
Systems ReferenGe Library

IBM Time Sharing System

Data Management Facilities

This book is to be used as a reference
guide for TSS users of data .anageaent facil
ities. Topics dealt with include: storaqe
classes, unit rec~rd devices, data set char
acteristics, data se,t sharing, gaining access
to data sets, and use of data .anageaent fa
cilities. This book is equally useful to as
seabler, PORTRllf, or PL/I users.

The reader should be faailiar with IBM
Time Sharing System: Concepts and Paci1=
ities, Ge2S-2003.

Pile Ro. 5370-30
Pora Ro. GC2B-2056-2

PREFAC~

This publication viII provide users of
TSS with an understanding of the data man
agement facilities, and contains more than
a "how to" description of these services.
A working knowledge of the assembler lan
guage is required, particularly for under
standing the descri~tion of the TSS access
methods.

• Part I introduces such basic notions as
that of a data set. in preparation for
later discussions.

• Part II describes the manipUlation and
sharing of data sets within TSS; the
notion of control blocks is introduced,
and the system's access methods are
discussed from the standpoint of the
macro instructions which relate to each
of them.

• Part III shovs how such Dser-oriented
facilities as the command system, and
the FORTRAN language v make use of the
systemes data management services to
serve a wide range of needs.

Third Edition (Dece.ber 1977)

This is a major revision of, and makes
obsolete, GC2B-2056-1.

~his edition is current with Release 3.0
of IBn Time Sharing Systea/370 (TSS/370). and
remains in effect for all subsequent versions
or aodifications of TSS unless otherwise
noted. Significant changes or additions to
this publication will be provided in new edi
tions or Technical Heyslett.ers.

Reqnests for copies of IBM publications
should be made to your IB8 representative or
to the IBM branch office serving your
locality.

A for1ll is provided at. the back of this
publication for reader's co •• ents. If this
for. has been removed, co •• ents .ay be
addressed to IBM Corporation, Time Sharing
System, Dept. 80M, 1133 westchester Avenue,
White Plains, New York 10604.

@ Copyright International Business I'!achines
Corporation, 1970, 1971, 19777

PREREQUISITE PUBLICATIONS

The reader must be familiar with the
basic concepts and terminology of TSS, as
described in IB~ Time Sharing system: Con
cepts and Facilities, GC28-2003.

ASSOCIATED PUBLICATIONS

other publications that will be useful for
details not presented in this guide are:

IB~ Ti~e Sharing System;

Command Syst;e!ll User's Guide,
GC28-2001

Assembler User ~acro Instructions,
GC28-2004

system Programmer's Guide, GC2S-200S

Assembler Programmer's Guide,
GC28-2032

FORTRAN Programmer's GuIde, GC28-2025

llil (F) Programmerls Gllirie,.
GC28-·2049

INTRODUCTION

PART I: BASIC CONCEPTS OF DATA MANAGEMENT
Naming and Cataloging Data Sets
UNIT RECORD DEVICES

CLASSES OF STORAGE •
Public and Private Storage
Permanent and Temporary Storage
Virtual storage
VAM Data Sets

DATA SET CHARACTERISTICS
Sequential Organization
Indexed Organization
Partitioned Organization

PART II: MANIPULATING AND SHARING DATA SETS
DCB and JFCB
Introducing a Data Set to a Task

Su.mary of DDEF Operands
preparing a Data Set for Use

The Duplexing Option

SHARING DATA SETS
External Sharing

Sharing Private Storage
Sharing Public Storage

Internal Sharing

ACCESSING DATA SETS
Virtual Access Methods -- VAM

Processing Data Sets with VAM
Virtual Sequenti al Access Method. -- VSA~

Virtual Index Sequential Access Method -
virtual Partitioned Access Method -- VPAM

Sequential Access !ethods
Basic sequential Access Method -.- BSUI
Queued Sequential Access Method
Multiple SeqUential Access ~ethod nSAM
Input/Output Request Facility
TERMINAL ACCESS METHOD -- TAMIl

PART III: USE OF DATA P.ANAGEMENT FACILITIES
Assembler Interfaces

COMMAND SYSTEM INTERFACES
Text Editor
Services of the Data Command
Data Set Copying Services
Bulk Input/Output Services
operator-Assisted Card Input
Data Set Cataloging Services

FORTRAN
FORTRAN
PL/I (F)

& PL/I (F) INTERFACES
I/O Control

INTERFACES

APPENDIX A: SECONDARY STORAGE LABEL FORMAT
Direct Access Volumes

VAl'! Data Sets
Physical Sequential Data Sets

CONTENTS

1

2
2
4

5
5
5
6
6

7
7
7
7

8
8
8
9

10
12

13
13
13
13
15

16
17
17
18

VISAM 21
26
28
28
33
35
37
39

42
42

lJ3
43
44
46
48
49
LJ9

51
51
51

53
53
53
55

Magnetic Tape Voluaes ••• ~ • •
Standard Tape organization • • • • -
Volume Label • • - • • • • •

• 57
51
56

Data Set Header Lahel Group ~...

User Header Label Group
• • 59
• • 59

Data set Trailer Label Group
User Trailer Label Group ••

• • • • • 59
59

APPENDIX B: DATA SET DEFINING POR COMM1UmS .l\Nn LANGUAGE PROCESSORS
Data set Definition Rules for Language processing

_ • 66

• • 66
__ 66 Data Set Definition Rules for TSS Commands • • •

APPENDIX C: TSS RECORD FORr.ATS •••••
Pixed-length (format-F) ••••• ••••
Variable-length (forlkat-V and Format-D)

• • 71
• • 71
• • 11

Undefined-format (format-D) • • • • • • • • • •••• • • 71
• 71 Control Character • • • • • • • • • • • • • • • • • •

Diagrams of Record Formats • • • • • • • • • • • • • 71

INDEX

Figure 1.
Figure 2.
Figure 3.
Pigure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9A.
Figure 98.
Figure 9C.
Figure 9D.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 169
Figure 17 •
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Fignre 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Fignre 28.

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table S.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.

• • 77

Fully and partially qualified names •• • • 2
System Catalog Concept • • • • • • • • • • • • • • • 3
Public Storage Rationing • • • • • • • • • • • 5
Data set Description Control Blocks for Cataloged/Uncataloged Data Sets 8
Flow of Iniormation To and From a Data Control Block • • • • • • • 11
Example of External Sharing • 14
Bulk versus Pragmented Public Storage Assignment • _ • • • 11
RESTBL, Virtual Memory, and Main Storage Relatiouships • • • 19
Typical 6-record VISA~ dataset created sequentially •••• • • 22
Addition of record 7 KEY450 to Figure 9A • • • • • • • 22
Addi tion of record 8 KEY350 to Fiqure 98 • • • • • • • 23
Deletion of record 5 KEY500 and record 6. KEY600 • • 25
Virtual Partitioned Data Set • _ • • _ • • 27
Input/Output Request Control Block (IORCB) • 29
Standard Volume Label (VA~ ouly) • • • _ • • 54
ForJla-t-E DSCB • • • • • • 54
External Page Entry • • • • • 5q
Format-I" DSC8 • • • • • • • • • 54
Direct Access Labels for Physical Sequential Data Sets • • • • • • 55
Standard Volume Label (Physical Sequential Data Sets on Direct Access) • • 56
Format-1 DseB • • • • • 56
Format-3 DSCB 56
Format-fJ DSCB • • • • • 57
Format-5 DSCE • • 57
Standard Label and Data Organization on ~agnetic Tape 58
Placement of Control Character in a Record. • • 72
Record Formats VSA I'l • • • • • • • • • • • • • • 72
Record Formats VISAI'l......... 73
Record Formats Physical Sequential Data Sets Without Keys 74
Record Formats Physical sequential Data Sets With Keys • • • • 75
Output Record Formats for ASCII Tapes • • • • • • • • • • 16

Effect of OPEN Options •••••••••••••••••••••
Final ~agnetic Tape Positions • • • • • • • • • • • • • • • • •
Effects of OPEN and CLOSE Options on Magnetic Tape Positioning
PL/I (F) Interface With Data Management • • • • • _
EBCDIC Volume Label Format (Magnetic Tape) •• ••
ASCII Volume Label Format (Magnetic Tape)
EBCDIC Data Set Header-1 Label Format ••
ASCII Tape Data Set Header-1 Label Format • • • • •
EBCDIC Data Set Header-2 Label Format •
ASCII Data Set Header-2 Label Format
User Header Label Format • • • •
Data Set Trailer Label Format • • • •
User Trailer Label Format • • • • • •
Data Set Definition Rules for Language Processing •
Data set Definition Requirements for Commands • • •

30
• • 31

31
• 52
• 59
• 60
• 61

.. .. 62
• 63

• • 64
• • • • • 65

65
• • 65

66
• • 68

Data ~anagement is a general term that
collectively describes the functions of the
controlling system routines that pro'vide
acCess to data sets, enforce data storage
conventions, and regulate the use of input/
output devices. The data management facil
ities of TSS:

Permit the user to store, modify, and
refer to prograas and data, using the
system storage facilities.

Pree the user fro. concern with specific
input/output device configurations.

Permit the user to defer such specifica
tions as device type and length of rec
ords in the data set, until a program is
submitted for execution.

Permit any desired interchange of pro
grams and data among TSS installa-tions.

Save the time and expense involved in
writing routines similar to those pro
vided by IBI'I.

Allow users to concentrate their pro
gramming efforts on processing the rec
ords read and written by the data man
agement functions.

Provide standardized methods for han
dling a wide range of input/output and
related operations.

INTRODUCTION

Provide the flexibility for iucluding
new or improved devices, as they become
available.

Provide comprehensive error-recovery
procedures.

To most efficiently employ these facil
ities for his own purposes, the user of TSS
should have a clear idea of those that are
available to him, and a general idea of how
they operate. This manual provides a suf
ficiently detailed description of the sys
te.·s data management facilities to serve
this need, without descending to a level of
detail that would destroy the overall pic
ture of these services.

Part I consists of descriptions of some
introductory concepts necessary for a dis
cussion of data management.

Part II describes how data management is
effected in TSS, at its basic level.

Part III shows how higher-level, user
oriented services interact with the basic
data management facilities, to perform a
broader range of duties.

Introduction 1

PART I: BASIC CONCEPTS OF DATA MANAGE~ENT

A record is a collection of related data
items, treated as a unit. In data process
ing, a record is rarely considered or pro
cessed individually. Normally, records are
treated in structured, logically related
collections, called data sets. A data set
may be, for example, a source program, a
library of macro instructions, or a file of
data records to be processed by a problem
program. In general, data records are
grouped as data sets because of some need
to process them collectively.

NAMING AND CATALOGING DATA SETS

When a user wants to create or access a
data set, he requires some means of speci
fying to the system the particular data set
he is concerned with. Onder TSS, the prin
cipal data management routines have been
designed to free the user from consider
ations of data set residence, and delegate
that responsibility to the system; also,
many data sets are not physically connected
entities, and may consist of widely scat
tered portions. For these reasons, data
set specification by location cannot be the
general rule; rather, the system must pro
vide an interface that will relate the
user·s logical specification of a data set
to that data set's physical location.

For direct access volumes, the system
catalog serves to relate the user's speci
fication of a data set -- the data set's
name -- to a description of its physical
structure, specified in a data set control
block (DSCB). For tape volumes, the cata
log links the name to the beginning of the
data set on the appropriate volume. In
designing the data set naming structure,
one consideration was the sharing of data
sets permitted under the TSS data manage
ment facilities. 'I'his sharing is imple
mented through the catalog; also, it is de
sirable to enable users to permit or
restrict a sharerls access to a data set
collection, rather than individually data
set by data set. Example: If a user has a
collection of data sets concerned with one
project and wants to grant other users
access.to his entire collection, it will be
easier for him and Bore efficient for the
system to specify his group by one name.
The user implies a data set hierarchy by
specifying only a data set name; the speci
fication of the upper portion of a hierar
chy includes all the data sets logically
below it.

2

within TSS, a data set name is a series
of one or more simple names, called com
ponents, joined so that each represents a
level of qualification. Example: The data
set name RECORDS.PERSONEL.DEPT561 consists
of three components, delimited by periods;
each component represents a unique cate
gory, within which the next component is a
unique SUbcategory. In this example, some
individuals might be permitted to access
all records of the company, denoted by the
partially qualified data set name RECORDS;
others might be permitted to access all the
personnel records of the company, denoted
by the partially qualified data set name
RECORDS.PERSOHEL; some might be permitted
access to only the personnel records of a
particular department,
RECORDS.PERSONEL.DEPT561.

A fully qualified data set name identi
fies an individual data set and includes
all components of that data set's name. In
the preceding example, the personnel rec
ords of Department 561 were uniquely iden
tified by the fully qualified data set name
RECORDS.PERSONEL.DEPT561. A partially
qualified data set name identifies a group
of data sets, and omits one or more of the
right-most components of a data set name.

~
I

Figure 1.

-----~------------.
I I

~
l§J

!

I

~ [£j oL El

INVE~HRY

I

I
IDA'iAI SET

Fully and partially qualified
names

In one example r all records of the c:ompany
are designated by the partially qualified
data set name RECORDS, and all the person
nel records by the partially qualified data
set-nalle RECORDS.PERSONEL (see Figure 1).

These rules must be observed in nailing
data sets:

1. Each component except the last must
consist of from one to eight alphamer
ic characters (this is why "person
nelli, in the example and FigurE~ 1, has
only one N) ; the first charactElr must
be alphabetic.

2. The last component can consist of ei
ther alphameric characters, as in rule
1, or a relative generation number. A
relative generation number consists of
a signed integer in parentheses. Ex
ample: PAYROLL.CLERKS(-1). The sys
tea treats each relative generation
number as the equivalent of an abso
lute generation number, which has the
form GxxxxVyy, where xxxx is an:
unsigned four-digit integer and yy is
an unsigned two-digit integer. Use of
a generation number leaves a maximum
of 26 characters available for higher
level qualification of the name.
(Data sets cataloged under the same
nalle but different generation numbers
are generations of a generation data
gronp, which avoids the necessity of
giving a unique name to each da.ta set.
For more how-to information on genera
tion data groups, see Concepts and Fa
cilities, Command System User's Guide,
Assembler P~ammer's Guide, FORTRA!
Programmer's Guide, or PL/I (F) Pro
grammer's Guide.)

3. A period must be used to separate
components.

4. For data sets used exclusively within
TSS, the user is limited to 35 charac
ters, because the systell automa.tically
prefixes each nalle with his eight
character user ID, followed by a peri
od. The maxi~m number of characters
(including periods) in a data set name
is 44. For data sets to be inter
changed with the Operating Syst.em, the
user can employ 44 character data set
names. These data sets, however, can
not be cataloged in TSS without. being
renamed.

5. The maximum number of single-character
qualification levels for a basic name
is lB, for data sets used in TSS.
Hormally, fewer qualification levels
will be used.

6. The fully qualified names in each
user's data set name structure must be

unique; no fully qualified data set
name can be used as a partial qualifi
er for another fully qualified data
set name.

Figure 2 illustrates how data sets on
direct access volumes are located by data
set name, under the system catalog concept.
The system catalog is organized into a
hierarchy of indexes, each index corre
sponding to a cOllponent of a data set's
fully qualified name. The highest level
index (the master index) is a set of user
identification codes, one for each user who
has been granted access to the system.
This master index is updated by the JOIN
and QUIT commands given by the system
administrators and manager. Each user ID

-_________ -·-·--·---Lker S
Supplied

Moster lndex

,-J_O_H_~I_DC_)E_'..I.!E_N_C_;._PH_Y_S_IC_S._C_O_M_.A_"._.......I ·=;1.JCr!hIDOE: I FR~NnEGD

----_

t~---'-.... -----
l~-----~-

- - -_. -- --

r- i-----li'ier C~~ta!os,---- - ----,

I t '-1 --'-, -'-1 ----,-! ..] I J0HNDO, ENG: PAY~L i_
I
I
I
I ENG
I
I

PHYSICS i I CHEM : I

: ;
I P,-\VSICS I C()!,,,~D.R ; I
I ~--------------~,~
I
I
I i I'''':Cr~;',;\R TEST 1 : I TEST2 : 1=:1
I
I
I "-, J]ES'? DATA SET DESCRIPTOR _
I , L ______________ -f-..J

Datu Set Control Block

P~YSICS. I

-------1 DATA PAGE i---~

I DATA PAGE I

-- .~j DATA PAG, I

--~l DAr." PAGE t-~

- -1 DAr" PAGE ~-

--1 DATA PAGE ~.-------

J

Figure 2. System Catalog Concept

Basic Concepts of Data "anage.ent 3

in the master index points to a collection
of indexes, called the user catalog. Each
index in the user catalog corresponds to a
level of qualification in the data set name
structure adopted by the user. Users,
therefore, determine the nature of their
catalog by the way they name their data
sets.

When a data set is cataloged, the re
quini'd indexes are established in the user
catalog in accordance with the fully quali
fied name of the data set. The lovest lev
el index in the user catalog is called the
data set descriptor and, for data sets on
direct access volumes, it points to a data
set control block (DSeB) that locates the
individual pages of the data set. On mag
netic tape volumes, the lowest level index
of the user catalog gives the order, or
sequence number, of that data set on a par
ticular volume, relative to the beginning
of the volume.

The explicit cataloging of data sets
throngh the command system will be dis
cussed in Part III. Data sets created by
the usual TSS accessing facilities (the
virtual access methods) are cataloged auto
matically when they are created.

4

UNIT RECORD DEVICES

A key concept in efficient device man
agement depends upon the proper use of
unit-record equipment (printers, card
readers, and punches). By nature, this e
quipment can not be concurrently shared
among several users; a unit-record device
must be allocated to one job until it h~~
completed using the device. Therefore nor
mal users are not allowed complete control
over unit-record devices in TSS because one
user might tie up, for an excessive time, a
piece of equipment that is needed by other
users.

Rost users obtain the services of unit
record devices through the command system.
Example: If a user wants to have a data
set printed out, he issues a PRINT command;
the system then initiates a batch job for
the printing and thereby makes most effi
cient use of the printer.

Only users with privilege-class E (sys
tem monitors) can directly address specific
unit record devices. In Part II, some of
the access methods for this purpose will be
described.

There are three storage categories:
aain, auxiliary, and externa1. Data is
aoved between lIain and auxiliary storage in
a aanner that is not evident to the user;
these types of storage will be referred to
only indirectly. External storage, howev
er, is of more direct concern to the user.

PUBLIC AND PRIVA TE STORAGE

The tvo types of external storage avail
able to users are public and private.

Public external storage is that pool of
storage available to be portioned out to
users as they need it for creating or
adding to their data sets. So that it will
be a joint pool, capable of being appor
tioned efficiently, it must consist only of
direct access storage. Direct access
devices provide randoa access, so that pre
vious positioning is irrelevant. Vo,lumes
that are not direct access -- for exaaple,
tapes -- cannot have control over them
interspersed randomly among tasks, since
one task would have no indication of where
the previous one had positioned the volume.
'Therefore, only with direct access v'olumes
can different portions of the same voluae
be efficiently parceled out to different
tasks for immediate access. Hence, only
direct access devices can be used for pub
lic storage; the system specifies the
devices, and the volumes reaain 1I0unted
throughout a session.

Pri vate external storage is not a,
storage pool; it consists of volumes that
may be allocated to only one task at, a
tille. Because tape volues can be allo
cated to only one task at a tille, all tape
voluaes aust be private storage. Also, di
rect access devices available to the sys
tell, which are not defined as public
storage, are private devices that ca.n be
allocated to onIy one task at a time.
'Thus, private external storage aay be ei
ther direct or sequential access volUlles.

The system assuaes that a user wants
public storage unless he requests storage
on a private volume. Public volumes are
always aounted and available for allocation
to a user's task.

If a user wants private volumes, he may
need to wait for devices on which to mount
those volumes. Each time a request is aade
for a private-volume device, the system
aust determine if it can honor the request,
based on the current availability of the

CLASSES OF STORAGB

device type specified, and the device
ration permitted for the user. If no
device is available to the task, a message
is issued to the user (in conversational
mode) or the systea places the task in
abeyance until the needed device can be
allocated (in nonconversational aode) •
Conversational users can wait until a
device is available, or perform other work. I

PERRA.ERr ARD rERPORARY STORAGE

How can a public storage pool, available
to all users, be rationed? One solution
might be to give users as much as they
want, whenever they need it. Unfortunate
ly, this flexibility might lead to a single
user severely reducing the public storage
available to other users (see Figure 3) •
On the other hand, each user aight have a
maxiaum ration of 10~ of the public
storage. Besides being arbitrarily rigid
(if only one person is using the systea,
why should he be so liltited?), this solu
tion limits the systea to a aaxiaull of 10
concurrent users (see Figure 3).

TOO FLEXIBLE

USER 1 USER 2 USER 3 USER 4 USER 5

USER 6 USER 7 USER 8 USER 9 USER 10

TOO RIGID

Figure 3. Public storage Rationing

Classes of storage 5

Public storage is rationed under TSS by
restricting the extent that is allotted to
anyone user, but restricting it in a Mann
er that allows considerable flexibility
during the time span of a given task. Each
user is allotted a maximum ration of peraa
nent r and a maximuB ration of temporary
public storage. Data sets specified as
peraanent will continue to be on public
storage after the task has logged-off; data
sets specified as temporary will be erased
automatically by the end of the task. Un
der this procedure, it is possible to
allocate to a given user more than a strict
percentage share of public storage r since
it is known that the portion of storage
that is occupied by data sets specified as
"temporary" will be in use for only a short
tiae. On the other hand r since even the
extent of temporary storage available to a
single user is limited by a fixed maximum,
no one user can occupy an extensive area of
public storage, even for a short time.
Thus permanent- and temporary-storage
rationing represents a comproMise between
the two situations depicted in Figure 3.

VIRTUAL STORAGE

Virtual storage is a nd~e used to
describe the logical storage space defined
by the address capability of the TSS ma
chine. Thus, for machines using a 24-bit
address, virtual storage can represent over
16 million bytes, and for those using a
32-bit address, virtual storage contain.s
over " billion logical (or conceptual)
bytes. In TSS, each user has at his dis
posal the total amount of virtual or logic
al storage that is available to him based
on his machines address capability
(although some of ~is space aay be used by
system service routines that use virtual
storage). The system provides this capabi
lity by translating virtual or logical ad
dresses, specified by users, into actual
storage addresses; all translation is tran
sparent to the user. Users may program
using virtual or logical addresses, and
store data sets into virtual storage space;
the system maps the program and data set
addresses into actual storage addresses for
him.

Three special Data "anage.ent Access
ftethods -- the virtual Access Methods (VAft)
-- have been provided with TSS. They are
specifically designed for a time-sharing
environment and are used to read and write
data to and from direct access storage
devices. For all three of the VAM access

6

methods, the data set management (for exam
ple, formatting) is performed in virtual
storage -- using virtual addresses that are
part of the user's virtual storage address
space -- although physical device manage
ment (e.g., I/O) is performed by system
programs in resident storage. Each access
method provides access and processing capa
bilities for data sets organized in a spe
cific manner.

• sequentially (Virtual Sequential Access
Method -- VSAM)

• indexed sequential (Virtual Indexed
Sequential Access Method -- VISA")

• partitioned (Virtual Partitioned Access
Method -- VPAM)

In TSS, data sets organized for processing
by one of the virtual access lIIethods are
generally referred to as VAM data sets.

VAP! DATA SETS

VA" data sets reside on direct access
(~xternal storage volullles, which are
organized for lIIaximue accessing efficiency.
¥olumes that contain VAM data sets can con
u~', a only VAM data sets; the formatting of
til '''';.3'" volumes is d ascribed in A ppendix A.

The content of public storage consists
exclusively of VA" data sets; direct access
private storage, however, can contain ei
ther VAM data sets or data sets organized
for interchange with any IBM Operating Sys
tem (of these latter, only physical sequen
tial data sets .~an be accessed under TSS
see Appendix A for format descriptions) •
VA" data sets are aot on tape volumes
(although they may be temporarily stored as
physical sequential data sets with the VT
cOllllland, to be rebuilt in their original
foreat by the TV command.)

Detailed descriptions of the various VAM
data set organizations are given in Part
II.

Note: Portions of V!~ data sets do not
reside in a user's virtual storage until
they have been read in by one of the virtu
al access methods. Virtual storage
includes the portions of any data sets that
can be directly referenced (having been
previously read), and may include data
residing on Bain, auxiliary, or external
storage (when the virtual access methods
are used for reading).

We haTe seen that a data set is an
organized, logically related collect,ion of
records.. We vill nov briefly consid.er
three basic vays that data sets are
orqanized.

A distinction should first be made be
tween two different types of records: log
ical and physical. A physical recol:'d is
considered from the standpoint of the mann
er or fora in which it is stored, retri
eTed, Ilnd mOTed - that is, a record. that
is defined in teras of physical qualities.
A logical record is considered independent
ly of its physical enTironaent -- more than
one logical record may be within a single
physical record.

Logical records are of primary concern
to the user, since they are normally the
units transferred to and from his problem
proqra.. Therefore, ve shall refer to
these simply as "records."

The concepts of logical and physical
records lead naturally to record blocking;
this is the combining of logical records
into physical records that are to be trans
ferred to or fro. an external device.
Blocking will be described in Part II.

Records aay be in one of three formats:
fixed-length (format-F), Tariable-Iength
(format-V or -D) , or undefined (format-D).
Formats are discussed fully in Appendix C.

Records are formatted, and the collec
tions of records (that is, data sets) are
also formatted. The format characteristics
depend upon how they are to be accessed;
generally they can be grouped into three
categories: sequential, indexed, and
partitioned.

sequential Organization

When a data set is organized sequential
ly, the records are organized solely on the
basis of successive physical positions,
such as those of the records themselves, or
of an associated pointer. One record pre
cedes another logically if and only if it,
or its associated pointer, precedes the

DATA SET CHARACTERISTICS

other record physically. This implies how
the data set is to be accessed (that is,
hov the records are to be read in and out).
There is more discussion of this implica
tion in Part II.

Indexed Organization

A data set with indexed organization has
a unique key associated with each of its
records. The key is a string that usually
represents an item within the record, such
as a part number, date, or name. The key
may fora the basis for accessing the rec
ords, or several keys aay be ordered to
permit sequential accessing. Accessing
this form of data set is also discussed in
Part II.

Partitioned Organization

A data set with partitioned organization
has elements, or members, that are other
data sets; these elements are in either
sequential or indexed organization. A
characteristic of a partitioned data set is
a control directory that provides informa
tion about the location and number of the
elements of the data set, and the charac
teristics of each element.

The organization within any of the three
data set categories is dependent upon how
the data set was created. Details of this
dependence and data set organizations are
in Part II.

Application: The names of the data set or
ganizations were derived from combinations
of the three categories and indicate chara
cteristics to the user. Example: VIS is
virtual index sequential organization; the
V signals a virtual storage data set that
must reside on a direct access volume, pub
lic or private.. The next two letters, IS,
provide proqressively deeper levels of
detail; "index" reflects that the logical
order of the records of the data set is de
termined by a key; "sequential" indicates
that the keys are arranged in an ascending
collating sequence that provides an option
of strict sequential access.

Data Set Characteristics 7

PART II: !AMIPULATIIG AND SHARIRG DATA SETS

The characteristics of an individual
data set must be clearly defined to the
system before the user can create or access
that data set by using the system's data
management facilities.

Does the user want to write to the data
set, read from it, or both? The system
must have indications of how he intends to
access a data set so that the routines that
he viII need will be available.

Does he want to provide his own routines
for handling some processing interruptions?
If he does, the system must have the ad
dresses of these routines before it can
start processing.

Such indicators are required at differ
ent times, and the sources of the indica
tions differ: the user provides some and
the system others. Control blocks act as
storehouses for this information; the sys
tem will reference this information when it
is required.

DCB ABD JFCB

!ost of the physical characteristics of
a new data set are stored in the data con
trol block (DC B) , which normally resides in
a user's program and is generated at
assembly time. In addition to such static
qualities as data set organization, the DCB
contains information about processing re
quirements, among them the number of buf
fers required for input/output operations.

CATALOGED
DATA SETS

A particular DCB is not directly linked
to any data set; rather, it is a "floating"
definition that can be linked to a specific
data set through an intermediate job file
control block (JFCB), as shown in Figure 4.

The JFCB gives the user the flexibility
to associate a DCB with a particular data
set at the command-system level, anytime
before executing a particular program. The
user establishes the JFCB by issuing the
DDEF command or macro instruction (or the
CDD command, which copies prestored DDEF
commands) •

INTRODOCING A DATA SET TO A TASK

Besides creating a JFCB to link a data
set and a DCB, the DDEF command (or macro
instruction) introduces a data set (speci
fied by its data set name) to a user's
task. For a new private data set, the nec
essary messages are issued to the operator
to request mounting of any required private
volumes. If any volumes cannot be mounted,
conversational users are informed by system
messages; nonconversational tasks are ei
ther terminated by the operator or queued
nntil the required private volumes have
been mounted. (For nonconversational
tasks, a list of private device require
ments is made available to the system by
the SECURE command, which the user must in
clude in the task's nonconversational SYSIH
as the first command after LOGON.) Then,
as each DDEF is read and processed, the re
quired devices are allocated.

" " " "",

CATALOG

-.. DATA SET NAME 1----- - ~---~-

/
/

/

/

DATA SET

(,,-------,

UNCATALOGED I DATA 5 ET NAME
----~ ~-

DATA SETS /~ ___~[)tLAME _
1--------------- : .. / EXP LIe IT DATA

___ ~J.6,ME SET POINTERS

Figure _. Data set Description Control Blocks for Cataloged/Uncataloged Data Sets

8

lor an existing data set vith DISP=OLD
ezpliciUy stated, if a private (PS) data
.et is indicated the Slstes requests mount
ing of appropriate voluses. If a public
(YI, YS, or VP) data set is indicated, the
Bystea s.arches the catalog for the data
•• ~ aaa. and, if it does not find the nase
(that ia, the data set is not cataloged),
the systea cancels the DDEF.

'rh. catal.og and DDEF values for «lata set
organitation, data set disposition, and
device type sust agree or the cossand (or
aacro illstruction}is canceled. In all
other cases of conflict, catalog inforaa
tion is used to fi1.1 out the JFCB, in pre
ference to the conflicting information in
the DDll cossand or aacro instruction.
Siace the user wil.l not be informed of such
confl.icts, he should be aware of thE~ JFCB
fill. hierarchy used.

lor a nev virtual. storage data set
(DIS ... BI), the DDEF coaaand or macro in
stro.ction is canceled if the specified data
set naae already exists in the catalog.

Withia any particular task, there can be
only one JlCB for a data set. If a user
i.so •• a new DDEF with a data ~t name that
1& identical. to that in a previous DDEF, a
De. JPCB will ~ be created. Instead, the
ddn .. e in the nev DDEF viII be substituted
for the ddnaae currently in the JFCB, and
processing for that DDEF viII be considered
coaplete. ~his wi1.1 have the effect of
associating a new DeB (the one associated
with the ddnase now in the JPCB) with the
na.ect c1ata set.

