of the coaaand,
in effect. The

all functions
foraat of the

TERftinal CHardel rl

1
I

LIIEDel OFF
LIIEld char
EScape

tlask {Ol } APL OFf
ATtn

tlODE {~: }
LIIESize nnn

I tlore than one function can be specified in a single entry of the
TERtlIIAL coaaand. For exaaple:

TERtlIIAL CHARDEL OFF tlASK 01 LIIESIZE 90

.!J!Y!:

CHARDEL { 01 } defines the logical character delete syabol. If 01 is
OFF is specified, the default syabol becoaes the logical
char character delete sy.bol. The default sy.bol is noraally

i, but depends on what is specified in your 'tl/370
directory entry. If OFF is specified, no logical
character delete syabol is allowed. If char is specified,
that character (which must be a special character)
becoaes the logical character delete sy.bol. Unless
otherwise specified, CHAR DEL 01 is in effect.

section 8: Foraat and Usage Rules for CP Com.ands 331

GC20-1804-3 Page Modified by TNL GN20-2659

TERMINAL

LINEDEL

{

ON } defines t he logical line delete symbol. If ON is
OFF specified, the default symbol becomes the logical line
char delete symbol. The default symbol is nor.ally ¢, but

depends on what is specified in your VM/370 directory

LINEND {ON }
OFF
char

ESCAPE {ON }
OFF
char

MASK {ON }
OFF

APL {ON }
OFF

entry. If OFF is specified, no logical line delete
symbol is allowed. If char is specified, that character
(which must be a special character) becomes the logical
line delete symbol. Unless otherwise specified, LINEDEL
ON is in effect.

defines the logical line end symbol. If ON is
specified, the default symbol becomes the logical line
end sy.bol. The default symbol is normally I, but
depends on what is specified in your VM/370 directory
entry. If OFF is specified, no logical line end symbol
is allowed. If char is specified, that character (which
must be a special character) becomes the logical line end
character. Unless otherwise specified, LINEND ON is in
effect.

defines the logical escape character. If ON is specified,
the default symbol becomes the logical escape character.
The default symbol is normally", but depends on what is
specified in your VM/370 directory entry. If OFF is
specified, no logical escape character is allowed. If
char is specified, that character (which must be a
special character) becomes the logical escape character.
Unless otherwise specified, ESCAPE ON is in effect.

controls the typing of a mask line at a typewriter
terminal that is not equipped with the Print Inhibit
feature, when a password is to be entered. If MASK ON is
specified, VM/370 types the mask line. If MASK OFF is
specified, the mask line is not typed and it is up to
each user to preserve the security of his password. The
MASK operand does not apply to the IBM 3215 or to similar
system console or display terminals that do not have a
Print Inhibit feature. Unless otherwise specified, MASK
OFF is in effect.

controls the use of APL character translation tables.
If APL ON is specified, CP uses the translation tables
for terminals equipped with the standard APL typing
element. If APL OFF is specified, CP uses the normal
translation tables (that is, BCD or correspondence
code). If APL ON is specified, the LINESIZE value is
overridden. Unless otherwise specified, APL OFF is in
effect.

This operand cannot be changed for a 3704/3705 device in
NCP mode. If however, the terminal is connected to a
2701/2702/2703 line control unit, the operand is valid.
3704/3705 users cannot use this option in NCP mode.

The APL operand is not valid for display type terminals.

!g!~: APL ON also applies to the 3767 terminal equipped
with the APL alternate character selection.

332 IBM VM/370: Co •• and Language Guide for General Users

ATTN ~ ~!~J
t U1' l')

MODE

LINESIZE nnn

Bone.

GC20-1804-3 Page Modified by TBL GN20-2659

TBRMINAL

controls signalling of an attention interrupt. If ATTB
ON is specified, the exclamation poin~ ~s a~splayed when
an an attention interrupt occurs. The OFF option
suppresses the displaying of the exclamation point (I)
and carrier return for those systems that perform special
line editing using the Attention key. Unless otherwise
specified, ATTB OB is in effect.

The ATTN operand is not
terminals.

valid for display type

controls the terminal attention environment. CP specifies
that one or more attentions force the virtual machine
into the CP environment. VM specifies that one attention
is reflected to your virtual machine and that more than
one attention forces your virtual machine into the CP
environment. VM is the default for all VM/370 users
except the primary system operator. For more information
see "Interrupting the Bxecution of a Command" in section
2.

specifies the maximum allowable line length for terminal
output. nnn can be a number from 1 through 255.

Note: If APL ON is specified, CP does not separate output
lines into LIBESIZE segments. Instead, an output length
of 1760 is allowed and CP assumes that the APL system has
inserted the appropriate carriage control characters.

section 8: Format and Usage Rules for CP Commands 333

TRACE

TRACE

Use the TRACE command to trace specified virtual machine activity and to
record the results at the terminal, on a virtual spooled printer, or on
both ter.inal and printer. If trace output is being recorded at the
terminal, the virtual machine stops execution and CP co •• and .ode is
entered after each output .essage. This si.ulates the single cycle
function. To resume operation at the virtual machine, the BEGIN co •• and
aust be entered. If the RUN operand is specified, the virtual aachine is
not stopped after each output message. If trace output is being
recorded on a virtual spooled printer, a CLOSE com.and aust be issued to
that printer in order for the trace output to be printed. Successful
branches to the next sequential instruction and branch-to-self
instructions are not detected by TRACE. Instructions that modify or
examine the first two bytes of the next sequential instruction cause
erroneous processing for BRANCH and INSTRUCT tracing.

When tracing on a virtual machine with only one printer, the trace
data is inter.ixed with other data sent to the virtual printer. To
separate trace information from other data, define another printer with
a lower virtual address than the previously defined printer. lor
example, on a system with OOE defined as the only printer, define a
second printer as OOB. The regular output goes to OOE and the trace
output goes to OOB.

When operation of a shared system is being traced, the following
options cannot be used:

• BRANCH
• INSTRUCT
• ALL

I/O operations for virtual channel-to-channel adapters, with both ends
connected to the same virtual .achine, cannot be traced.

The format of the TRACE command is:

r ,
TRace SVC 1 I Printer I

I/O I r , r , I
PROgram I l~l!ll1inall I NORu!!I I
EXTernal I IBOTH I I RUN I I
PRIV I L .J L .J I
SIO I I
CCW I Olf I
BRanch L .J

INSTruct
ALL
CSW

END

180re than one of these activities may be traced by using a single
TRACE command. lor example:

TRACE SVC PROGRAft SIO PRINTER

334 IB! V8/370: Com.and Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

TRACE

SVC traces virtual machine SVC interrupts.

IIO traces virtual machine IIO interrupts.

PROGRAM traces virtual machine program interrupts.

EXTERNAL traces virtual machine external interrupts.

PRIV traces all virtual machine non-I/O privileged instructions.

SIO traces TIO, CLRIO, HIO, HDV and TCH instructions to all
virtual devices9 Will also trace SIO and SIOF instructions
for non-console and non-spool devices only.

CCW traces virtual and real CCWs for non-Spool/non-Console device
IIO operations. When CCW tracing is requested, SIO and TIO
instructions are also traced.

BRANCH traces all virtual machine interrupts, all PSW instructions,
and all successful branches.

INSTRUCT traces all instructions, virtual
successful branches.

machine interrupts and

ALL traces all instructions, interrupts, successful branches,
privilege instructions, and virtual machine IIO operations.

CSW provides contents of virtual and real channel status words at
IIO interrupt.

END terminates all tracing activity and prints a termination
message.

PRINTER
PRT

directs tracing output to a virtual spooled printer.

!~~~!~A1 directs tracing output to the terminal (virtual machine
console) •

BOTH directs tracing output to both a virtual spooled printer and
the terainal.

OFF halts tracing of the specified activities on both the printer
and terminal.

stops program execution after the trace output to the terminal
and enters CP command mode.

Note: If a Diagnose code X'008' is being traced, NORUN has no
effect and prograa execution does not stop.

RUN continues the program execution after the trace output to the
terminal has completed and does not enter CP command mode.

Notes:
-':--If your virtual machine has the virtual=real option and NOTRANS set

on, CP forces CCW translation while tracing either SIO or CCW. When
tracing is terminated with the TRACE END command, CCW translation
is bypassed again.

2. If the virtual machine assist feature is enabled on your virtual
machine, CP turns it off while tracing SVC and program interrupts

Section 8: Format and Usage Rules for CP Commands 335

GC20-1804-3 Page Modified by TNL GN20-2659

TRICE

(SVC, PBIV, BRINCH, INSTRUCT, or ILL). Ifter the
terminated with the TRACE END command line, CP turns
feature on again.

tracing is
the assist

The following symbols are used in the responses received from TRACE:

~~!~Q!
vvvvvv
tttttt
rrrrrr
xxxxxxxx
yyyyyyyy
ss
ns
zz

zzzzzzzz
type

V vadd
R radd
mnem
int
code
CC n
IDIL

==)

TRICE STIR TED

~~!B!B9
virtual storage address
virtual transfer address or new PSW address
real storage address
virtual instruction, channel command word, CSW status
real instruction, CCW
argument byte (SSM-byte) for SSM instruction
new system mask after execution of STOSM/STNSM
low order byte of R1 register in an execute instruction

(not shown if R1 register is register 0)
referenced data
virtual device name (DISD, TAPE, LINE, CONS, RDR,

PRT, PUB, GRIP, DEV)
virtual device address
real device address
.nemonic for instruction
interrupt type (SVC, PROG, EXT, I/O)
interrupt code number (in hexadecimal)
condition-code number (0, 1, 2, or 3)
Indirect data address list
virtual machine interrupt
privileged operations
transfer of control

This response is issued when tracing is initiated.

TRACE ENDED

This response is issued when tracing is suspended.

I/O vvvvvv TCH xxxxxxxx type vadd CC n

I/O vvvvvv mnem xxxxxxxx type vadd CC n type radd CSW XXXX

I/O vvvvvv mnem xxxxxxxx type vadd CC n type radd CSW xxxx CAW vvvvvvvv

CCW vvvvvv xxxxxxxx xxxxxxxx rrrrrr yyyyyyyy yyyyyyyy
CCW IDAL vvvvvvvv vvvvvvvv IDAL OOrrrrrr OOrrrrrr
CCW SEEK xxxxxxxx xxxxxx SEEK yyyyyyyy yyyy

336 IBM VM/370: Command Language Guide for General Users

TRICB

The IDAL or SEEK line is included only if applicable. The virtual IDIL
is not printed if the real CCI opcode does not match the real CCI.

I!~lBQ£!!ON l~!£I!§:

f!:iv!legeg l!l§!.!:!!ct!gn:

· .. vvvvvv SS! xxxxxxxx ss (normal SSII) · .. · .. vvvvvv SS! xxxxxxxx ss tttttt (switch to/fro. translate mode) · .. · .. vvvvvv STOS! xxxxxxxx ns (normal STOS!) · .. · .. vvvvvv STOS! xxxxxxxx ns tttttt (switch to translate mode) · .. · .. vvvvvv STIS! xxxxxxxx ns (normal STIS!) · .. · .. vvvvvv STBS! xxxxxxxx ns tttttt (switch from translate mode) · .. · .. vvvvvv LPSW xxxxxxxx tttttttt tttttttt (lilT bit on) · .. · .. vvvvvv LPSI xxxxxxxx ==> tttttttt tttttttt (lilT bit not on) · .. · .. vvvvvv ane. xxxxxxxx (all others) · ..

vvvvvv EI xxxxxxxx zz vvvvvv mne. xxxx xxxxxxxx

Por an executed instruction, where zz (see preceding explanation of
symbols) is nonzero, the mnemonic for the executed instruction is given
as if the zz byte had been put into the instruction with an OR
operation.

vvvvvv mnem xxxxxxxx xxxx

vvvvvv anea xxxxxxxx ==> tttttt

*** vvvvvv int code ==> tttttt

I/O IBTlliRURI (Pirst line given only if "CSI" was specified):

CSI V vadd xxxxxxxx xxxxxxxx R radd yyyyyyyy yyyyyyyy
*** vvvvvv I/O vadd ==> tttttt CSI xxxx

BR1BCH TR1C~: (ILL option selected)

Bntry for 'branch from' instruction

vvvvvv mne. xxxxxxxx tttttt

Bntry for 'branch to' instruction

==> vvvvvv mnem xxxxxxxxxxxx

Section 8: Por.at and Usage Rules for CP Commands 337

TRANSFER

TRANSFER

Use the TRANSFER comaand to direct your input file to a specified reader
or to reclaim virtual reader files that you spooled to another user.
The TRANSFER coaaand does not transfer any active spool files. The
format of the TRABSFER command is:

TRANsfer

{
SPOOlid}
CLass c
ALL

r ,
ITo userid I
I r , I
II Froll { USerid} II

spoolid

CLASS c

ALL

[TO] userid

[FROB] {userid}
ALL

!!~~on~§

I I ALL II
I L ~ I
L ~

is the input file to be directed to or retrieved froll
the nailed userid.

transfers all input files of the specified
The c is a one-character alphameric field
from A to Z and from 0 to 9.

transfers all input spool files.

class (c).
with values

is the user to whom the files are to be directed. If
the optional keyword TO is ollitted, the userid aay not
be TO or T. The file is deleted from your reader if you
use this option.

is the user from whom input spool files are to be
reclaimed. ALL aay be specified to reclaim input spool
files that were originated by your virtual machine froll
all users.

RDi FILE spoolid TRAN SFERRED {TO } use rid
PROB

.!he£!:

spoolid

TO userid

FROB userid

is the spool file identification nuaber of the file
that is spooled. The number does not change.

is the response to the user who currently owns the
file and userid is the recipient of the file.

is the response to the user who receives the
transferred file and userid is the sender.

{ ~~nn} FILES TRANSFERRED

This is the
command. It
command line.

response you receive when you
is not displayed if you issued

issue the
the CP SET

338 IBB VB/310: COllmand Language Guide for General Users

TRABSPER
IBSG OPP

Appendixes

A. punctions of Yft/370 COllmands

B. Debugging a problea program with Yft/370

C. Using the CftS Batch Pacility

D. CftS ftacro Instructions

E. Disk Deteraination

P. Reserved Piletype Descriptions

Appendixes 339

GC20-1804-3 Page Modified by TNL GN20-2659

Figures 36 through 44 present a functional summary of commands available
..: _ .L. 'L._ 1rM ~~..,n ___ .. __
~u ~u~ Yn/~'v ~1~~~W.

r------ ,
I
I

I Subcommand I I
I or ,

Function Command I option IType I
----I--

Begin terminal session (identify
user to VM/370 system) •

LOGON I CP
I
I

End terminal session. LOGOFF I CP ,
Communicate with other VM/370 users
and with the system operator.

MESSAGE I CP ,
Connect a terminal to a multi-access
virtual machine.

Disconnect a user's terminal from a
virtual machine.

Test terminal hardware.

DIAL

DISCONN

ECHO

Start or stop console spooling. SPOOL

Control terminal input and output.
• Indicate if accounting data is to be SET

received at the terminal.
• Indicate if messages from other users SET

are to be received at the terminal. SET
• Control output of certain informational SET

responses.
• Control line editing functions. SET
• Control format of messages received at SET

the terminal. SET
• Set up program function key cataloged SET

procedures.
• Print the current screen display on thel SET

printer (remote display units only) • ,
• Get information about terminal control , QUERY

parameters. I QUERY
, QUERY

• Set attention handling mode. , TERMINAL
• Specify method of password entry. I TERMINAL
• Specify use of additional translation I TERMINAL

tables. I
• Specify terminal line size. , TERMINAL
• Specify ATTN key handling procedures. ,TERMINAL
• Specify that ATTN key will not stop the, SET

virtual machine. I
• Specify characters to indicate CPU ,SET

time interval reporting. I
• Specify format of CMS READY message. ,SET
• Indicate character translations to be I SET

done during terminal input and output. , SET
L-_____ _

Figure 36. Commands to control a Terminal Session

CP

CP

CP

CONSOLE CP

ACNT CP

MSG CP
WNG CP
IMSG CP

LINEDIT CP
RED TYPE CMS
EMSG CP
PFnn CP

PFnn COpy CP
CP

TERMINAL CP
PFnn CP
REDTYPE CMS
MODE CP
IUSK CP
APL CP

LINESIZE CP
ATTN CP
RUN CP

BLIP CMS

RDYMSG CMS
INPUT CMS
OUTPUT CMS

Appendix A: Functions of VM/370 Commands 341

Function

Change attributes of a spooled file.

Create a source progra. file from the
terminal.

Invoke the System Assembler to assemble
a source program.

L-

Invoke the VS BASIC Compiler.

Invoke the PL/I optimizing Compiler.

Invoke the PL/I Checkout Compiler.

Invoke the PL/I Checkout Compiler and
Execute a Program.

Invoke the FORTRAN Code and Go Compiler.

Invoke the FORTRAN G Compiler.

Invoke the FORTRAN H Complier.

Create or list macro libraries to be used
during assemblies or compilations.

Create or list subroutine libraries.

specify macro libraries to be searched
during assemblies or compliations.

Specify subroutine libraries to be
searched during LOAD and INCLUDE
function.

Bring object code into main storage.

Create a MODULE (core-image) file.

Bring MODULE files into storage.

Print a storage map of a MODULE file.

Build auxiliary module directories.

Begin execution of programs which were
previously loaded into main storage.

Subcom.andl
or I

Co •• and Option Type

CHAIGE CP

EDIT CMS

ASSEMBLE CMS

VSBASIC CMS

PLIOPT CMS

PLIC CMS

PLICR CMS

TESTFORT CMS

FORTGI CMS

FORTHI CMS

MACLIB CMS

TITLIB CMS

GLOBAL MACLIB CMS

GLOBAL TITLIB CMS

LOAD CMS
INCLUDE CMS

GENMOD CMS

LOAD MOD CMS

MOD MAP CMS

GENDIRT CMS

START CMS

Figure 37. Commands to Develop Programs and Process Data (Part 1 of 2)

342 IBM VM/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

Function

simulate os Data Definition (DO) JCL
cards during program execution.

List information about os data sets or
DOS files.

Load and execute object (TEXT) files.

Compile, load, and execute source files.

Load and execute core-image (MODULE)
files. L-_____________________________ ___

1 Subcommand 1
1 or 1

Command I Option IType I
----1---

FILEDEF 1 CMS
1
1

LISTDS I CMS

RUN eMS

RUN CMS

RUN CMS

Figure 37. Commands to Develop Programs and Process Data (Part 2 of 2)

------------------------,

Function Command
-------- ----------

stop execution at a specified virtual
machine location.

Resume execution of a stopped
virtual machine.

Display virtual storage, registers,
PSi, and so on.

Print the contents of virtual storage
locations on the spooled printer.

Change the contents of registers and
storage locations.

Trace virtual machine SVC calls.

Trace virtual machine instructions, I/O
operations, SVC calls, and so on.

convert system ABEND dumps to printed
output.

Trace events that occur on the real
machine.

ADSTOP
DEBUG

BEGIN
DEBUG

DISPLAY
DEBUG
DEBUG
DEBUG

DUMP
DEBUG

STORE
DEBUG
DEBUG

SVCTRACE

TRACE

VMFDUMP

MONITOR

MONITOR
L-__ __

Figure 38. Co.mands to Test and Debug a Program

ISubcommand
1 or
I Option

BREAK

GO

GPR
PSi
X

DUMP

STORE
SET

I
1

Type I

CP
CMS

CP
CMS

CP
CMS
CMS
CMS

CMS
CMS

CP
CMS
CMS

CMS

CP

CMS

START CP
CP TRACE

STOP CP
CP TRACE

Appendix A: Functions of VM/370 Commands 343

r---
I I Subcommand I

I or I I
I Punction Co •• and I Option IType

create a file from ter.inal input.

create a file from card input.

Verify the existence of a file on disk.

Erase a file (or files) from disk.

List names of files on disk and their
attributes.

Display the contents of a file at the
terminal.

print the contents of a file or a member
of a library on a spooled printer.

Punch the contents of a disk file on a
spooled punch.

EDIT

READCARD
DISK

STATE

ERASE
ACCESS

LISTPILE

TYPE

PRINT

PUNCH
DISK

Sort the records of a file into ascending SORT
order based on specified sort fields.

Copy one disk file to another disk file. MOVEFILE
COPYPILE

Combine several files into one file. COPYPILE

Copy data from one device type to MOVEPILE
another device type.

Change the name of a CMS file. RENAME

Compress a file by encoding multiple
contiguous occurrences of a single
character.

Rearrange the contents of records in a
disk file.

Perform character translations on
specified characters in a disk file.

Append one file to the end of another
file.

Remove trailing blanks from records in a
file.

Compare the contents of two disk files.

COPYPILE

COPY PILE

COPYPILE

COPY PILE

COPYPILE

COMPARE

Change records in a file based on UPDATE
record sequence numbers.

L--

Pigure 39. Commands to Update Data Piles (Part 1 of 2)

LOAD

ERASE

DUMP

PACK

TRANS

APPEND

TRUNC

344 IBM VM/370: Command Language Guide for General Users

CMS

CMS
CMS

CMS

CMS
CMS

CMS

CMS

CMS

CMS
CMS

CMS

CMS
CMS

CMS

CMS

CMS

CMS

CMS

CMS

CMS

CMS

CMS

CMS

Punction

Terminate spooling operations on a
virtual unit record device or console.

Load the virtual forms control buffer
(PCB) •

Indicate order of processing for spooled
files.

Remove spooled files from the system.

print documents according to the control
words in the document file.

Change options in effect for spooling
opera tions.

Spool input files to or from another
user.

copy data from tape to disk.

copy data from disk to tape.

Convert OS partitioned data set (PDS)
files or card-image files on tape to
format on disk.

COllmand

CLOSE

LOADVPCB

ORDER

PURGE

SCRIPT

SPOOL

TRANSPER

TAPE

TAPE

TAPPDS

Pigure 39. Commands to Update Data Files (Part 2 of 2)

Punction

Logically connect a disk to a virtual
machine.

Logically disconnect a device from a
virtual machine.

ftake files on a disk a.ailable to a user.

Remove accessibility to files.

Dump a disk to tape.

Restore a disk from tape.

Format disk space in CftS format.

Pigure 40. Commands to Control Disks

Command

LINK

DETACH

ACCESS

RELEASE

DDR

DDR

PORftAT

Subcollllandl
or I

Option IType I

LOAD

DUftP

Subcommand
or

Option

DUftP

RESTORE

--I
CP

CP

CP

CP

CftS

CP

CP

CftS

CftS

CftS

Type

CP

CP

CftS

CftS

CftS

CftS

CftS

Appendix A: Functions of Vft/370 Commands 345

Function

Load a virtual aachine operating system.

Alter the virtual machine configuration.

Disconnect the user's terminal from the
Vft/370 systea.

Enter control prograa commands froa a
CftS virtual machine.

Coaaunicate with other virtual machine
users or with the system operator.

Simulate an external interrupt for a
virtual machine.

Simulate 'not ready' for a virtual
device.

Simulate functions of buttons on the
real CPU console.

place virtual machine console in dormant
state with keyboard locked.

Perform tape rewind action.

Establish Vft/370 directory entries.

Simulate device end interrupt to a
virtual machine device.

Simulate console interrupt.

Reset pending interrupts for virtual
devices.

Invoke table of synonyms for CftS comaand
names.

Set the functions controlling forms for
command operand, options, names.

ISubcollaandl
I or I

Command I Option Type

IPL

DEFINE

DISCOBB

cp

ftSG

BITERBAL

NOTREADY

SYSTEK

SLEEP

RBWIND
TAPE

DIRECT

READY

ATTIf
REQUEST

RESET

SYlfOBYft

SET

REi

ABBREV
IKPBI
IftPCP

CP

CP

CP

CftS

CP

CP

CP

CP

CP

CP
CftS

efts

CP

CP
CP

CP

CftS

CftS
CKS
CKS

Pigure 41. Coamands for Virtual ftachine Control (Part 1 of 2)

346 IBK Vft/370: COlllland Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

Function

Indicate if I/O is to be done as
specified by the virtual machine with no
ccw translation by CPo

control timer updating.

Change or set the number of loader
tatles for a CMS virtual machine.

Indicate if pages of storage are to be
released after the execution of certain
CMS commands.

Get information about virtual machine
status.

set Virtual Machine Assist feature
on or off.

Set the pseudo page fault portion of
VH/VS Handshaking feature on or off.

L-___ _

ISubcommandl
I or I

Command I Option IType

SET NOTRANS CP

SET TIMER CP

SET LDRTELS eMS

SET RELPAGE CMS

QUERY CP

SET ASSIST CP

SET PAGEX CP

Figure 41. Commands for Virtual Machine Control (Part 2 of 2)

Appendix A: Functions of VM/370 Commands 347

GC20-1804-3 Page Modified by TNL GN20-2659

.--, , , Function

Create accounting records for logged on
users and reset accounting data.

Logically connect or dedicate devices
to a virtual machine or to CPo

Logically disconnect devices from
a virtual machine or from CPo

Disable communication lines.

Enable communication lines.

Force a specific user to log off CPo

Terminate active channel CP program on a
specific device.

Control paging activity.

Request information about real and
virtual machine characteristics.

Establish system parameters.

Terminate functions and checkpoint
system.

Transmit high priority messages to users.

Control 3704/3705 control program
functions.

'-----
Figure 42. Commands to Control VM/370

,Subcommand,
, or I

Command , Option IType

ACNT CP

ATTACH CP

DETACH CP

DISABLE CP

ENABLE CP

FORCE CP

HALT CP

LOCK CP
UNLOCK CP

QUERY CP

SET CP

SHUTDOWN CP

WARNING CP

NETWORK LOAD CP
DUMP
ENABLE
DISABLE
TRACE
HALT
SHUTDOWN
POLLDLAY
QUERY
VARY
DISPLAY

348 IBM VM/370: Command Language Guide for General Users

Function

Restart or reposition the current output
of an output spooling device.

Change attributes of a closed spool file.

Terminate spooling activity on a virtual
spooled unit record device or console.

Halt operations of specified spooling
devices following co.pletion of current
activity.

Cancel current output on a real unit
record device.

Cancel spool HOLD status.

Defer spooled output of a particular
user.

Load printer UCS or FCE buffer.

Cause spooled files to be processed in a
specific order.

Remove closed spool files from the
system.

Request information about spool files.

Repeat printing or punching of current
file on a specific output device.

Force a printer to single space output.

Modify spooling'options for reader,
printer, punch, and console spool files.
Initiates and terminates virtual console
spooling.

start spooling device after draining or
changing output class.

Spool files to or from a user's card
reader.

Direct a file to a remote location.

Assign attributes and/or characteristics
to a spool file.

Request display of the attributes and
characteristics associated with a spool
file. L-____________________________ ___

Figure 43. Commands for Spooling Control

1 Subcommand 1
1 or 1

Command 1 Option IType 1
----- 1--

BACKS PAC 1 CP
1

CHANGE CP

CLOSE CP

DRAIN CP

FLUSH CP

FREE CP

HOLD CP

LOADBUF CP

ORDER CP

PURGE CP

QUERY CP

REPEAT CP

SPACE CP

SPOOL CP

START CP

TRANSFER CP

SPOOL CP
TAG CP

TAG CP
SPOOL CP

TAG CP

Appendix A: Functions of VM/370 Commands 349

GC20-1804-3 Page Modified by TNL GN20-2659

,.

Function

Display real storage at terminal.

Dump real storage to virtual spooled
printer.

COlllland

DCP

DMCP

Display conditions that may affect system INDICATE
loading.

Find locaticns of control blocks.

Record samples of system data for
performance analysis.

Save virtual lIachine storage space
on disk.

Perform intensive recording of device
activity information.

Set the error recording mode for soft
machine checks.

Dump error information which has been
recorded by error recording routines.

L--

LOCATE

MONITOR

SAVESYS

SET

SET

CPEREP

Figure 44. Co •• ands for System and Hardware Analysis

Subcommand
or

Option

LOAD
USER
QUEUES
I/O
PAGING

DISPLAY
ENAELE
INTERVAL
START
STOP

RECORD

MODE

350 IBM VM/370: Command Language Guide for General Users

Type

CP

CP

CP

CP

CP

CP

CP

CP

CMS

Appendix B: Debugging a Problem Program with VM/370

How To Start Debugging

Before you can correct any problem, you must recognize that one exists.
Next, you aust identify the problem, collect information and determine
the cause so that the problem can be fixed. When running V~/370r you
aust also decide whether the problem is in CP, the virtual machine, or
the problem program. Once you determine that the problem is in CP or
the virtual machine, refer to !~L37Q: System Pr~~~~~~ Guide.

A good approach to debugging is:

1. Recognize that a problem exists.

2. Identify the problem type and the area affected.

3. Analyze the data you have available, collect more data if you need
it, then isolate the data that pertains to your problem.

4. Pinally, determine the cause of the problem and correct it.

DOES A PROBLE! EXIST?

There are four types of problems:

1. Loop
2. wait state
3. ABEND (Abnoraal End)
4. Incorrect results

The most obvious indication of a problem is the abnormal termination
of a program. Whenever a program abnormally terminates, a message is
issued.

Another obvious indication of a problem is unexpected output. If your
output is missing, incorrect, or in a different format than expected,
some problem exists.

Unproductive processing
problem is not as easily
environment.

IDENTIPYING THE PROBLE!

tiae is another symptom of a
recognized, especially in a

problem. This
time- sharing

Two types of probleas are easily identified: abnormal termination is
indicated by an error message, and unexpected results become apparent
once the output is exaained. The looping and wait state conditions are
not as easily identified.

Appendix B: Debugging a Problea Prograa with ,"/370 351

ihen using '!/370, you are normally sitting at a terminal and do not
have the lights of the CPU control panel to help you. You .ay have a
looping condition if your program takes longer to execute than you
anticipated. Also, check your output. If the number of output records or
print lines is greater than expected, the output may really be the sa.e
infor.ation repeated .any ti.es. Repetitive output usually indicates a
program loop.

Another way to identify a loop is to periodically exa.ine the current
PSi. If the PSi instruction address always has the same value, or if the
instruction address has a series of repeating values, the program
probably is looping.

The wait state is also difficult to recognize when at the terminal.
Again, the console lights are unavailable. If your program is taking
longer than expected to execute, the virtual machine may be in a wait
state. Display the current PSi on the terminal. periodically, issue the
CP co.mand

QUERY TI!E

and compare the elapsed processing time. ihen the elapsed processing
time does not increase, the wait state probably exists.

ANALYZING TBE PROBLE!

Once the type of problem is identified, the cause of it must be
determined. There are recommended procedures to follow. These
procedures are helpful, but they do not identify the cause of the
problem in every case. Be resourceful. Use whatever data you have
available. If the cause of the problem is not found after the
recommended debugging procedures are followed, it may be necessary to
undertake the tedious job of desk-checking.

The section, "Bow To Use '!/370 Facilities To Debug," describes
procedures to follow in determining the cause of various problems that
can occur in the Control Program, in the virtual machine, or in the
problem program. If you determine that there is a problem in CP or the
virtual machine operating system, refer to VM/370: ~l§~ Program.er·s
2~id~ for debugging procedures.

How To Use VM/370 Facilities To Debug

Once the problem, and the area where it occurs, are identified, you can
gather the information needed to determine the cause of the proble •• The
type of information you want to look at varies with the type of proble ••
The tools used to gather the information vary depending upon the area in
which the problem occurs. For example, if the problem is looping, you
will want to exa.ine the PSi via the CP DISPLAY co.mand.

The following sections describe specific debugging procedures for the
various error conditions. The procedures tell you what to do and what
debug tool to use. For example, the procedure may say dump storage
using the CP DUMP co.mand. The procedure will not tell you how to use
the debug tool. Refer to sections 7 and 8 for a detailed description of
each debug tool, including how to invoke it.

352 IBM VM/370: Co.mand Language Guide for General Users

PROBLEM PROGRAK ABEND

When an operating system or program does not know how to continue, it
abnormally terainates.

If a dump was taken, it was sent to
CLOSE command to the virtual printer to
printer.

the virtual printer. Issue a
have the dump print on the real

If the prob1ea can be reproduced, it may be helpful to trace the
processing using the CP TRACE command. Also, you can set address stops,
and display and alter registers, control words (such as the PSW), and
data areas. The CP commands can be very helpful in debugging because you
can gather information at various stages in processing. A dump is static
and represents the system at only one particular time. Debugging on a
virtual machine can often be more flexible than debugging on a real
machine.

VM/370 may terminate or reset a virtual machine if a nonrecoverable
channel check or machine check occurs in that virtual machine. Hardware
errors usually cause this type of virtual machine termination. One of
the following messages:

DKKKCB6161 KACHINE CHECK; USER userid TERKINATED
DKKCCH6041 CHANNEL ERROR: DEV xxx; USER userid; KACHIIE RESET

appears on the CPU console.

The address of the instruction causing the ABEND is found in the
problem program area.

Use the PSW and program listing to determine the cause of the ABEND.
If the problem is not readily detected, use the CP debugging facilities
to monitor the progress and status of the program as it executes. If
the program is running under the control of CKS, you can use the CKS
debug facilities as well.

UNEXPECTED RESULTS IN A PROBLEK PROGRAK

If a program has inaccurate, missing, or redundant output, a problem
exists. Instead of taking dumps of storage and output and dOing a lot
of desk-checking, you can use the interactive facilities of the virtual
aachine environment to debug. Using the CP ADSTOP command, you can set
an address stop. set the address stop at a strategic point in the
processing, such as before a data transfer or computation. When
execution stops, you can display or alter storage and set the next
address stop. Also, consider using the CP TRACE command. You can often
debug a problem program directly from the terminal.

Both the CP and CKS commands can be used to debug prograas under the
control of CKS.

PROBLE! PROGRAK DISABLED LOOP

When a disabled loop in a problem program exists, you cannot communicate
with the virtual machine's operating system. That means that signalling
attention once does not cause an interrupt.

Appendix B: Debugging a Problem Program with VK/370 353

Enter CP mode.

1. Use the CP TRACB command to trace the entire loop. Display general
and extended control registers via the CP DISPLAY command.

2. Take a dump via the CP DUMP command.

3. IPL the virtual machine again.

Use the information just gathered, along with listings, to try to
find the entry into the loop.

PROBLEM PROGRAM ENABLED LOOP

yOU should perform the following sequence when attempting to find the
cause of an enabled loop:

1. Use the CP TRACE command to trace the entire loop. CMS users can
use the CP TRACE command or the CMS SVCTRACE command. Display the
PSW and the general registers.

2. Use the CP DUMP command to dump your virtual storage. CMS users
can use the debug DUMP subcolmand. A standalone dump may be used,
but be aware that such a dump destroys the contents of some areas
of storage.

3. Consult the source code to search for the faulty instructions,
examining previously executed subroutines if necessary. Begin by
scanning for instructions that set the condition code or branch on
it.

4. If the lanner of loop entry is still undetermined, assume that a
wild branch has occurred and begin a search for its origin.

PROBLEM PROGRAM DISABLED WAIT

The VM/370 Control Program does not allow the virtual machine to enter a
disabled wait state or certain interrupt loops. Instead, CP notifies
you of the condition with one of the following messages:

DMKDSP450W
DMKDSP451W
DMKDSP452W
DMKDSP453W

CP ENTERED; DISABLED WAIT PSW
CP ENTERBD; INVALID PSW
CP ENTERED; EXTERNAL INTERRUPT LOOP
CP ENTERED; PROGRAM INTERRUPT LOOP

and enters the CP mode. Use the CP commands to display the following
information on the terminal.

• PSW
• CSW
• General registers
• Control registers

Then use the CP DUMP co •• and to take a dump.

If you cannot find the cause of the wait or loop from the information
just gathered, try to reproduce the problem, this time tracing the
processing via the CP TRACE co •• and.

354 IBM VM/370: Command Language Guide for General Users

If CMS is running in the virtual machine, the C"S debugging
facilities may also be used to display information, take a dump, or
trace the processing. The CMS SVCTRAC! and the CP TRACE commands record
different information. Figure 45 compares the two.

PROBLEM PROGRAM ENABLED WAIT

If the virtual .achine is in an enabled wait state; try to find out ¥hy
no I/O interrupt has occurred to allow processing to resume.

The Control Program treats one case of an enabled wait in a virtual
machine the saae as a disabled wait. If the virtual machine does not
have the "real tiaer" option and loads a PSW enabled only for external
interrupts, CP issues the aessage

DMKDSP450W CP ENTERED; DISABLED WAIT STATE

Since the virtual timer is not decremented while the virtual machine
is in a wait state, it cannot cause the external interrupt. A "real
tiaer" runs in both the problem state and wait state and can cause an
external interrupt which allows processing to resume.

Appendix B: Debugging a Problem Program with V"/370 355

Comparison of CP and CMS Facilities for Debugging

If you are debugging problems while running CMS, you can choose the CP or CMS debugging
tools. Refer to Figure 45 for a comparison of the CP and CMS debugging tools.

r t

I Function CP CMS I
I ---1
Isetting Can set only one address stop at a time. Can set up to 16 address stopsl
laddress at a time. I
I stops. I
I I
IDumping The dumF is printed in hexadecimal format The dump is printed in hexa- I
Icontents I with EBCDIC translation. The storage ad- decimal format. The storage I
lof storagel dress of the first byte of each line is address of the first byte of I
Ito the I identified at the left. The control blocks each line is identified at thel
I printer. I are formatted.. left. The contents of general I
I I and floating-point registers I
I I are printed at the beginning I
I I of the dump. I

---1
Displaying I
the con- I
tents of I
storage I
and I
control I
registers I
at the I
terminal. I

storing
informa
tion.

The display is typed in hexadecimal format
with EBCDIC translation. The CP command I
displays storage keys, floating-point regi-I
sters and control registers. I

The amount of information stored by the CP
command is limited only by the length of
the input line. The information can be
fullword aligned when stored. CP stores
data in floating-point and control regis
ters, as well as in general registers. CP
stores data in the PSW, but not in the CAW
or CSW. However, data can be stored in the
CSW or CAW by specifying the hardware ad
dress in the STORE command.

I
I
I
I
1

The display is typed in hexa- I
decimal format. The CMS com- I
mands gQ nQ~ display storage I
keys, floating-point registers
or control registers as the CP
command does.

The CMS command stores up to
12 bytes of information. CMS
stores data in the general
registers but not in the
floating-point or control reg
isters. CMS stores data in thel
PSW, CAW, and CSW. 1

I
I
I

---1
Tracing
informa
tion.

CP traces:
• All interrupts, instructions, and

branches
• SVC interrupts
• I/O interrupts
• Program interrupts
• External interrupts
• Privileged instructions
• All user I/O operations
• Virtual and real CCWts
• All instructions

The CP trace is interactive. You can stop
it and display other fields.

CMS traces all SVC interrupts. 1
CMS displays the contents I
of general and floating-point I
registers before and after 1
a routine is called. The para
meter list is recorded before
a routine is called.

Figure 45. Comparison of CP and CMS Facilities for Debugging

356 IBM VM/370: Command Language Guide for General Users

Appendix C: Using the CMS Batch Facility

The C8S Batch Facility is a V8/370 programming facility that runs under
C8S. It allows a V8/370 user to run jobs in batch mode by queuing jobs
from either his own virtual .achine or the real card reader to a virtual
machine dedicated to running batch jobs under the Batch Facility. The
Batch Facility machine then executes these jobs, freeing the user's
machine for other uses. The accounting routines charge the time used in
the batch machine to the originating user.

The Batch Facility virtual machine is generated and controlled at a
terminal console under a userid dedicated to execution of jobs in batch
mode. The system operator generates a batch machine by performing an
IPt of C8S, then entering a command (C8SBATCB), which specifies that the
machine is to execute jobs in batch mode. After each job is executed,
the Batch Facility reloads itself, thereby providing a continuously
running batch machine. Jobs are queued to the batch machine's virtual
card reader from either user terminals or the system card reader and
executed sequentially. When its virtual reader is empty, the Batch
Facility waits for more input.

The Batch Facility is designed for the non-CMS user who requires a
system for compiling or executing batch jobs loaded from the real system
card reader. The Batch Fac"ili ty is also useful for the interactive user
who has compute-bound jobs such as assemblies and compilations, and for
execution of large user programs. This allows interactive users to
continue work at their terminals while their time-consuming jobs are run
in another virtual machine.

Execution time for CP and C8S
equivalent to that of co.mands
interactive CP/C8S session.

Using the Batch Facility Virtual Machine

commands under the Batch
typed in at a terminal

Facility is
during an

The Batch Facility is generated on any ter.inal attached to the V8/370
system. The userid used to run the Batch Facility should be known by
all users in the installation.

The interactive users of the Batch Facility must spool their batch
jobs to the virtual reader of the batch userid and the non-interactive
users must precede the real deck of batch jobs with a CP ID card
specifying the userid of the Batch Facility virtual machine. The ID
card takes the form:

ID userid

where ID must begin in card column one and be separated from userid (the
Batch Facility virtual machine userid) by one or more blanks.

Appendix C: Using the C8S Batch Facility 357

INPUT TO THE BATCH PACILITY VIRTUAL MACHINE

Any user application or development program written in a language
supported by VM/370 may be executed on the Batch Pacility virtual
aachine. However, there are restrictions on programs using certain CP
and CMS commands, as described later in this section.

Programs to be executed under the Batch Pacility must be delimited by
IJOB, and 1* control cards. Another control card, the ISET card, may
also be used with an input program to set certain, limits on the
execution of the prograa.

Input records for the Batch facility must be in card-image format.
Any record not in card-iaage for.at is flushed.

The IJOB card identifies the name and userid of a job and provides
accounting inforaation for the system. A IJOB card must precede each
job to be executed under the Batch Pacility. It takes the fora:

IJOB userid accntnum [jobname] [coaments]

.!!!~:

userid specifies the user identification of the user who sent the job
to the batch aachine. This userid is charged by the CP
accounting routines for the systea resources used during a
job.

accntnum is the user's account number. This account number appears in
the accounting data that is generated at the end of a user's
job. This account number will override the account number in
the CP directory entry for that userid.

jobname is an optional parameter that specifies the name of the job
being run.

comments may be any information the user wishes.

The use rid and jobname parameters are used by the Batch Pacility for
printing of distribution codes for spooled output and for directing job
status messages to the interactive user's terminal.

The 1* card indicates the end of a job to the Batch Pacility. It
takes the form:

1*

The Batch Pacility treats all 1* cards after the first as null cards.
Therefore, if you want to ensure against the previous job not having a
1* end-of-job indicator, you should precede your IJOB card with a 1*
card.

The only exception to the way the Batch Pacility handles the 1* cards
is in the case of the CMS MOVEPILE command. When the input PILBDEP
specifies a terainal read, for example PILEDEF INFILE TERM, a 1* card
must be supplied by the user to delimit that file.

358 IBM VM/370: Command Language Guide for General Users

The ISET card sets limits on a system's time, printing, and punching
resources during the execution of a job. It takes the form:

/SET [TIME seconds] [PRINT lines] [PUNCH cards]

seconds

lines

cards

is a decimal value that specifies the maximum number of
seconds of virtual CPU time a job can use.

is a decimal value that specifies the maximum number of lines
a job can print.

is a decimal number that specifies the maximum number of cards
a job can punch.

The default values for the Batch Facility are set at 32,767 seconds,
printed lines, and punched cards per job. Any new limits defined using
the ISET card must be less than these maximum settings. The system
resources can be set at lesser values than the default values by an
installation's system programmer; be sure you know the maximum
installation values for batch resource limits before you use the /SET
card.

EXEC files can be used as input to the Batch Facility virtual machine,
providing a greater level of programming flexibility for Batch Facility
users. The following list shows a few of the uses for EXEC files in
manipulating the batch machine. EXEC files can be used:

• To store control statements (/JOB, /*, and /SET) required for
execution of queued jobs.

• To sUbstitute keyword values into a program so that the program can
be given variable input.

• To skip over portions of programs using conditional EXEC control
statements.

• To identify other EXEC files to be used during program execution.

• To integrate many files into a single file for execution under the
Batch Facility.

The uses of EXEC files in manipulating the input to the Batch
Facility virtual machine are limited only by the programmer's
imagination and the rules for writing EXEC files. For rules for writing
EXEC files and how they can be used, see the !AtJIQ: !!EC US~~!2 Guid~.

Appendix C: Using the CMS Batch Facility 359

The Batch Facility permits the use of most CP and CftS commands. The
exceptions are noted in the follcwing lists.

only the following CP co •• ands are allowed to control the Batch
virtual machine:

CBAIGE'
CLOSE'
DETACH2
DUftP
DISPLAY
LIIK3

ftSG
QUERY
BEIIID
SPOOL'
STORE
TAG

The following CMS commands are disabled under the Batch Facility:

SET
READCARD
DISK LOAD

The FILEDEF com.and is also disabled for use in defining the virtual
card reader.

BATCH PACILITY OUTPUT

The Batch Facility's virtual machine runs with its output spooled to the
terminal console and to the printer. If the batch machine's virtual
console is connected, CP messages are also printed at the console. The
printed copy resulting from execution of a program is printed at the
real printer under the su~.itting userid, with the user's distribution
code and a spool file name and type of CftSBATCH JOB (unless a job name
was specified on the /JOB card). CftS console output is spooled to a
file that is printed followipg the user's program execution output at
the real system printer, with the submitting user's distribution code, a
spool filename of BITCH, and a spool filetype of COl SOLE.

since all the closed printer files are queued for system output under
the submitting userid, the submitting user can control (CHAIGE, PUBGE,
or ORDER) these files before processing on the system printer.

At job termination, all spooling devices are closed and all files are
released. If the CP TAG command was used to identify spool files or to
direct these files to other virtual machines or remote work stations,
the Batch Pacility resets the spooling devices for the next job. If
disk devices were linked to during the job, they are detached by the
Batch Pacility at job termination time.

The Batch Pacility eMS system is then reloaded, reinitializing all
nucleus data areas and work areas in storage.

Ilso at the end of the job, accounting information is punched to the
system card punch. This accounting information is in the same format as
CP/CMS accounting information.

'May not be used to affect the virtual card reader.
2ftay not be used to affect spooling devices or the system or IPL disks.
3ftust be in the following format:

CP LIIK userid vaddr vaddr mode password

360 IBM Vft/370: Command Language Guide for General Users

When a user job terminates abnormally, the Batch Pacility sends an ABEID
aessage in the appropriate userid terminal console. types the message to
the BATCH CONSOLE file, and spools a CP dump of the virtual machine
(with a heading of userid and jobname) to the printer. The Batch
Facility then performs the normal cleanup tasks and starts the next
job.

Since the Batch Facility reloads itself (via IPL) after each job,
that portion of a job following an ABEID is treated as a new job, which
is subsequently flushed.

Appendix C: Using the CftS Batch Facility 361

Appendix D: eMS Macro Instructions

The macro definitions that are used by the Conversational ftonitor System
(CftS) are contained in the files CftSLIB ftlCLIB and OS!lCRO !ICLIB, which
reside on the system disk. CftSLIB !lCLIB contains the macros which
provide linkages to the CBS function routines, and OS!lCRO !ICLIB
contains Operating System macros which are simulated by CftS. Only the
CftS macros are discussed in this section. To obtain a iist of the names
and locations of macro definitions in a macro library called libname
ftlCLIB, the command ftlCLIB !IP libname may be issued.

The macros described in this section deal
the disk and terminal handling routines.
terminal input/output, and PSCB, PSST1TE,
PSER1SE, and PSCLOSE handle I/O to disk.
devices may be accessed from an lssembler
RDC1RD, PRIITL, and PUICHC.

primarily with linkage to
WRTER! and RDTBR! handle
PSOPBI, PSRB1D, PSWRITB,

The offline unit record
Language program by using

The iRTER! and RDTERft macros each set up a parameter list inline, and
issue a CBS supervisor call. Por disk I/O, the parameter list is set up
in a constant area by the PSCB (Pile system Control Block) macro, or
generated inline if the PSCB option is not specified. The label of that
macro is used as a parameter of the PSiRITB, PSRB1D, PSOPBI, and PSSTITE
macros. The example in Pigure 46 shows a typical sequence for writing
and readi~g disk files.

The program example in Pigure 46 shows the use of I/O macros. The
program copies a file, the "input file," to a new file, the "output
file~" If the program were processed by GBI!OD into a module named
BBGII, it would be invoked with a command line of the form: "BBGII PILB1
BIBC 11 PILB2 BIBC 11," which would copy PILB1 BIEC (input file) to
PILI2111C (output file).

The PSST1TB macro determines the existence of the input file. The
error branch will be taken if it does not exist. This is not needed for
the output file, since, if it didn't exist, it would be created. If the
output file already existed, the new records would be appended to it.

The program then alternates between reading and writing records,
until PSREID returns an error code. Control then goes to BOP, which
tests whether end-of-file or some other error occurred. If it was
end-of-file, a return code of zero is passed back to the command level
in register 15.

If an error occurs, an appropriate response is typed using the iRTBR!
or LIIBDIT macros. Use of the LIREDIT macro at !RR2 and IRR3 causes the
value of the return code from PSRBAD ~r PSiRITI to be substituted, in
decimal, for the dots in the text of the message to be typed.

lote that, if desired, the PSOPIR and PSCLOSI macros could have been
used to open and close the files. It was not necessary to do so in this
program because the 'SRIAD and 'SiRITI macros open the file to be read
or written. The CftS system automatically closes all files at the end of
each command execution.