'rhe user can specify, in the DDRY, pa
raaeters for externa 1 storage space-
allocation, device sanageaent, data set
di~osltion, and DCB, that are to be put in
the JlCB. The user aay want to alter sose
paraaeters before executing a progrcuR, but
issuing another DDEP vi th the saae (lata set
naa. will not affect any paraaeters in the
JPCB, other than the ddnaae. If he issues
the R!LBASE coaaand, the user can change
paraaetars placed in the JFCB by a previous
DDft'.

A DDBl com.and or macro instruction is
sued during a task is valid throughout the
task, unless the user issues a RELEASE cos
sand for the data ~t naaed DDNAftE in the
DDtl. ~ha RELEASE command releases the
Jlca associated vith a data set, reRoving
the control information in the JPCB and
disassociating the data set froa a DCB.
leleasiag a data set does not uncatalog or
arase it. If a private data set is re
l.eased, and the vol.ume on which it resides
contains no other in-use data sets {i.e.,
data sets for which there are current
Jl'CBs) r then the I/O device on which that

volume resides will be autoaatically freed
for other uses.

Suaaary of DDEF Operands

Readers who require an in-depth treat
ment of the paraaeters available should
consult Comaand System User's Guide or
Assembler User !acro Instructions.

DDBABE: The symbolic data definition name
that serves as the link between the DCB
and the JPCB; since the JFCB, in turn,
points to the data set, the DDNAKE con
nects the data set attributes to a spe
cific data set.

DSORG: Indicates the organization of the
data set being defined; specification of
this parameter aust be correlated with
the access method to be used in process
ing the data set.

DSRAME: Specifies the name under which the
data set is to be cataloged or referred
to for teaporary reference; for data sets
that are cataloged, this serves as the
link between the JFCB and the data set.

~: Under this heading, parameters aay be
stored in the JFCB; these will be re
ferred to when a data set is opened, for
the purpose of filling out the DCB (see
"Preparing Data Sets for Use").

URI~: Specifies the type of device re
quired by the data set. Direct access
devices may be specified for either pub
lic or private volumes; other types of
devices may be specified for private
volumes only.

SPACE: Specifies the storage allocation
for a data set that is to reside on di
rect access storage. Both primary and
secondary space allocations can be speci
fied; secondary space is to be allocated
when the primary space has been filled.

LABEL: Applicable to data sets that are on I

tape, this operand specifies the sequence I

number (relative position) of a data set
on a tape that contains multiple data
sets. Also, this operand may specify the
labeling conventions used with a data
set; that is, if a data set is labeled
and if the label is standard EBCDIC,
standard ACSII, or user-created.

RE~PD: Specifies the number of days the
data set is to be retained by the system
(retention period); applicable only to
non-VA~ data sets on direct access
voluaes or labeled tapes. When the spec
ified time has elapsed, the volumes are
available for reuse.

ftanipulating and Sharing Data Sets 9

TOLU8E: Specifies the volume on which the
data set resides; this field must be
specified when creating a new data set on
a private volume or when referring to an
uncataloged data set. It is also re
quired when adding new volumes to an ex
isting private data set. In general, it
is required when the system cannot deter
aine the necessary volume information
from an existing catalog entry. Also, it
may be specified for new data sets on
public volumes, to restrict initial space
allocation to these volumes.

DISP: Specifies whether the data set
already exists or is to be created. If
DISP is not specified, the system deter
aines if the data set is new or old,
based on whether there is a catalog entry
for it; if yes, it is assumed to be old;
if no, it is assumed to be new. If there
is conflict between the specification of
this operand and the state of a data set,
the DDEF command is canceled.

OPTION: Specifies that either a job li
brary is being defined or a data set is
being added to the concatenated data set
named in the DDHASE operand. A data set
that is to be concatenated must exist in
physical sequential organization. A job
library that is being defined must be
virtual partitioned; it will automatical
ly be placed at the top of a list of job
libraries defined during that task, and
will be used to store object modules un
til either it is released, or a new job
library is defined on top of it (job
libraries are searched for object modules
in the reverse of the order in which they
were created).

~: Specifies the storage attributes of a
TAB data set. The user may specify per
manent or temporary storage, that the
data set is to be erased after the CLOSE
or LOGOFF, or that either unlimited or
read-only access to the data set is
permitted.

PBO'fECT: Applicable to data sets on tape,
this operand specifies whether file pro
tection, that is, ~ file protect ring,
is required.

PREPARIBG A DATA SET FOB USE

Eyen after a data set has been defined
to a task and linked to a DCB by the crea
tion of a JFCB, it is still not ready to be
processed; the DCB may not be completely
filled in, and the data set is not initial
ly positioned. "open processing" must be
completed before the access methods can
process the data set.

10

The assembler user initiates processing
by issuing the OPEN macro instruction; for
users of higher-level languages it will be
automatically issued. When the data set is
opened, the DCB is completed by filling in
information obtained from:

1. Users' modification routines (BSA~
only)

2. The DCB itself

3. The JFCB

4. The system catalog (for existing data
sets)

5. Existing data set labels

Not all of these sources are valid for
each field of the DCB. Two general rules
apply: when a field is filled in by a
higher priority source, it cannot be
replaced by information from a lower
priority source; if a field has not been
specified by a higher priority source, it
may be filled in by a lower priority source
if that source is valid for that field.
This flow of information is illustrated in
Figure 5.

Open processing logically consists of
two functions! a common portion that per
forms the services required by all access
methods, and an access-met hod-dependent
portion that completes the processing re
quired by the pertinent access method.

The co.mon portion first ensures that
the DCB is valid; if not, the user's task
will be abnormally terminated. since the
DDNAME parameter is required to provide the
needed link between the DCB and the JFCB,
before any filling in can begin a check is
made to ensure that this parameter is in
the DCB and that it corresponds with an
identical parameter in some JFCB for that
task. In case of any discrepancy, conver
sational tasks will be prompted and noncon
versational tasks will be abnormally termi
nated. The user's authority code is
checked to ensure that he is privileged to
open this data set; if he is not, the task
is abnormally terminated.

The access-method-dependent portion of
OPEN completes any processing required for
the device on which the data set is
mounted, processes tape labels according to
the open option specified (INPUT, OUTPUT,
INOOT, OUTIN, BDBACK, or UPDAT), initially
positions the data set, and sets up the
linkages to the routines that may be used
in accessing this data set. The routines
that may be used depend upon the combina
tion of the access method being used, the
option with which the data set was opened,
and the sacro instruction references speci-

fied in the DCB. The initial positioning
for non-VA" data sets is dependent upon the
option with which the data set was'opened,
together with the DISP option of the DCB
(OLD, HEW, or KOD).

Open processing for new VA" data sets
includes creating catalog entries for these
data sets; this occurs during cOllmon open.

Just as OPEN completes the logical con
nection between a data set and a DCB, per
mitting the data set to be accessed by the

1
Assembly Time

Prior to OPEN

User
Problem
Program

OPEN Time

System Catalog

JFCB

Execution Time

I ________ _
Iwhile Data Set is Open

l [User
Problem
Program

problem program, so CLOSE eliminates this
link, removing the data set from direct
contact with the problem program, and per
mitting it to be connected to a different
DCB (or the same DCB, with different param
eters). Then the data set can be accessed
as a data set with different physical
characteristics. (Note that this applies
to the normal use of CLOSE; a aore re
stricted form of the instruction, CLOSE
(T), will be discussed below).

Defines DCB
Fields Symbolically

Add to or Modify DCB

Data Contro I
Block (DCB)

DCB

Crcled nUf'"lbers represent order in
whi ch sources are somp led for inputs
to data control block; numbers
within boxes indicate priority of
these sources

DCB

Existing
Data Set
Label

2

Add to or Modify
Certain F;elds of DCB

User
Modification
Routines

Completed
DCB

BSAM
Only

Figure 5. Flow of Information To and From a Data Control Block

Manipulating and Sharing Data Sets 11

Processing of CLOSE also consists of a
common and an access-aethod-dependent por
tion. The common portion disconnects the
DCB from the data set by returning the
fields that were filled in during open
processing to the condition they were in
before the DCB was opened~ After perform
ing other processing, control is passed to
the access-method-dependent portion, -.. hich
checks all outstanding I/O operatIons for
completion and then repositions the data
set volume, if necessary (physical sequen
tial data sets). Appropriate label proc
essing is also performed; the type of proc
essing is dependent upon thBLpt:ion >I:ith
which the data set was opened. Exalllple: a
physical sequential data set that was
opened for OUTPUT will have appropriate
trailers written when it is closed.

A telllporary close. CLOSE (T), can be per
formed if the user '!tants to reposition and
consolidate status information, vithout
disconnect.ing the data set from the problem
program, by removing the link between the
data set and the DCB. He may subsequently
perform additional processing on that data
set without again opening it. (For 'IF data
sets, the FIND macro instruction must be
issued prior to any further processing.)
The temporary close performs the same proc
essing as the standard CLOSE macro inst:cuc
tion, except that the fields of the DCB are
not restored to the status they vsre in be
fore opening. Also, if the user has speci
fied the delete-at-close option in the DDEF
for a data set, the standard CLOSE macro
instruction viII erase the data set before
returning control to the user; CLOSE(T)
will not.

The Dl.l{?lexing Option

For public VAa data sets, an option pro
vides for parallel creation and updating of

12

two identical copies of a data set. With
this option, when a user changes one copy
of the data set, the system will automati
cally change the other copy.

The DUPOPEN macro instruction is used
instead of OPEN when the user wants the
system to maintain a copy of the data set.
The user specifies, in the DUPOPEN macro
instruction, the locations of the DCBs of
the data sets to be maintained in parallel;
in response, the system links the JFCBs as
sociate.d with these data sets and allocates
any necessary storage. Since the purpose
of duplexing a data set is to provide pro
tection against loss of virtual storage
data sets through volume errors, external
storage for each copy of the data set is
allocated, wherever possible, on mutually
exclusive physical volumes.

If an input error is detected on a page
of the primary data set, the corresponding
page of the secondary is obtained and used
for input, and, also, is written back to
overlay the logical page with the error on
the primary data set. This process not
only recovers from the error, hut also
tends to keep the primary copy in an error
free state.

To close duplex data sets, the DUPCLOSE
macro instruction is used. To ensure that
the two copies of the data sets are identi
cal. the user must perform all operations
on either data set within the duplexing
mechanism (i.e." opened with DUPOPEN, and
closed with DUPCLOSE). Errors viII be in
dicated if the DeBs associated with dup
lexed data sets indicate conflicting attri
butes; similarly, the sharing properties
specified in PER8IT commands (discussed in
"Sharing Data Sets") must agree.

In many applications, 1I0re than one user
may need the saae data. Two or more users
may want in for lila tion from the sallie source
of data or they may want to update the same
copy of data. Enabling users to share one
copy saves storage space; it also eli
minates the need to collate information
from different copies of the data to form a
single updated copy.

Sharing may be external or internal.
When external, several users have access to
a copy that is contained on external
storage; when a part of it is brought into
a user's virtual storage, that becomes his
private copy for his task alone. It is not
affected by changes made to the external
copy. When internal, the same copy is com
mon to the virtual storage of all the
sharers; a change made by one user is an
immediate change to the copy used by all
other sharers. Some system routines and
control tables are shared internally:; the
sharing employed by most users is external.

EXTERNAL SHARING

The catalog is the mechanism by which
data sets are shared externally. A Ilser
can allow any portion of his catalog to be
shared; he can specify a data set that is
to be shared, or he can specify an index
level (a partially qualified data set name)
to be shared. The latter will incluile all
index levels below t he shared index.

The user who authorizes sharing of a
portion of his catalog is the "owner";
anyone authorized by the owner to share is
a "sharer". The owner can specify the
class of accessing privilege of the sharers
of a data set or index level:

Unlimited access -- Sharers may read
froll the data set or 1II0dify it in any
way; they may erase it.

Read-write access Sharers may r.ead
from the data set or modify it; they
cannot erase it.

Read-only access -- Sharers may only
read froll the data set; they cannot
lIIodify or erase it.

Note: In the .JF CB, there is a flag indica
tion of whether a data set is sharable;
issuing a PERMIT cOllmand does not al'ter an
existing JPCB. Therefore, if a user
decides to share a data set after he has
already issued a DDEP for it, he should re-

SHARING DATA SETS

lease the existing JFCB (by the RELEASE
cOllmand or by logging off) and issue anoth
er DDEF for that data set, so that it will
be flagged as sharable.

Through the PERMIT command, the owner
can specify a data set or index level as
universally sharable or he can explicitly
specify the users who may share it; this
information is placed in his catalog.
Through the SHARE command, the sharer pro
vides the linkage between his catalog and
owner's catalog, and specifies this
information:

Owner's ID,

Fully qualified name assigned by the
owner to the data set or index level,

Fully qualified name assigned by the
sharer.

Example: The owner, User 1, whose ID is
USRR', specifies other users who may share
index level A.B. User 2 wants to access
User lIS data set A.B and call it X.Y.
User 2 must then specify USER1.A.B and X.Y
as parameters for the SHARE command. When
User 2 wants to access data set X.Y a cata
log search will be made through index
levels X.Y.USER1.A.B to reach an entry in
User l's catalog (see Figure 6) •

Sharing Private Storage

All data sets in a user's catalog, on
either public or private storage, can be
shared externally. However, since private
volumes must be mounted on private devices,
and private devices can be allocated to
only one task at a time, a sharer aay find
that a private data set is unavailable to
his task for one of two reasons:

1. There is not an appropriate private
device available for allocation to his
task.

2. Another sharer is currently using the
data. (The private volume will not be
available until he releases the JFCB
or logs off.)

Sharing Public Storage

It the shared data is on public storage,
the data set can be open and accessible to
more than one task. When data is shared
concurrently, records may be read and writ
ten by different users without anyone hav
ing to close the DCB he has open for that

Sharing Data Sets 13

Master Index (POD)

- ... USERl I ndex Pointer

USER2 I Index Pointer

USERN Index Pointer

USER 1 Index USER2 Index

A Index Pointer l--,

I
X Index Pointer f---

M I ndex Poi nter Q Index Pointer

N Index Pointer R Index Pointer
I-- --

A Index X Index

B Index Pointer I ndex Poi nter

P Index Pointer 5 Index Poi nter i

------~= j
Sharing Descriptor

,-,-,~

Sharer List ",

_________ ~ ___ J
B Index Y Index

Indical'es B)
is Sharable j I-_Sh_a_r_i n_g_C_o_n_t_ro_I_-I J

Data Set Descri ptor

USER2 '" , USER l.A.B I-l
\---------1

-

Figure 6. Example of External Sharing

data set. The sharer may have to wait un
til an interlock, set by another sharer's
task, has been released, but this is the
only restriction on the availability of the
data. Two interlocks, read and write, con
trol concurrently shared data.

A read interlock is imposed to prevent
other users from writing into a data set,
member, or page of a data set. Kultiple
read interlocks may be established for a
data set or meaber, permitting several
users to read it simultaneously, or the
interlocks may be set on a page basis to
give several users simultaneous access to
the records within a page. A read inter
lock cannot be set if a write interlock has
already been set for the data set or page.
(For a VISAft data set, a data set level
read interlock is slightly less restric
tive; it prevents other users from opening
that data set for output.)

- -

A write interlock prevents any user,
other than the user who set the interlock,
from reading or writing into a data set,
page, or member. Only one write interlock
can be set at a time; thus, once a write
interlock is set, neither read nor write
interlocks can be applied until the write
interlock is reset.

Data Set Interlocks: A data set interlock
is set according to the option with which a
data set was opened (INPUT, OUTPUT, INOUT,
OUTIN, or UPDAT). It has the effect of
restricting the OPEN options that will be
accepted from future concurrent users; such
users will be prevented from opening a data
set with an option against which it is
interlocked.

Kember Interlocks: Partitioned data sets
are interlocked at the member level, rather
than the data set level; these interlocks

are set within the _ember header associated
with the data set.

Page Interlocks:
sets, interlocks
these interlocks
instructions.

In shared VISA! da'ta
are set at the page level;
are set by VISA! macro

Data set and _ember interlocks arH re
leased when the data set is closed, or the
lIember is stowed; page interlocks arEt re
leased when a reference is _ade to another
page in the data set, when an ESETL or
RELEX macro instruction is issued, OI~ when
the data set is closed.

INTERNAL SHARING

When virtual storage is shared internal
ly, only one physical copy of the da1:a is
required in main storage, and is a part of
the virtual storage of all the sharers.

One exallple of in ternal sharing if; the
shared data set table (SDST). It exists as
part of the virtual storage that is ini
tially allocated to all tasks when they
execute LOGON, and is updated with entries
for internally shared portions of shared
data sets when the data sets are initially
opened; users who subsequently open this
data set reference this table, and incre
_ent the count of concurrent users ill the
table.

Internal sharing is effected by the
dyna.ic loader for control sections ,fith
the PUBLIC attribute; the SDST serves as
the link to this shared virtual storage.

The difference betveen internal and ex
ternal sharing is illustrated by the sys
temWs treat_ent of PUBLIC and PRIVATE con
trol sections in shared data sets:

User A wants to share _odule A vith
user B. Module A consists of two control
sections, one with the PRIVATE attribute,
the other with the PUBLIC attribute.

Since an object module exists as a
.ember of a partitioned data set (let us
call it JOBLIBA) and only entire data
sets are shareable, User A must share
data set JOBLIBA with User B. So User A
issues a PERMIT command, na_ing JOBLIBA
to be shared and User B as sharer. User
B later issues a SHARE com_and, naming
JOBLIBA. He decides to refer to this
data set, for brevity, as LIBA and speci
fies this in his SHARE command.

User B nov issues a DDEF for LIBA,
specifing that it is to be a job library.
Next, he requests the loading of .odule A
fro. LIBA by calling that _odule.

But User A has already loaded _odule A
and is presently executing it. The sys
tem will "connect" the PUBLIC control
section already in shared virtual storage
(it was loaded by User A) to User BWs
virtual storage; also, it viII obtain a
new copy of the PRIVATE control section
from external storage and load it into
User B·s virtual storage. Thus User B is
sharing module A with User A, although
only one of the modulews tvo control sec
tions is being shared internally.

Sharing Data Sets 15

ACCESSING DATA SETS

The system»s access methods are at the
heart of the data management routines.
These are the techni gues by which data is
transferred between virtual and external
storage $ Since users must bring data into
virtual storage to examine or process it
internally, these access methods are con
stantly employed. Indirectly, they are
used by FORTRAN, the command system, or a
related method. General explanations of
these interfaces are in Part III. Assem
bler users have a more direct link to these
access methods through the macro instruc
tions that they employ. The access methods
are described, in teras of these macro in
structions, in the sections that follow.

The access methods available to users
fall into one of two catagories: the vir
tual access methods (VA"), and the sequen
tial access methods (SAK).

The virtual access methods take maximum
advantage of the time-shared environment of
TSS and free the user from device consider
ations. When a VAK user creates a new VAM
data set on public storage, the system
allocates the needed storage from the pool
of public volumes, and automatically cata
logs it for the user. The data set may be
spread across different public volumes, or
even different device types, but it will be
controlled as a logical entity for the
user. VAK also uses the system's paging
facilities for data transfer between exter
nal and main storage. So, the system can
ensure efficient allocation of main storage
by reaCting in only the paqes of a data set
that are being referenced during a particu
lar time slice. This paging is not evident
to the user and should not be confused with
"reading into virtual storage" when a VAK
user accesses a data record.

When a page containing a record is read
into virtual storage, the necessary poin
ters are set up to "attach" this record to
the user's virtual storage; the record's
location will then be controlled by the
system so that the user can directly refer
ence the record when he needs it. When a
reference is made to a record read by VAK,
(whether the reference is made by the user
or by a system routine), the system's
paging facilities initiate any required I/O
operations to ensure that the referenced
page is brought in from external or auxi
liary storage. This is the physical read
ing and mayor may not be performed when
the record is "read into virtual storage,"
upon the issuance of a VA~ READ or GET
instruction.

16

The sequential access methods provide a
range of functions not available under VAM.
Example: SAM users may access magnetic
tape directly, or may access certain data
sets created under the Operating System.
However, the sequential access method MSA~
is restricted to privilege-class E users
and system routines; all it requires is
that a user be authorized to access private
volumes. Since SAM always requires the
allocation of a particular private device
to an individual user's task, SAM users
will be forced to wait until the system can
fulfill this need for a private device;
this restriction does not apply to VAK
users unless they are using private VAM.
Finally, SAft can not take advantage of the
system-s paging facilities for record input
from external storage; the SAK user must
directly control the length of the physical
record to be read into main storage. The
SAK user's instruction, READ or GET, has a
more immediate relation to actual data
transfer than under VAM (that is, the input
buffer viII be filled as a result of the
SAft macro instruction, not because of any
subsequent reference to that record).

Users who access existing data sets are
constrained (in terms of the access methods
available to them) by the physical struc
ture of the data sets. Example: Users who
employ VAK must be sure that the data sets
they are accessing are of VA" organization.
Users who create new data sets must base
their choice of access method upon the uses
to which the data set will be put~ as well
as the system environment of TSS. Example:
Users who want to store their data sets on
tapes (perhaps to take advantage of the
limited data set interchange with the Oper
ating System) will employ the sequential
access methods; users who want to take max
imum advantage of the time-shared environ
ment of TSS will employ VAK.

Within VAK or SAK, which access method a
user should choose is determined by the
manner in vhich he wants to access a data
set. Example: When a data set, or a sub
stantial portion of it, is to be processed
sequentially, the GET and PUT macro in
structions will often be the most efficient
and convenient to use.

In determining the access method for
creating a new data set, the user will in
many cases be implicitly determining a
great deal about the structure of that data
set. Exa.ple: A user vho selects VISAft to
build a data set will automatically
organize it as a VAR data set (see Appendix

A) and will restrict himself to the per
missible record fomats (F or Y). Within
the determined framework, the user can
choose the record format that best fits the
employment of the data set. A typical con
sideration might be processing speed.
Since the access method must determine the
record length for each individual record
from the record itself, for format-V rec
ords, processing is slower than for format
p'records, in which all lengths are 1che
saae. Therefore, when a data set will con
tain records of uniform lengths, or records
that can, without much loss of space, be
padded to uniform length, format-P is the
most efficient.

YIiTpAL ACCESS KETHODS -- VAK

rhe virtual access methods (VAM) are the
principal means of data access in TSS.
There are three virtual access methocis,
each of which provides access and process
ing capability for a specific type of data
set organization:

Virtual sequential access method (YSAM)

Yirtual index sequential access mE~thod
(YISAM)

virtual partitioned access method (VPAM)

VAP! has been specifically tailored to
make efficient use of the system resource
of public storage space. To accomplish
this, it is necessary to perlli t frag-
.entatio~ of a userWs data set within a
public volume, across several public
Yolumes, 01: even across several public
device types. This fragmentation prevents
unnecessary gaps in public external
storage. The efficient use of storaqe
space by data set fragmentation is illus
trated in Figure 7.

A data set may be fragmented, for exam
ple, vhen its size is being increased dur
ing different tasks. When a virtual
storage data set is being created, a prede
termined extent of external storage is
allocated to it (this extent may be deter
mined by user specification or system
default). When the data set is closHd,
pages assigned to the data set that were
not used viII be treed (returned to 1~he
pool of available public storage). JCf,
later, he increases the size of his data
set, the additional external storage allo
cated may not be physically contiguous to
the initial storage. The user is unaware
that his external storage is not physically
contignous, since YAM organizes data sets
by relative page number and logically

BULK
ASSIGNMENT

i--]ALLOCATED r~ IN USE

FRAGMENTED
ASSIGNMENT

Figure 7. Bulk versus Fragmented Public
storage Assignment

connects the data pages, through the rela
tive external storage correspondence table
(RESTBL), which is in virtual storage.
When data sets are opened, the system allo
cates virtual storage for the RESTBL; when
they are closed, the virtual storage previ
ously occupied by the RESTBL, is released
and becomes available for system use (for
shared data sets, the virtual storage for
the RESTBL is only released when the last
DCB for that data set is closed). On ex
ternal storage, the information relating
Ca) the relative page numbers within the
data set to (b) relative page numbers on
the system's external storage is kept in
data set control blocks (DSCBs). The DSCBs
are used as source input to create the
RESTBL and they are updated, when the data
set is closed, to reflect changes to the
data set.

The page-sized data blocks, into which
virtual storage volumes are divided, are
used by VAftas the unit of transfer between
the direct access device and main storage.

The page-sized block for data storage
was selected for a number of reasons. It
is large enough so that direct access
throughput is high, and the frequency of
access requests by each user will be low.
The direct access volume-packing efficiency
is also quite high for page size blocks.

Progessinq Data Sets with VA~

Before a user can process a data set, he
must DDEF it (directly or indirectly), and
open the DCB associated with the data set

Accessing Data Sets 17

(or have it opened for him). A segment of
open processing, known as open common, is
basically the same for all data sets (and
has already been described). The access
method-dependent portion of processing that
follows open common is determined by the
data set organization. Initially, for all
virtual storage data sets, this processing
consists of building a RESTBL, performing
some necessary duties for shared data sets,
and then branching to one of two routines
(depending on the virtual organization),
vhich viII make final preparations for the
user·s processing.

The overall concept of the virtual
access methods, shown in Figure 8, includes
the data transfers and logical relation
ships that occur when a user opens an ex
isting VAM data set, uses VAM to request a
logical record from it, and references that
record for the first time.

When the user opens the data set ini
tially, the information in the existing
DSCBs is used by the OPEN routine to con
struct the RESTBL (1, in Figure 8). When
he subsequently issues a locate-mode GET,
the external storage address of the page
containing the record is obtained from the
RESTBL, and placed in an external page ta
ble (XPT) entry, which is associated with a
virtual storage buffer (2, in Figure 8).
Note that the external page containing the
record is not read into main storage at
this time. When the record in the virtual
storage buffer is referenced, a paging re
location exception interruption occurs, and
the paging mechanism proceeds to bring the
page into main storage (3, in Figure 8).
Thus VAM ensures that only the pages of a
data set that are actually required for
program execution are brought into main
storage from external storage.

Virtual Sequential Access ftethod -- VSAft

The virtual sequential access method
(VSAM) processes virtual sequential data
sets and virtual sequential members of par
titioned data sets. It can be used for any
of these functions:

18

Create or extend a virtual sequential
data set or virtual sequential member of
a partitioned data set.

Delete all records in an existing data
set or member from a specified record to
the end of the data set or member
(truncation) •

Retrieve the logical records of the data
set or member in a sequential or nonse
quential manner.

Update, in place, an existing record of
the data set or member.

To use VSAM to process a data set, that
data set must have virtual sequential (VS)
organization. As elements of a sequential
data set, the records in a VS data set are
ordered strictly by the sequence in which
they vere created. The user, in creating a
VS data set, must provide the system with a
stream of logical records that are concat
enated and stored, page by page, on direct
access devices. As each record is stored,
the system makes its retrieval address a
vailable to the user's program. Users emp
loying the assembler language can form
another virtual sequential or virtual index
sequential data set that contains these re
trieval addresses. If the user wants to
make an orderly sweep through the data set
after he has created it, he can read the
records back, in the order of creation, by
requesting one logical record after anoth
er. An assembler user can also read and
update logical records nonsequentially by
specifying the required retrieval addresses
of the records involved in SETL macro in
structions; the retrieval addresses are in
the data set that he formed.

All buffering required for VSAM process
ing (except for format-U move-mode, where
the user's buffer is on a page boundary) is
supplied by the system, based on the maxi
mum logical-record length specified in the
appropriate data control block. VSAM log
ical records may be format-F, -V, or -U.
Record formats are described in Appendix c.

The macro instructions associated with
virtual sequential data set processing are
SETL, GET, PUT, and PUTX.

SETL specifies a logical record to be pro
cessed, using VSAM. The user needs to
specify this macro only if he wants to
process a record other than the next
sequential one in a data set. SETL is
called as a part of open processing, to
initially position the data set for proc
essing. If the DCB was opened for input,
update, or in-out, SETL positions the
data set at its logical beginning; if
opened for output or out-in, the data set
is positioned at the logical end.

GET obtains sequential access to a record
of a VSAM data set. It may be specified
by the assembler user in one of two
forms:

Move Mode -- The user provides the sys
tem with the address to which he wants
the record transferred; the system
!loves it.

Locate Bode -- The user requests the
virtual buffer address of the next log
ical record in the input buffer in
which the next logical record is

, , , , ,
, PAGE TABLE " ,

, ,
" - -----

BUFFER
-

" --
OPEN ./

.... ..,.:.'--,'--- - --- - - --
RESTBL " / ,

/ / ,

/

"

--- , - - --

BUFFER

.
/

."
/

GET /

,//

/

/

RESTBL ~T'
/ I' /

J /l __
/

",

- --._-

BUFFER
-----. --

REFERENCE PAGE ./

;
/

RESTBL /

1//
/

/
/

/

I
/

I
/

/

DATA TRANSFER

--------------- LOGICAL ASSOCIATION

EXTERNp, L PAGE TABLE

PAGE TABLE

I
... ----,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

EXTERNAL PAGE T.I\BLE I
I
I
I

f--_...J

PAGE TABLE

%0:;"1-';'1 $ __

--

EXTERNAL PAGE TABLE

I"- ./
--

f'-- DSCBs

r-
r--- ---I"- DSCBs ---

r--- .-/
I'--- DSCBs ..--/

N#I --

Figure 8. BESTBL, virtual !eaory, and Rain storage Relationships

Accessing Data Sets 19

stored. With this address, the user has
the option of processing the record at that
location or moving it to his own work area~
In "locate mode," there is no actual record
transfer until the user references the rec
ord and a page relocation interruption
occurs; this is also true for format-U rec
ords in "aove-mode."

In processing format-U records, the
user must specify their lengths in the
data control block prior to issuing the
GET macro instruction; VSAM format-U rec
ords must be even-multiples of a page.

lfter each execution of the GET macro
instruction (in either mode), the re
trieval address of the logical record
just retrieved is in a data control block
field. The user may create a secondary
data set from all his GET retrieval ad
dresses to facilitate future nonsequen
tial processing of the original data set.

Successive GET macro instructions viII
retrieve the records of a data set in the
sequence of creation. When the system
detects the end-af-data condition while
processing a GET instruction, the system
viII transfer control to the user's end
of -data (EODAD) routine. To start
sequential processing at a point other
than the beginning of a data set, the
user can specify the retrieval address in
a SErL macro instructioD p prior to issu
ing the GET macro instruction.

Similarly, to directly access any rec
ord in the data set vhen its data control
block is open, the user can specify its
retrieval address in a SE~L macro in
struction and then issue a GET macro in
struction to obtain it.

PUT places logical records into an output
data set vhen a virtual sequential data
set or meaber is being created or added
to. In addition to concatenating records
into a data set, PUT defines a new end
of-data set to the system each time it is
issued. It may be issued by the assem
bler user in either of tvo forms:

20

!ove Bode -- The user provides the sys
tem with the address of a logical rec
ord; the system transfers the record
frOB that location to the next availa
ble output buffer segment. From there,
the system automatically writes the
record to the output data set before
that portion of the buffer is released
or rensed.

Locate Bode -- The user requests, from
the system, the address of the next a
vailable output buffer segment. He
uses that address to store the log-ieal
record that he van ts to ad.d to the data
set; the system autoBatically writes

the record to the output data set when
necessary.