Appendix D: CftS !acro Instructions 363

STftT SOURCB ST1TBBENT

1 BEGIN
2
3
8
9

CSECT
PRINT NOGEN
SlYB (14,12) ,,*
B1LR 12,0
USIIG *,12

EST1BLISH lDDRESS1BILITY

10
11

Ll 2,8(,1) R2=lDDR OP INPUT PILEID IN PLIST
Ll 3,32(,1) R3=lDDR Ol OUTPUT lILEID II PLIST

12 *
13

DETERftINE IP INPUT PILE EXISTS
PSST1TE (2) ,BRROR=ERRl

28 * REID 1 RBCORD PROft IIPUT lILE liD WRITE ON OUTPUT PILE
29 RD FSREAD (2) ,ERROR=EOP,BUPPER=BUPP1,BSIZE=80
52 PSWRITE (3) ,BRROR=ERR2,BUllER=BUlll,BSIZE=80
75 B RD LOOP B1CK POR IEXT RECORD

77 * COBE HERB IF ERROR RE1DING IIPUT PILB
78 EOP C 15,=F I 12 1 END OF PILE 1
79 BIB BRR3 BRROR IP NOT

81 RETURN (14,12) ,RC=O
85 * IP INPUT PILE DOES lOT EXIST
86 ERR1 WRTERft IPILB lOT POUNDI,BDIT=YBS
96 B ERRET

98 * IP ERROR WRITING PILB
99 ERR2 LR 10,15 SlYE RBT CODE IN RBG 10

100 LINEDIT TEXT='ERROR CODE ••••• II WRITING PILE',sUB=(DEC, (10»
115 B BRRBT

117 * IP RB1DING ERROR Wls lOT NORB1L BND Ol PILB
118 BRR3 LR 10,15 slYE RET CODE IN REG 10
119 LIIBDIT TEXT=IBRROR CODE ••••• II RE1DIIG PILBI,SUB=(DEC,(10»

135 ERRET

141 BUPF1
142
143
144
145
146
147

RETURI (14,12),RC=1 RETURI TO C1LLBR

DS CL80
BID

=CL8 I RDBUl'
=CL8 IWRBUP'
=1 (BUll1)
=F 1 80 1

=P'12 1

Pigure 46. 1 sa.ple Listing of a Progra. that Uses CBS Bacros

364 IBB Yft/370: Co •• and Language Guide for General Users

COftPSWT !ACBO

COMPSWT Macro

PU~POS!:

The COftPSWT macro causes the COftPSWT flag in the OSSPLAGS byte of the
lucleus constant Area to be turned on or off.

[label] I COftPSWT I OllOPP

USAG!:

The co.piler switch flag COftPSWT in the lucleus Constant Area determines
whether the OS .acros LIII, LOAD, ICTL, and ATTACH will use the CftS
IICLUDB co •• and or the CftS LOADftOD co.jand. With COftPSWT off, the
progra. called by LIII, LOAD, ICTL, or ATTiCH .ust be a relocatable
object module residing in a file with the filetype TBIT or TITLIB. It
is called via the IICLUDB com.and. with CO!~SWT on, the program called
by LIBI, LOAD, ICTL, or ATTACH must be an absolute core-image module in
a file with the filetype ftODULB. It is called via the LOADftOD co •• and.

Appendix D: CftS ftacro Instructions 365

FSCB MACRO

FSCBMacro

The FSCB macro creates a File system control Block, which is used as the
parameter list to the file system routines.

[label]

label

fileid

format

buffer

size

FSCB [fileid] [,RECFft=format]
[,BUFFER=buffer] [,BSIZE=size]
[,RECRO=number] [,NOREC=numrec]

is an optional statement label.

specifies the file identifier enclosed in
separated by blanks ('filename filetype
file mode is omitted, "Al" is assumed.

F indicates fixed-length records (default).
V indicates the variable-length records.

specifies the address of the I/O buffer.

specifies the size of the buffer in bytes.

quote marks
filemode') •

and
If

number specifies the relative record number of the next record to be
accessed (default = 0).

numrec specifies the number of records to be read (default = 1).

!g!~: The above options must be specified as self-defining teras.

The FSCB macro generates a File system Control Block
file. It may be used as the parameter list to
routines.

for the specified
the file system

Errors in macro operand coding will cause Assembler errors.

366 IBft Vft/370: Command Language Guide for General Users

FSCLOSE MACRO

FSCLOSE Macro

The FSCLOSE macro causes an open file to be closed and its current
status saved on the disk.

c
l[label]1 FSeLOSE I [fileid] [,FSCB=fscb] [,ERROR=erraddr] L-__ ~

label

fileid

fscb

erraddr

is an optional statement label.

specifies the file identifier. 'fileid' may be coded even if
FSCB= is also specified. It may be:

'fn ft f.' fileid enclosed in quote marks and separated by
blanks. If fm is omitted, "Al" is assumed.

(reg) a register from 2 to 15 containing the address of
the fileid (18 characters).

specifies the address of an FSCB. It may be:

label
(reg)

the label on the FSCB macro.
a register containing the address of an FSCB.

specifies the address of an error routine to be given control
if an error is encountered. If ERROR= is not coded, control
returns to the next sequential instruction in the calling
program if an error occurs, as it does if no error occurs.

lSCLOSE should be used within EXEC procedures to close files tha~ are no
longer needed for processing. The FSCLOSE macro causes the specified
file to be closed. Either a fileid or FSCB must be specified.

If an error occurs, processing terminates, and control is passed to
erraddr (if one was provided) or back to the calling program's next
sequential instruction. Register 15 contains the following error code:

fte~!!!g
File not· open

Appendix D: CftS Macro Instructions 367

F SERA SE f'-ACRO

FSERASE Macro

The PSERASE macro causes one or more files to be deleted from the user's
disk.

I
l[labe1]1 PSERASE l[fi1eid][,PSCB=fscb][,ERROR=erraddr]
I

label

fi1eid

fscb

erraddr

is an optional statement label.

specifies the file identifier. 'fi1eid' may be coded even if
PSCB= is also specified. It may be:

'fn ft fm' fi1eid enclosed in quote marks and separated by
blanks. If fm is omitted, "Al" is assumed.

(reg) a register other than 0 or 1 containing the
address of the fi1eid (18 characters).

specifies the address of an PSCB. It may be:

label
(reg)

the label of an PSCB macro.
a register containing the address of an PSCB.

specifies the address of an error routine to be given control
if an error is encountered. If ERROR= is not coded, control
returns to the next sequential instruction in the calling
program if an error occurs, as it does if no error occurs.

The PSERASE macro causes the specified file to be deleted from the
user's disk. Either a fi1eid or PSCB must be specified.

If an error occurs, register 1 points to the PSCB for the file having
the error and register 15 contains one of the following error codes:

~!~!'!!.9
Parameter list error
Pile not found

368 IBft Vft/370: Command Language Guide for General Users

FSOPEN MACRO

FSOPEN Macro

The FSOPER macro causes the file to be made ready for either input or
output.

[label]

label

fileid

fscb

options

erraddr

FSOPER [fileid] [,lSCB=fscb] [,options]
[,ERROR=erraddr]

is an optional statement label.

specifies the file identifier. 'fileid' may be coded even if
PSCB= is also specified. It may be:

'fn ft f.' the fileid enclosed in quote marks and separated
by blanks. If fm is omitted, "Al" is assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters)

specifies the address of an FSCB. It may be:

label
(reg)

the label on an lSCB macro.
a register containing the address
FSCB= is not coded, an fscb is
pointed to by register 1, upon
macro call.

of an FSCB. If
created inline,
return from the

any of the options of the FSCB macro instruction may be
specified here. Only the BUPFER, RECNO, NOREC, and BSIZE
(variable file only) options have any effect for an already
existing file. These options may be specified as either a
self-defining term or a register enclosed in parentheses.

specifies the address of an error routine to be given control
if an error is encountered. If ERROR- is not coded, control
returns to the next sequential instruction in the calling
prograa if an error occurs, as it does if no error occurs.

The FSOPER macro causes the FSCB to be filled in from the file status
table for an already existing file. A file status table entry is
created for a new file. Either a fileid or FSCB must be specified. On
return, register 1 points to the FSCB for the file.

FSOPEN is used mainly to determine the existence of the file about to be
processed.

If an error occurs, processing terminates, and control is passed to
erraddr (if one was provided) or back to the calling program's next
sequential instruction. Register 15 contains one of the following error
codes:

MeaniBg
File does not exist
Invalid file identifier

Appendix D: CMS Macro Instructions 369

PSREAD ftACRO

FSREAD Macro

The PSREAD macro causes a record to be read from disk.

~Q!Hl!I:

[label]

label

fileid

fscb

options

erraddr

FSREAD [fileid] [,FSCB=fscb] [,options]
[, ERROR=erraddr]

is an optional statement label.

specifies the file identifier. 'fileid' may be coded even if
FSCB= is also specified. It may be:

'fn ft f.' the fileid enclosed in quote marks and separated
by blanks. If f. is o.itted, "Al" is assu.ed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters).

specifies the address of an FSCB. It may be:

label
(reg)

the label of an FSCB macro.
a register containing the address of an PSCB.

the BUFFER, NOREC, BSIZE, and RECNO options of the FSCB .acro
instruction may be specified here. If the PSCB parameter is
omitted, the BUPPER and BSIZE options must be specified.
These options may be specified as either a self-defining term
or a register ~nclosed in parentheses.

specifies the address of an error routine to be given control
if an error is encountered. If ERROR= is not coded, control
returns to the next sequential instruction in the calling
prograa if an error occurs, as it does if no error occurs.

The PSREAD macro reads one record into the user's buffer. If the RECNO
option is specified, that specified record is read. otherwise, the next
record in the file is read. If RECNO is specified, it must be reset to
zero by the next ~SREAD in order to read the file sequentially from the
originally specified record number. lither a fileid or PSCB must be
specified. On return, register 0 contains the number of bytes read.
Register 1 points to the PSCB.

If an error occurs, processing terminates, and control is passed to
erraddr (if one vas provided) or back to the calling program's next
sequential instruction. Register 15 contains one of the following error
codes:

.§.!.!ni.!!.9
File not found
Invalid buffer address
Per.anent I/O error

370 IBft Vft/370: Co.mand Language Guide for General Users

7

8
9

11
12
13

14
15

FSREAD MACRO

~!!~!Bg
Number of records is less than or equal to zero, or

greater than 32768
Invalid record format (only checked for at the first read

after finis or iplj
Incorrect length
File open for output
Nu.ber of records greater than 1 for variable length file
End of file
Variable length file has invalid displacement in active

file table
Invalid character in filename
Invalid character in filetype

Appendix D: CMS Macro Instructions 371

F SSTATE MACRO

FSSTATE Macro

The FSSTATE macro returns to the user the current status of the
specified file.

1.Q~:

• l[labe1]1 FSSTATE I [fi1eid] [,FSCB=fscb] [,ERROR=erraddr]
I

label

fi1eid

fscb

erraddr

is an optional statement label.

specifies the file identifier. Ifi1eid' may be coded even if
FSCB= is also specified. It may be:

Ifn ft fm' the fi1eid enclosed in quote marks and separated
by blanks. If f. is oaitted, "A1" is assumed.

(reg) a register other than 0 or 1 containing the
address of the fi1eid (18 characters).

specifies the address of an FSCB. It may be:

label
(reg)

the label on an FSCB macro.
a register containing the address of an FSCB.

specifies the address of an error routine to be given control
if an error is encountered. If ERROR= is not coded, control
returns to the next sequential instruction in the calling
program if an error occurs, as it does if no error occurs.

The FSSTATE .acro causes the existence of the specified file to be
verified. Begister 1 points to a copy of the Pile status Table (PST)
for the specified file. Either a fileid or FSCB must be specified.

If an error occurs, processing terminates, and control is passed to
erraddr (if one was provided) or back to the calling progra.'s next
sequential instruction. Register 15 contains one of the following error
codes:

Code
-20-

24
28
36

fteaniBg
Invalid character in fi1eid
Invalid fi1e.ode
Pile not found
Disk not accessed

312 IBft Vft/310: Co •• and Language Guide for General Users

FSWRITE MACRO

fST,VRITE lr1acl'o

The FSWRITE macro causes a record to be written to the disk.

,.-------- ------,
I [label] FSWRITE [fileid] [,FSCB=fscb] [,options] i

[,ERROR=erraddr] I I
L-

label

fileid

fscb

options

erraddr

I

is an optional statement label.

specifies the file identifier. 'fileid' may be coded even if
FSCB= is also specified. It may be:

'fn ft fm' the fileid enclosed in quote marks and separated
by blanks. If fm is omitted, "A 1" is assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters) •

specifies the address of an FSCB. It may be:

label
(reg)

the label on an FSCB macro.
a register containing the address of an FSCB. If
FSCB= is not coded, BUFFER= and BSIZE= must be
coded.

any of the options of the FSCB macro instruction may be
specified here. Only the BUFFER, RECNO, and BSIZE options
have any effect on an already existing file. These options
may be specified as either a self-defining term or a register
enclosed in parentheses.

specifies the address of an error routine to be g1ven centrel
if an error is encountered. If ERROR= is not ceded, centrol
returns to the next sequential instruction in the calling
program if an error occurs, as it does if no error occurs.

The FSWRITE macro writes one record onto the user's disk. If the RECNO
option is specified, that specified record is written. Otherwise, the
next sequential record in the file is written.

To write a file beginning with a specific record in the file, two
FSWRITE statements must be issued: the first to specify the record
number where the writing is to begin, for example, RECNO=5 begins the
write operation at record number 5 in the specified file. The second
FSWRITE statement must set the RECNO option to zero, which will cause
the remaining records in the file to be written sequentially. Either a
fileid or FSCB must be specified. On return, register 1 points to the
FSCB for the file.

Using the BSIZE option of the FSCB macro, you can write multiple records
in a single FSWRITE statement. For example, if you wish to write 20
records at once, you code BSIZE=1600 (the length of the record times the
number of records). Variable length records cannot be written like this,
however. They must be written sequentially each with its own length
specified.

Appendix D: CMS Macro Instructions 373

GC20-1804-3 Page Modified by TIL GN20-2659

FSWRITE MACRO

If an error occurs, processing terminates, and control is passed to
erraddr (if one was provided) or back to the calling program's next
sequential instruction. Register 15 contains one of the following error
codes:

Code --"2-
4
5
6
7
8
9

10
11
12
13
15
16
17
18
19
20
21

~~g!!!!!g
Invalid buffer address
First character of filemode is illegal
Second character of filemode is illegal
Itea number too large
Attempt to skip over unwritten variable length item
Buffer size not specified
Pile open for input
Maximum number files reached
Record format not P or V
Attempt to write on read-only disk
Disk is full
Length of fixed length item not the same as previous item
Record format specified not the same as file
Variable length item greater than 65K bytes
Number of records greater than 1 for variable length file
Maxiaua number of data blocks per file reached (16060)
Invalid character detected in filename
Invalid character detected in filetype

374 IBM VM/370: Command Language Guide for General Users

HNDEX~ !!ACRO

HNDEXT Macro

The HNDEXT macro causes external interrupts to be passed to the user's
routine for processing.

[label] HRDEXT function[,address]

label is an optional statement label.

function specifies whether the interrupts are to be trapped (SET) or
cleared (CLR).

address specifies the address of
interrupts. This parameter
function is specified.

the routine to process
is required only when the

the
SET

The BNDEXT macro causes C!!S to pass control to the user's routine when
an external interrupt occurs. When the user is given control, all
virtual interrupts except multiplexer are disabled. On entry to the
user's routine, register 1 points to a save area used for saving the
registers and PSW at the time of the external interrupt, starting at
label GRS, as shown below. Register 13 points to an 18-fullword save
area starting at label UAREA, shown below. Register 14 contains the
address the user's routine must return to when this processing is
complete, and register 1S contains the address of the user's processing
routine. After HRDEXT CLR is issued, an external interrupt other than a
timer interrupt will cause DEBUG to be entered.

l!gbe!
GRS
FRS
PSW
UAREA
END

None.

Displacement
_!!!!.£- -!!~-o 0

64 40
96 60

108 68
180 B4

Appendix D: C!!S !!acro Instructions 315

BNDINT KACRO

HNDINT Macro

The BNDINT macro causes interrupts for the specified devices to be
passed to the user's routine for processing.

[label]

label

BNDINT function, (devname[,address,devaddr,when]) •••
[,ERROR=erraddr]

is an optional statement label.

function specifies whether the interrupts are to be trapped (SET) or
cleared (CLR).

devname

address

devaddr

when

erraddr

specifies a four character symbolic name for the device.

specifies the address of the routine to process the
interrupts. An address of zero indicates interrupts for the
device are to be ignored.

specifies the device address, in hexadecimal, of the device
whose interrupts are to be trapped.

specifies that the interrupts are to be reflected immediately
(ASAP) or only after the WAITD macro is issued (WAIT).

specifies the address of an error routine to be given centrol
if an error is encountered. If ERROR= is not coded, control
returns to the next sequential instruction in the calling
program if an error occurs, as it does if no error occurs.

Note: address, devaddr, and when need not be specified if CLR is
specified.

The BNDINT macro causes CKS ta pass control to the user's routine when
an interrupt is received from one of the specified deviGes. The user
routine will be entered immediately if ASAP is specified or a WAITD
macro has been issued for the device. If neither condition exists, the
interrupt will be stacked, until a WAITD macro is issued for the
device. When the user is given control, all I/O interrupts and external
interrupts are disabled. On entry to the user's routine, registers 0 and
1 contain the I/O old PSW, registers 2 and 3 contain the CSW, register 4
contains the interrupting device address, register 14 contains the
address that the user's routine must return to when his processing is
complete, and register 15 contains the address of the user's processing
routine. When processing is complete, the user must return to CKS via
register 14 and indicate in register 15 whether processing is complete.
A zero in register 15 indicates that the user has completed handling the
interrupt and a nonzero register 15 indicates that another interrupt is
expected. The CLR function indicates that the user is finished
processiing interrupts for this device. Por additional information, see
the documentation for WAITD.

If an error is detected, register 15 contains a 1, indicating that the
devaddr or address is invalid.

376 IBK VK/370: Command Language Guide for General Users

HNDSVC ftACRO

HNDSVC Macro

The HNDSVC macro causes interrupts for the specified supervisor call
(SVC) numbers to be passed to the user's routine for processing.

[label]

label

svcnum

address

erraddr

HNDSVC {set I clr},{ (svcnum ,address) I svcnum}
[, { (svcnum,address) I svcnum}] •••

[, ERROR=erraddr]

is an optional statement label.

specifies a number from 0 to 200 or 206 to 255 that
corresponds to the SVC number to be handled by the user
routine. (SVC's 204 and 205 are reserved for future use.)

specifies
interrupt.
function.

the address of
This field need

the routine to process the
not be specified with the eLR

specifies the address of an error routine to be given control
if an error is encountered. If ERROR= is not coded, control
returns to the next sequential instruction in the calling
program if an error occurs, as it does if no error occurs.

The HNDSVC macro causes CftS to pass control to the user's routine when
one of the specified SVC instructions is issued. On entry to the user's
routine the following conditions exist:

Register
__ J!.Q~ __ ,..,..., ~_---..L _

~~!!~~!!.~~

0-11 and 15 As they were when the SVC was executed.
12
13

14

Address of user SVC handler routine.
Address of an 18-fullword save area for use

user's SVC handler routine.
Return address in Cfts.

by the

The user must return to CftS via register 14 when he has completed
processing the interrupt. The CLR function indicates that the user is
finished handling interrupts for the specified SVC number.

If an error occurs, p~ocessing terminates, and control is passed to
erraddr (if one was provided) or back to the calling program's next
sequential instruction. Register 15 contains one of the following error
codes:

fte~.!!.!.!!.9
Invalid SVC number or address
SVC number set replaced previously set number
SVC number cleared was not set

Appendix D: CMS ftacro Instructions 377

LINEDIT ftACRO

LINEDIT Macro

The LINEDIT macro provides a aethod for performing conversions into
EBCDIC, and, optionally, typing the results at the terminal.

[label] LIHEDIT [ftF='!ILI (E,addr) I (B, (reg»]
[,TEXT='message-text']
[,TEXTA=address I (reg)]
[,COftP=!~~INO]
[,DOT=YB21 NO]
[,SUB=(type,value[,type,value] ••)]
[,DISP=1 rP!INONBISIOIPRINTICPCOftft]
[, BUFF A= address I (reg)]
[, RENT=!ES I NO]
[,ftIXSUBS=number]

where the option list
(described in greater
Parameters") :

consists of the following keyword parameters
detail in the section on "LINEDIT ftacro

ftF='!ILI (E,addr) I (E, (reg» to specify macro form

TEXT= , message-text , to spec1fy message text

TEXTA=addressl (reg) to specify message text address

COftP=!l~IBO to suppress multiple blank compression

DOT=YE~INO to suppress final period on message text

SUB=(type,value[,type,value] •••) to specify a substitution list where:

type = HEX
= HEXA
= DEC
= DECI
= HEX'll
= CHARA
= CHAR81

value= expression
= (reg)
= address
= (address, length) length being equal either

to number or (reg)

DISP=lYPEIBOBEISIOIPRINTICPCOftft to specify the action to be taken with
lIessage text.

BUFFI=address I (reg) to specify return buffer address

RENT=I~§lno to specify whether reentrant code must be generated.

MIXSUBS=number to specify the maxillull number of sUbstitutions with
MP=L.

!2~: Registers 1 and 15 should not be used as argument registers to the
LINEDIT macro; they are used as work registers by the macro.

378 IBft VM/370: Comlland Language Guide for General Users

LINEDIT ftieBO

LINEDIT ftieBO PABAftETEBS

The ftP parameter specifies whether the form of the macro is to be
st~~g~~, !i§!, or ~~~£Yte. This parameter is coded as follows:

ftl=! IL I (E, addr) I (E, (reg»

with the following meanings:

ftP=l (Standard form)

This is the most usual form, and the default.
PLIST, and generates a call to the LINEDIT
message will be typed at the terminal.

It generates an inline
routine so that the

The standard form will generate only reentrant code, and may be used
under all circumstances except the following:

• If more than one substitution is made.

• If TEITI=(reg) is used. Bote that
the standard form, with the address
address constant.

• If the BUF1A parameter is used.

ftl=(E,addr) or ftl=(E,(reg» (Execute fora)

TEITA=address can be used in
referenced in the PLIST by an

If used in this form, the macro will generate code to construct a
PLIST at the specified address, rather than using an inline PLIST.
The code will then call LINEDIT, passing the address of the newly
constructed PLIST.

The address of the construction area for the PLIST is given by
"addr," to specify an address which can be obtained by a Load Address
(L~ instruction, or by "(reg)," where the register specified points
to the area.

In either case, the specified area must be large enough to construct
a PLIST. The size of a PLIST is variable, depending upon the number
of substitutions made, and whether BU1PA was specified. The list
form of the LIBBDIT macro is used to reserve space for the PLIST.

ftl=L (List fora)

This fora generates a PLIST only. It does not generate any
executable code. It is used to reserve space for a PLIST to be
constructed using the ftl= (E, ••••) execute form. ' The size of the area
reserved depends upon the number of sUbstitutions to be made, as
specified with the ftAISUBS parameter.

lor example,

LINEDIT ftl=L,ftAISUBS=5

reserves space for a PLIST which may hold up to five sUbstitution
parameters.

Appendix D: eftS ftacro Instructions 379

LIIBDIT !ACRO

TBXT Paraaete£

This paraaeter specifies the aessage text as a character string between
single quotes. single quotes appearing in the aessage text should be
coded as two single quotes. This paraaeter is coded as follows:

TBXT=lmessage-textl

If the TEXT Paraaeter is coded, the TEXTA parameter must not be
coded.

This parameter is an alternative to the TEXT parameter. It specifies
the address of the message text. The aessage text consists of a
one-byte length field, followed by the actual text of the message. The
parameter is coded as follows:

TBXTA=ad4ressl (reg)

If used in the standard or list for. of the aacro, the "address" is
used in an address constant. The "(reg)" form then may not be used. If
used in the execute fora, the "address" is obtained by a Load Address
(LA) instruction. If the "(reg)" form is used, then the specified
register (other than registers 1 and 15) contains the address of the
message text area. If the TBXTA parameter is coded, the TEXT parameter
aust not be coded.

This parameter specifies how multiple blanks in the message are to be
handled. With CO!P=YBS, the default, the LIIEDIT routine compresses all
aultiple blanks in the message into a single blank. If CO!P=IO is
coded, this coapression is not done.

The DOT paraaeter indicates whether the end of the message will have a
period. with DOT=YES, the default, the LIIEDIT routine places a period
(dot) at the end of the message. If DOT=IO is coded, this is not done.

This paraaeter is used to specify a sUbstitution list that allows a
message to have a value substituted into it at execution time. Whenever
the LIIEDIT scanning routine discovers two or more consecutive periods
in the message text, it assumes that a substitution is to be made.

380 IS! '!/370: Co •• and Language Guide for General Users

LIBEDIT ftACBO

The number of consecutive periods indicates the length (or
length) of the substituted field, after conversion, if any.
parameter is coded as follows:

maximull
The SUB

where each "type,value" pair specifies the type and value
SUbstitution. possible "type,value" substitutions are:

HBI, (reg)

of the

The value in the specified register (other than
is to be converted to graphic hexadecillal form.
consecutive periods are coded in the message
digits will be truncated. Leading zeros are
truncated.

registers 1 and 15)
If fewer than eight
text, then leading
not automatically

HBI,expression
The given expression, which
Address (LA) instruction,
graphic hexadecimal form.

HBIA ,address

will be evaluated by means of a Load
is converted as indicated above into

The "address" specifies a fullword that is to be converted to graphic
hexadecimal, as above.

HEIA, (reg)
The register (other than registers 1 and 15) points to a fullword
that is to be converted to graphic hexadecimal form, as above.

DEC, (reg)
The value in the specified register (other than registers
is to be converted to graphic decimal form and inserted
aessage text. Leading zeros will be suppressed. If the
negative, then a leading minus sign will be inserted.

DEC, expression

1 and 15)
into the

nUllber is

The given expression, which
Address (LA) instruction,
graphic decillal.

will be evaluated by means of a Load
is converted as indicated above into

DECA,address
The "address" specifies a fullword which is to be converted to
graphic d~cimal, as above.

nBCA, (reg)
The specified register (other than registers 1 and 15) contains the
address of ~ fullword that is to be converted to graphic decimal, as
above.

HBl4A,address or HBI4A,(reg)
Is used for graphic hexadeciaml dumps of other than fullwords. The
"a4dress" (or a register other than 1 or 15) points to the first byte
to be converted to graphic hexadecimal for.. A blank is inserted
into the message text after each four characters of input (eight
characters of output) have been coverted. Thus, if an 8-byte input
field (16 hexadecimal digits) is to be converted, 17 periods should
be coded. The output field length is deterllined by the number of
periods in the message text. The length, in bytes, of the field to
be converted may be specified as follows:

HBI4A, (address I (reg) ,length I (reg»

Appendix D: CftS ftacro Instructions 381

LINEDIT !!ACBO

CBlBl,address or CBlRl,(reg) The "address" (or a register other than 1
or 15) points to the first byte of a field that is to be substituted
as a character string. The output field length is deterained by the
number of consecutive periods in the message text. The length, in
bytes, of the field to be substituted .ay be specified as follows:

CBlBl, (address I (reg) , length I (reg»

CBAB8A,address or CBlR8l, (reg) Is useful if a string of PLIST arguaents
(for exallple, a fileid) is to be substituted into the message text.
LIIEDIT will insert a blank after each 8 characters of the
substitution string. Thus, to substitute an 18-byte fileid, code 20
periods in the message text, to allow for the inserted blanks. The
"address" (or a register other than 1 or 15) points to the first byte
of the input substitution string. The length, in bytes, of the input
string may be specified as follows:

CBAB8A,(addressl (reg),lengthl (reg»

Note that registers 1 and 15 may not be used for the address or
length specification.

This option specifies what LINEDIT is to do with the message which it.
has created. Specifications for the DISP parameter are:

DISP=TYPE (the default) specifies that the message is to be typed on the
terminal using TYPLIN.

DISP=SIO specifies that the message is to be typed at the terainal using
SIO. This option is necessary if, for example, free storage pointers
are destroyed. No CONWAIT function is performed.

DISP=NONE specifies that no output whatsoever is to occur. This option
is useful with the BUPPA parameter, described below.

DISP=PRINT specifies that the line is to be printed on the virtual
printer.

DISP=CPCO!!!! specifies that the line is to be passed to CP to be executed
as a CP console co.mand.

DISP=ERR!!SG specifies that the line is to be checked to see if it
qualifies for "error message editing". If it does it is displayed as
an error aessage rather than a regular line.

The first ten characters of the line are the "code" and the rest of
the line is the "text" of an error aessage. In a standard V!!/370
error message, the code of an error message is in the following
format:

mmmmllllnnnt

where amll •• a is the nalle of the 1I0dule issuing the lIessage, nnn is
the lIessage number, and t is the lIessage type. With LIIEDIT, you can
code error messages for your own programs. You need not follow the
V!!/370 conventions for the first nine characters of the code, but the
tenth character must specify a recognized V!!/370 aessage type if
error message editing is to occur. The recognized types are:

382 IB!! V!!/370: Com.and Language Guide for General Users

Me~g~L1IE!
IIPORMATION
liARNIIG
BRROR

Tenth Character of
.§!§§~L1ine

I
Ii
B

LINBDIT MACRO

If one of these letters is the tenth character in the line, the line
will be typed in accordance with the current BMSG conditions that are
controlled by the CP SET EMSG command. If the tenth character is
anything else, the entire line will be typed as a regular line, with
no distinction aade between code and text.

This parameter specifies the address of a buffer.
follows:

BUPPA=address I (reg)

It is coded as

If a register is specified, it must not be register 1 or 15.

If this option is specified, then, in addition to the action
specified by the DISP paraaeter, the message text is copied into the
buffer at the specified address. The length of the text is inserted
into the first byte of the buffer, and the message text into subsequent
bytes.

The "standard" fora of the LIIBDIT macro generates reentrant code unless
one of the following is true:

• TBITA=(reg) is specified.
• BUPPA=(req) is specified.
• More than one substitution pair is specified.

If reentrant code is not generated, and REIT=YES (the default) is in
effect, the LIIEDIT macro expansion contains an MNOTE stateaent warning
the user that nonreentrant code is being generated. If the user does
not object to nonreentrant code, and does not wish to have the MIOTE
appear, he should code REIT=BO. The REIT=IO coding aerely suppresses
the BIOTE statement; it has no effect on the expansion of the LIBEDIT
aacro.

T~is paraaeter is used only in the list fora (BP=L) of the macro, which
is used to reserve space. It specifies the maximum nuaber of
substitutions to be aade, so that enough space for those sUbstitutions
can be reserved. It is coded:

ftAISUBS=nuaber

Appendix D: CftS ftacro Instructions 383

tIIEDIT !ACBO

tIIEDIT CODIIG EXA!PLES

The following exaaples illustrate some options of the tIIEDIT aacro.
Because of the liaitations of space, soae of the longer coding exaaples
appear on two lines. However, normal coding conventions for
continuation stateaents should be used in actual coding.

Bxaaple 1

The siaplest use of the tIIEDIT aacro is to type a aessage without any
substitutions whatsover.

LIIEDIT TBIT='THIS IS A LIIE'

causes the following to be typed out on the terminal when it is
executed:

THIS IS ALliE.

lote that aultiple blanks are reaoved from the message, and a period
is placed at the end of the line.

Exa.pl!·~

The real pover of the LIIBDIT aacro is in the capability of making
substitutions. Whenever the LIIEDIT processor finds two or aore
consecutive periods in the aessage text, it aakes a substitution fro.
the 'SUB' list provided in the aacro call.

To illustrate the siaplest type of substitution, using the DEC
option, suppose the following is executed:

LIIBDIT TEXT='TBB VALUB IS
SUB=(DEC,VALUE+5)

• ,

If the Asseabler language program contains a stateaent of the fora
"VALUE EQU 2003", then when this aacro is executed, the line,

THB VALUB IS 2008.

is typed at the terainal.

Usually soae value coaputed during execution of the program is
requested. To type out the contents of a register, the following can be
used:

LIIEDIT TEXT='VALUE = •••••• ·,SUB=(DEC,(3»

If, when this macro is executed, register 3 contains the decimal
value 10345, then the following line is typed out:

VALUB = 10345.

384 IB! V!/310: Coaaand Language Guide for General Users

LIIEDIT "ACBO

!.!aIBP1! ~

The DECA option is used to specify the address of a fullword in storage
which contains the value to be typed out. The address of evaluated by

'means of a Load Address (Ll) instruction. Execution of:

LIIEDIT TEXT='VALUE = •••••• ·,SUB=(DECA,LOC)

would cause the value in the fullword at location LOC to be typed out in
decimal format.

Similarly, the macro call

LINEDIT TEXT='VALUE = •••••• ·,SUB=(DECA,(3»

would cause the value in the fullword whose address is in register 3 to
be typed out in decimal.

lote: AS the exaaples given show, when the keyword (such as DEC) does
D2i--end in an '1', then a y~ is being specified as the next
argument. When the keyword (such as DECA) ~ end in '1', then the
~gg~~~~ of a value is being specified. When the next argument is
enclosed in parentheses, the value or address is to be found in the
register, other than 1 or 15, that vas specified.

The number of consecutive periods appearing in the message text is
usually significant. In DEC and DECA, it indicates the maximum number
of characters (including the minus sign) which will appear in the
number. If the number is too large to fit in the field, then high-order
digits will be truncated.

To be certain that high-order digits will never be truncated, code
ten periods in the message text for DEC and DECA, as in:

LIIEDIT TEXT='VALUE = ••••••••••• ,
SUB= (DEC, (3»

I!Yl!le ~

The HEX option is similar in use
substituted values are typed out in
Execution of:

to the DEC option, except that the
hexadecimal rather than in decimal.

LIIEDIT TEXT="'LOC" IS LOCATED AT
SUB=(HEX,LOC)

.
would cause the value of LOC to be substituted in hexadecimal format, so
that the following might be typed out:

'LOC' IS LOCATED AT 0201AC.

lote that the leading zeros are not removed.

Appendix D: C"S "acro Instructions 385

LINEDIT ftACRO

Parentheses are used to type out the current value of a register in
hexadecimal. Par example, if register 3 contained the value C0031PC8,
then the macro

LINEDIT TEXT='VALUE = ••• ·,SUB=(HEX,(3»

would cause the line,

VALUE = PC8.

to be typed out. Notice that since three periods were specified, just
the last three hexadecimal digits of the register contents were typed
out.

The HEXA option is used if the address
containing the desired value is specified.

of a fullword
Execution of:

LINEDIT TEXT='HEI VAL = ••••• ·,SUB=(HEIA,VAL)

in storage

will cause the last five hexadecimal digits of the fullword at VAL to be
substituted into the message text.

And if

LINEDIT TEXT='HEI VAL = •••••• ·,SUB(HEXA,(5»

is executed, then the last six hexadecimal digits of the fullword whose
address is in register 5 will be substituted.

I~ampl~ ~

The BEX4A option is used for dumping a variable number of bytes of
storage on the terminal. The dump has the format:

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ••••

where each "h" stands for a hexadecimal digit.
the message text specifies the size of the
indirectly specifies the number of bytes
converted.

The number of periods in
output fieid and, hence,
of "input" data to be

Each byte of input data is converted into two hexadecimal digits for
substitution. After each four bytes of input (eight bytes of output), a
blank is inserted. Thus, if a dump of seven bytes of data in this
format is requested, 15 periods must be coded. The extra period is for
the blank to be inserted. The macro,

LINEDIT TEIT='VALUES ARE ••••••••••••••••• ,
SUB=(BEI4A,(6»

would cause a line to be displayed as follows:

VALUES ARE OA23P115 78ACPE.

where the values being dumped start at the address that is specified in
register 6.

386 IBft V8/370: Command Language Guide for General Users

LINEDIT MACRO

~.!amp!! '!'Q

The CHARA option is used to .ake a straight character substitution. The
number of 'periods indicates the nu.ber of characters to be substituted:

LINEDIT TEXT=!NA~E IS !! •••••••••• ,

SUB=(CHARA,LOC)

would cause the seven characters starting at location LOC to be
substituted into the text, to produce a message such as:

NAME IS 'LUCIIDA'.

Multiple blanks in the sUbstituted string will be removed.

!~ID!E!! 11
The CHIR8A option is siailar to the CHARA option, except that a blank is
inserted into the output text after each group of eight characters.
This is particularly useful for dumping PLISTs, since a blank is
inserted after each doubleword in the PLIST. Por example,

LIIEDIT TEXT='PILE •••••••••••••••••••• lOT
POUID',SUB=(CBAR8A,PLIST+8)

could cause the following output:

PILE X ASSE8BLE A1 lOT POUID.

Note that 20 periods were coded, to include space for the two
inserted blanks. In the final edited line, multiple blanks are reduced
to a single blank. If the CHARA option had been used, with 18 periods
specified, then the same message would have appeared as:

PILE X ISSE8BLEA1 lOT POUND.

To make several sUbstitutions in a given line, it is necessary only to
code several groups of periods in the message text, and several pairs of
substitution values in the SUB parameter list.

The following macro:

LIIEDIT TEXT='VALUES ARE •••••
SUB=(DEC,(3) ,HEXI,LOC)

AND

would generate a line like the following:

VALUES ARE -45 AND PPE3C2.

, ,

Each group of periods represents one substitution, and each pair of
SUB arguments represents one value to be substituted.

Appendix D: CMS Macro Instructions 387

LI NEDIT "ICRO

To reserve space in a work area for a LINEDIT PLIST, the "list" form of
the LIBEDIT macro (ftl=L) must be used. Specifying

LINLIST LINEDIT ftl=L,ftAXSUBS=6

will reserve space for a LIBEDIT PLIST, and give that space the label
ILINLISTI. The parameter IftAXSUBS=6 1 indicates that enough space is to
be reserved so that a PLIST with space for six or fewer sUbstitution
pairs can be built.

If a larger ftlXSUBS value is specified, then a larger amount of space
is reserved for PLIST contruction.

The execute form of the LIBEDIT macro does not generate a PLIST as part
of its expansion, as does the standard form. (Examples 1 through 12 use
the standard form of the macro.) Instead, the execute form expands to
create a PLIST in a work area. The space for the PLIST should have been
reserved using ftl=L as indicated in Example 13. To call LIBEDIT after
creating a PLIST in the work area reserved by the LINEDIT macro in the
last example, the following form could be used:

LINEDIT Ml=(E,LIBLIST),other options •••

The "other options" may be any of the options discussed in preceding
examples, including TEXT and SUB parameters.

!~~E!~ 12
~~~i!Ii~g §Y~§~itu~!g~ J~ngth -- In all the examples shown, the length 
of the argument being substituted was determined by the number of 
periods in the message text. The number of periods indicated the size 
of the output field, and indirectly determined the exact size of the 
input data area. sometimes it is desirable to determine at execution 
time the size of the input data area. 

These sizes can be specified with the CBIRA, CBAR81, and BEX41 
conversion types. 

The following substitution list might appear in a LINEDIT macro: 

SUB=(CBIRA,LOC,BEX4A, (3» 

When specified in this manner, the lengths of the input data fields 
are determined by the number of periods in the message text. To specify 
the length of the input data field, the following alternative form may 
be used: 

SUB=(CBARA, (LaC, (4» ,BEX41, «3), (5») 

In the latter format, where each substitution pair has the form 
"type, (address,lengt~", register 4 is specified as containing the 
length of the data area at location LaC, and register 5 is specified as 
containing the length of the data area pointed to by register 3. 

388 IBM Vft/370: Command Language Guide for General Users 



LIIEDIT !tACBO 

~!~E!! 1~ 

specifying a length is particularly useful in the special case where 
only one character is to be changed in a CHABA substitution. To do 
this, two periods aust be coded into the message, and a length of one 
aust be specified, as in the exaaple: 

LIIBDIT TBIT=IILLEGAL !tODB LETTEB 
SOB=(CBABA,(PLIST+24,1» 

I .. , 

Th~ single letter (length=l) at location PLIST+24 ~s sUbstituted into 
the field consisting of two periods. 

lote: 10 matter what input length is specified, the final substituted 
result cannot be longer than the nuaber of periods in the aessage text. 
If the input field length and the output length (specified by the nuaber 
of consecutive periods) conflict, the output length will govern, and the 
input length will be truncated accordingly. 

Appendix D: C!tS !tacro Instructions 389 



PRINTL "ACRO 

PBINTL Macro 

The PRINTL macro causes a line to be written to a virtual printer. 

I.QR"AT: 

1 
[label] I PRIITL I line [,length] [,ERROR=erraddr] I 

label 

line 

length 

erraddr 

, 

is an optional statement label. 

specifies the line to be printed. It may be in one of three 
forms: 

'linetext' text enclosed in quote marks. 

lineaddr the sy.bolic address of the line. 

(reg) a register containing the address of the line. 

specifies the length of the line to be printed. If omitted, 
133 is assumed unless the text is enclosed in quotes. In this 
case, the number of characters between the quotes is used. 
The length may be specified in two ways: 

(reg) a register containing the length. 

n a self-defining term indicating the length. 

specifies the address of an error routine to be given control 
if an error is encountered. If ERROR= is not coded, control 
returns to the next sequential instruction in the calling 
program if an error occurs, as it does if no error occurs. 

The PRINTL macro causes the specified line to be written to the printer. 
The maximum length allowed is 151 characters if printing on a virtual 
3211 or 133 characters if printing on a virtual 1403. The first 
character in the line is used as the carriage control character. It 
must be ASCII control character code or a machine carriage control code 
other than I'Cl' or I'C3'. Since I'Cl' and I'C3' are valid for both 
ASCII control character and machine carriage control code, if coded, 
they are interpreted as ASCII control character codes. If a valid 
control character is not specified, a write command with a carriage 
control character to space one line after printing is used. 

The valid ASCII control characters are as follows: 

+ 

1!!!!_~Qg.! 
40 
PO 
60 
41 

"eani.!!,9 
Space 1 line before printing 
Space 2 lines before printing 
Space 3 lines before printing 
Suppress space before printing 

390 IB" VM/370: Co •• and Language Guide for General Users 



GC20-1804-3 Page Modified by TNL GN20-2659 

PRINTL MACRO 

fh~X2£1~I ~~!_fQ~g Mc~n;nrr 
.:.:~..::::.:.:=!!~ 

1 F 1 Skip to channel 1 
2 F2 Skip to channel 2 
3 F3 Skip to channel 3 
4 F4 Skip to channel 4 
5 F5 Skip to channel 5 
6 F6 Skip to channel 6 
7 F7 Skip to channel 7 
8 F8 Skip to channel 8 
9 F9 Skip to channel 9 
A Cl Skip to channel 10 
B C2 Skip to channel 11 
C C3 Skip to channel 12 

If an error occurs, processing terminates, and control is passed to 
erraddr (if one was provided) or back to the calling program's next 
sequential instruction. Register 15 contains one of the following error 
codes: 

~Qg~ 
1 
2 
3 
4 
5 

100 

11~g!!!!!g 
Line too long. 
Channel 12 punch sensed (virtual 3211 only). 
Channel 9 punch sensed (virtual 3211 only). 
Intervention required. 
Unknown error. 
Printer not attached. 

Note: If the error was a result of sensing a channel 9 or 12 punch while 
writing to a virtual 3211 using ASA control characters, the operation 
terminated after the carriage movement but before writing the line. In 
order to avoid an extra blank line, the print buffer should be rewritten 
using the 01 channel command code (write without spacing). 

Appendix D: CMS Macro Instructions 391 



PUNCHC MACRO 

PUNCHC Macro 

The PUNCHC macro causes a line to be written to a virtual card punch. 

XQ!Ht!~ : 

r-----------------------------------------, 
I [label] I PUNCHC I line [, ERROR=erraddr] I 
'-- ----------' 

label 

line 

erraddr 

!!.§!g~: 

is an optional statement label. 

specifies the line to be punched. It may be in one of three 
forms: 

'linetext' text enclosed in quote marks. 

lineaddr the symbolic address of the line. 

(reg) a register containing the address of the line. 

specifies the address of an error routine to be given control 
if an error is encountered. If ERROR= is not coded, control 
returns to the next sequential instruction in the calling 
program if an error occurs, as it does if no error occurs. 

The PUNCHC 
punch. No 
characters. 

macro causes the specified line to 
stacker selecting is allowed. The 

be written to the card 
line length must be 80 

If an error occurs, processing terminates, and control is passed to 
erraddr (if one was provided) or back to the calling program's next 
sequential instruction. Register 15 contains one of the following error 
codes: 

£2g~ 
2 
3 

100 

~~~!!'!!!.9 
Unit check.
Unknown error.
Punch not attached.

392 IBM VM/370: Command Language Guide for General Users

RDCARD l!ACRO

RDCARD Macro

The RDC1RD macro causes a line to be read from a virtual card reader.

I

I [label]

label

buffer

length

erraddr

RDCARD I buffer [, length] [, ERROR = erraddr]

is an optional statement label.

specifies the buffer address into which the card is to be
read. It may be either of two forms:

bufaddr
(reg)

the symbolic address of the buffer.
a register containing the address of the buffer.

specifies the length of the card to be read. If omitted, 80
is assumed. The length may be specified in one of two ways:

n
(reg)

a self defining term indicating the length.
a register containing the length.

specifies the address of an error routine to be given
control if an error is encountered. If EBBOR= is not coded,
control returns to the next sequential instruction in the
calling program when an error occurs, as it does if no error
occurs.

The RDCARD macro causes a line to be read from the card reader. No
stacker selecting is allowed. On return register 0 contains the length
of the card read.

If an error occurs, processing terminates, and control is passed to
erraddr (if one was provided) or back to the calling program's next
sequential instruction. Register 15 contains one of the following error
codes:

Code
1
2
3
5

100

~~~.!!ing 
End of file. 
unit check. 
Unknown error. 
Length not equal to requested length. 
Device not attached. 

Appendix D: Cl!S l!acro Instructions 393 



RDTAPE !ACRO 

RDTAPE Macro 

The RDTAPE aacro causes a record to be read froa the specified tape 
drive. 

[label] 

label 

buffer 

length 

device 

aode 

RDTAPE buffer,length [,device] [,80DE=aode] 
[ , ERROR=erradr ] 

is an optional statement label. 

specifies the buffer address into which the record is to be 
read. It aay be specified in either of two ways: 

lineaddr the symbolic address of the buffer. 

(reg) a register containing the address of the buffer. 

specifies the length of the record 
record is the largest record that 
specified in either of two ways: 

to be read. A 65,535-byte 
can be read. It may be 

n a self-defining tera indicating the length. 

(reg) a register containing the length. 

specifies the 
oaitted, TAP 1 
two forms: 

device from which the line is to be read. If 
is assumed. It may be specified in either of 

TAPn ~ indicates the symbolic tape number. 

cuu indicates the virtual device address. 

specifies the number of tracks, density, and tape recording 
technique options. It must be in the following form: 

([ track], [ density], [trtch]) 

track 1 indicates a 1-track tape (implies density=800 and 
trtch=O) • 

density 

trtch 

9 indicates a 9-track tape (implies density=800) • 

200, 556, or 800 for a 1-track tape. 
800 or 1600 for a 9-track tape. 

indicates the 
1-track tape. 
specified: 

tape recording technique for 
One of the following must be 

o odd parity, converter off, translator off. 
OC odd parity, converter on, translator off. 
OT odd parity, converter off, translator on. 
E even parity, converter off, translator off. 
IT even parity, converter off, translator on. 

394 IB! V8/310: Coaaand Language Guide for General Users 



erraddr 

RDTAPE MACRO 

!Q~~: Mode need not be specified for a read 
operation to a 9-track tape or to an 800 BPI odd 
parity 7-track tape with the Data Converter and 
the Translator off. 

specifies the address of an error routine to be given control 
if an error is encountered. If ERROR= is not coded, control 
returns to ~ne next sequent1ai instruction in the calling 
program if an error occurs, as it does if no error occurs. 

The RDTAPE macro causes a record to 
drive. On return, register 0 and the 
contain the number of bytes read. 

be read from the specified tape 
eighth word of the parameter list 

If an error occurs, processing terminates, and control is passed to 
erraddr (if one was provided) or back to the calling program's next 
sequential instruction. Register 15 contains one of the following error 
codes: 

~2g~ 
1 
2 
3 
4 
5 

~~!~!~~ 
Invalid function or parameter list. 
End-of-file or End-of-tape. 
Permanent I/O error. 
Invalid device ide 
Tape not attached. 

Appendix D: CMS Macro Instructions 395 



GC20-1804-3 Page Modified by TNL GN20-2659 

RDTERM MACRO 

RDTERM Macro 

The RDTERM macro causes a line to be read from the user's terminal. 

.--
I 
I [label] 
I 
I 
L-

label 

buffer 

code 

length 

-------------------------, 
r r" I 

RDTERM buffer [,EDIT=codeJ [LENGTH=lengthJIATTREST=ll~21 II 
I INO III 
L L.J.J I ________________________________________________________ __ ____ J 

is an optional statement label. 

specifies the address of a 130-character buffer into which the 
line is to be read. It may be either of two forms: 

lineaddr the symbolic address of the buffer. 

(reg) a register containing the address of the buffer. 

specifies the type of editing, if any, to be performed on the 
input line. If this is not coded, YES is assumed. 

NO indicates that a logical line is to be read and no 
editing is to be done. 

PAD requests that the input line be padded with blanks 
to the length specified. 

UPCASE 

YES 

PHYS 

requests that the line be translated to upper case. 

indicates PAt+UPCASE. 

indicates that a physical line is to be read. When 
PHYS is specified, the LENGTH and ATTREST operands 
may also be entered. 

specifies the length of the caller's buffer 
specified, 130 is assumed. When EDIT=PHYS, 
bytes may be read. 

area. 
as many 

If not 
as 2030 

ATTREST= specifies the handling of an attention signal during a read 
operation. The normal handling (ATTREST=X]2) is to restart 
the operation. If EDIT=PHYS and an explicit LENGTH is given, 
NO may be specified. In these cases, an attention signal is 
treated as a normal end of the operation. 

The RDTERM macro causes a line to be read from the user's terminal. On 
return, register 0 contains the number of characters read. 

When an error occurs, register 15 contains one of the following error 
codes: 

396 IBM VM/370: Command Language Guide for General Users 



2 

4 

GC20-1804-3 Page Modified by TNL GN20-2659 

RDTERM MACRO 

An invalid parameter was given. 

The read was terminated by an attention signal. possible only 
when ATTREST=NO 

Appendix D: CMS Macro Instructions 396.1 



REGEOU ftACRO 

REGEQU Macro 

The REGBOU macro equates symbolic names to the general-purpose, 
floating-point, and extended-control registers. 

!.Qnll: 

RBGEOU 

The RBGBOU macro causes the following equate statements to be generated. 
The symbolic names may be used as register specifications in assembly 
language stateaents. The register usage will then appear in the cross 
reference listing. 

General Registers: Bxtended-Control Registers: 

RO EQU 0 CO EQU 0 
Rl BQU 1 Cl BQU 1 
R2 EQU 2 C2 EOU 2 
R3 BOU 3 C3 BOU 3 
R4 BQU 4 C4 BQU 4 
R5 EOU 5 C5 EQU 5 
R6 BOU 6 C6 EQU 6 
R1 EQU 1 C1 EOU 1 
R8 BQU 8 C8 BOU 8 
R9 EOU 9 C9 EOU 9 
Rl0 EQU 10 Cl0 BOU 10 
Rl1 BOU 11 Cll EOU 11 
R12 BOU 12 C12 EOU 12 
R13 BQU 13 C13 EOU 13 
R14 BOU 14 C14 EQU 14 
R15 EOU 15 C15 BOU 15 

Floating=point Registers; 

FO EQU 0 
12 BOU 2 
14 EOU 4 
16 BQU 6 

Appendix D: CftS ftacro Instructions 391 



T1PECTL !ICRO 

TAPECTL Macro 

The TIPECTL macro causes the specified tape to be positioned according 
to the specified function code. 

t i 
l[label]ITIPECTLlfunction [,device][ ,!ODE=mode][,ERROR=erraddr]1 
, I 

label is an optional statement label. 

function specifies the control function to be performed. It must be 
one of the following codes: 

device 

mode 

erraddr 

~Qg~ 
REW 
RUB 
ERG 
BSR 
BSF 
FSR 
FSF 
WT! 

A£!i2! 
Rewind the tape. 
Rewind and unload the tape. 
Erase a gap. 
Backspace one record. 
Backspace one file. 
Forward space one record. 
Forward space one file. 
write a tape mark. 

specifies the tape on which the control 
performed. If omitted, TAP1 is assumed. 
of two foras: 

operation is to be 
It may be in either 

TAPn ~ indicates the symbolic tape number. 

cuu indicates the virtual device address. 

specifies the number of tracks, density, and tape recording 
technique options. It must be in the following form: 

([ tr ack], [ density], [trtch]) 

track 7 indicates a 7-track tape (implies density=800 and 
trtch=O). 

density 

trtch 

9 indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track tape. 
800 or 1600 for a 9-track tape. 

indicates the 
7-track tape. 
specified: 

tape recording technique for 
One of the following must be 

a odd parity, converter off, translator off. 
OC odd parity, converter on, translator off. 
aT odd parity, converter off, translator on. 
E even parity, converter off, translator off. 
ET even parity, converter off, translator on. 

specifies the address of an error routine to be given control 
if an error is encountered. If ERROR= is not coded, control 
returns to the next sequential instruction' in the calling 
program if an error occurs, as it does if no error occurs. 

398 IBK VK/370: Co •• and Language Guide for General Users 



TAPECTL BACRO 

The TAPECTL macro causes the control operation to be performed on the 
specified tape drive. 

If an error occurs, processing terminates, and control is passed to 
erraddr (if one was provided) or back to the calling progra.'s next 
sequential instruction. Register 15 contains one of the following error 
codes: 

~~g~ 
1 
2 
3 
4 
5 
6 

~~~~i~ 
Invalid function or parameter list.
End-of-file or End-of-tape.
Permanent I/O error.
Invalid device ide
Tape is not attached.
Tape is file protected.