The user must specify the length of
the logical record for each PUT macro in
struction. For format-F records, this
information is in the data control block
and is the same for each record in the
data set. For format-U records, the user
stores this information in the data con
trol block prior to each PUT. For
format-V records, the lengths must be
supplied within each logical record by
the user. The length of each logical
record must not exceed the maximum speci
fied in the data control block at open
time.

When a PUT macro instruction is issued
in either mode , the retrieval address of
the record to be stored is made available
by the system (in a data control block
field). The user can store these ad
dresses, and use them in the SETL macro
instruction for later nonsequential proc
essing of the data set.

The PUT sacro instruction may also be
used to truncate an existing data set.
Since the system automatically generates
an end-of-data indicator as part of the
execution of every PUT, the user could
issue a SETL instruction to position a
volume at, say, the middle of a data set,
and then issue a PUT for a certain logic
al record; the system will then indicate
that the record is the new end of the
data set. The records that vere previ
ously in the 1ast half of the data set
have now been deleted.

PUTX rewrites an updated logical record
from an input buffer area, back to a data
set on external storage; the record must
have been brought from external storage
to the buffer area by the execution of a
locate-mode GET instruction. If the user
attempts to change the length of the rec
ord he is updating, or if the DCB associ
ated with that data set vas not opened
for update, the userls task will be
abnormally terminated.

VSA~ Sharinq Controls; The system provides
interlocks for shared virtual sequential
data sets: If a VS data set is opened for
input, other users can read the data set,
but they cannot write into it; if a VS data
set j.s opened for output, update, in-out,
or out-in, no other user may have any
access to that data set; the data set can
not be opened for these options if anyone
else is using it. .1.11 interlocks are auto
matically removed vhen a data set is
closed~

Virtual Index Sequential Access Methc:>d -
VISA!!

The virtual index sequential access
aethod (VISA!!) processes virtual index
sequential data sets and virtual indcax
sequential meabers of partitioned da"ta
sets. It can be used for any of these
functions:

Create a virtual index sequential data
se't or me_ber, in a sequential or nonse
quential manner.

Retrieve the logical records of the data
set or member, in a sequential or nonse
quential manne r.

Dpdate records in a sequential or nonse
quential manner.

Insert new record s in their logical
sequence within the data set or.,ellber.

Delete selected records froll the d~ata
set or lIIeaber.

To use VISAM for data set processing,
the data set must have virtual index
sequential (VIS) organization. As e,lellents
of an indexed da ta set, the logical records
of a VIS data set are organized in an
ascending collating sequence, based ,on a
unique data key associated with each rec
ord. The data key may be a control field
that is a part of the record (such as a
part nu.ber), or it may be an arbitrary
identifier (such as a line number) that is
added to each logical record.

In each page of the data set ther'a is an
ordered set of locators, one locator per
record. Each locator specifies the physic
al location of the record on the pag'e.
Locators are placed sequentially (lollest
key first) at the bottom of the data page
in ascending order, the locator for the
lowest key on the page is at location
X'FFC' into the page. Location X'FFE' con
tains a half word di splacemen t to th,e end
of the locators (highest record on the
page) and is adjusted upwards and do'wnwards
as records are added and deleted. R,ecords
mayor aay not be logically sequential on a
page, locators are always in sequential
order.

Even though a VI dataset is logically
sequential its physical pages mayor may
not be. Control of this processing is
maintained by using the VI51M directory as
a translating mechanism to convert logical
pages (and their records) into the actual
physical location of the page which con
tains the desired record. The directory
for a VI dataset is built and maintaind by
the VISAM access method routines after the

number of data pages in the dataset exceed
one. There is one key entry in the direc
tory for each data page in the dataset ex
cept page 1 (PPN 0). The key entry con
tains the logical position of a page in the
dataset as well as its physical location.
Key entries are in the following for.at:

Bytes

0-1

2-3

4-5

logical page number (LPN) this key
entry

physical page number (PPN) this key;
location of this page relative to
1st data page of this dataset

old physical page number (OPPN) on
the page; PPM value on page before
its physicall page nUllber relative
to the dataset was changed

6-9 spare

A-N lov key on this page, rounded to a
half word boundry

The 1st 2 bytes of each data page con
tain the PPN of the page. A pagels PPH
number will always equal the PPN value in
the directory unless there have been some
pages deleted, in which case the old page
PPN is saved in the key entry. This PPN
nuaher is used for validity checking of
VI51M pages by the VI5A~ input page routine
to eusure dataset integrity. Hew pages are
always added to the end of the dataset even
though they may logically represent an ins
ertion somewhere in the middle. By adding
pages at the end and maintaining a transla
tion mechanism the need for overflow pages
is eliminated.

Insertions (records) are added to an ex
isting full data page according to the fol
lowing rules:

1. If the new record to be added to the
dataset is going to be the last record on
the page, a new page is added to the end of
the dataset, and the new record (key) will
become the low key on the new page. The
key entry for the new page will be inserted
in the correct logical position in the
directory.

B. If the new record is not the last
record on the page all records with a key
value greater than the new record will be
moved to a new page and a new key entry
added to reflect the new page. The new
record mayor may not fit on the old page.
If it does not proceed with (a) above.
(See Figures 9A - 9C.)

Accessing Data Sets 21

VISA!! DIRECTORY

LPN PPN

0001 0001
0002 0002

I ,

PPN 10000 I
I

J--
,---+1

header

OPPN SP KEY

KEY300
KEYSOO

DATil. PAGES

•
I
I

KEY100 J ,
KEY200 , , ,~------------------~ ,

1 I 1
1 , I
, I I
I I
" t I L--;I-----------1t R21

: r
I

,
Rl1EOS!

I I

PPNI00011
J----'

•

, I

PPNIOOO21
I
I , .,
I
I
J
I
f ,
I
I

KEY300

,
I

*

KEYSOO

KEY600

• ,
t I

'---f
I

KEYlIOO I

I I l
RQI R31Eosi

, I : I

I

I
I , : , I
I
I

-f ,
: I

I I
,

R61 R51EOSI
• I I I

I

I ,
I
I
I
r

Pigure 9A. Typical 6-record VISAM dataset
created sequentially

22

VISAM DIRECTORY
I

HEADER ,
f

LPN PPN OPPN SP KEY ,
f
I

0001 0001 KEY300 I
0002 0003 KEY450 r
0003 0002 KEYSOO I

DATA PAGES

I 1 I
PPN,OOOOr I

t f
~I KEY100 I

I , .---..., KEY200 I
I I ,
t , I , J I
I , , : I
I ,

I I
,

I , R21 R 11 EOS 1
I 1

f I

PPM I 000 11
I

KEY300

r I

PPNI0002i .. ,
"", KEY500

rl--------"------J
I KEY600

• r I

~ t= ,~ ~
'---f R61 R51EOSI

, i ,

PPNI00031 I
I ~

., KEY450 I
I~--------------------~'
1 I
I I
, r "
I T I' ,

, I R71 EOS I
I I , ' I

Figure 98. Addition of record 7 KEY450 to
Figure 9A

VISA! DIRECTORY
--,

header t
r------,-------r,------,-----r------~

LPN

0001
0002
0003
0004

PPM t OPPN SP KEY I
I ,

0001 I KEY300 I
0004 , KEY400 ,
0003 1 KEY450 ,
0002 I KEYSOO ,

---'

DATA PAGES

, i ,

PPN,OOOOI ,
I f

.r---.~I KE Y10 0 I
I ~t-----------------t 1.----.' KEY200 ,
, I • ,
r , , t
I I I ..! I
t, I ~, "
I L---t!-------t, R2 t R 11 EOS t ,

• I ,

PPN,0001, , . ,
~t------------------,'

r-, ----I~ .. , KE Y 300 I
I I I , : ' C! <.y350 I :: ," :
, , RS, R3,EOS,

: *L-_'-+_'-,: •

, .
PPNI00021 I

I ,
I ~------r-,

t~----------~'~---' I
ro. ----t .. ~, KEY500, 'I
, I I I
I I KEY600 I I
, I f I
I I, I ' , , , ... :'
, I I ~ • I f
I ! L-..f R61 R5!EOSI
" I', I J

•

f I 1
PPN,00031 ,

• f
"-. -----' , KEY450 ,
, ~J-------------------f
I I I

:; f .: :
I I , R7, EOS I
, I I •

J i I

PPNI00041 I
I ,

.----I~ .. II KEY400 ,
tr-------------------~,
I I
! ,

~ t i : :

I I R41EOSI
I i

Figure 9C. Addition of record S KEY350 to
Figure 9B

Optionally, the user can specify, in the
DDEF command's DCB operand (or in the DCB
macro instruction), that a certain percent
age of space be left in each page during
creation of the data set, for the addition
of logical records (PAD parameter).

All buffering required for VISA! proc
essing is supplied by the system. The
buffer size is one page for data pages, one
page for work page.

VISA! logical records may be format-F or
format-v; detailed descriptions are in Ap
pendix C.

The macro instructions associated with
processing of virtual index sequential data
sets are SETL, GET, PUT, READ, WRITE, and
DELREC. For shared data sets, the ESETL
and RELEX instructions are provided.

SETL positions a VIS data set to the begin
ning, end, next, previous record, or to
any specified logical record within the
data set. If the user wants to specify a
particular logical record vith SETL, he
may do so by using either the record key
or the retrieval address. Hovever, for a
shared data set, a user may not specify a
retrieval address with SETL. As with the
VSAft SETL, any attempt to position the
data set outside its own bounds viII
cause an exit to the user's synchronous
error address (SYNAD). Por a successful
SETL, the record's retrieval address will
be provided by the system in the appro
priate DCB field.

GET obtains sequential access to a logical
record of a VIS data set. It may be
specified by the assembler user in one of
tvo forms:

Move Mode -- The user provides the sys
tem with the address to which he wants
the record transferred; the system
moves it.

Locate Mode -- The user requests the
address of the next logical record in
the appropriate input buffer. With
this address, he has the option of

Accessing Data Sets 23

processing the record in that location,
or moving it to his own work area.

Again, after each execution of the GET
macro instruction, the retrieval address
of the logical record just retrieved is
available in a data control block field.

PUT sequentially creates logical records in
a VIS data set. They must be created
sequentially. They must be presented to
the system for concatenation with the
data set in a logically ascending
sequence of data keys. If a PUT macro
instruction is issued for a record that
has a key with a value that is less than
or equal to that of the previous record,
the system will detect this and exit to
the user's synchronous-error routine.

This macro can be used when the DCB
has been opened for output, if no other
DeBs have been opened for output. It can
be specified in either of two modes:

Move Hode -- The user provides the sys
tem with the address of a logical rec
ord, and the system transfers the rec
ord from that location to the next a
vailable output buffer segment; from
there, it is automatically written to
the output data set by the system be
fore that portion of the buffer is re
leased or reused.

Locate Mode -- The user requests from
the system the address of the next a
vailable output buffer segment; he uses
that address to store the logical rec
ord that he wants to add to the data
set. The system automatically writes
the record to the output data set when
necessary.

As with VSAM, the VISAM PUT may be
used as a means of truncating an already
existing data set. ·If any records exist
on this page beyond the current position,
they are deleted one by one until the end
of the page is reached. If any pages of
this data set exist beyond this page,
they are deleted. The directory is also
truncated as necessary.

READ enables the user to read logical rec
ords nonsequentially, based on a user
supplied data key of the retrieval
address. Since READ automatically uses
SETL to position the data set at the pro
per record, it has the same limitiaion as
SBTL with regard to record specification;
logical records of shared data sets may
not be specified by retrieval address.
After selecting a logical record from an
index sequential data set or member, RElD
transfers that record to a user-specified
location.

24

For shared VIS data sets, an
exclusiVe-READ can also be specified by

this macro instruction. Then no other
program requesting that record can gain
any access to it until it is released by
the user who issued the READ macro
instruction.

If an attempt is made to read a record
with a key greater than the last key in
the data set, the system transfers con
trol to the user's end-of-data set
address. If a READ request is made, and
the record with the specified key cannot
be found (but its key is less than the
highest key in the data set), or if an
invalid retrieval address is specified,
control is transferred to the user's
synchronous-error routine.

WRITE creates a VIS data set in a nonse
quential manner, or inserts or updates
logical records in an existing VS data
set. The three basic functions of this
instruction are:

WRITE New key

WRITE Replace by retrieval address

WRITE Replace by key operation

WRITE -- new key: The system assumes
that the user wants to add a new record
to the data set. A search is therefore
made of the existing data keys in the
data set; and exit is taken to the user's
synchronous-error address, if a record
with an identical key is found. If the
key is unique, the system automatically
positions the locator for the record in
the appropriate position, so that the
records of the data set will be available
for retrieval in an ascending key
sequence.

WRITE -- replace by retrieval address or
WRITE -- replace-by-key: The system
assumes that the user wants to update an
existing record. If the system deter
mines that the retrieval address or key
specified is not that of an existing rec
ord, an exit is made to the user·s
synchronous-error routine. Otherwise,
the system replaces the old record with
the new one, adjusts the available space
if the length of the new record is not
equal to that of the old (placing the nev
record on an overflow page if necessary),
and updates the record locators and main
tain.s the logical key sequence.

For shared VIS data sets, the WRITE macro
instruction also releases any page-level
write interlocks placed on the record,
through the same DCB, by an
exclusive-READ.

DELREC deletes a specified record from a
VIS data set. The user specifies, either
by key or by retrieval address, the rec
ord to be deleted; DELREC uses SETL to

loca te this record. If the record can
not be found, an exit is Bade to the
synchronous-error routine. If SETL
locates the desired record, the locator
for that record is removed froll its page,.
the reBaining locators are cOBpressed,.
and the space occupied by that record is
Bade available for future use. If the
record with the lowest key on the page is
deleted DELREC calls ADE (CZCPL) to up
date the directory to reflect the new low
key on the page. When the last re,cord on
a data page is deleted DELREC will delete
not only the record but its corresponding
key entry froB the directory and the page
froB the dataset. Page 0 is the only
page which will not be deleted when it
becomes empty. When a page is deleted
froB the dataset not only is its corre
sponding key entry removed fro. the dire
ctory but all key entries with PPM values
greater than the page just deleted will
be adjusted downward to reflect their new
PPM in releationship to the dataset. The
pages old PPN value is also saved in the
key entry and is used when validity
checking pages in the input page routine.
(See Figure 9D.)

ESETL releases a page-level read interlock
iBposed by another macro instruction
(e.g., GET, SETL or READ,. nonexclusive)
fro. a shared data set. It does not re
lease the page-level write interlock set
by an exclusive-READ.

RELEX Bakes a record that belongs to a
shared data set available to other users,.
by releasing the page-level write inter
lock set by an exclusive-READ.

VISA" Sharing Rules: The use of VISAK with
shared data sets results in setting and
releasing interlocks.

DATA SET LEVEL INTERLOCKS -- If a VIS data
set is opened for input, in-out, out-in,
or update, a read interlock is set for
the entire data set,. preventing other
users from opening it for output.

If a VIS data set is opened for out
put, a write interlock is set so that no
other user can open it.

PAGE LEVEL INTERLOCKS -- A read interlock
is set on a page of a VIS data set re
ferred to by a SETL, GET or READ (nonex
clusive) Bacro instruction; OPEN does not
i.pose any page-level interlocks.

A page-level read interlock is re
leased by an exclusive-READ, WRITE,
ESETL, DELREC, or RELEX macro instruc
tion, if issued against the data control
block that caused the interlock to be
set. Page-level read interlocks are also
released when the data set is closed, or
by any other macro instruction that
refers to a page other than the current
page. (for example, a sharer issues a
READ Bacro instruction for a record,

VISAf! DIRECTORY ,
BEADER ,

i , I I
LPN , PPN , OPPN SP , KEY I

0001
0002
0003

I
, 0001
J 0003
, 0002

I
I
, 0004
I 0003

J , ,
I

I
KEY300 ,
KByqOO I
KEYLJSO ,

I I ,
DATA PAGES

• i 1 PPNIOOOO, I
J ,

~I KEY100 I · , ~, KEY200 ,
, ~I--------------------~'
I I I , , , , , ,
" , , ,~ ,
L--i,'---------i, R21 R 11 EOS I

• I PPNI0001, , '
~I KEY300

~i KXY350 l = : , , i

I RB, R3IEOS, '1-_' -+---,' : I

, • I

PPNt0003, I

• I

I

,.--.... ' KEY450 J
f ~I------------------~'
t I I
, I ,

:: f ,: :
" , R71EOS,
I

,
I
r
I
I ,
r
I

I , ,

PPNIOOOql , , ,
.' KEY400 ,
Ir---------------------~I
r ,
I I

~ t , : :
, , R4,EOS,

Figure 9D. Deletion of record 5 KEY500 and
record 6 KEY600

Accessing Data Sets 25

causing a page to be brought into his
virtual storage; later, he issues a READ
for a record not on that page. The page
level read interlock, set when the first
READ was issued, is released on execution
of the second.)

A page-level write interlock is set by
an exclusive-READ, or by a WRITE macro
instruction.

A page-level write interlock is re
leased by a GET, READ (nonexclusive),
RELEX, WRITE, DELREC, or CLOSE macro in
struction, or by any other macro instruc
tions that refer to a page of the data
set other than the current page.

Virtual Partitioned Access Method VPAft

The virtual partitioned access method is
not an access method in the normal sense of
the term. VPAM contains no routines for
reading or writing records. A virtual par
titioned data set really is a collection of
data sets that a user has combined for ease
of reference. These constituent data sets
are called members; each member is
organized as a virtual sequential or virtu
al indexed sequential data set. The other
access methods are used to read records of
a member into a task's virtual storage.

VPAM provides the control that performs
these functions on members:

create or add to a virtual partitioned
data set.

Prepare any member of a virtual parti
tioned data set for processing.

Add new members to, or delete existing
members from, an existing data set.

Update existing members in place.

Each member of a virtual partitioned
data set is identified by the name of the
virtual partitioned data set followed by an
unqualified member name in parentheses.
The partitioned organization (see Figure
10) allows the user to refer to either the
entire data set or to any member of that
data set.

References to individual members are
made through the partitioned organization
directory (POD). When a partitioned data
set is created, a POD is set up to account
for each member. As members are added,
deleted, or changed, the directory informa
tion is automatically updated.

The first entry (one or more pages) in
the virtual partitioned data set is the
POD, which is used to locate members of the
data set. Each mesher begins on a new
page; any unused space on the preceding
page is left open.

26

Provision is made for users to assign
additional names, called aliases, to each
member, and to locate each member on the
basis of either its name or any of its
aliases. The partitioned data set organi
zation is suited for storage of libraries,
where references to different entry points
may require the loading of the same
subroutine.

Example: A partitioned data set named
ftATBLIB, whose members consist of mathemat
ical subroutines such as SQRT, ARCTAN, and
COS, also contains an alias for SQRT,
called ISQRT; this alias is used to indi
cate that the argument is a negative value,
so an imaginary value is expected. Refer
ences to both SQRT and ISQRT would indicate
the salle member, but a different eI!.try
point may be desired when ISQRT is named
(see Figure 10).

Partitioned data sets may be composed of
VS or VIS members, or a mixture of both.

All buffering required for VPAM process
ing is supplied by the system, based on the
maxillum logical length specified in the
member's DCB; for a VIS member, the work
areas needed for the ISD or POD are also
supplied.

Two macro instructions are associated
with VPAM: FIND is used to prepare a mem
ber for processing; STOW is used to update
the POD and, in certain cases, disconnect a
data set member from a user's problem
program.

FIND searches a POD to locate the member
descriptor of a particular VP data set
member (using either the member name or
any of its aliases), and then positions
the member for processing. This posi
tioning includes obtaining member infor
mation from the member descriptor and
transmitting it to the member header in
the RESTBL and to the DeB that has been
opened for the data set.

FIND initially checks the DCB to de
termine if it is currently in use. If
FIND had been issued previously for a
member of that data set, and the inforaa
tion in the POD has not yet been updated
by a STOW for that lIember, FIND calls
STOW to update the member information in
the POD. However, if the DCB is in use
for the creation of a new member, that
member aay not yet have been naaed, so a
STOW could not then be issued for it.
Therefore, to protect against this situa
tion, FIND will not attempt to issue STOi
under these conditions, but will return
an indication to the user that he must
issue a STOW macro instruction for the
new member before issuing FIND.

--
PARTITIONED ~~

---"'" _c:. __ ~ "'-'''_
5 0RGANIZA;ION DIRECTORY----j /

MEMBER --~-I I L
~- ~ I _'--__________ ----, -"""" -----------,'"77'7777?":'l DESCRIPTORS ------f-[

Member Member Member Alias
ARCT COS SORT ISORT

Member SORT Member SORT (continued)

--------------------~
i

I--~--' ---------~---~---~---I

1:1 ""mbo, MO J I Mom"", AOO (00""0.01 ~ f Mom"", COS •

~----------------~~------------------~~--~-.-------------"~~~ I -~ ~-
------~-

.----.---.----

Figure 10. virtual Partitioned Data Set

If the DCB is not in use, the POD is
searched for the nase given in the FIRD
aacro instruction. If the name cannot be
located in the POD, a not-found return is
made to the user; if the name is located,
sharing data is checked and the me.ber is
positioned for processing by the appro
pria te SETL.

FIRD also provides the service option
of .oving user-data from the POD to a
user-defined area.

STOW aodifies, adds, or deletes me.ber or
alias descriptors in the POD; the proc
essing viII depend on the type of STOW
specified by the user:

Type 8 (new) -- If the sember name is
not found in the POD, the POD is updat
ed to reflect the addition of -the new
.ember. If the member nase is found in
the POD, processing is ended and a code
returned to the user indicates that the
nev naae is not unique.

Type 8A (new alia21 -- The POD is
searched for each alias being added; if
each is unique, alias descriptors are
created.

Type R (replace) -- This type replaces
user-data and closes the se.ber. If
"user area" is specified, the data viII
be stored in the POD. The POD is up
dated to reflect any changes made to
the member, and return is made to the
user.

Type U (update) -- Same as type R, ex
cept that the me.ber header in the
RESTBL is not closed; it remains active
for farther processing.

Type D (delete) -- This type causes the
member to be deleted; all data pages
associated with the member are deleted,
and the member and alias descriptors
are deleted from the POD. The DCB is
initialized for reuse and control is
retarned to the user.

Type D! (delete alias) Deletes
aliases from an existing member. The
POD is searched for each alias being
deleted and its descriptor is deleted
from the POD. This process is repeated
for each alias being deleted.

Types C and CA (change nase and change
alias) -- The POD is searched for the
name or alias being changed. The new
member name or alias replaces the old.

VPA" Processing: Since processing a VP
data set usually involves only one member
at a time, the single DCB opened for a data
set can be used for the member being pro
cessed. For processing existing members,
FIND must be issued after the OPEN macro
instruction; however, vhen a new member is
being added to the data set, a DCB is
opened for either VIP or VSP (depending on
the type of member desired), PUT or WRITE
macro instructions are used to create the
member, and a STOW (type N) is issued to
include the member in the data set. In
this case a FIND is not needed. A "FIND"
is also not needed when the member name

Accessing Data Sets 27

parameter of the DDEF command is specified.
For this case, OPE¥fAH will issue the
"FIND·. When several members are to be
processed simultaneouslYr one DCB per mem
ber must be opened. The opening of each of
these DeBs must be followed by a FIND macro
instruction for that member, so that the
appropriate information is placed in the
correct DCB.

VPA! Sharing Rules: VP data se's are
interlocked at the member level when a FIND
macro instruction is issued; the£E' c3re no
interlocks set at the data set level# as
for .,SUI and VISA!!. Keaber interlocks are
set within the RESTBL vhe.o. FlliD is issued;
they are released by the STOW or CLOSE
macro instructions. Only the member being
processed has the interlock applied; other
members are available to other users for
processi!'q.

TIS me~ers are:

write int,';;rlockf'd, when opened for output;

read interloCked, when opened with any
other option.

VS melllbe:t<s are:

read interlocked. "hen opened for input;

write interlocked, when opened with any
other option.

SEQUENTIAL ACCESS KETHODS

The sequential access aethods directly
specify the appropriate channel programs
and they control the logic of error recov
ery, in addition to providing data set .an
agement. These access methods generally
require that the user specify a large num
ber of functions that are handled automati
cally by the virtual access methods. The
user also has available to him special
purpose routines that enable him to create
his own direct access and tape-volume
labels. This is not possible with VAH.

Data sets accessed by the sequential
access .ethods are of physical sequential
organization. They are organized on the
basis of physical records, whose order is
determined strictly by the order of
creation.

28

The sequential access methods are:

Basic sequential access method (BSA!!)

Queued sequential access method (QSA!!)

8ultiple sequential access method (KSAK)

Terminal access method (TAMIl)

Input/output request facility (IOREQ)

Basic Sequential Access Kethod -- B5AM

B5A~ provides a limited data set compat
ibility with OS by supporting the direct
access, or unlabeled, or standard labeled
magnetic tape data set formats (except for
the direct access split-cylinder format)
that are produced by the OS basic sequen
tial and queued sequential access methods.
Also, BSA!! is the primary means, within
TSS, of accessing magnetic tapes.

BSAM creates the channel programs that
sequentially access tapes or disks, and
passes an I/O request control block
(IORCB), containing the channel prograa and
buffer information, to the resident super
visor through a supervisor call. The IORCB
format is shown in Figure 11. The resident
supervisor, in turn, initiates the channel
program, records any pertinent error infor
mation, and passes the IORCB back to B5AM,
which then attempts error recovery if nec
essary, and informs the user of the results
of the I/O operation by posting the infor
mation in a data event control block
(DECB). A DECB is a storage area reserved
as part of a macro expansion (or reserved
separately for future purposes by using the
L-form) that relates an I/O operation to a
specific READ or WRITE instruction. Each
READ or WRITE requires one DECB that con
tains control information and pointers to
status indicators.

Wit.h BSA!!, the user must determine the
outcome of his request before he can do any
processing that is dependent on that re
quest. theDECB provides a lIIeans for making
the determination. The test for completion
is made by issuing the C!IECK macro instruc
tion. If the I/O operation ends satisfac
torily, control is given to the sequential
instruction following the CHECK macro in
struction. If the request results in an
error or a special condition, control is
passed to the user's synchronous-error rou
tine (if one was specified; otherwise the
task is terminated). If the I/O operation
is not complete when CHECK is issued, the
task will wait until the operation is
complete.

BS!! creates its own channel programs in
virtual storage, using virtual storage ad
dresses. However, the channels do not
operate on the basis of dynamic address
translation, since they can not be made to
wait for paging in whenever they reference
a page that is not in main storage. For
the same reason, all buffer areas that are
to be referenced during the execution of a
channel program must be in main storage
during the entire I/O operation. There
fore, the resident supervisor reads the
lORCB into its own area of main storage,
translates the virtual addresses in the
channel program into real addresses, and
passes the IORCB back to virtual memory
only when its buffer has been filled.

svc
Header

r-------------------------------

Data Buffer

t------------- or -------------

Page List

1--------------------------------------

co'! List

Figure 11. lnpu t/Du tput Request Control
Block (IORCS)

(Placing the IOReBs in supervisor
storage serves another function: In gener
al, BSAft buffers can be expected to be less
than one page long. Since supervisor
storage is allocated in 64-byte increments,
the maxima. size of an IORCB can he kept
within 1920 bytes, thus saving paging over
head and main storage use.)

If a buffer is too large to be contained
within the lORCB, BSAft places in the IORCB
pointers to the pages containing th.~
buffer.

Using BSAM: BS!ft enables a user to access
unblocked physical sequential data sets.
It also provides access to blocked records;
all blocking and unblocking must be done by
the User. Whether records are blocked or
unblocked, BS!! uses the block as the unit
of data exchange with the problem program.
BSAft accepts these record formats: format
F (blocked and unblocked), format-v
(blocked and unblocked), and format-U
(unblocked only). Descriptions of these
formats are in Appendix C.

The system checks the physical 11~ngths
of blocks containing format-F records and
transfers control to the user·s SYBAD rou
tine if an incorrect-length block is read.
The user must then determine the si:z:e of
the block read,. frca a count field in the
DECB. Accordingly,. the length of f'l)rllat-F
records aust not be changed after a data
set is opened; the physical attributes of
foraat-F records must be accurately
described.

As with all access methods, before a
user can eaploy BSAft to process a data set,

he Bust open the DCB associated with that
data set. In response to the BS!M OPEN
macro instruction, the systea:

Finds the matching data definition

Completes the DCB fields

Establishes address relationships and
linkages to access routines

Issues to operator any required mounting
lIessages

Verifies or creates data set labels

Positions volumes to the first record to
be processed (see Table 1)

Allocates and prepares required buffer
pools

Establishes the volume dispositions for
end-of-volulle conditions

Causes entries to user label checking,
label creating, or DCB exit routines (if
supplied) •

In the CLOSE macro instruction, the
magnetic-tape volume disposition is
specified:

REREAD -- Reposition the current volume
to reprocess its portion of the data
set.

LEAVE -- Position the current volume to
the end of its portion of the data set
just processed.

For magnetic tape, the exact positioning
that follows the CLOSE instruction will
vary, depending on whether labels are spec
ified for the data set. Table 2 defines
two final-position numbers for labeled and
unlabeled tapes. These nuabers are then
used in Table 3, which correlates the spec
ifications of I/O processing in OPEN with
the positioning specified in CLOSE.

BSA" Macro Instruction: These are in three
general categories: data-set oriented,
buffer oriented, and device-control
oriented.

Buffering macro instructions -- BSAM is
primarily intended for use on unbuffered
physical sequential data sets; there is no
automatic buffering facility. However, the
user may provide hiaself with soae buffer
ing by using the GETBUF, GETPOOL, FREEBUF,
and FREEPOOL macro instructions. All such
buffers are only work areas for the user.
they are not intermediate storage areas.
All input/output operations between these
areas and external storage are performed
directly, without using intervening holding
areas.