Appendix D: CftS Bacro Instructions 399

iAITD IUCRO

WAITDMacro

The iAITD macro causes the program to wait until the next interrupt
occurs for the specified device.

i

I [label] WAITD I device ••• [,devicen] [,Error=erraddr]
I

label is an optional statement label.

devicen

erraddr

specifies the device(s) to be waited for.
following may be specified:

One of the

symn

user

indicates the symbolic device name and number,
where:

sym is COB, DSK, PRT, PUB, RDR, or TAP.

n indicates the device number.

a name of up to four characters specified in a
previous HBDIBT macro.

specifies the address of an error routine to be given control
if an error is encountered. If ERROR= is not coded, control
returns to the next sequential instruction in the calling
program if an error occurs, as it does if no error occurs.

The WAITD macro causes the program to wait for an interrupt from one of
the specified devices. It should be issued to ensure completion of an
I/O operation. If an interrupt has been received and not processed from
a device specified in the WAITD macro (the when parameter in the HBDIBT
macro had to be WAIT) the interrupt for the device will be entered.
When the interrupt has been completely processed, control will be
returned to the caller with the name of the interrupting device in
Register 1. If an interrupt has been received and processed from a
device specified in the WAITD macro (the when parameter in the HBDINT
macro has to be ASAP) the wait condition is considered satisfied and
return to the caller is made as previously described.

An interrupt received from a device specified ASAP in an HBDINT macro
will be handled. Processing this interrupt will satisfy a WAITD issued
later for that device.

The interrupt routine determines if an interrupt is considered
"processed" or if more interrupts are necessary to satisfy the wait
condition. Por additional information see the HNDIBT macro
documentation.

When an error is detected, register 15 contains a 1 to indicate that an
invalid device number was specified.

qOO IBM VM/370: Command Language Guide for General Users

WAT'I'T MACRO

WAITT Macro

The WAITT macro causes the program to wait until all of the pending I/O
operations to the user's terminal are completed.

i

I [label] WAITT
•

label is an optional statement label.

The WAITT macro is used to synchronize terminal I/O operations.

lone.

Appendix D: CMS Macro Instructions 401

WRTlPB BlCBO

WRTAPE Macro

The iBTlPB macro causes a record to be written on the specified tape
drive.

[label]

label

buffer

length

device

.ode

erraddr

iRTlPB buffer,length [,device]
[,BODE=aode) [,BRROR=ERRlDDR]

is an optional statement label.

specifies the address of the record to be written. It may be
in either of two foras:

lineaddr the symbolic address of the line.

(reg) a register containing the address of the line.

specifies the length of the line to be written. It .ay be
specified in either of two ways:

n a self-defining term indicating the length.

(reg) a register containing the length.

specifies the device to which the record is to be written. If
omitted, TlPl is assumed. It may be in either of tvo forms:

TlPn ~ indicates the symbolic tape number.

cuu indicates the virtual device address.

specifies the number of tracks, density, and tape recording
technique options. It must be in the following form:

([track], [density], [trtch])

track 7 indicates a 7-track tape (implies density=800 and
trtch=O).

density

trtch

9 indicates a 9-track tape (implies density=800).

200, 556, or 800 for a 7-track tape
800 or 1600 for a 9-track tape.

indicates the
7-track tape.
~pecified:

tape recording technique for
One of the following must be

o odd parity, converter off, translator off.
OC odd parity, converter on, translator off.
OT odd parity, converter off, translator on.
I even parity, converter off, translator off.
ET even parity, converter off, translator on.

specifies the address of an error routine to be given control
if an error is encountered. If ERROR= is not coded control
returns to the next sequential instruction in the calling
program if an error occurs, as it does if no error occurs.

402 IBft Yft/310: Co •• and Language Guide for General Users

WRTAPE MACRO

The WRTAPE macro causes a record to be written to the specified tape
drive.

If an error occurs, processing terminates, and control is passed to
erraddr (if one was provided) or back to the calling program's next
sequential instruction. Register 15 contains one of the following error
codes:

Code --1-
2
3
4
5
6

~~g~i~g
Invalid function or parameter list.
End-of-tape or End-of-file.
Permanent I/O error.
Illegal device ide
Tape not attached.
Tape is file protected.

Appendix D: CMS Macro Instructions 403

GC20-1804-3 Page Modified by TNL GN20-2659

WRTERM MACRO

WRTERM Macro

The WRTERM macro causes a line to be displayed at the user's terminal.

r-
I [label]
I
L-

label

line

length

code

color

WRTERM line [,length] [,EDIT=code]
[,COLOR=color]

is an optional statement label.

specifies the line to be displayed.
forms:

It may be one of three

'linetext· text enclosed in quote marks.

lineaddr the label on the statement containing the line.

(reg) a register containing the address of the line.

specifies the length of the line. If the line is specified
within quote marks in the macro, the length parameter may be
omitted. The length may be specified in either of two ways:

n a self defining term indicating the length.

(reg) a register containing the length.

specifies whether the line is to be edited:

YES indicates that trailing blanks are to be removed and a
carriage return added to the end of the line.

Ne indicates that trailing blanks are net to be removed and
no carriage return is to be added.

LONG indicates the line may exceed 130 bytes,
transmitted from the caller's buffer area.
performed.

and is to be
No editing is

indicates in which color the line is to be typed if the
typewriter terminal has a two-color ribbon:

B indicates that the line is to be typed in black.

R indicates that the line is to be typed in red.

404 IBM VM/370: Command Language Guide for General Users

GC20-1804-3 Page Modified by TNL GN20-2659

WRTERM MACRO

The WRTERM macro causes the specified line to be displayed at the user's
terminal. The maxi.um line length is 130 characters for a black line
and 126 characters for a red line. If EDIT=LONG, COLOR must be given as
'B'. In this case, as .any as 1760 bytes may be sent with a single
WRTERM macro. The caller is responsible for properly embedding terminal
control characters in the data, and for the inteqritv of the data from
issuance of WRTERM until the data has been sent.-The-WAITT macro may be
used to ensure that I/O is complete before the buffer is modified.

None.

Appendix D: CMS Macro Instructions 404.1

Appendix E: Disk Determination (Filemode Management)

Figure 47 relates CMS commands, method of
specifying filemode, and the criteria used
in choosing a disk directory for reading
and writing. Symbols used in the table
are:

~yllbo1
command

fm

*

d

Reading

N/A

fm

*R

1R

*cuu

writing

N/A

fm

R

*w

1W

cuu

*WS

*1

11.§~.!!.!.!!.9
CMS command name

Explicit mode
specified

letter can

write disk to Read disk

be

Refer to all disks in a set
search order

Default mode: let system
determine the mode

Null mode; unable to specify mode
letter in this command

The criteria for choosing the
disk from which to read

Not applicable, co.mand does not
cause any reading to be done

Read from the specified disk

Refer to all disks in the
standard search order

Read only from the primary disk

All occurrences of the address

Indicates criteria for selecting
the disk to write onto

Not applicable, command does not
cause any writing to be done

Write onto the specified disk

write onto the disk from which a
file was read (or its parent)

Choose any read/write disk in the
standard search pattern

Attempt to write onto the primary
disk

write to the specified address

First read/write disk with enough
space

First disk where file is found if
disk is in read/write status

r--~
Command

ACCESS

ASM3705

ASSEMBLE

BASIC

COBOLI

COMPARE

CONVERTI

COPYFILE

CP

DEBUG

DIRECT

DISK DUMP

DISK LOAD

EDIT

ERASE

EXEC

FILEDEF

FORMAT

FORTGII

FORTHXI

FORTRANI

GBN3705

GENDIRT

Filemodel Reading

mode fm
d 1R

fm

*
fm

fm

*

fm

* d

fm

* d

fm

*
d

fm
d

* mode

*R

*R

*R

*R

fm
*R

fm

fm
N/A
*R

N/A

N/A

fm
*R
1R
N/A

fm
*R
1R

N/A
N/A
N/A

*R

fm
1R
*R
N/A

*R

*R

*R

*R

N/A

IIBM Program Products

Writing

N/A
N/A

R,1W,*W

R,1W,*W

R,1W

R,1W,*W

N/A
N/A

fm

fm
R
N/A

N/A

N/A

N/A
N/A
N/A
1W

fm
R
R

fa
*w
1W

N/A

fm
1W
N/A
fm

1W

N/A

Figure 47. Disk Determination (Part 1 of 3)

Appendix E: Disk Determination (Filemode Management) 405

r
I Command Filemodel Reading writing Comlland Filemodel Reading Writing

GENMOD fll N/l fll REN1ME fll fm fll
* N/l 1W * *R N/l
d N/l 1W = N/l R

GLOBIL N/l N/l RUN fm fm N/l
* *R N/l

GOFORTl *R R,*W d 1R N/l

INCL UDE *R 1W SlVENCP *R N/l

LISTDS SCRIPT2 *R 1W

LISTFILE fm fm 1W SET N/l N/l
* *R 1W
d 1R 1W SORT fm fm fm

* .R R,1W
LKED *R R,1W,*W

ST1RT N/l 1W
LOID *R 1W

STITE fm N/l N/l
LOIDMOD *R N/l * N/l N/l

fm fm N/l d N/l N/l

MICLIB *R R, 1 W SVCTR1CE N/l N/l

MODM1P *R N/l SYNONYM fm fll N/l
* *R N/i

MOVEFILE N/l N/l d 1R N/l

NCPDUMP *R 1W T1PE DUMP fm fm N/l
* *R N/l

PLICl *R R,1W,*W d 1R N/l
T1PE LOID fm N/l fm

PLICRl *R R, 1W, *W d N/l 1W
TIPE SC1N N/l N/l

PLIOPTl *R R,1W,*W TIPE SKIP N/l N/l

PRINT fm fm N/l T1PPDS fm N/l fm
d 1R N/l d N/l 1W
* *R N/l

TESTCOBl *R R,1W,*W
PUNCH fll fm N/l TESTFORTl *R *L,*WS

d 1R N/l
* *R N/l TITLIB *R R,1 W

QUERY N/l N/l TYPE fm fm N/l
* *R N/l

REIDC1RD fm N/l fm d 1R N/l
d N/l 1W
* N/l 1W UPDITE *R R,1 W

fm fm fm,R,1W
RELE1SE *cuu cuu d 1R 1W

mode fm fm * *R R,1W
VSB1SICl *R R,1 W

lIEM Program Products
ZAP *R R

Figure 47. Disk Deterllination (Part 2 of 3)
lIBM Program Products
2IBM User Installed Program

Figure 47. Disk Determination (Part 3 of 3)

406 IBM VM/370: Command Language Guide for General Users

Appendix F: Reserved Filetype Descriptions

Figure 48 shows filetypes that have special uses in CMS.

Filetype

ASSEMBLE

ASM3705

AUIxxxx

BASIC

BASDATA

CMSUT1

CNTRL

COBOL

COpy

DIRECT

EIEC

FREEFORT

FORTRAN

Command Usage

ASSEMBLE input

ASM3705 input
GEN3705 output

UPDATE input

BASIC input

BASIC execution-
execution time files

READC1RD
COPYFILE
DISK
TAPE
UPDATE
INCLUDE
LOAD
MACLIB

UPDATE

COBOLl

MACLIB

DIRECT

EIEC
LISTFILE
GEN3705

GOFORTl

inter
mediate
work
file

input

input

input

input

input
output
output

input

FORTGIl input
FORTHIl
GOFORTl
TESTFORTl

FTnnF001 FORTRAN input/
output lexecution

lIBM Program Products

Filename

fn

fn
fn (nn)

fn

fn

fn

READ
COPYFILE
DISKLOAI:
TAPELOAD
fn
DMSLDR
DMSLDR
DMSLBM

fn

fn

fn

fn

fn
CMS
fn

fn

fn

fn

Format

RECFM

F

F
F

F

F

U

F

F

F

F

F

F

F

v

F

LRECL

80

80
80

80

~256

~3440

80

80

80

80

80

80

80

~81

80

Con tents

Assembler language
source statements i

I
3704/3705 assembler
source statements

Auxiliary update
file

BASIC language
source statements

User input and
output files

Control file updatel
I

COBOL source state
ments

COpy control cards
and macro
definitions

User Directory
entries

EXEC statements

FREEFORM FORTRAN
source statements

FORTRAN source
sta tements

User input and
output files

Figure 48. Reserved Filetypes (Part 1 of 3)

Appendix F: Reserved Filetype Descriptions 407

Pormat

Piletype COlllland Usage Filename RECFM LRECL Content s

LISTING ASSEMBLE output fn F 121 Processor printed
ASM 3705 output fn output
GOFORTI
FORTGll
FORTHXl
COBOL 1 output fn
PLICI
PLICRI
PLIOPTI output fn
TESTCOBI input fn F 121 COEOL processor

output used as
input to SOURCE
subcommand of
TESTCOB

LK!DIT LKED output fn F 121 Listing

LOADLIB LKED output fn V 5260 3704/3705 control
ZAP input fn V 5260 program load

modules

MACLIB GLOBAL library fn Library contains Macro definitions
MACLIB MAC LIB fn dictionary and Macro definit ions

members

MACRO MACLIB input fn P 80 Macro definitions

MAP INCLUDE output LOAD Module map
LOAD output L01D Module map
MACLIB output fn Library map
TXTLIB output fn Library map

MEMO fn F 80

MODULE GENMOD output fn V Non-relocatable
LOADMOD input fn object file
MODMAP input fn

PLI or PLIOPTI input fn P PL/I source
PLIOPT PLIC input fn statements

PLICR input fn

SCRIPT SCRIPT2 input fn V 5133 Input to SCRIPT
processor

SYNONYM SYNONYM reference fn F 80 Command name
synonyms

SYSUT1,2,3 ASM3705 work fn
ASSEMBLE work fn V
COBOLI work fn
LKED work fn
PLIOPTI work fn

lIEM Program Products
2IBM Installed User Program

igure 48. Reserved Filetypes (Part 2 of 3)

408 IBft Vft/370: Command Language Guide for General Users

r-------------.--~

Filetype

SY SUT4

TESTFORT

TEXT

TXTLIB

UPDATE

UPDLOG

UPDATE

VSBASIC

VSBDATA

COBOLl
LKED
PLIC
PLICR
TESTCOBl

TESTFORTl

ASSEMBLE
ASM3105

COBOLl
GEN 3705

INCLUDE
LKED

LOAD
PLIOPTl
TITLIB
GOFORTl
FORTGIl
FORTHll
TESTFORTl

GLOBAL
TITLIB

UPDATE

UPDATE

UPDATE

VSBASIC

VSBDATA

lIBM Program Products

"----U;;)C1Y-=

work

input

output

output
output

output
output

input
input

input
output
input
output
output
output
input

library
output

input

output

input

input

execution
time files

fn

fn

fn
fn

fn
fn (Ln)

fn
fn

fn
fn
fn
fn

fn
fn

fn

fn

fn

fn

fn

Figure 48. Reserved Filetypes (Part 3 of 3)

Format

RECPM

F

VB

F
F

F

LRECL

80

512

125

80
80

80

Contents

Used as input to
TESTCOB

Processor printed
output

Object code
3704/3705 source
code and job
control language
statements

Object code
Linkage editor
control statementsl
for 3704/3705 1
control programs 1

Object code 1
Object code and 1

LKED control cards
Object code
Object code
Object code
Object file

Library contains Object decks
dictionary and
members

F 80

F

F 80

F ~256

V ~140

UPDA TE cont rol
cards

UPDATE log

Local updates

VSBASIC language
source statements

VSBASIC user input/I
output files 1

----------------------------------1
I
I

Appendix F: Reser~ed Filetype Descriptions 409

¢, line delete logical editing symbol 49

&ARGS control statement, of EXEC command
128

&BEGPUNCH control statement, of EXEC
command 128

&BEGSTACK control statement, of EXEC
command 128

&BEGTYPE control statement, of EXEC command
128

&CONCAT built-in function, of EXEC command
130

&CONTINUE control statement, of EXEC
cOllmand 128

&CONTROL control statement, of EXEC command
128

&DATATYPE built-in function, of EXEC
cOBlmand 130

&END control statement, of EXEC command
128

&ERROR control statement, of EXEC command
128

&EXIT control stateBlent, of EXEC command
129

&GOTO control statement, of EXEC command
129

&IF control statellent, of EXEC command 129
&LENGTH built-in function, of EXEC command

130
&LITERAL built-in function, of EXEC command

130
&LOOP control stateBlent, of EXEC comBland

129
&PUNCH control statement, of EXEC comlland

129
&READ control statement, of EXEC command

129
&SKIP control statement, of EXEC command

129
&SPACE control statement, of EXEC command

129
&STACK control statement, of EXEC comlland

129
&SUBSTR built-in function, of EXEC command

130
&TIME control statellent, of EXEC command

130
&TYPE control statment, of EXEC command

130
&variable control statement, of EXEC

command 128

$DUP subcommand, of EDIT command 123
$MOVE subcommand, of EDIT command 123

* command 17
described 249
summary 245

Index

/* control card, for the CMS batch facility
358

/JOB control card, for the eMS batch
facility 358

/SET control card, for the CMS batch
facility 359

1 subcommand, of EDIT command 123
1, use of with the FILEDEF DISK operand

138

I, line end logical editing symbol 49
ICP command

described 250
summary 245

a, symbol delete logical editing symbol 49

", escape symbol logical editing symbol 49

A
ABBREV operand

of CMS QUERY command 185
of CMS SET command 198

abbreviations for commands 19
controlling 198

ABEND, problem program 353
ACCESS command 29

CMS responses to 81
described 78
ERASE option 79
examples of 80
NODISK option 79
NOPROF option 79
summary 73
to access a disk you defined via DEFINE

29
used after linking to a virtual disk 29
used to alter the search order for
virtual disks 30

used to change read/write status of a
virtual disk 31

used with OS data sets and DOS files 40
access mode of virtual disks 29
accessing a read-only OS disk 80
accessing CMS with no virtual disks
attached to your virtual machine 79

Index 411

accessing virtual disks 29
access1ng your virtual machine 29
accounting information

displaying 312
for the CMS batch facility 358

ACNT cOllmand, summary 245
ACNT operand, of CP SET command 312
acquiring disk space 78
ADD operand

of the MACLIB command 170
of TITLIB co.mand 220

adding records to a file 118
adding to a file, using EDIT command in

INPUT mode 16
adding to a macro library 170
adding to a TEIT library 220
adding to the EIEC file created using

LISTFILE command output 158
A-disk 27

accessed after IPL CMS 80
ADS TOP command

described 252
OFF operand 252
summary 245

ALIGN option, of ASSEMBLE command 85
alignment of boundaries in assembler

program statements 85
ALL operand

of (CP) QUERY command 298,298
of CHANGE command 256
of PURGE command 295
of the TRANSFER command 338
of TRACE command 335

ALLOC option, of LISTFILE command 158
ALOGIC option, of the ASSEMBLE command 82
ALTER subcommand of EDIT command 119
altering characters in a record 119
altering constants using LOAD command 166
altering instructions using LOAD command

166
altering read/write status of virtual disks

30
altering records of a file 119
altering the attributes of a virtual
printer file 256

altering the attributes of a virtual punch
file 256

altering the attributes of a virtual reader
file 256

altering the logical editing symbols 331
altering the search order of virtual disks

30
altering your virtual machine environment

264
alternating operating system execution 65

OS job stream 66
VM/370 directory 67

analysis, system and hardware, commands
used for 350

annotating your console sheet 249
Any user, described 242
APL character translation tables,
controlling 331

APL operand, of TERMINAL command 332
APPEND option

of COPYFILE command 96
of LISTFILE command 158

appending one file to another 91

summary
13

ASM3705 command,
ASSEMBLE command

ALIGN option
ALOGIC option
BU!'SIZE option
DECK option 84
described 82

85
82

85

DISK option 84
ESD option 83
example of 57
FLAG option 83
LIBMAC option 83
LINECOUN option 83
LIST option 83

73

listing control options for 82
MCALL option 83
MLOGIC option 83
NOALIGN option 85
NOALOGIC option 83
NODECK option 84
NOESD option 83
NOLIBMAC option 84
NOLIST option 83
NOMCALL option 83
NOMLOGIC option 83
NONUMBER option 85
NOOBJECT option 84
NOPRINT option 84
NORENT option 86
NORLD option 83
NOSTMT option 85
NOTERM option 85
NOXREF option 84
NUMBER option 85
OBJECT option 84
PRINT option 84
RENT option 86
RLD option 83
STMT option 85
summary 73
SYSPARM option 86
SYSTERM listing 85
TERMINAL option option 85
TEST option 84
used with OS data sets and DOS files 40
IRE!' option 84

ASSEMBLE filetype 36
assembler diagnostic messages, controlling
the listing of 83

assembler inner macro instructions,
controlling the listing of 83

assembler listing, controlling the
production ~f 83

assembler macro instructions, controlling
the listing of 83

assembler relocation dictionary,
controlling the listing of 83

assembler
conditional assembly statements,
controlling the listing of 82

controlling number of lines printed by
83

controlling the listing of the External
Symbol Dictionary (ESD) 83

output control options for 83
overriding CMS file defaults 86
under CMS 13
using under CMS 82

412 IBM VM/370: Command Language Guide for General Users

assembling a program file, example of 57
assembling a program using OS macros 39
ASSIST o·perand, of CP SET command 314
asterisk (*), used in the file.ode field

44
ATTACH command, summary 245
attaching devices to virtual machine 59
attention handling, terminal control of

331
attention interrupt

effect On virtual console in CP mode 25
effect on virtual console in VM mode 24
entering from your virtual console 254
for a virtual machine 309

Attention key
how to use 22
used to interrupt execution of a command

22
used to switch command environments 22

ATTN command
described 254
summary 245

ATTN operand, of TERMINAL command 333
attributes of a spool file, changing 256
attributes of virtual devices, modifying

318
AUTO option

of INCLUDE command 151
of LOAD command 162

AUTOREAD option, of CMS SET command 199
AUTOSAVE subcommand, of EDIT command 119
auxiliary directory, creation of 145

B
BACKSPAC command, summary 245
BACKWARD subcommand, of EDIT command 119
batch facility ID card 357
batch facility

CMS, using 357
command restrictions for 360
described 357
input to 358
output 360

BCD characters, converting to EBCDIC 95
BDAM OS access method 41
B--disk 27
BEGIN command

described 255
summary 245
used with the DISCONN command 271

beginning execution with an INCLUDE command
151

blanks, as delimiters 16
blip characters

for your virtual machine 197
displaying 184

BLIP option
for CMS QUERY command 184
for CMS SET command 197

BLKSIZE option, of PILEDEP command 136
BLOCK option, of PILEDEP command 136
blocksize, for CMS files 137
BOTH operand, OP TRACE command 335
BOTTOM subcommand, of EDIT command 53,119
boundary alignment, of statements in an
assembler program 85

BRANCH operand, of TRACE command 335
branches, tracing 334
BREAK subcommand, of DEBUG command 115
...... ,..."'''''''lr..,.:_. 111:
u "'QJ\.!:'V.4u.. 1 1..1

buffer size, assembler, controlling size of
85

BUFSIZE option, of ASSEMBLE command 85

C
Cancel key 59
carriage control characters for PRINT

command, specifying 179
CASE subcommand, of EDIT command 119
CAW (Channel Address Word) 114
CAW operand, of DISPLAY command 274
CAW subcommand, of DEBUG command 115
CC option, of PRINT command 179
CCW operand, of TRACE command 335
CCW translation, controlling 313
C-disk 27
CHANGE command

ALL operand 256
CLASS operand 256
COpy operand 256
described 256
DIST operand 257
HOLD operand 256,258
NAME operand 257
NOHOLD operand 257
PRINTER operand 256
PUNCH operand 256
READER operand 256
summary 245

CHANGE option, of PILEDEP command 135
CHANGE subcommand, of EDIT command 54,120
changing extended control registers in your
virtual machine 325

changing floating-point registers in your
virtual machine 325

changing general registers 1n your virtual
machine 325

changing records in files 118
changing the attributes of a spool file

256
changing the contents of a record 54
changing the contents of control words 114
changing the filename of a spool file 257
changing the Program Status Word (PSW) in

your virtual machine 325
changing the spool class of a file 256
changing the spoolid of a file 256
changing virtual storage locations in your
virtual machine 324

Channel Address Word (Cl W) 114
displaying 272

Channel Status Word (CSW) 114
displaying 272

CHANNELS operand
of (CP) QUERY command 297
of DEFINE command 265

channel-to-channel adapters, virtual,
connecting 261

character delete logical editing symbol 49
character set 17
character string translation 120
character strings, replacemen~ of 54

Index 413

character translation 91
character translation tables, APL,
controlling 331

characters of a record, moving to different
positions 91

CBARDEL operand, of TERKINAL command 331
CLASS operand

of (CP) QUERY command 299
of CBANGE command 256
of PURGE command 295
of SPOOL command 319
of the TRANSFER command 338

class
privilege

for CP commands 13
for CP commands 243

spool, changing for a file 256
virtual device spool, modifying 318

CLEAR operand
of FILEDEF command 133
of IPL command 282
of the SYSTEK command 327

CLEAR option
of INCLUDE command 150
of LOAD command 161
of SYNONYK command 208

clearing a file definition set by FILEDEF
138

clearing interrupts from a virtual machine
310

clearing storage to zeros 150,161,282,327
clearing synonyms from a synonym table 208
CLOSE command

CONSOLE operand 258
described 258
DIST operand 259
NAKE operand 259
ROBOLD operand 258
PRINTER operand 258
PUNCB operand 258
PURGE operand 259
READER operand 258
summary 245

CLOSE operand, of SPOOL command 321
closing a virtual device 318
closing files 258
CKS (§~g Conversational Konitor System)
CKS assemble file defaults 86
CKS command language, basic description of

13
CKS commands

immediate 77
summary of 73
using READCARD command 46,62
using TAPE command 45
using TAPPDS command 45

CKS Editor
described 52
used to create files 33

CKS files
relationship to DOS files 132
relationship to OS data sets 132

CKS libraries 18
CKS subcommand, of EDIT command 120
CKSBATCB command

described 88
summary 73

COBOL command, summary 73

COL option, of TYPE command 224
COL1 option, of TAPPDS command 218
command environment

CP 15
defined 15
switching 15
VK 15

command execution, halting 238
command language

CKS, basic description of 13
CP, basic description of 13

command name 16
com.and operands 16
com.and options 17

defined 17
command search order

CKS
for filetype EXEC 20
for filetype KODULE 20
levels of search in 21
nucleus resident commands 20
transient area com.ands 20

command, mode, EDIT 52
commands

abbreviation of 19,69
CKS

search order for 20
summarized 73

CP, privilege classes for 13
interrupting the execution of 22
minimum truncation for 19,69
notational conventions for 69
summary of use 341
system-defined 15
truncation of 19
used for debugging, summary of 343
used for disk control, summary of 345
used for testing, summary of 343
used to control a terminal session,
summary of 341

used to control a virtual machine,
summary of 346

used to develop programs, summarized
342

used to update files, summary of 344
user-defined 15

comments control statement, for UPDATE
command 230

comments, how to write 17
COKP operand, of KACLIB co •• and 170
compacting members in a macro library 170
COKPARE command

described 89
summary 73

comparison of CP and CKS debugging
facilities 356

compiling, loading, and starting execution
of a file 195

compressing a file 91
COKPSWT, CKS macro instruction 365
CONCAT option, of FILEDEF command 135
concatenating data sets 135
concatenating files 135
conditional assembly statements, assembler,
controlling the listing of 82

configurating virtual machines
addresses 67
device types 67

414 IBK VK/370: Command Language Guide for General Users

connecting
a remote terminal to a virtual machine

269
virtual channel-to-channel adapters 261

console input/output, terminating- 318
CONSOLE operand

of (CP) QUERY command 297
of CLOSE command 258
of DEFINE command 264
of SPOOL command 319

console
sheet, annotation of 249
spool file 12

modifying 318
spooling, controllinq 318
virtual~ what you should know before

using 48
constants, altering using LOAD command 166
CONT operand, of SPOOL command 319
continuation mark, example of entering 56
continuous reading of an entire file 318
control card

/*, for the CMS batch facility 358
/SET for the CMS batch facility 359

control functions
for tapes 213
setting for your virtual machine 312

Control Program, basic description of 11
control statements

for DDR command 104
for the UPDATE command 226

control words, changing and examining the
contents of 114

controlling
a terminal session, summary of commands

used 341
devices on your virtual machine 13
listing of conditional assembly
statements 82

number of lines printed by the assembler
83

program development, summary of commands
used for 342

the listing of assembler diagnostics
messages 83

the listing of inner macro instructions
83

the production of the assembler listing
83

Conversational Monitor System
basic description of 11
card reader 46
tape handling 45
transferring reader files 46
unit record support 46

CONVERT command, summary 73
converting

BCD characters to EBCDIC characters 95
key punch characters 91

COpy function control statement, of DDR
cOllmand 107

COpy operand
of CHANGE command 256
of SPOOL command 321

COPYFILE command
APPEND option 96
described 91
EBCDIC option 95

examples of 99
FILL option 96
FOR option 93
FRLABRL option 93
FROM option 93
incompatible options listed 99
LOWCASE option 95
LRECL option 93
NEWDATE option 93
NEWFILE option 95
ROPROMPT option 93
NOSPECS option 98
NOTRUNC option 94
NOTYPE option 93
OLDATE option ql
OVLY option 96
PACK option 94
PROMPT option 93
RECFM option 93
REPLACE option 95
responses 101
specification list 97
SPECS option 96
summary 73
TOLABEL option 93
TRANS option 98
TRUNC option 93
TYPE option 93
UNPACK option 95
UPCASE option 95

copying
data from one file to another 91
files from one device to another 104

correcting errors on an input line 48
COUNT option, of DDR command TYPE/PRINT
function control statement 110

COUPLE command
described 261
summary 245

CP (§gg Control Program)
CP and CMS commands, entering 16
CP command

described 263
description of 103
entering from the VM environment 263
environment 15
privilege classes for 13,241
privilege classes, described 243
summary 73,245

CP mode, on virtual console 59
CP/CMS, as an integrated command language

15
CPEREP command, summary 73
creating

a file 52
using the Editor in INPUT mode 16

a load map of a file 162
a map of a load module 151
a map of files in a TEXT library 221
a program file, example of 56
a SYNONYM file 20
an auxiliary directory 145
an EXEC file containing of output froll
the LISTFILE command 158

files 33,118
files on disk 189
macro libraries 170

Index 415

reference information about members of
macro library 170

user file directory (ACCESS com.and) 78
cross-reference table, assembler,
controlling the listing of 84

CSECTs, duplicate, for the LOAD command
163

CSW (Channel Status Word) 114
csw operand

of DISPLAY command 274
of TRACE command 335

CSW subcommand, of DEBUG command 115
CTCA operand, of DEFINE co •• and 265
CTL option

of UPDATE co •• and 226
detailed description of 232

current line pointer 119
described 53
moving down in a file 54
moving up in a file 54

cylinders, counting number of on a virtual
disk 142

D
DAM DOS access method 41
DASD Dump Restore program, invoking via the

DDR command 104
DASD operand, of (CP) QUERY com.and 297
data extents for DOS files 41
data·set keys 41
data set labels 41
data sets, concatenating 135
data, overlaying in a file 91
DATE option, of LISTFILE command 158
DCP command, summary 245
D-disk 27

accessed after IPL CMS 80
DnR command

COpy function control statement 107
COUNT option of TYPE/PRINT function
control statement 110

description of 104
DUMP function control statement 107
example of TYPE/PRINT output 111
GRAPHIC option of TYPE/PRIBT function
control statement 110

HEX option of TYPE/PRINT function
control statement 110

IBPUT control statement 105
PRINT function control statement 109
responses 110
RESTORE function control statement 107
summary 73
SYSPRINT control statement 106
TYPE function control statement 109
used with OS data sets and DOS files 40

DDR control statements 104
DEBUG command 13

described 114
sumllary 73

DEBUG subcommand environment 16
DEBUG subcomllands, listed 115
debugging

a program using VM/370 351
facilities of CP and CMS, compared 356
programs using the DEBUG com.and 114
summary of commands used for 343

DECK option, of the ASSEMBLE command 84
default file attributes, summarized 405
DEFINE command 29

adding temporary disks 31
CHANNELS operand 265
CONSOLE operand 264
CTCA operand 265
described 264
GRAF operand 265
LINE operand 265
PRINTER operand 264
PUNCH operand 264
READER operand 264
STORAGE operand 266
summary 245
TIMER operand 265
T2305 operand 266
T2314 operand 266
T2319 operand 266
T3330 operand 266
T3340 operand 266
use 59
used to define a temporary virtual disk

27
1403 operand 265
3211 operand 265

DEFINE subcommand, of DEBUG command 115
defining

a virtual device 264
a virtual I/O device for your virtual

machine 265
DOS files under CMS 132
OS data sets under CMS 132
temporary virtual disks 29
virtual disk addresses 28

DEL operand
of MACLIB command 170
of TXTLIB command 220

delete control statement, for UPDATE
command 229

DELETE subcommand, of EDIT command 120
deleting

a line from a file 54
files from virtual disk 125
from a TEXT library 220
members of a macro library 170
records from a file 118,229

delimiting fields of command line 17
DEN option

of FILEDEF command 135
TAPE command 214

density of tapes, specifying 214
description of OS data sets, listing of

155
DETACH command

described 267
summary 245

detaching a device from your virtual
machine 267

determining the status of devices on your
virtual machine 297

developing program files, summary of
commands used for 342

device-end interrupt pending for a virtual
device, specifying 308

devices
attaching to virtual machine 59
defining for virtual machine 59

416 IBM VM/370: Command Language Guide for General Users

linking to 59
linking to a virtual machine 284
making ready 59
tape devices for virtual machine 60
virtual

purging from your system 295
simulating not ready status for 293

DIAL command
described 269
summary 245

dictionary: for a TEXT library 221
DIRECT command, summary 73
directory, VM/370 user 11
DISABLE command, su.mary 245
disabled loop, in a problem program 353
disabled wait, for a problem program 354
DISCOII command 64

described 271
HOLD operand 271
summary 246

disconnecting
the terminal 64
your virtual console 271
your virtual machine 288

disk addresses, for virtual disks 27
DISK command

described 116
DUMP operand 116
LOAD operand 116
summary 73

disk control, summary of commands used for
345

disk files
comparison of formats for 89
created from OS tapes 217
punching to a virtual card punch 116

disk identifier, for a virtual disk 27
disk letter, of filemode field 43
DISK operand

of CMS QUERY command 186
of FILEDEF command 133

interactive use of 138
DISK option

of MICLIB command 171
of QUERY command 32
of TAPE command 214
of the ASSEMBLE command 84
of UPDITE command 226

disk space, acquiring 78
disk storage capacity, displaying status of

186
disks

determining status of 184
OS, reading as data sets on 40
releasing from your virtual machine 192
virtual

deleting files from 125
formatting 51
initializing 142

DISP option, of FILEDEP command 134
DISPLAY command

CAW operand 274
CSW operand 274
described 272
PSW operand 274
summary 246

displaying
accounting information 312

BLIP characters for your virtual machine
184

Channel Address Word (CAW) 274
Channel status Word (CSW) 274
extended control registers 273
filenames on a tape disk 213
first record of a file 53
floating-point registers 273
general registers 273
last record of a file 53
load map at your terminal 162
map of a load module 151
names of members of a library 224
Program Status Word (PSW) 274
records in a file 54
selected positions of a record 224
virtual storage locations 272

DIST.operand
of CHANGE command 257
of CLOSE command 259

distribution code, for an output file 257
DMCP command, summary 246
DOS disks

accessing 80
formatting of 28
reading DOS files on 40

DOS files
file-id 41
handled via PILEDEP and MOVBPILE

commands 42
listing of 155
multivolumes 41
reading 40
restrictions for reading 41
under CMS 132
user labels and data extents 41
with security indicator on 41

DOS libraries 41
DOS POWER, spooling in a virtual machine

63
DOWN subcommand, of EDIT command 54,120
DRAIN command, summary 246
DUMMY operand, of PILEDEP com.and 133
DUMP command

described 277
summary 246

DUMP function control statement, of DDR
command 107

DUMP operand
of DISK command 116
of TIPE command 212

format of tape created by 215
DUMP subcommand, of DEBUG command 115
dumping

disk files to tape 104
files from disk to tape 212

DUP option
of INCLUDE command 151
of LOAD command 163

duplicate CSECTs, for the LOID command 163

E
EBCDIC option, of COPYPILE command 95
EBCDIC representation of a file, displaying

223

Index 417

ECHO command
described 280
summary 246

E-disk 27
EDIT command 13,15

SOUP subcommand 123
SMOVE subcommand 123
1 subcommand 123
ALTER subcommand 119
AUTOSAVE subcommand 119
BACKWARD subcommand 119
BOTTOM subcommand 53,119
CASE subcommand 119
CHANGE subcommand 120
CMS subcommand 120
DELETE subcommand 120
described 118
DOWN subcommand 54,120
EDIT mode 52
example of 52
FILE subcommand 55,120
FIND subcommand 120
FMODE subcommand 120
FNAME subcommand 120
FORWARD subcommand 120
GETFILE subcommand 120
IMAGE subcommand 120
INPUT mode 52
INPUT subcommand 120
LINEMODE subcommand 120
LOCATE subcommand 121
LONG subcommand 121
LRECL option 119
NEXT subcommand 121
nnnnn subcommand 123
OVERLAY subcommand 121
PRESERVE subcommand 121
PROMPT subcommand 121
QUIT subcommand 121
RECFM subcommand 121
RENUM subcommand 121
REPEAT subcommand 121
REPLACE subcommand 121
RESTORE subcommand 121
RETURN subcommand 121
REUSE subcommand 121
SAVE subcommand 122
SCROLL subcommand 122
SERIAL subcommand 122
SHORT subcommand 122
STACK subcommand 122
summary 74
TABSET subcommand 122
TOP subcommand 53,122
TRUNC subcommand 122
TYPE subcommand 54,54,122
UP subcommand 54,122
used to create a SYNONYM file 20
VERIFY subcommand 122
X subcommand 122
Y subcommand 122
ZONE subcommand 122

EDIT INPUT mode 16
EDIT mode 16

of EDIT command 52
EDIT subcommand environment 16
EDIT subcommands, listed 119

editing symbols
controlling 331
logical, controlling use of 313

Editor
described 52
invoking 52

EMSG operand, of CP SET command 313
ENABLE command, summary 246
enabled loop, in a problem program 354
enabled wait, for a problem program 355
END operand, of TRACE command 335
END option, of TAPPDS command 218
entering

a CP command from a CMS virtual machine
103

a CP command from the VM environment
250,263

CP and CMS commands 16
the DEBUG environment 114

ENTRY control card, for the loader 166
EOF operand, of SPOOL command 320
EOF option, of TAPE command 214
EOT option, of TAPE command 214
equal sign (=), used in the filemode field

44
ERASE command

described 125
NOTYPE option 125
summary 74
TYPE option 125

ERASE option, of ACCESS command 79
erasing

old files 79
the contents of a virtual disk 28

error message handling, controlling 313
error recovery, in batch mode 361
errors, on an input line, correcting 49
escape logical editing symbol 49
ESCAPE operand, of TERMINAL command 332
ESD option, of the ASSEMBLE command 83
examining the contents of control words

114
EXEC command 13,15,15

&ARGS control statement 128
&BEGPUNCH control statement 128
&BEGSTACK control statement 128
&BEGTYPE control statement 128
&CONCAT built-in function 130
&CONTINUE control statement 128
&CONTROL control statement 128
&DATATYPE built-in function 130
&END control statement 128
&ERROR control statement 128
&EXIT control statement 129
&GOTO control statement 129
&IF control statement 129
&LENGTH built-in function 130
&LITERAL built-in function 130
&LOOP control statement 129
&PUNCH control statement 129
&READ control statement 129
&SKIP control statement 129
&SPACE control statement 129
&STACK control statement 129
&SUBSTR built-in function 130
&TIME control statement 130
&TYPE control statement 130
&variable control statement 128

418 IBM VM/370: Command Language Guide for General Users

described 127
summary 74
used to invoke a user-defined command

18
EXEC control statements 18

listed 127
EXEC files

as input to the CMS batch facility 359
created by LISTFILE command, adding to

158
created from output of the LISTPILE

cOiimand 158
EXEC filetype 36
EXEC option, of LISTFILE command 158
EXEC procedure

as a user-defined command 18
explicit specification of 18

EXEC procedures 36
EXEC subcommand environment 15
EXEC, PROFILE 18
executing

a procedure by invoking its filename
127

a program using OS macros 39
a program using the LOAD command 162
a program, example of 58
a user-defined command 127
files 195
operating systems 65
programs 202
programs in a virtual machine, passing

arguments 68
execution

beginning with an INCLUDE command 151
halting at an instruction address 252
of a CMS command, halting 238
of a module, setting the starting point

for 161
of a virtual machine, resuming 255
starting point

resetting 150
setting 150

extended control registers
changing your virtual machine 325
displaying 272
printing 277

extending one virtual disk from another
30,78

extensions, of virtual disks 30
EXTERNAL command

described 281
summary 246

external interrupt, simulated 281
EXTERNAL operand, of TRACE command 335
External Symbol Dictionary (ESD) 83

F
PCB operand, of LOADVPCB command 287
F-disk 27
PILE subcommand, of EDIT command 55,120
file

access mode 28
definition, determining status of 184
entering continuation mark 56
example of entering at terminal 56
groups created by language processors

37

identifier (§~~ ~!§Q fileid)
filemode field of 33
filename field of 33
filetype field of 33
for eMS files 33

search order, specifying 44
FILEDEF command

BLKSIZE option 136
BLOCK option 136
CHANGE option 135
CLEAR operand 133
CONCAT option 135
DEN option 135
described 132
DISK operand 133
DISP option 134
DUMMY operand 133
examples of 139
KEYLEN option 134
LIMCT option 134
LOWCASE option 134
LRECL option 136
MEMBER option 134
NOCHANGE option 135
OPTCD option 134
PERM option 135
PRINTER operand 133
PUNCH operand 133
READER operand 133
RECFH option 136
responses 140
summary 74
TAPEn operand 133
TERMINAL operand 133
TRTCH option 135
UPCASE option 134
used to define OS data sets 33
used with MOVEPILE to handle OS data
sets and DOS files 42

used with OS data sets and DOS files 40
XTENT option 134
7TRACK option 135
9TR!CK option 135

PILEDEF definitions
clearing of 138
displayed 187

FILEDEF operand, CMS QUERY command 187
fileid 33
filemode field, of the file identifier 33
filemode number, of file mode field 43
filemode numbers

defined 35
described 35

filemode
described 34
explicit specification of 44
implicit specification of 44

filename field, of the file identifier 33
filename, described 33
FILES operand, of (CP) QUERY command 297
files

adding records to 118
adding to 16
assembling, example of 57
changing records in 118
changing the spool class of 256
changing the spoolid for 256
closing 258

Index 419

CMS
calculating blocksize 137
calculating logical record length 137

co.mands used to update, summary of 344
concatenating 135
copying 104
creating 16

example of 56
creation of 33,52,118
defined 12,33
definitions for, displayed 187
deleting from virtual disk 125
deleting lines from 54
deleting records from 118,229
disk, punching to a virtual card punch

116
displaying 223
displaying records in 54
displaying the first record of 53
displaying the last record of 53
distribution code for 257
executing, example of 58
external references for 19
holding before output processing 256
holding from further processing 258,318
input, for the UPDATE command 230
inserting records in 228
listing information on 157
loading, example of 58
modification of 33
modifying 16
moving from device to device 176
multiple

linking of 150
used to update a file 226

numbering records on 226
on disk, dumping to tape devices 104
on tape, restored to disk 104
output, for the UPDATE command 230
overlaying 96
printing a hexadecimal listing of 180
printing of 179
processed by TAPE command, listed 214
punched, restoring to disk 116
punching on a virtual card punch 181
purging 258,318
relating to OS ddname 132
relocatable 19
renaming 193

displaying new names for 193
reordering closed spool files 294
replacing records in 229
saving on disk, via AUTOSAVE 119
sorting records in 200
source

modifying 225
replacing 225

spool, changing filename for 257
starting execution of 195
storing 55
tape

updating 218
writing to disk 213

terminating processing of 258
transferring to another user 318
transmitted, reclaiming 338
transmitting to a virtual reader 338

verifying the existence of 203
with reserved filetypes 407

filetype EXEC, in CMS command search order
20

filetype field, of the file identifier 33
filetype MODULE, in CMS command search
order 20

filetype
ASSEMBLE 36
described 34
EXEC 36
for files containing a listing 36
for object files 36
LISTING 36
MODULE 19,36
reserved by CMS 407
rules for usage 35
SYNONYM 20
TEIT 19,36

PILL option, of COPYPILE com.and 96
PIND subcommand, of EDIT co.mand 120
PLAG option, of the ASSEMBLE command 83
floating-point registers

changing your virtual machine 325
displaying 272
printing 277

PLUSH command, summary 246
PMODE option, of LISTPILE command 158
PMODE subcommand, of EDIT co.mand 120
PNAME option, of LISTPILE co.mand 158
PNAME subcommand, of EDIT command 120
POR option, of COpy PILE command 93
PORCE command, summary 246
PORMAT command 28,29

description of 142
examples of 143
initializing a temporary disk 31
LABEL option 142
RECOMP option 142
response 143
summary 74

PORMAT option
of LISTDS command 156
of LISTPILE command 158

formatting
a CMS virtual disk 28,142
a disk in your virtual machine 51

forms controls for a 3211 printer,
specifying 287

PORTGI command, summary 74
PORTHI command, summary 74
PORWARD subcommand, of EDIT command 120
PREE command, summary 246
PRLABEL option, of COPY PILE co.mand 93
PROM operand, of the TRANSPER command 338
PROM option

of COPY PILE command 93
of GENMOD command 146

PSCB, CMS macro instruction 366
PSCLOSE, macro instruction 367
PSERASE, CMS macro instruction 368
PSOPEN, CMS macro instruction 369
PSREAD, CMS macro instruction 370
PSSTATE, CMS macro instruction 372
PSWRITE, CMS macro instruction 373
PTYPE option, of LIST PILE command 158
functions, tape control 213