Accessing Data Sets 29

Table 1. Effect of OPEN Options

• I Open Option
I
I I1IPUT ,
I
I ,
I
f ,
I , ,
I BDBACK ,
I , , ,
I
J OUTPO'.r , ,
I
, INOUT
r
I
r ,
I
I ,
I
f ,
I ,
, OU'UW
I , ,
f ,
r
I
f ,
f
I
I UPDAT ,
I
I , ,
•

30

I
I Device I
t- I
I Magnetic-tape I
f ,
I I
I ,
I ,
I I
, I
I Direct access I
I I
, I
I I
I Magn etic-tape I , ,
I I
I I
I I
r I , ,
f Magnetic-tape or I
, dire ct access , , ,
I I
, Magnetic-tape or I
I direct access f
I I
I f , ,
I I
f ,
, I
I I
, I
I ,
I I
I I
t Magnetic-tape or ,
I direct access I
I I
, I
I I
I I
t I
I I
, I
, I
, I
, I
I Direct access I
I I , ,
I I , ,
r ,

I

Action

Data set is read sequentially,
either forward or backward
(depending on what is speci
fied in each READ aacro in
struction); labels, if speci
fied, are processed as input

Data set is read forward
sequentially; labels, if spec
ified, are processed as input

Data set is read sequentially, I
either forward or backward (de-r
pending on what is specified I
in each READ macro instruc- ,
tion); labels, if specified, I
are processed as input I

Data set is written sequen
tially; labels, if specified,
are processed as output

,
I
I ,
I

Data set is read sequentially I
first; labels, if specified, I
are normally treated as input I
(however, if records are writ- I
ten to the data set, subsequent'
labels, if specified, are pro- I
cessed as output); when read- I
ing is completed, volume is ,
repositioned and data control i
block remains open so that I
data set can be processed as J
output I

Initially data set labels are
processed as output; after
data set is opened, user may
issue READ or WRITE macro in
structions in any order; when
end-of-voluae is reached,
labels are processed either as
input or output, depending on
whether READ or WRITE macro
instruction caused end-of
volume condition

Data set is read sequentially;
blocks can be updated in place
by output requests that write
last block read back to data
set; labels, if specified, are
processed as input

I
r
I
I
I
I
I , , ,
I
I ,

,
Initial Positioning I ,
First data record. I

f ,
I
I
I ,
I
I
r ,

Last data record of I
last volume of data I
set. I

I
f
I
I

If data set dispo- I
sition is specified I
as NEW or OLD, vol- I
ume is positioned I
to first data rec- I
ord; if data set I
disposition is spec-I
ified as MOD, volumel
is positioned to one!
record beyond last I
data record of last I
volume of data set. ,

I
I
I
I
I
J
I
f
I
I
I
I
I
I ,
I
I

First data set I
record. I

f
i
f
I
I

Table 2. Final Magnetic Tape positions
i

Labeled Tape I Unlabeled Tape f
I ,

1 Precedin 9 da ta I Preceding first ,
set header labelJ data block of ,
group I portion of data I

I set resident on ,
I current volume r
I ,

2 Following tape , Following 1:ape ,
mark that termi-I mark that termi-,
nates trailer- I nates last data I
label group , block of portion'

I of data se1: that I , is resident on ,
I current volume r

GETPOOL requests allocation of a. buffer
pool area, and it assigns that area to a
specific data control block. The user
must specify the number of buffers in the
pool, and their lengths. Only one buffer
pool may be assigned to a data con1:rol
block at one time.

GETBUF obtains a buffer from a specified
buffer pool that must have been previous
ly assigned to the data control block ei
ther by a GETPOOL macro instruction, or
as a result of the buffer options speci
fied in the DCB macro instructiona Buff
ers obtained by GETBUF must be returned
by a FREEBUF, if they are to be obtained
again.

FREEBUF returns (to its buffer pool) a
buffer obtained by GETBUF. It is not

necessary to free all buffers prior to
closing a data set; it is necessary to
free a buffer before it can be acquired
again.

FREEPOOL releases areas that were previous
ly assigned to specified data control
blocks as buffer pools. The area must
ha,ve been acquired either by the execu
tion of a GETPOOL macro instruction, or
as a result of buffer options specified
in the DCB macro instruction. If a FREE·
POOL has not been executed by the time a
data set is closed, the CLOSE macro in
struction will release the area involved.

Data set interactive macro instructions:
READ, WRITE, CHECK, and DQDECB enable a
user to:

Create a sequential data set by storing
blocks in the order in which they were
supplied.

Sequentially add blocks to the end of an
existing sequential data set.

Sequentially retrieve blocks from an ex
isting sequential data set, or retrieve
an individual block based on these
posiitioning capabilities -- beginning
of data set, location of previous block
processed by system, or location of any
of data setWs blocks.

Update an existing data set either by
updating blocks in place, as sequential
processing proceeds (direct access
device only), or by updating blocks in a

Table 3" Effects of OPEN and CLOSE Options on Magnetic Tape Positioning

• i i 1 I , , I , POSITIONING SPECIFIED f
I OPTION OF , OTHER FACTORS , DIRECTION OF , Iii CLOSE t
I OPEN I INFLUENCING r LAST INPUT ,

i
, , SPECIFIED AS, POSITIONING , OPERATION , LEAVE I REREAD ,

I I , , , , , OUTPUT , None , Not applicable I position 2 , Position 1 ,
I , , , I , , OUTIN J None , Not applicable , Position 2 I Position 1 , , , , I I , , INOUT J No WRITE operation I Backward , Position , I Position 2 I
I I executed for this I , , ,
r I data set , Forward , position 2 I Position 1 r
I , I I I , , I At least one WRITE I Not deterJllining factor I Position 2 , Position 1 ,
I , operation for this , , I r , , data set , I r I
; , -+ , I , , INPUT , None I Backward I position 1 I Position 2 I , , I , r r , I I Forward I Position 2 , position 1 , .. , , , , ,
r RDBACK , None I Backward I position 1 I Position 2 I , , I r , ,
J , I Forward I position 2 I Position 1 I
l- I I I I , , Note: Trailer label exits are taken for data set processed for IN OUT or OUTIN, if I , last· operation was a WRITE; no trailer label exits are taken if last operation was a f , READ. I
• •

Accessing Data Sets 31

nonsequential manner (direct access
device only), or by reproducing a data
set to allow the user to insert new rec
ords and/or delete old records as the
modified copy is being made.

READ causes a request for a transfer of a
physical record, from an 1/0 device di
rectly to a specific virtual storage
input area, to be recorded in a control
block (DECa) and placed on an 1/0 request
queue. Control is then returned to the
user·s program; when the device is avail
able the request is executed.

WRITE causes a request for a transfer of a
physical sequential record, from a spe
cific storage area to an 1/0 device (di
rectly, without using a buffer area), to
be recorded in a control block (DECB) and
placed on an 1/0 request queue. Control
is then returned to the user's program;
when the device is available, the request
is executed.

CHECK checks the queue of control blocks
(DECBs) containing the requests for read
or write operations, to determine if
those requests have been satisfied. It
also indicates whether errors or excep
tional conditions have occurred while
satisfying the request. For each data
set, the CHECK macro instructions must be
issued in the same order in which the
READ or WRITE operations were requested.

DQDECB removes all unchecked DECBs (created
by issuing READ and WRITE macro instruc
tions) from a queue of unchecked DECBs
maintained by the system. This macro in
struction is normally used in the SYNAD
routine when mUltiple READ or WRITE macro
instructions have been issued without an
intervening CHECK. If DQDECB is issued,
all unchecked READ or WRITE requests must
be reissued. (The user must ensure, be
fore reissuing, that the data set is
positioned to the desired record.)

Device control macro instructions pro
vide a user with physical control over a
data set: BSP, CNTRL, FEOY, POINT, and
HOTE. Some of these may be combined with
the interactive macro instructions to pro
vide nonsequential access to a data set,
within the framework of BSAK.

BSP backspaces one physical record on the
current magnetic tape or direct access
volume. Regardless of the direction of
reading (specified in the READ macro in
struction), or the option specified in
the OPEN macro instruction, backspacing
is always toward the load-point on mag
netic tape volumes or the corresponding
position on direct access volumes.

CNTRL repositions magnetic-tape.

FEOY positions a multivolume data set at
the beginning of the next sequential vol
ume, before the physical end of the cur-

32

rent volume is reached. This macro in
struction is not applicable to data sets
on unit record devices. When volumes are
switched by this macro instruction, FEOV
creates the necessary output labels for
current and new volumes (output data
sets) or verifies the volume labels for
current and new volumes (input data
sets). An attempt to execute this macro
before all READ and WRITE requests to the
data set have been checked will result in
abnormal task termination.

POINT repositions a magnetic-tape volume to
a specified physical record within a data
set on that volume; for direct access
volumes, POINT places control information
in the appropriate control block, so that
the indicated record will be the next
accessed. The user must verify that the
block identification previously provided
by a NOTE macro instruction (now being
used in the POINT macro instruction)
refers to the same volume. Using POINT,
iu conjunction with the information pro
vided by a previous BOTE r permits reading
or writing a sequential data set from any
specified position. All read or write
requests must be checked for completion
before the POINT macro instruction is
executed.

NOTE makes available to the user the rela
tive position within a volume of a phys
ical record that has been just read or
written. This relative position identi
fies the block for subsequent reposition
ing of the volume. Repositioning is nor
mally accomplished by the POINT macro in
struction. All read or write requests
must be checked for completion before the
NOTE macro instruction is executed.

Both the BOTE and POINT macro instruc
tions require that the current block count
iu the DCB be valid. For an unlabeled data
set, or a data set containing nonstandard
labels, there are conditions when this
count may uot be valid, since the block
count is normally found in the trailer
label. These conditions occur when:

the DDEF command or macro instruction
specifies a disposition parameter of
MOD, or

the OPEN macro instruction specifies
RDBACK.

Under these conditions, neither the HOTE
nor POINT macro instructions should be
used.

Practical Applications: A sequential data
set can be created by using BSAK and speci
fying output or out-in in the OPEN macro
instruction, and by using the WRITE and
CHECK macro instructions to transfer blocks
to the data set being created. To add
blocks to an existing sequential data set,
the user specifies output or out-in in the
OPEN macro instruction, and.KOD in the DDEP

command, to position the system to the end
of the existing data set. He then issues a
series of WRITE and CHECK macro instruc
tions to add the physical records.

~o obtain each of the physical records
of a physical sequential data set in the
order in which they were written, the user
specifies input in the OPEN macro instruc
tion to position to the first record of the
data set. He then issues a series of READ
and CHECK macro instructions to retrieve
the blocks in sequence. It is also possi
ble to retrieve the records of a physical
sequential data set nonsequentially by
using the NOTE and POIN~ maero instructions
in the manner indicated in their
descriptions.

Physical sequential data sets can be
updated-in-place if they reside on direct
access storage. When this method is ap
plied, the user specifies updating in the
OPEN macro instruction and then issues the
appropriate sequence of macro instructions:
READ and CHECK; WR~E and CHECK. Each READ
and CHECK instruction provides a physical
record in the user·s work area. By examin
ing this block (record), the program can
decide if it is to be updated. If the rec
ord is not to be updated, the program can
branch to another READ and CHECK instruc
tion to examine the next block. If a block
is to be updated, the program does that and
then issues WRITE and CHECK macro instruc
tions to return the just-read block, or its
replacement, to the data set. (Only the
most recently read block, or its replace
ment, may be updated and returned.) If two
WRITE and CHECK lIacro instructions are is
sued without an intermediate READ and
CHECK, the second WRITE overlays the first.

Queued Sequential Access Method

The queued sequan tial access method
(QSAM) consists of the ~SS data set lIanage
ment facilities that enable a user to
access physical sequential data sets at the
logical record level. QSAM, in contrast to
BSAf'I, permits the user to store and retri
eve logical records of a sequential data
set without coding his own blocking/
deblocking and buffering routines. Using
QSA", a sequential data set can be stored
on, or retrieved from, disk or tape.

QSAKls basic functions are blocking and
deblocking logical records, issuing I/O re
quests, and checking and positioning data
blocks. QSA" itself blocks, deblocks, and
buffers internally, but uses BSAM to per
form I/O operations such as reading, writ
ing, and checking and positioning for
access to data.

Blocking Logical Records: QSA" blocks log
ical records according to the logical
record-length and block-size parameters
found in the DCB. When a user wants to in
clude a logical record in an output d.ata
set, he issues a PUT macro instruction.

QSAM adds this logical record to the phys
ical record (block) currently being built
if it viII fit within the current buffer.
If it viII not fit, the block is considered
complete, and the record for which the PUT
vas issued viII be treated as the first
record of a nev block. The user can cause
a block to be prematurely regarded as com
plete by issuing a TRUNC macro instruction.

Deblocking Logical Records: QSAM returns a
single logical record to the user each time
he issues a GET macro instruction. When
the current block has been completely pro
cessed, the next GET instruction causes the
buffer to be refilled, if the data set was
opened for input or readback, or to be
written back before refilling, if needed,
when the data set vas opened for updating.
At any tille, the user can cause processing
of a buffer to be regarded as complete by
issuing a RELSE macro instruction. Follow
ing this, the next GET macro instruction
viII retrieve the first logical record from
the next physical record.

Buffering Blocks of Data: Double buffering
is the normal buffering facility of QSAK.
This involves the use of tvo buffers, one
of which will be in use while I/O activity
is being performed on the other. Thus, on
a normal input or readback data set, vhile
logical records from one buffer are being
supplied to the user, the other buffer is
being refilled. On a normal output data
set, QSAK will continue adding logical rec
ords to one buffer vhile the other is being
written out.

Under some circumstances, it is neces
sary to perform only single buffering; only
one buffer is used. The decision to use
double or single buffering is based on the
OPEN option of the data set and on the
macro option specified in the DCB. Double
buffering viII be done in all cases except
when the data set is opened for updating,
or SETL has been specified in the DCB.

Single buffering must be done on an up
date data set to allow the user to update
one block of records at a time. No
reading-ahead can be done until there is a
determination on whether the current block
of records must be updated, since an update
WRITE instruction can return only the last
block read. When the user specifies the
SETL macro instruction, he must be able to
specify it after QSAM finishes checking any
individual physical I/O operation; single
buffering is therefore a necessity.

Double buffering on a readback data set,
with fixed or undefined length records, is
hand'led in the same manner as for an input
data set, except that blocks of records are
read beginniug with the last block of the
data set. Hovever, if a data set opened
for readback specifies variable-length rec
ords, the procedure includes the use of a
third buffer. After a block of records has
been read and checked, a copy of it is

Accessing Data Sets 33

moved to the third buffer. This copy is
used by the system as a table to contain
record lengths, so that the records in the
actual buffer may be accessed in reverse
order. Note that, although three buffers
are used, this is still only double buffer
ing; the third buffer is, in a sense, a
dummy.

Using QSAH: QSAH enables the user to
access blocked and unblocked physical
sequential data sets. The records within
each such data set can be format-F (blocked
or unblocked), format-V (blocked or
unblocked), or format-u (unblocked only).
These formats are described in Appendix C.

The OPEN macro instruction has the same
basic functions in QSAM as the BSAM OPEN.
In response to the CLOSE macro instruction,
QSA8 writes any remaining output buffers,
disconnects the data set from the problem
program, and takes care of any label writ
ing and volume disposition that may have
been specified. The effects of the OPES
and CLOSE options on magnetic-tape posi
tioning are shown in Table 3. (Note: in
out and out-in are not supported in QSAK.)

As the user requests input or output of
logical records, QSA8 anticipates the need
for I/O activity, manipulates buffers, and
perforas any deblocking or blocking that is
required. The user is free to concentrate
on processing of logical record streams, in
and out of his program.

QSAM Macro Instructions: As with BSA8
macro instructions, these are in three gen
eral categories: data-set oriented, buffer
oriented, and devioe-control oriented.

Data-set oriented macro instructions en
able a user to:

Create a sequential data set by sequen
tially storing its logical records in
the order they are supplied by the user.

Sequentially add logical records at the
end of an existing physical sequential
data set.

Retrieve logical records from an exist
ing physical sequential data set, or
retrieve an individual record, based on
these positioning capabilities:

beginning of data set on current
volume,

end of data set on current volume,

previous logical record on volume
(backspace) ,

or a record whose retrieval address
was previously obtained.

Update an existing data set by updating
logical records in place as sequential

processing proceeds (direct access
only).

The QSAM macro instructions are: SETL,
GET, PUT, and PUTX.

SETL enables a user to logically position a
physical sequential data set at its be
ginning, end, at the previous logical
record, or at any user-specified logical
record. Subsequent PUT or GET operations
will start at the specified position.

GET reads logical records in sequential
order; unless it is used in conjunction
with SETL, when the order is not neces
sarily sequential. GET may be specified
in either locate or move mode. In locate
mode, GET locates the next sequential
logical record of a data set, reads it
into a buffer if necessary, and places
its address in register 1. The user may
then operate on the record in the buffer
where it is located or he may move it to
his own work area. In move mode, GET
acquires the next sequential logical rec
ord from a buffer (reading it into the
buffer if necessary), and moves it to a
user-specified work area.

PUT writes new or altered logical records
into a physical sequential output data
set. PUT may be specified in either lo
cate or move mode. In locate mode, PUT
places in register 1 the address of an
output buffer. The user should subse
quently construct, at that address, the
next logical record to be incorporated in
an output data set. The system will au
tomatically write the physical record, of
which the logical record is a member,
into the data set. In move mode, the PUT
macro instruction moves a logical record
from a user-specified work area into an
output buffer, so that the system may in
clude the record in the output data set.
The user must ensure that the l~ngth of
the logical record is in the proper DCB
field before executing this macro
instruction.

PUTX causes the next logical record in a
buffer area of an input data set to be
written as the next sequential logical
record of an output or update data set.
PUTX may be specified for either output
or update mode. For update, the input
and output data sets are one and the
same; PUTX merely indicates to the system
that a given logical record in a buffer
associated with that data set is to be
written back, in its present form, to the
data set; for output, the input and out
put data sets are distinct; PUTX trans
fers a logical record from the buffer of
the input data set to a buffer of the
output data set, from which it is to be
written out by the system. Note that
PUTX (output mode) is effectively the
same as PUT (move); in fact, the PUT
macro instruction accomplishes this func
tion more efficiently than PUTX. The

PU~X (output aode) instruction has been
provided pri.arily as a conversion aid
for OS users, since it provides a signi
ficant option UDder OS, in vhich el:change
buffering is possible.. For both update
and output, the last lIacro instruct:ion
issued for the input data set, prior to
PUTX, IIUst be a locate-aode GBT.

Buffer-oriented aacro instructions,
TRUe and BELSB, give the user soae control
over syste. input and output for his data
sets.

'fBUJJC causes the current output buffE~r to
be regarded as filled, so the systEta viII
transfer the truncated physical re(~rd in
that buffer, as it then stands, to the
data set on the output device. ThE! sys
tea is then positioned at the next buffer
area, which viII be used to hold the nert
logical record supplied r by the USE!r, for
output. If an atteapt is aade to E!Xecute
this aacro instruction when the ou1:put
buffer is already full, or vhen thE! rec
ords are unblocked. the instruction viII
be ignored. Therefore, effective tlSe of
this aaero always results in a
nonstandard-length block being wri1:ten to
the data set ..

BBLSB causes the reaaining records of the
current input buffer to be ignored,.
locates the next sequential physic2l1
record's input buffer area, and positions
the user at the first logical record in
that buffer area. The next GET macro in
struction will retrieve the first logical
record from the nev inpnt buffer.

Device control-oriented lIacro ins·truc
tion, FEOV.

FBO? directs the system to advance to the
next volume of a data set before rE~aching
the end of the current volume. It also
ensures that the last buffer is vritten
out to an output data set, and thai: any
anticipatory requests to read, issued by
the system for that voluae but not yet
checked r are purged. As in BSAM, when
volumes are switched by this lIaero in
struction FEOV creates the necessary out
put labels for current and nev volnlles
(output data sets) , or verifies thE! vol
uae labels for the current and new
volu.es (input data sets).

Practical Applicatio.!!§: A physical sequen
tial data set can be created, using <~SU[,
by specifying output in the OPEN aacro in
struction, and by using PUT macro instruc
tions to transfer logical records to the
data set being created. When the last rec
ord in the data set has been created .. the
user issues a CLOSE macro instruction.
This writes the reaaining output bufj:ers,
disconnects the data set froll the problell
program, and takes care of any label writ
ing and volume disposition that may have
been specified.

The user can add logical records to an
existing physical sequential data set by
specifying output in the OPEN macro in
struction and 1II0dification (MOD) in the
DDEF co.aand; this positions the system to
the end of the existing data set. He then
issues a series of PUT Ilacro instructions
to supply the additional records. When all
the additional records have been trans
ferred, he issues a CLOSE macro
instruction.

The logical records of a physical
sequential data set may be retrieved in the
order in which they vere created. The user
specifies input in the OPEN macro instruc
tion to position the system to the first
record of the data sat, and then issues
successive GET .acro instructions to re
trieve the logical records. When enj-of
data is detected during a GET, the system
transfers control to the user's end-of-data
routine. Logical records may also be re
trieved nonsequentially from a sequential
data set by preceding the GET macro in
struction with either the RELSE or the SETL
macro instructiou. The use of these macros
has been previously explained.

The user may update physical sequential
data sets in place, after specifying update
in the OPEN macro instruction, by employing
the PUTX macro instruction (update mode).
First, he issues the GET {locate} macro in
struction to determine the address of the
next sequential logical record. By examin
ing this record, the user can determine if
he vants to update it& If it is not to be
updated, a branch is made to another GET
instruction, to examine the next record.
If a record is to be updated, the appropri
ate changes can be made to it, and then a
PUTX (update mode) macro instruction should
be issued to return the updated logical
record to its original storage location in
the data set.

eultiple Sequential Access Method -- eSAe

eSA~ consists of the data manaqement fa
cilities that enable the user to process
logical records at the GET/PUT macro
instruction level for the IBe 2540 card
reader/punch and the IBM 1403 printer.
MSAft is a fast and efficient mechanism for
simultaneously driving several unit-record
devices under the control of a single task;
MSAB also has automatic buffering and
error-retry options.

MSIM differs froll the other sequential
access met.hods (such as BSAf'l). For each
MSAM I/O request, the system processes a
buffer group of physical record.s; for each
BSIM I/O request, the system processes only
one physical record. Considerable process
ing is required in the supervisor and the
access methods for each I/O request,
regardless of buffer size. Usually MSAf'l
viII make an I/O request only once to proc
ess each buffer, even though the buffer
viII contain a large number of physical

Accessing Data Sets 35

records; this is accomplished by chaining
the channel commanu words (CCWs) related to
each physical record in the buffer.
System-processing overhead will thereby be
minimized when using unit-record equipment.

ftSAM also differs from the other sequen
tial access methods because several data
sets may be grouped on one device, allowing
the user to process all of them under the
same DCB. This saves him from issuing OPEN
and CLOSE macro instructions for the DCB
every time a data set with different char
acteristics is to be processed. Each data
set is a data group. Input data groups may
be separated by control cards, which 851M
will recognize and whose presence will be
co .. unicated to the user; he may then take
whatever action is necessary. output data
groups on the card punch may be separated
by the special cards that are automatically
merged froa the card reader, or the data
groups may be physically removed from the
stacker by issuing a message to the opera
tor. The merging can be accomplished by
specifying the COMBIN option in the DCB
macro instruction; the reaoval, by issuing
the FINISH macro instruction.

Each buffer used by 8SAM (a buffer group
of physical records) occupies one page of
virtual storage. The number of buffer
pages assigned to any DCB is based on the
device with which the DCB is associated,
determined individually by the specific
installation by a parameter in the symbolic
device allocation table (SDAT). This
allows the value for a device to be
adjusted so that the device will be driven
full-speed for the maximum time between two
consecutive time slices.

The first 32 bytes of each buffer page
are reserved for control information used
by ft5Aft. The remaining portion of the page
is packed with logical records. The maxi
mum number of such records per buffer page
is 100 on input and 200 on output; depend
ing on the size of the records, there may
be fewer.

85AB is well suited to the time-shared
environment because it transfers responsi
bility for waiting for I/O completion from
system service routines, such as B5AM
check, to the invoking routine. Waiting
for I/O while time-sharing is particularly
undesirable during a userls time slice; a
built-in wait-state is provided at time
slice-end. Therefore ftSAH provides the fa
cility for processing DCBs that are ready
to be processed, and for skipping those
that the user finds to require waiting.
When all opened and accessed DCBs require
vaiting, the task may wait for the first
I/O interruption associated with any DCB in
the task.

Using 8SAM: 851ft enables the user to
access blocked and unblocked physical
sequential data sets, when the data sets
are associated with unit-record devices.

36

Within each such data set r format-F and
format-V records are permitted (see Appen
dix C).

The DCB defined for data sets that are
to be accessed using ~SAE includes a number
of special fields (including the COMBIN
field previously mentioned) that are not
part of the DCBs generated for any other
access method. When the user opens the
DCB, the common portion of the OPEN routine
completes the portion of the DCB that is
common to all access methods, and then
invokes the access-mathod-dependent OPEN
routine. This routine allocates the re
quired number of buffer pages, and allo
cates and formats an IORCB and a DECB for
each buffer page that it allocates. The
DECB is not generated at assembly time, as
it is in other access methods.

When he has finished processing a data
set with the ~SAM macro instructions, the
user issues the CLOSE macro instruction for
that DCB. In response, the system returns
all fields of the DCB to the conditions
they were in before opening, issues the
FINISH macro instruction (explained below),
and releases the areas of storage obtained
by the access-method-dependent portion of
the OPEN macro instruction.

MSAK macro instructions are: SETUR,
GET, PUT, and FINISH.

SETUR specifies the physical configuration
of the unit-record device associated with
the DCB for which this instruction is is
sued. When necessary, the system writes
a message to the operator to notify him
of the configuration he is to provide.
Between repetitions of this macro in
struction, the user must interrogate the
DCBICB field of the DCB and, if it is
non-O, invoke the interruption-inquiry
routine by using the INTINQ macro in
struction (described in Assembler User
Macro Instructions) to determine whether
an asynchronous interrupt is pending. If
yes, the user must give control to the
appropriate interruption-handling routine
before reissuing SETUR.

GET obtains the next sequential logical
record from an input buffer and may be
specified in either the locate or move
mode. In the locate mode, GET locates
the next sequential record in the speci
fied input data set, and places its
address in register 1. In the move mode,
GET locates the next sequential record in
the specified input data set and moves it
to a user-specified work area in virtual
storage. The GET macro instruction of
K5AM differs from GET in other access
methods in the action taken when a
referenced input buffer is not yet full.
Instead of going into a wait state, MSAK
returns a code to the user indicating
that no record has been provided since
the next sequential buffer has not yet
been filled. To obtain that record, the

user must reissue the GET instruction;
.eanvhile, he may perform other work.

PUT includes a record in an output buffer,
the contents of vhich are to be printed
or punched on unit-record equipment.
This macro instruction may be specified
in either the locate mode or the move
mode. When specified in the locate mode,
PUT returns, in register 1, the address
of an area within an output buffer. In
this area, the user may construct. a log
ical record which will automatically be
included, by the system, as the ne'xt
sequential record of the output data set.
When specified in the move mode, PUT
moves a logical record from a user
specified location to an output bu.ffer;
fro. there it will automatically be vrit
ten as the next sequential record of the
output data set. PUT returns to the user
a code indicating the manner in vh.ich the
instruction was completed. An I/O-not
complete indication inforlls the user that
there vas not enough room in a fre!e buff
er to include the logical record; he may
reissue the PUT la ter, and, if a buffer
is then free, the systell viII indicate by
return code that the PUT was compl,eted
successfully. Again, it viII automati
cally be written as the next seque!ntial
record of the output data set.

FINISH signals the KSAK routines tha.t proc
essing has been completed for the current
data group (the current subsection of the
data set). Ellploying this macro i.nstruc
tion, users can process data groups that
have different attributes but are under
the control of the same DCB, without
closing and opening that DCB betw€!en data
groups. FINISH initiates the final writ
ing of buffers for an output data set,
and tests the results of all outst:anding
I/O operations for both input and output
data sets. To avoid having his task
placed in a vait-state, the user !:.hould
issue FIlfISH for a data set beforE~ issu
ing CLOSE. Rather than alloving t:he user
to test for I/O completion, PlSAPI CLOSE
viII place the task in the wait-s·tate un
til I/O activity is completed (PISAP! CLOSE
is the only PISAP! routine that vill do
this). Another reason for issuingr FIlfISH
before CLOSE is to ensure notification of
I/O errors on fina 1 I/O operations; CLOSE
does not provide this facility. If the
user receives a notification that I/O op
erations have not been completed, he may
continue with other processing, and reis
sue FINISH at a later time. FINISH also
viII notify the operator to remOVE~ the
current data group from the devicE~; or it
viII automatically separate data 9roups
being punched with cards froll the card
reader (under control of the COP!Bl:NE
field of the DCB).

l'tSAl't Error Processing,: Provides thE! user
with an automatic error-retry opti<>Il, under
the control of the DCB. Example: The DCB
may specify that a print error be handled

by striking out an erroneous line and
attempting to print it again. The system
will, if it is unable to recover from an
I/O error encountered as a record is being
processed, return an indication of this to
the user; he can then determine whether the
error was permanent. If permanent, the
user should issue a CLOSE instruction for
that DCB; if the error was not permanent,
the user may continue processing records
beyond the one vith the error, by reissuing
the macro instruction. Por an input opera
tion, he may even process the record vith
the error, since he viII have a copy of it;
hovever, the validity of that record viII
be doubtful.

Input/Output Request Facility

The input/output request facility
(IOREO) consists of the data management fa
cilities that enable users to program their
ovn I/O device-control routines. In
effect, lOREQ is not an access method, but
a means by vhich the user can create his
own specialized access methods.

The user of IOREQ creates channel com
mand words (CCWs) and executes them as he
desires. Since the user of IOREQ can have
complete control over a device, and possi
bly monopolize the channel to which the
device is attached, the use of IOREQ is re
stricted to devices defined as private in
the symbolic device allocation table
(SDAT). Also, only the BULKIO task and E
class users can request the allocation of a
spElCific private device through a symbolic
device address.

Because of the direct level of contact
between this facility and the devices them
selves, the user of IOREQ lIust:

Be thoroughly familiar with how the
device interfaces with a channel through
its control unit

Handle all exceptional conditions
through his SYNAD routine

Reissue all outstanding requests if an
I/O request is unsuccessful (perform his
ovn error recovery)

Not exceed the maximum number of concur
rent I/O requests for this device (spec
ified in the SDAT) •

The parameters for the channel program
and buffer address, in an IORCB associated
with each I/O request, must be explicitly
defined by the user in IOREQ. While this
places a greater burden on the user than in
other access methods, it also provides him
with greater flexibility. Example: Be may
specify a buffer located in an lORCB, or in
a user york area; or he may vrite cbannel
programs that use CCW chaining and he may
perform scatter-reads or gather-writes
(reading or writing data into or from vir-

Accessing Data sets 37

tual storage locations that are not
contiguous) •

Another feature of IOREQ is that channel
programs may be coamand-chained in the
channel. When the channel completes the
channel program in one IORCB, if command
chaining was specified, the channel immedi
ately begins executing the program estab
lished in a second IORCB that has been made
avaiLable. With this option, IOREQ users
who are reading or writing large amounts of
data (too large to fit in a single IORCB)
can employ buffering, by linking the
IonCBs.

using IOREQ: As with the other access
methods, the user must open a data set be
fore using IOREQ to access it; a CLOSE
macro instruction must be issued to discon
nect the data set from the system.

In response to the OPEN macro instruc
tion, the normal open-common functions are
performed first. Then the access-method
dependent portion of the open routine is
given control; tests ensure that the user
is privileged to access the specific volume
and device, that IOREQ has been specified
as the DDEF operand, and that the device to
be used is defined as private in the SDAT.
Storage is allocated for the data extent
block (DEB) and the IORCBs; information is
moved from the JFCB to the DEB.

When a user wants to execute one or a
series of I/O operations, he issues the
IOREQ macro instruction. At assembly time,
this instruction generates a DECB that will
be used to store the completion status of
the operation. This control block is
interrogated by the CHECK macro instruction
to determine when and how the operation has
been completed. The operation, or series
of operations, are explicitly defined by
the user in the VCCW macro instruction.

When the CLOSE instruction is issued,
the task is put into the wait-state until
all outstanding I/O requests have been com
pleted; then all storage allocated during
open-processing is freed, and the normal
close-procedures are completed.

IOREQ "acro Instructions: VCCW, IOREQ, and
CHECK.

vccw generates the virtual channel command
word, a doubleword that contains the in
formation that will prepare the IOREQ
macro instruction for the requested I/O
activity. Through the use of chaining
fields, groups of these doublewords,
generated in successive storage loca
tions, can be made to form VCCW lists.
The user can specify read, write, or
read-back operations, as well as no oper
ation (NOP), sense, and transfer in chan
nel (TIC); or, he can specify a hexade
cimal command code.