420 IBM VM/370: Command Language Guide for General Users

G
gaining access to your virtual machine 290
gaining the attention of the virtual

machine 309
G-disk 27
GEN operand

of MACLIB command 170
of TXTLIB command 220

GENDIRT command
description of 145
summary 74

general registers
changing in your virtual machine 325
displaying 272
printing 277

general user, described 242
generating

a heading for LISTFILE command output
157

a macro library 170
a module file 146
a TEIT library 220

generation of a module, initializing
storage for 147

GENMOD command 19,36
description of 146
FROM option 146
MAP option 146
NOMAP option 146
NOSTR option 147
STR option 147
summary 74
SYSTEM option 147
TO option 146

GEN3705 command, summary 74
GETFILE subcommand, of EDIT command 120
GLOBAL command 18

described 148
example of 57,149
MACLIB operand 148
summary 74
TITLIB operand 148
used with OS data sets and DOS files 40

GO subcommand, of DEBUG command 115
GOFORT command, summary 74
GPR subcommand, of DEBUG command 115
GRAF operand

of (CP) QUERY command 297
of DEFINE command 265

GRAPHIC option, of DDR command TYPE/PRINT
function control statement 110

H
HALT command, summary 246
halting

execution at an instruction address 252
execution of a CMS command 238
recording of trace information 237
terminal output 237

hardware analysis, summary of commands used
for 350

HEADER card format, for punch files 182
header card, inserting in a punch file 181
HEADER option

of LISTFILE command 157
of PUNCH command 181

heading, generating for output of the
LISTFILE command 157

HEI option
of DDR command TYPE/PRINT function
control statement 110

of PRINT command 180
of TYPE command 224

hexadecimal representation of a file,
displaying 223

hiding your password 290
HNDEXT. eMS macro instruction 375
HNDINT, CMS macro instruction 376
HNDSVC, CMS macro instruction 377
HO command, summary 77
HO immediate command 237
HOLD command, summary 246
HOLD operand

of CHANGE command
of DISCONN command
of LOGOFF cQmmand
of SPOOL command

holding

256,258
271

288
319

a file before output processing 256
files from further processing 258,318

HT command, summary 77
HT immediate command 237
HI command, summary 77
HI immediate command 238
HI subcommand, of DEBUG command 115

I
IBCDASDI disk initialization program 28
ICS (Include Control Section) control card,
for the loader 165

ID card
CP, described 189
of the batch facility 357

identifier, virtual disk 27
IEBPTPCH utility, as 217
IEBUPDTE utility, OS 217
IEHMOVE utility, as 217
IMAGE subcommand, of EDIT command 120
immediate commands, described 237
IMPCP operand

of CMS QUERY command 185
of CMS SET command 199

IMPEl operand
of CMS QUERY command 185
of CMS SET command 199

implied CP status
displaying 185
setting 199

implied EXEC status
displaying 185
setting 199

IMSG operand, of CP SET command 313
INC option, of UPDATE command 226
INCLUDE command 19

AUTO option 151
CLEAR option 150
description of 150
DUP option 151
examples of 153
INV option 151
LIBE option 151
MAP option 151

Index 421

NOAUTO option 151
NOCLEAR option 150
NODUP option 151
NOLIBE option 151
NOREP option 151
NOTYPE option 151
ORIGIN option 150
REP option 151
RESET option 150
SAME option 151
START option 151
summary 74
TYPE option 151

Include Control section (ICs) card, for the
loader 165

incompatible options for the COPYFILE
command 99

INDEX operand, for LOADVFCB command 287
initial program load (IPL)

automatic, suppression of 290
of a virtual machine operating system

282
initializing

a virtual disk 142
storage for generation of a module 147

inner macro instructions, assembler,
controlling the listing of 83

INPUT control statement, for DDR command
105

input files for the UPDATE command,
described 230

input for the CMs batch facility, EXEC
files as 359

input lines
correcting errors on 48
entering 53

INPUT mode, of EDIT command 52
INPUT operand

of CMs QUERY command 186
of CMs SET command 198

INPUT subcommand, of EDIT command 120
input to the CMs batch facility 358
input/output operations, tracing 334
insert control statement, for UPDATE

command 228
inserting

a header card in a punch file 181
records in a file 228

INSTRUCT operand, of TRACE command 335
instructions, altering using LOAD command

166
interactive entering of FILEDEF DISK

operand 138
interrupting execution of a command 22
interrupts

clearing from a virtual machine 310
device-end, specifying for a virtual
device 308

external, simulating 281
for a virtual machine 309
handling using the DEBUG command 114
tracing 334

INV option
of INCLUDE command 151
of LOAD command 162

invoking a synonym table 208
invoking libraries for use during

processing 148

invoking macro libraries 148
invoking TEXT libraries 148
invoking the Editor 52
I/O devices

virtual
defining for your virtual machine

265
spooling to 12

I/O operand, of TRACE command 335
IPL command

CLEAR operand 282
described 282
example of 50
for named systems 283
NOCLEAR operand 282
PARM operand 282
STOP operand 282
summary 246

IPL procedure, stopping 282
IsAM DOS access method 41
IsAM 05 access method 41

K
KEYLEN option, of FILEDEF command 134
keypunch characters, converting 91
keys

L

for data sets 41
program function, controlling 314
storage, printing of 277

LABEL option
of FORMAT command 142
of LIsTFILE command 158

label
for data sets 41
writing on a virtual disk 142

language processors
file groups created by 37
files created by

permanent 37
temporary 37

filetypes for 35,36
under CMs 13

LDRTBLs operand
of CMs QUERY command 185
of CMs SET command 198

LEAVE option, of DDR command INPUT/OUTPUT
control statement 106

LIBE option
of INCLUDE command 151
of LOAD command 162

LIBMAC option, of the ASSEMBLE command 83
libraries

CMs macros 45
displaying the filenames of members in

224
displaying those to be searched during
processing 188

invoking for use during processing 148
MACLIB 44
macro, displaying the members of 188
making available 45
05 macros 44

422 IBM VM/370: Command Language Guide for General Users

punching member files in 181
releasing 45
TEXT

adding to 220
creating a map of files in 221
deleting from 220
dictionary 221
displaying members of 188
generating 220
listing filenames of members 220

TSO macros 45
TXTLIB 44
used under CMS 18
used when processing CMS commands 148

LIBRARY control card, for the CMS loader
161

library member, printing 180
LIBRARY operand, of CMS QUERY command 188
LIMCT option, of FILEDEF command 134
line delete logical editing symbol 49
line editing symbols, controlling 313
line end logical editing symbol 49
line length, controlling at your terminal

333
line number generation for assembler

SYSTERM listing 85
LINE operand, of DEFINE command 265
line pointer

current 119
described 53

LINECOUN option, of the ASSEMBLE command
83

LINEDEL operand, of TERMINAL command 332
LINEDIT operand, of CP SET command 313
LINEDIT, CMS macro instruction 378
LINEMODE subcommand, of EDIT command 120
LINEND operand, of TERMINAL command 332
LINES operand, of (CP) QUERY command 298
lines, controlling number of printed by

assembler 83
LINESIZE operand, of TERMINAL command 333
LINK command

adding temporary disks 31
described 284
passwords 285
summary 246
use 59

linking
a device to your virtual machine 284
multiple files 150
TEXT files in storage 161
to another user's virtual disk 29

LINKS operand, of (CP) QUERY command 298
LIST option, of the ASSEMBLE command 83
LISTDS command

description of 155
example of 156
FORMAT option 156
PDS option 156
summary 74
used with OS data sets and DOS files 40

LISTFILE command
ALLOC option 158
APPEND option 158
DATE option 158
described 157
example of 159
EXEC option 158

FMODE option 158
FNAME option 158
FORMAT option 158
FTYPE option 158
HEADER option 157
LABEL option 158
NOHEADER option 157
summary 74

LISTING filetype 35,36
listing

controlling production of by the
assembler 83

descriptions of OS data sets and DOS
files 155

hexadecimal, printing 180
information about CMS files 157
of files processed by the TAPE command

214
of format information describing an OS
data set or DOS file 156

the assembler External Symbol Dictionary
(ESD) 83

the filenames of members of a TEXT
library 220

the members of an OS Partitioned Data
Set 156

LKED command, summary 74
LOAD and GENMOD commands, used to generate

a module 15
LOAD command 19,36

AUTO option 162
CLEAR option 161
described 161
DUP option 163
duplicate CSECTs 163
example of 58
executing a program using 162
INV option 162
MAP option 162
NOAUTO option 162
NOCLEAR option 161
NODUP option 163
NOINV option 162
NOLI BE option 162
NOMAP option 162
NOREP option 162
NOTYPE option 162
ORIGIN option 162
REP option 162
RESET option 161
START option 162
summary 74
TYPE option 162

LOAD control cards
described 163
ENTRY card 166
Include Control Section (ICS) card 165
LIBRARY card 167
Loader Terminate Card (LDT) 165
Replace (REP) card 166
Set Location Counter (SLC) 164

LOAD key, simulation of via IPL command
282

load map file
creation of 163
definition of 163

load map of a file, creation of 162

Index 423

load map
creating for a module file 175
displaying at your terminal 162
generated by the GENMOD command 146
replace card image in 151

load module
creating a map of 151
displaying the map of 151

lOAD operand
of DISK command 116
of TAPE command 213

load tables, displaying the number of 185
lOADBUF command, summary 246
loader Terminate Card (lDT) control card,
for the loader 165

loading a module file 169
loading a program, example of 58
loading an operating system in a virtual

machine 50,60
loading multiple TEXT libraries 150
loading point for a file, specifying 162
loading TEXT files into virtual storage

161
lOADMOD command

described 169
summary 74

lOADVFCB command
described 287
FCB operand 287
INDEX operand 287
summary 246

lOCATE command, summary 246
lOCATE subcommand, of EDIT command 121
location counter, setting for the LOAD

Command 164
lOCK command, summary 246
logging off of your virtual machine 58,288
logging on your virtual machine 50,290
logical editing symbols

altering 331
character delete 48
controlling 331
controlling use of 313
escape 48
line delete 48
line end 48
used to alter a file being edited 53

logical record length
changing 91
for CMS files 137

logically connected terminal 269
lOGMSG operand, of (CP) QUERY command 306
lOGOFF command

described 288
HOLD operand 288
summary 246

lOGON command
described 290
MASK operand 290
NOIPl operand 290
summary 246

logon procedure, hiding your password
during 290

lONG subcommand, of EDIT command 121
loop

disabled, in a problem program 353
enabled, in a problem program 354

lOWClSE option
of COPYFIlE command 95
of FIlEDEF command 134

lowercase letters
converting to uppercase 91
translating to uppercase 119

using PRINT command 180
lowercase records, translating to uppercase

118
lRECL option

M

of COPYFIlE command 93
of EDIT command 119
of FIlEDEF command 136

machine, determining the status of virtual
devices on 297

MlClIB command
lDD operand 170
COMP operand 170
DEL operand 170
described 170
DISK option 171
GEN operand 170
MlP operand 170
PRINT option 171
REP operand 170
summary 74
TERM option 171

MlClIB libraries 44
MlClIB operand

of CMS QUERY command 188
of GLOBAL command 148

macro definitions, controlling the listing
of 83

macro libraries
adding to 170,172
compacting 173
compacting members of 170
creating and updating 170
creating information about members in

170
creation of 148
deleting members of 170
displaying members of 188
generating 170,171
invocation of 148
replacing 172
replacing members of 170

macros
CMS 363

COMPSWT 365
FSCB 366
FSCLOSE 367
FSERlSE 368
FSOPEN 369
FSRElD 370
FSSTlTE 372
FSWRITE 373
HNDEXT 375
HNDINT 376
HNDSVC 377
lINEDIT 378
PRINTl 390
PUNCHC 392
RDClRD 393
RDTlPE 394

424 IBM VM/370: Command Language Guide for General Users

OS

RDTERM 396
REGEQU 397
TAPECTL 398
WAITD 400
WAITT 401
WRTAPE 402
WRTERM 404

assembling a program using 39
executing a program using 39
simulated by eMS 38
using under CMS 37

manipulating the translate table 198
MAP operand

of MACLIB command 170
of TITLIB command 221

KAP option

map

of GENMOD command 146
of INCLUDE command 151
of LOAD command 162

of a load module, displaying 151
of files in a TEIT library, creating

221
MA SK operand

of LOGON command 290
of TERMINAL command 332

lIasking
of passwords, controlling 331
your password during the logon procedure

290
master file directory 12

of a virtual disk 27
searching 78
updating entries in 193

MAITEN option, TAPPDS command 219
MCALL option, of the ASSEMBLE command 83
MEMBER option

of FILEDEF command 134
of PRINT command 180
of PUNCH command 181
of TYPE command 224

MESSAGE command
described 292
summary 247

message handling, error, handling 313
MESSAGE operand, OPERATOR command 292
messages

controlling transmission of 312
replying to 59
sending to other users 292

Mini disks (§~g virtual disks)
minimum abbreviation for commands,
controlling 185,198

minimum truncation of commands 19
MLOGIC option, of the ASSEMBLE command 83
MODE operand, of TERMINAL co~and 23,333
MODE option, of DDR command INPUT/OUTPUT
control statement 106

mode setting of virtual console 22
MODESET operand, of TAPE command 213
modifying

files 33
using the Editor in EDIT mode 16

source files 225
spooling control options 318
storage, using ADSTOP command 252
virtual device attributes 318

MODMAP command
described 175
summary 75

module file
creating a load map for 175
generation of 146

MODULE filetype 19,35,36
module

generation of by LOAD and GENMOD 19
loading in storage 169
",...,,~ ~_ """It. __ __ ;1 1n
u~cu Q~ Q ~VWWQUU ,~

MONITOR command, summary 247
MOVEFILE command

default device attributes 176
described 176
example of 177
PDS option 176
summary 75
used with FILEDEF to handle OS data sets
and DOS files 42

used with OS data sets and DOS files 40
moving

files from device to device 176
strings of characters 91

MSG operand, of CP SET command 312
multilevel updates using the UPDATE

command, examples of 234
multiple files

linking of 150
used to update a file 226

multiple input lines, entering 53
multivolume DOS files 41

N
NAME operand

of CHANGE command 257
of CLOSE command 259

named systems, IPL command for 283
NAMES operand, of (CP) QUERY command 306
naming files 33
NCPDUMP command, summary 75
NETWORK command, summary 247
NEWDATE option, of COPYFILE command 93
NEWFILE option, of COPYFILE co~mand 95
NEIT subcommand, of EDIT command 121
nnnnn subcommand, of EDIT command 123
NOALIGN option, of ASSEMBLE command 85
NOALOGIC option, of the ASSEMBLE command

83
NOAUTO option

LOAD command 162
of INCLUDE command 151

NOCC option, of PRINT command 180
NOCHANGE option, of FILEDEF command 135
NOCLEAR operand, of IPL command 282
NOCLEAR option

of INCLUDE command 150
of LOAD command 161

NOCOLl option, of TAPPDS command 218
NOCONT operand, of SPOOL command 319
NOCTL option, of UPDATE command 226
NODECK option, of the ASSEMBLE command 84
NODISK option, of ACCESS command 79
NODUP option

of INCLUDE command 151
of LOAD command 163

NOEND option, of TAPPDS command 219

Index 425

IOEOF operand, of SPOOL command 320
IOESD option, of the ASSEMBLE command 83
MOBElDER option

of LISTFILE command 157
of PUNCH command 181

MOBOLD operand
of CHANGE command 257
of CLOSE command 258
of SPOOL command 320

MOIMC option, of UPDATE com.and 226
MOINV option, of LOlD command 162
NOIPL operand, of LOGON command 290
MOLIBE option

of INCLUDE command 151
of LOAD command 162

NOLIBMAC option, of the ASSEMBLE command
84

NOLIST option, of the ASSEMBLE command 83
MOMAP option

GENMOD command 146
of LOAD command 162

NOMAXTEN option, of TAPPDS command 219
NOMCALL option, of the ASSEMBLE command 83
NOMLOGIC option, of the ASSEMBLE command

83
NONUMBER option, of ASSEMBLE command 85
NOOBJECT option, of the ASSEMBLE command

84
NOPDS option, of TAPPDS command 218
NOPRINT option

of TAPE command 214
of the ASSEMBLE command 84

NOPROF option, of ACCESS command 79
NOPROMPT option, of COPYFILE command 93
NORENT option, ASSEMBLE command 86
NOREP option

of INCLUDE command 151
of LOAD command 162
of UPDATE command 225

NORLD option, of ASSEMBLE command 83
NORUN operand, of TRACE command 335
NOSEQ8 option, of UPDATE command 226
NOSPECS option, of COPY FILE command 98
NOSTD option, of SYNONYM command 208
NOSTK option

of UPDATE command 226
detailed description of 233

NOSTMT option, of ASSEMBLE command 85
NOSTR option, of GENMOD command 147
notational conventions 69
NOTERM operand, of SPOOL command 322
NOTERM option

of ASSEMBLE command 85
of UPDATE command 226

NOTRANS operand, of CP SET command 313
NOTREADY command

described 293
summary 247

NOTRUNC option, of COPYFILE command 94
MOTYPE option

of COPYFILE command 93
of ERASE command 125
of INCLUDE command 151
of LOAD command 162
of RENAME command 193

NOUPDIRT option, of the RENAME command 193
NOWTM option, of the TAPE command 214
NOXREF option, of the ASSEMBLE command 84

nucleus
protection against writing over 199
protection feature, displaying status of

186
number of cylinders on a virtual disk,
resetting 142

NUMBER option, of ASSEMBLE command 85
numbering records of your file 226

o
object data, generated by language

processors 37
object deck, assembler, controllin'g the
generation of 84

OBJECT option, of the ASSEMBLE command 84
OFF operand

of SPOOL command 321
of the ADSTOP command 252
of TRACE command 335

OLDATE option, of COPYFILE co •• and 93
operands, command 17
operating system

for a virtual machine, passing
parameters to 282

initial program load for 282
loading in your virtual machine 50

OPERATOR operand, of MESSAGE command 292
operator, sending messages to 292
OPTCD option, of FILEDEF command 134
options, command 17
ORDER command

described 294
summary 247

ORIGIN option
of INCLUDE command 150
of LOAD command 162

ORIGIN subcommand, of DEBUG command 115
OS

cards, contained in a TEXT library 221
da ta sets

handled via FILEDEF and MOVEFILE
commands 42

reading 40
restrictions for reading 41
under CMS 132

disks
accessing 80
formatting of 28
reading OS data sets on

job stream, for alternating
system execution 66

macros

'40
operating

assembling a program using 39
executing a program using 39
simulated by CMS 33
simulated by CMS 38
using under CMS 37

Partitioned Data Sets, specifying via
FILEDEF 135

programs, using under CMS 37
spooling in a virtual machine 63
tapes

containing Partitioned Dats Sets 217
used to create CMS disk files 217

utility
IEBPTPCB 217

426 IBM VM/370: Command Language Guide for General Users

IEBUPDTE 217
IEHMOVE 217

OUTPUT control statement, for DDR command
105

OUTPUT operand
of CMS QUERY command 186
of CMS SET command 198

output
control options for the assembler 83
files for the UPDATE command, described

230
from the batch facility 360

OVERLAY subcommand, of EDIT command 121
overlaying

data in a file 91
files 96

OVLY option, of COpy FILE command 96

P
PACK option, of COPYFILE command 94
parameters, passing to a virtual machine
operating system 282

PARM operand, of IPL command 282
Partitioned Data Sets

generating a listing of members 156
OS tapes containing 217

passing parameters to your virtual machine
operating system 282

password
controlling masking of 331
entering at your virtual console 48
hiding during logon procedure 290
with the LINK command 285

PDS option
of LISTDS command 156
of MOVEFILE command 176
of TAPPDS command 217

PERM option, of FILEDEF command 135
permanent

files created by language processors 37
virtual disks, defined in the VM/370
directory 28

PFnn operand
of (CP) QUERY command 299
of CP SET command 314

PLIC command, summary 75
PLICR command, summary 75
PLIOPT command, summary 75
pointer

current line 119
to the current line, described 53

positioning of tapes 213
PRESERVE subcommand, of EDIT comamnd 121
primary user disk 27
PRINT command

CC option 179
described 179
HEX option 180
MEMBER option 180
NOCC option 180
summary 75

PRINT function control statement, of DDR
command 109

PRINT option
of MACLIB command 171
of TAPE command 214

of the ASSEMBLE command 84
of UPDATE command 226

printer (3211), virtual, specifying forms
controls for 287

printer files, virtual, altering the
attributes of 256

PRINTER operand
of (CP) QUERY command 298
of CHANGE command 256
of CLOSE command 258
of DEFINE command 264
of FILEDEF command 133
of PURGE command 295
of SPOOL command 319
of TRACE command 335

printer, virtual, spooling to 214
printing

a CMS file 179
a hexadecimal listing of a file 180
a member of a library 180
records

at the printer 104
at the terminal 104

the contents of virtual machine
components 277

the Program status Word (PSW; 277
virtual storage keys 277
virtual storage locations 277

PRINTL, CMS macro instruction 390
PRIV operand, of TRACE command 335
privilege classes

for CP commands 13
defined 243
summarized 243

privileged instructions, tracing 334
problem analysis 352
problem determination, description of

process for 351
problem program

ABEND 353
disabled wait 354
enabled wait 355

PROFILE EXEC 18,79
definition of 79
execution of 79
for reconnected virtual machine 65

program ABEND 353
program function keys, controlling 314
PROGRAM operand, of TRACE command 335
program products, using under CMS 43
Program Status Word (P SW) 114

changing your virtual machine 325
displaying 272
printing 277

programs, beginning execution of 202
PROMPT option, of COPYFILE command 93
PROMPT subcommand, of EDIT command 121
PROTECT operand

of CMS QUERY command 186
of CMS SET command 199

protecting against writing on nucleus 199
PSW (Program Status Word) 114
PSi operand, of DISPLAY command 274
PSi subcommand, of DEBUG command 115
PUNCH command

description 181
HEADER card format 182
HEADER option 181

Index 427

MEMBER option 181
NOHEADER option 181
sUllllary 75

punch files, virtual, altering the
attributes of 256

PUNCH operand
of (CP) QUERY command 298
of CHANGE com.and 256
of CLOSE command 258
of DEFINE com.and 264
of FILEDEF command 133
of PURGE command 295
of SPOOL command 319

PUNCHC, CMS macro instruction 392
punched files, restoring to disk 116
punching

a file on a virtual card punch 181
a member of a library file 181
disk files to a virtual card punch 116

PURGE command
ALL operand 295
CLASS operand 295
described 295
PRINTER operand 295
PUNCH operand 295
READER operand 295
summary 247

PURGE operand
of CLOSE command 259
of SPOOL command 321

purging
files 258,318
virtual devices from your system 295

Q
QUERY command (CMS)

ABBREV operand 185
BLIP operand 184
described 184
DISK operand 186
FILEDEF operand 187
IMPCP operand 185
IMPEX operand 185
INPUT operand 186
LDRTBLS operand 185
LIBRARY operand 188
MACLIB operand 188
OUTPUT operand 186
PROTECT operand 186
RDYMSG operand 184
REDTYPE operand 185
RELPAGE operand 185
SEARCH operand 186
summary 75
SYNONYM SYSTEM operand 187
TXTLIB operand 188
used to find the read/write status of a
virtual disk 32

used with OS data sets and DOS files 40
QUERY command (CP)

ALL operand 298,298
CHANNELS operand 297
CLASS operand 299
CONSOLE operand 297
DASD operand 297
described 297

FILES operand 297
GRAF operand 297
LINES operand 298
LINKS operand 298
LOGMSG operand 306
NAMES operand 306
PFnn operand 299
PRINTER operand 298
PUNCH operand 298
READER operand 298
SET operand 297
STORAGE operand 298
summary 247
TAPES operand 298
TERMINAL operand 297
TIME operand 297
UR operand 298
USERS operand 306
VIRTUAL operand 297

QUIT subcommand, of EDIT command 121

R
RDCARD, CMS macro instruction 393
RDTAPE, CMS macro instruction 394
RDTERM, CMS macro instruction 396
RDYMSG operand

CMS SET command 197
of CMS QUERY cOllmand 184

READ control card format 191
READCARD command 46,62

described 189
format of operands 190
summary 75

reader files, virtual, altering the
attributes of 256

READER operand
of (CP) QUERY command 298
of CHANGE cOllmand 256
of CLOSE command 258
of DEFINE command 264
of FILEDEF command 133
of PURGE command 295
of SPOOL command 319

reading
an entire file continuously 318
cards from a remote station 62
cards from a virtual card reader 116
cards in a virtual machine 62
DOS files

on DOS disks 40
restrictions for 41

OS data sets
on OS disks 40
restrictions for 41

records from a virtual card reader 189
read/only status of virtual disks 31
read/write access, with LINK command 285
read/write status of virtual disks 31

alteration of 30
READY command

described 308
summary 247
use 59

Ready Message
CMS, described 51
displaying 184
setting 197

428 IBM VM/370: Command Language Guide for General Users

real computer
RESET button, simulating 327
RESTART button, simulating 327

RECFM option
of COPYFILE command 93
of FILED!F command 136

RECFM subcommand, of EDIT command 121
reclaiming transmitted files 338
RECOMP option, of FORMAT command 142
record format, changing 91
recording technique taper specifying 214
recording trace information for SVC
instructions 204

records
changing the contents of 54
displaying selected positions of 224
in a file, numbering 226

REDTYPE operand, of CMS QUERY command 185
REDTYPE option, of CMS SET command 199
references, undefined, resolving via LOAD

command 162
REGEQU, CMS macro instruction 397
registers

extended control
displaying 273
printing 277

floating-point
displaying 273
printing 277

general
displaying 273
printing 277

relating an OS ddname to a CMS file 132
RELEASE command 29

described 192
summary 75
used with OS data sets and DOS files 40

releasing
a disk from your virtual machine 192
pages of storage after command execution

185,198
virtual disks 29

RELPAGE operand
of CMS QUERY command 185
of CMS SET command 198

Remote Spooling Communications Subsystem
11

receiving files 323
spooling to remote locations 12
TAG command 328
transmitting files 323

remote terminal, connecting to a virtual
machine 269

re.oving a virtual device from your virtual
machine 267

RENAME command
described 193
NOTYPE option 193
NOUPDIRT option 193
summary 75
TYPE option 193
UPDIRT option 193

renamed file, displaying new name for 193
renaming your files 193
RENT option, ASSEMBLE command 86
RENUM subcommand, of EDIT command 121
REP (Replace) control card, for the loader

166

REP operand, of MACLIB command 170
REP option

of INCLUDE command 151
of LOAD command 162
of UPDATE command 225

REPEAT command, summary 247
REPEAT subcommand, of EDIT com.and 121
replace control statement

for UPDATE command 229
image of in a load map 151

REPLACE option r of COPYFILE command 95
REPLACE subcommand, of EDIT command 121
replacing

a source file 225
an input file with an output file 95
character strings 54
members in macro libraries 170
records in a file 229

replying to messages on virtual system
console 59

REQUEST command
described 309
summary 247

Request key 59
reserved filetypes, in CMS 407
RESET button, simulating 327
RESET command

described 310
summary 247

RESET operand, of the SYSTEM command 327
RESET option

of INCLUDE command '150
of LOAD command 161

resetting
execution starting point 150
the number of cylinders on a virtual
disk 142

resolving
external references for a file 19
referenced TEXT files via the LOAD

command 162
undefined references

by INCLUDE command 152
via LOAD command 162

RESTART button, simulating 327
RESTART operand, of the SYSTEM command 327
RESTORE function control statement, of DDR

command 107
RESTORE subcommand, of EDIT command 121
restoring

dumped files on disk 212
files to disk from tape 104
punched files to disk 116
terminal output 239

restrictions
for reading DOS files 41
for reading OS data sets 41
for use of CP and CMS commands in batch

mode 360
results, unexpected in a problem program

353
resume

execution of your virtual machine 255
tracing 238
use of your virtual machine after
disconnecting it 271

retaining options set by an INCLUDE or LOAD
command 151

Index 429

RETURN subcommand
of DEBUG command 115
of EDIT co.mand 121

REUSE subcommand, of EDIT command 121
REWIND command

described 311
summary 247

REWIND option, of DDR command INPUT/OUTPUT
control statement 106

rewinding a real tape 311
ribbon, two-color, controlling use of 185
RLD option, of the ASSEMBLE command 83
RO command, summary 77
RO immediate command 238
RSCS (2~~ Remote Spooling Communications

Subsystem)
RT command, summary 77
RT immediate command 239
RUN command

described 195
summary 75

RUN operand

S

of CP SET command 313
of TRACE command 335

SAME option, of INCLUDE command 151
sample program 55
SAVE subcommand, of EDIT command 122
saved systems, IPL command for 283
SAVENCP command, summary 75
S!VESYS command, summary 247
saving

a file on disk 119
disk files on tape 104
virtual machine data 324

SCAN operand, of TAPE command 213
SCRIPT command, summary 75
SCROLL subcommand, of EDIT command 122
S-disk 28

accessed after IP CMS 80
SEARCH operand, of CMS QUERY command 186
search order

for CMS commands 20
for files 44
of virtual disks 30

searching
master file directory (ACCESS command)

78
TITLIB files for unresolved references

151
selected positions of a record, displaying

224
sending messages

to other users 292
to the operator 292

sequence control statement, for UPDATE
command 227

sequence numbers 226
SEQ8 option, of UPDATE command 226
SERIAL subcommand, of EDIT command 122
service representative, described 242
SET command (CMS)

ABBREV option 198
AUTO READ option 199
BLIP option 197

described 197
determining status of SET operands for
your virtual machine environment 184

IMPCP option 199
IMPEl option 199
INPUT option 198
LDRTBLS option 198
OUTPUT option 198
PROTECT option 199
RDYMSG option 197
REDTYPE option 199
RELPAGE option 198
summary 76

SET command (CP)
ACNT operand 312
ASSIST operand 314
described 312
EMSG operand 313
IMSG operand 313
LINEDIT oeprand 313
MSG operand 312
NOTRANS operand 313
PFnn operand 314
RUN operand 313
summary 247
TIMER operand 314
WNG operand 312

set Location Counter (SLC) control card,
for the loader 164

SET operand, of (CP) QUERY command 297
SET subcommand, of DEBUG command 115
setting

CMS functions for your virtual machine
environment 197

control functions for your virtual
machine 312

the blip characters for your virtual
machine 197

the number of loader tables 198
the starting point for execution

150,161
SHORT subcommand, of EDIT command 122
SHUTDOWN command, summary 247
simulating

not ready status for a virtual device
293

the IEBUPDTE OS utility under CMS 218
the RESET button on a real computer 327
the RESTART button on a real computer

327
single line of input, entering 53
SIO operand, of TRACE command 335
SKIP operand, of TAPE command 213
SKIP option, of DDR command INPUT/OUTPUT
control statement 106

SLEEP command
described 317
summary 247

SO command, summary 77
SO immediate command 239
SORT command

described 200
storage requirements 200
summary 76

sorting records in a file 200
source files

modifying 225
replacing 225

430 IBM VM/370: Command Language Guide for General Users

source symbol table, assembler, generation
of 84

SPACE command, summary 247
specification list for COPYPILE command 97
specifying

a device-end interrupt for a virtual
device 308

carriage control characters, for PRINT
command 179

first instruction to be executed in a
file 101

the file mode field 43
the loading point for a file 162

SPECS option, of COPYFILE command 96
spool class

for a file, changing 256
modifying 318

SPOOL command 62
CLASS operand 319
CLOSE operand 321
CONSOLE operand 319
CONT operand 319
COpy operand 321
described 318
EOP operand 320
HOLD operand 319
NOCONT operand 319
NOEOF operand 320
NOHOLD operand 320
BOTER! operand 322
OPP operand 321
PRINTER operand 319
PUNCH operand 319
PURGE operand 321
READER operand 319
START operand 321
STOP operand 322
sum.ary 247
SYSTE! operand 320
TER! operand 322
TO operand 320
use with TAG command 322

spool file 12
altering TAG information 330
changing filename for 257
changing the attributes of 256
console 12
reordering 294
spoolid 322
TAG co.mand 328
transmitting to remote locations 322

spool files, transmitting to remote
location 329

spoolid number 322
spooling

across a teleprocessing network 12
control

options, modifying 318
summary of commands used 349

defined 12
disconnected terminal 64
DOS POWER spooling in a virtual machine

63
in a virtual machine 63
operator, described 242
OS spooling in a virtual machine 63
to a virtual printer 214
to virtual I/O devices 12

virtual console I/O 61
with RSCS 12

STACK subcommand, of EDIT command 122
START command

described 202
example of 58
summary 76,247

START operand, of SPOOL command 321
START option

of IBCLUDE command 151
of LOAD command 162

starting point for execution of a module,
setting 161

STATE command
described 203
summary 76
used with OS data sets and DOS files 40

statement number generation, for assembler
SYSTER! listing 85

status of virtual machine environment 184
status

of your virtual machine, determining
general information on 297

words, tracing 334
STCP command, summary 247
STD option, of SYNONY! command 208
STK option

of UPDATE command 226
detailed description of 233

ST!T option, of ASSEMBLE command 85
STOP operand

of IPL com.and 282
of SPOOL command 322

stopping the intial program load (IPL)
procedure 282

STORAGE operand
of (CP) QUERY command 298
of DEFINE command 266

storage
clearing to zeros 161,282
keys, printing 277
locations, virtual, displaying 272
modification of 252
releasing pages of after command
execution 185,198

STORE command
described 324
summary 247

STORE subcommand, of DEBUG command 115
storing

CPU status for virtual machine 326
files, using the EDIT FILE subcommand

55
virtual machine data 324

STR option, of GENMOD command 147
string translation, character 120
strings of characters, moving 91
subcommand environments, defined 15
sutcommands

DEBUG
BREAK 115
CAW 115
CSW 115
DEFINE 115
DU!P 115
GO 115
GPR 115
HIllS

Index 431

listed 115
ORGIN 115
PSW 115
RETURN 115
SET 115
STORE 115
X 115

summary
of CMS commands 73
of commands used for debugging 343
of commands used for disk control 345
of commands used for system and hardware
analysis 350

of commands used for testing 343
of commands used to control a terminal
session 341

of commands used to control a virtual
machine 346

of commands used to control spooling
349

of commands used to develop programs
342

of commands used to update files 344
of CP commands 245

suppressing
automatic IPL of a virtual machine
operating system 290

the PROFILE EXEC 79
suspending trace recording 239
SVC instructions, tracing 204
SVC operand, of TRACE command 335
SVCTRACE command

described 204
responses 205
summary 76

switching command environments 15
using the Attention key 22

SYNONYM and SET ABBREV commands,
relationship between 209

SYNONYM command 20
CLEAR option 208
described 208
example of 211
NOSTD option 208
STD option 208
summary 76

SYNONYM operand, of CMS QUERY command 187
SYNONYM SYSTEM operand, of CMS QUERY

command 187
synonym table

clearing 208
creating 208
described 209
entries in 209
format for entries in 209
invoking 208
use of with SYNONYM command 20

SYNONYM, filetype 20
synonyms

displaying user-defined 187
for commands 20
system, displaying 187

SYSPARM option, ASSEMBLE command 86
SYSPRINT control statement of DDR command

106
system analysis, summary of commands used
for 350

system analyst, described 242

SYSTEM command
CLEAR operand 327
described 327
RESET operand 327
RESTART operand 327
summary 248

system disk 28
SYSTEM operand, of SPOOL command 320
system operator, primary, described 242
SYSTEM option, GENMOD command 147
system programmer, described 242
system resource operator, described 242
system synonyms, displaying 187
system-defined commands 15
SYSTERM data set, assembler, writing of 85
SYSTERM listing

assembler
controlling line number generation

85
controlling statement number

generation 85
SYSTERM options, assembler 85

T
tab settings 118
TABSET subcommand, of EDIT command 122
TAG command

altering TAG information 330
described 328
summary 248
transmitting files to remote location

329
use with SPOOL command 322

TAPCMD operand, of the TAPE command 213
TAPE command 45

DEN option 214
described 212
DISK option 214
DUMP operand 212
EOF option 214
EOT option 214
LOAD operand 213
MODESET operand 213
NOPRINT option 214
NOWTM option 214
PRINT option 214
SCAN operand 213
SKIP operand 213
summary 76
TAPCMD operand 213
TAPn option 214
TERM option 214
TRTCH option 214
WTM option 214
7TRACK option, 214
9TRACK option 214

tape control functions 213
restrictions when using 215

tape devices, dumping disk files to 104
tape files

restoring to disk 104
updating 218
writing to disk 213

tape handling commands
CMS 45
for virtual machine 60

432 IBM VM/370: Command Language Guide for General Users

TAPE MAP
described 214
generated by the TAPE command DISK
option 214

tape marks, writing on tape 214
tape recording technique, specifying 214
TAPECTL, CMS macro instruction 398
TAPEn operand, of FILEDEF command 133
TAPES operand, of (CP) QUERY command 298
tapes

density of, specifying 214
displaying the filenames on 213
positioning to a specified point 213
rewinding 311
writing tape marks on 214
7-track, specifying 214
9-track, specifying 214

TAPn option
of TAPE command 214
TAPPDS command 218

TAPPDS command 45
COLl option 218
described 217
EID option 218
MAXTEI option 219
10COLl option 218
ROEID option 219
10MAXTEN option 219
10PDS option 218
PDS option 217
summary 76
TAPn option 218
UPDATE option 218

temporary disks
adding 31
initializing 31

temporary files created by language
processors 37

temporary virtual disks, defining via the
DEFIlE command 29

TERM operand, of SPOOL command 322
TERM option

of MACLIB command 171
of TAPE command 214
of UPDATE command 226

TERMINAL command
APL operand 332
ATTI operand 333
CHARDEL operand 331
described 331
ESCAPE operand 332
LINEDEL operand 332
LINEND operand 332
LIIESIZE operand 333
MASK operand 332
MODE operand 23,333
summary 248
used to set the mode of your virtual
console 23

TERMINAL operand
of (CP) QUERY command 297
of FILEDEF command 133
of TRACE command 335

TERMINAL option, of ASSEMBLE command 85
terminal

console, disconnecting from your virtual
machine 271

control of attention handling 331

disconnected, log off 64
input/output processing, controlling

331
line length, controllinq 331
operating 47 -
output

halting 237
restoring 239

remote, connecting to a virtual machine
269

session
commands used to control, summary of

341
determining the length of time of

297
testing using the ECHO command 280

termina ting
console input/output 318
processing of files 258

TEST option, of the ASSEMBLE command 84
TESTCOB command, summary 76
TESTFORT command, summary 76
testing

summary of commands used for 343
your terminal 280

TEXT files
linking in storage 161
loading into virtual storage 161
resolution of via the LOAD command 162

TEXT filetype 35,36
TEXT libraries

adding to 220
deleting from 220
dictionary 221
displaying members of 188
generation of 220
invocation of 148
listing filenames of members 220
multiple, loading for execution 150
used to contain OS cards 221

TEXT, filetype 19
TIME operand, of (CP) QUERY command 297
time, determining length for a terminal
session 297

TIMER operand
of CP SET command 314
of DEFINE command 265

timer, virtual, controlling 314
TO operand

of SPOOL command 320
of the TRANSFER command 338

TO option, of GENMOD command 146
tokens, in an EXEC control statement 127
TOLABEL option, of COPYFILE command 93
TOP subcommand, of EDIT command 53,122
TRACE command

ALL operand 335
BOTH operand 335
BRANCH operand 335
CCW operand 335
CSW operand 335
described 334
END operand 335
EXTERNAL operand 335
INSTRUCT operand 335
I/O operand 335
NORUN operand 335
OFF operand 335

Index 433

PRINTER operand 335
PRIV operand 335
PROGRAM operand 335
RUN operand 335
SIO operand 335
summary 248
SVC operand 335
TERMINAL operand 335

trace information, halting recording of
237

tracing
resuming after temporarily halting 238
suspending recording temporarily 239
SVC instructions 204
virtual machine activity 334

trailing fill characters, removing from
records 91

TRANS option, of COpy FILE command 98
TRANSFER command 62

ALL operand 338
CLASS operand 338
described 338
FROM operand 338
summary 248
TO operand 338

transferring
files to a virtual reader 338
files to another user 318
output of virtual machine 65

translate table
displaying 186
manipulation of 198

translating
character strings 120
characters 91

from lowercase to uppercase 119
from uppercase to lowercase 119

lowercase letters to upper letters,
using PRINT command 180

records
from lowercase to uppercase 118
from uppercase to lowercase 118

translation of CCW, controlling 313
TRTCB option

of FILEDEF command 135
of TAPE command 214

TRUNC option, of COPYFILE command 93
TRUNC subcommand, of EDIT command 122
truncating commands 19,69
two-color ribbon, controlling use of

185,199
TITLIB command

ADD operand 220
DEL operand 220
described 220
GEN operand 220
MAP operand 221
summary 76

TITLIB libraries 44
TITLIB operand

of CMS QUERY command 188
of GLOBAL command 148

TYPE command
COL option 224
described 223
BEl option 224
MEMBER option 224
summary 76

TYPE function control statement, of DDR
command 109

TYPE option
of COPYFILE command 93
of ERASE command 125
of INCLUDE command 151
of LOAD command 162
of RENAME command 193

TYPE subcommand, of EDIT
TYPE/PRINT output of DDR
T2305 operand, of DEFINE
T2314 operand, of DEFINE
T2319 operand, of DEFINE
T3330 operand, of DEFINE

command
command
command
command
command
command

T3340 operand, of DEFINE command

U
undefined references

54,122
111
266
266
266
266
266

in an INCLUDE command, resolution of
152

resolving via LOAD command 162
unit record devices, CMS 46
UNLOAD option, of DDR command INPUT/OUTPUT
control statement 106

UNLOCK command, summary 248
UNPACK option, of COPY FILE command 95
unresolved references, in an INCLUDE

command 151
unresolved TEIT files, resolved via the

LOAD command 162
UP subcommand, of EDIT command 54,122
UPCASE option

of COPY FILE command 95
of FILEDEF command 134
of PRINT command 180

UPDATE command
control statements 226
CTL option 226

detailed description of 232
described 225
description of input files for 230
description of output files for 231
DISK option 226
error handling for 235
errors that can occur using 235
INC option 226
multilevel updates, examples of 234
NOCTL option 226
NOINC option 226
NOREP option 225
NOSEQ8 option 226
NOSTK option 226

detailed description of 233
NOTERM option 226
PRINT option 226
REP option 225
SEQ8 option 226
STK option 226

detailed description of 233
summary 76
TERM option 226
warnings by 235

UPDATE control statement
comments 230
delete 229

434 IBM VM/370: Command Language Guide for General Users

insert 228
replace 229
sequence 227 --_.::1- _ , __

U}lUdl.t: ..Lvy

for UPDATE command operations
generating at your terminal 226
generating on disk 226

UPDATE option, of the TAPPDS command 218
updating

files
summary of commands used for 344
using multiple files 226

macro libraries 170
tape files 218

UPDIRT option, of RENAME command 193
uppercase character, translated to
lowercase 119

uppercase letters, converting to lowercase
91

uppercase records, translating to lowercase
118

UR operand, of (CP) QUERY command 298
user file directory, creating 78
user label for DOS files 41
USER operand, of (CP) QUERY command 306
user-defined commands 15

how to write 18
user-defined synonyms, displaying 187
userid, entering at your virtual console

48
using OS macros under CMS 37
using OS programs under CMS 37
using program products under CMS 43

V
VARY command, summary 248
VERIFY subcommand, of EDIT command 122
verifying the existence of a file 203
virtual console

disconnecting from your virtual machine
271

mode setting 22
spooling 61,319
what you should know before using 48

virtual dev ices
closing 318
defining 264
detaching from your virtual machine 267
determining number of for your virtual

machine 297
determining the status of 297
purging from your system 295
removing from your virtual machine 267
simulating not ready status for 293
specifying a device-end interrupt for

308
virtual disk addresses, defining 28
virtual disk cylinders, counting number of

142
virtual disks

access mode of 29
accessing 29

CMS disks 78
adding temporary disks 31
addresses of 27

allocating cylinders for 27
altering the search order of 30
CMS 12
eMS standard search order 30
CP and CMS access 31
defined 27
defining the size of 12
deleting files from 125
description of 11
erasing the contents of 28
extensions of ~V,~I
finding the read/write status of 32
formatting 28,51
identifier 27
initialization of 142
linking to another user's 29
master file directory 27
maximum number allowed 27
read-only status of 30
read/write status of 30,31
releasing 29
resetting the number of cylinders on

142
search order for 30
temporary, defining 29
writing a label on 142

virtual I/O devices
defining for your virtual machine 265
spooling to 12

Virtual Machine (VM) environment, entering
CP commands from 250

virtual machine environment, determining
the status of 184

Virtual Machine Facility/370, basic
description of 11

virtual machine
activity, tracing 334
alternating execution of operating
systems 65

attaching devices 59
batch facility, described 357
components of 11
configuration, altering 264
configurations 67
controlling the devices on 13
defined 11
determining general information on the
status of 297

device, linking to 284
disconnecting 288
disconnecting the terminal 64
execution 68

resuming 255
gaining access to 290
loading with operating system 50,60
logging off of 58,288
logging on 50,290
operating system, passing parameters to

282
placing in a dormant state 317
printing and punching 63
reading cards into 62
setting control functions for 312
spooling 63
storing information from 324
summary of commands used to control 346
transferring output 65

VIRTUAL operand, of (CP) QUERY command 297

Index 435

virtual printer (3211), specifying forms
controls for 287

virtual printer, spooling to 214
virtual storage locations

changing in your virtual machine 325
printing 277

virtual system console
differences from real console 59
replying to messages 59

virtual timer, controlling 314
VM environment 15

entering a CP command from 263
VMFDUMP command, summary 76
VM/370 (§gg Virtual Machine Facility/370)
VM/370 directory 11,28

entry, description of 29
for alternating operating system
execution 67

VSAM DOS access method 41
VSAM OS access method 41
VSBASIC command, summary 76
VSBUTIL command, summary 76

W
wait

disabled, for a problem program 354
enabled, for a problem program 355

WAITD, CMS macro instruction 400
WAITT, CMS macro instruction 401
WARNING command, summary 248
warning messages, generation of for errors
in UPDATE command execution 226

WNG operand, of CP SET command 312
writing

cards to a virtual disk from a virtual
card reader 116

comments in VM/370 17
tape files to disk 213
user-defined commands 18

WRTAPE, CMS macro instruction 402
WRTERM, CMS macro instruction 404
WTM option, of TAPE command 214

x
X subcommand

of DEBUG command
of EDIT command

115
122

XREF option, of the ASSEMBLE command 84
XTENT option, of FILEDEF command 134

Y
Y subcommand, of EDIT command 122
Y-disk 27

accessed after IPL CMS 80

Z
ZAP command, summary 76
Z-disk 27
zeros, clearing storage to 282,327
ZONE subcommand, of EDIT command 122

1
1403 operand, of DEFINE command 265
19E virtual disk address 28

accessed as Y-disk 80
190 virtual disk address 28

accessed as S-disk 80
191 virtual disk address 27

accessed as A-disk 80
192 virtual disk address 27

accessed as D-disk 80

3
3211 operand, of DEFINE command 265
3211 printer, virtual, specifying forms
controls for 287

7
7TRACK option

of FILEDEF command 135
of TAPE command 214

7-track tapes, specifying 214

9
9TRACK option

of FILEDEF command 135
of the TAPE command 214

9-track tapes, specifying 214

436 IBM VM/370: Command Language Guide for General Users

.! •
&. 0

~o
ClIo
c: 0

0 0

({ :
.~ :
~ :

READER'S COMMENTS

Title: IBM Virtual Machine Order No. GC20-1804-3
Facility /370:
Command Language Guide
for General Users

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes your job?

o Customer Engineer o Manager o Programmer o Systems Analyst
o Engineer o Mathematician o Sales Representative o Systems Engineer
o Instructor o Operator o Student/Trainee o Other (explain below)

How did you use this publication?
o Introductory text o Reference manual o Student/D Instructor text
o Other (explain) ___________________________ _

Did you find the material easy to read and understand? 0 Yes

Did you find the material organized for convenient use? 0 Yes

Specific criticisms (explain below)
Clarifications on pages
Additions on pages
Deletions on pages
Errors on pages

Explanations and other comments:

o No (explain below)

o No (explain below)

Thank you for your cooperation. No postage necessary if mailed in tht:; U.S.A.

GC20-1804-3

YOUR COMMENTS PLEASE ...

Your views about this publication may help improve its usefulness: this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance and/or additional publications or to suggest
programming changes will delay response, however. For more direct handling
of such requests, please contact your IBM representative or the IBM Branch
Office serving your locality. Your comments will be carefully reviewed by
the person or persons responsible for writing and publishing this material. All
comments or suggestions become the property of 18M.

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

IBM CORPORATION
VM/370 PUBLICATIONS

24 NEW ENGLAND EXECUTIVE PARK

BURLINGTON, MASS. 01803

FOLD

FIRST CLASS

PERMIT NO. 172

BURLINGTON, MASS.

'-1

: 3
: l;

'0
• :J
·cc
:-1
.~
• U)'

co
s:
< s:

· -'W

'" :0
:()
.0
'3
: 3
" Q)

':::1 :a.
:r
• Q)

• :::I
• to

'G) :c
.~
: CD

· -:Q
'G)
'CD ••• :::I

FOLD FOLD : -
·c
: ~

International BUllnell Machlnel Corporation
Data Proceiling Dlvllion
1133 Weltchelter Avenue, White Plalnl, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Natlonl Plaza, New York, New York 10017
(International)

.~

• ell

:"'0 · ~.
':::1
• r-+ 'CD
:a.
: 3'

·c :c.n
:~

'G) :()
• !'oJ

:9 ·
• (X)

'0
'';:' :w

	001
	002
	003
	004
	004a
	004b
	004c
	004d
	004e
	004f
	004g
	004h
	004i
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044.0
	044.1
	045
	046
	047
	048
	049
	050.0
	050.1
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120.0
	120.1
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180.0
	180.1
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226.0
	226.1
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282.0
	282.1
	282.2
	282.3
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316.0
	316.1
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396.0
	396.1
	397
	398
	399
	400
	401
	402
	403
	404.0
	404.1
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	replyA
	replyB