38

10REQ initiates a sequence of I/O opera
tions that are specified in the previous
ly generated list of virtual channel com
mand words. lOREQ uses this list as
input for generating a list of channel
command words (CCis) to be placed in the
IORCB for execution by the appropriate
channel. IORCBs are executed separately
by the channel, unless the user specifies
10RCB chaining in the appropriate field
of the VCCW. (Note: This is not the
same as the VCCW chaining accomplished
within the IORCB.) IORCB chaining is al
lowed only between lORCBs that are on the
same device. Even though lORCBs may be
chained, separate CHECK macro instruc
tions must be issued for each 10REQ re
sult, because each 10REQ generates a
separate DECB.

If buffering is specified for an
10REQ, the size of the buffer Yithin the
10RCB for read-request VCCis is determin
ed by the difference between the lowest
and highest data-area addresses specified
in any read-request VCCW within that VCCi
list; some data areas may overlap.
Therefore, the user must ensure that a
contiguous entity is formed by the indi
vidual data areas referenced by each
read-request VCCW in the list associated
with that IOREQ.

The size of the buffer built for
write-request VCCis is deterained by the
sum of the individual data areas associ
ated with each VCCW; that is, unique
buffer space is allocated for each write
request VCCi, regardless of whether the
data areas referenced by these VCCWs have
overlapping portions. Consequently, the
data areas associated with write-request
VCCWs do not need to form contiguous
areas.

When buffering is specified in IOREQ,
data is moved from user data areas to
output buffers within the IORCB before
any I/O activity is performed for any of
the write-request VCCWs within the VCCi
list. Therefore, although a user aay
chain VCCis that are to read into a par
ticular data area and then write froa
that area, the sequence of operations
will result in the old, not the new, data
being written, as the user-.ight-eipect.

If buffering is not specified in
IOREQ, the area within the lORCB that
would normally have been used for the
buffers is used instead for page-list
entries to the user's data areas. Then
the data transfer is directly between the
channel and these areas.

CHECK tests for completion of an IOREQ
macro instruction, and detects errors and
exceptional conditions. CHECK Bust be
used for every IOREQ issued; and must be
issued in the same order as the IOREQs.
If an exceptional condition is detected,
control is passed to the user's SYBAD

routine (which must .be provided or an
ABEHD will be executed). If the I/O op
eration is successful, the user's program
resu.es execution at the instruction fol
lowing the CHECK instruction.

TER~IHAL ACCESS METHOD -- TAftII

The Terminal Access Method (TAMIl)
handles all TSS communications. This
includes communicating with local and re
.ote ter.inal users, SYSIH and SYSOUT data
sets and local and remote systems or RJE
work stations. TAftII is used by both the
system and the user by issuing GATE and
T-GATE macros (GATRD or TGATRD etc.). The
T-GATE macros are extensions of the GATE
macros and allow the I/O to be overlapped.

TAKII is composed of five distinct com
ponents. They are:

1. RTAM - Real Terminal Access Method

This component resides in the super
visor and is an interface between
the TSS supervisor and the device
modules (DCKsj see below)

2. DCK - Device Control Kodules

The DCKs provide all device depen
dent support required to do t.he fol
lowing functions:

a. builds channel programs and
initiates I/O

b. l'!aintains line control during
non-activity between user and
task

c. handles device dependent timer
routines

d. validates task I/O requests

e. handles device dependent PCI re
quests and non-normal co.pletion
status

f. handles the connection of a
device to a task whether initi
ated by the user or the task

g. sets up device dependent infor
Illation in the required sj'stem
control blocks

h. provides error recovery for all
abnormal endings

i. checks user's input for user
function requests (cancel, at
tention, etc.)

j. determines length and type of
input

k. provides silllple output edit
capability for system messages
to the terminal user.

3. VTSS - Virtual Terminal Support
System

This component resides in the task·s
virtual memory, validates the re
quests, and translates the program's I

request against the user's environ
ment. After determining what has to
be done, VTSS will call the correct
format control module (FCK) to for
mat the data if any for the user's
terminal.

q. FCK - Format Control ftodules

The FCK performs the required edit
ing and/or formatting reguired by
both the terminal device and the
user. The FCft also ensures that the
request is setup in a mode that the
next level of TAftII will understand.
The FCM then calls the module or
access method, either in real core
or virtual memory, required to do
the actual request. The FCft pro
vides the following functions:

a. edits output data

b. translates output data to line
code

c. invokes correct routine to do
I/O

d. translates input data to EBCDIC
from line code

e. edits input data

f. moves input data to correct data
area (user's or GATE's)

g. sets up correct return code

h. performs any requested valid
control functions

i. maintains correct sequence and
buffer links for buffered re
quests in virtual memory

j. performs any special task
ini tialization required for con- I

necting device

5. TCS - Terminal Command Subsystem

TCS handles all device command re
quests and maintains the terminal
environment control blocks.

Unlike other acccess methods, TAKII does I

not use DCBs and JFCBs; the primary control
blocks are a TCT (Terminal Control Table)
entry for RTAM and the FCL (Format Control
Library) entry for VTSS. At the time the
terminal is connected to the system, a TCT

Accessing Data sets 39

is allocated and constructed. When the
terminal is connected to a task a FCL is
allocated and constructed by VTSS. Both
the TCT and the FCL contain device informa
tion and areas to be used for work areas.
For communication between VTSS and RTAft the
ATCS SVC, with an associated parameter
list, is used to initiate or request a
function to be performed at the terminal.
When RTAK communicates with VTSS, it is
through a special I/O synchronous interrupt
processor.

TAMIl also will use other access methods
to fulfill the program's request. Since
TAKII is the access method used to read and
write SYSIN and SYSOUT non-conversationally
TAKII has to be able to access datasets.
TAMIl does this by using the appropiate
access method for the dataset. TAftII sup
ports VAK and QSAft and can read and write
datasets with DSORGs of PS, VI and VS.

TAKII allows both queued and direct con
trol of the terminals by the application
program. The application program may also
transmit EBCDIC character strings, in which
case TAMIl handles all editing and transla
tion, or the program can bypass the TAMIl
character facilities and transmit direct
terminal control information.

Through appropiate default values, TAMIl
allows the task owner to control the queu
ing function independently for both inpnt
and output, transparent to the application.
This allows the application programmer
greater control over the testing of his ap
plication program.

TAMIl assumes all responsibility for
error recovery. When the application
issues a request, TAMIl assumes the respon
sibility of getting the request to the ter
minal. For output, under normal condi
tions, the application does not receive a
completion notification if the write com
pletes successfully.

Using TAMIl

TAMIl is used both by the system and by
the application programmer when either
issues the appropiate GATE or T-GATE
macros. Currently the application pro
grammer is unable to initiate the connec
tion of a terminal to the task. Therefore
there is no 'OPEN' macro as such. The ter
minal user has to initiate the connection
by entering a 'BEGIN' command at the termi
nal and 'then the application is informed of
the connection request. The following
macros are available to the application
programmer and the system for controling
the terminals:

40

1. CHCKT - check a DECB for completion
of a request.

2. DIAL - dial a terminal through an
autocall mechanism.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

EXL~ST - activate, deactivate termi
nal exit list entries.

FINDQ - poll and locate work for an
application.

SETTERM - alloys user to set, reset
and interrogate flags and fields in
the TAMIl control blocks.

SOLICIT - solicit data input from a
terminal by using an increasing num
ber prompt or a decrement count of
lines.

TCLEAR - purge active and pending
I/O requests for a terminal.

TCNTRL - initiate a control request
for a terminal.

TDCMD - execute a string of device
control commands for a terminal.

TFREE - release a terminal from the
task and the system.

TGATRD - read an input line from the
pending input queue or the terminal.

TGATWS - yrite a message to the
user's primary SYSOUT.

TGATWR Yrite data to a terminal

TGTWAR write data and read any a
vailable input from a terminal.

TGTWSB - write a message to the pri
mary SYSOUT and read the user's
response from the primary SYSIN.

TRCBUF - read a line from the con
versational buffer for the terminal.

TWRTLST - write a list of output to
the terminal.

18. TERMPRO - set up or save a terminal
user's environment.

19. TRANLCD - locate a translate table
for a terminal.

Three macros yhich alloy an application
to push and pop a terminal's environment
and pending queues after an attention from
the terminal user are:

1. ATTNSAV - save the current terminal
environment and pending queues.

2. ATTNRST - restore a previously saved
terminal environment and pending I/O
queue.

3. ATTNDST - destroy a previously saved
entry.

For application programs, supporting
multiple terminals and/or users, four
macros are available to setup the terminal

coBtrols and control the terainal
cODJlections:

1. ft~ - inform and setup contro1
blocks connecting terainals to an
application when the request is ini
tiated by the terainal user.

2. ft~TDCI - disconnect and discontinue
the aultiple terainal applica1:ion
program.

3. ILOGOB - inhibit user initiated
connections.

IJ. PLOGOB - perait user-initiateii
connections.

~AKII proyides five ways for an applica
tion program to be inforaed of the coaple
tion of a request or of the receipt of an
asynchronous interrupt; they are:

1. Deyice 'EXIT LIST' - when the exit
list condition occurs, the r011tine
identified by the exit list i!~
scheduled to receiYe control. This
list is device specific.

2. Application prograa general 'EXIT
LIST' - a list general to the pro
gram. When a device condition
occurs which the deyice exit list
does not haye an entry for, tlite ap
plication pro grail 's general l:lst is
checked and if it has an entr~r, the
routine is scheduled for exec1iltion.

3. The system SIB and DIB with SIEC and
SAEC (synchronous I/O and asynch
ronous I/O interrupt) queuing
aechanism is supported by TA~II. If
there isn't an exit list entry, the
PIBDQ work table is marked anli an
interrupt is queued by calling the
Task !loni tor.

lote: items 1 through 3 above all
result in an asynchronous call to
the application's routines.

~. FIIDQ work polling capability - the
application may process coapletions
synchronously to execution by issu
ing the PIIDQ macro when the program
is ready to receive interrupt and
completion notification.

5. CHCKT - TAMIl 'check' capability,
using the techinque of assigning a
DECB to a request and later issuing
the TA~II CHCKT macro for the DECB
to determine if the request has com
pleted. With the TAMIl CHCKT func
tion an application program can spe
cify whether a wait is to be done if
the I/O has not coapleted.

All TA!II macros are keyworded and most
of them use the same keywords and return
the salle return codes to help the user in
coding. When supporting multiple ter
minals, the most iaportant keyword is the
'USI'. This keyword is the application's
way of telling TAMIl which terminal the
program is communicating with.

TAftII has a common return code set for
its macros. This helps the programmer in
using the TAMIl macros.

Code
o
4
8

12
16
20
24
28
32

36
40

Explanation
successful call
terminal is busy (request queued)
attention received on this request
request aborted attention pending
request purged by TCLEAB request
end of data received for SOLICIT
user error in parameter list
input not available for TGATRD
requested operation not supported
on this terminal
terminal disconnected from system
permanent error on request

Accessing Data Sets 41

PAR~ III: USE OF DATA MANAGEMENT FACILITIES

The user of TSS may have no direct use
for aany of the data management facilities.
Interfaces are provided to request for him
specific data management routines that viII
perform specific services.

Although assembler users normally have
the most direct contact with data manage
ment facilities because they employ the
macro instructions of the access methods,
usually they cannot directly access ter
minals using RTAM; some use the GATE macro
instructions as interface when they need
the RTAB facilities. The ftTT-mode macro
instructions (see Part II, under "RTAM")
provide this interface for multiterminal
tasks ..

All users can employ the command system
to create, access, and modify data sets;
the command system, in turn, requests the
facilities of the appropriate access
method.

I/O routines of the FORTRAN and PLjI (F)
libraries provide the interface between the
compiled code and the system's data aanage
aent routines for FORTRAN and PLjI (F)
users.

ASSEMBLER INTERFACES

The nonprivileged assembler user has no
direct comaunication with either unit
record equipment or terminals from within
his problem program.. However, he can
indirectly access unit-record equipment,
and his own terainal, by aeans of the bulk
output facilities and the GATE macro in
structions. Bulk-output facilities are
auch the saae as those in the command lan
guage. See "Command System Interfaces,"
next in this part.

The GATE macro instructions allow the
nonprivileged assembler user, from within
his problem program, to write to his own
SYSOUr, to read from his own SYSIN, or
both. Depending on whether the task in
which they reside is conversational or non
conversational, the GArE routines calIon
rlBII or VAM to accomplish their functions.

42

The GATE routines process any required
writing by dividing the message into
device-siZed lines, or smaller; then the
appropriate access method is determined and
used to transmit the message to SYSOUT.

When reading is required, the GATE rou
tines determine the appropriate access
method and use it to obtain the input mes
sage; they apply a predefined character
translation table to the message as it is
transmitted to the user's buffer.

The GATE macro instructions: GATRD,
GATWR, GTWAR, GTWRC, and GTWSR.

GATBD reads a record from a SYSIN device,
translates it to internal code, and
places it in a user-designated area of
virtual storage.

GATiR translates a record that is stored in
a user-defined area, and writes it on a
SYSOUT device.

GTWAB translates a record that is stored in
a user-defined area and writes it on a
SYSOUT device; then it reads a record
from the SYSIN device and places that in
another user-defined area of virtual
storage.

GTWRC processes in the same manner as
GATWB, except for nonconversational SYS
OUT records, in vhich it translates a
record and a carriage-control character
that is stored in a user-defined area,
and then passes it to a SYSOUT device.

GTWSB (for conversational tasks only)
translates a record that is stored in a
user-defined area, and writes it on a
SYSOUT device; then reads a record from
the terminal and places it in another
user-defined area of virtual storage.

MCAST is an assembler macro instruction
that allows the user to replace the
character-translation table with one of his
own choosing; this new table viII be used
by the GATE macro instructions for the
duration of the task, to translate data
transferred between the user's program and
SYSIlf or SYSOUT.

The command system uses the basic l[lata
management facilities to get a broad :l:"ange
of data management services; the user can
enter, manipulate, output, and copy data
sets; he can enter and delete data set
catalog entries, and he can utilize the
catalog-sharing facilities described in
Part II.

There are five categories of command
system data-manage.ent services:

Text-editor services
DATA-command services
Data-set copying services
Bulk input/output services
Data-set cataloging services

Details on the interfaces that will be
outlined here can be found in the Command
System User1s Guide.

TEn EDITOR

With the text editor, the user can cre
ate or alter a virtual index sequent.ial
(VIS) data set. It interfaces with the
GATE and VISA! routines to perform the re
quested data management services.

The VIS data sets created and operated
upon by the text editor are either region
or line data sets. A region data set. is
indexed by a key consisting of two fields,
a region name and a line number; region
names, arranged alphabetically" divia~e the
data set into region s; line numbers index
the elements of each region. The line num
ber is a seven-digit decimal number at the
beginning of each record.

A line data set is indexed solely by
line number; although it can be thouqht of
as a special class of region data set (with
a null region nallle), line and region data
sets have different maximum record lEmgths
(see Appendix C for record formats) ~

The text editor co.mands: EDIT, C05-
TEXT, CORRECT, EXCERPT, EXCISE, INSERT,
LIST, LOCATE, NUMBER, REGION, REVISE, and
UPDATE.

EDIT invokes the services of the text edi
tor. If the user has not previously de
fined, by issuing a DDEl for it, the data
set named in this command, a text editor
routine will automatically issue a DDEl
wi th a standard set of operands. :[n this
case, the DDNAME issued for this data set
viII be EDDNnnnn, where nnnn is a][lumber

CO!!A5D SYSTE! IBTERrACES

that is automatically incremented within
a task for each new DDNAIIIE issued, to
preserve uniqueness.

If the data set to be edited exists p

or has had a DDEF issued for it, it must
be a VIS data set~ or a VIS member of a
virtual partitioned data set. The user
vill be prompted if either of these con
ditions has not been met. Also, he will
be prompted if the data set is read-only,
since it is assumed that he vishes to
alter it.

After a 31CB has been created or
located for the data set, the DCB associ
ated with the data set viII be opened;
the DCB is located within a module of the
text editor. If the data set is parti
tioned, the userRs entry of a member name
is verified. If none was entered, the
user is prompted and an exit is taken; if
a aember name has been entered, a FIND
macro instruction is issued for that mem
ber. If the me.ber is new, an entry is
made in the POD by the STOW macro in
struction; if the member exists, a cheCk
is .ade to ensure that it is virtual
index sequential. After all initializa
tion, return is made to the command mode
for further text editor commands.

CONTEXT replaces a specified character
string with an input character string,
wherever it occurs within a given range
of lines. After checking the input for
validity, CONTEXT issues a VISAft SETL for
positioning at the first line vith in the
specified range; then it issues a GET for
that line (record). The line is checked
for occurrences of the specified string,
which is replaced if found. After the
line has been co.pletely searched, it is
written out by a VISA~ WRITE, if any
replace.ents were made. SETL is then is
sued for any necessary repositioning, and
GET is issued for the next record. This
process is repeated until the range of
lines ha.s been completely checked.

CORRECT makes corrections to a line or a
range of lines within an object data set.
If only one line is to be corrected, the
CORRECT routine uses GATWR to print that
line, before correction, on the userWs
SYSOUT. The VISAM SETL and GET macro in
strnctions are used to obtain that line
and subsequent lines from the object data
set. Then the SYSIB .acro instruction is
used to obtain the user's corrections
from his SYSIN. A new line is con
structed in an output buffer, based on

Command System Interfaces 43

these corrections, and the VISAM WRITE
(replace-hy-key) is used to write the
line back to the object data set.

EXCERPT incorporates a portion of a line or
region data set into the line or region
data set currently being edited. On
entry to this routine, the data set to be
sampled is opened. Abnormalities ~_.1l
opening (e.g., data set not found, or not
VIS data set or data set lrIember) result
in user prompting; an error-exit will be
taken. If the data set was opened suc
cessfully, VISAS SETLs and GETs will be
used to obtain the records to he incor
porated, starting with the specified (or
defaulted) first line. The lines will
then be renumbered (that iS r their keys
viII be changed); using WRITE (new key),
the resultant lines will be written out
to the data set being edited. If the
REVISE command had been specified previ
ously, indicating that the lines being
excerpt.ed are repl.acing existing lines,
the previously existing lines already
viII have been deleted by REVISE, so
there viII be no key conflict vith WRITE
(nev key). (See also REVISE command.)

EXCISE deletes a line or a range of lines
froll a line OL reg ion data set. VISA!'!
SETL and GET are used to position to the
desired line within the data set being
edited; then DELREC is used to delete the
record by key.

INSERT prepares the text editor to accept
data lines for insertion following a
given line in the source data set. The
SYSIH macro instruction obtains the input
data frolll the user's SYSIN.

LIST places a line or a range of lines on a
user's SYSOOT. Lines of a region or line
data set are retrieved with a VISAM GET
macro instruction and listed on the
user's SYSOUT with a GATWR lIIacro
instruction.

LOCATE searches a specified range of lines
in an object data set for a specified
character string. VISA!'! SETL and GET re
trieve the lines within the range sequen
tially, until the specified string is
found within a line; then GATWR prints
the line with that string on the user's
SYSour.

NUMBER renumbers a range of lines within a
region or line data set; in effect, this
associates a new key with each record
within the range. NUMBER uses VISAM GET
(locate 1II0de) to obtain the lines within
the specified range; as they are obtain
ed, they are placed in a deletion list,
to be deleted (by key) by the DELREC
lIIacro instruction. The keys are then
changed to conform with the specified

44

renumbering; the changed records are
placed in an addition list from which
they viII be placed in the object data
set by a VISAM WRITE (new key) •

REGION prefixes a region name to a line
number or range of line numbers; the
lines so prefixed form a region data set
and their keys consist of the combination
of the region name and line number.
Since the region nallle is a part of the
record key, and seven characters of the
key are reserved for the line nUllber, the
key length specified in the DCB for the
data set being edited must be greater
than 1, to allow room for the region
name, which will be truncated to fit if
necessary. (The key length parameter is
computed and inserted as part of the EDIT
processing; it is computed as the sum of
1 plus the value of the REGSIZE parameter
in the user's profile.) The user will
receive an error message if he attempts
to provide a region name within a data
set whose key length is not greater than
1. The SETL macro instruction positions
to the next available line in the speci
fied region; for a new region, this viII
be line 100.

REVISE prepares the text editor to accept
data for inclusion, at a given point, in
the object data set. It accomplishes
this by first deleting all existing lines
within the specified range, using the
VISAK DELREC macro instruction, and then
positioning the data set at the beginning
of the range; the user can then enter re
placement lines. The user will be
prompted if an attempt is lIIade to enter
more lines than the range allows.

UPDATE prepares the text editor to accept
new or replacement data lines, frolll the
user·s SYSIN, that are to be placed in
his object data set. The SYSII macro in
struction is used to read the data; if
the records are not variable length, they
are padded with blanks as needed. UPDATE
then checks the key supplied by the user
at the beginning of the record (if no key
vas provided, the user will be prompted) •
If a line with that key exists in the
data set, the record is written to the
data set with a VISA" WRITE (replace-by
key); otherwise, a VISAK WRITE (new key)
is used.

SERVICES OF THE DATA COMMAND

The command system's data-editing serv
ices allow the user to build and edit both
VS and VIS data sets. The DATA, MODIFY,
and LINE? co.mands are in this group.
MODIFY and LINE? are used only vith VIS
data sets, and interface primarily with
YISAK routines; DATA is used for VIS and VS

data sets, and interfaces with both ~lSAP!

and YISAM.

DATA creates either a VIS line data set or
a VS data set; also it allows the tlSer,
during the creation of a line data set,
to dynamically insert, delete, and
replace lines in that data set.

After validating its input paraDleters,
DATA verifies that a JFCB exists for the
named data set (th at is, if the USE!r has
issued a DDEF for that data set). If it
exists, the JFCB must ShOlf either "that
the data set is a virtual partitioned
data set, or that it has VS or VIS organ
ization; if either of these condittons is
not met, an error message will be issued
to the user. If a JFCB does not elcist
for that data set, DATA viII creatE~ one
by issuing a DDEF; in this case, the data
set nalle and organization are as speci
fied in the input parameters,. and 1:he
data definition name is derived from a
value maintained by the system for this
purpose.

DATA now opens the data set and •. if it
is partitioned, issues a FIND macro in
struction to ensure that the member nalle
is unique. All further processing
depends on the typ e of data set being
created, VS or VIS.

For a VS data set, the SYSIN maero in
struction prompts the user with a number
sign and retrieves the record from the
user·s SYSIN. Input records continue to
he read until one is found containing ei
ther a %E, or an underscore followf~d by a
command; either of these signal thE! end
of input.

For a VIS data set, the user is
prompted for input with the curren1: line
number. Another difference is thai: DATA
must check input records for modification
indicators; if DATA finds a %D followed
by a line number,. the line indicatE!d is
deleted from the data set being built by
the D"ELREC Ilacro instruction. If it line
number preceded by only a % is found, the
text following the " is written ei it:her as
a replace_ent or as an insert.ion Ilne,
depending on whether the line numbE!r
specified exists in the data set. If it
exists, a VISA!! WRITE (replace-by-Itey) is
issued; if the line number does noic
exist,. a VISAM WRITE (new key) is issued.
As for a VS data set, end-of-input is in
dicated either by an underscore followed
by a comlland, or by a record containing a
~E.

When an end-of-input indicator is
reached, DATA closes the opened dait:a set
(a STOW instruction is issued for 1t:he
Ilember, if it is a virtual partitic)ned

data set) and then passes control to the
proper routine.

If an attention interruption is re
ceived while the DATA command is in oper
ation, further processing depends on
whether the data set has been opened. If
it has not been opened, DATA merely
returns control, leaving the JFCB set up
if one was generated. If the data set
has been opened, DATA closes it (issuing
a STOW instruction for the member if it
is a VP data set) and then returns
control.

KODIFY inserts, deletes, replaces, and
reviews records in a VISAM data set or
VISAI! member of a YP data set. Also it
may be used to build a new VISAK data set
or member. In contrast to the data sets
operated upon by the DATA command, ftODIFY
may be used with VISAK data sets that are
not line data sets. This is possible
since the user may specify, as part of
the KODIFY parameters, an arbitrary key
length and displacement, as well as
record-format indicators.

After input parameters have been vali
dated, ftODIFY searches for a JFCB for the
named data set. If none exists (that is,
no DDEF has been issued for the data
set), a JFCB will be created for it. In
either case, the JFCB must show that the
data set is either a VP or VIS data set,
and that the user may write on it.

When the JFCB is located or created,
the data set is opened. If the data set
is partitioned, a FIND macro instruction
must be issued for the specified me.ber
name. If the name is found, a check is
made to ensure that the data set has VIS
organization; if it is not found, a new
member is created with this nalle and with
YIS organization~

Input records containing the user's
modifications are obtained, one at a
time, by the SYSIN macro instruction.
The user-supplied key points to the loca
tion of the specified record. When the
user-input does not indicate deletion or
revision, the record is written into the
data set as an insertion or replacement,
using either WRITE (replace-by-key) or
WRITE (new record). When the first
character supplied by the user is Dr the
record at the specified location is
deleted from the data set by the DELREC
macro instruction; when the first
character is R, the record is reviewed
,(presented to the user), by the GATWR
macro instruction. If review of all
modifications is requested, the record
that is being replaced or deleted will be
presented to the user before the modifi
cation is made; for insertions, the

Command System Interfaces 45

reccora immediately preceding the inser
tion is presented.

When the end-of-input record is
reached, the data set is closed; for a VP
data set, the STOW macro instruction is
issued to reflect any alterations before
the data set is closed.

LINE? presents to a user's SYSOUT the con
tents of specified lines from a line data
set, or a language processor list data
set. (A list data set is similar to a
line data set; each record in a list data
set has a unique line number. However,
unlike the line data set, these records
must be fixed-length and the line numbers
are at the ends of the records.)

After checking and validating the data
set name presented by the user, LIRE?
initiates a search for a JFCB bearing the
indicated data set name. If no JFCB is
found, DDEF is called to create one.
Then the data set is opened and, if it is
partitioned, a FIND macro instruction is
issued to locate the indicated meaber.
If it is a list data set, a check is made
to verify that it is in list format; oth
erwise a check is made for line format.

The VISAM SETL macro instruction posi
tions the data set at the beginning of
the range specified by the user. Succes
sive GET macro instructions obtain the
records; a check is made to ensure that
the specified range has not been exceed
ed. The GATWR macro instruction is then
used to write the record on the userls
SYSOUT (if the object is a list data set,
the line number is written separately be
fore the record so it will precede the
record on the user's SYSOUT).

After all indicated lines have been
processed, the data set is closed (if it
is a yP data set, a STOW instruction is
issued for the member), and control is
returned.

DATA SET COPYING SERVICES

The command system provides facilities
for making additional copies of existing
data setsi depending on the particular com
mand he selects, the user may also be able
to change the aedina on which the data set
exists. The data set copying commands:
VT, TV, VV, and CDS.

VT copies a data set that is in one of the
TAft organizations (VS, VIS, or VP) to
magnetic tape, as a physical sequential
data set. There is no simple correspond
ence between the records of the VAK data
set and the records of the physical
sequential data set. Records of the

46

physical sequential data set created by
this command are blocked into page-length
segments, regardless of the record sizes
in the original data set. Therefore, it
would be futile to attempt to use one of
the sequential access methods (for exam
ple, BSAM) to obtain the records as ori
ginally placed in the virtual storage
data set. The user can employ the TV
command (described below) to copy the
data set back to a direct access device,
at a later time, and then access it with
one of the virtual access methods.

Initially, VT checks that the input
data set is a VAM data set. If there is
no JFCB for the indicated input data set
name, one will be created. For the out
put data set, the user must have created
a JFCB (with a DDEF) that has a data
definition name (DDNA~E) of DDVTOUT. VT
locates this JFCB and verifies that it
indicates the proper data set organiza
tion (physical sequential) and the proper
device type.

When the data sets are opened, the
JFCB of the input data set and the common
portion of the input data set's format-E
DSCB are written as the first record on
the output tape. The remainder of this
record is padded with O·s.

Data pages to be copied from the input
data set are located through its RESTBL.
For each of these pages, the system·s
paging mechanism is used for input; each
page is then written to tape by BSA~
WRITE. Eight buffers are used to overlap
processing time and input/output time.

After the tape operation has been com
pleted, both data sets are closed and all
buffers are released. Unless specified
otherwise, the output data set is cata
loged and any JFCBs created by VT are
released.

TV retrieves and writes into a virtual
storage volume, a data set previously
written on magnetic tape by a VT command.
TV verifies that the input data set has
physical sequential organization and that
it resides on a tape volume. If a JFCB
for the input data set cannot be found, a
DDEF is issued to create one. A check is
then made that the output data set name
indicates a new data set, with a virtual
storage organization. If an output JFCB
is not located, one is created by issuing
a DDEF. The user must issue a DDEF for
the output data set only if he wants it
to reside on a private volume.

After the data sets have been opened,
the first record is read from the input
set (see "VT," above, for content), to
verify the tape format, and make availa-

ble the DSCB data necessary to rec:t'eate
the oriqinal data set. Data records from
the tape are input by BSAB BEAD and out
put (to the direct access device) by VSAM
pur. At this ti.a, the data set is being
treated as VS, with page-length records w
regardless of how it was originally
created by the user. For these opera
tions w eight buffers are used. The! ini
tial instructions to read tape fill. the
eight buffers; subsequently, four buffers
at a time are filled as the other four
are emptied w to overlap processing time
and input/output time.

After all instructions for the input/
output operations have been issued, both
data sets are closed and all buffers are
released. If the output data set, on di
rect access storage, is not complet,ed
correctly, the cC8l1and-systell ERASE: rou
tine is called to delete the partia:l data
set. If the outpnt data set has be,en
co.pleted correctly, the DSCB now associ
ated with this data set must be Modified,
since it now reflects the organizat:ion of
the data set as it was created by V'SAt!
pur (with page-size records and VS organ
ization). To correct this DSCB, the
format-E DSCB that is part of the e.utput
data set is read in by TV, and the DSCB
for the newly-created data set is updated
from the information in the old one,. The
DSCB then reflects the structure of the
data set as it was originally creat:ed by
the user. A catalog entry for the output
data set is created if required; aIllY
JFCBs created by TV are released.

TV makes a copy of an existing VA! data
set; the copy will also exist as a VS
data set. Initially, TV verifies that
the input data set nalle is the name of a
TAB data set. If the user does not issue
a DDEF for the specified data set Illaae,
there viII not be a JFCB for it. 1\, JFCB
will be created by a call to DDEP l[a
catalog entry, to act as an input source,
aust exist for the data set if a J!'CB is
to be created). The output data SElt nalle
aust indicate a nev VAB data set. Again,
if no JPCB exists for this output data
set, one is created by a call to DDEF.
The user needs to create a JFCB for the
output data set only if he wants it to
reside on a private volu.e.

When both data sets have been opened,
the common portion of the input dat:a
set·s forllat-E DSCB is retained fOl:
recreating the data set structure aLfter
the copy operation has been coaple1:ed.
Data pages to be copied froll the input
data set are located by indexing through
the BESTBL; the systea·s paging facil
ities read these pages. They are then
written to the output data set vith a
VSA! PUT; at this point the output data

set is being treated as a VS data set,
with page-size blocks.

When the copy is cOllplete, both data
sets are closed and all buffers are re
leased. If the output data set has not
been completed correctly, ERASE is cal1ed
to delete the partial data set. For nor
lIally completed VV operations, the output
data set·s DSCBs reflect the structure of
the data set as it was created by VSAM
PUT (VS structure, page-size records) •
Therefore, the DSCB is updated from the
DSCB information retained from the origi
nal data set, so that structure of the
data set is shown as it was created by
the user. The catalog is updated, if
necessary, and any JFCBs created by VV
are released.

CDS copies a data set, or member of a VP
data set; it may also copy members of a
partitioned data set (with user data and
aliases) into a second VP data set,
replacing or ignoring duplicate members.
CDS provides the user with the option of
specifying that the original data set (or
member) be erased after duplication; he
may also renumber a line data set while
copying it.

Initially, operands are checked for
validity, and a JFCB is obtained or
created for the input and output data
sets. If the input and output data sets
are both VP and no member name has been
specified, multiple member processing
(copying members with user data and
aliases, if they exist) is assumed.

Por multiple member processing, three
DCBs are opened; one for input, one for
VSAft output, and one for VISA~ output.
If no member names have been specified
for the input data set, then every member
found in the input data set's POD will be
copied. otherwise, only the members
specified viII be copied. A PIND for a
member is done, which fills in the input
DCB and obtains the user data for the
member. The output POD is searched to
see if a member with the same name
exists. Then each alias in the input POD
vhich is associated with the member is
checked in the output POD. If a dupli
cate alias is found, it must be associat
ed with the same member name in the out
put POD or processing of the member is
ended. If no invalid duplicate aliases
are found, and the user has not specified
that duplicate members are to be ignored,
the input member is copied into the out
put data set using the appropriate output
DCB. When the copy is complete, the
input member is erased if applicable, and
the output member is added to the output
POD with its user data and aliases, using
STOW. ~ultiple member processing is coa-

Command System Interfaces 47

plete when all specified members have
been copied.

If multiple members are not being pro
cessed, the input DCB is opened and
checked against the output JFCB. Both
data sets must have the same organization
(YAft or physical sequential). Any combi
nation of VAR data sets may be copied.
If a YS data set is being copied to VIS,
the keylength, relative key position, and
pad must be specified for the output data
set (since these may not be obtained from
the input). In all other combinations,
the output is given the same DCB parame
ters as the input. For VS format-U rec
ords, a LRECL of one page is used. The
output DCB is then opened.

Por physical sequential data sets, SAft
READs and WRITEs are used to obtain the
input records and place them in the out
put data set. Por VAM data sets, VAK
GETs and PUTs are used. If renumbering
is specified, the input record is obtain
ed and the new key is overlaid on the old
before the record is written. Roraal
processing ends when the input data set
is exhausted.

When processing is complete, the DCBs
are closed and the input data set is
erased, if specified (not applicable to
multip1e member processing). control is
then returned to the calling routine.

BULK IIPUT/OUTPUT SERVICES

Because of the suitability of public
storage for the operating environment of
TSS, users may often want to transfer data
sets that are on cards or tape volumes to
pub1ic YAft volumes. A1ternatively, some
may vant to write data sets to tape, punch
them on cards, or print thea on the instal
lation's high-speed printer. Some of these
functions can be accomplished by using the
data set copying services. other options,
notab1y those involving nnit-record
devices, are perforaed using the command
system's bulk input-output services. These
services consist of the PRIVT, PURCH, RT,
or WT commands, together with the operator
assisted card input facility. The user can
issue only the commands associated with the
output of data sets (PRIRT, PONCH, and WT) •
The system operator must initiate the
others.

Bulk output: When the user issues a PRINT
or PURCH command, the action taken depends
on the nature of the data set to be printed
or punched. Private data sets viII be han
dled by the PRIRT and PURCH routines out
lined below, and a separate nonconversa
tiona1 task will be created for this pur
pose. Public data set printing and punch-

ing viII be handled by the BULKIO task.
This will not be described here. The WT
command routine, described below, is used
for both public and private data set writ
ing. VSAM and VISAK are used for opera
tions on VS and VIS data sets, respective
ly; BSAM is used to control tape I/O, and
~SAK is used to access unit-record devices.

PRINT will print an existing private phys
ical sequential, virtual sequential, or
virtual index sequential data set, on an
installation'S on-line high-speed print
er. If a physical sequential data set is
being used for input, it must be on a
tape volume. Since a physical sequential
data set can be allotted to only one task
at a time, and the nonconversational task
created by PRIRT will require it for
input, specifying a physical sequential
CPS) data set to be printed will result
in the release of any JFCB for the data
set vithin the task which issued the
PRINT. Also, if a PS data set is not
cataloged, it will be automatically cata
loged when PRINT is issued; it will be
erased when the nonconversational PRINT
task is completed.

On initial entry to the PRINT routine,
this coamand determines the devices to be
used and the input data set organization;
it issues DDEFs for the input and output
data sets, opens these data sets, and
obtains any buffers that viII be needed.
The ftSAft SETUR macro instruction is is
sued so that the printer has the required
device configuration.

After setting up an identifying output
line, PRINT obtains input records by an
internal buffering technigue (using VSA~
or VIS Aft GETs, and BSA~ WRITEs and
CHECKs), and writes the. to the printer
with internal buffering (using ftSA! PUTs
and INTINQs). PRINT continues to loop in
this manner, until the last record has
been printed; then, it indicates any rec
ords that were received in error on the
task's SYSOOT. The input and output data
sets are closed, and the nonconversation
al task is finally logged off.

PORCH is used to punch a cataloged VS or VI
private data set into cards on an instal
lation's high-speed punch. When the non
conversational task created by this coa
aand receives control, it calls DDEF to
define the input and output data sets; it
then opens each of these data sets, and
issues an ftSAM SETun for the punch (out
put data set), to ensure that the proper
card form is mounted. One logical record
at a time is then read, by VSAft or VISA~
GETs; after each record is read, control
options are tested, and the record is
written to the output buffer with M5Aft
PUT. This reading and writing continues

until all input records have been pro
cessed; then, input and output data sets
are closed, and final messages are writ
ten to SYSOUT, including a count of the
number of records read, punched, and
skipped, and the number of error records.
An exit is then taken, and LOGOFF called.

WT vrites an existing VS or VIS data set on
tape, for eventua1 printing on a high
speed printer. The output data set is
automatically formatted into print lines,
the format required for high-speed print
ing. After the operations necessary to
log on the nonconversational task, WT
calls DDEF to define the input and output
data sets, and opens these data sets and
output buffers with a BSA~ GETBUF macro
instruction. A bl ank line is constructed
to provide for initial page positioning.
The first record is obtained with a VSAI'!
or VISAM GET. An internal buffering rou
tine writes the records to the out.put
data set, using the BSAM WRITE and CHECK
llacro instructions. After all inpu:t rec
ords have been read and written ont.o
tape, the output buffers are released,
the input and output data sets are
closed, and, if requested, the output
data set is cataloged. WT then writes on
SYSOUT the number of records read, writ
ten, and skipped, and the number of error
records. Then LOGOFF is called to termi
nate the task.

Bulk Input: If the user has data set;s on
tape or cards that he wants to have read
into the system as bulk input, he must sub
mit them together with any required infor
mation to the system operator, who viII
then enter and cata10g them under the
user's ID (userid).

RT is issued by the system operator. on be
half of a user, to read a physical
sequential data set from tape, conl'ert it
to a VAM organization (VS or VIS) r write
it to a public VAM volume, and catcllog it
in the user's catalog. VIS data SE!ts
viII be built as line data sets.

When the system is ready to pro~~ss
this command, it creates the necessary
nonconversational task, and requests the
operator to mount the input tape. After
calling DDEF to create the JFCBs for the
input and output data sets, RT opens both
data sets and obtains input buffers with
the GETBUF macro instruction. Input rec
ords are read by an internal buffering
routine, which use s the B5AM BEAD and
CHECK instructions. . The records are then
vritten out with the VSAM or VISAM PUT;
if they are line data sets, the record
lengths and line numbers are inserted.

When all input data has been read, the
input and output data sets are closed,

the output data set is cataloged (in the
userls catalog), and the input buffers
are released with the BSAM FREEBUF'macro
instruction. Then the record counts and
an end-of-task message are written to
SYSOUT, and LOGOFF is called to terminate
the nonconversational task.

OPERATOR-ASSISTED CARD IHPUT

The user can submit his data sets on
punched cards to the system operator, who
will then enter them into the systea
through the installation's high-speed card
reader. Two types of input are permitted:
non-conversational SYSIH data sets, and
data-card data sets. The two types aay be
interspersed in any order within a batch of
cards. No command is necessary to read the
cards into the system; control over the
reading of these card data sets is part of
the function of the bulk I/O task.

A SYSIN data set contains all co •• ands
needed to run a noncon vel':::' ".tional task.
When one of these data sets is read in, it
becomes the SYSIN data set of a nonconver
sational task, with the submitter's user
10. It will be executed as soon as space
is available. After execution, the SYSIN
data set is eliminated from the catalog and
system storage.

A data-card data set contains any infor
mation the user wants read into public
storage as a cataloged data set. As it is
read, a virtual storage data set is created
in public storage and cataloged in the
catalog of the user who submitted the data
set. It will reside in storage until it is
specifically erased. (For details of the
formats of both card data sets, see Command
System User's Guide.

DATA SET CATALOGING SERVICES

The command system gives the user the
facility to explicitly request that a cata
log entry by created, altered, or deleted.
The commands for these purposes are: CATA
LOG, DELETE, and EVV. The ERASE command,
in addition to freeing all direct access
storage assigned to a specified data set,
deletes from the user's catalog the entry
associated with a data set.

CATALOG creates or alters catalog entries
for specific data sets. The user can
also create a data-set superstructure,
called a generation data group (GDG), to
exercise catalog control over future
structural elements (generations).

This command can be used to change a
data set name in an existing catalog
entry for both VAl! and physical sequen-

Command System Interfaces 49

tial data sets (except ASCII tapes) •
However, with this command, a ~ catalog
entry can be created only for physical
sequential data sets. A catalog entry
can be created, with the EVV command, for
a YAM data set for which no entry exists
(either because one was deleted, or be
cause the data set was created at another
installation). When a data set resides
on a direct access device and its name is
being changed, the DSCB on the volume for
that data set is updated to reflect the
Change.

When a GDG is being created, the user
must initially issue the CATALOG command,
naming the new GDG, to set up an index
entry in the catalog; he also indicates
at this time such control information as
the number of generations to be retained
as part of the GDG. Other data sets can
then be cataloged as new generations of
the GDG.

DELETE removes a data set entry from a
user·s catalog. An entry for any private
data set can be removed with this com-

50

mand. The original catalog entry for a
public data set, however, cannot be
deleted; this is a protection against the
system "losing" the data set (unlike a
private data set, the JFCB for a public
data set does not contain enough informa
tion to locate the data set). The sharer
of a public data set may delete the entry
in his catalog; however, the data set
owner's entry is not affected (the
sharer's entry consists only of pointers
to the owner's catalog entry). If the
owner of a public data set attempts to
delete his catalog entry, he will receive
a diagnostic message; no action will be
taken.

EVV catalogs all the VA~ data sets on a
private VAM volume. The system's paging
facilities are used to read in the DSCBs
associated with each data set on the vol
ume; as each is read in, the data set as
sociated with it is cataloged, based on
the information in the DSCB. When proc
essing is completed, the private device
that was required for mounting the pri
vate volumes is released.

FORTRAN users of TSS have little direct
contact with the systea's data management
facilities. They must issue a DDEF for any
data sets (except SYSIN and SYSOUT) that
they expect their program to access, and
they must specify in the DDEF a data
definition nalle (of the form FTxxFyyy) •
Beyond that, the FORTRAN library modules
provide the major data management inter
face; within these, the I/O control module
(CHCIC) is the primary point of interac
tion. (A description of how the FORTRAN
user of TSS specifies data set character
istics is in FORTR~ Programmer's Guide,
GC2B-2025.)

FORTRAN Ito CONTROL

The FORTRAN I/O control routine fulfills
I/O requests made through other I/O library
routines by using the data management macro
instruction facilities of TSS. The data
manageaent facilities to be used are deter
mined by the type of I/O statement issued
in the user's program and by related DDEF
commands that define such things as the
type of records being transferred, and the
manner in which they should be processed.

In general, either VAM or BSAM macro in
structions may be used. When BSAM is used,
the control routine employs its own intern
al buffering to speed up processing. The
list of FORTRAN statements, below, identi
fies th~ principal macro instructions used
for each statement; of course, other in
structions, such as OPEN and CLOSE, must be
used in conjunction with these.

READ obtains a logical record from a user
specified input source by using the READ,
GATRD, or GET macro instruction.

WRITE initializes writing a logical record
by establishing pointers to the output
buffer area. Subsequent output process
ing is perform ed by using the WRITE,
GITWR, or PUT macro instruction.

REWIND repositions the user-specified vol
Ulle of one or more data sets to the, first

FORTRAN & PLII (F) INTERFACES

record of the first data set by using the
POINT or SETL macro instruction.

BACKSPACE repositions the user-specified
data set to the previous logical record
by using the NOTE, POINT, SETL, and BSP
macro instructions.

ENDFILE defines the end of the user
specified data set by using the WRITE and
STOW macro instructions.

PL/I IF) INTERFACES

Like FORTRA¥, Pl/I (F) provides library
modules that greatly simplify the use of
the systemls data management routines. The
user need only issue DDEFs describing each
data set, other than SYSIH or SYSOUT, that
he expects his programs to access, and fol
low PL/I (F) language requirements for
specifying data characteristics. (PL/I in
Programmer's Guide and PLII (F) Language
Reference "anual tell how to specify data
characteristics from within the PL/I (F)
language .)

For the DISPLAY statement, library
module IHEiDSP is a direct interface be
tween the compiled code and the GATE macro
facili.ties. For STREA~ I/O, there is no
single interface with compiled code; the
type of STREA~ I/O statement being executed
determines which library module is invoked
by compiled code. Each STREAM I/O state
ment finally invokes module IHEWIOF to
issue the macro instruction. For RECORD
I/O, the si.ngle interface with compiled
code is module IHEWION, which interprets
the I/O request, verifies its validity, and
calls the library module that issues the
appropriate macro instruction.

Table 4 summarizes the PL/I (F) inter
face with data management.

Command System Interfaces 51

Table 4. PL/I (F) Interface With Data P!anagement
I I I , , , ,
r TYPE , FILE I ACCESS f MODULE ISSUING I PL/I I/O I MACRO I
I OF I/O I DECLARATION I METHOD USED f MACRO INSTRUCTION , STATE~ENT , INSTRUCTION ,
I , I , I I I
I DISPLAY I I TAMIl r IHEWDSP , DISPLAY , GATWR and/or f
I I , I I I GATRD I
I I t , , J ,
I STREAK J I QSAl"I, , IHEWIOF I GET I GET (move Jlode) I , , , VSAl"I, or r I I or SYSIN r
I I , TAMIl I I f I
I r I I I , r
I I I I I PUT , PUT (move Jlode) ,
f I , , , I or GATWR ,
I I I , I I ,
I RECORD I CONSECUTIVE, I QSAH , IHEiITG I READ f GET I
f J SEQU EIfT! AL , , or , I I (locate Jlode) J , I BUFFERED I VSAM I I I I , I , I , WRITE J PUT , , I I I I I (locate mode) , , I I I , , I
I I I , I LOCATE I PUT I , I , I I I (locate aode) I , I , , I I , , , I I I REWRITE I PUTX I
t , I I , , ,
I I CONSECUTIVE, I BSAM I IHEWITB I READ I READ I
J I SEQUENTIAL, , , I I ,
I I UNBUFFERED , f I WRITE I WRITE I , , J , , I , , I I r , REWRITE I WRITE I , , I I , I , , I INDEXED, , VISAM , IHEiITD I READ , ESETL or SETL I , r SEQU ENT! AL , J , (for format-F) t I to position, ,
I I BUFFERED or I I IHEWITN I I GET I
I I UNBUFFERED I I (for format-V) I I (locate mode) I , I J , , , to read I , I I I , , I , , r , , WRITE I PUT ,
f I I I , I (locate aode) I , , , , I , ,
I , I t I LOCATE I PUT I
I , I , I I (locate mode) , , f , , , , ,
I , , , f REWRITE I WRITE , , , , r I , ,
f r I r , DELETE I DELREC , , I I I I I , , , INDEXED, I VISAM , IHEWITE , READ , READ , , , DIRECT, , , (for foraat-F) I I ,
I , BUFFERED or , , IHEWITM I WRITE , WRITE I
I , UNBUFFERED , I (for format-V) I , ,
I , I I I REWRITE I WRITE I
r , , I I I ,
I , I , , DELETE I DELREC I
I I I I

52

Tiae Sharing uses several groups of
labels to identify direct access and mag
netic tape voluaes, and the data sets; they
contain, on secondary storage. The labels,
used to locate the data sets, are identi
fied and verified by the label processing
routi.nes.

The use of standard labels enables the
systea to identify voluaes and ensure that
the correct voluae i.s being used. and that
no current inforaation is inadverten1:1y
destroyed.

DIRECT ACCESS VOLUMES

Direct access volu.es play a .ajor role in
'rss; they are used to store

• Privileged service routines

• The system catalog

• The systea library

In addition, all public storage resides
on direct access volumes. All data sets in
public storage are organized as virtual
access lIethod (VAft) data sets. A direct
access volume used for private data sets
aay contain all VAK type or all physical
sequential type data sets but not both
types on one volume.

VAft Data Sets

with the exception of tracks 0 anti 1 on
cylinder 1 (which are reserved for systea
generated volume information), each VAft
foraatted direct access volume is arranged
into a succession of contiguous pages, each
Q096 bytes long. The first accessible page
of the volume (which starts on byte 1,
track 2, cylinder 1) is referred to .:is rel
ative page 0, and all other pages are num
bered consecutively. Other pages need not
begin on track boundaries. Locations in a
voluae are referenced by relative pacJe nua
ber rather than by cylinder and track
nuabers.

The standard voluae label, resident on
cylinder 0, track 1, contains a poin·ter to
the page assignment table (PAT) which is
one page long for volumes of type 2311, two
pages for type 231Q, six pages for type
3330, twelve pages for type 333B, and six
teen pages for type 3350. The page ;assign
.ent table contains a one-byte field for
each page in the vol Ulle, arranged in

APPENDIX A: SECONDARY STORAGE LABEL FORft!'!'

sequence, and is used for the allocation of
the pages on the volulle. This field indi
cates whether the page is free and availa
ble for writing, in current use as a data
set page, in use as a DSCB page, or
unavailable.

A data set page contains part of a data
set. A data set control block (DSCB) of
Foraat-E is associated with each data set.
Each DSCB is 256 bytes in extent with a
44-byte key containing the data set name.
DseBs reside on DseB pages, 16 DSCBs to a
page. They are not necessarily on the salle
volume as the data sets (or individual
pages of the data sets) to which they
refer. The 212-byte data portion of the
DseB contains the description of the data
set and its location in storage, by volume
and page numbers. If the DSCB is not long
enough to contain the list of all page num
bers, the additional information is con
tained in one or more type-F DSCBs.

When a data set is created, space is
allocated for its data information and for
the associated DSCB. A data set descriptor
(DSD) is placed in the user's catalog entry
and gives the location of the format-E DSCB
which in turn gives the location of the
data set's data pages.

VAK data sets on public storage are
always mounted, but VAft-forllatted private
volumes must be mounted before the data can
be accessed. Accordingly, the DSD for a
data set on a private volume Ilust also con
tain a pointer to the volume on which the
data set resides, if it resides on one vol
ume, and to the volume on which the E
format DSCB resides, if the data set
extends over more than one volume.

The DSCBs contain pointers to the public
volume table (PVT) which is maintained by
the system in shared virtual storage.
Volumes are referenced by relative volume
numbers which the public volume table
translates into symbolic volume addresses.

Standard VolUme Label (Figure 12): The
standard volume label resides on cylinder
0, track 1 of the volume. The fields in
the label are the same as those in the mag
netic tape volume label, described in table
4, with these exceptions:

PAT page
pointer

contains the relative
page number of the be
ginning of the PAT.

Appendix A: Secondary storage Label Format 53

Device type

Volume status
indicator

Public volume
number

VA!! format
indicator

Contains the device
type: 2311, 2314,
3330, 333B, or 3350.

Indicates the status of
the volume:
'00' = private volume
120' = public volume

Contains the relative
volume number of this
volume vithin a set of
public volUlles.

Indicates VAM format:
'V2' = VAM2 format

scribed in Figure 12, will be prefixed by a
key of characters ·VOL1" and the fields
viII be displaced by 4 bytes.

Format-E DSCB IFigure 13): This format is
common to all VAM data sets. The format-E
DSCB is the data set label; it corresponds
to a tape header label. Also, it describes
up to 38 pages of the data set. The format
of the external page entries is described
in Figure 14.

Rote: System programmers using the Time
Sharing Support System (TSSS) must expect
an 84 byte voluae label; the label, as de-

Format-F DSCB (Figure 15): This format is
used to describe additional pages of a VAM
data set, if there are more than can be de
scribed in the format-E DSCB. If addition
al space is needed, this DSCB viII point to
another format-F DSCB. The format of the
external page entries is described in
Figure 14.

I
! J

VOL I Vol ume PA T
(' b I i (volume 0 I Volume

I I
Vo I ume Publ i c I ,Reserved I Owner name-

Device status. volume I (currently ! and-address
VAM
Format
indicator

Reserved
(cu rrentl y
biank)

,0 e r serlO • page
°d tOfO) I label b secunty 0

, ." ,N m+"' CO'''"'

~-;:;-t~.' i "d- 11 ! 12-'3

type i indicator number I blank! ! code

I "-F t-18--i-~~~-;~- 42-51

Figure 12. Standard Volume Label (VA~ only)

Data System Pad Noo of bytes Record Spare Data ! (12 bits unused) Sp.:Jre Key. I Key Secondary

set code for used in lost format

nome index oClta page
s.equential

-

1-44 45-57 58 59-60 61

Total no. of Spare Refer- Change Spare
pages ass i gned ence date
(Data set size date

at CLOSE)

83-84 85 86-88 89-91 92-96

Figure 13. For.at~ DseB

o

Relati ve

volume

number

(J2bits)

Assignment flog:

15 16

External

page
number
(16 bits)

31

00 jf page is assigned and in use
10 if page is assigned and unused

set I Record length
! ,; \ .
en9T~ , iocatlon ollocofon

organi- (20 bits)
zation I ,

t

I
62 63-64 65-68 69 70 7l-72 , 73-76

I

!
I I ---II \---y--

List of volumes for private data set I External poge Pointer
(each 6 bytes, variable ie~gth)

External page entries (for public 'lois)
(each 4 bytes long)

97-248
i , ,

I each
4 bytes
(on full-word
boundar i es)

list of volumes for private data set
(each 6 bytes, variable length) ctd f rom
Format-E DSCB if required

External page entries each

4 bytes long (on full-word boundarie s)
(

J
1-248

(
J

I External poge
I entries, each
I 4 bytes iono
I . -

'.on full-word
boundaries)

Figure 14. External Page Entry Figure 15. Format-F DSCB

54

52-53 54-80

No. of Noo of Noo of
data directory over'fiow

pages. pages pages

77-71! 79-80 fq

Check
sum

Pointer DSCB DSCB

to next type 10

DSCB if
chained

249-252 253 254

Noo of
private
''lois

82

Check
sum

1 255-256

Ph.ysical s'eguential Data Sets

Each. private storage voluae that is for
aatted for the physical sequential access
method has a voluae table of contents
(Y'fOC) that describes its contents; 1:he

YTOC contains all data set control blocks
(DSCBs) for the data sets contained ()n that
voluae. The VTOC may be located anywhere
on the voluae, starting on a track b()unda
rYe It aay vary in size, but always has an
integral number of tracks. The star1ting
address of the VTOC is recorded in the
standard volume label (refer to Figure 16).

~he standard volume label resides on
cylinder 0, track 0, of the volume. When
the volume enters the systea, the st,lndard
voluae label and the YTOC are createil. All
space on the volume (except the spacl~ occu
pied by the volume label and VTOC) is then
available for allocation.

The foraat of V10C is specified when the
volume enters the Sf stem. All recorc!.s have
a •• -byte key and a 96-byte data por1l:.ion.
Each of these records becomes a DSCB r of
varying type, and describes the attributes
and extents of a data set.

Each DSCB contains the naae, desclrip
tion, and location on the voluae of its as
sociated data set. It is created by the
system when the data set is stored 0:11 the
volume. The DSCB serves as the data set's
label and contains information simil'!lr to
aagnetic-tape labels.

Cylinders

~~~~~ Cylinder 0-
T'ock 0 ,---------.-, 

Standard Volume Label 

r--------.--,--.--

I 
VTOC 

VTOC DSCB 

First Space-Accounting DSCB 

First DSCB on Volume 

I 
Second DSCB on Volume 

! 
I 

Last DSCB on Volum" J __ t_ 
Blank Storage Area 

for Data Sets 

Figure 16. Direct Access Labels for Phys
ical sequential Data Sets 

The DSCBs are entered into the VTOC as 
they are created and are placed in the 
first available space, starting. with the 
VTOC-DSCB (a format-4 DSCB). Available 
DSCB plots are recognized by a key field of 
binary Os. When a data set is deleted, ~ts 
DSCB is overwritten with Os, aaking it a 
foraat-o DSCB. As available extents in
crease, aore direct access device storage 
management {DADS~} DSCBs are entered into 
the first available slot. At any timer the 
VTOC has a aixture of formats-1, -3, -4, 
and -5 DSCBs, and "holes" for format-O 
DSCBs. These formats viII be explained 
below. 

DSCBs in foraats -3 and -5 will appear 
to have a key length of 44 bytes, but por
tions of the key may actually contain data. 
The DSCBs are all assigned the saae format 
to provide the flexibility to convert an 
available DSCB (format-O) to another type 
of DSCB, and back again, vithout the neces
sity for changing the for.at or modifying 
the channel prograas that act upon thea. 

Standard Volume Label {Figure 111: Always 
the third record on cylinder 0, track 0, of 
the volume; this label identifies the vol
ume. The fields in the label are the saae 
as tho~ in the magnetic tape volume label, 
described in Table 4, except for bytes 
12-21, which contain the address of the 
VTOC. 

Note: System programmers using the Time 
Sharing Support Systea (TSSS) aust expect 
an 84 byte volume label; the label as de
scribed in Figure 11, viII be prefixed by a 
key of characters 'VOL1' and the fields 
will be displaced by 4 bytes. 

Format-O DSCB: This is the standard format 
of a data record in the VToe that is not 
currently occupied by any other format of 
DSCB. The key and data portions contain 
binary Os. 

Format-l DSCB (Figure 18): This foraat is 
common to all physical sequential data 
sets. It consists of a 44-byte key field 
and a 96-byte data field. The format-l 
DSCB is the data set label for direct 
access volumes; it corresponds to a tape 
header label. Also, it describes up to 
three sets of contiguous tracks or cylin
ders on which the data set resides. 

Format-3 DSCB (Figure 19): This format is 
used to describe e~tra extents of a data 
set, if there are more than can be describ
ed in the format-1 DSCB. If additional 
space is needed, this DSCB will point to 
another format-3 DSCB. 

Foraat-4 DSCB (Figure 20): This format is 
the first DSCB in the VTOC of physical 
sequential volumes. 

Appendix A: Secondary Storage Label Format 55 



VOL 1 Volume Reserved Owner name- Reserved 
(label 

{volume serial Volume VTOe 
{currently and-address (currently 

label security pointer I identifier) 
number) 

number blank) code blank) 

1-3 4 5-10 11 12-21 32-41 42-51 52-80 

Pigure 11. Standard Voluae Label (Physical Sequential Data Sets on Direct Access) 

Data set Fl Data set Volume Creation Expiration Number of Not Spare System Reserved ) name (hexa- serio! sequence date date extents on used code 
decimal) number number volume 

format 

identifier 
I 

]-44 45 46-51 52-53 54-56 57-59 60 61 62 63-75 76-82 ) 

Data set Record Option Block Record Key Key Dota set Original Secondary Last 
type format code length length length location indicator request allocation record 

for space painter 

83-84 85 86 87-88 89-90 9] 92-93 94 95 96-98 99-103 ) 

) Spare Extent Extent Lower Upper Additional Additional Pointer 
type sequence limit limit extents extents to next 

indicator number (same as (same as DSCB 
bytes bytes record 

106-115) 106-115) 

2 104-105 106 107 108-111 112-115 116-125 126-135 136-140 

Figure 18. Format-l DSCB 

03030303 Extent (in key)- F3 Additional extents; Pointer to next 
(hexadecimal) 4 groups of (hexadecimal) 9 groups of fields format -3 

fjelds similar to format identifier s im i lor to bytes OSCS 
bytes 106-115 in 106-115 in 
format- I OSCE> format- 1 OSCB 

1-4 5-44 45 46-135 136-140 

Fignre 19. For.at-3 DSCB 

56 



Key field F4 Last active Available 
(contains (hexadecimal) format-l DSCB 
hexadecimal format identifier or format-A records 
04s} DSCB 

1-44 45 46-50 51-52 

\ 
Reserved Device Spore Gross I 

constants available 
space 

( 61-62 63-76 77-95 96-100 

Figure 20. Format-4 DSCB 

05050505 Available extent 

(hexadecimal) 
Key Relative Number Number 
identification track of full of additional 

address cy I inders tracks 

1-4 5-6 7-8 9 

Figure 21. Format-5 DSCB 

Format-5 DSCB (Figur~l1l: This fon.at is 
alvays the second VTOC-DSCB for a volume 
containing physical sequential data sets. 
It describes available extents on thl~ vol
ume. If additional extents are needed, 
this DSCB is chained to other forllat'-5 
DSCBs. 

I!AGNETIC TAPE VOLUME S 

f!agnetic tapes ma y be unlabeled o:r: have 
standard labels. The control program sup
plies routines for automatic positioning 
and volume switching of such volumes. 

All standard tape labels are 80-
character records, written in extended 
binary coded decillal interchange code 
(EBCDIC) on nine-track tape units, and in 
binary coded decimal (BCD) or the AII'erican 
National Standard COde for Information In
terchange, ANSI X3.4-1968 (hereafter re
ferred to as ASCII) on seven-track units. 
The tape label is recorded in the same 
density as the data on the tape, specified 
in the DDEF command. 

Standard Tape Organization 

The organizations of standard labels and 
data on magnetic tape, for the tape organi
zations below, are illustrated in Figure 
22. 

Next Number of VTOC 01 

~ available available indicators (hexadec ima I) 
alternate alternate number of 
track track 

I 
extents. 

53-56 57-58 59 60 \ 

Pointer to VTOC extent- Spare 
format-6 same as bytes 
DSCB 106-115 in 

format-l 
DSCB 

101-105 106-115 116-140 

Available F5 Avai lable Pointer 
extents (in (hexadecimal) extents (same to next 

key) - same formc!t format as formot-5 
form as. identifier bytes 5-9) DSCB 
bytes 5-9 

10-44 45 46-135 136-140 

Single Data Set/Single Volume: The volume 
begins vith a volume label. The data set 
begins with a data set header label, a user 
header label (optional), and a tape mark. 
The entire content of the data set is next. 
The last data block is followed by a tape 
mark and an EOF trailer label group, which 
is followed by the two tape marks that are 
the last records on the volume. 

Single Data Set/I!ulti Volume: This is a 
simple expansion of the preceding descrip
tion, where the amount of information re
quires more than one volume. All volumes, 
except the last, of the set will contain 
the same organization as for a single data 
set/single volume, except that the trailer 
will be of an EOV trailer label group. The 
last volume viII have the same organiza
tion, except that the trailer group will be 
an EOF trailer label group, followed by two 
tape marks. 

ftulti-Data Set/Single Volume: The volume 
begins with a volume label. Every data set 
will start with a data set header label, a 
user header label (optional), and one tape 
mark. The data set follows. Every data 
set (except the last) will conclude with a 
tape mark, an EOF trailer label group, and 
another tape mark. The last data set is 
the same, except that the EOF trailer label 
group is followed by two tape marks. 

Appendix A: Secondary Storage Label Format 57 



1. Single data set/single volume 

Data blocks 

2. Single data set/multi-volume (Volume 1 of 2) 

V H T T E T 
0 D M First part of data set N M 0 M 
l R V 

(Volume 2 of 2) 

V H T T E T T 
0 D M Last part of data set N M 0 M M i L R F 

3. Multi-data set/single volume 

V H T T E T H T T E T T ') 
0 D M Data set A M 0 M D M Data set B M 0 M M ~ l R F R F 

4. Multi-data set/multi-volume set (Volume 1 of 3) 

V H T T E T H T T E T 

? 
0 D M Data set A M 0 M D M Doto set 8 M 0 M 
l R F R V 

(Volume 2 of 3) 

V H T T E T c 

0 D M Continuation of dota set B M 0 M ) 
l R V 

(Volume 3 of 3) 

V H T 
Last part of 

T E T H T T E T T ( 

0 D M M 0 M D M Data set C M 0 M M ) 
L R 

data set B 
F R F ( 

Note: This is an example (Volumes 1 through 3, inclusive) of the successive recording of data sets on physical volumes to maximize tape use. 

Figure 22. Standard Label and Data Organization on Kagnetic Tape 

Kulti-Data Set/Kulti Volume: This volume 
is similar to the previous one, except that 
the a.ount of information requires more 
than one volu.e. These rules must be fol
loYed in producing the additional volumes: 

1. Each volume, except the last, must 
conclude with a tape mark, an EOV 
trailer label group, and a tape mark. 

2. Each volume begins with a volume 
lahel. 

3. The initial data set header label on 
each volume, except the first, is a 
repetition of the last data set header 
label on the previous volume, with the 
exception of the volume sequence 
nusber. 

58 

The volume label identifies a volume and 
its owner, and is used to verify that the 
correct volume is mounted. It can also be 
used to prevent use of the volume by au
thorized programs. 

Tables 5 and 6 show the organization of 
standard tape labels and describe their 
fields. 

A tape using standard labels is identi
fied as such by the system when it reads 
the initial record, and determines that it 
is a volume label by finding that these 
criteria have been met: 

• Initial record consists of 84 
characters 



• First four characters of the reco:c-d are 
VOLl 

The system autoaatically checks thle vol
ume label to ensure that it is in the prop
er format; if the format is correct ,the 
system checks the label information. 
Should the check indicate an error (for ex
ample, the system finds that the wrong vol
ume has been mouuted), it issues a message 
to the operator. Similarly, messages are 
issued if errors are detected in other 
label and format checks. 

Data Set Beader Label Group 

The data set header label group consists 
of BDRl and BDR2. These labels are created 
by the system when the data is recorded. 
BDR1, as shown in Tables 7 and 8, contain 
system data and device-dependent informa
tion. HDR2, shown in Tables 9 and 10, con
tain data set attributes. If there are no 
user header labels, BDR2 is followed by a 
tape mark. The group can be used in 
forward-reading operations to: 

• Locate the data set 

• Verify reference to the data set 

• Provide information for the DCB. 

User Header Label Group 

1 maximua of eight user header labels 
may follow the data set header label group. 
The labels are written by the system, as 
directed by the problem program that rec
ords the tape. The group is ended by a 
tape mark. 

When the tape is read, the user header 
label group is made available to the pro
blem program by the system; the format of a 
label is shown in Table 11 • 

Data set Trailer Label Group 

The data set trailer label group con
sists of two labels that duplicate the data 
set header labels to facilitate backward 
reading of the tape. The format for the 
trailer labels is identical to the data set 
header labels, except for the fields shown 
in Table 12. These labels duplicate the 
data set header labels to facilitate back
ward reading of tape. Location and verifi
cation of the data sets can also be 
achieved with data set trailer labels. 

User Trailer Label Group 

A maximum of eight user trailer labels 
can, optionally, follow the data set trail
er label group_ They are written exactly 

Table 5. EBCDIC Volume Label Forma1: (ftagnetic Ta.pe) 

I Field 
I Number 
I 
, 1 
I 
I 
I 2 
J 

• I 3 
f 
I 
I , 
I 
I , 
I 4 
I 
I 5 
I 
, 6 , 
I-
, 7 

I 
, 8 
I 
I 
I 9 

Position I 
(Bytes) I 

I 
1-3 , 

I 
I 

4 I 
I 
f 

5-10 f 
I 
I 
I 
I 
I 
I 
I 

11 I , 
12-21 , 

f 
22-31 I 

I 
I 

32-41 I 
I 

42-51 , 
I 
f 

52-80 I 

, 
I 

Name I 
I 

Volume label identifier I 
I 
I 

Volume label number , 
I , 

Volume serial number I , 
I 
I 
I 
I 
I 
I 

Not used by TSS , , 
Reserved I 

I 
Reserved for manufac- I 
turers I 

I 
Reserved , 

I 
Owner name-and-address , 
code I , 
Reserved , 

Use 

Contains "VOL" to indicate record is 
volume label 

Contains "1" to indicate this is first 
volume label 

I Contains unique identification code, 
assigned when volume entered system; 
can be copied on external surface of 
reel for visual identification; field 
normally numeric (000001-999999), but 
may contain any six alphameric 
characters 

it , , 

Recorded as EBCDIC Os 

Recorded as blanks 

Reserved for future use; must be blank 

Reserved for future use; must be blank 

contains unique identification of owner 
of volume 

Reserved for future use; must be blank 

I 
f 
I 
I , 

I 
I , 

Appendix A: secondary storage Label Format 59 



the same as the user header labels, except 
for the difference noted in Table 13. 

User trailer labels specify information 
pertaining to the data sets on the volume. 
These labels contain information that can 
not be put into the standard header labels 
or into the records themselves. 

A common use of these labels is to store 
control information (for example, the num
ber of records in the data set, or the num
ber of read-errors encountered in reading 
the data set) • 

Table 6. ASCII Volume Label Format (Magnetic Tape) 
I 
t Field 
, Jlumber 
I 
, 1 
I 

• , 2 
I 
I 
I 3 
I , 
I 
r 4 
I , 
t 
I 
I 
I 
I 5 , 
I 
, 6 
I 
I 
I 7 
I 
I 8 , 
I 
I 9 
t 
I , 
f 
I 

60 

i 1 
I Position I 
I (Bytes) , 
I , 
I 1-3 I 
I I 
, I 
I 4 , 
I I , , 
I 5-10 , 
I I 
, I 
, I 
f 11 I 
I I , , 
, I 
I I , , 
I I 
I 12-31 , 
I I 
, I 
, 32-37 , 
I I , , 
I 38-51 I , , 
t 52-79 I 
I I 
I I 
I 80 , 
I I 
I , 
I , , , 

Hame 

Volume Label Identifier 

Volume Label Humber 

Volume Serial Number 

Volume Accessibility 

Reserved for future 
standardization 

Reserved for future 
standardization 

Owner Identification 

Reserved for future 
standardization 

Label Standard Level 

Use 

I Contains "VOL" to indicate record is 
I volume label , 

, , , 
r 
I 
I , 

contains "1" to indicate this is first 
volume label 

contains six alphameric characters per- I 
manently assigned by the owner to iden- I 
tify this volume I 

An alphameric character indicating 
restrictions on access to the volume. 
A blank indicates unlimited access; any 
other character indicates special han
dling according to the agreement be
tween interchange parties. 

Must contain blanks 

~ust contain blanks 

contains unique ID of owner of volume 

ftust contain blanks 

May contain a "1" or blank. One (1) 
indicates volume labels and data for
mats conform to this standard. Blank 
indicates labels and data formats re
quire agreement of interchange parties. 

I , 
I , , 
I 
I 
I 



'l'ab1e 7. EBCDIC Data Set Beader-l Label Fonat , , i i , 
I Field , Position I I f 
I )lnaher I (Bytes) I Ifaae , Use , 
I , I I t 
I 1 I 1-3 I Label identifier , contains "BDRn to indicate this is , 
I I I r header label I 
I I , , t 
r 2 , 4 I Data set label nuaber I Contains "In to indicate this is first I i 

t , r r data set header label I 
t , I I , , 3 I 5-21 J Data set identifier I Identifies data set; may contain only I 
I I I J alphameric characters r 
• 

, I , , 
t " I 22-27 I Data set seriall nuaber , Contains same identification code as in I 
I , , , field .3 of the initial voluae label of , , , I r the voluae on which the data set I 
I I I I resides or of the first volume of a r 
f , r I aultidata set aggregate , 
I I I I , 
I 5 1 28-31 , Tol uae sequenc:e nu.ber , Indicates voluae on which data set is I , r f I recorded, relative to volume on which , 
I I I I data set or aggregate begins I 
I , , I , 
I 6 I 32-35 I Data set sequence I Indicates position of data set relative I 
I I I number I to first data set in aggregate; range I , , I I from 0001 to 9999 , 
I , I I f , 7 J 36-39 I Generation nu •. ber I Indicates generation nuaber (0001-9999) I 
I I I , of data set I 
I I , , , 
I 8 I 40-41 I Version number of r Indicates version of generation of data I 
I I , generation I set f 
I I , , , , 9 J 42-47 , Creation date I Indicates year and day data set was I , , r , created; recorded as bYIDDD (yy is I 
I I , I 00-99 and DDD is 001-366) , 
I I , , r 
I 10 I 48-53 I Expiration date , Indicates first day tape .ay be over- t 
r r I I written; recorded as bYYDDD I 
I I I I ~ , 11 f 54 I Rot used by TSS I Contains EBCDIC Os I 
I I , , , , 12 I 55-60 I Unused I Contains Os I 
I I , , , 
I 13 I 61-73 I system code I Contains unique identification of pro- f , I I r gra.aing system I 
I , I f , , 14 , 74-80 , Reserved I Reserved for future use; aust be blank I 
I I I I 

Appendix A: Secondary Storage Label Format 61 



Table 8. ASCII Tape Data Set Beader-1 Label Format 
i 
, Field 
I Bumber 
I 
, 1 
I 
I 
, 2 
J 
I 
, 3 , , 
I 4 
r , 
I 
I 
I 
I 5 
I 
I 
I 
, 6 
I , 
I 
I 7 , 
I 
I 8 , 
J 
J 9 
I , 
I 
I 10 , 
I 
I 11 , 
I 
I , 
I 
I 
I 12 
I 
f 13 
I 
t 
, 14 
• 

62 

I i 
, Position I 
I (Bytes) t 
, I 
f 1-3 I 
I I 
I , ,4 , , , 
I I 
,5-21 I 
I I 
, t 
I 22-27 I 
I I 
I , 
I I 
, I 
I I 
I 28-31 I 
, I 
J I , , 
t 32-35 I 
I I 
r J , , 
, 36-39 I 
I I 
, I 
I 40-41 I 
I I , , 
I 42-47 I , , 
, I 
, I 
I 48-53 I 
, I , , 
I 511 I 
t I 
I I 
I I 
I , 
I I , , 
I 55-60 I , , 
I 61-73 I 
, I 
I I 
I 74-80 I 
, I 

Balle 

Label identifier 

Data set label number 

Data set identifier 

Data set serial nUllber 

Volume sequence nUllber 

Data set sequence 
number 

Generation number 
(optional) 

Version number of 
generation (optional) 

Creation date 

Expiration date 

Data set accessibility 

Block count 

system code 
(optional) 

Reserved 

Use 

, Contains "HDR" to indicate this is 
, header label , 

, 
I , 
r 
t , 

I , 
r 
I 
r 
I , 

Contains "1" to indicate this is first 
data set header label 

Identifies data set; l1ay-".~ntain only 
alphameric characters 

Contains same identification code as 
field 13 of the initial volume label 
the volume on which the data set 
resides or of the first volume of a 
multidata set aggregate 

in , 
of I 

I , 
Indicates volume on which data set is 
recorded, relative to volUlle on which 
data set or aggregate begins 

Indicates position of data set relative 
to first data set in aggregate; range 
from 0001 to 9999 

Indicates generation nuaber (0001-9999) 
of data set 

Indicates version of generation of data 
set 

Indicates year and day data set was 
created; recorded as bYYDDD (YY is 
00-99 and DDD is 001-366) 

Indicates first day tape may be over
written; recorded as bYYDDD 

contains an alphameric indicating 
access restrictions to this data set. 
A blank indicates unlimited access; any 
other character indicates special han
dling according to agree.Jnt between 
interchange parties. 

Knst contain zeros 

Contains unique identification of pro
gra •• ing system 

Reserved for future use; must be blank 

I , 



Table 9. EBCDIC Data Set Beader-2 Label Pormat 

• I Pield 
, liu.ber , 
I 1 
J 
I 2 , 
I 
, 3 
I 
I 
J 
I 
, lJ , 
I 
r , , 
I 
I 5 , , 
I 
r , 
I 
I 
I 6 
I , 
I 
I 
t 
I 
I , 
I 
, 1 

I , 
J 
I 
r 
I 
J 8 
I 
J 9 , 
I , 
I , , 
I 
I 
I 
I 
I , 
I , 
J , 
f , 
I 
• 

1 I 
, Position , 
I (Bytes) I liame , , 
I 1-3 J Label identifier 
, r 
I 4 I Data set label number 
, I 
I I 
,5 , Record format 
I I 
I I 
I I 
I I 
I 6-10 I Block length 
I I 
I I , , , , 
I I , , 
I 11-15 I Logical record length , , , , 
I I 
f I 
r , 
I I 
I I 
I 16 , Density 
I I 
I I 
I t 
I I 
r J 
I I 
I , 
t , , . 
I 11 f Data set position 
I I , , 
, I 
I I , , 
I I 
, 18-34 I Not used by TSS 
I , 
I 35-36 ,Tape recording 
I I technique 
I I , , 
I I 
f I 
I I , , 
I , 
I I 
I , , , 
I I 
, I 
I I 
I I 
I I 
I , 
I , 
I I 
, I 

i I 
, r 
r Use , 
I , 
I Contains "HDRn to indicate header label , , , 
, Contains "2n to indicate second data J 
, set header label t , , 
f Indicates format of records: t 
, P - Pixed length , 
I V - Variable length , 
I U - Undefined I , , 
I Indicates length of block; interpreta- I 
I tion of field depends on format speci- , 
I fied in field 13: , 
f Format F - Length of a physical block I 
, Pormat V - "aximum length of a block , 
, Pormat U - "aximum length of a block I , , 
I Indicates length of logical record; in- , 
I terpretation depends on record format , 
I specified in field '3: I 
I Por.at P - Length of a logical record I 
, Format V - Maximum logical record I 
I length , 
I Pormat U - This field contains Os I , , 
t Indicates tape density: , 
, Density (bits/inch) , 
I Model 2400 I 
r DEN Value 1-track 9-track , 
I 0 200 , 
, 1 556 , 
I 2 BOO BOO I 
I 3 1600, ,4 6250, , , 
I Indicates whether volume switched pre- , 
I viously for data set; volume switched, , 
I 1 is written; if not, 0 is written; , 
, when tape is read backwards, this in- , 
I formation indicates when volume switch I 
, is required I 
I I 
I Must be blank , , , 
I Indicates, for 1-track tape, technique t 
, in creating this data set , 
I • 
I BCD Code Meaning I 
J , 
I Cb Data conversion fea- , 
I ture used , . , 
t Eb Even parity used , 
I r 
, Tb BCD to EBCDIC trans- I 
I lation required I 
t , 
J ET Even parity used; I 
I BCD to EBCDIC trans- , 
, lation required r 
I , 
, bb Odd parity, no trans- , 
I lation required; or I 
, this is 9-track tape I 
I , 

Appendix A: Secondary Storage Label Format 63 



Table 9. EBCDIC Data Set Header-2 Label Format 

10 37 Control character 

11 38-80 Reserved 

Table 10. ASCII Data set Header-2 Label Format , 
I Field 
I lIumber , 
, 1 , 
, 2 , 
I 
, 3 
I , 
r 
I , 
I 4 , 
f 
I 
r 5 
I 
-f 
I 
r , , 
• , 6 
I 
I 
I 7 
I 
I 
I 
I 
I 8 , 
, 

64 

i 

I Position 
, (Bytes) 
I 
, 1-3 
I 
J LJ , , 
f 5 
I 
I 
I 
I , 
I 6-10 
I , , 
, 11-15 
I , , 
I , , , 
I 16-50 
I 
f 
I 51-52 
I 
I 
I 
I 
I 53-80 
I 
I 

, i 
I , 
, Name I 
I I 
, Label identifier I 
I r 
I Data set label number I 
I , 
, I 
f Record Format , 
f I 
I I , , 
, I 
I , 
I Block length , 
I I , , 
I , 
, Logical record length , 
t I 
I I 
r , 
, I 
I I , , 
, I 
, Reserved for operating t 
t systems I 
, I 
I Buffer offset (optional), , , 
I I 
I I , , 
I Reserved for future I 
, standardization I 
I , 

(continued) , 
Indicates type of control character I 
(first data character of each record) f 
used to control printer-spacing and , 
punch-selection: , 
A - American National Standard FORTRAN , 

control character I 
M - Machine-code control character , 
b - No control character used I 

t 
!lust be blank I 

I 

Use 

Contains "HDR" to indicate header label I , 
Contains "2" to indicate second data 
set header label 

Indicates format of records: 
F - Fixed length 
D - Variable length (specified in 

decimal) 
U - Undefined 

Contains five numeric characters speci
fying the maximull number of characters 
per block 

Indicates length of logical record; in
terpretation depends on record format 
specified in field .3: 
Format F - Length of logical record 
Format D Maximull logical record 

Format U 
length (count fields incl.) 
Contain zeros 

contains alphameric characters reserved 
for operating systems use 

contains two numeric characters speci
fying the length, in characters, of any 
additional field inserted before a data 
block, e.g., block length 

!lust contain blanks 

I 
I 
-f 

, 
I 
I 
r 
I , , 
I , , , 



Table 11. User Header Label Format 
i I 

Field ., Position , 
Iuaber , (Bytes) ]fame Use f , I 

1 I 1-3 Label identifiE~r Characters "UHL" indicate this is user I 
I header label I 
I , 

2 I q Label number Identifies relative position (1-8) of I , label within label group , , , 
3 I 5-80 User specified Used to specify inforaation pertaining I 

I to data set or sets on vo1uae , 
I I 

Table 12. Data set Trailer Label FOl~mat 
i I 
, Format of trailer labels is identical to data set header labels (Tables 5 and 6), ex- , 
, cept for these fields: , 
I , 
,Field Position , 
I fiu.ber (Bytes) ]fame Use, 
I I 
I 1 1-3 Label identifior Characters "EOV" indicate end of vol- , 
, uae; "EOl'" indicates end of data set; I 
, field indicates this is data set trail- I 
I er label I 
I I 
I 2 q Label number Indicates label is first (1) or second I 
, (2) data set trailer label I 
I , 
I 12 55-60 Block count Indicates number of blocks in data set I 
I on current volume of multi-volume data , 
I set, with range of 000000 to 999999; , 
I indicates nuaber of blocks from last , 
r label of label header group to first , 
I label of trailer label group, exclusive , 
r of tape aarks , , , 

Table B. User Trailer Label Format 
I , 
I Field Position , 
I lIuaber (Bytes) ]fame I Use 
I , 
I 1 1-3 Label identifi'~r I Characters "UTL" indicate this is user , I trailer label 
I I , 2 4 Label number J 13entifies relative position (1-8) of 
I I label within label group 
I , 
I 3 5-80 User specified , Used to specify information pertaining 
I , to data sets on the volume 
I I 

Appendix A: Secondary Storage Label Format 65 



APPENDIX B: DATA SET DEFINING FOR COK~ANDS AND LANGUAGE PROCESSORS 

DATA SET DEFINITIOH RULES FOR LAHGUAGE 
PROCESSING 

Table 14 provides information relating 
to the organization of and DDEF require
ments for data sets involved in assembly, 
compilation and linkage-editing. 

DATA SET DEFINITION RULES FOR TSS COftftANDS 

Table 15 provides information relating 
to the structure of and DDEF requirements 
£or data sets processed by TSS commands. 

Table 14. Data Set Definition Rules for Language Processing 
, j • 

Command I Related Data Sets ,DSORG Data Set Definition Rules r 
r , , 

,ASft ISource program data set. r VI ,Source program data sets: If I 
I (ASSEMBLER) , ,Line data setfsupplied as part of SYSIN datal 
" I ~ set. these data sets do not r 
I IObject module. I VS Irequire any further defini- I 
'( , (VP member) ,tion. If supplied as pre- ( 
I I " stored data sets, they must be I 
, ,Listing data set. ,VI (cataloged. No DDEF required I 
I I ,List data set(prior to an ASH, COBOL, FTB, I 
" I ,FTBH, HASH, PLI or PLIOPT J 
tCOBOL ISource program data set. I VI ,command. I 
I (COBOL) ( (VS ( ( 
I I I , ( 
, IObject module. (VS I r 
" r (VP member) , , 
I. I r I 
, (Listing data set. ,VI, , 
(I 'List data set, I 
I I , , I 
I I Load data set (created by the (VS I I 
, 'program product COBOL '( I 
, tnot yet converted to " , 
, lobject module) • I I I 
I I J f , 
I I Source statements £or inser- I VI I I 
, ,tion by preprocessor (Hote 1). r (VP member) I I 
'I I ~ I 
,Fft ,Source program data set. ,VI I r 
, (FORTRAB) I ,Line data setlObject module: The module is I 
I. "placed in the library at the I 
, ,Object module. 'VS (top of the program library I 
I I I (VP member) t list. If a job library is to I 
'I 'treceive the object module, a t 
I IListing data set. ,VI IDDEF command Bust define the I 
'I ,List data set, library. I 
I I I , I 
I FTNH I Source program data set. ,VI I I 
, (:PORTRAII H , 'VS I , 
I EXTElIDED) I t I I 
r I 'I r 
I ,Obj ect lIodule. I VS I , 
r I J (VP member) ( ( 

" " , I ,Listing data set. ,VI, , 
" ,List data set, I 

'I " I I (Load data set (created by the, VS ,Listing: Ho DDEF command , 
I Iprogram product FORTRAN H I I required , 
, (not yet converted to '( ( 
I lobject module). " , ., , . 

Bote 1: DDEF command is required if VP data set is not USERLIB. 

66 



Table 14. Data set Definition Rnles for Language Processing (Continued) 

• iii I 

I Coaaand I Related Data Sets ,DSORG, Data Set Definition Rules , 
I , " , 
IBASS ISource prograa data set. ,VI ISame rules as for ASK. , 
I (ASSSBLR B) , ,VS I t 
I ~I-------------------------;'----------~' I , 'Object module. 'VS, I 
I I , (VP lIeaber) , I 
I I " , , ,Listing data set. ,VI, , 
I I IList data setl I 
I I " , 
I ,Load data set (created by the I vs I I , 'prograa product ASSEMBL]~R B ,r , , ,not yet converted to " , , I obj ect aodule) • 'I J 
I- , " , 

,Source program data set. I VI ,Same rules as for 15K. , IPLI 
,(PL/I , (P» , ,Line data setl I 

, , 
I 
J , 
I 
I , 
I 
I 
I , 
I 
I 
I , 
I 
I 
J 
I 
I , , 
I 
IPLIOPT 
I (PL/I 
,OPTIIIIZIliG 
I CO!lPILER) 
J 
I , , , , 
I 
I 
I , , 
I , 
I 
• 

, I r r 
IObject module. I VS , I 
r f (VP lIellber) , , 
I I , I 
,Listing data set. 'VS r , 
J ,List data set, I 
t 'I , 
I Load cia ta set (an ob jec1: aod -, VS ,80 DDEF coamand required. , 
,ule that has been created by " , 
,the TSS PL/I {P} coapilor but I I I 
,not converted froll card-iaage I I I 
,fora) • I I , 

I " , ,Source stateaents for inser-, VI ,DDEF cOII.and required if VP I 
,tion by preprocessor. , (VP meaber) ,data set is not USERLIB. , 

• " I ,Storage for: ,VI ,DDEF command required if data , 
I ,Line data setfset is not the KIC.name (0) I 
, 1. Translated source state- , ,data set created automatically, 
I lIents when 48-charncter , , by the preprocessor. , 
I set not used. I I f 
, I I I 
I 2. Source statements gener- " f 
, ated by the preprocessor., I I , " , 
I Source prograa data set.. I VI ,Saae rules as for ASK. , 
, f vs , I , ,r , 
I I J , 

I " I IObject module. I VS I , 
, , (VP aellber) J I 
I I ~ , 
,Listing data set. ,VI, , 
r ,List data set, , 

I " I ,Load data set (created by the' VS , , 
Iprogram product PL/I " I 
, OPTI!lIZING COMPILER no1: yet " I 
,converted to object module). " I 
I 'I , 
ISource state.ents for inser-, VI ,DDEF com.and required if VP , 
Ition by preprocessor. , (VP aember) ,data set is not USERLIB. I 

I I I 

Appendix B: Data Set Defining for Commands and Language Processors 67 



Table 14. Data Set Definition Rules for Language Processing (Continued) 
i 

I Co •• and 
I 
ILliK 
I (LIliKAGE 
I EDITOR) 
I 
I 
I 
t , 
J 
I , 
I 
I 
I , 
I 
I 
I 
I 
t 
I 
• 

I 
I Related Data Sets 
I 
,Source progra. data set. 
I 
I 
ILibraries that are to supply 
lobject .odules. 
J 
f 
I 
I 
ILibrary to receive output ob
Iject module. 
I 
I 
I , , , , 
I 
,Listing data set. 
I 
• 

I 
, DSORG 
I 
, VI 
,Line data , 
, VP 

I 
I , 
I , 
I VP , , 
I 
J , 
I , , , 
, VI 
IList data 

i i 

I Data Set Definition Rules I 
I , 
,Same rules as for ASM, FTN, I 

set,and PLIT (F). I 
, I 
,Each library referred to by I 
IINCLUPE state.ents except I 
fUSERLIB and each job library , 
,used by automatic call .ust be, 
Idefined by a DDEF com.and. I , , 
IIf library at top of program , 
Ilibrary list is to receive , 
!output object module, no addi-! 
,tional DDEF in this task. , 
IIf another library is to re- , 
,ceive output, it must be de- , 
Ifined by previous DDEF commandl 
,and be specified by its ddname, 
,to linkage editor program. , 
t I 
,No DDEF command required. I 

set, I 
I I 

Table 15. Data Set Definition Require.ents for Co •• ands 

• I Co.mand 
t 
,BACK , 
I 
J , 
I 
,BUILTIN 
I , 
t 
I CATALOG , 
I , 
f 
ICDD , 
I 
,CDS 
I , , , 
I , , 
I 
I 
,CLOSE 
I , 
• 

68 

• i 
I Related Data Sets , 
I I 
INew SYSIN data set that is tol 
,control completion of this r 
Itask in nonconversational I 
,.ode. , 
I , , , 
IObject .odule in user's pro- , 
Igraa library hierarchy. I 
, I 
I I 
,Data set to be cataloged. , 
I , 
I f 
I I 
I I 
IData set containing only DDEFI 
,com.ands. , 
I I 
IOriginal data set: Existing, 
Idata set or one or more ae.- I 
!bers of partitioned data set., , , 
I , 
,New copy: Can be data set, , 
lone aember of partitioned l 
Idata set, or entire parti- , 
,tioned data set. , , , 
,Data set to be closed. , 
I I , , . . 

DSORG 

VS, VI 

VP 

PS 

VI 

VS, VI 

vs, VI 

any 

I 

I Data Set Definition , 
INew SYSI1I data set must be 
Icataloged or defined by pre
Ivious DDEF command in I 
,conversational portion of thisl 
,task. I , , 
,Data set must be defined in I 
lcurrent task, or must be I 
,cataloged. r 
I , 
IData set to be cataloged aust , 
,be defined by previous DDEF 1 
Icommand in this task, unless I 
IUPDATE option specified. I 
I , 
,Data set must be cataloged, I 
Idefined in current task. , , , 
,Data set to be copied must be , 
,cataloged or defined by pre- , 
Ivious DDEF co •• and in this , 
,task. t , , 
,Provided by system. I 
I I 
I I , , , , 
,Data set to be closed must be I 
Idefined by previous DDEF co.- I 
,sand in this task. I , , 



Table 15. , 
, Command 
I 
,DATA1 
I 
I , , , , , 
,DEFAULT 
I 
I 
I DELETE , 
I 
IDSS? , , 
I 
I 
I DUftP , 
I 
I 
IEDITZ 
f 
J , 
,ElfDZ 
I 
I 
J 
,ERASE , 
I 
lEVY 
I 
I 
I EXECUTE , 
1 , 
'LIlliE? 
I 
I , 
I 
I LOAD 
I 
t 
I 
I 
I 
,l!ODIFY 
I , 
I 
fPC? , 
I , 
• tPERBIT 
I , , 
, 

Data Set Definition Requirements for Comsands (continued) 
, i i 

, Related Data Sets f DSORG I Data set Definition , , " , 
,Data set to be enterecl. , VS, VI fBo DDEF cOllmand is required if I 
I I ,the data set is to reside on , 
I I ,public storage; data follows , 
, "this cossand in input streaa. , 
, I IIf the data set is to reside· , 
, I Ion private storage a DDEF aust, 
, 'I be issued before the co 1111 and • , I 

I " I ,User profile data set ,VP ,Provided by systell. I 
I SY SPRX in USERLIB. I I I , " , 
, Da ta set whose naae is to be I Any I Bo DDEF coamand required for 'i 
,removed fro a catalog., Ithis cosaand. I 
I I I , 
,Data sets whose status is de-, Any ,Each data set whose status is I 
,sired. "to be presented aust be cata- , 
I I Iloged; no DDEF coalland re- , 
, f Iquired for this com.and. f 
I ------~I-----------;I------------------------~, 
,Data set to be printed as a I VI IDDEF cOlllland whose ddnaae is I 
Iresult of program control IList data set,PCSOUT must be defined prior , 
Icommand DUMP. I Ito execution of DUBP command. I , " , 
IData set to be processed by I VI IData set Bust be cataloged, or, 
(the ~ext Editor. I 'defined in current task. ~his, 
I "is done autosatically. I 
I I I , 
IData set being processed by, VI ,Bo DDEF command required for I 
Ithe Text Editor, or indicates, ,this cosmand. , 
I PROCDEF co.sand completion. J I I 
I I' I 
IData set to be erased.. I Any IData set to be erased aust be I ! 

, I ,cataloged, or DDEFed. ( 
I " , 
IPrivate data sets whose nameslVS, VI, VP ,Ho DDEF command required for I 
I are to be entered in catalog. t I this co.mand. I 
, 'f , 
ISYSIB data set for nonconver-I VS, VI IData set aust be cataloged; nof 
I sational task set up by this f ,DDEF coa.and required by this I 
I cosmand. J rco.mand. I 
, " I 
I Line data set containing r VI ,Line data set must be I 
,lines to be presented o. I List or line I cataloged or defined by pre- I 
I , data set Ivious DDEF co •• and in this I 
, "task. , 
, " f 'Object module to be loaded. I VP ,Object module to be loaded is I 
I f (VS aeaber) ,identified by external naae I 
, "specified in this coaaand; it I 
, "must be in a library in the t 
I I Icurrent prograa library list. I , " , 
IData set to be changed. I VI ,Data set aust be cataloged or , 
I "defined by previous DDEF coa- , 
r "mand in this task. , 

I " I ,Data set whose status is re-, Any ,Each data set whose status is , ! 

, quired. I r to be presented aust be ca ta- I 
I I rloged; no DDEP coaaand re- , 
I I 'quired for this coaaand. r 
I " , ,Data sets for which sh,aring' Any ,Data sets for which sharing is, 
,is permitted I Ipermitted sust be cataloged; I 
, "no DDEF coaaand required for r 
, " this coamand. , ,. , 

Appendix B: Data Set Defining for Co.mands and Language Processors 69 



Table 15. Data set Definition Requirements for Commands (continued) 

i I I • I 
,Co •• and, Related Data Sets , DSORG ,Data Set Definition I 

" " I ,POD? ,Virtual partitioned data set, VP ,Virtual partitioned data set , 
I Ifor which information about t ,must be cataloged, or defined I 
, ,its members is given., ,by previous DDEF command in , 
I I 'I this task. I 
I' " , I PRINT IData set to be printed. IPS, VS, VI IData set must be cataloged or , 
" "defined by previous DDEF com- , 
" 'Imand in this task. A previous, 
" "DDEF required for unlabeled I 
" I Itapes. I 'I I' , IPROCDEF IData set which consists of f VI IProvided by system. , 
, lother cOllmands, to become a " I 
I I user-wri tten procedure. " I 

" " I ,PROFILE IUser profile data set in ,VP ,Provided by system. t 
, I USERLIB, session profile in " I 
I ,task virtual memory. I I f 
I I 'I ~ 
,PUNCH ,Data set to be punched on , VS, VI ,Data set must be cataloged or I 
'Icards. "be defined by previous DDEF , 
'I 'f command in this task. t 
I I " , 
IREGION2 ,Data set to be processed by I VI ,Data set must be cataloged, orl 
, I the Text Editor. ( 'defined in current task. , 

" " -I ,RELEASE ,Data set whose definition is f Any ,Data set whose definition is I 
I Ito be released. I ,to be released must be definedl 
I' "in previous DDEF command in I 
" "this task. I 
I I " I 
,RET ,VAM data set whose data set 'VS, VI, VP IData set must be cataloged. I 
, ,descriptor is to be changed. I' , 
f I 'f , 
,SHARE IData sets for which sharing I Any IData sets for which sharing isl 
f lis requested. , Irequested must be cataloged bYf 
" "their owner; no DDEF cOllmand , 
I I I I required by this command. I 
I I " , 
,SYNONYI! I User profile data set in I VP I Data sets must be defined in , 
J ,USERLIB, session profile in , Icurrent task. I 
, t task virtual storage." , 

" " I ,~V ,Physical sequential data set I PS ,Data set (input) must be cata-I 
, I (froll a VT operation) to be I Iloged or defined in current I 
, Iwritten on a VAM volume., Itask. I 
~I----------+I-------------------------Ir-----------rl----------- , 
IVT IVAI! data set to be copied to IVS, VI, VP !Data set (input) must be cata-I 
I !magnetic tape as a physical , rloged or defined in current I 
I Isequential data set. I Itask. I 
J I " , 
IVV !VAH data set to be copied JVS, VI, VP IData set (input) must be cata-f 
• linto direct access storage. I floged or defined in current , 
" 'f task. , 
I' " I ,WT ,Data set to be recorded on , VS, VI ,Data set must be cataloged or r 
, Imagnetic tape in print I Iderined by previous DDEF com- I 
'Iformat. "mand in this task. I 
I , 
I 1If the DATA command was used to create the data set within the current task, then the, 
, data set is defined as if a DDEF command had been issued by the user directly. If thel 
I data set is also VAl! organized and resides in public storage, it is automatically I 
, cataloged. , 
I , 
12These are the basic directive commands of the Text Editor. See Command system Userls I 
r Guide for details concerning the data manipulation commands of this facility. , 
I 

70 



TSS logical records may be in one of 
three formats: fixed-length (format-F), 
variable-length (format-V and format-D), or 
undefined (format-U). 

The prime consideration in the selection 
of a record format is the nature of the 
data set itself. The user knows the type 
of input his progra. will receive and the 
type of output it will produce. Selection 
of a record format is based on this knowl
edge, as well as an understanding of the 
type of input/output devices that are to 
handle the data set, and of the access 
method used to read and write the data set. 

In the case of ASCII tape records, the 
user should be aware that TSS translates 
the records to EBCDIC on input to process 
them and translates them back to ASCII form 
for output. Since some ASCII records begin 
with a control information field that is 
foreign to TSS, the size of this field 
(buffer offset) must be identified as part 
of the record format. 

The record format of a data set is 
placed into the data control block accord
ing to specifications in the DCB macro in
struction, the DDEF command, or the DDEF 
macro instrnction. 

FIXED-LENGTH {FORMAT-Fi 

Format-F records are fixed-length. If 
unblocked format F, the logical record con
stitutes the block. If blocked format-F 
(applicable to BSAft and QSA! only), the 
number of logical records within a block 
(blocking factor) is normally constant for 
every block in the data set, unless the 
block is truncated (short block). 

The system performs physical length 
check.ing on format-F records, automatically 
making allowances for truncated blocks. 

VARIABLE-LENGTH aORMAT-V ABD FORMAT-D) 

Format-V and foraat-D (ASCII tape only) 
records are variable-length records, each 
of which describes its own length. ~hen 
blocked (applicable to BSAM and QSAM only), 
each block also includes its block l,ength. 
'rhe system performs length checking of the 
records and blocks. 

~he first four characters of the record 
contain control information describing the 
length of the record; the format of this 
information depends on whether the record 
is part of a virtual storage data set or a 
physical sequential data set. 

APPENDIX C: TSS RECORD FORMATS 

When unblocked, the logical record and 
the block control information constitute 
the block. The block control information 
(four bytes) must be included in the record 
length. 

In blocked format-V, the block length, 
LLbb, is prefixed to each block, LL repre
sents the block length, and bb represents 
two characters reserved for system use. 
This four-byte block length field must be 
included in the block length. 

variable length records on ASCII tapes 
are specified as format-D. They contain 
the same control infor&ation as format-V 
records, but this information is recorded 
in decimal characters. 

UNDEFINED-FORMAT (FORMAT-U) 

Format-o is provided to permit the proc
essing of any blocks that do not conform to 
the F or V formats. Since each block is 
treated as a logical record (unblocked), 
any deblocking must be done by the user·s 
program. 

CONTROL CHARACTER 

The user may optionally specify, in the 
DDEF command, the DDEF macro instruction or 
the DCB macro instruction, that a control 
character precedes each logical record in a 
data set, as shown in Figure 23. This con
trol character specifies carriage control 
when the data set is printed, or stacker 
selection when the data set is card
punched. The character itself is never 
printed or punched, but it is a part of the 
record in storage. 

If the destination of the record is a 
device that does not recognize this control 
character (e.g., disk), the system assumes 
that the control character is the first 
character of data. If the destination of a 
record is a printer or a punch and the user 
has not specified that the first character 
of the record is to be used as a control 
character, this character is simply treated 
as the first character of the data. 

DIAGRAMS OF RECORD FORMATS 

The following pages show the standard 
external record formats for TSS. In exter
nal format -- the format seen by the user 
-- may differ from the internal format. 

• Record formats for virtual sequential 
data sets are shown in Figure 24. 

Appendix C: TSS Record Formats 71 



• Record formats for virtual index 
sequential data sets are shown in 
Figure 25. 

• Record formats for physical sequential 
data sets are shown in Figures 26 and 
27. 

• Virtual partitioned data sets must con
form to the record formats shown in 
Figure 24 for virtual sequential aem
bers, and to those shown in Figure 25 
for virtual index seguential members. 

• Record foraats for physical sequential 
data sets on ASCII tapes are described 
in Figures 28 and 29. 

Format F and Format U 

Data 

Format V 

4-byte I I length C 
field 

Data 

Figure 23. Placement of Control Character in a Record 

Fixed-length 
(Format F) 

Variable-length 
(Format V) 

Undefined 
(Format u) 

General VSAM 
Rules: 

1'-' 

RECORD 
1 

RECORD 
2 

1 Page 

RECORD 
3 

• I .. 

• Max imum record length: 1,048,576 bytes. 

RECORD 
4 

RECORD 
5 

Page ----.... -11 ..... ----

• System automatically keeps track of overlop across page boundaries. 

RECORD 
6 

Page ---~-11 

~ Record 1 .. 1-- Record 2 ~I" Record 3 .. 1-- Record 4 ...1 

bHC DATA btlt DATA bQC.Q DATA bUt DATA I 
1.-. 1 Page • I III Page ~I" 1 Page ... 1 

• Maximum record length: 1 ,048,576 bytes. 

• System automatically keeps track of overlap across poge boundaries. 

• User must include length of each variable-length record as first 4 bytes of record; length is specified as bUt, 
where b contains binary zeros, and l'rt contains 0 binary number specifying length of the record, in bytes. 
This length must include the 4-byte length field. 

I-- Record 1 ... 1 .. Record 2 "'1-- Record 3 --l 

Data Data Data 

f--- 1 Page .. 1-- 1 Poge ~I" 1 Page ~I-- 1 Page ~I" 1 Poge-----..j 

• Maximum record length: 1,048,576 bytes. 

• Each record length must be a multiple of 4096 bytes (1 page) in length. If more than one page is required, an 
integral number of pages is allocated. 

• Buffer pages required are supplied by system based on maximum logical record length. 

• VSAM data sets cannot be written an volumes containing physical sequential data sets. 

Figure 24. Record Foraats -- VSAM 

72 

I 



Fixed-length 
(Format F) 

Variable-length 
(Format V) 

Initial Key 

r---RECORD ~l~ RECORD 2 .. 1-- RECORD 3 "I· RECORD 4 ~ 

Key DATA Key DATA Key DATA Key DATA I ~ 
Imbedded Ke~ 

~ Record "1-- Record 2 .. I- Record 3 .. I- Record 4 ---1 

First Part 
K 

End Part First Part 
K 

End Part First Part 
K 

E"d Part First Part 
K 

E E E E of Data y of Data of Data y of Data of Doto y of Data of Data y 

Initial Key 

1"'--Record ·1-- Record 2 "I· Record 3 

I b QQQ Key DATA I bHQ Key DATA I bUr Key DATA 

Imbedded Ke~ 

I .... Record "I- Record 2 ... 1· Record 3 

First Part 
K 

E"d Part First Part 
K 

End Part First Part bHQ 
of Data 

E 
of Data 

bUr 
of Dato 

E 
of Data 

bUr 
of Data y y 

• Maximum logical record lenfjth: 4000 bytes. 
• Maximum number of records ,oer data page: 1300. 
• Maximum key length: 255 bytes. 
• Maximum number of data pa(jes: 65,000. 
• Maximum number of overflow pages: 240. 
• Maximum number of records per overflow poge: 255. 
• IIAoximum number of directory pages: 255. 
• User must include length of each variable-length record as first 4 bytes of record; 

length is specified as b£ I Q, where b contains binary zeros, and, £ £ contains a 
binary number specifying length of the record, in bytes. This length must include 
the 4-byte length field. 

Line Data Set Record 

Record 
Length 

Line 
Number 

____ RECORD 

Flag DATA 

K 
E 
y 

10
1 

I- 4 ---k- 7 --1-_ 1 - .. +ol ... ~-
bytes bytes byte 

(data length - 120 bytes) -------1 ... ..,1 

• Maximum record length: 132 bytes. 
• Maximum data length: 120 bytes. 

Flag byte indic<ltes whel-her record originally 
came from terminal keyboard (01) or card reeder (00). 

Region Data Set Recard 

Recard 
Length 

Region 
Name 

RECORD 

Line 

Number 
Flag 

4 0-244 7 1 

DATA 

1-4- bytes __ 1_- -- bytes ------.;-...-- bytes -I-- byte_..I ____ -- (data length - 244 bytes) 

Mcximum record length: 256 bytes. 
Mcximum data length: 244 bytes. 
Flag byte indicates whether record originally 
come fram terminal keyboClfd (01) or card reader (00). 

End Part ) of Data 

~I 

I r 
"'1 

End Part 
of Dota ~ 

( 

~I 

"I 

Figure 25. Record Formats -- VISAa 

Appendix c: TSS Record Formats 73 



Fixed-length 
(Format F) 

Fixed-length 
Blocked 
(Format FB) 

Fixed-I ength I 
Blocked 
Standard Slacking 
(Format FBS) 

Variable-length 
(Format V) 

Variable-length, 
Blocked 
(Format VB) 

Figure 26. 

74 

RECORD] I I RECORD 2 I I RECORD 3 I ( 
• Maximum record length - 32,760 bytes. 

• Each block treated as .; logica I record. 

14 BLOCK ~I 
I SHORT 

I 14 BLOCK ·1 BLOCK 

II REC 

I 
REC REC 

I I 
REC 

I 
REC 

1.· .. 1 
REC REC REC II ] 2 3 4 5 6 7 B 

• Maximum block length - 32,760 bytes. 

• Blocking factor is usually constant; however, data set may contain truncated or short blocks. 

~--BLOCK] ---., ~--BLOCK 2 ---., ~--BLOCK 3 --------""' 

• Maximum block length -32,760 bytes. 

• Last block may be truncated; truncated block invokes end-of-volume routines. 

• Maximum logical record length - 32,756 bytes. 

I~ LL] 

r- ef] ~ I- U 2 =1 
II LL]bb I QC]bb DATA 

I 
Q C 2bb DATA I ~ 

I-

I I DATA I ( 
• Maximum logical record length - 32,763 bytes. 

• Each logical record must describe its own length; this information must be included by user as first 
4 bytes of each record: 

a Q - Binary number specifying record length in bytes. 

bb - Binary Os. 

• Sy>tem performs length checking of blocks containing Format-V records, based on l'ser-supplied length 
information; when data sets wi'f'l, Format-V records (either blocked or unblocked) are created, 
a 4-byte control block is required in the form LLbb, where. 

LL - Binary number specifying block length in bytes. 

bb - Two bytes reserved for sy>tem use. 

Value of LL is determined by adding the £.e s of the records within block and adding 4 bytes for the control field. 

• Format-V and Blacked Format-V records cannot be processed on 7-track tape units without data 
conversion feature. 

Record Formats -- Physical sequential Data sets without Keys 



Undefined 
(Format U) ~ I RECORD I I I RECORD 2 II RECORD 3 I ~ 

• Max imum record lengt:, - 32,767 bytes. 

• Each black is treated as logical record. 

• No length checking is performed. 

• User must make length of each Formot-U record available to system in data set's data control block, 
prior to asking system 'to write that record. 

• When system reads a Fmmat-U record, it makes record's length available to user in data set's data 
control block. 

Also, there is a device-dependent rule for physical sequential data sets: 

Track-overflow aptian for direct-access devices; when this option is used, a record that daes not fit 
an a track is partially written an that track and continued on next track; if this option is nat used, 
records are not spl it between tracks. 

Track overflow 
(Option T) n REC II REC 

2 II REC 
3 II REC 

4 

REC 

11 
REC 

1'1 
REC I'ti 4 5 6 cont'd 

No track 
overflow 

I .. 

n REC II REC 
I 2 

f-------

TRACK I 

II REC 
3 

TRACK 1 

I .. TRACK 2 .. 1 

RECORD I I RECORD I 4 5 

I .. TRACK 2 ... 1 

Figure 26. Record Formats - Physica.l sequential Data sets without Keys (cont'd) 

Fixed 
Length 
(Format F) 

Fixed 
Length 
Blocked 
(Format FB) 

Variable 
Length 
(Format V) 

Variable 
Length 
Blocked 
(Format VB) 

Undefined 
(Format U) 

~ Recordl --l k- Record2 ---I l...-- Record3--J 

BLOCK 

I Key3 1 KeYI Datal I Key 2 1 Data 2 KeY3 Dato3 I 

~ Record --+-- Record ~ Record -..j 

I
I r-

Dot" 

Record Record 

11--- LL1 

H1 
"'1'" 

----_. 

rf2 "'r 
KeY3 I LLlbb I eel bb I KeYI I Data I H 2bb I KeY2 Data I 2 C3bb 

I~ Record .. I~ I 

Record ... I~ 

Key Data I I Key Data I 1 Key Data I 
f..-- Record ---1 f...-- Record ----l f..-- Record -----I 

The same rules apply to physical sequential data sets with keys as for those without keys; also: 

• All keys in data set must be the same length. 

Record 

QC3 ~ 
KeY3 Data I 

Record -----J 

• Number of bytes transmitted in a READ or WRITE operation equals the key plus the data portion of record. 

Note: Non-zero KEYLEN operand in DCB identifies data set with keys. 

Fiqure 27. Record Formats - Physicall sequential Data sets With Keys 

.~ 

Appendix c: TSS Record Formats 75 



Fixed-length, 
Blocked and 
Unblocked 
(Format F) 

Variob Ie-length, 
Unblocked 
(Format D) 

Variab Ie-length 
Blocked 
(Format DB) 

Undefined 
(Format U) 

Record 1 Record 2 Record 3 

• Maximum record length - 32,760 bytes 
• Buffer offset not supported 
• Data in EBCDIC form is translated to ASCI! 

~liill dddd DATA II dddd I DATA II dddd I DATA 

• Maximum logical record length - 32,756 bytes 
• Block descriptor in example has been stepped over 
• Each logical record must describe its own length; this 

information must be included as first four bytes of each record: 
dddd - unpacked decimal number specifying length in bytes 

• dddd and DATA are translated to ASCll 
• Buffer offset of 0 and 4 are supported 

? IDDDD I dddd DATA I dddd I DATA 

• Maximum logical record length - 32,763 bytes 
• System performs length checking af blocks containing 

Format-D records, based on user suppli ed length information; 
when data sets with Format-D records (either blocked or 
unblocked) are created, a 4-byte control block in the form 
DDDD is required, where: 

DDDD - unpacked decimal number specifying block length 
in bytes 

Value of DDDD is determined by adding the dddd's of the 
records within the blocks and adding 4 bytes for the control 
field. 

• DODD, dddd, and DATA are translated to ASCII 

Record 1 Record 2 Record 3 

• Maximum record length - 32,767 bytes 
• Each block is treated as a logical record 
• No length checking is performed 
• User must make length of each Format-U record avai lable to 

system in data set's data control block 
• Buffer offset not supported 
• Format U is supported when 128 character set is used 
• Data translated to ASCII 

Note: This represents the output after the system has processed the internal EBCDIC data 
format described in Figure 27. 

Figure 28. output Record Formats for ASCII Tapes 

76 



When more than one page number is indi
cated, the major reference is first. All 
references are within plus or minus one of 
the indicated page number. 

accessing data sets 16 
accessing privilege 16 
access lIIethods 

BS!.!! - see basic sequential access 
method 

IOREQ - see input/output request 
facility 

MSAM - see multiple sequential access 
method 

QSAM - see queued sequential access 
method 

SA~ - see sequential access metho(is 
TAt1II - see terminal access method 
VAM - see virtual access methods 
VISA!\: - see virtual index sequential 
access method 

VPAM - see virtual partitioned access 
method 

VSAM - see virtual sequential access 
method 

access, read only 13 
access, read-write 13 
access, restricting 10 
access, unlimited 13 
aliases 26,27 
asse.bler interfaces 42 
attach a record to virtual 
attention interruption (of 
automatic buffering (MSAM) 
auxiliary storage 5 

storage 16 
DATA) 45 

36 

basic sequential access method (BSAM) 28 
buffering 29 
macro instructions: 

BSP 32 
CHECK 32 
CNTRL 32 
DQDEeB 32 
FEOV 32 
FREEBUF 31 
FREEPOOL 31 
GETBUF 31 
GETPOOL 31 
NOTE 32 
POINT 32 
READ 32 
WRITE 32 

record formats 29 
block. count (DCB) 33 
blocking 7 

BSAM 29 
QSAM 33 

buffering, automatic (MS!M) 36 
buffering, BS!M 29 
buffering, double 33 
buffering, exchange 35 
buffering, IOREQ 38 
buffering, QSAM 35,33 
buffering, single 34 
buffering, VISAM 23 

buffering, VPAM 27 
buffering, VSAM 18 
build channel programs 39 
bulk input 48 
bulk input/output 48 
bulk output 48 

card input, operator assisted 49 
card reader/punch - see unit record 

equipment 
CATALOG command 50 
catalog, for sharing data sets 13 
catalog, systelll-use 2 
catalog, user 3 
cataloging, automatic 3 
cataloging data sets 2,49 

INDEX 

cataloging virtual storage data sets 10 
CDD command 8 
CDS colllllland 47 
CCW chaining 36,38 
channel programs (BSAM) 28 
channel programs (SAM) 28 
CHECK macro (BS!M) 28 
CLOSE macro (BSAK) 10,29 
CLOSE macro (QS!M) 34 
CLOSE processing 

access method dependent 11 
com lion 11 

CLOSE, temporary ('1') 12 
COMBIN option {DCB} 36 
command chaining 38 
command system interfaces 43 
component 2 
concurrent sharing 13 
CONTEXT command 43 
control blocks 8 

data control block (DCB) 8,10 
data event control block (DECB) 36,38 
data set control block 

(DSCB) 3,17,53-57 
input/output request control block 

(IORCB) 28 
job file control block (JFCB) 8,9 

control cards (MSAM) 36 
control character 71 
control sections 

public 15 
private 15 

copying data sats 46 
CORRECT command 43 

DATA command 45 
data control block 8 
data event control block (DECB) 36,38 
data group 36 
data management 1 

basic concepts 4 
facilities 1 

data pages 22,23,25 
data set 2 

accessing 16 
cataloging 49 
characteristics 7 
copying 46 
data-card 49 

Index 77 



defining (rules) 66 
duplexed 12 
interlock 14,24 
introducing to a task 8 
line 42 
list 46 
name 2 
naming and cataloging 2 
naming rules 2 
physical sequential 55 
preparing for use 10 
region 43 
sharing 13 
SYSIN 49 
virtual partitioned 26 
virtual storage - see virtual storage 
data set 

data set control block (DSCB) 3,17 
formats 54,56 

data set descriptor (DSD) 3,53 
DCB operand of DDEF 9 
DCB, filling in 10 
DCB (see TCT 39) 
DCBleB, field of DCB 31 
DCft (TAlIII) 39 
DDEF 8,9 

effective span 9 
summary of operands 9,10 

DDNAHE operand of DDEF 9 
deblocking (QSAM) 33 
delete at close option 12 
DELETE command 50 
device control modules (TAHIl) 39 
device dependencies 39 
direct access volumes 53 
directory, page (VISAH) 23,25 
directory, partitioned organization 

(POD) 27 
DISP operand of DDEF 10 
DISPLAY, PL/I (F) I/O 52 
double buffering 33 
DSNAHE operand of DDEF 9 
DSORG operand of DDEF 9 
DUPCLOSE macro instruction 12 
duplexing option 12 
DUPOPER macro instruction 12 
dynamic loader, use in sharing 15 

EDIT cOlUland 43 
edit input/output data 39 
end-of-data routine (EODAD) 20 
ERASE command 49 
error processing (!'ISAM) 37 
error recovery (TAMIl) 39,40 
EVV command 50 
EXCERPT command 44 
exchange buffering 35 
EXCISE command 44 
exit list 41 
external page table (XPT) 18 
external sharing 13,5 

FIND macro instruction 12,28 
format control modules 39 
formats, record 7,70-76 
FORTRAN interfaces 51 
FORTRAN I/O control 51 
FORTRA~ I/O statements 51 
FORTRAN library 42 
fragmentation, data set 17 
fully qualified data set name 2 

78 

GATE macro instructions 39,42 
GATRD 42 
GATWR 42 
GTWAR 42 
GTWRC 42 
GTWSR 42 

gather-write 38 
generation data group (GDG) 50,3 

index entry 50 

HOLD parameter of DDEF 17 

index entry (generation data group) 50 
index, master 3 
indexed data sets 1 
initiate I/O 39 
input, bulk 49 
input/output, bulk 48 
input/output request control block 

(IORCB) 28 
chaining 38 

input/output request facility (lOREQ) 38 
buffering 38 
macro instructions 

CHECK 38 
IOREQ 38 
VCCW 38 

INSERT command 44 
interfaces 42 

assembler 42 
command system 43 
FORTRAN 51 
PL/I (F) 52 

internal sharing 15,13 
interlocks: 

data set 14,24 
member 14,27 
page (VISA!'!) 15,22 
read 14,28 
releasing 15,21 
sharing 14 
write 14,24,28 

INTINQ macro instruction 37 

JFCB (see TCT 39) 
job file control block (JFCB) 8 

filling in 9 
job library 10 

LABEL operand of DDEF 9 
labels 

trailer (writing) 12 
volume label formats 53 r 55,58 

libraries 26 
line control 39 
LINE? command q6 
line data set q3 
LIST command q4 
list data set 46 
LOCATE command 4q 
locators (VISAM) 21 
logical record 1 
LPN 21 

magnetic tape 
accessing 

main storage 
master index 

volumes 
28 
5 
3 

51 



KCAST macro instruction 42 
aembers 26 
member header 27 
member interlock 14,27 
MODIFY command ~5 
aultiple sequential access method 

(KSAK) 36 
buffering (automatic) 36 
control cards 36 
error processing 37 
macro instructions 

FINISH 36 
GET 36 
PUT 36 
SETUR 36 

multiple terminal support 40 

naming data sets 2 
NUKBER command 44 

open processing 10 
common portion 10 
access-method-dependent portion 10 

OPPN 21 
OPTION parameter of DDEF 10 
organization, data set 

indexed 7 
partitioned 7 
physical sequential 28,33,36,55 
sequential 7 
virtual index sequential 21 
virtual sequential 18 

organization, standard tape 57 
output, bulk 48 
overflow page, VISAK 21 

PAD paraaeter (DCB) 23 
page deletion 25 
page length, reason for choosing 17 
page interlock 15 

VISAft 24 
partially qualified data set name 2 
partitioned data set organization 7 
partitioned organization directory 

(POD) 25 
permanent storage 5 
PER~IT command, restriction 13 
physical record 7 
physical sequential data set 55,28,33,36 
PL/I (F) 

DISPLAY I/O 52 
interfaces with data mgmt. 51-52 
RECORD I/O 52 
STREAK I/O 52 

polling 41 
PPN 21 
PRINT command 48 
printer - see unit record equipment 
private storage 5 
privilege, accessing 13 
public storage 5 
public volume table (PVT) 53 
PUNCH command 48 

queued sequential access method (OS!!!) 33 
blocking 33 
buffering 24-35 
macro instructions 

FEOV 35 

GET 34 
PUT 34 
PUTX 35 
RELSE 35 
SETL 34 
TRUIIC 35 

record formats 34 

read interlock 14,28 
restriction 14 

read-only access 13 
read-write access 13 
real terminal access method 39 
record 2 
record formats, allowable 

BS!ft 29 
fixed length 70 
physical sequential data set 70 
OS Aft 34 
variable length 70 
VISAK 24,70 
VPAK 70 
VSAK 18,70 
undefined length 70,18 

record, logical 7 
record, physical 7 
RECORD, PL/I (F) I/O 52 
REGION command 44 
region data set 43 
REGSIZE parameter (user profile) 44 
relative external storage correspondence 
table (RESTBL) 17 

constructing 18 
RELEASE command 9 
RET parameter (DDEl) 10 
RETPD parameter (DDEF) 9 
retrieval address 18 

VSAK 20 
REVISE command 44 
RT command 49 
RTAK 39 

scatter-read 38 
SECURE command 8 
sequential access methods (SAft) 16,28 
sequential data set organization 7 
shared data set table (SDST) 15 
sharing data sets 13 

catalog use in 13 
concurrent 13 
external 13 
interlocks 1LJ 
internal 15 
virtual storage data sets 14 
VISAK 25 
VPAK 27 
VSAM 20 

single buffering 34 
SPACE parameter (DDEl) 9 
storage, classes of 5 

auxiliary 5 
external 5 
main 5 
permanent 5 
private 5 
public 5 
temporary 5 

STREAK, PL/I (ll I/O 52 
symbolic device address (SDA) 38 
symbolic device allocation table (SDAT) 37 

Index 79 



SYSIB data set (nonconversational) 49 
system operator 48 

tapesr magnetic 59 
accessing 28 
organization 59 

TCS (terminal command system) 39 
TCT 39 
temporary close (CLOSE(T» 13 
temporary storage 5 
terminal access .ethod (TAM II) 39 

buffering 43 
error recovery 39 
macros instructions 40 
return codes 41 

terminal control table (TCT) 39 
text editor 43 

creation of VIS data sets 43 
trailer labels r writing 12 
translate input data 39 
truncation of data sets 20,22 
TSS mode (BTAK) 42 
TV command 46 

UNIT parameter of DDEF command 9 
unit record devices 4,36,48 

command system, use of 4 
MSAM, use of 36 
users of 4 

unlimited access 13 
UPDATE command 44 
user-data 27 

VAK data set - see virtual storage data set 
virtual access methods (VAM) 16,17 

processing data sets 17 
virtual channel command word 38 
virtual index sequential access method 

(VISA!!) 20 
buffering 24 
functions 23 
macro instructions 

80 

DELREC 24 
ESETL 25 

GET 
PUT 
READ 
RELEX 
SETL 
WRITE 

23 
2lJ 

2lJ 
25 

23 
24 

overflow page 21 
organization (VIS) 43 
page directory 21 
record formats 23 
sharing 24 
truncating 23 

virtual partitioned access method 
(VPAM) 24 

buffering 27 
functions 26 
macro instructions 

FIND 27 
STOW 27 

organization (VP) 26 
processing 27 
sharing 27 

virtual sequential access method (VSAK) 
buffering 18 
functions 18 
macro instructions 

GET 18 
PUT 20 
PUTX 20 
SETL 18 

organization (VS) 18 
record formats 18 
sharing 20 

virtual storage data sets 6 
cataloging 10 
concurrent sharing 13 

virtual terminal support system 39 
VISAM data sets 22-25 
VOLUME operand of DDEF 9 
volume table of contents (VTOC) 55 
VT command 46 
VTSS 39 
VV command 47 

write interlock 14 r 28 
WT command 49 

18 





GC28-2056-2 

--... -- -(H ----- ----------------
-~- .. -
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601 

'TI 

n. 


